| 1 |
684 |
jeremybenn |
/* Generic partial redundancy elimination with lazy code motion support.
|
| 2 |
|
|
Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008,
|
| 3 |
|
|
2010, 2011 Free Software Foundation, Inc.
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GCC.
|
| 6 |
|
|
|
| 7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 8 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 9 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 10 |
|
|
version.
|
| 11 |
|
|
|
| 12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 15 |
|
|
for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
/* These routines are meant to be used by various optimization
|
| 22 |
|
|
passes which can be modeled as lazy code motion problems.
|
| 23 |
|
|
Including, but not limited to:
|
| 24 |
|
|
|
| 25 |
|
|
* Traditional partial redundancy elimination.
|
| 26 |
|
|
|
| 27 |
|
|
* Placement of caller/caller register save/restores.
|
| 28 |
|
|
|
| 29 |
|
|
* Load/store motion.
|
| 30 |
|
|
|
| 31 |
|
|
* Copy motion.
|
| 32 |
|
|
|
| 33 |
|
|
* Conversion of flat register files to a stacked register
|
| 34 |
|
|
model.
|
| 35 |
|
|
|
| 36 |
|
|
* Dead load/store elimination.
|
| 37 |
|
|
|
| 38 |
|
|
These routines accept as input:
|
| 39 |
|
|
|
| 40 |
|
|
* Basic block information (number of blocks, lists of
|
| 41 |
|
|
predecessors and successors). Note the granularity
|
| 42 |
|
|
does not need to be basic block, they could be statements
|
| 43 |
|
|
or functions.
|
| 44 |
|
|
|
| 45 |
|
|
* Bitmaps of local properties (computed, transparent and
|
| 46 |
|
|
anticipatable expressions).
|
| 47 |
|
|
|
| 48 |
|
|
The output of these routines is bitmap of redundant computations
|
| 49 |
|
|
and a bitmap of optimal placement points. */
|
| 50 |
|
|
|
| 51 |
|
|
|
| 52 |
|
|
#include "config.h"
|
| 53 |
|
|
#include "system.h"
|
| 54 |
|
|
#include "coretypes.h"
|
| 55 |
|
|
#include "tm.h"
|
| 56 |
|
|
#include "rtl.h"
|
| 57 |
|
|
#include "regs.h"
|
| 58 |
|
|
#include "hard-reg-set.h"
|
| 59 |
|
|
#include "flags.h"
|
| 60 |
|
|
#include "insn-config.h"
|
| 61 |
|
|
#include "recog.h"
|
| 62 |
|
|
#include "basic-block.h"
|
| 63 |
|
|
#include "output.h"
|
| 64 |
|
|
#include "tm_p.h"
|
| 65 |
|
|
#include "function.h"
|
| 66 |
|
|
#include "sbitmap.h"
|
| 67 |
|
|
|
| 68 |
|
|
/* We want target macros for the mode switching code to be able to refer
|
| 69 |
|
|
to instruction attribute values. */
|
| 70 |
|
|
#include "insn-attr.h"
|
| 71 |
|
|
|
| 72 |
|
|
/* Edge based LCM routines. */
|
| 73 |
|
|
static void compute_antinout_edge (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
|
| 74 |
|
|
static void compute_earliest (struct edge_list *, int, sbitmap *, sbitmap *,
|
| 75 |
|
|
sbitmap *, sbitmap *, sbitmap *);
|
| 76 |
|
|
static void compute_laterin (struct edge_list *, sbitmap *, sbitmap *,
|
| 77 |
|
|
sbitmap *, sbitmap *);
|
| 78 |
|
|
static void compute_insert_delete (struct edge_list *edge_list, sbitmap *,
|
| 79 |
|
|
sbitmap *, sbitmap *, sbitmap *, sbitmap *);
|
| 80 |
|
|
|
| 81 |
|
|
/* Edge based LCM routines on a reverse flowgraph. */
|
| 82 |
|
|
static void compute_farthest (struct edge_list *, int, sbitmap *, sbitmap *,
|
| 83 |
|
|
sbitmap*, sbitmap *, sbitmap *);
|
| 84 |
|
|
static void compute_nearerout (struct edge_list *, sbitmap *, sbitmap *,
|
| 85 |
|
|
sbitmap *, sbitmap *);
|
| 86 |
|
|
static void compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *,
|
| 87 |
|
|
sbitmap *, sbitmap *, sbitmap *,
|
| 88 |
|
|
sbitmap *);
|
| 89 |
|
|
|
| 90 |
|
|
/* Edge based lcm routines. */
|
| 91 |
|
|
|
| 92 |
|
|
/* Compute expression anticipatability at entrance and exit of each block.
|
| 93 |
|
|
This is done based on the flow graph, and not on the pred-succ lists.
|
| 94 |
|
|
Other than that, its pretty much identical to compute_antinout. */
|
| 95 |
|
|
|
| 96 |
|
|
static void
|
| 97 |
|
|
compute_antinout_edge (sbitmap *antloc, sbitmap *transp, sbitmap *antin,
|
| 98 |
|
|
sbitmap *antout)
|
| 99 |
|
|
{
|
| 100 |
|
|
basic_block bb;
|
| 101 |
|
|
edge e;
|
| 102 |
|
|
basic_block *worklist, *qin, *qout, *qend;
|
| 103 |
|
|
unsigned int qlen;
|
| 104 |
|
|
edge_iterator ei;
|
| 105 |
|
|
|
| 106 |
|
|
/* Allocate a worklist array/queue. Entries are only added to the
|
| 107 |
|
|
list if they were not already on the list. So the size is
|
| 108 |
|
|
bounded by the number of basic blocks. */
|
| 109 |
|
|
qin = qout = worklist = XNEWVEC (basic_block, n_basic_blocks);
|
| 110 |
|
|
|
| 111 |
|
|
/* We want a maximal solution, so make an optimistic initialization of
|
| 112 |
|
|
ANTIN. */
|
| 113 |
|
|
sbitmap_vector_ones (antin, last_basic_block);
|
| 114 |
|
|
|
| 115 |
|
|
/* Put every block on the worklist; this is necessary because of the
|
| 116 |
|
|
optimistic initialization of ANTIN above. */
|
| 117 |
|
|
FOR_EACH_BB_REVERSE (bb)
|
| 118 |
|
|
{
|
| 119 |
|
|
*qin++ = bb;
|
| 120 |
|
|
bb->aux = bb;
|
| 121 |
|
|
}
|
| 122 |
|
|
|
| 123 |
|
|
qin = worklist;
|
| 124 |
|
|
qend = &worklist[n_basic_blocks - NUM_FIXED_BLOCKS];
|
| 125 |
|
|
qlen = n_basic_blocks - NUM_FIXED_BLOCKS;
|
| 126 |
|
|
|
| 127 |
|
|
/* Mark blocks which are predecessors of the exit block so that we
|
| 128 |
|
|
can easily identify them below. */
|
| 129 |
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
| 130 |
|
|
e->src->aux = EXIT_BLOCK_PTR;
|
| 131 |
|
|
|
| 132 |
|
|
/* Iterate until the worklist is empty. */
|
| 133 |
|
|
while (qlen)
|
| 134 |
|
|
{
|
| 135 |
|
|
/* Take the first entry off the worklist. */
|
| 136 |
|
|
bb = *qout++;
|
| 137 |
|
|
qlen--;
|
| 138 |
|
|
|
| 139 |
|
|
if (qout >= qend)
|
| 140 |
|
|
qout = worklist;
|
| 141 |
|
|
|
| 142 |
|
|
if (bb->aux == EXIT_BLOCK_PTR)
|
| 143 |
|
|
/* Do not clear the aux field for blocks which are predecessors of
|
| 144 |
|
|
the EXIT block. That way we never add then to the worklist
|
| 145 |
|
|
again. */
|
| 146 |
|
|
sbitmap_zero (antout[bb->index]);
|
| 147 |
|
|
else
|
| 148 |
|
|
{
|
| 149 |
|
|
/* Clear the aux field of this block so that it can be added to
|
| 150 |
|
|
the worklist again if necessary. */
|
| 151 |
|
|
bb->aux = NULL;
|
| 152 |
|
|
sbitmap_intersection_of_succs (antout[bb->index], antin, bb->index);
|
| 153 |
|
|
}
|
| 154 |
|
|
|
| 155 |
|
|
if (sbitmap_a_or_b_and_c_cg (antin[bb->index], antloc[bb->index],
|
| 156 |
|
|
transp[bb->index], antout[bb->index]))
|
| 157 |
|
|
/* If the in state of this block changed, then we need
|
| 158 |
|
|
to add the predecessors of this block to the worklist
|
| 159 |
|
|
if they are not already on the worklist. */
|
| 160 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 161 |
|
|
if (!e->src->aux && e->src != ENTRY_BLOCK_PTR)
|
| 162 |
|
|
{
|
| 163 |
|
|
*qin++ = e->src;
|
| 164 |
|
|
e->src->aux = e;
|
| 165 |
|
|
qlen++;
|
| 166 |
|
|
if (qin >= qend)
|
| 167 |
|
|
qin = worklist;
|
| 168 |
|
|
}
|
| 169 |
|
|
}
|
| 170 |
|
|
|
| 171 |
|
|
clear_aux_for_edges ();
|
| 172 |
|
|
clear_aux_for_blocks ();
|
| 173 |
|
|
free (worklist);
|
| 174 |
|
|
}
|
| 175 |
|
|
|
| 176 |
|
|
/* Compute the earliest vector for edge based lcm. */
|
| 177 |
|
|
|
| 178 |
|
|
static void
|
| 179 |
|
|
compute_earliest (struct edge_list *edge_list, int n_exprs, sbitmap *antin,
|
| 180 |
|
|
sbitmap *antout, sbitmap *avout, sbitmap *kill,
|
| 181 |
|
|
sbitmap *earliest)
|
| 182 |
|
|
{
|
| 183 |
|
|
sbitmap difference, temp_bitmap;
|
| 184 |
|
|
int x, num_edges;
|
| 185 |
|
|
basic_block pred, succ;
|
| 186 |
|
|
|
| 187 |
|
|
num_edges = NUM_EDGES (edge_list);
|
| 188 |
|
|
|
| 189 |
|
|
difference = sbitmap_alloc (n_exprs);
|
| 190 |
|
|
temp_bitmap = sbitmap_alloc (n_exprs);
|
| 191 |
|
|
|
| 192 |
|
|
for (x = 0; x < num_edges; x++)
|
| 193 |
|
|
{
|
| 194 |
|
|
pred = INDEX_EDGE_PRED_BB (edge_list, x);
|
| 195 |
|
|
succ = INDEX_EDGE_SUCC_BB (edge_list, x);
|
| 196 |
|
|
if (pred == ENTRY_BLOCK_PTR)
|
| 197 |
|
|
sbitmap_copy (earliest[x], antin[succ->index]);
|
| 198 |
|
|
else
|
| 199 |
|
|
{
|
| 200 |
|
|
if (succ == EXIT_BLOCK_PTR)
|
| 201 |
|
|
sbitmap_zero (earliest[x]);
|
| 202 |
|
|
else
|
| 203 |
|
|
{
|
| 204 |
|
|
sbitmap_difference (difference, antin[succ->index],
|
| 205 |
|
|
avout[pred->index]);
|
| 206 |
|
|
sbitmap_not (temp_bitmap, antout[pred->index]);
|
| 207 |
|
|
sbitmap_a_and_b_or_c (earliest[x], difference,
|
| 208 |
|
|
kill[pred->index], temp_bitmap);
|
| 209 |
|
|
}
|
| 210 |
|
|
}
|
| 211 |
|
|
}
|
| 212 |
|
|
|
| 213 |
|
|
sbitmap_free (temp_bitmap);
|
| 214 |
|
|
sbitmap_free (difference);
|
| 215 |
|
|
}
|
| 216 |
|
|
|
| 217 |
|
|
/* later(p,s) is dependent on the calculation of laterin(p).
|
| 218 |
|
|
laterin(p) is dependent on the calculation of later(p2,p).
|
| 219 |
|
|
|
| 220 |
|
|
laterin(ENTRY) is defined as all 0's
|
| 221 |
|
|
later(ENTRY, succs(ENTRY)) are defined using laterin(ENTRY)
|
| 222 |
|
|
laterin(succs(ENTRY)) is defined by later(ENTRY, succs(ENTRY)).
|
| 223 |
|
|
|
| 224 |
|
|
If we progress in this manner, starting with all basic blocks
|
| 225 |
|
|
in the work list, anytime we change later(bb), we need to add
|
| 226 |
|
|
succs(bb) to the worklist if they are not already on the worklist.
|
| 227 |
|
|
|
| 228 |
|
|
Boundary conditions:
|
| 229 |
|
|
|
| 230 |
|
|
We prime the worklist all the normal basic blocks. The ENTRY block can
|
| 231 |
|
|
never be added to the worklist since it is never the successor of any
|
| 232 |
|
|
block. We explicitly prevent the EXIT block from being added to the
|
| 233 |
|
|
worklist.
|
| 234 |
|
|
|
| 235 |
|
|
We optimistically initialize LATER. That is the only time this routine
|
| 236 |
|
|
will compute LATER for an edge out of the entry block since the entry
|
| 237 |
|
|
block is never on the worklist. Thus, LATERIN is neither used nor
|
| 238 |
|
|
computed for the ENTRY block.
|
| 239 |
|
|
|
| 240 |
|
|
Since the EXIT block is never added to the worklist, we will neither
|
| 241 |
|
|
use nor compute LATERIN for the exit block. Edges which reach the
|
| 242 |
|
|
EXIT block are handled in the normal fashion inside the loop. However,
|
| 243 |
|
|
the insertion/deletion computation needs LATERIN(EXIT), so we have
|
| 244 |
|
|
to compute it. */
|
| 245 |
|
|
|
| 246 |
|
|
static void
|
| 247 |
|
|
compute_laterin (struct edge_list *edge_list, sbitmap *earliest,
|
| 248 |
|
|
sbitmap *antloc, sbitmap *later, sbitmap *laterin)
|
| 249 |
|
|
{
|
| 250 |
|
|
int num_edges, i;
|
| 251 |
|
|
edge e;
|
| 252 |
|
|
basic_block *worklist, *qin, *qout, *qend, bb;
|
| 253 |
|
|
unsigned int qlen;
|
| 254 |
|
|
edge_iterator ei;
|
| 255 |
|
|
|
| 256 |
|
|
num_edges = NUM_EDGES (edge_list);
|
| 257 |
|
|
|
| 258 |
|
|
/* Allocate a worklist array/queue. Entries are only added to the
|
| 259 |
|
|
list if they were not already on the list. So the size is
|
| 260 |
|
|
bounded by the number of basic blocks. */
|
| 261 |
|
|
qin = qout = worklist
|
| 262 |
|
|
= XNEWVEC (basic_block, n_basic_blocks);
|
| 263 |
|
|
|
| 264 |
|
|
/* Initialize a mapping from each edge to its index. */
|
| 265 |
|
|
for (i = 0; i < num_edges; i++)
|
| 266 |
|
|
INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
|
| 267 |
|
|
|
| 268 |
|
|
/* We want a maximal solution, so initially consider LATER true for
|
| 269 |
|
|
all edges. This allows propagation through a loop since the incoming
|
| 270 |
|
|
loop edge will have LATER set, so if all the other incoming edges
|
| 271 |
|
|
to the loop are set, then LATERIN will be set for the head of the
|
| 272 |
|
|
loop.
|
| 273 |
|
|
|
| 274 |
|
|
If the optimistic setting of LATER on that edge was incorrect (for
|
| 275 |
|
|
example the expression is ANTLOC in a block within the loop) then
|
| 276 |
|
|
this algorithm will detect it when we process the block at the head
|
| 277 |
|
|
of the optimistic edge. That will requeue the affected blocks. */
|
| 278 |
|
|
sbitmap_vector_ones (later, num_edges);
|
| 279 |
|
|
|
| 280 |
|
|
/* Note that even though we want an optimistic setting of LATER, we
|
| 281 |
|
|
do not want to be overly optimistic. Consider an outgoing edge from
|
| 282 |
|
|
the entry block. That edge should always have a LATER value the
|
| 283 |
|
|
same as EARLIEST for that edge. */
|
| 284 |
|
|
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
|
| 285 |
|
|
sbitmap_copy (later[(size_t) e->aux], earliest[(size_t) e->aux]);
|
| 286 |
|
|
|
| 287 |
|
|
/* Add all the blocks to the worklist. This prevents an early exit from
|
| 288 |
|
|
the loop given our optimistic initialization of LATER above. */
|
| 289 |
|
|
FOR_EACH_BB (bb)
|
| 290 |
|
|
{
|
| 291 |
|
|
*qin++ = bb;
|
| 292 |
|
|
bb->aux = bb;
|
| 293 |
|
|
}
|
| 294 |
|
|
|
| 295 |
|
|
/* Note that we do not use the last allocated element for our queue,
|
| 296 |
|
|
as EXIT_BLOCK is never inserted into it. */
|
| 297 |
|
|
qin = worklist;
|
| 298 |
|
|
qend = &worklist[n_basic_blocks - NUM_FIXED_BLOCKS];
|
| 299 |
|
|
qlen = n_basic_blocks - NUM_FIXED_BLOCKS;
|
| 300 |
|
|
|
| 301 |
|
|
/* Iterate until the worklist is empty. */
|
| 302 |
|
|
while (qlen)
|
| 303 |
|
|
{
|
| 304 |
|
|
/* Take the first entry off the worklist. */
|
| 305 |
|
|
bb = *qout++;
|
| 306 |
|
|
bb->aux = NULL;
|
| 307 |
|
|
qlen--;
|
| 308 |
|
|
if (qout >= qend)
|
| 309 |
|
|
qout = worklist;
|
| 310 |
|
|
|
| 311 |
|
|
/* Compute the intersection of LATERIN for each incoming edge to B. */
|
| 312 |
|
|
sbitmap_ones (laterin[bb->index]);
|
| 313 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 314 |
|
|
sbitmap_a_and_b (laterin[bb->index], laterin[bb->index],
|
| 315 |
|
|
later[(size_t)e->aux]);
|
| 316 |
|
|
|
| 317 |
|
|
/* Calculate LATER for all outgoing edges. */
|
| 318 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 319 |
|
|
if (sbitmap_union_of_diff_cg (later[(size_t) e->aux],
|
| 320 |
|
|
earliest[(size_t) e->aux],
|
| 321 |
|
|
laterin[e->src->index],
|
| 322 |
|
|
antloc[e->src->index])
|
| 323 |
|
|
/* If LATER for an outgoing edge was changed, then we need
|
| 324 |
|
|
to add the target of the outgoing edge to the worklist. */
|
| 325 |
|
|
&& e->dest != EXIT_BLOCK_PTR && e->dest->aux == 0)
|
| 326 |
|
|
{
|
| 327 |
|
|
*qin++ = e->dest;
|
| 328 |
|
|
e->dest->aux = e;
|
| 329 |
|
|
qlen++;
|
| 330 |
|
|
if (qin >= qend)
|
| 331 |
|
|
qin = worklist;
|
| 332 |
|
|
}
|
| 333 |
|
|
}
|
| 334 |
|
|
|
| 335 |
|
|
/* Computation of insertion and deletion points requires computing LATERIN
|
| 336 |
|
|
for the EXIT block. We allocated an extra entry in the LATERIN array
|
| 337 |
|
|
for just this purpose. */
|
| 338 |
|
|
sbitmap_ones (laterin[last_basic_block]);
|
| 339 |
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
| 340 |
|
|
sbitmap_a_and_b (laterin[last_basic_block],
|
| 341 |
|
|
laterin[last_basic_block],
|
| 342 |
|
|
later[(size_t) e->aux]);
|
| 343 |
|
|
|
| 344 |
|
|
clear_aux_for_edges ();
|
| 345 |
|
|
free (worklist);
|
| 346 |
|
|
}
|
| 347 |
|
|
|
| 348 |
|
|
/* Compute the insertion and deletion points for edge based LCM. */
|
| 349 |
|
|
|
| 350 |
|
|
static void
|
| 351 |
|
|
compute_insert_delete (struct edge_list *edge_list, sbitmap *antloc,
|
| 352 |
|
|
sbitmap *later, sbitmap *laterin, sbitmap *insert,
|
| 353 |
|
|
sbitmap *del)
|
| 354 |
|
|
{
|
| 355 |
|
|
int x;
|
| 356 |
|
|
basic_block bb;
|
| 357 |
|
|
|
| 358 |
|
|
FOR_EACH_BB (bb)
|
| 359 |
|
|
sbitmap_difference (del[bb->index], antloc[bb->index],
|
| 360 |
|
|
laterin[bb->index]);
|
| 361 |
|
|
|
| 362 |
|
|
for (x = 0; x < NUM_EDGES (edge_list); x++)
|
| 363 |
|
|
{
|
| 364 |
|
|
basic_block b = INDEX_EDGE_SUCC_BB (edge_list, x);
|
| 365 |
|
|
|
| 366 |
|
|
if (b == EXIT_BLOCK_PTR)
|
| 367 |
|
|
sbitmap_difference (insert[x], later[x], laterin[last_basic_block]);
|
| 368 |
|
|
else
|
| 369 |
|
|
sbitmap_difference (insert[x], later[x], laterin[b->index]);
|
| 370 |
|
|
}
|
| 371 |
|
|
}
|
| 372 |
|
|
|
| 373 |
|
|
/* Given local properties TRANSP, ANTLOC, AVOUT, KILL return the insert and
|
| 374 |
|
|
delete vectors for edge based LCM. Returns an edgelist which is used to
|
| 375 |
|
|
map the insert vector to what edge an expression should be inserted on. */
|
| 376 |
|
|
|
| 377 |
|
|
struct edge_list *
|
| 378 |
|
|
pre_edge_lcm (int n_exprs, sbitmap *transp,
|
| 379 |
|
|
sbitmap *avloc, sbitmap *antloc, sbitmap *kill,
|
| 380 |
|
|
sbitmap **insert, sbitmap **del)
|
| 381 |
|
|
{
|
| 382 |
|
|
sbitmap *antin, *antout, *earliest;
|
| 383 |
|
|
sbitmap *avin, *avout;
|
| 384 |
|
|
sbitmap *later, *laterin;
|
| 385 |
|
|
struct edge_list *edge_list;
|
| 386 |
|
|
int num_edges;
|
| 387 |
|
|
|
| 388 |
|
|
edge_list = create_edge_list ();
|
| 389 |
|
|
num_edges = NUM_EDGES (edge_list);
|
| 390 |
|
|
|
| 391 |
|
|
#ifdef LCM_DEBUG_INFO
|
| 392 |
|
|
if (dump_file)
|
| 393 |
|
|
{
|
| 394 |
|
|
fprintf (dump_file, "Edge List:\n");
|
| 395 |
|
|
verify_edge_list (dump_file, edge_list);
|
| 396 |
|
|
print_edge_list (dump_file, edge_list);
|
| 397 |
|
|
dump_sbitmap_vector (dump_file, "transp", "", transp, last_basic_block);
|
| 398 |
|
|
dump_sbitmap_vector (dump_file, "antloc", "", antloc, last_basic_block);
|
| 399 |
|
|
dump_sbitmap_vector (dump_file, "avloc", "", avloc, last_basic_block);
|
| 400 |
|
|
dump_sbitmap_vector (dump_file, "kill", "", kill, last_basic_block);
|
| 401 |
|
|
}
|
| 402 |
|
|
#endif
|
| 403 |
|
|
|
| 404 |
|
|
/* Compute global availability. */
|
| 405 |
|
|
avin = sbitmap_vector_alloc (last_basic_block, n_exprs);
|
| 406 |
|
|
avout = sbitmap_vector_alloc (last_basic_block, n_exprs);
|
| 407 |
|
|
compute_available (avloc, kill, avout, avin);
|
| 408 |
|
|
sbitmap_vector_free (avin);
|
| 409 |
|
|
|
| 410 |
|
|
/* Compute global anticipatability. */
|
| 411 |
|
|
antin = sbitmap_vector_alloc (last_basic_block, n_exprs);
|
| 412 |
|
|
antout = sbitmap_vector_alloc (last_basic_block, n_exprs);
|
| 413 |
|
|
compute_antinout_edge (antloc, transp, antin, antout);
|
| 414 |
|
|
|
| 415 |
|
|
#ifdef LCM_DEBUG_INFO
|
| 416 |
|
|
if (dump_file)
|
| 417 |
|
|
{
|
| 418 |
|
|
dump_sbitmap_vector (dump_file, "antin", "", antin, last_basic_block);
|
| 419 |
|
|
dump_sbitmap_vector (dump_file, "antout", "", antout, last_basic_block);
|
| 420 |
|
|
}
|
| 421 |
|
|
#endif
|
| 422 |
|
|
|
| 423 |
|
|
/* Compute earliestness. */
|
| 424 |
|
|
earliest = sbitmap_vector_alloc (num_edges, n_exprs);
|
| 425 |
|
|
compute_earliest (edge_list, n_exprs, antin, antout, avout, kill, earliest);
|
| 426 |
|
|
|
| 427 |
|
|
#ifdef LCM_DEBUG_INFO
|
| 428 |
|
|
if (dump_file)
|
| 429 |
|
|
dump_sbitmap_vector (dump_file, "earliest", "", earliest, num_edges);
|
| 430 |
|
|
#endif
|
| 431 |
|
|
|
| 432 |
|
|
sbitmap_vector_free (antout);
|
| 433 |
|
|
sbitmap_vector_free (antin);
|
| 434 |
|
|
sbitmap_vector_free (avout);
|
| 435 |
|
|
|
| 436 |
|
|
later = sbitmap_vector_alloc (num_edges, n_exprs);
|
| 437 |
|
|
|
| 438 |
|
|
/* Allocate an extra element for the exit block in the laterin vector. */
|
| 439 |
|
|
laterin = sbitmap_vector_alloc (last_basic_block + 1, n_exprs);
|
| 440 |
|
|
compute_laterin (edge_list, earliest, antloc, later, laterin);
|
| 441 |
|
|
|
| 442 |
|
|
#ifdef LCM_DEBUG_INFO
|
| 443 |
|
|
if (dump_file)
|
| 444 |
|
|
{
|
| 445 |
|
|
dump_sbitmap_vector (dump_file, "laterin", "", laterin, last_basic_block + 1);
|
| 446 |
|
|
dump_sbitmap_vector (dump_file, "later", "", later, num_edges);
|
| 447 |
|
|
}
|
| 448 |
|
|
#endif
|
| 449 |
|
|
|
| 450 |
|
|
sbitmap_vector_free (earliest);
|
| 451 |
|
|
|
| 452 |
|
|
*insert = sbitmap_vector_alloc (num_edges, n_exprs);
|
| 453 |
|
|
*del = sbitmap_vector_alloc (last_basic_block, n_exprs);
|
| 454 |
|
|
sbitmap_vector_zero (*insert, num_edges);
|
| 455 |
|
|
sbitmap_vector_zero (*del, last_basic_block);
|
| 456 |
|
|
compute_insert_delete (edge_list, antloc, later, laterin, *insert, *del);
|
| 457 |
|
|
|
| 458 |
|
|
sbitmap_vector_free (laterin);
|
| 459 |
|
|
sbitmap_vector_free (later);
|
| 460 |
|
|
|
| 461 |
|
|
#ifdef LCM_DEBUG_INFO
|
| 462 |
|
|
if (dump_file)
|
| 463 |
|
|
{
|
| 464 |
|
|
dump_sbitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges);
|
| 465 |
|
|
dump_sbitmap_vector (dump_file, "pre_delete_map", "", *del,
|
| 466 |
|
|
last_basic_block);
|
| 467 |
|
|
}
|
| 468 |
|
|
#endif
|
| 469 |
|
|
|
| 470 |
|
|
return edge_list;
|
| 471 |
|
|
}
|
| 472 |
|
|
|
| 473 |
|
|
/* Compute the AVIN and AVOUT vectors from the AVLOC and KILL vectors.
|
| 474 |
|
|
Return the number of passes we performed to iterate to a solution. */
|
| 475 |
|
|
|
| 476 |
|
|
void
|
| 477 |
|
|
compute_available (sbitmap *avloc, sbitmap *kill, sbitmap *avout,
|
| 478 |
|
|
sbitmap *avin)
|
| 479 |
|
|
{
|
| 480 |
|
|
edge e;
|
| 481 |
|
|
basic_block *worklist, *qin, *qout, *qend, bb;
|
| 482 |
|
|
unsigned int qlen;
|
| 483 |
|
|
edge_iterator ei;
|
| 484 |
|
|
|
| 485 |
|
|
/* Allocate a worklist array/queue. Entries are only added to the
|
| 486 |
|
|
list if they were not already on the list. So the size is
|
| 487 |
|
|
bounded by the number of basic blocks. */
|
| 488 |
|
|
qin = qout = worklist =
|
| 489 |
|
|
XNEWVEC (basic_block, n_basic_blocks - NUM_FIXED_BLOCKS);
|
| 490 |
|
|
|
| 491 |
|
|
/* We want a maximal solution. */
|
| 492 |
|
|
sbitmap_vector_ones (avout, last_basic_block);
|
| 493 |
|
|
|
| 494 |
|
|
/* Put every block on the worklist; this is necessary because of the
|
| 495 |
|
|
optimistic initialization of AVOUT above. */
|
| 496 |
|
|
FOR_EACH_BB (bb)
|
| 497 |
|
|
{
|
| 498 |
|
|
*qin++ = bb;
|
| 499 |
|
|
bb->aux = bb;
|
| 500 |
|
|
}
|
| 501 |
|
|
|
| 502 |
|
|
qin = worklist;
|
| 503 |
|
|
qend = &worklist[n_basic_blocks - NUM_FIXED_BLOCKS];
|
| 504 |
|
|
qlen = n_basic_blocks - NUM_FIXED_BLOCKS;
|
| 505 |
|
|
|
| 506 |
|
|
/* Mark blocks which are successors of the entry block so that we
|
| 507 |
|
|
can easily identify them below. */
|
| 508 |
|
|
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
|
| 509 |
|
|
e->dest->aux = ENTRY_BLOCK_PTR;
|
| 510 |
|
|
|
| 511 |
|
|
/* Iterate until the worklist is empty. */
|
| 512 |
|
|
while (qlen)
|
| 513 |
|
|
{
|
| 514 |
|
|
/* Take the first entry off the worklist. */
|
| 515 |
|
|
bb = *qout++;
|
| 516 |
|
|
qlen--;
|
| 517 |
|
|
|
| 518 |
|
|
if (qout >= qend)
|
| 519 |
|
|
qout = worklist;
|
| 520 |
|
|
|
| 521 |
|
|
/* If one of the predecessor blocks is the ENTRY block, then the
|
| 522 |
|
|
intersection of avouts is the null set. We can identify such blocks
|
| 523 |
|
|
by the special value in the AUX field in the block structure. */
|
| 524 |
|
|
if (bb->aux == ENTRY_BLOCK_PTR)
|
| 525 |
|
|
/* Do not clear the aux field for blocks which are successors of the
|
| 526 |
|
|
ENTRY block. That way we never add then to the worklist again. */
|
| 527 |
|
|
sbitmap_zero (avin[bb->index]);
|
| 528 |
|
|
else
|
| 529 |
|
|
{
|
| 530 |
|
|
/* Clear the aux field of this block so that it can be added to
|
| 531 |
|
|
the worklist again if necessary. */
|
| 532 |
|
|
bb->aux = NULL;
|
| 533 |
|
|
sbitmap_intersection_of_preds (avin[bb->index], avout, bb->index);
|
| 534 |
|
|
}
|
| 535 |
|
|
|
| 536 |
|
|
if (sbitmap_union_of_diff_cg (avout[bb->index], avloc[bb->index],
|
| 537 |
|
|
avin[bb->index], kill[bb->index]))
|
| 538 |
|
|
/* If the out state of this block changed, then we need
|
| 539 |
|
|
to add the successors of this block to the worklist
|
| 540 |
|
|
if they are not already on the worklist. */
|
| 541 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 542 |
|
|
if (!e->dest->aux && e->dest != EXIT_BLOCK_PTR)
|
| 543 |
|
|
{
|
| 544 |
|
|
*qin++ = e->dest;
|
| 545 |
|
|
e->dest->aux = e;
|
| 546 |
|
|
qlen++;
|
| 547 |
|
|
|
| 548 |
|
|
if (qin >= qend)
|
| 549 |
|
|
qin = worklist;
|
| 550 |
|
|
}
|
| 551 |
|
|
}
|
| 552 |
|
|
|
| 553 |
|
|
clear_aux_for_edges ();
|
| 554 |
|
|
clear_aux_for_blocks ();
|
| 555 |
|
|
free (worklist);
|
| 556 |
|
|
}
|
| 557 |
|
|
|
| 558 |
|
|
/* Compute the farthest vector for edge based lcm. */
|
| 559 |
|
|
|
| 560 |
|
|
static void
|
| 561 |
|
|
compute_farthest (struct edge_list *edge_list, int n_exprs,
|
| 562 |
|
|
sbitmap *st_avout, sbitmap *st_avin, sbitmap *st_antin,
|
| 563 |
|
|
sbitmap *kill, sbitmap *farthest)
|
| 564 |
|
|
{
|
| 565 |
|
|
sbitmap difference, temp_bitmap;
|
| 566 |
|
|
int x, num_edges;
|
| 567 |
|
|
basic_block pred, succ;
|
| 568 |
|
|
|
| 569 |
|
|
num_edges = NUM_EDGES (edge_list);
|
| 570 |
|
|
|
| 571 |
|
|
difference = sbitmap_alloc (n_exprs);
|
| 572 |
|
|
temp_bitmap = sbitmap_alloc (n_exprs);
|
| 573 |
|
|
|
| 574 |
|
|
for (x = 0; x < num_edges; x++)
|
| 575 |
|
|
{
|
| 576 |
|
|
pred = INDEX_EDGE_PRED_BB (edge_list, x);
|
| 577 |
|
|
succ = INDEX_EDGE_SUCC_BB (edge_list, x);
|
| 578 |
|
|
if (succ == EXIT_BLOCK_PTR)
|
| 579 |
|
|
sbitmap_copy (farthest[x], st_avout[pred->index]);
|
| 580 |
|
|
else
|
| 581 |
|
|
{
|
| 582 |
|
|
if (pred == ENTRY_BLOCK_PTR)
|
| 583 |
|
|
sbitmap_zero (farthest[x]);
|
| 584 |
|
|
else
|
| 585 |
|
|
{
|
| 586 |
|
|
sbitmap_difference (difference, st_avout[pred->index],
|
| 587 |
|
|
st_antin[succ->index]);
|
| 588 |
|
|
sbitmap_not (temp_bitmap, st_avin[succ->index]);
|
| 589 |
|
|
sbitmap_a_and_b_or_c (farthest[x], difference,
|
| 590 |
|
|
kill[succ->index], temp_bitmap);
|
| 591 |
|
|
}
|
| 592 |
|
|
}
|
| 593 |
|
|
}
|
| 594 |
|
|
|
| 595 |
|
|
sbitmap_free (temp_bitmap);
|
| 596 |
|
|
sbitmap_free (difference);
|
| 597 |
|
|
}
|
| 598 |
|
|
|
| 599 |
|
|
/* Compute nearer and nearerout vectors for edge based lcm.
|
| 600 |
|
|
|
| 601 |
|
|
This is the mirror of compute_laterin, additional comments on the
|
| 602 |
|
|
implementation can be found before compute_laterin. */
|
| 603 |
|
|
|
| 604 |
|
|
static void
|
| 605 |
|
|
compute_nearerout (struct edge_list *edge_list, sbitmap *farthest,
|
| 606 |
|
|
sbitmap *st_avloc, sbitmap *nearer, sbitmap *nearerout)
|
| 607 |
|
|
{
|
| 608 |
|
|
int num_edges, i;
|
| 609 |
|
|
edge e;
|
| 610 |
|
|
basic_block *worklist, *tos, bb;
|
| 611 |
|
|
edge_iterator ei;
|
| 612 |
|
|
|
| 613 |
|
|
num_edges = NUM_EDGES (edge_list);
|
| 614 |
|
|
|
| 615 |
|
|
/* Allocate a worklist array/queue. Entries are only added to the
|
| 616 |
|
|
list if they were not already on the list. So the size is
|
| 617 |
|
|
bounded by the number of basic blocks. */
|
| 618 |
|
|
tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
|
| 619 |
|
|
|
| 620 |
|
|
/* Initialize NEARER for each edge and build a mapping from an edge to
|
| 621 |
|
|
its index. */
|
| 622 |
|
|
for (i = 0; i < num_edges; i++)
|
| 623 |
|
|
INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
|
| 624 |
|
|
|
| 625 |
|
|
/* We want a maximal solution. */
|
| 626 |
|
|
sbitmap_vector_ones (nearer, num_edges);
|
| 627 |
|
|
|
| 628 |
|
|
/* Note that even though we want an optimistic setting of NEARER, we
|
| 629 |
|
|
do not want to be overly optimistic. Consider an incoming edge to
|
| 630 |
|
|
the exit block. That edge should always have a NEARER value the
|
| 631 |
|
|
same as FARTHEST for that edge. */
|
| 632 |
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
| 633 |
|
|
sbitmap_copy (nearer[(size_t)e->aux], farthest[(size_t)e->aux]);
|
| 634 |
|
|
|
| 635 |
|
|
/* Add all the blocks to the worklist. This prevents an early exit
|
| 636 |
|
|
from the loop given our optimistic initialization of NEARER. */
|
| 637 |
|
|
FOR_EACH_BB (bb)
|
| 638 |
|
|
{
|
| 639 |
|
|
*tos++ = bb;
|
| 640 |
|
|
bb->aux = bb;
|
| 641 |
|
|
}
|
| 642 |
|
|
|
| 643 |
|
|
/* Iterate until the worklist is empty. */
|
| 644 |
|
|
while (tos != worklist)
|
| 645 |
|
|
{
|
| 646 |
|
|
/* Take the first entry off the worklist. */
|
| 647 |
|
|
bb = *--tos;
|
| 648 |
|
|
bb->aux = NULL;
|
| 649 |
|
|
|
| 650 |
|
|
/* Compute the intersection of NEARER for each outgoing edge from B. */
|
| 651 |
|
|
sbitmap_ones (nearerout[bb->index]);
|
| 652 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 653 |
|
|
sbitmap_a_and_b (nearerout[bb->index], nearerout[bb->index],
|
| 654 |
|
|
nearer[(size_t) e->aux]);
|
| 655 |
|
|
|
| 656 |
|
|
/* Calculate NEARER for all incoming edges. */
|
| 657 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 658 |
|
|
if (sbitmap_union_of_diff_cg (nearer[(size_t) e->aux],
|
| 659 |
|
|
farthest[(size_t) e->aux],
|
| 660 |
|
|
nearerout[e->dest->index],
|
| 661 |
|
|
st_avloc[e->dest->index])
|
| 662 |
|
|
/* If NEARER for an incoming edge was changed, then we need
|
| 663 |
|
|
to add the source of the incoming edge to the worklist. */
|
| 664 |
|
|
&& e->src != ENTRY_BLOCK_PTR && e->src->aux == 0)
|
| 665 |
|
|
{
|
| 666 |
|
|
*tos++ = e->src;
|
| 667 |
|
|
e->src->aux = e;
|
| 668 |
|
|
}
|
| 669 |
|
|
}
|
| 670 |
|
|
|
| 671 |
|
|
/* Computation of insertion and deletion points requires computing NEAREROUT
|
| 672 |
|
|
for the ENTRY block. We allocated an extra entry in the NEAREROUT array
|
| 673 |
|
|
for just this purpose. */
|
| 674 |
|
|
sbitmap_ones (nearerout[last_basic_block]);
|
| 675 |
|
|
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
|
| 676 |
|
|
sbitmap_a_and_b (nearerout[last_basic_block],
|
| 677 |
|
|
nearerout[last_basic_block],
|
| 678 |
|
|
nearer[(size_t) e->aux]);
|
| 679 |
|
|
|
| 680 |
|
|
clear_aux_for_edges ();
|
| 681 |
|
|
free (tos);
|
| 682 |
|
|
}
|
| 683 |
|
|
|
| 684 |
|
|
/* Compute the insertion and deletion points for edge based LCM. */
|
| 685 |
|
|
|
| 686 |
|
|
static void
|
| 687 |
|
|
compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *st_avloc,
|
| 688 |
|
|
sbitmap *nearer, sbitmap *nearerout,
|
| 689 |
|
|
sbitmap *insert, sbitmap *del)
|
| 690 |
|
|
{
|
| 691 |
|
|
int x;
|
| 692 |
|
|
basic_block bb;
|
| 693 |
|
|
|
| 694 |
|
|
FOR_EACH_BB (bb)
|
| 695 |
|
|
sbitmap_difference (del[bb->index], st_avloc[bb->index],
|
| 696 |
|
|
nearerout[bb->index]);
|
| 697 |
|
|
|
| 698 |
|
|
for (x = 0; x < NUM_EDGES (edge_list); x++)
|
| 699 |
|
|
{
|
| 700 |
|
|
basic_block b = INDEX_EDGE_PRED_BB (edge_list, x);
|
| 701 |
|
|
if (b == ENTRY_BLOCK_PTR)
|
| 702 |
|
|
sbitmap_difference (insert[x], nearer[x], nearerout[last_basic_block]);
|
| 703 |
|
|
else
|
| 704 |
|
|
sbitmap_difference (insert[x], nearer[x], nearerout[b->index]);
|
| 705 |
|
|
}
|
| 706 |
|
|
}
|
| 707 |
|
|
|
| 708 |
|
|
/* Given local properties TRANSP, ST_AVLOC, ST_ANTLOC, KILL return the
|
| 709 |
|
|
insert and delete vectors for edge based reverse LCM. Returns an
|
| 710 |
|
|
edgelist which is used to map the insert vector to what edge
|
| 711 |
|
|
an expression should be inserted on. */
|
| 712 |
|
|
|
| 713 |
|
|
struct edge_list *
|
| 714 |
|
|
pre_edge_rev_lcm (int n_exprs, sbitmap *transp,
|
| 715 |
|
|
sbitmap *st_avloc, sbitmap *st_antloc, sbitmap *kill,
|
| 716 |
|
|
sbitmap **insert, sbitmap **del)
|
| 717 |
|
|
{
|
| 718 |
|
|
sbitmap *st_antin, *st_antout;
|
| 719 |
|
|
sbitmap *st_avout, *st_avin, *farthest;
|
| 720 |
|
|
sbitmap *nearer, *nearerout;
|
| 721 |
|
|
struct edge_list *edge_list;
|
| 722 |
|
|
int num_edges;
|
| 723 |
|
|
|
| 724 |
|
|
edge_list = create_edge_list ();
|
| 725 |
|
|
num_edges = NUM_EDGES (edge_list);
|
| 726 |
|
|
|
| 727 |
|
|
st_antin = sbitmap_vector_alloc (last_basic_block, n_exprs);
|
| 728 |
|
|
st_antout = sbitmap_vector_alloc (last_basic_block, n_exprs);
|
| 729 |
|
|
sbitmap_vector_zero (st_antin, last_basic_block);
|
| 730 |
|
|
sbitmap_vector_zero (st_antout, last_basic_block);
|
| 731 |
|
|
compute_antinout_edge (st_antloc, transp, st_antin, st_antout);
|
| 732 |
|
|
|
| 733 |
|
|
/* Compute global anticipatability. */
|
| 734 |
|
|
st_avout = sbitmap_vector_alloc (last_basic_block, n_exprs);
|
| 735 |
|
|
st_avin = sbitmap_vector_alloc (last_basic_block, n_exprs);
|
| 736 |
|
|
compute_available (st_avloc, kill, st_avout, st_avin);
|
| 737 |
|
|
|
| 738 |
|
|
#ifdef LCM_DEBUG_INFO
|
| 739 |
|
|
if (dump_file)
|
| 740 |
|
|
{
|
| 741 |
|
|
fprintf (dump_file, "Edge List:\n");
|
| 742 |
|
|
verify_edge_list (dump_file, edge_list);
|
| 743 |
|
|
print_edge_list (dump_file, edge_list);
|
| 744 |
|
|
dump_sbitmap_vector (dump_file, "transp", "", transp, last_basic_block);
|
| 745 |
|
|
dump_sbitmap_vector (dump_file, "st_avloc", "", st_avloc, last_basic_block);
|
| 746 |
|
|
dump_sbitmap_vector (dump_file, "st_antloc", "", st_antloc, last_basic_block);
|
| 747 |
|
|
dump_sbitmap_vector (dump_file, "st_antin", "", st_antin, last_basic_block);
|
| 748 |
|
|
dump_sbitmap_vector (dump_file, "st_antout", "", st_antout, last_basic_block);
|
| 749 |
|
|
dump_sbitmap_vector (dump_file, "st_kill", "", kill, last_basic_block);
|
| 750 |
|
|
}
|
| 751 |
|
|
#endif
|
| 752 |
|
|
|
| 753 |
|
|
#ifdef LCM_DEBUG_INFO
|
| 754 |
|
|
if (dump_file)
|
| 755 |
|
|
{
|
| 756 |
|
|
dump_sbitmap_vector (dump_file, "st_avout", "", st_avout, last_basic_block);
|
| 757 |
|
|
dump_sbitmap_vector (dump_file, "st_avin", "", st_avin, last_basic_block);
|
| 758 |
|
|
}
|
| 759 |
|
|
#endif
|
| 760 |
|
|
|
| 761 |
|
|
/* Compute farthestness. */
|
| 762 |
|
|
farthest = sbitmap_vector_alloc (num_edges, n_exprs);
|
| 763 |
|
|
compute_farthest (edge_list, n_exprs, st_avout, st_avin, st_antin,
|
| 764 |
|
|
kill, farthest);
|
| 765 |
|
|
|
| 766 |
|
|
#ifdef LCM_DEBUG_INFO
|
| 767 |
|
|
if (dump_file)
|
| 768 |
|
|
dump_sbitmap_vector (dump_file, "farthest", "", farthest, num_edges);
|
| 769 |
|
|
#endif
|
| 770 |
|
|
|
| 771 |
|
|
sbitmap_vector_free (st_antin);
|
| 772 |
|
|
sbitmap_vector_free (st_antout);
|
| 773 |
|
|
|
| 774 |
|
|
sbitmap_vector_free (st_avin);
|
| 775 |
|
|
sbitmap_vector_free (st_avout);
|
| 776 |
|
|
|
| 777 |
|
|
nearer = sbitmap_vector_alloc (num_edges, n_exprs);
|
| 778 |
|
|
|
| 779 |
|
|
/* Allocate an extra element for the entry block. */
|
| 780 |
|
|
nearerout = sbitmap_vector_alloc (last_basic_block + 1, n_exprs);
|
| 781 |
|
|
compute_nearerout (edge_list, farthest, st_avloc, nearer, nearerout);
|
| 782 |
|
|
|
| 783 |
|
|
#ifdef LCM_DEBUG_INFO
|
| 784 |
|
|
if (dump_file)
|
| 785 |
|
|
{
|
| 786 |
|
|
dump_sbitmap_vector (dump_file, "nearerout", "", nearerout,
|
| 787 |
|
|
last_basic_block + 1);
|
| 788 |
|
|
dump_sbitmap_vector (dump_file, "nearer", "", nearer, num_edges);
|
| 789 |
|
|
}
|
| 790 |
|
|
#endif
|
| 791 |
|
|
|
| 792 |
|
|
sbitmap_vector_free (farthest);
|
| 793 |
|
|
|
| 794 |
|
|
*insert = sbitmap_vector_alloc (num_edges, n_exprs);
|
| 795 |
|
|
*del = sbitmap_vector_alloc (last_basic_block, n_exprs);
|
| 796 |
|
|
compute_rev_insert_delete (edge_list, st_avloc, nearer, nearerout,
|
| 797 |
|
|
*insert, *del);
|
| 798 |
|
|
|
| 799 |
|
|
sbitmap_vector_free (nearerout);
|
| 800 |
|
|
sbitmap_vector_free (nearer);
|
| 801 |
|
|
|
| 802 |
|
|
#ifdef LCM_DEBUG_INFO
|
| 803 |
|
|
if (dump_file)
|
| 804 |
|
|
{
|
| 805 |
|
|
dump_sbitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges);
|
| 806 |
|
|
dump_sbitmap_vector (dump_file, "pre_delete_map", "", *del,
|
| 807 |
|
|
last_basic_block);
|
| 808 |
|
|
}
|
| 809 |
|
|
#endif
|
| 810 |
|
|
return edge_list;
|
| 811 |
|
|
}
|
| 812 |
|
|
|