| 1 |
684 |
jeremybenn |
/* Integrated Register Allocator (IRA) entry point.
|
| 2 |
|
|
Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GCC.
|
| 7 |
|
|
|
| 8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 9 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 11 |
|
|
version.
|
| 12 |
|
|
|
| 13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 16 |
|
|
for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 20 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
/* The integrated register allocator (IRA) is a
|
| 23 |
|
|
regional register allocator performing graph coloring on a top-down
|
| 24 |
|
|
traversal of nested regions. Graph coloring in a region is based
|
| 25 |
|
|
on Chaitin-Briggs algorithm. It is called integrated because
|
| 26 |
|
|
register coalescing, register live range splitting, and choosing a
|
| 27 |
|
|
better hard register are done on-the-fly during coloring. Register
|
| 28 |
|
|
coalescing and choosing a cheaper hard register is done by hard
|
| 29 |
|
|
register preferencing during hard register assigning. The live
|
| 30 |
|
|
range splitting is a byproduct of the regional register allocation.
|
| 31 |
|
|
|
| 32 |
|
|
Major IRA notions are:
|
| 33 |
|
|
|
| 34 |
|
|
o *Region* is a part of CFG where graph coloring based on
|
| 35 |
|
|
Chaitin-Briggs algorithm is done. IRA can work on any set of
|
| 36 |
|
|
nested CFG regions forming a tree. Currently the regions are
|
| 37 |
|
|
the entire function for the root region and natural loops for
|
| 38 |
|
|
the other regions. Therefore data structure representing a
|
| 39 |
|
|
region is called loop_tree_node.
|
| 40 |
|
|
|
| 41 |
|
|
o *Allocno class* is a register class used for allocation of
|
| 42 |
|
|
given allocno. It means that only hard register of given
|
| 43 |
|
|
register class can be assigned to given allocno. In reality,
|
| 44 |
|
|
even smaller subset of (*profitable*) hard registers can be
|
| 45 |
|
|
assigned. In rare cases, the subset can be even smaller
|
| 46 |
|
|
because our modification of Chaitin-Briggs algorithm requires
|
| 47 |
|
|
that sets of hard registers can be assigned to allocnos forms a
|
| 48 |
|
|
forest, i.e. the sets can be ordered in a way where any
|
| 49 |
|
|
previous set is not intersected with given set or is a superset
|
| 50 |
|
|
of given set.
|
| 51 |
|
|
|
| 52 |
|
|
o *Pressure class* is a register class belonging to a set of
|
| 53 |
|
|
register classes containing all of the hard-registers available
|
| 54 |
|
|
for register allocation. The set of all pressure classes for a
|
| 55 |
|
|
target is defined in the corresponding machine-description file
|
| 56 |
|
|
according some criteria. Register pressure is calculated only
|
| 57 |
|
|
for pressure classes and it affects some IRA decisions as
|
| 58 |
|
|
forming allocation regions.
|
| 59 |
|
|
|
| 60 |
|
|
o *Allocno* represents the live range of a pseudo-register in a
|
| 61 |
|
|
region. Besides the obvious attributes like the corresponding
|
| 62 |
|
|
pseudo-register number, allocno class, conflicting allocnos and
|
| 63 |
|
|
conflicting hard-registers, there are a few allocno attributes
|
| 64 |
|
|
which are important for understanding the allocation algorithm:
|
| 65 |
|
|
|
| 66 |
|
|
- *Live ranges*. This is a list of ranges of *program points*
|
| 67 |
|
|
where the allocno lives. Program points represent places
|
| 68 |
|
|
where a pseudo can be born or become dead (there are
|
| 69 |
|
|
approximately two times more program points than the insns)
|
| 70 |
|
|
and they are represented by integers starting with 0. The
|
| 71 |
|
|
live ranges are used to find conflicts between allocnos.
|
| 72 |
|
|
They also play very important role for the transformation of
|
| 73 |
|
|
the IRA internal representation of several regions into a one
|
| 74 |
|
|
region representation. The later is used during the reload
|
| 75 |
|
|
pass work because each allocno represents all of the
|
| 76 |
|
|
corresponding pseudo-registers.
|
| 77 |
|
|
|
| 78 |
|
|
- *Hard-register costs*. This is a vector of size equal to the
|
| 79 |
|
|
number of available hard-registers of the allocno class. The
|
| 80 |
|
|
cost of a callee-clobbered hard-register for an allocno is
|
| 81 |
|
|
increased by the cost of save/restore code around the calls
|
| 82 |
|
|
through the given allocno's life. If the allocno is a move
|
| 83 |
|
|
instruction operand and another operand is a hard-register of
|
| 84 |
|
|
the allocno class, the cost of the hard-register is decreased
|
| 85 |
|
|
by the move cost.
|
| 86 |
|
|
|
| 87 |
|
|
When an allocno is assigned, the hard-register with minimal
|
| 88 |
|
|
full cost is used. Initially, a hard-register's full cost is
|
| 89 |
|
|
the corresponding value from the hard-register's cost vector.
|
| 90 |
|
|
If the allocno is connected by a *copy* (see below) to
|
| 91 |
|
|
another allocno which has just received a hard-register, the
|
| 92 |
|
|
cost of the hard-register is decreased. Before choosing a
|
| 93 |
|
|
hard-register for an allocno, the allocno's current costs of
|
| 94 |
|
|
the hard-registers are modified by the conflict hard-register
|
| 95 |
|
|
costs of all of the conflicting allocnos which are not
|
| 96 |
|
|
assigned yet.
|
| 97 |
|
|
|
| 98 |
|
|
- *Conflict hard-register costs*. This is a vector of the same
|
| 99 |
|
|
size as the hard-register costs vector. To permit an
|
| 100 |
|
|
unassigned allocno to get a better hard-register, IRA uses
|
| 101 |
|
|
this vector to calculate the final full cost of the
|
| 102 |
|
|
available hard-registers. Conflict hard-register costs of an
|
| 103 |
|
|
unassigned allocno are also changed with a change of the
|
| 104 |
|
|
hard-register cost of the allocno when a copy involving the
|
| 105 |
|
|
allocno is processed as described above. This is done to
|
| 106 |
|
|
show other unassigned allocnos that a given allocno prefers
|
| 107 |
|
|
some hard-registers in order to remove the move instruction
|
| 108 |
|
|
corresponding to the copy.
|
| 109 |
|
|
|
| 110 |
|
|
o *Cap*. If a pseudo-register does not live in a region but
|
| 111 |
|
|
lives in a nested region, IRA creates a special allocno called
|
| 112 |
|
|
a cap in the outer region. A region cap is also created for a
|
| 113 |
|
|
subregion cap.
|
| 114 |
|
|
|
| 115 |
|
|
o *Copy*. Allocnos can be connected by copies. Copies are used
|
| 116 |
|
|
to modify hard-register costs for allocnos during coloring.
|
| 117 |
|
|
Such modifications reflects a preference to use the same
|
| 118 |
|
|
hard-register for the allocnos connected by copies. Usually
|
| 119 |
|
|
copies are created for move insns (in this case it results in
|
| 120 |
|
|
register coalescing). But IRA also creates copies for operands
|
| 121 |
|
|
of an insn which should be assigned to the same hard-register
|
| 122 |
|
|
due to constraints in the machine description (it usually
|
| 123 |
|
|
results in removing a move generated in reload to satisfy
|
| 124 |
|
|
the constraints) and copies referring to the allocno which is
|
| 125 |
|
|
the output operand of an instruction and the allocno which is
|
| 126 |
|
|
an input operand dying in the instruction (creation of such
|
| 127 |
|
|
copies results in less register shuffling). IRA *does not*
|
| 128 |
|
|
create copies between the same register allocnos from different
|
| 129 |
|
|
regions because we use another technique for propagating
|
| 130 |
|
|
hard-register preference on the borders of regions.
|
| 131 |
|
|
|
| 132 |
|
|
Allocnos (including caps) for the upper region in the region tree
|
| 133 |
|
|
*accumulate* information important for coloring from allocnos with
|
| 134 |
|
|
the same pseudo-register from nested regions. This includes
|
| 135 |
|
|
hard-register and memory costs, conflicts with hard-registers,
|
| 136 |
|
|
allocno conflicts, allocno copies and more. *Thus, attributes for
|
| 137 |
|
|
allocnos in a region have the same values as if the region had no
|
| 138 |
|
|
subregions*. It means that attributes for allocnos in the
|
| 139 |
|
|
outermost region corresponding to the function have the same values
|
| 140 |
|
|
as though the allocation used only one region which is the entire
|
| 141 |
|
|
function. It also means that we can look at IRA work as if the
|
| 142 |
|
|
first IRA did allocation for all function then it improved the
|
| 143 |
|
|
allocation for loops then their subloops and so on.
|
| 144 |
|
|
|
| 145 |
|
|
IRA major passes are:
|
| 146 |
|
|
|
| 147 |
|
|
o Building IRA internal representation which consists of the
|
| 148 |
|
|
following subpasses:
|
| 149 |
|
|
|
| 150 |
|
|
* First, IRA builds regions and creates allocnos (file
|
| 151 |
|
|
ira-build.c) and initializes most of their attributes.
|
| 152 |
|
|
|
| 153 |
|
|
* Then IRA finds an allocno class for each allocno and
|
| 154 |
|
|
calculates its initial (non-accumulated) cost of memory and
|
| 155 |
|
|
each hard-register of its allocno class (file ira-cost.c).
|
| 156 |
|
|
|
| 157 |
|
|
* IRA creates live ranges of each allocno, calulates register
|
| 158 |
|
|
pressure for each pressure class in each region, sets up
|
| 159 |
|
|
conflict hard registers for each allocno and info about calls
|
| 160 |
|
|
the allocno lives through (file ira-lives.c).
|
| 161 |
|
|
|
| 162 |
|
|
* IRA removes low register pressure loops from the regions
|
| 163 |
|
|
mostly to speed IRA up (file ira-build.c).
|
| 164 |
|
|
|
| 165 |
|
|
* IRA propagates accumulated allocno info from lower region
|
| 166 |
|
|
allocnos to corresponding upper region allocnos (file
|
| 167 |
|
|
ira-build.c).
|
| 168 |
|
|
|
| 169 |
|
|
* IRA creates all caps (file ira-build.c).
|
| 170 |
|
|
|
| 171 |
|
|
* Having live-ranges of allocnos and their classes, IRA creates
|
| 172 |
|
|
conflicting allocnos for each allocno. Conflicting allocnos
|
| 173 |
|
|
are stored as a bit vector or array of pointers to the
|
| 174 |
|
|
conflicting allocnos whatever is more profitable (file
|
| 175 |
|
|
ira-conflicts.c). At this point IRA creates allocno copies.
|
| 176 |
|
|
|
| 177 |
|
|
o Coloring. Now IRA has all necessary info to start graph coloring
|
| 178 |
|
|
process. It is done in each region on top-down traverse of the
|
| 179 |
|
|
region tree (file ira-color.c). There are following subpasses:
|
| 180 |
|
|
|
| 181 |
|
|
* Finding profitable hard registers of corresponding allocno
|
| 182 |
|
|
class for each allocno. For example, only callee-saved hard
|
| 183 |
|
|
registers are frequently profitable for allocnos living
|
| 184 |
|
|
through colors. If the profitable hard register set of
|
| 185 |
|
|
allocno does not form a tree based on subset relation, we use
|
| 186 |
|
|
some approximation to form the tree. This approximation is
|
| 187 |
|
|
used to figure out trivial colorability of allocnos. The
|
| 188 |
|
|
approximation is a pretty rare case.
|
| 189 |
|
|
|
| 190 |
|
|
* Putting allocnos onto the coloring stack. IRA uses Briggs
|
| 191 |
|
|
optimistic coloring which is a major improvement over
|
| 192 |
|
|
Chaitin's coloring. Therefore IRA does not spill allocnos at
|
| 193 |
|
|
this point. There is some freedom in the order of putting
|
| 194 |
|
|
allocnos on the stack which can affect the final result of
|
| 195 |
|
|
the allocation. IRA uses some heuristics to improve the
|
| 196 |
|
|
order.
|
| 197 |
|
|
|
| 198 |
|
|
We also use a modification of Chaitin-Briggs algorithm which
|
| 199 |
|
|
works for intersected register classes of allocnos. To
|
| 200 |
|
|
figure out trivial colorability of allocnos, the mentioned
|
| 201 |
|
|
above tree of hard register sets is used. To get an idea how
|
| 202 |
|
|
the algorithm works in i386 example, let us consider an
|
| 203 |
|
|
allocno to which any general hard register can be assigned.
|
| 204 |
|
|
If the allocno conflicts with eight allocnos to which only
|
| 205 |
|
|
EAX register can be assigned, given allocno is still
|
| 206 |
|
|
trivially colorable because all conflicting allocnos might be
|
| 207 |
|
|
assigned only to EAX and all other general hard registers are
|
| 208 |
|
|
still free.
|
| 209 |
|
|
|
| 210 |
|
|
To get an idea of the used trivial colorability criterion, it
|
| 211 |
|
|
is also useful to read article "Graph-Coloring Register
|
| 212 |
|
|
Allocation for Irregular Architectures" by Michael D. Smith
|
| 213 |
|
|
and Glen Holloway. Major difference between the article
|
| 214 |
|
|
approach and approach used in IRA is that Smith's approach
|
| 215 |
|
|
takes register classes only from machine description and IRA
|
| 216 |
|
|
calculate register classes from intermediate code too
|
| 217 |
|
|
(e.g. an explicit usage of hard registers in RTL code for
|
| 218 |
|
|
parameter passing can result in creation of additional
|
| 219 |
|
|
register classes which contain or exclude the hard
|
| 220 |
|
|
registers). That makes IRA approach useful for improving
|
| 221 |
|
|
coloring even for architectures with regular register files
|
| 222 |
|
|
and in fact some benchmarking shows the improvement for
|
| 223 |
|
|
regular class architectures is even bigger than for irregular
|
| 224 |
|
|
ones. Another difference is that Smith's approach chooses
|
| 225 |
|
|
intersection of classes of all insn operands in which a given
|
| 226 |
|
|
pseudo occurs. IRA can use bigger classes if it is still
|
| 227 |
|
|
more profitable than memory usage.
|
| 228 |
|
|
|
| 229 |
|
|
* Popping the allocnos from the stack and assigning them hard
|
| 230 |
|
|
registers. If IRA can not assign a hard register to an
|
| 231 |
|
|
allocno and the allocno is coalesced, IRA undoes the
|
| 232 |
|
|
coalescing and puts the uncoalesced allocnos onto the stack in
|
| 233 |
|
|
the hope that some such allocnos will get a hard register
|
| 234 |
|
|
separately. If IRA fails to assign hard register or memory
|
| 235 |
|
|
is more profitable for it, IRA spills the allocno. IRA
|
| 236 |
|
|
assigns the allocno the hard-register with minimal full
|
| 237 |
|
|
allocation cost which reflects the cost of usage of the
|
| 238 |
|
|
hard-register for the allocno and cost of usage of the
|
| 239 |
|
|
hard-register for allocnos conflicting with given allocno.
|
| 240 |
|
|
|
| 241 |
|
|
* Chaitin-Briggs coloring assigns as many pseudos as possible
|
| 242 |
|
|
to hard registers. After coloringh we try to improve
|
| 243 |
|
|
allocation with cost point of view. We improve the
|
| 244 |
|
|
allocation by spilling some allocnos and assigning the freed
|
| 245 |
|
|
hard registers to other allocnos if it decreases the overall
|
| 246 |
|
|
allocation cost.
|
| 247 |
|
|
|
| 248 |
|
|
* After allono assigning in the region, IRA modifies the hard
|
| 249 |
|
|
register and memory costs for the corresponding allocnos in
|
| 250 |
|
|
the subregions to reflect the cost of possible loads, stores,
|
| 251 |
|
|
or moves on the border of the region and its subregions.
|
| 252 |
|
|
When default regional allocation algorithm is used
|
| 253 |
|
|
(-fira-algorithm=mixed), IRA just propagates the assignment
|
| 254 |
|
|
for allocnos if the register pressure in the region for the
|
| 255 |
|
|
corresponding pressure class is less than number of available
|
| 256 |
|
|
hard registers for given pressure class.
|
| 257 |
|
|
|
| 258 |
|
|
o Spill/restore code moving. When IRA performs an allocation
|
| 259 |
|
|
by traversing regions in top-down order, it does not know what
|
| 260 |
|
|
happens below in the region tree. Therefore, sometimes IRA
|
| 261 |
|
|
misses opportunities to perform a better allocation. A simple
|
| 262 |
|
|
optimization tries to improve allocation in a region having
|
| 263 |
|
|
subregions and containing in another region. If the
|
| 264 |
|
|
corresponding allocnos in the subregion are spilled, it spills
|
| 265 |
|
|
the region allocno if it is profitable. The optimization
|
| 266 |
|
|
implements a simple iterative algorithm performing profitable
|
| 267 |
|
|
transformations while they are still possible. It is fast in
|
| 268 |
|
|
practice, so there is no real need for a better time complexity
|
| 269 |
|
|
algorithm.
|
| 270 |
|
|
|
| 271 |
|
|
o Code change. After coloring, two allocnos representing the
|
| 272 |
|
|
same pseudo-register outside and inside a region respectively
|
| 273 |
|
|
may be assigned to different locations (hard-registers or
|
| 274 |
|
|
memory). In this case IRA creates and uses a new
|
| 275 |
|
|
pseudo-register inside the region and adds code to move allocno
|
| 276 |
|
|
values on the region's borders. This is done during top-down
|
| 277 |
|
|
traversal of the regions (file ira-emit.c). In some
|
| 278 |
|
|
complicated cases IRA can create a new allocno to move allocno
|
| 279 |
|
|
values (e.g. when a swap of values stored in two hard-registers
|
| 280 |
|
|
is needed). At this stage, the new allocno is marked as
|
| 281 |
|
|
spilled. IRA still creates the pseudo-register and the moves
|
| 282 |
|
|
on the region borders even when both allocnos were assigned to
|
| 283 |
|
|
the same hard-register. If the reload pass spills a
|
| 284 |
|
|
pseudo-register for some reason, the effect will be smaller
|
| 285 |
|
|
because another allocno will still be in the hard-register. In
|
| 286 |
|
|
most cases, this is better then spilling both allocnos. If
|
| 287 |
|
|
reload does not change the allocation for the two
|
| 288 |
|
|
pseudo-registers, the trivial move will be removed by
|
| 289 |
|
|
post-reload optimizations. IRA does not generate moves for
|
| 290 |
|
|
allocnos assigned to the same hard register when the default
|
| 291 |
|
|
regional allocation algorithm is used and the register pressure
|
| 292 |
|
|
in the region for the corresponding pressure class is less than
|
| 293 |
|
|
number of available hard registers for given pressure class.
|
| 294 |
|
|
IRA also does some optimizations to remove redundant stores and
|
| 295 |
|
|
to reduce code duplication on the region borders.
|
| 296 |
|
|
|
| 297 |
|
|
o Flattening internal representation. After changing code, IRA
|
| 298 |
|
|
transforms its internal representation for several regions into
|
| 299 |
|
|
one region representation (file ira-build.c). This process is
|
| 300 |
|
|
called IR flattening. Such process is more complicated than IR
|
| 301 |
|
|
rebuilding would be, but is much faster.
|
| 302 |
|
|
|
| 303 |
|
|
o After IR flattening, IRA tries to assign hard registers to all
|
| 304 |
|
|
spilled allocnos. This is impelemented by a simple and fast
|
| 305 |
|
|
priority coloring algorithm (see function
|
| 306 |
|
|
ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
|
| 307 |
|
|
created during the code change pass can be assigned to hard
|
| 308 |
|
|
registers.
|
| 309 |
|
|
|
| 310 |
|
|
o At the end IRA calls the reload pass. The reload pass
|
| 311 |
|
|
communicates with IRA through several functions in file
|
| 312 |
|
|
ira-color.c to improve its decisions in
|
| 313 |
|
|
|
| 314 |
|
|
* sharing stack slots for the spilled pseudos based on IRA info
|
| 315 |
|
|
about pseudo-register conflicts.
|
| 316 |
|
|
|
| 317 |
|
|
* reassigning hard-registers to all spilled pseudos at the end
|
| 318 |
|
|
of each reload iteration.
|
| 319 |
|
|
|
| 320 |
|
|
* choosing a better hard-register to spill based on IRA info
|
| 321 |
|
|
about pseudo-register live ranges and the register pressure
|
| 322 |
|
|
in places where the pseudo-register lives.
|
| 323 |
|
|
|
| 324 |
|
|
IRA uses a lot of data representing the target processors. These
|
| 325 |
|
|
data are initilized in file ira.c.
|
| 326 |
|
|
|
| 327 |
|
|
If function has no loops (or the loops are ignored when
|
| 328 |
|
|
-fira-algorithm=CB is used), we have classic Chaitin-Briggs
|
| 329 |
|
|
coloring (only instead of separate pass of coalescing, we use hard
|
| 330 |
|
|
register preferencing). In such case, IRA works much faster
|
| 331 |
|
|
because many things are not made (like IR flattening, the
|
| 332 |
|
|
spill/restore optimization, and the code change).
|
| 333 |
|
|
|
| 334 |
|
|
Literature is worth to read for better understanding the code:
|
| 335 |
|
|
|
| 336 |
|
|
o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
|
| 337 |
|
|
Graph Coloring Register Allocation.
|
| 338 |
|
|
|
| 339 |
|
|
o David Callahan, Brian Koblenz. Register allocation via
|
| 340 |
|
|
hierarchical graph coloring.
|
| 341 |
|
|
|
| 342 |
|
|
o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
|
| 343 |
|
|
Coloring Register Allocation: A Study of the Chaitin-Briggs and
|
| 344 |
|
|
Callahan-Koblenz Algorithms.
|
| 345 |
|
|
|
| 346 |
|
|
o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
|
| 347 |
|
|
Register Allocation Based on Graph Fusion.
|
| 348 |
|
|
|
| 349 |
|
|
o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
|
| 350 |
|
|
Allocation for Irregular Architectures
|
| 351 |
|
|
|
| 352 |
|
|
o Vladimir Makarov. The Integrated Register Allocator for GCC.
|
| 353 |
|
|
|
| 354 |
|
|
o Vladimir Makarov. The top-down register allocator for irregular
|
| 355 |
|
|
register file architectures.
|
| 356 |
|
|
|
| 357 |
|
|
*/
|
| 358 |
|
|
|
| 359 |
|
|
|
| 360 |
|
|
#include "config.h"
|
| 361 |
|
|
#include "system.h"
|
| 362 |
|
|
#include "coretypes.h"
|
| 363 |
|
|
#include "tm.h"
|
| 364 |
|
|
#include "regs.h"
|
| 365 |
|
|
#include "rtl.h"
|
| 366 |
|
|
#include "tm_p.h"
|
| 367 |
|
|
#include "target.h"
|
| 368 |
|
|
#include "flags.h"
|
| 369 |
|
|
#include "obstack.h"
|
| 370 |
|
|
#include "bitmap.h"
|
| 371 |
|
|
#include "hard-reg-set.h"
|
| 372 |
|
|
#include "basic-block.h"
|
| 373 |
|
|
#include "df.h"
|
| 374 |
|
|
#include "expr.h"
|
| 375 |
|
|
#include "recog.h"
|
| 376 |
|
|
#include "params.h"
|
| 377 |
|
|
#include "timevar.h"
|
| 378 |
|
|
#include "tree-pass.h"
|
| 379 |
|
|
#include "output.h"
|
| 380 |
|
|
#include "except.h"
|
| 381 |
|
|
#include "reload.h"
|
| 382 |
|
|
#include "diagnostic-core.h"
|
| 383 |
|
|
#include "integrate.h"
|
| 384 |
|
|
#include "ggc.h"
|
| 385 |
|
|
#include "ira-int.h"
|
| 386 |
|
|
#include "dce.h"
|
| 387 |
|
|
|
| 388 |
|
|
|
| 389 |
|
|
struct target_ira default_target_ira;
|
| 390 |
|
|
struct target_ira_int default_target_ira_int;
|
| 391 |
|
|
#if SWITCHABLE_TARGET
|
| 392 |
|
|
struct target_ira *this_target_ira = &default_target_ira;
|
| 393 |
|
|
struct target_ira_int *this_target_ira_int = &default_target_ira_int;
|
| 394 |
|
|
#endif
|
| 395 |
|
|
|
| 396 |
|
|
/* A modified value of flag `-fira-verbose' used internally. */
|
| 397 |
|
|
int internal_flag_ira_verbose;
|
| 398 |
|
|
|
| 399 |
|
|
/* Dump file of the allocator if it is not NULL. */
|
| 400 |
|
|
FILE *ira_dump_file;
|
| 401 |
|
|
|
| 402 |
|
|
/* The number of elements in the following array. */
|
| 403 |
|
|
int ira_spilled_reg_stack_slots_num;
|
| 404 |
|
|
|
| 405 |
|
|
/* The following array contains info about spilled pseudo-registers
|
| 406 |
|
|
stack slots used in current function so far. */
|
| 407 |
|
|
struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
|
| 408 |
|
|
|
| 409 |
|
|
/* Correspondingly overall cost of the allocation, overall cost before
|
| 410 |
|
|
reload, cost of the allocnos assigned to hard-registers, cost of
|
| 411 |
|
|
the allocnos assigned to memory, cost of loads, stores and register
|
| 412 |
|
|
move insns generated for pseudo-register live range splitting (see
|
| 413 |
|
|
ira-emit.c). */
|
| 414 |
|
|
int ira_overall_cost, overall_cost_before;
|
| 415 |
|
|
int ira_reg_cost, ira_mem_cost;
|
| 416 |
|
|
int ira_load_cost, ira_store_cost, ira_shuffle_cost;
|
| 417 |
|
|
int ira_move_loops_num, ira_additional_jumps_num;
|
| 418 |
|
|
|
| 419 |
|
|
/* All registers that can be eliminated. */
|
| 420 |
|
|
|
| 421 |
|
|
HARD_REG_SET eliminable_regset;
|
| 422 |
|
|
|
| 423 |
|
|
/* Temporary hard reg set used for a different calculation. */
|
| 424 |
|
|
static HARD_REG_SET temp_hard_regset;
|
| 425 |
|
|
|
| 426 |
|
|
|
| 427 |
|
|
|
| 428 |
|
|
/* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
|
| 429 |
|
|
static void
|
| 430 |
|
|
setup_reg_mode_hard_regset (void)
|
| 431 |
|
|
{
|
| 432 |
|
|
int i, m, hard_regno;
|
| 433 |
|
|
|
| 434 |
|
|
for (m = 0; m < NUM_MACHINE_MODES; m++)
|
| 435 |
|
|
for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
|
| 436 |
|
|
{
|
| 437 |
|
|
CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
|
| 438 |
|
|
for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
|
| 439 |
|
|
if (hard_regno + i < FIRST_PSEUDO_REGISTER)
|
| 440 |
|
|
SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
|
| 441 |
|
|
hard_regno + i);
|
| 442 |
|
|
}
|
| 443 |
|
|
}
|
| 444 |
|
|
|
| 445 |
|
|
|
| 446 |
|
|
#define no_unit_alloc_regs \
|
| 447 |
|
|
(this_target_ira_int->x_no_unit_alloc_regs)
|
| 448 |
|
|
|
| 449 |
|
|
/* The function sets up the three arrays declared above. */
|
| 450 |
|
|
static void
|
| 451 |
|
|
setup_class_hard_regs (void)
|
| 452 |
|
|
{
|
| 453 |
|
|
int cl, i, hard_regno, n;
|
| 454 |
|
|
HARD_REG_SET processed_hard_reg_set;
|
| 455 |
|
|
|
| 456 |
|
|
ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
|
| 457 |
|
|
for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
|
| 458 |
|
|
{
|
| 459 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
| 460 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
| 461 |
|
|
CLEAR_HARD_REG_SET (processed_hard_reg_set);
|
| 462 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
| 463 |
|
|
{
|
| 464 |
|
|
ira_non_ordered_class_hard_regs[cl][i] = -1;
|
| 465 |
|
|
ira_class_hard_reg_index[cl][i] = -1;
|
| 466 |
|
|
}
|
| 467 |
|
|
for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
| 468 |
|
|
{
|
| 469 |
|
|
#ifdef REG_ALLOC_ORDER
|
| 470 |
|
|
hard_regno = reg_alloc_order[i];
|
| 471 |
|
|
#else
|
| 472 |
|
|
hard_regno = i;
|
| 473 |
|
|
#endif
|
| 474 |
|
|
if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
|
| 475 |
|
|
continue;
|
| 476 |
|
|
SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
|
| 477 |
|
|
if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
|
| 478 |
|
|
ira_class_hard_reg_index[cl][hard_regno] = -1;
|
| 479 |
|
|
else
|
| 480 |
|
|
{
|
| 481 |
|
|
ira_class_hard_reg_index[cl][hard_regno] = n;
|
| 482 |
|
|
ira_class_hard_regs[cl][n++] = hard_regno;
|
| 483 |
|
|
}
|
| 484 |
|
|
}
|
| 485 |
|
|
ira_class_hard_regs_num[cl] = n;
|
| 486 |
|
|
for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
| 487 |
|
|
if (TEST_HARD_REG_BIT (temp_hard_regset, i))
|
| 488 |
|
|
ira_non_ordered_class_hard_regs[cl][n++] = i;
|
| 489 |
|
|
ira_assert (ira_class_hard_regs_num[cl] == n);
|
| 490 |
|
|
}
|
| 491 |
|
|
}
|
| 492 |
|
|
|
| 493 |
|
|
/* Set up IRA_AVAILABLE_CLASS_REGS. */
|
| 494 |
|
|
static void
|
| 495 |
|
|
setup_available_class_regs (void)
|
| 496 |
|
|
{
|
| 497 |
|
|
int i, j;
|
| 498 |
|
|
|
| 499 |
|
|
memset (ira_available_class_regs, 0, sizeof (ira_available_class_regs));
|
| 500 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
| 501 |
|
|
{
|
| 502 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
|
| 503 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
| 504 |
|
|
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
|
| 505 |
|
|
if (TEST_HARD_REG_BIT (temp_hard_regset, j))
|
| 506 |
|
|
ira_available_class_regs[i]++;
|
| 507 |
|
|
}
|
| 508 |
|
|
}
|
| 509 |
|
|
|
| 510 |
|
|
/* Set up global variables defining info about hard registers for the
|
| 511 |
|
|
allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
|
| 512 |
|
|
that we can use the hard frame pointer for the allocation. */
|
| 513 |
|
|
static void
|
| 514 |
|
|
setup_alloc_regs (bool use_hard_frame_p)
|
| 515 |
|
|
{
|
| 516 |
|
|
#ifdef ADJUST_REG_ALLOC_ORDER
|
| 517 |
|
|
ADJUST_REG_ALLOC_ORDER;
|
| 518 |
|
|
#endif
|
| 519 |
|
|
COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
|
| 520 |
|
|
if (! use_hard_frame_p)
|
| 521 |
|
|
SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
|
| 522 |
|
|
setup_class_hard_regs ();
|
| 523 |
|
|
setup_available_class_regs ();
|
| 524 |
|
|
}
|
| 525 |
|
|
|
| 526 |
|
|
|
| 527 |
|
|
|
| 528 |
|
|
#define alloc_reg_class_subclasses \
|
| 529 |
|
|
(this_target_ira_int->x_alloc_reg_class_subclasses)
|
| 530 |
|
|
|
| 531 |
|
|
/* Initialize the table of subclasses of each reg class. */
|
| 532 |
|
|
static void
|
| 533 |
|
|
setup_reg_subclasses (void)
|
| 534 |
|
|
{
|
| 535 |
|
|
int i, j;
|
| 536 |
|
|
HARD_REG_SET temp_hard_regset2;
|
| 537 |
|
|
|
| 538 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
| 539 |
|
|
for (j = 0; j < N_REG_CLASSES; j++)
|
| 540 |
|
|
alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
|
| 541 |
|
|
|
| 542 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
| 543 |
|
|
{
|
| 544 |
|
|
if (i == (int) NO_REGS)
|
| 545 |
|
|
continue;
|
| 546 |
|
|
|
| 547 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
|
| 548 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
| 549 |
|
|
if (hard_reg_set_empty_p (temp_hard_regset))
|
| 550 |
|
|
continue;
|
| 551 |
|
|
for (j = 0; j < N_REG_CLASSES; j++)
|
| 552 |
|
|
if (i != j)
|
| 553 |
|
|
{
|
| 554 |
|
|
enum reg_class *p;
|
| 555 |
|
|
|
| 556 |
|
|
COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
|
| 557 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
|
| 558 |
|
|
if (! hard_reg_set_subset_p (temp_hard_regset,
|
| 559 |
|
|
temp_hard_regset2))
|
| 560 |
|
|
continue;
|
| 561 |
|
|
p = &alloc_reg_class_subclasses[j][0];
|
| 562 |
|
|
while (*p != LIM_REG_CLASSES) p++;
|
| 563 |
|
|
*p = (enum reg_class) i;
|
| 564 |
|
|
}
|
| 565 |
|
|
}
|
| 566 |
|
|
}
|
| 567 |
|
|
|
| 568 |
|
|
|
| 569 |
|
|
|
| 570 |
|
|
/* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
|
| 571 |
|
|
static void
|
| 572 |
|
|
setup_class_subset_and_memory_move_costs (void)
|
| 573 |
|
|
{
|
| 574 |
|
|
int cl, cl2, mode, cost;
|
| 575 |
|
|
HARD_REG_SET temp_hard_regset2;
|
| 576 |
|
|
|
| 577 |
|
|
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
|
| 578 |
|
|
ira_memory_move_cost[mode][NO_REGS][0]
|
| 579 |
|
|
= ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
|
| 580 |
|
|
for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
|
| 581 |
|
|
{
|
| 582 |
|
|
if (cl != (int) NO_REGS)
|
| 583 |
|
|
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
|
| 584 |
|
|
{
|
| 585 |
|
|
ira_max_memory_move_cost[mode][cl][0]
|
| 586 |
|
|
= ira_memory_move_cost[mode][cl][0]
|
| 587 |
|
|
= memory_move_cost ((enum machine_mode) mode,
|
| 588 |
|
|
(reg_class_t) cl, false);
|
| 589 |
|
|
ira_max_memory_move_cost[mode][cl][1]
|
| 590 |
|
|
= ira_memory_move_cost[mode][cl][1]
|
| 591 |
|
|
= memory_move_cost ((enum machine_mode) mode,
|
| 592 |
|
|
(reg_class_t) cl, true);
|
| 593 |
|
|
/* Costs for NO_REGS are used in cost calculation on the
|
| 594 |
|
|
1st pass when the preferred register classes are not
|
| 595 |
|
|
known yet. In this case we take the best scenario. */
|
| 596 |
|
|
if (ira_memory_move_cost[mode][NO_REGS][0]
|
| 597 |
|
|
> ira_memory_move_cost[mode][cl][0])
|
| 598 |
|
|
ira_max_memory_move_cost[mode][NO_REGS][0]
|
| 599 |
|
|
= ira_memory_move_cost[mode][NO_REGS][0]
|
| 600 |
|
|
= ira_memory_move_cost[mode][cl][0];
|
| 601 |
|
|
if (ira_memory_move_cost[mode][NO_REGS][1]
|
| 602 |
|
|
> ira_memory_move_cost[mode][cl][1])
|
| 603 |
|
|
ira_max_memory_move_cost[mode][NO_REGS][1]
|
| 604 |
|
|
= ira_memory_move_cost[mode][NO_REGS][1]
|
| 605 |
|
|
= ira_memory_move_cost[mode][cl][1];
|
| 606 |
|
|
}
|
| 607 |
|
|
}
|
| 608 |
|
|
for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
|
| 609 |
|
|
for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
|
| 610 |
|
|
{
|
| 611 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
| 612 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
| 613 |
|
|
COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
|
| 614 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
|
| 615 |
|
|
ira_class_subset_p[cl][cl2]
|
| 616 |
|
|
= hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
|
| 617 |
|
|
if (! hard_reg_set_empty_p (temp_hard_regset2)
|
| 618 |
|
|
&& hard_reg_set_subset_p (reg_class_contents[cl2],
|
| 619 |
|
|
reg_class_contents[cl]))
|
| 620 |
|
|
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
|
| 621 |
|
|
{
|
| 622 |
|
|
cost = ira_memory_move_cost[mode][cl2][0];
|
| 623 |
|
|
if (cost > ira_max_memory_move_cost[mode][cl][0])
|
| 624 |
|
|
ira_max_memory_move_cost[mode][cl][0] = cost;
|
| 625 |
|
|
cost = ira_memory_move_cost[mode][cl2][1];
|
| 626 |
|
|
if (cost > ira_max_memory_move_cost[mode][cl][1])
|
| 627 |
|
|
ira_max_memory_move_cost[mode][cl][1] = cost;
|
| 628 |
|
|
}
|
| 629 |
|
|
}
|
| 630 |
|
|
for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
|
| 631 |
|
|
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
|
| 632 |
|
|
{
|
| 633 |
|
|
ira_memory_move_cost[mode][cl][0]
|
| 634 |
|
|
= ira_max_memory_move_cost[mode][cl][0];
|
| 635 |
|
|
ira_memory_move_cost[mode][cl][1]
|
| 636 |
|
|
= ira_max_memory_move_cost[mode][cl][1];
|
| 637 |
|
|
}
|
| 638 |
|
|
setup_reg_subclasses ();
|
| 639 |
|
|
}
|
| 640 |
|
|
|
| 641 |
|
|
|
| 642 |
|
|
|
| 643 |
|
|
/* Define the following macro if allocation through malloc if
|
| 644 |
|
|
preferable. */
|
| 645 |
|
|
#define IRA_NO_OBSTACK
|
| 646 |
|
|
|
| 647 |
|
|
#ifndef IRA_NO_OBSTACK
|
| 648 |
|
|
/* Obstack used for storing all dynamic data (except bitmaps) of the
|
| 649 |
|
|
IRA. */
|
| 650 |
|
|
static struct obstack ira_obstack;
|
| 651 |
|
|
#endif
|
| 652 |
|
|
|
| 653 |
|
|
/* Obstack used for storing all bitmaps of the IRA. */
|
| 654 |
|
|
static struct bitmap_obstack ira_bitmap_obstack;
|
| 655 |
|
|
|
| 656 |
|
|
/* Allocate memory of size LEN for IRA data. */
|
| 657 |
|
|
void *
|
| 658 |
|
|
ira_allocate (size_t len)
|
| 659 |
|
|
{
|
| 660 |
|
|
void *res;
|
| 661 |
|
|
|
| 662 |
|
|
#ifndef IRA_NO_OBSTACK
|
| 663 |
|
|
res = obstack_alloc (&ira_obstack, len);
|
| 664 |
|
|
#else
|
| 665 |
|
|
res = xmalloc (len);
|
| 666 |
|
|
#endif
|
| 667 |
|
|
return res;
|
| 668 |
|
|
}
|
| 669 |
|
|
|
| 670 |
|
|
/* Free memory ADDR allocated for IRA data. */
|
| 671 |
|
|
void
|
| 672 |
|
|
ira_free (void *addr ATTRIBUTE_UNUSED)
|
| 673 |
|
|
{
|
| 674 |
|
|
#ifndef IRA_NO_OBSTACK
|
| 675 |
|
|
/* do nothing */
|
| 676 |
|
|
#else
|
| 677 |
|
|
free (addr);
|
| 678 |
|
|
#endif
|
| 679 |
|
|
}
|
| 680 |
|
|
|
| 681 |
|
|
|
| 682 |
|
|
/* Allocate and returns bitmap for IRA. */
|
| 683 |
|
|
bitmap
|
| 684 |
|
|
ira_allocate_bitmap (void)
|
| 685 |
|
|
{
|
| 686 |
|
|
return BITMAP_ALLOC (&ira_bitmap_obstack);
|
| 687 |
|
|
}
|
| 688 |
|
|
|
| 689 |
|
|
/* Free bitmap B allocated for IRA. */
|
| 690 |
|
|
void
|
| 691 |
|
|
ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
|
| 692 |
|
|
{
|
| 693 |
|
|
/* do nothing */
|
| 694 |
|
|
}
|
| 695 |
|
|
|
| 696 |
|
|
|
| 697 |
|
|
|
| 698 |
|
|
/* Output information about allocation of all allocnos (except for
|
| 699 |
|
|
caps) into file F. */
|
| 700 |
|
|
void
|
| 701 |
|
|
ira_print_disposition (FILE *f)
|
| 702 |
|
|
{
|
| 703 |
|
|
int i, n, max_regno;
|
| 704 |
|
|
ira_allocno_t a;
|
| 705 |
|
|
basic_block bb;
|
| 706 |
|
|
|
| 707 |
|
|
fprintf (f, "Disposition:");
|
| 708 |
|
|
max_regno = max_reg_num ();
|
| 709 |
|
|
for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
| 710 |
|
|
for (a = ira_regno_allocno_map[i];
|
| 711 |
|
|
a != NULL;
|
| 712 |
|
|
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
|
| 713 |
|
|
{
|
| 714 |
|
|
if (n % 4 == 0)
|
| 715 |
|
|
fprintf (f, "\n");
|
| 716 |
|
|
n++;
|
| 717 |
|
|
fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
|
| 718 |
|
|
if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
|
| 719 |
|
|
fprintf (f, "b%-3d", bb->index);
|
| 720 |
|
|
else
|
| 721 |
|
|
fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
|
| 722 |
|
|
if (ALLOCNO_HARD_REGNO (a) >= 0)
|
| 723 |
|
|
fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
|
| 724 |
|
|
else
|
| 725 |
|
|
fprintf (f, " mem");
|
| 726 |
|
|
}
|
| 727 |
|
|
fprintf (f, "\n");
|
| 728 |
|
|
}
|
| 729 |
|
|
|
| 730 |
|
|
/* Outputs information about allocation of all allocnos into
|
| 731 |
|
|
stderr. */
|
| 732 |
|
|
void
|
| 733 |
|
|
ira_debug_disposition (void)
|
| 734 |
|
|
{
|
| 735 |
|
|
ira_print_disposition (stderr);
|
| 736 |
|
|
}
|
| 737 |
|
|
|
| 738 |
|
|
|
| 739 |
|
|
|
| 740 |
|
|
/* Set up ira_stack_reg_pressure_class which is the biggest pressure
|
| 741 |
|
|
register class containing stack registers or NO_REGS if there are
|
| 742 |
|
|
no stack registers. To find this class, we iterate through all
|
| 743 |
|
|
register pressure classes and choose the first register pressure
|
| 744 |
|
|
class containing all the stack registers and having the biggest
|
| 745 |
|
|
size. */
|
| 746 |
|
|
static void
|
| 747 |
|
|
setup_stack_reg_pressure_class (void)
|
| 748 |
|
|
{
|
| 749 |
|
|
ira_stack_reg_pressure_class = NO_REGS;
|
| 750 |
|
|
#ifdef STACK_REGS
|
| 751 |
|
|
{
|
| 752 |
|
|
int i, best, size;
|
| 753 |
|
|
enum reg_class cl;
|
| 754 |
|
|
HARD_REG_SET temp_hard_regset2;
|
| 755 |
|
|
|
| 756 |
|
|
CLEAR_HARD_REG_SET (temp_hard_regset);
|
| 757 |
|
|
for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
|
| 758 |
|
|
SET_HARD_REG_BIT (temp_hard_regset, i);
|
| 759 |
|
|
best = 0;
|
| 760 |
|
|
for (i = 0; i < ira_pressure_classes_num; i++)
|
| 761 |
|
|
{
|
| 762 |
|
|
cl = ira_pressure_classes[i];
|
| 763 |
|
|
COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
|
| 764 |
|
|
AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
|
| 765 |
|
|
size = hard_reg_set_size (temp_hard_regset2);
|
| 766 |
|
|
if (best < size)
|
| 767 |
|
|
{
|
| 768 |
|
|
best = size;
|
| 769 |
|
|
ira_stack_reg_pressure_class = cl;
|
| 770 |
|
|
}
|
| 771 |
|
|
}
|
| 772 |
|
|
}
|
| 773 |
|
|
#endif
|
| 774 |
|
|
}
|
| 775 |
|
|
|
| 776 |
|
|
/* Find pressure classes which are register classes for which we
|
| 777 |
|
|
calculate register pressure in IRA, register pressure sensitive
|
| 778 |
|
|
insn scheduling, and register pressure sensitive loop invariant
|
| 779 |
|
|
motion.
|
| 780 |
|
|
|
| 781 |
|
|
To make register pressure calculation easy, we always use
|
| 782 |
|
|
non-intersected register pressure classes. A move of hard
|
| 783 |
|
|
registers from one register pressure class is not more expensive
|
| 784 |
|
|
than load and store of the hard registers. Most likely an allocno
|
| 785 |
|
|
class will be a subset of a register pressure class and in many
|
| 786 |
|
|
cases a register pressure class. That makes usage of register
|
| 787 |
|
|
pressure classes a good approximation to find a high register
|
| 788 |
|
|
pressure. */
|
| 789 |
|
|
static void
|
| 790 |
|
|
setup_pressure_classes (void)
|
| 791 |
|
|
{
|
| 792 |
|
|
int cost, i, n, curr;
|
| 793 |
|
|
int cl, cl2;
|
| 794 |
|
|
enum reg_class pressure_classes[N_REG_CLASSES];
|
| 795 |
|
|
int m;
|
| 796 |
|
|
HARD_REG_SET temp_hard_regset2;
|
| 797 |
|
|
bool insert_p;
|
| 798 |
|
|
|
| 799 |
|
|
n = 0;
|
| 800 |
|
|
for (cl = 0; cl < N_REG_CLASSES; cl++)
|
| 801 |
|
|
{
|
| 802 |
|
|
if (ira_available_class_regs[cl] == 0)
|
| 803 |
|
|
continue;
|
| 804 |
|
|
if (ira_available_class_regs[cl] != 1
|
| 805 |
|
|
/* A register class without subclasses may contain a few
|
| 806 |
|
|
hard registers and movement between them is costly
|
| 807 |
|
|
(e.g. SPARC FPCC registers). We still should consider it
|
| 808 |
|
|
as a candidate for a pressure class. */
|
| 809 |
|
|
&& alloc_reg_class_subclasses[cl][0] != LIM_REG_CLASSES)
|
| 810 |
|
|
{
|
| 811 |
|
|
/* Check that the moves between any hard registers of the
|
| 812 |
|
|
current class are not more expensive for a legal mode
|
| 813 |
|
|
than load/store of the hard registers of the current
|
| 814 |
|
|
class. Such class is a potential candidate to be a
|
| 815 |
|
|
register pressure class. */
|
| 816 |
|
|
for (m = 0; m < NUM_MACHINE_MODES; m++)
|
| 817 |
|
|
{
|
| 818 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
| 819 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
| 820 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset,
|
| 821 |
|
|
ira_prohibited_class_mode_regs[cl][m]);
|
| 822 |
|
|
if (hard_reg_set_empty_p (temp_hard_regset))
|
| 823 |
|
|
continue;
|
| 824 |
|
|
ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
|
| 825 |
|
|
cost = ira_register_move_cost[m][cl][cl];
|
| 826 |
|
|
if (cost <= ira_max_memory_move_cost[m][cl][1]
|
| 827 |
|
|
|| cost <= ira_max_memory_move_cost[m][cl][0])
|
| 828 |
|
|
break;
|
| 829 |
|
|
}
|
| 830 |
|
|
if (m >= NUM_MACHINE_MODES)
|
| 831 |
|
|
continue;
|
| 832 |
|
|
}
|
| 833 |
|
|
curr = 0;
|
| 834 |
|
|
insert_p = true;
|
| 835 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
| 836 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
| 837 |
|
|
/* Remove so far added pressure classes which are subset of the
|
| 838 |
|
|
current candidate class. Prefer GENERAL_REGS as a pressure
|
| 839 |
|
|
register class to another class containing the same
|
| 840 |
|
|
allocatable hard registers. We do this because machine
|
| 841 |
|
|
dependent cost hooks might give wrong costs for the latter
|
| 842 |
|
|
class but always give the right cost for the former class
|
| 843 |
|
|
(GENERAL_REGS). */
|
| 844 |
|
|
for (i = 0; i < n; i++)
|
| 845 |
|
|
{
|
| 846 |
|
|
cl2 = pressure_classes[i];
|
| 847 |
|
|
COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
|
| 848 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
|
| 849 |
|
|
if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
|
| 850 |
|
|
&& (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
|
| 851 |
|
|
|| cl2 == (int) GENERAL_REGS))
|
| 852 |
|
|
{
|
| 853 |
|
|
pressure_classes[curr++] = (enum reg_class) cl2;
|
| 854 |
|
|
insert_p = false;
|
| 855 |
|
|
continue;
|
| 856 |
|
|
}
|
| 857 |
|
|
if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
|
| 858 |
|
|
&& (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
|
| 859 |
|
|
|| cl == (int) GENERAL_REGS))
|
| 860 |
|
|
continue;
|
| 861 |
|
|
if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
|
| 862 |
|
|
insert_p = false;
|
| 863 |
|
|
pressure_classes[curr++] = (enum reg_class) cl2;
|
| 864 |
|
|
}
|
| 865 |
|
|
/* If the current candidate is a subset of a so far added
|
| 866 |
|
|
pressure class, don't add it to the list of the pressure
|
| 867 |
|
|
classes. */
|
| 868 |
|
|
if (insert_p)
|
| 869 |
|
|
pressure_classes[curr++] = (enum reg_class) cl;
|
| 870 |
|
|
n = curr;
|
| 871 |
|
|
}
|
| 872 |
|
|
#ifdef ENABLE_IRA_CHECKING
|
| 873 |
|
|
{
|
| 874 |
|
|
HARD_REG_SET ignore_hard_regs;
|
| 875 |
|
|
|
| 876 |
|
|
/* Check pressure classes correctness: here we check that hard
|
| 877 |
|
|
registers from all register pressure classes contains all hard
|
| 878 |
|
|
registers available for the allocation. */
|
| 879 |
|
|
CLEAR_HARD_REG_SET (temp_hard_regset);
|
| 880 |
|
|
CLEAR_HARD_REG_SET (temp_hard_regset2);
|
| 881 |
|
|
COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
|
| 882 |
|
|
for (cl = 0; cl < LIM_REG_CLASSES; cl++)
|
| 883 |
|
|
{
|
| 884 |
|
|
/* For some targets (like MIPS with MD_REGS), there are some
|
| 885 |
|
|
classes with hard registers available for allocation but
|
| 886 |
|
|
not able to hold value of any mode. */
|
| 887 |
|
|
for (m = 0; m < NUM_MACHINE_MODES; m++)
|
| 888 |
|
|
if (contains_reg_of_mode[cl][m])
|
| 889 |
|
|
break;
|
| 890 |
|
|
if (m >= NUM_MACHINE_MODES)
|
| 891 |
|
|
{
|
| 892 |
|
|
IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
|
| 893 |
|
|
continue;
|
| 894 |
|
|
}
|
| 895 |
|
|
for (i = 0; i < n; i++)
|
| 896 |
|
|
if ((int) pressure_classes[i] == cl)
|
| 897 |
|
|
break;
|
| 898 |
|
|
IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
|
| 899 |
|
|
if (i < n)
|
| 900 |
|
|
IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
| 901 |
|
|
}
|
| 902 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
| 903 |
|
|
/* Some targets (like SPARC with ICC reg) have alocatable regs
|
| 904 |
|
|
for which no reg class is defined. */
|
| 905 |
|
|
if (REGNO_REG_CLASS (i) == NO_REGS)
|
| 906 |
|
|
SET_HARD_REG_BIT (ignore_hard_regs, i);
|
| 907 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
|
| 908 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
|
| 909 |
|
|
ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
|
| 910 |
|
|
}
|
| 911 |
|
|
#endif
|
| 912 |
|
|
ira_pressure_classes_num = 0;
|
| 913 |
|
|
for (i = 0; i < n; i++)
|
| 914 |
|
|
{
|
| 915 |
|
|
cl = (int) pressure_classes[i];
|
| 916 |
|
|
ira_reg_pressure_class_p[cl] = true;
|
| 917 |
|
|
ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
|
| 918 |
|
|
}
|
| 919 |
|
|
setup_stack_reg_pressure_class ();
|
| 920 |
|
|
}
|
| 921 |
|
|
|
| 922 |
|
|
/* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
|
| 923 |
|
|
IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
|
| 924 |
|
|
|
| 925 |
|
|
Target may have many subtargets and not all target hard regiters can
|
| 926 |
|
|
be used for allocation, e.g. x86 port in 32-bit mode can not use
|
| 927 |
|
|
hard registers introduced in x86-64 like r8-r15). Some classes
|
| 928 |
|
|
might have the same allocatable hard registers, e.g. INDEX_REGS
|
| 929 |
|
|
and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
|
| 930 |
|
|
calculations efforts we introduce allocno classes which contain
|
| 931 |
|
|
unique non-empty sets of allocatable hard-registers.
|
| 932 |
|
|
|
| 933 |
|
|
Pseudo class cost calculation in ira-costs.c is very expensive.
|
| 934 |
|
|
Therefore we are trying to decrease number of classes involved in
|
| 935 |
|
|
such calculation. Register classes used in the cost calculation
|
| 936 |
|
|
are called important classes. They are allocno classes and other
|
| 937 |
|
|
non-empty classes whose allocatable hard register sets are inside
|
| 938 |
|
|
of an allocno class hard register set. From the first sight, it
|
| 939 |
|
|
looks like that they are just allocno classes. It is not true. In
|
| 940 |
|
|
example of x86-port in 32-bit mode, allocno classes will contain
|
| 941 |
|
|
GENERAL_REGS but not LEGACY_REGS (because allocatable hard
|
| 942 |
|
|
registers are the same for the both classes). The important
|
| 943 |
|
|
classes will contain GENERAL_REGS and LEGACY_REGS. It is done
|
| 944 |
|
|
because a machine description insn constraint may refers for
|
| 945 |
|
|
LEGACY_REGS and code in ira-costs.c is mostly base on investigation
|
| 946 |
|
|
of the insn constraints. */
|
| 947 |
|
|
static void
|
| 948 |
|
|
setup_allocno_and_important_classes (void)
|
| 949 |
|
|
{
|
| 950 |
|
|
int i, j, n, cl;
|
| 951 |
|
|
bool set_p;
|
| 952 |
|
|
HARD_REG_SET temp_hard_regset2;
|
| 953 |
|
|
static enum reg_class classes[LIM_REG_CLASSES + 1];
|
| 954 |
|
|
|
| 955 |
|
|
n = 0;
|
| 956 |
|
|
/* Collect classes which contain unique sets of allocatable hard
|
| 957 |
|
|
registers. Prefer GENERAL_REGS to other classes containing the
|
| 958 |
|
|
same set of hard registers. */
|
| 959 |
|
|
for (i = 0; i < LIM_REG_CLASSES; i++)
|
| 960 |
|
|
{
|
| 961 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
|
| 962 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
| 963 |
|
|
for (j = 0; j < n; j++)
|
| 964 |
|
|
{
|
| 965 |
|
|
cl = classes[j];
|
| 966 |
|
|
COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
|
| 967 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset2,
|
| 968 |
|
|
no_unit_alloc_regs);
|
| 969 |
|
|
if (hard_reg_set_equal_p (temp_hard_regset,
|
| 970 |
|
|
temp_hard_regset2))
|
| 971 |
|
|
break;
|
| 972 |
|
|
}
|
| 973 |
|
|
if (j >= n)
|
| 974 |
|
|
classes[n++] = (enum reg_class) i;
|
| 975 |
|
|
else if (i == GENERAL_REGS)
|
| 976 |
|
|
/* Prefer general regs. For i386 example, it means that
|
| 977 |
|
|
we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
|
| 978 |
|
|
(all of them consists of the same available hard
|
| 979 |
|
|
registers). */
|
| 980 |
|
|
classes[j] = (enum reg_class) i;
|
| 981 |
|
|
}
|
| 982 |
|
|
classes[n] = LIM_REG_CLASSES;
|
| 983 |
|
|
|
| 984 |
|
|
/* Set up classes which can be used for allocnos as classes
|
| 985 |
|
|
conatining non-empty unique sets of allocatable hard
|
| 986 |
|
|
registers. */
|
| 987 |
|
|
ira_allocno_classes_num = 0;
|
| 988 |
|
|
for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
|
| 989 |
|
|
{
|
| 990 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
| 991 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
| 992 |
|
|
if (hard_reg_set_empty_p (temp_hard_regset))
|
| 993 |
|
|
continue;
|
| 994 |
|
|
ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
|
| 995 |
|
|
}
|
| 996 |
|
|
ira_important_classes_num = 0;
|
| 997 |
|
|
/* Add non-allocno classes containing to non-empty set of
|
| 998 |
|
|
allocatable hard regs. */
|
| 999 |
|
|
for (cl = 0; cl < N_REG_CLASSES; cl++)
|
| 1000 |
|
|
{
|
| 1001 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
| 1002 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
| 1003 |
|
|
if (! hard_reg_set_empty_p (temp_hard_regset))
|
| 1004 |
|
|
{
|
| 1005 |
|
|
set_p = false;
|
| 1006 |
|
|
for (j = 0; j < ira_allocno_classes_num; j++)
|
| 1007 |
|
|
{
|
| 1008 |
|
|
COPY_HARD_REG_SET (temp_hard_regset2,
|
| 1009 |
|
|
reg_class_contents[ira_allocno_classes[j]]);
|
| 1010 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
|
| 1011 |
|
|
if ((enum reg_class) cl == ira_allocno_classes[j])
|
| 1012 |
|
|
break;
|
| 1013 |
|
|
else if (hard_reg_set_subset_p (temp_hard_regset,
|
| 1014 |
|
|
temp_hard_regset2))
|
| 1015 |
|
|
set_p = true;
|
| 1016 |
|
|
}
|
| 1017 |
|
|
if (set_p && j >= ira_allocno_classes_num)
|
| 1018 |
|
|
ira_important_classes[ira_important_classes_num++]
|
| 1019 |
|
|
= (enum reg_class) cl;
|
| 1020 |
|
|
}
|
| 1021 |
|
|
}
|
| 1022 |
|
|
/* Now add allocno classes to the important classes. */
|
| 1023 |
|
|
for (j = 0; j < ira_allocno_classes_num; j++)
|
| 1024 |
|
|
ira_important_classes[ira_important_classes_num++]
|
| 1025 |
|
|
= ira_allocno_classes[j];
|
| 1026 |
|
|
for (cl = 0; cl < N_REG_CLASSES; cl++)
|
| 1027 |
|
|
{
|
| 1028 |
|
|
ira_reg_allocno_class_p[cl] = false;
|
| 1029 |
|
|
ira_reg_pressure_class_p[cl] = false;
|
| 1030 |
|
|
}
|
| 1031 |
|
|
for (j = 0; j < ira_allocno_classes_num; j++)
|
| 1032 |
|
|
ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
|
| 1033 |
|
|
setup_pressure_classes ();
|
| 1034 |
|
|
}
|
| 1035 |
|
|
|
| 1036 |
|
|
/* Setup translation in CLASS_TRANSLATE of all classes into a class
|
| 1037 |
|
|
given by array CLASSES of length CLASSES_NUM. The function is used
|
| 1038 |
|
|
make translation any reg class to an allocno class or to an
|
| 1039 |
|
|
pressure class. This translation is necessary for some
|
| 1040 |
|
|
calculations when we can use only allocno or pressure classes and
|
| 1041 |
|
|
such translation represents an approximate representation of all
|
| 1042 |
|
|
classes.
|
| 1043 |
|
|
|
| 1044 |
|
|
The translation in case when allocatable hard register set of a
|
| 1045 |
|
|
given class is subset of allocatable hard register set of a class
|
| 1046 |
|
|
in CLASSES is pretty simple. We use smallest classes from CLASSES
|
| 1047 |
|
|
containing a given class. If allocatable hard register set of a
|
| 1048 |
|
|
given class is not a subset of any corresponding set of a class
|
| 1049 |
|
|
from CLASSES, we use the cheapest (with load/store point of view)
|
| 1050 |
|
|
class from CLASSES whose set intersects with given class set */
|
| 1051 |
|
|
static void
|
| 1052 |
|
|
setup_class_translate_array (enum reg_class *class_translate,
|
| 1053 |
|
|
int classes_num, enum reg_class *classes)
|
| 1054 |
|
|
{
|
| 1055 |
|
|
int cl, mode;
|
| 1056 |
|
|
enum reg_class aclass, best_class, *cl_ptr;
|
| 1057 |
|
|
int i, cost, min_cost, best_cost;
|
| 1058 |
|
|
|
| 1059 |
|
|
for (cl = 0; cl < N_REG_CLASSES; cl++)
|
| 1060 |
|
|
class_translate[cl] = NO_REGS;
|
| 1061 |
|
|
|
| 1062 |
|
|
for (i = 0; i < classes_num; i++)
|
| 1063 |
|
|
{
|
| 1064 |
|
|
aclass = classes[i];
|
| 1065 |
|
|
for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
|
| 1066 |
|
|
(cl = *cl_ptr) != LIM_REG_CLASSES;
|
| 1067 |
|
|
cl_ptr++)
|
| 1068 |
|
|
if (class_translate[cl] == NO_REGS)
|
| 1069 |
|
|
class_translate[cl] = aclass;
|
| 1070 |
|
|
class_translate[aclass] = aclass;
|
| 1071 |
|
|
}
|
| 1072 |
|
|
/* For classes which are not fully covered by one of given classes
|
| 1073 |
|
|
(in other words covered by more one given class), use the
|
| 1074 |
|
|
cheapest class. */
|
| 1075 |
|
|
for (cl = 0; cl < N_REG_CLASSES; cl++)
|
| 1076 |
|
|
{
|
| 1077 |
|
|
if (cl == NO_REGS || class_translate[cl] != NO_REGS)
|
| 1078 |
|
|
continue;
|
| 1079 |
|
|
best_class = NO_REGS;
|
| 1080 |
|
|
best_cost = INT_MAX;
|
| 1081 |
|
|
for (i = 0; i < classes_num; i++)
|
| 1082 |
|
|
{
|
| 1083 |
|
|
aclass = classes[i];
|
| 1084 |
|
|
COPY_HARD_REG_SET (temp_hard_regset,
|
| 1085 |
|
|
reg_class_contents[aclass]);
|
| 1086 |
|
|
AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
| 1087 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
| 1088 |
|
|
if (! hard_reg_set_empty_p (temp_hard_regset))
|
| 1089 |
|
|
{
|
| 1090 |
|
|
min_cost = INT_MAX;
|
| 1091 |
|
|
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
|
| 1092 |
|
|
{
|
| 1093 |
|
|
cost = (ira_memory_move_cost[mode][cl][0]
|
| 1094 |
|
|
+ ira_memory_move_cost[mode][cl][1]);
|
| 1095 |
|
|
if (min_cost > cost)
|
| 1096 |
|
|
min_cost = cost;
|
| 1097 |
|
|
}
|
| 1098 |
|
|
if (best_class == NO_REGS || best_cost > min_cost)
|
| 1099 |
|
|
{
|
| 1100 |
|
|
best_class = aclass;
|
| 1101 |
|
|
best_cost = min_cost;
|
| 1102 |
|
|
}
|
| 1103 |
|
|
}
|
| 1104 |
|
|
}
|
| 1105 |
|
|
class_translate[cl] = best_class;
|
| 1106 |
|
|
}
|
| 1107 |
|
|
}
|
| 1108 |
|
|
|
| 1109 |
|
|
/* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
|
| 1110 |
|
|
IRA_PRESSURE_CLASS_TRANSLATE. */
|
| 1111 |
|
|
static void
|
| 1112 |
|
|
setup_class_translate (void)
|
| 1113 |
|
|
{
|
| 1114 |
|
|
setup_class_translate_array (ira_allocno_class_translate,
|
| 1115 |
|
|
ira_allocno_classes_num, ira_allocno_classes);
|
| 1116 |
|
|
setup_class_translate_array (ira_pressure_class_translate,
|
| 1117 |
|
|
ira_pressure_classes_num, ira_pressure_classes);
|
| 1118 |
|
|
}
|
| 1119 |
|
|
|
| 1120 |
|
|
/* Order numbers of allocno classes in original target allocno class
|
| 1121 |
|
|
array, -1 for non-allocno classes. */
|
| 1122 |
|
|
static int allocno_class_order[N_REG_CLASSES];
|
| 1123 |
|
|
|
| 1124 |
|
|
/* The function used to sort the important classes. */
|
| 1125 |
|
|
static int
|
| 1126 |
|
|
comp_reg_classes_func (const void *v1p, const void *v2p)
|
| 1127 |
|
|
{
|
| 1128 |
|
|
enum reg_class cl1 = *(const enum reg_class *) v1p;
|
| 1129 |
|
|
enum reg_class cl2 = *(const enum reg_class *) v2p;
|
| 1130 |
|
|
enum reg_class tcl1, tcl2;
|
| 1131 |
|
|
int diff;
|
| 1132 |
|
|
|
| 1133 |
|
|
tcl1 = ira_allocno_class_translate[cl1];
|
| 1134 |
|
|
tcl2 = ira_allocno_class_translate[cl2];
|
| 1135 |
|
|
if (tcl1 != NO_REGS && tcl2 != NO_REGS
|
| 1136 |
|
|
&& (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
|
| 1137 |
|
|
return diff;
|
| 1138 |
|
|
return (int) cl1 - (int) cl2;
|
| 1139 |
|
|
}
|
| 1140 |
|
|
|
| 1141 |
|
|
/* For correct work of function setup_reg_class_relation we need to
|
| 1142 |
|
|
reorder important classes according to the order of their allocno
|
| 1143 |
|
|
classes. It places important classes containing the same
|
| 1144 |
|
|
allocatable hard register set adjacent to each other and allocno
|
| 1145 |
|
|
class with the allocatable hard register set right after the other
|
| 1146 |
|
|
important classes with the same set.
|
| 1147 |
|
|
|
| 1148 |
|
|
In example from comments of function
|
| 1149 |
|
|
setup_allocno_and_important_classes, it places LEGACY_REGS and
|
| 1150 |
|
|
GENERAL_REGS close to each other and GENERAL_REGS is after
|
| 1151 |
|
|
LEGACY_REGS. */
|
| 1152 |
|
|
static void
|
| 1153 |
|
|
reorder_important_classes (void)
|
| 1154 |
|
|
{
|
| 1155 |
|
|
int i;
|
| 1156 |
|
|
|
| 1157 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
| 1158 |
|
|
allocno_class_order[i] = -1;
|
| 1159 |
|
|
for (i = 0; i < ira_allocno_classes_num; i++)
|
| 1160 |
|
|
allocno_class_order[ira_allocno_classes[i]] = i;
|
| 1161 |
|
|
qsort (ira_important_classes, ira_important_classes_num,
|
| 1162 |
|
|
sizeof (enum reg_class), comp_reg_classes_func);
|
| 1163 |
|
|
for (i = 0; i < ira_important_classes_num; i++)
|
| 1164 |
|
|
ira_important_class_nums[ira_important_classes[i]] = i;
|
| 1165 |
|
|
}
|
| 1166 |
|
|
|
| 1167 |
|
|
/* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
|
| 1168 |
|
|
IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
|
| 1169 |
|
|
IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
|
| 1170 |
|
|
please see corresponding comments in ira-int.h. */
|
| 1171 |
|
|
static void
|
| 1172 |
|
|
setup_reg_class_relations (void)
|
| 1173 |
|
|
{
|
| 1174 |
|
|
int i, cl1, cl2, cl3;
|
| 1175 |
|
|
HARD_REG_SET intersection_set, union_set, temp_set2;
|
| 1176 |
|
|
bool important_class_p[N_REG_CLASSES];
|
| 1177 |
|
|
|
| 1178 |
|
|
memset (important_class_p, 0, sizeof (important_class_p));
|
| 1179 |
|
|
for (i = 0; i < ira_important_classes_num; i++)
|
| 1180 |
|
|
important_class_p[ira_important_classes[i]] = true;
|
| 1181 |
|
|
for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
|
| 1182 |
|
|
{
|
| 1183 |
|
|
ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
|
| 1184 |
|
|
for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
|
| 1185 |
|
|
{
|
| 1186 |
|
|
ira_reg_classes_intersect_p[cl1][cl2] = false;
|
| 1187 |
|
|
ira_reg_class_intersect[cl1][cl2] = NO_REGS;
|
| 1188 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
|
| 1189 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
| 1190 |
|
|
COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
|
| 1191 |
|
|
AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
|
| 1192 |
|
|
if (hard_reg_set_empty_p (temp_hard_regset)
|
| 1193 |
|
|
&& hard_reg_set_empty_p (temp_set2))
|
| 1194 |
|
|
{
|
| 1195 |
|
|
/* The both classes have no allocatable hard registers
|
| 1196 |
|
|
-- take all class hard registers into account and use
|
| 1197 |
|
|
reg_class_subunion and reg_class_superunion. */
|
| 1198 |
|
|
for (i = 0;; i++)
|
| 1199 |
|
|
{
|
| 1200 |
|
|
cl3 = reg_class_subclasses[cl1][i];
|
| 1201 |
|
|
if (cl3 == LIM_REG_CLASSES)
|
| 1202 |
|
|
break;
|
| 1203 |
|
|
if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
|
| 1204 |
|
|
(enum reg_class) cl3))
|
| 1205 |
|
|
ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
|
| 1206 |
|
|
}
|
| 1207 |
|
|
ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
|
| 1208 |
|
|
ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
|
| 1209 |
|
|
continue;
|
| 1210 |
|
|
}
|
| 1211 |
|
|
ira_reg_classes_intersect_p[cl1][cl2]
|
| 1212 |
|
|
= hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
|
| 1213 |
|
|
if (important_class_p[cl1] && important_class_p[cl2]
|
| 1214 |
|
|
&& hard_reg_set_subset_p (temp_hard_regset, temp_set2))
|
| 1215 |
|
|
{
|
| 1216 |
|
|
/* CL1 and CL2 are important classes and CL1 allocatable
|
| 1217 |
|
|
hard register set is inside of CL2 allocatable hard
|
| 1218 |
|
|
registers -- make CL1 a superset of CL2. */
|
| 1219 |
|
|
enum reg_class *p;
|
| 1220 |
|
|
|
| 1221 |
|
|
p = &ira_reg_class_super_classes[cl1][0];
|
| 1222 |
|
|
while (*p != LIM_REG_CLASSES)
|
| 1223 |
|
|
p++;
|
| 1224 |
|
|
*p++ = (enum reg_class) cl2;
|
| 1225 |
|
|
*p = LIM_REG_CLASSES;
|
| 1226 |
|
|
}
|
| 1227 |
|
|
ira_reg_class_subunion[cl1][cl2] = NO_REGS;
|
| 1228 |
|
|
ira_reg_class_superunion[cl1][cl2] = NO_REGS;
|
| 1229 |
|
|
COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
|
| 1230 |
|
|
AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
|
| 1231 |
|
|
AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
|
| 1232 |
|
|
COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
|
| 1233 |
|
|
IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
|
| 1234 |
|
|
AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
|
| 1235 |
|
|
for (i = 0; i < ira_important_classes_num; i++)
|
| 1236 |
|
|
{
|
| 1237 |
|
|
cl3 = ira_important_classes[i];
|
| 1238 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
|
| 1239 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
| 1240 |
|
|
if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
|
| 1241 |
|
|
{
|
| 1242 |
|
|
/* CL3 allocatable hard register set is inside of
|
| 1243 |
|
|
intersection of allocatable hard register sets
|
| 1244 |
|
|
of CL1 and CL2. */
|
| 1245 |
|
|
COPY_HARD_REG_SET
|
| 1246 |
|
|
(temp_set2,
|
| 1247 |
|
|
reg_class_contents[(int)
|
| 1248 |
|
|
ira_reg_class_intersect[cl1][cl2]]);
|
| 1249 |
|
|
AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
|
| 1250 |
|
|
if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
|
| 1251 |
|
|
/* If the allocatable hard register sets are the
|
| 1252 |
|
|
same, prefer GENERAL_REGS or the smallest
|
| 1253 |
|
|
class for debugging purposes. */
|
| 1254 |
|
|
|| (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
|
| 1255 |
|
|
&& (cl3 == GENERAL_REGS
|
| 1256 |
|
|
|| (ira_reg_class_intersect[cl1][cl2] != GENERAL_REGS
|
| 1257 |
|
|
&& hard_reg_set_subset_p
|
| 1258 |
|
|
(reg_class_contents[cl3],
|
| 1259 |
|
|
reg_class_contents
|
| 1260 |
|
|
[(int) ira_reg_class_intersect[cl1][cl2]])))))
|
| 1261 |
|
|
ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
|
| 1262 |
|
|
}
|
| 1263 |
|
|
if (hard_reg_set_subset_p (temp_hard_regset, union_set))
|
| 1264 |
|
|
{
|
| 1265 |
|
|
/* CL3 allocatbale hard register set is inside of
|
| 1266 |
|
|
union of allocatable hard register sets of CL1
|
| 1267 |
|
|
and CL2. */
|
| 1268 |
|
|
COPY_HARD_REG_SET
|
| 1269 |
|
|
(temp_set2,
|
| 1270 |
|
|
reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
|
| 1271 |
|
|
AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
|
| 1272 |
|
|
if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
|
| 1273 |
|
|
|| (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
|
| 1274 |
|
|
|
| 1275 |
|
|
&& (! hard_reg_set_equal_p (temp_set2,
|
| 1276 |
|
|
temp_hard_regset)
|
| 1277 |
|
|
|| cl3 == GENERAL_REGS
|
| 1278 |
|
|
/* If the allocatable hard register sets are the
|
| 1279 |
|
|
same, prefer GENERAL_REGS or the smallest
|
| 1280 |
|
|
class for debugging purposes. */
|
| 1281 |
|
|
|| (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
|
| 1282 |
|
|
&& hard_reg_set_subset_p
|
| 1283 |
|
|
(reg_class_contents[cl3],
|
| 1284 |
|
|
reg_class_contents
|
| 1285 |
|
|
[(int) ira_reg_class_subunion[cl1][cl2]])))))
|
| 1286 |
|
|
ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
|
| 1287 |
|
|
}
|
| 1288 |
|
|
if (hard_reg_set_subset_p (union_set, temp_hard_regset))
|
| 1289 |
|
|
{
|
| 1290 |
|
|
/* CL3 allocatable hard register set contains union
|
| 1291 |
|
|
of allocatable hard register sets of CL1 and
|
| 1292 |
|
|
CL2. */
|
| 1293 |
|
|
COPY_HARD_REG_SET
|
| 1294 |
|
|
(temp_set2,
|
| 1295 |
|
|
reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
|
| 1296 |
|
|
AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
|
| 1297 |
|
|
if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
|
| 1298 |
|
|
|| (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
|
| 1299 |
|
|
|
| 1300 |
|
|
&& (! hard_reg_set_equal_p (temp_set2,
|
| 1301 |
|
|
temp_hard_regset)
|
| 1302 |
|
|
|| cl3 == GENERAL_REGS
|
| 1303 |
|
|
/* If the allocatable hard register sets are the
|
| 1304 |
|
|
same, prefer GENERAL_REGS or the smallest
|
| 1305 |
|
|
class for debugging purposes. */
|
| 1306 |
|
|
|| (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
|
| 1307 |
|
|
&& hard_reg_set_subset_p
|
| 1308 |
|
|
(reg_class_contents[cl3],
|
| 1309 |
|
|
reg_class_contents
|
| 1310 |
|
|
[(int) ira_reg_class_superunion[cl1][cl2]])))))
|
| 1311 |
|
|
ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
|
| 1312 |
|
|
}
|
| 1313 |
|
|
}
|
| 1314 |
|
|
}
|
| 1315 |
|
|
}
|
| 1316 |
|
|
}
|
| 1317 |
|
|
|
| 1318 |
|
|
/* Output all possible allocno classes and the translation map into
|
| 1319 |
|
|
file F. */
|
| 1320 |
|
|
static void
|
| 1321 |
|
|
print_classes (FILE *f, bool pressure_p)
|
| 1322 |
|
|
{
|
| 1323 |
|
|
int classes_num = (pressure_p
|
| 1324 |
|
|
? ira_pressure_classes_num : ira_allocno_classes_num);
|
| 1325 |
|
|
enum reg_class *classes = (pressure_p
|
| 1326 |
|
|
? ira_pressure_classes : ira_allocno_classes);
|
| 1327 |
|
|
enum reg_class *class_translate = (pressure_p
|
| 1328 |
|
|
? ira_pressure_class_translate
|
| 1329 |
|
|
: ira_allocno_class_translate);
|
| 1330 |
|
|
static const char *const reg_class_names[] = REG_CLASS_NAMES;
|
| 1331 |
|
|
int i;
|
| 1332 |
|
|
|
| 1333 |
|
|
fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
|
| 1334 |
|
|
for (i = 0; i < classes_num; i++)
|
| 1335 |
|
|
fprintf (f, " %s", reg_class_names[classes[i]]);
|
| 1336 |
|
|
fprintf (f, "\nClass translation:\n");
|
| 1337 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
| 1338 |
|
|
fprintf (f, " %s -> %s\n", reg_class_names[i],
|
| 1339 |
|
|
reg_class_names[class_translate[i]]);
|
| 1340 |
|
|
}
|
| 1341 |
|
|
|
| 1342 |
|
|
/* Output all possible allocno and translation classes and the
|
| 1343 |
|
|
translation maps into stderr. */
|
| 1344 |
|
|
void
|
| 1345 |
|
|
ira_debug_allocno_classes (void)
|
| 1346 |
|
|
{
|
| 1347 |
|
|
print_classes (stderr, false);
|
| 1348 |
|
|
print_classes (stderr, true);
|
| 1349 |
|
|
}
|
| 1350 |
|
|
|
| 1351 |
|
|
/* Set up different arrays concerning class subsets, allocno and
|
| 1352 |
|
|
important classes. */
|
| 1353 |
|
|
static void
|
| 1354 |
|
|
find_reg_classes (void)
|
| 1355 |
|
|
{
|
| 1356 |
|
|
setup_allocno_and_important_classes ();
|
| 1357 |
|
|
setup_class_translate ();
|
| 1358 |
|
|
reorder_important_classes ();
|
| 1359 |
|
|
setup_reg_class_relations ();
|
| 1360 |
|
|
}
|
| 1361 |
|
|
|
| 1362 |
|
|
|
| 1363 |
|
|
|
| 1364 |
|
|
/* Set up the array above. */
|
| 1365 |
|
|
static void
|
| 1366 |
|
|
setup_hard_regno_aclass (void)
|
| 1367 |
|
|
{
|
| 1368 |
|
|
int i;
|
| 1369 |
|
|
|
| 1370 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
| 1371 |
|
|
{
|
| 1372 |
|
|
#if 1
|
| 1373 |
|
|
ira_hard_regno_allocno_class[i]
|
| 1374 |
|
|
= (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
|
| 1375 |
|
|
? NO_REGS
|
| 1376 |
|
|
: ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
|
| 1377 |
|
|
#else
|
| 1378 |
|
|
int j;
|
| 1379 |
|
|
enum reg_class cl;
|
| 1380 |
|
|
ira_hard_regno_allocno_class[i] = NO_REGS;
|
| 1381 |
|
|
for (j = 0; j < ira_allocno_classes_num; j++)
|
| 1382 |
|
|
{
|
| 1383 |
|
|
cl = ira_allocno_classes[j];
|
| 1384 |
|
|
if (ira_class_hard_reg_index[cl][i] >= 0)
|
| 1385 |
|
|
{
|
| 1386 |
|
|
ira_hard_regno_allocno_class[i] = cl;
|
| 1387 |
|
|
break;
|
| 1388 |
|
|
}
|
| 1389 |
|
|
}
|
| 1390 |
|
|
#endif
|
| 1391 |
|
|
}
|
| 1392 |
|
|
}
|
| 1393 |
|
|
|
| 1394 |
|
|
|
| 1395 |
|
|
|
| 1396 |
|
|
/* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
|
| 1397 |
|
|
static void
|
| 1398 |
|
|
setup_reg_class_nregs (void)
|
| 1399 |
|
|
{
|
| 1400 |
|
|
int i, cl, cl2, m;
|
| 1401 |
|
|
|
| 1402 |
|
|
for (m = 0; m < MAX_MACHINE_MODE; m++)
|
| 1403 |
|
|
{
|
| 1404 |
|
|
for (cl = 0; cl < N_REG_CLASSES; cl++)
|
| 1405 |
|
|
ira_reg_class_max_nregs[cl][m]
|
| 1406 |
|
|
= ira_reg_class_min_nregs[cl][m]
|
| 1407 |
|
|
= targetm.class_max_nregs ((reg_class_t) cl, (enum machine_mode) m);
|
| 1408 |
|
|
for (cl = 0; cl < N_REG_CLASSES; cl++)
|
| 1409 |
|
|
for (i = 0;
|
| 1410 |
|
|
(cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
|
| 1411 |
|
|
i++)
|
| 1412 |
|
|
if (ira_reg_class_min_nregs[cl2][m]
|
| 1413 |
|
|
< ira_reg_class_min_nregs[cl][m])
|
| 1414 |
|
|
ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
|
| 1415 |
|
|
}
|
| 1416 |
|
|
}
|
| 1417 |
|
|
|
| 1418 |
|
|
|
| 1419 |
|
|
|
| 1420 |
|
|
/* Set up IRA_PROHIBITED_CLASS_MODE_REGS. */
|
| 1421 |
|
|
static void
|
| 1422 |
|
|
setup_prohibited_class_mode_regs (void)
|
| 1423 |
|
|
{
|
| 1424 |
|
|
int j, k, hard_regno, cl;
|
| 1425 |
|
|
|
| 1426 |
|
|
for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
|
| 1427 |
|
|
{
|
| 1428 |
|
|
for (j = 0; j < NUM_MACHINE_MODES; j++)
|
| 1429 |
|
|
{
|
| 1430 |
|
|
CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
|
| 1431 |
|
|
for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
|
| 1432 |
|
|
{
|
| 1433 |
|
|
hard_regno = ira_class_hard_regs[cl][k];
|
| 1434 |
|
|
if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
|
| 1435 |
|
|
SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
|
| 1436 |
|
|
hard_regno);
|
| 1437 |
|
|
}
|
| 1438 |
|
|
}
|
| 1439 |
|
|
}
|
| 1440 |
|
|
}
|
| 1441 |
|
|
|
| 1442 |
|
|
/* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
|
| 1443 |
|
|
spanning from one register pressure class to another one. It is
|
| 1444 |
|
|
called after defining the pressure classes. */
|
| 1445 |
|
|
static void
|
| 1446 |
|
|
clarify_prohibited_class_mode_regs (void)
|
| 1447 |
|
|
{
|
| 1448 |
|
|
int j, k, hard_regno, cl, pclass, nregs;
|
| 1449 |
|
|
|
| 1450 |
|
|
for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
|
| 1451 |
|
|
for (j = 0; j < NUM_MACHINE_MODES; j++)
|
| 1452 |
|
|
for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
|
| 1453 |
|
|
{
|
| 1454 |
|
|
hard_regno = ira_class_hard_regs[cl][k];
|
| 1455 |
|
|
if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
|
| 1456 |
|
|
continue;
|
| 1457 |
|
|
nregs = hard_regno_nregs[hard_regno][j];
|
| 1458 |
|
|
if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
|
| 1459 |
|
|
{
|
| 1460 |
|
|
SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
|
| 1461 |
|
|
hard_regno);
|
| 1462 |
|
|
continue;
|
| 1463 |
|
|
}
|
| 1464 |
|
|
pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
|
| 1465 |
|
|
for (nregs-- ;nregs >= 0; nregs--)
|
| 1466 |
|
|
if (((enum reg_class) pclass
|
| 1467 |
|
|
!= ira_pressure_class_translate[REGNO_REG_CLASS
|
| 1468 |
|
|
(hard_regno + nregs)]))
|
| 1469 |
|
|
{
|
| 1470 |
|
|
SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
|
| 1471 |
|
|
hard_regno);
|
| 1472 |
|
|
break;
|
| 1473 |
|
|
}
|
| 1474 |
|
|
}
|
| 1475 |
|
|
}
|
| 1476 |
|
|
|
| 1477 |
|
|
|
| 1478 |
|
|
|
| 1479 |
|
|
/* Allocate and initialize IRA_REGISTER_MOVE_COST,
|
| 1480 |
|
|
IRA_MAX_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST,
|
| 1481 |
|
|
IRA_MAY_MOVE_OUT_COST, IRA_MAX_MAY_MOVE_IN_COST, and
|
| 1482 |
|
|
IRA_MAX_MAY_MOVE_OUT_COST for MODE if it is not done yet. */
|
| 1483 |
|
|
void
|
| 1484 |
|
|
ira_init_register_move_cost (enum machine_mode mode)
|
| 1485 |
|
|
{
|
| 1486 |
|
|
int cl1, cl2, cl3;
|
| 1487 |
|
|
|
| 1488 |
|
|
ira_assert (ira_register_move_cost[mode] == NULL
|
| 1489 |
|
|
&& ira_max_register_move_cost[mode] == NULL
|
| 1490 |
|
|
&& ira_may_move_in_cost[mode] == NULL
|
| 1491 |
|
|
&& ira_may_move_out_cost[mode] == NULL
|
| 1492 |
|
|
&& ira_max_may_move_in_cost[mode] == NULL
|
| 1493 |
|
|
&& ira_max_may_move_out_cost[mode] == NULL);
|
| 1494 |
|
|
if (move_cost[mode] == NULL)
|
| 1495 |
|
|
init_move_cost (mode);
|
| 1496 |
|
|
ira_register_move_cost[mode] = move_cost[mode];
|
| 1497 |
|
|
/* Don't use ira_allocate because the tables exist out of scope of a
|
| 1498 |
|
|
IRA call. */
|
| 1499 |
|
|
ira_max_register_move_cost[mode]
|
| 1500 |
|
|
= (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
|
| 1501 |
|
|
memcpy (ira_max_register_move_cost[mode], ira_register_move_cost[mode],
|
| 1502 |
|
|
sizeof (move_table) * N_REG_CLASSES);
|
| 1503 |
|
|
for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
|
| 1504 |
|
|
{
|
| 1505 |
|
|
/* Some subclasses are to small to have enough registers to hold
|
| 1506 |
|
|
a value of MODE. Just ignore them. */
|
| 1507 |
|
|
if (ira_reg_class_max_nregs[cl1][mode] > ira_available_class_regs[cl1])
|
| 1508 |
|
|
continue;
|
| 1509 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
|
| 1510 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
| 1511 |
|
|
if (hard_reg_set_empty_p (temp_hard_regset))
|
| 1512 |
|
|
continue;
|
| 1513 |
|
|
for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
|
| 1514 |
|
|
if (hard_reg_set_subset_p (reg_class_contents[cl1],
|
| 1515 |
|
|
reg_class_contents[cl2]))
|
| 1516 |
|
|
for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
|
| 1517 |
|
|
{
|
| 1518 |
|
|
if (ira_max_register_move_cost[mode][cl2][cl3]
|
| 1519 |
|
|
< ira_register_move_cost[mode][cl1][cl3])
|
| 1520 |
|
|
ira_max_register_move_cost[mode][cl2][cl3]
|
| 1521 |
|
|
= ira_register_move_cost[mode][cl1][cl3];
|
| 1522 |
|
|
if (ira_max_register_move_cost[mode][cl3][cl2]
|
| 1523 |
|
|
< ira_register_move_cost[mode][cl3][cl1])
|
| 1524 |
|
|
ira_max_register_move_cost[mode][cl3][cl2]
|
| 1525 |
|
|
= ira_register_move_cost[mode][cl3][cl1];
|
| 1526 |
|
|
}
|
| 1527 |
|
|
}
|
| 1528 |
|
|
ira_may_move_in_cost[mode]
|
| 1529 |
|
|
= (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
|
| 1530 |
|
|
memcpy (ira_may_move_in_cost[mode], may_move_in_cost[mode],
|
| 1531 |
|
|
sizeof (move_table) * N_REG_CLASSES);
|
| 1532 |
|
|
ira_may_move_out_cost[mode]
|
| 1533 |
|
|
= (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
|
| 1534 |
|
|
memcpy (ira_may_move_out_cost[mode], may_move_out_cost[mode],
|
| 1535 |
|
|
sizeof (move_table) * N_REG_CLASSES);
|
| 1536 |
|
|
ira_max_may_move_in_cost[mode]
|
| 1537 |
|
|
= (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
|
| 1538 |
|
|
memcpy (ira_max_may_move_in_cost[mode], ira_max_register_move_cost[mode],
|
| 1539 |
|
|
sizeof (move_table) * N_REG_CLASSES);
|
| 1540 |
|
|
ira_max_may_move_out_cost[mode]
|
| 1541 |
|
|
= (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
|
| 1542 |
|
|
memcpy (ira_max_may_move_out_cost[mode], ira_max_register_move_cost[mode],
|
| 1543 |
|
|
sizeof (move_table) * N_REG_CLASSES);
|
| 1544 |
|
|
for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
|
| 1545 |
|
|
{
|
| 1546 |
|
|
for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
|
| 1547 |
|
|
{
|
| 1548 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl2]);
|
| 1549 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
| 1550 |
|
|
if (hard_reg_set_empty_p (temp_hard_regset))
|
| 1551 |
|
|
continue;
|
| 1552 |
|
|
if (ira_class_subset_p[cl1][cl2])
|
| 1553 |
|
|
ira_may_move_in_cost[mode][cl1][cl2] = 0;
|
| 1554 |
|
|
if (ira_class_subset_p[cl2][cl1])
|
| 1555 |
|
|
ira_may_move_out_cost[mode][cl1][cl2] = 0;
|
| 1556 |
|
|
if (ira_class_subset_p[cl1][cl2])
|
| 1557 |
|
|
ira_max_may_move_in_cost[mode][cl1][cl2] = 0;
|
| 1558 |
|
|
if (ira_class_subset_p[cl2][cl1])
|
| 1559 |
|
|
ira_max_may_move_out_cost[mode][cl1][cl2] = 0;
|
| 1560 |
|
|
ira_register_move_cost[mode][cl1][cl2]
|
| 1561 |
|
|
= ira_max_register_move_cost[mode][cl1][cl2];
|
| 1562 |
|
|
ira_may_move_in_cost[mode][cl1][cl2]
|
| 1563 |
|
|
= ira_max_may_move_in_cost[mode][cl1][cl2];
|
| 1564 |
|
|
ira_may_move_out_cost[mode][cl1][cl2]
|
| 1565 |
|
|
= ira_max_may_move_out_cost[mode][cl1][cl2];
|
| 1566 |
|
|
}
|
| 1567 |
|
|
}
|
| 1568 |
|
|
}
|
| 1569 |
|
|
|
| 1570 |
|
|
|
| 1571 |
|
|
|
| 1572 |
|
|
/* This is called once during compiler work. It sets up
|
| 1573 |
|
|
different arrays whose values don't depend on the compiled
|
| 1574 |
|
|
function. */
|
| 1575 |
|
|
void
|
| 1576 |
|
|
ira_init_once (void)
|
| 1577 |
|
|
{
|
| 1578 |
|
|
int mode;
|
| 1579 |
|
|
|
| 1580 |
|
|
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
|
| 1581 |
|
|
{
|
| 1582 |
|
|
ira_register_move_cost[mode] = NULL;
|
| 1583 |
|
|
ira_max_register_move_cost[mode] = NULL;
|
| 1584 |
|
|
ira_may_move_in_cost[mode] = NULL;
|
| 1585 |
|
|
ira_may_move_out_cost[mode] = NULL;
|
| 1586 |
|
|
ira_max_may_move_in_cost[mode] = NULL;
|
| 1587 |
|
|
ira_max_may_move_out_cost[mode] = NULL;
|
| 1588 |
|
|
}
|
| 1589 |
|
|
ira_init_costs_once ();
|
| 1590 |
|
|
}
|
| 1591 |
|
|
|
| 1592 |
|
|
/* Free ira_max_register_move_cost, ira_may_move_in_cost,
|
| 1593 |
|
|
ira_may_move_out_cost, ira_max_may_move_in_cost, and
|
| 1594 |
|
|
ira_max_may_move_out_cost for each mode. */
|
| 1595 |
|
|
static void
|
| 1596 |
|
|
free_register_move_costs (void)
|
| 1597 |
|
|
{
|
| 1598 |
|
|
int mode;
|
| 1599 |
|
|
|
| 1600 |
|
|
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
|
| 1601 |
|
|
{
|
| 1602 |
|
|
free (ira_max_register_move_cost[mode]);
|
| 1603 |
|
|
free (ira_may_move_in_cost[mode]);
|
| 1604 |
|
|
free (ira_may_move_out_cost[mode]);
|
| 1605 |
|
|
free (ira_max_may_move_in_cost[mode]);
|
| 1606 |
|
|
free (ira_max_may_move_out_cost[mode]);
|
| 1607 |
|
|
ira_register_move_cost[mode] = NULL;
|
| 1608 |
|
|
ira_max_register_move_cost[mode] = NULL;
|
| 1609 |
|
|
ira_may_move_in_cost[mode] = NULL;
|
| 1610 |
|
|
ira_may_move_out_cost[mode] = NULL;
|
| 1611 |
|
|
ira_max_may_move_in_cost[mode] = NULL;
|
| 1612 |
|
|
ira_max_may_move_out_cost[mode] = NULL;
|
| 1613 |
|
|
}
|
| 1614 |
|
|
}
|
| 1615 |
|
|
|
| 1616 |
|
|
/* This is called every time when register related information is
|
| 1617 |
|
|
changed. */
|
| 1618 |
|
|
void
|
| 1619 |
|
|
ira_init (void)
|
| 1620 |
|
|
{
|
| 1621 |
|
|
free_register_move_costs ();
|
| 1622 |
|
|
setup_reg_mode_hard_regset ();
|
| 1623 |
|
|
setup_alloc_regs (flag_omit_frame_pointer != 0);
|
| 1624 |
|
|
setup_class_subset_and_memory_move_costs ();
|
| 1625 |
|
|
setup_reg_class_nregs ();
|
| 1626 |
|
|
setup_prohibited_class_mode_regs ();
|
| 1627 |
|
|
find_reg_classes ();
|
| 1628 |
|
|
clarify_prohibited_class_mode_regs ();
|
| 1629 |
|
|
setup_hard_regno_aclass ();
|
| 1630 |
|
|
ira_init_costs ();
|
| 1631 |
|
|
}
|
| 1632 |
|
|
|
| 1633 |
|
|
/* Function called once at the end of compiler work. */
|
| 1634 |
|
|
void
|
| 1635 |
|
|
ira_finish_once (void)
|
| 1636 |
|
|
{
|
| 1637 |
|
|
ira_finish_costs_once ();
|
| 1638 |
|
|
free_register_move_costs ();
|
| 1639 |
|
|
}
|
| 1640 |
|
|
|
| 1641 |
|
|
|
| 1642 |
|
|
#define ira_prohibited_mode_move_regs_initialized_p \
|
| 1643 |
|
|
(this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
|
| 1644 |
|
|
|
| 1645 |
|
|
/* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
|
| 1646 |
|
|
static void
|
| 1647 |
|
|
setup_prohibited_mode_move_regs (void)
|
| 1648 |
|
|
{
|
| 1649 |
|
|
int i, j;
|
| 1650 |
|
|
rtx test_reg1, test_reg2, move_pat, move_insn;
|
| 1651 |
|
|
|
| 1652 |
|
|
if (ira_prohibited_mode_move_regs_initialized_p)
|
| 1653 |
|
|
return;
|
| 1654 |
|
|
ira_prohibited_mode_move_regs_initialized_p = true;
|
| 1655 |
|
|
test_reg1 = gen_rtx_REG (VOIDmode, 0);
|
| 1656 |
|
|
test_reg2 = gen_rtx_REG (VOIDmode, 0);
|
| 1657 |
|
|
move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
|
| 1658 |
|
|
move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, move_pat, 0, -1, 0);
|
| 1659 |
|
|
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
| 1660 |
|
|
{
|
| 1661 |
|
|
SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
|
| 1662 |
|
|
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
|
| 1663 |
|
|
{
|
| 1664 |
|
|
if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
|
| 1665 |
|
|
continue;
|
| 1666 |
|
|
SET_REGNO_RAW (test_reg1, j);
|
| 1667 |
|
|
PUT_MODE (test_reg1, (enum machine_mode) i);
|
| 1668 |
|
|
SET_REGNO_RAW (test_reg2, j);
|
| 1669 |
|
|
PUT_MODE (test_reg2, (enum machine_mode) i);
|
| 1670 |
|
|
INSN_CODE (move_insn) = -1;
|
| 1671 |
|
|
recog_memoized (move_insn);
|
| 1672 |
|
|
if (INSN_CODE (move_insn) < 0)
|
| 1673 |
|
|
continue;
|
| 1674 |
|
|
extract_insn (move_insn);
|
| 1675 |
|
|
if (! constrain_operands (1))
|
| 1676 |
|
|
continue;
|
| 1677 |
|
|
CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
|
| 1678 |
|
|
}
|
| 1679 |
|
|
}
|
| 1680 |
|
|
}
|
| 1681 |
|
|
|
| 1682 |
|
|
|
| 1683 |
|
|
|
| 1684 |
|
|
/* Return nonzero if REGNO is a particularly bad choice for reloading X. */
|
| 1685 |
|
|
static bool
|
| 1686 |
|
|
ira_bad_reload_regno_1 (int regno, rtx x)
|
| 1687 |
|
|
{
|
| 1688 |
|
|
int x_regno, n, i;
|
| 1689 |
|
|
ira_allocno_t a;
|
| 1690 |
|
|
enum reg_class pref;
|
| 1691 |
|
|
|
| 1692 |
|
|
/* We only deal with pseudo regs. */
|
| 1693 |
|
|
if (! x || GET_CODE (x) != REG)
|
| 1694 |
|
|
return false;
|
| 1695 |
|
|
|
| 1696 |
|
|
x_regno = REGNO (x);
|
| 1697 |
|
|
if (x_regno < FIRST_PSEUDO_REGISTER)
|
| 1698 |
|
|
return false;
|
| 1699 |
|
|
|
| 1700 |
|
|
/* If the pseudo prefers REGNO explicitly, then do not consider
|
| 1701 |
|
|
REGNO a bad spill choice. */
|
| 1702 |
|
|
pref = reg_preferred_class (x_regno);
|
| 1703 |
|
|
if (reg_class_size[pref] == 1)
|
| 1704 |
|
|
return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
|
| 1705 |
|
|
|
| 1706 |
|
|
/* If the pseudo conflicts with REGNO, then we consider REGNO a
|
| 1707 |
|
|
poor choice for a reload regno. */
|
| 1708 |
|
|
a = ira_regno_allocno_map[x_regno];
|
| 1709 |
|
|
n = ALLOCNO_NUM_OBJECTS (a);
|
| 1710 |
|
|
for (i = 0; i < n; i++)
|
| 1711 |
|
|
{
|
| 1712 |
|
|
ira_object_t obj = ALLOCNO_OBJECT (a, i);
|
| 1713 |
|
|
if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
|
| 1714 |
|
|
return true;
|
| 1715 |
|
|
}
|
| 1716 |
|
|
return false;
|
| 1717 |
|
|
}
|
| 1718 |
|
|
|
| 1719 |
|
|
/* Return nonzero if REGNO is a particularly bad choice for reloading
|
| 1720 |
|
|
IN or OUT. */
|
| 1721 |
|
|
bool
|
| 1722 |
|
|
ira_bad_reload_regno (int regno, rtx in, rtx out)
|
| 1723 |
|
|
{
|
| 1724 |
|
|
return (ira_bad_reload_regno_1 (regno, in)
|
| 1725 |
|
|
|| ira_bad_reload_regno_1 (regno, out));
|
| 1726 |
|
|
}
|
| 1727 |
|
|
|
| 1728 |
|
|
/* Return TRUE if *LOC contains an asm. */
|
| 1729 |
|
|
static int
|
| 1730 |
|
|
insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
|
| 1731 |
|
|
{
|
| 1732 |
|
|
if ( !*loc)
|
| 1733 |
|
|
return FALSE;
|
| 1734 |
|
|
if (GET_CODE (*loc) == ASM_OPERANDS)
|
| 1735 |
|
|
return TRUE;
|
| 1736 |
|
|
return FALSE;
|
| 1737 |
|
|
}
|
| 1738 |
|
|
|
| 1739 |
|
|
|
| 1740 |
|
|
/* Return TRUE if INSN contains an ASM. */
|
| 1741 |
|
|
static bool
|
| 1742 |
|
|
insn_contains_asm (rtx insn)
|
| 1743 |
|
|
{
|
| 1744 |
|
|
return for_each_rtx (&insn, insn_contains_asm_1, NULL);
|
| 1745 |
|
|
}
|
| 1746 |
|
|
|
| 1747 |
|
|
/* Add register clobbers from asm statements. */
|
| 1748 |
|
|
static void
|
| 1749 |
|
|
compute_regs_asm_clobbered (void)
|
| 1750 |
|
|
{
|
| 1751 |
|
|
basic_block bb;
|
| 1752 |
|
|
|
| 1753 |
|
|
FOR_EACH_BB (bb)
|
| 1754 |
|
|
{
|
| 1755 |
|
|
rtx insn;
|
| 1756 |
|
|
FOR_BB_INSNS_REVERSE (bb, insn)
|
| 1757 |
|
|
{
|
| 1758 |
|
|
df_ref *def_rec;
|
| 1759 |
|
|
|
| 1760 |
|
|
if (insn_contains_asm (insn))
|
| 1761 |
|
|
for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
|
| 1762 |
|
|
{
|
| 1763 |
|
|
df_ref def = *def_rec;
|
| 1764 |
|
|
unsigned int dregno = DF_REF_REGNO (def);
|
| 1765 |
|
|
if (HARD_REGISTER_NUM_P (dregno))
|
| 1766 |
|
|
add_to_hard_reg_set (&crtl->asm_clobbers,
|
| 1767 |
|
|
GET_MODE (DF_REF_REAL_REG (def)),
|
| 1768 |
|
|
dregno);
|
| 1769 |
|
|
}
|
| 1770 |
|
|
}
|
| 1771 |
|
|
}
|
| 1772 |
|
|
}
|
| 1773 |
|
|
|
| 1774 |
|
|
|
| 1775 |
|
|
/* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE. */
|
| 1776 |
|
|
void
|
| 1777 |
|
|
ira_setup_eliminable_regset (void)
|
| 1778 |
|
|
{
|
| 1779 |
|
|
#ifdef ELIMINABLE_REGS
|
| 1780 |
|
|
int i;
|
| 1781 |
|
|
static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
|
| 1782 |
|
|
#endif
|
| 1783 |
|
|
/* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
|
| 1784 |
|
|
sp for alloca. So we can't eliminate the frame pointer in that
|
| 1785 |
|
|
case. At some point, we should improve this by emitting the
|
| 1786 |
|
|
sp-adjusting insns for this case. */
|
| 1787 |
|
|
int need_fp
|
| 1788 |
|
|
= (! flag_omit_frame_pointer
|
| 1789 |
|
|
|| (cfun->calls_alloca && EXIT_IGNORE_STACK)
|
| 1790 |
|
|
/* We need the frame pointer to catch stack overflow exceptions
|
| 1791 |
|
|
if the stack pointer is moving. */
|
| 1792 |
|
|
|| (flag_stack_check && STACK_CHECK_MOVING_SP)
|
| 1793 |
|
|
|| crtl->accesses_prior_frames
|
| 1794 |
|
|
|| crtl->stack_realign_needed
|
| 1795 |
|
|
|| targetm.frame_pointer_required ());
|
| 1796 |
|
|
|
| 1797 |
|
|
frame_pointer_needed = need_fp;
|
| 1798 |
|
|
|
| 1799 |
|
|
COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
|
| 1800 |
|
|
CLEAR_HARD_REG_SET (eliminable_regset);
|
| 1801 |
|
|
|
| 1802 |
|
|
compute_regs_asm_clobbered ();
|
| 1803 |
|
|
|
| 1804 |
|
|
/* Build the regset of all eliminable registers and show we can't
|
| 1805 |
|
|
use those that we already know won't be eliminated. */
|
| 1806 |
|
|
#ifdef ELIMINABLE_REGS
|
| 1807 |
|
|
for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
|
| 1808 |
|
|
{
|
| 1809 |
|
|
bool cannot_elim
|
| 1810 |
|
|
= (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
|
| 1811 |
|
|
|| (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
|
| 1812 |
|
|
|
| 1813 |
|
|
if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
|
| 1814 |
|
|
{
|
| 1815 |
|
|
SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
|
| 1816 |
|
|
|
| 1817 |
|
|
if (cannot_elim)
|
| 1818 |
|
|
SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
|
| 1819 |
|
|
}
|
| 1820 |
|
|
else if (cannot_elim)
|
| 1821 |
|
|
error ("%s cannot be used in asm here",
|
| 1822 |
|
|
reg_names[eliminables[i].from]);
|
| 1823 |
|
|
else
|
| 1824 |
|
|
df_set_regs_ever_live (eliminables[i].from, true);
|
| 1825 |
|
|
}
|
| 1826 |
|
|
#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
|
| 1827 |
|
|
if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
|
| 1828 |
|
|
{
|
| 1829 |
|
|
SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
|
| 1830 |
|
|
if (need_fp)
|
| 1831 |
|
|
SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
|
| 1832 |
|
|
}
|
| 1833 |
|
|
else if (need_fp)
|
| 1834 |
|
|
error ("%s cannot be used in asm here",
|
| 1835 |
|
|
reg_names[HARD_FRAME_POINTER_REGNUM]);
|
| 1836 |
|
|
else
|
| 1837 |
|
|
df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
|
| 1838 |
|
|
#endif
|
| 1839 |
|
|
|
| 1840 |
|
|
#else
|
| 1841 |
|
|
if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
|
| 1842 |
|
|
{
|
| 1843 |
|
|
SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
|
| 1844 |
|
|
if (need_fp)
|
| 1845 |
|
|
SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
|
| 1846 |
|
|
}
|
| 1847 |
|
|
else if (need_fp)
|
| 1848 |
|
|
error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
|
| 1849 |
|
|
else
|
| 1850 |
|
|
df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
|
| 1851 |
|
|
#endif
|
| 1852 |
|
|
}
|
| 1853 |
|
|
|
| 1854 |
|
|
|
| 1855 |
|
|
|
| 1856 |
|
|
/* The length of the following two arrays. */
|
| 1857 |
|
|
int ira_reg_equiv_len;
|
| 1858 |
|
|
|
| 1859 |
|
|
/* The element value is TRUE if the corresponding regno value is
|
| 1860 |
|
|
invariant. */
|
| 1861 |
|
|
bool *ira_reg_equiv_invariant_p;
|
| 1862 |
|
|
|
| 1863 |
|
|
/* The element value is equiv constant of given pseudo-register or
|
| 1864 |
|
|
NULL_RTX. */
|
| 1865 |
|
|
rtx *ira_reg_equiv_const;
|
| 1866 |
|
|
|
| 1867 |
|
|
/* Set up the two arrays declared above. */
|
| 1868 |
|
|
static void
|
| 1869 |
|
|
find_reg_equiv_invariant_const (void)
|
| 1870 |
|
|
{
|
| 1871 |
|
|
unsigned int i;
|
| 1872 |
|
|
bool invariant_p;
|
| 1873 |
|
|
rtx list, insn, note, constant, x;
|
| 1874 |
|
|
|
| 1875 |
|
|
for (i = FIRST_PSEUDO_REGISTER; i < VEC_length (reg_equivs_t, reg_equivs); i++)
|
| 1876 |
|
|
{
|
| 1877 |
|
|
constant = NULL_RTX;
|
| 1878 |
|
|
invariant_p = false;
|
| 1879 |
|
|
for (list = reg_equiv_init (i); list != NULL_RTX; list = XEXP (list, 1))
|
| 1880 |
|
|
{
|
| 1881 |
|
|
insn = XEXP (list, 0);
|
| 1882 |
|
|
note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
|
| 1883 |
|
|
|
| 1884 |
|
|
if (note == NULL_RTX)
|
| 1885 |
|
|
continue;
|
| 1886 |
|
|
|
| 1887 |
|
|
x = XEXP (note, 0);
|
| 1888 |
|
|
|
| 1889 |
|
|
if (! CONSTANT_P (x)
|
| 1890 |
|
|
|| ! flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
|
| 1891 |
|
|
{
|
| 1892 |
|
|
/* It can happen that a REG_EQUIV note contains a MEM
|
| 1893 |
|
|
that is not a legitimate memory operand. As later
|
| 1894 |
|
|
stages of the reload assume that all addresses found
|
| 1895 |
|
|
in the reg_equiv_* arrays were originally legitimate,
|
| 1896 |
|
|
we ignore such REG_EQUIV notes. */
|
| 1897 |
|
|
if (memory_operand (x, VOIDmode))
|
| 1898 |
|
|
invariant_p = MEM_READONLY_P (x);
|
| 1899 |
|
|
else if (function_invariant_p (x))
|
| 1900 |
|
|
{
|
| 1901 |
|
|
if (GET_CODE (x) == PLUS
|
| 1902 |
|
|
|| x == frame_pointer_rtx || x == arg_pointer_rtx)
|
| 1903 |
|
|
invariant_p = true;
|
| 1904 |
|
|
else
|
| 1905 |
|
|
constant = x;
|
| 1906 |
|
|
}
|
| 1907 |
|
|
}
|
| 1908 |
|
|
}
|
| 1909 |
|
|
ira_reg_equiv_invariant_p[i] = invariant_p;
|
| 1910 |
|
|
ira_reg_equiv_const[i] = constant;
|
| 1911 |
|
|
}
|
| 1912 |
|
|
}
|
| 1913 |
|
|
|
| 1914 |
|
|
|
| 1915 |
|
|
|
| 1916 |
|
|
/* Vector of substitutions of register numbers,
|
| 1917 |
|
|
used to map pseudo regs into hardware regs.
|
| 1918 |
|
|
This is set up as a result of register allocation.
|
| 1919 |
|
|
Element N is the hard reg assigned to pseudo reg N,
|
| 1920 |
|
|
or is -1 if no hard reg was assigned.
|
| 1921 |
|
|
If N is a hard reg number, element N is N. */
|
| 1922 |
|
|
short *reg_renumber;
|
| 1923 |
|
|
|
| 1924 |
|
|
/* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
|
| 1925 |
|
|
the allocation found by IRA. */
|
| 1926 |
|
|
static void
|
| 1927 |
|
|
setup_reg_renumber (void)
|
| 1928 |
|
|
{
|
| 1929 |
|
|
int regno, hard_regno;
|
| 1930 |
|
|
ira_allocno_t a;
|
| 1931 |
|
|
ira_allocno_iterator ai;
|
| 1932 |
|
|
|
| 1933 |
|
|
caller_save_needed = 0;
|
| 1934 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
| 1935 |
|
|
{
|
| 1936 |
|
|
/* There are no caps at this point. */
|
| 1937 |
|
|
ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
|
| 1938 |
|
|
if (! ALLOCNO_ASSIGNED_P (a))
|
| 1939 |
|
|
/* It can happen if A is not referenced but partially anticipated
|
| 1940 |
|
|
somewhere in a region. */
|
| 1941 |
|
|
ALLOCNO_ASSIGNED_P (a) = true;
|
| 1942 |
|
|
ira_free_allocno_updated_costs (a);
|
| 1943 |
|
|
hard_regno = ALLOCNO_HARD_REGNO (a);
|
| 1944 |
|
|
regno = ALLOCNO_REGNO (a);
|
| 1945 |
|
|
reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
|
| 1946 |
|
|
if (hard_regno >= 0)
|
| 1947 |
|
|
{
|
| 1948 |
|
|
int i, nwords;
|
| 1949 |
|
|
enum reg_class pclass;
|
| 1950 |
|
|
ira_object_t obj;
|
| 1951 |
|
|
|
| 1952 |
|
|
pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
|
| 1953 |
|
|
nwords = ALLOCNO_NUM_OBJECTS (a);
|
| 1954 |
|
|
for (i = 0; i < nwords; i++)
|
| 1955 |
|
|
{
|
| 1956 |
|
|
obj = ALLOCNO_OBJECT (a, i);
|
| 1957 |
|
|
IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
|
| 1958 |
|
|
reg_class_contents[pclass]);
|
| 1959 |
|
|
}
|
| 1960 |
|
|
if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
|
| 1961 |
|
|
&& ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
|
| 1962 |
|
|
call_used_reg_set))
|
| 1963 |
|
|
{
|
| 1964 |
|
|
ira_assert (!optimize || flag_caller_saves
|
| 1965 |
|
|
|| regno >= ira_reg_equiv_len
|
| 1966 |
|
|
|| ira_reg_equiv_const[regno]
|
| 1967 |
|
|
|| ira_reg_equiv_invariant_p[regno]);
|
| 1968 |
|
|
caller_save_needed = 1;
|
| 1969 |
|
|
}
|
| 1970 |
|
|
}
|
| 1971 |
|
|
}
|
| 1972 |
|
|
}
|
| 1973 |
|
|
|
| 1974 |
|
|
/* Set up allocno assignment flags for further allocation
|
| 1975 |
|
|
improvements. */
|
| 1976 |
|
|
static void
|
| 1977 |
|
|
setup_allocno_assignment_flags (void)
|
| 1978 |
|
|
{
|
| 1979 |
|
|
int hard_regno;
|
| 1980 |
|
|
ira_allocno_t a;
|
| 1981 |
|
|
ira_allocno_iterator ai;
|
| 1982 |
|
|
|
| 1983 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
| 1984 |
|
|
{
|
| 1985 |
|
|
if (! ALLOCNO_ASSIGNED_P (a))
|
| 1986 |
|
|
/* It can happen if A is not referenced but partially anticipated
|
| 1987 |
|
|
somewhere in a region. */
|
| 1988 |
|
|
ira_free_allocno_updated_costs (a);
|
| 1989 |
|
|
hard_regno = ALLOCNO_HARD_REGNO (a);
|
| 1990 |
|
|
/* Don't assign hard registers to allocnos which are destination
|
| 1991 |
|
|
of removed store at the end of loop. It has no sense to keep
|
| 1992 |
|
|
the same value in different hard registers. It is also
|
| 1993 |
|
|
impossible to assign hard registers correctly to such
|
| 1994 |
|
|
allocnos because the cost info and info about intersected
|
| 1995 |
|
|
calls are incorrect for them. */
|
| 1996 |
|
|
ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
|
| 1997 |
|
|
|| ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
|
| 1998 |
|
|
|| (ALLOCNO_MEMORY_COST (a)
|
| 1999 |
|
|
- ALLOCNO_CLASS_COST (a)) < 0);
|
| 2000 |
|
|
ira_assert
|
| 2001 |
|
|
(hard_regno < 0
|
| 2002 |
|
|
|| ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
|
| 2003 |
|
|
reg_class_contents[ALLOCNO_CLASS (a)]));
|
| 2004 |
|
|
}
|
| 2005 |
|
|
}
|
| 2006 |
|
|
|
| 2007 |
|
|
/* Evaluate overall allocation cost and the costs for using hard
|
| 2008 |
|
|
registers and memory for allocnos. */
|
| 2009 |
|
|
static void
|
| 2010 |
|
|
calculate_allocation_cost (void)
|
| 2011 |
|
|
{
|
| 2012 |
|
|
int hard_regno, cost;
|
| 2013 |
|
|
ira_allocno_t a;
|
| 2014 |
|
|
ira_allocno_iterator ai;
|
| 2015 |
|
|
|
| 2016 |
|
|
ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
|
| 2017 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
| 2018 |
|
|
{
|
| 2019 |
|
|
hard_regno = ALLOCNO_HARD_REGNO (a);
|
| 2020 |
|
|
ira_assert (hard_regno < 0
|
| 2021 |
|
|
|| (ira_hard_reg_in_set_p
|
| 2022 |
|
|
(hard_regno, ALLOCNO_MODE (a),
|
| 2023 |
|
|
reg_class_contents[ALLOCNO_CLASS (a)])));
|
| 2024 |
|
|
if (hard_regno < 0)
|
| 2025 |
|
|
{
|
| 2026 |
|
|
cost = ALLOCNO_MEMORY_COST (a);
|
| 2027 |
|
|
ira_mem_cost += cost;
|
| 2028 |
|
|
}
|
| 2029 |
|
|
else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
|
| 2030 |
|
|
{
|
| 2031 |
|
|
cost = (ALLOCNO_HARD_REG_COSTS (a)
|
| 2032 |
|
|
[ira_class_hard_reg_index
|
| 2033 |
|
|
[ALLOCNO_CLASS (a)][hard_regno]]);
|
| 2034 |
|
|
ira_reg_cost += cost;
|
| 2035 |
|
|
}
|
| 2036 |
|
|
else
|
| 2037 |
|
|
{
|
| 2038 |
|
|
cost = ALLOCNO_CLASS_COST (a);
|
| 2039 |
|
|
ira_reg_cost += cost;
|
| 2040 |
|
|
}
|
| 2041 |
|
|
ira_overall_cost += cost;
|
| 2042 |
|
|
}
|
| 2043 |
|
|
|
| 2044 |
|
|
if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
|
| 2045 |
|
|
{
|
| 2046 |
|
|
fprintf (ira_dump_file,
|
| 2047 |
|
|
"+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
|
| 2048 |
|
|
ira_overall_cost, ira_reg_cost, ira_mem_cost,
|
| 2049 |
|
|
ira_load_cost, ira_store_cost, ira_shuffle_cost);
|
| 2050 |
|
|
fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
|
| 2051 |
|
|
ira_move_loops_num, ira_additional_jumps_num);
|
| 2052 |
|
|
}
|
| 2053 |
|
|
|
| 2054 |
|
|
}
|
| 2055 |
|
|
|
| 2056 |
|
|
#ifdef ENABLE_IRA_CHECKING
|
| 2057 |
|
|
/* Check the correctness of the allocation. We do need this because
|
| 2058 |
|
|
of complicated code to transform more one region internal
|
| 2059 |
|
|
representation into one region representation. */
|
| 2060 |
|
|
static void
|
| 2061 |
|
|
check_allocation (void)
|
| 2062 |
|
|
{
|
| 2063 |
|
|
ira_allocno_t a;
|
| 2064 |
|
|
int hard_regno, nregs, conflict_nregs;
|
| 2065 |
|
|
ira_allocno_iterator ai;
|
| 2066 |
|
|
|
| 2067 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
| 2068 |
|
|
{
|
| 2069 |
|
|
int n = ALLOCNO_NUM_OBJECTS (a);
|
| 2070 |
|
|
int i;
|
| 2071 |
|
|
|
| 2072 |
|
|
if (ALLOCNO_CAP_MEMBER (a) != NULL
|
| 2073 |
|
|
|| (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
|
| 2074 |
|
|
continue;
|
| 2075 |
|
|
nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
|
| 2076 |
|
|
if (nregs == 1)
|
| 2077 |
|
|
/* We allocated a single hard register. */
|
| 2078 |
|
|
n = 1;
|
| 2079 |
|
|
else if (n > 1)
|
| 2080 |
|
|
/* We allocated multiple hard registers, and we will test
|
| 2081 |
|
|
conflicts in a granularity of single hard regs. */
|
| 2082 |
|
|
nregs = 1;
|
| 2083 |
|
|
|
| 2084 |
|
|
for (i = 0; i < n; i++)
|
| 2085 |
|
|
{
|
| 2086 |
|
|
ira_object_t obj = ALLOCNO_OBJECT (a, i);
|
| 2087 |
|
|
ira_object_t conflict_obj;
|
| 2088 |
|
|
ira_object_conflict_iterator oci;
|
| 2089 |
|
|
int this_regno = hard_regno;
|
| 2090 |
|
|
if (n > 1)
|
| 2091 |
|
|
{
|
| 2092 |
|
|
if (REG_WORDS_BIG_ENDIAN)
|
| 2093 |
|
|
this_regno += n - i - 1;
|
| 2094 |
|
|
else
|
| 2095 |
|
|
this_regno += i;
|
| 2096 |
|
|
}
|
| 2097 |
|
|
FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
|
| 2098 |
|
|
{
|
| 2099 |
|
|
ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
|
| 2100 |
|
|
int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
|
| 2101 |
|
|
if (conflict_hard_regno < 0)
|
| 2102 |
|
|
continue;
|
| 2103 |
|
|
|
| 2104 |
|
|
conflict_nregs
|
| 2105 |
|
|
= (hard_regno_nregs
|
| 2106 |
|
|
[conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
|
| 2107 |
|
|
|
| 2108 |
|
|
if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
|
| 2109 |
|
|
&& conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
|
| 2110 |
|
|
{
|
| 2111 |
|
|
if (REG_WORDS_BIG_ENDIAN)
|
| 2112 |
|
|
conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
|
| 2113 |
|
|
- OBJECT_SUBWORD (conflict_obj) - 1);
|
| 2114 |
|
|
else
|
| 2115 |
|
|
conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
|
| 2116 |
|
|
conflict_nregs = 1;
|
| 2117 |
|
|
}
|
| 2118 |
|
|
|
| 2119 |
|
|
if ((conflict_hard_regno <= this_regno
|
| 2120 |
|
|
&& this_regno < conflict_hard_regno + conflict_nregs)
|
| 2121 |
|
|
|| (this_regno <= conflict_hard_regno
|
| 2122 |
|
|
&& conflict_hard_regno < this_regno + nregs))
|
| 2123 |
|
|
{
|
| 2124 |
|
|
fprintf (stderr, "bad allocation for %d and %d\n",
|
| 2125 |
|
|
ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
|
| 2126 |
|
|
gcc_unreachable ();
|
| 2127 |
|
|
}
|
| 2128 |
|
|
}
|
| 2129 |
|
|
}
|
| 2130 |
|
|
}
|
| 2131 |
|
|
}
|
| 2132 |
|
|
#endif
|
| 2133 |
|
|
|
| 2134 |
|
|
/* Fix values of array REG_EQUIV_INIT after live range splitting done
|
| 2135 |
|
|
by IRA. */
|
| 2136 |
|
|
static void
|
| 2137 |
|
|
fix_reg_equiv_init (void)
|
| 2138 |
|
|
{
|
| 2139 |
|
|
unsigned int max_regno = max_reg_num ();
|
| 2140 |
|
|
int i, new_regno, max;
|
| 2141 |
|
|
rtx x, prev, next, insn, set;
|
| 2142 |
|
|
|
| 2143 |
|
|
if (VEC_length (reg_equivs_t, reg_equivs) < max_regno)
|
| 2144 |
|
|
{
|
| 2145 |
|
|
max = VEC_length (reg_equivs_t, reg_equivs);
|
| 2146 |
|
|
grow_reg_equivs ();
|
| 2147 |
|
|
for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
|
| 2148 |
|
|
for (prev = NULL_RTX, x = reg_equiv_init (i);
|
| 2149 |
|
|
x != NULL_RTX;
|
| 2150 |
|
|
x = next)
|
| 2151 |
|
|
{
|
| 2152 |
|
|
next = XEXP (x, 1);
|
| 2153 |
|
|
insn = XEXP (x, 0);
|
| 2154 |
|
|
set = single_set (insn);
|
| 2155 |
|
|
ira_assert (set != NULL_RTX
|
| 2156 |
|
|
&& (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
|
| 2157 |
|
|
if (REG_P (SET_DEST (set))
|
| 2158 |
|
|
&& ((int) REGNO (SET_DEST (set)) == i
|
| 2159 |
|
|
|| (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
|
| 2160 |
|
|
new_regno = REGNO (SET_DEST (set));
|
| 2161 |
|
|
else if (REG_P (SET_SRC (set))
|
| 2162 |
|
|
&& ((int) REGNO (SET_SRC (set)) == i
|
| 2163 |
|
|
|| (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
|
| 2164 |
|
|
new_regno = REGNO (SET_SRC (set));
|
| 2165 |
|
|
else
|
| 2166 |
|
|
gcc_unreachable ();
|
| 2167 |
|
|
if (new_regno == i)
|
| 2168 |
|
|
prev = x;
|
| 2169 |
|
|
else
|
| 2170 |
|
|
{
|
| 2171 |
|
|
if (prev == NULL_RTX)
|
| 2172 |
|
|
reg_equiv_init (i) = next;
|
| 2173 |
|
|
else
|
| 2174 |
|
|
XEXP (prev, 1) = next;
|
| 2175 |
|
|
XEXP (x, 1) = reg_equiv_init (new_regno);
|
| 2176 |
|
|
reg_equiv_init (new_regno) = x;
|
| 2177 |
|
|
}
|
| 2178 |
|
|
}
|
| 2179 |
|
|
}
|
| 2180 |
|
|
}
|
| 2181 |
|
|
|
| 2182 |
|
|
#ifdef ENABLE_IRA_CHECKING
|
| 2183 |
|
|
/* Print redundant memory-memory copies. */
|
| 2184 |
|
|
static void
|
| 2185 |
|
|
print_redundant_copies (void)
|
| 2186 |
|
|
{
|
| 2187 |
|
|
int hard_regno;
|
| 2188 |
|
|
ira_allocno_t a;
|
| 2189 |
|
|
ira_copy_t cp, next_cp;
|
| 2190 |
|
|
ira_allocno_iterator ai;
|
| 2191 |
|
|
|
| 2192 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
| 2193 |
|
|
{
|
| 2194 |
|
|
if (ALLOCNO_CAP_MEMBER (a) != NULL)
|
| 2195 |
|
|
/* It is a cap. */
|
| 2196 |
|
|
continue;
|
| 2197 |
|
|
hard_regno = ALLOCNO_HARD_REGNO (a);
|
| 2198 |
|
|
if (hard_regno >= 0)
|
| 2199 |
|
|
continue;
|
| 2200 |
|
|
for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
|
| 2201 |
|
|
if (cp->first == a)
|
| 2202 |
|
|
next_cp = cp->next_first_allocno_copy;
|
| 2203 |
|
|
else
|
| 2204 |
|
|
{
|
| 2205 |
|
|
next_cp = cp->next_second_allocno_copy;
|
| 2206 |
|
|
if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
|
| 2207 |
|
|
&& cp->insn != NULL_RTX
|
| 2208 |
|
|
&& ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
|
| 2209 |
|
|
fprintf (ira_dump_file,
|
| 2210 |
|
|
" Redundant move from %d(freq %d):%d\n",
|
| 2211 |
|
|
INSN_UID (cp->insn), cp->freq, hard_regno);
|
| 2212 |
|
|
}
|
| 2213 |
|
|
}
|
| 2214 |
|
|
}
|
| 2215 |
|
|
#endif
|
| 2216 |
|
|
|
| 2217 |
|
|
/* Setup preferred and alternative classes for new pseudo-registers
|
| 2218 |
|
|
created by IRA starting with START. */
|
| 2219 |
|
|
static void
|
| 2220 |
|
|
setup_preferred_alternate_classes_for_new_pseudos (int start)
|
| 2221 |
|
|
{
|
| 2222 |
|
|
int i, old_regno;
|
| 2223 |
|
|
int max_regno = max_reg_num ();
|
| 2224 |
|
|
|
| 2225 |
|
|
for (i = start; i < max_regno; i++)
|
| 2226 |
|
|
{
|
| 2227 |
|
|
old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
|
| 2228 |
|
|
ira_assert (i != old_regno);
|
| 2229 |
|
|
setup_reg_classes (i, reg_preferred_class (old_regno),
|
| 2230 |
|
|
reg_alternate_class (old_regno),
|
| 2231 |
|
|
reg_allocno_class (old_regno));
|
| 2232 |
|
|
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
|
| 2233 |
|
|
fprintf (ira_dump_file,
|
| 2234 |
|
|
" New r%d: setting preferred %s, alternative %s\n",
|
| 2235 |
|
|
i, reg_class_names[reg_preferred_class (old_regno)],
|
| 2236 |
|
|
reg_class_names[reg_alternate_class (old_regno)]);
|
| 2237 |
|
|
}
|
| 2238 |
|
|
}
|
| 2239 |
|
|
|
| 2240 |
|
|
|
| 2241 |
|
|
|
| 2242 |
|
|
/* Regional allocation can create new pseudo-registers. This function
|
| 2243 |
|
|
expands some arrays for pseudo-registers. */
|
| 2244 |
|
|
static void
|
| 2245 |
|
|
expand_reg_info (int old_size)
|
| 2246 |
|
|
{
|
| 2247 |
|
|
int i;
|
| 2248 |
|
|
int size = max_reg_num ();
|
| 2249 |
|
|
|
| 2250 |
|
|
resize_reg_info ();
|
| 2251 |
|
|
for (i = old_size; i < size; i++)
|
| 2252 |
|
|
setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
|
| 2253 |
|
|
}
|
| 2254 |
|
|
|
| 2255 |
|
|
/* Return TRUE if there is too high register pressure in the function.
|
| 2256 |
|
|
It is used to decide when stack slot sharing is worth to do. */
|
| 2257 |
|
|
static bool
|
| 2258 |
|
|
too_high_register_pressure_p (void)
|
| 2259 |
|
|
{
|
| 2260 |
|
|
int i;
|
| 2261 |
|
|
enum reg_class pclass;
|
| 2262 |
|
|
|
| 2263 |
|
|
for (i = 0; i < ira_pressure_classes_num; i++)
|
| 2264 |
|
|
{
|
| 2265 |
|
|
pclass = ira_pressure_classes[i];
|
| 2266 |
|
|
if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
|
| 2267 |
|
|
return true;
|
| 2268 |
|
|
}
|
| 2269 |
|
|
return false;
|
| 2270 |
|
|
}
|
| 2271 |
|
|
|
| 2272 |
|
|
|
| 2273 |
|
|
|
| 2274 |
|
|
/* Indicate that hard register number FROM was eliminated and replaced with
|
| 2275 |
|
|
an offset from hard register number TO. The status of hard registers live
|
| 2276 |
|
|
at the start of a basic block is updated by replacing a use of FROM with
|
| 2277 |
|
|
a use of TO. */
|
| 2278 |
|
|
|
| 2279 |
|
|
void
|
| 2280 |
|
|
mark_elimination (int from, int to)
|
| 2281 |
|
|
{
|
| 2282 |
|
|
basic_block bb;
|
| 2283 |
|
|
|
| 2284 |
|
|
FOR_EACH_BB (bb)
|
| 2285 |
|
|
{
|
| 2286 |
|
|
/* We don't use LIVE info in IRA. */
|
| 2287 |
|
|
bitmap r = DF_LR_IN (bb);
|
| 2288 |
|
|
|
| 2289 |
|
|
if (REGNO_REG_SET_P (r, from))
|
| 2290 |
|
|
{
|
| 2291 |
|
|
CLEAR_REGNO_REG_SET (r, from);
|
| 2292 |
|
|
SET_REGNO_REG_SET (r, to);
|
| 2293 |
|
|
}
|
| 2294 |
|
|
}
|
| 2295 |
|
|
}
|
| 2296 |
|
|
|
| 2297 |
|
|
|
| 2298 |
|
|
|
| 2299 |
|
|
struct equivalence
|
| 2300 |
|
|
{
|
| 2301 |
|
|
/* Set when a REG_EQUIV note is found or created. Use to
|
| 2302 |
|
|
keep track of what memory accesses might be created later,
|
| 2303 |
|
|
e.g. by reload. */
|
| 2304 |
|
|
rtx replacement;
|
| 2305 |
|
|
rtx *src_p;
|
| 2306 |
|
|
/* The list of each instruction which initializes this register. */
|
| 2307 |
|
|
rtx init_insns;
|
| 2308 |
|
|
/* Loop depth is used to recognize equivalences which appear
|
| 2309 |
|
|
to be present within the same loop (or in an inner loop). */
|
| 2310 |
|
|
int loop_depth;
|
| 2311 |
|
|
/* Nonzero if this had a preexisting REG_EQUIV note. */
|
| 2312 |
|
|
int is_arg_equivalence;
|
| 2313 |
|
|
/* Set when an attempt should be made to replace a register
|
| 2314 |
|
|
with the associated src_p entry. */
|
| 2315 |
|
|
char replace;
|
| 2316 |
|
|
};
|
| 2317 |
|
|
|
| 2318 |
|
|
/* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
|
| 2319 |
|
|
structure for that register. */
|
| 2320 |
|
|
static struct equivalence *reg_equiv;
|
| 2321 |
|
|
|
| 2322 |
|
|
/* Used for communication between the following two functions: contains
|
| 2323 |
|
|
a MEM that we wish to ensure remains unchanged. */
|
| 2324 |
|
|
static rtx equiv_mem;
|
| 2325 |
|
|
|
| 2326 |
|
|
/* Set nonzero if EQUIV_MEM is modified. */
|
| 2327 |
|
|
static int equiv_mem_modified;
|
| 2328 |
|
|
|
| 2329 |
|
|
/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
|
| 2330 |
|
|
Called via note_stores. */
|
| 2331 |
|
|
static void
|
| 2332 |
|
|
validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
|
| 2333 |
|
|
void *data ATTRIBUTE_UNUSED)
|
| 2334 |
|
|
{
|
| 2335 |
|
|
if ((REG_P (dest)
|
| 2336 |
|
|
&& reg_overlap_mentioned_p (dest, equiv_mem))
|
| 2337 |
|
|
|| (MEM_P (dest)
|
| 2338 |
|
|
&& true_dependence (dest, VOIDmode, equiv_mem)))
|
| 2339 |
|
|
equiv_mem_modified = 1;
|
| 2340 |
|
|
}
|
| 2341 |
|
|
|
| 2342 |
|
|
/* Verify that no store between START and the death of REG invalidates
|
| 2343 |
|
|
MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
|
| 2344 |
|
|
by storing into an overlapping memory location, or with a non-const
|
| 2345 |
|
|
CALL_INSN.
|
| 2346 |
|
|
|
| 2347 |
|
|
Return 1 if MEMREF remains valid. */
|
| 2348 |
|
|
static int
|
| 2349 |
|
|
validate_equiv_mem (rtx start, rtx reg, rtx memref)
|
| 2350 |
|
|
{
|
| 2351 |
|
|
rtx insn;
|
| 2352 |
|
|
rtx note;
|
| 2353 |
|
|
|
| 2354 |
|
|
equiv_mem = memref;
|
| 2355 |
|
|
equiv_mem_modified = 0;
|
| 2356 |
|
|
|
| 2357 |
|
|
/* If the memory reference has side effects or is volatile, it isn't a
|
| 2358 |
|
|
valid equivalence. */
|
| 2359 |
|
|
if (side_effects_p (memref))
|
| 2360 |
|
|
return 0;
|
| 2361 |
|
|
|
| 2362 |
|
|
for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
|
| 2363 |
|
|
{
|
| 2364 |
|
|
if (! INSN_P (insn))
|
| 2365 |
|
|
continue;
|
| 2366 |
|
|
|
| 2367 |
|
|
if (find_reg_note (insn, REG_DEAD, reg))
|
| 2368 |
|
|
return 1;
|
| 2369 |
|
|
|
| 2370 |
|
|
/* This used to ignore readonly memory and const/pure calls. The problem
|
| 2371 |
|
|
is the equivalent form may reference a pseudo which gets assigned a
|
| 2372 |
|
|
call clobbered hard reg. When we later replace REG with its
|
| 2373 |
|
|
equivalent form, the value in the call-clobbered reg has been
|
| 2374 |
|
|
changed and all hell breaks loose. */
|
| 2375 |
|
|
if (CALL_P (insn))
|
| 2376 |
|
|
return 0;
|
| 2377 |
|
|
|
| 2378 |
|
|
note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
|
| 2379 |
|
|
|
| 2380 |
|
|
/* If a register mentioned in MEMREF is modified via an
|
| 2381 |
|
|
auto-increment, we lose the equivalence. Do the same if one
|
| 2382 |
|
|
dies; although we could extend the life, it doesn't seem worth
|
| 2383 |
|
|
the trouble. */
|
| 2384 |
|
|
|
| 2385 |
|
|
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
| 2386 |
|
|
if ((REG_NOTE_KIND (note) == REG_INC
|
| 2387 |
|
|
|| REG_NOTE_KIND (note) == REG_DEAD)
|
| 2388 |
|
|
&& REG_P (XEXP (note, 0))
|
| 2389 |
|
|
&& reg_overlap_mentioned_p (XEXP (note, 0), memref))
|
| 2390 |
|
|
return 0;
|
| 2391 |
|
|
}
|
| 2392 |
|
|
|
| 2393 |
|
|
return 0;
|
| 2394 |
|
|
}
|
| 2395 |
|
|
|
| 2396 |
|
|
/* Returns zero if X is known to be invariant. */
|
| 2397 |
|
|
static int
|
| 2398 |
|
|
equiv_init_varies_p (rtx x)
|
| 2399 |
|
|
{
|
| 2400 |
|
|
RTX_CODE code = GET_CODE (x);
|
| 2401 |
|
|
int i;
|
| 2402 |
|
|
const char *fmt;
|
| 2403 |
|
|
|
| 2404 |
|
|
switch (code)
|
| 2405 |
|
|
{
|
| 2406 |
|
|
case MEM:
|
| 2407 |
|
|
return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
|
| 2408 |
|
|
|
| 2409 |
|
|
case CONST:
|
| 2410 |
|
|
case CONST_INT:
|
| 2411 |
|
|
case CONST_DOUBLE:
|
| 2412 |
|
|
case CONST_FIXED:
|
| 2413 |
|
|
case CONST_VECTOR:
|
| 2414 |
|
|
case SYMBOL_REF:
|
| 2415 |
|
|
case LABEL_REF:
|
| 2416 |
|
|
return 0;
|
| 2417 |
|
|
|
| 2418 |
|
|
case REG:
|
| 2419 |
|
|
return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
|
| 2420 |
|
|
|
| 2421 |
|
|
case ASM_OPERANDS:
|
| 2422 |
|
|
if (MEM_VOLATILE_P (x))
|
| 2423 |
|
|
return 1;
|
| 2424 |
|
|
|
| 2425 |
|
|
/* Fall through. */
|
| 2426 |
|
|
|
| 2427 |
|
|
default:
|
| 2428 |
|
|
break;
|
| 2429 |
|
|
}
|
| 2430 |
|
|
|
| 2431 |
|
|
fmt = GET_RTX_FORMAT (code);
|
| 2432 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
| 2433 |
|
|
if (fmt[i] == 'e')
|
| 2434 |
|
|
{
|
| 2435 |
|
|
if (equiv_init_varies_p (XEXP (x, i)))
|
| 2436 |
|
|
return 1;
|
| 2437 |
|
|
}
|
| 2438 |
|
|
else if (fmt[i] == 'E')
|
| 2439 |
|
|
{
|
| 2440 |
|
|
int j;
|
| 2441 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
| 2442 |
|
|
if (equiv_init_varies_p (XVECEXP (x, i, j)))
|
| 2443 |
|
|
return 1;
|
| 2444 |
|
|
}
|
| 2445 |
|
|
|
| 2446 |
|
|
return 0;
|
| 2447 |
|
|
}
|
| 2448 |
|
|
|
| 2449 |
|
|
/* Returns nonzero if X (used to initialize register REGNO) is movable.
|
| 2450 |
|
|
X is only movable if the registers it uses have equivalent initializations
|
| 2451 |
|
|
which appear to be within the same loop (or in an inner loop) and movable
|
| 2452 |
|
|
or if they are not candidates for local_alloc and don't vary. */
|
| 2453 |
|
|
static int
|
| 2454 |
|
|
equiv_init_movable_p (rtx x, int regno)
|
| 2455 |
|
|
{
|
| 2456 |
|
|
int i, j;
|
| 2457 |
|
|
const char *fmt;
|
| 2458 |
|
|
enum rtx_code code = GET_CODE (x);
|
| 2459 |
|
|
|
| 2460 |
|
|
switch (code)
|
| 2461 |
|
|
{
|
| 2462 |
|
|
case SET:
|
| 2463 |
|
|
return equiv_init_movable_p (SET_SRC (x), regno);
|
| 2464 |
|
|
|
| 2465 |
|
|
case CC0:
|
| 2466 |
|
|
case CLOBBER:
|
| 2467 |
|
|
return 0;
|
| 2468 |
|
|
|
| 2469 |
|
|
case PRE_INC:
|
| 2470 |
|
|
case PRE_DEC:
|
| 2471 |
|
|
case POST_INC:
|
| 2472 |
|
|
case POST_DEC:
|
| 2473 |
|
|
case PRE_MODIFY:
|
| 2474 |
|
|
case POST_MODIFY:
|
| 2475 |
|
|
return 0;
|
| 2476 |
|
|
|
| 2477 |
|
|
case REG:
|
| 2478 |
|
|
return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
|
| 2479 |
|
|
&& reg_equiv[REGNO (x)].replace)
|
| 2480 |
|
|
|| (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
|
| 2481 |
|
|
&& ! rtx_varies_p (x, 0)));
|
| 2482 |
|
|
|
| 2483 |
|
|
case UNSPEC_VOLATILE:
|
| 2484 |
|
|
return 0;
|
| 2485 |
|
|
|
| 2486 |
|
|
case ASM_OPERANDS:
|
| 2487 |
|
|
if (MEM_VOLATILE_P (x))
|
| 2488 |
|
|
return 0;
|
| 2489 |
|
|
|
| 2490 |
|
|
/* Fall through. */
|
| 2491 |
|
|
|
| 2492 |
|
|
default:
|
| 2493 |
|
|
break;
|
| 2494 |
|
|
}
|
| 2495 |
|
|
|
| 2496 |
|
|
fmt = GET_RTX_FORMAT (code);
|
| 2497 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
| 2498 |
|
|
switch (fmt[i])
|
| 2499 |
|
|
{
|
| 2500 |
|
|
case 'e':
|
| 2501 |
|
|
if (! equiv_init_movable_p (XEXP (x, i), regno))
|
| 2502 |
|
|
return 0;
|
| 2503 |
|
|
break;
|
| 2504 |
|
|
case 'E':
|
| 2505 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
| 2506 |
|
|
if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
|
| 2507 |
|
|
return 0;
|
| 2508 |
|
|
break;
|
| 2509 |
|
|
}
|
| 2510 |
|
|
|
| 2511 |
|
|
return 1;
|
| 2512 |
|
|
}
|
| 2513 |
|
|
|
| 2514 |
|
|
/* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
|
| 2515 |
|
|
true. */
|
| 2516 |
|
|
static int
|
| 2517 |
|
|
contains_replace_regs (rtx x)
|
| 2518 |
|
|
{
|
| 2519 |
|
|
int i, j;
|
| 2520 |
|
|
const char *fmt;
|
| 2521 |
|
|
enum rtx_code code = GET_CODE (x);
|
| 2522 |
|
|
|
| 2523 |
|
|
switch (code)
|
| 2524 |
|
|
{
|
| 2525 |
|
|
case CONST_INT:
|
| 2526 |
|
|
case CONST:
|
| 2527 |
|
|
case LABEL_REF:
|
| 2528 |
|
|
case SYMBOL_REF:
|
| 2529 |
|
|
case CONST_DOUBLE:
|
| 2530 |
|
|
case CONST_FIXED:
|
| 2531 |
|
|
case CONST_VECTOR:
|
| 2532 |
|
|
case PC:
|
| 2533 |
|
|
case CC0:
|
| 2534 |
|
|
case HIGH:
|
| 2535 |
|
|
return 0;
|
| 2536 |
|
|
|
| 2537 |
|
|
case REG:
|
| 2538 |
|
|
return reg_equiv[REGNO (x)].replace;
|
| 2539 |
|
|
|
| 2540 |
|
|
default:
|
| 2541 |
|
|
break;
|
| 2542 |
|
|
}
|
| 2543 |
|
|
|
| 2544 |
|
|
fmt = GET_RTX_FORMAT (code);
|
| 2545 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
| 2546 |
|
|
switch (fmt[i])
|
| 2547 |
|
|
{
|
| 2548 |
|
|
case 'e':
|
| 2549 |
|
|
if (contains_replace_regs (XEXP (x, i)))
|
| 2550 |
|
|
return 1;
|
| 2551 |
|
|
break;
|
| 2552 |
|
|
case 'E':
|
| 2553 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
| 2554 |
|
|
if (contains_replace_regs (XVECEXP (x, i, j)))
|
| 2555 |
|
|
return 1;
|
| 2556 |
|
|
break;
|
| 2557 |
|
|
}
|
| 2558 |
|
|
|
| 2559 |
|
|
return 0;
|
| 2560 |
|
|
}
|
| 2561 |
|
|
|
| 2562 |
|
|
/* TRUE if X references a memory location that would be affected by a store
|
| 2563 |
|
|
to MEMREF. */
|
| 2564 |
|
|
static int
|
| 2565 |
|
|
memref_referenced_p (rtx memref, rtx x)
|
| 2566 |
|
|
{
|
| 2567 |
|
|
int i, j;
|
| 2568 |
|
|
const char *fmt;
|
| 2569 |
|
|
enum rtx_code code = GET_CODE (x);
|
| 2570 |
|
|
|
| 2571 |
|
|
switch (code)
|
| 2572 |
|
|
{
|
| 2573 |
|
|
case CONST_INT:
|
| 2574 |
|
|
case CONST:
|
| 2575 |
|
|
case LABEL_REF:
|
| 2576 |
|
|
case SYMBOL_REF:
|
| 2577 |
|
|
case CONST_DOUBLE:
|
| 2578 |
|
|
case CONST_FIXED:
|
| 2579 |
|
|
case CONST_VECTOR:
|
| 2580 |
|
|
case PC:
|
| 2581 |
|
|
case CC0:
|
| 2582 |
|
|
case HIGH:
|
| 2583 |
|
|
case LO_SUM:
|
| 2584 |
|
|
return 0;
|
| 2585 |
|
|
|
| 2586 |
|
|
case REG:
|
| 2587 |
|
|
return (reg_equiv[REGNO (x)].replacement
|
| 2588 |
|
|
&& memref_referenced_p (memref,
|
| 2589 |
|
|
reg_equiv[REGNO (x)].replacement));
|
| 2590 |
|
|
|
| 2591 |
|
|
case MEM:
|
| 2592 |
|
|
if (true_dependence (memref, VOIDmode, x))
|
| 2593 |
|
|
return 1;
|
| 2594 |
|
|
break;
|
| 2595 |
|
|
|
| 2596 |
|
|
case SET:
|
| 2597 |
|
|
/* If we are setting a MEM, it doesn't count (its address does), but any
|
| 2598 |
|
|
other SET_DEST that has a MEM in it is referencing the MEM. */
|
| 2599 |
|
|
if (MEM_P (SET_DEST (x)))
|
| 2600 |
|
|
{
|
| 2601 |
|
|
if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
|
| 2602 |
|
|
return 1;
|
| 2603 |
|
|
}
|
| 2604 |
|
|
else if (memref_referenced_p (memref, SET_DEST (x)))
|
| 2605 |
|
|
return 1;
|
| 2606 |
|
|
|
| 2607 |
|
|
return memref_referenced_p (memref, SET_SRC (x));
|
| 2608 |
|
|
|
| 2609 |
|
|
default:
|
| 2610 |
|
|
break;
|
| 2611 |
|
|
}
|
| 2612 |
|
|
|
| 2613 |
|
|
fmt = GET_RTX_FORMAT (code);
|
| 2614 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
| 2615 |
|
|
switch (fmt[i])
|
| 2616 |
|
|
{
|
| 2617 |
|
|
case 'e':
|
| 2618 |
|
|
if (memref_referenced_p (memref, XEXP (x, i)))
|
| 2619 |
|
|
return 1;
|
| 2620 |
|
|
break;
|
| 2621 |
|
|
case 'E':
|
| 2622 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
| 2623 |
|
|
if (memref_referenced_p (memref, XVECEXP (x, i, j)))
|
| 2624 |
|
|
return 1;
|
| 2625 |
|
|
break;
|
| 2626 |
|
|
}
|
| 2627 |
|
|
|
| 2628 |
|
|
return 0;
|
| 2629 |
|
|
}
|
| 2630 |
|
|
|
| 2631 |
|
|
/* TRUE if some insn in the range (START, END] references a memory location
|
| 2632 |
|
|
that would be affected by a store to MEMREF. */
|
| 2633 |
|
|
static int
|
| 2634 |
|
|
memref_used_between_p (rtx memref, rtx start, rtx end)
|
| 2635 |
|
|
{
|
| 2636 |
|
|
rtx insn;
|
| 2637 |
|
|
|
| 2638 |
|
|
for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
|
| 2639 |
|
|
insn = NEXT_INSN (insn))
|
| 2640 |
|
|
{
|
| 2641 |
|
|
if (!NONDEBUG_INSN_P (insn))
|
| 2642 |
|
|
continue;
|
| 2643 |
|
|
|
| 2644 |
|
|
if (memref_referenced_p (memref, PATTERN (insn)))
|
| 2645 |
|
|
return 1;
|
| 2646 |
|
|
|
| 2647 |
|
|
/* Nonconst functions may access memory. */
|
| 2648 |
|
|
if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
|
| 2649 |
|
|
return 1;
|
| 2650 |
|
|
}
|
| 2651 |
|
|
|
| 2652 |
|
|
return 0;
|
| 2653 |
|
|
}
|
| 2654 |
|
|
|
| 2655 |
|
|
/* Mark REG as having no known equivalence.
|
| 2656 |
|
|
Some instructions might have been processed before and furnished
|
| 2657 |
|
|
with REG_EQUIV notes for this register; these notes will have to be
|
| 2658 |
|
|
removed.
|
| 2659 |
|
|
STORE is the piece of RTL that does the non-constant / conflicting
|
| 2660 |
|
|
assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
|
| 2661 |
|
|
but needs to be there because this function is called from note_stores. */
|
| 2662 |
|
|
static void
|
| 2663 |
|
|
no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
|
| 2664 |
|
|
void *data ATTRIBUTE_UNUSED)
|
| 2665 |
|
|
{
|
| 2666 |
|
|
int regno;
|
| 2667 |
|
|
rtx list;
|
| 2668 |
|
|
|
| 2669 |
|
|
if (!REG_P (reg))
|
| 2670 |
|
|
return;
|
| 2671 |
|
|
regno = REGNO (reg);
|
| 2672 |
|
|
list = reg_equiv[regno].init_insns;
|
| 2673 |
|
|
if (list == const0_rtx)
|
| 2674 |
|
|
return;
|
| 2675 |
|
|
reg_equiv[regno].init_insns = const0_rtx;
|
| 2676 |
|
|
reg_equiv[regno].replacement = NULL_RTX;
|
| 2677 |
|
|
/* This doesn't matter for equivalences made for argument registers, we
|
| 2678 |
|
|
should keep their initialization insns. */
|
| 2679 |
|
|
if (reg_equiv[regno].is_arg_equivalence)
|
| 2680 |
|
|
return;
|
| 2681 |
|
|
reg_equiv_init (regno) = NULL_RTX;
|
| 2682 |
|
|
for (; list; list = XEXP (list, 1))
|
| 2683 |
|
|
{
|
| 2684 |
|
|
rtx insn = XEXP (list, 0);
|
| 2685 |
|
|
remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
|
| 2686 |
|
|
}
|
| 2687 |
|
|
}
|
| 2688 |
|
|
|
| 2689 |
|
|
/* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
|
| 2690 |
|
|
equivalent replacement. */
|
| 2691 |
|
|
|
| 2692 |
|
|
static rtx
|
| 2693 |
|
|
adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
|
| 2694 |
|
|
{
|
| 2695 |
|
|
if (REG_P (loc))
|
| 2696 |
|
|
{
|
| 2697 |
|
|
bitmap cleared_regs = (bitmap) data;
|
| 2698 |
|
|
if (bitmap_bit_p (cleared_regs, REGNO (loc)))
|
| 2699 |
|
|
return simplify_replace_fn_rtx (*reg_equiv[REGNO (loc)].src_p,
|
| 2700 |
|
|
NULL_RTX, adjust_cleared_regs, data);
|
| 2701 |
|
|
}
|
| 2702 |
|
|
return NULL_RTX;
|
| 2703 |
|
|
}
|
| 2704 |
|
|
|
| 2705 |
|
|
/* Nonzero if we recorded an equivalence for a LABEL_REF. */
|
| 2706 |
|
|
static int recorded_label_ref;
|
| 2707 |
|
|
|
| 2708 |
|
|
/* Find registers that are equivalent to a single value throughout the
|
| 2709 |
|
|
compilation (either because they can be referenced in memory or are
|
| 2710 |
|
|
set once from a single constant). Lower their priority for a
|
| 2711 |
|
|
register.
|
| 2712 |
|
|
|
| 2713 |
|
|
If such a register is only referenced once, try substituting its
|
| 2714 |
|
|
value into the using insn. If it succeeds, we can eliminate the
|
| 2715 |
|
|
register completely.
|
| 2716 |
|
|
|
| 2717 |
|
|
Initialize the REG_EQUIV_INIT array of initializing insns.
|
| 2718 |
|
|
|
| 2719 |
|
|
Return non-zero if jump label rebuilding should be done. */
|
| 2720 |
|
|
static int
|
| 2721 |
|
|
update_equiv_regs (void)
|
| 2722 |
|
|
{
|
| 2723 |
|
|
rtx insn;
|
| 2724 |
|
|
basic_block bb;
|
| 2725 |
|
|
int loop_depth;
|
| 2726 |
|
|
bitmap cleared_regs;
|
| 2727 |
|
|
|
| 2728 |
|
|
/* We need to keep track of whether or not we recorded a LABEL_REF so
|
| 2729 |
|
|
that we know if the jump optimizer needs to be rerun. */
|
| 2730 |
|
|
recorded_label_ref = 0;
|
| 2731 |
|
|
|
| 2732 |
|
|
reg_equiv = XCNEWVEC (struct equivalence, max_regno);
|
| 2733 |
|
|
grow_reg_equivs ();
|
| 2734 |
|
|
|
| 2735 |
|
|
init_alias_analysis ();
|
| 2736 |
|
|
|
| 2737 |
|
|
/* Scan the insns and find which registers have equivalences. Do this
|
| 2738 |
|
|
in a separate scan of the insns because (due to -fcse-follow-jumps)
|
| 2739 |
|
|
a register can be set below its use. */
|
| 2740 |
|
|
FOR_EACH_BB (bb)
|
| 2741 |
|
|
{
|
| 2742 |
|
|
loop_depth = bb->loop_depth;
|
| 2743 |
|
|
|
| 2744 |
|
|
for (insn = BB_HEAD (bb);
|
| 2745 |
|
|
insn != NEXT_INSN (BB_END (bb));
|
| 2746 |
|
|
insn = NEXT_INSN (insn))
|
| 2747 |
|
|
{
|
| 2748 |
|
|
rtx note;
|
| 2749 |
|
|
rtx set;
|
| 2750 |
|
|
rtx dest, src;
|
| 2751 |
|
|
int regno;
|
| 2752 |
|
|
|
| 2753 |
|
|
if (! INSN_P (insn))
|
| 2754 |
|
|
continue;
|
| 2755 |
|
|
|
| 2756 |
|
|
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
| 2757 |
|
|
if (REG_NOTE_KIND (note) == REG_INC)
|
| 2758 |
|
|
no_equiv (XEXP (note, 0), note, NULL);
|
| 2759 |
|
|
|
| 2760 |
|
|
set = single_set (insn);
|
| 2761 |
|
|
|
| 2762 |
|
|
/* If this insn contains more (or less) than a single SET,
|
| 2763 |
|
|
only mark all destinations as having no known equivalence. */
|
| 2764 |
|
|
if (set == 0)
|
| 2765 |
|
|
{
|
| 2766 |
|
|
note_stores (PATTERN (insn), no_equiv, NULL);
|
| 2767 |
|
|
continue;
|
| 2768 |
|
|
}
|
| 2769 |
|
|
else if (GET_CODE (PATTERN (insn)) == PARALLEL)
|
| 2770 |
|
|
{
|
| 2771 |
|
|
int i;
|
| 2772 |
|
|
|
| 2773 |
|
|
for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
|
| 2774 |
|
|
{
|
| 2775 |
|
|
rtx part = XVECEXP (PATTERN (insn), 0, i);
|
| 2776 |
|
|
if (part != set)
|
| 2777 |
|
|
note_stores (part, no_equiv, NULL);
|
| 2778 |
|
|
}
|
| 2779 |
|
|
}
|
| 2780 |
|
|
|
| 2781 |
|
|
dest = SET_DEST (set);
|
| 2782 |
|
|
src = SET_SRC (set);
|
| 2783 |
|
|
|
| 2784 |
|
|
/* See if this is setting up the equivalence between an argument
|
| 2785 |
|
|
register and its stack slot. */
|
| 2786 |
|
|
note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
|
| 2787 |
|
|
if (note)
|
| 2788 |
|
|
{
|
| 2789 |
|
|
gcc_assert (REG_P (dest));
|
| 2790 |
|
|
regno = REGNO (dest);
|
| 2791 |
|
|
|
| 2792 |
|
|
/* Note that we don't want to clear reg_equiv_init even if there
|
| 2793 |
|
|
are multiple sets of this register. */
|
| 2794 |
|
|
reg_equiv[regno].is_arg_equivalence = 1;
|
| 2795 |
|
|
|
| 2796 |
|
|
/* Record for reload that this is an equivalencing insn. */
|
| 2797 |
|
|
if (rtx_equal_p (src, XEXP (note, 0)))
|
| 2798 |
|
|
reg_equiv_init (regno)
|
| 2799 |
|
|
= gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init (regno));
|
| 2800 |
|
|
|
| 2801 |
|
|
/* Continue normally in case this is a candidate for
|
| 2802 |
|
|
replacements. */
|
| 2803 |
|
|
}
|
| 2804 |
|
|
|
| 2805 |
|
|
if (!optimize)
|
| 2806 |
|
|
continue;
|
| 2807 |
|
|
|
| 2808 |
|
|
/* We only handle the case of a pseudo register being set
|
| 2809 |
|
|
once, or always to the same value. */
|
| 2810 |
|
|
/* ??? The mn10200 port breaks if we add equivalences for
|
| 2811 |
|
|
values that need an ADDRESS_REGS register and set them equivalent
|
| 2812 |
|
|
to a MEM of a pseudo. The actual problem is in the over-conservative
|
| 2813 |
|
|
handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
|
| 2814 |
|
|
calculate_needs, but we traditionally work around this problem
|
| 2815 |
|
|
here by rejecting equivalences when the destination is in a register
|
| 2816 |
|
|
that's likely spilled. This is fragile, of course, since the
|
| 2817 |
|
|
preferred class of a pseudo depends on all instructions that set
|
| 2818 |
|
|
or use it. */
|
| 2819 |
|
|
|
| 2820 |
|
|
if (!REG_P (dest)
|
| 2821 |
|
|
|| (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
|
| 2822 |
|
|
|| reg_equiv[regno].init_insns == const0_rtx
|
| 2823 |
|
|
|| (targetm.class_likely_spilled_p (reg_preferred_class (regno))
|
| 2824 |
|
|
&& MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
|
| 2825 |
|
|
{
|
| 2826 |
|
|
/* This might be setting a SUBREG of a pseudo, a pseudo that is
|
| 2827 |
|
|
also set somewhere else to a constant. */
|
| 2828 |
|
|
note_stores (set, no_equiv, NULL);
|
| 2829 |
|
|
continue;
|
| 2830 |
|
|
}
|
| 2831 |
|
|
|
| 2832 |
|
|
note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
|
| 2833 |
|
|
|
| 2834 |
|
|
/* cse sometimes generates function invariants, but doesn't put a
|
| 2835 |
|
|
REG_EQUAL note on the insn. Since this note would be redundant,
|
| 2836 |
|
|
there's no point creating it earlier than here. */
|
| 2837 |
|
|
if (! note && ! rtx_varies_p (src, 0))
|
| 2838 |
|
|
note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
|
| 2839 |
|
|
|
| 2840 |
|
|
/* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
|
| 2841 |
|
|
since it represents a function call */
|
| 2842 |
|
|
if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
|
| 2843 |
|
|
note = NULL_RTX;
|
| 2844 |
|
|
|
| 2845 |
|
|
if (DF_REG_DEF_COUNT (regno) != 1
|
| 2846 |
|
|
&& (! note
|
| 2847 |
|
|
|| rtx_varies_p (XEXP (note, 0), 0)
|
| 2848 |
|
|
|| (reg_equiv[regno].replacement
|
| 2849 |
|
|
&& ! rtx_equal_p (XEXP (note, 0),
|
| 2850 |
|
|
reg_equiv[regno].replacement))))
|
| 2851 |
|
|
{
|
| 2852 |
|
|
no_equiv (dest, set, NULL);
|
| 2853 |
|
|
continue;
|
| 2854 |
|
|
}
|
| 2855 |
|
|
/* Record this insn as initializing this register. */
|
| 2856 |
|
|
reg_equiv[regno].init_insns
|
| 2857 |
|
|
= gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
|
| 2858 |
|
|
|
| 2859 |
|
|
/* If this register is known to be equal to a constant, record that
|
| 2860 |
|
|
it is always equivalent to the constant. */
|
| 2861 |
|
|
if (DF_REG_DEF_COUNT (regno) == 1
|
| 2862 |
|
|
&& note && ! rtx_varies_p (XEXP (note, 0), 0))
|
| 2863 |
|
|
{
|
| 2864 |
|
|
rtx note_value = XEXP (note, 0);
|
| 2865 |
|
|
remove_note (insn, note);
|
| 2866 |
|
|
set_unique_reg_note (insn, REG_EQUIV, note_value);
|
| 2867 |
|
|
}
|
| 2868 |
|
|
|
| 2869 |
|
|
/* If this insn introduces a "constant" register, decrease the priority
|
| 2870 |
|
|
of that register. Record this insn if the register is only used once
|
| 2871 |
|
|
more and the equivalence value is the same as our source.
|
| 2872 |
|
|
|
| 2873 |
|
|
The latter condition is checked for two reasons: First, it is an
|
| 2874 |
|
|
indication that it may be more efficient to actually emit the insn
|
| 2875 |
|
|
as written (if no registers are available, reload will substitute
|
| 2876 |
|
|
the equivalence). Secondly, it avoids problems with any registers
|
| 2877 |
|
|
dying in this insn whose death notes would be missed.
|
| 2878 |
|
|
|
| 2879 |
|
|
If we don't have a REG_EQUIV note, see if this insn is loading
|
| 2880 |
|
|
a register used only in one basic block from a MEM. If so, and the
|
| 2881 |
|
|
MEM remains unchanged for the life of the register, add a REG_EQUIV
|
| 2882 |
|
|
note. */
|
| 2883 |
|
|
|
| 2884 |
|
|
note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
|
| 2885 |
|
|
|
| 2886 |
|
|
if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
|
| 2887 |
|
|
&& MEM_P (SET_SRC (set))
|
| 2888 |
|
|
&& validate_equiv_mem (insn, dest, SET_SRC (set)))
|
| 2889 |
|
|
note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
|
| 2890 |
|
|
|
| 2891 |
|
|
if (note)
|
| 2892 |
|
|
{
|
| 2893 |
|
|
int regno = REGNO (dest);
|
| 2894 |
|
|
rtx x = XEXP (note, 0);
|
| 2895 |
|
|
|
| 2896 |
|
|
/* If we haven't done so, record for reload that this is an
|
| 2897 |
|
|
equivalencing insn. */
|
| 2898 |
|
|
if (!reg_equiv[regno].is_arg_equivalence)
|
| 2899 |
|
|
reg_equiv_init (regno)
|
| 2900 |
|
|
= gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init (regno));
|
| 2901 |
|
|
|
| 2902 |
|
|
/* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
|
| 2903 |
|
|
We might end up substituting the LABEL_REF for uses of the
|
| 2904 |
|
|
pseudo here or later. That kind of transformation may turn an
|
| 2905 |
|
|
indirect jump into a direct jump, in which case we must rerun the
|
| 2906 |
|
|
jump optimizer to ensure that the JUMP_LABEL fields are valid. */
|
| 2907 |
|
|
if (GET_CODE (x) == LABEL_REF
|
| 2908 |
|
|
|| (GET_CODE (x) == CONST
|
| 2909 |
|
|
&& GET_CODE (XEXP (x, 0)) == PLUS
|
| 2910 |
|
|
&& (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
|
| 2911 |
|
|
recorded_label_ref = 1;
|
| 2912 |
|
|
|
| 2913 |
|
|
reg_equiv[regno].replacement = x;
|
| 2914 |
|
|
reg_equiv[regno].src_p = &SET_SRC (set);
|
| 2915 |
|
|
reg_equiv[regno].loop_depth = loop_depth;
|
| 2916 |
|
|
|
| 2917 |
|
|
/* Don't mess with things live during setjmp. */
|
| 2918 |
|
|
if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
|
| 2919 |
|
|
{
|
| 2920 |
|
|
/* Note that the statement below does not affect the priority
|
| 2921 |
|
|
in local-alloc! */
|
| 2922 |
|
|
REG_LIVE_LENGTH (regno) *= 2;
|
| 2923 |
|
|
|
| 2924 |
|
|
/* If the register is referenced exactly twice, meaning it is
|
| 2925 |
|
|
set once and used once, indicate that the reference may be
|
| 2926 |
|
|
replaced by the equivalence we computed above. Do this
|
| 2927 |
|
|
even if the register is only used in one block so that
|
| 2928 |
|
|
dependencies can be handled where the last register is
|
| 2929 |
|
|
used in a different block (i.e. HIGH / LO_SUM sequences)
|
| 2930 |
|
|
and to reduce the number of registers alive across
|
| 2931 |
|
|
calls. */
|
| 2932 |
|
|
|
| 2933 |
|
|
if (REG_N_REFS (regno) == 2
|
| 2934 |
|
|
&& (rtx_equal_p (x, src)
|
| 2935 |
|
|
|| ! equiv_init_varies_p (src))
|
| 2936 |
|
|
&& NONJUMP_INSN_P (insn)
|
| 2937 |
|
|
&& equiv_init_movable_p (PATTERN (insn), regno))
|
| 2938 |
|
|
reg_equiv[regno].replace = 1;
|
| 2939 |
|
|
}
|
| 2940 |
|
|
}
|
| 2941 |
|
|
}
|
| 2942 |
|
|
}
|
| 2943 |
|
|
|
| 2944 |
|
|
if (!optimize)
|
| 2945 |
|
|
goto out;
|
| 2946 |
|
|
|
| 2947 |
|
|
/* A second pass, to gather additional equivalences with memory. This needs
|
| 2948 |
|
|
to be done after we know which registers we are going to replace. */
|
| 2949 |
|
|
|
| 2950 |
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
| 2951 |
|
|
{
|
| 2952 |
|
|
rtx set, src, dest;
|
| 2953 |
|
|
unsigned regno;
|
| 2954 |
|
|
|
| 2955 |
|
|
if (! INSN_P (insn))
|
| 2956 |
|
|
continue;
|
| 2957 |
|
|
|
| 2958 |
|
|
set = single_set (insn);
|
| 2959 |
|
|
if (! set)
|
| 2960 |
|
|
continue;
|
| 2961 |
|
|
|
| 2962 |
|
|
dest = SET_DEST (set);
|
| 2963 |
|
|
src = SET_SRC (set);
|
| 2964 |
|
|
|
| 2965 |
|
|
/* If this sets a MEM to the contents of a REG that is only used
|
| 2966 |
|
|
in a single basic block, see if the register is always equivalent
|
| 2967 |
|
|
to that memory location and if moving the store from INSN to the
|
| 2968 |
|
|
insn that set REG is safe. If so, put a REG_EQUIV note on the
|
| 2969 |
|
|
initializing insn.
|
| 2970 |
|
|
|
| 2971 |
|
|
Don't add a REG_EQUIV note if the insn already has one. The existing
|
| 2972 |
|
|
REG_EQUIV is likely more useful than the one we are adding.
|
| 2973 |
|
|
|
| 2974 |
|
|
If one of the regs in the address has reg_equiv[REGNO].replace set,
|
| 2975 |
|
|
then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
|
| 2976 |
|
|
optimization may move the set of this register immediately before
|
| 2977 |
|
|
insn, which puts it after reg_equiv[REGNO].init_insns, and hence
|
| 2978 |
|
|
the mention in the REG_EQUIV note would be to an uninitialized
|
| 2979 |
|
|
pseudo. */
|
| 2980 |
|
|
|
| 2981 |
|
|
if (MEM_P (dest) && REG_P (src)
|
| 2982 |
|
|
&& (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
|
| 2983 |
|
|
&& REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
|
| 2984 |
|
|
&& DF_REG_DEF_COUNT (regno) == 1
|
| 2985 |
|
|
&& reg_equiv[regno].init_insns != 0
|
| 2986 |
|
|
&& reg_equiv[regno].init_insns != const0_rtx
|
| 2987 |
|
|
&& ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
|
| 2988 |
|
|
REG_EQUIV, NULL_RTX)
|
| 2989 |
|
|
&& ! contains_replace_regs (XEXP (dest, 0)))
|
| 2990 |
|
|
{
|
| 2991 |
|
|
rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
|
| 2992 |
|
|
if (validate_equiv_mem (init_insn, src, dest)
|
| 2993 |
|
|
&& ! memref_used_between_p (dest, init_insn, insn)
|
| 2994 |
|
|
/* Attaching a REG_EQUIV note will fail if INIT_INSN has
|
| 2995 |
|
|
multiple sets. */
|
| 2996 |
|
|
&& set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
|
| 2997 |
|
|
{
|
| 2998 |
|
|
/* This insn makes the equivalence, not the one initializing
|
| 2999 |
|
|
the register. */
|
| 3000 |
|
|
reg_equiv_init (regno)
|
| 3001 |
|
|
= gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
|
| 3002 |
|
|
df_notes_rescan (init_insn);
|
| 3003 |
|
|
}
|
| 3004 |
|
|
}
|
| 3005 |
|
|
}
|
| 3006 |
|
|
|
| 3007 |
|
|
cleared_regs = BITMAP_ALLOC (NULL);
|
| 3008 |
|
|
/* Now scan all regs killed in an insn to see if any of them are
|
| 3009 |
|
|
registers only used that once. If so, see if we can replace the
|
| 3010 |
|
|
reference with the equivalent form. If we can, delete the
|
| 3011 |
|
|
initializing reference and this register will go away. If we
|
| 3012 |
|
|
can't replace the reference, and the initializing reference is
|
| 3013 |
|
|
within the same loop (or in an inner loop), then move the register
|
| 3014 |
|
|
initialization just before the use, so that they are in the same
|
| 3015 |
|
|
basic block. */
|
| 3016 |
|
|
FOR_EACH_BB_REVERSE (bb)
|
| 3017 |
|
|
{
|
| 3018 |
|
|
loop_depth = bb->loop_depth;
|
| 3019 |
|
|
for (insn = BB_END (bb);
|
| 3020 |
|
|
insn != PREV_INSN (BB_HEAD (bb));
|
| 3021 |
|
|
insn = PREV_INSN (insn))
|
| 3022 |
|
|
{
|
| 3023 |
|
|
rtx link;
|
| 3024 |
|
|
|
| 3025 |
|
|
if (! INSN_P (insn))
|
| 3026 |
|
|
continue;
|
| 3027 |
|
|
|
| 3028 |
|
|
/* Don't substitute into a non-local goto, this confuses CFG. */
|
| 3029 |
|
|
if (JUMP_P (insn)
|
| 3030 |
|
|
&& find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
|
| 3031 |
|
|
continue;
|
| 3032 |
|
|
|
| 3033 |
|
|
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
| 3034 |
|
|
{
|
| 3035 |
|
|
if (REG_NOTE_KIND (link) == REG_DEAD
|
| 3036 |
|
|
/* Make sure this insn still refers to the register. */
|
| 3037 |
|
|
&& reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
|
| 3038 |
|
|
{
|
| 3039 |
|
|
int regno = REGNO (XEXP (link, 0));
|
| 3040 |
|
|
rtx equiv_insn;
|
| 3041 |
|
|
|
| 3042 |
|
|
if (! reg_equiv[regno].replace
|
| 3043 |
|
|
|| reg_equiv[regno].loop_depth < loop_depth
|
| 3044 |
|
|
/* There is no sense to move insns if we did
|
| 3045 |
|
|
register pressure-sensitive scheduling was
|
| 3046 |
|
|
done because it will not improve allocation
|
| 3047 |
|
|
but worsen insn schedule with a big
|
| 3048 |
|
|
probability. */
|
| 3049 |
|
|
|| (flag_sched_pressure && flag_schedule_insns))
|
| 3050 |
|
|
continue;
|
| 3051 |
|
|
|
| 3052 |
|
|
/* reg_equiv[REGNO].replace gets set only when
|
| 3053 |
|
|
REG_N_REFS[REGNO] is 2, i.e. the register is set
|
| 3054 |
|
|
once and used once. (If it were only set, but not used,
|
| 3055 |
|
|
flow would have deleted the setting insns.) Hence
|
| 3056 |
|
|
there can only be one insn in reg_equiv[REGNO].init_insns. */
|
| 3057 |
|
|
gcc_assert (reg_equiv[regno].init_insns
|
| 3058 |
|
|
&& !XEXP (reg_equiv[regno].init_insns, 1));
|
| 3059 |
|
|
equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
|
| 3060 |
|
|
|
| 3061 |
|
|
/* We may not move instructions that can throw, since
|
| 3062 |
|
|
that changes basic block boundaries and we are not
|
| 3063 |
|
|
prepared to adjust the CFG to match. */
|
| 3064 |
|
|
if (can_throw_internal (equiv_insn))
|
| 3065 |
|
|
continue;
|
| 3066 |
|
|
|
| 3067 |
|
|
if (asm_noperands (PATTERN (equiv_insn)) < 0
|
| 3068 |
|
|
&& validate_replace_rtx (regno_reg_rtx[regno],
|
| 3069 |
|
|
*(reg_equiv[regno].src_p), insn))
|
| 3070 |
|
|
{
|
| 3071 |
|
|
rtx equiv_link;
|
| 3072 |
|
|
rtx last_link;
|
| 3073 |
|
|
rtx note;
|
| 3074 |
|
|
|
| 3075 |
|
|
/* Find the last note. */
|
| 3076 |
|
|
for (last_link = link; XEXP (last_link, 1);
|
| 3077 |
|
|
last_link = XEXP (last_link, 1))
|
| 3078 |
|
|
;
|
| 3079 |
|
|
|
| 3080 |
|
|
/* Append the REG_DEAD notes from equiv_insn. */
|
| 3081 |
|
|
equiv_link = REG_NOTES (equiv_insn);
|
| 3082 |
|
|
while (equiv_link)
|
| 3083 |
|
|
{
|
| 3084 |
|
|
note = equiv_link;
|
| 3085 |
|
|
equiv_link = XEXP (equiv_link, 1);
|
| 3086 |
|
|
if (REG_NOTE_KIND (note) == REG_DEAD)
|
| 3087 |
|
|
{
|
| 3088 |
|
|
remove_note (equiv_insn, note);
|
| 3089 |
|
|
XEXP (last_link, 1) = note;
|
| 3090 |
|
|
XEXP (note, 1) = NULL_RTX;
|
| 3091 |
|
|
last_link = note;
|
| 3092 |
|
|
}
|
| 3093 |
|
|
}
|
| 3094 |
|
|
|
| 3095 |
|
|
remove_death (regno, insn);
|
| 3096 |
|
|
SET_REG_N_REFS (regno, 0);
|
| 3097 |
|
|
REG_FREQ (regno) = 0;
|
| 3098 |
|
|
delete_insn (equiv_insn);
|
| 3099 |
|
|
|
| 3100 |
|
|
reg_equiv[regno].init_insns
|
| 3101 |
|
|
= XEXP (reg_equiv[regno].init_insns, 1);
|
| 3102 |
|
|
|
| 3103 |
|
|
reg_equiv_init (regno) = NULL_RTX;
|
| 3104 |
|
|
bitmap_set_bit (cleared_regs, regno);
|
| 3105 |
|
|
}
|
| 3106 |
|
|
/* Move the initialization of the register to just before
|
| 3107 |
|
|
INSN. Update the flow information. */
|
| 3108 |
|
|
else if (prev_nondebug_insn (insn) != equiv_insn)
|
| 3109 |
|
|
{
|
| 3110 |
|
|
rtx new_insn;
|
| 3111 |
|
|
|
| 3112 |
|
|
new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
|
| 3113 |
|
|
REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
|
| 3114 |
|
|
REG_NOTES (equiv_insn) = 0;
|
| 3115 |
|
|
/* Rescan it to process the notes. */
|
| 3116 |
|
|
df_insn_rescan (new_insn);
|
| 3117 |
|
|
|
| 3118 |
|
|
/* Make sure this insn is recognized before
|
| 3119 |
|
|
reload begins, otherwise
|
| 3120 |
|
|
eliminate_regs_in_insn will die. */
|
| 3121 |
|
|
INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
|
| 3122 |
|
|
|
| 3123 |
|
|
delete_insn (equiv_insn);
|
| 3124 |
|
|
|
| 3125 |
|
|
XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
|
| 3126 |
|
|
|
| 3127 |
|
|
REG_BASIC_BLOCK (regno) = bb->index;
|
| 3128 |
|
|
REG_N_CALLS_CROSSED (regno) = 0;
|
| 3129 |
|
|
REG_FREQ_CALLS_CROSSED (regno) = 0;
|
| 3130 |
|
|
REG_N_THROWING_CALLS_CROSSED (regno) = 0;
|
| 3131 |
|
|
REG_LIVE_LENGTH (regno) = 2;
|
| 3132 |
|
|
|
| 3133 |
|
|
if (insn == BB_HEAD (bb))
|
| 3134 |
|
|
BB_HEAD (bb) = PREV_INSN (insn);
|
| 3135 |
|
|
|
| 3136 |
|
|
reg_equiv_init (regno)
|
| 3137 |
|
|
= gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
|
| 3138 |
|
|
bitmap_set_bit (cleared_regs, regno);
|
| 3139 |
|
|
}
|
| 3140 |
|
|
}
|
| 3141 |
|
|
}
|
| 3142 |
|
|
}
|
| 3143 |
|
|
}
|
| 3144 |
|
|
|
| 3145 |
|
|
if (!bitmap_empty_p (cleared_regs))
|
| 3146 |
|
|
{
|
| 3147 |
|
|
FOR_EACH_BB (bb)
|
| 3148 |
|
|
{
|
| 3149 |
|
|
bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
|
| 3150 |
|
|
bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
|
| 3151 |
|
|
bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
|
| 3152 |
|
|
bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
|
| 3153 |
|
|
}
|
| 3154 |
|
|
|
| 3155 |
|
|
/* Last pass - adjust debug insns referencing cleared regs. */
|
| 3156 |
|
|
if (MAY_HAVE_DEBUG_INSNS)
|
| 3157 |
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
| 3158 |
|
|
if (DEBUG_INSN_P (insn))
|
| 3159 |
|
|
{
|
| 3160 |
|
|
rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
|
| 3161 |
|
|
INSN_VAR_LOCATION_LOC (insn)
|
| 3162 |
|
|
= simplify_replace_fn_rtx (old_loc, NULL_RTX,
|
| 3163 |
|
|
adjust_cleared_regs,
|
| 3164 |
|
|
(void *) cleared_regs);
|
| 3165 |
|
|
if (old_loc != INSN_VAR_LOCATION_LOC (insn))
|
| 3166 |
|
|
df_insn_rescan (insn);
|
| 3167 |
|
|
}
|
| 3168 |
|
|
}
|
| 3169 |
|
|
|
| 3170 |
|
|
BITMAP_FREE (cleared_regs);
|
| 3171 |
|
|
|
| 3172 |
|
|
out:
|
| 3173 |
|
|
/* Clean up. */
|
| 3174 |
|
|
|
| 3175 |
|
|
end_alias_analysis ();
|
| 3176 |
|
|
free (reg_equiv);
|
| 3177 |
|
|
return recorded_label_ref;
|
| 3178 |
|
|
}
|
| 3179 |
|
|
|
| 3180 |
|
|
|
| 3181 |
|
|
|
| 3182 |
|
|
/* Print chain C to FILE. */
|
| 3183 |
|
|
static void
|
| 3184 |
|
|
print_insn_chain (FILE *file, struct insn_chain *c)
|
| 3185 |
|
|
{
|
| 3186 |
|
|
fprintf (file, "insn=%d, ", INSN_UID(c->insn));
|
| 3187 |
|
|
bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
|
| 3188 |
|
|
bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
|
| 3189 |
|
|
}
|
| 3190 |
|
|
|
| 3191 |
|
|
|
| 3192 |
|
|
/* Print all reload_insn_chains to FILE. */
|
| 3193 |
|
|
static void
|
| 3194 |
|
|
print_insn_chains (FILE *file)
|
| 3195 |
|
|
{
|
| 3196 |
|
|
struct insn_chain *c;
|
| 3197 |
|
|
for (c = reload_insn_chain; c ; c = c->next)
|
| 3198 |
|
|
print_insn_chain (file, c);
|
| 3199 |
|
|
}
|
| 3200 |
|
|
|
| 3201 |
|
|
/* Return true if pseudo REGNO should be added to set live_throughout
|
| 3202 |
|
|
or dead_or_set of the insn chains for reload consideration. */
|
| 3203 |
|
|
static bool
|
| 3204 |
|
|
pseudo_for_reload_consideration_p (int regno)
|
| 3205 |
|
|
{
|
| 3206 |
|
|
/* Consider spilled pseudos too for IRA because they still have a
|
| 3207 |
|
|
chance to get hard-registers in the reload when IRA is used. */
|
| 3208 |
|
|
return (reg_renumber[regno] >= 0 || ira_conflicts_p);
|
| 3209 |
|
|
}
|
| 3210 |
|
|
|
| 3211 |
|
|
/* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
|
| 3212 |
|
|
REG to the number of nregs, and INIT_VALUE to get the
|
| 3213 |
|
|
initialization. ALLOCNUM need not be the regno of REG. */
|
| 3214 |
|
|
static void
|
| 3215 |
|
|
init_live_subregs (bool init_value, sbitmap *live_subregs,
|
| 3216 |
|
|
int *live_subregs_used, int allocnum, rtx reg)
|
| 3217 |
|
|
{
|
| 3218 |
|
|
unsigned int regno = REGNO (SUBREG_REG (reg));
|
| 3219 |
|
|
int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
|
| 3220 |
|
|
|
| 3221 |
|
|
gcc_assert (size > 0);
|
| 3222 |
|
|
|
| 3223 |
|
|
/* Been there, done that. */
|
| 3224 |
|
|
if (live_subregs_used[allocnum])
|
| 3225 |
|
|
return;
|
| 3226 |
|
|
|
| 3227 |
|
|
/* Create a new one with zeros. */
|
| 3228 |
|
|
if (live_subregs[allocnum] == NULL)
|
| 3229 |
|
|
live_subregs[allocnum] = sbitmap_alloc (size);
|
| 3230 |
|
|
|
| 3231 |
|
|
/* If the entire reg was live before blasting into subregs, we need
|
| 3232 |
|
|
to init all of the subregs to ones else init to 0. */
|
| 3233 |
|
|
if (init_value)
|
| 3234 |
|
|
sbitmap_ones (live_subregs[allocnum]);
|
| 3235 |
|
|
else
|
| 3236 |
|
|
sbitmap_zero (live_subregs[allocnum]);
|
| 3237 |
|
|
|
| 3238 |
|
|
/* Set the number of bits that we really want. */
|
| 3239 |
|
|
live_subregs_used[allocnum] = size;
|
| 3240 |
|
|
}
|
| 3241 |
|
|
|
| 3242 |
|
|
/* Walk the insns of the current function and build reload_insn_chain,
|
| 3243 |
|
|
and record register life information. */
|
| 3244 |
|
|
static void
|
| 3245 |
|
|
build_insn_chain (void)
|
| 3246 |
|
|
{
|
| 3247 |
|
|
unsigned int i;
|
| 3248 |
|
|
struct insn_chain **p = &reload_insn_chain;
|
| 3249 |
|
|
basic_block bb;
|
| 3250 |
|
|
struct insn_chain *c = NULL;
|
| 3251 |
|
|
struct insn_chain *next = NULL;
|
| 3252 |
|
|
bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
|
| 3253 |
|
|
bitmap elim_regset = BITMAP_ALLOC (NULL);
|
| 3254 |
|
|
/* live_subregs is a vector used to keep accurate information about
|
| 3255 |
|
|
which hardregs are live in multiword pseudos. live_subregs and
|
| 3256 |
|
|
live_subregs_used are indexed by pseudo number. The live_subreg
|
| 3257 |
|
|
entry for a particular pseudo is only used if the corresponding
|
| 3258 |
|
|
element is non zero in live_subregs_used. The value in
|
| 3259 |
|
|
live_subregs_used is number of bytes that the pseudo can
|
| 3260 |
|
|
occupy. */
|
| 3261 |
|
|
sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
|
| 3262 |
|
|
int *live_subregs_used = XNEWVEC (int, max_regno);
|
| 3263 |
|
|
|
| 3264 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
| 3265 |
|
|
if (TEST_HARD_REG_BIT (eliminable_regset, i))
|
| 3266 |
|
|
bitmap_set_bit (elim_regset, i);
|
| 3267 |
|
|
FOR_EACH_BB_REVERSE (bb)
|
| 3268 |
|
|
{
|
| 3269 |
|
|
bitmap_iterator bi;
|
| 3270 |
|
|
rtx insn;
|
| 3271 |
|
|
|
| 3272 |
|
|
CLEAR_REG_SET (live_relevant_regs);
|
| 3273 |
|
|
memset (live_subregs_used, 0, max_regno * sizeof (int));
|
| 3274 |
|
|
|
| 3275 |
|
|
EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb), 0, i, bi)
|
| 3276 |
|
|
{
|
| 3277 |
|
|
if (i >= FIRST_PSEUDO_REGISTER)
|
| 3278 |
|
|
break;
|
| 3279 |
|
|
bitmap_set_bit (live_relevant_regs, i);
|
| 3280 |
|
|
}
|
| 3281 |
|
|
|
| 3282 |
|
|
EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb),
|
| 3283 |
|
|
FIRST_PSEUDO_REGISTER, i, bi)
|
| 3284 |
|
|
{
|
| 3285 |
|
|
if (pseudo_for_reload_consideration_p (i))
|
| 3286 |
|
|
bitmap_set_bit (live_relevant_regs, i);
|
| 3287 |
|
|
}
|
| 3288 |
|
|
|
| 3289 |
|
|
FOR_BB_INSNS_REVERSE (bb, insn)
|
| 3290 |
|
|
{
|
| 3291 |
|
|
if (!NOTE_P (insn) && !BARRIER_P (insn))
|
| 3292 |
|
|
{
|
| 3293 |
|
|
unsigned int uid = INSN_UID (insn);
|
| 3294 |
|
|
df_ref *def_rec;
|
| 3295 |
|
|
df_ref *use_rec;
|
| 3296 |
|
|
|
| 3297 |
|
|
c = new_insn_chain ();
|
| 3298 |
|
|
c->next = next;
|
| 3299 |
|
|
next = c;
|
| 3300 |
|
|
*p = c;
|
| 3301 |
|
|
p = &c->prev;
|
| 3302 |
|
|
|
| 3303 |
|
|
c->insn = insn;
|
| 3304 |
|
|
c->block = bb->index;
|
| 3305 |
|
|
|
| 3306 |
|
|
if (INSN_P (insn))
|
| 3307 |
|
|
for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
|
| 3308 |
|
|
{
|
| 3309 |
|
|
df_ref def = *def_rec;
|
| 3310 |
|
|
unsigned int regno = DF_REF_REGNO (def);
|
| 3311 |
|
|
|
| 3312 |
|
|
/* Ignore may clobbers because these are generated
|
| 3313 |
|
|
from calls. However, every other kind of def is
|
| 3314 |
|
|
added to dead_or_set. */
|
| 3315 |
|
|
if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
|
| 3316 |
|
|
{
|
| 3317 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
| 3318 |
|
|
{
|
| 3319 |
|
|
if (!fixed_regs[regno])
|
| 3320 |
|
|
bitmap_set_bit (&c->dead_or_set, regno);
|
| 3321 |
|
|
}
|
| 3322 |
|
|
else if (pseudo_for_reload_consideration_p (regno))
|
| 3323 |
|
|
bitmap_set_bit (&c->dead_or_set, regno);
|
| 3324 |
|
|
}
|
| 3325 |
|
|
|
| 3326 |
|
|
if ((regno < FIRST_PSEUDO_REGISTER
|
| 3327 |
|
|
|| reg_renumber[regno] >= 0
|
| 3328 |
|
|
|| ira_conflicts_p)
|
| 3329 |
|
|
&& (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
|
| 3330 |
|
|
{
|
| 3331 |
|
|
rtx reg = DF_REF_REG (def);
|
| 3332 |
|
|
|
| 3333 |
|
|
/* We can model subregs, but not if they are
|
| 3334 |
|
|
wrapped in ZERO_EXTRACTS. */
|
| 3335 |
|
|
if (GET_CODE (reg) == SUBREG
|
| 3336 |
|
|
&& !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
|
| 3337 |
|
|
{
|
| 3338 |
|
|
unsigned int start = SUBREG_BYTE (reg);
|
| 3339 |
|
|
unsigned int last = start
|
| 3340 |
|
|
+ GET_MODE_SIZE (GET_MODE (reg));
|
| 3341 |
|
|
|
| 3342 |
|
|
init_live_subregs
|
| 3343 |
|
|
(bitmap_bit_p (live_relevant_regs, regno),
|
| 3344 |
|
|
live_subregs, live_subregs_used, regno, reg);
|
| 3345 |
|
|
|
| 3346 |
|
|
if (!DF_REF_FLAGS_IS_SET
|
| 3347 |
|
|
(def, DF_REF_STRICT_LOW_PART))
|
| 3348 |
|
|
{
|
| 3349 |
|
|
/* Expand the range to cover entire words.
|
| 3350 |
|
|
Bytes added here are "don't care". */
|
| 3351 |
|
|
start
|
| 3352 |
|
|
= start / UNITS_PER_WORD * UNITS_PER_WORD;
|
| 3353 |
|
|
last = ((last + UNITS_PER_WORD - 1)
|
| 3354 |
|
|
/ UNITS_PER_WORD * UNITS_PER_WORD);
|
| 3355 |
|
|
}
|
| 3356 |
|
|
|
| 3357 |
|
|
/* Ignore the paradoxical bits. */
|
| 3358 |
|
|
if ((int)last > live_subregs_used[regno])
|
| 3359 |
|
|
last = live_subregs_used[regno];
|
| 3360 |
|
|
|
| 3361 |
|
|
while (start < last)
|
| 3362 |
|
|
{
|
| 3363 |
|
|
RESET_BIT (live_subregs[regno], start);
|
| 3364 |
|
|
start++;
|
| 3365 |
|
|
}
|
| 3366 |
|
|
|
| 3367 |
|
|
if (sbitmap_empty_p (live_subregs[regno]))
|
| 3368 |
|
|
{
|
| 3369 |
|
|
live_subregs_used[regno] = 0;
|
| 3370 |
|
|
bitmap_clear_bit (live_relevant_regs, regno);
|
| 3371 |
|
|
}
|
| 3372 |
|
|
else
|
| 3373 |
|
|
/* Set live_relevant_regs here because
|
| 3374 |
|
|
that bit has to be true to get us to
|
| 3375 |
|
|
look at the live_subregs fields. */
|
| 3376 |
|
|
bitmap_set_bit (live_relevant_regs, regno);
|
| 3377 |
|
|
}
|
| 3378 |
|
|
else
|
| 3379 |
|
|
{
|
| 3380 |
|
|
/* DF_REF_PARTIAL is generated for
|
| 3381 |
|
|
subregs, STRICT_LOW_PART, and
|
| 3382 |
|
|
ZERO_EXTRACT. We handle the subreg
|
| 3383 |
|
|
case above so here we have to keep from
|
| 3384 |
|
|
modeling the def as a killing def. */
|
| 3385 |
|
|
if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
|
| 3386 |
|
|
{
|
| 3387 |
|
|
bitmap_clear_bit (live_relevant_regs, regno);
|
| 3388 |
|
|
live_subregs_used[regno] = 0;
|
| 3389 |
|
|
}
|
| 3390 |
|
|
}
|
| 3391 |
|
|
}
|
| 3392 |
|
|
}
|
| 3393 |
|
|
|
| 3394 |
|
|
bitmap_and_compl_into (live_relevant_regs, elim_regset);
|
| 3395 |
|
|
bitmap_copy (&c->live_throughout, live_relevant_regs);
|
| 3396 |
|
|
|
| 3397 |
|
|
if (INSN_P (insn))
|
| 3398 |
|
|
for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
|
| 3399 |
|
|
{
|
| 3400 |
|
|
df_ref use = *use_rec;
|
| 3401 |
|
|
unsigned int regno = DF_REF_REGNO (use);
|
| 3402 |
|
|
rtx reg = DF_REF_REG (use);
|
| 3403 |
|
|
|
| 3404 |
|
|
/* DF_REF_READ_WRITE on a use means that this use
|
| 3405 |
|
|
is fabricated from a def that is a partial set
|
| 3406 |
|
|
to a multiword reg. Here, we only model the
|
| 3407 |
|
|
subreg case that is not wrapped in ZERO_EXTRACT
|
| 3408 |
|
|
precisely so we do not need to look at the
|
| 3409 |
|
|
fabricated use. */
|
| 3410 |
|
|
if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
|
| 3411 |
|
|
&& !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
|
| 3412 |
|
|
&& DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
|
| 3413 |
|
|
continue;
|
| 3414 |
|
|
|
| 3415 |
|
|
/* Add the last use of each var to dead_or_set. */
|
| 3416 |
|
|
if (!bitmap_bit_p (live_relevant_regs, regno))
|
| 3417 |
|
|
{
|
| 3418 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
| 3419 |
|
|
{
|
| 3420 |
|
|
if (!fixed_regs[regno])
|
| 3421 |
|
|
bitmap_set_bit (&c->dead_or_set, regno);
|
| 3422 |
|
|
}
|
| 3423 |
|
|
else if (pseudo_for_reload_consideration_p (regno))
|
| 3424 |
|
|
bitmap_set_bit (&c->dead_or_set, regno);
|
| 3425 |
|
|
}
|
| 3426 |
|
|
|
| 3427 |
|
|
if (regno < FIRST_PSEUDO_REGISTER
|
| 3428 |
|
|
|| pseudo_for_reload_consideration_p (regno))
|
| 3429 |
|
|
{
|
| 3430 |
|
|
if (GET_CODE (reg) == SUBREG
|
| 3431 |
|
|
&& !DF_REF_FLAGS_IS_SET (use,
|
| 3432 |
|
|
DF_REF_SIGN_EXTRACT
|
| 3433 |
|
|
| DF_REF_ZERO_EXTRACT))
|
| 3434 |
|
|
{
|
| 3435 |
|
|
unsigned int start = SUBREG_BYTE (reg);
|
| 3436 |
|
|
unsigned int last = start
|
| 3437 |
|
|
+ GET_MODE_SIZE (GET_MODE (reg));
|
| 3438 |
|
|
|
| 3439 |
|
|
init_live_subregs
|
| 3440 |
|
|
(bitmap_bit_p (live_relevant_regs, regno),
|
| 3441 |
|
|
live_subregs, live_subregs_used, regno, reg);
|
| 3442 |
|
|
|
| 3443 |
|
|
/* Ignore the paradoxical bits. */
|
| 3444 |
|
|
if ((int)last > live_subregs_used[regno])
|
| 3445 |
|
|
last = live_subregs_used[regno];
|
| 3446 |
|
|
|
| 3447 |
|
|
while (start < last)
|
| 3448 |
|
|
{
|
| 3449 |
|
|
SET_BIT (live_subregs[regno], start);
|
| 3450 |
|
|
start++;
|
| 3451 |
|
|
}
|
| 3452 |
|
|
}
|
| 3453 |
|
|
else
|
| 3454 |
|
|
/* Resetting the live_subregs_used is
|
| 3455 |
|
|
effectively saying do not use the subregs
|
| 3456 |
|
|
because we are reading the whole
|
| 3457 |
|
|
pseudo. */
|
| 3458 |
|
|
live_subregs_used[regno] = 0;
|
| 3459 |
|
|
bitmap_set_bit (live_relevant_regs, regno);
|
| 3460 |
|
|
}
|
| 3461 |
|
|
}
|
| 3462 |
|
|
}
|
| 3463 |
|
|
}
|
| 3464 |
|
|
|
| 3465 |
|
|
/* FIXME!! The following code is a disaster. Reload needs to see the
|
| 3466 |
|
|
labels and jump tables that are just hanging out in between
|
| 3467 |
|
|
the basic blocks. See pr33676. */
|
| 3468 |
|
|
insn = BB_HEAD (bb);
|
| 3469 |
|
|
|
| 3470 |
|
|
/* Skip over the barriers and cruft. */
|
| 3471 |
|
|
while (insn && (BARRIER_P (insn) || NOTE_P (insn)
|
| 3472 |
|
|
|| BLOCK_FOR_INSN (insn) == bb))
|
| 3473 |
|
|
insn = PREV_INSN (insn);
|
| 3474 |
|
|
|
| 3475 |
|
|
/* While we add anything except barriers and notes, the focus is
|
| 3476 |
|
|
to get the labels and jump tables into the
|
| 3477 |
|
|
reload_insn_chain. */
|
| 3478 |
|
|
while (insn)
|
| 3479 |
|
|
{
|
| 3480 |
|
|
if (!NOTE_P (insn) && !BARRIER_P (insn))
|
| 3481 |
|
|
{
|
| 3482 |
|
|
if (BLOCK_FOR_INSN (insn))
|
| 3483 |
|
|
break;
|
| 3484 |
|
|
|
| 3485 |
|
|
c = new_insn_chain ();
|
| 3486 |
|
|
c->next = next;
|
| 3487 |
|
|
next = c;
|
| 3488 |
|
|
*p = c;
|
| 3489 |
|
|
p = &c->prev;
|
| 3490 |
|
|
|
| 3491 |
|
|
/* The block makes no sense here, but it is what the old
|
| 3492 |
|
|
code did. */
|
| 3493 |
|
|
c->block = bb->index;
|
| 3494 |
|
|
c->insn = insn;
|
| 3495 |
|
|
bitmap_copy (&c->live_throughout, live_relevant_regs);
|
| 3496 |
|
|
}
|
| 3497 |
|
|
insn = PREV_INSN (insn);
|
| 3498 |
|
|
}
|
| 3499 |
|
|
}
|
| 3500 |
|
|
|
| 3501 |
|
|
for (i = 0; i < (unsigned int) max_regno; i++)
|
| 3502 |
|
|
free (live_subregs[i]);
|
| 3503 |
|
|
|
| 3504 |
|
|
reload_insn_chain = c;
|
| 3505 |
|
|
*p = NULL;
|
| 3506 |
|
|
|
| 3507 |
|
|
free (live_subregs);
|
| 3508 |
|
|
free (live_subregs_used);
|
| 3509 |
|
|
BITMAP_FREE (live_relevant_regs);
|
| 3510 |
|
|
BITMAP_FREE (elim_regset);
|
| 3511 |
|
|
|
| 3512 |
|
|
if (dump_file)
|
| 3513 |
|
|
print_insn_chains (dump_file);
|
| 3514 |
|
|
}
|
| 3515 |
|
|
|
| 3516 |
|
|
|
| 3517 |
|
|
|
| 3518 |
|
|
/* All natural loops. */
|
| 3519 |
|
|
struct loops ira_loops;
|
| 3520 |
|
|
|
| 3521 |
|
|
/* True if we have allocno conflicts. It is false for non-optimized
|
| 3522 |
|
|
mode or when the conflict table is too big. */
|
| 3523 |
|
|
bool ira_conflicts_p;
|
| 3524 |
|
|
|
| 3525 |
|
|
/* Saved between IRA and reload. */
|
| 3526 |
|
|
static int saved_flag_ira_share_spill_slots;
|
| 3527 |
|
|
|
| 3528 |
|
|
/* This is the main entry of IRA. */
|
| 3529 |
|
|
static void
|
| 3530 |
|
|
ira (FILE *f)
|
| 3531 |
|
|
{
|
| 3532 |
|
|
int allocated_reg_info_size;
|
| 3533 |
|
|
bool loops_p;
|
| 3534 |
|
|
int max_regno_before_ira, ira_max_point_before_emit;
|
| 3535 |
|
|
int rebuild_p;
|
| 3536 |
|
|
|
| 3537 |
|
|
if (flag_caller_saves)
|
| 3538 |
|
|
init_caller_save ();
|
| 3539 |
|
|
|
| 3540 |
|
|
if (flag_ira_verbose < 10)
|
| 3541 |
|
|
{
|
| 3542 |
|
|
internal_flag_ira_verbose = flag_ira_verbose;
|
| 3543 |
|
|
ira_dump_file = f;
|
| 3544 |
|
|
}
|
| 3545 |
|
|
else
|
| 3546 |
|
|
{
|
| 3547 |
|
|
internal_flag_ira_verbose = flag_ira_verbose - 10;
|
| 3548 |
|
|
ira_dump_file = stderr;
|
| 3549 |
|
|
}
|
| 3550 |
|
|
|
| 3551 |
|
|
ira_conflicts_p = optimize > 0;
|
| 3552 |
|
|
setup_prohibited_mode_move_regs ();
|
| 3553 |
|
|
|
| 3554 |
|
|
df_note_add_problem ();
|
| 3555 |
|
|
|
| 3556 |
|
|
if (optimize == 1)
|
| 3557 |
|
|
{
|
| 3558 |
|
|
df_live_add_problem ();
|
| 3559 |
|
|
df_live_set_all_dirty ();
|
| 3560 |
|
|
}
|
| 3561 |
|
|
#ifdef ENABLE_CHECKING
|
| 3562 |
|
|
df->changeable_flags |= DF_VERIFY_SCHEDULED;
|
| 3563 |
|
|
#endif
|
| 3564 |
|
|
df_analyze ();
|
| 3565 |
|
|
df_clear_flags (DF_NO_INSN_RESCAN);
|
| 3566 |
|
|
regstat_init_n_sets_and_refs ();
|
| 3567 |
|
|
regstat_compute_ri ();
|
| 3568 |
|
|
|
| 3569 |
|
|
/* If we are not optimizing, then this is the only place before
|
| 3570 |
|
|
register allocation where dataflow is done. And that is needed
|
| 3571 |
|
|
to generate these warnings. */
|
| 3572 |
|
|
if (warn_clobbered)
|
| 3573 |
|
|
generate_setjmp_warnings ();
|
| 3574 |
|
|
|
| 3575 |
|
|
/* Determine if the current function is a leaf before running IRA
|
| 3576 |
|
|
since this can impact optimizations done by the prologue and
|
| 3577 |
|
|
epilogue thus changing register elimination offsets. */
|
| 3578 |
|
|
current_function_is_leaf = leaf_function_p ();
|
| 3579 |
|
|
|
| 3580 |
|
|
if (resize_reg_info () && flag_ira_loop_pressure)
|
| 3581 |
|
|
ira_set_pseudo_classes (ira_dump_file);
|
| 3582 |
|
|
|
| 3583 |
|
|
rebuild_p = update_equiv_regs ();
|
| 3584 |
|
|
|
| 3585 |
|
|
#ifndef IRA_NO_OBSTACK
|
| 3586 |
|
|
gcc_obstack_init (&ira_obstack);
|
| 3587 |
|
|
#endif
|
| 3588 |
|
|
bitmap_obstack_initialize (&ira_bitmap_obstack);
|
| 3589 |
|
|
if (optimize)
|
| 3590 |
|
|
{
|
| 3591 |
|
|
max_regno = max_reg_num ();
|
| 3592 |
|
|
ira_reg_equiv_len = max_regno;
|
| 3593 |
|
|
ira_reg_equiv_invariant_p
|
| 3594 |
|
|
= (bool *) ira_allocate (max_regno * sizeof (bool));
|
| 3595 |
|
|
memset (ira_reg_equiv_invariant_p, 0, max_regno * sizeof (bool));
|
| 3596 |
|
|
ira_reg_equiv_const = (rtx *) ira_allocate (max_regno * sizeof (rtx));
|
| 3597 |
|
|
memset (ira_reg_equiv_const, 0, max_regno * sizeof (rtx));
|
| 3598 |
|
|
find_reg_equiv_invariant_const ();
|
| 3599 |
|
|
if (rebuild_p)
|
| 3600 |
|
|
{
|
| 3601 |
|
|
timevar_push (TV_JUMP);
|
| 3602 |
|
|
rebuild_jump_labels (get_insns ());
|
| 3603 |
|
|
if (purge_all_dead_edges ())
|
| 3604 |
|
|
delete_unreachable_blocks ();
|
| 3605 |
|
|
timevar_pop (TV_JUMP);
|
| 3606 |
|
|
}
|
| 3607 |
|
|
}
|
| 3608 |
|
|
|
| 3609 |
|
|
max_regno_before_ira = allocated_reg_info_size = max_reg_num ();
|
| 3610 |
|
|
ira_setup_eliminable_regset ();
|
| 3611 |
|
|
|
| 3612 |
|
|
ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
|
| 3613 |
|
|
ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
|
| 3614 |
|
|
ira_move_loops_num = ira_additional_jumps_num = 0;
|
| 3615 |
|
|
|
| 3616 |
|
|
ira_assert (current_loops == NULL);
|
| 3617 |
|
|
if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
|
| 3618 |
|
|
{
|
| 3619 |
|
|
flow_loops_find (&ira_loops);
|
| 3620 |
|
|
record_loop_exits ();
|
| 3621 |
|
|
current_loops = &ira_loops;
|
| 3622 |
|
|
}
|
| 3623 |
|
|
|
| 3624 |
|
|
if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
|
| 3625 |
|
|
fprintf (ira_dump_file, "Building IRA IR\n");
|
| 3626 |
|
|
loops_p = ira_build ();
|
| 3627 |
|
|
|
| 3628 |
|
|
ira_assert (ira_conflicts_p || !loops_p);
|
| 3629 |
|
|
|
| 3630 |
|
|
saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
|
| 3631 |
|
|
if (too_high_register_pressure_p () || cfun->calls_setjmp)
|
| 3632 |
|
|
/* It is just wasting compiler's time to pack spilled pseudos into
|
| 3633 |
|
|
stack slots in this case -- prohibit it. We also do this if
|
| 3634 |
|
|
there is setjmp call because a variable not modified between
|
| 3635 |
|
|
setjmp and longjmp the compiler is required to preserve its
|
| 3636 |
|
|
value and sharing slots does not guarantee it. */
|
| 3637 |
|
|
flag_ira_share_spill_slots = FALSE;
|
| 3638 |
|
|
|
| 3639 |
|
|
ira_color ();
|
| 3640 |
|
|
|
| 3641 |
|
|
ira_max_point_before_emit = ira_max_point;
|
| 3642 |
|
|
|
| 3643 |
|
|
ira_initiate_emit_data ();
|
| 3644 |
|
|
|
| 3645 |
|
|
ira_emit (loops_p);
|
| 3646 |
|
|
|
| 3647 |
|
|
if (ira_conflicts_p)
|
| 3648 |
|
|
{
|
| 3649 |
|
|
max_regno = max_reg_num ();
|
| 3650 |
|
|
|
| 3651 |
|
|
if (! loops_p)
|
| 3652 |
|
|
ira_initiate_assign ();
|
| 3653 |
|
|
else
|
| 3654 |
|
|
{
|
| 3655 |
|
|
expand_reg_info (allocated_reg_info_size);
|
| 3656 |
|
|
setup_preferred_alternate_classes_for_new_pseudos
|
| 3657 |
|
|
(allocated_reg_info_size);
|
| 3658 |
|
|
allocated_reg_info_size = max_regno;
|
| 3659 |
|
|
|
| 3660 |
|
|
if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
|
| 3661 |
|
|
fprintf (ira_dump_file, "Flattening IR\n");
|
| 3662 |
|
|
ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
|
| 3663 |
|
|
/* New insns were generated: add notes and recalculate live
|
| 3664 |
|
|
info. */
|
| 3665 |
|
|
df_analyze ();
|
| 3666 |
|
|
|
| 3667 |
|
|
flow_loops_find (&ira_loops);
|
| 3668 |
|
|
record_loop_exits ();
|
| 3669 |
|
|
current_loops = &ira_loops;
|
| 3670 |
|
|
|
| 3671 |
|
|
setup_allocno_assignment_flags ();
|
| 3672 |
|
|
ira_initiate_assign ();
|
| 3673 |
|
|
ira_reassign_conflict_allocnos (max_regno);
|
| 3674 |
|
|
}
|
| 3675 |
|
|
}
|
| 3676 |
|
|
|
| 3677 |
|
|
ira_finish_emit_data ();
|
| 3678 |
|
|
|
| 3679 |
|
|
setup_reg_renumber ();
|
| 3680 |
|
|
|
| 3681 |
|
|
calculate_allocation_cost ();
|
| 3682 |
|
|
|
| 3683 |
|
|
#ifdef ENABLE_IRA_CHECKING
|
| 3684 |
|
|
if (ira_conflicts_p)
|
| 3685 |
|
|
check_allocation ();
|
| 3686 |
|
|
#endif
|
| 3687 |
|
|
|
| 3688 |
|
|
if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
|
| 3689 |
|
|
df_analyze ();
|
| 3690 |
|
|
|
| 3691 |
|
|
if (max_regno != max_regno_before_ira)
|
| 3692 |
|
|
{
|
| 3693 |
|
|
regstat_free_n_sets_and_refs ();
|
| 3694 |
|
|
regstat_free_ri ();
|
| 3695 |
|
|
regstat_init_n_sets_and_refs ();
|
| 3696 |
|
|
regstat_compute_ri ();
|
| 3697 |
|
|
}
|
| 3698 |
|
|
|
| 3699 |
|
|
overall_cost_before = ira_overall_cost;
|
| 3700 |
|
|
if (! ira_conflicts_p)
|
| 3701 |
|
|
grow_reg_equivs ();
|
| 3702 |
|
|
else
|
| 3703 |
|
|
{
|
| 3704 |
|
|
fix_reg_equiv_init ();
|
| 3705 |
|
|
|
| 3706 |
|
|
#ifdef ENABLE_IRA_CHECKING
|
| 3707 |
|
|
print_redundant_copies ();
|
| 3708 |
|
|
#endif
|
| 3709 |
|
|
|
| 3710 |
|
|
ira_spilled_reg_stack_slots_num = 0;
|
| 3711 |
|
|
ira_spilled_reg_stack_slots
|
| 3712 |
|
|
= ((struct ira_spilled_reg_stack_slot *)
|
| 3713 |
|
|
ira_allocate (max_regno
|
| 3714 |
|
|
* sizeof (struct ira_spilled_reg_stack_slot)));
|
| 3715 |
|
|
memset (ira_spilled_reg_stack_slots, 0,
|
| 3716 |
|
|
max_regno * sizeof (struct ira_spilled_reg_stack_slot));
|
| 3717 |
|
|
}
|
| 3718 |
|
|
allocate_initial_values (reg_equivs);
|
| 3719 |
|
|
}
|
| 3720 |
|
|
|
| 3721 |
|
|
static void
|
| 3722 |
|
|
do_reload (void)
|
| 3723 |
|
|
{
|
| 3724 |
|
|
basic_block bb;
|
| 3725 |
|
|
bool need_dce;
|
| 3726 |
|
|
|
| 3727 |
|
|
if (flag_ira_verbose < 10)
|
| 3728 |
|
|
ira_dump_file = dump_file;
|
| 3729 |
|
|
|
| 3730 |
|
|
df_set_flags (DF_NO_INSN_RESCAN);
|
| 3731 |
|
|
build_insn_chain ();
|
| 3732 |
|
|
|
| 3733 |
|
|
need_dce = reload (get_insns (), ira_conflicts_p);
|
| 3734 |
|
|
|
| 3735 |
|
|
timevar_push (TV_IRA);
|
| 3736 |
|
|
|
| 3737 |
|
|
if (ira_conflicts_p)
|
| 3738 |
|
|
{
|
| 3739 |
|
|
ira_free (ira_spilled_reg_stack_slots);
|
| 3740 |
|
|
|
| 3741 |
|
|
ira_finish_assign ();
|
| 3742 |
|
|
}
|
| 3743 |
|
|
if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
|
| 3744 |
|
|
&& overall_cost_before != ira_overall_cost)
|
| 3745 |
|
|
fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
|
| 3746 |
|
|
ira_destroy ();
|
| 3747 |
|
|
|
| 3748 |
|
|
flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
|
| 3749 |
|
|
|
| 3750 |
|
|
if (current_loops != NULL)
|
| 3751 |
|
|
{
|
| 3752 |
|
|
flow_loops_free (&ira_loops);
|
| 3753 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
| 3754 |
|
|
}
|
| 3755 |
|
|
FOR_ALL_BB (bb)
|
| 3756 |
|
|
bb->loop_father = NULL;
|
| 3757 |
|
|
current_loops = NULL;
|
| 3758 |
|
|
|
| 3759 |
|
|
regstat_free_ri ();
|
| 3760 |
|
|
regstat_free_n_sets_and_refs ();
|
| 3761 |
|
|
|
| 3762 |
|
|
if (optimize)
|
| 3763 |
|
|
{
|
| 3764 |
|
|
cleanup_cfg (CLEANUP_EXPENSIVE);
|
| 3765 |
|
|
|
| 3766 |
|
|
ira_free (ira_reg_equiv_invariant_p);
|
| 3767 |
|
|
ira_free (ira_reg_equiv_const);
|
| 3768 |
|
|
}
|
| 3769 |
|
|
|
| 3770 |
|
|
bitmap_obstack_release (&ira_bitmap_obstack);
|
| 3771 |
|
|
#ifndef IRA_NO_OBSTACK
|
| 3772 |
|
|
obstack_free (&ira_obstack, NULL);
|
| 3773 |
|
|
#endif
|
| 3774 |
|
|
|
| 3775 |
|
|
/* The code after the reload has changed so much that at this point
|
| 3776 |
|
|
we might as well just rescan everything. Note that
|
| 3777 |
|
|
df_rescan_all_insns is not going to help here because it does not
|
| 3778 |
|
|
touch the artificial uses and defs. */
|
| 3779 |
|
|
df_finish_pass (true);
|
| 3780 |
|
|
if (optimize > 1)
|
| 3781 |
|
|
df_live_add_problem ();
|
| 3782 |
|
|
df_scan_alloc (NULL);
|
| 3783 |
|
|
df_scan_blocks ();
|
| 3784 |
|
|
|
| 3785 |
|
|
if (optimize)
|
| 3786 |
|
|
df_analyze ();
|
| 3787 |
|
|
|
| 3788 |
|
|
if (need_dce && optimize)
|
| 3789 |
|
|
run_fast_dce ();
|
| 3790 |
|
|
|
| 3791 |
|
|
timevar_pop (TV_IRA);
|
| 3792 |
|
|
}
|
| 3793 |
|
|
|
| 3794 |
|
|
/* Run the integrated register allocator. */
|
| 3795 |
|
|
static unsigned int
|
| 3796 |
|
|
rest_of_handle_ira (void)
|
| 3797 |
|
|
{
|
| 3798 |
|
|
ira (dump_file);
|
| 3799 |
|
|
return 0;
|
| 3800 |
|
|
}
|
| 3801 |
|
|
|
| 3802 |
|
|
struct rtl_opt_pass pass_ira =
|
| 3803 |
|
|
{
|
| 3804 |
|
|
{
|
| 3805 |
|
|
RTL_PASS,
|
| 3806 |
|
|
"ira", /* name */
|
| 3807 |
|
|
NULL, /* gate */
|
| 3808 |
|
|
rest_of_handle_ira, /* execute */
|
| 3809 |
|
|
NULL, /* sub */
|
| 3810 |
|
|
NULL, /* next */
|
| 3811 |
|
|
0, /* static_pass_number */
|
| 3812 |
|
|
TV_IRA, /* tv_id */
|
| 3813 |
|
|
0, /* properties_required */
|
| 3814 |
|
|
0, /* properties_provided */
|
| 3815 |
|
|
0, /* properties_destroyed */
|
| 3816 |
|
|
0, /* todo_flags_start */
|
| 3817 |
|
|
TODO_dump_func /* todo_flags_finish */
|
| 3818 |
|
|
}
|
| 3819 |
|
|
};
|
| 3820 |
|
|
|
| 3821 |
|
|
static unsigned int
|
| 3822 |
|
|
rest_of_handle_reload (void)
|
| 3823 |
|
|
{
|
| 3824 |
|
|
do_reload ();
|
| 3825 |
|
|
return 0;
|
| 3826 |
|
|
}
|
| 3827 |
|
|
|
| 3828 |
|
|
struct rtl_opt_pass pass_reload =
|
| 3829 |
|
|
{
|
| 3830 |
|
|
{
|
| 3831 |
|
|
RTL_PASS,
|
| 3832 |
|
|
"reload", /* name */
|
| 3833 |
|
|
NULL, /* gate */
|
| 3834 |
|
|
rest_of_handle_reload, /* execute */
|
| 3835 |
|
|
NULL, /* sub */
|
| 3836 |
|
|
NULL, /* next */
|
| 3837 |
|
|
0, /* static_pass_number */
|
| 3838 |
|
|
TV_RELOAD, /* tv_id */
|
| 3839 |
|
|
0, /* properties_required */
|
| 3840 |
|
|
0, /* properties_provided */
|
| 3841 |
|
|
0, /* properties_destroyed */
|
| 3842 |
|
|
0, /* todo_flags_start */
|
| 3843 |
|
|
TODO_dump_func | TODO_ggc_collect /* todo_flags_finish */
|
| 3844 |
|
|
}
|
| 3845 |
|
|
};
|