1 |
684 |
jeremybenn |
/* Integrated Register Allocator. Changing code and generating moves.
|
2 |
|
|
Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
/* When we have more one region, we need to change the original RTL
|
23 |
|
|
code after coloring. Let us consider two allocnos representing the
|
24 |
|
|
same pseudo-register outside and inside a region respectively.
|
25 |
|
|
They can get different hard-registers. The reload pass works on
|
26 |
|
|
pseudo registers basis and there is no way to say the reload that
|
27 |
|
|
pseudo could be in different registers and it is even more
|
28 |
|
|
difficult to say in what places of the code the pseudo should have
|
29 |
|
|
particular hard-registers. So in this case IRA has to create and
|
30 |
|
|
use a new pseudo-register inside the region and adds code to move
|
31 |
|
|
allocno values on the region's borders. This is done by the code
|
32 |
|
|
in this file.
|
33 |
|
|
|
34 |
|
|
The code makes top-down traversal of the regions and generate new
|
35 |
|
|
pseudos and the move code on the region borders. In some
|
36 |
|
|
complicated cases IRA can create a new pseudo used temporarily to
|
37 |
|
|
move allocno values when a swap of values stored in two
|
38 |
|
|
hard-registers is needed (e.g. two allocnos representing different
|
39 |
|
|
pseudos outside region got respectively hard registers 1 and 2 and
|
40 |
|
|
the corresponding allocnos inside the region got respectively hard
|
41 |
|
|
registers 2 and 1). At this stage, the new pseudo is marked as
|
42 |
|
|
spilled.
|
43 |
|
|
|
44 |
|
|
IRA still creates the pseudo-register and the moves on the region
|
45 |
|
|
borders even when the both corresponding allocnos were assigned to
|
46 |
|
|
the same hard-register. It is done because, if the reload pass for
|
47 |
|
|
some reason spills a pseudo-register representing the original
|
48 |
|
|
pseudo outside or inside the region, the effect will be smaller
|
49 |
|
|
because another pseudo will still be in the hard-register. In most
|
50 |
|
|
cases, this is better then spilling the original pseudo in its
|
51 |
|
|
whole live-range. If reload does not change the allocation for the
|
52 |
|
|
two pseudo-registers, the trivial move will be removed by
|
53 |
|
|
post-reload optimizations.
|
54 |
|
|
|
55 |
|
|
IRA does not generate a new pseudo and moves for the allocno values
|
56 |
|
|
if the both allocnos representing an original pseudo inside and
|
57 |
|
|
outside region assigned to the same hard register when the register
|
58 |
|
|
pressure in the region for the corresponding pressure class is less
|
59 |
|
|
than number of available hard registers for given pressure class.
|
60 |
|
|
|
61 |
|
|
IRA also does some optimizations to remove redundant moves which is
|
62 |
|
|
transformed into stores by the reload pass on CFG edges
|
63 |
|
|
representing exits from the region.
|
64 |
|
|
|
65 |
|
|
IRA tries to reduce duplication of code generated on CFG edges
|
66 |
|
|
which are enters and exits to/from regions by moving some code to
|
67 |
|
|
the edge sources or destinations when it is possible. */
|
68 |
|
|
|
69 |
|
|
#include "config.h"
|
70 |
|
|
#include "system.h"
|
71 |
|
|
#include "coretypes.h"
|
72 |
|
|
#include "tm.h"
|
73 |
|
|
#include "regs.h"
|
74 |
|
|
#include "rtl.h"
|
75 |
|
|
#include "tm_p.h"
|
76 |
|
|
#include "target.h"
|
77 |
|
|
#include "flags.h"
|
78 |
|
|
#include "obstack.h"
|
79 |
|
|
#include "bitmap.h"
|
80 |
|
|
#include "hard-reg-set.h"
|
81 |
|
|
#include "basic-block.h"
|
82 |
|
|
#include "expr.h"
|
83 |
|
|
#include "recog.h"
|
84 |
|
|
#include "params.h"
|
85 |
|
|
#include "timevar.h"
|
86 |
|
|
#include "tree-pass.h"
|
87 |
|
|
#include "output.h"
|
88 |
|
|
#include "reload.h"
|
89 |
|
|
#include "df.h"
|
90 |
|
|
#include "ira-int.h"
|
91 |
|
|
|
92 |
|
|
|
93 |
|
|
/* Data used to emit live range split insns and to flattening IR. */
|
94 |
|
|
ira_emit_data_t ira_allocno_emit_data;
|
95 |
|
|
|
96 |
|
|
/* Definitions for vectors of pointers. */
|
97 |
|
|
typedef void *void_p;
|
98 |
|
|
DEF_VEC_P (void_p);
|
99 |
|
|
DEF_VEC_ALLOC_P (void_p,heap);
|
100 |
|
|
|
101 |
|
|
/* Pointers to data allocated for allocnos being created during
|
102 |
|
|
emitting. Usually there are quite few such allocnos because they
|
103 |
|
|
are created only for resolving loop in register shuffling. */
|
104 |
|
|
static VEC(void_p, heap) *new_allocno_emit_data_vec;
|
105 |
|
|
|
106 |
|
|
/* Allocate and initiate the emit data. */
|
107 |
|
|
void
|
108 |
|
|
ira_initiate_emit_data (void)
|
109 |
|
|
{
|
110 |
|
|
ira_allocno_t a;
|
111 |
|
|
ira_allocno_iterator ai;
|
112 |
|
|
|
113 |
|
|
ira_allocno_emit_data
|
114 |
|
|
= (ira_emit_data_t) ira_allocate (ira_allocnos_num
|
115 |
|
|
* sizeof (struct ira_emit_data));
|
116 |
|
|
memset (ira_allocno_emit_data, 0,
|
117 |
|
|
ira_allocnos_num * sizeof (struct ira_emit_data));
|
118 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
119 |
|
|
ALLOCNO_ADD_DATA (a) = ira_allocno_emit_data + ALLOCNO_NUM (a);
|
120 |
|
|
new_allocno_emit_data_vec = VEC_alloc (void_p, heap, 50);
|
121 |
|
|
|
122 |
|
|
}
|
123 |
|
|
|
124 |
|
|
/* Free the emit data. */
|
125 |
|
|
void
|
126 |
|
|
ira_finish_emit_data (void)
|
127 |
|
|
{
|
128 |
|
|
void_p p;
|
129 |
|
|
ira_allocno_t a;
|
130 |
|
|
ira_allocno_iterator ai;
|
131 |
|
|
|
132 |
|
|
ira_free (ira_allocno_emit_data);
|
133 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
134 |
|
|
ALLOCNO_ADD_DATA (a) = NULL;
|
135 |
|
|
for (;VEC_length (void_p, new_allocno_emit_data_vec) != 0;)
|
136 |
|
|
{
|
137 |
|
|
p = VEC_pop (void_p, new_allocno_emit_data_vec);
|
138 |
|
|
ira_free (p);
|
139 |
|
|
}
|
140 |
|
|
VEC_free (void_p, heap, new_allocno_emit_data_vec);
|
141 |
|
|
}
|
142 |
|
|
|
143 |
|
|
/* Create and return a new allocno with given REGNO and
|
144 |
|
|
LOOP_TREE_NODE. Allocate emit data for it. */
|
145 |
|
|
static ira_allocno_t
|
146 |
|
|
create_new_allocno (int regno, ira_loop_tree_node_t loop_tree_node)
|
147 |
|
|
{
|
148 |
|
|
ira_allocno_t a;
|
149 |
|
|
|
150 |
|
|
a = ira_create_allocno (regno, false, loop_tree_node);
|
151 |
|
|
ALLOCNO_ADD_DATA (a) = ira_allocate (sizeof (struct ira_emit_data));
|
152 |
|
|
memset (ALLOCNO_ADD_DATA (a), 0, sizeof (struct ira_emit_data));
|
153 |
|
|
VEC_safe_push (void_p, heap, new_allocno_emit_data_vec, ALLOCNO_ADD_DATA (a));
|
154 |
|
|
return a;
|
155 |
|
|
}
|
156 |
|
|
|
157 |
|
|
|
158 |
|
|
|
159 |
|
|
/* See comments below. */
|
160 |
|
|
typedef struct move *move_t;
|
161 |
|
|
|
162 |
|
|
/* The structure represents an allocno move. Both allocnos have the
|
163 |
|
|
same origional regno but different allocation. */
|
164 |
|
|
struct move
|
165 |
|
|
{
|
166 |
|
|
/* The allocnos involved in the move. */
|
167 |
|
|
ira_allocno_t from, to;
|
168 |
|
|
/* The next move in the move sequence. */
|
169 |
|
|
move_t next;
|
170 |
|
|
/* Used for finding dependencies. */
|
171 |
|
|
bool visited_p;
|
172 |
|
|
/* The size of the following array. */
|
173 |
|
|
int deps_num;
|
174 |
|
|
/* Moves on which given move depends on. Dependency can be cyclic.
|
175 |
|
|
It means we need a temporary to generates the moves. Sequence
|
176 |
|
|
A1->A2, B1->B2 where A1 and B2 are assigned to reg R1 and A2 and
|
177 |
|
|
B1 are assigned to reg R2 is an example of the cyclic
|
178 |
|
|
dependencies. */
|
179 |
|
|
move_t *deps;
|
180 |
|
|
/* First insn generated for the move. */
|
181 |
|
|
rtx insn;
|
182 |
|
|
};
|
183 |
|
|
|
184 |
|
|
/* Array of moves (indexed by BB index) which should be put at the
|
185 |
|
|
start/end of the corresponding basic blocks. */
|
186 |
|
|
static move_t *at_bb_start, *at_bb_end;
|
187 |
|
|
|
188 |
|
|
/* Max regno before renaming some pseudo-registers. For example, the
|
189 |
|
|
same pseudo-register can be renamed in a loop if its allocation is
|
190 |
|
|
different outside the loop. */
|
191 |
|
|
static int max_regno_before_changing;
|
192 |
|
|
|
193 |
|
|
/* Return new move of allocnos TO and FROM. */
|
194 |
|
|
static move_t
|
195 |
|
|
create_move (ira_allocno_t to, ira_allocno_t from)
|
196 |
|
|
{
|
197 |
|
|
move_t move;
|
198 |
|
|
|
199 |
|
|
move = (move_t) ira_allocate (sizeof (struct move));
|
200 |
|
|
move->deps = NULL;
|
201 |
|
|
move->deps_num = 0;
|
202 |
|
|
move->to = to;
|
203 |
|
|
move->from = from;
|
204 |
|
|
move->next = NULL;
|
205 |
|
|
move->insn = NULL_RTX;
|
206 |
|
|
move->visited_p = false;
|
207 |
|
|
return move;
|
208 |
|
|
}
|
209 |
|
|
|
210 |
|
|
/* Free memory for MOVE and its dependencies. */
|
211 |
|
|
static void
|
212 |
|
|
free_move (move_t move)
|
213 |
|
|
{
|
214 |
|
|
if (move->deps != NULL)
|
215 |
|
|
ira_free (move->deps);
|
216 |
|
|
ira_free (move);
|
217 |
|
|
}
|
218 |
|
|
|
219 |
|
|
/* Free memory for list of the moves given by its HEAD. */
|
220 |
|
|
static void
|
221 |
|
|
free_move_list (move_t head)
|
222 |
|
|
{
|
223 |
|
|
move_t next;
|
224 |
|
|
|
225 |
|
|
for (; head != NULL; head = next)
|
226 |
|
|
{
|
227 |
|
|
next = head->next;
|
228 |
|
|
free_move (head);
|
229 |
|
|
}
|
230 |
|
|
}
|
231 |
|
|
|
232 |
|
|
/* Return TRUE if the move list LIST1 and LIST2 are equal (two
|
233 |
|
|
moves are equal if they involve the same allocnos). */
|
234 |
|
|
static bool
|
235 |
|
|
eq_move_lists_p (move_t list1, move_t list2)
|
236 |
|
|
{
|
237 |
|
|
for (; list1 != NULL && list2 != NULL;
|
238 |
|
|
list1 = list1->next, list2 = list2->next)
|
239 |
|
|
if (list1->from != list2->from || list1->to != list2->to)
|
240 |
|
|
return false;
|
241 |
|
|
return list1 == list2;
|
242 |
|
|
}
|
243 |
|
|
|
244 |
|
|
/* Print move list LIST into file F. */
|
245 |
|
|
static void
|
246 |
|
|
print_move_list (FILE *f, move_t list)
|
247 |
|
|
{
|
248 |
|
|
for (; list != NULL; list = list->next)
|
249 |
|
|
fprintf (f, " a%dr%d->a%dr%d",
|
250 |
|
|
ALLOCNO_NUM (list->from), ALLOCNO_REGNO (list->from),
|
251 |
|
|
ALLOCNO_NUM (list->to), ALLOCNO_REGNO (list->to));
|
252 |
|
|
fprintf (f, "\n");
|
253 |
|
|
}
|
254 |
|
|
|
255 |
|
|
extern void ira_debug_move_list (move_t list);
|
256 |
|
|
|
257 |
|
|
/* Print move list LIST into stderr. */
|
258 |
|
|
void
|
259 |
|
|
ira_debug_move_list (move_t list)
|
260 |
|
|
{
|
261 |
|
|
print_move_list (stderr, list);
|
262 |
|
|
}
|
263 |
|
|
|
264 |
|
|
/* This recursive function changes pseudo-registers in *LOC if it is
|
265 |
|
|
necessary. The function returns TRUE if a change was done. */
|
266 |
|
|
static bool
|
267 |
|
|
change_regs (rtx *loc)
|
268 |
|
|
{
|
269 |
|
|
int i, regno, result = false;
|
270 |
|
|
const char *fmt;
|
271 |
|
|
enum rtx_code code;
|
272 |
|
|
rtx reg;
|
273 |
|
|
|
274 |
|
|
if (*loc == NULL_RTX)
|
275 |
|
|
return false;
|
276 |
|
|
code = GET_CODE (*loc);
|
277 |
|
|
if (code == REG)
|
278 |
|
|
{
|
279 |
|
|
regno = REGNO (*loc);
|
280 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
281 |
|
|
return false;
|
282 |
|
|
if (regno >= max_regno_before_changing)
|
283 |
|
|
/* It is a shared register which was changed already. */
|
284 |
|
|
return false;
|
285 |
|
|
if (ira_curr_regno_allocno_map[regno] == NULL)
|
286 |
|
|
return false;
|
287 |
|
|
reg = allocno_emit_reg (ira_curr_regno_allocno_map[regno]);
|
288 |
|
|
if (reg == *loc)
|
289 |
|
|
return false;
|
290 |
|
|
*loc = reg;
|
291 |
|
|
return true;
|
292 |
|
|
}
|
293 |
|
|
|
294 |
|
|
fmt = GET_RTX_FORMAT (code);
|
295 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
296 |
|
|
{
|
297 |
|
|
if (fmt[i] == 'e')
|
298 |
|
|
result = change_regs (&XEXP (*loc, i)) || result;
|
299 |
|
|
else if (fmt[i] == 'E')
|
300 |
|
|
{
|
301 |
|
|
int j;
|
302 |
|
|
|
303 |
|
|
for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
|
304 |
|
|
result = change_regs (&XVECEXP (*loc, i, j)) || result;
|
305 |
|
|
}
|
306 |
|
|
}
|
307 |
|
|
return result;
|
308 |
|
|
}
|
309 |
|
|
|
310 |
|
|
/* Attach MOVE to the edge E. The move is attached to the head of the
|
311 |
|
|
list if HEAD_P is TRUE. */
|
312 |
|
|
static void
|
313 |
|
|
add_to_edge_list (edge e, move_t move, bool head_p)
|
314 |
|
|
{
|
315 |
|
|
move_t last;
|
316 |
|
|
|
317 |
|
|
if (head_p || e->aux == NULL)
|
318 |
|
|
{
|
319 |
|
|
move->next = (move_t) e->aux;
|
320 |
|
|
e->aux = move;
|
321 |
|
|
}
|
322 |
|
|
else
|
323 |
|
|
{
|
324 |
|
|
for (last = (move_t) e->aux; last->next != NULL; last = last->next)
|
325 |
|
|
;
|
326 |
|
|
last->next = move;
|
327 |
|
|
move->next = NULL;
|
328 |
|
|
}
|
329 |
|
|
}
|
330 |
|
|
|
331 |
|
|
/* Create and return new pseudo-register with the same attributes as
|
332 |
|
|
ORIGINAL_REG. */
|
333 |
|
|
static rtx
|
334 |
|
|
create_new_reg (rtx original_reg)
|
335 |
|
|
{
|
336 |
|
|
rtx new_reg;
|
337 |
|
|
|
338 |
|
|
new_reg = gen_reg_rtx (GET_MODE (original_reg));
|
339 |
|
|
ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original_reg);
|
340 |
|
|
REG_USERVAR_P (new_reg) = REG_USERVAR_P (original_reg);
|
341 |
|
|
REG_POINTER (new_reg) = REG_POINTER (original_reg);
|
342 |
|
|
REG_ATTRS (new_reg) = REG_ATTRS (original_reg);
|
343 |
|
|
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
344 |
|
|
fprintf (ira_dump_file, " Creating newreg=%i from oldreg=%i\n",
|
345 |
|
|
REGNO (new_reg), REGNO (original_reg));
|
346 |
|
|
return new_reg;
|
347 |
|
|
}
|
348 |
|
|
|
349 |
|
|
/* Return TRUE if loop given by SUBNODE inside the loop given by
|
350 |
|
|
NODE. */
|
351 |
|
|
static bool
|
352 |
|
|
subloop_tree_node_p (ira_loop_tree_node_t subnode, ira_loop_tree_node_t node)
|
353 |
|
|
{
|
354 |
|
|
for (; subnode != NULL; subnode = subnode->parent)
|
355 |
|
|
if (subnode == node)
|
356 |
|
|
return true;
|
357 |
|
|
return false;
|
358 |
|
|
}
|
359 |
|
|
|
360 |
|
|
/* Set up member `reg' to REG for allocnos which has the same regno as
|
361 |
|
|
ALLOCNO and which are inside the loop corresponding to ALLOCNO. */
|
362 |
|
|
static void
|
363 |
|
|
set_allocno_reg (ira_allocno_t allocno, rtx reg)
|
364 |
|
|
{
|
365 |
|
|
int regno;
|
366 |
|
|
ira_allocno_t a;
|
367 |
|
|
ira_loop_tree_node_t node;
|
368 |
|
|
|
369 |
|
|
node = ALLOCNO_LOOP_TREE_NODE (allocno);
|
370 |
|
|
for (a = ira_regno_allocno_map[ALLOCNO_REGNO (allocno)];
|
371 |
|
|
a != NULL;
|
372 |
|
|
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
|
373 |
|
|
if (subloop_tree_node_p (ALLOCNO_LOOP_TREE_NODE (a), node))
|
374 |
|
|
ALLOCNO_EMIT_DATA (a)->reg = reg;
|
375 |
|
|
for (a = ALLOCNO_CAP (allocno); a != NULL; a = ALLOCNO_CAP (a))
|
376 |
|
|
ALLOCNO_EMIT_DATA (a)->reg = reg;
|
377 |
|
|
regno = ALLOCNO_REGNO (allocno);
|
378 |
|
|
for (a = allocno;;)
|
379 |
|
|
{
|
380 |
|
|
if (a == NULL || (a = ALLOCNO_CAP (a)) == NULL)
|
381 |
|
|
{
|
382 |
|
|
node = node->parent;
|
383 |
|
|
if (node == NULL)
|
384 |
|
|
break;
|
385 |
|
|
a = node->regno_allocno_map[regno];
|
386 |
|
|
}
|
387 |
|
|
if (a == NULL)
|
388 |
|
|
continue;
|
389 |
|
|
if (ALLOCNO_EMIT_DATA (a)->child_renamed_p)
|
390 |
|
|
break;
|
391 |
|
|
ALLOCNO_EMIT_DATA (a)->child_renamed_p = true;
|
392 |
|
|
}
|
393 |
|
|
}
|
394 |
|
|
|
395 |
|
|
/* Return true if there is an entry to given loop not from its parent
|
396 |
|
|
(or grandparent) block. For example, it is possible for two
|
397 |
|
|
adjacent loops inside another loop. */
|
398 |
|
|
static bool
|
399 |
|
|
entered_from_non_parent_p (ira_loop_tree_node_t loop_node)
|
400 |
|
|
{
|
401 |
|
|
ira_loop_tree_node_t bb_node, src_loop_node, parent;
|
402 |
|
|
edge e;
|
403 |
|
|
edge_iterator ei;
|
404 |
|
|
|
405 |
|
|
for (bb_node = loop_node->children;
|
406 |
|
|
bb_node != NULL;
|
407 |
|
|
bb_node = bb_node->next)
|
408 |
|
|
if (bb_node->bb != NULL)
|
409 |
|
|
{
|
410 |
|
|
FOR_EACH_EDGE (e, ei, bb_node->bb->preds)
|
411 |
|
|
if (e->src != ENTRY_BLOCK_PTR
|
412 |
|
|
&& (src_loop_node = IRA_BB_NODE (e->src)->parent) != loop_node)
|
413 |
|
|
{
|
414 |
|
|
for (parent = src_loop_node->parent;
|
415 |
|
|
parent != NULL;
|
416 |
|
|
parent = parent->parent)
|
417 |
|
|
if (parent == loop_node)
|
418 |
|
|
break;
|
419 |
|
|
if (parent != NULL)
|
420 |
|
|
/* That is an exit from a nested loop -- skip it. */
|
421 |
|
|
continue;
|
422 |
|
|
for (parent = loop_node->parent;
|
423 |
|
|
parent != NULL;
|
424 |
|
|
parent = parent->parent)
|
425 |
|
|
if (src_loop_node == parent)
|
426 |
|
|
break;
|
427 |
|
|
if (parent == NULL)
|
428 |
|
|
return true;
|
429 |
|
|
}
|
430 |
|
|
}
|
431 |
|
|
return false;
|
432 |
|
|
}
|
433 |
|
|
|
434 |
|
|
/* Set up ENTERED_FROM_NON_PARENT_P for each loop region. */
|
435 |
|
|
static void
|
436 |
|
|
setup_entered_from_non_parent_p (void)
|
437 |
|
|
{
|
438 |
|
|
unsigned int i;
|
439 |
|
|
loop_p loop;
|
440 |
|
|
|
441 |
|
|
ira_assert (current_loops != NULL);
|
442 |
|
|
FOR_EACH_VEC_ELT (loop_p, ira_loops.larray, i, loop)
|
443 |
|
|
if (ira_loop_nodes[i].regno_allocno_map != NULL)
|
444 |
|
|
ira_loop_nodes[i].entered_from_non_parent_p
|
445 |
|
|
= entered_from_non_parent_p (&ira_loop_nodes[i]);
|
446 |
|
|
}
|
447 |
|
|
|
448 |
|
|
/* Return TRUE if move of SRC_ALLOCNO (assigned to hard register) to
|
449 |
|
|
DEST_ALLOCNO (assigned to memory) can be removed beacuse it does
|
450 |
|
|
not change value of the destination. One possible reason for this
|
451 |
|
|
is the situation when SRC_ALLOCNO is not modified in the
|
452 |
|
|
corresponding loop. */
|
453 |
|
|
static bool
|
454 |
|
|
store_can_be_removed_p (ira_allocno_t src_allocno, ira_allocno_t dest_allocno)
|
455 |
|
|
{
|
456 |
|
|
int regno, orig_regno;
|
457 |
|
|
ira_allocno_t a;
|
458 |
|
|
ira_loop_tree_node_t node;
|
459 |
|
|
|
460 |
|
|
ira_assert (ALLOCNO_CAP_MEMBER (src_allocno) == NULL
|
461 |
|
|
&& ALLOCNO_CAP_MEMBER (dest_allocno) == NULL);
|
462 |
|
|
orig_regno = ALLOCNO_REGNO (src_allocno);
|
463 |
|
|
regno = REGNO (allocno_emit_reg (dest_allocno));
|
464 |
|
|
for (node = ALLOCNO_LOOP_TREE_NODE (src_allocno);
|
465 |
|
|
node != NULL;
|
466 |
|
|
node = node->parent)
|
467 |
|
|
{
|
468 |
|
|
a = node->regno_allocno_map[orig_regno];
|
469 |
|
|
ira_assert (a != NULL);
|
470 |
|
|
if (REGNO (allocno_emit_reg (a)) == (unsigned) regno)
|
471 |
|
|
/* We achieved the destination and everything is ok. */
|
472 |
|
|
return true;
|
473 |
|
|
else if (bitmap_bit_p (node->modified_regnos, orig_regno))
|
474 |
|
|
return false;
|
475 |
|
|
else if (node->entered_from_non_parent_p)
|
476 |
|
|
/* If there is a path from a destination loop block to the
|
477 |
|
|
source loop header containing basic blocks of non-parents
|
478 |
|
|
(grandparents) of the source loop, we should have checked
|
479 |
|
|
modifications of the pseudo on this path too to decide
|
480 |
|
|
about possibility to remove the store. It could be done by
|
481 |
|
|
solving a data-flow problem. Unfortunately such global
|
482 |
|
|
solution would complicate IR flattening. Therefore we just
|
483 |
|
|
prohibit removal of the store in such complicated case. */
|
484 |
|
|
return false;
|
485 |
|
|
}
|
486 |
|
|
/* It is actually a loop entry -- do not remove the store. */
|
487 |
|
|
return false;
|
488 |
|
|
}
|
489 |
|
|
|
490 |
|
|
/* Generate and attach moves to the edge E. This looks at the final
|
491 |
|
|
regnos of allocnos living on the edge with the same original regno
|
492 |
|
|
to figure out when moves should be generated. */
|
493 |
|
|
static void
|
494 |
|
|
generate_edge_moves (edge e)
|
495 |
|
|
{
|
496 |
|
|
ira_loop_tree_node_t src_loop_node, dest_loop_node;
|
497 |
|
|
unsigned int regno;
|
498 |
|
|
bitmap_iterator bi;
|
499 |
|
|
ira_allocno_t src_allocno, dest_allocno, *src_map, *dest_map;
|
500 |
|
|
move_t move;
|
501 |
|
|
|
502 |
|
|
src_loop_node = IRA_BB_NODE (e->src)->parent;
|
503 |
|
|
dest_loop_node = IRA_BB_NODE (e->dest)->parent;
|
504 |
|
|
e->aux = NULL;
|
505 |
|
|
if (src_loop_node == dest_loop_node)
|
506 |
|
|
return;
|
507 |
|
|
src_map = src_loop_node->regno_allocno_map;
|
508 |
|
|
dest_map = dest_loop_node->regno_allocno_map;
|
509 |
|
|
EXECUTE_IF_SET_IN_REG_SET (DF_LR_IN (e->dest),
|
510 |
|
|
FIRST_PSEUDO_REGISTER, regno, bi)
|
511 |
|
|
if (bitmap_bit_p (DF_LR_OUT (e->src), regno))
|
512 |
|
|
{
|
513 |
|
|
src_allocno = src_map[regno];
|
514 |
|
|
dest_allocno = dest_map[regno];
|
515 |
|
|
if (REGNO (allocno_emit_reg (src_allocno))
|
516 |
|
|
== REGNO (allocno_emit_reg (dest_allocno)))
|
517 |
|
|
continue;
|
518 |
|
|
/* Remove unnecessary stores at the region exit. We should do
|
519 |
|
|
this for readonly memory for sure and this is guaranteed by
|
520 |
|
|
that we never generate moves on region borders (see
|
521 |
|
|
checking ira_reg_equiv_invariant_p in function
|
522 |
|
|
change_loop). */
|
523 |
|
|
if (ALLOCNO_HARD_REGNO (dest_allocno) < 0
|
524 |
|
|
&& ALLOCNO_HARD_REGNO (src_allocno) >= 0
|
525 |
|
|
&& store_can_be_removed_p (src_allocno, dest_allocno))
|
526 |
|
|
{
|
527 |
|
|
ALLOCNO_EMIT_DATA (src_allocno)->mem_optimized_dest = dest_allocno;
|
528 |
|
|
ALLOCNO_EMIT_DATA (dest_allocno)->mem_optimized_dest_p = true;
|
529 |
|
|
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
530 |
|
|
fprintf (ira_dump_file, " Remove r%d:a%d->a%d(mem)\n",
|
531 |
|
|
regno, ALLOCNO_NUM (src_allocno),
|
532 |
|
|
ALLOCNO_NUM (dest_allocno));
|
533 |
|
|
continue;
|
534 |
|
|
}
|
535 |
|
|
move = create_move (dest_allocno, src_allocno);
|
536 |
|
|
add_to_edge_list (e, move, true);
|
537 |
|
|
}
|
538 |
|
|
}
|
539 |
|
|
|
540 |
|
|
/* Bitmap of allocnos local for the current loop. */
|
541 |
|
|
static bitmap local_allocno_bitmap;
|
542 |
|
|
|
543 |
|
|
/* This bitmap is used to find that we need to generate and to use a
|
544 |
|
|
new pseudo-register when processing allocnos with the same original
|
545 |
|
|
regno. */
|
546 |
|
|
static bitmap used_regno_bitmap;
|
547 |
|
|
|
548 |
|
|
/* This bitmap contains regnos of allocnos which were renamed locally
|
549 |
|
|
because the allocnos correspond to disjoint live ranges in loops
|
550 |
|
|
with a common parent. */
|
551 |
|
|
static bitmap renamed_regno_bitmap;
|
552 |
|
|
|
553 |
|
|
/* Change (if necessary) pseudo-registers inside loop given by loop
|
554 |
|
|
tree node NODE. */
|
555 |
|
|
static void
|
556 |
|
|
change_loop (ira_loop_tree_node_t node)
|
557 |
|
|
{
|
558 |
|
|
bitmap_iterator bi;
|
559 |
|
|
unsigned int i;
|
560 |
|
|
int regno;
|
561 |
|
|
bool used_p;
|
562 |
|
|
ira_allocno_t allocno, parent_allocno, *map;
|
563 |
|
|
rtx insn, original_reg;
|
564 |
|
|
enum reg_class aclass, pclass;
|
565 |
|
|
ira_loop_tree_node_t parent;
|
566 |
|
|
|
567 |
|
|
if (node != ira_loop_tree_root)
|
568 |
|
|
{
|
569 |
|
|
ira_assert (current_loops != NULL);
|
570 |
|
|
|
571 |
|
|
if (node->bb != NULL)
|
572 |
|
|
{
|
573 |
|
|
FOR_BB_INSNS (node->bb, insn)
|
574 |
|
|
if (INSN_P (insn) && change_regs (&insn))
|
575 |
|
|
{
|
576 |
|
|
df_insn_rescan (insn);
|
577 |
|
|
df_notes_rescan (insn);
|
578 |
|
|
}
|
579 |
|
|
return;
|
580 |
|
|
}
|
581 |
|
|
|
582 |
|
|
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
|
583 |
|
|
fprintf (ira_dump_file,
|
584 |
|
|
" Changing RTL for loop %d (header bb%d)\n",
|
585 |
|
|
node->loop_num, node->loop->header->index);
|
586 |
|
|
|
587 |
|
|
parent = ira_curr_loop_tree_node->parent;
|
588 |
|
|
map = parent->regno_allocno_map;
|
589 |
|
|
EXECUTE_IF_SET_IN_REG_SET (ira_curr_loop_tree_node->border_allocnos,
|
590 |
|
|
0, i, bi)
|
591 |
|
|
{
|
592 |
|
|
allocno = ira_allocnos[i];
|
593 |
|
|
regno = ALLOCNO_REGNO (allocno);
|
594 |
|
|
aclass = ALLOCNO_CLASS (allocno);
|
595 |
|
|
pclass = ira_pressure_class_translate[aclass];
|
596 |
|
|
parent_allocno = map[regno];
|
597 |
|
|
ira_assert (regno < ira_reg_equiv_len);
|
598 |
|
|
/* We generate the same hard register move because the
|
599 |
|
|
reload pass can put an allocno into memory in this case
|
600 |
|
|
we will have live range splitting. If it does not happen
|
601 |
|
|
such the same hard register moves will be removed. The
|
602 |
|
|
worst case when the both allocnos are put into memory by
|
603 |
|
|
the reload is very rare. */
|
604 |
|
|
if (parent_allocno != NULL
|
605 |
|
|
&& (ALLOCNO_HARD_REGNO (allocno)
|
606 |
|
|
== ALLOCNO_HARD_REGNO (parent_allocno))
|
607 |
|
|
&& (ALLOCNO_HARD_REGNO (allocno) < 0
|
608 |
|
|
|| (parent->reg_pressure[pclass] + 1
|
609 |
|
|
<= ira_available_class_regs[pclass])
|
610 |
|
|
|| TEST_HARD_REG_BIT (ira_prohibited_mode_move_regs
|
611 |
|
|
[ALLOCNO_MODE (allocno)],
|
612 |
|
|
ALLOCNO_HARD_REGNO (allocno))
|
613 |
|
|
/* don't create copies because reload can spill an
|
614 |
|
|
allocno set by copy although the allocno will not
|
615 |
|
|
get memory slot. */
|
616 |
|
|
|| ira_reg_equiv_invariant_p[regno]
|
617 |
|
|
|| ira_reg_equiv_const[regno] != NULL_RTX))
|
618 |
|
|
continue;
|
619 |
|
|
original_reg = allocno_emit_reg (allocno);
|
620 |
|
|
if (parent_allocno == NULL
|
621 |
|
|
|| (REGNO (allocno_emit_reg (parent_allocno))
|
622 |
|
|
== REGNO (original_reg)))
|
623 |
|
|
{
|
624 |
|
|
if (internal_flag_ira_verbose > 3 && ira_dump_file)
|
625 |
|
|
fprintf (ira_dump_file, " %i vs parent %i:",
|
626 |
|
|
ALLOCNO_HARD_REGNO (allocno),
|
627 |
|
|
ALLOCNO_HARD_REGNO (parent_allocno));
|
628 |
|
|
set_allocno_reg (allocno, create_new_reg (original_reg));
|
629 |
|
|
}
|
630 |
|
|
}
|
631 |
|
|
}
|
632 |
|
|
/* Rename locals: Local allocnos with same regno in different loops
|
633 |
|
|
might get the different hard register. So we need to change
|
634 |
|
|
ALLOCNO_REG. */
|
635 |
|
|
bitmap_and_compl (local_allocno_bitmap,
|
636 |
|
|
ira_curr_loop_tree_node->all_allocnos,
|
637 |
|
|
ira_curr_loop_tree_node->border_allocnos);
|
638 |
|
|
EXECUTE_IF_SET_IN_REG_SET (local_allocno_bitmap, 0, i, bi)
|
639 |
|
|
{
|
640 |
|
|
allocno = ira_allocnos[i];
|
641 |
|
|
regno = ALLOCNO_REGNO (allocno);
|
642 |
|
|
if (ALLOCNO_CAP_MEMBER (allocno) != NULL)
|
643 |
|
|
continue;
|
644 |
|
|
used_p = !bitmap_set_bit (used_regno_bitmap, regno);
|
645 |
|
|
ALLOCNO_EMIT_DATA (allocno)->somewhere_renamed_p = true;
|
646 |
|
|
if (! used_p)
|
647 |
|
|
continue;
|
648 |
|
|
bitmap_set_bit (renamed_regno_bitmap, regno);
|
649 |
|
|
set_allocno_reg (allocno, create_new_reg (allocno_emit_reg (allocno)));
|
650 |
|
|
}
|
651 |
|
|
}
|
652 |
|
|
|
653 |
|
|
/* Process to set up flag somewhere_renamed_p. */
|
654 |
|
|
static void
|
655 |
|
|
set_allocno_somewhere_renamed_p (void)
|
656 |
|
|
{
|
657 |
|
|
unsigned int regno;
|
658 |
|
|
ira_allocno_t allocno;
|
659 |
|
|
ira_allocno_iterator ai;
|
660 |
|
|
|
661 |
|
|
FOR_EACH_ALLOCNO (allocno, ai)
|
662 |
|
|
{
|
663 |
|
|
regno = ALLOCNO_REGNO (allocno);
|
664 |
|
|
if (bitmap_bit_p (renamed_regno_bitmap, regno)
|
665 |
|
|
&& REGNO (allocno_emit_reg (allocno)) == regno)
|
666 |
|
|
ALLOCNO_EMIT_DATA (allocno)->somewhere_renamed_p = true;
|
667 |
|
|
}
|
668 |
|
|
}
|
669 |
|
|
|
670 |
|
|
/* Return TRUE if move lists on all edges given in vector VEC are
|
671 |
|
|
equal. */
|
672 |
|
|
static bool
|
673 |
|
|
eq_edge_move_lists_p (VEC(edge,gc) *vec)
|
674 |
|
|
{
|
675 |
|
|
move_t list;
|
676 |
|
|
int i;
|
677 |
|
|
|
678 |
|
|
list = (move_t) EDGE_I (vec, 0)->aux;
|
679 |
|
|
for (i = EDGE_COUNT (vec) - 1; i > 0; i--)
|
680 |
|
|
if (! eq_move_lists_p (list, (move_t) EDGE_I (vec, i)->aux))
|
681 |
|
|
return false;
|
682 |
|
|
return true;
|
683 |
|
|
}
|
684 |
|
|
|
685 |
|
|
/* Look at all entry edges (if START_P) or exit edges of basic block
|
686 |
|
|
BB and put move lists at the BB start or end if it is possible. In
|
687 |
|
|
other words, this decreases code duplication of allocno moves. */
|
688 |
|
|
static void
|
689 |
|
|
unify_moves (basic_block bb, bool start_p)
|
690 |
|
|
{
|
691 |
|
|
int i;
|
692 |
|
|
edge e;
|
693 |
|
|
move_t list;
|
694 |
|
|
VEC(edge,gc) *vec;
|
695 |
|
|
|
696 |
|
|
vec = (start_p ? bb->preds : bb->succs);
|
697 |
|
|
if (EDGE_COUNT (vec) == 0 || ! eq_edge_move_lists_p (vec))
|
698 |
|
|
return;
|
699 |
|
|
e = EDGE_I (vec, 0);
|
700 |
|
|
list = (move_t) e->aux;
|
701 |
|
|
if (! start_p && control_flow_insn_p (BB_END (bb)))
|
702 |
|
|
return;
|
703 |
|
|
e->aux = NULL;
|
704 |
|
|
for (i = EDGE_COUNT (vec) - 1; i > 0; i--)
|
705 |
|
|
{
|
706 |
|
|
e = EDGE_I (vec, i);
|
707 |
|
|
free_move_list ((move_t) e->aux);
|
708 |
|
|
e->aux = NULL;
|
709 |
|
|
}
|
710 |
|
|
if (start_p)
|
711 |
|
|
at_bb_start[bb->index] = list;
|
712 |
|
|
else
|
713 |
|
|
at_bb_end[bb->index] = list;
|
714 |
|
|
}
|
715 |
|
|
|
716 |
|
|
/* Last move (in move sequence being processed) setting up the
|
717 |
|
|
corresponding hard register. */
|
718 |
|
|
static move_t hard_regno_last_set[FIRST_PSEUDO_REGISTER];
|
719 |
|
|
|
720 |
|
|
/* If the element value is equal to CURR_TICK then the corresponding
|
721 |
|
|
element in `hard_regno_last_set' is defined and correct. */
|
722 |
|
|
static int hard_regno_last_set_check[FIRST_PSEUDO_REGISTER];
|
723 |
|
|
|
724 |
|
|
/* Last move (in move sequence being processed) setting up the
|
725 |
|
|
corresponding allocno. */
|
726 |
|
|
static move_t *allocno_last_set;
|
727 |
|
|
|
728 |
|
|
/* If the element value is equal to CURR_TICK then the corresponding
|
729 |
|
|
element in . `allocno_last_set' is defined and correct. */
|
730 |
|
|
static int *allocno_last_set_check;
|
731 |
|
|
|
732 |
|
|
/* Definition of vector of moves. */
|
733 |
|
|
DEF_VEC_P(move_t);
|
734 |
|
|
DEF_VEC_ALLOC_P(move_t, heap);
|
735 |
|
|
|
736 |
|
|
/* This vec contains moves sorted topologically (depth-first) on their
|
737 |
|
|
dependency graph. */
|
738 |
|
|
static VEC(move_t,heap) *move_vec;
|
739 |
|
|
|
740 |
|
|
/* The variable value is used to check correctness of values of
|
741 |
|
|
elements of arrays `hard_regno_last_set' and
|
742 |
|
|
`allocno_last_set_check'. */
|
743 |
|
|
static int curr_tick;
|
744 |
|
|
|
745 |
|
|
/* This recursive function traverses dependencies of MOVE and produces
|
746 |
|
|
topological sorting (in depth-first order). */
|
747 |
|
|
static void
|
748 |
|
|
traverse_moves (move_t move)
|
749 |
|
|
{
|
750 |
|
|
int i;
|
751 |
|
|
|
752 |
|
|
if (move->visited_p)
|
753 |
|
|
return;
|
754 |
|
|
move->visited_p = true;
|
755 |
|
|
for (i = move->deps_num - 1; i >= 0; i--)
|
756 |
|
|
traverse_moves (move->deps[i]);
|
757 |
|
|
VEC_safe_push (move_t, heap, move_vec, move);
|
758 |
|
|
}
|
759 |
|
|
|
760 |
|
|
/* Remove unnecessary moves in the LIST, makes topological sorting,
|
761 |
|
|
and removes cycles on hard reg dependencies by introducing new
|
762 |
|
|
allocnos assigned to memory and additional moves. It returns the
|
763 |
|
|
result move list. */
|
764 |
|
|
static move_t
|
765 |
|
|
modify_move_list (move_t list)
|
766 |
|
|
{
|
767 |
|
|
int i, n, nregs, hard_regno;
|
768 |
|
|
ira_allocno_t to, from;
|
769 |
|
|
move_t move, new_move, set_move, first, last;
|
770 |
|
|
|
771 |
|
|
if (list == NULL)
|
772 |
|
|
return NULL;
|
773 |
|
|
/* Creat move deps. */
|
774 |
|
|
curr_tick++;
|
775 |
|
|
for (move = list; move != NULL; move = move->next)
|
776 |
|
|
{
|
777 |
|
|
to = move->to;
|
778 |
|
|
if ((hard_regno = ALLOCNO_HARD_REGNO (to)) < 0)
|
779 |
|
|
continue;
|
780 |
|
|
nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (to)];
|
781 |
|
|
for (i = 0; i < nregs; i++)
|
782 |
|
|
{
|
783 |
|
|
hard_regno_last_set[hard_regno + i] = move;
|
784 |
|
|
hard_regno_last_set_check[hard_regno + i] = curr_tick;
|
785 |
|
|
}
|
786 |
|
|
}
|
787 |
|
|
for (move = list; move != NULL; move = move->next)
|
788 |
|
|
{
|
789 |
|
|
from = move->from;
|
790 |
|
|
to = move->to;
|
791 |
|
|
if ((hard_regno = ALLOCNO_HARD_REGNO (from)) >= 0)
|
792 |
|
|
{
|
793 |
|
|
nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (from)];
|
794 |
|
|
for (n = i = 0; i < nregs; i++)
|
795 |
|
|
if (hard_regno_last_set_check[hard_regno + i] == curr_tick
|
796 |
|
|
&& (ALLOCNO_REGNO (hard_regno_last_set[hard_regno + i]->to)
|
797 |
|
|
!= ALLOCNO_REGNO (from)))
|
798 |
|
|
n++;
|
799 |
|
|
move->deps = (move_t *) ira_allocate (n * sizeof (move_t));
|
800 |
|
|
for (n = i = 0; i < nregs; i++)
|
801 |
|
|
if (hard_regno_last_set_check[hard_regno + i] == curr_tick
|
802 |
|
|
&& (ALLOCNO_REGNO (hard_regno_last_set[hard_regno + i]->to)
|
803 |
|
|
!= ALLOCNO_REGNO (from)))
|
804 |
|
|
move->deps[n++] = hard_regno_last_set[hard_regno + i];
|
805 |
|
|
move->deps_num = n;
|
806 |
|
|
}
|
807 |
|
|
}
|
808 |
|
|
/* Toplogical sorting: */
|
809 |
|
|
VEC_truncate (move_t, move_vec, 0);
|
810 |
|
|
for (move = list; move != NULL; move = move->next)
|
811 |
|
|
traverse_moves (move);
|
812 |
|
|
last = NULL;
|
813 |
|
|
for (i = (int) VEC_length (move_t, move_vec) - 1; i >= 0; i--)
|
814 |
|
|
{
|
815 |
|
|
move = VEC_index (move_t, move_vec, i);
|
816 |
|
|
move->next = NULL;
|
817 |
|
|
if (last != NULL)
|
818 |
|
|
last->next = move;
|
819 |
|
|
last = move;
|
820 |
|
|
}
|
821 |
|
|
first = VEC_last (move_t, move_vec);
|
822 |
|
|
/* Removing cycles: */
|
823 |
|
|
curr_tick++;
|
824 |
|
|
VEC_truncate (move_t, move_vec, 0);
|
825 |
|
|
for (move = first; move != NULL; move = move->next)
|
826 |
|
|
{
|
827 |
|
|
from = move->from;
|
828 |
|
|
to = move->to;
|
829 |
|
|
if ((hard_regno = ALLOCNO_HARD_REGNO (from)) >= 0)
|
830 |
|
|
{
|
831 |
|
|
nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (from)];
|
832 |
|
|
for (i = 0; i < nregs; i++)
|
833 |
|
|
if (hard_regno_last_set_check[hard_regno + i] == curr_tick
|
834 |
|
|
&& ALLOCNO_HARD_REGNO
|
835 |
|
|
(hard_regno_last_set[hard_regno + i]->to) >= 0)
|
836 |
|
|
{
|
837 |
|
|
int n, j;
|
838 |
|
|
ira_allocno_t new_allocno;
|
839 |
|
|
|
840 |
|
|
set_move = hard_regno_last_set[hard_regno + i];
|
841 |
|
|
/* It does not matter what loop_tree_node (of TO or
|
842 |
|
|
FROM) to use for the new allocno because of
|
843 |
|
|
subsequent IRA internal representation
|
844 |
|
|
flattening. */
|
845 |
|
|
new_allocno
|
846 |
|
|
= create_new_allocno (ALLOCNO_REGNO (set_move->to),
|
847 |
|
|
ALLOCNO_LOOP_TREE_NODE (set_move->to));
|
848 |
|
|
ALLOCNO_MODE (new_allocno) = ALLOCNO_MODE (set_move->to);
|
849 |
|
|
ira_set_allocno_class (new_allocno,
|
850 |
|
|
ALLOCNO_CLASS (set_move->to));
|
851 |
|
|
ira_create_allocno_objects (new_allocno);
|
852 |
|
|
ALLOCNO_ASSIGNED_P (new_allocno) = true;
|
853 |
|
|
ALLOCNO_HARD_REGNO (new_allocno) = -1;
|
854 |
|
|
ALLOCNO_EMIT_DATA (new_allocno)->reg
|
855 |
|
|
= create_new_reg (allocno_emit_reg (set_move->to));
|
856 |
|
|
|
857 |
|
|
/* Make it possibly conflicting with all earlier
|
858 |
|
|
created allocnos. Cases where temporary allocnos
|
859 |
|
|
created to remove the cycles are quite rare. */
|
860 |
|
|
n = ALLOCNO_NUM_OBJECTS (new_allocno);
|
861 |
|
|
gcc_assert (n == ALLOCNO_NUM_OBJECTS (set_move->to));
|
862 |
|
|
for (j = 0; j < n; j++)
|
863 |
|
|
{
|
864 |
|
|
ira_object_t new_obj = ALLOCNO_OBJECT (new_allocno, j);
|
865 |
|
|
|
866 |
|
|
OBJECT_MIN (new_obj) = 0;
|
867 |
|
|
OBJECT_MAX (new_obj) = ira_objects_num - 1;
|
868 |
|
|
}
|
869 |
|
|
|
870 |
|
|
new_move = create_move (set_move->to, new_allocno);
|
871 |
|
|
set_move->to = new_allocno;
|
872 |
|
|
VEC_safe_push (move_t, heap, move_vec, new_move);
|
873 |
|
|
ira_move_loops_num++;
|
874 |
|
|
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
|
875 |
|
|
fprintf (ira_dump_file,
|
876 |
|
|
" Creating temporary allocno a%dr%d\n",
|
877 |
|
|
ALLOCNO_NUM (new_allocno),
|
878 |
|
|
REGNO (allocno_emit_reg (new_allocno)));
|
879 |
|
|
}
|
880 |
|
|
}
|
881 |
|
|
if ((hard_regno = ALLOCNO_HARD_REGNO (to)) < 0)
|
882 |
|
|
continue;
|
883 |
|
|
nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (to)];
|
884 |
|
|
for (i = 0; i < nregs; i++)
|
885 |
|
|
{
|
886 |
|
|
hard_regno_last_set[hard_regno + i] = move;
|
887 |
|
|
hard_regno_last_set_check[hard_regno + i] = curr_tick;
|
888 |
|
|
}
|
889 |
|
|
}
|
890 |
|
|
for (i = (int) VEC_length (move_t, move_vec) - 1; i >= 0; i--)
|
891 |
|
|
{
|
892 |
|
|
move = VEC_index (move_t, move_vec, i);
|
893 |
|
|
move->next = NULL;
|
894 |
|
|
last->next = move;
|
895 |
|
|
last = move;
|
896 |
|
|
}
|
897 |
|
|
return first;
|
898 |
|
|
}
|
899 |
|
|
|
900 |
|
|
/* Generate RTX move insns from the move list LIST. This updates
|
901 |
|
|
allocation cost using move execution frequency FREQ. */
|
902 |
|
|
static rtx
|
903 |
|
|
emit_move_list (move_t list, int freq)
|
904 |
|
|
{
|
905 |
|
|
int cost, regno;
|
906 |
|
|
rtx result, insn, set, to;
|
907 |
|
|
enum machine_mode mode;
|
908 |
|
|
enum reg_class aclass;
|
909 |
|
|
|
910 |
|
|
start_sequence ();
|
911 |
|
|
for (; list != NULL; list = list->next)
|
912 |
|
|
{
|
913 |
|
|
start_sequence ();
|
914 |
|
|
emit_move_insn (allocno_emit_reg (list->to),
|
915 |
|
|
allocno_emit_reg (list->from));
|
916 |
|
|
list->insn = get_insns ();
|
917 |
|
|
end_sequence ();
|
918 |
|
|
for (insn = list->insn; insn != NULL_RTX; insn = NEXT_INSN (insn))
|
919 |
|
|
{
|
920 |
|
|
/* The reload needs to have set up insn codes. If the
|
921 |
|
|
reload sets up insn codes by itself, it may fail because
|
922 |
|
|
insns will have hard registers instead of pseudos and
|
923 |
|
|
there may be no machine insn with given hard
|
924 |
|
|
registers. */
|
925 |
|
|
recog_memoized (insn);
|
926 |
|
|
/* Add insn to equiv init insn list if it is necessary.
|
927 |
|
|
Otherwise reload will not remove this insn if it decides
|
928 |
|
|
to use the equivalence. */
|
929 |
|
|
if ((set = single_set (insn)) != NULL_RTX)
|
930 |
|
|
{
|
931 |
|
|
to = SET_DEST (set);
|
932 |
|
|
if (GET_CODE (to) == SUBREG)
|
933 |
|
|
to = SUBREG_REG (to);
|
934 |
|
|
ira_assert (REG_P (to));
|
935 |
|
|
regno = REGNO (to);
|
936 |
|
|
if (regno >= ira_reg_equiv_len
|
937 |
|
|
|| (! ira_reg_equiv_invariant_p[regno]
|
938 |
|
|
&& ira_reg_equiv_const[regno] == NULL_RTX))
|
939 |
|
|
continue; /* regno has no equivalence. */
|
940 |
|
|
ira_assert ((int) VEC_length (reg_equivs_t, reg_equivs)
|
941 |
|
|
>= ira_reg_equiv_len);
|
942 |
|
|
reg_equiv_init (regno)
|
943 |
|
|
= gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init (regno));
|
944 |
|
|
}
|
945 |
|
|
}
|
946 |
|
|
emit_insn (list->insn);
|
947 |
|
|
mode = ALLOCNO_MODE (list->to);
|
948 |
|
|
aclass = ALLOCNO_CLASS (list->to);
|
949 |
|
|
cost = 0;
|
950 |
|
|
if (ALLOCNO_HARD_REGNO (list->to) < 0)
|
951 |
|
|
{
|
952 |
|
|
if (ALLOCNO_HARD_REGNO (list->from) >= 0)
|
953 |
|
|
{
|
954 |
|
|
cost = ira_memory_move_cost[mode][aclass][0] * freq;
|
955 |
|
|
ira_store_cost += cost;
|
956 |
|
|
}
|
957 |
|
|
}
|
958 |
|
|
else if (ALLOCNO_HARD_REGNO (list->from) < 0)
|
959 |
|
|
{
|
960 |
|
|
if (ALLOCNO_HARD_REGNO (list->to) >= 0)
|
961 |
|
|
{
|
962 |
|
|
cost = ira_memory_move_cost[mode][aclass][0] * freq;
|
963 |
|
|
ira_load_cost += cost;
|
964 |
|
|
}
|
965 |
|
|
}
|
966 |
|
|
else
|
967 |
|
|
{
|
968 |
|
|
ira_init_register_move_cost_if_necessary (mode);
|
969 |
|
|
cost = ira_register_move_cost[mode][aclass][aclass] * freq;
|
970 |
|
|
ira_shuffle_cost += cost;
|
971 |
|
|
}
|
972 |
|
|
ira_overall_cost += cost;
|
973 |
|
|
}
|
974 |
|
|
result = get_insns ();
|
975 |
|
|
end_sequence ();
|
976 |
|
|
return result;
|
977 |
|
|
}
|
978 |
|
|
|
979 |
|
|
/* Generate RTX move insns from move lists attached to basic blocks
|
980 |
|
|
and edges. */
|
981 |
|
|
static void
|
982 |
|
|
emit_moves (void)
|
983 |
|
|
{
|
984 |
|
|
basic_block bb;
|
985 |
|
|
edge_iterator ei;
|
986 |
|
|
edge e;
|
987 |
|
|
rtx insns, tmp;
|
988 |
|
|
|
989 |
|
|
FOR_EACH_BB (bb)
|
990 |
|
|
{
|
991 |
|
|
if (at_bb_start[bb->index] != NULL)
|
992 |
|
|
{
|
993 |
|
|
at_bb_start[bb->index] = modify_move_list (at_bb_start[bb->index]);
|
994 |
|
|
insns = emit_move_list (at_bb_start[bb->index],
|
995 |
|
|
REG_FREQ_FROM_BB (bb));
|
996 |
|
|
tmp = BB_HEAD (bb);
|
997 |
|
|
if (LABEL_P (tmp))
|
998 |
|
|
tmp = NEXT_INSN (tmp);
|
999 |
|
|
if (NOTE_INSN_BASIC_BLOCK_P (tmp))
|
1000 |
|
|
tmp = NEXT_INSN (tmp);
|
1001 |
|
|
if (tmp == BB_HEAD (bb))
|
1002 |
|
|
emit_insn_before (insns, tmp);
|
1003 |
|
|
else if (tmp != NULL_RTX)
|
1004 |
|
|
emit_insn_after (insns, PREV_INSN (tmp));
|
1005 |
|
|
else
|
1006 |
|
|
emit_insn_after (insns, get_last_insn ());
|
1007 |
|
|
}
|
1008 |
|
|
|
1009 |
|
|
if (at_bb_end[bb->index] != NULL)
|
1010 |
|
|
{
|
1011 |
|
|
at_bb_end[bb->index] = modify_move_list (at_bb_end[bb->index]);
|
1012 |
|
|
insns = emit_move_list (at_bb_end[bb->index], REG_FREQ_FROM_BB (bb));
|
1013 |
|
|
ira_assert (! control_flow_insn_p (BB_END (bb)));
|
1014 |
|
|
emit_insn_after (insns, BB_END (bb));
|
1015 |
|
|
}
|
1016 |
|
|
|
1017 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1018 |
|
|
{
|
1019 |
|
|
if (e->aux == NULL)
|
1020 |
|
|
continue;
|
1021 |
|
|
ira_assert ((e->flags & EDGE_ABNORMAL) == 0
|
1022 |
|
|
|| ! EDGE_CRITICAL_P (e));
|
1023 |
|
|
e->aux = modify_move_list ((move_t) e->aux);
|
1024 |
|
|
insert_insn_on_edge
|
1025 |
|
|
(emit_move_list ((move_t) e->aux,
|
1026 |
|
|
REG_FREQ_FROM_EDGE_FREQ (EDGE_FREQUENCY (e))),
|
1027 |
|
|
e);
|
1028 |
|
|
if (e->src->next_bb != e->dest)
|
1029 |
|
|
ira_additional_jumps_num++;
|
1030 |
|
|
}
|
1031 |
|
|
}
|
1032 |
|
|
}
|
1033 |
|
|
|
1034 |
|
|
/* Update costs of A and corresponding allocnos on upper levels on the
|
1035 |
|
|
loop tree from reading (if READ_P) or writing A on an execution
|
1036 |
|
|
path with FREQ. */
|
1037 |
|
|
static void
|
1038 |
|
|
update_costs (ira_allocno_t a, bool read_p, int freq)
|
1039 |
|
|
{
|
1040 |
|
|
ira_loop_tree_node_t parent;
|
1041 |
|
|
|
1042 |
|
|
for (;;)
|
1043 |
|
|
{
|
1044 |
|
|
ALLOCNO_NREFS (a)++;
|
1045 |
|
|
ALLOCNO_FREQ (a) += freq;
|
1046 |
|
|
ALLOCNO_MEMORY_COST (a)
|
1047 |
|
|
+= (ira_memory_move_cost[ALLOCNO_MODE (a)][ALLOCNO_CLASS (a)]
|
1048 |
|
|
[read_p ? 1 : 0] * freq);
|
1049 |
|
|
if (ALLOCNO_CAP (a) != NULL)
|
1050 |
|
|
a = ALLOCNO_CAP (a);
|
1051 |
|
|
else if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) == NULL
|
1052 |
|
|
|| (a = parent->regno_allocno_map[ALLOCNO_REGNO (a)]) == NULL)
|
1053 |
|
|
break;
|
1054 |
|
|
}
|
1055 |
|
|
}
|
1056 |
|
|
|
1057 |
|
|
/* Process moves from LIST with execution FREQ to add ranges, copies,
|
1058 |
|
|
and modify costs for allocnos involved in the moves. All regnos
|
1059 |
|
|
living through the list is in LIVE_THROUGH, and the loop tree node
|
1060 |
|
|
used to find corresponding allocnos is NODE. */
|
1061 |
|
|
static void
|
1062 |
|
|
add_range_and_copies_from_move_list (move_t list, ira_loop_tree_node_t node,
|
1063 |
|
|
bitmap live_through, int freq)
|
1064 |
|
|
{
|
1065 |
|
|
int start, n;
|
1066 |
|
|
unsigned int regno;
|
1067 |
|
|
move_t move;
|
1068 |
|
|
ira_allocno_t a;
|
1069 |
|
|
ira_copy_t cp;
|
1070 |
|
|
live_range_t r;
|
1071 |
|
|
bitmap_iterator bi;
|
1072 |
|
|
HARD_REG_SET hard_regs_live;
|
1073 |
|
|
|
1074 |
|
|
if (list == NULL)
|
1075 |
|
|
return;
|
1076 |
|
|
n = 0;
|
1077 |
|
|
EXECUTE_IF_SET_IN_BITMAP (live_through, FIRST_PSEUDO_REGISTER, regno, bi)
|
1078 |
|
|
n++;
|
1079 |
|
|
REG_SET_TO_HARD_REG_SET (hard_regs_live, live_through);
|
1080 |
|
|
/* This is a trick to guarantee that new ranges is not merged with
|
1081 |
|
|
the old ones. */
|
1082 |
|
|
ira_max_point++;
|
1083 |
|
|
start = ira_max_point;
|
1084 |
|
|
for (move = list; move != NULL; move = move->next)
|
1085 |
|
|
{
|
1086 |
|
|
ira_allocno_t from = move->from;
|
1087 |
|
|
ira_allocno_t to = move->to;
|
1088 |
|
|
int nr, i;
|
1089 |
|
|
|
1090 |
|
|
bitmap_clear_bit (live_through, ALLOCNO_REGNO (from));
|
1091 |
|
|
bitmap_clear_bit (live_through, ALLOCNO_REGNO (to));
|
1092 |
|
|
|
1093 |
|
|
nr = ALLOCNO_NUM_OBJECTS (to);
|
1094 |
|
|
for (i = 0; i < nr; i++)
|
1095 |
|
|
{
|
1096 |
|
|
ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
|
1097 |
|
|
if (OBJECT_CONFLICT_ARRAY (to_obj) == NULL)
|
1098 |
|
|
{
|
1099 |
|
|
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
|
1100 |
|
|
fprintf (ira_dump_file, " Allocate conflicts for a%dr%d\n",
|
1101 |
|
|
ALLOCNO_NUM (to), REGNO (allocno_emit_reg (to)));
|
1102 |
|
|
ira_allocate_object_conflicts (to_obj, n);
|
1103 |
|
|
}
|
1104 |
|
|
}
|
1105 |
|
|
ior_hard_reg_conflicts (from, &hard_regs_live);
|
1106 |
|
|
ior_hard_reg_conflicts (to, &hard_regs_live);
|
1107 |
|
|
|
1108 |
|
|
update_costs (from, true, freq);
|
1109 |
|
|
update_costs (to, false, freq);
|
1110 |
|
|
cp = ira_add_allocno_copy (from, to, freq, false, move->insn, NULL);
|
1111 |
|
|
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
|
1112 |
|
|
fprintf (ira_dump_file, " Adding cp%d:a%dr%d-a%dr%d\n",
|
1113 |
|
|
cp->num, ALLOCNO_NUM (cp->first),
|
1114 |
|
|
REGNO (allocno_emit_reg (cp->first)),
|
1115 |
|
|
ALLOCNO_NUM (cp->second),
|
1116 |
|
|
REGNO (allocno_emit_reg (cp->second)));
|
1117 |
|
|
|
1118 |
|
|
nr = ALLOCNO_NUM_OBJECTS (from);
|
1119 |
|
|
for (i = 0; i < nr; i++)
|
1120 |
|
|
{
|
1121 |
|
|
ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
|
1122 |
|
|
r = OBJECT_LIVE_RANGES (from_obj);
|
1123 |
|
|
if (r == NULL || r->finish >= 0)
|
1124 |
|
|
{
|
1125 |
|
|
ira_add_live_range_to_object (from_obj, start, ira_max_point);
|
1126 |
|
|
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
|
1127 |
|
|
fprintf (ira_dump_file,
|
1128 |
|
|
" Adding range [%d..%d] to allocno a%dr%d\n",
|
1129 |
|
|
start, ira_max_point, ALLOCNO_NUM (from),
|
1130 |
|
|
REGNO (allocno_emit_reg (from)));
|
1131 |
|
|
}
|
1132 |
|
|
else
|
1133 |
|
|
{
|
1134 |
|
|
r->finish = ira_max_point;
|
1135 |
|
|
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
|
1136 |
|
|
fprintf (ira_dump_file,
|
1137 |
|
|
" Adding range [%d..%d] to allocno a%dr%d\n",
|
1138 |
|
|
r->start, ira_max_point, ALLOCNO_NUM (from),
|
1139 |
|
|
REGNO (allocno_emit_reg (from)));
|
1140 |
|
|
}
|
1141 |
|
|
}
|
1142 |
|
|
ira_max_point++;
|
1143 |
|
|
nr = ALLOCNO_NUM_OBJECTS (to);
|
1144 |
|
|
for (i = 0; i < nr; i++)
|
1145 |
|
|
{
|
1146 |
|
|
ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
|
1147 |
|
|
ira_add_live_range_to_object (to_obj, ira_max_point, -1);
|
1148 |
|
|
}
|
1149 |
|
|
ira_max_point++;
|
1150 |
|
|
}
|
1151 |
|
|
for (move = list; move != NULL; move = move->next)
|
1152 |
|
|
{
|
1153 |
|
|
int nr, i;
|
1154 |
|
|
nr = ALLOCNO_NUM_OBJECTS (move->to);
|
1155 |
|
|
for (i = 0; i < nr; i++)
|
1156 |
|
|
{
|
1157 |
|
|
ira_object_t to_obj = ALLOCNO_OBJECT (move->to, i);
|
1158 |
|
|
r = OBJECT_LIVE_RANGES (to_obj);
|
1159 |
|
|
if (r->finish < 0)
|
1160 |
|
|
{
|
1161 |
|
|
r->finish = ira_max_point - 1;
|
1162 |
|
|
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
|
1163 |
|
|
fprintf (ira_dump_file,
|
1164 |
|
|
" Adding range [%d..%d] to allocno a%dr%d\n",
|
1165 |
|
|
r->start, r->finish, ALLOCNO_NUM (move->to),
|
1166 |
|
|
REGNO (allocno_emit_reg (move->to)));
|
1167 |
|
|
}
|
1168 |
|
|
}
|
1169 |
|
|
}
|
1170 |
|
|
EXECUTE_IF_SET_IN_BITMAP (live_through, FIRST_PSEUDO_REGISTER, regno, bi)
|
1171 |
|
|
{
|
1172 |
|
|
ira_allocno_t to;
|
1173 |
|
|
int nr, i;
|
1174 |
|
|
|
1175 |
|
|
a = node->regno_allocno_map[regno];
|
1176 |
|
|
if ((to = ALLOCNO_EMIT_DATA (a)->mem_optimized_dest) != NULL)
|
1177 |
|
|
a = to;
|
1178 |
|
|
nr = ALLOCNO_NUM_OBJECTS (a);
|
1179 |
|
|
for (i = 0; i < nr; i++)
|
1180 |
|
|
{
|
1181 |
|
|
ira_object_t obj = ALLOCNO_OBJECT (a, i);
|
1182 |
|
|
ira_add_live_range_to_object (obj, start, ira_max_point - 1);
|
1183 |
|
|
}
|
1184 |
|
|
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
|
1185 |
|
|
fprintf
|
1186 |
|
|
(ira_dump_file,
|
1187 |
|
|
" Adding range [%d..%d] to live through %s allocno a%dr%d\n",
|
1188 |
|
|
start, ira_max_point - 1,
|
1189 |
|
|
to != NULL ? "upper level" : "",
|
1190 |
|
|
ALLOCNO_NUM (a), REGNO (allocno_emit_reg (a)));
|
1191 |
|
|
}
|
1192 |
|
|
}
|
1193 |
|
|
|
1194 |
|
|
/* Process all move list to add ranges, conflicts, copies, and modify
|
1195 |
|
|
costs for allocnos involved in the moves. */
|
1196 |
|
|
static void
|
1197 |
|
|
add_ranges_and_copies (void)
|
1198 |
|
|
{
|
1199 |
|
|
basic_block bb;
|
1200 |
|
|
edge_iterator ei;
|
1201 |
|
|
edge e;
|
1202 |
|
|
ira_loop_tree_node_t node;
|
1203 |
|
|
bitmap live_through;
|
1204 |
|
|
|
1205 |
|
|
live_through = ira_allocate_bitmap ();
|
1206 |
|
|
FOR_EACH_BB (bb)
|
1207 |
|
|
{
|
1208 |
|
|
/* It does not matter what loop_tree_node (of source or
|
1209 |
|
|
destination block) to use for searching allocnos by their
|
1210 |
|
|
regnos because of subsequent IR flattening. */
|
1211 |
|
|
node = IRA_BB_NODE (bb)->parent;
|
1212 |
|
|
bitmap_copy (live_through, DF_LR_IN (bb));
|
1213 |
|
|
add_range_and_copies_from_move_list
|
1214 |
|
|
(at_bb_start[bb->index], node, live_through, REG_FREQ_FROM_BB (bb));
|
1215 |
|
|
bitmap_copy (live_through, DF_LR_OUT (bb));
|
1216 |
|
|
add_range_and_copies_from_move_list
|
1217 |
|
|
(at_bb_end[bb->index], node, live_through, REG_FREQ_FROM_BB (bb));
|
1218 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1219 |
|
|
{
|
1220 |
|
|
bitmap_and (live_through, DF_LR_IN (e->dest), DF_LR_OUT (bb));
|
1221 |
|
|
add_range_and_copies_from_move_list
|
1222 |
|
|
((move_t) e->aux, node, live_through,
|
1223 |
|
|
REG_FREQ_FROM_EDGE_FREQ (EDGE_FREQUENCY (e)));
|
1224 |
|
|
}
|
1225 |
|
|
}
|
1226 |
|
|
ira_free_bitmap (live_through);
|
1227 |
|
|
}
|
1228 |
|
|
|
1229 |
|
|
/* The entry function changes code and generates shuffling allocnos on
|
1230 |
|
|
region borders for the regional (LOOPS_P is TRUE in this case)
|
1231 |
|
|
register allocation. */
|
1232 |
|
|
void
|
1233 |
|
|
ira_emit (bool loops_p)
|
1234 |
|
|
{
|
1235 |
|
|
basic_block bb;
|
1236 |
|
|
rtx insn;
|
1237 |
|
|
edge_iterator ei;
|
1238 |
|
|
edge e;
|
1239 |
|
|
ira_allocno_t a;
|
1240 |
|
|
ira_allocno_iterator ai;
|
1241 |
|
|
|
1242 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
1243 |
|
|
ALLOCNO_EMIT_DATA (a)->reg = regno_reg_rtx[ALLOCNO_REGNO (a)];
|
1244 |
|
|
if (! loops_p)
|
1245 |
|
|
return;
|
1246 |
|
|
at_bb_start = (move_t *) ira_allocate (sizeof (move_t) * last_basic_block);
|
1247 |
|
|
memset (at_bb_start, 0, sizeof (move_t) * last_basic_block);
|
1248 |
|
|
at_bb_end = (move_t *) ira_allocate (sizeof (move_t) * last_basic_block);
|
1249 |
|
|
memset (at_bb_end, 0, sizeof (move_t) * last_basic_block);
|
1250 |
|
|
local_allocno_bitmap = ira_allocate_bitmap ();
|
1251 |
|
|
used_regno_bitmap = ira_allocate_bitmap ();
|
1252 |
|
|
renamed_regno_bitmap = ira_allocate_bitmap ();
|
1253 |
|
|
max_regno_before_changing = max_reg_num ();
|
1254 |
|
|
ira_traverse_loop_tree (true, ira_loop_tree_root, change_loop, NULL);
|
1255 |
|
|
set_allocno_somewhere_renamed_p ();
|
1256 |
|
|
ira_free_bitmap (used_regno_bitmap);
|
1257 |
|
|
ira_free_bitmap (renamed_regno_bitmap);
|
1258 |
|
|
ira_free_bitmap (local_allocno_bitmap);
|
1259 |
|
|
setup_entered_from_non_parent_p ();
|
1260 |
|
|
FOR_EACH_BB (bb)
|
1261 |
|
|
{
|
1262 |
|
|
at_bb_start[bb->index] = NULL;
|
1263 |
|
|
at_bb_end[bb->index] = NULL;
|
1264 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1265 |
|
|
if (e->dest != EXIT_BLOCK_PTR)
|
1266 |
|
|
generate_edge_moves (e);
|
1267 |
|
|
}
|
1268 |
|
|
allocno_last_set
|
1269 |
|
|
= (move_t *) ira_allocate (sizeof (move_t) * max_reg_num ());
|
1270 |
|
|
allocno_last_set_check
|
1271 |
|
|
= (int *) ira_allocate (sizeof (int) * max_reg_num ());
|
1272 |
|
|
memset (allocno_last_set_check, 0, sizeof (int) * max_reg_num ());
|
1273 |
|
|
memset (hard_regno_last_set_check, 0, sizeof (hard_regno_last_set_check));
|
1274 |
|
|
curr_tick = 0;
|
1275 |
|
|
FOR_EACH_BB (bb)
|
1276 |
|
|
unify_moves (bb, true);
|
1277 |
|
|
FOR_EACH_BB (bb)
|
1278 |
|
|
unify_moves (bb, false);
|
1279 |
|
|
move_vec = VEC_alloc (move_t, heap, ira_allocnos_num);
|
1280 |
|
|
emit_moves ();
|
1281 |
|
|
add_ranges_and_copies ();
|
1282 |
|
|
/* Clean up: */
|
1283 |
|
|
FOR_EACH_BB (bb)
|
1284 |
|
|
{
|
1285 |
|
|
free_move_list (at_bb_start[bb->index]);
|
1286 |
|
|
free_move_list (at_bb_end[bb->index]);
|
1287 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1288 |
|
|
{
|
1289 |
|
|
free_move_list ((move_t) e->aux);
|
1290 |
|
|
e->aux = NULL;
|
1291 |
|
|
}
|
1292 |
|
|
}
|
1293 |
|
|
VEC_free (move_t, heap, move_vec);
|
1294 |
|
|
ira_free (allocno_last_set_check);
|
1295 |
|
|
ira_free (allocno_last_set);
|
1296 |
|
|
commit_edge_insertions ();
|
1297 |
|
|
/* Fix insn codes. It is necessary to do it before reload because
|
1298 |
|
|
reload assumes initial insn codes defined. The insn codes can be
|
1299 |
|
|
invalidated by CFG infrastructure for example in jump
|
1300 |
|
|
redirection. */
|
1301 |
|
|
FOR_EACH_BB (bb)
|
1302 |
|
|
FOR_BB_INSNS_REVERSE (bb, insn)
|
1303 |
|
|
if (INSN_P (insn))
|
1304 |
|
|
recog_memoized (insn);
|
1305 |
|
|
ira_free (at_bb_end);
|
1306 |
|
|
ira_free (at_bb_start);
|
1307 |
|
|
}
|