1 |
684 |
jeremybenn |
/* Matrix layout transformations.
|
2 |
|
|
Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
|
3 |
|
|
Contributed by Razya Ladelsky <razya@il.ibm.com>
|
4 |
|
|
Originally written by Revital Eres and Mustafa Hagog.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
/*
|
23 |
|
|
Matrix flattening optimization tries to replace a N-dimensional
|
24 |
|
|
matrix with its equivalent M-dimensional matrix, where M < N.
|
25 |
|
|
This first implementation focuses on global matrices defined dynamically.
|
26 |
|
|
|
27 |
|
|
When N==1, we actually flatten the whole matrix.
|
28 |
|
|
For instance consider a two-dimensional array a [dim1] [dim2].
|
29 |
|
|
The code for allocating space for it usually looks like:
|
30 |
|
|
|
31 |
|
|
a = (int **) malloc(dim1 * sizeof(int *));
|
32 |
|
|
for (i=0; i<dim1; i++)
|
33 |
|
|
a[i] = (int *) malloc (dim2 * sizeof(int));
|
34 |
|
|
|
35 |
|
|
If the array "a" is found suitable for this optimization,
|
36 |
|
|
its allocation is replaced by:
|
37 |
|
|
|
38 |
|
|
a = (int *) malloc (dim1 * dim2 *sizeof(int));
|
39 |
|
|
|
40 |
|
|
and all the references to a[i][j] are replaced by a[i * dim2 + j].
|
41 |
|
|
|
42 |
|
|
The two main phases of the optimization are the analysis
|
43 |
|
|
and transformation.
|
44 |
|
|
The driver of the optimization is matrix_reorg ().
|
45 |
|
|
|
46 |
|
|
|
47 |
|
|
|
48 |
|
|
Analysis phase:
|
49 |
|
|
===============
|
50 |
|
|
|
51 |
|
|
We'll number the dimensions outside-in, meaning the most external
|
52 |
|
|
is 0, then 1, and so on.
|
53 |
|
|
The analysis part of the optimization determines K, the escape
|
54 |
|
|
level of a N-dimensional matrix (K <= N), that allows flattening of
|
55 |
|
|
the external dimensions 0,1,..., K-1. Escape level 0 means that the
|
56 |
|
|
whole matrix escapes and no flattening is possible.
|
57 |
|
|
|
58 |
|
|
The analysis part is implemented in analyze_matrix_allocation_site()
|
59 |
|
|
and analyze_matrix_accesses().
|
60 |
|
|
|
61 |
|
|
Transformation phase:
|
62 |
|
|
=====================
|
63 |
|
|
In this phase we define the new flattened matrices that replace the
|
64 |
|
|
original matrices in the code.
|
65 |
|
|
Implemented in transform_allocation_sites(),
|
66 |
|
|
transform_access_sites().
|
67 |
|
|
|
68 |
|
|
Matrix Transposing
|
69 |
|
|
==================
|
70 |
|
|
The idea of Matrix Transposing is organizing the matrix in a different
|
71 |
|
|
layout such that the dimensions are reordered.
|
72 |
|
|
This could produce better cache behavior in some cases.
|
73 |
|
|
|
74 |
|
|
For example, lets look at the matrix accesses in the following loop:
|
75 |
|
|
|
76 |
|
|
for (i=0; i<N; i++)
|
77 |
|
|
for (j=0; j<M; j++)
|
78 |
|
|
access to a[i][j]
|
79 |
|
|
|
80 |
|
|
This loop can produce good cache behavior because the elements of
|
81 |
|
|
the inner dimension are accessed sequentially.
|
82 |
|
|
|
83 |
|
|
However, if the accesses of the matrix were of the following form:
|
84 |
|
|
|
85 |
|
|
for (i=0; i<N; i++)
|
86 |
|
|
for (j=0; j<M; j++)
|
87 |
|
|
access to a[j][i]
|
88 |
|
|
|
89 |
|
|
In this loop we iterate the columns and not the rows.
|
90 |
|
|
Therefore, replacing the rows and columns
|
91 |
|
|
would have had an organization with better (cache) locality.
|
92 |
|
|
Replacing the dimensions of the matrix is called matrix transposing.
|
93 |
|
|
|
94 |
|
|
This example, of course, could be enhanced to multiple dimensions matrices
|
95 |
|
|
as well.
|
96 |
|
|
|
97 |
|
|
Since a program could include all kind of accesses, there is a decision
|
98 |
|
|
mechanism, implemented in analyze_transpose(), which implements a
|
99 |
|
|
heuristic that tries to determine whether to transpose the matrix or not,
|
100 |
|
|
according to the form of the more dominant accesses.
|
101 |
|
|
This decision is transferred to the flattening mechanism, and whether
|
102 |
|
|
the matrix was transposed or not, the matrix is flattened (if possible).
|
103 |
|
|
|
104 |
|
|
This decision making is based on profiling information and loop information.
|
105 |
|
|
If profiling information is available, decision making mechanism will be
|
106 |
|
|
operated, otherwise the matrix will only be flattened (if possible).
|
107 |
|
|
|
108 |
|
|
Both optimizations are described in the paper "Matrix flattening and
|
109 |
|
|
transposing in GCC" which was presented in GCC summit 2006.
|
110 |
|
|
http://www.gccsummit.org/2006/2006-GCC-Summit-Proceedings.pdf. */
|
111 |
|
|
|
112 |
|
|
#include "config.h"
|
113 |
|
|
#include "system.h"
|
114 |
|
|
#include "coretypes.h"
|
115 |
|
|
#include "tm.h"
|
116 |
|
|
#include "tree.h"
|
117 |
|
|
#include "rtl.h"
|
118 |
|
|
#include "tree-inline.h"
|
119 |
|
|
#include "tree-flow.h"
|
120 |
|
|
#include "tree-flow-inline.h"
|
121 |
|
|
#include "langhooks.h"
|
122 |
|
|
#include "hashtab.h"
|
123 |
|
|
#include "flags.h"
|
124 |
|
|
#include "ggc.h"
|
125 |
|
|
#include "debug.h"
|
126 |
|
|
#include "target.h"
|
127 |
|
|
#include "cgraph.h"
|
128 |
|
|
#include "diagnostic-core.h"
|
129 |
|
|
#include "timevar.h"
|
130 |
|
|
#include "params.h"
|
131 |
|
|
#include "fibheap.h"
|
132 |
|
|
#include "intl.h"
|
133 |
|
|
#include "function.h"
|
134 |
|
|
#include "basic-block.h"
|
135 |
|
|
#include "cfgloop.h"
|
136 |
|
|
#include "tree-iterator.h"
|
137 |
|
|
#include "tree-pass.h"
|
138 |
|
|
#include "opts.h"
|
139 |
|
|
#include "tree-data-ref.h"
|
140 |
|
|
#include "tree-chrec.h"
|
141 |
|
|
#include "tree-scalar-evolution.h"
|
142 |
|
|
#include "tree-ssa-sccvn.h"
|
143 |
|
|
|
144 |
|
|
/* We need to collect a lot of data from the original malloc,
|
145 |
|
|
particularly as the gimplifier has converted:
|
146 |
|
|
|
147 |
|
|
orig_var = (struct_type *) malloc (x * sizeof (struct_type *));
|
148 |
|
|
|
149 |
|
|
into
|
150 |
|
|
|
151 |
|
|
T3 = <constant> ; ** <constant> is amount to malloc; precomputed **
|
152 |
|
|
T4 = malloc (T3);
|
153 |
|
|
T5 = (struct_type *) T4;
|
154 |
|
|
orig_var = T5;
|
155 |
|
|
|
156 |
|
|
The following struct fields allow us to collect all the necessary data from
|
157 |
|
|
the gimplified program. The comments in the struct below are all based
|
158 |
|
|
on the gimple example above. */
|
159 |
|
|
|
160 |
|
|
struct malloc_call_data
|
161 |
|
|
{
|
162 |
|
|
gimple call_stmt; /* Tree for "T4 = malloc (T3);" */
|
163 |
|
|
tree size_var; /* Var decl for T3. */
|
164 |
|
|
tree malloc_size; /* Tree for "<constant>", the rhs assigned to T3. */
|
165 |
|
|
};
|
166 |
|
|
|
167 |
|
|
static tree can_calculate_expr_before_stmt (tree, sbitmap);
|
168 |
|
|
static tree can_calculate_stmt_before_stmt (gimple, sbitmap);
|
169 |
|
|
|
170 |
|
|
/* The front end of the compiler, when parsing statements of the form:
|
171 |
|
|
|
172 |
|
|
var = (type_cast) malloc (sizeof (type));
|
173 |
|
|
|
174 |
|
|
always converts this single statement into the following statements
|
175 |
|
|
(GIMPLE form):
|
176 |
|
|
|
177 |
|
|
T.1 = sizeof (type);
|
178 |
|
|
T.2 = malloc (T.1);
|
179 |
|
|
T.3 = (type_cast) T.2;
|
180 |
|
|
var = T.3;
|
181 |
|
|
|
182 |
|
|
Since we need to create new malloc statements and modify the original
|
183 |
|
|
statements somewhat, we need to find all four of the above statements.
|
184 |
|
|
Currently record_call_1 (called for building cgraph edges) finds and
|
185 |
|
|
records the statements containing the actual call to malloc, but we
|
186 |
|
|
need to find the rest of the variables/statements on our own. That
|
187 |
|
|
is what the following function does. */
|
188 |
|
|
static void
|
189 |
|
|
collect_data_for_malloc_call (gimple stmt, struct malloc_call_data *m_data)
|
190 |
|
|
{
|
191 |
|
|
tree size_var = NULL;
|
192 |
|
|
tree malloc_fn_decl;
|
193 |
|
|
tree arg1;
|
194 |
|
|
|
195 |
|
|
gcc_assert (is_gimple_call (stmt));
|
196 |
|
|
|
197 |
|
|
malloc_fn_decl = gimple_call_fndecl (stmt);
|
198 |
|
|
if (malloc_fn_decl == NULL
|
199 |
|
|
|| DECL_FUNCTION_CODE (malloc_fn_decl) != BUILT_IN_MALLOC)
|
200 |
|
|
return;
|
201 |
|
|
|
202 |
|
|
arg1 = gimple_call_arg (stmt, 0);
|
203 |
|
|
size_var = arg1;
|
204 |
|
|
|
205 |
|
|
m_data->call_stmt = stmt;
|
206 |
|
|
m_data->size_var = size_var;
|
207 |
|
|
if (TREE_CODE (size_var) != VAR_DECL)
|
208 |
|
|
m_data->malloc_size = size_var;
|
209 |
|
|
else
|
210 |
|
|
m_data->malloc_size = NULL_TREE;
|
211 |
|
|
}
|
212 |
|
|
|
213 |
|
|
/* Information about matrix access site.
|
214 |
|
|
For example: if an access site of matrix arr is arr[i][j]
|
215 |
|
|
the ACCESS_SITE_INFO structure will have the address
|
216 |
|
|
of arr as its stmt. The INDEX_INFO will hold information about the
|
217 |
|
|
initial address and index of each dimension. */
|
218 |
|
|
struct access_site_info
|
219 |
|
|
{
|
220 |
|
|
/* The statement (MEM_REF or POINTER_PLUS_EXPR). */
|
221 |
|
|
gimple stmt;
|
222 |
|
|
|
223 |
|
|
/* In case of POINTER_PLUS_EXPR, what is the offset. */
|
224 |
|
|
tree offset;
|
225 |
|
|
|
226 |
|
|
/* The index which created the offset. */
|
227 |
|
|
tree index;
|
228 |
|
|
|
229 |
|
|
/* The indirection level of this statement. */
|
230 |
|
|
int level;
|
231 |
|
|
|
232 |
|
|
/* TRUE for allocation site FALSE for access site. */
|
233 |
|
|
bool is_alloc;
|
234 |
|
|
|
235 |
|
|
/* The function containing the access site. */
|
236 |
|
|
tree function_decl;
|
237 |
|
|
|
238 |
|
|
/* This access is iterated in the inner most loop */
|
239 |
|
|
bool iterated_by_inner_most_loop_p;
|
240 |
|
|
};
|
241 |
|
|
|
242 |
|
|
typedef struct access_site_info *access_site_info_p;
|
243 |
|
|
DEF_VEC_P (access_site_info_p);
|
244 |
|
|
DEF_VEC_ALLOC_P (access_site_info_p, heap);
|
245 |
|
|
|
246 |
|
|
/* Calls to free when flattening a matrix. */
|
247 |
|
|
|
248 |
|
|
struct free_info
|
249 |
|
|
{
|
250 |
|
|
gimple stmt;
|
251 |
|
|
tree func;
|
252 |
|
|
};
|
253 |
|
|
|
254 |
|
|
/* Information about matrix to flatten. */
|
255 |
|
|
struct matrix_info
|
256 |
|
|
{
|
257 |
|
|
/* Decl tree of this matrix. */
|
258 |
|
|
tree decl;
|
259 |
|
|
/* Number of dimensions; number
|
260 |
|
|
of "*" in the type declaration. */
|
261 |
|
|
int num_dims;
|
262 |
|
|
|
263 |
|
|
/* Minimum indirection level that escapes, 0 means that
|
264 |
|
|
the whole matrix escapes, k means that dimensions
|
265 |
|
|
|
266 |
|
|
int min_indirect_level_escape;
|
267 |
|
|
|
268 |
|
|
gimple min_indirect_level_escape_stmt;
|
269 |
|
|
|
270 |
|
|
/* Hold the allocation site for each level (dimension).
|
271 |
|
|
We can use NUM_DIMS as the upper bound and allocate the array
|
272 |
|
|
once with this number of elements and no need to use realloc and
|
273 |
|
|
MAX_MALLOCED_LEVEL. */
|
274 |
|
|
gimple *malloc_for_level;
|
275 |
|
|
|
276 |
|
|
int max_malloced_level;
|
277 |
|
|
|
278 |
|
|
/* Is the matrix transposed. */
|
279 |
|
|
bool is_transposed_p;
|
280 |
|
|
|
281 |
|
|
/* The location of the allocation sites (they must be in one
|
282 |
|
|
function). */
|
283 |
|
|
tree allocation_function_decl;
|
284 |
|
|
|
285 |
|
|
/* The calls to free for each level of indirection. */
|
286 |
|
|
struct free_info *free_stmts;
|
287 |
|
|
|
288 |
|
|
/* An array which holds for each dimension its size. where
|
289 |
|
|
dimension 0 is the outer most (one that contains all the others).
|
290 |
|
|
*/
|
291 |
|
|
tree *dimension_size;
|
292 |
|
|
|
293 |
|
|
/* An array which holds for each dimension it's original size
|
294 |
|
|
(before transposing and flattening take place). */
|
295 |
|
|
tree *dimension_size_orig;
|
296 |
|
|
|
297 |
|
|
/* An array which holds for each dimension the size of the type of
|
298 |
|
|
of elements accessed in that level (in bytes). */
|
299 |
|
|
HOST_WIDE_INT *dimension_type_size;
|
300 |
|
|
|
301 |
|
|
int dimension_type_size_len;
|
302 |
|
|
|
303 |
|
|
/* An array collecting the count of accesses for each dimension. */
|
304 |
|
|
gcov_type *dim_hot_level;
|
305 |
|
|
|
306 |
|
|
/* An array of the accesses to be flattened.
|
307 |
|
|
elements are of type "struct access_site_info *". */
|
308 |
|
|
VEC (access_site_info_p, heap) * access_l;
|
309 |
|
|
|
310 |
|
|
/* A map of how the dimensions will be organized at the end of
|
311 |
|
|
the analyses. */
|
312 |
|
|
int *dim_map;
|
313 |
|
|
};
|
314 |
|
|
|
315 |
|
|
/* In each phi node we want to record the indirection level we have when we
|
316 |
|
|
get to the phi node. Usually we will have phi nodes with more than two
|
317 |
|
|
arguments, then we must assure that all of them get to the phi node with
|
318 |
|
|
the same indirection level, otherwise it's not safe to do the flattening.
|
319 |
|
|
So we record the information regarding the indirection level each time we
|
320 |
|
|
get to the phi node in this hash table. */
|
321 |
|
|
|
322 |
|
|
struct matrix_access_phi_node
|
323 |
|
|
{
|
324 |
|
|
gimple phi;
|
325 |
|
|
int indirection_level;
|
326 |
|
|
};
|
327 |
|
|
|
328 |
|
|
/* We use this structure to find if the SSA variable is accessed inside the
|
329 |
|
|
tree and record the tree containing it. */
|
330 |
|
|
|
331 |
|
|
struct ssa_acc_in_tree
|
332 |
|
|
{
|
333 |
|
|
/* The variable whose accesses in the tree we are looking for. */
|
334 |
|
|
tree ssa_var;
|
335 |
|
|
/* The tree and code inside it the ssa_var is accessed, currently
|
336 |
|
|
it could be an MEM_REF or CALL_EXPR. */
|
337 |
|
|
enum tree_code t_code;
|
338 |
|
|
tree t_tree;
|
339 |
|
|
/* The place in the containing tree. */
|
340 |
|
|
tree *tp;
|
341 |
|
|
tree second_op;
|
342 |
|
|
bool var_found;
|
343 |
|
|
};
|
344 |
|
|
|
345 |
|
|
static void analyze_matrix_accesses (struct matrix_info *, tree, int, bool,
|
346 |
|
|
sbitmap, bool);
|
347 |
|
|
static int transform_allocation_sites (void **, void *);
|
348 |
|
|
static int transform_access_sites (void **, void *);
|
349 |
|
|
static int analyze_transpose (void **, void *);
|
350 |
|
|
static int dump_matrix_reorg_analysis (void **, void *);
|
351 |
|
|
|
352 |
|
|
static bool check_transpose_p;
|
353 |
|
|
|
354 |
|
|
/* Hash function used for the phi nodes. */
|
355 |
|
|
|
356 |
|
|
static hashval_t
|
357 |
|
|
mat_acc_phi_hash (const void *p)
|
358 |
|
|
{
|
359 |
|
|
const struct matrix_access_phi_node *const ma_phi =
|
360 |
|
|
(const struct matrix_access_phi_node *) p;
|
361 |
|
|
|
362 |
|
|
return htab_hash_pointer (ma_phi->phi);
|
363 |
|
|
}
|
364 |
|
|
|
365 |
|
|
/* Equality means phi node pointers are the same. */
|
366 |
|
|
|
367 |
|
|
static int
|
368 |
|
|
mat_acc_phi_eq (const void *p1, const void *p2)
|
369 |
|
|
{
|
370 |
|
|
const struct matrix_access_phi_node *const phi1 =
|
371 |
|
|
(const struct matrix_access_phi_node *) p1;
|
372 |
|
|
const struct matrix_access_phi_node *const phi2 =
|
373 |
|
|
(const struct matrix_access_phi_node *) p2;
|
374 |
|
|
|
375 |
|
|
if (phi1->phi == phi2->phi)
|
376 |
|
|
return 1;
|
377 |
|
|
|
378 |
|
|
return 0;
|
379 |
|
|
}
|
380 |
|
|
|
381 |
|
|
/* Hold the PHI nodes we visit during the traversal for escaping
|
382 |
|
|
analysis. */
|
383 |
|
|
static htab_t htab_mat_acc_phi_nodes = NULL;
|
384 |
|
|
|
385 |
|
|
/* This hash-table holds the information about the matrices we are
|
386 |
|
|
going to handle. */
|
387 |
|
|
static htab_t matrices_to_reorg = NULL;
|
388 |
|
|
|
389 |
|
|
/* Return a hash for MTT, which is really a "matrix_info *". */
|
390 |
|
|
static hashval_t
|
391 |
|
|
mtt_info_hash (const void *mtt)
|
392 |
|
|
{
|
393 |
|
|
return htab_hash_pointer (((const struct matrix_info *) mtt)->decl);
|
394 |
|
|
}
|
395 |
|
|
|
396 |
|
|
/* Return true if MTT1 and MTT2 (which are really both of type
|
397 |
|
|
"matrix_info *") refer to the same decl. */
|
398 |
|
|
static int
|
399 |
|
|
mtt_info_eq (const void *mtt1, const void *mtt2)
|
400 |
|
|
{
|
401 |
|
|
const struct matrix_info *const i1 = (const struct matrix_info *) mtt1;
|
402 |
|
|
const struct matrix_info *const i2 = (const struct matrix_info *) mtt2;
|
403 |
|
|
|
404 |
|
|
if (i1->decl == i2->decl)
|
405 |
|
|
return true;
|
406 |
|
|
|
407 |
|
|
return false;
|
408 |
|
|
}
|
409 |
|
|
|
410 |
|
|
/* Return false if STMT may contain a vector expression.
|
411 |
|
|
In this situation, all matrices should not be flattened. */
|
412 |
|
|
static bool
|
413 |
|
|
may_flatten_matrices_1 (gimple stmt)
|
414 |
|
|
{
|
415 |
|
|
switch (gimple_code (stmt))
|
416 |
|
|
{
|
417 |
|
|
case GIMPLE_ASSIGN:
|
418 |
|
|
case GIMPLE_CALL:
|
419 |
|
|
if (!gimple_has_lhs (stmt))
|
420 |
|
|
return true;
|
421 |
|
|
if (TREE_CODE (TREE_TYPE (gimple_get_lhs (stmt))) == VECTOR_TYPE)
|
422 |
|
|
{
|
423 |
|
|
if (dump_file)
|
424 |
|
|
fprintf (dump_file,
|
425 |
|
|
"Found vector type, don't flatten matrix\n");
|
426 |
|
|
return false;
|
427 |
|
|
}
|
428 |
|
|
break;
|
429 |
|
|
case GIMPLE_ASM:
|
430 |
|
|
/* Asm code could contain vector operations. */
|
431 |
|
|
return false;
|
432 |
|
|
break;
|
433 |
|
|
default:
|
434 |
|
|
break;
|
435 |
|
|
}
|
436 |
|
|
return true;
|
437 |
|
|
}
|
438 |
|
|
|
439 |
|
|
/* Return false if there are hand-written vectors in the program.
|
440 |
|
|
We disable the flattening in such a case. */
|
441 |
|
|
static bool
|
442 |
|
|
may_flatten_matrices (struct cgraph_node *node)
|
443 |
|
|
{
|
444 |
|
|
tree decl;
|
445 |
|
|
struct function *func;
|
446 |
|
|
basic_block bb;
|
447 |
|
|
gimple_stmt_iterator gsi;
|
448 |
|
|
|
449 |
|
|
decl = node->decl;
|
450 |
|
|
if (node->analyzed)
|
451 |
|
|
{
|
452 |
|
|
func = DECL_STRUCT_FUNCTION (decl);
|
453 |
|
|
FOR_EACH_BB_FN (bb, func)
|
454 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
455 |
|
|
if (!may_flatten_matrices_1 (gsi_stmt (gsi)))
|
456 |
|
|
return false;
|
457 |
|
|
}
|
458 |
|
|
return true;
|
459 |
|
|
}
|
460 |
|
|
|
461 |
|
|
/* Given a VAR_DECL, check its type to determine whether it is
|
462 |
|
|
a definition of a dynamic allocated matrix and therefore is
|
463 |
|
|
a suitable candidate for the matrix flattening optimization.
|
464 |
|
|
Return NULL if VAR_DECL is not such decl. Otherwise, allocate
|
465 |
|
|
a MATRIX_INFO structure, fill it with the relevant information
|
466 |
|
|
and return a pointer to it.
|
467 |
|
|
TODO: handle also statically defined arrays. */
|
468 |
|
|
static struct matrix_info *
|
469 |
|
|
analyze_matrix_decl (tree var_decl)
|
470 |
|
|
{
|
471 |
|
|
struct matrix_info *m_node, tmpmi, *mi;
|
472 |
|
|
tree var_type;
|
473 |
|
|
int dim_num = 0;
|
474 |
|
|
|
475 |
|
|
gcc_assert (matrices_to_reorg);
|
476 |
|
|
|
477 |
|
|
if (TREE_CODE (var_decl) == PARM_DECL)
|
478 |
|
|
var_type = DECL_ARG_TYPE (var_decl);
|
479 |
|
|
else if (TREE_CODE (var_decl) == VAR_DECL)
|
480 |
|
|
var_type = TREE_TYPE (var_decl);
|
481 |
|
|
else
|
482 |
|
|
return NULL;
|
483 |
|
|
|
484 |
|
|
if (!POINTER_TYPE_P (var_type))
|
485 |
|
|
return NULL;
|
486 |
|
|
|
487 |
|
|
while (POINTER_TYPE_P (var_type))
|
488 |
|
|
{
|
489 |
|
|
var_type = TREE_TYPE (var_type);
|
490 |
|
|
dim_num++;
|
491 |
|
|
}
|
492 |
|
|
|
493 |
|
|
if (dim_num <= 1)
|
494 |
|
|
return NULL;
|
495 |
|
|
|
496 |
|
|
if (!COMPLETE_TYPE_P (var_type)
|
497 |
|
|
|| TREE_CODE (TYPE_SIZE_UNIT (var_type)) != INTEGER_CST)
|
498 |
|
|
return NULL;
|
499 |
|
|
|
500 |
|
|
/* Check to see if this pointer is already in there. */
|
501 |
|
|
tmpmi.decl = var_decl;
|
502 |
|
|
mi = (struct matrix_info *) htab_find (matrices_to_reorg, &tmpmi);
|
503 |
|
|
|
504 |
|
|
if (mi)
|
505 |
|
|
return NULL;
|
506 |
|
|
|
507 |
|
|
/* Record the matrix. */
|
508 |
|
|
|
509 |
|
|
m_node = (struct matrix_info *) xcalloc (1, sizeof (struct matrix_info));
|
510 |
|
|
m_node->decl = var_decl;
|
511 |
|
|
m_node->num_dims = dim_num;
|
512 |
|
|
m_node->free_stmts
|
513 |
|
|
= (struct free_info *) xcalloc (dim_num, sizeof (struct free_info));
|
514 |
|
|
|
515 |
|
|
/* Init min_indirect_level_escape to -1 to indicate that no escape
|
516 |
|
|
analysis has been done yet. */
|
517 |
|
|
m_node->min_indirect_level_escape = -1;
|
518 |
|
|
m_node->is_transposed_p = false;
|
519 |
|
|
|
520 |
|
|
return m_node;
|
521 |
|
|
}
|
522 |
|
|
|
523 |
|
|
/* Free matrix E. */
|
524 |
|
|
static void
|
525 |
|
|
mat_free (void *e)
|
526 |
|
|
{
|
527 |
|
|
struct matrix_info *mat = (struct matrix_info *) e;
|
528 |
|
|
|
529 |
|
|
if (!mat)
|
530 |
|
|
return;
|
531 |
|
|
|
532 |
|
|
free (mat->free_stmts);
|
533 |
|
|
free (mat->dim_hot_level);
|
534 |
|
|
free (mat->malloc_for_level);
|
535 |
|
|
}
|
536 |
|
|
|
537 |
|
|
/* Find all potential matrices.
|
538 |
|
|
TODO: currently we handle only multidimensional
|
539 |
|
|
dynamically allocated arrays. */
|
540 |
|
|
static void
|
541 |
|
|
find_matrices_decl (void)
|
542 |
|
|
{
|
543 |
|
|
struct matrix_info *tmp;
|
544 |
|
|
PTR *slot;
|
545 |
|
|
struct varpool_node *vnode;
|
546 |
|
|
|
547 |
|
|
gcc_assert (matrices_to_reorg);
|
548 |
|
|
|
549 |
|
|
/* For every global variable in the program:
|
550 |
|
|
Check to see if it's of a candidate type and record it. */
|
551 |
|
|
for (vnode = varpool_nodes_queue; vnode; vnode = vnode->next_needed)
|
552 |
|
|
{
|
553 |
|
|
tree var_decl = vnode->decl;
|
554 |
|
|
|
555 |
|
|
if (!var_decl || TREE_CODE (var_decl) != VAR_DECL)
|
556 |
|
|
continue;
|
557 |
|
|
|
558 |
|
|
if (matrices_to_reorg)
|
559 |
|
|
if ((tmp = analyze_matrix_decl (var_decl)))
|
560 |
|
|
{
|
561 |
|
|
if (!TREE_ADDRESSABLE (var_decl))
|
562 |
|
|
{
|
563 |
|
|
slot = htab_find_slot (matrices_to_reorg, tmp, INSERT);
|
564 |
|
|
*slot = tmp;
|
565 |
|
|
}
|
566 |
|
|
}
|
567 |
|
|
}
|
568 |
|
|
return;
|
569 |
|
|
}
|
570 |
|
|
|
571 |
|
|
/* Mark that the matrix MI escapes at level L. */
|
572 |
|
|
static void
|
573 |
|
|
mark_min_matrix_escape_level (struct matrix_info *mi, int l, gimple s)
|
574 |
|
|
{
|
575 |
|
|
if (mi->min_indirect_level_escape == -1
|
576 |
|
|
|| (mi->min_indirect_level_escape > l))
|
577 |
|
|
{
|
578 |
|
|
mi->min_indirect_level_escape = l;
|
579 |
|
|
mi->min_indirect_level_escape_stmt = s;
|
580 |
|
|
}
|
581 |
|
|
}
|
582 |
|
|
|
583 |
|
|
/* Find if the SSA variable is accessed inside the
|
584 |
|
|
tree and record the tree containing it.
|
585 |
|
|
The only relevant uses are the case of SSA_NAME, or SSA inside
|
586 |
|
|
MEM_REF, PLUS_EXPR, POINTER_PLUS_EXPR, MULT_EXPR. */
|
587 |
|
|
static void
|
588 |
|
|
ssa_accessed_in_tree (tree t, struct ssa_acc_in_tree *a)
|
589 |
|
|
{
|
590 |
|
|
a->t_code = TREE_CODE (t);
|
591 |
|
|
switch (a->t_code)
|
592 |
|
|
{
|
593 |
|
|
case SSA_NAME:
|
594 |
|
|
if (t == a->ssa_var)
|
595 |
|
|
a->var_found = true;
|
596 |
|
|
break;
|
597 |
|
|
case MEM_REF:
|
598 |
|
|
if (SSA_VAR_P (TREE_OPERAND (t, 0))
|
599 |
|
|
&& TREE_OPERAND (t, 0) == a->ssa_var)
|
600 |
|
|
a->var_found = true;
|
601 |
|
|
break;
|
602 |
|
|
default:
|
603 |
|
|
break;
|
604 |
|
|
}
|
605 |
|
|
}
|
606 |
|
|
|
607 |
|
|
/* Find if the SSA variable is accessed on the right hand side of
|
608 |
|
|
gimple call STMT. */
|
609 |
|
|
|
610 |
|
|
static void
|
611 |
|
|
ssa_accessed_in_call_rhs (gimple stmt, struct ssa_acc_in_tree *a)
|
612 |
|
|
{
|
613 |
|
|
tree decl;
|
614 |
|
|
tree arg;
|
615 |
|
|
size_t i;
|
616 |
|
|
|
617 |
|
|
a->t_code = CALL_EXPR;
|
618 |
|
|
for (i = 0; i < gimple_call_num_args (stmt); i++)
|
619 |
|
|
{
|
620 |
|
|
arg = gimple_call_arg (stmt, i);
|
621 |
|
|
if (arg == a->ssa_var)
|
622 |
|
|
{
|
623 |
|
|
a->var_found = true;
|
624 |
|
|
decl = gimple_call_fndecl (stmt);
|
625 |
|
|
a->t_tree = decl;
|
626 |
|
|
break;
|
627 |
|
|
}
|
628 |
|
|
}
|
629 |
|
|
}
|
630 |
|
|
|
631 |
|
|
/* Find if the SSA variable is accessed on the right hand side of
|
632 |
|
|
gimple assign STMT. */
|
633 |
|
|
|
634 |
|
|
static void
|
635 |
|
|
ssa_accessed_in_assign_rhs (gimple stmt, struct ssa_acc_in_tree *a)
|
636 |
|
|
{
|
637 |
|
|
|
638 |
|
|
a->t_code = gimple_assign_rhs_code (stmt);
|
639 |
|
|
switch (a->t_code)
|
640 |
|
|
{
|
641 |
|
|
tree op1, op2;
|
642 |
|
|
|
643 |
|
|
case SSA_NAME:
|
644 |
|
|
case MEM_REF:
|
645 |
|
|
CASE_CONVERT:
|
646 |
|
|
case VIEW_CONVERT_EXPR:
|
647 |
|
|
ssa_accessed_in_tree (gimple_assign_rhs1 (stmt), a);
|
648 |
|
|
break;
|
649 |
|
|
case POINTER_PLUS_EXPR:
|
650 |
|
|
case PLUS_EXPR:
|
651 |
|
|
case MULT_EXPR:
|
652 |
|
|
op1 = gimple_assign_rhs1 (stmt);
|
653 |
|
|
op2 = gimple_assign_rhs2 (stmt);
|
654 |
|
|
|
655 |
|
|
if (op1 == a->ssa_var)
|
656 |
|
|
{
|
657 |
|
|
a->var_found = true;
|
658 |
|
|
a->second_op = op2;
|
659 |
|
|
}
|
660 |
|
|
else if (op2 == a->ssa_var)
|
661 |
|
|
{
|
662 |
|
|
a->var_found = true;
|
663 |
|
|
a->second_op = op1;
|
664 |
|
|
}
|
665 |
|
|
break;
|
666 |
|
|
default:
|
667 |
|
|
break;
|
668 |
|
|
}
|
669 |
|
|
}
|
670 |
|
|
|
671 |
|
|
/* Record the access/allocation site information for matrix MI so we can
|
672 |
|
|
handle it later in transformation. */
|
673 |
|
|
static void
|
674 |
|
|
record_access_alloc_site_info (struct matrix_info *mi, gimple stmt, tree offset,
|
675 |
|
|
tree index, int level, bool is_alloc)
|
676 |
|
|
{
|
677 |
|
|
struct access_site_info *acc_info;
|
678 |
|
|
|
679 |
|
|
if (!mi->access_l)
|
680 |
|
|
mi->access_l = VEC_alloc (access_site_info_p, heap, 100);
|
681 |
|
|
|
682 |
|
|
acc_info
|
683 |
|
|
= (struct access_site_info *)
|
684 |
|
|
xcalloc (1, sizeof (struct access_site_info));
|
685 |
|
|
acc_info->stmt = stmt;
|
686 |
|
|
acc_info->offset = offset;
|
687 |
|
|
acc_info->index = index;
|
688 |
|
|
acc_info->function_decl = current_function_decl;
|
689 |
|
|
acc_info->level = level;
|
690 |
|
|
acc_info->is_alloc = is_alloc;
|
691 |
|
|
|
692 |
|
|
VEC_safe_push (access_site_info_p, heap, mi->access_l, acc_info);
|
693 |
|
|
|
694 |
|
|
}
|
695 |
|
|
|
696 |
|
|
/* Record the malloc as the allocation site of the given LEVEL. But
|
697 |
|
|
first we Make sure that all the size parameters passed to malloc in
|
698 |
|
|
all the allocation sites could be pre-calculated before the call to
|
699 |
|
|
the malloc of level 0 (the main malloc call). */
|
700 |
|
|
static void
|
701 |
|
|
add_allocation_site (struct matrix_info *mi, gimple stmt, int level)
|
702 |
|
|
{
|
703 |
|
|
struct malloc_call_data mcd;
|
704 |
|
|
|
705 |
|
|
/* Make sure that the allocation sites are in the same function. */
|
706 |
|
|
if (!mi->allocation_function_decl)
|
707 |
|
|
mi->allocation_function_decl = current_function_decl;
|
708 |
|
|
else if (mi->allocation_function_decl != current_function_decl)
|
709 |
|
|
{
|
710 |
|
|
int min_malloc_level;
|
711 |
|
|
|
712 |
|
|
gcc_assert (mi->malloc_for_level);
|
713 |
|
|
|
714 |
|
|
/* Find the minimum malloc level that already has been seen;
|
715 |
|
|
we known its allocation function must be
|
716 |
|
|
MI->allocation_function_decl since it's different than
|
717 |
|
|
CURRENT_FUNCTION_DECL then the escaping level should be
|
718 |
|
|
MIN (LEVEL, MIN_MALLOC_LEVEL) - 1 , and the allocation function
|
719 |
|
|
must be set accordingly. */
|
720 |
|
|
for (min_malloc_level = 0;
|
721 |
|
|
min_malloc_level < mi->max_malloced_level
|
722 |
|
|
&& mi->malloc_for_level[min_malloc_level]; min_malloc_level++)
|
723 |
|
|
;
|
724 |
|
|
if (level < min_malloc_level)
|
725 |
|
|
{
|
726 |
|
|
mi->allocation_function_decl = current_function_decl;
|
727 |
|
|
mark_min_matrix_escape_level (mi, min_malloc_level, stmt);
|
728 |
|
|
}
|
729 |
|
|
else
|
730 |
|
|
{
|
731 |
|
|
mark_min_matrix_escape_level (mi, level, stmt);
|
732 |
|
|
/* cannot be that (level == min_malloc_level)
|
733 |
|
|
we would have returned earlier. */
|
734 |
|
|
return;
|
735 |
|
|
}
|
736 |
|
|
}
|
737 |
|
|
|
738 |
|
|
/* Find the correct malloc information. */
|
739 |
|
|
collect_data_for_malloc_call (stmt, &mcd);
|
740 |
|
|
|
741 |
|
|
/* We accept only calls to malloc function; we do not accept
|
742 |
|
|
calls like calloc and realloc. */
|
743 |
|
|
if (!mi->malloc_for_level)
|
744 |
|
|
{
|
745 |
|
|
mi->malloc_for_level = XCNEWVEC (gimple, level + 1);
|
746 |
|
|
mi->max_malloced_level = level + 1;
|
747 |
|
|
}
|
748 |
|
|
else if (mi->max_malloced_level <= level)
|
749 |
|
|
{
|
750 |
|
|
mi->malloc_for_level
|
751 |
|
|
= XRESIZEVEC (gimple, mi->malloc_for_level, level + 1);
|
752 |
|
|
|
753 |
|
|
/* Zero the newly allocated items. */
|
754 |
|
|
memset (&(mi->malloc_for_level[mi->max_malloced_level + 1]),
|
755 |
|
|
0, (level - mi->max_malloced_level) * sizeof (tree));
|
756 |
|
|
|
757 |
|
|
mi->max_malloced_level = level + 1;
|
758 |
|
|
}
|
759 |
|
|
mi->malloc_for_level[level] = stmt;
|
760 |
|
|
}
|
761 |
|
|
|
762 |
|
|
/* Given an assignment statement STMT that we know that its
|
763 |
|
|
left-hand-side is the matrix MI variable, we traverse the immediate
|
764 |
|
|
uses backwards until we get to a malloc site. We make sure that
|
765 |
|
|
there is one and only one malloc site that sets this variable. When
|
766 |
|
|
we are performing the flattening we generate a new variable that
|
767 |
|
|
will hold the size for each dimension; each malloc that allocates a
|
768 |
|
|
dimension has the size parameter; we use that parameter to
|
769 |
|
|
initialize the dimension size variable so we can use it later in
|
770 |
|
|
the address calculations. LEVEL is the dimension we're inspecting.
|
771 |
|
|
Return if STMT is related to an allocation site. */
|
772 |
|
|
|
773 |
|
|
static void
|
774 |
|
|
analyze_matrix_allocation_site (struct matrix_info *mi, gimple stmt,
|
775 |
|
|
int level, sbitmap visited)
|
776 |
|
|
{
|
777 |
|
|
if (gimple_assign_copy_p (stmt) || gimple_assign_cast_p (stmt))
|
778 |
|
|
{
|
779 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
780 |
|
|
|
781 |
|
|
if (TREE_CODE (rhs) == SSA_NAME)
|
782 |
|
|
{
|
783 |
|
|
gimple def = SSA_NAME_DEF_STMT (rhs);
|
784 |
|
|
|
785 |
|
|
analyze_matrix_allocation_site (mi, def, level, visited);
|
786 |
|
|
return;
|
787 |
|
|
}
|
788 |
|
|
/* If we are back to the original matrix variable then we
|
789 |
|
|
are sure that this is analyzed as an access site. */
|
790 |
|
|
else if (rhs == mi->decl)
|
791 |
|
|
return;
|
792 |
|
|
}
|
793 |
|
|
/* A result of call to malloc. */
|
794 |
|
|
else if (is_gimple_call (stmt))
|
795 |
|
|
{
|
796 |
|
|
int call_flags = gimple_call_flags (stmt);
|
797 |
|
|
|
798 |
|
|
if (!(call_flags & ECF_MALLOC))
|
799 |
|
|
{
|
800 |
|
|
mark_min_matrix_escape_level (mi, level, stmt);
|
801 |
|
|
return;
|
802 |
|
|
}
|
803 |
|
|
else
|
804 |
|
|
{
|
805 |
|
|
tree malloc_fn_decl;
|
806 |
|
|
|
807 |
|
|
malloc_fn_decl = gimple_call_fndecl (stmt);
|
808 |
|
|
if (malloc_fn_decl == NULL_TREE)
|
809 |
|
|
{
|
810 |
|
|
mark_min_matrix_escape_level (mi, level, stmt);
|
811 |
|
|
return;
|
812 |
|
|
}
|
813 |
|
|
if (DECL_FUNCTION_CODE (malloc_fn_decl) != BUILT_IN_MALLOC)
|
814 |
|
|
{
|
815 |
|
|
if (dump_file)
|
816 |
|
|
fprintf (dump_file,
|
817 |
|
|
"Matrix %s is an argument to function %s\n",
|
818 |
|
|
get_name (mi->decl), get_name (malloc_fn_decl));
|
819 |
|
|
mark_min_matrix_escape_level (mi, level, stmt);
|
820 |
|
|
return;
|
821 |
|
|
}
|
822 |
|
|
}
|
823 |
|
|
/* This is a call to malloc of level 'level'.
|
824 |
|
|
mi->max_malloced_level-1 == level means that we've
|
825 |
|
|
seen a malloc statement of level 'level' before.
|
826 |
|
|
If the statement is not the same one that we've
|
827 |
|
|
seen before, then there's another malloc statement
|
828 |
|
|
for the same level, which means that we need to mark
|
829 |
|
|
it escaping. */
|
830 |
|
|
if (mi->malloc_for_level
|
831 |
|
|
&& mi->max_malloced_level-1 == level
|
832 |
|
|
&& mi->malloc_for_level[level] != stmt)
|
833 |
|
|
{
|
834 |
|
|
mark_min_matrix_escape_level (mi, level, stmt);
|
835 |
|
|
return;
|
836 |
|
|
}
|
837 |
|
|
else
|
838 |
|
|
add_allocation_site (mi, stmt, level);
|
839 |
|
|
return;
|
840 |
|
|
}
|
841 |
|
|
/* Looks like we don't know what is happening in this
|
842 |
|
|
statement so be in the safe side and mark it as escaping. */
|
843 |
|
|
mark_min_matrix_escape_level (mi, level, stmt);
|
844 |
|
|
}
|
845 |
|
|
|
846 |
|
|
/* The transposing decision making.
|
847 |
|
|
In order to calculate the profitability of transposing, we collect two
|
848 |
|
|
types of information regarding the accesses:
|
849 |
|
|
1. profiling information used to express the hotness of an access, that
|
850 |
|
|
is how often the matrix is accessed by this access site (count of the
|
851 |
|
|
access site).
|
852 |
|
|
2. which dimension in the access site is iterated by the inner
|
853 |
|
|
most loop containing this access.
|
854 |
|
|
|
855 |
|
|
The matrix will have a calculated value of weighted hotness for each
|
856 |
|
|
dimension.
|
857 |
|
|
Intuitively the hotness level of a dimension is a function of how
|
858 |
|
|
many times it was the most frequently accessed dimension in the
|
859 |
|
|
highly executed access sites of this matrix.
|
860 |
|
|
|
861 |
|
|
As computed by following equation:
|
862 |
|
|
m n
|
863 |
|
|
__ __
|
864 |
|
|
\ \ dim_hot_level[i] +=
|
865 |
|
|
/_ /_
|
866 |
|
|
j i
|
867 |
|
|
acc[j]->dim[i]->iter_by_inner_loop * count(j)
|
868 |
|
|
|
869 |
|
|
Where n is the number of dims and m is the number of the matrix
|
870 |
|
|
access sites. acc[j]->dim[i]->iter_by_inner_loop is 1 if acc[j]
|
871 |
|
|
iterates over dim[i] in innermost loop, and is 0 otherwise.
|
872 |
|
|
|
873 |
|
|
The organization of the new matrix should be according to the
|
874 |
|
|
hotness of each dimension. The hotness of the dimension implies
|
875 |
|
|
the locality of the elements.*/
|
876 |
|
|
static int
|
877 |
|
|
analyze_transpose (void **slot, void *data ATTRIBUTE_UNUSED)
|
878 |
|
|
{
|
879 |
|
|
struct matrix_info *mi = (struct matrix_info *) *slot;
|
880 |
|
|
int min_escape_l = mi->min_indirect_level_escape;
|
881 |
|
|
struct loop *loop;
|
882 |
|
|
affine_iv iv;
|
883 |
|
|
struct access_site_info *acc_info;
|
884 |
|
|
int i;
|
885 |
|
|
|
886 |
|
|
if (min_escape_l < 2 || !mi->access_l)
|
887 |
|
|
{
|
888 |
|
|
if (mi->access_l)
|
889 |
|
|
{
|
890 |
|
|
FOR_EACH_VEC_ELT (access_site_info_p, mi->access_l, i, acc_info)
|
891 |
|
|
free (acc_info);
|
892 |
|
|
VEC_free (access_site_info_p, heap, mi->access_l);
|
893 |
|
|
|
894 |
|
|
}
|
895 |
|
|
return 1;
|
896 |
|
|
}
|
897 |
|
|
if (!mi->dim_hot_level)
|
898 |
|
|
mi->dim_hot_level =
|
899 |
|
|
(gcov_type *) xcalloc (min_escape_l, sizeof (gcov_type));
|
900 |
|
|
|
901 |
|
|
|
902 |
|
|
for (i = 0; VEC_iterate (access_site_info_p, mi->access_l, i, acc_info);
|
903 |
|
|
i++)
|
904 |
|
|
{
|
905 |
|
|
if (gimple_assign_rhs_code (acc_info->stmt) == POINTER_PLUS_EXPR
|
906 |
|
|
&& acc_info->level < min_escape_l)
|
907 |
|
|
{
|
908 |
|
|
loop = loop_containing_stmt (acc_info->stmt);
|
909 |
|
|
if (!loop || loop->inner)
|
910 |
|
|
{
|
911 |
|
|
free (acc_info);
|
912 |
|
|
continue;
|
913 |
|
|
}
|
914 |
|
|
if (simple_iv (loop, loop, acc_info->offset, &iv, true))
|
915 |
|
|
{
|
916 |
|
|
if (iv.step != NULL)
|
917 |
|
|
{
|
918 |
|
|
HOST_WIDE_INT istep;
|
919 |
|
|
|
920 |
|
|
istep = int_cst_value (iv.step);
|
921 |
|
|
if (istep != 0)
|
922 |
|
|
{
|
923 |
|
|
acc_info->iterated_by_inner_most_loop_p = 1;
|
924 |
|
|
mi->dim_hot_level[acc_info->level] +=
|
925 |
|
|
gimple_bb (acc_info->stmt)->count;
|
926 |
|
|
}
|
927 |
|
|
|
928 |
|
|
}
|
929 |
|
|
}
|
930 |
|
|
}
|
931 |
|
|
free (acc_info);
|
932 |
|
|
}
|
933 |
|
|
VEC_free (access_site_info_p, heap, mi->access_l);
|
934 |
|
|
|
935 |
|
|
return 1;
|
936 |
|
|
}
|
937 |
|
|
|
938 |
|
|
/* Find the index which defines the OFFSET from base.
|
939 |
|
|
We walk from use to def until we find how the offset was defined. */
|
940 |
|
|
static tree
|
941 |
|
|
get_index_from_offset (tree offset, gimple def_stmt)
|
942 |
|
|
{
|
943 |
|
|
tree op1, op2, index;
|
944 |
|
|
|
945 |
|
|
if (gimple_code (def_stmt) == GIMPLE_PHI)
|
946 |
|
|
return NULL;
|
947 |
|
|
if ((gimple_assign_copy_p (def_stmt) || gimple_assign_cast_p (def_stmt))
|
948 |
|
|
&& TREE_CODE (gimple_assign_rhs1 (def_stmt)) == SSA_NAME)
|
949 |
|
|
return get_index_from_offset (offset,
|
950 |
|
|
SSA_NAME_DEF_STMT (gimple_assign_rhs1 (def_stmt)));
|
951 |
|
|
else if (is_gimple_assign (def_stmt)
|
952 |
|
|
&& gimple_assign_rhs_code (def_stmt) == MULT_EXPR)
|
953 |
|
|
{
|
954 |
|
|
op1 = gimple_assign_rhs1 (def_stmt);
|
955 |
|
|
op2 = gimple_assign_rhs2 (def_stmt);
|
956 |
|
|
if (TREE_CODE (op1) != INTEGER_CST && TREE_CODE (op2) != INTEGER_CST)
|
957 |
|
|
return NULL;
|
958 |
|
|
index = (TREE_CODE (op1) == INTEGER_CST) ? op2 : op1;
|
959 |
|
|
return index;
|
960 |
|
|
}
|
961 |
|
|
else
|
962 |
|
|
return NULL_TREE;
|
963 |
|
|
}
|
964 |
|
|
|
965 |
|
|
/* update MI->dimension_type_size[CURRENT_INDIRECT_LEVEL] with the size
|
966 |
|
|
of the type related to the SSA_VAR, or the type related to the
|
967 |
|
|
lhs of STMT, in the case that it is an MEM_REF. */
|
968 |
|
|
static void
|
969 |
|
|
update_type_size (struct matrix_info *mi, gimple stmt, tree ssa_var,
|
970 |
|
|
int current_indirect_level)
|
971 |
|
|
{
|
972 |
|
|
tree lhs;
|
973 |
|
|
HOST_WIDE_INT type_size;
|
974 |
|
|
|
975 |
|
|
/* Update type according to the type of the MEM_REF expr. */
|
976 |
|
|
if (is_gimple_assign (stmt)
|
977 |
|
|
&& TREE_CODE (gimple_assign_lhs (stmt)) == MEM_REF)
|
978 |
|
|
{
|
979 |
|
|
lhs = gimple_assign_lhs (stmt);
|
980 |
|
|
gcc_assert (POINTER_TYPE_P
|
981 |
|
|
(TREE_TYPE (SSA_NAME_VAR (TREE_OPERAND (lhs, 0)))));
|
982 |
|
|
type_size =
|
983 |
|
|
int_size_in_bytes (TREE_TYPE
|
984 |
|
|
(TREE_TYPE
|
985 |
|
|
(SSA_NAME_VAR (TREE_OPERAND (lhs, 0)))));
|
986 |
|
|
}
|
987 |
|
|
else
|
988 |
|
|
type_size = int_size_in_bytes (TREE_TYPE (ssa_var));
|
989 |
|
|
|
990 |
|
|
/* Record the size of elements accessed (as a whole)
|
991 |
|
|
in the current indirection level (dimension). If the size of
|
992 |
|
|
elements is not known at compile time, mark it as escaping. */
|
993 |
|
|
if (type_size <= 0)
|
994 |
|
|
mark_min_matrix_escape_level (mi, current_indirect_level, stmt);
|
995 |
|
|
else
|
996 |
|
|
{
|
997 |
|
|
int l = current_indirect_level;
|
998 |
|
|
|
999 |
|
|
if (!mi->dimension_type_size)
|
1000 |
|
|
{
|
1001 |
|
|
mi->dimension_type_size
|
1002 |
|
|
= (HOST_WIDE_INT *) xcalloc (l + 1, sizeof (HOST_WIDE_INT));
|
1003 |
|
|
mi->dimension_type_size_len = l + 1;
|
1004 |
|
|
}
|
1005 |
|
|
else if (mi->dimension_type_size_len < l + 1)
|
1006 |
|
|
{
|
1007 |
|
|
mi->dimension_type_size
|
1008 |
|
|
= (HOST_WIDE_INT *) xrealloc (mi->dimension_type_size,
|
1009 |
|
|
(l + 1) * sizeof (HOST_WIDE_INT));
|
1010 |
|
|
memset (&mi->dimension_type_size[mi->dimension_type_size_len],
|
1011 |
|
|
0, (l + 1 - mi->dimension_type_size_len)
|
1012 |
|
|
* sizeof (HOST_WIDE_INT));
|
1013 |
|
|
mi->dimension_type_size_len = l + 1;
|
1014 |
|
|
}
|
1015 |
|
|
/* Make sure all the accesses in the same level have the same size
|
1016 |
|
|
of the type. */
|
1017 |
|
|
if (!mi->dimension_type_size[l])
|
1018 |
|
|
mi->dimension_type_size[l] = type_size;
|
1019 |
|
|
else if (mi->dimension_type_size[l] != type_size)
|
1020 |
|
|
mark_min_matrix_escape_level (mi, l, stmt);
|
1021 |
|
|
}
|
1022 |
|
|
}
|
1023 |
|
|
|
1024 |
|
|
/* USE_STMT represents a GIMPLE_CALL, where one of the arguments is the
|
1025 |
|
|
ssa var that we want to check because it came from some use of matrix
|
1026 |
|
|
MI. CURRENT_INDIRECT_LEVEL is the indirection level we reached so
|
1027 |
|
|
far. */
|
1028 |
|
|
|
1029 |
|
|
static int
|
1030 |
|
|
analyze_accesses_for_call_stmt (struct matrix_info *mi, tree ssa_var,
|
1031 |
|
|
gimple use_stmt, int current_indirect_level)
|
1032 |
|
|
{
|
1033 |
|
|
tree fndecl = gimple_call_fndecl (use_stmt);
|
1034 |
|
|
|
1035 |
|
|
if (gimple_call_lhs (use_stmt))
|
1036 |
|
|
{
|
1037 |
|
|
tree lhs = gimple_call_lhs (use_stmt);
|
1038 |
|
|
struct ssa_acc_in_tree lhs_acc, rhs_acc;
|
1039 |
|
|
|
1040 |
|
|
memset (&lhs_acc, 0, sizeof (lhs_acc));
|
1041 |
|
|
memset (&rhs_acc, 0, sizeof (rhs_acc));
|
1042 |
|
|
|
1043 |
|
|
lhs_acc.ssa_var = ssa_var;
|
1044 |
|
|
lhs_acc.t_code = ERROR_MARK;
|
1045 |
|
|
ssa_accessed_in_tree (lhs, &lhs_acc);
|
1046 |
|
|
rhs_acc.ssa_var = ssa_var;
|
1047 |
|
|
rhs_acc.t_code = ERROR_MARK;
|
1048 |
|
|
ssa_accessed_in_call_rhs (use_stmt, &rhs_acc);
|
1049 |
|
|
|
1050 |
|
|
/* The SSA must be either in the left side or in the right side,
|
1051 |
|
|
to understand what is happening.
|
1052 |
|
|
In case the SSA_NAME is found in both sides we should be escaping
|
1053 |
|
|
at this level because in this case we cannot calculate the
|
1054 |
|
|
address correctly. */
|
1055 |
|
|
if ((lhs_acc.var_found && rhs_acc.var_found
|
1056 |
|
|
&& lhs_acc.t_code == MEM_REF)
|
1057 |
|
|
|| (!rhs_acc.var_found && !lhs_acc.var_found))
|
1058 |
|
|
{
|
1059 |
|
|
mark_min_matrix_escape_level (mi, current_indirect_level, use_stmt);
|
1060 |
|
|
return current_indirect_level;
|
1061 |
|
|
}
|
1062 |
|
|
gcc_assert (!rhs_acc.var_found || !lhs_acc.var_found);
|
1063 |
|
|
|
1064 |
|
|
/* If we are storing to the matrix at some level, then mark it as
|
1065 |
|
|
escaping at that level. */
|
1066 |
|
|
if (lhs_acc.var_found)
|
1067 |
|
|
{
|
1068 |
|
|
int l = current_indirect_level + 1;
|
1069 |
|
|
|
1070 |
|
|
gcc_assert (lhs_acc.t_code == MEM_REF);
|
1071 |
|
|
mark_min_matrix_escape_level (mi, l, use_stmt);
|
1072 |
|
|
return current_indirect_level;
|
1073 |
|
|
}
|
1074 |
|
|
}
|
1075 |
|
|
|
1076 |
|
|
if (fndecl)
|
1077 |
|
|
{
|
1078 |
|
|
if (DECL_FUNCTION_CODE (fndecl) != BUILT_IN_FREE)
|
1079 |
|
|
{
|
1080 |
|
|
if (dump_file)
|
1081 |
|
|
fprintf (dump_file,
|
1082 |
|
|
"Matrix %s: Function call %s, level %d escapes.\n",
|
1083 |
|
|
get_name (mi->decl), get_name (fndecl),
|
1084 |
|
|
current_indirect_level);
|
1085 |
|
|
mark_min_matrix_escape_level (mi, current_indirect_level, use_stmt);
|
1086 |
|
|
}
|
1087 |
|
|
else if (mi->free_stmts[current_indirect_level].stmt != NULL
|
1088 |
|
|
&& mi->free_stmts[current_indirect_level].stmt != use_stmt)
|
1089 |
|
|
mark_min_matrix_escape_level (mi, current_indirect_level, use_stmt);
|
1090 |
|
|
else
|
1091 |
|
|
{
|
1092 |
|
|
/*Record the free statements so we can delete them
|
1093 |
|
|
later. */
|
1094 |
|
|
int l = current_indirect_level;
|
1095 |
|
|
|
1096 |
|
|
mi->free_stmts[l].stmt = use_stmt;
|
1097 |
|
|
mi->free_stmts[l].func = current_function_decl;
|
1098 |
|
|
}
|
1099 |
|
|
}
|
1100 |
|
|
return current_indirect_level;
|
1101 |
|
|
}
|
1102 |
|
|
|
1103 |
|
|
/* USE_STMT represents a phi node of the ssa var that we want to
|
1104 |
|
|
check because it came from some use of matrix
|
1105 |
|
|
MI.
|
1106 |
|
|
We check all the escaping levels that get to the PHI node
|
1107 |
|
|
and make sure they are all the same escaping;
|
1108 |
|
|
if not (which is rare) we let the escaping level be the
|
1109 |
|
|
minimum level that gets into that PHI because starting from
|
1110 |
|
|
that level we cannot expect the behavior of the indirections.
|
1111 |
|
|
CURRENT_INDIRECT_LEVEL is the indirection level we reached so far. */
|
1112 |
|
|
|
1113 |
|
|
static void
|
1114 |
|
|
analyze_accesses_for_phi_node (struct matrix_info *mi, gimple use_stmt,
|
1115 |
|
|
int current_indirect_level, sbitmap visited,
|
1116 |
|
|
bool record_accesses)
|
1117 |
|
|
{
|
1118 |
|
|
|
1119 |
|
|
struct matrix_access_phi_node tmp_maphi, *maphi, **pmaphi;
|
1120 |
|
|
|
1121 |
|
|
tmp_maphi.phi = use_stmt;
|
1122 |
|
|
if ((maphi = (struct matrix_access_phi_node *)
|
1123 |
|
|
htab_find (htab_mat_acc_phi_nodes, &tmp_maphi)))
|
1124 |
|
|
{
|
1125 |
|
|
if (maphi->indirection_level == current_indirect_level)
|
1126 |
|
|
return;
|
1127 |
|
|
else
|
1128 |
|
|
{
|
1129 |
|
|
int level = MIN (maphi->indirection_level,
|
1130 |
|
|
current_indirect_level);
|
1131 |
|
|
size_t j;
|
1132 |
|
|
gimple stmt = NULL;
|
1133 |
|
|
|
1134 |
|
|
maphi->indirection_level = level;
|
1135 |
|
|
for (j = 0; j < gimple_phi_num_args (use_stmt); j++)
|
1136 |
|
|
{
|
1137 |
|
|
tree def = PHI_ARG_DEF (use_stmt, j);
|
1138 |
|
|
|
1139 |
|
|
if (gimple_code (SSA_NAME_DEF_STMT (def)) != GIMPLE_PHI)
|
1140 |
|
|
stmt = SSA_NAME_DEF_STMT (def);
|
1141 |
|
|
}
|
1142 |
|
|
mark_min_matrix_escape_level (mi, level, stmt);
|
1143 |
|
|
}
|
1144 |
|
|
return;
|
1145 |
|
|
}
|
1146 |
|
|
maphi = (struct matrix_access_phi_node *)
|
1147 |
|
|
xcalloc (1, sizeof (struct matrix_access_phi_node));
|
1148 |
|
|
maphi->phi = use_stmt;
|
1149 |
|
|
maphi->indirection_level = current_indirect_level;
|
1150 |
|
|
|
1151 |
|
|
/* Insert to hash table. */
|
1152 |
|
|
pmaphi = (struct matrix_access_phi_node **)
|
1153 |
|
|
htab_find_slot (htab_mat_acc_phi_nodes, maphi, INSERT);
|
1154 |
|
|
gcc_assert (pmaphi);
|
1155 |
|
|
*pmaphi = maphi;
|
1156 |
|
|
|
1157 |
|
|
if (!TEST_BIT (visited, SSA_NAME_VERSION (PHI_RESULT (use_stmt))))
|
1158 |
|
|
{
|
1159 |
|
|
SET_BIT (visited, SSA_NAME_VERSION (PHI_RESULT (use_stmt)));
|
1160 |
|
|
analyze_matrix_accesses (mi, PHI_RESULT (use_stmt),
|
1161 |
|
|
current_indirect_level, false, visited,
|
1162 |
|
|
record_accesses);
|
1163 |
|
|
RESET_BIT (visited, SSA_NAME_VERSION (PHI_RESULT (use_stmt)));
|
1164 |
|
|
}
|
1165 |
|
|
}
|
1166 |
|
|
|
1167 |
|
|
/* USE_STMT represents an assign statement (the rhs or lhs include
|
1168 |
|
|
the ssa var that we want to check because it came from some use of matrix
|
1169 |
|
|
MI. CURRENT_INDIRECT_LEVEL is the indirection level we reached so far. */
|
1170 |
|
|
|
1171 |
|
|
static int
|
1172 |
|
|
analyze_accesses_for_assign_stmt (struct matrix_info *mi, tree ssa_var,
|
1173 |
|
|
gimple use_stmt, int current_indirect_level,
|
1174 |
|
|
bool last_op, sbitmap visited,
|
1175 |
|
|
bool record_accesses)
|
1176 |
|
|
{
|
1177 |
|
|
tree lhs = gimple_get_lhs (use_stmt);
|
1178 |
|
|
struct ssa_acc_in_tree lhs_acc, rhs_acc;
|
1179 |
|
|
|
1180 |
|
|
memset (&lhs_acc, 0, sizeof (lhs_acc));
|
1181 |
|
|
memset (&rhs_acc, 0, sizeof (rhs_acc));
|
1182 |
|
|
|
1183 |
|
|
lhs_acc.ssa_var = ssa_var;
|
1184 |
|
|
lhs_acc.t_code = ERROR_MARK;
|
1185 |
|
|
ssa_accessed_in_tree (lhs, &lhs_acc);
|
1186 |
|
|
rhs_acc.ssa_var = ssa_var;
|
1187 |
|
|
rhs_acc.t_code = ERROR_MARK;
|
1188 |
|
|
ssa_accessed_in_assign_rhs (use_stmt, &rhs_acc);
|
1189 |
|
|
|
1190 |
|
|
/* The SSA must be either in the left side or in the right side,
|
1191 |
|
|
to understand what is happening.
|
1192 |
|
|
In case the SSA_NAME is found in both sides we should be escaping
|
1193 |
|
|
at this level because in this case we cannot calculate the
|
1194 |
|
|
address correctly. */
|
1195 |
|
|
if ((lhs_acc.var_found && rhs_acc.var_found
|
1196 |
|
|
&& lhs_acc.t_code == MEM_REF)
|
1197 |
|
|
|| (!rhs_acc.var_found && !lhs_acc.var_found))
|
1198 |
|
|
{
|
1199 |
|
|
mark_min_matrix_escape_level (mi, current_indirect_level, use_stmt);
|
1200 |
|
|
return current_indirect_level;
|
1201 |
|
|
}
|
1202 |
|
|
gcc_assert (!rhs_acc.var_found || !lhs_acc.var_found);
|
1203 |
|
|
|
1204 |
|
|
/* If we are storing to the matrix at some level, then mark it as
|
1205 |
|
|
escaping at that level. */
|
1206 |
|
|
if (lhs_acc.var_found)
|
1207 |
|
|
{
|
1208 |
|
|
int l = current_indirect_level + 1;
|
1209 |
|
|
|
1210 |
|
|
gcc_assert (lhs_acc.t_code == MEM_REF);
|
1211 |
|
|
|
1212 |
|
|
if (!(gimple_assign_copy_p (use_stmt)
|
1213 |
|
|
|| gimple_assign_cast_p (use_stmt))
|
1214 |
|
|
|| (TREE_CODE (gimple_assign_rhs1 (use_stmt)) != SSA_NAME))
|
1215 |
|
|
mark_min_matrix_escape_level (mi, l, use_stmt);
|
1216 |
|
|
else
|
1217 |
|
|
{
|
1218 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (use_stmt));
|
1219 |
|
|
analyze_matrix_allocation_site (mi, def_stmt, l, visited);
|
1220 |
|
|
if (record_accesses)
|
1221 |
|
|
record_access_alloc_site_info (mi, use_stmt, NULL_TREE,
|
1222 |
|
|
NULL_TREE, l, true);
|
1223 |
|
|
update_type_size (mi, use_stmt, NULL, l);
|
1224 |
|
|
}
|
1225 |
|
|
return current_indirect_level;
|
1226 |
|
|
}
|
1227 |
|
|
/* Now, check the right-hand-side, to see how the SSA variable
|
1228 |
|
|
is used. */
|
1229 |
|
|
if (rhs_acc.var_found)
|
1230 |
|
|
{
|
1231 |
|
|
if (rhs_acc.t_code != MEM_REF
|
1232 |
|
|
&& rhs_acc.t_code != POINTER_PLUS_EXPR && rhs_acc.t_code != SSA_NAME)
|
1233 |
|
|
{
|
1234 |
|
|
mark_min_matrix_escape_level (mi, current_indirect_level, use_stmt);
|
1235 |
|
|
return current_indirect_level;
|
1236 |
|
|
}
|
1237 |
|
|
/* If the access in the RHS has an indirection increase the
|
1238 |
|
|
indirection level. */
|
1239 |
|
|
if (rhs_acc.t_code == MEM_REF)
|
1240 |
|
|
{
|
1241 |
|
|
if (record_accesses)
|
1242 |
|
|
record_access_alloc_site_info (mi, use_stmt, NULL_TREE,
|
1243 |
|
|
NULL_TREE,
|
1244 |
|
|
current_indirect_level, true);
|
1245 |
|
|
current_indirect_level += 1;
|
1246 |
|
|
}
|
1247 |
|
|
else if (rhs_acc.t_code == POINTER_PLUS_EXPR)
|
1248 |
|
|
{
|
1249 |
|
|
gcc_assert (rhs_acc.second_op);
|
1250 |
|
|
if (last_op)
|
1251 |
|
|
/* Currently we support only one PLUS expression on the
|
1252 |
|
|
SSA_NAME that holds the base address of the current
|
1253 |
|
|
indirection level; to support more general case there
|
1254 |
|
|
is a need to hold a stack of expressions and regenerate
|
1255 |
|
|
the calculation later. */
|
1256 |
|
|
mark_min_matrix_escape_level (mi, current_indirect_level,
|
1257 |
|
|
use_stmt);
|
1258 |
|
|
else
|
1259 |
|
|
{
|
1260 |
|
|
tree index;
|
1261 |
|
|
tree op1, op2;
|
1262 |
|
|
|
1263 |
|
|
op1 = gimple_assign_rhs1 (use_stmt);
|
1264 |
|
|
op2 = gimple_assign_rhs2 (use_stmt);
|
1265 |
|
|
|
1266 |
|
|
op2 = (op1 == ssa_var) ? op2 : op1;
|
1267 |
|
|
if (TREE_CODE (op2) == INTEGER_CST)
|
1268 |
|
|
index =
|
1269 |
|
|
build_int_cst (TREE_TYPE (op1),
|
1270 |
|
|
TREE_INT_CST_LOW (op2) /
|
1271 |
|
|
int_size_in_bytes (TREE_TYPE (op1)));
|
1272 |
|
|
else
|
1273 |
|
|
{
|
1274 |
|
|
index =
|
1275 |
|
|
get_index_from_offset (op2, SSA_NAME_DEF_STMT (op2));
|
1276 |
|
|
if (index == NULL_TREE)
|
1277 |
|
|
{
|
1278 |
|
|
mark_min_matrix_escape_level (mi,
|
1279 |
|
|
current_indirect_level,
|
1280 |
|
|
use_stmt);
|
1281 |
|
|
return current_indirect_level;
|
1282 |
|
|
}
|
1283 |
|
|
}
|
1284 |
|
|
if (record_accesses)
|
1285 |
|
|
record_access_alloc_site_info (mi, use_stmt, op2,
|
1286 |
|
|
index,
|
1287 |
|
|
current_indirect_level, false);
|
1288 |
|
|
}
|
1289 |
|
|
}
|
1290 |
|
|
/* If we are storing this level of indirection mark it as
|
1291 |
|
|
escaping. */
|
1292 |
|
|
if (lhs_acc.t_code == MEM_REF || TREE_CODE (lhs) != SSA_NAME)
|
1293 |
|
|
{
|
1294 |
|
|
int l = current_indirect_level;
|
1295 |
|
|
|
1296 |
|
|
/* One exception is when we are storing to the matrix
|
1297 |
|
|
variable itself; this is the case of malloc, we must make
|
1298 |
|
|
sure that it's the one and only one call to malloc so
|
1299 |
|
|
we call analyze_matrix_allocation_site to check
|
1300 |
|
|
this out. */
|
1301 |
|
|
if (TREE_CODE (lhs) != VAR_DECL || lhs != mi->decl)
|
1302 |
|
|
mark_min_matrix_escape_level (mi, current_indirect_level,
|
1303 |
|
|
use_stmt);
|
1304 |
|
|
else
|
1305 |
|
|
{
|
1306 |
|
|
/* Also update the escaping level. */
|
1307 |
|
|
analyze_matrix_allocation_site (mi, use_stmt, l, visited);
|
1308 |
|
|
if (record_accesses)
|
1309 |
|
|
record_access_alloc_site_info (mi, use_stmt, NULL_TREE,
|
1310 |
|
|
NULL_TREE, l, true);
|
1311 |
|
|
}
|
1312 |
|
|
}
|
1313 |
|
|
else
|
1314 |
|
|
{
|
1315 |
|
|
/* We are placing it in an SSA, follow that SSA. */
|
1316 |
|
|
analyze_matrix_accesses (mi, lhs,
|
1317 |
|
|
current_indirect_level,
|
1318 |
|
|
rhs_acc.t_code == POINTER_PLUS_EXPR,
|
1319 |
|
|
visited, record_accesses);
|
1320 |
|
|
}
|
1321 |
|
|
}
|
1322 |
|
|
return current_indirect_level;
|
1323 |
|
|
}
|
1324 |
|
|
|
1325 |
|
|
/* Given a SSA_VAR (coming from a use statement of the matrix MI),
|
1326 |
|
|
follow its uses and level of indirection and find out the minimum
|
1327 |
|
|
indirection level it escapes in (the highest dimension) and the maximum
|
1328 |
|
|
level it is accessed in (this will be the actual dimension of the
|
1329 |
|
|
matrix). The information is accumulated in MI.
|
1330 |
|
|
We look at the immediate uses, if one escapes we finish; if not,
|
1331 |
|
|
we make a recursive call for each one of the immediate uses of the
|
1332 |
|
|
resulting SSA name. */
|
1333 |
|
|
static void
|
1334 |
|
|
analyze_matrix_accesses (struct matrix_info *mi, tree ssa_var,
|
1335 |
|
|
int current_indirect_level, bool last_op,
|
1336 |
|
|
sbitmap visited, bool record_accesses)
|
1337 |
|
|
{
|
1338 |
|
|
imm_use_iterator imm_iter;
|
1339 |
|
|
use_operand_p use_p;
|
1340 |
|
|
|
1341 |
|
|
update_type_size (mi, SSA_NAME_DEF_STMT (ssa_var), ssa_var,
|
1342 |
|
|
current_indirect_level);
|
1343 |
|
|
|
1344 |
|
|
/* We don't go beyond the escaping level when we are performing the
|
1345 |
|
|
flattening. NOTE: we keep the last indirection level that doesn't
|
1346 |
|
|
escape. */
|
1347 |
|
|
if (mi->min_indirect_level_escape > -1
|
1348 |
|
|
&& mi->min_indirect_level_escape <= current_indirect_level)
|
1349 |
|
|
return;
|
1350 |
|
|
|
1351 |
|
|
/* Now go over the uses of the SSA_NAME and check how it is used in
|
1352 |
|
|
each one of them. We are mainly looking for the pattern MEM_REF,
|
1353 |
|
|
then a POINTER_PLUS_EXPR, then MEM_REF etc. while in between there could
|
1354 |
|
|
be any number of copies and casts. */
|
1355 |
|
|
gcc_assert (TREE_CODE (ssa_var) == SSA_NAME);
|
1356 |
|
|
|
1357 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, ssa_var)
|
1358 |
|
|
{
|
1359 |
|
|
gimple use_stmt = USE_STMT (use_p);
|
1360 |
|
|
if (gimple_code (use_stmt) == GIMPLE_PHI)
|
1361 |
|
|
/* We check all the escaping levels that get to the PHI node
|
1362 |
|
|
and make sure they are all the same escaping;
|
1363 |
|
|
if not (which is rare) we let the escaping level be the
|
1364 |
|
|
minimum level that gets into that PHI because starting from
|
1365 |
|
|
that level we cannot expect the behavior of the indirections. */
|
1366 |
|
|
|
1367 |
|
|
analyze_accesses_for_phi_node (mi, use_stmt, current_indirect_level,
|
1368 |
|
|
visited, record_accesses);
|
1369 |
|
|
|
1370 |
|
|
else if (is_gimple_call (use_stmt))
|
1371 |
|
|
analyze_accesses_for_call_stmt (mi, ssa_var, use_stmt,
|
1372 |
|
|
current_indirect_level);
|
1373 |
|
|
else if (is_gimple_assign (use_stmt))
|
1374 |
|
|
current_indirect_level =
|
1375 |
|
|
analyze_accesses_for_assign_stmt (mi, ssa_var, use_stmt,
|
1376 |
|
|
current_indirect_level, last_op,
|
1377 |
|
|
visited, record_accesses);
|
1378 |
|
|
}
|
1379 |
|
|
}
|
1380 |
|
|
|
1381 |
|
|
typedef struct
|
1382 |
|
|
{
|
1383 |
|
|
tree fn;
|
1384 |
|
|
gimple stmt;
|
1385 |
|
|
} check_var_data;
|
1386 |
|
|
|
1387 |
|
|
/* A walk_tree function to go over the VAR_DECL, PARM_DECL nodes of
|
1388 |
|
|
the malloc size expression and check that those aren't changed
|
1389 |
|
|
over the function. */
|
1390 |
|
|
static tree
|
1391 |
|
|
check_var_notmodified_p (tree * tp, int *walk_subtrees, void *data)
|
1392 |
|
|
{
|
1393 |
|
|
basic_block bb;
|
1394 |
|
|
tree t = *tp;
|
1395 |
|
|
check_var_data *callback_data = (check_var_data*) data;
|
1396 |
|
|
tree fn = callback_data->fn;
|
1397 |
|
|
gimple_stmt_iterator gsi;
|
1398 |
|
|
gimple stmt;
|
1399 |
|
|
|
1400 |
|
|
if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
|
1401 |
|
|
return NULL_TREE;
|
1402 |
|
|
|
1403 |
|
|
FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (fn))
|
1404 |
|
|
{
|
1405 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
1406 |
|
|
{
|
1407 |
|
|
stmt = gsi_stmt (gsi);
|
1408 |
|
|
if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
|
1409 |
|
|
continue;
|
1410 |
|
|
if (gimple_get_lhs (stmt) == t)
|
1411 |
|
|
{
|
1412 |
|
|
callback_data->stmt = stmt;
|
1413 |
|
|
return t;
|
1414 |
|
|
}
|
1415 |
|
|
}
|
1416 |
|
|
}
|
1417 |
|
|
*walk_subtrees = 1;
|
1418 |
|
|
return NULL_TREE;
|
1419 |
|
|
}
|
1420 |
|
|
|
1421 |
|
|
/* Go backwards in the use-def chains and find out the expression
|
1422 |
|
|
represented by the possible SSA name in STMT, until it is composed
|
1423 |
|
|
of only VAR_DECL, PARM_DECL and INT_CST. In case of phi nodes
|
1424 |
|
|
we make sure that all the arguments represent the same subexpression,
|
1425 |
|
|
otherwise we fail. */
|
1426 |
|
|
|
1427 |
|
|
static tree
|
1428 |
|
|
can_calculate_stmt_before_stmt (gimple stmt, sbitmap visited)
|
1429 |
|
|
{
|
1430 |
|
|
tree op1, op2, res;
|
1431 |
|
|
enum tree_code code;
|
1432 |
|
|
|
1433 |
|
|
switch (gimple_code (stmt))
|
1434 |
|
|
{
|
1435 |
|
|
case GIMPLE_ASSIGN:
|
1436 |
|
|
code = gimple_assign_rhs_code (stmt);
|
1437 |
|
|
op1 = gimple_assign_rhs1 (stmt);
|
1438 |
|
|
|
1439 |
|
|
switch (code)
|
1440 |
|
|
{
|
1441 |
|
|
case POINTER_PLUS_EXPR:
|
1442 |
|
|
case PLUS_EXPR:
|
1443 |
|
|
case MINUS_EXPR:
|
1444 |
|
|
case MULT_EXPR:
|
1445 |
|
|
|
1446 |
|
|
op2 = gimple_assign_rhs2 (stmt);
|
1447 |
|
|
op1 = can_calculate_expr_before_stmt (op1, visited);
|
1448 |
|
|
if (!op1)
|
1449 |
|
|
return NULL_TREE;
|
1450 |
|
|
op2 = can_calculate_expr_before_stmt (op2, visited);
|
1451 |
|
|
if (op2)
|
1452 |
|
|
return fold_build2 (code, gimple_expr_type (stmt), op1, op2);
|
1453 |
|
|
return NULL_TREE;
|
1454 |
|
|
|
1455 |
|
|
CASE_CONVERT:
|
1456 |
|
|
res = can_calculate_expr_before_stmt (op1, visited);
|
1457 |
|
|
if (res != NULL_TREE)
|
1458 |
|
|
return build1 (code, gimple_expr_type (stmt), res);
|
1459 |
|
|
else
|
1460 |
|
|
return NULL_TREE;
|
1461 |
|
|
|
1462 |
|
|
default:
|
1463 |
|
|
if (gimple_assign_single_p (stmt))
|
1464 |
|
|
return can_calculate_expr_before_stmt (op1, visited);
|
1465 |
|
|
else
|
1466 |
|
|
return NULL_TREE;
|
1467 |
|
|
}
|
1468 |
|
|
|
1469 |
|
|
case GIMPLE_PHI:
|
1470 |
|
|
{
|
1471 |
|
|
size_t j;
|
1472 |
|
|
|
1473 |
|
|
res = NULL_TREE;
|
1474 |
|
|
/* Make sure all the arguments represent the same value. */
|
1475 |
|
|
for (j = 0; j < gimple_phi_num_args (stmt); j++)
|
1476 |
|
|
{
|
1477 |
|
|
tree new_res;
|
1478 |
|
|
tree def = PHI_ARG_DEF (stmt, j);
|
1479 |
|
|
|
1480 |
|
|
new_res = can_calculate_expr_before_stmt (def, visited);
|
1481 |
|
|
if (res == NULL_TREE)
|
1482 |
|
|
res = new_res;
|
1483 |
|
|
else if (!new_res || !expressions_equal_p (res, new_res))
|
1484 |
|
|
return NULL_TREE;
|
1485 |
|
|
}
|
1486 |
|
|
return res;
|
1487 |
|
|
}
|
1488 |
|
|
|
1489 |
|
|
default:
|
1490 |
|
|
return NULL_TREE;
|
1491 |
|
|
}
|
1492 |
|
|
}
|
1493 |
|
|
|
1494 |
|
|
/* Go backwards in the use-def chains and find out the expression
|
1495 |
|
|
represented by the possible SSA name in EXPR, until it is composed
|
1496 |
|
|
of only VAR_DECL, PARM_DECL and INT_CST. In case of phi nodes
|
1497 |
|
|
we make sure that all the arguments represent the same subexpression,
|
1498 |
|
|
otherwise we fail. */
|
1499 |
|
|
static tree
|
1500 |
|
|
can_calculate_expr_before_stmt (tree expr, sbitmap visited)
|
1501 |
|
|
{
|
1502 |
|
|
gimple def_stmt;
|
1503 |
|
|
tree res;
|
1504 |
|
|
|
1505 |
|
|
switch (TREE_CODE (expr))
|
1506 |
|
|
{
|
1507 |
|
|
case SSA_NAME:
|
1508 |
|
|
/* Case of loop, we don't know to represent this expression. */
|
1509 |
|
|
if (TEST_BIT (visited, SSA_NAME_VERSION (expr)))
|
1510 |
|
|
return NULL_TREE;
|
1511 |
|
|
|
1512 |
|
|
SET_BIT (visited, SSA_NAME_VERSION (expr));
|
1513 |
|
|
def_stmt = SSA_NAME_DEF_STMT (expr);
|
1514 |
|
|
res = can_calculate_stmt_before_stmt (def_stmt, visited);
|
1515 |
|
|
RESET_BIT (visited, SSA_NAME_VERSION (expr));
|
1516 |
|
|
return res;
|
1517 |
|
|
case VAR_DECL:
|
1518 |
|
|
case PARM_DECL:
|
1519 |
|
|
case INTEGER_CST:
|
1520 |
|
|
return expr;
|
1521 |
|
|
|
1522 |
|
|
default:
|
1523 |
|
|
return NULL_TREE;
|
1524 |
|
|
}
|
1525 |
|
|
}
|
1526 |
|
|
|
1527 |
|
|
/* There should be only one allocation function for the dimensions
|
1528 |
|
|
that don't escape. Here we check the allocation sites in this
|
1529 |
|
|
function. We must make sure that all the dimensions are allocated
|
1530 |
|
|
using malloc and that the malloc size parameter expression could be
|
1531 |
|
|
pre-calculated before the call to the malloc of dimension 0.
|
1532 |
|
|
|
1533 |
|
|
Given a candidate matrix for flattening -- MI -- check if it's
|
1534 |
|
|
appropriate for flattening -- we analyze the allocation
|
1535 |
|
|
sites that we recorded in the previous analysis. The result of the
|
1536 |
|
|
analysis is a level of indirection (matrix dimension) in which the
|
1537 |
|
|
flattening is safe. We check the following conditions:
|
1538 |
|
|
1. There is only one allocation site for each dimension.
|
1539 |
|
|
2. The allocation sites of all the dimensions are in the same
|
1540 |
|
|
function.
|
1541 |
|
|
(The above two are being taken care of during the analysis when
|
1542 |
|
|
we check the allocation site).
|
1543 |
|
|
3. All the dimensions that we flatten are allocated at once; thus
|
1544 |
|
|
the total size must be known before the allocation of the
|
1545 |
|
|
dimension 0 (top level) -- we must make sure we represent the
|
1546 |
|
|
size of the allocation as an expression of global parameters or
|
1547 |
|
|
constants and that those doesn't change over the function. */
|
1548 |
|
|
|
1549 |
|
|
static int
|
1550 |
|
|
check_allocation_function (void **slot, void *data ATTRIBUTE_UNUSED)
|
1551 |
|
|
{
|
1552 |
|
|
int level;
|
1553 |
|
|
struct matrix_info *mi = (struct matrix_info *) *slot;
|
1554 |
|
|
sbitmap visited;
|
1555 |
|
|
|
1556 |
|
|
if (!mi->malloc_for_level)
|
1557 |
|
|
return 1;
|
1558 |
|
|
|
1559 |
|
|
visited = sbitmap_alloc (num_ssa_names);
|
1560 |
|
|
|
1561 |
|
|
/* Do nothing if the current function is not the allocation
|
1562 |
|
|
function of MI. */
|
1563 |
|
|
if (mi->allocation_function_decl != current_function_decl
|
1564 |
|
|
/* We aren't in the main allocation function yet. */
|
1565 |
|
|
|| !mi->malloc_for_level[0])
|
1566 |
|
|
return 1;
|
1567 |
|
|
|
1568 |
|
|
for (level = 1; level < mi->max_malloced_level; level++)
|
1569 |
|
|
if (!mi->malloc_for_level[level])
|
1570 |
|
|
break;
|
1571 |
|
|
|
1572 |
|
|
mark_min_matrix_escape_level (mi, level, NULL);
|
1573 |
|
|
|
1574 |
|
|
/* Check if the expression of the size passed to malloc could be
|
1575 |
|
|
pre-calculated before the malloc of level 0. */
|
1576 |
|
|
for (level = 1; level < mi->min_indirect_level_escape; level++)
|
1577 |
|
|
{
|
1578 |
|
|
gimple call_stmt;
|
1579 |
|
|
tree size;
|
1580 |
|
|
struct malloc_call_data mcd = {NULL, NULL_TREE, NULL_TREE};
|
1581 |
|
|
|
1582 |
|
|
call_stmt = mi->malloc_for_level[level];
|
1583 |
|
|
|
1584 |
|
|
/* Find the correct malloc information. */
|
1585 |
|
|
collect_data_for_malloc_call (call_stmt, &mcd);
|
1586 |
|
|
|
1587 |
|
|
/* No need to check anticipation for constants. */
|
1588 |
|
|
if (TREE_CODE (mcd.size_var) == INTEGER_CST)
|
1589 |
|
|
{
|
1590 |
|
|
if (!mi->dimension_size)
|
1591 |
|
|
{
|
1592 |
|
|
mi->dimension_size =
|
1593 |
|
|
(tree *) xcalloc (mi->min_indirect_level_escape,
|
1594 |
|
|
sizeof (tree));
|
1595 |
|
|
mi->dimension_size_orig =
|
1596 |
|
|
(tree *) xcalloc (mi->min_indirect_level_escape,
|
1597 |
|
|
sizeof (tree));
|
1598 |
|
|
}
|
1599 |
|
|
mi->dimension_size[level] = mcd.size_var;
|
1600 |
|
|
mi->dimension_size_orig[level] = mcd.size_var;
|
1601 |
|
|
continue;
|
1602 |
|
|
}
|
1603 |
|
|
/* ??? Here we should also add the way to calculate the size
|
1604 |
|
|
expression not only know that it is anticipated. */
|
1605 |
|
|
sbitmap_zero (visited);
|
1606 |
|
|
size = can_calculate_expr_before_stmt (mcd.size_var, visited);
|
1607 |
|
|
if (size == NULL_TREE)
|
1608 |
|
|
{
|
1609 |
|
|
mark_min_matrix_escape_level (mi, level, call_stmt);
|
1610 |
|
|
if (dump_file)
|
1611 |
|
|
fprintf (dump_file,
|
1612 |
|
|
"Matrix %s: Cannot calculate the size of allocation, escaping at level %d\n",
|
1613 |
|
|
get_name (mi->decl), level);
|
1614 |
|
|
break;
|
1615 |
|
|
}
|
1616 |
|
|
if (!mi->dimension_size)
|
1617 |
|
|
{
|
1618 |
|
|
mi->dimension_size =
|
1619 |
|
|
(tree *) xcalloc (mi->min_indirect_level_escape, sizeof (tree));
|
1620 |
|
|
mi->dimension_size_orig =
|
1621 |
|
|
(tree *) xcalloc (mi->min_indirect_level_escape, sizeof (tree));
|
1622 |
|
|
}
|
1623 |
|
|
mi->dimension_size[level] = size;
|
1624 |
|
|
mi->dimension_size_orig[level] = size;
|
1625 |
|
|
}
|
1626 |
|
|
|
1627 |
|
|
/* We don't need those anymore. */
|
1628 |
|
|
for (level = mi->min_indirect_level_escape;
|
1629 |
|
|
level < mi->max_malloced_level; level++)
|
1630 |
|
|
mi->malloc_for_level[level] = NULL;
|
1631 |
|
|
return 1;
|
1632 |
|
|
}
|
1633 |
|
|
|
1634 |
|
|
/* Track all access and allocation sites. */
|
1635 |
|
|
static void
|
1636 |
|
|
find_sites_in_func (bool record)
|
1637 |
|
|
{
|
1638 |
|
|
sbitmap visited_stmts_1;
|
1639 |
|
|
|
1640 |
|
|
gimple_stmt_iterator gsi;
|
1641 |
|
|
gimple stmt;
|
1642 |
|
|
basic_block bb;
|
1643 |
|
|
struct matrix_info tmpmi, *mi;
|
1644 |
|
|
|
1645 |
|
|
visited_stmts_1 = sbitmap_alloc (num_ssa_names);
|
1646 |
|
|
|
1647 |
|
|
FOR_EACH_BB (bb)
|
1648 |
|
|
{
|
1649 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
1650 |
|
|
{
|
1651 |
|
|
tree lhs;
|
1652 |
|
|
|
1653 |
|
|
stmt = gsi_stmt (gsi);
|
1654 |
|
|
lhs = gimple_get_lhs (stmt);
|
1655 |
|
|
if (lhs != NULL_TREE
|
1656 |
|
|
&& TREE_CODE (lhs) == VAR_DECL)
|
1657 |
|
|
{
|
1658 |
|
|
tmpmi.decl = lhs;
|
1659 |
|
|
if ((mi = (struct matrix_info *) htab_find (matrices_to_reorg,
|
1660 |
|
|
&tmpmi)))
|
1661 |
|
|
{
|
1662 |
|
|
sbitmap_zero (visited_stmts_1);
|
1663 |
|
|
analyze_matrix_allocation_site (mi, stmt, 0, visited_stmts_1);
|
1664 |
|
|
}
|
1665 |
|
|
}
|
1666 |
|
|
if (is_gimple_assign (stmt)
|
1667 |
|
|
&& gimple_assign_single_p (stmt)
|
1668 |
|
|
&& TREE_CODE (lhs) == SSA_NAME
|
1669 |
|
|
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == VAR_DECL)
|
1670 |
|
|
{
|
1671 |
|
|
tmpmi.decl = gimple_assign_rhs1 (stmt);
|
1672 |
|
|
if ((mi = (struct matrix_info *) htab_find (matrices_to_reorg,
|
1673 |
|
|
&tmpmi)))
|
1674 |
|
|
{
|
1675 |
|
|
sbitmap_zero (visited_stmts_1);
|
1676 |
|
|
analyze_matrix_accesses (mi, lhs, 0,
|
1677 |
|
|
false, visited_stmts_1, record);
|
1678 |
|
|
}
|
1679 |
|
|
}
|
1680 |
|
|
}
|
1681 |
|
|
}
|
1682 |
|
|
sbitmap_free (visited_stmts_1);
|
1683 |
|
|
}
|
1684 |
|
|
|
1685 |
|
|
/* Traverse the use-def chains to see if there are matrices that
|
1686 |
|
|
are passed through pointers and we cannot know how they are accessed.
|
1687 |
|
|
For each SSA-name defined by a global variable of our interest,
|
1688 |
|
|
we traverse the use-def chains of the SSA and follow the indirections,
|
1689 |
|
|
and record in what level of indirection the use of the variable
|
1690 |
|
|
escapes. A use of a pointer escapes when it is passed to a function,
|
1691 |
|
|
stored into memory or assigned (except in malloc and free calls). */
|
1692 |
|
|
|
1693 |
|
|
static void
|
1694 |
|
|
record_all_accesses_in_func (void)
|
1695 |
|
|
{
|
1696 |
|
|
unsigned i;
|
1697 |
|
|
sbitmap visited_stmts_1;
|
1698 |
|
|
|
1699 |
|
|
visited_stmts_1 = sbitmap_alloc (num_ssa_names);
|
1700 |
|
|
|
1701 |
|
|
for (i = 0; i < num_ssa_names; i++)
|
1702 |
|
|
{
|
1703 |
|
|
struct matrix_info tmpmi, *mi;
|
1704 |
|
|
tree ssa_var = ssa_name (i);
|
1705 |
|
|
tree rhs, lhs;
|
1706 |
|
|
|
1707 |
|
|
if (!ssa_var
|
1708 |
|
|
|| !is_gimple_assign (SSA_NAME_DEF_STMT (ssa_var))
|
1709 |
|
|
|| !gimple_assign_single_p (SSA_NAME_DEF_STMT (ssa_var)))
|
1710 |
|
|
continue;
|
1711 |
|
|
rhs = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (ssa_var));
|
1712 |
|
|
lhs = gimple_assign_lhs (SSA_NAME_DEF_STMT (ssa_var));
|
1713 |
|
|
if (TREE_CODE (rhs) != VAR_DECL && TREE_CODE (lhs) != VAR_DECL)
|
1714 |
|
|
continue;
|
1715 |
|
|
|
1716 |
|
|
/* If the RHS is a matrix that we want to analyze, follow the def-use
|
1717 |
|
|
chain for this SSA_VAR and check for escapes or apply the
|
1718 |
|
|
flattening. */
|
1719 |
|
|
tmpmi.decl = rhs;
|
1720 |
|
|
if ((mi = (struct matrix_info *) htab_find (matrices_to_reorg, &tmpmi)))
|
1721 |
|
|
{
|
1722 |
|
|
/* This variable will track the visited PHI nodes, so we can limit
|
1723 |
|
|
its size to the maximum number of SSA names. */
|
1724 |
|
|
sbitmap_zero (visited_stmts_1);
|
1725 |
|
|
analyze_matrix_accesses (mi, ssa_var,
|
1726 |
|
|
0, false, visited_stmts_1, true);
|
1727 |
|
|
|
1728 |
|
|
}
|
1729 |
|
|
}
|
1730 |
|
|
sbitmap_free (visited_stmts_1);
|
1731 |
|
|
}
|
1732 |
|
|
|
1733 |
|
|
/* Used when we want to convert the expression: RESULT = something *
|
1734 |
|
|
ORIG to RESULT = something * NEW_VAL. If ORIG and NEW_VAL are power
|
1735 |
|
|
of 2, shift operations can be done, else division and
|
1736 |
|
|
multiplication. */
|
1737 |
|
|
|
1738 |
|
|
static tree
|
1739 |
|
|
compute_offset (HOST_WIDE_INT orig, HOST_WIDE_INT new_val, tree result)
|
1740 |
|
|
{
|
1741 |
|
|
|
1742 |
|
|
int x, y;
|
1743 |
|
|
tree result1, ratio, log, orig_tree, new_tree;
|
1744 |
|
|
|
1745 |
|
|
x = exact_log2 (orig);
|
1746 |
|
|
y = exact_log2 (new_val);
|
1747 |
|
|
|
1748 |
|
|
if (x != -1 && y != -1)
|
1749 |
|
|
{
|
1750 |
|
|
if (x == y)
|
1751 |
|
|
return result;
|
1752 |
|
|
else if (x > y)
|
1753 |
|
|
{
|
1754 |
|
|
log = build_int_cst (TREE_TYPE (result), x - y);
|
1755 |
|
|
result1 =
|
1756 |
|
|
fold_build2 (LSHIFT_EXPR, TREE_TYPE (result), result, log);
|
1757 |
|
|
return result1;
|
1758 |
|
|
}
|
1759 |
|
|
log = build_int_cst (TREE_TYPE (result), y - x);
|
1760 |
|
|
result1 = fold_build2 (RSHIFT_EXPR, TREE_TYPE (result), result, log);
|
1761 |
|
|
|
1762 |
|
|
return result1;
|
1763 |
|
|
}
|
1764 |
|
|
orig_tree = build_int_cst (TREE_TYPE (result), orig);
|
1765 |
|
|
new_tree = build_int_cst (TREE_TYPE (result), new_val);
|
1766 |
|
|
ratio = fold_build2 (TRUNC_DIV_EXPR, TREE_TYPE (result), result, orig_tree);
|
1767 |
|
|
result1 = fold_build2 (MULT_EXPR, TREE_TYPE (result), ratio, new_tree);
|
1768 |
|
|
|
1769 |
|
|
return result1;
|
1770 |
|
|
}
|
1771 |
|
|
|
1772 |
|
|
|
1773 |
|
|
/* We know that we are allowed to perform matrix flattening (according to the
|
1774 |
|
|
escape analysis), so we traverse the use-def chains of the SSA vars
|
1775 |
|
|
defined by the global variables pointing to the matrices of our interest.
|
1776 |
|
|
in each use of the SSA we calculate the offset from the base address
|
1777 |
|
|
according to the following equation:
|
1778 |
|
|
|
1779 |
|
|
a[I1][I2]...[Ik] , where D1..Dk is the length of each dimension and the
|
1780 |
|
|
escaping level is m <= k, and a' is the new allocated matrix,
|
1781 |
|
|
will be translated to :
|
1782 |
|
|
|
1783 |
|
|
b[I(m+1)]...[Ik]
|
1784 |
|
|
|
1785 |
|
|
where
|
1786 |
|
|
b = a' + I1*D2...*Dm + I2*D3...Dm + ... + Im
|
1787 |
|
|
*/
|
1788 |
|
|
|
1789 |
|
|
static int
|
1790 |
|
|
transform_access_sites (void **slot, void *data ATTRIBUTE_UNUSED)
|
1791 |
|
|
{
|
1792 |
|
|
gimple_stmt_iterator gsi;
|
1793 |
|
|
struct matrix_info *mi = (struct matrix_info *) *slot;
|
1794 |
|
|
int min_escape_l = mi->min_indirect_level_escape;
|
1795 |
|
|
struct access_site_info *acc_info;
|
1796 |
|
|
enum tree_code code;
|
1797 |
|
|
int i;
|
1798 |
|
|
|
1799 |
|
|
if (min_escape_l < 2 || !mi->access_l)
|
1800 |
|
|
return 1;
|
1801 |
|
|
for (i = 0; VEC_iterate (access_site_info_p, mi->access_l, i, acc_info);
|
1802 |
|
|
i++)
|
1803 |
|
|
{
|
1804 |
|
|
/* This is possible because we collect the access sites before
|
1805 |
|
|
we determine the final minimum indirection level. */
|
1806 |
|
|
if (acc_info->level >= min_escape_l)
|
1807 |
|
|
{
|
1808 |
|
|
free (acc_info);
|
1809 |
|
|
continue;
|
1810 |
|
|
}
|
1811 |
|
|
if (acc_info->is_alloc)
|
1812 |
|
|
{
|
1813 |
|
|
if (acc_info->level >= 0 && gimple_bb (acc_info->stmt))
|
1814 |
|
|
{
|
1815 |
|
|
ssa_op_iter iter;
|
1816 |
|
|
tree def;
|
1817 |
|
|
gimple stmt = acc_info->stmt;
|
1818 |
|
|
tree lhs;
|
1819 |
|
|
|
1820 |
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
|
1821 |
|
|
mark_sym_for_renaming (SSA_NAME_VAR (def));
|
1822 |
|
|
gsi = gsi_for_stmt (stmt);
|
1823 |
|
|
gcc_assert (is_gimple_assign (acc_info->stmt));
|
1824 |
|
|
lhs = gimple_assign_lhs (acc_info->stmt);
|
1825 |
|
|
if (TREE_CODE (lhs) == SSA_NAME
|
1826 |
|
|
&& acc_info->level < min_escape_l - 1)
|
1827 |
|
|
{
|
1828 |
|
|
imm_use_iterator imm_iter;
|
1829 |
|
|
use_operand_p use_p;
|
1830 |
|
|
gimple use_stmt;
|
1831 |
|
|
|
1832 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
|
1833 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
|
1834 |
|
|
{
|
1835 |
|
|
tree rhs, tmp;
|
1836 |
|
|
gimple new_stmt;
|
1837 |
|
|
|
1838 |
|
|
gcc_assert (gimple_assign_rhs_code (acc_info->stmt)
|
1839 |
|
|
== MEM_REF);
|
1840 |
|
|
/* Emit convert statement to convert to type of use. */
|
1841 |
|
|
tmp = create_tmp_var (TREE_TYPE (lhs), "new");
|
1842 |
|
|
add_referenced_var (tmp);
|
1843 |
|
|
rhs = gimple_assign_rhs1 (acc_info->stmt);
|
1844 |
|
|
rhs = fold_convert (TREE_TYPE (tmp),
|
1845 |
|
|
TREE_OPERAND (rhs, 0));
|
1846 |
|
|
new_stmt = gimple_build_assign (tmp, rhs);
|
1847 |
|
|
tmp = make_ssa_name (tmp, new_stmt);
|
1848 |
|
|
gimple_assign_set_lhs (new_stmt, tmp);
|
1849 |
|
|
gsi = gsi_for_stmt (acc_info->stmt);
|
1850 |
|
|
gsi_insert_after (&gsi, new_stmt, GSI_SAME_STMT);
|
1851 |
|
|
SET_USE (use_p, tmp);
|
1852 |
|
|
}
|
1853 |
|
|
}
|
1854 |
|
|
if (acc_info->level < min_escape_l - 1)
|
1855 |
|
|
gsi_remove (&gsi, true);
|
1856 |
|
|
}
|
1857 |
|
|
free (acc_info);
|
1858 |
|
|
continue;
|
1859 |
|
|
}
|
1860 |
|
|
code = gimple_assign_rhs_code (acc_info->stmt);
|
1861 |
|
|
if (code == MEM_REF
|
1862 |
|
|
&& acc_info->level < min_escape_l - 1)
|
1863 |
|
|
{
|
1864 |
|
|
/* Replace the MEM_REF with NOP (cast) usually we are casting
|
1865 |
|
|
from "pointer to type" to "type". */
|
1866 |
|
|
tree t =
|
1867 |
|
|
build1 (NOP_EXPR, TREE_TYPE (gimple_assign_rhs1 (acc_info->stmt)),
|
1868 |
|
|
TREE_OPERAND (gimple_assign_rhs1 (acc_info->stmt), 0));
|
1869 |
|
|
gimple_assign_set_rhs_code (acc_info->stmt, NOP_EXPR);
|
1870 |
|
|
gimple_assign_set_rhs1 (acc_info->stmt, t);
|
1871 |
|
|
}
|
1872 |
|
|
else if (code == POINTER_PLUS_EXPR
|
1873 |
|
|
&& acc_info->level < (min_escape_l))
|
1874 |
|
|
{
|
1875 |
|
|
imm_use_iterator imm_iter;
|
1876 |
|
|
use_operand_p use_p;
|
1877 |
|
|
|
1878 |
|
|
tree offset;
|
1879 |
|
|
int k = acc_info->level;
|
1880 |
|
|
tree num_elements, total_elements;
|
1881 |
|
|
tree tmp1;
|
1882 |
|
|
tree d_size = mi->dimension_size[k];
|
1883 |
|
|
|
1884 |
|
|
/* We already make sure in the analysis that the first operand
|
1885 |
|
|
is the base and the second is the offset. */
|
1886 |
|
|
offset = acc_info->offset;
|
1887 |
|
|
if (mi->dim_map[k] == min_escape_l - 1)
|
1888 |
|
|
{
|
1889 |
|
|
if (!check_transpose_p || mi->is_transposed_p == false)
|
1890 |
|
|
tmp1 = offset;
|
1891 |
|
|
else
|
1892 |
|
|
{
|
1893 |
|
|
tree new_offset;
|
1894 |
|
|
|
1895 |
|
|
new_offset =
|
1896 |
|
|
compute_offset (mi->dimension_type_size[min_escape_l],
|
1897 |
|
|
mi->dimension_type_size[k + 1], offset);
|
1898 |
|
|
|
1899 |
|
|
total_elements = new_offset;
|
1900 |
|
|
if (new_offset != offset)
|
1901 |
|
|
{
|
1902 |
|
|
gsi = gsi_for_stmt (acc_info->stmt);
|
1903 |
|
|
tmp1 = force_gimple_operand_gsi (&gsi, total_elements,
|
1904 |
|
|
true, NULL,
|
1905 |
|
|
true, GSI_SAME_STMT);
|
1906 |
|
|
}
|
1907 |
|
|
else
|
1908 |
|
|
tmp1 = offset;
|
1909 |
|
|
}
|
1910 |
|
|
}
|
1911 |
|
|
else
|
1912 |
|
|
{
|
1913 |
|
|
d_size = mi->dimension_size[mi->dim_map[k] + 1];
|
1914 |
|
|
num_elements =
|
1915 |
|
|
fold_build2 (MULT_EXPR, sizetype, fold_convert (sizetype, acc_info->index),
|
1916 |
|
|
fold_convert (sizetype, d_size));
|
1917 |
|
|
add_referenced_var (d_size);
|
1918 |
|
|
gsi = gsi_for_stmt (acc_info->stmt);
|
1919 |
|
|
tmp1 = force_gimple_operand_gsi (&gsi, num_elements, true,
|
1920 |
|
|
NULL, true, GSI_SAME_STMT);
|
1921 |
|
|
}
|
1922 |
|
|
/* Replace the offset if needed. */
|
1923 |
|
|
if (tmp1 != offset)
|
1924 |
|
|
{
|
1925 |
|
|
if (TREE_CODE (offset) == SSA_NAME)
|
1926 |
|
|
{
|
1927 |
|
|
gimple use_stmt;
|
1928 |
|
|
|
1929 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, offset)
|
1930 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
|
1931 |
|
|
if (use_stmt == acc_info->stmt)
|
1932 |
|
|
SET_USE (use_p, tmp1);
|
1933 |
|
|
}
|
1934 |
|
|
else
|
1935 |
|
|
{
|
1936 |
|
|
gcc_assert (TREE_CODE (offset) == INTEGER_CST);
|
1937 |
|
|
gimple_assign_set_rhs2 (acc_info->stmt, tmp1);
|
1938 |
|
|
update_stmt (acc_info->stmt);
|
1939 |
|
|
}
|
1940 |
|
|
}
|
1941 |
|
|
}
|
1942 |
|
|
/* ??? meanwhile this happens because we record the same access
|
1943 |
|
|
site more than once; we should be using a hash table to
|
1944 |
|
|
avoid this and insert the STMT of the access site only
|
1945 |
|
|
once.
|
1946 |
|
|
else
|
1947 |
|
|
gcc_unreachable (); */
|
1948 |
|
|
free (acc_info);
|
1949 |
|
|
}
|
1950 |
|
|
VEC_free (access_site_info_p, heap, mi->access_l);
|
1951 |
|
|
|
1952 |
|
|
update_ssa (TODO_update_ssa);
|
1953 |
|
|
#ifdef ENABLE_CHECKING
|
1954 |
|
|
verify_ssa (true);
|
1955 |
|
|
#endif
|
1956 |
|
|
return 1;
|
1957 |
|
|
}
|
1958 |
|
|
|
1959 |
|
|
/* Sort A array of counts. Arrange DIM_MAP to reflect the new order. */
|
1960 |
|
|
|
1961 |
|
|
static void
|
1962 |
|
|
sort_dim_hot_level (gcov_type * a, int *dim_map, int n)
|
1963 |
|
|
{
|
1964 |
|
|
int i, j, tmp1;
|
1965 |
|
|
gcov_type tmp;
|
1966 |
|
|
|
1967 |
|
|
for (i = 0; i < n - 1; i++)
|
1968 |
|
|
{
|
1969 |
|
|
for (j = 0; j < n - 1 - i; j++)
|
1970 |
|
|
{
|
1971 |
|
|
if (a[j + 1] < a[j])
|
1972 |
|
|
{
|
1973 |
|
|
tmp = a[j]; /* swap a[j] and a[j+1] */
|
1974 |
|
|
a[j] = a[j + 1];
|
1975 |
|
|
a[j + 1] = tmp;
|
1976 |
|
|
tmp1 = dim_map[j];
|
1977 |
|
|
dim_map[j] = dim_map[j + 1];
|
1978 |
|
|
dim_map[j + 1] = tmp1;
|
1979 |
|
|
}
|
1980 |
|
|
}
|
1981 |
|
|
}
|
1982 |
|
|
}
|
1983 |
|
|
|
1984 |
|
|
/* Replace multiple mallocs (one for each dimension) to one malloc
|
1985 |
|
|
with the size of DIM1*DIM2*...*DIMN*size_of_element
|
1986 |
|
|
Make sure that we hold the size in the malloc site inside a
|
1987 |
|
|
new global variable; this way we ensure that the size doesn't
|
1988 |
|
|
change and it is accessible from all the other functions that
|
1989 |
|
|
uses the matrix. Also, the original calls to free are deleted,
|
1990 |
|
|
and replaced by a new call to free the flattened matrix. */
|
1991 |
|
|
|
1992 |
|
|
static int
|
1993 |
|
|
transform_allocation_sites (void **slot, void *data ATTRIBUTE_UNUSED)
|
1994 |
|
|
{
|
1995 |
|
|
int i;
|
1996 |
|
|
struct matrix_info *mi;
|
1997 |
|
|
tree type, oldfn, prev_dim_size;
|
1998 |
|
|
gimple call_stmt_0, use_stmt;
|
1999 |
|
|
struct cgraph_node *c_node;
|
2000 |
|
|
struct cgraph_edge *e;
|
2001 |
|
|
gimple_stmt_iterator gsi;
|
2002 |
|
|
struct malloc_call_data mcd = {NULL, NULL_TREE, NULL_TREE};
|
2003 |
|
|
HOST_WIDE_INT element_size;
|
2004 |
|
|
|
2005 |
|
|
imm_use_iterator imm_iter;
|
2006 |
|
|
use_operand_p use_p;
|
2007 |
|
|
tree old_size_0, tmp;
|
2008 |
|
|
int min_escape_l;
|
2009 |
|
|
int id;
|
2010 |
|
|
|
2011 |
|
|
mi = (struct matrix_info *) *slot;
|
2012 |
|
|
|
2013 |
|
|
min_escape_l = mi->min_indirect_level_escape;
|
2014 |
|
|
|
2015 |
|
|
if (!mi->malloc_for_level)
|
2016 |
|
|
mi->min_indirect_level_escape = 0;
|
2017 |
|
|
|
2018 |
|
|
if (mi->min_indirect_level_escape < 2)
|
2019 |
|
|
return 1;
|
2020 |
|
|
|
2021 |
|
|
mi->dim_map = (int *) xcalloc (mi->min_indirect_level_escape, sizeof (int));
|
2022 |
|
|
for (i = 0; i < mi->min_indirect_level_escape; i++)
|
2023 |
|
|
mi->dim_map[i] = i;
|
2024 |
|
|
if (check_transpose_p)
|
2025 |
|
|
{
|
2026 |
|
|
int i;
|
2027 |
|
|
|
2028 |
|
|
if (dump_file)
|
2029 |
|
|
{
|
2030 |
|
|
fprintf (dump_file, "Matrix %s:\n", get_name (mi->decl));
|
2031 |
|
|
for (i = 0; i < min_escape_l; i++)
|
2032 |
|
|
{
|
2033 |
|
|
fprintf (dump_file, "dim %d before sort ", i);
|
2034 |
|
|
if (mi->dim_hot_level)
|
2035 |
|
|
fprintf (dump_file,
|
2036 |
|
|
"count is " HOST_WIDEST_INT_PRINT_DEC " \n",
|
2037 |
|
|
mi->dim_hot_level[i]);
|
2038 |
|
|
}
|
2039 |
|
|
}
|
2040 |
|
|
sort_dim_hot_level (mi->dim_hot_level, mi->dim_map,
|
2041 |
|
|
mi->min_indirect_level_escape);
|
2042 |
|
|
if (dump_file)
|
2043 |
|
|
for (i = 0; i < min_escape_l; i++)
|
2044 |
|
|
{
|
2045 |
|
|
fprintf (dump_file, "dim %d after sort\n", i);
|
2046 |
|
|
if (mi->dim_hot_level)
|
2047 |
|
|
fprintf (dump_file, "count is " HOST_WIDE_INT_PRINT_DEC
|
2048 |
|
|
" \n", (HOST_WIDE_INT) mi->dim_hot_level[i]);
|
2049 |
|
|
}
|
2050 |
|
|
for (i = 0; i < mi->min_indirect_level_escape; i++)
|
2051 |
|
|
{
|
2052 |
|
|
if (dump_file)
|
2053 |
|
|
fprintf (dump_file, "dim_map[%d] after sort %d\n", i,
|
2054 |
|
|
mi->dim_map[i]);
|
2055 |
|
|
if (mi->dim_map[i] != i)
|
2056 |
|
|
{
|
2057 |
|
|
if (dump_file)
|
2058 |
|
|
fprintf (dump_file,
|
2059 |
|
|
"Transposed dimensions: dim %d is now dim %d\n",
|
2060 |
|
|
mi->dim_map[i], i);
|
2061 |
|
|
mi->is_transposed_p = true;
|
2062 |
|
|
}
|
2063 |
|
|
}
|
2064 |
|
|
}
|
2065 |
|
|
else
|
2066 |
|
|
{
|
2067 |
|
|
for (i = 0; i < mi->min_indirect_level_escape; i++)
|
2068 |
|
|
mi->dim_map[i] = i;
|
2069 |
|
|
}
|
2070 |
|
|
/* Call statement of allocation site of level 0. */
|
2071 |
|
|
call_stmt_0 = mi->malloc_for_level[0];
|
2072 |
|
|
|
2073 |
|
|
/* Finds the correct malloc information. */
|
2074 |
|
|
collect_data_for_malloc_call (call_stmt_0, &mcd);
|
2075 |
|
|
|
2076 |
|
|
mi->dimension_size[0] = mcd.size_var;
|
2077 |
|
|
mi->dimension_size_orig[0] = mcd.size_var;
|
2078 |
|
|
/* Make sure that the variables in the size expression for
|
2079 |
|
|
all the dimensions (above level 0) aren't modified in
|
2080 |
|
|
the allocation function. */
|
2081 |
|
|
for (i = 1; i < mi->min_indirect_level_escape; i++)
|
2082 |
|
|
{
|
2083 |
|
|
tree t;
|
2084 |
|
|
check_var_data data;
|
2085 |
|
|
|
2086 |
|
|
/* mi->dimension_size must contain the expression of the size calculated
|
2087 |
|
|
in check_allocation_function. */
|
2088 |
|
|
gcc_assert (mi->dimension_size[i]);
|
2089 |
|
|
|
2090 |
|
|
data.fn = mi->allocation_function_decl;
|
2091 |
|
|
data.stmt = NULL;
|
2092 |
|
|
t = walk_tree_without_duplicates (&(mi->dimension_size[i]),
|
2093 |
|
|
check_var_notmodified_p,
|
2094 |
|
|
&data);
|
2095 |
|
|
if (t != NULL_TREE)
|
2096 |
|
|
{
|
2097 |
|
|
mark_min_matrix_escape_level (mi, i, data.stmt);
|
2098 |
|
|
break;
|
2099 |
|
|
}
|
2100 |
|
|
}
|
2101 |
|
|
|
2102 |
|
|
if (mi->min_indirect_level_escape < 2)
|
2103 |
|
|
return 1;
|
2104 |
|
|
|
2105 |
|
|
/* Since we should make sure that the size expression is available
|
2106 |
|
|
before the call to malloc of level 0. */
|
2107 |
|
|
gsi = gsi_for_stmt (call_stmt_0);
|
2108 |
|
|
|
2109 |
|
|
/* Find out the size of each dimension by looking at the malloc
|
2110 |
|
|
sites and create a global variable to hold it.
|
2111 |
|
|
We add the assignment to the global before the malloc of level 0. */
|
2112 |
|
|
|
2113 |
|
|
/* To be able to produce gimple temporaries. */
|
2114 |
|
|
oldfn = current_function_decl;
|
2115 |
|
|
current_function_decl = mi->allocation_function_decl;
|
2116 |
|
|
push_cfun (DECL_STRUCT_FUNCTION (mi->allocation_function_decl));
|
2117 |
|
|
|
2118 |
|
|
/* Set the dimension sizes as follows:
|
2119 |
|
|
DIM_SIZE[i] = DIM_SIZE[n] * ... * DIM_SIZE[i]
|
2120 |
|
|
where n is the maximum non escaping level. */
|
2121 |
|
|
element_size = mi->dimension_type_size[mi->min_indirect_level_escape];
|
2122 |
|
|
prev_dim_size = NULL_TREE;
|
2123 |
|
|
|
2124 |
|
|
for (i = mi->min_indirect_level_escape - 1; i >= 0; i--)
|
2125 |
|
|
{
|
2126 |
|
|
tree dim_size, dim_var;
|
2127 |
|
|
gimple stmt;
|
2128 |
|
|
tree d_type_size;
|
2129 |
|
|
|
2130 |
|
|
/* Now put the size expression in a global variable and initialize it to
|
2131 |
|
|
the size expression before the malloc of level 0. */
|
2132 |
|
|
dim_var =
|
2133 |
|
|
add_new_static_var (TREE_TYPE
|
2134 |
|
|
(mi->dimension_size_orig[mi->dim_map[i]]));
|
2135 |
|
|
type = TREE_TYPE (mi->dimension_size_orig[mi->dim_map[i]]);
|
2136 |
|
|
|
2137 |
|
|
/* DIM_SIZE = MALLOC_SIZE_PARAM / TYPE_SIZE. */
|
2138 |
|
|
/* Find which dim ID becomes dim I. */
|
2139 |
|
|
for (id = 0; id < mi->min_indirect_level_escape; id++)
|
2140 |
|
|
if (mi->dim_map[id] == i)
|
2141 |
|
|
break;
|
2142 |
|
|
d_type_size =
|
2143 |
|
|
build_int_cst (type, mi->dimension_type_size[id + 1]);
|
2144 |
|
|
if (!prev_dim_size)
|
2145 |
|
|
prev_dim_size = build_int_cst (type, element_size);
|
2146 |
|
|
if (!check_transpose_p && i == mi->min_indirect_level_escape - 1)
|
2147 |
|
|
{
|
2148 |
|
|
dim_size = mi->dimension_size_orig[id];
|
2149 |
|
|
}
|
2150 |
|
|
else
|
2151 |
|
|
{
|
2152 |
|
|
dim_size =
|
2153 |
|
|
fold_build2 (TRUNC_DIV_EXPR, type, mi->dimension_size_orig[id],
|
2154 |
|
|
d_type_size);
|
2155 |
|
|
|
2156 |
|
|
dim_size = fold_build2 (MULT_EXPR, type, dim_size, prev_dim_size);
|
2157 |
|
|
}
|
2158 |
|
|
dim_size = force_gimple_operand_gsi (&gsi, dim_size, true, NULL,
|
2159 |
|
|
true, GSI_SAME_STMT);
|
2160 |
|
|
/* GLOBAL_HOLDING_THE_SIZE = DIM_SIZE. */
|
2161 |
|
|
stmt = gimple_build_assign (dim_var, dim_size);
|
2162 |
|
|
mark_symbols_for_renaming (stmt);
|
2163 |
|
|
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
|
2164 |
|
|
|
2165 |
|
|
prev_dim_size = mi->dimension_size[i] = dim_var;
|
2166 |
|
|
}
|
2167 |
|
|
update_ssa (TODO_update_ssa);
|
2168 |
|
|
/* Replace the malloc size argument in the malloc of level 0 to be
|
2169 |
|
|
the size of all the dimensions. */
|
2170 |
|
|
c_node = cgraph_get_node (mi->allocation_function_decl);
|
2171 |
|
|
gcc_checking_assert (c_node);
|
2172 |
|
|
old_size_0 = gimple_call_arg (call_stmt_0, 0);
|
2173 |
|
|
tmp = force_gimple_operand_gsi (&gsi, mi->dimension_size[0], true,
|
2174 |
|
|
NULL, true, GSI_SAME_STMT);
|
2175 |
|
|
if (TREE_CODE (old_size_0) == SSA_NAME)
|
2176 |
|
|
{
|
2177 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, old_size_0)
|
2178 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
|
2179 |
|
|
if (use_stmt == call_stmt_0)
|
2180 |
|
|
SET_USE (use_p, tmp);
|
2181 |
|
|
}
|
2182 |
|
|
/* When deleting the calls to malloc we need also to remove the edge from
|
2183 |
|
|
the call graph to keep it consistent. Notice that cgraph_edge may
|
2184 |
|
|
create a new node in the call graph if there is no node for the given
|
2185 |
|
|
declaration; this shouldn't be the case but currently there is no way to
|
2186 |
|
|
check this outside of "cgraph.c". */
|
2187 |
|
|
for (i = 1; i < mi->min_indirect_level_escape; i++)
|
2188 |
|
|
{
|
2189 |
|
|
gimple_stmt_iterator gsi;
|
2190 |
|
|
|
2191 |
|
|
gimple call_stmt = mi->malloc_for_level[i];
|
2192 |
|
|
gcc_assert (is_gimple_call (call_stmt));
|
2193 |
|
|
e = cgraph_edge (c_node, call_stmt);
|
2194 |
|
|
gcc_assert (e);
|
2195 |
|
|
cgraph_remove_edge (e);
|
2196 |
|
|
gsi = gsi_for_stmt (call_stmt);
|
2197 |
|
|
/* Remove the call stmt. */
|
2198 |
|
|
gsi_remove (&gsi, true);
|
2199 |
|
|
/* Remove the assignment of the allocated area. */
|
2200 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter,
|
2201 |
|
|
gimple_call_lhs (call_stmt))
|
2202 |
|
|
{
|
2203 |
|
|
gsi = gsi_for_stmt (use_stmt);
|
2204 |
|
|
gsi_remove (&gsi, true);
|
2205 |
|
|
}
|
2206 |
|
|
}
|
2207 |
|
|
update_ssa (TODO_update_ssa);
|
2208 |
|
|
#ifdef ENABLE_CHECKING
|
2209 |
|
|
verify_ssa (true);
|
2210 |
|
|
#endif
|
2211 |
|
|
/* Delete the calls to free. */
|
2212 |
|
|
for (i = 1; i < mi->min_indirect_level_escape; i++)
|
2213 |
|
|
{
|
2214 |
|
|
gimple_stmt_iterator gsi;
|
2215 |
|
|
|
2216 |
|
|
/* ??? wonder why this case is possible but we failed on it once. */
|
2217 |
|
|
if (!mi->free_stmts[i].stmt)
|
2218 |
|
|
continue;
|
2219 |
|
|
|
2220 |
|
|
c_node = cgraph_get_node (mi->free_stmts[i].func);
|
2221 |
|
|
gcc_checking_assert (c_node);
|
2222 |
|
|
gcc_assert (is_gimple_call (mi->free_stmts[i].stmt));
|
2223 |
|
|
e = cgraph_edge (c_node, mi->free_stmts[i].stmt);
|
2224 |
|
|
gcc_assert (e);
|
2225 |
|
|
cgraph_remove_edge (e);
|
2226 |
|
|
current_function_decl = mi->free_stmts[i].func;
|
2227 |
|
|
set_cfun (DECL_STRUCT_FUNCTION (mi->free_stmts[i].func));
|
2228 |
|
|
gsi = gsi_for_stmt (mi->free_stmts[i].stmt);
|
2229 |
|
|
gsi_remove (&gsi, true);
|
2230 |
|
|
}
|
2231 |
|
|
/* Return to the previous situation. */
|
2232 |
|
|
current_function_decl = oldfn;
|
2233 |
|
|
pop_cfun ();
|
2234 |
|
|
return 1;
|
2235 |
|
|
|
2236 |
|
|
}
|
2237 |
|
|
|
2238 |
|
|
|
2239 |
|
|
/* Print out the results of the escape analysis. */
|
2240 |
|
|
static int
|
2241 |
|
|
dump_matrix_reorg_analysis (void **slot, void *data ATTRIBUTE_UNUSED)
|
2242 |
|
|
{
|
2243 |
|
|
struct matrix_info *mi = (struct matrix_info *) *slot;
|
2244 |
|
|
|
2245 |
|
|
if (!dump_file)
|
2246 |
|
|
return 1;
|
2247 |
|
|
fprintf (dump_file, "Matrix \"%s\"; Escaping Level: %d, Num Dims: %d,",
|
2248 |
|
|
get_name (mi->decl), mi->min_indirect_level_escape, mi->num_dims);
|
2249 |
|
|
fprintf (dump_file, " Malloc Dims: %d, ", mi->max_malloced_level);
|
2250 |
|
|
fprintf (dump_file, "\n");
|
2251 |
|
|
if (mi->min_indirect_level_escape >= 2)
|
2252 |
|
|
fprintf (dump_file, "Flattened %d dimensions \n",
|
2253 |
|
|
mi->min_indirect_level_escape);
|
2254 |
|
|
return 1;
|
2255 |
|
|
}
|
2256 |
|
|
|
2257 |
|
|
/* Perform matrix flattening. */
|
2258 |
|
|
|
2259 |
|
|
static unsigned int
|
2260 |
|
|
matrix_reorg (void)
|
2261 |
|
|
{
|
2262 |
|
|
struct cgraph_node *node;
|
2263 |
|
|
|
2264 |
|
|
if (profile_info)
|
2265 |
|
|
check_transpose_p = true;
|
2266 |
|
|
else
|
2267 |
|
|
check_transpose_p = false;
|
2268 |
|
|
/* If there are hand written vectors, we skip this optimization. */
|
2269 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
2270 |
|
|
if (!may_flatten_matrices (node))
|
2271 |
|
|
return 0;
|
2272 |
|
|
matrices_to_reorg = htab_create (37, mtt_info_hash, mtt_info_eq, mat_free);
|
2273 |
|
|
/* Find and record all potential matrices in the program. */
|
2274 |
|
|
find_matrices_decl ();
|
2275 |
|
|
/* Analyze the accesses of the matrices (escaping analysis). */
|
2276 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
2277 |
|
|
if (node->analyzed)
|
2278 |
|
|
{
|
2279 |
|
|
tree temp_fn;
|
2280 |
|
|
|
2281 |
|
|
temp_fn = current_function_decl;
|
2282 |
|
|
current_function_decl = node->decl;
|
2283 |
|
|
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
|
2284 |
|
|
bitmap_obstack_initialize (NULL);
|
2285 |
|
|
gimple_register_cfg_hooks ();
|
2286 |
|
|
|
2287 |
|
|
if (!gimple_in_ssa_p (cfun))
|
2288 |
|
|
{
|
2289 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
2290 |
|
|
free_dominance_info (CDI_POST_DOMINATORS);
|
2291 |
|
|
pop_cfun ();
|
2292 |
|
|
current_function_decl = temp_fn;
|
2293 |
|
|
bitmap_obstack_release (NULL);
|
2294 |
|
|
|
2295 |
|
|
return 0;
|
2296 |
|
|
}
|
2297 |
|
|
|
2298 |
|
|
#ifdef ENABLE_CHECKING
|
2299 |
|
|
verify_flow_info ();
|
2300 |
|
|
#endif
|
2301 |
|
|
|
2302 |
|
|
if (!matrices_to_reorg)
|
2303 |
|
|
{
|
2304 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
2305 |
|
|
free_dominance_info (CDI_POST_DOMINATORS);
|
2306 |
|
|
pop_cfun ();
|
2307 |
|
|
current_function_decl = temp_fn;
|
2308 |
|
|
bitmap_obstack_release (NULL);
|
2309 |
|
|
|
2310 |
|
|
return 0;
|
2311 |
|
|
}
|
2312 |
|
|
|
2313 |
|
|
/* Create htap for phi nodes. */
|
2314 |
|
|
htab_mat_acc_phi_nodes = htab_create (37, mat_acc_phi_hash,
|
2315 |
|
|
mat_acc_phi_eq, free);
|
2316 |
|
|
if (!check_transpose_p)
|
2317 |
|
|
find_sites_in_func (false);
|
2318 |
|
|
else
|
2319 |
|
|
{
|
2320 |
|
|
find_sites_in_func (true);
|
2321 |
|
|
loop_optimizer_init (LOOPS_NORMAL);
|
2322 |
|
|
if (current_loops)
|
2323 |
|
|
scev_initialize ();
|
2324 |
|
|
htab_traverse (matrices_to_reorg, analyze_transpose, NULL);
|
2325 |
|
|
if (current_loops)
|
2326 |
|
|
{
|
2327 |
|
|
scev_finalize ();
|
2328 |
|
|
loop_optimizer_finalize ();
|
2329 |
|
|
current_loops = NULL;
|
2330 |
|
|
}
|
2331 |
|
|
}
|
2332 |
|
|
/* If the current function is the allocation function for any of
|
2333 |
|
|
the matrices we check its allocation and the escaping level. */
|
2334 |
|
|
htab_traverse (matrices_to_reorg, check_allocation_function, NULL);
|
2335 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
2336 |
|
|
free_dominance_info (CDI_POST_DOMINATORS);
|
2337 |
|
|
pop_cfun ();
|
2338 |
|
|
current_function_decl = temp_fn;
|
2339 |
|
|
bitmap_obstack_release (NULL);
|
2340 |
|
|
}
|
2341 |
|
|
htab_traverse (matrices_to_reorg, transform_allocation_sites, NULL);
|
2342 |
|
|
/* Now transform the accesses. */
|
2343 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
2344 |
|
|
if (node->analyzed)
|
2345 |
|
|
{
|
2346 |
|
|
/* Remember that allocation sites have been handled. */
|
2347 |
|
|
tree temp_fn;
|
2348 |
|
|
|
2349 |
|
|
temp_fn = current_function_decl;
|
2350 |
|
|
current_function_decl = node->decl;
|
2351 |
|
|
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
|
2352 |
|
|
bitmap_obstack_initialize (NULL);
|
2353 |
|
|
gimple_register_cfg_hooks ();
|
2354 |
|
|
record_all_accesses_in_func ();
|
2355 |
|
|
htab_traverse (matrices_to_reorg, transform_access_sites, NULL);
|
2356 |
|
|
cgraph_rebuild_references ();
|
2357 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
2358 |
|
|
free_dominance_info (CDI_POST_DOMINATORS);
|
2359 |
|
|
pop_cfun ();
|
2360 |
|
|
current_function_decl = temp_fn;
|
2361 |
|
|
bitmap_obstack_release (NULL);
|
2362 |
|
|
}
|
2363 |
|
|
htab_traverse (matrices_to_reorg, dump_matrix_reorg_analysis, NULL);
|
2364 |
|
|
|
2365 |
|
|
current_function_decl = NULL;
|
2366 |
|
|
set_cfun (NULL);
|
2367 |
|
|
matrices_to_reorg = NULL;
|
2368 |
|
|
return 0;
|
2369 |
|
|
}
|
2370 |
|
|
|
2371 |
|
|
|
2372 |
|
|
/* The condition for matrix flattening to be performed. */
|
2373 |
|
|
static bool
|
2374 |
|
|
gate_matrix_reorg (void)
|
2375 |
|
|
{
|
2376 |
|
|
return flag_ipa_matrix_reorg && flag_whole_program;
|
2377 |
|
|
}
|
2378 |
|
|
|
2379 |
|
|
struct simple_ipa_opt_pass pass_ipa_matrix_reorg =
|
2380 |
|
|
{
|
2381 |
|
|
{
|
2382 |
|
|
SIMPLE_IPA_PASS,
|
2383 |
|
|
"matrix-reorg", /* name */
|
2384 |
|
|
gate_matrix_reorg, /* gate */
|
2385 |
|
|
matrix_reorg, /* execute */
|
2386 |
|
|
NULL, /* sub */
|
2387 |
|
|
NULL, /* next */
|
2388 |
|
|
0, /* static_pass_number */
|
2389 |
|
|
TV_NONE, /* tv_id */
|
2390 |
|
|
0, /* properties_required */
|
2391 |
|
|
0, /* properties_provided */
|
2392 |
|
|
0, /* properties_destroyed */
|
2393 |
|
|
0, /* todo_flags_start */
|
2394 |
|
|
TODO_dump_cgraph /* todo_flags_finish */
|
2395 |
|
|
}
|
2396 |
|
|
};
|