OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ira.c] - Blame information for rev 809

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 684 jeremybenn
/* Integrated Register Allocator (IRA) entry point.
2
   Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
3
   Free Software Foundation, Inc.
4
   Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
 
6
This file is part of GCC.
7
 
8
GCC is free software; you can redistribute it and/or modify it under
9
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11
version.
12
 
13
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14
WARRANTY; without even the implied warranty of MERCHANTABILITY or
15
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16
for more details.
17
 
18
You should have received a copy of the GNU General Public License
19
along with GCC; see the file COPYING3.  If not see
20
<http://www.gnu.org/licenses/>.  */
21
 
22
/* The integrated register allocator (IRA) is a
23
   regional register allocator performing graph coloring on a top-down
24
   traversal of nested regions.  Graph coloring in a region is based
25
   on Chaitin-Briggs algorithm.  It is called integrated because
26
   register coalescing, register live range splitting, and choosing a
27
   better hard register are done on-the-fly during coloring.  Register
28
   coalescing and choosing a cheaper hard register is done by hard
29
   register preferencing during hard register assigning.  The live
30
   range splitting is a byproduct of the regional register allocation.
31
 
32
   Major IRA notions are:
33
 
34
     o *Region* is a part of CFG where graph coloring based on
35
       Chaitin-Briggs algorithm is done.  IRA can work on any set of
36
       nested CFG regions forming a tree.  Currently the regions are
37
       the entire function for the root region and natural loops for
38
       the other regions.  Therefore data structure representing a
39
       region is called loop_tree_node.
40
 
41
     o *Allocno class* is a register class used for allocation of
42
       given allocno.  It means that only hard register of given
43
       register class can be assigned to given allocno.  In reality,
44
       even smaller subset of (*profitable*) hard registers can be
45
       assigned.  In rare cases, the subset can be even smaller
46
       because our modification of Chaitin-Briggs algorithm requires
47
       that sets of hard registers can be assigned to allocnos forms a
48
       forest, i.e. the sets can be ordered in a way where any
49
       previous set is not intersected with given set or is a superset
50
       of given set.
51
 
52
     o *Pressure class* is a register class belonging to a set of
53
       register classes containing all of the hard-registers available
54
       for register allocation.  The set of all pressure classes for a
55
       target is defined in the corresponding machine-description file
56
       according some criteria.  Register pressure is calculated only
57
       for pressure classes and it affects some IRA decisions as
58
       forming allocation regions.
59
 
60
     o *Allocno* represents the live range of a pseudo-register in a
61
       region.  Besides the obvious attributes like the corresponding
62
       pseudo-register number, allocno class, conflicting allocnos and
63
       conflicting hard-registers, there are a few allocno attributes
64
       which are important for understanding the allocation algorithm:
65
 
66
       - *Live ranges*.  This is a list of ranges of *program points*
67
         where the allocno lives.  Program points represent places
68
         where a pseudo can be born or become dead (there are
69
         approximately two times more program points than the insns)
70
         and they are represented by integers starting with 0.  The
71
         live ranges are used to find conflicts between allocnos.
72
         They also play very important role for the transformation of
73
         the IRA internal representation of several regions into a one
74
         region representation.  The later is used during the reload
75
         pass work because each allocno represents all of the
76
         corresponding pseudo-registers.
77
 
78
       - *Hard-register costs*.  This is a vector of size equal to the
79
         number of available hard-registers of the allocno class.  The
80
         cost of a callee-clobbered hard-register for an allocno is
81
         increased by the cost of save/restore code around the calls
82
         through the given allocno's life.  If the allocno is a move
83
         instruction operand and another operand is a hard-register of
84
         the allocno class, the cost of the hard-register is decreased
85
         by the move cost.
86
 
87
         When an allocno is assigned, the hard-register with minimal
88
         full cost is used.  Initially, a hard-register's full cost is
89
         the corresponding value from the hard-register's cost vector.
90
         If the allocno is connected by a *copy* (see below) to
91
         another allocno which has just received a hard-register, the
92
         cost of the hard-register is decreased.  Before choosing a
93
         hard-register for an allocno, the allocno's current costs of
94
         the hard-registers are modified by the conflict hard-register
95
         costs of all of the conflicting allocnos which are not
96
         assigned yet.
97
 
98
       - *Conflict hard-register costs*.  This is a vector of the same
99
         size as the hard-register costs vector.  To permit an
100
         unassigned allocno to get a better hard-register, IRA uses
101
         this vector to calculate the final full cost of the
102
         available hard-registers.  Conflict hard-register costs of an
103
         unassigned allocno are also changed with a change of the
104
         hard-register cost of the allocno when a copy involving the
105
         allocno is processed as described above.  This is done to
106
         show other unassigned allocnos that a given allocno prefers
107
         some hard-registers in order to remove the move instruction
108
         corresponding to the copy.
109
 
110
     o *Cap*.  If a pseudo-register does not live in a region but
111
       lives in a nested region, IRA creates a special allocno called
112
       a cap in the outer region.  A region cap is also created for a
113
       subregion cap.
114
 
115
     o *Copy*.  Allocnos can be connected by copies.  Copies are used
116
       to modify hard-register costs for allocnos during coloring.
117
       Such modifications reflects a preference to use the same
118
       hard-register for the allocnos connected by copies.  Usually
119
       copies are created for move insns (in this case it results in
120
       register coalescing).  But IRA also creates copies for operands
121
       of an insn which should be assigned to the same hard-register
122
       due to constraints in the machine description (it usually
123
       results in removing a move generated in reload to satisfy
124
       the constraints) and copies referring to the allocno which is
125
       the output operand of an instruction and the allocno which is
126
       an input operand dying in the instruction (creation of such
127
       copies results in less register shuffling).  IRA *does not*
128
       create copies between the same register allocnos from different
129
       regions because we use another technique for propagating
130
       hard-register preference on the borders of regions.
131
 
132
   Allocnos (including caps) for the upper region in the region tree
133
   *accumulate* information important for coloring from allocnos with
134
   the same pseudo-register from nested regions.  This includes
135
   hard-register and memory costs, conflicts with hard-registers,
136
   allocno conflicts, allocno copies and more.  *Thus, attributes for
137
   allocnos in a region have the same values as if the region had no
138
   subregions*.  It means that attributes for allocnos in the
139
   outermost region corresponding to the function have the same values
140
   as though the allocation used only one region which is the entire
141
   function.  It also means that we can look at IRA work as if the
142
   first IRA did allocation for all function then it improved the
143
   allocation for loops then their subloops and so on.
144
 
145
   IRA major passes are:
146
 
147
     o Building IRA internal representation which consists of the
148
       following subpasses:
149
 
150
       * First, IRA builds regions and creates allocnos (file
151
         ira-build.c) and initializes most of their attributes.
152
 
153
       * Then IRA finds an allocno class for each allocno and
154
         calculates its initial (non-accumulated) cost of memory and
155
         each hard-register of its allocno class (file ira-cost.c).
156
 
157
       * IRA creates live ranges of each allocno, calulates register
158
         pressure for each pressure class in each region, sets up
159
         conflict hard registers for each allocno and info about calls
160
         the allocno lives through (file ira-lives.c).
161
 
162
       * IRA removes low register pressure loops from the regions
163
         mostly to speed IRA up (file ira-build.c).
164
 
165
       * IRA propagates accumulated allocno info from lower region
166
         allocnos to corresponding upper region allocnos (file
167
         ira-build.c).
168
 
169
       * IRA creates all caps (file ira-build.c).
170
 
171
       * Having live-ranges of allocnos and their classes, IRA creates
172
         conflicting allocnos for each allocno.  Conflicting allocnos
173
         are stored as a bit vector or array of pointers to the
174
         conflicting allocnos whatever is more profitable (file
175
         ira-conflicts.c).  At this point IRA creates allocno copies.
176
 
177
     o Coloring.  Now IRA has all necessary info to start graph coloring
178
       process.  It is done in each region on top-down traverse of the
179
       region tree (file ira-color.c).  There are following subpasses:
180
 
181
       * Finding profitable hard registers of corresponding allocno
182
         class for each allocno.  For example, only callee-saved hard
183
         registers are frequently profitable for allocnos living
184
         through colors.  If the profitable hard register set of
185
         allocno does not form a tree based on subset relation, we use
186
         some approximation to form the tree.  This approximation is
187
         used to figure out trivial colorability of allocnos.  The
188
         approximation is a pretty rare case.
189
 
190
       * Putting allocnos onto the coloring stack.  IRA uses Briggs
191
         optimistic coloring which is a major improvement over
192
         Chaitin's coloring.  Therefore IRA does not spill allocnos at
193
         this point.  There is some freedom in the order of putting
194
         allocnos on the stack which can affect the final result of
195
         the allocation.  IRA uses some heuristics to improve the
196
         order.
197
 
198
         We also use a modification of Chaitin-Briggs algorithm which
199
         works for intersected register classes of allocnos.  To
200
         figure out trivial colorability of allocnos, the mentioned
201
         above tree of hard register sets is used.  To get an idea how
202
         the algorithm works in i386 example, let us consider an
203
         allocno to which any general hard register can be assigned.
204
         If the allocno conflicts with eight allocnos to which only
205
         EAX register can be assigned, given allocno is still
206
         trivially colorable because all conflicting allocnos might be
207
         assigned only to EAX and all other general hard registers are
208
         still free.
209
 
210
         To get an idea of the used trivial colorability criterion, it
211
         is also useful to read article "Graph-Coloring Register
212
         Allocation for Irregular Architectures" by Michael D. Smith
213
         and Glen Holloway.  Major difference between the article
214
         approach and approach used in IRA is that Smith's approach
215
         takes register classes only from machine description and IRA
216
         calculate register classes from intermediate code too
217
         (e.g. an explicit usage of hard registers in RTL code for
218
         parameter passing can result in creation of additional
219
         register classes which contain or exclude the hard
220
         registers).  That makes IRA approach useful for improving
221
         coloring even for architectures with regular register files
222
         and in fact some benchmarking shows the improvement for
223
         regular class architectures is even bigger than for irregular
224
         ones.  Another difference is that Smith's approach chooses
225
         intersection of classes of all insn operands in which a given
226
         pseudo occurs.  IRA can use bigger classes if it is still
227
         more profitable than memory usage.
228
 
229
       * Popping the allocnos from the stack and assigning them hard
230
         registers.  If IRA can not assign a hard register to an
231
         allocno and the allocno is coalesced, IRA undoes the
232
         coalescing and puts the uncoalesced allocnos onto the stack in
233
         the hope that some such allocnos will get a hard register
234
         separately.  If IRA fails to assign hard register or memory
235
         is more profitable for it, IRA spills the allocno.  IRA
236
         assigns the allocno the hard-register with minimal full
237
         allocation cost which reflects the cost of usage of the
238
         hard-register for the allocno and cost of usage of the
239
         hard-register for allocnos conflicting with given allocno.
240
 
241
       * Chaitin-Briggs coloring assigns as many pseudos as possible
242
         to hard registers.  After coloringh we try to improve
243
         allocation with cost point of view.  We improve the
244
         allocation by spilling some allocnos and assigning the freed
245
         hard registers to other allocnos if it decreases the overall
246
         allocation cost.
247
 
248
       * After allono assigning in the region, IRA modifies the hard
249
         register and memory costs for the corresponding allocnos in
250
         the subregions to reflect the cost of possible loads, stores,
251
         or moves on the border of the region and its subregions.
252
         When default regional allocation algorithm is used
253
         (-fira-algorithm=mixed), IRA just propagates the assignment
254
         for allocnos if the register pressure in the region for the
255
         corresponding pressure class is less than number of available
256
         hard registers for given pressure class.
257
 
258
     o Spill/restore code moving.  When IRA performs an allocation
259
       by traversing regions in top-down order, it does not know what
260
       happens below in the region tree.  Therefore, sometimes IRA
261
       misses opportunities to perform a better allocation.  A simple
262
       optimization tries to improve allocation in a region having
263
       subregions and containing in another region.  If the
264
       corresponding allocnos in the subregion are spilled, it spills
265
       the region allocno if it is profitable.  The optimization
266
       implements a simple iterative algorithm performing profitable
267
       transformations while they are still possible.  It is fast in
268
       practice, so there is no real need for a better time complexity
269
       algorithm.
270
 
271
     o Code change.  After coloring, two allocnos representing the
272
       same pseudo-register outside and inside a region respectively
273
       may be assigned to different locations (hard-registers or
274
       memory).  In this case IRA creates and uses a new
275
       pseudo-register inside the region and adds code to move allocno
276
       values on the region's borders.  This is done during top-down
277
       traversal of the regions (file ira-emit.c).  In some
278
       complicated cases IRA can create a new allocno to move allocno
279
       values (e.g. when a swap of values stored in two hard-registers
280
       is needed).  At this stage, the new allocno is marked as
281
       spilled.  IRA still creates the pseudo-register and the moves
282
       on the region borders even when both allocnos were assigned to
283
       the same hard-register.  If the reload pass spills a
284
       pseudo-register for some reason, the effect will be smaller
285
       because another allocno will still be in the hard-register.  In
286
       most cases, this is better then spilling both allocnos.  If
287
       reload does not change the allocation for the two
288
       pseudo-registers, the trivial move will be removed by
289
       post-reload optimizations.  IRA does not generate moves for
290
       allocnos assigned to the same hard register when the default
291
       regional allocation algorithm is used and the register pressure
292
       in the region for the corresponding pressure class is less than
293
       number of available hard registers for given pressure class.
294
       IRA also does some optimizations to remove redundant stores and
295
       to reduce code duplication on the region borders.
296
 
297
     o Flattening internal representation.  After changing code, IRA
298
       transforms its internal representation for several regions into
299
       one region representation (file ira-build.c).  This process is
300
       called IR flattening.  Such process is more complicated than IR
301
       rebuilding would be, but is much faster.
302
 
303
     o After IR flattening, IRA tries to assign hard registers to all
304
       spilled allocnos.  This is impelemented by a simple and fast
305
       priority coloring algorithm (see function
306
       ira_reassign_conflict_allocnos::ira-color.c).  Here new allocnos
307
       created during the code change pass can be assigned to hard
308
       registers.
309
 
310
     o At the end IRA calls the reload pass.  The reload pass
311
       communicates with IRA through several functions in file
312
       ira-color.c to improve its decisions in
313
 
314
       * sharing stack slots for the spilled pseudos based on IRA info
315
         about pseudo-register conflicts.
316
 
317
       * reassigning hard-registers to all spilled pseudos at the end
318
         of each reload iteration.
319
 
320
       * choosing a better hard-register to spill based on IRA info
321
         about pseudo-register live ranges and the register pressure
322
         in places where the pseudo-register lives.
323
 
324
   IRA uses a lot of data representing the target processors.  These
325
   data are initilized in file ira.c.
326
 
327
   If function has no loops (or the loops are ignored when
328
   -fira-algorithm=CB is used), we have classic Chaitin-Briggs
329
   coloring (only instead of separate pass of coalescing, we use hard
330
   register preferencing).  In such case, IRA works much faster
331
   because many things are not made (like IR flattening, the
332
   spill/restore optimization, and the code change).
333
 
334
   Literature is worth to read for better understanding the code:
335
 
336
   o Preston Briggs, Keith D. Cooper, Linda Torczon.  Improvements to
337
     Graph Coloring Register Allocation.
338
 
339
   o David Callahan, Brian Koblenz.  Register allocation via
340
     hierarchical graph coloring.
341
 
342
   o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
343
     Coloring Register Allocation: A Study of the Chaitin-Briggs and
344
     Callahan-Koblenz Algorithms.
345
 
346
   o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
347
     Register Allocation Based on Graph Fusion.
348
 
349
   o Michael D. Smith and Glenn Holloway.  Graph-Coloring Register
350
     Allocation for Irregular Architectures
351
 
352
   o Vladimir Makarov. The Integrated Register Allocator for GCC.
353
 
354
   o Vladimir Makarov.  The top-down register allocator for irregular
355
     register file architectures.
356
 
357
*/
358
 
359
 
360
#include "config.h"
361
#include "system.h"
362
#include "coretypes.h"
363
#include "tm.h"
364
#include "regs.h"
365
#include "rtl.h"
366
#include "tm_p.h"
367
#include "target.h"
368
#include "flags.h"
369
#include "obstack.h"
370
#include "bitmap.h"
371
#include "hard-reg-set.h"
372
#include "basic-block.h"
373
#include "df.h"
374
#include "expr.h"
375
#include "recog.h"
376
#include "params.h"
377
#include "timevar.h"
378
#include "tree-pass.h"
379
#include "output.h"
380
#include "except.h"
381
#include "reload.h"
382
#include "diagnostic-core.h"
383
#include "integrate.h"
384
#include "ggc.h"
385
#include "ira-int.h"
386
#include "dce.h"
387
 
388
 
389
struct target_ira default_target_ira;
390
struct target_ira_int default_target_ira_int;
391
#if SWITCHABLE_TARGET
392
struct target_ira *this_target_ira = &default_target_ira;
393
struct target_ira_int *this_target_ira_int = &default_target_ira_int;
394
#endif
395
 
396
/* A modified value of flag `-fira-verbose' used internally.  */
397
int internal_flag_ira_verbose;
398
 
399
/* Dump file of the allocator if it is not NULL.  */
400
FILE *ira_dump_file;
401
 
402
/* The number of elements in the following array.  */
403
int ira_spilled_reg_stack_slots_num;
404
 
405
/* The following array contains info about spilled pseudo-registers
406
   stack slots used in current function so far.  */
407
struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
408
 
409
/* Correspondingly overall cost of the allocation, overall cost before
410
   reload, cost of the allocnos assigned to hard-registers, cost of
411
   the allocnos assigned to memory, cost of loads, stores and register
412
   move insns generated for pseudo-register live range splitting (see
413
   ira-emit.c).  */
414
int ira_overall_cost, overall_cost_before;
415
int ira_reg_cost, ira_mem_cost;
416
int ira_load_cost, ira_store_cost, ira_shuffle_cost;
417
int ira_move_loops_num, ira_additional_jumps_num;
418
 
419
/* All registers that can be eliminated.  */
420
 
421
HARD_REG_SET eliminable_regset;
422
 
423
/* Temporary hard reg set used for a different calculation.  */
424
static HARD_REG_SET temp_hard_regset;
425
 
426
 
427
 
428
/* The function sets up the map IRA_REG_MODE_HARD_REGSET.  */
429
static void
430
setup_reg_mode_hard_regset (void)
431
{
432
  int i, m, hard_regno;
433
 
434
  for (m = 0; m < NUM_MACHINE_MODES; m++)
435
    for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
436
      {
437
        CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
438
        for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
439
          if (hard_regno + i < FIRST_PSEUDO_REGISTER)
440
            SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
441
                              hard_regno + i);
442
      }
443
}
444
 
445
 
446
#define no_unit_alloc_regs \
447
  (this_target_ira_int->x_no_unit_alloc_regs)
448
 
449
/* The function sets up the three arrays declared above.  */
450
static void
451
setup_class_hard_regs (void)
452
{
453
  int cl, i, hard_regno, n;
454
  HARD_REG_SET processed_hard_reg_set;
455
 
456
  ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
457
  for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
458
    {
459
      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
460
      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
461
      CLEAR_HARD_REG_SET (processed_hard_reg_set);
462
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
463
        {
464
          ira_non_ordered_class_hard_regs[cl][i] = -1;
465
          ira_class_hard_reg_index[cl][i] = -1;
466
        }
467
      for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
468
        {
469
#ifdef REG_ALLOC_ORDER
470
          hard_regno = reg_alloc_order[i];
471
#else
472
          hard_regno = i;
473
#endif
474
          if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
475
            continue;
476
          SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
477
          if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
478
            ira_class_hard_reg_index[cl][hard_regno] = -1;
479
          else
480
            {
481
              ira_class_hard_reg_index[cl][hard_regno] = n;
482
              ira_class_hard_regs[cl][n++] = hard_regno;
483
            }
484
        }
485
      ira_class_hard_regs_num[cl] = n;
486
      for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
487
        if (TEST_HARD_REG_BIT (temp_hard_regset, i))
488
          ira_non_ordered_class_hard_regs[cl][n++] = i;
489
      ira_assert (ira_class_hard_regs_num[cl] == n);
490
    }
491
}
492
 
493
/* Set up IRA_AVAILABLE_CLASS_REGS.  */
494
static void
495
setup_available_class_regs (void)
496
{
497
  int i, j;
498
 
499
  memset (ira_available_class_regs, 0, sizeof (ira_available_class_regs));
500
  for (i = 0; i < N_REG_CLASSES; i++)
501
    {
502
      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
503
      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
504
      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
505
        if (TEST_HARD_REG_BIT (temp_hard_regset, j))
506
          ira_available_class_regs[i]++;
507
    }
508
}
509
 
510
/* Set up global variables defining info about hard registers for the
511
   allocation.  These depend on USE_HARD_FRAME_P whose TRUE value means
512
   that we can use the hard frame pointer for the allocation.  */
513
static void
514
setup_alloc_regs (bool use_hard_frame_p)
515
{
516
#ifdef ADJUST_REG_ALLOC_ORDER
517
  ADJUST_REG_ALLOC_ORDER;
518
#endif
519
  COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
520
  if (! use_hard_frame_p)
521
    SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
522
  setup_class_hard_regs ();
523
  setup_available_class_regs ();
524
}
525
 
526
 
527
 
528
#define alloc_reg_class_subclasses \
529
  (this_target_ira_int->x_alloc_reg_class_subclasses)
530
 
531
/* Initialize the table of subclasses of each reg class.  */
532
static void
533
setup_reg_subclasses (void)
534
{
535
  int i, j;
536
  HARD_REG_SET temp_hard_regset2;
537
 
538
  for (i = 0; i < N_REG_CLASSES; i++)
539
    for (j = 0; j < N_REG_CLASSES; j++)
540
      alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
541
 
542
  for (i = 0; i < N_REG_CLASSES; i++)
543
    {
544
      if (i == (int) NO_REGS)
545
        continue;
546
 
547
      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
548
      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
549
      if (hard_reg_set_empty_p (temp_hard_regset))
550
        continue;
551
      for (j = 0; j < N_REG_CLASSES; j++)
552
        if (i != j)
553
          {
554
            enum reg_class *p;
555
 
556
            COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
557
            AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
558
            if (! hard_reg_set_subset_p (temp_hard_regset,
559
                                         temp_hard_regset2))
560
              continue;
561
            p = &alloc_reg_class_subclasses[j][0];
562
            while (*p != LIM_REG_CLASSES) p++;
563
            *p = (enum reg_class) i;
564
          }
565
    }
566
}
567
 
568
 
569
 
570
/* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST.  */
571
static void
572
setup_class_subset_and_memory_move_costs (void)
573
{
574
  int cl, cl2, mode, cost;
575
  HARD_REG_SET temp_hard_regset2;
576
 
577
  for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
578
    ira_memory_move_cost[mode][NO_REGS][0]
579
      = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
580
  for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
581
    {
582
      if (cl != (int) NO_REGS)
583
        for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
584
          {
585
            ira_max_memory_move_cost[mode][cl][0]
586
              = ira_memory_move_cost[mode][cl][0]
587
              = memory_move_cost ((enum machine_mode) mode,
588
                                  (reg_class_t) cl, false);
589
            ira_max_memory_move_cost[mode][cl][1]
590
              = ira_memory_move_cost[mode][cl][1]
591
              = memory_move_cost ((enum machine_mode) mode,
592
                                  (reg_class_t) cl, true);
593
            /* Costs for NO_REGS are used in cost calculation on the
594
               1st pass when the preferred register classes are not
595
               known yet.  In this case we take the best scenario.  */
596
            if (ira_memory_move_cost[mode][NO_REGS][0]
597
                > ira_memory_move_cost[mode][cl][0])
598
              ira_max_memory_move_cost[mode][NO_REGS][0]
599
                = ira_memory_move_cost[mode][NO_REGS][0]
600
                = ira_memory_move_cost[mode][cl][0];
601
            if (ira_memory_move_cost[mode][NO_REGS][1]
602
                > ira_memory_move_cost[mode][cl][1])
603
              ira_max_memory_move_cost[mode][NO_REGS][1]
604
                = ira_memory_move_cost[mode][NO_REGS][1]
605
                = ira_memory_move_cost[mode][cl][1];
606
          }
607
    }
608
  for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
609
    for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
610
      {
611
        COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
612
        AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
613
        COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
614
        AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
615
        ira_class_subset_p[cl][cl2]
616
          = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
617
        if (! hard_reg_set_empty_p (temp_hard_regset2)
618
            && hard_reg_set_subset_p (reg_class_contents[cl2],
619
                                      reg_class_contents[cl]))
620
          for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
621
            {
622
              cost = ira_memory_move_cost[mode][cl2][0];
623
              if (cost > ira_max_memory_move_cost[mode][cl][0])
624
                ira_max_memory_move_cost[mode][cl][0] = cost;
625
              cost = ira_memory_move_cost[mode][cl2][1];
626
              if (cost > ira_max_memory_move_cost[mode][cl][1])
627
                ira_max_memory_move_cost[mode][cl][1] = cost;
628
            }
629
      }
630
  for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
631
    for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
632
      {
633
        ira_memory_move_cost[mode][cl][0]
634
          = ira_max_memory_move_cost[mode][cl][0];
635
        ira_memory_move_cost[mode][cl][1]
636
          = ira_max_memory_move_cost[mode][cl][1];
637
      }
638
  setup_reg_subclasses ();
639
}
640
 
641
 
642
 
643
/* Define the following macro if allocation through malloc if
644
   preferable.  */
645
#define IRA_NO_OBSTACK
646
 
647
#ifndef IRA_NO_OBSTACK
648
/* Obstack used for storing all dynamic data (except bitmaps) of the
649
   IRA.  */
650
static struct obstack ira_obstack;
651
#endif
652
 
653
/* Obstack used for storing all bitmaps of the IRA.  */
654
static struct bitmap_obstack ira_bitmap_obstack;
655
 
656
/* Allocate memory of size LEN for IRA data.  */
657
void *
658
ira_allocate (size_t len)
659
{
660
  void *res;
661
 
662
#ifndef IRA_NO_OBSTACK
663
  res = obstack_alloc (&ira_obstack, len);
664
#else
665
  res = xmalloc (len);
666
#endif
667
  return res;
668
}
669
 
670
/* Free memory ADDR allocated for IRA data.  */
671
void
672
ira_free (void *addr ATTRIBUTE_UNUSED)
673
{
674
#ifndef IRA_NO_OBSTACK
675
  /* do nothing */
676
#else
677
  free (addr);
678
#endif
679
}
680
 
681
 
682
/* Allocate and returns bitmap for IRA.  */
683
bitmap
684
ira_allocate_bitmap (void)
685
{
686
  return BITMAP_ALLOC (&ira_bitmap_obstack);
687
}
688
 
689
/* Free bitmap B allocated for IRA.  */
690
void
691
ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
692
{
693
  /* do nothing */
694
}
695
 
696
 
697
 
698
/* Output information about allocation of all allocnos (except for
699
   caps) into file F.  */
700
void
701
ira_print_disposition (FILE *f)
702
{
703
  int i, n, max_regno;
704
  ira_allocno_t a;
705
  basic_block bb;
706
 
707
  fprintf (f, "Disposition:");
708
  max_regno = max_reg_num ();
709
  for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
710
    for (a = ira_regno_allocno_map[i];
711
         a != NULL;
712
         a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
713
      {
714
        if (n % 4 == 0)
715
          fprintf (f, "\n");
716
        n++;
717
        fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
718
        if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
719
          fprintf (f, "b%-3d", bb->index);
720
        else
721
          fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
722
        if (ALLOCNO_HARD_REGNO (a) >= 0)
723
          fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
724
        else
725
          fprintf (f, " mem");
726
      }
727
  fprintf (f, "\n");
728
}
729
 
730
/* Outputs information about allocation of all allocnos into
731
   stderr.  */
732
void
733
ira_debug_disposition (void)
734
{
735
  ira_print_disposition (stderr);
736
}
737
 
738
 
739
 
740
/* Set up ira_stack_reg_pressure_class which is the biggest pressure
741
   register class containing stack registers or NO_REGS if there are
742
   no stack registers.  To find this class, we iterate through all
743
   register pressure classes and choose the first register pressure
744
   class containing all the stack registers and having the biggest
745
   size.  */
746
static void
747
setup_stack_reg_pressure_class (void)
748
{
749
  ira_stack_reg_pressure_class = NO_REGS;
750
#ifdef STACK_REGS
751
  {
752
    int i, best, size;
753
    enum reg_class cl;
754
    HARD_REG_SET temp_hard_regset2;
755
 
756
    CLEAR_HARD_REG_SET (temp_hard_regset);
757
    for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
758
      SET_HARD_REG_BIT (temp_hard_regset, i);
759
    best = 0;
760
    for (i = 0; i < ira_pressure_classes_num; i++)
761
      {
762
        cl = ira_pressure_classes[i];
763
        COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
764
        AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
765
        size = hard_reg_set_size (temp_hard_regset2);
766
        if (best < size)
767
          {
768
            best = size;
769
            ira_stack_reg_pressure_class = cl;
770
          }
771
      }
772
  }
773
#endif
774
}
775
 
776
/* Find pressure classes which are register classes for which we
777
   calculate register pressure in IRA, register pressure sensitive
778
   insn scheduling, and register pressure sensitive loop invariant
779
   motion.
780
 
781
   To make register pressure calculation easy, we always use
782
   non-intersected register pressure classes.  A move of hard
783
   registers from one register pressure class is not more expensive
784
   than load and store of the hard registers.  Most likely an allocno
785
   class will be a subset of a register pressure class and in many
786
   cases a register pressure class.  That makes usage of register
787
   pressure classes a good approximation to find a high register
788
   pressure.  */
789
static void
790
setup_pressure_classes (void)
791
{
792
  int cost, i, n, curr;
793
  int cl, cl2;
794
  enum reg_class pressure_classes[N_REG_CLASSES];
795
  int m;
796
  HARD_REG_SET temp_hard_regset2;
797
  bool insert_p;
798
 
799
  n = 0;
800
  for (cl = 0; cl < N_REG_CLASSES; cl++)
801
    {
802
      if (ira_available_class_regs[cl] == 0)
803
        continue;
804
      if (ira_available_class_regs[cl] != 1
805
          /* A register class without subclasses may contain a few
806
             hard registers and movement between them is costly
807
             (e.g. SPARC FPCC registers).  We still should consider it
808
             as a candidate for a pressure class.  */
809
          && alloc_reg_class_subclasses[cl][0] != LIM_REG_CLASSES)
810
        {
811
          /* Check that the moves between any hard registers of the
812
             current class are not more expensive for a legal mode
813
             than load/store of the hard registers of the current
814
             class.  Such class is a potential candidate to be a
815
             register pressure class.  */
816
          for (m = 0; m < NUM_MACHINE_MODES; m++)
817
            {
818
              COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
819
              AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
820
              AND_COMPL_HARD_REG_SET (temp_hard_regset,
821
                                      ira_prohibited_class_mode_regs[cl][m]);
822
              if (hard_reg_set_empty_p (temp_hard_regset))
823
                continue;
824
              ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
825
              cost = ira_register_move_cost[m][cl][cl];
826
              if (cost <= ira_max_memory_move_cost[m][cl][1]
827
                  || cost <= ira_max_memory_move_cost[m][cl][0])
828
                break;
829
            }
830
          if (m >= NUM_MACHINE_MODES)
831
            continue;
832
        }
833
      curr = 0;
834
      insert_p = true;
835
      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
836
      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
837
      /* Remove so far added pressure classes which are subset of the
838
         current candidate class.  Prefer GENERAL_REGS as a pressure
839
         register class to another class containing the same
840
         allocatable hard registers.  We do this because machine
841
         dependent cost hooks might give wrong costs for the latter
842
         class but always give the right cost for the former class
843
         (GENERAL_REGS).  */
844
      for (i = 0; i < n; i++)
845
        {
846
          cl2 = pressure_classes[i];
847
          COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
848
          AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
849
          if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
850
              && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
851
                  || cl2 == (int) GENERAL_REGS))
852
            {
853
              pressure_classes[curr++] = (enum reg_class) cl2;
854
              insert_p = false;
855
              continue;
856
            }
857
          if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
858
              && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
859
                  || cl == (int) GENERAL_REGS))
860
            continue;
861
          if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
862
            insert_p = false;
863
          pressure_classes[curr++] = (enum reg_class) cl2;
864
        }
865
      /* If the current candidate is a subset of a so far added
866
         pressure class, don't add it to the list of the pressure
867
         classes.  */
868
      if (insert_p)
869
        pressure_classes[curr++] = (enum reg_class) cl;
870
      n = curr;
871
    }
872
#ifdef ENABLE_IRA_CHECKING
873
  {
874
    HARD_REG_SET ignore_hard_regs;
875
 
876
    /* Check pressure classes correctness: here we check that hard
877
       registers from all register pressure classes contains all hard
878
       registers available for the allocation.  */
879
    CLEAR_HARD_REG_SET (temp_hard_regset);
880
    CLEAR_HARD_REG_SET (temp_hard_regset2);
881
    COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
882
    for (cl = 0; cl < LIM_REG_CLASSES; cl++)
883
      {
884
        /* For some targets (like MIPS with MD_REGS), there are some
885
           classes with hard registers available for allocation but
886
           not able to hold value of any mode.  */
887
        for (m = 0; m < NUM_MACHINE_MODES; m++)
888
          if (contains_reg_of_mode[cl][m])
889
            break;
890
        if (m >= NUM_MACHINE_MODES)
891
          {
892
            IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
893
            continue;
894
          }
895
        for (i = 0; i < n; i++)
896
          if ((int) pressure_classes[i] == cl)
897
            break;
898
        IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
899
        if (i < n)
900
          IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
901
      }
902
    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
903
      /* Some targets (like SPARC with ICC reg) have alocatable regs
904
         for which no reg class is defined.  */
905
      if (REGNO_REG_CLASS (i) == NO_REGS)
906
        SET_HARD_REG_BIT (ignore_hard_regs, i);
907
    AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
908
    AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
909
    ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
910
  }
911
#endif
912
  ira_pressure_classes_num = 0;
913
  for (i = 0; i < n; i++)
914
    {
915
      cl = (int) pressure_classes[i];
916
      ira_reg_pressure_class_p[cl] = true;
917
      ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
918
    }
919
  setup_stack_reg_pressure_class ();
920
}
921
 
922
/* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
923
   IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
924
 
925
   Target may have many subtargets and not all target hard regiters can
926
   be used for allocation, e.g. x86 port in 32-bit mode can not use
927
   hard registers introduced in x86-64 like r8-r15).  Some classes
928
   might have the same allocatable hard registers, e.g.  INDEX_REGS
929
   and GENERAL_REGS in x86 port in 32-bit mode.  To decrease different
930
   calculations efforts we introduce allocno classes which contain
931
   unique non-empty sets of allocatable hard-registers.
932
 
933
   Pseudo class cost calculation in ira-costs.c is very expensive.
934
   Therefore we are trying to decrease number of classes involved in
935
   such calculation.  Register classes used in the cost calculation
936
   are called important classes.  They are allocno classes and other
937
   non-empty classes whose allocatable hard register sets are inside
938
   of an allocno class hard register set.  From the first sight, it
939
   looks like that they are just allocno classes.  It is not true.  In
940
   example of x86-port in 32-bit mode, allocno classes will contain
941
   GENERAL_REGS but not LEGACY_REGS (because allocatable hard
942
   registers are the same for the both classes).  The important
943
   classes will contain GENERAL_REGS and LEGACY_REGS.  It is done
944
   because a machine description insn constraint may refers for
945
   LEGACY_REGS and code in ira-costs.c is mostly base on investigation
946
   of the insn constraints.  */
947
static void
948
setup_allocno_and_important_classes (void)
949
{
950
  int i, j, n, cl;
951
  bool set_p;
952
  HARD_REG_SET temp_hard_regset2;
953
  static enum reg_class classes[LIM_REG_CLASSES + 1];
954
 
955
  n = 0;
956
  /* Collect classes which contain unique sets of allocatable hard
957
     registers.  Prefer GENERAL_REGS to other classes containing the
958
     same set of hard registers.  */
959
  for (i = 0; i < LIM_REG_CLASSES; i++)
960
    {
961
      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
962
      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
963
      for (j = 0; j < n; j++)
964
        {
965
          cl = classes[j];
966
          COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
967
          AND_COMPL_HARD_REG_SET (temp_hard_regset2,
968
                                  no_unit_alloc_regs);
969
          if (hard_reg_set_equal_p (temp_hard_regset,
970
                                    temp_hard_regset2))
971
            break;
972
        }
973
      if (j >= n)
974
        classes[n++] = (enum reg_class) i;
975
      else if (i == GENERAL_REGS)
976
        /* Prefer general regs.  For i386 example, it means that
977
           we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
978
           (all of them consists of the same available hard
979
           registers).  */
980
        classes[j] = (enum reg_class) i;
981
    }
982
  classes[n] = LIM_REG_CLASSES;
983
 
984
  /* Set up classes which can be used for allocnos as classes
985
     conatining non-empty unique sets of allocatable hard
986
     registers.  */
987
  ira_allocno_classes_num = 0;
988
  for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
989
    {
990
      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
991
      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
992
      if (hard_reg_set_empty_p (temp_hard_regset))
993
        continue;
994
      ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
995
    }
996
  ira_important_classes_num = 0;
997
  /* Add non-allocno classes containing to non-empty set of
998
     allocatable hard regs.  */
999
  for (cl = 0; cl < N_REG_CLASSES; cl++)
1000
    {
1001
      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1002
      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1003
      if (! hard_reg_set_empty_p (temp_hard_regset))
1004
        {
1005
          set_p = false;
1006
          for (j = 0; j < ira_allocno_classes_num; j++)
1007
            {
1008
              COPY_HARD_REG_SET (temp_hard_regset2,
1009
                                 reg_class_contents[ira_allocno_classes[j]]);
1010
              AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1011
              if ((enum reg_class) cl == ira_allocno_classes[j])
1012
                break;
1013
              else if (hard_reg_set_subset_p (temp_hard_regset,
1014
                                              temp_hard_regset2))
1015
                set_p = true;
1016
            }
1017
          if (set_p && j >= ira_allocno_classes_num)
1018
            ira_important_classes[ira_important_classes_num++]
1019
              = (enum reg_class) cl;
1020
        }
1021
    }
1022
  /* Now add allocno classes to the important classes.  */
1023
  for (j = 0; j < ira_allocno_classes_num; j++)
1024
    ira_important_classes[ira_important_classes_num++]
1025
      = ira_allocno_classes[j];
1026
  for (cl = 0; cl < N_REG_CLASSES; cl++)
1027
    {
1028
      ira_reg_allocno_class_p[cl] = false;
1029
      ira_reg_pressure_class_p[cl] = false;
1030
    }
1031
  for (j = 0; j < ira_allocno_classes_num; j++)
1032
    ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1033
  setup_pressure_classes ();
1034
}
1035
 
1036
/* Setup translation in CLASS_TRANSLATE of all classes into a class
1037
   given by array CLASSES of length CLASSES_NUM.  The function is used
1038
   make translation any reg class to an allocno class or to an
1039
   pressure class.  This translation is necessary for some
1040
   calculations when we can use only allocno or pressure classes and
1041
   such translation represents an approximate representation of all
1042
   classes.
1043
 
1044
   The translation in case when allocatable hard register set of a
1045
   given class is subset of allocatable hard register set of a class
1046
   in CLASSES is pretty simple.  We use smallest classes from CLASSES
1047
   containing a given class.  If allocatable hard register set of a
1048
   given class is not a subset of any corresponding set of a class
1049
   from CLASSES, we use the cheapest (with load/store point of view)
1050
   class from CLASSES whose set intersects with given class set */
1051
static void
1052
setup_class_translate_array (enum reg_class *class_translate,
1053
                             int classes_num, enum reg_class *classes)
1054
{
1055
  int cl, mode;
1056
  enum reg_class aclass, best_class, *cl_ptr;
1057
  int i, cost, min_cost, best_cost;
1058
 
1059
  for (cl = 0; cl < N_REG_CLASSES; cl++)
1060
    class_translate[cl] = NO_REGS;
1061
 
1062
  for (i = 0; i < classes_num; i++)
1063
    {
1064
      aclass = classes[i];
1065
      for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1066
           (cl = *cl_ptr) != LIM_REG_CLASSES;
1067
           cl_ptr++)
1068
        if (class_translate[cl] == NO_REGS)
1069
          class_translate[cl] = aclass;
1070
      class_translate[aclass] = aclass;
1071
    }
1072
  /* For classes which are not fully covered by one of given classes
1073
     (in other words covered by more one given class), use the
1074
     cheapest class.  */
1075
  for (cl = 0; cl < N_REG_CLASSES; cl++)
1076
    {
1077
      if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1078
        continue;
1079
      best_class = NO_REGS;
1080
      best_cost = INT_MAX;
1081
      for (i = 0; i < classes_num; i++)
1082
        {
1083
          aclass = classes[i];
1084
          COPY_HARD_REG_SET (temp_hard_regset,
1085
                             reg_class_contents[aclass]);
1086
          AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1087
          AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1088
          if (! hard_reg_set_empty_p (temp_hard_regset))
1089
            {
1090
              min_cost = INT_MAX;
1091
              for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1092
                {
1093
                  cost = (ira_memory_move_cost[mode][cl][0]
1094
                          + ira_memory_move_cost[mode][cl][1]);
1095
                  if (min_cost > cost)
1096
                    min_cost = cost;
1097
                }
1098
              if (best_class == NO_REGS || best_cost > min_cost)
1099
                {
1100
                  best_class = aclass;
1101
                  best_cost = min_cost;
1102
                }
1103
            }
1104
        }
1105
      class_translate[cl] = best_class;
1106
    }
1107
}
1108
 
1109
/* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1110
   IRA_PRESSURE_CLASS_TRANSLATE.  */
1111
static void
1112
setup_class_translate (void)
1113
{
1114
  setup_class_translate_array (ira_allocno_class_translate,
1115
                               ira_allocno_classes_num, ira_allocno_classes);
1116
  setup_class_translate_array (ira_pressure_class_translate,
1117
                               ira_pressure_classes_num, ira_pressure_classes);
1118
}
1119
 
1120
/* Order numbers of allocno classes in original target allocno class
1121
   array, -1 for non-allocno classes.  */
1122
static int allocno_class_order[N_REG_CLASSES];
1123
 
1124
/* The function used to sort the important classes.  */
1125
static int
1126
comp_reg_classes_func (const void *v1p, const void *v2p)
1127
{
1128
  enum reg_class cl1 = *(const enum reg_class *) v1p;
1129
  enum reg_class cl2 = *(const enum reg_class *) v2p;
1130
  enum reg_class tcl1, tcl2;
1131
  int diff;
1132
 
1133
  tcl1 = ira_allocno_class_translate[cl1];
1134
  tcl2 = ira_allocno_class_translate[cl2];
1135
  if (tcl1 != NO_REGS && tcl2 != NO_REGS
1136
      && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1137
    return diff;
1138
  return (int) cl1 - (int) cl2;
1139
}
1140
 
1141
/* For correct work of function setup_reg_class_relation we need to
1142
   reorder important classes according to the order of their allocno
1143
   classes.  It places important classes containing the same
1144
   allocatable hard register set adjacent to each other and allocno
1145
   class with the allocatable hard register set right after the other
1146
   important classes with the same set.
1147
 
1148
   In example from comments of function
1149
   setup_allocno_and_important_classes, it places LEGACY_REGS and
1150
   GENERAL_REGS close to each other and GENERAL_REGS is after
1151
   LEGACY_REGS.  */
1152
static void
1153
reorder_important_classes (void)
1154
{
1155
  int i;
1156
 
1157
  for (i = 0; i < N_REG_CLASSES; i++)
1158
    allocno_class_order[i] = -1;
1159
  for (i = 0; i < ira_allocno_classes_num; i++)
1160
    allocno_class_order[ira_allocno_classes[i]] = i;
1161
  qsort (ira_important_classes, ira_important_classes_num,
1162
         sizeof (enum reg_class), comp_reg_classes_func);
1163
  for (i = 0; i < ira_important_classes_num; i++)
1164
    ira_important_class_nums[ira_important_classes[i]] = i;
1165
}
1166
 
1167
/* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1168
   IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1169
   IRA_REG_CLASSES_INTERSECT_P.  For the meaning of the relations,
1170
   please see corresponding comments in ira-int.h.  */
1171
static void
1172
setup_reg_class_relations (void)
1173
{
1174
  int i, cl1, cl2, cl3;
1175
  HARD_REG_SET intersection_set, union_set, temp_set2;
1176
  bool important_class_p[N_REG_CLASSES];
1177
 
1178
  memset (important_class_p, 0, sizeof (important_class_p));
1179
  for (i = 0; i < ira_important_classes_num; i++)
1180
    important_class_p[ira_important_classes[i]] = true;
1181
  for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1182
    {
1183
      ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1184
      for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1185
        {
1186
          ira_reg_classes_intersect_p[cl1][cl2] = false;
1187
          ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1188
          COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1189
          AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1190
          COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1191
          AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1192
          if (hard_reg_set_empty_p (temp_hard_regset)
1193
              && hard_reg_set_empty_p (temp_set2))
1194
            {
1195
              /* The both classes have no allocatable hard registers
1196
                 -- take all class hard registers into account and use
1197
                 reg_class_subunion and reg_class_superunion.  */
1198
              for (i = 0;; i++)
1199
                {
1200
                  cl3 = reg_class_subclasses[cl1][i];
1201
                  if (cl3 == LIM_REG_CLASSES)
1202
                    break;
1203
                  if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1204
                                          (enum reg_class) cl3))
1205
                    ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1206
                }
1207
              ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1208
              ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1209
              continue;
1210
            }
1211
          ira_reg_classes_intersect_p[cl1][cl2]
1212
            = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1213
          if (important_class_p[cl1] && important_class_p[cl2]
1214
              && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1215
            {
1216
              /* CL1 and CL2 are important classes and CL1 allocatable
1217
                 hard register set is inside of CL2 allocatable hard
1218
                 registers -- make CL1 a superset of CL2.  */
1219
              enum reg_class *p;
1220
 
1221
              p = &ira_reg_class_super_classes[cl1][0];
1222
              while (*p != LIM_REG_CLASSES)
1223
                p++;
1224
              *p++ = (enum reg_class) cl2;
1225
              *p = LIM_REG_CLASSES;
1226
            }
1227
          ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1228
          ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1229
          COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1230
          AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1231
          AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1232
          COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1233
          IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1234
          AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1235
          for (i = 0; i < ira_important_classes_num; i++)
1236
            {
1237
              cl3 = ira_important_classes[i];
1238
              COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1239
              AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1240
              if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1241
                {
1242
                  /* CL3 allocatable hard register set is inside of
1243
                     intersection of allocatable hard register sets
1244
                     of CL1 and CL2.  */
1245
                  COPY_HARD_REG_SET
1246
                    (temp_set2,
1247
                     reg_class_contents[(int)
1248
                                        ira_reg_class_intersect[cl1][cl2]]);
1249
                  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1250
                  if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1251
                      /* If the allocatable hard register sets are the
1252
                         same, prefer GENERAL_REGS or the smallest
1253
                         class for debugging purposes.  */
1254
                      || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1255
                          && (cl3 == GENERAL_REGS
1256
                              || (ira_reg_class_intersect[cl1][cl2] != GENERAL_REGS
1257
                                  && hard_reg_set_subset_p
1258
                                     (reg_class_contents[cl3],
1259
                                      reg_class_contents
1260
                                      [(int) ira_reg_class_intersect[cl1][cl2]])))))
1261
                    ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1262
                }
1263
              if (hard_reg_set_subset_p (temp_hard_regset, union_set))
1264
                {
1265
                  /* CL3 allocatbale hard register set is inside of
1266
                     union of allocatable hard register sets of CL1
1267
                     and CL2.  */
1268
                  COPY_HARD_REG_SET
1269
                    (temp_set2,
1270
                     reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1271
                  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1272
                  if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1273
                      || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1274
 
1275
                          && (! hard_reg_set_equal_p (temp_set2,
1276
                                                      temp_hard_regset)
1277
                              || cl3 == GENERAL_REGS
1278
                              /* If the allocatable hard register sets are the
1279
                                 same, prefer GENERAL_REGS or the smallest
1280
                                 class for debugging purposes.  */
1281
                              || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1282
                                  && hard_reg_set_subset_p
1283
                                     (reg_class_contents[cl3],
1284
                                      reg_class_contents
1285
                                      [(int) ira_reg_class_subunion[cl1][cl2]])))))
1286
                    ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1287
                }
1288
              if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1289
                {
1290
                  /* CL3 allocatable hard register set contains union
1291
                     of allocatable hard register sets of CL1 and
1292
                     CL2.  */
1293
                  COPY_HARD_REG_SET
1294
                    (temp_set2,
1295
                     reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1296
                  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1297
                  if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1298
                      || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1299
 
1300
                          && (! hard_reg_set_equal_p (temp_set2,
1301
                                                      temp_hard_regset)
1302
                              || cl3 == GENERAL_REGS
1303
                              /* If the allocatable hard register sets are the
1304
                                 same, prefer GENERAL_REGS or the smallest
1305
                                 class for debugging purposes.  */
1306
                              || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1307
                                  && hard_reg_set_subset_p
1308
                                     (reg_class_contents[cl3],
1309
                                      reg_class_contents
1310
                                      [(int) ira_reg_class_superunion[cl1][cl2]])))))
1311
                    ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1312
                }
1313
            }
1314
        }
1315
    }
1316
}
1317
 
1318
/* Output all possible allocno classes and the translation map into
1319
   file F.  */
1320
static void
1321
print_classes (FILE *f, bool pressure_p)
1322
{
1323
  int classes_num = (pressure_p
1324
                     ? ira_pressure_classes_num : ira_allocno_classes_num);
1325
  enum reg_class *classes = (pressure_p
1326
                             ? ira_pressure_classes : ira_allocno_classes);
1327
  enum reg_class *class_translate = (pressure_p
1328
                                     ? ira_pressure_class_translate
1329
                                     : ira_allocno_class_translate);
1330
  static const char *const reg_class_names[] = REG_CLASS_NAMES;
1331
  int i;
1332
 
1333
  fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1334
  for (i = 0; i < classes_num; i++)
1335
    fprintf (f, " %s", reg_class_names[classes[i]]);
1336
  fprintf (f, "\nClass translation:\n");
1337
  for (i = 0; i < N_REG_CLASSES; i++)
1338
    fprintf (f, " %s -> %s\n", reg_class_names[i],
1339
             reg_class_names[class_translate[i]]);
1340
}
1341
 
1342
/* Output all possible allocno and translation classes and the
1343
   translation maps into stderr.  */
1344
void
1345
ira_debug_allocno_classes (void)
1346
{
1347
  print_classes (stderr, false);
1348
  print_classes (stderr, true);
1349
}
1350
 
1351
/* Set up different arrays concerning class subsets, allocno and
1352
   important classes.  */
1353
static void
1354
find_reg_classes (void)
1355
{
1356
  setup_allocno_and_important_classes ();
1357
  setup_class_translate ();
1358
  reorder_important_classes ();
1359
  setup_reg_class_relations ();
1360
}
1361
 
1362
 
1363
 
1364
/* Set up the array above.  */
1365
static void
1366
setup_hard_regno_aclass (void)
1367
{
1368
  int i;
1369
 
1370
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1371
    {
1372
#if 1
1373
      ira_hard_regno_allocno_class[i]
1374
        = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1375
           ? NO_REGS
1376
           : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1377
#else
1378
      int j;
1379
      enum reg_class cl;
1380
      ira_hard_regno_allocno_class[i] = NO_REGS;
1381
      for (j = 0; j < ira_allocno_classes_num; j++)
1382
        {
1383
          cl = ira_allocno_classes[j];
1384
          if (ira_class_hard_reg_index[cl][i] >= 0)
1385
            {
1386
              ira_hard_regno_allocno_class[i] = cl;
1387
              break;
1388
            }
1389
        }
1390
#endif
1391
    }
1392
}
1393
 
1394
 
1395
 
1396
/* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps.  */
1397
static void
1398
setup_reg_class_nregs (void)
1399
{
1400
  int i, cl, cl2, m;
1401
 
1402
  for (m = 0; m < MAX_MACHINE_MODE; m++)
1403
    {
1404
      for (cl = 0; cl < N_REG_CLASSES; cl++)
1405
        ira_reg_class_max_nregs[cl][m]
1406
          = ira_reg_class_min_nregs[cl][m]
1407
          = targetm.class_max_nregs ((reg_class_t) cl, (enum machine_mode) m);
1408
      for (cl = 0; cl < N_REG_CLASSES; cl++)
1409
        for (i = 0;
1410
             (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1411
             i++)
1412
          if (ira_reg_class_min_nregs[cl2][m]
1413
              < ira_reg_class_min_nregs[cl][m])
1414
            ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1415
    }
1416
}
1417
 
1418
 
1419
 
1420
/* Set up IRA_PROHIBITED_CLASS_MODE_REGS.  */
1421
static void
1422
setup_prohibited_class_mode_regs (void)
1423
{
1424
  int j, k, hard_regno, cl;
1425
 
1426
  for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1427
    {
1428
      for (j = 0; j < NUM_MACHINE_MODES; j++)
1429
        {
1430
          CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1431
          for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1432
            {
1433
              hard_regno = ira_class_hard_regs[cl][k];
1434
              if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
1435
                SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1436
                                  hard_regno);
1437
            }
1438
        }
1439
    }
1440
}
1441
 
1442
/* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1443
   spanning from one register pressure class to another one.  It is
1444
   called after defining the pressure classes.  */
1445
static void
1446
clarify_prohibited_class_mode_regs (void)
1447
{
1448
  int j, k, hard_regno, cl, pclass, nregs;
1449
 
1450
  for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1451
    for (j = 0; j < NUM_MACHINE_MODES; j++)
1452
      for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1453
        {
1454
          hard_regno = ira_class_hard_regs[cl][k];
1455
          if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1456
            continue;
1457
          nregs = hard_regno_nregs[hard_regno][j];
1458
          if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1459
            {
1460
              SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1461
                                hard_regno);
1462
               continue;
1463
            }
1464
          pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1465
          for (nregs-- ;nregs >= 0; nregs--)
1466
            if (((enum reg_class) pclass
1467
                 != ira_pressure_class_translate[REGNO_REG_CLASS
1468
                                                 (hard_regno + nregs)]))
1469
              {
1470
                SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1471
                                  hard_regno);
1472
                break;
1473
              }
1474
        }
1475
}
1476
 
1477
 
1478
 
1479
/* Allocate and initialize IRA_REGISTER_MOVE_COST,
1480
   IRA_MAX_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST,
1481
   IRA_MAY_MOVE_OUT_COST, IRA_MAX_MAY_MOVE_IN_COST, and
1482
   IRA_MAX_MAY_MOVE_OUT_COST for MODE if it is not done yet.  */
1483
void
1484
ira_init_register_move_cost (enum machine_mode mode)
1485
{
1486
  int cl1, cl2, cl3;
1487
 
1488
  ira_assert (ira_register_move_cost[mode] == NULL
1489
              && ira_max_register_move_cost[mode] == NULL
1490
              && ira_may_move_in_cost[mode] == NULL
1491
              && ira_may_move_out_cost[mode] == NULL
1492
              && ira_max_may_move_in_cost[mode] == NULL
1493
              && ira_max_may_move_out_cost[mode] == NULL);
1494
  if (move_cost[mode] == NULL)
1495
    init_move_cost (mode);
1496
  ira_register_move_cost[mode] = move_cost[mode];
1497
  /* Don't use ira_allocate because the tables exist out of scope of a
1498
     IRA call.  */
1499
  ira_max_register_move_cost[mode]
1500
    = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1501
  memcpy (ira_max_register_move_cost[mode], ira_register_move_cost[mode],
1502
          sizeof (move_table) * N_REG_CLASSES);
1503
  for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1504
    {
1505
      /* Some subclasses are to small to have enough registers to hold
1506
         a value of MODE.  Just ignore them.  */
1507
      if (ira_reg_class_max_nregs[cl1][mode] > ira_available_class_regs[cl1])
1508
        continue;
1509
      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1510
      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1511
      if (hard_reg_set_empty_p (temp_hard_regset))
1512
        continue;
1513
      for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1514
        if (hard_reg_set_subset_p (reg_class_contents[cl1],
1515
                                   reg_class_contents[cl2]))
1516
          for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1517
            {
1518
              if (ira_max_register_move_cost[mode][cl2][cl3]
1519
                  < ira_register_move_cost[mode][cl1][cl3])
1520
                ira_max_register_move_cost[mode][cl2][cl3]
1521
                  = ira_register_move_cost[mode][cl1][cl3];
1522
              if (ira_max_register_move_cost[mode][cl3][cl2]
1523
                  < ira_register_move_cost[mode][cl3][cl1])
1524
                ira_max_register_move_cost[mode][cl3][cl2]
1525
                  = ira_register_move_cost[mode][cl3][cl1];
1526
            }
1527
    }
1528
  ira_may_move_in_cost[mode]
1529
    = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1530
  memcpy (ira_may_move_in_cost[mode], may_move_in_cost[mode],
1531
          sizeof (move_table) * N_REG_CLASSES);
1532
  ira_may_move_out_cost[mode]
1533
    = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1534
  memcpy (ira_may_move_out_cost[mode], may_move_out_cost[mode],
1535
          sizeof (move_table) * N_REG_CLASSES);
1536
  ira_max_may_move_in_cost[mode]
1537
    = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1538
  memcpy (ira_max_may_move_in_cost[mode], ira_max_register_move_cost[mode],
1539
          sizeof (move_table) * N_REG_CLASSES);
1540
  ira_max_may_move_out_cost[mode]
1541
    = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1542
  memcpy (ira_max_may_move_out_cost[mode], ira_max_register_move_cost[mode],
1543
          sizeof (move_table) * N_REG_CLASSES);
1544
  for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1545
    {
1546
      for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1547
        {
1548
          COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl2]);
1549
          AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1550
          if (hard_reg_set_empty_p (temp_hard_regset))
1551
            continue;
1552
          if (ira_class_subset_p[cl1][cl2])
1553
            ira_may_move_in_cost[mode][cl1][cl2] = 0;
1554
          if (ira_class_subset_p[cl2][cl1])
1555
            ira_may_move_out_cost[mode][cl1][cl2] = 0;
1556
          if (ira_class_subset_p[cl1][cl2])
1557
            ira_max_may_move_in_cost[mode][cl1][cl2] = 0;
1558
          if (ira_class_subset_p[cl2][cl1])
1559
            ira_max_may_move_out_cost[mode][cl1][cl2] = 0;
1560
          ira_register_move_cost[mode][cl1][cl2]
1561
            = ira_max_register_move_cost[mode][cl1][cl2];
1562
          ira_may_move_in_cost[mode][cl1][cl2]
1563
            = ira_max_may_move_in_cost[mode][cl1][cl2];
1564
          ira_may_move_out_cost[mode][cl1][cl2]
1565
            = ira_max_may_move_out_cost[mode][cl1][cl2];
1566
        }
1567
    }
1568
}
1569
 
1570
 
1571
 
1572
/* This is called once during compiler work.  It sets up
1573
   different arrays whose values don't depend on the compiled
1574
   function.  */
1575
void
1576
ira_init_once (void)
1577
{
1578
  int mode;
1579
 
1580
  for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1581
    {
1582
      ira_register_move_cost[mode] = NULL;
1583
      ira_max_register_move_cost[mode] = NULL;
1584
      ira_may_move_in_cost[mode] = NULL;
1585
      ira_may_move_out_cost[mode] = NULL;
1586
      ira_max_may_move_in_cost[mode] = NULL;
1587
      ira_max_may_move_out_cost[mode] = NULL;
1588
    }
1589
  ira_init_costs_once ();
1590
}
1591
 
1592
/* Free ira_max_register_move_cost, ira_may_move_in_cost,
1593
   ira_may_move_out_cost, ira_max_may_move_in_cost, and
1594
   ira_max_may_move_out_cost for each mode.  */
1595
static void
1596
free_register_move_costs (void)
1597
{
1598
  int mode;
1599
 
1600
  for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1601
    {
1602
      free (ira_max_register_move_cost[mode]);
1603
      free (ira_may_move_in_cost[mode]);
1604
      free (ira_may_move_out_cost[mode]);
1605
      free (ira_max_may_move_in_cost[mode]);
1606
      free (ira_max_may_move_out_cost[mode]);
1607
      ira_register_move_cost[mode] = NULL;
1608
      ira_max_register_move_cost[mode] = NULL;
1609
      ira_may_move_in_cost[mode] = NULL;
1610
      ira_may_move_out_cost[mode] = NULL;
1611
      ira_max_may_move_in_cost[mode] = NULL;
1612
      ira_max_may_move_out_cost[mode] = NULL;
1613
    }
1614
}
1615
 
1616
/* This is called every time when register related information is
1617
   changed.  */
1618
void
1619
ira_init (void)
1620
{
1621
  free_register_move_costs ();
1622
  setup_reg_mode_hard_regset ();
1623
  setup_alloc_regs (flag_omit_frame_pointer != 0);
1624
  setup_class_subset_and_memory_move_costs ();
1625
  setup_reg_class_nregs ();
1626
  setup_prohibited_class_mode_regs ();
1627
  find_reg_classes ();
1628
  clarify_prohibited_class_mode_regs ();
1629
  setup_hard_regno_aclass ();
1630
  ira_init_costs ();
1631
}
1632
 
1633
/* Function called once at the end of compiler work.  */
1634
void
1635
ira_finish_once (void)
1636
{
1637
  ira_finish_costs_once ();
1638
  free_register_move_costs ();
1639
}
1640
 
1641
 
1642
#define ira_prohibited_mode_move_regs_initialized_p \
1643
  (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1644
 
1645
/* Set up IRA_PROHIBITED_MODE_MOVE_REGS.  */
1646
static void
1647
setup_prohibited_mode_move_regs (void)
1648
{
1649
  int i, j;
1650
  rtx test_reg1, test_reg2, move_pat, move_insn;
1651
 
1652
  if (ira_prohibited_mode_move_regs_initialized_p)
1653
    return;
1654
  ira_prohibited_mode_move_regs_initialized_p = true;
1655
  test_reg1 = gen_rtx_REG (VOIDmode, 0);
1656
  test_reg2 = gen_rtx_REG (VOIDmode, 0);
1657
  move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1658
  move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, move_pat, 0, -1, 0);
1659
  for (i = 0; i < NUM_MACHINE_MODES; i++)
1660
    {
1661
      SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1662
      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1663
        {
1664
          if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
1665
            continue;
1666
          SET_REGNO_RAW (test_reg1, j);
1667
          PUT_MODE (test_reg1, (enum machine_mode) i);
1668
          SET_REGNO_RAW (test_reg2, j);
1669
          PUT_MODE (test_reg2, (enum machine_mode) i);
1670
          INSN_CODE (move_insn) = -1;
1671
          recog_memoized (move_insn);
1672
          if (INSN_CODE (move_insn) < 0)
1673
            continue;
1674
          extract_insn (move_insn);
1675
          if (! constrain_operands (1))
1676
            continue;
1677
          CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1678
        }
1679
    }
1680
}
1681
 
1682
 
1683
 
1684
/* Return nonzero if REGNO is a particularly bad choice for reloading X.  */
1685
static bool
1686
ira_bad_reload_regno_1 (int regno, rtx x)
1687
{
1688
  int x_regno, n, i;
1689
  ira_allocno_t a;
1690
  enum reg_class pref;
1691
 
1692
  /* We only deal with pseudo regs.  */
1693
  if (! x || GET_CODE (x) != REG)
1694
    return false;
1695
 
1696
  x_regno = REGNO (x);
1697
  if (x_regno < FIRST_PSEUDO_REGISTER)
1698
    return false;
1699
 
1700
  /* If the pseudo prefers REGNO explicitly, then do not consider
1701
     REGNO a bad spill choice.  */
1702
  pref = reg_preferred_class (x_regno);
1703
  if (reg_class_size[pref] == 1)
1704
    return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
1705
 
1706
  /* If the pseudo conflicts with REGNO, then we consider REGNO a
1707
     poor choice for a reload regno.  */
1708
  a = ira_regno_allocno_map[x_regno];
1709
  n = ALLOCNO_NUM_OBJECTS (a);
1710
  for (i = 0; i < n; i++)
1711
    {
1712
      ira_object_t obj = ALLOCNO_OBJECT (a, i);
1713
      if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
1714
        return true;
1715
    }
1716
  return false;
1717
}
1718
 
1719
/* Return nonzero if REGNO is a particularly bad choice for reloading
1720
   IN or OUT.  */
1721
bool
1722
ira_bad_reload_regno (int regno, rtx in, rtx out)
1723
{
1724
  return (ira_bad_reload_regno_1 (regno, in)
1725
          || ira_bad_reload_regno_1 (regno, out));
1726
}
1727
 
1728
/* Return TRUE if *LOC contains an asm.  */
1729
static int
1730
insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
1731
{
1732
  if ( !*loc)
1733
    return FALSE;
1734
  if (GET_CODE (*loc) == ASM_OPERANDS)
1735
    return TRUE;
1736
  return FALSE;
1737
}
1738
 
1739
 
1740
/* Return TRUE if INSN contains an ASM.  */
1741
static bool
1742
insn_contains_asm (rtx insn)
1743
{
1744
  return for_each_rtx (&insn, insn_contains_asm_1, NULL);
1745
}
1746
 
1747
/* Add register clobbers from asm statements.  */
1748
static void
1749
compute_regs_asm_clobbered (void)
1750
{
1751
  basic_block bb;
1752
 
1753
  FOR_EACH_BB (bb)
1754
    {
1755
      rtx insn;
1756
      FOR_BB_INSNS_REVERSE (bb, insn)
1757
        {
1758
          df_ref *def_rec;
1759
 
1760
          if (insn_contains_asm (insn))
1761
            for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1762
              {
1763
                df_ref def = *def_rec;
1764
                unsigned int dregno = DF_REF_REGNO (def);
1765
                if (HARD_REGISTER_NUM_P (dregno))
1766
                  add_to_hard_reg_set (&crtl->asm_clobbers,
1767
                                       GET_MODE (DF_REF_REAL_REG (def)),
1768
                                       dregno);
1769
              }
1770
        }
1771
    }
1772
}
1773
 
1774
 
1775
/* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE.  */
1776
void
1777
ira_setup_eliminable_regset (void)
1778
{
1779
#ifdef ELIMINABLE_REGS
1780
  int i;
1781
  static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
1782
#endif
1783
  /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
1784
     sp for alloca.  So we can't eliminate the frame pointer in that
1785
     case.  At some point, we should improve this by emitting the
1786
     sp-adjusting insns for this case.  */
1787
  int need_fp
1788
    = (! flag_omit_frame_pointer
1789
       || (cfun->calls_alloca && EXIT_IGNORE_STACK)
1790
       /* We need the frame pointer to catch stack overflow exceptions
1791
          if the stack pointer is moving.  */
1792
       || (flag_stack_check && STACK_CHECK_MOVING_SP)
1793
       || crtl->accesses_prior_frames
1794
       || crtl->stack_realign_needed
1795
       || targetm.frame_pointer_required ());
1796
 
1797
  frame_pointer_needed = need_fp;
1798
 
1799
  COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
1800
  CLEAR_HARD_REG_SET (eliminable_regset);
1801
 
1802
  compute_regs_asm_clobbered ();
1803
 
1804
  /* Build the regset of all eliminable registers and show we can't
1805
     use those that we already know won't be eliminated.  */
1806
#ifdef ELIMINABLE_REGS
1807
  for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
1808
    {
1809
      bool cannot_elim
1810
        = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
1811
           || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
1812
 
1813
      if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
1814
        {
1815
            SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
1816
 
1817
            if (cannot_elim)
1818
              SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
1819
        }
1820
      else if (cannot_elim)
1821
        error ("%s cannot be used in asm here",
1822
               reg_names[eliminables[i].from]);
1823
      else
1824
        df_set_regs_ever_live (eliminables[i].from, true);
1825
    }
1826
#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1827
  if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
1828
    {
1829
      SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
1830
      if (need_fp)
1831
        SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
1832
    }
1833
  else if (need_fp)
1834
    error ("%s cannot be used in asm here",
1835
           reg_names[HARD_FRAME_POINTER_REGNUM]);
1836
  else
1837
    df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
1838
#endif
1839
 
1840
#else
1841
  if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
1842
    {
1843
      SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
1844
      if (need_fp)
1845
        SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
1846
    }
1847
  else if (need_fp)
1848
    error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
1849
  else
1850
    df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
1851
#endif
1852
}
1853
 
1854
 
1855
 
1856
/* The length of the following two arrays.  */
1857
int ira_reg_equiv_len;
1858
 
1859
/* The element value is TRUE if the corresponding regno value is
1860
   invariant.  */
1861
bool *ira_reg_equiv_invariant_p;
1862
 
1863
/* The element value is equiv constant of given pseudo-register or
1864
   NULL_RTX.  */
1865
rtx *ira_reg_equiv_const;
1866
 
1867
/* Set up the two arrays declared above.  */
1868
static void
1869
find_reg_equiv_invariant_const (void)
1870
{
1871
  unsigned int i;
1872
  bool invariant_p;
1873
  rtx list, insn, note, constant, x;
1874
 
1875
  for (i = FIRST_PSEUDO_REGISTER; i < VEC_length (reg_equivs_t, reg_equivs); i++)
1876
    {
1877
      constant = NULL_RTX;
1878
      invariant_p = false;
1879
      for (list = reg_equiv_init (i); list != NULL_RTX; list = XEXP (list, 1))
1880
        {
1881
          insn = XEXP (list, 0);
1882
          note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
1883
 
1884
          if (note == NULL_RTX)
1885
            continue;
1886
 
1887
          x = XEXP (note, 0);
1888
 
1889
          if (! CONSTANT_P (x)
1890
              || ! flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
1891
            {
1892
              /* It can happen that a REG_EQUIV note contains a MEM
1893
                 that is not a legitimate memory operand.  As later
1894
                 stages of the reload assume that all addresses found
1895
                 in the reg_equiv_* arrays were originally legitimate,
1896
                 we ignore such REG_EQUIV notes.  */
1897
              if (memory_operand (x, VOIDmode))
1898
                invariant_p = MEM_READONLY_P (x);
1899
              else if (function_invariant_p (x))
1900
                {
1901
                  if (GET_CODE (x) == PLUS
1902
                      || x == frame_pointer_rtx || x == arg_pointer_rtx)
1903
                    invariant_p = true;
1904
                  else
1905
                    constant = x;
1906
                }
1907
            }
1908
        }
1909
      ira_reg_equiv_invariant_p[i] = invariant_p;
1910
      ira_reg_equiv_const[i] = constant;
1911
    }
1912
}
1913
 
1914
 
1915
 
1916
/* Vector of substitutions of register numbers,
1917
   used to map pseudo regs into hardware regs.
1918
   This is set up as a result of register allocation.
1919
   Element N is the hard reg assigned to pseudo reg N,
1920
   or is -1 if no hard reg was assigned.
1921
   If N is a hard reg number, element N is N.  */
1922
short *reg_renumber;
1923
 
1924
/* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
1925
   the allocation found by IRA.  */
1926
static void
1927
setup_reg_renumber (void)
1928
{
1929
  int regno, hard_regno;
1930
  ira_allocno_t a;
1931
  ira_allocno_iterator ai;
1932
 
1933
  caller_save_needed = 0;
1934
  FOR_EACH_ALLOCNO (a, ai)
1935
    {
1936
      /* There are no caps at this point.  */
1937
      ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
1938
      if (! ALLOCNO_ASSIGNED_P (a))
1939
        /* It can happen if A is not referenced but partially anticipated
1940
           somewhere in a region.  */
1941
        ALLOCNO_ASSIGNED_P (a) = true;
1942
      ira_free_allocno_updated_costs (a);
1943
      hard_regno = ALLOCNO_HARD_REGNO (a);
1944
      regno = ALLOCNO_REGNO (a);
1945
      reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1946
      if (hard_regno >= 0)
1947
        {
1948
          int i, nwords;
1949
          enum reg_class pclass;
1950
          ira_object_t obj;
1951
 
1952
          pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1953
          nwords = ALLOCNO_NUM_OBJECTS (a);
1954
          for (i = 0; i < nwords; i++)
1955
            {
1956
              obj = ALLOCNO_OBJECT (a, i);
1957
              IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1958
                                      reg_class_contents[pclass]);
1959
            }
1960
          if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
1961
              && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
1962
                                                  call_used_reg_set))
1963
            {
1964
              ira_assert (!optimize || flag_caller_saves
1965
                          || regno >= ira_reg_equiv_len
1966
                          || ira_reg_equiv_const[regno]
1967
                          || ira_reg_equiv_invariant_p[regno]);
1968
              caller_save_needed = 1;
1969
            }
1970
        }
1971
    }
1972
}
1973
 
1974
/* Set up allocno assignment flags for further allocation
1975
   improvements.  */
1976
static void
1977
setup_allocno_assignment_flags (void)
1978
{
1979
  int hard_regno;
1980
  ira_allocno_t a;
1981
  ira_allocno_iterator ai;
1982
 
1983
  FOR_EACH_ALLOCNO (a, ai)
1984
    {
1985
      if (! ALLOCNO_ASSIGNED_P (a))
1986
        /* It can happen if A is not referenced but partially anticipated
1987
           somewhere in a region.  */
1988
        ira_free_allocno_updated_costs (a);
1989
      hard_regno = ALLOCNO_HARD_REGNO (a);
1990
      /* Don't assign hard registers to allocnos which are destination
1991
         of removed store at the end of loop.  It has no sense to keep
1992
         the same value in different hard registers.  It is also
1993
         impossible to assign hard registers correctly to such
1994
         allocnos because the cost info and info about intersected
1995
         calls are incorrect for them.  */
1996
      ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
1997
                                || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
1998
                                || (ALLOCNO_MEMORY_COST (a)
1999
                                    - ALLOCNO_CLASS_COST (a)) < 0);
2000
      ira_assert
2001
        (hard_regno < 0
2002
         || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2003
                                   reg_class_contents[ALLOCNO_CLASS (a)]));
2004
    }
2005
}
2006
 
2007
/* Evaluate overall allocation cost and the costs for using hard
2008
   registers and memory for allocnos.  */
2009
static void
2010
calculate_allocation_cost (void)
2011
{
2012
  int hard_regno, cost;
2013
  ira_allocno_t a;
2014
  ira_allocno_iterator ai;
2015
 
2016
  ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2017
  FOR_EACH_ALLOCNO (a, ai)
2018
    {
2019
      hard_regno = ALLOCNO_HARD_REGNO (a);
2020
      ira_assert (hard_regno < 0
2021
                  || (ira_hard_reg_in_set_p
2022
                      (hard_regno, ALLOCNO_MODE (a),
2023
                       reg_class_contents[ALLOCNO_CLASS (a)])));
2024
      if (hard_regno < 0)
2025
        {
2026
          cost = ALLOCNO_MEMORY_COST (a);
2027
          ira_mem_cost += cost;
2028
        }
2029
      else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2030
        {
2031
          cost = (ALLOCNO_HARD_REG_COSTS (a)
2032
                  [ira_class_hard_reg_index
2033
                   [ALLOCNO_CLASS (a)][hard_regno]]);
2034
          ira_reg_cost += cost;
2035
        }
2036
      else
2037
        {
2038
          cost = ALLOCNO_CLASS_COST (a);
2039
          ira_reg_cost += cost;
2040
        }
2041
      ira_overall_cost += cost;
2042
    }
2043
 
2044
  if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2045
    {
2046
      fprintf (ira_dump_file,
2047
               "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
2048
               ira_overall_cost, ira_reg_cost, ira_mem_cost,
2049
               ira_load_cost, ira_store_cost, ira_shuffle_cost);
2050
      fprintf (ira_dump_file, "+++       move loops %d, new jumps %d\n",
2051
               ira_move_loops_num, ira_additional_jumps_num);
2052
    }
2053
 
2054
}
2055
 
2056
#ifdef ENABLE_IRA_CHECKING
2057
/* Check the correctness of the allocation.  We do need this because
2058
   of complicated code to transform more one region internal
2059
   representation into one region representation.  */
2060
static void
2061
check_allocation (void)
2062
{
2063
  ira_allocno_t a;
2064
  int hard_regno, nregs, conflict_nregs;
2065
  ira_allocno_iterator ai;
2066
 
2067
  FOR_EACH_ALLOCNO (a, ai)
2068
    {
2069
      int n = ALLOCNO_NUM_OBJECTS (a);
2070
      int i;
2071
 
2072
      if (ALLOCNO_CAP_MEMBER (a) != NULL
2073
          || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2074
        continue;
2075
      nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2076
      if (nregs == 1)
2077
        /* We allocated a single hard register.  */
2078
        n = 1;
2079
      else if (n > 1)
2080
        /* We allocated multiple hard registers, and we will test
2081
           conflicts in a granularity of single hard regs.  */
2082
        nregs = 1;
2083
 
2084
      for (i = 0; i < n; i++)
2085
        {
2086
          ira_object_t obj = ALLOCNO_OBJECT (a, i);
2087
          ira_object_t conflict_obj;
2088
          ira_object_conflict_iterator oci;
2089
          int this_regno = hard_regno;
2090
          if (n > 1)
2091
            {
2092
              if (REG_WORDS_BIG_ENDIAN)
2093
                this_regno += n - i - 1;
2094
              else
2095
                this_regno += i;
2096
            }
2097
          FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2098
            {
2099
              ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2100
              int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2101
              if (conflict_hard_regno < 0)
2102
                continue;
2103
 
2104
              conflict_nregs
2105
                = (hard_regno_nregs
2106
                   [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2107
 
2108
              if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2109
                  && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2110
                {
2111
                  if (REG_WORDS_BIG_ENDIAN)
2112
                    conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2113
                                            - OBJECT_SUBWORD (conflict_obj) - 1);
2114
                  else
2115
                    conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2116
                  conflict_nregs = 1;
2117
                }
2118
 
2119
              if ((conflict_hard_regno <= this_regno
2120
                 && this_regno < conflict_hard_regno + conflict_nregs)
2121
                || (this_regno <= conflict_hard_regno
2122
                    && conflict_hard_regno < this_regno + nregs))
2123
                {
2124
                  fprintf (stderr, "bad allocation for %d and %d\n",
2125
                           ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2126
                  gcc_unreachable ();
2127
                }
2128
            }
2129
        }
2130
    }
2131
}
2132
#endif
2133
 
2134
/* Fix values of array REG_EQUIV_INIT after live range splitting done
2135
   by IRA.  */
2136
static void
2137
fix_reg_equiv_init (void)
2138
{
2139
  unsigned int max_regno = max_reg_num ();
2140
  int i, new_regno, max;
2141
  rtx x, prev, next, insn, set;
2142
 
2143
  if (VEC_length (reg_equivs_t, reg_equivs) < max_regno)
2144
    {
2145
      max = VEC_length (reg_equivs_t, reg_equivs);
2146
      grow_reg_equivs ();
2147
      for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2148
        for (prev = NULL_RTX, x = reg_equiv_init (i);
2149
             x != NULL_RTX;
2150
             x = next)
2151
          {
2152
            next = XEXP (x, 1);
2153
            insn = XEXP (x, 0);
2154
            set = single_set (insn);
2155
            ira_assert (set != NULL_RTX
2156
                        && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2157
            if (REG_P (SET_DEST (set))
2158
                && ((int) REGNO (SET_DEST (set)) == i
2159
                    || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2160
              new_regno = REGNO (SET_DEST (set));
2161
            else if (REG_P (SET_SRC (set))
2162
                     && ((int) REGNO (SET_SRC (set)) == i
2163
                         || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2164
              new_regno = REGNO (SET_SRC (set));
2165
            else
2166
              gcc_unreachable ();
2167
            if (new_regno == i)
2168
              prev = x;
2169
            else
2170
              {
2171
                if (prev == NULL_RTX)
2172
                  reg_equiv_init (i) = next;
2173
                else
2174
                  XEXP (prev, 1) = next;
2175
                XEXP (x, 1) = reg_equiv_init (new_regno);
2176
                reg_equiv_init (new_regno) = x;
2177
              }
2178
          }
2179
    }
2180
}
2181
 
2182
#ifdef ENABLE_IRA_CHECKING
2183
/* Print redundant memory-memory copies.  */
2184
static void
2185
print_redundant_copies (void)
2186
{
2187
  int hard_regno;
2188
  ira_allocno_t a;
2189
  ira_copy_t cp, next_cp;
2190
  ira_allocno_iterator ai;
2191
 
2192
  FOR_EACH_ALLOCNO (a, ai)
2193
    {
2194
      if (ALLOCNO_CAP_MEMBER (a) != NULL)
2195
        /* It is a cap. */
2196
        continue;
2197
      hard_regno = ALLOCNO_HARD_REGNO (a);
2198
      if (hard_regno >= 0)
2199
        continue;
2200
      for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2201
        if (cp->first == a)
2202
          next_cp = cp->next_first_allocno_copy;
2203
        else
2204
          {
2205
            next_cp = cp->next_second_allocno_copy;
2206
            if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2207
                && cp->insn != NULL_RTX
2208
                && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2209
              fprintf (ira_dump_file,
2210
                       "        Redundant move from %d(freq %d):%d\n",
2211
                       INSN_UID (cp->insn), cp->freq, hard_regno);
2212
          }
2213
    }
2214
}
2215
#endif
2216
 
2217
/* Setup preferred and alternative classes for new pseudo-registers
2218
   created by IRA starting with START.  */
2219
static void
2220
setup_preferred_alternate_classes_for_new_pseudos (int start)
2221
{
2222
  int i, old_regno;
2223
  int max_regno = max_reg_num ();
2224
 
2225
  for (i = start; i < max_regno; i++)
2226
    {
2227
      old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2228
      ira_assert (i != old_regno);
2229
      setup_reg_classes (i, reg_preferred_class (old_regno),
2230
                         reg_alternate_class (old_regno),
2231
                         reg_allocno_class (old_regno));
2232
      if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2233
        fprintf (ira_dump_file,
2234
                 "    New r%d: setting preferred %s, alternative %s\n",
2235
                 i, reg_class_names[reg_preferred_class (old_regno)],
2236
                 reg_class_names[reg_alternate_class (old_regno)]);
2237
    }
2238
}
2239
 
2240
 
2241
 
2242
/* Regional allocation can create new pseudo-registers.  This function
2243
   expands some arrays for pseudo-registers.  */
2244
static void
2245
expand_reg_info (int old_size)
2246
{
2247
  int i;
2248
  int size = max_reg_num ();
2249
 
2250
  resize_reg_info ();
2251
  for (i = old_size; i < size; i++)
2252
    setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2253
}
2254
 
2255
/* Return TRUE if there is too high register pressure in the function.
2256
   It is used to decide when stack slot sharing is worth to do.  */
2257
static bool
2258
too_high_register_pressure_p (void)
2259
{
2260
  int i;
2261
  enum reg_class pclass;
2262
 
2263
  for (i = 0; i < ira_pressure_classes_num; i++)
2264
    {
2265
      pclass = ira_pressure_classes[i];
2266
      if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2267
        return true;
2268
    }
2269
  return false;
2270
}
2271
 
2272
 
2273
 
2274
/* Indicate that hard register number FROM was eliminated and replaced with
2275
   an offset from hard register number TO.  The status of hard registers live
2276
   at the start of a basic block is updated by replacing a use of FROM with
2277
   a use of TO.  */
2278
 
2279
void
2280
mark_elimination (int from, int to)
2281
{
2282
  basic_block bb;
2283
 
2284
  FOR_EACH_BB (bb)
2285
    {
2286
      /* We don't use LIVE info in IRA.  */
2287
      bitmap r = DF_LR_IN (bb);
2288
 
2289
      if (REGNO_REG_SET_P (r, from))
2290
        {
2291
          CLEAR_REGNO_REG_SET (r, from);
2292
          SET_REGNO_REG_SET (r, to);
2293
        }
2294
    }
2295
}
2296
 
2297
 
2298
 
2299
struct equivalence
2300
{
2301
  /* Set when a REG_EQUIV note is found or created.  Use to
2302
     keep track of what memory accesses might be created later,
2303
     e.g. by reload.  */
2304
  rtx replacement;
2305
  rtx *src_p;
2306
  /* The list of each instruction which initializes this register.  */
2307
  rtx init_insns;
2308
  /* Loop depth is used to recognize equivalences which appear
2309
     to be present within the same loop (or in an inner loop).  */
2310
  int loop_depth;
2311
  /* Nonzero if this had a preexisting REG_EQUIV note.  */
2312
  int is_arg_equivalence;
2313
  /* Set when an attempt should be made to replace a register
2314
     with the associated src_p entry.  */
2315
  char replace;
2316
};
2317
 
2318
/* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2319
   structure for that register.  */
2320
static struct equivalence *reg_equiv;
2321
 
2322
/* Used for communication between the following two functions: contains
2323
   a MEM that we wish to ensure remains unchanged.  */
2324
static rtx equiv_mem;
2325
 
2326
/* Set nonzero if EQUIV_MEM is modified.  */
2327
static int equiv_mem_modified;
2328
 
2329
/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2330
   Called via note_stores.  */
2331
static void
2332
validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2333
                               void *data ATTRIBUTE_UNUSED)
2334
{
2335
  if ((REG_P (dest)
2336
       && reg_overlap_mentioned_p (dest, equiv_mem))
2337
      || (MEM_P (dest)
2338
          && true_dependence (dest, VOIDmode, equiv_mem)))
2339
    equiv_mem_modified = 1;
2340
}
2341
 
2342
/* Verify that no store between START and the death of REG invalidates
2343
   MEMREF.  MEMREF is invalidated by modifying a register used in MEMREF,
2344
   by storing into an overlapping memory location, or with a non-const
2345
   CALL_INSN.
2346
 
2347
   Return 1 if MEMREF remains valid.  */
2348
static int
2349
validate_equiv_mem (rtx start, rtx reg, rtx memref)
2350
{
2351
  rtx insn;
2352
  rtx note;
2353
 
2354
  equiv_mem = memref;
2355
  equiv_mem_modified = 0;
2356
 
2357
  /* If the memory reference has side effects or is volatile, it isn't a
2358
     valid equivalence.  */
2359
  if (side_effects_p (memref))
2360
    return 0;
2361
 
2362
  for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2363
    {
2364
      if (! INSN_P (insn))
2365
        continue;
2366
 
2367
      if (find_reg_note (insn, REG_DEAD, reg))
2368
        return 1;
2369
 
2370
      /* This used to ignore readonly memory and const/pure calls.  The problem
2371
         is the equivalent form may reference a pseudo which gets assigned a
2372
         call clobbered hard reg.  When we later replace REG with its
2373
         equivalent form, the value in the call-clobbered reg has been
2374
         changed and all hell breaks loose.  */
2375
      if (CALL_P (insn))
2376
        return 0;
2377
 
2378
      note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2379
 
2380
      /* If a register mentioned in MEMREF is modified via an
2381
         auto-increment, we lose the equivalence.  Do the same if one
2382
         dies; although we could extend the life, it doesn't seem worth
2383
         the trouble.  */
2384
 
2385
      for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2386
        if ((REG_NOTE_KIND (note) == REG_INC
2387
             || REG_NOTE_KIND (note) == REG_DEAD)
2388
            && REG_P (XEXP (note, 0))
2389
            && reg_overlap_mentioned_p (XEXP (note, 0), memref))
2390
          return 0;
2391
    }
2392
 
2393
  return 0;
2394
}
2395
 
2396
/* Returns zero if X is known to be invariant.  */
2397
static int
2398
equiv_init_varies_p (rtx x)
2399
{
2400
  RTX_CODE code = GET_CODE (x);
2401
  int i;
2402
  const char *fmt;
2403
 
2404
  switch (code)
2405
    {
2406
    case MEM:
2407
      return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
2408
 
2409
    case CONST:
2410
    case CONST_INT:
2411
    case CONST_DOUBLE:
2412
    case CONST_FIXED:
2413
    case CONST_VECTOR:
2414
    case SYMBOL_REF:
2415
    case LABEL_REF:
2416
      return 0;
2417
 
2418
    case REG:
2419
      return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
2420
 
2421
    case ASM_OPERANDS:
2422
      if (MEM_VOLATILE_P (x))
2423
        return 1;
2424
 
2425
      /* Fall through.  */
2426
 
2427
    default:
2428
      break;
2429
    }
2430
 
2431
  fmt = GET_RTX_FORMAT (code);
2432
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2433
    if (fmt[i] == 'e')
2434
      {
2435
        if (equiv_init_varies_p (XEXP (x, i)))
2436
          return 1;
2437
      }
2438
    else if (fmt[i] == 'E')
2439
      {
2440
        int j;
2441
        for (j = 0; j < XVECLEN (x, i); j++)
2442
          if (equiv_init_varies_p (XVECEXP (x, i, j)))
2443
            return 1;
2444
      }
2445
 
2446
  return 0;
2447
}
2448
 
2449
/* Returns nonzero if X (used to initialize register REGNO) is movable.
2450
   X is only movable if the registers it uses have equivalent initializations
2451
   which appear to be within the same loop (or in an inner loop) and movable
2452
   or if they are not candidates for local_alloc and don't vary.  */
2453
static int
2454
equiv_init_movable_p (rtx x, int regno)
2455
{
2456
  int i, j;
2457
  const char *fmt;
2458
  enum rtx_code code = GET_CODE (x);
2459
 
2460
  switch (code)
2461
    {
2462
    case SET:
2463
      return equiv_init_movable_p (SET_SRC (x), regno);
2464
 
2465
    case CC0:
2466
    case CLOBBER:
2467
      return 0;
2468
 
2469
    case PRE_INC:
2470
    case PRE_DEC:
2471
    case POST_INC:
2472
    case POST_DEC:
2473
    case PRE_MODIFY:
2474
    case POST_MODIFY:
2475
      return 0;
2476
 
2477
    case REG:
2478
      return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
2479
               && reg_equiv[REGNO (x)].replace)
2480
              || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
2481
                  && ! rtx_varies_p (x, 0)));
2482
 
2483
    case UNSPEC_VOLATILE:
2484
      return 0;
2485
 
2486
    case ASM_OPERANDS:
2487
      if (MEM_VOLATILE_P (x))
2488
        return 0;
2489
 
2490
      /* Fall through.  */
2491
 
2492
    default:
2493
      break;
2494
    }
2495
 
2496
  fmt = GET_RTX_FORMAT (code);
2497
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2498
    switch (fmt[i])
2499
      {
2500
      case 'e':
2501
        if (! equiv_init_movable_p (XEXP (x, i), regno))
2502
          return 0;
2503
        break;
2504
      case 'E':
2505
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2506
          if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
2507
            return 0;
2508
        break;
2509
      }
2510
 
2511
  return 1;
2512
}
2513
 
2514
/* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
2515
   true.  */
2516
static int
2517
contains_replace_regs (rtx x)
2518
{
2519
  int i, j;
2520
  const char *fmt;
2521
  enum rtx_code code = GET_CODE (x);
2522
 
2523
  switch (code)
2524
    {
2525
    case CONST_INT:
2526
    case CONST:
2527
    case LABEL_REF:
2528
    case SYMBOL_REF:
2529
    case CONST_DOUBLE:
2530
    case CONST_FIXED:
2531
    case CONST_VECTOR:
2532
    case PC:
2533
    case CC0:
2534
    case HIGH:
2535
      return 0;
2536
 
2537
    case REG:
2538
      return reg_equiv[REGNO (x)].replace;
2539
 
2540
    default:
2541
      break;
2542
    }
2543
 
2544
  fmt = GET_RTX_FORMAT (code);
2545
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2546
    switch (fmt[i])
2547
      {
2548
      case 'e':
2549
        if (contains_replace_regs (XEXP (x, i)))
2550
          return 1;
2551
        break;
2552
      case 'E':
2553
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2554
          if (contains_replace_regs (XVECEXP (x, i, j)))
2555
            return 1;
2556
        break;
2557
      }
2558
 
2559
  return 0;
2560
}
2561
 
2562
/* TRUE if X references a memory location that would be affected by a store
2563
   to MEMREF.  */
2564
static int
2565
memref_referenced_p (rtx memref, rtx x)
2566
{
2567
  int i, j;
2568
  const char *fmt;
2569
  enum rtx_code code = GET_CODE (x);
2570
 
2571
  switch (code)
2572
    {
2573
    case CONST_INT:
2574
    case CONST:
2575
    case LABEL_REF:
2576
    case SYMBOL_REF:
2577
    case CONST_DOUBLE:
2578
    case CONST_FIXED:
2579
    case CONST_VECTOR:
2580
    case PC:
2581
    case CC0:
2582
    case HIGH:
2583
    case LO_SUM:
2584
      return 0;
2585
 
2586
    case REG:
2587
      return (reg_equiv[REGNO (x)].replacement
2588
              && memref_referenced_p (memref,
2589
                                      reg_equiv[REGNO (x)].replacement));
2590
 
2591
    case MEM:
2592
      if (true_dependence (memref, VOIDmode, x))
2593
        return 1;
2594
      break;
2595
 
2596
    case SET:
2597
      /* If we are setting a MEM, it doesn't count (its address does), but any
2598
         other SET_DEST that has a MEM in it is referencing the MEM.  */
2599
      if (MEM_P (SET_DEST (x)))
2600
        {
2601
          if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
2602
            return 1;
2603
        }
2604
      else if (memref_referenced_p (memref, SET_DEST (x)))
2605
        return 1;
2606
 
2607
      return memref_referenced_p (memref, SET_SRC (x));
2608
 
2609
    default:
2610
      break;
2611
    }
2612
 
2613
  fmt = GET_RTX_FORMAT (code);
2614
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2615
    switch (fmt[i])
2616
      {
2617
      case 'e':
2618
        if (memref_referenced_p (memref, XEXP (x, i)))
2619
          return 1;
2620
        break;
2621
      case 'E':
2622
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2623
          if (memref_referenced_p (memref, XVECEXP (x, i, j)))
2624
            return 1;
2625
        break;
2626
      }
2627
 
2628
  return 0;
2629
}
2630
 
2631
/* TRUE if some insn in the range (START, END] references a memory location
2632
   that would be affected by a store to MEMREF.  */
2633
static int
2634
memref_used_between_p (rtx memref, rtx start, rtx end)
2635
{
2636
  rtx insn;
2637
 
2638
  for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2639
       insn = NEXT_INSN (insn))
2640
    {
2641
      if (!NONDEBUG_INSN_P (insn))
2642
        continue;
2643
 
2644
      if (memref_referenced_p (memref, PATTERN (insn)))
2645
        return 1;
2646
 
2647
      /* Nonconst functions may access memory.  */
2648
      if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
2649
        return 1;
2650
    }
2651
 
2652
  return 0;
2653
}
2654
 
2655
/* Mark REG as having no known equivalence.
2656
   Some instructions might have been processed before and furnished
2657
   with REG_EQUIV notes for this register; these notes will have to be
2658
   removed.
2659
   STORE is the piece of RTL that does the non-constant / conflicting
2660
   assignment - a SET, CLOBBER or REG_INC note.  It is currently not used,
2661
   but needs to be there because this function is called from note_stores.  */
2662
static void
2663
no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
2664
          void *data ATTRIBUTE_UNUSED)
2665
{
2666
  int regno;
2667
  rtx list;
2668
 
2669
  if (!REG_P (reg))
2670
    return;
2671
  regno = REGNO (reg);
2672
  list = reg_equiv[regno].init_insns;
2673
  if (list == const0_rtx)
2674
    return;
2675
  reg_equiv[regno].init_insns = const0_rtx;
2676
  reg_equiv[regno].replacement = NULL_RTX;
2677
  /* This doesn't matter for equivalences made for argument registers, we
2678
     should keep their initialization insns.  */
2679
  if (reg_equiv[regno].is_arg_equivalence)
2680
    return;
2681
  reg_equiv_init (regno) = NULL_RTX;
2682
  for (; list; list =  XEXP (list, 1))
2683
    {
2684
      rtx insn = XEXP (list, 0);
2685
      remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
2686
    }
2687
}
2688
 
2689
/* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
2690
   equivalent replacement.  */
2691
 
2692
static rtx
2693
adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
2694
{
2695
  if (REG_P (loc))
2696
    {
2697
      bitmap cleared_regs = (bitmap) data;
2698
      if (bitmap_bit_p (cleared_regs, REGNO (loc)))
2699
        return simplify_replace_fn_rtx (*reg_equiv[REGNO (loc)].src_p,
2700
                                        NULL_RTX, adjust_cleared_regs, data);
2701
    }
2702
  return NULL_RTX;
2703
}
2704
 
2705
/* Nonzero if we recorded an equivalence for a LABEL_REF.  */
2706
static int recorded_label_ref;
2707
 
2708
/* Find registers that are equivalent to a single value throughout the
2709
   compilation (either because they can be referenced in memory or are
2710
   set once from a single constant).  Lower their priority for a
2711
   register.
2712
 
2713
   If such a register is only referenced once, try substituting its
2714
   value into the using insn.  If it succeeds, we can eliminate the
2715
   register completely.
2716
 
2717
   Initialize the REG_EQUIV_INIT array of initializing insns.
2718
 
2719
   Return non-zero if jump label rebuilding should be done.  */
2720
static int
2721
update_equiv_regs (void)
2722
{
2723
  rtx insn;
2724
  basic_block bb;
2725
  int loop_depth;
2726
  bitmap cleared_regs;
2727
 
2728
  /* We need to keep track of whether or not we recorded a LABEL_REF so
2729
     that we know if the jump optimizer needs to be rerun.  */
2730
  recorded_label_ref = 0;
2731
 
2732
  reg_equiv = XCNEWVEC (struct equivalence, max_regno);
2733
  grow_reg_equivs ();
2734
 
2735
  init_alias_analysis ();
2736
 
2737
  /* Scan the insns and find which registers have equivalences.  Do this
2738
     in a separate scan of the insns because (due to -fcse-follow-jumps)
2739
     a register can be set below its use.  */
2740
  FOR_EACH_BB (bb)
2741
    {
2742
      loop_depth = bb->loop_depth;
2743
 
2744
      for (insn = BB_HEAD (bb);
2745
           insn != NEXT_INSN (BB_END (bb));
2746
           insn = NEXT_INSN (insn))
2747
        {
2748
          rtx note;
2749
          rtx set;
2750
          rtx dest, src;
2751
          int regno;
2752
 
2753
          if (! INSN_P (insn))
2754
            continue;
2755
 
2756
          for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2757
            if (REG_NOTE_KIND (note) == REG_INC)
2758
              no_equiv (XEXP (note, 0), note, NULL);
2759
 
2760
          set = single_set (insn);
2761
 
2762
          /* If this insn contains more (or less) than a single SET,
2763
             only mark all destinations as having no known equivalence.  */
2764
          if (set == 0)
2765
            {
2766
              note_stores (PATTERN (insn), no_equiv, NULL);
2767
              continue;
2768
            }
2769
          else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2770
            {
2771
              int i;
2772
 
2773
              for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2774
                {
2775
                  rtx part = XVECEXP (PATTERN (insn), 0, i);
2776
                  if (part != set)
2777
                    note_stores (part, no_equiv, NULL);
2778
                }
2779
            }
2780
 
2781
          dest = SET_DEST (set);
2782
          src = SET_SRC (set);
2783
 
2784
          /* See if this is setting up the equivalence between an argument
2785
             register and its stack slot.  */
2786
          note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2787
          if (note)
2788
            {
2789
              gcc_assert (REG_P (dest));
2790
              regno = REGNO (dest);
2791
 
2792
              /* Note that we don't want to clear reg_equiv_init even if there
2793
                 are multiple sets of this register.  */
2794
              reg_equiv[regno].is_arg_equivalence = 1;
2795
 
2796
              /* Record for reload that this is an equivalencing insn.  */
2797
              if (rtx_equal_p (src, XEXP (note, 0)))
2798
                reg_equiv_init (regno)
2799
                  = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init (regno));
2800
 
2801
              /* Continue normally in case this is a candidate for
2802
                 replacements.  */
2803
            }
2804
 
2805
          if (!optimize)
2806
            continue;
2807
 
2808
          /* We only handle the case of a pseudo register being set
2809
             once, or always to the same value.  */
2810
          /* ??? The mn10200 port breaks if we add equivalences for
2811
             values that need an ADDRESS_REGS register and set them equivalent
2812
             to a MEM of a pseudo.  The actual problem is in the over-conservative
2813
             handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
2814
             calculate_needs, but we traditionally work around this problem
2815
             here by rejecting equivalences when the destination is in a register
2816
             that's likely spilled.  This is fragile, of course, since the
2817
             preferred class of a pseudo depends on all instructions that set
2818
             or use it.  */
2819
 
2820
          if (!REG_P (dest)
2821
              || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
2822
              || reg_equiv[regno].init_insns == const0_rtx
2823
              || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
2824
                  && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
2825
            {
2826
              /* This might be setting a SUBREG of a pseudo, a pseudo that is
2827
                 also set somewhere else to a constant.  */
2828
              note_stores (set, no_equiv, NULL);
2829
              continue;
2830
            }
2831
 
2832
          note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
2833
 
2834
          /* cse sometimes generates function invariants, but doesn't put a
2835
             REG_EQUAL note on the insn.  Since this note would be redundant,
2836
             there's no point creating it earlier than here.  */
2837
          if (! note && ! rtx_varies_p (src, 0))
2838
            note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2839
 
2840
          /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
2841
             since it represents a function call */
2842
          if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
2843
            note = NULL_RTX;
2844
 
2845
          if (DF_REG_DEF_COUNT (regno) != 1
2846
              && (! note
2847
                  || rtx_varies_p (XEXP (note, 0), 0)
2848
                  || (reg_equiv[regno].replacement
2849
                      && ! rtx_equal_p (XEXP (note, 0),
2850
                                        reg_equiv[regno].replacement))))
2851
            {
2852
              no_equiv (dest, set, NULL);
2853
              continue;
2854
            }
2855
          /* Record this insn as initializing this register.  */
2856
          reg_equiv[regno].init_insns
2857
            = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
2858
 
2859
          /* If this register is known to be equal to a constant, record that
2860
             it is always equivalent to the constant.  */
2861
          if (DF_REG_DEF_COUNT (regno) == 1
2862
              && note && ! rtx_varies_p (XEXP (note, 0), 0))
2863
            {
2864
              rtx note_value = XEXP (note, 0);
2865
              remove_note (insn, note);
2866
              set_unique_reg_note (insn, REG_EQUIV, note_value);
2867
            }
2868
 
2869
          /* If this insn introduces a "constant" register, decrease the priority
2870
             of that register.  Record this insn if the register is only used once
2871
             more and the equivalence value is the same as our source.
2872
 
2873
             The latter condition is checked for two reasons:  First, it is an
2874
             indication that it may be more efficient to actually emit the insn
2875
             as written (if no registers are available, reload will substitute
2876
             the equivalence).  Secondly, it avoids problems with any registers
2877
             dying in this insn whose death notes would be missed.
2878
 
2879
             If we don't have a REG_EQUIV note, see if this insn is loading
2880
             a register used only in one basic block from a MEM.  If so, and the
2881
             MEM remains unchanged for the life of the register, add a REG_EQUIV
2882
             note.  */
2883
 
2884
          note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2885
 
2886
          if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2887
              && MEM_P (SET_SRC (set))
2888
              && validate_equiv_mem (insn, dest, SET_SRC (set)))
2889
            note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
2890
 
2891
          if (note)
2892
            {
2893
              int regno = REGNO (dest);
2894
              rtx x = XEXP (note, 0);
2895
 
2896
              /* If we haven't done so, record for reload that this is an
2897
                 equivalencing insn.  */
2898
              if (!reg_equiv[regno].is_arg_equivalence)
2899
                reg_equiv_init (regno)
2900
                  = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init (regno));
2901
 
2902
              /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
2903
                 We might end up substituting the LABEL_REF for uses of the
2904
                 pseudo here or later.  That kind of transformation may turn an
2905
                 indirect jump into a direct jump, in which case we must rerun the
2906
                 jump optimizer to ensure that the JUMP_LABEL fields are valid.  */
2907
              if (GET_CODE (x) == LABEL_REF
2908
                  || (GET_CODE (x) == CONST
2909
                      && GET_CODE (XEXP (x, 0)) == PLUS
2910
                      && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
2911
                recorded_label_ref = 1;
2912
 
2913
              reg_equiv[regno].replacement = x;
2914
              reg_equiv[regno].src_p = &SET_SRC (set);
2915
              reg_equiv[regno].loop_depth = loop_depth;
2916
 
2917
              /* Don't mess with things live during setjmp.  */
2918
              if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
2919
                {
2920
                  /* Note that the statement below does not affect the priority
2921
                     in local-alloc!  */
2922
                  REG_LIVE_LENGTH (regno) *= 2;
2923
 
2924
                  /* If the register is referenced exactly twice, meaning it is
2925
                     set once and used once, indicate that the reference may be
2926
                     replaced by the equivalence we computed above.  Do this
2927
                     even if the register is only used in one block so that
2928
                     dependencies can be handled where the last register is
2929
                     used in a different block (i.e. HIGH / LO_SUM sequences)
2930
                     and to reduce the number of registers alive across
2931
                     calls.  */
2932
 
2933
                  if (REG_N_REFS (regno) == 2
2934
                      && (rtx_equal_p (x, src)
2935
                          || ! equiv_init_varies_p (src))
2936
                      && NONJUMP_INSN_P (insn)
2937
                      && equiv_init_movable_p (PATTERN (insn), regno))
2938
                    reg_equiv[regno].replace = 1;
2939
                }
2940
            }
2941
        }
2942
    }
2943
 
2944
  if (!optimize)
2945
    goto out;
2946
 
2947
  /* A second pass, to gather additional equivalences with memory.  This needs
2948
     to be done after we know which registers we are going to replace.  */
2949
 
2950
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2951
    {
2952
      rtx set, src, dest;
2953
      unsigned regno;
2954
 
2955
      if (! INSN_P (insn))
2956
        continue;
2957
 
2958
      set = single_set (insn);
2959
      if (! set)
2960
        continue;
2961
 
2962
      dest = SET_DEST (set);
2963
      src = SET_SRC (set);
2964
 
2965
      /* If this sets a MEM to the contents of a REG that is only used
2966
         in a single basic block, see if the register is always equivalent
2967
         to that memory location and if moving the store from INSN to the
2968
         insn that set REG is safe.  If so, put a REG_EQUIV note on the
2969
         initializing insn.
2970
 
2971
         Don't add a REG_EQUIV note if the insn already has one.  The existing
2972
         REG_EQUIV is likely more useful than the one we are adding.
2973
 
2974
         If one of the regs in the address has reg_equiv[REGNO].replace set,
2975
         then we can't add this REG_EQUIV note.  The reg_equiv[REGNO].replace
2976
         optimization may move the set of this register immediately before
2977
         insn, which puts it after reg_equiv[REGNO].init_insns, and hence
2978
         the mention in the REG_EQUIV note would be to an uninitialized
2979
         pseudo.  */
2980
 
2981
      if (MEM_P (dest) && REG_P (src)
2982
          && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
2983
          && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2984
          && DF_REG_DEF_COUNT (regno) == 1
2985
          && reg_equiv[regno].init_insns != 0
2986
          && reg_equiv[regno].init_insns != const0_rtx
2987
          && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
2988
                              REG_EQUIV, NULL_RTX)
2989
          && ! contains_replace_regs (XEXP (dest, 0)))
2990
        {
2991
          rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
2992
          if (validate_equiv_mem (init_insn, src, dest)
2993
              && ! memref_used_between_p (dest, init_insn, insn)
2994
              /* Attaching a REG_EQUIV note will fail if INIT_INSN has
2995
                 multiple sets.  */
2996
              && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
2997
            {
2998
              /* This insn makes the equivalence, not the one initializing
2999
                 the register.  */
3000
              reg_equiv_init (regno)
3001
                = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3002
              df_notes_rescan (init_insn);
3003
            }
3004
        }
3005
    }
3006
 
3007
  cleared_regs = BITMAP_ALLOC (NULL);
3008
  /* Now scan all regs killed in an insn to see if any of them are
3009
     registers only used that once.  If so, see if we can replace the
3010
     reference with the equivalent form.  If we can, delete the
3011
     initializing reference and this register will go away.  If we
3012
     can't replace the reference, and the initializing reference is
3013
     within the same loop (or in an inner loop), then move the register
3014
     initialization just before the use, so that they are in the same
3015
     basic block.  */
3016
  FOR_EACH_BB_REVERSE (bb)
3017
    {
3018
      loop_depth = bb->loop_depth;
3019
      for (insn = BB_END (bb);
3020
           insn != PREV_INSN (BB_HEAD (bb));
3021
           insn = PREV_INSN (insn))
3022
        {
3023
          rtx link;
3024
 
3025
          if (! INSN_P (insn))
3026
            continue;
3027
 
3028
          /* Don't substitute into a non-local goto, this confuses CFG.  */
3029
          if (JUMP_P (insn)
3030
              && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3031
            continue;
3032
 
3033
          for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3034
            {
3035
              if (REG_NOTE_KIND (link) == REG_DEAD
3036
                  /* Make sure this insn still refers to the register.  */
3037
                  && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3038
                {
3039
                  int regno = REGNO (XEXP (link, 0));
3040
                  rtx equiv_insn;
3041
 
3042
                  if (! reg_equiv[regno].replace
3043
                      || reg_equiv[regno].loop_depth < loop_depth
3044
                      /* There is no sense to move insns if we did
3045
                         register pressure-sensitive scheduling was
3046
                         done because it will not improve allocation
3047
                         but worsen insn schedule with a big
3048
                         probability.  */
3049
                      || (flag_sched_pressure && flag_schedule_insns))
3050
                    continue;
3051
 
3052
                  /* reg_equiv[REGNO].replace gets set only when
3053
                     REG_N_REFS[REGNO] is 2, i.e. the register is set
3054
                     once and used once.  (If it were only set, but not used,
3055
                     flow would have deleted the setting insns.)  Hence
3056
                     there can only be one insn in reg_equiv[REGNO].init_insns.  */
3057
                  gcc_assert (reg_equiv[regno].init_insns
3058
                              && !XEXP (reg_equiv[regno].init_insns, 1));
3059
                  equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3060
 
3061
                  /* We may not move instructions that can throw, since
3062
                     that changes basic block boundaries and we are not
3063
                     prepared to adjust the CFG to match.  */
3064
                  if (can_throw_internal (equiv_insn))
3065
                    continue;
3066
 
3067
                  if (asm_noperands (PATTERN (equiv_insn)) < 0
3068
                      && validate_replace_rtx (regno_reg_rtx[regno],
3069
                                               *(reg_equiv[regno].src_p), insn))
3070
                    {
3071
                      rtx equiv_link;
3072
                      rtx last_link;
3073
                      rtx note;
3074
 
3075
                      /* Find the last note.  */
3076
                      for (last_link = link; XEXP (last_link, 1);
3077
                           last_link = XEXP (last_link, 1))
3078
                        ;
3079
 
3080
                      /* Append the REG_DEAD notes from equiv_insn.  */
3081
                      equiv_link = REG_NOTES (equiv_insn);
3082
                      while (equiv_link)
3083
                        {
3084
                          note = equiv_link;
3085
                          equiv_link = XEXP (equiv_link, 1);
3086
                          if (REG_NOTE_KIND (note) == REG_DEAD)
3087
                            {
3088
                              remove_note (equiv_insn, note);
3089
                              XEXP (last_link, 1) = note;
3090
                              XEXP (note, 1) = NULL_RTX;
3091
                              last_link = note;
3092
                            }
3093
                        }
3094
 
3095
                      remove_death (regno, insn);
3096
                      SET_REG_N_REFS (regno, 0);
3097
                      REG_FREQ (regno) = 0;
3098
                      delete_insn (equiv_insn);
3099
 
3100
                      reg_equiv[regno].init_insns
3101
                        = XEXP (reg_equiv[regno].init_insns, 1);
3102
 
3103
                      reg_equiv_init (regno) = NULL_RTX;
3104
                      bitmap_set_bit (cleared_regs, regno);
3105
                    }
3106
                  /* Move the initialization of the register to just before
3107
                     INSN.  Update the flow information.  */
3108
                  else if (prev_nondebug_insn (insn) != equiv_insn)
3109
                    {
3110
                      rtx new_insn;
3111
 
3112
                      new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3113
                      REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3114
                      REG_NOTES (equiv_insn) = 0;
3115
                      /* Rescan it to process the notes.  */
3116
                      df_insn_rescan (new_insn);
3117
 
3118
                      /* Make sure this insn is recognized before
3119
                         reload begins, otherwise
3120
                         eliminate_regs_in_insn will die.  */
3121
                      INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3122
 
3123
                      delete_insn (equiv_insn);
3124
 
3125
                      XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3126
 
3127
                      REG_BASIC_BLOCK (regno) = bb->index;
3128
                      REG_N_CALLS_CROSSED (regno) = 0;
3129
                      REG_FREQ_CALLS_CROSSED (regno) = 0;
3130
                      REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3131
                      REG_LIVE_LENGTH (regno) = 2;
3132
 
3133
                      if (insn == BB_HEAD (bb))
3134
                        BB_HEAD (bb) = PREV_INSN (insn);
3135
 
3136
                      reg_equiv_init (regno)
3137
                        = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3138
                      bitmap_set_bit (cleared_regs, regno);
3139
                    }
3140
                }
3141
            }
3142
        }
3143
    }
3144
 
3145
  if (!bitmap_empty_p (cleared_regs))
3146
    {
3147
      FOR_EACH_BB (bb)
3148
        {
3149
          bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3150
          bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3151
          bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3152
          bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3153
        }
3154
 
3155
      /* Last pass - adjust debug insns referencing cleared regs.  */
3156
      if (MAY_HAVE_DEBUG_INSNS)
3157
        for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3158
          if (DEBUG_INSN_P (insn))
3159
            {
3160
              rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3161
              INSN_VAR_LOCATION_LOC (insn)
3162
                = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3163
                                           adjust_cleared_regs,
3164
                                           (void *) cleared_regs);
3165
              if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3166
                df_insn_rescan (insn);
3167
            }
3168
    }
3169
 
3170
  BITMAP_FREE (cleared_regs);
3171
 
3172
  out:
3173
  /* Clean up.  */
3174
 
3175
  end_alias_analysis ();
3176
  free (reg_equiv);
3177
  return recorded_label_ref;
3178
}
3179
 
3180
 
3181
 
3182
/* Print chain C to FILE.  */
3183
static void
3184
print_insn_chain (FILE *file, struct insn_chain *c)
3185
{
3186
  fprintf (file, "insn=%d, ", INSN_UID(c->insn));
3187
  bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3188
  bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3189
}
3190
 
3191
 
3192
/* Print all reload_insn_chains to FILE.  */
3193
static void
3194
print_insn_chains (FILE *file)
3195
{
3196
  struct insn_chain *c;
3197
  for (c = reload_insn_chain; c ; c = c->next)
3198
    print_insn_chain (file, c);
3199
}
3200
 
3201
/* Return true if pseudo REGNO should be added to set live_throughout
3202
   or dead_or_set of the insn chains for reload consideration.  */
3203
static bool
3204
pseudo_for_reload_consideration_p (int regno)
3205
{
3206
  /* Consider spilled pseudos too for IRA because they still have a
3207
     chance to get hard-registers in the reload when IRA is used.  */
3208
  return (reg_renumber[regno] >= 0 || ira_conflicts_p);
3209
}
3210
 
3211
/* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3212
   REG to the number of nregs, and INIT_VALUE to get the
3213
   initialization.  ALLOCNUM need not be the regno of REG.  */
3214
static void
3215
init_live_subregs (bool init_value, sbitmap *live_subregs,
3216
                   int *live_subregs_used, int allocnum, rtx reg)
3217
{
3218
  unsigned int regno = REGNO (SUBREG_REG (reg));
3219
  int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
3220
 
3221
  gcc_assert (size > 0);
3222
 
3223
  /* Been there, done that.  */
3224
  if (live_subregs_used[allocnum])
3225
    return;
3226
 
3227
  /* Create a new one with zeros.  */
3228
  if (live_subregs[allocnum] == NULL)
3229
    live_subregs[allocnum] = sbitmap_alloc (size);
3230
 
3231
  /* If the entire reg was live before blasting into subregs, we need
3232
     to init all of the subregs to ones else init to 0.  */
3233
  if (init_value)
3234
    sbitmap_ones (live_subregs[allocnum]);
3235
  else
3236
    sbitmap_zero (live_subregs[allocnum]);
3237
 
3238
  /* Set the number of bits that we really want.  */
3239
  live_subregs_used[allocnum] = size;
3240
}
3241
 
3242
/* Walk the insns of the current function and build reload_insn_chain,
3243
   and record register life information.  */
3244
static void
3245
build_insn_chain (void)
3246
{
3247
  unsigned int i;
3248
  struct insn_chain **p = &reload_insn_chain;
3249
  basic_block bb;
3250
  struct insn_chain *c = NULL;
3251
  struct insn_chain *next = NULL;
3252
  bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
3253
  bitmap elim_regset = BITMAP_ALLOC (NULL);
3254
  /* live_subregs is a vector used to keep accurate information about
3255
     which hardregs are live in multiword pseudos.  live_subregs and
3256
     live_subregs_used are indexed by pseudo number.  The live_subreg
3257
     entry for a particular pseudo is only used if the corresponding
3258
     element is non zero in live_subregs_used.  The value in
3259
     live_subregs_used is number of bytes that the pseudo can
3260
     occupy.  */
3261
  sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
3262
  int *live_subregs_used = XNEWVEC (int, max_regno);
3263
 
3264
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3265
    if (TEST_HARD_REG_BIT (eliminable_regset, i))
3266
      bitmap_set_bit (elim_regset, i);
3267
  FOR_EACH_BB_REVERSE (bb)
3268
    {
3269
      bitmap_iterator bi;
3270
      rtx insn;
3271
 
3272
      CLEAR_REG_SET (live_relevant_regs);
3273
      memset (live_subregs_used, 0, max_regno * sizeof (int));
3274
 
3275
      EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb), 0, i, bi)
3276
        {
3277
          if (i >= FIRST_PSEUDO_REGISTER)
3278
            break;
3279
          bitmap_set_bit (live_relevant_regs, i);
3280
        }
3281
 
3282
      EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb),
3283
                                FIRST_PSEUDO_REGISTER, i, bi)
3284
        {
3285
          if (pseudo_for_reload_consideration_p (i))
3286
            bitmap_set_bit (live_relevant_regs, i);
3287
        }
3288
 
3289
      FOR_BB_INSNS_REVERSE (bb, insn)
3290
        {
3291
          if (!NOTE_P (insn) && !BARRIER_P (insn))
3292
            {
3293
              unsigned int uid = INSN_UID (insn);
3294
              df_ref *def_rec;
3295
              df_ref *use_rec;
3296
 
3297
              c = new_insn_chain ();
3298
              c->next = next;
3299
              next = c;
3300
              *p = c;
3301
              p = &c->prev;
3302
 
3303
              c->insn = insn;
3304
              c->block = bb->index;
3305
 
3306
              if (INSN_P (insn))
3307
                for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
3308
                  {
3309
                    df_ref def = *def_rec;
3310
                    unsigned int regno = DF_REF_REGNO (def);
3311
 
3312
                    /* Ignore may clobbers because these are generated
3313
                       from calls. However, every other kind of def is
3314
                       added to dead_or_set.  */
3315
                    if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
3316
                      {
3317
                        if (regno < FIRST_PSEUDO_REGISTER)
3318
                          {
3319
                            if (!fixed_regs[regno])
3320
                              bitmap_set_bit (&c->dead_or_set, regno);
3321
                          }
3322
                        else if (pseudo_for_reload_consideration_p (regno))
3323
                          bitmap_set_bit (&c->dead_or_set, regno);
3324
                      }
3325
 
3326
                    if ((regno < FIRST_PSEUDO_REGISTER
3327
                         || reg_renumber[regno] >= 0
3328
                         || ira_conflicts_p)
3329
                        && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
3330
                      {
3331
                        rtx reg = DF_REF_REG (def);
3332
 
3333
                        /* We can model subregs, but not if they are
3334
                           wrapped in ZERO_EXTRACTS.  */
3335
                        if (GET_CODE (reg) == SUBREG
3336
                            && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
3337
                          {
3338
                            unsigned int start = SUBREG_BYTE (reg);
3339
                            unsigned int last = start
3340
                              + GET_MODE_SIZE (GET_MODE (reg));
3341
 
3342
                            init_live_subregs
3343
                              (bitmap_bit_p (live_relevant_regs, regno),
3344
                               live_subregs, live_subregs_used, regno, reg);
3345
 
3346
                            if (!DF_REF_FLAGS_IS_SET
3347
                                (def, DF_REF_STRICT_LOW_PART))
3348
                              {
3349
                                /* Expand the range to cover entire words.
3350
                                   Bytes added here are "don't care".  */
3351
                                start
3352
                                  = start / UNITS_PER_WORD * UNITS_PER_WORD;
3353
                                last = ((last + UNITS_PER_WORD - 1)
3354
                                        / UNITS_PER_WORD * UNITS_PER_WORD);
3355
                              }
3356
 
3357
                            /* Ignore the paradoxical bits.  */
3358
                            if ((int)last > live_subregs_used[regno])
3359
                              last = live_subregs_used[regno];
3360
 
3361
                            while (start < last)
3362
                              {
3363
                                RESET_BIT (live_subregs[regno], start);
3364
                                start++;
3365
                              }
3366
 
3367
                            if (sbitmap_empty_p (live_subregs[regno]))
3368
                              {
3369
                                live_subregs_used[regno] = 0;
3370
                                bitmap_clear_bit (live_relevant_regs, regno);
3371
                              }
3372
                            else
3373
                              /* Set live_relevant_regs here because
3374
                                 that bit has to be true to get us to
3375
                                 look at the live_subregs fields.  */
3376
                              bitmap_set_bit (live_relevant_regs, regno);
3377
                          }
3378
                        else
3379
                          {
3380
                            /* DF_REF_PARTIAL is generated for
3381
                               subregs, STRICT_LOW_PART, and
3382
                               ZERO_EXTRACT.  We handle the subreg
3383
                               case above so here we have to keep from
3384
                               modeling the def as a killing def.  */
3385
                            if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
3386
                              {
3387
                                bitmap_clear_bit (live_relevant_regs, regno);
3388
                                live_subregs_used[regno] = 0;
3389
                              }
3390
                          }
3391
                      }
3392
                  }
3393
 
3394
              bitmap_and_compl_into (live_relevant_regs, elim_regset);
3395
              bitmap_copy (&c->live_throughout, live_relevant_regs);
3396
 
3397
              if (INSN_P (insn))
3398
                for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
3399
                  {
3400
                    df_ref use = *use_rec;
3401
                    unsigned int regno = DF_REF_REGNO (use);
3402
                    rtx reg = DF_REF_REG (use);
3403
 
3404
                    /* DF_REF_READ_WRITE on a use means that this use
3405
                       is fabricated from a def that is a partial set
3406
                       to a multiword reg.  Here, we only model the
3407
                       subreg case that is not wrapped in ZERO_EXTRACT
3408
                       precisely so we do not need to look at the
3409
                       fabricated use. */
3410
                    if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
3411
                        && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
3412
                        && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
3413
                      continue;
3414
 
3415
                    /* Add the last use of each var to dead_or_set.  */
3416
                    if (!bitmap_bit_p (live_relevant_regs, regno))
3417
                      {
3418
                        if (regno < FIRST_PSEUDO_REGISTER)
3419
                          {
3420
                            if (!fixed_regs[regno])
3421
                              bitmap_set_bit (&c->dead_or_set, regno);
3422
                          }
3423
                        else if (pseudo_for_reload_consideration_p (regno))
3424
                          bitmap_set_bit (&c->dead_or_set, regno);
3425
                      }
3426
 
3427
                    if (regno < FIRST_PSEUDO_REGISTER
3428
                        || pseudo_for_reload_consideration_p (regno))
3429
                      {
3430
                        if (GET_CODE (reg) == SUBREG
3431
                            && !DF_REF_FLAGS_IS_SET (use,
3432
                                                     DF_REF_SIGN_EXTRACT
3433
                                                     | DF_REF_ZERO_EXTRACT))
3434
                          {
3435
                            unsigned int start = SUBREG_BYTE (reg);
3436
                            unsigned int last = start
3437
                              + GET_MODE_SIZE (GET_MODE (reg));
3438
 
3439
                            init_live_subregs
3440
                              (bitmap_bit_p (live_relevant_regs, regno),
3441
                               live_subregs, live_subregs_used, regno, reg);
3442
 
3443
                            /* Ignore the paradoxical bits.  */
3444
                            if ((int)last > live_subregs_used[regno])
3445
                              last = live_subregs_used[regno];
3446
 
3447
                            while (start < last)
3448
                              {
3449
                                SET_BIT (live_subregs[regno], start);
3450
                                start++;
3451
                              }
3452
                          }
3453
                        else
3454
                          /* Resetting the live_subregs_used is
3455
                             effectively saying do not use the subregs
3456
                             because we are reading the whole
3457
                             pseudo.  */
3458
                          live_subregs_used[regno] = 0;
3459
                        bitmap_set_bit (live_relevant_regs, regno);
3460
                      }
3461
                  }
3462
            }
3463
        }
3464
 
3465
      /* FIXME!! The following code is a disaster.  Reload needs to see the
3466
         labels and jump tables that are just hanging out in between
3467
         the basic blocks.  See pr33676.  */
3468
      insn = BB_HEAD (bb);
3469
 
3470
      /* Skip over the barriers and cruft.  */
3471
      while (insn && (BARRIER_P (insn) || NOTE_P (insn)
3472
                      || BLOCK_FOR_INSN (insn) == bb))
3473
        insn = PREV_INSN (insn);
3474
 
3475
      /* While we add anything except barriers and notes, the focus is
3476
         to get the labels and jump tables into the
3477
         reload_insn_chain.  */
3478
      while (insn)
3479
        {
3480
          if (!NOTE_P (insn) && !BARRIER_P (insn))
3481
            {
3482
              if (BLOCK_FOR_INSN (insn))
3483
                break;
3484
 
3485
              c = new_insn_chain ();
3486
              c->next = next;
3487
              next = c;
3488
              *p = c;
3489
              p = &c->prev;
3490
 
3491
              /* The block makes no sense here, but it is what the old
3492
                 code did.  */
3493
              c->block = bb->index;
3494
              c->insn = insn;
3495
              bitmap_copy (&c->live_throughout, live_relevant_regs);
3496
            }
3497
          insn = PREV_INSN (insn);
3498
        }
3499
    }
3500
 
3501
  for (i = 0; i < (unsigned int) max_regno; i++)
3502
    free (live_subregs[i]);
3503
 
3504
  reload_insn_chain = c;
3505
  *p = NULL;
3506
 
3507
  free (live_subregs);
3508
  free (live_subregs_used);
3509
  BITMAP_FREE (live_relevant_regs);
3510
  BITMAP_FREE (elim_regset);
3511
 
3512
  if (dump_file)
3513
    print_insn_chains (dump_file);
3514
}
3515
 
3516
 
3517
 
3518
/* All natural loops.  */
3519
struct loops ira_loops;
3520
 
3521
/* True if we have allocno conflicts.  It is false for non-optimized
3522
   mode or when the conflict table is too big.  */
3523
bool ira_conflicts_p;
3524
 
3525
/* Saved between IRA and reload.  */
3526
static int saved_flag_ira_share_spill_slots;
3527
 
3528
/* This is the main entry of IRA.  */
3529
static void
3530
ira (FILE *f)
3531
{
3532
  int allocated_reg_info_size;
3533
  bool loops_p;
3534
  int max_regno_before_ira, ira_max_point_before_emit;
3535
  int rebuild_p;
3536
 
3537
  if (flag_caller_saves)
3538
    init_caller_save ();
3539
 
3540
  if (flag_ira_verbose < 10)
3541
    {
3542
      internal_flag_ira_verbose = flag_ira_verbose;
3543
      ira_dump_file = f;
3544
    }
3545
  else
3546
    {
3547
      internal_flag_ira_verbose = flag_ira_verbose - 10;
3548
      ira_dump_file = stderr;
3549
    }
3550
 
3551
  ira_conflicts_p = optimize > 0;
3552
  setup_prohibited_mode_move_regs ();
3553
 
3554
  df_note_add_problem ();
3555
 
3556
  if (optimize == 1)
3557
    {
3558
      df_live_add_problem ();
3559
      df_live_set_all_dirty ();
3560
    }
3561
#ifdef ENABLE_CHECKING
3562
  df->changeable_flags |= DF_VERIFY_SCHEDULED;
3563
#endif
3564
  df_analyze ();
3565
  df_clear_flags (DF_NO_INSN_RESCAN);
3566
  regstat_init_n_sets_and_refs ();
3567
  regstat_compute_ri ();
3568
 
3569
  /* If we are not optimizing, then this is the only place before
3570
     register allocation where dataflow is done.  And that is needed
3571
     to generate these warnings.  */
3572
  if (warn_clobbered)
3573
    generate_setjmp_warnings ();
3574
 
3575
  /* Determine if the current function is a leaf before running IRA
3576
     since this can impact optimizations done by the prologue and
3577
     epilogue thus changing register elimination offsets.  */
3578
  current_function_is_leaf = leaf_function_p ();
3579
 
3580
  if (resize_reg_info () && flag_ira_loop_pressure)
3581
    ira_set_pseudo_classes (ira_dump_file);
3582
 
3583
  rebuild_p = update_equiv_regs ();
3584
 
3585
#ifndef IRA_NO_OBSTACK
3586
  gcc_obstack_init (&ira_obstack);
3587
#endif
3588
  bitmap_obstack_initialize (&ira_bitmap_obstack);
3589
  if (optimize)
3590
    {
3591
      max_regno = max_reg_num ();
3592
      ira_reg_equiv_len = max_regno;
3593
      ira_reg_equiv_invariant_p
3594
        = (bool *) ira_allocate (max_regno * sizeof (bool));
3595
      memset (ira_reg_equiv_invariant_p, 0, max_regno * sizeof (bool));
3596
      ira_reg_equiv_const = (rtx *) ira_allocate (max_regno * sizeof (rtx));
3597
      memset (ira_reg_equiv_const, 0, max_regno * sizeof (rtx));
3598
      find_reg_equiv_invariant_const ();
3599
      if (rebuild_p)
3600
        {
3601
          timevar_push (TV_JUMP);
3602
          rebuild_jump_labels (get_insns ());
3603
          if (purge_all_dead_edges ())
3604
            delete_unreachable_blocks ();
3605
          timevar_pop (TV_JUMP);
3606
        }
3607
    }
3608
 
3609
  max_regno_before_ira = allocated_reg_info_size = max_reg_num ();
3610
  ira_setup_eliminable_regset ();
3611
 
3612
  ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
3613
  ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
3614
  ira_move_loops_num = ira_additional_jumps_num = 0;
3615
 
3616
  ira_assert (current_loops == NULL);
3617
  if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
3618
    {
3619
      flow_loops_find (&ira_loops);
3620
      record_loop_exits ();
3621
      current_loops = &ira_loops;
3622
    }
3623
 
3624
  if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3625
    fprintf (ira_dump_file, "Building IRA IR\n");
3626
  loops_p = ira_build ();
3627
 
3628
  ira_assert (ira_conflicts_p || !loops_p);
3629
 
3630
  saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
3631
  if (too_high_register_pressure_p () || cfun->calls_setjmp)
3632
    /* It is just wasting compiler's time to pack spilled pseudos into
3633
       stack slots in this case -- prohibit it.  We also do this if
3634
       there is setjmp call because a variable not modified between
3635
       setjmp and longjmp the compiler is required to preserve its
3636
       value and sharing slots does not guarantee it.  */
3637
    flag_ira_share_spill_slots = FALSE;
3638
 
3639
  ira_color ();
3640
 
3641
  ira_max_point_before_emit = ira_max_point;
3642
 
3643
  ira_initiate_emit_data ();
3644
 
3645
  ira_emit (loops_p);
3646
 
3647
  if (ira_conflicts_p)
3648
    {
3649
      max_regno = max_reg_num ();
3650
 
3651
      if (! loops_p)
3652
        ira_initiate_assign ();
3653
      else
3654
        {
3655
          expand_reg_info (allocated_reg_info_size);
3656
          setup_preferred_alternate_classes_for_new_pseudos
3657
            (allocated_reg_info_size);
3658
          allocated_reg_info_size = max_regno;
3659
 
3660
          if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3661
            fprintf (ira_dump_file, "Flattening IR\n");
3662
          ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
3663
          /* New insns were generated: add notes and recalculate live
3664
             info.  */
3665
          df_analyze ();
3666
 
3667
          flow_loops_find (&ira_loops);
3668
          record_loop_exits ();
3669
          current_loops = &ira_loops;
3670
 
3671
          setup_allocno_assignment_flags ();
3672
          ira_initiate_assign ();
3673
          ira_reassign_conflict_allocnos (max_regno);
3674
        }
3675
    }
3676
 
3677
  ira_finish_emit_data ();
3678
 
3679
  setup_reg_renumber ();
3680
 
3681
  calculate_allocation_cost ();
3682
 
3683
#ifdef ENABLE_IRA_CHECKING
3684
  if (ira_conflicts_p)
3685
    check_allocation ();
3686
#endif
3687
 
3688
  if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
3689
    df_analyze ();
3690
 
3691
  if (max_regno != max_regno_before_ira)
3692
    {
3693
      regstat_free_n_sets_and_refs ();
3694
      regstat_free_ri ();
3695
      regstat_init_n_sets_and_refs ();
3696
      regstat_compute_ri ();
3697
    }
3698
 
3699
  overall_cost_before = ira_overall_cost;
3700
  if (! ira_conflicts_p)
3701
    grow_reg_equivs ();
3702
  else
3703
    {
3704
      fix_reg_equiv_init ();
3705
 
3706
#ifdef ENABLE_IRA_CHECKING
3707
      print_redundant_copies ();
3708
#endif
3709
 
3710
      ira_spilled_reg_stack_slots_num = 0;
3711
      ira_spilled_reg_stack_slots
3712
        = ((struct ira_spilled_reg_stack_slot *)
3713
           ira_allocate (max_regno
3714
                         * sizeof (struct ira_spilled_reg_stack_slot)));
3715
      memset (ira_spilled_reg_stack_slots, 0,
3716
              max_regno * sizeof (struct ira_spilled_reg_stack_slot));
3717
    }
3718
  allocate_initial_values (reg_equivs);
3719
}
3720
 
3721
static void
3722
do_reload (void)
3723
{
3724
  basic_block bb;
3725
  bool need_dce;
3726
 
3727
  if (flag_ira_verbose < 10)
3728
    ira_dump_file = dump_file;
3729
 
3730
  df_set_flags (DF_NO_INSN_RESCAN);
3731
  build_insn_chain ();
3732
 
3733
  need_dce = reload (get_insns (), ira_conflicts_p);
3734
 
3735
  timevar_push (TV_IRA);
3736
 
3737
  if (ira_conflicts_p)
3738
    {
3739
      ira_free (ira_spilled_reg_stack_slots);
3740
 
3741
      ira_finish_assign ();
3742
    }
3743
  if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
3744
      && overall_cost_before != ira_overall_cost)
3745
    fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
3746
  ira_destroy ();
3747
 
3748
  flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
3749
 
3750
  if (current_loops != NULL)
3751
    {
3752
      flow_loops_free (&ira_loops);
3753
      free_dominance_info (CDI_DOMINATORS);
3754
    }
3755
  FOR_ALL_BB (bb)
3756
    bb->loop_father = NULL;
3757
  current_loops = NULL;
3758
 
3759
  regstat_free_ri ();
3760
  regstat_free_n_sets_and_refs ();
3761
 
3762
  if (optimize)
3763
    {
3764
      cleanup_cfg (CLEANUP_EXPENSIVE);
3765
 
3766
      ira_free (ira_reg_equiv_invariant_p);
3767
      ira_free (ira_reg_equiv_const);
3768
    }
3769
 
3770
  bitmap_obstack_release (&ira_bitmap_obstack);
3771
#ifndef IRA_NO_OBSTACK
3772
  obstack_free (&ira_obstack, NULL);
3773
#endif
3774
 
3775
  /* The code after the reload has changed so much that at this point
3776
     we might as well just rescan everything.  Note that
3777
     df_rescan_all_insns is not going to help here because it does not
3778
     touch the artificial uses and defs.  */
3779
  df_finish_pass (true);
3780
  if (optimize > 1)
3781
    df_live_add_problem ();
3782
  df_scan_alloc (NULL);
3783
  df_scan_blocks ();
3784
 
3785
  if (optimize)
3786
    df_analyze ();
3787
 
3788
  if (need_dce && optimize)
3789
    run_fast_dce ();
3790
 
3791
  timevar_pop (TV_IRA);
3792
}
3793
 
3794
/* Run the integrated register allocator.  */
3795
static unsigned int
3796
rest_of_handle_ira (void)
3797
{
3798
  ira (dump_file);
3799
  return 0;
3800
}
3801
 
3802
struct rtl_opt_pass pass_ira =
3803
{
3804
 {
3805
  RTL_PASS,
3806
  "ira",                                /* name */
3807
  NULL,                                 /* gate */
3808
  rest_of_handle_ira,                   /* execute */
3809
  NULL,                                 /* sub */
3810
  NULL,                                 /* next */
3811
  0,                                    /* static_pass_number */
3812
  TV_IRA,                               /* tv_id */
3813
  0,                                    /* properties_required */
3814
  0,                                    /* properties_provided */
3815
  0,                                    /* properties_destroyed */
3816
  0,                                    /* todo_flags_start */
3817
  TODO_dump_func                        /* todo_flags_finish */
3818
 }
3819
};
3820
 
3821
static unsigned int
3822
rest_of_handle_reload (void)
3823
{
3824
  do_reload ();
3825
  return 0;
3826
}
3827
 
3828
struct rtl_opt_pass pass_reload =
3829
{
3830
 {
3831
  RTL_PASS,
3832
  "reload",                             /* name */
3833
  NULL,                                 /* gate */
3834
  rest_of_handle_reload,                /* execute */
3835
  NULL,                                 /* sub */
3836
  NULL,                                 /* next */
3837
  0,                                    /* static_pass_number */
3838
  TV_RELOAD,                            /* tv_id */
3839
  0,                                    /* properties_required */
3840
  0,                                    /* properties_provided */
3841
  0,                                    /* properties_destroyed */
3842
  0,                                    /* todo_flags_start */
3843
  TODO_dump_func | TODO_ggc_collect     /* todo_flags_finish */
3844
 }
3845
};

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.