OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ira-costs.c] - Blame information for rev 867

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 684 jeremybenn
/* IRA hard register and memory cost calculation for allocnos or pseudos.
2
   Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
3
   Free Software Foundation, Inc.
4
   Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
 
6
This file is part of GCC.
7
 
8
GCC is free software; you can redistribute it and/or modify it under
9
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11
version.
12
 
13
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14
WARRANTY; without even the implied warranty of MERCHANTABILITY or
15
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16
for more details.
17
 
18
You should have received a copy of the GNU General Public License
19
along with GCC; see the file COPYING3.  If not see
20
<http://www.gnu.org/licenses/>.  */
21
 
22
#include "config.h"
23
#include "system.h"
24
#include "coretypes.h"
25
#include "tm.h"
26
#include "hard-reg-set.h"
27
#include "rtl.h"
28
#include "expr.h"
29
#include "tm_p.h"
30
#include "flags.h"
31
#include "basic-block.h"
32
#include "regs.h"
33
#include "addresses.h"
34
#include "insn-config.h"
35
#include "recog.h"
36
#include "reload.h"
37
#include "diagnostic-core.h"
38
#include "target.h"
39
#include "params.h"
40
#include "ira-int.h"
41
 
42
/* The flags is set up every time when we calculate pseudo register
43
   classes through function ira_set_pseudo_classes.  */
44
static bool pseudo_classes_defined_p = false;
45
 
46
/* TRUE if we work with allocnos.  Otherwise we work with pseudos.  */
47
static bool allocno_p;
48
 
49
/* Number of elements in array `costs'.  */
50
static int cost_elements_num;
51
 
52
/* The `costs' struct records the cost of using hard registers of each
53
   class considered for the calculation and of using memory for each
54
   allocno or pseudo.  */
55
struct costs
56
{
57
  int mem_cost;
58
  /* Costs for register classes start here.  We process only some
59
     allocno classes.  */
60
  int cost[1];
61
};
62
 
63
#define max_struct_costs_size \
64
  (this_target_ira_int->x_max_struct_costs_size)
65
#define init_cost \
66
  (this_target_ira_int->x_init_cost)
67
#define temp_costs \
68
  (this_target_ira_int->x_temp_costs)
69
#define op_costs \
70
  (this_target_ira_int->x_op_costs)
71
#define this_op_costs \
72
  (this_target_ira_int->x_this_op_costs)
73
 
74
/* Costs of each class for each allocno or pseudo.  */
75
static struct costs *costs;
76
 
77
/* Accumulated costs of each class for each allocno.  */
78
static struct costs *total_allocno_costs;
79
 
80
/* It is the current size of struct costs.  */
81
static int struct_costs_size;
82
 
83
/* Return pointer to structure containing costs of allocno or pseudo
84
   with given NUM in array ARR.  */
85
#define COSTS(arr, num) \
86
  ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
87
 
88
/* Return index in COSTS when processing reg with REGNO.  */
89
#define COST_INDEX(regno) (allocno_p                                         \
90
                           ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
91
                           : (int) regno)
92
 
93
/* Record register class preferences of each allocno or pseudo.  Null
94
   value means no preferences.  It happens on the 1st iteration of the
95
   cost calculation.  */
96
static enum reg_class *pref;
97
 
98
/* Allocated buffers for pref.  */
99
static enum reg_class *pref_buffer;
100
 
101
/* Record allocno class of each allocno with the same regno.  */
102
static enum reg_class *regno_aclass;
103
 
104
/* Record cost gains for not allocating a register with an invariant
105
   equivalence.  */
106
static int *regno_equiv_gains;
107
 
108
/* Execution frequency of the current insn.  */
109
static int frequency;
110
 
111
 
112
 
113
/* Info about reg classes whose costs are calculated for a pseudo.  */
114
struct cost_classes
115
{
116
  /* Number of the cost classes in the subsequent array.  */
117
  int num;
118
  /* Container of the cost classes.  */
119
  enum reg_class classes[N_REG_CLASSES];
120
  /* Map reg class -> index of the reg class in the previous array.
121
     -1 if it is not a cost classe.  */
122
  int index[N_REG_CLASSES];
123
  /* Map hard regno index of first class in array CLASSES containing
124
     the hard regno, -1 otherwise.  */
125
  int hard_regno_index[FIRST_PSEUDO_REGISTER];
126
};
127
 
128
/* Types of pointers to the structure above.  */
129
typedef struct cost_classes *cost_classes_t;
130
typedef const struct cost_classes *const_cost_classes_t;
131
 
132
/* Info about cost classes for each pseudo.  */
133
static cost_classes_t *regno_cost_classes;
134
 
135
/* Returns hash value for cost classes info V.  */
136
static hashval_t
137
cost_classes_hash (const void *v)
138
{
139
  const_cost_classes_t hv = (const_cost_classes_t) v;
140
 
141
  return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
142
}
143
 
144
/* Compares cost classes info V1 and V2.  */
145
static int
146
cost_classes_eq (const void *v1, const void *v2)
147
{
148
  const_cost_classes_t hv1 = (const_cost_classes_t) v1;
149
  const_cost_classes_t hv2 = (const_cost_classes_t) v2;
150
 
151
  return hv1->num == hv2->num && memcmp (hv1->classes, hv2->classes,
152
                                         sizeof (enum reg_class) * hv1->num);
153
}
154
 
155
/* Delete cost classes info V from the hash table.  */
156
static void
157
cost_classes_del (void *v)
158
{
159
  ira_free (v);
160
}
161
 
162
/* Hash table of unique cost classes.  */
163
static htab_t cost_classes_htab;
164
 
165
/* Map allocno class -> cost classes for pseudo of given allocno
166
   class.  */
167
static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
168
 
169
/* Map mode -> cost classes for pseudo of give mode.  */
170
static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
171
 
172
/* Initialize info about the cost classes for each pseudo.  */
173
static void
174
initiate_regno_cost_classes (void)
175
{
176
  int size = sizeof (cost_classes_t) * max_reg_num ();
177
 
178
  regno_cost_classes = (cost_classes_t *) ira_allocate (size);
179
  memset (regno_cost_classes, 0, size);
180
  memset (cost_classes_aclass_cache, 0,
181
          sizeof (cost_classes_t) * N_REG_CLASSES);
182
  memset (cost_classes_mode_cache, 0,
183
          sizeof (cost_classes_t) * MAX_MACHINE_MODE);
184
  cost_classes_htab
185
    = htab_create (200, cost_classes_hash, cost_classes_eq, cost_classes_del);
186
}
187
 
188
/* Create new cost classes from cost classes FROM and set up members
189
   index and hard_regno_index.  Return the new classes.  The function
190
   implements some common code of two functions
191
   setup_regno_cost_classes_by_aclass and
192
   setup_regno_cost_classes_by_mode.  */
193
static cost_classes_t
194
setup_cost_classes (cost_classes_t from)
195
{
196
  cost_classes_t classes_ptr;
197
  enum reg_class cl;
198
  int i, j, hard_regno;
199
 
200
  classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
201
  classes_ptr->num = from->num;
202
  for (i = 0; i < N_REG_CLASSES; i++)
203
    classes_ptr->index[i] = -1;
204
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
205
    classes_ptr->hard_regno_index[i] = -1;
206
  for (i = 0; i < from->num; i++)
207
    {
208
      cl = classes_ptr->classes[i] = from->classes[i];
209
      classes_ptr->index[cl] = i;
210
      for (j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
211
        {
212
          hard_regno = ira_class_hard_regs[cl][j];
213
          if (classes_ptr->hard_regno_index[hard_regno] < 0)
214
            classes_ptr->hard_regno_index[hard_regno] = i;
215
        }
216
    }
217
  return classes_ptr;
218
}
219
 
220
/* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
221
   This function is used when we know an initial approximation of
222
   allocno class of the pseudo already, e.g. on the second iteration
223
   of class cost calculation or after class cost calculation in
224
   register-pressure sensitive insn scheduling or register-pressure
225
   sensitive loop-invariant motion.  */
226
static void
227
setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
228
{
229
  static struct cost_classes classes;
230
  cost_classes_t classes_ptr;
231
  enum reg_class cl;
232
  int i;
233
  PTR *slot;
234
  HARD_REG_SET temp, temp2;
235
  bool exclude_p;
236
 
237
  if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
238
    {
239
      COPY_HARD_REG_SET (temp, reg_class_contents[aclass]);
240
      AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
241
      /* We exclude classes from consideration which are subsets of
242
         ACLASS only if ACLASS is a pressure class or subset of a
243
         pressure class.  It means by the definition of pressure classes
244
         that cost of moving between susbets of ACLASS is cheaper than
245
         load or store.  */
246
      for (i = 0; i < ira_pressure_classes_num; i++)
247
        {
248
          cl = ira_pressure_classes[i];
249
          if (cl == aclass)
250
            break;
251
          COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
252
          AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
253
          if (hard_reg_set_subset_p (temp, temp2))
254
            break;
255
        }
256
      exclude_p = i < ira_pressure_classes_num;
257
      classes.num = 0;
258
      for (i = 0; i < ira_important_classes_num; i++)
259
        {
260
          cl = ira_important_classes[i];
261
          if (exclude_p)
262
            {
263
              /* Exclude no-pressure classes which are subsets of
264
                 ACLASS.  */
265
              COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
266
              AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
267
              if (! ira_reg_pressure_class_p[cl]
268
                  && hard_reg_set_subset_p (temp2, temp) && cl != aclass)
269
                continue;
270
            }
271
          classes.classes[classes.num++] = cl;
272
        }
273
      slot = htab_find_slot (cost_classes_htab, &classes, INSERT);
274
      if (*slot == NULL)
275
        {
276
          classes_ptr = setup_cost_classes (&classes);
277
          *slot = classes_ptr;
278
        }
279
      classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
280
    }
281
  regno_cost_classes[regno] = classes_ptr;
282
}
283
 
284
/* Setup cost classes for pseudo REGNO with MODE.  Usage of MODE can
285
   decrease number of cost classes for the pseudo, if hard registers
286
   of some important classes can not hold a value of MODE.  So the
287
   pseudo can not get hard register of some important classes and cost
288
   calculation for such important classes is only waisting CPU
289
   time.  */
290
static void
291
setup_regno_cost_classes_by_mode (int regno, enum machine_mode mode)
292
{
293
  static struct cost_classes classes;
294
  cost_classes_t classes_ptr;
295
  enum reg_class cl;
296
  int i;
297
  PTR *slot;
298
  HARD_REG_SET temp;
299
 
300
  if ((classes_ptr = cost_classes_mode_cache[mode]) == NULL)
301
    {
302
      classes.num = 0;
303
      for (i = 0; i < ira_important_classes_num; i++)
304
        {
305
          cl = ira_important_classes[i];
306
          COPY_HARD_REG_SET (temp, ira_prohibited_class_mode_regs[cl][mode]);
307
          IOR_HARD_REG_SET (temp, ira_no_alloc_regs);
308
          if (hard_reg_set_subset_p (reg_class_contents[cl], temp))
309
            continue;
310
          classes.classes[classes.num++] = cl;
311
        }
312
      slot = htab_find_slot (cost_classes_htab, &classes, INSERT);
313
      if (*slot == NULL)
314
        {
315
          classes_ptr = setup_cost_classes (&classes);
316
          *slot = classes_ptr;
317
        }
318
      else
319
        classes_ptr = (cost_classes_t) *slot;
320
      cost_classes_mode_cache[mode] = (cost_classes_t) *slot;
321
    }
322
  regno_cost_classes[regno] = classes_ptr;
323
}
324
 
325
/* Finilize info about the cost classes for each pseudo.  */
326
static void
327
finish_regno_cost_classes (void)
328
{
329
  ira_free (regno_cost_classes);
330
  htab_delete (cost_classes_htab);
331
}
332
 
333
 
334
 
335
/* Compute the cost of loading X into (if TO_P is TRUE) or from (if
336
   TO_P is FALSE) a register of class RCLASS in mode MODE.  X must not
337
   be a pseudo register.  */
338
static int
339
copy_cost (rtx x, enum machine_mode mode, reg_class_t rclass, bool to_p,
340
           secondary_reload_info *prev_sri)
341
{
342
  secondary_reload_info sri;
343
  reg_class_t secondary_class = NO_REGS;
344
 
345
  /* If X is a SCRATCH, there is actually nothing to move since we are
346
     assuming optimal allocation.  */
347
  if (GET_CODE (x) == SCRATCH)
348
    return 0;
349
 
350
  /* Get the class we will actually use for a reload.  */
351
  rclass = targetm.preferred_reload_class (x, rclass);
352
 
353
  /* If we need a secondary reload for an intermediate, the cost is
354
     that to load the input into the intermediate register, then to
355
     copy it.  */
356
  sri.prev_sri = prev_sri;
357
  sri.extra_cost = 0;
358
  secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
359
 
360
  if (secondary_class != NO_REGS)
361
    {
362
      if (!move_cost[mode])
363
        init_move_cost (mode);
364
      return (move_cost[mode][(int) secondary_class][(int) rclass]
365
              + sri.extra_cost
366
              + copy_cost (x, mode, secondary_class, to_p, &sri));
367
    }
368
 
369
  /* For memory, use the memory move cost, for (hard) registers, use
370
     the cost to move between the register classes, and use 2 for
371
     everything else (constants).  */
372
  if (MEM_P (x) || rclass == NO_REGS)
373
    return sri.extra_cost
374
           + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
375
  else if (REG_P (x))
376
    {
377
      if (!move_cost[mode])
378
        init_move_cost (mode);
379
      return (sri.extra_cost
380
              + move_cost[mode][REGNO_REG_CLASS (REGNO (x))][(int) rclass]);
381
    }
382
  else
383
    /* If this is a constant, we may eventually want to call rtx_cost
384
       here.  */
385
    return sri.extra_cost + COSTS_N_INSNS (1);
386
}
387
 
388
 
389
 
390
/* Record the cost of using memory or hard registers of various
391
   classes for the operands in INSN.
392
 
393
   N_ALTS is the number of alternatives.
394
   N_OPS is the number of operands.
395
   OPS is an array of the operands.
396
   MODES are the modes of the operands, in case any are VOIDmode.
397
   CONSTRAINTS are the constraints to use for the operands.  This array
398
   is modified by this procedure.
399
 
400
   This procedure works alternative by alternative.  For each
401
   alternative we assume that we will be able to allocate all allocnos
402
   to their ideal register class and calculate the cost of using that
403
   alternative.  Then we compute, for each operand that is a
404
   pseudo-register, the cost of having the allocno allocated to each
405
   register class and using it in that alternative.  To this cost is
406
   added the cost of the alternative.
407
 
408
   The cost of each class for this insn is its lowest cost among all
409
   the alternatives.  */
410
static void
411
record_reg_classes (int n_alts, int n_ops, rtx *ops,
412
                    enum machine_mode *modes, const char **constraints,
413
                    rtx insn, enum reg_class *pref)
414
{
415
  int alt;
416
  int i, j, k;
417
  rtx set;
418
  int insn_allows_mem[MAX_RECOG_OPERANDS];
419
 
420
  for (i = 0; i < n_ops; i++)
421
    insn_allows_mem[i] = 0;
422
 
423
  /* Process each alternative, each time minimizing an operand's cost
424
     with the cost for each operand in that alternative.  */
425
  for (alt = 0; alt < n_alts; alt++)
426
    {
427
      enum reg_class classes[MAX_RECOG_OPERANDS];
428
      int allows_mem[MAX_RECOG_OPERANDS];
429
      enum reg_class rclass;
430
      int alt_fail = 0;
431
      int alt_cost = 0, op_cost_add;
432
 
433
      if (!recog_data.alternative_enabled_p[alt])
434
        {
435
          for (i = 0; i < recog_data.n_operands; i++)
436
            constraints[i] = skip_alternative (constraints[i]);
437
 
438
          continue;
439
        }
440
 
441
      for (i = 0; i < n_ops; i++)
442
        {
443
          unsigned char c;
444
          const char *p = constraints[i];
445
          rtx op = ops[i];
446
          enum machine_mode mode = modes[i];
447
          int allows_addr = 0;
448
          int win = 0;
449
 
450
          /* Initially show we know nothing about the register class.  */
451
          classes[i] = NO_REGS;
452
          allows_mem[i] = 0;
453
 
454
          /* If this operand has no constraints at all, we can
455
             conclude nothing about it since anything is valid.  */
456
          if (*p == 0)
457
            {
458
              if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
459
                memset (this_op_costs[i], 0, struct_costs_size);
460
              continue;
461
            }
462
 
463
          /* If this alternative is only relevant when this operand
464
             matches a previous operand, we do different things
465
             depending on whether this operand is a allocno-reg or not.
466
             We must process any modifiers for the operand before we
467
             can make this test.  */
468
          while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
469
            p++;
470
 
471
          if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
472
            {
473
              /* Copy class and whether memory is allowed from the
474
                 matching alternative.  Then perform any needed cost
475
                 computations and/or adjustments.  */
476
              j = p[0] - '0';
477
              classes[i] = classes[j];
478
              allows_mem[i] = allows_mem[j];
479
              if (allows_mem[i])
480
                insn_allows_mem[i] = 1;
481
 
482
              if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
483
                {
484
                  /* If this matches the other operand, we have no
485
                     added cost and we win.  */
486
                  if (rtx_equal_p (ops[j], op))
487
                    win = 1;
488
                  /* If we can put the other operand into a register,
489
                     add to the cost of this alternative the cost to
490
                     copy this operand to the register used for the
491
                     other operand.  */
492
                  else if (classes[j] != NO_REGS)
493
                    {
494
                      alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
495
                      win = 1;
496
                    }
497
                }
498
              else if (! REG_P (ops[j])
499
                       || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
500
                {
501
                  /* This op is an allocno but the one it matches is
502
                     not.  */
503
 
504
                  /* If we can't put the other operand into a
505
                     register, this alternative can't be used.  */
506
 
507
                  if (classes[j] == NO_REGS)
508
                    alt_fail = 1;
509
                  /* Otherwise, add to the cost of this alternative
510
                     the cost to copy the other operand to the hard
511
                     register used for this operand.  */
512
                  else
513
                    alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
514
                }
515
              else
516
                {
517
                  /* The costs of this operand are not the same as the
518
                     other operand since move costs are not symmetric.
519
                     Moreover, if we cannot tie them, this alternative
520
                     needs to do a copy, which is one insn.  */
521
                  struct costs *pp = this_op_costs[i];
522
                  int *pp_costs = pp->cost;
523
                  cost_classes_t cost_classes_ptr
524
                    = regno_cost_classes[REGNO (op)];
525
                  enum reg_class *cost_classes = cost_classes_ptr->classes;
526
                  bool in_p = recog_data.operand_type[i] != OP_OUT;
527
                  bool out_p = recog_data.operand_type[i] != OP_IN;
528
                  enum reg_class op_class = classes[i];
529
                  move_table *move_in_cost, *move_out_cost;
530
 
531
                  ira_init_register_move_cost_if_necessary (mode);
532
                  if (! in_p)
533
                    {
534
                      ira_assert (out_p);
535
                      move_out_cost = ira_may_move_out_cost[mode];
536
                      for (k = cost_classes_ptr->num - 1; k >= 0; k--)
537
                        {
538
                          rclass = cost_classes[k];
539
                          pp_costs[k]
540
                            = move_out_cost[op_class][rclass] * frequency;
541
                        }
542
                    }
543
                  else if (! out_p)
544
                    {
545
                      ira_assert (in_p);
546
                      move_in_cost = ira_may_move_in_cost[mode];
547
                      for (k = cost_classes_ptr->num - 1; k >= 0; k--)
548
                        {
549
                          rclass = cost_classes[k];
550
                          pp_costs[k]
551
                            = move_in_cost[rclass][op_class] * frequency;
552
                        }
553
                    }
554
                  else
555
                    {
556
                      move_in_cost = ira_may_move_in_cost[mode];
557
                      move_out_cost = ira_may_move_out_cost[mode];
558
                      for (k = cost_classes_ptr->num - 1; k >= 0; k--)
559
                        {
560
                          rclass = cost_classes[k];
561
                          pp_costs[k] = ((move_in_cost[rclass][op_class]
562
                                          + move_out_cost[op_class][rclass])
563
                                         * frequency);
564
                        }
565
                    }
566
 
567
                  /* If the alternative actually allows memory, make
568
                     things a bit cheaper since we won't need an extra
569
                     insn to load it.  */
570
                  pp->mem_cost
571
                    = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
572
                       + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
573
                       - allows_mem[i]) * frequency;
574
 
575
                  /* If we have assigned a class to this allocno in
576
                     our first pass, add a cost to this alternative
577
                     corresponding to what we would add if this
578
                     allocno were not in the appropriate class.  */
579
                  if (pref)
580
                    {
581
                      enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
582
 
583
                      if (pref_class == NO_REGS)
584
                        alt_cost
585
                          += ((out_p
586
                               ? ira_memory_move_cost[mode][op_class][0] : 0)
587
                              + (in_p
588
                                 ? ira_memory_move_cost[mode][op_class][1]
589
                                 : 0));
590
                      else if (ira_reg_class_intersect
591
                               [pref_class][op_class] == NO_REGS)
592
                        alt_cost
593
                          += ira_register_move_cost[mode][pref_class][op_class];
594
                    }
595
                  if (REGNO (ops[i]) != REGNO (ops[j])
596
                      && ! find_reg_note (insn, REG_DEAD, op))
597
                    alt_cost += 2;
598
 
599
                  /* This is in place of ordinary cost computation for
600
                     this operand, so skip to the end of the
601
                     alternative (should be just one character).  */
602
                  while (*p && *p++ != ',')
603
                    ;
604
 
605
                  constraints[i] = p;
606
                  continue;
607
                }
608
            }
609
 
610
          /* Scan all the constraint letters.  See if the operand
611
             matches any of the constraints.  Collect the valid
612
             register classes and see if this operand accepts
613
             memory.  */
614
          while ((c = *p))
615
            {
616
              switch (c)
617
                {
618
                case ',':
619
                  break;
620
                case '*':
621
                  /* Ignore the next letter for this pass.  */
622
                  c = *++p;
623
                  break;
624
 
625
                case '?':
626
                  alt_cost += 2;
627
                case '!':  case '#':  case '&':
628
                case '0':  case '1':  case '2':  case '3':  case '4':
629
                case '5':  case '6':  case '7':  case '8':  case '9':
630
                  break;
631
 
632
                case 'p':
633
                  allows_addr = 1;
634
                  win = address_operand (op, GET_MODE (op));
635
                  /* We know this operand is an address, so we want it
636
                     to be allocated to a register that can be the
637
                     base of an address, i.e. BASE_REG_CLASS.  */
638
                  classes[i]
639
                    = ira_reg_class_subunion[classes[i]]
640
                      [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
641
                                       ADDRESS, SCRATCH)];
642
                  break;
643
 
644
                case 'm':  case 'o':  case 'V':
645
                  /* It doesn't seem worth distinguishing between
646
                     offsettable and non-offsettable addresses
647
                     here.  */
648
                  insn_allows_mem[i] = allows_mem[i] = 1;
649
                  if (MEM_P (op))
650
                    win = 1;
651
                  break;
652
 
653
                case '<':
654
                  if (MEM_P (op)
655
                      && (GET_CODE (XEXP (op, 0)) == PRE_DEC
656
                          || GET_CODE (XEXP (op, 0)) == POST_DEC))
657
                    win = 1;
658
                  break;
659
 
660
                case '>':
661
                  if (MEM_P (op)
662
                      && (GET_CODE (XEXP (op, 0)) == PRE_INC
663
                          || GET_CODE (XEXP (op, 0)) == POST_INC))
664
                    win = 1;
665
                  break;
666
 
667
                case 'E':
668
                case 'F':
669
                  if (GET_CODE (op) == CONST_DOUBLE
670
                      || (GET_CODE (op) == CONST_VECTOR
671
                          && (GET_MODE_CLASS (GET_MODE (op))
672
                              == MODE_VECTOR_FLOAT)))
673
                    win = 1;
674
                  break;
675
 
676
                case 'G':
677
                case 'H':
678
                  if (GET_CODE (op) == CONST_DOUBLE
679
                      && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
680
                    win = 1;
681
                  break;
682
 
683
                case 's':
684
                  if (CONST_INT_P (op)
685
                      || (GET_CODE (op) == CONST_DOUBLE
686
                          && GET_MODE (op) == VOIDmode))
687
                    break;
688
 
689
                case 'i':
690
                  if (CONSTANT_P (op)
691
                      && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
692
                    win = 1;
693
                  break;
694
 
695
                case 'n':
696
                  if (CONST_INT_P (op)
697
                      || (GET_CODE (op) == CONST_DOUBLE
698
                          && GET_MODE (op) == VOIDmode))
699
                    win = 1;
700
                  break;
701
 
702
                case 'I':
703
                case 'J':
704
                case 'K':
705
                case 'L':
706
                case 'M':
707
                case 'N':
708
                case 'O':
709
                case 'P':
710
                  if (CONST_INT_P (op)
711
                      && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
712
                    win = 1;
713
                  break;
714
 
715
                case 'X':
716
                  win = 1;
717
                  break;
718
 
719
                case 'g':
720
                  if (MEM_P (op)
721
                      || (CONSTANT_P (op)
722
                          && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
723
                    win = 1;
724
                  insn_allows_mem[i] = allows_mem[i] = 1;
725
                case 'r':
726
                  classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
727
                  break;
728
 
729
                default:
730
                  if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
731
                    classes[i] = ira_reg_class_subunion[classes[i]]
732
                                 [REG_CLASS_FROM_CONSTRAINT (c, p)];
733
#ifdef EXTRA_CONSTRAINT_STR
734
                  else if (EXTRA_CONSTRAINT_STR (op, c, p))
735
                    win = 1;
736
 
737
                  if (EXTRA_MEMORY_CONSTRAINT (c, p))
738
                    {
739
                      /* Every MEM can be reloaded to fit.  */
740
                      insn_allows_mem[i] = allows_mem[i] = 1;
741
                      if (MEM_P (op))
742
                        win = 1;
743
                    }
744
                  if (EXTRA_ADDRESS_CONSTRAINT (c, p))
745
                    {
746
                      /* Every address can be reloaded to fit.  */
747
                      allows_addr = 1;
748
                      if (address_operand (op, GET_MODE (op)))
749
                        win = 1;
750
                      /* We know this operand is an address, so we
751
                         want it to be allocated to a hard register
752
                         that can be the base of an address,
753
                         i.e. BASE_REG_CLASS.  */
754
                      classes[i]
755
                        = ira_reg_class_subunion[classes[i]]
756
                          [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
757
                                           ADDRESS, SCRATCH)];
758
                    }
759
#endif
760
                  break;
761
                }
762
              p += CONSTRAINT_LEN (c, p);
763
              if (c == ',')
764
                break;
765
            }
766
 
767
          constraints[i] = p;
768
 
769
          /* How we account for this operand now depends on whether it
770
             is a pseudo register or not.  If it is, we first check if
771
             any register classes are valid.  If not, we ignore this
772
             alternative, since we want to assume that all allocnos get
773
             allocated for register preferencing.  If some register
774
             class is valid, compute the costs of moving the allocno
775
             into that class.  */
776
          if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
777
            {
778
              if (classes[i] == NO_REGS)
779
                {
780
                  /* We must always fail if the operand is a REG, but
781
                     we did not find a suitable class.
782
 
783
                     Otherwise we may perform an uninitialized read
784
                     from this_op_costs after the `continue' statement
785
                     below.  */
786
                  alt_fail = 1;
787
                }
788
              else
789
                {
790
                  unsigned int regno = REGNO (op);
791
                  struct costs *pp = this_op_costs[i];
792
                  int *pp_costs = pp->cost;
793
                  cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
794
                  enum reg_class *cost_classes = cost_classes_ptr->classes;
795
                  bool in_p = recog_data.operand_type[i] != OP_OUT;
796
                  bool out_p = recog_data.operand_type[i] != OP_IN;
797
                  enum reg_class op_class = classes[i];
798
                  move_table *move_in_cost, *move_out_cost;
799
 
800
                  ira_init_register_move_cost_if_necessary (mode);
801
                  if (! in_p)
802
                    {
803
                      ira_assert (out_p);
804
                      move_out_cost = ira_may_move_out_cost[mode];
805
                      for (k = cost_classes_ptr->num - 1; k >= 0; k--)
806
                        {
807
                          rclass = cost_classes[k];
808
                          pp_costs[k]
809
                            = move_out_cost[op_class][rclass] * frequency;
810
                        }
811
                    }
812
                  else if (! out_p)
813
                    {
814
                      ira_assert (in_p);
815
                      move_in_cost = ira_may_move_in_cost[mode];
816
                      for (k = cost_classes_ptr->num - 1; k >= 0; k--)
817
                        {
818
                          rclass = cost_classes[k];
819
                          pp_costs[k]
820
                            = move_in_cost[rclass][op_class] * frequency;
821
                        }
822
                    }
823
                  else
824
                    {
825
                      move_in_cost = ira_may_move_in_cost[mode];
826
                      move_out_cost = ira_may_move_out_cost[mode];
827
                      for (k = cost_classes_ptr->num - 1; k >= 0; k--)
828
                        {
829
                          rclass = cost_classes[k];
830
                          pp_costs[k] = ((move_in_cost[rclass][op_class]
831
                                          + move_out_cost[op_class][rclass])
832
                                         * frequency);
833
                        }
834
                    }
835
 
836
                  /* If the alternative actually allows memory, make
837
                     things a bit cheaper since we won't need an extra
838
                     insn to load it.  */
839
                  pp->mem_cost
840
                    = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
841
                       + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
842
                       - allows_mem[i]) * frequency;
843
                  /* If we have assigned a class to this allocno in
844
                     our first pass, add a cost to this alternative
845
                     corresponding to what we would add if this
846
                     allocno were not in the appropriate class.  */
847
                  if (pref)
848
                    {
849
                      enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
850
 
851
                      if (pref_class == NO_REGS)
852
                        alt_cost
853
                          += ((out_p
854
                               ? ira_memory_move_cost[mode][op_class][0] : 0)
855
                              + (in_p
856
                                 ? ira_memory_move_cost[mode][op_class][1]
857
                                 : 0));
858
                      else if (ira_reg_class_intersect[pref_class][op_class]
859
                               == NO_REGS)
860
                        alt_cost += ira_register_move_cost[mode][pref_class][op_class];
861
                    }
862
                }
863
            }
864
 
865
          /* Otherwise, if this alternative wins, either because we
866
             have already determined that or if we have a hard
867
             register of the proper class, there is no cost for this
868
             alternative.  */
869
          else if (win || (REG_P (op)
870
                           && reg_fits_class_p (op, classes[i],
871
                                                0, GET_MODE (op))))
872
            ;
873
 
874
          /* If registers are valid, the cost of this alternative
875
             includes copying the object to and/or from a
876
             register.  */
877
          else if (classes[i] != NO_REGS)
878
            {
879
              if (recog_data.operand_type[i] != OP_OUT)
880
                alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
881
 
882
              if (recog_data.operand_type[i] != OP_IN)
883
                alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
884
            }
885
          /* The only other way this alternative can be used is if
886
             this is a constant that could be placed into memory.  */
887
          else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
888
            alt_cost += ira_memory_move_cost[mode][classes[i]][1];
889
          else
890
            alt_fail = 1;
891
        }
892
 
893
      if (alt_fail)
894
        continue;
895
 
896
      op_cost_add = alt_cost * frequency;
897
      /* Finally, update the costs with the information we've
898
         calculated about this alternative.  */
899
      for (i = 0; i < n_ops; i++)
900
        if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
901
          {
902
            struct costs *pp = op_costs[i], *qq = this_op_costs[i];
903
            int *pp_costs = pp->cost, *qq_costs = qq->cost;
904
            int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
905
            cost_classes_t cost_classes_ptr
906
              = regno_cost_classes[REGNO (ops[i])];
907
 
908
            pp->mem_cost = MIN (pp->mem_cost,
909
                                (qq->mem_cost + op_cost_add) * scale);
910
 
911
            for (k = cost_classes_ptr->num - 1; k >= 0; k--)
912
              pp_costs[k]
913
                = MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
914
          }
915
    }
916
 
917
  if (allocno_p)
918
    for (i = 0; i < n_ops; i++)
919
      {
920
        ira_allocno_t a;
921
        rtx op = ops[i];
922
 
923
        if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
924
          continue;
925
        a = ira_curr_regno_allocno_map [REGNO (op)];
926
        if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
927
          ALLOCNO_BAD_SPILL_P (a) = true;
928
      }
929
 
930
  /* If this insn is a single set copying operand 1 to operand 0 and
931
     one operand is an allocno with the other a hard reg or an allocno
932
     that prefers a hard register that is in its own register class
933
     then we may want to adjust the cost of that register class to -1.
934
 
935
     Avoid the adjustment if the source does not die to avoid
936
     stressing of register allocator by preferrencing two colliding
937
     registers into single class.
938
 
939
     Also avoid the adjustment if a copy between hard registers of the
940
     class is expensive (ten times the cost of a default copy is
941
     considered arbitrarily expensive).  This avoids losing when the
942
     preferred class is very expensive as the source of a copy
943
     instruction.  */
944
  if ((set = single_set (insn)) != 0
945
      && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
946
      && REG_P (ops[0]) && REG_P (ops[1])
947
      && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
948
    for (i = 0; i <= 1; i++)
949
      if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER
950
          && REGNO (ops[!i]) < FIRST_PSEUDO_REGISTER)
951
        {
952
          unsigned int regno = REGNO (ops[i]);
953
          unsigned int other_regno = REGNO (ops[!i]);
954
          enum machine_mode mode = GET_MODE (ops[!i]);
955
          cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
956
          enum reg_class *cost_classes = cost_classes_ptr->classes;
957
          reg_class_t rclass;
958
          int nr;
959
 
960
          for (k = cost_classes_ptr->num - 1; k >= 0; k--)
961
            {
962
              rclass = cost_classes[k];
963
              if (TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
964
                  && (reg_class_size[(int) rclass]
965
                      == ira_reg_class_max_nregs [(int) rclass][(int) mode]))
966
                {
967
                  if (reg_class_size[rclass] == 1)
968
                    op_costs[i]->cost[k] = -frequency;
969
                  else
970
                    {
971
                      for (nr = 0;
972
                           nr < hard_regno_nregs[other_regno][mode];
973
                           nr++)
974
                        if (! TEST_HARD_REG_BIT (reg_class_contents[rclass],
975
                                                 other_regno + nr))
976
                          break;
977
 
978
                      if (nr == hard_regno_nregs[other_regno][mode])
979
                        op_costs[i]->cost[k] = -frequency;
980
                    }
981
                }
982
            }
983
        }
984
}
985
 
986
 
987
 
988
/* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers.  */
989
static inline bool
990
ok_for_index_p_nonstrict (rtx reg)
991
{
992
  unsigned regno = REGNO (reg);
993
 
994
  return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
995
}
996
 
997
/* A version of regno_ok_for_base_p for use here, when all
998
   pseudo-registers should count as OK.  Arguments as for
999
   regno_ok_for_base_p.  */
1000
static inline bool
1001
ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode, addr_space_t as,
1002
                         enum rtx_code outer_code, enum rtx_code index_code)
1003
{
1004
  unsigned regno = REGNO (reg);
1005
 
1006
  if (regno >= FIRST_PSEUDO_REGISTER)
1007
    return true;
1008
  return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
1009
}
1010
 
1011
/* Record the pseudo registers we must reload into hard registers in a
1012
   subexpression of a memory address, X.
1013
 
1014
   If CONTEXT is 0, we are looking at the base part of an address,
1015
   otherwise we are looking at the index part.
1016
 
1017
   MODE and AS are the mode and address space of the memory reference;
1018
   OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1019
   These four arguments are passed down to base_reg_class.
1020
 
1021
   SCALE is twice the amount to multiply the cost by (it is twice so
1022
   we can represent half-cost adjustments).  */
1023
static void
1024
record_address_regs (enum machine_mode mode, addr_space_t as, rtx x,
1025
                     int context, enum rtx_code outer_code,
1026
                     enum rtx_code index_code, int scale)
1027
{
1028
  enum rtx_code code = GET_CODE (x);
1029
  enum reg_class rclass;
1030
 
1031
  if (context == 1)
1032
    rclass = INDEX_REG_CLASS;
1033
  else
1034
    rclass = base_reg_class (mode, as, outer_code, index_code);
1035
 
1036
  switch (code)
1037
    {
1038
    case CONST_INT:
1039
    case CONST:
1040
    case CC0:
1041
    case PC:
1042
    case SYMBOL_REF:
1043
    case LABEL_REF:
1044
      return;
1045
 
1046
    case PLUS:
1047
      /* When we have an address that is a sum, we must determine
1048
         whether registers are "base" or "index" regs.  If there is a
1049
         sum of two registers, we must choose one to be the "base".
1050
         Luckily, we can use the REG_POINTER to make a good choice
1051
         most of the time.  We only need to do this on machines that
1052
         can have two registers in an address and where the base and
1053
         index register classes are different.
1054
 
1055
         ??? This code used to set REGNO_POINTER_FLAG in some cases,
1056
         but that seems bogus since it should only be set when we are
1057
         sure the register is being used as a pointer.  */
1058
      {
1059
        rtx arg0 = XEXP (x, 0);
1060
        rtx arg1 = XEXP (x, 1);
1061
        enum rtx_code code0 = GET_CODE (arg0);
1062
        enum rtx_code code1 = GET_CODE (arg1);
1063
 
1064
        /* Look inside subregs.  */
1065
        if (code0 == SUBREG)
1066
          arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1067
        if (code1 == SUBREG)
1068
          arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1069
 
1070
        /* If this machine only allows one register per address, it
1071
           must be in the first operand.  */
1072
        if (MAX_REGS_PER_ADDRESS == 1)
1073
          record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1074
 
1075
        /* If index and base registers are the same on this machine,
1076
           just record registers in any non-constant operands.  We
1077
           assume here, as well as in the tests below, that all
1078
           addresses are in canonical form.  */
1079
        else if (INDEX_REG_CLASS
1080
                 == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1081
          {
1082
            record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1083
            if (! CONSTANT_P (arg1))
1084
              record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1085
          }
1086
 
1087
        /* If the second operand is a constant integer, it doesn't
1088
           change what class the first operand must be.  */
1089
        else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1090
          record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1091
        /* If the second operand is a symbolic constant, the first
1092
           operand must be an index register.  */
1093
        else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1094
          record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1095
        /* If both operands are registers but one is already a hard
1096
           register of index or reg-base class, give the other the
1097
           class that the hard register is not.  */
1098
        else if (code0 == REG && code1 == REG
1099
                 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1100
                 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1101
                     || ok_for_index_p_nonstrict (arg0)))
1102
          record_address_regs (mode, as, arg1,
1103
                               ok_for_base_p_nonstrict (arg0, mode, as,
1104
                                                        PLUS, REG) ? 1 : 0,
1105
                               PLUS, REG, scale);
1106
        else if (code0 == REG && code1 == REG
1107
                 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1108
                 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1109
                     || ok_for_index_p_nonstrict (arg1)))
1110
          record_address_regs (mode, as, arg0,
1111
                               ok_for_base_p_nonstrict (arg1, mode, as,
1112
                                                        PLUS, REG) ? 1 : 0,
1113
                               PLUS, REG, scale);
1114
        /* If one operand is known to be a pointer, it must be the
1115
           base with the other operand the index.  Likewise if the
1116
           other operand is a MULT.  */
1117
        else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1118
          {
1119
            record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1120
            record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1121
          }
1122
        else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1123
          {
1124
            record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1125
            record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1126
          }
1127
        /* Otherwise, count equal chances that each might be a base or
1128
           index register.  This case should be rare.  */
1129
        else
1130
          {
1131
            record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1132
            record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1133
            record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1134
            record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1135
          }
1136
      }
1137
      break;
1138
 
1139
      /* Double the importance of an allocno that is incremented or
1140
         decremented, since it would take two extra insns if it ends
1141
         up in the wrong place.  */
1142
    case POST_MODIFY:
1143
    case PRE_MODIFY:
1144
      record_address_regs (mode, as, XEXP (x, 0), 0, code,
1145
                           GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1146
      if (REG_P (XEXP (XEXP (x, 1), 1)))
1147
        record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1148
                             2 * scale);
1149
      break;
1150
 
1151
    case POST_INC:
1152
    case PRE_INC:
1153
    case POST_DEC:
1154
    case PRE_DEC:
1155
      /* Double the importance of an allocno that is incremented or
1156
         decremented, since it would take two extra insns if it ends
1157
         up in the wrong place.  */
1158
      record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1159
      break;
1160
 
1161
    case REG:
1162
      {
1163
        struct costs *pp;
1164
        int *pp_costs;
1165
        enum reg_class i;
1166
        int k, regno, add_cost;
1167
        cost_classes_t cost_classes_ptr;
1168
        enum reg_class *cost_classes;
1169
        move_table *move_in_cost;
1170
 
1171
        if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1172
          break;
1173
 
1174
        regno = REGNO (x);
1175
        if (allocno_p)
1176
          ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1177
        pp = COSTS (costs, COST_INDEX (regno));
1178
        add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1179
        if (INT_MAX - add_cost < pp->mem_cost)
1180
          pp->mem_cost = INT_MAX;
1181
        else
1182
          pp->mem_cost += add_cost;
1183
        cost_classes_ptr = regno_cost_classes[regno];
1184
        cost_classes = cost_classes_ptr->classes;
1185
        pp_costs = pp->cost;
1186
        ira_init_register_move_cost_if_necessary (Pmode);
1187
        move_in_cost = ira_may_move_in_cost[Pmode];
1188
        for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1189
          {
1190
            i = cost_classes[k];
1191
            add_cost = (move_in_cost[i][rclass] * scale) / 2;
1192
            if (INT_MAX - add_cost < pp_costs[k])
1193
              pp_costs[k] = INT_MAX;
1194
            else
1195
              pp_costs[k] += add_cost;
1196
          }
1197
      }
1198
      break;
1199
 
1200
    default:
1201
      {
1202
        const char *fmt = GET_RTX_FORMAT (code);
1203
        int i;
1204
        for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1205
          if (fmt[i] == 'e')
1206
            record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1207
                                 scale);
1208
      }
1209
    }
1210
}
1211
 
1212
 
1213
 
1214
/* Calculate the costs of insn operands.  */
1215
static void
1216
record_operand_costs (rtx insn, enum reg_class *pref)
1217
{
1218
  const char *constraints[MAX_RECOG_OPERANDS];
1219
  enum machine_mode modes[MAX_RECOG_OPERANDS];
1220
  int i;
1221
 
1222
  for (i = 0; i < recog_data.n_operands; i++)
1223
    {
1224
      constraints[i] = recog_data.constraints[i];
1225
      modes[i] = recog_data.operand_mode[i];
1226
    }
1227
 
1228
  /* If we get here, we are set up to record the costs of all the
1229
     operands for this insn.  Start by initializing the costs.  Then
1230
     handle any address registers.  Finally record the desired classes
1231
     for any allocnos, doing it twice if some pair of operands are
1232
     commutative.  */
1233
  for (i = 0; i < recog_data.n_operands; i++)
1234
    {
1235
      memcpy (op_costs[i], init_cost, struct_costs_size);
1236
 
1237
      if (GET_CODE (recog_data.operand[i]) == SUBREG)
1238
        recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1239
 
1240
      if (MEM_P (recog_data.operand[i]))
1241
        record_address_regs (GET_MODE (recog_data.operand[i]),
1242
                             MEM_ADDR_SPACE (recog_data.operand[i]),
1243
                             XEXP (recog_data.operand[i], 0),
1244
                             0, MEM, SCRATCH, frequency * 2);
1245
      else if (constraints[i][0] == 'p'
1246
               || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0],
1247
                                            constraints[i]))
1248
        record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1249
                             recog_data.operand[i], 0, ADDRESS, SCRATCH,
1250
                             frequency * 2);
1251
    }
1252
 
1253
  /* Check for commutative in a separate loop so everything will have
1254
     been initialized.  We must do this even if one operand is a
1255
     constant--see addsi3 in m68k.md.  */
1256
  for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1257
    if (constraints[i][0] == '%')
1258
      {
1259
        const char *xconstraints[MAX_RECOG_OPERANDS];
1260
        int j;
1261
 
1262
        /* Handle commutative operands by swapping the constraints.
1263
           We assume the modes are the same.  */
1264
        for (j = 0; j < recog_data.n_operands; j++)
1265
          xconstraints[j] = constraints[j];
1266
 
1267
        xconstraints[i] = constraints[i+1];
1268
        xconstraints[i+1] = constraints[i];
1269
        record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1270
                            recog_data.operand, modes,
1271
                            xconstraints, insn, pref);
1272
      }
1273
  record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1274
                      recog_data.operand, modes,
1275
                      constraints, insn, pref);
1276
}
1277
 
1278
 
1279
 
1280
/* Process one insn INSN.  Scan it and record each time it would save
1281
   code to put a certain allocnos in a certain class.  Return the last
1282
   insn processed, so that the scan can be continued from there.  */
1283
static rtx
1284
scan_one_insn (rtx insn)
1285
{
1286
  enum rtx_code pat_code;
1287
  rtx set, note;
1288
  int i, k;
1289
  bool counted_mem;
1290
 
1291
  if (!NONDEBUG_INSN_P (insn))
1292
    return insn;
1293
 
1294
  pat_code = GET_CODE (PATTERN (insn));
1295
  if (pat_code == USE || pat_code == CLOBBER || pat_code == ASM_INPUT
1296
      || pat_code == ADDR_VEC || pat_code == ADDR_DIFF_VEC)
1297
    return insn;
1298
 
1299
  counted_mem = false;
1300
  set = single_set (insn);
1301
  extract_insn (insn);
1302
 
1303
  /* If this insn loads a parameter from its stack slot, then it
1304
     represents a savings, rather than a cost, if the parameter is
1305
     stored in memory.  Record this fact.
1306
 
1307
     Similarly if we're loading other constants from memory (constant
1308
     pool, TOC references, small data areas, etc) and this is the only
1309
     assignment to the destination pseudo.
1310
 
1311
     Don't do this if SET_SRC (set) isn't a general operand, if it is
1312
     a memory requiring special instructions to load it, decreasing
1313
     mem_cost might result in it being loaded using the specialized
1314
     instruction into a register, then stored into stack and loaded
1315
     again from the stack.  See PR52208.  */
1316
  if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1317
      && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1318
      && ((MEM_P (XEXP (note, 0)))
1319
          || (CONSTANT_P (XEXP (note, 0))
1320
              && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1321
                                                XEXP (note, 0))
1322
              && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1323
      && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set))))
1324
    {
1325
      enum reg_class cl = GENERAL_REGS;
1326
      rtx reg = SET_DEST (set);
1327
      int num = COST_INDEX (REGNO (reg));
1328
 
1329
      COSTS (costs, num)->mem_cost
1330
        -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1331
      record_address_regs (GET_MODE (SET_SRC (set)),
1332
                           MEM_ADDR_SPACE (SET_SRC (set)),
1333
                           XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1334
                           frequency * 2);
1335
      counted_mem = true;
1336
    }
1337
 
1338
  record_operand_costs (insn, pref);
1339
 
1340
  /* Now add the cost for each operand to the total costs for its
1341
     allocno.  */
1342
  for (i = 0; i < recog_data.n_operands; i++)
1343
    if (REG_P (recog_data.operand[i])
1344
        && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1345
      {
1346
        int regno = REGNO (recog_data.operand[i]);
1347
        struct costs *p = COSTS (costs, COST_INDEX (regno));
1348
        struct costs *q = op_costs[i];
1349
        int *p_costs = p->cost, *q_costs = q->cost;
1350
        cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1351
        int add_cost;
1352
 
1353
        /* If the already accounted for the memory "cost" above, don't
1354
           do so again.  */
1355
        if (!counted_mem)
1356
          {
1357
            add_cost = q->mem_cost;
1358
            if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1359
              p->mem_cost = INT_MAX;
1360
            else
1361
              p->mem_cost += add_cost;
1362
          }
1363
        for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1364
          {
1365
            add_cost = q_costs[k];
1366
            if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1367
              p_costs[k] = INT_MAX;
1368
            else
1369
              p_costs[k] += add_cost;
1370
          }
1371
      }
1372
 
1373
  return insn;
1374
}
1375
 
1376
 
1377
 
1378
/* Print allocnos costs to file F.  */
1379
static void
1380
print_allocno_costs (FILE *f)
1381
{
1382
  int k;
1383
  ira_allocno_t a;
1384
  ira_allocno_iterator ai;
1385
 
1386
  ira_assert (allocno_p);
1387
  fprintf (f, "\n");
1388
  FOR_EACH_ALLOCNO (a, ai)
1389
    {
1390
      int i, rclass;
1391
      basic_block bb;
1392
      int regno = ALLOCNO_REGNO (a);
1393
      cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1394
      enum reg_class *cost_classes = cost_classes_ptr->classes;
1395
 
1396
      i = ALLOCNO_NUM (a);
1397
      fprintf (f, "  a%d(r%d,", i, regno);
1398
      if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1399
        fprintf (f, "b%d", bb->index);
1400
      else
1401
        fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1402
      fprintf (f, ") costs:");
1403
      for (k = 0; k < cost_classes_ptr->num; k++)
1404
        {
1405
          rclass = cost_classes[k];
1406
          if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1407
#ifdef CANNOT_CHANGE_MODE_CLASS
1408
              && ! invalid_mode_change_p (regno, (enum reg_class) rclass)
1409
#endif
1410
              )
1411
            {
1412
              fprintf (f, " %s:%d", reg_class_names[rclass],
1413
                       COSTS (costs, i)->cost[k]);
1414
              if (flag_ira_region == IRA_REGION_ALL
1415
                  || flag_ira_region == IRA_REGION_MIXED)
1416
                fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1417
            }
1418
        }
1419
      fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1420
      if (flag_ira_region == IRA_REGION_ALL
1421
          || flag_ira_region == IRA_REGION_MIXED)
1422
        fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1423
      fprintf (f, "\n");
1424
    }
1425
}
1426
 
1427
/* Print pseudo costs to file F.  */
1428
static void
1429
print_pseudo_costs (FILE *f)
1430
{
1431
  int regno, k;
1432
  int rclass;
1433
  cost_classes_t cost_classes_ptr;
1434
  enum reg_class *cost_classes;
1435
 
1436
  ira_assert (! allocno_p);
1437
  fprintf (f, "\n");
1438
  for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1439
    {
1440
      if (REG_N_REFS (regno) <= 0)
1441
        continue;
1442
      cost_classes_ptr = regno_cost_classes[regno];
1443
      cost_classes = cost_classes_ptr->classes;
1444
      fprintf (f, "  r%d costs:", regno);
1445
      for (k = 0; k < cost_classes_ptr->num; k++)
1446
        {
1447
          rclass = cost_classes[k];
1448
          if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1449
#ifdef CANNOT_CHANGE_MODE_CLASS
1450
              && ! invalid_mode_change_p (regno, (enum reg_class) rclass)
1451
#endif
1452
              )
1453
            fprintf (f, " %s:%d", reg_class_names[rclass],
1454
                     COSTS (costs, regno)->cost[k]);
1455
        }
1456
      fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1457
    }
1458
}
1459
 
1460
/* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1461
   costs.  */
1462
static void
1463
process_bb_for_costs (basic_block bb)
1464
{
1465
  rtx insn;
1466
 
1467
  frequency = REG_FREQ_FROM_BB (bb);
1468
  if (frequency == 0)
1469
    frequency = 1;
1470
  FOR_BB_INSNS (bb, insn)
1471
    insn = scan_one_insn (insn);
1472
}
1473
 
1474
/* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1475
   costs.  */
1476
static void
1477
process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1478
{
1479
  basic_block bb;
1480
 
1481
  bb = loop_tree_node->bb;
1482
  if (bb != NULL)
1483
    process_bb_for_costs (bb);
1484
}
1485
 
1486
/* Find costs of register classes and memory for allocnos or pseudos
1487
   and their best costs.  Set up preferred, alternative and allocno
1488
   classes for pseudos.  */
1489
static void
1490
find_costs_and_classes (FILE *dump_file)
1491
{
1492
  int i, k, start, max_cost_classes_num;
1493
  int pass;
1494
  basic_block bb;
1495
  enum reg_class *regno_best_class;
1496
 
1497
  init_recog ();
1498
  regno_best_class
1499
    = (enum reg_class *) ira_allocate (max_reg_num ()
1500
                                       * sizeof (enum reg_class));
1501
  for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1502
    regno_best_class[i] = NO_REGS;
1503
  if (!resize_reg_info () && allocno_p
1504
      && pseudo_classes_defined_p && flag_expensive_optimizations)
1505
    {
1506
      ira_allocno_t a;
1507
      ira_allocno_iterator ai;
1508
 
1509
      pref = pref_buffer;
1510
      max_cost_classes_num = 1;
1511
      FOR_EACH_ALLOCNO (a, ai)
1512
        {
1513
          pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1514
          setup_regno_cost_classes_by_aclass
1515
            (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1516
          max_cost_classes_num
1517
            = MAX (max_cost_classes_num,
1518
                   regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1519
        }
1520
      start = 1;
1521
    }
1522
  else
1523
    {
1524
      pref = NULL;
1525
      max_cost_classes_num = ira_important_classes_num;
1526
      for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1527
        if (regno_reg_rtx[i] != NULL_RTX)
1528
          setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1529
        else
1530
          setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1531
      start = 0;
1532
    }
1533
  if (allocno_p)
1534
    /* Clear the flag for the next compiled function.  */
1535
    pseudo_classes_defined_p = false;
1536
  /* Normally we scan the insns once and determine the best class to
1537
     use for each allocno.  However, if -fexpensive-optimizations are
1538
     on, we do so twice, the second time using the tentative best
1539
     classes to guide the selection.  */
1540
  for (pass = start; pass <= flag_expensive_optimizations; pass++)
1541
    {
1542
      if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1543
        fprintf (dump_file,
1544
                 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1545
 
1546
      if (pass != start)
1547
        {
1548
          max_cost_classes_num = 1;
1549
          for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1550
            {
1551
              setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1552
              max_cost_classes_num
1553
                = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1554
            }
1555
        }
1556
 
1557
      struct_costs_size
1558
        = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1559
      /* Zero out our accumulation of the cost of each class for each
1560
         allocno.  */
1561
      memset (costs, 0, cost_elements_num * struct_costs_size);
1562
 
1563
      if (allocno_p)
1564
        {
1565
          /* Scan the instructions and record each time it would save code
1566
             to put a certain allocno in a certain class.  */
1567
          ira_traverse_loop_tree (true, ira_loop_tree_root,
1568
                                  process_bb_node_for_costs, NULL);
1569
 
1570
          memcpy (total_allocno_costs, costs,
1571
                  max_struct_costs_size * ira_allocnos_num);
1572
        }
1573
      else
1574
        {
1575
          basic_block bb;
1576
 
1577
          FOR_EACH_BB (bb)
1578
            process_bb_for_costs (bb);
1579
        }
1580
 
1581
      if (pass == 0)
1582
        pref = pref_buffer;
1583
 
1584
      /* Now for each allocno look at how desirable each class is and
1585
         find which class is preferred.  */
1586
      for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1587
        {
1588
          ira_allocno_t a, parent_a;
1589
          int rclass, a_num, parent_a_num, add_cost;
1590
          ira_loop_tree_node_t parent;
1591
          int best_cost, allocno_cost;
1592
          enum reg_class best, alt_class;
1593
          cost_classes_t cost_classes_ptr = regno_cost_classes[i];
1594
          enum reg_class *cost_classes = cost_classes_ptr->classes;
1595
          int *i_costs = temp_costs->cost;
1596
          int i_mem_cost;
1597
          int equiv_savings = regno_equiv_gains[i];
1598
 
1599
          if (! allocno_p)
1600
            {
1601
              if (regno_reg_rtx[i] == NULL_RTX)
1602
                continue;
1603
              memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1604
              i_mem_cost = temp_costs->mem_cost;
1605
            }
1606
          else
1607
            {
1608
              if (ira_regno_allocno_map[i] == NULL)
1609
                continue;
1610
              memset (temp_costs, 0, struct_costs_size);
1611
              i_mem_cost = 0;
1612
              /* Find cost of all allocnos with the same regno.  */
1613
              for (a = ira_regno_allocno_map[i];
1614
                   a != NULL;
1615
                   a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1616
                {
1617
                  int *a_costs, *p_costs;
1618
 
1619
                  a_num = ALLOCNO_NUM (a);
1620
                  if ((flag_ira_region == IRA_REGION_ALL
1621
                       || flag_ira_region == IRA_REGION_MIXED)
1622
                      && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1623
                      && (parent_a = parent->regno_allocno_map[i]) != NULL
1624
                      /* There are no caps yet.  */
1625
                      && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1626
                                       (a)->border_allocnos,
1627
                                       ALLOCNO_NUM (a)))
1628
                    {
1629
                      /* Propagate costs to upper levels in the region
1630
                         tree.  */
1631
                      parent_a_num = ALLOCNO_NUM (parent_a);
1632
                      a_costs = COSTS (total_allocno_costs, a_num)->cost;
1633
                      p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1634
                      for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1635
                        {
1636
                          add_cost = a_costs[k];
1637
                          if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1638
                            p_costs[k] = INT_MAX;
1639
                          else
1640
                            p_costs[k] += add_cost;
1641
                        }
1642
                      add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1643
                      if (add_cost > 0
1644
                          && (INT_MAX - add_cost
1645
                              < COSTS (total_allocno_costs,
1646
                                       parent_a_num)->mem_cost))
1647
                        COSTS (total_allocno_costs, parent_a_num)->mem_cost
1648
                          = INT_MAX;
1649
                      else
1650
                        COSTS (total_allocno_costs, parent_a_num)->mem_cost
1651
                          += add_cost;
1652
 
1653
                    }
1654
                  a_costs = COSTS (costs, a_num)->cost;
1655
                  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1656
                    {
1657
                      add_cost = a_costs[k];
1658
                      if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1659
                        i_costs[k] = INT_MAX;
1660
                      else
1661
                        i_costs[k] += add_cost;
1662
                    }
1663
                  add_cost = COSTS (costs, a_num)->mem_cost;
1664
                  if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1665
                    i_mem_cost = INT_MAX;
1666
                  else
1667
                    i_mem_cost += add_cost;
1668
                }
1669
            }
1670
          if (equiv_savings < 0)
1671
            i_mem_cost = -equiv_savings;
1672
          else if (equiv_savings > 0)
1673
            {
1674
              i_mem_cost = 0;
1675
              for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1676
                i_costs[k] += equiv_savings;
1677
            }
1678
 
1679
          best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1680
          best = ALL_REGS;
1681
          alt_class = NO_REGS;
1682
          /* Find best common class for all allocnos with the same
1683
             regno.  */
1684
          for (k = 0; k < cost_classes_ptr->num; k++)
1685
            {
1686
              rclass = cost_classes[k];
1687
              /* Ignore classes that are too small or invalid for this
1688
                 operand.  */
1689
              if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1690
#ifdef CANNOT_CHANGE_MODE_CLASS
1691
                  || invalid_mode_change_p (i, (enum reg_class) rclass)
1692
#endif
1693
                  )
1694
                continue;
1695
              if (i_costs[k] < best_cost)
1696
                {
1697
                  best_cost = i_costs[k];
1698
                  best = (enum reg_class) rclass;
1699
                }
1700
              else if (i_costs[k] == best_cost)
1701
                best = ira_reg_class_subunion[best][rclass];
1702
              if (pass == flag_expensive_optimizations
1703
                  /* We still prefer registers to memory even at this
1704
                     stage if their costs are the same.  We will make
1705
                     a final decision during assigning hard registers
1706
                     when we have all info including more accurate
1707
                     costs which might be affected by assigning hard
1708
                     registers to other pseudos because the pseudos
1709
                     involved in moves can be coalesced.  */
1710
                  && i_costs[k] <= i_mem_cost
1711
                  && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1712
                      > reg_class_size[alt_class]))
1713
                alt_class = reg_class_subunion[alt_class][rclass];
1714
            }
1715
          alt_class = ira_allocno_class_translate[alt_class];
1716
          if (best_cost > i_mem_cost)
1717
            regno_aclass[i] = NO_REGS;
1718
          else
1719
            {
1720
              /* Make the common class the biggest class of best and
1721
                 alt_class.  */
1722
              regno_aclass[i]
1723
                = ira_reg_class_superunion[best][alt_class];
1724
              ira_assert (regno_aclass[i] != NO_REGS
1725
                          && ira_reg_allocno_class_p[regno_aclass[i]]);
1726
            }
1727
          if (pass == flag_expensive_optimizations)
1728
            {
1729
              if (best_cost > i_mem_cost)
1730
                best = alt_class = NO_REGS;
1731
              else if (best == alt_class)
1732
                alt_class = NO_REGS;
1733
              setup_reg_classes (i, best, alt_class, regno_aclass[i]);
1734
              if ((!allocno_p || internal_flag_ira_verbose > 2)
1735
                  && dump_file != NULL)
1736
                fprintf (dump_file,
1737
                         "    r%d: preferred %s, alternative %s, allocno %s\n",
1738
                         i, reg_class_names[best], reg_class_names[alt_class],
1739
                         reg_class_names[regno_aclass[i]]);
1740
            }
1741
          regno_best_class[i] = best;
1742
          if (! allocno_p)
1743
            {
1744
              pref[i] = best_cost > i_mem_cost ? NO_REGS : best;
1745
              continue;
1746
            }
1747
          for (a = ira_regno_allocno_map[i];
1748
               a != NULL;
1749
               a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1750
            {
1751
              a_num = ALLOCNO_NUM (a);
1752
              if (regno_aclass[i] == NO_REGS)
1753
                best = NO_REGS;
1754
              else
1755
                {
1756
                  int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
1757
                  int *a_costs = COSTS (costs, a_num)->cost;
1758
 
1759
                  /* Finding best class which is subset of the common
1760
                     class.  */
1761
                  best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1762
                  allocno_cost = best_cost;
1763
                  best = ALL_REGS;
1764
                  for (k = 0; k < cost_classes_ptr->num; k++)
1765
                    {
1766
                      rclass = cost_classes[k];
1767
                      if (! ira_class_subset_p[rclass][regno_aclass[i]])
1768
                        continue;
1769
                      /* Ignore classes that are too small or invalid
1770
                         for this operand.  */
1771
                      if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1772
#ifdef CANNOT_CHANGE_MODE_CLASS
1773
                          || invalid_mode_change_p (i, (enum reg_class) rclass)
1774
#endif
1775
                          )
1776
                        ;
1777
                      else if (total_a_costs[k] < best_cost)
1778
                        {
1779
                          best_cost = total_a_costs[k];
1780
                          allocno_cost = a_costs[k];
1781
                          best = (enum reg_class) rclass;
1782
                        }
1783
                      else if (total_a_costs[k] == best_cost)
1784
                        {
1785
                          best = ira_reg_class_subunion[best][rclass];
1786
                          allocno_cost = MAX (allocno_cost, a_costs[k]);
1787
                        }
1788
                    }
1789
                  ALLOCNO_CLASS_COST (a) = allocno_cost;
1790
                }
1791
              if (internal_flag_ira_verbose > 2 && dump_file != NULL
1792
                  && (pass == 0 || pref[a_num] != best))
1793
                {
1794
                  fprintf (dump_file, "    a%d (r%d,", a_num, i);
1795
                  if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1796
                    fprintf (dump_file, "b%d", bb->index);
1797
                  else
1798
                    fprintf (dump_file, "l%d",
1799
                             ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1800
                  fprintf (dump_file, ") best %s, allocno %s\n",
1801
                           reg_class_names[best],
1802
                           reg_class_names[regno_aclass[i]]);
1803
                }
1804
              pref[a_num] = best;
1805
            }
1806
        }
1807
 
1808
      if (internal_flag_ira_verbose > 4 && dump_file)
1809
        {
1810
          if (allocno_p)
1811
            print_allocno_costs (dump_file);
1812
          else
1813
            print_pseudo_costs (dump_file);
1814
          fprintf (dump_file,"\n");
1815
        }
1816
    }
1817
  ira_free (regno_best_class);
1818
}
1819
 
1820
 
1821
 
1822
/* Process moves involving hard regs to modify allocno hard register
1823
   costs.  We can do this only after determining allocno class.  If a
1824
   hard register forms a register class, than moves with the hard
1825
   register are already taken into account in class costs for the
1826
   allocno.  */
1827
static void
1828
process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
1829
{
1830
  int i, freq, cost, src_regno, dst_regno, hard_regno;
1831
  bool to_p;
1832
  ira_allocno_t a;
1833
  enum reg_class rclass, hard_reg_class;
1834
  enum machine_mode mode;
1835
  basic_block bb;
1836
  rtx insn, set, src, dst;
1837
 
1838
  bb = loop_tree_node->bb;
1839
  if (bb == NULL)
1840
    return;
1841
  freq = REG_FREQ_FROM_BB (bb);
1842
  if (freq == 0)
1843
    freq = 1;
1844
  FOR_BB_INSNS (bb, insn)
1845
    {
1846
      if (!NONDEBUG_INSN_P (insn))
1847
        continue;
1848
      set = single_set (insn);
1849
      if (set == NULL_RTX)
1850
        continue;
1851
      dst = SET_DEST (set);
1852
      src = SET_SRC (set);
1853
      if (! REG_P (dst) || ! REG_P (src))
1854
        continue;
1855
      dst_regno = REGNO (dst);
1856
      src_regno = REGNO (src);
1857
      if (dst_regno >= FIRST_PSEUDO_REGISTER
1858
          && src_regno < FIRST_PSEUDO_REGISTER)
1859
        {
1860
          hard_regno = src_regno;
1861
          to_p = true;
1862
          a = ira_curr_regno_allocno_map[dst_regno];
1863
        }
1864
      else if (src_regno >= FIRST_PSEUDO_REGISTER
1865
               && dst_regno < FIRST_PSEUDO_REGISTER)
1866
        {
1867
          hard_regno = dst_regno;
1868
          to_p = false;
1869
          a = ira_curr_regno_allocno_map[src_regno];
1870
        }
1871
      else
1872
        continue;
1873
      rclass = ALLOCNO_CLASS (a);
1874
      if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
1875
        continue;
1876
      i = ira_class_hard_reg_index[rclass][hard_regno];
1877
      if (i < 0)
1878
        continue;
1879
      mode = ALLOCNO_MODE (a);
1880
      hard_reg_class = REGNO_REG_CLASS (hard_regno);
1881
      ira_init_register_move_cost_if_necessary (mode);
1882
      cost
1883
        = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
1884
           : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
1885
      ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
1886
                                  ALLOCNO_CLASS_COST (a));
1887
      ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
1888
                                  rclass, 0);
1889
      ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
1890
      ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
1891
      ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
1892
                                    ALLOCNO_HARD_REG_COSTS (a)[i]);
1893
    }
1894
}
1895
 
1896
/* After we find hard register and memory costs for allocnos, define
1897
   its class and modify hard register cost because insns moving
1898
   allocno to/from hard registers.  */
1899
static void
1900
setup_allocno_class_and_costs (void)
1901
{
1902
  int i, j, n, regno, hard_regno, num;
1903
  int *reg_costs;
1904
  enum reg_class aclass, rclass;
1905
  ira_allocno_t a;
1906
  ira_allocno_iterator ai;
1907
  cost_classes_t cost_classes_ptr;
1908
 
1909
  ira_assert (allocno_p);
1910
  FOR_EACH_ALLOCNO (a, ai)
1911
    {
1912
      i = ALLOCNO_NUM (a);
1913
      regno = ALLOCNO_REGNO (a);
1914
      aclass = regno_aclass[regno];
1915
      cost_classes_ptr = regno_cost_classes[regno];
1916
      ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
1917
      ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
1918
      ira_set_allocno_class (a, aclass);
1919
      if (aclass == NO_REGS)
1920
        continue;
1921
      if (optimize && ALLOCNO_CLASS (a) != pref[i])
1922
        {
1923
          n = ira_class_hard_regs_num[aclass];
1924
          ALLOCNO_HARD_REG_COSTS (a)
1925
            = reg_costs = ira_allocate_cost_vector (aclass);
1926
          for (j = n - 1; j >= 0; j--)
1927
            {
1928
              hard_regno = ira_class_hard_regs[aclass][j];
1929
              if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
1930
                reg_costs[j] = ALLOCNO_CLASS_COST (a);
1931
              else
1932
                {
1933
                  rclass = REGNO_REG_CLASS (hard_regno);
1934
                  num = cost_classes_ptr->index[rclass];
1935
                  if (num < 0)
1936
                    {
1937
                      num = cost_classes_ptr->hard_regno_index[hard_regno];
1938
                      ira_assert (num >= 0);
1939
                    }
1940
                  reg_costs[j] = COSTS (costs, i)->cost[num];
1941
                }
1942
            }
1943
        }
1944
    }
1945
  if (optimize)
1946
    ira_traverse_loop_tree (true, ira_loop_tree_root,
1947
                            process_bb_node_for_hard_reg_moves, NULL);
1948
}
1949
 
1950
 
1951
 
1952
/* Function called once during compiler work.  */
1953
void
1954
ira_init_costs_once (void)
1955
{
1956
  int i;
1957
 
1958
  init_cost = NULL;
1959
  for (i = 0; i < MAX_RECOG_OPERANDS; i++)
1960
    {
1961
      op_costs[i] = NULL;
1962
      this_op_costs[i] = NULL;
1963
    }
1964
  temp_costs = NULL;
1965
}
1966
 
1967
/* Free allocated temporary cost vectors.  */
1968
static void
1969
free_ira_costs (void)
1970
{
1971
  int i;
1972
 
1973
  free (init_cost);
1974
  init_cost = NULL;
1975
  for (i = 0; i < MAX_RECOG_OPERANDS; i++)
1976
    {
1977
      free (op_costs[i]);
1978
      free (this_op_costs[i]);
1979
      op_costs[i] = this_op_costs[i] = NULL;
1980
    }
1981
  free (temp_costs);
1982
  temp_costs = NULL;
1983
}
1984
 
1985
/* This is called each time register related information is
1986
   changed.  */
1987
void
1988
ira_init_costs (void)
1989
{
1990
  int i;
1991
 
1992
  free_ira_costs ();
1993
  max_struct_costs_size
1994
    = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
1995
  /* Don't use ira_allocate because vectors live through several IRA
1996
     calls.  */
1997
  init_cost = (struct costs *) xmalloc (max_struct_costs_size);
1998
  init_cost->mem_cost = 1000000;
1999
  for (i = 0; i < ira_important_classes_num; i++)
2000
    init_cost->cost[i] = 1000000;
2001
  for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2002
    {
2003
      op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2004
      this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2005
    }
2006
  temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2007
}
2008
 
2009
/* Function called once at the end of compiler work.  */
2010
void
2011
ira_finish_costs_once (void)
2012
{
2013
  free_ira_costs ();
2014
}
2015
 
2016
 
2017
 
2018
/* Common initialization function for ira_costs and
2019
   ira_set_pseudo_classes.  */
2020
static void
2021
init_costs (void)
2022
{
2023
  init_subregs_of_mode ();
2024
  costs = (struct costs *) ira_allocate (max_struct_costs_size
2025
                                         * cost_elements_num);
2026
  pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2027
                                                 * cost_elements_num);
2028
  regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2029
                                                 * max_reg_num ());
2030
  regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2031
  memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2032
}
2033
 
2034
/* Common finalization function for ira_costs and
2035
   ira_set_pseudo_classes.  */
2036
static void
2037
finish_costs (void)
2038
{
2039
  finish_subregs_of_mode ();
2040
  ira_free (regno_equiv_gains);
2041
  ira_free (regno_aclass);
2042
  ira_free (pref_buffer);
2043
  ira_free (costs);
2044
}
2045
 
2046
/* Entry function which defines register class, memory and hard
2047
   register costs for each allocno.  */
2048
void
2049
ira_costs (void)
2050
{
2051
  allocno_p = true;
2052
  cost_elements_num = ira_allocnos_num;
2053
  init_costs ();
2054
  total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2055
                                                       * ira_allocnos_num);
2056
  initiate_regno_cost_classes ();
2057
  calculate_elim_costs_all_insns ();
2058
  find_costs_and_classes (ira_dump_file);
2059
  setup_allocno_class_and_costs ();
2060
  finish_regno_cost_classes ();
2061
  finish_costs ();
2062
  ira_free (total_allocno_costs);
2063
}
2064
 
2065
/* Entry function which defines classes for pseudos.  */
2066
void
2067
ira_set_pseudo_classes (FILE *dump_file)
2068
{
2069
  allocno_p = false;
2070
  internal_flag_ira_verbose = flag_ira_verbose;
2071
  cost_elements_num = max_reg_num ();
2072
  init_costs ();
2073
  initiate_regno_cost_classes ();
2074
  find_costs_and_classes (dump_file);
2075
  finish_regno_cost_classes ();
2076
  pseudo_classes_defined_p = true;
2077
  finish_costs ();
2078
}
2079
 
2080
 
2081
 
2082
/* Change hard register costs for allocnos which lives through
2083
   function calls.  This is called only when we found all intersected
2084
   calls during building allocno live ranges.  */
2085
void
2086
ira_tune_allocno_costs (void)
2087
{
2088
  int j, n, regno;
2089
  int cost, min_cost, *reg_costs;
2090
  enum reg_class aclass, rclass;
2091
  enum machine_mode mode;
2092
  ira_allocno_t a;
2093
  ira_allocno_iterator ai;
2094
  ira_allocno_object_iterator oi;
2095
  ira_object_t obj;
2096
  bool skip_p;
2097
 
2098
  FOR_EACH_ALLOCNO (a, ai)
2099
    {
2100
      aclass = ALLOCNO_CLASS (a);
2101
      if (aclass == NO_REGS)
2102
        continue;
2103
      mode = ALLOCNO_MODE (a);
2104
      n = ira_class_hard_regs_num[aclass];
2105
      min_cost = INT_MAX;
2106
      if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0)
2107
        {
2108
          ira_allocate_and_set_costs
2109
            (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2110
             ALLOCNO_CLASS_COST (a));
2111
          reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2112
          for (j = n - 1; j >= 0; j--)
2113
            {
2114
              regno = ira_class_hard_regs[aclass][j];
2115
              skip_p = false;
2116
              FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2117
                {
2118
                  if (ira_hard_reg_set_intersection_p (regno, mode,
2119
                                                       OBJECT_CONFLICT_HARD_REGS
2120
                                                       (obj)))
2121
                    {
2122
                      skip_p = true;
2123
                      break;
2124
                    }
2125
                }
2126
              if (skip_p)
2127
                continue;
2128
              rclass = REGNO_REG_CLASS (regno);
2129
              cost = 0;
2130
              if (ira_hard_reg_set_intersection_p (regno, mode, call_used_reg_set)
2131
                  || HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
2132
                cost += (ALLOCNO_CALL_FREQ (a)
2133
                         * (ira_memory_move_cost[mode][rclass][0]
2134
                            + ira_memory_move_cost[mode][rclass][1]));
2135
#ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2136
              cost += ((ira_memory_move_cost[mode][rclass][0]
2137
                        + ira_memory_move_cost[mode][rclass][1])
2138
                       * ALLOCNO_FREQ (a)
2139
                       * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2140
#endif
2141
              if (INT_MAX - cost < reg_costs[j])
2142
                reg_costs[j] = INT_MAX;
2143
              else
2144
                reg_costs[j] += cost;
2145
              if (min_cost > reg_costs[j])
2146
                min_cost = reg_costs[j];
2147
            }
2148
        }
2149
      if (min_cost != INT_MAX)
2150
        ALLOCNO_CLASS_COST (a) = min_cost;
2151
 
2152
      /* Some targets allow pseudos to be allocated to unaligned sequences
2153
         of hard registers.  However, selecting an unaligned sequence can
2154
         unnecessarily restrict later allocations.  So increase the cost of
2155
         unaligned hard regs to encourage the use of aligned hard regs.  */
2156
      {
2157
        const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2158
 
2159
        if (nregs > 1)
2160
          {
2161
            ira_allocate_and_set_costs
2162
              (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2163
            reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2164
            for (j = n - 1; j >= 0; j--)
2165
              {
2166
                regno = ira_non_ordered_class_hard_regs[aclass][j];
2167
                if ((regno % nregs) != 0)
2168
                  {
2169
                    int index = ira_class_hard_reg_index[aclass][regno];
2170
                    ira_assert (index != -1);
2171
                    reg_costs[index] += ALLOCNO_FREQ (a);
2172
                  }
2173
              }
2174
          }
2175
      }
2176
    }
2177
}
2178
 
2179
/* Add COST to the estimated gain for eliminating REGNO with its
2180
   equivalence.  If COST is zero, record that no such elimination is
2181
   possible.  */
2182
 
2183
void
2184
ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2185
{
2186
  if (cost == 0)
2187
    regno_equiv_gains[regno] = 0;
2188
  else
2189
    regno_equiv_gains[regno] += cost;
2190
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.