1 |
684 |
jeremybenn |
/* IRA hard register and memory cost calculation for allocnos or pseudos.
|
2 |
|
|
Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "config.h"
|
23 |
|
|
#include "system.h"
|
24 |
|
|
#include "coretypes.h"
|
25 |
|
|
#include "tm.h"
|
26 |
|
|
#include "hard-reg-set.h"
|
27 |
|
|
#include "rtl.h"
|
28 |
|
|
#include "expr.h"
|
29 |
|
|
#include "tm_p.h"
|
30 |
|
|
#include "flags.h"
|
31 |
|
|
#include "basic-block.h"
|
32 |
|
|
#include "regs.h"
|
33 |
|
|
#include "addresses.h"
|
34 |
|
|
#include "insn-config.h"
|
35 |
|
|
#include "recog.h"
|
36 |
|
|
#include "reload.h"
|
37 |
|
|
#include "diagnostic-core.h"
|
38 |
|
|
#include "target.h"
|
39 |
|
|
#include "params.h"
|
40 |
|
|
#include "ira-int.h"
|
41 |
|
|
|
42 |
|
|
/* The flags is set up every time when we calculate pseudo register
|
43 |
|
|
classes through function ira_set_pseudo_classes. */
|
44 |
|
|
static bool pseudo_classes_defined_p = false;
|
45 |
|
|
|
46 |
|
|
/* TRUE if we work with allocnos. Otherwise we work with pseudos. */
|
47 |
|
|
static bool allocno_p;
|
48 |
|
|
|
49 |
|
|
/* Number of elements in array `costs'. */
|
50 |
|
|
static int cost_elements_num;
|
51 |
|
|
|
52 |
|
|
/* The `costs' struct records the cost of using hard registers of each
|
53 |
|
|
class considered for the calculation and of using memory for each
|
54 |
|
|
allocno or pseudo. */
|
55 |
|
|
struct costs
|
56 |
|
|
{
|
57 |
|
|
int mem_cost;
|
58 |
|
|
/* Costs for register classes start here. We process only some
|
59 |
|
|
allocno classes. */
|
60 |
|
|
int cost[1];
|
61 |
|
|
};
|
62 |
|
|
|
63 |
|
|
#define max_struct_costs_size \
|
64 |
|
|
(this_target_ira_int->x_max_struct_costs_size)
|
65 |
|
|
#define init_cost \
|
66 |
|
|
(this_target_ira_int->x_init_cost)
|
67 |
|
|
#define temp_costs \
|
68 |
|
|
(this_target_ira_int->x_temp_costs)
|
69 |
|
|
#define op_costs \
|
70 |
|
|
(this_target_ira_int->x_op_costs)
|
71 |
|
|
#define this_op_costs \
|
72 |
|
|
(this_target_ira_int->x_this_op_costs)
|
73 |
|
|
|
74 |
|
|
/* Costs of each class for each allocno or pseudo. */
|
75 |
|
|
static struct costs *costs;
|
76 |
|
|
|
77 |
|
|
/* Accumulated costs of each class for each allocno. */
|
78 |
|
|
static struct costs *total_allocno_costs;
|
79 |
|
|
|
80 |
|
|
/* It is the current size of struct costs. */
|
81 |
|
|
static int struct_costs_size;
|
82 |
|
|
|
83 |
|
|
/* Return pointer to structure containing costs of allocno or pseudo
|
84 |
|
|
with given NUM in array ARR. */
|
85 |
|
|
#define COSTS(arr, num) \
|
86 |
|
|
((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
|
87 |
|
|
|
88 |
|
|
/* Return index in COSTS when processing reg with REGNO. */
|
89 |
|
|
#define COST_INDEX(regno) (allocno_p \
|
90 |
|
|
? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
|
91 |
|
|
: (int) regno)
|
92 |
|
|
|
93 |
|
|
/* Record register class preferences of each allocno or pseudo. Null
|
94 |
|
|
value means no preferences. It happens on the 1st iteration of the
|
95 |
|
|
cost calculation. */
|
96 |
|
|
static enum reg_class *pref;
|
97 |
|
|
|
98 |
|
|
/* Allocated buffers for pref. */
|
99 |
|
|
static enum reg_class *pref_buffer;
|
100 |
|
|
|
101 |
|
|
/* Record allocno class of each allocno with the same regno. */
|
102 |
|
|
static enum reg_class *regno_aclass;
|
103 |
|
|
|
104 |
|
|
/* Record cost gains for not allocating a register with an invariant
|
105 |
|
|
equivalence. */
|
106 |
|
|
static int *regno_equiv_gains;
|
107 |
|
|
|
108 |
|
|
/* Execution frequency of the current insn. */
|
109 |
|
|
static int frequency;
|
110 |
|
|
|
111 |
|
|
|
112 |
|
|
|
113 |
|
|
/* Info about reg classes whose costs are calculated for a pseudo. */
|
114 |
|
|
struct cost_classes
|
115 |
|
|
{
|
116 |
|
|
/* Number of the cost classes in the subsequent array. */
|
117 |
|
|
int num;
|
118 |
|
|
/* Container of the cost classes. */
|
119 |
|
|
enum reg_class classes[N_REG_CLASSES];
|
120 |
|
|
/* Map reg class -> index of the reg class in the previous array.
|
121 |
|
|
-1 if it is not a cost classe. */
|
122 |
|
|
int index[N_REG_CLASSES];
|
123 |
|
|
/* Map hard regno index of first class in array CLASSES containing
|
124 |
|
|
the hard regno, -1 otherwise. */
|
125 |
|
|
int hard_regno_index[FIRST_PSEUDO_REGISTER];
|
126 |
|
|
};
|
127 |
|
|
|
128 |
|
|
/* Types of pointers to the structure above. */
|
129 |
|
|
typedef struct cost_classes *cost_classes_t;
|
130 |
|
|
typedef const struct cost_classes *const_cost_classes_t;
|
131 |
|
|
|
132 |
|
|
/* Info about cost classes for each pseudo. */
|
133 |
|
|
static cost_classes_t *regno_cost_classes;
|
134 |
|
|
|
135 |
|
|
/* Returns hash value for cost classes info V. */
|
136 |
|
|
static hashval_t
|
137 |
|
|
cost_classes_hash (const void *v)
|
138 |
|
|
{
|
139 |
|
|
const_cost_classes_t hv = (const_cost_classes_t) v;
|
140 |
|
|
|
141 |
|
|
return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
|
142 |
|
|
}
|
143 |
|
|
|
144 |
|
|
/* Compares cost classes info V1 and V2. */
|
145 |
|
|
static int
|
146 |
|
|
cost_classes_eq (const void *v1, const void *v2)
|
147 |
|
|
{
|
148 |
|
|
const_cost_classes_t hv1 = (const_cost_classes_t) v1;
|
149 |
|
|
const_cost_classes_t hv2 = (const_cost_classes_t) v2;
|
150 |
|
|
|
151 |
|
|
return hv1->num == hv2->num && memcmp (hv1->classes, hv2->classes,
|
152 |
|
|
sizeof (enum reg_class) * hv1->num);
|
153 |
|
|
}
|
154 |
|
|
|
155 |
|
|
/* Delete cost classes info V from the hash table. */
|
156 |
|
|
static void
|
157 |
|
|
cost_classes_del (void *v)
|
158 |
|
|
{
|
159 |
|
|
ira_free (v);
|
160 |
|
|
}
|
161 |
|
|
|
162 |
|
|
/* Hash table of unique cost classes. */
|
163 |
|
|
static htab_t cost_classes_htab;
|
164 |
|
|
|
165 |
|
|
/* Map allocno class -> cost classes for pseudo of given allocno
|
166 |
|
|
class. */
|
167 |
|
|
static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
|
168 |
|
|
|
169 |
|
|
/* Map mode -> cost classes for pseudo of give mode. */
|
170 |
|
|
static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
|
171 |
|
|
|
172 |
|
|
/* Initialize info about the cost classes for each pseudo. */
|
173 |
|
|
static void
|
174 |
|
|
initiate_regno_cost_classes (void)
|
175 |
|
|
{
|
176 |
|
|
int size = sizeof (cost_classes_t) * max_reg_num ();
|
177 |
|
|
|
178 |
|
|
regno_cost_classes = (cost_classes_t *) ira_allocate (size);
|
179 |
|
|
memset (regno_cost_classes, 0, size);
|
180 |
|
|
memset (cost_classes_aclass_cache, 0,
|
181 |
|
|
sizeof (cost_classes_t) * N_REG_CLASSES);
|
182 |
|
|
memset (cost_classes_mode_cache, 0,
|
183 |
|
|
sizeof (cost_classes_t) * MAX_MACHINE_MODE);
|
184 |
|
|
cost_classes_htab
|
185 |
|
|
= htab_create (200, cost_classes_hash, cost_classes_eq, cost_classes_del);
|
186 |
|
|
}
|
187 |
|
|
|
188 |
|
|
/* Create new cost classes from cost classes FROM and set up members
|
189 |
|
|
index and hard_regno_index. Return the new classes. The function
|
190 |
|
|
implements some common code of two functions
|
191 |
|
|
setup_regno_cost_classes_by_aclass and
|
192 |
|
|
setup_regno_cost_classes_by_mode. */
|
193 |
|
|
static cost_classes_t
|
194 |
|
|
setup_cost_classes (cost_classes_t from)
|
195 |
|
|
{
|
196 |
|
|
cost_classes_t classes_ptr;
|
197 |
|
|
enum reg_class cl;
|
198 |
|
|
int i, j, hard_regno;
|
199 |
|
|
|
200 |
|
|
classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
|
201 |
|
|
classes_ptr->num = from->num;
|
202 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
203 |
|
|
classes_ptr->index[i] = -1;
|
204 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
205 |
|
|
classes_ptr->hard_regno_index[i] = -1;
|
206 |
|
|
for (i = 0; i < from->num; i++)
|
207 |
|
|
{
|
208 |
|
|
cl = classes_ptr->classes[i] = from->classes[i];
|
209 |
|
|
classes_ptr->index[cl] = i;
|
210 |
|
|
for (j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
|
211 |
|
|
{
|
212 |
|
|
hard_regno = ira_class_hard_regs[cl][j];
|
213 |
|
|
if (classes_ptr->hard_regno_index[hard_regno] < 0)
|
214 |
|
|
classes_ptr->hard_regno_index[hard_regno] = i;
|
215 |
|
|
}
|
216 |
|
|
}
|
217 |
|
|
return classes_ptr;
|
218 |
|
|
}
|
219 |
|
|
|
220 |
|
|
/* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
|
221 |
|
|
This function is used when we know an initial approximation of
|
222 |
|
|
allocno class of the pseudo already, e.g. on the second iteration
|
223 |
|
|
of class cost calculation or after class cost calculation in
|
224 |
|
|
register-pressure sensitive insn scheduling or register-pressure
|
225 |
|
|
sensitive loop-invariant motion. */
|
226 |
|
|
static void
|
227 |
|
|
setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
|
228 |
|
|
{
|
229 |
|
|
static struct cost_classes classes;
|
230 |
|
|
cost_classes_t classes_ptr;
|
231 |
|
|
enum reg_class cl;
|
232 |
|
|
int i;
|
233 |
|
|
PTR *slot;
|
234 |
|
|
HARD_REG_SET temp, temp2;
|
235 |
|
|
bool exclude_p;
|
236 |
|
|
|
237 |
|
|
if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
|
238 |
|
|
{
|
239 |
|
|
COPY_HARD_REG_SET (temp, reg_class_contents[aclass]);
|
240 |
|
|
AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
|
241 |
|
|
/* We exclude classes from consideration which are subsets of
|
242 |
|
|
ACLASS only if ACLASS is a pressure class or subset of a
|
243 |
|
|
pressure class. It means by the definition of pressure classes
|
244 |
|
|
that cost of moving between susbets of ACLASS is cheaper than
|
245 |
|
|
load or store. */
|
246 |
|
|
for (i = 0; i < ira_pressure_classes_num; i++)
|
247 |
|
|
{
|
248 |
|
|
cl = ira_pressure_classes[i];
|
249 |
|
|
if (cl == aclass)
|
250 |
|
|
break;
|
251 |
|
|
COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
|
252 |
|
|
AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
|
253 |
|
|
if (hard_reg_set_subset_p (temp, temp2))
|
254 |
|
|
break;
|
255 |
|
|
}
|
256 |
|
|
exclude_p = i < ira_pressure_classes_num;
|
257 |
|
|
classes.num = 0;
|
258 |
|
|
for (i = 0; i < ira_important_classes_num; i++)
|
259 |
|
|
{
|
260 |
|
|
cl = ira_important_classes[i];
|
261 |
|
|
if (exclude_p)
|
262 |
|
|
{
|
263 |
|
|
/* Exclude no-pressure classes which are subsets of
|
264 |
|
|
ACLASS. */
|
265 |
|
|
COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
|
266 |
|
|
AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
|
267 |
|
|
if (! ira_reg_pressure_class_p[cl]
|
268 |
|
|
&& hard_reg_set_subset_p (temp2, temp) && cl != aclass)
|
269 |
|
|
continue;
|
270 |
|
|
}
|
271 |
|
|
classes.classes[classes.num++] = cl;
|
272 |
|
|
}
|
273 |
|
|
slot = htab_find_slot (cost_classes_htab, &classes, INSERT);
|
274 |
|
|
if (*slot == NULL)
|
275 |
|
|
{
|
276 |
|
|
classes_ptr = setup_cost_classes (&classes);
|
277 |
|
|
*slot = classes_ptr;
|
278 |
|
|
}
|
279 |
|
|
classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
|
280 |
|
|
}
|
281 |
|
|
regno_cost_classes[regno] = classes_ptr;
|
282 |
|
|
}
|
283 |
|
|
|
284 |
|
|
/* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
|
285 |
|
|
decrease number of cost classes for the pseudo, if hard registers
|
286 |
|
|
of some important classes can not hold a value of MODE. So the
|
287 |
|
|
pseudo can not get hard register of some important classes and cost
|
288 |
|
|
calculation for such important classes is only waisting CPU
|
289 |
|
|
time. */
|
290 |
|
|
static void
|
291 |
|
|
setup_regno_cost_classes_by_mode (int regno, enum machine_mode mode)
|
292 |
|
|
{
|
293 |
|
|
static struct cost_classes classes;
|
294 |
|
|
cost_classes_t classes_ptr;
|
295 |
|
|
enum reg_class cl;
|
296 |
|
|
int i;
|
297 |
|
|
PTR *slot;
|
298 |
|
|
HARD_REG_SET temp;
|
299 |
|
|
|
300 |
|
|
if ((classes_ptr = cost_classes_mode_cache[mode]) == NULL)
|
301 |
|
|
{
|
302 |
|
|
classes.num = 0;
|
303 |
|
|
for (i = 0; i < ira_important_classes_num; i++)
|
304 |
|
|
{
|
305 |
|
|
cl = ira_important_classes[i];
|
306 |
|
|
COPY_HARD_REG_SET (temp, ira_prohibited_class_mode_regs[cl][mode]);
|
307 |
|
|
IOR_HARD_REG_SET (temp, ira_no_alloc_regs);
|
308 |
|
|
if (hard_reg_set_subset_p (reg_class_contents[cl], temp))
|
309 |
|
|
continue;
|
310 |
|
|
classes.classes[classes.num++] = cl;
|
311 |
|
|
}
|
312 |
|
|
slot = htab_find_slot (cost_classes_htab, &classes, INSERT);
|
313 |
|
|
if (*slot == NULL)
|
314 |
|
|
{
|
315 |
|
|
classes_ptr = setup_cost_classes (&classes);
|
316 |
|
|
*slot = classes_ptr;
|
317 |
|
|
}
|
318 |
|
|
else
|
319 |
|
|
classes_ptr = (cost_classes_t) *slot;
|
320 |
|
|
cost_classes_mode_cache[mode] = (cost_classes_t) *slot;
|
321 |
|
|
}
|
322 |
|
|
regno_cost_classes[regno] = classes_ptr;
|
323 |
|
|
}
|
324 |
|
|
|
325 |
|
|
/* Finilize info about the cost classes for each pseudo. */
|
326 |
|
|
static void
|
327 |
|
|
finish_regno_cost_classes (void)
|
328 |
|
|
{
|
329 |
|
|
ira_free (regno_cost_classes);
|
330 |
|
|
htab_delete (cost_classes_htab);
|
331 |
|
|
}
|
332 |
|
|
|
333 |
|
|
|
334 |
|
|
|
335 |
|
|
/* Compute the cost of loading X into (if TO_P is TRUE) or from (if
|
336 |
|
|
TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
|
337 |
|
|
be a pseudo register. */
|
338 |
|
|
static int
|
339 |
|
|
copy_cost (rtx x, enum machine_mode mode, reg_class_t rclass, bool to_p,
|
340 |
|
|
secondary_reload_info *prev_sri)
|
341 |
|
|
{
|
342 |
|
|
secondary_reload_info sri;
|
343 |
|
|
reg_class_t secondary_class = NO_REGS;
|
344 |
|
|
|
345 |
|
|
/* If X is a SCRATCH, there is actually nothing to move since we are
|
346 |
|
|
assuming optimal allocation. */
|
347 |
|
|
if (GET_CODE (x) == SCRATCH)
|
348 |
|
|
return 0;
|
349 |
|
|
|
350 |
|
|
/* Get the class we will actually use for a reload. */
|
351 |
|
|
rclass = targetm.preferred_reload_class (x, rclass);
|
352 |
|
|
|
353 |
|
|
/* If we need a secondary reload for an intermediate, the cost is
|
354 |
|
|
that to load the input into the intermediate register, then to
|
355 |
|
|
copy it. */
|
356 |
|
|
sri.prev_sri = prev_sri;
|
357 |
|
|
sri.extra_cost = 0;
|
358 |
|
|
secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
|
359 |
|
|
|
360 |
|
|
if (secondary_class != NO_REGS)
|
361 |
|
|
{
|
362 |
|
|
if (!move_cost[mode])
|
363 |
|
|
init_move_cost (mode);
|
364 |
|
|
return (move_cost[mode][(int) secondary_class][(int) rclass]
|
365 |
|
|
+ sri.extra_cost
|
366 |
|
|
+ copy_cost (x, mode, secondary_class, to_p, &sri));
|
367 |
|
|
}
|
368 |
|
|
|
369 |
|
|
/* For memory, use the memory move cost, for (hard) registers, use
|
370 |
|
|
the cost to move between the register classes, and use 2 for
|
371 |
|
|
everything else (constants). */
|
372 |
|
|
if (MEM_P (x) || rclass == NO_REGS)
|
373 |
|
|
return sri.extra_cost
|
374 |
|
|
+ ira_memory_move_cost[mode][(int) rclass][to_p != 0];
|
375 |
|
|
else if (REG_P (x))
|
376 |
|
|
{
|
377 |
|
|
if (!move_cost[mode])
|
378 |
|
|
init_move_cost (mode);
|
379 |
|
|
return (sri.extra_cost
|
380 |
|
|
+ move_cost[mode][REGNO_REG_CLASS (REGNO (x))][(int) rclass]);
|
381 |
|
|
}
|
382 |
|
|
else
|
383 |
|
|
/* If this is a constant, we may eventually want to call rtx_cost
|
384 |
|
|
here. */
|
385 |
|
|
return sri.extra_cost + COSTS_N_INSNS (1);
|
386 |
|
|
}
|
387 |
|
|
|
388 |
|
|
|
389 |
|
|
|
390 |
|
|
/* Record the cost of using memory or hard registers of various
|
391 |
|
|
classes for the operands in INSN.
|
392 |
|
|
|
393 |
|
|
N_ALTS is the number of alternatives.
|
394 |
|
|
N_OPS is the number of operands.
|
395 |
|
|
OPS is an array of the operands.
|
396 |
|
|
MODES are the modes of the operands, in case any are VOIDmode.
|
397 |
|
|
CONSTRAINTS are the constraints to use for the operands. This array
|
398 |
|
|
is modified by this procedure.
|
399 |
|
|
|
400 |
|
|
This procedure works alternative by alternative. For each
|
401 |
|
|
alternative we assume that we will be able to allocate all allocnos
|
402 |
|
|
to their ideal register class and calculate the cost of using that
|
403 |
|
|
alternative. Then we compute, for each operand that is a
|
404 |
|
|
pseudo-register, the cost of having the allocno allocated to each
|
405 |
|
|
register class and using it in that alternative. To this cost is
|
406 |
|
|
added the cost of the alternative.
|
407 |
|
|
|
408 |
|
|
The cost of each class for this insn is its lowest cost among all
|
409 |
|
|
the alternatives. */
|
410 |
|
|
static void
|
411 |
|
|
record_reg_classes (int n_alts, int n_ops, rtx *ops,
|
412 |
|
|
enum machine_mode *modes, const char **constraints,
|
413 |
|
|
rtx insn, enum reg_class *pref)
|
414 |
|
|
{
|
415 |
|
|
int alt;
|
416 |
|
|
int i, j, k;
|
417 |
|
|
rtx set;
|
418 |
|
|
int insn_allows_mem[MAX_RECOG_OPERANDS];
|
419 |
|
|
|
420 |
|
|
for (i = 0; i < n_ops; i++)
|
421 |
|
|
insn_allows_mem[i] = 0;
|
422 |
|
|
|
423 |
|
|
/* Process each alternative, each time minimizing an operand's cost
|
424 |
|
|
with the cost for each operand in that alternative. */
|
425 |
|
|
for (alt = 0; alt < n_alts; alt++)
|
426 |
|
|
{
|
427 |
|
|
enum reg_class classes[MAX_RECOG_OPERANDS];
|
428 |
|
|
int allows_mem[MAX_RECOG_OPERANDS];
|
429 |
|
|
enum reg_class rclass;
|
430 |
|
|
int alt_fail = 0;
|
431 |
|
|
int alt_cost = 0, op_cost_add;
|
432 |
|
|
|
433 |
|
|
if (!recog_data.alternative_enabled_p[alt])
|
434 |
|
|
{
|
435 |
|
|
for (i = 0; i < recog_data.n_operands; i++)
|
436 |
|
|
constraints[i] = skip_alternative (constraints[i]);
|
437 |
|
|
|
438 |
|
|
continue;
|
439 |
|
|
}
|
440 |
|
|
|
441 |
|
|
for (i = 0; i < n_ops; i++)
|
442 |
|
|
{
|
443 |
|
|
unsigned char c;
|
444 |
|
|
const char *p = constraints[i];
|
445 |
|
|
rtx op = ops[i];
|
446 |
|
|
enum machine_mode mode = modes[i];
|
447 |
|
|
int allows_addr = 0;
|
448 |
|
|
int win = 0;
|
449 |
|
|
|
450 |
|
|
/* Initially show we know nothing about the register class. */
|
451 |
|
|
classes[i] = NO_REGS;
|
452 |
|
|
allows_mem[i] = 0;
|
453 |
|
|
|
454 |
|
|
/* If this operand has no constraints at all, we can
|
455 |
|
|
conclude nothing about it since anything is valid. */
|
456 |
|
|
if (*p == 0)
|
457 |
|
|
{
|
458 |
|
|
if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
|
459 |
|
|
memset (this_op_costs[i], 0, struct_costs_size);
|
460 |
|
|
continue;
|
461 |
|
|
}
|
462 |
|
|
|
463 |
|
|
/* If this alternative is only relevant when this operand
|
464 |
|
|
matches a previous operand, we do different things
|
465 |
|
|
depending on whether this operand is a allocno-reg or not.
|
466 |
|
|
We must process any modifiers for the operand before we
|
467 |
|
|
can make this test. */
|
468 |
|
|
while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
|
469 |
|
|
p++;
|
470 |
|
|
|
471 |
|
|
if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
|
472 |
|
|
{
|
473 |
|
|
/* Copy class and whether memory is allowed from the
|
474 |
|
|
matching alternative. Then perform any needed cost
|
475 |
|
|
computations and/or adjustments. */
|
476 |
|
|
j = p[0] - '0';
|
477 |
|
|
classes[i] = classes[j];
|
478 |
|
|
allows_mem[i] = allows_mem[j];
|
479 |
|
|
if (allows_mem[i])
|
480 |
|
|
insn_allows_mem[i] = 1;
|
481 |
|
|
|
482 |
|
|
if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
|
483 |
|
|
{
|
484 |
|
|
/* If this matches the other operand, we have no
|
485 |
|
|
added cost and we win. */
|
486 |
|
|
if (rtx_equal_p (ops[j], op))
|
487 |
|
|
win = 1;
|
488 |
|
|
/* If we can put the other operand into a register,
|
489 |
|
|
add to the cost of this alternative the cost to
|
490 |
|
|
copy this operand to the register used for the
|
491 |
|
|
other operand. */
|
492 |
|
|
else if (classes[j] != NO_REGS)
|
493 |
|
|
{
|
494 |
|
|
alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
|
495 |
|
|
win = 1;
|
496 |
|
|
}
|
497 |
|
|
}
|
498 |
|
|
else if (! REG_P (ops[j])
|
499 |
|
|
|| REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
|
500 |
|
|
{
|
501 |
|
|
/* This op is an allocno but the one it matches is
|
502 |
|
|
not. */
|
503 |
|
|
|
504 |
|
|
/* If we can't put the other operand into a
|
505 |
|
|
register, this alternative can't be used. */
|
506 |
|
|
|
507 |
|
|
if (classes[j] == NO_REGS)
|
508 |
|
|
alt_fail = 1;
|
509 |
|
|
/* Otherwise, add to the cost of this alternative
|
510 |
|
|
the cost to copy the other operand to the hard
|
511 |
|
|
register used for this operand. */
|
512 |
|
|
else
|
513 |
|
|
alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
|
514 |
|
|
}
|
515 |
|
|
else
|
516 |
|
|
{
|
517 |
|
|
/* The costs of this operand are not the same as the
|
518 |
|
|
other operand since move costs are not symmetric.
|
519 |
|
|
Moreover, if we cannot tie them, this alternative
|
520 |
|
|
needs to do a copy, which is one insn. */
|
521 |
|
|
struct costs *pp = this_op_costs[i];
|
522 |
|
|
int *pp_costs = pp->cost;
|
523 |
|
|
cost_classes_t cost_classes_ptr
|
524 |
|
|
= regno_cost_classes[REGNO (op)];
|
525 |
|
|
enum reg_class *cost_classes = cost_classes_ptr->classes;
|
526 |
|
|
bool in_p = recog_data.operand_type[i] != OP_OUT;
|
527 |
|
|
bool out_p = recog_data.operand_type[i] != OP_IN;
|
528 |
|
|
enum reg_class op_class = classes[i];
|
529 |
|
|
move_table *move_in_cost, *move_out_cost;
|
530 |
|
|
|
531 |
|
|
ira_init_register_move_cost_if_necessary (mode);
|
532 |
|
|
if (! in_p)
|
533 |
|
|
{
|
534 |
|
|
ira_assert (out_p);
|
535 |
|
|
move_out_cost = ira_may_move_out_cost[mode];
|
536 |
|
|
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
537 |
|
|
{
|
538 |
|
|
rclass = cost_classes[k];
|
539 |
|
|
pp_costs[k]
|
540 |
|
|
= move_out_cost[op_class][rclass] * frequency;
|
541 |
|
|
}
|
542 |
|
|
}
|
543 |
|
|
else if (! out_p)
|
544 |
|
|
{
|
545 |
|
|
ira_assert (in_p);
|
546 |
|
|
move_in_cost = ira_may_move_in_cost[mode];
|
547 |
|
|
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
548 |
|
|
{
|
549 |
|
|
rclass = cost_classes[k];
|
550 |
|
|
pp_costs[k]
|
551 |
|
|
= move_in_cost[rclass][op_class] * frequency;
|
552 |
|
|
}
|
553 |
|
|
}
|
554 |
|
|
else
|
555 |
|
|
{
|
556 |
|
|
move_in_cost = ira_may_move_in_cost[mode];
|
557 |
|
|
move_out_cost = ira_may_move_out_cost[mode];
|
558 |
|
|
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
559 |
|
|
{
|
560 |
|
|
rclass = cost_classes[k];
|
561 |
|
|
pp_costs[k] = ((move_in_cost[rclass][op_class]
|
562 |
|
|
+ move_out_cost[op_class][rclass])
|
563 |
|
|
* frequency);
|
564 |
|
|
}
|
565 |
|
|
}
|
566 |
|
|
|
567 |
|
|
/* If the alternative actually allows memory, make
|
568 |
|
|
things a bit cheaper since we won't need an extra
|
569 |
|
|
insn to load it. */
|
570 |
|
|
pp->mem_cost
|
571 |
|
|
= ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
|
572 |
|
|
+ (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
|
573 |
|
|
- allows_mem[i]) * frequency;
|
574 |
|
|
|
575 |
|
|
/* If we have assigned a class to this allocno in
|
576 |
|
|
our first pass, add a cost to this alternative
|
577 |
|
|
corresponding to what we would add if this
|
578 |
|
|
allocno were not in the appropriate class. */
|
579 |
|
|
if (pref)
|
580 |
|
|
{
|
581 |
|
|
enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
|
582 |
|
|
|
583 |
|
|
if (pref_class == NO_REGS)
|
584 |
|
|
alt_cost
|
585 |
|
|
+= ((out_p
|
586 |
|
|
? ira_memory_move_cost[mode][op_class][0] : 0)
|
587 |
|
|
+ (in_p
|
588 |
|
|
? ira_memory_move_cost[mode][op_class][1]
|
589 |
|
|
: 0));
|
590 |
|
|
else if (ira_reg_class_intersect
|
591 |
|
|
[pref_class][op_class] == NO_REGS)
|
592 |
|
|
alt_cost
|
593 |
|
|
+= ira_register_move_cost[mode][pref_class][op_class];
|
594 |
|
|
}
|
595 |
|
|
if (REGNO (ops[i]) != REGNO (ops[j])
|
596 |
|
|
&& ! find_reg_note (insn, REG_DEAD, op))
|
597 |
|
|
alt_cost += 2;
|
598 |
|
|
|
599 |
|
|
/* This is in place of ordinary cost computation for
|
600 |
|
|
this operand, so skip to the end of the
|
601 |
|
|
alternative (should be just one character). */
|
602 |
|
|
while (*p && *p++ != ',')
|
603 |
|
|
;
|
604 |
|
|
|
605 |
|
|
constraints[i] = p;
|
606 |
|
|
continue;
|
607 |
|
|
}
|
608 |
|
|
}
|
609 |
|
|
|
610 |
|
|
/* Scan all the constraint letters. See if the operand
|
611 |
|
|
matches any of the constraints. Collect the valid
|
612 |
|
|
register classes and see if this operand accepts
|
613 |
|
|
memory. */
|
614 |
|
|
while ((c = *p))
|
615 |
|
|
{
|
616 |
|
|
switch (c)
|
617 |
|
|
{
|
618 |
|
|
case ',':
|
619 |
|
|
break;
|
620 |
|
|
case '*':
|
621 |
|
|
/* Ignore the next letter for this pass. */
|
622 |
|
|
c = *++p;
|
623 |
|
|
break;
|
624 |
|
|
|
625 |
|
|
case '?':
|
626 |
|
|
alt_cost += 2;
|
627 |
|
|
case '!': case '#': case '&':
|
628 |
|
|
case '0': case '1': case '2': case '3': case '4':
|
629 |
|
|
case '5': case '6': case '7': case '8': case '9':
|
630 |
|
|
break;
|
631 |
|
|
|
632 |
|
|
case 'p':
|
633 |
|
|
allows_addr = 1;
|
634 |
|
|
win = address_operand (op, GET_MODE (op));
|
635 |
|
|
/* We know this operand is an address, so we want it
|
636 |
|
|
to be allocated to a register that can be the
|
637 |
|
|
base of an address, i.e. BASE_REG_CLASS. */
|
638 |
|
|
classes[i]
|
639 |
|
|
= ira_reg_class_subunion[classes[i]]
|
640 |
|
|
[base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
|
641 |
|
|
ADDRESS, SCRATCH)];
|
642 |
|
|
break;
|
643 |
|
|
|
644 |
|
|
case 'm': case 'o': case 'V':
|
645 |
|
|
/* It doesn't seem worth distinguishing between
|
646 |
|
|
offsettable and non-offsettable addresses
|
647 |
|
|
here. */
|
648 |
|
|
insn_allows_mem[i] = allows_mem[i] = 1;
|
649 |
|
|
if (MEM_P (op))
|
650 |
|
|
win = 1;
|
651 |
|
|
break;
|
652 |
|
|
|
653 |
|
|
case '<':
|
654 |
|
|
if (MEM_P (op)
|
655 |
|
|
&& (GET_CODE (XEXP (op, 0)) == PRE_DEC
|
656 |
|
|
|| GET_CODE (XEXP (op, 0)) == POST_DEC))
|
657 |
|
|
win = 1;
|
658 |
|
|
break;
|
659 |
|
|
|
660 |
|
|
case '>':
|
661 |
|
|
if (MEM_P (op)
|
662 |
|
|
&& (GET_CODE (XEXP (op, 0)) == PRE_INC
|
663 |
|
|
|| GET_CODE (XEXP (op, 0)) == POST_INC))
|
664 |
|
|
win = 1;
|
665 |
|
|
break;
|
666 |
|
|
|
667 |
|
|
case 'E':
|
668 |
|
|
case 'F':
|
669 |
|
|
if (GET_CODE (op) == CONST_DOUBLE
|
670 |
|
|
|| (GET_CODE (op) == CONST_VECTOR
|
671 |
|
|
&& (GET_MODE_CLASS (GET_MODE (op))
|
672 |
|
|
== MODE_VECTOR_FLOAT)))
|
673 |
|
|
win = 1;
|
674 |
|
|
break;
|
675 |
|
|
|
676 |
|
|
case 'G':
|
677 |
|
|
case 'H':
|
678 |
|
|
if (GET_CODE (op) == CONST_DOUBLE
|
679 |
|
|
&& CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
|
680 |
|
|
win = 1;
|
681 |
|
|
break;
|
682 |
|
|
|
683 |
|
|
case 's':
|
684 |
|
|
if (CONST_INT_P (op)
|
685 |
|
|
|| (GET_CODE (op) == CONST_DOUBLE
|
686 |
|
|
&& GET_MODE (op) == VOIDmode))
|
687 |
|
|
break;
|
688 |
|
|
|
689 |
|
|
case 'i':
|
690 |
|
|
if (CONSTANT_P (op)
|
691 |
|
|
&& (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
|
692 |
|
|
win = 1;
|
693 |
|
|
break;
|
694 |
|
|
|
695 |
|
|
case 'n':
|
696 |
|
|
if (CONST_INT_P (op)
|
697 |
|
|
|| (GET_CODE (op) == CONST_DOUBLE
|
698 |
|
|
&& GET_MODE (op) == VOIDmode))
|
699 |
|
|
win = 1;
|
700 |
|
|
break;
|
701 |
|
|
|
702 |
|
|
case 'I':
|
703 |
|
|
case 'J':
|
704 |
|
|
case 'K':
|
705 |
|
|
case 'L':
|
706 |
|
|
case 'M':
|
707 |
|
|
case 'N':
|
708 |
|
|
case 'O':
|
709 |
|
|
case 'P':
|
710 |
|
|
if (CONST_INT_P (op)
|
711 |
|
|
&& CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
|
712 |
|
|
win = 1;
|
713 |
|
|
break;
|
714 |
|
|
|
715 |
|
|
case 'X':
|
716 |
|
|
win = 1;
|
717 |
|
|
break;
|
718 |
|
|
|
719 |
|
|
case 'g':
|
720 |
|
|
if (MEM_P (op)
|
721 |
|
|
|| (CONSTANT_P (op)
|
722 |
|
|
&& (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
|
723 |
|
|
win = 1;
|
724 |
|
|
insn_allows_mem[i] = allows_mem[i] = 1;
|
725 |
|
|
case 'r':
|
726 |
|
|
classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
|
727 |
|
|
break;
|
728 |
|
|
|
729 |
|
|
default:
|
730 |
|
|
if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
|
731 |
|
|
classes[i] = ira_reg_class_subunion[classes[i]]
|
732 |
|
|
[REG_CLASS_FROM_CONSTRAINT (c, p)];
|
733 |
|
|
#ifdef EXTRA_CONSTRAINT_STR
|
734 |
|
|
else if (EXTRA_CONSTRAINT_STR (op, c, p))
|
735 |
|
|
win = 1;
|
736 |
|
|
|
737 |
|
|
if (EXTRA_MEMORY_CONSTRAINT (c, p))
|
738 |
|
|
{
|
739 |
|
|
/* Every MEM can be reloaded to fit. */
|
740 |
|
|
insn_allows_mem[i] = allows_mem[i] = 1;
|
741 |
|
|
if (MEM_P (op))
|
742 |
|
|
win = 1;
|
743 |
|
|
}
|
744 |
|
|
if (EXTRA_ADDRESS_CONSTRAINT (c, p))
|
745 |
|
|
{
|
746 |
|
|
/* Every address can be reloaded to fit. */
|
747 |
|
|
allows_addr = 1;
|
748 |
|
|
if (address_operand (op, GET_MODE (op)))
|
749 |
|
|
win = 1;
|
750 |
|
|
/* We know this operand is an address, so we
|
751 |
|
|
want it to be allocated to a hard register
|
752 |
|
|
that can be the base of an address,
|
753 |
|
|
i.e. BASE_REG_CLASS. */
|
754 |
|
|
classes[i]
|
755 |
|
|
= ira_reg_class_subunion[classes[i]]
|
756 |
|
|
[base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
|
757 |
|
|
ADDRESS, SCRATCH)];
|
758 |
|
|
}
|
759 |
|
|
#endif
|
760 |
|
|
break;
|
761 |
|
|
}
|
762 |
|
|
p += CONSTRAINT_LEN (c, p);
|
763 |
|
|
if (c == ',')
|
764 |
|
|
break;
|
765 |
|
|
}
|
766 |
|
|
|
767 |
|
|
constraints[i] = p;
|
768 |
|
|
|
769 |
|
|
/* How we account for this operand now depends on whether it
|
770 |
|
|
is a pseudo register or not. If it is, we first check if
|
771 |
|
|
any register classes are valid. If not, we ignore this
|
772 |
|
|
alternative, since we want to assume that all allocnos get
|
773 |
|
|
allocated for register preferencing. If some register
|
774 |
|
|
class is valid, compute the costs of moving the allocno
|
775 |
|
|
into that class. */
|
776 |
|
|
if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
|
777 |
|
|
{
|
778 |
|
|
if (classes[i] == NO_REGS)
|
779 |
|
|
{
|
780 |
|
|
/* We must always fail if the operand is a REG, but
|
781 |
|
|
we did not find a suitable class.
|
782 |
|
|
|
783 |
|
|
Otherwise we may perform an uninitialized read
|
784 |
|
|
from this_op_costs after the `continue' statement
|
785 |
|
|
below. */
|
786 |
|
|
alt_fail = 1;
|
787 |
|
|
}
|
788 |
|
|
else
|
789 |
|
|
{
|
790 |
|
|
unsigned int regno = REGNO (op);
|
791 |
|
|
struct costs *pp = this_op_costs[i];
|
792 |
|
|
int *pp_costs = pp->cost;
|
793 |
|
|
cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
|
794 |
|
|
enum reg_class *cost_classes = cost_classes_ptr->classes;
|
795 |
|
|
bool in_p = recog_data.operand_type[i] != OP_OUT;
|
796 |
|
|
bool out_p = recog_data.operand_type[i] != OP_IN;
|
797 |
|
|
enum reg_class op_class = classes[i];
|
798 |
|
|
move_table *move_in_cost, *move_out_cost;
|
799 |
|
|
|
800 |
|
|
ira_init_register_move_cost_if_necessary (mode);
|
801 |
|
|
if (! in_p)
|
802 |
|
|
{
|
803 |
|
|
ira_assert (out_p);
|
804 |
|
|
move_out_cost = ira_may_move_out_cost[mode];
|
805 |
|
|
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
806 |
|
|
{
|
807 |
|
|
rclass = cost_classes[k];
|
808 |
|
|
pp_costs[k]
|
809 |
|
|
= move_out_cost[op_class][rclass] * frequency;
|
810 |
|
|
}
|
811 |
|
|
}
|
812 |
|
|
else if (! out_p)
|
813 |
|
|
{
|
814 |
|
|
ira_assert (in_p);
|
815 |
|
|
move_in_cost = ira_may_move_in_cost[mode];
|
816 |
|
|
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
817 |
|
|
{
|
818 |
|
|
rclass = cost_classes[k];
|
819 |
|
|
pp_costs[k]
|
820 |
|
|
= move_in_cost[rclass][op_class] * frequency;
|
821 |
|
|
}
|
822 |
|
|
}
|
823 |
|
|
else
|
824 |
|
|
{
|
825 |
|
|
move_in_cost = ira_may_move_in_cost[mode];
|
826 |
|
|
move_out_cost = ira_may_move_out_cost[mode];
|
827 |
|
|
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
828 |
|
|
{
|
829 |
|
|
rclass = cost_classes[k];
|
830 |
|
|
pp_costs[k] = ((move_in_cost[rclass][op_class]
|
831 |
|
|
+ move_out_cost[op_class][rclass])
|
832 |
|
|
* frequency);
|
833 |
|
|
}
|
834 |
|
|
}
|
835 |
|
|
|
836 |
|
|
/* If the alternative actually allows memory, make
|
837 |
|
|
things a bit cheaper since we won't need an extra
|
838 |
|
|
insn to load it. */
|
839 |
|
|
pp->mem_cost
|
840 |
|
|
= ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
|
841 |
|
|
+ (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
|
842 |
|
|
- allows_mem[i]) * frequency;
|
843 |
|
|
/* If we have assigned a class to this allocno in
|
844 |
|
|
our first pass, add a cost to this alternative
|
845 |
|
|
corresponding to what we would add if this
|
846 |
|
|
allocno were not in the appropriate class. */
|
847 |
|
|
if (pref)
|
848 |
|
|
{
|
849 |
|
|
enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
|
850 |
|
|
|
851 |
|
|
if (pref_class == NO_REGS)
|
852 |
|
|
alt_cost
|
853 |
|
|
+= ((out_p
|
854 |
|
|
? ira_memory_move_cost[mode][op_class][0] : 0)
|
855 |
|
|
+ (in_p
|
856 |
|
|
? ira_memory_move_cost[mode][op_class][1]
|
857 |
|
|
: 0));
|
858 |
|
|
else if (ira_reg_class_intersect[pref_class][op_class]
|
859 |
|
|
== NO_REGS)
|
860 |
|
|
alt_cost += ira_register_move_cost[mode][pref_class][op_class];
|
861 |
|
|
}
|
862 |
|
|
}
|
863 |
|
|
}
|
864 |
|
|
|
865 |
|
|
/* Otherwise, if this alternative wins, either because we
|
866 |
|
|
have already determined that or if we have a hard
|
867 |
|
|
register of the proper class, there is no cost for this
|
868 |
|
|
alternative. */
|
869 |
|
|
else if (win || (REG_P (op)
|
870 |
|
|
&& reg_fits_class_p (op, classes[i],
|
871 |
|
|
0, GET_MODE (op))))
|
872 |
|
|
;
|
873 |
|
|
|
874 |
|
|
/* If registers are valid, the cost of this alternative
|
875 |
|
|
includes copying the object to and/or from a
|
876 |
|
|
register. */
|
877 |
|
|
else if (classes[i] != NO_REGS)
|
878 |
|
|
{
|
879 |
|
|
if (recog_data.operand_type[i] != OP_OUT)
|
880 |
|
|
alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
|
881 |
|
|
|
882 |
|
|
if (recog_data.operand_type[i] != OP_IN)
|
883 |
|
|
alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
|
884 |
|
|
}
|
885 |
|
|
/* The only other way this alternative can be used is if
|
886 |
|
|
this is a constant that could be placed into memory. */
|
887 |
|
|
else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
|
888 |
|
|
alt_cost += ira_memory_move_cost[mode][classes[i]][1];
|
889 |
|
|
else
|
890 |
|
|
alt_fail = 1;
|
891 |
|
|
}
|
892 |
|
|
|
893 |
|
|
if (alt_fail)
|
894 |
|
|
continue;
|
895 |
|
|
|
896 |
|
|
op_cost_add = alt_cost * frequency;
|
897 |
|
|
/* Finally, update the costs with the information we've
|
898 |
|
|
calculated about this alternative. */
|
899 |
|
|
for (i = 0; i < n_ops; i++)
|
900 |
|
|
if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
|
901 |
|
|
{
|
902 |
|
|
struct costs *pp = op_costs[i], *qq = this_op_costs[i];
|
903 |
|
|
int *pp_costs = pp->cost, *qq_costs = qq->cost;
|
904 |
|
|
int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
|
905 |
|
|
cost_classes_t cost_classes_ptr
|
906 |
|
|
= regno_cost_classes[REGNO (ops[i])];
|
907 |
|
|
|
908 |
|
|
pp->mem_cost = MIN (pp->mem_cost,
|
909 |
|
|
(qq->mem_cost + op_cost_add) * scale);
|
910 |
|
|
|
911 |
|
|
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
912 |
|
|
pp_costs[k]
|
913 |
|
|
= MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
|
914 |
|
|
}
|
915 |
|
|
}
|
916 |
|
|
|
917 |
|
|
if (allocno_p)
|
918 |
|
|
for (i = 0; i < n_ops; i++)
|
919 |
|
|
{
|
920 |
|
|
ira_allocno_t a;
|
921 |
|
|
rtx op = ops[i];
|
922 |
|
|
|
923 |
|
|
if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
|
924 |
|
|
continue;
|
925 |
|
|
a = ira_curr_regno_allocno_map [REGNO (op)];
|
926 |
|
|
if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
|
927 |
|
|
ALLOCNO_BAD_SPILL_P (a) = true;
|
928 |
|
|
}
|
929 |
|
|
|
930 |
|
|
/* If this insn is a single set copying operand 1 to operand 0 and
|
931 |
|
|
one operand is an allocno with the other a hard reg or an allocno
|
932 |
|
|
that prefers a hard register that is in its own register class
|
933 |
|
|
then we may want to adjust the cost of that register class to -1.
|
934 |
|
|
|
935 |
|
|
Avoid the adjustment if the source does not die to avoid
|
936 |
|
|
stressing of register allocator by preferrencing two colliding
|
937 |
|
|
registers into single class.
|
938 |
|
|
|
939 |
|
|
Also avoid the adjustment if a copy between hard registers of the
|
940 |
|
|
class is expensive (ten times the cost of a default copy is
|
941 |
|
|
considered arbitrarily expensive). This avoids losing when the
|
942 |
|
|
preferred class is very expensive as the source of a copy
|
943 |
|
|
instruction. */
|
944 |
|
|
if ((set = single_set (insn)) != 0
|
945 |
|
|
&& ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
|
946 |
|
|
&& REG_P (ops[0]) && REG_P (ops[1])
|
947 |
|
|
&& find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
|
948 |
|
|
for (i = 0; i <= 1; i++)
|
949 |
|
|
if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER
|
950 |
|
|
&& REGNO (ops[!i]) < FIRST_PSEUDO_REGISTER)
|
951 |
|
|
{
|
952 |
|
|
unsigned int regno = REGNO (ops[i]);
|
953 |
|
|
unsigned int other_regno = REGNO (ops[!i]);
|
954 |
|
|
enum machine_mode mode = GET_MODE (ops[!i]);
|
955 |
|
|
cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
|
956 |
|
|
enum reg_class *cost_classes = cost_classes_ptr->classes;
|
957 |
|
|
reg_class_t rclass;
|
958 |
|
|
int nr;
|
959 |
|
|
|
960 |
|
|
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
961 |
|
|
{
|
962 |
|
|
rclass = cost_classes[k];
|
963 |
|
|
if (TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
|
964 |
|
|
&& (reg_class_size[(int) rclass]
|
965 |
|
|
== ira_reg_class_max_nregs [(int) rclass][(int) mode]))
|
966 |
|
|
{
|
967 |
|
|
if (reg_class_size[rclass] == 1)
|
968 |
|
|
op_costs[i]->cost[k] = -frequency;
|
969 |
|
|
else
|
970 |
|
|
{
|
971 |
|
|
for (nr = 0;
|
972 |
|
|
nr < hard_regno_nregs[other_regno][mode];
|
973 |
|
|
nr++)
|
974 |
|
|
if (! TEST_HARD_REG_BIT (reg_class_contents[rclass],
|
975 |
|
|
other_regno + nr))
|
976 |
|
|
break;
|
977 |
|
|
|
978 |
|
|
if (nr == hard_regno_nregs[other_regno][mode])
|
979 |
|
|
op_costs[i]->cost[k] = -frequency;
|
980 |
|
|
}
|
981 |
|
|
}
|
982 |
|
|
}
|
983 |
|
|
}
|
984 |
|
|
}
|
985 |
|
|
|
986 |
|
|
|
987 |
|
|
|
988 |
|
|
/* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
|
989 |
|
|
static inline bool
|
990 |
|
|
ok_for_index_p_nonstrict (rtx reg)
|
991 |
|
|
{
|
992 |
|
|
unsigned regno = REGNO (reg);
|
993 |
|
|
|
994 |
|
|
return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
|
995 |
|
|
}
|
996 |
|
|
|
997 |
|
|
/* A version of regno_ok_for_base_p for use here, when all
|
998 |
|
|
pseudo-registers should count as OK. Arguments as for
|
999 |
|
|
regno_ok_for_base_p. */
|
1000 |
|
|
static inline bool
|
1001 |
|
|
ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode, addr_space_t as,
|
1002 |
|
|
enum rtx_code outer_code, enum rtx_code index_code)
|
1003 |
|
|
{
|
1004 |
|
|
unsigned regno = REGNO (reg);
|
1005 |
|
|
|
1006 |
|
|
if (regno >= FIRST_PSEUDO_REGISTER)
|
1007 |
|
|
return true;
|
1008 |
|
|
return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
|
1009 |
|
|
}
|
1010 |
|
|
|
1011 |
|
|
/* Record the pseudo registers we must reload into hard registers in a
|
1012 |
|
|
subexpression of a memory address, X.
|
1013 |
|
|
|
1014 |
|
|
If CONTEXT is 0, we are looking at the base part of an address,
|
1015 |
|
|
otherwise we are looking at the index part.
|
1016 |
|
|
|
1017 |
|
|
MODE and AS are the mode and address space of the memory reference;
|
1018 |
|
|
OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
|
1019 |
|
|
These four arguments are passed down to base_reg_class.
|
1020 |
|
|
|
1021 |
|
|
SCALE is twice the amount to multiply the cost by (it is twice so
|
1022 |
|
|
we can represent half-cost adjustments). */
|
1023 |
|
|
static void
|
1024 |
|
|
record_address_regs (enum machine_mode mode, addr_space_t as, rtx x,
|
1025 |
|
|
int context, enum rtx_code outer_code,
|
1026 |
|
|
enum rtx_code index_code, int scale)
|
1027 |
|
|
{
|
1028 |
|
|
enum rtx_code code = GET_CODE (x);
|
1029 |
|
|
enum reg_class rclass;
|
1030 |
|
|
|
1031 |
|
|
if (context == 1)
|
1032 |
|
|
rclass = INDEX_REG_CLASS;
|
1033 |
|
|
else
|
1034 |
|
|
rclass = base_reg_class (mode, as, outer_code, index_code);
|
1035 |
|
|
|
1036 |
|
|
switch (code)
|
1037 |
|
|
{
|
1038 |
|
|
case CONST_INT:
|
1039 |
|
|
case CONST:
|
1040 |
|
|
case CC0:
|
1041 |
|
|
case PC:
|
1042 |
|
|
case SYMBOL_REF:
|
1043 |
|
|
case LABEL_REF:
|
1044 |
|
|
return;
|
1045 |
|
|
|
1046 |
|
|
case PLUS:
|
1047 |
|
|
/* When we have an address that is a sum, we must determine
|
1048 |
|
|
whether registers are "base" or "index" regs. If there is a
|
1049 |
|
|
sum of two registers, we must choose one to be the "base".
|
1050 |
|
|
Luckily, we can use the REG_POINTER to make a good choice
|
1051 |
|
|
most of the time. We only need to do this on machines that
|
1052 |
|
|
can have two registers in an address and where the base and
|
1053 |
|
|
index register classes are different.
|
1054 |
|
|
|
1055 |
|
|
??? This code used to set REGNO_POINTER_FLAG in some cases,
|
1056 |
|
|
but that seems bogus since it should only be set when we are
|
1057 |
|
|
sure the register is being used as a pointer. */
|
1058 |
|
|
{
|
1059 |
|
|
rtx arg0 = XEXP (x, 0);
|
1060 |
|
|
rtx arg1 = XEXP (x, 1);
|
1061 |
|
|
enum rtx_code code0 = GET_CODE (arg0);
|
1062 |
|
|
enum rtx_code code1 = GET_CODE (arg1);
|
1063 |
|
|
|
1064 |
|
|
/* Look inside subregs. */
|
1065 |
|
|
if (code0 == SUBREG)
|
1066 |
|
|
arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
|
1067 |
|
|
if (code1 == SUBREG)
|
1068 |
|
|
arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
|
1069 |
|
|
|
1070 |
|
|
/* If this machine only allows one register per address, it
|
1071 |
|
|
must be in the first operand. */
|
1072 |
|
|
if (MAX_REGS_PER_ADDRESS == 1)
|
1073 |
|
|
record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
|
1074 |
|
|
|
1075 |
|
|
/* If index and base registers are the same on this machine,
|
1076 |
|
|
just record registers in any non-constant operands. We
|
1077 |
|
|
assume here, as well as in the tests below, that all
|
1078 |
|
|
addresses are in canonical form. */
|
1079 |
|
|
else if (INDEX_REG_CLASS
|
1080 |
|
|
== base_reg_class (VOIDmode, as, PLUS, SCRATCH))
|
1081 |
|
|
{
|
1082 |
|
|
record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
|
1083 |
|
|
if (! CONSTANT_P (arg1))
|
1084 |
|
|
record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
|
1085 |
|
|
}
|
1086 |
|
|
|
1087 |
|
|
/* If the second operand is a constant integer, it doesn't
|
1088 |
|
|
change what class the first operand must be. */
|
1089 |
|
|
else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
|
1090 |
|
|
record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
|
1091 |
|
|
/* If the second operand is a symbolic constant, the first
|
1092 |
|
|
operand must be an index register. */
|
1093 |
|
|
else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
|
1094 |
|
|
record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
|
1095 |
|
|
/* If both operands are registers but one is already a hard
|
1096 |
|
|
register of index or reg-base class, give the other the
|
1097 |
|
|
class that the hard register is not. */
|
1098 |
|
|
else if (code0 == REG && code1 == REG
|
1099 |
|
|
&& REGNO (arg0) < FIRST_PSEUDO_REGISTER
|
1100 |
|
|
&& (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
|
1101 |
|
|
|| ok_for_index_p_nonstrict (arg0)))
|
1102 |
|
|
record_address_regs (mode, as, arg1,
|
1103 |
|
|
ok_for_base_p_nonstrict (arg0, mode, as,
|
1104 |
|
|
PLUS, REG) ? 1 : 0,
|
1105 |
|
|
PLUS, REG, scale);
|
1106 |
|
|
else if (code0 == REG && code1 == REG
|
1107 |
|
|
&& REGNO (arg1) < FIRST_PSEUDO_REGISTER
|
1108 |
|
|
&& (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
|
1109 |
|
|
|| ok_for_index_p_nonstrict (arg1)))
|
1110 |
|
|
record_address_regs (mode, as, arg0,
|
1111 |
|
|
ok_for_base_p_nonstrict (arg1, mode, as,
|
1112 |
|
|
PLUS, REG) ? 1 : 0,
|
1113 |
|
|
PLUS, REG, scale);
|
1114 |
|
|
/* If one operand is known to be a pointer, it must be the
|
1115 |
|
|
base with the other operand the index. Likewise if the
|
1116 |
|
|
other operand is a MULT. */
|
1117 |
|
|
else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
|
1118 |
|
|
{
|
1119 |
|
|
record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
|
1120 |
|
|
record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
|
1121 |
|
|
}
|
1122 |
|
|
else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
|
1123 |
|
|
{
|
1124 |
|
|
record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
|
1125 |
|
|
record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
|
1126 |
|
|
}
|
1127 |
|
|
/* Otherwise, count equal chances that each might be a base or
|
1128 |
|
|
index register. This case should be rare. */
|
1129 |
|
|
else
|
1130 |
|
|
{
|
1131 |
|
|
record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
|
1132 |
|
|
record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
|
1133 |
|
|
record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
|
1134 |
|
|
record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
|
1135 |
|
|
}
|
1136 |
|
|
}
|
1137 |
|
|
break;
|
1138 |
|
|
|
1139 |
|
|
/* Double the importance of an allocno that is incremented or
|
1140 |
|
|
decremented, since it would take two extra insns if it ends
|
1141 |
|
|
up in the wrong place. */
|
1142 |
|
|
case POST_MODIFY:
|
1143 |
|
|
case PRE_MODIFY:
|
1144 |
|
|
record_address_regs (mode, as, XEXP (x, 0), 0, code,
|
1145 |
|
|
GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
|
1146 |
|
|
if (REG_P (XEXP (XEXP (x, 1), 1)))
|
1147 |
|
|
record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
|
1148 |
|
|
2 * scale);
|
1149 |
|
|
break;
|
1150 |
|
|
|
1151 |
|
|
case POST_INC:
|
1152 |
|
|
case PRE_INC:
|
1153 |
|
|
case POST_DEC:
|
1154 |
|
|
case PRE_DEC:
|
1155 |
|
|
/* Double the importance of an allocno that is incremented or
|
1156 |
|
|
decremented, since it would take two extra insns if it ends
|
1157 |
|
|
up in the wrong place. */
|
1158 |
|
|
record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
|
1159 |
|
|
break;
|
1160 |
|
|
|
1161 |
|
|
case REG:
|
1162 |
|
|
{
|
1163 |
|
|
struct costs *pp;
|
1164 |
|
|
int *pp_costs;
|
1165 |
|
|
enum reg_class i;
|
1166 |
|
|
int k, regno, add_cost;
|
1167 |
|
|
cost_classes_t cost_classes_ptr;
|
1168 |
|
|
enum reg_class *cost_classes;
|
1169 |
|
|
move_table *move_in_cost;
|
1170 |
|
|
|
1171 |
|
|
if (REGNO (x) < FIRST_PSEUDO_REGISTER)
|
1172 |
|
|
break;
|
1173 |
|
|
|
1174 |
|
|
regno = REGNO (x);
|
1175 |
|
|
if (allocno_p)
|
1176 |
|
|
ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
|
1177 |
|
|
pp = COSTS (costs, COST_INDEX (regno));
|
1178 |
|
|
add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
|
1179 |
|
|
if (INT_MAX - add_cost < pp->mem_cost)
|
1180 |
|
|
pp->mem_cost = INT_MAX;
|
1181 |
|
|
else
|
1182 |
|
|
pp->mem_cost += add_cost;
|
1183 |
|
|
cost_classes_ptr = regno_cost_classes[regno];
|
1184 |
|
|
cost_classes = cost_classes_ptr->classes;
|
1185 |
|
|
pp_costs = pp->cost;
|
1186 |
|
|
ira_init_register_move_cost_if_necessary (Pmode);
|
1187 |
|
|
move_in_cost = ira_may_move_in_cost[Pmode];
|
1188 |
|
|
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
1189 |
|
|
{
|
1190 |
|
|
i = cost_classes[k];
|
1191 |
|
|
add_cost = (move_in_cost[i][rclass] * scale) / 2;
|
1192 |
|
|
if (INT_MAX - add_cost < pp_costs[k])
|
1193 |
|
|
pp_costs[k] = INT_MAX;
|
1194 |
|
|
else
|
1195 |
|
|
pp_costs[k] += add_cost;
|
1196 |
|
|
}
|
1197 |
|
|
}
|
1198 |
|
|
break;
|
1199 |
|
|
|
1200 |
|
|
default:
|
1201 |
|
|
{
|
1202 |
|
|
const char *fmt = GET_RTX_FORMAT (code);
|
1203 |
|
|
int i;
|
1204 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
1205 |
|
|
if (fmt[i] == 'e')
|
1206 |
|
|
record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
|
1207 |
|
|
scale);
|
1208 |
|
|
}
|
1209 |
|
|
}
|
1210 |
|
|
}
|
1211 |
|
|
|
1212 |
|
|
|
1213 |
|
|
|
1214 |
|
|
/* Calculate the costs of insn operands. */
|
1215 |
|
|
static void
|
1216 |
|
|
record_operand_costs (rtx insn, enum reg_class *pref)
|
1217 |
|
|
{
|
1218 |
|
|
const char *constraints[MAX_RECOG_OPERANDS];
|
1219 |
|
|
enum machine_mode modes[MAX_RECOG_OPERANDS];
|
1220 |
|
|
int i;
|
1221 |
|
|
|
1222 |
|
|
for (i = 0; i < recog_data.n_operands; i++)
|
1223 |
|
|
{
|
1224 |
|
|
constraints[i] = recog_data.constraints[i];
|
1225 |
|
|
modes[i] = recog_data.operand_mode[i];
|
1226 |
|
|
}
|
1227 |
|
|
|
1228 |
|
|
/* If we get here, we are set up to record the costs of all the
|
1229 |
|
|
operands for this insn. Start by initializing the costs. Then
|
1230 |
|
|
handle any address registers. Finally record the desired classes
|
1231 |
|
|
for any allocnos, doing it twice if some pair of operands are
|
1232 |
|
|
commutative. */
|
1233 |
|
|
for (i = 0; i < recog_data.n_operands; i++)
|
1234 |
|
|
{
|
1235 |
|
|
memcpy (op_costs[i], init_cost, struct_costs_size);
|
1236 |
|
|
|
1237 |
|
|
if (GET_CODE (recog_data.operand[i]) == SUBREG)
|
1238 |
|
|
recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
|
1239 |
|
|
|
1240 |
|
|
if (MEM_P (recog_data.operand[i]))
|
1241 |
|
|
record_address_regs (GET_MODE (recog_data.operand[i]),
|
1242 |
|
|
MEM_ADDR_SPACE (recog_data.operand[i]),
|
1243 |
|
|
XEXP (recog_data.operand[i], 0),
|
1244 |
|
|
0, MEM, SCRATCH, frequency * 2);
|
1245 |
|
|
else if (constraints[i][0] == 'p'
|
1246 |
|
|
|| EXTRA_ADDRESS_CONSTRAINT (constraints[i][0],
|
1247 |
|
|
constraints[i]))
|
1248 |
|
|
record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
|
1249 |
|
|
recog_data.operand[i], 0, ADDRESS, SCRATCH,
|
1250 |
|
|
frequency * 2);
|
1251 |
|
|
}
|
1252 |
|
|
|
1253 |
|
|
/* Check for commutative in a separate loop so everything will have
|
1254 |
|
|
been initialized. We must do this even if one operand is a
|
1255 |
|
|
constant--see addsi3 in m68k.md. */
|
1256 |
|
|
for (i = 0; i < (int) recog_data.n_operands - 1; i++)
|
1257 |
|
|
if (constraints[i][0] == '%')
|
1258 |
|
|
{
|
1259 |
|
|
const char *xconstraints[MAX_RECOG_OPERANDS];
|
1260 |
|
|
int j;
|
1261 |
|
|
|
1262 |
|
|
/* Handle commutative operands by swapping the constraints.
|
1263 |
|
|
We assume the modes are the same. */
|
1264 |
|
|
for (j = 0; j < recog_data.n_operands; j++)
|
1265 |
|
|
xconstraints[j] = constraints[j];
|
1266 |
|
|
|
1267 |
|
|
xconstraints[i] = constraints[i+1];
|
1268 |
|
|
xconstraints[i+1] = constraints[i];
|
1269 |
|
|
record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
|
1270 |
|
|
recog_data.operand, modes,
|
1271 |
|
|
xconstraints, insn, pref);
|
1272 |
|
|
}
|
1273 |
|
|
record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
|
1274 |
|
|
recog_data.operand, modes,
|
1275 |
|
|
constraints, insn, pref);
|
1276 |
|
|
}
|
1277 |
|
|
|
1278 |
|
|
|
1279 |
|
|
|
1280 |
|
|
/* Process one insn INSN. Scan it and record each time it would save
|
1281 |
|
|
code to put a certain allocnos in a certain class. Return the last
|
1282 |
|
|
insn processed, so that the scan can be continued from there. */
|
1283 |
|
|
static rtx
|
1284 |
|
|
scan_one_insn (rtx insn)
|
1285 |
|
|
{
|
1286 |
|
|
enum rtx_code pat_code;
|
1287 |
|
|
rtx set, note;
|
1288 |
|
|
int i, k;
|
1289 |
|
|
bool counted_mem;
|
1290 |
|
|
|
1291 |
|
|
if (!NONDEBUG_INSN_P (insn))
|
1292 |
|
|
return insn;
|
1293 |
|
|
|
1294 |
|
|
pat_code = GET_CODE (PATTERN (insn));
|
1295 |
|
|
if (pat_code == USE || pat_code == CLOBBER || pat_code == ASM_INPUT
|
1296 |
|
|
|| pat_code == ADDR_VEC || pat_code == ADDR_DIFF_VEC)
|
1297 |
|
|
return insn;
|
1298 |
|
|
|
1299 |
|
|
counted_mem = false;
|
1300 |
|
|
set = single_set (insn);
|
1301 |
|
|
extract_insn (insn);
|
1302 |
|
|
|
1303 |
|
|
/* If this insn loads a parameter from its stack slot, then it
|
1304 |
|
|
represents a savings, rather than a cost, if the parameter is
|
1305 |
|
|
stored in memory. Record this fact.
|
1306 |
|
|
|
1307 |
|
|
Similarly if we're loading other constants from memory (constant
|
1308 |
|
|
pool, TOC references, small data areas, etc) and this is the only
|
1309 |
|
|
assignment to the destination pseudo.
|
1310 |
|
|
|
1311 |
|
|
Don't do this if SET_SRC (set) isn't a general operand, if it is
|
1312 |
|
|
a memory requiring special instructions to load it, decreasing
|
1313 |
|
|
mem_cost might result in it being loaded using the specialized
|
1314 |
|
|
instruction into a register, then stored into stack and loaded
|
1315 |
|
|
again from the stack. See PR52208. */
|
1316 |
|
|
if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
|
1317 |
|
|
&& (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
|
1318 |
|
|
&& ((MEM_P (XEXP (note, 0)))
|
1319 |
|
|
|| (CONSTANT_P (XEXP (note, 0))
|
1320 |
|
|
&& targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
|
1321 |
|
|
XEXP (note, 0))
|
1322 |
|
|
&& REG_N_SETS (REGNO (SET_DEST (set))) == 1))
|
1323 |
|
|
&& general_operand (SET_SRC (set), GET_MODE (SET_SRC (set))))
|
1324 |
|
|
{
|
1325 |
|
|
enum reg_class cl = GENERAL_REGS;
|
1326 |
|
|
rtx reg = SET_DEST (set);
|
1327 |
|
|
int num = COST_INDEX (REGNO (reg));
|
1328 |
|
|
|
1329 |
|
|
COSTS (costs, num)->mem_cost
|
1330 |
|
|
-= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
|
1331 |
|
|
record_address_regs (GET_MODE (SET_SRC (set)),
|
1332 |
|
|
MEM_ADDR_SPACE (SET_SRC (set)),
|
1333 |
|
|
XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
|
1334 |
|
|
frequency * 2);
|
1335 |
|
|
counted_mem = true;
|
1336 |
|
|
}
|
1337 |
|
|
|
1338 |
|
|
record_operand_costs (insn, pref);
|
1339 |
|
|
|
1340 |
|
|
/* Now add the cost for each operand to the total costs for its
|
1341 |
|
|
allocno. */
|
1342 |
|
|
for (i = 0; i < recog_data.n_operands; i++)
|
1343 |
|
|
if (REG_P (recog_data.operand[i])
|
1344 |
|
|
&& REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
|
1345 |
|
|
{
|
1346 |
|
|
int regno = REGNO (recog_data.operand[i]);
|
1347 |
|
|
struct costs *p = COSTS (costs, COST_INDEX (regno));
|
1348 |
|
|
struct costs *q = op_costs[i];
|
1349 |
|
|
int *p_costs = p->cost, *q_costs = q->cost;
|
1350 |
|
|
cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
|
1351 |
|
|
int add_cost;
|
1352 |
|
|
|
1353 |
|
|
/* If the already accounted for the memory "cost" above, don't
|
1354 |
|
|
do so again. */
|
1355 |
|
|
if (!counted_mem)
|
1356 |
|
|
{
|
1357 |
|
|
add_cost = q->mem_cost;
|
1358 |
|
|
if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
|
1359 |
|
|
p->mem_cost = INT_MAX;
|
1360 |
|
|
else
|
1361 |
|
|
p->mem_cost += add_cost;
|
1362 |
|
|
}
|
1363 |
|
|
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
1364 |
|
|
{
|
1365 |
|
|
add_cost = q_costs[k];
|
1366 |
|
|
if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
|
1367 |
|
|
p_costs[k] = INT_MAX;
|
1368 |
|
|
else
|
1369 |
|
|
p_costs[k] += add_cost;
|
1370 |
|
|
}
|
1371 |
|
|
}
|
1372 |
|
|
|
1373 |
|
|
return insn;
|
1374 |
|
|
}
|
1375 |
|
|
|
1376 |
|
|
|
1377 |
|
|
|
1378 |
|
|
/* Print allocnos costs to file F. */
|
1379 |
|
|
static void
|
1380 |
|
|
print_allocno_costs (FILE *f)
|
1381 |
|
|
{
|
1382 |
|
|
int k;
|
1383 |
|
|
ira_allocno_t a;
|
1384 |
|
|
ira_allocno_iterator ai;
|
1385 |
|
|
|
1386 |
|
|
ira_assert (allocno_p);
|
1387 |
|
|
fprintf (f, "\n");
|
1388 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
1389 |
|
|
{
|
1390 |
|
|
int i, rclass;
|
1391 |
|
|
basic_block bb;
|
1392 |
|
|
int regno = ALLOCNO_REGNO (a);
|
1393 |
|
|
cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
|
1394 |
|
|
enum reg_class *cost_classes = cost_classes_ptr->classes;
|
1395 |
|
|
|
1396 |
|
|
i = ALLOCNO_NUM (a);
|
1397 |
|
|
fprintf (f, " a%d(r%d,", i, regno);
|
1398 |
|
|
if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
|
1399 |
|
|
fprintf (f, "b%d", bb->index);
|
1400 |
|
|
else
|
1401 |
|
|
fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
|
1402 |
|
|
fprintf (f, ") costs:");
|
1403 |
|
|
for (k = 0; k < cost_classes_ptr->num; k++)
|
1404 |
|
|
{
|
1405 |
|
|
rclass = cost_classes[k];
|
1406 |
|
|
if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
|
1407 |
|
|
#ifdef CANNOT_CHANGE_MODE_CLASS
|
1408 |
|
|
&& ! invalid_mode_change_p (regno, (enum reg_class) rclass)
|
1409 |
|
|
#endif
|
1410 |
|
|
)
|
1411 |
|
|
{
|
1412 |
|
|
fprintf (f, " %s:%d", reg_class_names[rclass],
|
1413 |
|
|
COSTS (costs, i)->cost[k]);
|
1414 |
|
|
if (flag_ira_region == IRA_REGION_ALL
|
1415 |
|
|
|| flag_ira_region == IRA_REGION_MIXED)
|
1416 |
|
|
fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
|
1417 |
|
|
}
|
1418 |
|
|
}
|
1419 |
|
|
fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
|
1420 |
|
|
if (flag_ira_region == IRA_REGION_ALL
|
1421 |
|
|
|| flag_ira_region == IRA_REGION_MIXED)
|
1422 |
|
|
fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
|
1423 |
|
|
fprintf (f, "\n");
|
1424 |
|
|
}
|
1425 |
|
|
}
|
1426 |
|
|
|
1427 |
|
|
/* Print pseudo costs to file F. */
|
1428 |
|
|
static void
|
1429 |
|
|
print_pseudo_costs (FILE *f)
|
1430 |
|
|
{
|
1431 |
|
|
int regno, k;
|
1432 |
|
|
int rclass;
|
1433 |
|
|
cost_classes_t cost_classes_ptr;
|
1434 |
|
|
enum reg_class *cost_classes;
|
1435 |
|
|
|
1436 |
|
|
ira_assert (! allocno_p);
|
1437 |
|
|
fprintf (f, "\n");
|
1438 |
|
|
for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
|
1439 |
|
|
{
|
1440 |
|
|
if (REG_N_REFS (regno) <= 0)
|
1441 |
|
|
continue;
|
1442 |
|
|
cost_classes_ptr = regno_cost_classes[regno];
|
1443 |
|
|
cost_classes = cost_classes_ptr->classes;
|
1444 |
|
|
fprintf (f, " r%d costs:", regno);
|
1445 |
|
|
for (k = 0; k < cost_classes_ptr->num; k++)
|
1446 |
|
|
{
|
1447 |
|
|
rclass = cost_classes[k];
|
1448 |
|
|
if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
|
1449 |
|
|
#ifdef CANNOT_CHANGE_MODE_CLASS
|
1450 |
|
|
&& ! invalid_mode_change_p (regno, (enum reg_class) rclass)
|
1451 |
|
|
#endif
|
1452 |
|
|
)
|
1453 |
|
|
fprintf (f, " %s:%d", reg_class_names[rclass],
|
1454 |
|
|
COSTS (costs, regno)->cost[k]);
|
1455 |
|
|
}
|
1456 |
|
|
fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
|
1457 |
|
|
}
|
1458 |
|
|
}
|
1459 |
|
|
|
1460 |
|
|
/* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
|
1461 |
|
|
costs. */
|
1462 |
|
|
static void
|
1463 |
|
|
process_bb_for_costs (basic_block bb)
|
1464 |
|
|
{
|
1465 |
|
|
rtx insn;
|
1466 |
|
|
|
1467 |
|
|
frequency = REG_FREQ_FROM_BB (bb);
|
1468 |
|
|
if (frequency == 0)
|
1469 |
|
|
frequency = 1;
|
1470 |
|
|
FOR_BB_INSNS (bb, insn)
|
1471 |
|
|
insn = scan_one_insn (insn);
|
1472 |
|
|
}
|
1473 |
|
|
|
1474 |
|
|
/* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
|
1475 |
|
|
costs. */
|
1476 |
|
|
static void
|
1477 |
|
|
process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
|
1478 |
|
|
{
|
1479 |
|
|
basic_block bb;
|
1480 |
|
|
|
1481 |
|
|
bb = loop_tree_node->bb;
|
1482 |
|
|
if (bb != NULL)
|
1483 |
|
|
process_bb_for_costs (bb);
|
1484 |
|
|
}
|
1485 |
|
|
|
1486 |
|
|
/* Find costs of register classes and memory for allocnos or pseudos
|
1487 |
|
|
and their best costs. Set up preferred, alternative and allocno
|
1488 |
|
|
classes for pseudos. */
|
1489 |
|
|
static void
|
1490 |
|
|
find_costs_and_classes (FILE *dump_file)
|
1491 |
|
|
{
|
1492 |
|
|
int i, k, start, max_cost_classes_num;
|
1493 |
|
|
int pass;
|
1494 |
|
|
basic_block bb;
|
1495 |
|
|
enum reg_class *regno_best_class;
|
1496 |
|
|
|
1497 |
|
|
init_recog ();
|
1498 |
|
|
regno_best_class
|
1499 |
|
|
= (enum reg_class *) ira_allocate (max_reg_num ()
|
1500 |
|
|
* sizeof (enum reg_class));
|
1501 |
|
|
for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
|
1502 |
|
|
regno_best_class[i] = NO_REGS;
|
1503 |
|
|
if (!resize_reg_info () && allocno_p
|
1504 |
|
|
&& pseudo_classes_defined_p && flag_expensive_optimizations)
|
1505 |
|
|
{
|
1506 |
|
|
ira_allocno_t a;
|
1507 |
|
|
ira_allocno_iterator ai;
|
1508 |
|
|
|
1509 |
|
|
pref = pref_buffer;
|
1510 |
|
|
max_cost_classes_num = 1;
|
1511 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
1512 |
|
|
{
|
1513 |
|
|
pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
|
1514 |
|
|
setup_regno_cost_classes_by_aclass
|
1515 |
|
|
(ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
|
1516 |
|
|
max_cost_classes_num
|
1517 |
|
|
= MAX (max_cost_classes_num,
|
1518 |
|
|
regno_cost_classes[ALLOCNO_REGNO (a)]->num);
|
1519 |
|
|
}
|
1520 |
|
|
start = 1;
|
1521 |
|
|
}
|
1522 |
|
|
else
|
1523 |
|
|
{
|
1524 |
|
|
pref = NULL;
|
1525 |
|
|
max_cost_classes_num = ira_important_classes_num;
|
1526 |
|
|
for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
|
1527 |
|
|
if (regno_reg_rtx[i] != NULL_RTX)
|
1528 |
|
|
setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
|
1529 |
|
|
else
|
1530 |
|
|
setup_regno_cost_classes_by_aclass (i, ALL_REGS);
|
1531 |
|
|
start = 0;
|
1532 |
|
|
}
|
1533 |
|
|
if (allocno_p)
|
1534 |
|
|
/* Clear the flag for the next compiled function. */
|
1535 |
|
|
pseudo_classes_defined_p = false;
|
1536 |
|
|
/* Normally we scan the insns once and determine the best class to
|
1537 |
|
|
use for each allocno. However, if -fexpensive-optimizations are
|
1538 |
|
|
on, we do so twice, the second time using the tentative best
|
1539 |
|
|
classes to guide the selection. */
|
1540 |
|
|
for (pass = start; pass <= flag_expensive_optimizations; pass++)
|
1541 |
|
|
{
|
1542 |
|
|
if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
|
1543 |
|
|
fprintf (dump_file,
|
1544 |
|
|
"\nPass %i for finding pseudo/allocno costs\n\n", pass);
|
1545 |
|
|
|
1546 |
|
|
if (pass != start)
|
1547 |
|
|
{
|
1548 |
|
|
max_cost_classes_num = 1;
|
1549 |
|
|
for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
|
1550 |
|
|
{
|
1551 |
|
|
setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
|
1552 |
|
|
max_cost_classes_num
|
1553 |
|
|
= MAX (max_cost_classes_num, regno_cost_classes[i]->num);
|
1554 |
|
|
}
|
1555 |
|
|
}
|
1556 |
|
|
|
1557 |
|
|
struct_costs_size
|
1558 |
|
|
= sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
|
1559 |
|
|
/* Zero out our accumulation of the cost of each class for each
|
1560 |
|
|
allocno. */
|
1561 |
|
|
memset (costs, 0, cost_elements_num * struct_costs_size);
|
1562 |
|
|
|
1563 |
|
|
if (allocno_p)
|
1564 |
|
|
{
|
1565 |
|
|
/* Scan the instructions and record each time it would save code
|
1566 |
|
|
to put a certain allocno in a certain class. */
|
1567 |
|
|
ira_traverse_loop_tree (true, ira_loop_tree_root,
|
1568 |
|
|
process_bb_node_for_costs, NULL);
|
1569 |
|
|
|
1570 |
|
|
memcpy (total_allocno_costs, costs,
|
1571 |
|
|
max_struct_costs_size * ira_allocnos_num);
|
1572 |
|
|
}
|
1573 |
|
|
else
|
1574 |
|
|
{
|
1575 |
|
|
basic_block bb;
|
1576 |
|
|
|
1577 |
|
|
FOR_EACH_BB (bb)
|
1578 |
|
|
process_bb_for_costs (bb);
|
1579 |
|
|
}
|
1580 |
|
|
|
1581 |
|
|
if (pass == 0)
|
1582 |
|
|
pref = pref_buffer;
|
1583 |
|
|
|
1584 |
|
|
/* Now for each allocno look at how desirable each class is and
|
1585 |
|
|
find which class is preferred. */
|
1586 |
|
|
for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
|
1587 |
|
|
{
|
1588 |
|
|
ira_allocno_t a, parent_a;
|
1589 |
|
|
int rclass, a_num, parent_a_num, add_cost;
|
1590 |
|
|
ira_loop_tree_node_t parent;
|
1591 |
|
|
int best_cost, allocno_cost;
|
1592 |
|
|
enum reg_class best, alt_class;
|
1593 |
|
|
cost_classes_t cost_classes_ptr = regno_cost_classes[i];
|
1594 |
|
|
enum reg_class *cost_classes = cost_classes_ptr->classes;
|
1595 |
|
|
int *i_costs = temp_costs->cost;
|
1596 |
|
|
int i_mem_cost;
|
1597 |
|
|
int equiv_savings = regno_equiv_gains[i];
|
1598 |
|
|
|
1599 |
|
|
if (! allocno_p)
|
1600 |
|
|
{
|
1601 |
|
|
if (regno_reg_rtx[i] == NULL_RTX)
|
1602 |
|
|
continue;
|
1603 |
|
|
memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
|
1604 |
|
|
i_mem_cost = temp_costs->mem_cost;
|
1605 |
|
|
}
|
1606 |
|
|
else
|
1607 |
|
|
{
|
1608 |
|
|
if (ira_regno_allocno_map[i] == NULL)
|
1609 |
|
|
continue;
|
1610 |
|
|
memset (temp_costs, 0, struct_costs_size);
|
1611 |
|
|
i_mem_cost = 0;
|
1612 |
|
|
/* Find cost of all allocnos with the same regno. */
|
1613 |
|
|
for (a = ira_regno_allocno_map[i];
|
1614 |
|
|
a != NULL;
|
1615 |
|
|
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
|
1616 |
|
|
{
|
1617 |
|
|
int *a_costs, *p_costs;
|
1618 |
|
|
|
1619 |
|
|
a_num = ALLOCNO_NUM (a);
|
1620 |
|
|
if ((flag_ira_region == IRA_REGION_ALL
|
1621 |
|
|
|| flag_ira_region == IRA_REGION_MIXED)
|
1622 |
|
|
&& (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
|
1623 |
|
|
&& (parent_a = parent->regno_allocno_map[i]) != NULL
|
1624 |
|
|
/* There are no caps yet. */
|
1625 |
|
|
&& bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
|
1626 |
|
|
(a)->border_allocnos,
|
1627 |
|
|
ALLOCNO_NUM (a)))
|
1628 |
|
|
{
|
1629 |
|
|
/* Propagate costs to upper levels in the region
|
1630 |
|
|
tree. */
|
1631 |
|
|
parent_a_num = ALLOCNO_NUM (parent_a);
|
1632 |
|
|
a_costs = COSTS (total_allocno_costs, a_num)->cost;
|
1633 |
|
|
p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
|
1634 |
|
|
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
1635 |
|
|
{
|
1636 |
|
|
add_cost = a_costs[k];
|
1637 |
|
|
if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
|
1638 |
|
|
p_costs[k] = INT_MAX;
|
1639 |
|
|
else
|
1640 |
|
|
p_costs[k] += add_cost;
|
1641 |
|
|
}
|
1642 |
|
|
add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
|
1643 |
|
|
if (add_cost > 0
|
1644 |
|
|
&& (INT_MAX - add_cost
|
1645 |
|
|
< COSTS (total_allocno_costs,
|
1646 |
|
|
parent_a_num)->mem_cost))
|
1647 |
|
|
COSTS (total_allocno_costs, parent_a_num)->mem_cost
|
1648 |
|
|
= INT_MAX;
|
1649 |
|
|
else
|
1650 |
|
|
COSTS (total_allocno_costs, parent_a_num)->mem_cost
|
1651 |
|
|
+= add_cost;
|
1652 |
|
|
|
1653 |
|
|
}
|
1654 |
|
|
a_costs = COSTS (costs, a_num)->cost;
|
1655 |
|
|
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
1656 |
|
|
{
|
1657 |
|
|
add_cost = a_costs[k];
|
1658 |
|
|
if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
|
1659 |
|
|
i_costs[k] = INT_MAX;
|
1660 |
|
|
else
|
1661 |
|
|
i_costs[k] += add_cost;
|
1662 |
|
|
}
|
1663 |
|
|
add_cost = COSTS (costs, a_num)->mem_cost;
|
1664 |
|
|
if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
|
1665 |
|
|
i_mem_cost = INT_MAX;
|
1666 |
|
|
else
|
1667 |
|
|
i_mem_cost += add_cost;
|
1668 |
|
|
}
|
1669 |
|
|
}
|
1670 |
|
|
if (equiv_savings < 0)
|
1671 |
|
|
i_mem_cost = -equiv_savings;
|
1672 |
|
|
else if (equiv_savings > 0)
|
1673 |
|
|
{
|
1674 |
|
|
i_mem_cost = 0;
|
1675 |
|
|
for (k = cost_classes_ptr->num - 1; k >= 0; k--)
|
1676 |
|
|
i_costs[k] += equiv_savings;
|
1677 |
|
|
}
|
1678 |
|
|
|
1679 |
|
|
best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
|
1680 |
|
|
best = ALL_REGS;
|
1681 |
|
|
alt_class = NO_REGS;
|
1682 |
|
|
/* Find best common class for all allocnos with the same
|
1683 |
|
|
regno. */
|
1684 |
|
|
for (k = 0; k < cost_classes_ptr->num; k++)
|
1685 |
|
|
{
|
1686 |
|
|
rclass = cost_classes[k];
|
1687 |
|
|
/* Ignore classes that are too small or invalid for this
|
1688 |
|
|
operand. */
|
1689 |
|
|
if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
|
1690 |
|
|
#ifdef CANNOT_CHANGE_MODE_CLASS
|
1691 |
|
|
|| invalid_mode_change_p (i, (enum reg_class) rclass)
|
1692 |
|
|
#endif
|
1693 |
|
|
)
|
1694 |
|
|
continue;
|
1695 |
|
|
if (i_costs[k] < best_cost)
|
1696 |
|
|
{
|
1697 |
|
|
best_cost = i_costs[k];
|
1698 |
|
|
best = (enum reg_class) rclass;
|
1699 |
|
|
}
|
1700 |
|
|
else if (i_costs[k] == best_cost)
|
1701 |
|
|
best = ira_reg_class_subunion[best][rclass];
|
1702 |
|
|
if (pass == flag_expensive_optimizations
|
1703 |
|
|
/* We still prefer registers to memory even at this
|
1704 |
|
|
stage if their costs are the same. We will make
|
1705 |
|
|
a final decision during assigning hard registers
|
1706 |
|
|
when we have all info including more accurate
|
1707 |
|
|
costs which might be affected by assigning hard
|
1708 |
|
|
registers to other pseudos because the pseudos
|
1709 |
|
|
involved in moves can be coalesced. */
|
1710 |
|
|
&& i_costs[k] <= i_mem_cost
|
1711 |
|
|
&& (reg_class_size[reg_class_subunion[alt_class][rclass]]
|
1712 |
|
|
> reg_class_size[alt_class]))
|
1713 |
|
|
alt_class = reg_class_subunion[alt_class][rclass];
|
1714 |
|
|
}
|
1715 |
|
|
alt_class = ira_allocno_class_translate[alt_class];
|
1716 |
|
|
if (best_cost > i_mem_cost)
|
1717 |
|
|
regno_aclass[i] = NO_REGS;
|
1718 |
|
|
else
|
1719 |
|
|
{
|
1720 |
|
|
/* Make the common class the biggest class of best and
|
1721 |
|
|
alt_class. */
|
1722 |
|
|
regno_aclass[i]
|
1723 |
|
|
= ira_reg_class_superunion[best][alt_class];
|
1724 |
|
|
ira_assert (regno_aclass[i] != NO_REGS
|
1725 |
|
|
&& ira_reg_allocno_class_p[regno_aclass[i]]);
|
1726 |
|
|
}
|
1727 |
|
|
if (pass == flag_expensive_optimizations)
|
1728 |
|
|
{
|
1729 |
|
|
if (best_cost > i_mem_cost)
|
1730 |
|
|
best = alt_class = NO_REGS;
|
1731 |
|
|
else if (best == alt_class)
|
1732 |
|
|
alt_class = NO_REGS;
|
1733 |
|
|
setup_reg_classes (i, best, alt_class, regno_aclass[i]);
|
1734 |
|
|
if ((!allocno_p || internal_flag_ira_verbose > 2)
|
1735 |
|
|
&& dump_file != NULL)
|
1736 |
|
|
fprintf (dump_file,
|
1737 |
|
|
" r%d: preferred %s, alternative %s, allocno %s\n",
|
1738 |
|
|
i, reg_class_names[best], reg_class_names[alt_class],
|
1739 |
|
|
reg_class_names[regno_aclass[i]]);
|
1740 |
|
|
}
|
1741 |
|
|
regno_best_class[i] = best;
|
1742 |
|
|
if (! allocno_p)
|
1743 |
|
|
{
|
1744 |
|
|
pref[i] = best_cost > i_mem_cost ? NO_REGS : best;
|
1745 |
|
|
continue;
|
1746 |
|
|
}
|
1747 |
|
|
for (a = ira_regno_allocno_map[i];
|
1748 |
|
|
a != NULL;
|
1749 |
|
|
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
|
1750 |
|
|
{
|
1751 |
|
|
a_num = ALLOCNO_NUM (a);
|
1752 |
|
|
if (regno_aclass[i] == NO_REGS)
|
1753 |
|
|
best = NO_REGS;
|
1754 |
|
|
else
|
1755 |
|
|
{
|
1756 |
|
|
int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
|
1757 |
|
|
int *a_costs = COSTS (costs, a_num)->cost;
|
1758 |
|
|
|
1759 |
|
|
/* Finding best class which is subset of the common
|
1760 |
|
|
class. */
|
1761 |
|
|
best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
|
1762 |
|
|
allocno_cost = best_cost;
|
1763 |
|
|
best = ALL_REGS;
|
1764 |
|
|
for (k = 0; k < cost_classes_ptr->num; k++)
|
1765 |
|
|
{
|
1766 |
|
|
rclass = cost_classes[k];
|
1767 |
|
|
if (! ira_class_subset_p[rclass][regno_aclass[i]])
|
1768 |
|
|
continue;
|
1769 |
|
|
/* Ignore classes that are too small or invalid
|
1770 |
|
|
for this operand. */
|
1771 |
|
|
if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
|
1772 |
|
|
#ifdef CANNOT_CHANGE_MODE_CLASS
|
1773 |
|
|
|| invalid_mode_change_p (i, (enum reg_class) rclass)
|
1774 |
|
|
#endif
|
1775 |
|
|
)
|
1776 |
|
|
;
|
1777 |
|
|
else if (total_a_costs[k] < best_cost)
|
1778 |
|
|
{
|
1779 |
|
|
best_cost = total_a_costs[k];
|
1780 |
|
|
allocno_cost = a_costs[k];
|
1781 |
|
|
best = (enum reg_class) rclass;
|
1782 |
|
|
}
|
1783 |
|
|
else if (total_a_costs[k] == best_cost)
|
1784 |
|
|
{
|
1785 |
|
|
best = ira_reg_class_subunion[best][rclass];
|
1786 |
|
|
allocno_cost = MAX (allocno_cost, a_costs[k]);
|
1787 |
|
|
}
|
1788 |
|
|
}
|
1789 |
|
|
ALLOCNO_CLASS_COST (a) = allocno_cost;
|
1790 |
|
|
}
|
1791 |
|
|
if (internal_flag_ira_verbose > 2 && dump_file != NULL
|
1792 |
|
|
&& (pass == 0 || pref[a_num] != best))
|
1793 |
|
|
{
|
1794 |
|
|
fprintf (dump_file, " a%d (r%d,", a_num, i);
|
1795 |
|
|
if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
|
1796 |
|
|
fprintf (dump_file, "b%d", bb->index);
|
1797 |
|
|
else
|
1798 |
|
|
fprintf (dump_file, "l%d",
|
1799 |
|
|
ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
|
1800 |
|
|
fprintf (dump_file, ") best %s, allocno %s\n",
|
1801 |
|
|
reg_class_names[best],
|
1802 |
|
|
reg_class_names[regno_aclass[i]]);
|
1803 |
|
|
}
|
1804 |
|
|
pref[a_num] = best;
|
1805 |
|
|
}
|
1806 |
|
|
}
|
1807 |
|
|
|
1808 |
|
|
if (internal_flag_ira_verbose > 4 && dump_file)
|
1809 |
|
|
{
|
1810 |
|
|
if (allocno_p)
|
1811 |
|
|
print_allocno_costs (dump_file);
|
1812 |
|
|
else
|
1813 |
|
|
print_pseudo_costs (dump_file);
|
1814 |
|
|
fprintf (dump_file,"\n");
|
1815 |
|
|
}
|
1816 |
|
|
}
|
1817 |
|
|
ira_free (regno_best_class);
|
1818 |
|
|
}
|
1819 |
|
|
|
1820 |
|
|
|
1821 |
|
|
|
1822 |
|
|
/* Process moves involving hard regs to modify allocno hard register
|
1823 |
|
|
costs. We can do this only after determining allocno class. If a
|
1824 |
|
|
hard register forms a register class, than moves with the hard
|
1825 |
|
|
register are already taken into account in class costs for the
|
1826 |
|
|
allocno. */
|
1827 |
|
|
static void
|
1828 |
|
|
process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
|
1829 |
|
|
{
|
1830 |
|
|
int i, freq, cost, src_regno, dst_regno, hard_regno;
|
1831 |
|
|
bool to_p;
|
1832 |
|
|
ira_allocno_t a;
|
1833 |
|
|
enum reg_class rclass, hard_reg_class;
|
1834 |
|
|
enum machine_mode mode;
|
1835 |
|
|
basic_block bb;
|
1836 |
|
|
rtx insn, set, src, dst;
|
1837 |
|
|
|
1838 |
|
|
bb = loop_tree_node->bb;
|
1839 |
|
|
if (bb == NULL)
|
1840 |
|
|
return;
|
1841 |
|
|
freq = REG_FREQ_FROM_BB (bb);
|
1842 |
|
|
if (freq == 0)
|
1843 |
|
|
freq = 1;
|
1844 |
|
|
FOR_BB_INSNS (bb, insn)
|
1845 |
|
|
{
|
1846 |
|
|
if (!NONDEBUG_INSN_P (insn))
|
1847 |
|
|
continue;
|
1848 |
|
|
set = single_set (insn);
|
1849 |
|
|
if (set == NULL_RTX)
|
1850 |
|
|
continue;
|
1851 |
|
|
dst = SET_DEST (set);
|
1852 |
|
|
src = SET_SRC (set);
|
1853 |
|
|
if (! REG_P (dst) || ! REG_P (src))
|
1854 |
|
|
continue;
|
1855 |
|
|
dst_regno = REGNO (dst);
|
1856 |
|
|
src_regno = REGNO (src);
|
1857 |
|
|
if (dst_regno >= FIRST_PSEUDO_REGISTER
|
1858 |
|
|
&& src_regno < FIRST_PSEUDO_REGISTER)
|
1859 |
|
|
{
|
1860 |
|
|
hard_regno = src_regno;
|
1861 |
|
|
to_p = true;
|
1862 |
|
|
a = ira_curr_regno_allocno_map[dst_regno];
|
1863 |
|
|
}
|
1864 |
|
|
else if (src_regno >= FIRST_PSEUDO_REGISTER
|
1865 |
|
|
&& dst_regno < FIRST_PSEUDO_REGISTER)
|
1866 |
|
|
{
|
1867 |
|
|
hard_regno = dst_regno;
|
1868 |
|
|
to_p = false;
|
1869 |
|
|
a = ira_curr_regno_allocno_map[src_regno];
|
1870 |
|
|
}
|
1871 |
|
|
else
|
1872 |
|
|
continue;
|
1873 |
|
|
rclass = ALLOCNO_CLASS (a);
|
1874 |
|
|
if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
|
1875 |
|
|
continue;
|
1876 |
|
|
i = ira_class_hard_reg_index[rclass][hard_regno];
|
1877 |
|
|
if (i < 0)
|
1878 |
|
|
continue;
|
1879 |
|
|
mode = ALLOCNO_MODE (a);
|
1880 |
|
|
hard_reg_class = REGNO_REG_CLASS (hard_regno);
|
1881 |
|
|
ira_init_register_move_cost_if_necessary (mode);
|
1882 |
|
|
cost
|
1883 |
|
|
= (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
|
1884 |
|
|
: ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
|
1885 |
|
|
ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
|
1886 |
|
|
ALLOCNO_CLASS_COST (a));
|
1887 |
|
|
ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
|
1888 |
|
|
rclass, 0);
|
1889 |
|
|
ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
|
1890 |
|
|
ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
|
1891 |
|
|
ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
|
1892 |
|
|
ALLOCNO_HARD_REG_COSTS (a)[i]);
|
1893 |
|
|
}
|
1894 |
|
|
}
|
1895 |
|
|
|
1896 |
|
|
/* After we find hard register and memory costs for allocnos, define
|
1897 |
|
|
its class and modify hard register cost because insns moving
|
1898 |
|
|
allocno to/from hard registers. */
|
1899 |
|
|
static void
|
1900 |
|
|
setup_allocno_class_and_costs (void)
|
1901 |
|
|
{
|
1902 |
|
|
int i, j, n, regno, hard_regno, num;
|
1903 |
|
|
int *reg_costs;
|
1904 |
|
|
enum reg_class aclass, rclass;
|
1905 |
|
|
ira_allocno_t a;
|
1906 |
|
|
ira_allocno_iterator ai;
|
1907 |
|
|
cost_classes_t cost_classes_ptr;
|
1908 |
|
|
|
1909 |
|
|
ira_assert (allocno_p);
|
1910 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
1911 |
|
|
{
|
1912 |
|
|
i = ALLOCNO_NUM (a);
|
1913 |
|
|
regno = ALLOCNO_REGNO (a);
|
1914 |
|
|
aclass = regno_aclass[regno];
|
1915 |
|
|
cost_classes_ptr = regno_cost_classes[regno];
|
1916 |
|
|
ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
|
1917 |
|
|
ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
|
1918 |
|
|
ira_set_allocno_class (a, aclass);
|
1919 |
|
|
if (aclass == NO_REGS)
|
1920 |
|
|
continue;
|
1921 |
|
|
if (optimize && ALLOCNO_CLASS (a) != pref[i])
|
1922 |
|
|
{
|
1923 |
|
|
n = ira_class_hard_regs_num[aclass];
|
1924 |
|
|
ALLOCNO_HARD_REG_COSTS (a)
|
1925 |
|
|
= reg_costs = ira_allocate_cost_vector (aclass);
|
1926 |
|
|
for (j = n - 1; j >= 0; j--)
|
1927 |
|
|
{
|
1928 |
|
|
hard_regno = ira_class_hard_regs[aclass][j];
|
1929 |
|
|
if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
|
1930 |
|
|
reg_costs[j] = ALLOCNO_CLASS_COST (a);
|
1931 |
|
|
else
|
1932 |
|
|
{
|
1933 |
|
|
rclass = REGNO_REG_CLASS (hard_regno);
|
1934 |
|
|
num = cost_classes_ptr->index[rclass];
|
1935 |
|
|
if (num < 0)
|
1936 |
|
|
{
|
1937 |
|
|
num = cost_classes_ptr->hard_regno_index[hard_regno];
|
1938 |
|
|
ira_assert (num >= 0);
|
1939 |
|
|
}
|
1940 |
|
|
reg_costs[j] = COSTS (costs, i)->cost[num];
|
1941 |
|
|
}
|
1942 |
|
|
}
|
1943 |
|
|
}
|
1944 |
|
|
}
|
1945 |
|
|
if (optimize)
|
1946 |
|
|
ira_traverse_loop_tree (true, ira_loop_tree_root,
|
1947 |
|
|
process_bb_node_for_hard_reg_moves, NULL);
|
1948 |
|
|
}
|
1949 |
|
|
|
1950 |
|
|
|
1951 |
|
|
|
1952 |
|
|
/* Function called once during compiler work. */
|
1953 |
|
|
void
|
1954 |
|
|
ira_init_costs_once (void)
|
1955 |
|
|
{
|
1956 |
|
|
int i;
|
1957 |
|
|
|
1958 |
|
|
init_cost = NULL;
|
1959 |
|
|
for (i = 0; i < MAX_RECOG_OPERANDS; i++)
|
1960 |
|
|
{
|
1961 |
|
|
op_costs[i] = NULL;
|
1962 |
|
|
this_op_costs[i] = NULL;
|
1963 |
|
|
}
|
1964 |
|
|
temp_costs = NULL;
|
1965 |
|
|
}
|
1966 |
|
|
|
1967 |
|
|
/* Free allocated temporary cost vectors. */
|
1968 |
|
|
static void
|
1969 |
|
|
free_ira_costs (void)
|
1970 |
|
|
{
|
1971 |
|
|
int i;
|
1972 |
|
|
|
1973 |
|
|
free (init_cost);
|
1974 |
|
|
init_cost = NULL;
|
1975 |
|
|
for (i = 0; i < MAX_RECOG_OPERANDS; i++)
|
1976 |
|
|
{
|
1977 |
|
|
free (op_costs[i]);
|
1978 |
|
|
free (this_op_costs[i]);
|
1979 |
|
|
op_costs[i] = this_op_costs[i] = NULL;
|
1980 |
|
|
}
|
1981 |
|
|
free (temp_costs);
|
1982 |
|
|
temp_costs = NULL;
|
1983 |
|
|
}
|
1984 |
|
|
|
1985 |
|
|
/* This is called each time register related information is
|
1986 |
|
|
changed. */
|
1987 |
|
|
void
|
1988 |
|
|
ira_init_costs (void)
|
1989 |
|
|
{
|
1990 |
|
|
int i;
|
1991 |
|
|
|
1992 |
|
|
free_ira_costs ();
|
1993 |
|
|
max_struct_costs_size
|
1994 |
|
|
= sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
|
1995 |
|
|
/* Don't use ira_allocate because vectors live through several IRA
|
1996 |
|
|
calls. */
|
1997 |
|
|
init_cost = (struct costs *) xmalloc (max_struct_costs_size);
|
1998 |
|
|
init_cost->mem_cost = 1000000;
|
1999 |
|
|
for (i = 0; i < ira_important_classes_num; i++)
|
2000 |
|
|
init_cost->cost[i] = 1000000;
|
2001 |
|
|
for (i = 0; i < MAX_RECOG_OPERANDS; i++)
|
2002 |
|
|
{
|
2003 |
|
|
op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
|
2004 |
|
|
this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
|
2005 |
|
|
}
|
2006 |
|
|
temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
|
2007 |
|
|
}
|
2008 |
|
|
|
2009 |
|
|
/* Function called once at the end of compiler work. */
|
2010 |
|
|
void
|
2011 |
|
|
ira_finish_costs_once (void)
|
2012 |
|
|
{
|
2013 |
|
|
free_ira_costs ();
|
2014 |
|
|
}
|
2015 |
|
|
|
2016 |
|
|
|
2017 |
|
|
|
2018 |
|
|
/* Common initialization function for ira_costs and
|
2019 |
|
|
ira_set_pseudo_classes. */
|
2020 |
|
|
static void
|
2021 |
|
|
init_costs (void)
|
2022 |
|
|
{
|
2023 |
|
|
init_subregs_of_mode ();
|
2024 |
|
|
costs = (struct costs *) ira_allocate (max_struct_costs_size
|
2025 |
|
|
* cost_elements_num);
|
2026 |
|
|
pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
|
2027 |
|
|
* cost_elements_num);
|
2028 |
|
|
regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
|
2029 |
|
|
* max_reg_num ());
|
2030 |
|
|
regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
|
2031 |
|
|
memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
|
2032 |
|
|
}
|
2033 |
|
|
|
2034 |
|
|
/* Common finalization function for ira_costs and
|
2035 |
|
|
ira_set_pseudo_classes. */
|
2036 |
|
|
static void
|
2037 |
|
|
finish_costs (void)
|
2038 |
|
|
{
|
2039 |
|
|
finish_subregs_of_mode ();
|
2040 |
|
|
ira_free (regno_equiv_gains);
|
2041 |
|
|
ira_free (regno_aclass);
|
2042 |
|
|
ira_free (pref_buffer);
|
2043 |
|
|
ira_free (costs);
|
2044 |
|
|
}
|
2045 |
|
|
|
2046 |
|
|
/* Entry function which defines register class, memory and hard
|
2047 |
|
|
register costs for each allocno. */
|
2048 |
|
|
void
|
2049 |
|
|
ira_costs (void)
|
2050 |
|
|
{
|
2051 |
|
|
allocno_p = true;
|
2052 |
|
|
cost_elements_num = ira_allocnos_num;
|
2053 |
|
|
init_costs ();
|
2054 |
|
|
total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
|
2055 |
|
|
* ira_allocnos_num);
|
2056 |
|
|
initiate_regno_cost_classes ();
|
2057 |
|
|
calculate_elim_costs_all_insns ();
|
2058 |
|
|
find_costs_and_classes (ira_dump_file);
|
2059 |
|
|
setup_allocno_class_and_costs ();
|
2060 |
|
|
finish_regno_cost_classes ();
|
2061 |
|
|
finish_costs ();
|
2062 |
|
|
ira_free (total_allocno_costs);
|
2063 |
|
|
}
|
2064 |
|
|
|
2065 |
|
|
/* Entry function which defines classes for pseudos. */
|
2066 |
|
|
void
|
2067 |
|
|
ira_set_pseudo_classes (FILE *dump_file)
|
2068 |
|
|
{
|
2069 |
|
|
allocno_p = false;
|
2070 |
|
|
internal_flag_ira_verbose = flag_ira_verbose;
|
2071 |
|
|
cost_elements_num = max_reg_num ();
|
2072 |
|
|
init_costs ();
|
2073 |
|
|
initiate_regno_cost_classes ();
|
2074 |
|
|
find_costs_and_classes (dump_file);
|
2075 |
|
|
finish_regno_cost_classes ();
|
2076 |
|
|
pseudo_classes_defined_p = true;
|
2077 |
|
|
finish_costs ();
|
2078 |
|
|
}
|
2079 |
|
|
|
2080 |
|
|
|
2081 |
|
|
|
2082 |
|
|
/* Change hard register costs for allocnos which lives through
|
2083 |
|
|
function calls. This is called only when we found all intersected
|
2084 |
|
|
calls during building allocno live ranges. */
|
2085 |
|
|
void
|
2086 |
|
|
ira_tune_allocno_costs (void)
|
2087 |
|
|
{
|
2088 |
|
|
int j, n, regno;
|
2089 |
|
|
int cost, min_cost, *reg_costs;
|
2090 |
|
|
enum reg_class aclass, rclass;
|
2091 |
|
|
enum machine_mode mode;
|
2092 |
|
|
ira_allocno_t a;
|
2093 |
|
|
ira_allocno_iterator ai;
|
2094 |
|
|
ira_allocno_object_iterator oi;
|
2095 |
|
|
ira_object_t obj;
|
2096 |
|
|
bool skip_p;
|
2097 |
|
|
|
2098 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
2099 |
|
|
{
|
2100 |
|
|
aclass = ALLOCNO_CLASS (a);
|
2101 |
|
|
if (aclass == NO_REGS)
|
2102 |
|
|
continue;
|
2103 |
|
|
mode = ALLOCNO_MODE (a);
|
2104 |
|
|
n = ira_class_hard_regs_num[aclass];
|
2105 |
|
|
min_cost = INT_MAX;
|
2106 |
|
|
if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0)
|
2107 |
|
|
{
|
2108 |
|
|
ira_allocate_and_set_costs
|
2109 |
|
|
(&ALLOCNO_HARD_REG_COSTS (a), aclass,
|
2110 |
|
|
ALLOCNO_CLASS_COST (a));
|
2111 |
|
|
reg_costs = ALLOCNO_HARD_REG_COSTS (a);
|
2112 |
|
|
for (j = n - 1; j >= 0; j--)
|
2113 |
|
|
{
|
2114 |
|
|
regno = ira_class_hard_regs[aclass][j];
|
2115 |
|
|
skip_p = false;
|
2116 |
|
|
FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
|
2117 |
|
|
{
|
2118 |
|
|
if (ira_hard_reg_set_intersection_p (regno, mode,
|
2119 |
|
|
OBJECT_CONFLICT_HARD_REGS
|
2120 |
|
|
(obj)))
|
2121 |
|
|
{
|
2122 |
|
|
skip_p = true;
|
2123 |
|
|
break;
|
2124 |
|
|
}
|
2125 |
|
|
}
|
2126 |
|
|
if (skip_p)
|
2127 |
|
|
continue;
|
2128 |
|
|
rclass = REGNO_REG_CLASS (regno);
|
2129 |
|
|
cost = 0;
|
2130 |
|
|
if (ira_hard_reg_set_intersection_p (regno, mode, call_used_reg_set)
|
2131 |
|
|
|| HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
|
2132 |
|
|
cost += (ALLOCNO_CALL_FREQ (a)
|
2133 |
|
|
* (ira_memory_move_cost[mode][rclass][0]
|
2134 |
|
|
+ ira_memory_move_cost[mode][rclass][1]));
|
2135 |
|
|
#ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
|
2136 |
|
|
cost += ((ira_memory_move_cost[mode][rclass][0]
|
2137 |
|
|
+ ira_memory_move_cost[mode][rclass][1])
|
2138 |
|
|
* ALLOCNO_FREQ (a)
|
2139 |
|
|
* IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
|
2140 |
|
|
#endif
|
2141 |
|
|
if (INT_MAX - cost < reg_costs[j])
|
2142 |
|
|
reg_costs[j] = INT_MAX;
|
2143 |
|
|
else
|
2144 |
|
|
reg_costs[j] += cost;
|
2145 |
|
|
if (min_cost > reg_costs[j])
|
2146 |
|
|
min_cost = reg_costs[j];
|
2147 |
|
|
}
|
2148 |
|
|
}
|
2149 |
|
|
if (min_cost != INT_MAX)
|
2150 |
|
|
ALLOCNO_CLASS_COST (a) = min_cost;
|
2151 |
|
|
|
2152 |
|
|
/* Some targets allow pseudos to be allocated to unaligned sequences
|
2153 |
|
|
of hard registers. However, selecting an unaligned sequence can
|
2154 |
|
|
unnecessarily restrict later allocations. So increase the cost of
|
2155 |
|
|
unaligned hard regs to encourage the use of aligned hard regs. */
|
2156 |
|
|
{
|
2157 |
|
|
const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
|
2158 |
|
|
|
2159 |
|
|
if (nregs > 1)
|
2160 |
|
|
{
|
2161 |
|
|
ira_allocate_and_set_costs
|
2162 |
|
|
(&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
|
2163 |
|
|
reg_costs = ALLOCNO_HARD_REG_COSTS (a);
|
2164 |
|
|
for (j = n - 1; j >= 0; j--)
|
2165 |
|
|
{
|
2166 |
|
|
regno = ira_non_ordered_class_hard_regs[aclass][j];
|
2167 |
|
|
if ((regno % nregs) != 0)
|
2168 |
|
|
{
|
2169 |
|
|
int index = ira_class_hard_reg_index[aclass][regno];
|
2170 |
|
|
ira_assert (index != -1);
|
2171 |
|
|
reg_costs[index] += ALLOCNO_FREQ (a);
|
2172 |
|
|
}
|
2173 |
|
|
}
|
2174 |
|
|
}
|
2175 |
|
|
}
|
2176 |
|
|
}
|
2177 |
|
|
}
|
2178 |
|
|
|
2179 |
|
|
/* Add COST to the estimated gain for eliminating REGNO with its
|
2180 |
|
|
equivalence. If COST is zero, record that no such elimination is
|
2181 |
|
|
possible. */
|
2182 |
|
|
|
2183 |
|
|
void
|
2184 |
|
|
ira_adjust_equiv_reg_cost (unsigned regno, int cost)
|
2185 |
|
|
{
|
2186 |
|
|
if (cost == 0)
|
2187 |
|
|
regno_equiv_gains[regno] = 0;
|
2188 |
|
|
else
|
2189 |
|
|
regno_equiv_gains[regno] += cost;
|
2190 |
|
|
}
|