| 1 |
684 |
jeremybenn |
/* CPU mode switching
|
| 2 |
|
|
Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008,
|
| 3 |
|
|
2009, 2010 Free Software Foundation, Inc.
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GCC.
|
| 6 |
|
|
|
| 7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 8 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 9 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 10 |
|
|
version.
|
| 11 |
|
|
|
| 12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 15 |
|
|
for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
#include "config.h"
|
| 22 |
|
|
#include "system.h"
|
| 23 |
|
|
#include "coretypes.h"
|
| 24 |
|
|
#include "tm.h"
|
| 25 |
|
|
#include "target.h"
|
| 26 |
|
|
#include "rtl.h"
|
| 27 |
|
|
#include "regs.h"
|
| 28 |
|
|
#include "hard-reg-set.h"
|
| 29 |
|
|
#include "flags.h"
|
| 30 |
|
|
#include "insn-config.h"
|
| 31 |
|
|
#include "recog.h"
|
| 32 |
|
|
#include "basic-block.h"
|
| 33 |
|
|
#include "output.h"
|
| 34 |
|
|
#include "tm_p.h"
|
| 35 |
|
|
#include "function.h"
|
| 36 |
|
|
#include "tree-pass.h"
|
| 37 |
|
|
#include "timevar.h"
|
| 38 |
|
|
#include "df.h"
|
| 39 |
|
|
#include "emit-rtl.h"
|
| 40 |
|
|
|
| 41 |
|
|
/* We want target macros for the mode switching code to be able to refer
|
| 42 |
|
|
to instruction attribute values. */
|
| 43 |
|
|
#include "insn-attr.h"
|
| 44 |
|
|
|
| 45 |
|
|
#ifdef OPTIMIZE_MODE_SWITCHING
|
| 46 |
|
|
|
| 47 |
|
|
/* The algorithm for setting the modes consists of scanning the insn list
|
| 48 |
|
|
and finding all the insns which require a specific mode. Each insn gets
|
| 49 |
|
|
a unique struct seginfo element. These structures are inserted into a list
|
| 50 |
|
|
for each basic block. For each entity, there is an array of bb_info over
|
| 51 |
|
|
the flow graph basic blocks (local var 'bb_info'), and contains a list
|
| 52 |
|
|
of all insns within that basic block, in the order they are encountered.
|
| 53 |
|
|
|
| 54 |
|
|
For each entity, any basic block WITHOUT any insns requiring a specific
|
| 55 |
|
|
mode are given a single entry, without a mode. (Each basic block
|
| 56 |
|
|
in the flow graph must have at least one entry in the segment table.)
|
| 57 |
|
|
|
| 58 |
|
|
The LCM algorithm is then run over the flow graph to determine where to
|
| 59 |
|
|
place the sets to the highest-priority value in respect of first the first
|
| 60 |
|
|
insn in any one block. Any adjustments required to the transparency
|
| 61 |
|
|
vectors are made, then the next iteration starts for the next-lower
|
| 62 |
|
|
priority mode, till for each entity all modes are exhausted.
|
| 63 |
|
|
|
| 64 |
|
|
More details are located in the code for optimize_mode_switching(). */
|
| 65 |
|
|
|
| 66 |
|
|
/* This structure contains the information for each insn which requires
|
| 67 |
|
|
either single or double mode to be set.
|
| 68 |
|
|
MODE is the mode this insn must be executed in.
|
| 69 |
|
|
INSN_PTR is the insn to be executed (may be the note that marks the
|
| 70 |
|
|
beginning of a basic block).
|
| 71 |
|
|
BBNUM is the flow graph basic block this insn occurs in.
|
| 72 |
|
|
NEXT is the next insn in the same basic block. */
|
| 73 |
|
|
struct seginfo
|
| 74 |
|
|
{
|
| 75 |
|
|
int mode;
|
| 76 |
|
|
rtx insn_ptr;
|
| 77 |
|
|
int bbnum;
|
| 78 |
|
|
struct seginfo *next;
|
| 79 |
|
|
HARD_REG_SET regs_live;
|
| 80 |
|
|
};
|
| 81 |
|
|
|
| 82 |
|
|
struct bb_info
|
| 83 |
|
|
{
|
| 84 |
|
|
struct seginfo *seginfo;
|
| 85 |
|
|
int computing;
|
| 86 |
|
|
};
|
| 87 |
|
|
|
| 88 |
|
|
/* These bitmaps are used for the LCM algorithm. */
|
| 89 |
|
|
|
| 90 |
|
|
static sbitmap *antic;
|
| 91 |
|
|
static sbitmap *transp;
|
| 92 |
|
|
static sbitmap *comp;
|
| 93 |
|
|
|
| 94 |
|
|
static struct seginfo * new_seginfo (int, rtx, int, HARD_REG_SET);
|
| 95 |
|
|
static void add_seginfo (struct bb_info *, struct seginfo *);
|
| 96 |
|
|
static void reg_dies (rtx, HARD_REG_SET *);
|
| 97 |
|
|
static void reg_becomes_live (rtx, const_rtx, void *);
|
| 98 |
|
|
static void make_preds_opaque (basic_block, int);
|
| 99 |
|
|
|
| 100 |
|
|
|
| 101 |
|
|
/* This function will allocate a new BBINFO structure, initialized
|
| 102 |
|
|
with the MODE, INSN, and basic block BB parameters. */
|
| 103 |
|
|
|
| 104 |
|
|
static struct seginfo *
|
| 105 |
|
|
new_seginfo (int mode, rtx insn, int bb, HARD_REG_SET regs_live)
|
| 106 |
|
|
{
|
| 107 |
|
|
struct seginfo *ptr;
|
| 108 |
|
|
ptr = XNEW (struct seginfo);
|
| 109 |
|
|
ptr->mode = mode;
|
| 110 |
|
|
ptr->insn_ptr = insn;
|
| 111 |
|
|
ptr->bbnum = bb;
|
| 112 |
|
|
ptr->next = NULL;
|
| 113 |
|
|
COPY_HARD_REG_SET (ptr->regs_live, regs_live);
|
| 114 |
|
|
return ptr;
|
| 115 |
|
|
}
|
| 116 |
|
|
|
| 117 |
|
|
/* Add a seginfo element to the end of a list.
|
| 118 |
|
|
HEAD is a pointer to the list beginning.
|
| 119 |
|
|
INFO is the structure to be linked in. */
|
| 120 |
|
|
|
| 121 |
|
|
static void
|
| 122 |
|
|
add_seginfo (struct bb_info *head, struct seginfo *info)
|
| 123 |
|
|
{
|
| 124 |
|
|
struct seginfo *ptr;
|
| 125 |
|
|
|
| 126 |
|
|
if (head->seginfo == NULL)
|
| 127 |
|
|
head->seginfo = info;
|
| 128 |
|
|
else
|
| 129 |
|
|
{
|
| 130 |
|
|
ptr = head->seginfo;
|
| 131 |
|
|
while (ptr->next != NULL)
|
| 132 |
|
|
ptr = ptr->next;
|
| 133 |
|
|
ptr->next = info;
|
| 134 |
|
|
}
|
| 135 |
|
|
}
|
| 136 |
|
|
|
| 137 |
|
|
/* Make all predecessors of basic block B opaque, recursively, till we hit
|
| 138 |
|
|
some that are already non-transparent, or an edge where aux is set; that
|
| 139 |
|
|
denotes that a mode set is to be done on that edge.
|
| 140 |
|
|
J is the bit number in the bitmaps that corresponds to the entity that
|
| 141 |
|
|
we are currently handling mode-switching for. */
|
| 142 |
|
|
|
| 143 |
|
|
static void
|
| 144 |
|
|
make_preds_opaque (basic_block b, int j)
|
| 145 |
|
|
{
|
| 146 |
|
|
edge e;
|
| 147 |
|
|
edge_iterator ei;
|
| 148 |
|
|
|
| 149 |
|
|
FOR_EACH_EDGE (e, ei, b->preds)
|
| 150 |
|
|
{
|
| 151 |
|
|
basic_block pb = e->src;
|
| 152 |
|
|
|
| 153 |
|
|
if (e->aux || ! TEST_BIT (transp[pb->index], j))
|
| 154 |
|
|
continue;
|
| 155 |
|
|
|
| 156 |
|
|
RESET_BIT (transp[pb->index], j);
|
| 157 |
|
|
make_preds_opaque (pb, j);
|
| 158 |
|
|
}
|
| 159 |
|
|
}
|
| 160 |
|
|
|
| 161 |
|
|
/* Record in LIVE that register REG died. */
|
| 162 |
|
|
|
| 163 |
|
|
static void
|
| 164 |
|
|
reg_dies (rtx reg, HARD_REG_SET *live)
|
| 165 |
|
|
{
|
| 166 |
|
|
int regno;
|
| 167 |
|
|
|
| 168 |
|
|
if (!REG_P (reg))
|
| 169 |
|
|
return;
|
| 170 |
|
|
|
| 171 |
|
|
regno = REGNO (reg);
|
| 172 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
| 173 |
|
|
remove_from_hard_reg_set (live, GET_MODE (reg), regno);
|
| 174 |
|
|
}
|
| 175 |
|
|
|
| 176 |
|
|
/* Record in LIVE that register REG became live.
|
| 177 |
|
|
This is called via note_stores. */
|
| 178 |
|
|
|
| 179 |
|
|
static void
|
| 180 |
|
|
reg_becomes_live (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *live)
|
| 181 |
|
|
{
|
| 182 |
|
|
int regno;
|
| 183 |
|
|
|
| 184 |
|
|
if (GET_CODE (reg) == SUBREG)
|
| 185 |
|
|
reg = SUBREG_REG (reg);
|
| 186 |
|
|
|
| 187 |
|
|
if (!REG_P (reg))
|
| 188 |
|
|
return;
|
| 189 |
|
|
|
| 190 |
|
|
regno = REGNO (reg);
|
| 191 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
| 192 |
|
|
add_to_hard_reg_set ((HARD_REG_SET *) live, GET_MODE (reg), regno);
|
| 193 |
|
|
}
|
| 194 |
|
|
|
| 195 |
|
|
/* Make sure if MODE_ENTRY is defined the MODE_EXIT is defined
|
| 196 |
|
|
and vice versa. */
|
| 197 |
|
|
#if defined (MODE_ENTRY) != defined (MODE_EXIT)
|
| 198 |
|
|
#error "Both MODE_ENTRY and MODE_EXIT must be defined"
|
| 199 |
|
|
#endif
|
| 200 |
|
|
|
| 201 |
|
|
#if defined (MODE_ENTRY) && defined (MODE_EXIT)
|
| 202 |
|
|
/* Split the fallthrough edge to the exit block, so that we can note
|
| 203 |
|
|
that there NORMAL_MODE is required. Return the new block if it's
|
| 204 |
|
|
inserted before the exit block. Otherwise return null. */
|
| 205 |
|
|
|
| 206 |
|
|
static basic_block
|
| 207 |
|
|
create_pre_exit (int n_entities, int *entity_map, const int *num_modes)
|
| 208 |
|
|
{
|
| 209 |
|
|
edge eg;
|
| 210 |
|
|
edge_iterator ei;
|
| 211 |
|
|
basic_block pre_exit;
|
| 212 |
|
|
|
| 213 |
|
|
/* The only non-call predecessor at this stage is a block with a
|
| 214 |
|
|
fallthrough edge; there can be at most one, but there could be
|
| 215 |
|
|
none at all, e.g. when exit is called. */
|
| 216 |
|
|
pre_exit = 0;
|
| 217 |
|
|
FOR_EACH_EDGE (eg, ei, EXIT_BLOCK_PTR->preds)
|
| 218 |
|
|
if (eg->flags & EDGE_FALLTHRU)
|
| 219 |
|
|
{
|
| 220 |
|
|
basic_block src_bb = eg->src;
|
| 221 |
|
|
rtx last_insn, ret_reg;
|
| 222 |
|
|
|
| 223 |
|
|
gcc_assert (!pre_exit);
|
| 224 |
|
|
/* If this function returns a value at the end, we have to
|
| 225 |
|
|
insert the final mode switch before the return value copy
|
| 226 |
|
|
to its hard register. */
|
| 227 |
|
|
if (EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 1
|
| 228 |
|
|
&& NONJUMP_INSN_P ((last_insn = BB_END (src_bb)))
|
| 229 |
|
|
&& GET_CODE (PATTERN (last_insn)) == USE
|
| 230 |
|
|
&& GET_CODE ((ret_reg = XEXP (PATTERN (last_insn), 0))) == REG)
|
| 231 |
|
|
{
|
| 232 |
|
|
int ret_start = REGNO (ret_reg);
|
| 233 |
|
|
int nregs = hard_regno_nregs[ret_start][GET_MODE (ret_reg)];
|
| 234 |
|
|
int ret_end = ret_start + nregs;
|
| 235 |
|
|
int short_block = 0;
|
| 236 |
|
|
int maybe_builtin_apply = 0;
|
| 237 |
|
|
int forced_late_switch = 0;
|
| 238 |
|
|
rtx before_return_copy;
|
| 239 |
|
|
|
| 240 |
|
|
do
|
| 241 |
|
|
{
|
| 242 |
|
|
rtx return_copy = PREV_INSN (last_insn);
|
| 243 |
|
|
rtx return_copy_pat, copy_reg;
|
| 244 |
|
|
int copy_start, copy_num;
|
| 245 |
|
|
int j;
|
| 246 |
|
|
|
| 247 |
|
|
if (INSN_P (return_copy))
|
| 248 |
|
|
{
|
| 249 |
|
|
/* When using SJLJ exceptions, the call to the
|
| 250 |
|
|
unregister function is inserted between the
|
| 251 |
|
|
clobber of the return value and the copy.
|
| 252 |
|
|
We do not want to split the block before this
|
| 253 |
|
|
or any other call; if we have not found the
|
| 254 |
|
|
copy yet, the copy must have been deleted. */
|
| 255 |
|
|
if (CALL_P (return_copy))
|
| 256 |
|
|
{
|
| 257 |
|
|
short_block = 1;
|
| 258 |
|
|
break;
|
| 259 |
|
|
}
|
| 260 |
|
|
return_copy_pat = PATTERN (return_copy);
|
| 261 |
|
|
switch (GET_CODE (return_copy_pat))
|
| 262 |
|
|
{
|
| 263 |
|
|
case USE:
|
| 264 |
|
|
/* Skip __builtin_apply pattern. */
|
| 265 |
|
|
if (GET_CODE (XEXP (return_copy_pat, 0)) == REG
|
| 266 |
|
|
&& (targetm.calls.function_value_regno_p
|
| 267 |
|
|
(REGNO (XEXP (return_copy_pat, 0)))))
|
| 268 |
|
|
{
|
| 269 |
|
|
maybe_builtin_apply = 1;
|
| 270 |
|
|
last_insn = return_copy;
|
| 271 |
|
|
continue;
|
| 272 |
|
|
}
|
| 273 |
|
|
break;
|
| 274 |
|
|
|
| 275 |
|
|
case ASM_OPERANDS:
|
| 276 |
|
|
/* Skip barrier insns. */
|
| 277 |
|
|
if (!MEM_VOLATILE_P (return_copy_pat))
|
| 278 |
|
|
break;
|
| 279 |
|
|
|
| 280 |
|
|
/* Fall through. */
|
| 281 |
|
|
|
| 282 |
|
|
case ASM_INPUT:
|
| 283 |
|
|
case UNSPEC_VOLATILE:
|
| 284 |
|
|
last_insn = return_copy;
|
| 285 |
|
|
continue;
|
| 286 |
|
|
|
| 287 |
|
|
default:
|
| 288 |
|
|
break;
|
| 289 |
|
|
}
|
| 290 |
|
|
|
| 291 |
|
|
/* If the return register is not (in its entirety)
|
| 292 |
|
|
likely spilled, the return copy might be
|
| 293 |
|
|
partially or completely optimized away. */
|
| 294 |
|
|
return_copy_pat = single_set (return_copy);
|
| 295 |
|
|
if (!return_copy_pat)
|
| 296 |
|
|
{
|
| 297 |
|
|
return_copy_pat = PATTERN (return_copy);
|
| 298 |
|
|
if (GET_CODE (return_copy_pat) != CLOBBER)
|
| 299 |
|
|
break;
|
| 300 |
|
|
else if (!optimize)
|
| 301 |
|
|
{
|
| 302 |
|
|
/* This might be (clobber (reg [<result>]))
|
| 303 |
|
|
when not optimizing. Then check if
|
| 304 |
|
|
the previous insn is the clobber for
|
| 305 |
|
|
the return register. */
|
| 306 |
|
|
copy_reg = SET_DEST (return_copy_pat);
|
| 307 |
|
|
if (GET_CODE (copy_reg) == REG
|
| 308 |
|
|
&& !HARD_REGISTER_NUM_P (REGNO (copy_reg)))
|
| 309 |
|
|
{
|
| 310 |
|
|
if (INSN_P (PREV_INSN (return_copy)))
|
| 311 |
|
|
{
|
| 312 |
|
|
return_copy = PREV_INSN (return_copy);
|
| 313 |
|
|
return_copy_pat = PATTERN (return_copy);
|
| 314 |
|
|
if (GET_CODE (return_copy_pat) != CLOBBER)
|
| 315 |
|
|
break;
|
| 316 |
|
|
}
|
| 317 |
|
|
}
|
| 318 |
|
|
}
|
| 319 |
|
|
}
|
| 320 |
|
|
copy_reg = SET_DEST (return_copy_pat);
|
| 321 |
|
|
if (GET_CODE (copy_reg) == REG)
|
| 322 |
|
|
copy_start = REGNO (copy_reg);
|
| 323 |
|
|
else if (GET_CODE (copy_reg) == SUBREG
|
| 324 |
|
|
&& GET_CODE (SUBREG_REG (copy_reg)) == REG)
|
| 325 |
|
|
copy_start = REGNO (SUBREG_REG (copy_reg));
|
| 326 |
|
|
else
|
| 327 |
|
|
break;
|
| 328 |
|
|
if (copy_start >= FIRST_PSEUDO_REGISTER)
|
| 329 |
|
|
break;
|
| 330 |
|
|
copy_num
|
| 331 |
|
|
= hard_regno_nregs[copy_start][GET_MODE (copy_reg)];
|
| 332 |
|
|
|
| 333 |
|
|
/* If the return register is not likely spilled, - as is
|
| 334 |
|
|
the case for floating point on SH4 - then it might
|
| 335 |
|
|
be set by an arithmetic operation that needs a
|
| 336 |
|
|
different mode than the exit block. */
|
| 337 |
|
|
for (j = n_entities - 1; j >= 0; j--)
|
| 338 |
|
|
{
|
| 339 |
|
|
int e = entity_map[j];
|
| 340 |
|
|
int mode = MODE_NEEDED (e, return_copy);
|
| 341 |
|
|
|
| 342 |
|
|
if (mode != num_modes[e] && mode != MODE_EXIT (e))
|
| 343 |
|
|
break;
|
| 344 |
|
|
}
|
| 345 |
|
|
if (j >= 0)
|
| 346 |
|
|
{
|
| 347 |
|
|
/* For the SH4, floating point loads depend on fpscr,
|
| 348 |
|
|
thus we might need to put the final mode switch
|
| 349 |
|
|
after the return value copy. That is still OK,
|
| 350 |
|
|
because a floating point return value does not
|
| 351 |
|
|
conflict with address reloads. */
|
| 352 |
|
|
if (copy_start >= ret_start
|
| 353 |
|
|
&& copy_start + copy_num <= ret_end
|
| 354 |
|
|
&& OBJECT_P (SET_SRC (return_copy_pat)))
|
| 355 |
|
|
forced_late_switch = 1;
|
| 356 |
|
|
break;
|
| 357 |
|
|
}
|
| 358 |
|
|
|
| 359 |
|
|
if (copy_start >= ret_start
|
| 360 |
|
|
&& copy_start + copy_num <= ret_end)
|
| 361 |
|
|
nregs -= copy_num;
|
| 362 |
|
|
else if (!maybe_builtin_apply
|
| 363 |
|
|
|| !targetm.calls.function_value_regno_p
|
| 364 |
|
|
(copy_start))
|
| 365 |
|
|
break;
|
| 366 |
|
|
last_insn = return_copy;
|
| 367 |
|
|
}
|
| 368 |
|
|
/* ??? Exception handling can lead to the return value
|
| 369 |
|
|
copy being already separated from the return value use,
|
| 370 |
|
|
as in unwind-dw2.c .
|
| 371 |
|
|
Similarly, conditionally returning without a value,
|
| 372 |
|
|
and conditionally using builtin_return can lead to an
|
| 373 |
|
|
isolated use. */
|
| 374 |
|
|
if (return_copy == BB_HEAD (src_bb))
|
| 375 |
|
|
{
|
| 376 |
|
|
short_block = 1;
|
| 377 |
|
|
break;
|
| 378 |
|
|
}
|
| 379 |
|
|
last_insn = return_copy;
|
| 380 |
|
|
}
|
| 381 |
|
|
while (nregs);
|
| 382 |
|
|
|
| 383 |
|
|
/* If we didn't see a full return value copy, verify that there
|
| 384 |
|
|
is a plausible reason for this. If some, but not all of the
|
| 385 |
|
|
return register is likely spilled, we can expect that there
|
| 386 |
|
|
is a copy for the likely spilled part. */
|
| 387 |
|
|
gcc_assert (!nregs
|
| 388 |
|
|
|| forced_late_switch
|
| 389 |
|
|
|| short_block
|
| 390 |
|
|
|| !(targetm.class_likely_spilled_p
|
| 391 |
|
|
(REGNO_REG_CLASS (ret_start)))
|
| 392 |
|
|
|| (nregs
|
| 393 |
|
|
!= hard_regno_nregs[ret_start][GET_MODE (ret_reg)])
|
| 394 |
|
|
/* For multi-hard-register floating point
|
| 395 |
|
|
values, sometimes the likely-spilled part
|
| 396 |
|
|
is ordinarily copied first, then the other
|
| 397 |
|
|
part is set with an arithmetic operation.
|
| 398 |
|
|
This doesn't actually cause reload
|
| 399 |
|
|
failures, so let it pass. */
|
| 400 |
|
|
|| (GET_MODE_CLASS (GET_MODE (ret_reg)) != MODE_INT
|
| 401 |
|
|
&& nregs != 1));
|
| 402 |
|
|
|
| 403 |
|
|
if (INSN_P (last_insn))
|
| 404 |
|
|
{
|
| 405 |
|
|
before_return_copy
|
| 406 |
|
|
= emit_note_before (NOTE_INSN_DELETED, last_insn);
|
| 407 |
|
|
/* Instructions preceding LAST_INSN in the same block might
|
| 408 |
|
|
require a different mode than MODE_EXIT, so if we might
|
| 409 |
|
|
have such instructions, keep them in a separate block
|
| 410 |
|
|
from pre_exit. */
|
| 411 |
|
|
if (last_insn != BB_HEAD (src_bb))
|
| 412 |
|
|
src_bb = split_block (src_bb,
|
| 413 |
|
|
PREV_INSN (before_return_copy))->dest;
|
| 414 |
|
|
}
|
| 415 |
|
|
else
|
| 416 |
|
|
before_return_copy = last_insn;
|
| 417 |
|
|
pre_exit = split_block (src_bb, before_return_copy)->src;
|
| 418 |
|
|
}
|
| 419 |
|
|
else
|
| 420 |
|
|
{
|
| 421 |
|
|
pre_exit = split_edge (eg);
|
| 422 |
|
|
}
|
| 423 |
|
|
}
|
| 424 |
|
|
|
| 425 |
|
|
return pre_exit;
|
| 426 |
|
|
}
|
| 427 |
|
|
#endif
|
| 428 |
|
|
|
| 429 |
|
|
/* Find all insns that need a particular mode setting, and insert the
|
| 430 |
|
|
necessary mode switches. Return true if we did work. */
|
| 431 |
|
|
|
| 432 |
|
|
static int
|
| 433 |
|
|
optimize_mode_switching (void)
|
| 434 |
|
|
{
|
| 435 |
|
|
rtx insn;
|
| 436 |
|
|
int e;
|
| 437 |
|
|
basic_block bb;
|
| 438 |
|
|
int need_commit = 0;
|
| 439 |
|
|
sbitmap *kill;
|
| 440 |
|
|
struct edge_list *edge_list;
|
| 441 |
|
|
static const int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING;
|
| 442 |
|
|
#define N_ENTITIES ARRAY_SIZE (num_modes)
|
| 443 |
|
|
int entity_map[N_ENTITIES];
|
| 444 |
|
|
struct bb_info *bb_info[N_ENTITIES];
|
| 445 |
|
|
int i, j;
|
| 446 |
|
|
int n_entities;
|
| 447 |
|
|
int max_num_modes = 0;
|
| 448 |
|
|
bool emited ATTRIBUTE_UNUSED = false;
|
| 449 |
|
|
basic_block post_entry ATTRIBUTE_UNUSED, pre_exit ATTRIBUTE_UNUSED;
|
| 450 |
|
|
|
| 451 |
|
|
for (e = N_ENTITIES - 1, n_entities = 0; e >= 0; e--)
|
| 452 |
|
|
if (OPTIMIZE_MODE_SWITCHING (e))
|
| 453 |
|
|
{
|
| 454 |
|
|
int entry_exit_extra = 0;
|
| 455 |
|
|
|
| 456 |
|
|
/* Create the list of segments within each basic block.
|
| 457 |
|
|
If NORMAL_MODE is defined, allow for two extra
|
| 458 |
|
|
blocks split from the entry and exit block. */
|
| 459 |
|
|
#if defined (MODE_ENTRY) && defined (MODE_EXIT)
|
| 460 |
|
|
entry_exit_extra = 3;
|
| 461 |
|
|
#endif
|
| 462 |
|
|
bb_info[n_entities]
|
| 463 |
|
|
= XCNEWVEC (struct bb_info, last_basic_block + entry_exit_extra);
|
| 464 |
|
|
entity_map[n_entities++] = e;
|
| 465 |
|
|
if (num_modes[e] > max_num_modes)
|
| 466 |
|
|
max_num_modes = num_modes[e];
|
| 467 |
|
|
}
|
| 468 |
|
|
|
| 469 |
|
|
if (! n_entities)
|
| 470 |
|
|
return 0;
|
| 471 |
|
|
|
| 472 |
|
|
#if defined (MODE_ENTRY) && defined (MODE_EXIT)
|
| 473 |
|
|
/* Split the edge from the entry block, so that we can note that
|
| 474 |
|
|
there NORMAL_MODE is supplied. */
|
| 475 |
|
|
post_entry = split_edge (single_succ_edge (ENTRY_BLOCK_PTR));
|
| 476 |
|
|
pre_exit = create_pre_exit (n_entities, entity_map, num_modes);
|
| 477 |
|
|
#endif
|
| 478 |
|
|
|
| 479 |
|
|
df_analyze ();
|
| 480 |
|
|
|
| 481 |
|
|
/* Create the bitmap vectors. */
|
| 482 |
|
|
|
| 483 |
|
|
antic = sbitmap_vector_alloc (last_basic_block, n_entities);
|
| 484 |
|
|
transp = sbitmap_vector_alloc (last_basic_block, n_entities);
|
| 485 |
|
|
comp = sbitmap_vector_alloc (last_basic_block, n_entities);
|
| 486 |
|
|
|
| 487 |
|
|
sbitmap_vector_ones (transp, last_basic_block);
|
| 488 |
|
|
|
| 489 |
|
|
for (j = n_entities - 1; j >= 0; j--)
|
| 490 |
|
|
{
|
| 491 |
|
|
int e = entity_map[j];
|
| 492 |
|
|
int no_mode = num_modes[e];
|
| 493 |
|
|
struct bb_info *info = bb_info[j];
|
| 494 |
|
|
|
| 495 |
|
|
/* Determine what the first use (if any) need for a mode of entity E is.
|
| 496 |
|
|
This will be the mode that is anticipatable for this block.
|
| 497 |
|
|
Also compute the initial transparency settings. */
|
| 498 |
|
|
FOR_EACH_BB (bb)
|
| 499 |
|
|
{
|
| 500 |
|
|
struct seginfo *ptr;
|
| 501 |
|
|
int last_mode = no_mode;
|
| 502 |
|
|
bool any_set_required = false;
|
| 503 |
|
|
HARD_REG_SET live_now;
|
| 504 |
|
|
|
| 505 |
|
|
REG_SET_TO_HARD_REG_SET (live_now, df_get_live_in (bb));
|
| 506 |
|
|
|
| 507 |
|
|
/* Pretend the mode is clobbered across abnormal edges. */
|
| 508 |
|
|
{
|
| 509 |
|
|
edge_iterator ei;
|
| 510 |
|
|
edge e;
|
| 511 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 512 |
|
|
if (e->flags & EDGE_COMPLEX)
|
| 513 |
|
|
break;
|
| 514 |
|
|
if (e)
|
| 515 |
|
|
{
|
| 516 |
|
|
ptr = new_seginfo (no_mode, BB_HEAD (bb), bb->index, live_now);
|
| 517 |
|
|
add_seginfo (info + bb->index, ptr);
|
| 518 |
|
|
RESET_BIT (transp[bb->index], j);
|
| 519 |
|
|
}
|
| 520 |
|
|
}
|
| 521 |
|
|
|
| 522 |
|
|
FOR_BB_INSNS (bb, insn)
|
| 523 |
|
|
{
|
| 524 |
|
|
if (INSN_P (insn))
|
| 525 |
|
|
{
|
| 526 |
|
|
int mode = MODE_NEEDED (e, insn);
|
| 527 |
|
|
rtx link;
|
| 528 |
|
|
|
| 529 |
|
|
if (mode != no_mode && mode != last_mode)
|
| 530 |
|
|
{
|
| 531 |
|
|
any_set_required = true;
|
| 532 |
|
|
last_mode = mode;
|
| 533 |
|
|
ptr = new_seginfo (mode, insn, bb->index, live_now);
|
| 534 |
|
|
add_seginfo (info + bb->index, ptr);
|
| 535 |
|
|
RESET_BIT (transp[bb->index], j);
|
| 536 |
|
|
}
|
| 537 |
|
|
#ifdef MODE_AFTER
|
| 538 |
|
|
last_mode = MODE_AFTER (last_mode, insn);
|
| 539 |
|
|
#endif
|
| 540 |
|
|
/* Update LIVE_NOW. */
|
| 541 |
|
|
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
| 542 |
|
|
if (REG_NOTE_KIND (link) == REG_DEAD)
|
| 543 |
|
|
reg_dies (XEXP (link, 0), &live_now);
|
| 544 |
|
|
|
| 545 |
|
|
note_stores (PATTERN (insn), reg_becomes_live, &live_now);
|
| 546 |
|
|
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
| 547 |
|
|
if (REG_NOTE_KIND (link) == REG_UNUSED)
|
| 548 |
|
|
reg_dies (XEXP (link, 0), &live_now);
|
| 549 |
|
|
}
|
| 550 |
|
|
}
|
| 551 |
|
|
|
| 552 |
|
|
info[bb->index].computing = last_mode;
|
| 553 |
|
|
/* Check for blocks without ANY mode requirements.
|
| 554 |
|
|
N.B. because of MODE_AFTER, last_mode might still be different
|
| 555 |
|
|
from no_mode. */
|
| 556 |
|
|
if (!any_set_required)
|
| 557 |
|
|
{
|
| 558 |
|
|
ptr = new_seginfo (no_mode, BB_END (bb), bb->index, live_now);
|
| 559 |
|
|
add_seginfo (info + bb->index, ptr);
|
| 560 |
|
|
}
|
| 561 |
|
|
}
|
| 562 |
|
|
#if defined (MODE_ENTRY) && defined (MODE_EXIT)
|
| 563 |
|
|
{
|
| 564 |
|
|
int mode = MODE_ENTRY (e);
|
| 565 |
|
|
|
| 566 |
|
|
if (mode != no_mode)
|
| 567 |
|
|
{
|
| 568 |
|
|
bb = post_entry;
|
| 569 |
|
|
|
| 570 |
|
|
/* By always making this nontransparent, we save
|
| 571 |
|
|
an extra check in make_preds_opaque. We also
|
| 572 |
|
|
need this to avoid confusing pre_edge_lcm when
|
| 573 |
|
|
antic is cleared but transp and comp are set. */
|
| 574 |
|
|
RESET_BIT (transp[bb->index], j);
|
| 575 |
|
|
|
| 576 |
|
|
/* Insert a fake computing definition of MODE into entry
|
| 577 |
|
|
blocks which compute no mode. This represents the mode on
|
| 578 |
|
|
entry. */
|
| 579 |
|
|
info[bb->index].computing = mode;
|
| 580 |
|
|
|
| 581 |
|
|
if (pre_exit)
|
| 582 |
|
|
info[pre_exit->index].seginfo->mode = MODE_EXIT (e);
|
| 583 |
|
|
}
|
| 584 |
|
|
}
|
| 585 |
|
|
#endif /* NORMAL_MODE */
|
| 586 |
|
|
}
|
| 587 |
|
|
|
| 588 |
|
|
kill = sbitmap_vector_alloc (last_basic_block, n_entities);
|
| 589 |
|
|
for (i = 0; i < max_num_modes; i++)
|
| 590 |
|
|
{
|
| 591 |
|
|
int current_mode[N_ENTITIES];
|
| 592 |
|
|
sbitmap *del;
|
| 593 |
|
|
sbitmap *insert;
|
| 594 |
|
|
|
| 595 |
|
|
/* Set the anticipatable and computing arrays. */
|
| 596 |
|
|
sbitmap_vector_zero (antic, last_basic_block);
|
| 597 |
|
|
sbitmap_vector_zero (comp, last_basic_block);
|
| 598 |
|
|
for (j = n_entities - 1; j >= 0; j--)
|
| 599 |
|
|
{
|
| 600 |
|
|
int m = current_mode[j] = MODE_PRIORITY_TO_MODE (entity_map[j], i);
|
| 601 |
|
|
struct bb_info *info = bb_info[j];
|
| 602 |
|
|
|
| 603 |
|
|
FOR_EACH_BB (bb)
|
| 604 |
|
|
{
|
| 605 |
|
|
if (info[bb->index].seginfo->mode == m)
|
| 606 |
|
|
SET_BIT (antic[bb->index], j);
|
| 607 |
|
|
|
| 608 |
|
|
if (info[bb->index].computing == m)
|
| 609 |
|
|
SET_BIT (comp[bb->index], j);
|
| 610 |
|
|
}
|
| 611 |
|
|
}
|
| 612 |
|
|
|
| 613 |
|
|
/* Calculate the optimal locations for the
|
| 614 |
|
|
placement mode switches to modes with priority I. */
|
| 615 |
|
|
|
| 616 |
|
|
FOR_EACH_BB (bb)
|
| 617 |
|
|
sbitmap_not (kill[bb->index], transp[bb->index]);
|
| 618 |
|
|
edge_list = pre_edge_lcm (n_entities, transp, comp, antic,
|
| 619 |
|
|
kill, &insert, &del);
|
| 620 |
|
|
|
| 621 |
|
|
for (j = n_entities - 1; j >= 0; j--)
|
| 622 |
|
|
{
|
| 623 |
|
|
/* Insert all mode sets that have been inserted by lcm. */
|
| 624 |
|
|
int no_mode = num_modes[entity_map[j]];
|
| 625 |
|
|
|
| 626 |
|
|
/* Wherever we have moved a mode setting upwards in the flow graph,
|
| 627 |
|
|
the blocks between the new setting site and the now redundant
|
| 628 |
|
|
computation ceases to be transparent for any lower-priority
|
| 629 |
|
|
mode of the same entity. First set the aux field of each
|
| 630 |
|
|
insertion site edge non-transparent, then propagate the new
|
| 631 |
|
|
non-transparency from the redundant computation upwards till
|
| 632 |
|
|
we hit an insertion site or an already non-transparent block. */
|
| 633 |
|
|
for (e = NUM_EDGES (edge_list) - 1; e >= 0; e--)
|
| 634 |
|
|
{
|
| 635 |
|
|
edge eg = INDEX_EDGE (edge_list, e);
|
| 636 |
|
|
int mode;
|
| 637 |
|
|
basic_block src_bb;
|
| 638 |
|
|
HARD_REG_SET live_at_edge;
|
| 639 |
|
|
rtx mode_set;
|
| 640 |
|
|
|
| 641 |
|
|
eg->aux = 0;
|
| 642 |
|
|
|
| 643 |
|
|
if (! TEST_BIT (insert[e], j))
|
| 644 |
|
|
continue;
|
| 645 |
|
|
|
| 646 |
|
|
eg->aux = (void *)1;
|
| 647 |
|
|
|
| 648 |
|
|
mode = current_mode[j];
|
| 649 |
|
|
src_bb = eg->src;
|
| 650 |
|
|
|
| 651 |
|
|
REG_SET_TO_HARD_REG_SET (live_at_edge, df_get_live_out (src_bb));
|
| 652 |
|
|
|
| 653 |
|
|
start_sequence ();
|
| 654 |
|
|
EMIT_MODE_SET (entity_map[j], mode, live_at_edge);
|
| 655 |
|
|
mode_set = get_insns ();
|
| 656 |
|
|
end_sequence ();
|
| 657 |
|
|
|
| 658 |
|
|
/* Do not bother to insert empty sequence. */
|
| 659 |
|
|
if (mode_set == NULL_RTX)
|
| 660 |
|
|
continue;
|
| 661 |
|
|
|
| 662 |
|
|
/* We should not get an abnormal edge here. */
|
| 663 |
|
|
gcc_assert (! (eg->flags & EDGE_ABNORMAL));
|
| 664 |
|
|
|
| 665 |
|
|
need_commit = 1;
|
| 666 |
|
|
insert_insn_on_edge (mode_set, eg);
|
| 667 |
|
|
}
|
| 668 |
|
|
|
| 669 |
|
|
FOR_EACH_BB_REVERSE (bb)
|
| 670 |
|
|
if (TEST_BIT (del[bb->index], j))
|
| 671 |
|
|
{
|
| 672 |
|
|
make_preds_opaque (bb, j);
|
| 673 |
|
|
/* Cancel the 'deleted' mode set. */
|
| 674 |
|
|
bb_info[j][bb->index].seginfo->mode = no_mode;
|
| 675 |
|
|
}
|
| 676 |
|
|
}
|
| 677 |
|
|
|
| 678 |
|
|
sbitmap_vector_free (del);
|
| 679 |
|
|
sbitmap_vector_free (insert);
|
| 680 |
|
|
clear_aux_for_edges ();
|
| 681 |
|
|
free_edge_list (edge_list);
|
| 682 |
|
|
}
|
| 683 |
|
|
|
| 684 |
|
|
/* Now output the remaining mode sets in all the segments. */
|
| 685 |
|
|
for (j = n_entities - 1; j >= 0; j--)
|
| 686 |
|
|
{
|
| 687 |
|
|
int no_mode = num_modes[entity_map[j]];
|
| 688 |
|
|
|
| 689 |
|
|
FOR_EACH_BB_REVERSE (bb)
|
| 690 |
|
|
{
|
| 691 |
|
|
struct seginfo *ptr, *next;
|
| 692 |
|
|
for (ptr = bb_info[j][bb->index].seginfo; ptr; ptr = next)
|
| 693 |
|
|
{
|
| 694 |
|
|
next = ptr->next;
|
| 695 |
|
|
if (ptr->mode != no_mode)
|
| 696 |
|
|
{
|
| 697 |
|
|
rtx mode_set;
|
| 698 |
|
|
|
| 699 |
|
|
start_sequence ();
|
| 700 |
|
|
EMIT_MODE_SET (entity_map[j], ptr->mode, ptr->regs_live);
|
| 701 |
|
|
mode_set = get_insns ();
|
| 702 |
|
|
end_sequence ();
|
| 703 |
|
|
|
| 704 |
|
|
/* Insert MODE_SET only if it is nonempty. */
|
| 705 |
|
|
if (mode_set != NULL_RTX)
|
| 706 |
|
|
{
|
| 707 |
|
|
emited = true;
|
| 708 |
|
|
if (NOTE_INSN_BASIC_BLOCK_P (ptr->insn_ptr))
|
| 709 |
|
|
emit_insn_after (mode_set, ptr->insn_ptr);
|
| 710 |
|
|
else
|
| 711 |
|
|
emit_insn_before (mode_set, ptr->insn_ptr);
|
| 712 |
|
|
}
|
| 713 |
|
|
}
|
| 714 |
|
|
|
| 715 |
|
|
free (ptr);
|
| 716 |
|
|
}
|
| 717 |
|
|
}
|
| 718 |
|
|
|
| 719 |
|
|
free (bb_info[j]);
|
| 720 |
|
|
}
|
| 721 |
|
|
|
| 722 |
|
|
/* Finished. Free up all the things we've allocated. */
|
| 723 |
|
|
sbitmap_vector_free (kill);
|
| 724 |
|
|
sbitmap_vector_free (antic);
|
| 725 |
|
|
sbitmap_vector_free (transp);
|
| 726 |
|
|
sbitmap_vector_free (comp);
|
| 727 |
|
|
|
| 728 |
|
|
if (need_commit)
|
| 729 |
|
|
commit_edge_insertions ();
|
| 730 |
|
|
|
| 731 |
|
|
#if defined (MODE_ENTRY) && defined (MODE_EXIT)
|
| 732 |
|
|
cleanup_cfg (CLEANUP_NO_INSN_DEL);
|
| 733 |
|
|
#else
|
| 734 |
|
|
if (!need_commit && !emited)
|
| 735 |
|
|
return 0;
|
| 736 |
|
|
#endif
|
| 737 |
|
|
|
| 738 |
|
|
return 1;
|
| 739 |
|
|
}
|
| 740 |
|
|
|
| 741 |
|
|
#endif /* OPTIMIZE_MODE_SWITCHING */
|
| 742 |
|
|
|
| 743 |
|
|
static bool
|
| 744 |
|
|
gate_mode_switching (void)
|
| 745 |
|
|
{
|
| 746 |
|
|
#ifdef OPTIMIZE_MODE_SWITCHING
|
| 747 |
|
|
return true;
|
| 748 |
|
|
#else
|
| 749 |
|
|
return false;
|
| 750 |
|
|
#endif
|
| 751 |
|
|
}
|
| 752 |
|
|
|
| 753 |
|
|
static unsigned int
|
| 754 |
|
|
rest_of_handle_mode_switching (void)
|
| 755 |
|
|
{
|
| 756 |
|
|
#ifdef OPTIMIZE_MODE_SWITCHING
|
| 757 |
|
|
optimize_mode_switching ();
|
| 758 |
|
|
#endif /* OPTIMIZE_MODE_SWITCHING */
|
| 759 |
|
|
return 0;
|
| 760 |
|
|
}
|
| 761 |
|
|
|
| 762 |
|
|
|
| 763 |
|
|
struct rtl_opt_pass pass_mode_switching =
|
| 764 |
|
|
{
|
| 765 |
|
|
{
|
| 766 |
|
|
RTL_PASS,
|
| 767 |
|
|
"mode_sw", /* name */
|
| 768 |
|
|
gate_mode_switching, /* gate */
|
| 769 |
|
|
rest_of_handle_mode_switching, /* execute */
|
| 770 |
|
|
NULL, /* sub */
|
| 771 |
|
|
NULL, /* next */
|
| 772 |
|
|
0, /* static_pass_number */
|
| 773 |
|
|
TV_MODE_SWITCH, /* tv_id */
|
| 774 |
|
|
0, /* properties_required */
|
| 775 |
|
|
0, /* properties_provided */
|
| 776 |
|
|
0, /* properties_destroyed */
|
| 777 |
|
|
0, /* todo_flags_start */
|
| 778 |
|
|
TODO_df_finish | TODO_verify_rtl_sharing |
|
| 779 |
|
|
|
| 780 |
|
|
}
|
| 781 |
|
|
};
|