| 1 |
684 |
jeremybenn |
/* Swing Modulo Scheduling implementation.
|
| 2 |
|
|
Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GCC.
|
| 7 |
|
|
|
| 8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 9 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 11 |
|
|
version.
|
| 12 |
|
|
|
| 13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 16 |
|
|
for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 20 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
|
| 23 |
|
|
#include "config.h"
|
| 24 |
|
|
#include "system.h"
|
| 25 |
|
|
#include "coretypes.h"
|
| 26 |
|
|
#include "tm.h"
|
| 27 |
|
|
#include "diagnostic-core.h"
|
| 28 |
|
|
#include "rtl.h"
|
| 29 |
|
|
#include "tm_p.h"
|
| 30 |
|
|
#include "hard-reg-set.h"
|
| 31 |
|
|
#include "regs.h"
|
| 32 |
|
|
#include "function.h"
|
| 33 |
|
|
#include "flags.h"
|
| 34 |
|
|
#include "insn-config.h"
|
| 35 |
|
|
#include "insn-attr.h"
|
| 36 |
|
|
#include "except.h"
|
| 37 |
|
|
#include "recog.h"
|
| 38 |
|
|
#include "sched-int.h"
|
| 39 |
|
|
#include "target.h"
|
| 40 |
|
|
#include "cfglayout.h"
|
| 41 |
|
|
#include "cfgloop.h"
|
| 42 |
|
|
#include "cfghooks.h"
|
| 43 |
|
|
#include "expr.h"
|
| 44 |
|
|
#include "params.h"
|
| 45 |
|
|
#include "gcov-io.h"
|
| 46 |
|
|
#include "ddg.h"
|
| 47 |
|
|
#include "timevar.h"
|
| 48 |
|
|
#include "tree-pass.h"
|
| 49 |
|
|
#include "dbgcnt.h"
|
| 50 |
|
|
#include "df.h"
|
| 51 |
|
|
|
| 52 |
|
|
#ifdef INSN_SCHEDULING
|
| 53 |
|
|
|
| 54 |
|
|
/* This file contains the implementation of the Swing Modulo Scheduler,
|
| 55 |
|
|
described in the following references:
|
| 56 |
|
|
[1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
|
| 57 |
|
|
Lifetime--sensitive modulo scheduling in a production environment.
|
| 58 |
|
|
IEEE Trans. on Comps., 50(3), March 2001
|
| 59 |
|
|
[2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
|
| 60 |
|
|
Swing Modulo Scheduling: A Lifetime Sensitive Approach.
|
| 61 |
|
|
PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
|
| 62 |
|
|
|
| 63 |
|
|
The basic structure is:
|
| 64 |
|
|
1. Build a data-dependence graph (DDG) for each loop.
|
| 65 |
|
|
2. Use the DDG to order the insns of a loop (not in topological order
|
| 66 |
|
|
necessarily, but rather) trying to place each insn after all its
|
| 67 |
|
|
predecessors _or_ after all its successors.
|
| 68 |
|
|
3. Compute MII: a lower bound on the number of cycles to schedule the loop.
|
| 69 |
|
|
4. Use the ordering to perform list-scheduling of the loop:
|
| 70 |
|
|
1. Set II = MII. We will try to schedule the loop within II cycles.
|
| 71 |
|
|
2. Try to schedule the insns one by one according to the ordering.
|
| 72 |
|
|
For each insn compute an interval of cycles by considering already-
|
| 73 |
|
|
scheduled preds and succs (and associated latencies); try to place
|
| 74 |
|
|
the insn in the cycles of this window checking for potential
|
| 75 |
|
|
resource conflicts (using the DFA interface).
|
| 76 |
|
|
Note: this is different from the cycle-scheduling of schedule_insns;
|
| 77 |
|
|
here the insns are not scheduled monotonically top-down (nor bottom-
|
| 78 |
|
|
up).
|
| 79 |
|
|
3. If failed in scheduling all insns - bump II++ and try again, unless
|
| 80 |
|
|
II reaches an upper bound MaxII, in which case report failure.
|
| 81 |
|
|
5. If we succeeded in scheduling the loop within II cycles, we now
|
| 82 |
|
|
generate prolog and epilog, decrease the counter of the loop, and
|
| 83 |
|
|
perform modulo variable expansion for live ranges that span more than
|
| 84 |
|
|
II cycles (i.e. use register copies to prevent a def from overwriting
|
| 85 |
|
|
itself before reaching the use).
|
| 86 |
|
|
|
| 87 |
|
|
SMS works with countable loops (1) whose control part can be easily
|
| 88 |
|
|
decoupled from the rest of the loop and (2) whose loop count can
|
| 89 |
|
|
be easily adjusted. This is because we peel a constant number of
|
| 90 |
|
|
iterations into a prologue and epilogue for which we want to avoid
|
| 91 |
|
|
emitting the control part, and a kernel which is to iterate that
|
| 92 |
|
|
constant number of iterations less than the original loop. So the
|
| 93 |
|
|
control part should be a set of insns clearly identified and having
|
| 94 |
|
|
its own iv, not otherwise used in the loop (at-least for now), which
|
| 95 |
|
|
initializes a register before the loop to the number of iterations.
|
| 96 |
|
|
Currently SMS relies on the do-loop pattern to recognize such loops,
|
| 97 |
|
|
where (1) the control part comprises of all insns defining and/or
|
| 98 |
|
|
using a certain 'count' register and (2) the loop count can be
|
| 99 |
|
|
adjusted by modifying this register prior to the loop.
|
| 100 |
|
|
TODO: Rely on cfgloop analysis instead. */
|
| 101 |
|
|
|
| 102 |
|
|
/* This page defines partial-schedule structures and functions for
|
| 103 |
|
|
modulo scheduling. */
|
| 104 |
|
|
|
| 105 |
|
|
typedef struct partial_schedule *partial_schedule_ptr;
|
| 106 |
|
|
typedef struct ps_insn *ps_insn_ptr;
|
| 107 |
|
|
|
| 108 |
|
|
/* The minimum (absolute) cycle that a node of ps was scheduled in. */
|
| 109 |
|
|
#define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
|
| 110 |
|
|
|
| 111 |
|
|
/* The maximum (absolute) cycle that a node of ps was scheduled in. */
|
| 112 |
|
|
#define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
|
| 113 |
|
|
|
| 114 |
|
|
/* Perform signed modulo, always returning a non-negative value. */
|
| 115 |
|
|
#define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
|
| 116 |
|
|
|
| 117 |
|
|
/* The number of different iterations the nodes in ps span, assuming
|
| 118 |
|
|
the stage boundaries are placed efficiently. */
|
| 119 |
|
|
#define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
|
| 120 |
|
|
+ 1 + ii - 1) / ii)
|
| 121 |
|
|
/* The stage count of ps. */
|
| 122 |
|
|
#define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
|
| 123 |
|
|
|
| 124 |
|
|
/* A single instruction in the partial schedule. */
|
| 125 |
|
|
struct ps_insn
|
| 126 |
|
|
{
|
| 127 |
|
|
/* Identifies the instruction to be scheduled. Values smaller than
|
| 128 |
|
|
the ddg's num_nodes refer directly to ddg nodes. A value of
|
| 129 |
|
|
X - num_nodes refers to register move X. */
|
| 130 |
|
|
int id;
|
| 131 |
|
|
|
| 132 |
|
|
/* The (absolute) cycle in which the PS instruction is scheduled.
|
| 133 |
|
|
Same as SCHED_TIME (node). */
|
| 134 |
|
|
int cycle;
|
| 135 |
|
|
|
| 136 |
|
|
/* The next/prev PS_INSN in the same row. */
|
| 137 |
|
|
ps_insn_ptr next_in_row,
|
| 138 |
|
|
prev_in_row;
|
| 139 |
|
|
|
| 140 |
|
|
};
|
| 141 |
|
|
|
| 142 |
|
|
/* Information about a register move that has been added to a partial
|
| 143 |
|
|
schedule. */
|
| 144 |
|
|
struct ps_reg_move_info
|
| 145 |
|
|
{
|
| 146 |
|
|
/* The source of the move is defined by the ps_insn with id DEF.
|
| 147 |
|
|
The destination is used by the ps_insns with the ids in USES. */
|
| 148 |
|
|
int def;
|
| 149 |
|
|
sbitmap uses;
|
| 150 |
|
|
|
| 151 |
|
|
/* The original form of USES' instructions used OLD_REG, but they
|
| 152 |
|
|
should now use NEW_REG. */
|
| 153 |
|
|
rtx old_reg;
|
| 154 |
|
|
rtx new_reg;
|
| 155 |
|
|
|
| 156 |
|
|
/* The number of consecutive stages that the move occupies. */
|
| 157 |
|
|
int num_consecutive_stages;
|
| 158 |
|
|
|
| 159 |
|
|
/* An instruction that sets NEW_REG to the correct value. The first
|
| 160 |
|
|
move associated with DEF will have an rhs of OLD_REG; later moves
|
| 161 |
|
|
use the result of the previous move. */
|
| 162 |
|
|
rtx insn;
|
| 163 |
|
|
};
|
| 164 |
|
|
|
| 165 |
|
|
typedef struct ps_reg_move_info ps_reg_move_info;
|
| 166 |
|
|
DEF_VEC_O (ps_reg_move_info);
|
| 167 |
|
|
DEF_VEC_ALLOC_O (ps_reg_move_info, heap);
|
| 168 |
|
|
|
| 169 |
|
|
/* Holds the partial schedule as an array of II rows. Each entry of the
|
| 170 |
|
|
array points to a linked list of PS_INSNs, which represents the
|
| 171 |
|
|
instructions that are scheduled for that row. */
|
| 172 |
|
|
struct partial_schedule
|
| 173 |
|
|
{
|
| 174 |
|
|
int ii; /* Number of rows in the partial schedule. */
|
| 175 |
|
|
int history; /* Threshold for conflict checking using DFA. */
|
| 176 |
|
|
|
| 177 |
|
|
/* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
|
| 178 |
|
|
ps_insn_ptr *rows;
|
| 179 |
|
|
|
| 180 |
|
|
/* All the moves added for this partial schedule. Index X has
|
| 181 |
|
|
a ps_insn id of X + g->num_nodes. */
|
| 182 |
|
|
VEC (ps_reg_move_info, heap) *reg_moves;
|
| 183 |
|
|
|
| 184 |
|
|
/* rows_length[i] holds the number of instructions in the row.
|
| 185 |
|
|
It is used only (as an optimization) to back off quickly from
|
| 186 |
|
|
trying to schedule a node in a full row; that is, to avoid running
|
| 187 |
|
|
through futile DFA state transitions. */
|
| 188 |
|
|
int *rows_length;
|
| 189 |
|
|
|
| 190 |
|
|
/* The earliest absolute cycle of an insn in the partial schedule. */
|
| 191 |
|
|
int min_cycle;
|
| 192 |
|
|
|
| 193 |
|
|
/* The latest absolute cycle of an insn in the partial schedule. */
|
| 194 |
|
|
int max_cycle;
|
| 195 |
|
|
|
| 196 |
|
|
ddg_ptr g; /* The DDG of the insns in the partial schedule. */
|
| 197 |
|
|
|
| 198 |
|
|
int stage_count; /* The stage count of the partial schedule. */
|
| 199 |
|
|
};
|
| 200 |
|
|
|
| 201 |
|
|
|
| 202 |
|
|
static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
|
| 203 |
|
|
static void free_partial_schedule (partial_schedule_ptr);
|
| 204 |
|
|
static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
|
| 205 |
|
|
void print_partial_schedule (partial_schedule_ptr, FILE *);
|
| 206 |
|
|
static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
|
| 207 |
|
|
static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
|
| 208 |
|
|
int, int, sbitmap, sbitmap);
|
| 209 |
|
|
static void rotate_partial_schedule (partial_schedule_ptr, int);
|
| 210 |
|
|
void set_row_column_for_ps (partial_schedule_ptr);
|
| 211 |
|
|
static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
|
| 212 |
|
|
static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
|
| 213 |
|
|
|
| 214 |
|
|
|
| 215 |
|
|
/* This page defines constants and structures for the modulo scheduling
|
| 216 |
|
|
driver. */
|
| 217 |
|
|
|
| 218 |
|
|
static int sms_order_nodes (ddg_ptr, int, int *, int *);
|
| 219 |
|
|
static void set_node_sched_params (ddg_ptr);
|
| 220 |
|
|
static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
|
| 221 |
|
|
static void permute_partial_schedule (partial_schedule_ptr, rtx);
|
| 222 |
|
|
static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
|
| 223 |
|
|
rtx, rtx);
|
| 224 |
|
|
static int calculate_stage_count (partial_schedule_ptr, int);
|
| 225 |
|
|
static void calculate_must_precede_follow (ddg_node_ptr, int, int,
|
| 226 |
|
|
int, int, sbitmap, sbitmap, sbitmap);
|
| 227 |
|
|
static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
|
| 228 |
|
|
sbitmap, int, int *, int *, int *);
|
| 229 |
|
|
static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
|
| 230 |
|
|
sbitmap, int *, sbitmap, sbitmap);
|
| 231 |
|
|
static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
|
| 232 |
|
|
|
| 233 |
|
|
#define NODE_ASAP(node) ((node)->aux.count)
|
| 234 |
|
|
|
| 235 |
|
|
#define SCHED_PARAMS(x) VEC_index (node_sched_params, node_sched_param_vec, x)
|
| 236 |
|
|
#define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
|
| 237 |
|
|
#define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
|
| 238 |
|
|
#define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
|
| 239 |
|
|
#define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
|
| 240 |
|
|
|
| 241 |
|
|
/* The scheduling parameters held for each node. */
|
| 242 |
|
|
typedef struct node_sched_params
|
| 243 |
|
|
{
|
| 244 |
|
|
int time; /* The absolute scheduling cycle. */
|
| 245 |
|
|
|
| 246 |
|
|
int row; /* Holds time % ii. */
|
| 247 |
|
|
int stage; /* Holds time / ii. */
|
| 248 |
|
|
|
| 249 |
|
|
/* The column of a node inside the ps. If nodes u, v are on the same row,
|
| 250 |
|
|
u will precede v if column (u) < column (v). */
|
| 251 |
|
|
int column;
|
| 252 |
|
|
} *node_sched_params_ptr;
|
| 253 |
|
|
|
| 254 |
|
|
typedef struct node_sched_params node_sched_params;
|
| 255 |
|
|
DEF_VEC_O (node_sched_params);
|
| 256 |
|
|
DEF_VEC_ALLOC_O (node_sched_params, heap);
|
| 257 |
|
|
|
| 258 |
|
|
/* The following three functions are copied from the current scheduler
|
| 259 |
|
|
code in order to use sched_analyze() for computing the dependencies.
|
| 260 |
|
|
They are used when initializing the sched_info structure. */
|
| 261 |
|
|
static const char *
|
| 262 |
|
|
sms_print_insn (const_rtx insn, int aligned ATTRIBUTE_UNUSED)
|
| 263 |
|
|
{
|
| 264 |
|
|
static char tmp[80];
|
| 265 |
|
|
|
| 266 |
|
|
sprintf (tmp, "i%4d", INSN_UID (insn));
|
| 267 |
|
|
return tmp;
|
| 268 |
|
|
}
|
| 269 |
|
|
|
| 270 |
|
|
static void
|
| 271 |
|
|
compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
|
| 272 |
|
|
regset used ATTRIBUTE_UNUSED)
|
| 273 |
|
|
{
|
| 274 |
|
|
}
|
| 275 |
|
|
|
| 276 |
|
|
static struct common_sched_info_def sms_common_sched_info;
|
| 277 |
|
|
|
| 278 |
|
|
static struct sched_deps_info_def sms_sched_deps_info =
|
| 279 |
|
|
{
|
| 280 |
|
|
compute_jump_reg_dependencies,
|
| 281 |
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
| 282 |
|
|
NULL,
|
| 283 |
|
|
0, 0, 0
|
| 284 |
|
|
};
|
| 285 |
|
|
|
| 286 |
|
|
static struct haifa_sched_info sms_sched_info =
|
| 287 |
|
|
{
|
| 288 |
|
|
NULL,
|
| 289 |
|
|
NULL,
|
| 290 |
|
|
NULL,
|
| 291 |
|
|
NULL,
|
| 292 |
|
|
NULL,
|
| 293 |
|
|
sms_print_insn,
|
| 294 |
|
|
NULL,
|
| 295 |
|
|
NULL, /* insn_finishes_block_p */
|
| 296 |
|
|
NULL, NULL,
|
| 297 |
|
|
NULL, NULL,
|
| 298 |
|
|
0, 0,
|
| 299 |
|
|
|
| 300 |
|
|
NULL, NULL, NULL, NULL,
|
| 301 |
|
|
NULL, NULL,
|
| 302 |
|
|
|
| 303 |
|
|
};
|
| 304 |
|
|
|
| 305 |
|
|
/* Partial schedule instruction ID in PS is a register move. Return
|
| 306 |
|
|
information about it. */
|
| 307 |
|
|
static struct ps_reg_move_info *
|
| 308 |
|
|
ps_reg_move (partial_schedule_ptr ps, int id)
|
| 309 |
|
|
{
|
| 310 |
|
|
gcc_checking_assert (id >= ps->g->num_nodes);
|
| 311 |
|
|
return VEC_index (ps_reg_move_info, ps->reg_moves, id - ps->g->num_nodes);
|
| 312 |
|
|
}
|
| 313 |
|
|
|
| 314 |
|
|
/* Return the rtl instruction that is being scheduled by partial schedule
|
| 315 |
|
|
instruction ID, which belongs to schedule PS. */
|
| 316 |
|
|
static rtx
|
| 317 |
|
|
ps_rtl_insn (partial_schedule_ptr ps, int id)
|
| 318 |
|
|
{
|
| 319 |
|
|
if (id < ps->g->num_nodes)
|
| 320 |
|
|
return ps->g->nodes[id].insn;
|
| 321 |
|
|
else
|
| 322 |
|
|
return ps_reg_move (ps, id)->insn;
|
| 323 |
|
|
}
|
| 324 |
|
|
|
| 325 |
|
|
/* Partial schedule instruction ID, which belongs to PS, occured in
|
| 326 |
|
|
the original (unscheduled) loop. Return the first instruction
|
| 327 |
|
|
in the loop that was associated with ps_rtl_insn (PS, ID).
|
| 328 |
|
|
If the instruction had some notes before it, this is the first
|
| 329 |
|
|
of those notes. */
|
| 330 |
|
|
static rtx
|
| 331 |
|
|
ps_first_note (partial_schedule_ptr ps, int id)
|
| 332 |
|
|
{
|
| 333 |
|
|
gcc_assert (id < ps->g->num_nodes);
|
| 334 |
|
|
return ps->g->nodes[id].first_note;
|
| 335 |
|
|
}
|
| 336 |
|
|
|
| 337 |
|
|
/* Return the number of consecutive stages that are occupied by
|
| 338 |
|
|
partial schedule instruction ID in PS. */
|
| 339 |
|
|
static int
|
| 340 |
|
|
ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
|
| 341 |
|
|
{
|
| 342 |
|
|
if (id < ps->g->num_nodes)
|
| 343 |
|
|
return 1;
|
| 344 |
|
|
else
|
| 345 |
|
|
return ps_reg_move (ps, id)->num_consecutive_stages;
|
| 346 |
|
|
}
|
| 347 |
|
|
|
| 348 |
|
|
/* Given HEAD and TAIL which are the first and last insns in a loop;
|
| 349 |
|
|
return the register which controls the loop. Return zero if it has
|
| 350 |
|
|
more than one occurrence in the loop besides the control part or the
|
| 351 |
|
|
do-loop pattern is not of the form we expect. */
|
| 352 |
|
|
static rtx
|
| 353 |
|
|
doloop_register_get (rtx head ATTRIBUTE_UNUSED, rtx tail ATTRIBUTE_UNUSED)
|
| 354 |
|
|
{
|
| 355 |
|
|
#ifdef HAVE_doloop_end
|
| 356 |
|
|
rtx reg, condition, insn, first_insn_not_to_check;
|
| 357 |
|
|
|
| 358 |
|
|
if (!JUMP_P (tail))
|
| 359 |
|
|
return NULL_RTX;
|
| 360 |
|
|
|
| 361 |
|
|
/* TODO: Free SMS's dependence on doloop_condition_get. */
|
| 362 |
|
|
condition = doloop_condition_get (tail);
|
| 363 |
|
|
if (! condition)
|
| 364 |
|
|
return NULL_RTX;
|
| 365 |
|
|
|
| 366 |
|
|
if (REG_P (XEXP (condition, 0)))
|
| 367 |
|
|
reg = XEXP (condition, 0);
|
| 368 |
|
|
else if (GET_CODE (XEXP (condition, 0)) == PLUS
|
| 369 |
|
|
&& REG_P (XEXP (XEXP (condition, 0), 0)))
|
| 370 |
|
|
reg = XEXP (XEXP (condition, 0), 0);
|
| 371 |
|
|
else
|
| 372 |
|
|
gcc_unreachable ();
|
| 373 |
|
|
|
| 374 |
|
|
/* Check that the COUNT_REG has no other occurrences in the loop
|
| 375 |
|
|
until the decrement. We assume the control part consists of
|
| 376 |
|
|
either a single (parallel) branch-on-count or a (non-parallel)
|
| 377 |
|
|
branch immediately preceded by a single (decrement) insn. */
|
| 378 |
|
|
first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
|
| 379 |
|
|
: prev_nondebug_insn (tail));
|
| 380 |
|
|
|
| 381 |
|
|
for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
|
| 382 |
|
|
if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
|
| 383 |
|
|
{
|
| 384 |
|
|
if (dump_file)
|
| 385 |
|
|
{
|
| 386 |
|
|
fprintf (dump_file, "SMS count_reg found ");
|
| 387 |
|
|
print_rtl_single (dump_file, reg);
|
| 388 |
|
|
fprintf (dump_file, " outside control in insn:\n");
|
| 389 |
|
|
print_rtl_single (dump_file, insn);
|
| 390 |
|
|
}
|
| 391 |
|
|
|
| 392 |
|
|
return NULL_RTX;
|
| 393 |
|
|
}
|
| 394 |
|
|
|
| 395 |
|
|
return reg;
|
| 396 |
|
|
#else
|
| 397 |
|
|
return NULL_RTX;
|
| 398 |
|
|
#endif
|
| 399 |
|
|
}
|
| 400 |
|
|
|
| 401 |
|
|
/* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
|
| 402 |
|
|
that the number of iterations is a compile-time constant. If so,
|
| 403 |
|
|
return the rtx that sets COUNT_REG to a constant, and set COUNT to
|
| 404 |
|
|
this constant. Otherwise return 0. */
|
| 405 |
|
|
static rtx
|
| 406 |
|
|
const_iteration_count (rtx count_reg, basic_block pre_header,
|
| 407 |
|
|
HOST_WIDEST_INT * count)
|
| 408 |
|
|
{
|
| 409 |
|
|
rtx insn;
|
| 410 |
|
|
rtx head, tail;
|
| 411 |
|
|
|
| 412 |
|
|
if (! pre_header)
|
| 413 |
|
|
return NULL_RTX;
|
| 414 |
|
|
|
| 415 |
|
|
get_ebb_head_tail (pre_header, pre_header, &head, &tail);
|
| 416 |
|
|
|
| 417 |
|
|
for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
|
| 418 |
|
|
if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
|
| 419 |
|
|
rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
|
| 420 |
|
|
{
|
| 421 |
|
|
rtx pat = single_set (insn);
|
| 422 |
|
|
|
| 423 |
|
|
if (CONST_INT_P (SET_SRC (pat)))
|
| 424 |
|
|
{
|
| 425 |
|
|
*count = INTVAL (SET_SRC (pat));
|
| 426 |
|
|
return insn;
|
| 427 |
|
|
}
|
| 428 |
|
|
|
| 429 |
|
|
return NULL_RTX;
|
| 430 |
|
|
}
|
| 431 |
|
|
|
| 432 |
|
|
return NULL_RTX;
|
| 433 |
|
|
}
|
| 434 |
|
|
|
| 435 |
|
|
/* A very simple resource-based lower bound on the initiation interval.
|
| 436 |
|
|
??? Improve the accuracy of this bound by considering the
|
| 437 |
|
|
utilization of various units. */
|
| 438 |
|
|
static int
|
| 439 |
|
|
res_MII (ddg_ptr g)
|
| 440 |
|
|
{
|
| 441 |
|
|
if (targetm.sched.sms_res_mii)
|
| 442 |
|
|
return targetm.sched.sms_res_mii (g);
|
| 443 |
|
|
|
| 444 |
|
|
return ((g->num_nodes - g->num_debug) / issue_rate);
|
| 445 |
|
|
}
|
| 446 |
|
|
|
| 447 |
|
|
|
| 448 |
|
|
/* A vector that contains the sched data for each ps_insn. */
|
| 449 |
|
|
static VEC (node_sched_params, heap) *node_sched_param_vec;
|
| 450 |
|
|
|
| 451 |
|
|
/* Allocate sched_params for each node and initialize it. */
|
| 452 |
|
|
static void
|
| 453 |
|
|
set_node_sched_params (ddg_ptr g)
|
| 454 |
|
|
{
|
| 455 |
|
|
VEC_truncate (node_sched_params, node_sched_param_vec, 0);
|
| 456 |
|
|
VEC_safe_grow_cleared (node_sched_params, heap,
|
| 457 |
|
|
node_sched_param_vec, g->num_nodes);
|
| 458 |
|
|
}
|
| 459 |
|
|
|
| 460 |
|
|
/* Make sure that node_sched_param_vec has an entry for every move in PS. */
|
| 461 |
|
|
static void
|
| 462 |
|
|
extend_node_sched_params (partial_schedule_ptr ps)
|
| 463 |
|
|
{
|
| 464 |
|
|
VEC_safe_grow_cleared (node_sched_params, heap, node_sched_param_vec,
|
| 465 |
|
|
ps->g->num_nodes + VEC_length (ps_reg_move_info,
|
| 466 |
|
|
ps->reg_moves));
|
| 467 |
|
|
}
|
| 468 |
|
|
|
| 469 |
|
|
/* Update the sched_params (time, row and stage) for node U using the II,
|
| 470 |
|
|
the CYCLE of U and MIN_CYCLE.
|
| 471 |
|
|
We're not simply taking the following
|
| 472 |
|
|
SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
|
| 473 |
|
|
because the stages may not be aligned on cycle 0. */
|
| 474 |
|
|
static void
|
| 475 |
|
|
update_node_sched_params (int u, int ii, int cycle, int min_cycle)
|
| 476 |
|
|
{
|
| 477 |
|
|
int sc_until_cycle_zero;
|
| 478 |
|
|
int stage;
|
| 479 |
|
|
|
| 480 |
|
|
SCHED_TIME (u) = cycle;
|
| 481 |
|
|
SCHED_ROW (u) = SMODULO (cycle, ii);
|
| 482 |
|
|
|
| 483 |
|
|
/* The calculation of stage count is done adding the number
|
| 484 |
|
|
of stages before cycle zero and after cycle zero. */
|
| 485 |
|
|
sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
|
| 486 |
|
|
|
| 487 |
|
|
if (SCHED_TIME (u) < 0)
|
| 488 |
|
|
{
|
| 489 |
|
|
stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
|
| 490 |
|
|
SCHED_STAGE (u) = sc_until_cycle_zero - stage;
|
| 491 |
|
|
}
|
| 492 |
|
|
else
|
| 493 |
|
|
{
|
| 494 |
|
|
stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
|
| 495 |
|
|
SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
|
| 496 |
|
|
}
|
| 497 |
|
|
}
|
| 498 |
|
|
|
| 499 |
|
|
static void
|
| 500 |
|
|
print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
|
| 501 |
|
|
{
|
| 502 |
|
|
int i;
|
| 503 |
|
|
|
| 504 |
|
|
if (! file)
|
| 505 |
|
|
return;
|
| 506 |
|
|
for (i = 0; i < num_nodes; i++)
|
| 507 |
|
|
{
|
| 508 |
|
|
node_sched_params_ptr nsp = SCHED_PARAMS (i);
|
| 509 |
|
|
|
| 510 |
|
|
fprintf (file, "Node = %d; INSN = %d\n", i,
|
| 511 |
|
|
INSN_UID (ps_rtl_insn (ps, i)));
|
| 512 |
|
|
fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
|
| 513 |
|
|
fprintf (file, " time = %d:\n", nsp->time);
|
| 514 |
|
|
fprintf (file, " stage = %d:\n", nsp->stage);
|
| 515 |
|
|
}
|
| 516 |
|
|
}
|
| 517 |
|
|
|
| 518 |
|
|
/* Set SCHED_COLUMN for each instruction in row ROW of PS. */
|
| 519 |
|
|
static void
|
| 520 |
|
|
set_columns_for_row (partial_schedule_ptr ps, int row)
|
| 521 |
|
|
{
|
| 522 |
|
|
ps_insn_ptr cur_insn;
|
| 523 |
|
|
int column;
|
| 524 |
|
|
|
| 525 |
|
|
column = 0;
|
| 526 |
|
|
for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
|
| 527 |
|
|
SCHED_COLUMN (cur_insn->id) = column++;
|
| 528 |
|
|
}
|
| 529 |
|
|
|
| 530 |
|
|
/* Set SCHED_COLUMN for each instruction in PS. */
|
| 531 |
|
|
static void
|
| 532 |
|
|
set_columns_for_ps (partial_schedule_ptr ps)
|
| 533 |
|
|
{
|
| 534 |
|
|
int row;
|
| 535 |
|
|
|
| 536 |
|
|
for (row = 0; row < ps->ii; row++)
|
| 537 |
|
|
set_columns_for_row (ps, row);
|
| 538 |
|
|
}
|
| 539 |
|
|
|
| 540 |
|
|
/* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
|
| 541 |
|
|
Its single predecessor has already been scheduled, as has its
|
| 542 |
|
|
ddg node successors. (The move may have also another move as its
|
| 543 |
|
|
successor, in which case that successor will be scheduled later.)
|
| 544 |
|
|
|
| 545 |
|
|
The move is part of a chain that satisfies register dependencies
|
| 546 |
|
|
between a producing ddg node and various consuming ddg nodes.
|
| 547 |
|
|
If some of these dependencies have a distance of 1 (meaning that
|
| 548 |
|
|
the use is upward-exposed) then DISTANCE1_USES is nonnull and
|
| 549 |
|
|
contains the set of uses with distance-1 dependencies.
|
| 550 |
|
|
DISTANCE1_USES is null otherwise.
|
| 551 |
|
|
|
| 552 |
|
|
MUST_FOLLOW is a scratch bitmap that is big enough to hold
|
| 553 |
|
|
all current ps_insn ids.
|
| 554 |
|
|
|
| 555 |
|
|
Return true on success. */
|
| 556 |
|
|
static bool
|
| 557 |
|
|
schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
|
| 558 |
|
|
sbitmap distance1_uses, sbitmap must_follow)
|
| 559 |
|
|
{
|
| 560 |
|
|
unsigned int u;
|
| 561 |
|
|
int this_time, this_distance, this_start, this_end, this_latency;
|
| 562 |
|
|
int start, end, c, ii;
|
| 563 |
|
|
sbitmap_iterator sbi;
|
| 564 |
|
|
ps_reg_move_info *move;
|
| 565 |
|
|
rtx this_insn;
|
| 566 |
|
|
ps_insn_ptr psi;
|
| 567 |
|
|
|
| 568 |
|
|
move = ps_reg_move (ps, i_reg_move);
|
| 569 |
|
|
ii = ps->ii;
|
| 570 |
|
|
if (dump_file)
|
| 571 |
|
|
{
|
| 572 |
|
|
fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
|
| 573 |
|
|
", min cycle = %d\n\n", INSN_UID (move->insn), ii,
|
| 574 |
|
|
PS_MIN_CYCLE (ps));
|
| 575 |
|
|
print_rtl_single (dump_file, move->insn);
|
| 576 |
|
|
fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
|
| 577 |
|
|
fprintf (dump_file, "=========== =========== =====\n");
|
| 578 |
|
|
}
|
| 579 |
|
|
|
| 580 |
|
|
start = INT_MIN;
|
| 581 |
|
|
end = INT_MAX;
|
| 582 |
|
|
|
| 583 |
|
|
/* For dependencies of distance 1 between a producer ddg node A
|
| 584 |
|
|
and consumer ddg node B, we have a chain of dependencies:
|
| 585 |
|
|
|
| 586 |
|
|
A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
|
| 587 |
|
|
|
| 588 |
|
|
where Mi is the ith move. For dependencies of distance 0 between
|
| 589 |
|
|
a producer ddg node A and consumer ddg node C, we have a chain of
|
| 590 |
|
|
dependencies:
|
| 591 |
|
|
|
| 592 |
|
|
A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
|
| 593 |
|
|
|
| 594 |
|
|
where Mi' occupies the same position as Mi but occurs a stage later.
|
| 595 |
|
|
We can only schedule each move once, so if we have both types of
|
| 596 |
|
|
chain, we model the second as:
|
| 597 |
|
|
|
| 598 |
|
|
A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
|
| 599 |
|
|
|
| 600 |
|
|
First handle the dependencies between the previously-scheduled
|
| 601 |
|
|
predecessor and the move. */
|
| 602 |
|
|
this_insn = ps_rtl_insn (ps, move->def);
|
| 603 |
|
|
this_latency = insn_latency (this_insn, move->insn);
|
| 604 |
|
|
this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
|
| 605 |
|
|
this_time = SCHED_TIME (move->def) - this_distance * ii;
|
| 606 |
|
|
this_start = this_time + this_latency;
|
| 607 |
|
|
this_end = this_time + ii;
|
| 608 |
|
|
if (dump_file)
|
| 609 |
|
|
fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
|
| 610 |
|
|
this_start, this_end, SCHED_TIME (move->def),
|
| 611 |
|
|
INSN_UID (this_insn), this_latency, this_distance,
|
| 612 |
|
|
INSN_UID (move->insn));
|
| 613 |
|
|
|
| 614 |
|
|
if (start < this_start)
|
| 615 |
|
|
start = this_start;
|
| 616 |
|
|
if (end > this_end)
|
| 617 |
|
|
end = this_end;
|
| 618 |
|
|
|
| 619 |
|
|
/* Handle the dependencies between the move and previously-scheduled
|
| 620 |
|
|
successors. */
|
| 621 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (move->uses, 0, u, sbi)
|
| 622 |
|
|
{
|
| 623 |
|
|
this_insn = ps_rtl_insn (ps, u);
|
| 624 |
|
|
this_latency = insn_latency (move->insn, this_insn);
|
| 625 |
|
|
if (distance1_uses && !TEST_BIT (distance1_uses, u))
|
| 626 |
|
|
this_distance = -1;
|
| 627 |
|
|
else
|
| 628 |
|
|
this_distance = 0;
|
| 629 |
|
|
this_time = SCHED_TIME (u) + this_distance * ii;
|
| 630 |
|
|
this_start = this_time - ii;
|
| 631 |
|
|
this_end = this_time - this_latency;
|
| 632 |
|
|
if (dump_file)
|
| 633 |
|
|
fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
|
| 634 |
|
|
this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
|
| 635 |
|
|
this_latency, this_distance, INSN_UID (this_insn));
|
| 636 |
|
|
|
| 637 |
|
|
if (start < this_start)
|
| 638 |
|
|
start = this_start;
|
| 639 |
|
|
if (end > this_end)
|
| 640 |
|
|
end = this_end;
|
| 641 |
|
|
}
|
| 642 |
|
|
|
| 643 |
|
|
if (dump_file)
|
| 644 |
|
|
{
|
| 645 |
|
|
fprintf (dump_file, "----------- ----------- -----\n");
|
| 646 |
|
|
fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
|
| 647 |
|
|
}
|
| 648 |
|
|
|
| 649 |
|
|
sbitmap_zero (must_follow);
|
| 650 |
|
|
SET_BIT (must_follow, move->def);
|
| 651 |
|
|
|
| 652 |
|
|
start = MAX (start, end - (ii - 1));
|
| 653 |
|
|
for (c = end; c >= start; c--)
|
| 654 |
|
|
{
|
| 655 |
|
|
psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
|
| 656 |
|
|
move->uses, must_follow);
|
| 657 |
|
|
if (psi)
|
| 658 |
|
|
{
|
| 659 |
|
|
update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
|
| 660 |
|
|
if (dump_file)
|
| 661 |
|
|
fprintf (dump_file, "\nScheduled register move INSN %d at"
|
| 662 |
|
|
" time %d, row %d\n\n", INSN_UID (move->insn), c,
|
| 663 |
|
|
SCHED_ROW (i_reg_move));
|
| 664 |
|
|
return true;
|
| 665 |
|
|
}
|
| 666 |
|
|
}
|
| 667 |
|
|
|
| 668 |
|
|
if (dump_file)
|
| 669 |
|
|
fprintf (dump_file, "\nNo available slot\n\n");
|
| 670 |
|
|
|
| 671 |
|
|
return false;
|
| 672 |
|
|
}
|
| 673 |
|
|
|
| 674 |
|
|
/*
|
| 675 |
|
|
Breaking intra-loop register anti-dependences:
|
| 676 |
|
|
Each intra-loop register anti-dependence implies a cross-iteration true
|
| 677 |
|
|
dependence of distance 1. Therefore, we can remove such false dependencies
|
| 678 |
|
|
and figure out if the partial schedule broke them by checking if (for a
|
| 679 |
|
|
true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
|
| 680 |
|
|
if so generate a register move. The number of such moves is equal to:
|
| 681 |
|
|
SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
|
| 682 |
|
|
nreg_moves = ----------------------------------- + 1 - { dependence.
|
| 683 |
|
|
ii { 1 if not.
|
| 684 |
|
|
*/
|
| 685 |
|
|
static bool
|
| 686 |
|
|
schedule_reg_moves (partial_schedule_ptr ps)
|
| 687 |
|
|
{
|
| 688 |
|
|
ddg_ptr g = ps->g;
|
| 689 |
|
|
int ii = ps->ii;
|
| 690 |
|
|
int i;
|
| 691 |
|
|
|
| 692 |
|
|
for (i = 0; i < g->num_nodes; i++)
|
| 693 |
|
|
{
|
| 694 |
|
|
ddg_node_ptr u = &g->nodes[i];
|
| 695 |
|
|
ddg_edge_ptr e;
|
| 696 |
|
|
int nreg_moves = 0, i_reg_move;
|
| 697 |
|
|
rtx prev_reg, old_reg;
|
| 698 |
|
|
int first_move;
|
| 699 |
|
|
int distances[2];
|
| 700 |
|
|
sbitmap must_follow;
|
| 701 |
|
|
sbitmap distance1_uses;
|
| 702 |
|
|
rtx set = single_set (u->insn);
|
| 703 |
|
|
|
| 704 |
|
|
/* Skip instructions that do not set a register. */
|
| 705 |
|
|
if ((set && !REG_P (SET_DEST (set))))
|
| 706 |
|
|
continue;
|
| 707 |
|
|
|
| 708 |
|
|
/* Compute the number of reg_moves needed for u, by looking at life
|
| 709 |
|
|
ranges started at u (excluding self-loops). */
|
| 710 |
|
|
distances[0] = distances[1] = false;
|
| 711 |
|
|
for (e = u->out; e; e = e->next_out)
|
| 712 |
|
|
if (e->type == TRUE_DEP && e->dest != e->src)
|
| 713 |
|
|
{
|
| 714 |
|
|
int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
|
| 715 |
|
|
- SCHED_TIME (e->src->cuid)) / ii;
|
| 716 |
|
|
|
| 717 |
|
|
if (e->distance == 1)
|
| 718 |
|
|
nreg_moves4e = (SCHED_TIME (e->dest->cuid)
|
| 719 |
|
|
- SCHED_TIME (e->src->cuid) + ii) / ii;
|
| 720 |
|
|
|
| 721 |
|
|
/* If dest precedes src in the schedule of the kernel, then dest
|
| 722 |
|
|
will read before src writes and we can save one reg_copy. */
|
| 723 |
|
|
if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
|
| 724 |
|
|
&& SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
|
| 725 |
|
|
nreg_moves4e--;
|
| 726 |
|
|
|
| 727 |
|
|
if (nreg_moves4e >= 1)
|
| 728 |
|
|
{
|
| 729 |
|
|
/* !single_set instructions are not supported yet and
|
| 730 |
|
|
thus we do not except to encounter them in the loop
|
| 731 |
|
|
except from the doloop part. For the latter case
|
| 732 |
|
|
we assume no regmoves are generated as the doloop
|
| 733 |
|
|
instructions are tied to the branch with an edge. */
|
| 734 |
|
|
gcc_assert (set);
|
| 735 |
|
|
/* If the instruction contains auto-inc register then
|
| 736 |
|
|
validate that the regmov is being generated for the
|
| 737 |
|
|
target regsiter rather then the inc'ed register. */
|
| 738 |
|
|
gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
|
| 739 |
|
|
}
|
| 740 |
|
|
|
| 741 |
|
|
if (nreg_moves4e)
|
| 742 |
|
|
{
|
| 743 |
|
|
gcc_assert (e->distance < 2);
|
| 744 |
|
|
distances[e->distance] = true;
|
| 745 |
|
|
}
|
| 746 |
|
|
nreg_moves = MAX (nreg_moves, nreg_moves4e);
|
| 747 |
|
|
}
|
| 748 |
|
|
|
| 749 |
|
|
if (nreg_moves == 0)
|
| 750 |
|
|
continue;
|
| 751 |
|
|
|
| 752 |
|
|
/* Create NREG_MOVES register moves. */
|
| 753 |
|
|
first_move = VEC_length (ps_reg_move_info, ps->reg_moves);
|
| 754 |
|
|
VEC_safe_grow_cleared (ps_reg_move_info, heap, ps->reg_moves,
|
| 755 |
|
|
first_move + nreg_moves);
|
| 756 |
|
|
extend_node_sched_params (ps);
|
| 757 |
|
|
|
| 758 |
|
|
/* Record the moves associated with this node. */
|
| 759 |
|
|
first_move += ps->g->num_nodes;
|
| 760 |
|
|
|
| 761 |
|
|
/* Generate each move. */
|
| 762 |
|
|
old_reg = prev_reg = SET_DEST (single_set (u->insn));
|
| 763 |
|
|
for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
|
| 764 |
|
|
{
|
| 765 |
|
|
ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
|
| 766 |
|
|
|
| 767 |
|
|
move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
|
| 768 |
|
|
move->uses = sbitmap_alloc (first_move + nreg_moves);
|
| 769 |
|
|
move->old_reg = old_reg;
|
| 770 |
|
|
move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
|
| 771 |
|
|
move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
|
| 772 |
|
|
move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
|
| 773 |
|
|
sbitmap_zero (move->uses);
|
| 774 |
|
|
|
| 775 |
|
|
prev_reg = move->new_reg;
|
| 776 |
|
|
}
|
| 777 |
|
|
|
| 778 |
|
|
distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
|
| 779 |
|
|
|
| 780 |
|
|
/* Every use of the register defined by node may require a different
|
| 781 |
|
|
copy of this register, depending on the time the use is scheduled.
|
| 782 |
|
|
Record which uses require which move results. */
|
| 783 |
|
|
for (e = u->out; e; e = e->next_out)
|
| 784 |
|
|
if (e->type == TRUE_DEP && e->dest != e->src)
|
| 785 |
|
|
{
|
| 786 |
|
|
int dest_copy = (SCHED_TIME (e->dest->cuid)
|
| 787 |
|
|
- SCHED_TIME (e->src->cuid)) / ii;
|
| 788 |
|
|
|
| 789 |
|
|
if (e->distance == 1)
|
| 790 |
|
|
dest_copy = (SCHED_TIME (e->dest->cuid)
|
| 791 |
|
|
- SCHED_TIME (e->src->cuid) + ii) / ii;
|
| 792 |
|
|
|
| 793 |
|
|
if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
|
| 794 |
|
|
&& SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
|
| 795 |
|
|
dest_copy--;
|
| 796 |
|
|
|
| 797 |
|
|
if (dest_copy)
|
| 798 |
|
|
{
|
| 799 |
|
|
ps_reg_move_info *move;
|
| 800 |
|
|
|
| 801 |
|
|
move = ps_reg_move (ps, first_move + dest_copy - 1);
|
| 802 |
|
|
SET_BIT (move->uses, e->dest->cuid);
|
| 803 |
|
|
if (e->distance == 1)
|
| 804 |
|
|
SET_BIT (distance1_uses, e->dest->cuid);
|
| 805 |
|
|
}
|
| 806 |
|
|
}
|
| 807 |
|
|
|
| 808 |
|
|
must_follow = sbitmap_alloc (first_move + nreg_moves);
|
| 809 |
|
|
for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
|
| 810 |
|
|
if (!schedule_reg_move (ps, first_move + i_reg_move,
|
| 811 |
|
|
distance1_uses, must_follow))
|
| 812 |
|
|
break;
|
| 813 |
|
|
sbitmap_free (must_follow);
|
| 814 |
|
|
if (distance1_uses)
|
| 815 |
|
|
sbitmap_free (distance1_uses);
|
| 816 |
|
|
if (i_reg_move < nreg_moves)
|
| 817 |
|
|
return false;
|
| 818 |
|
|
}
|
| 819 |
|
|
return true;
|
| 820 |
|
|
}
|
| 821 |
|
|
|
| 822 |
|
|
/* Emit the moves associatied with PS. Apply the substitutions
|
| 823 |
|
|
associated with them. */
|
| 824 |
|
|
static void
|
| 825 |
|
|
apply_reg_moves (partial_schedule_ptr ps)
|
| 826 |
|
|
{
|
| 827 |
|
|
ps_reg_move_info *move;
|
| 828 |
|
|
int i;
|
| 829 |
|
|
|
| 830 |
|
|
FOR_EACH_VEC_ELT (ps_reg_move_info, ps->reg_moves, i, move)
|
| 831 |
|
|
{
|
| 832 |
|
|
unsigned int i_use;
|
| 833 |
|
|
sbitmap_iterator sbi;
|
| 834 |
|
|
|
| 835 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (move->uses, 0, i_use, sbi)
|
| 836 |
|
|
{
|
| 837 |
|
|
replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
|
| 838 |
|
|
df_insn_rescan (ps->g->nodes[i_use].insn);
|
| 839 |
|
|
}
|
| 840 |
|
|
}
|
| 841 |
|
|
}
|
| 842 |
|
|
|
| 843 |
|
|
/* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
|
| 844 |
|
|
SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
|
| 845 |
|
|
will move to cycle zero. */
|
| 846 |
|
|
static void
|
| 847 |
|
|
reset_sched_times (partial_schedule_ptr ps, int amount)
|
| 848 |
|
|
{
|
| 849 |
|
|
int row;
|
| 850 |
|
|
int ii = ps->ii;
|
| 851 |
|
|
ps_insn_ptr crr_insn;
|
| 852 |
|
|
|
| 853 |
|
|
for (row = 0; row < ii; row++)
|
| 854 |
|
|
for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
|
| 855 |
|
|
{
|
| 856 |
|
|
int u = crr_insn->id;
|
| 857 |
|
|
int normalized_time = SCHED_TIME (u) - amount;
|
| 858 |
|
|
int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
|
| 859 |
|
|
|
| 860 |
|
|
if (dump_file)
|
| 861 |
|
|
{
|
| 862 |
|
|
/* Print the scheduling times after the rotation. */
|
| 863 |
|
|
rtx insn = ps_rtl_insn (ps, u);
|
| 864 |
|
|
|
| 865 |
|
|
fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
|
| 866 |
|
|
"crr_insn->cycle=%d, min_cycle=%d", u,
|
| 867 |
|
|
INSN_UID (insn), normalized_time, new_min_cycle);
|
| 868 |
|
|
if (JUMP_P (insn))
|
| 869 |
|
|
fprintf (dump_file, " (branch)");
|
| 870 |
|
|
fprintf (dump_file, "\n");
|
| 871 |
|
|
}
|
| 872 |
|
|
|
| 873 |
|
|
gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
|
| 874 |
|
|
gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
|
| 875 |
|
|
|
| 876 |
|
|
crr_insn->cycle = normalized_time;
|
| 877 |
|
|
update_node_sched_params (u, ii, normalized_time, new_min_cycle);
|
| 878 |
|
|
}
|
| 879 |
|
|
}
|
| 880 |
|
|
|
| 881 |
|
|
/* Permute the insns according to their order in PS, from row 0 to
|
| 882 |
|
|
row ii-1, and position them right before LAST. This schedules
|
| 883 |
|
|
the insns of the loop kernel. */
|
| 884 |
|
|
static void
|
| 885 |
|
|
permute_partial_schedule (partial_schedule_ptr ps, rtx last)
|
| 886 |
|
|
{
|
| 887 |
|
|
int ii = ps->ii;
|
| 888 |
|
|
int row;
|
| 889 |
|
|
ps_insn_ptr ps_ij;
|
| 890 |
|
|
|
| 891 |
|
|
for (row = 0; row < ii ; row++)
|
| 892 |
|
|
for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
|
| 893 |
|
|
{
|
| 894 |
|
|
rtx insn = ps_rtl_insn (ps, ps_ij->id);
|
| 895 |
|
|
|
| 896 |
|
|
if (PREV_INSN (last) != insn)
|
| 897 |
|
|
{
|
| 898 |
|
|
if (ps_ij->id < ps->g->num_nodes)
|
| 899 |
|
|
reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
|
| 900 |
|
|
PREV_INSN (last));
|
| 901 |
|
|
else
|
| 902 |
|
|
add_insn_before (insn, last, NULL);
|
| 903 |
|
|
}
|
| 904 |
|
|
}
|
| 905 |
|
|
}
|
| 906 |
|
|
|
| 907 |
|
|
/* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
|
| 908 |
|
|
respectively only if cycle C falls on the border of the scheduling
|
| 909 |
|
|
window boundaries marked by START and END cycles. STEP is the
|
| 910 |
|
|
direction of the window. */
|
| 911 |
|
|
static inline void
|
| 912 |
|
|
set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
|
| 913 |
|
|
sbitmap *tmp_precede, sbitmap must_precede, int c,
|
| 914 |
|
|
int start, int end, int step)
|
| 915 |
|
|
{
|
| 916 |
|
|
*tmp_precede = NULL;
|
| 917 |
|
|
*tmp_follow = NULL;
|
| 918 |
|
|
|
| 919 |
|
|
if (c == start)
|
| 920 |
|
|
{
|
| 921 |
|
|
if (step == 1)
|
| 922 |
|
|
*tmp_precede = must_precede;
|
| 923 |
|
|
else /* step == -1. */
|
| 924 |
|
|
*tmp_follow = must_follow;
|
| 925 |
|
|
}
|
| 926 |
|
|
if (c == end - step)
|
| 927 |
|
|
{
|
| 928 |
|
|
if (step == 1)
|
| 929 |
|
|
*tmp_follow = must_follow;
|
| 930 |
|
|
else /* step == -1. */
|
| 931 |
|
|
*tmp_precede = must_precede;
|
| 932 |
|
|
}
|
| 933 |
|
|
|
| 934 |
|
|
}
|
| 935 |
|
|
|
| 936 |
|
|
/* Return True if the branch can be moved to row ii-1 while
|
| 937 |
|
|
normalizing the partial schedule PS to start from cycle zero and thus
|
| 938 |
|
|
optimize the SC. Otherwise return False. */
|
| 939 |
|
|
static bool
|
| 940 |
|
|
optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
|
| 941 |
|
|
{
|
| 942 |
|
|
int amount = PS_MIN_CYCLE (ps);
|
| 943 |
|
|
sbitmap sched_nodes = sbitmap_alloc (g->num_nodes);
|
| 944 |
|
|
int start, end, step;
|
| 945 |
|
|
int ii = ps->ii;
|
| 946 |
|
|
bool ok = false;
|
| 947 |
|
|
int stage_count, stage_count_curr;
|
| 948 |
|
|
|
| 949 |
|
|
/* Compare the SC after normalization and SC after bringing the branch
|
| 950 |
|
|
to row ii-1. If they are equal just bail out. */
|
| 951 |
|
|
stage_count = calculate_stage_count (ps, amount);
|
| 952 |
|
|
stage_count_curr =
|
| 953 |
|
|
calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
|
| 954 |
|
|
|
| 955 |
|
|
if (stage_count == stage_count_curr)
|
| 956 |
|
|
{
|
| 957 |
|
|
if (dump_file)
|
| 958 |
|
|
fprintf (dump_file, "SMS SC already optimized.\n");
|
| 959 |
|
|
|
| 960 |
|
|
ok = false;
|
| 961 |
|
|
goto clear;
|
| 962 |
|
|
}
|
| 963 |
|
|
|
| 964 |
|
|
if (dump_file)
|
| 965 |
|
|
{
|
| 966 |
|
|
fprintf (dump_file, "SMS Trying to optimize branch location\n");
|
| 967 |
|
|
fprintf (dump_file, "SMS partial schedule before trial:\n");
|
| 968 |
|
|
print_partial_schedule (ps, dump_file);
|
| 969 |
|
|
}
|
| 970 |
|
|
|
| 971 |
|
|
/* First, normalize the partial scheduling. */
|
| 972 |
|
|
reset_sched_times (ps, amount);
|
| 973 |
|
|
rotate_partial_schedule (ps, amount);
|
| 974 |
|
|
if (dump_file)
|
| 975 |
|
|
{
|
| 976 |
|
|
fprintf (dump_file,
|
| 977 |
|
|
"SMS partial schedule after normalization (ii, %d, SC %d):\n",
|
| 978 |
|
|
ii, stage_count);
|
| 979 |
|
|
print_partial_schedule (ps, dump_file);
|
| 980 |
|
|
}
|
| 981 |
|
|
|
| 982 |
|
|
if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
|
| 983 |
|
|
{
|
| 984 |
|
|
ok = true;
|
| 985 |
|
|
goto clear;
|
| 986 |
|
|
}
|
| 987 |
|
|
|
| 988 |
|
|
sbitmap_ones (sched_nodes);
|
| 989 |
|
|
|
| 990 |
|
|
/* Calculate the new placement of the branch. It should be in row
|
| 991 |
|
|
ii-1 and fall into it's scheduling window. */
|
| 992 |
|
|
if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
|
| 993 |
|
|
&step, &end) == 0)
|
| 994 |
|
|
{
|
| 995 |
|
|
bool success;
|
| 996 |
|
|
ps_insn_ptr next_ps_i;
|
| 997 |
|
|
int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
|
| 998 |
|
|
int row = SMODULO (branch_cycle, ps->ii);
|
| 999 |
|
|
int num_splits = 0;
|
| 1000 |
|
|
sbitmap must_precede, must_follow, tmp_precede, tmp_follow;
|
| 1001 |
|
|
int c;
|
| 1002 |
|
|
|
| 1003 |
|
|
if (dump_file)
|
| 1004 |
|
|
fprintf (dump_file, "\nTrying to schedule node %d "
|
| 1005 |
|
|
"INSN = %d in (%d .. %d) step %d\n",
|
| 1006 |
|
|
g->closing_branch->cuid,
|
| 1007 |
|
|
(INSN_UID (g->closing_branch->insn)), start, end, step);
|
| 1008 |
|
|
|
| 1009 |
|
|
gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
|
| 1010 |
|
|
if (step == 1)
|
| 1011 |
|
|
{
|
| 1012 |
|
|
c = start + ii - SMODULO (start, ii) - 1;
|
| 1013 |
|
|
gcc_assert (c >= start);
|
| 1014 |
|
|
if (c >= end)
|
| 1015 |
|
|
{
|
| 1016 |
|
|
ok = false;
|
| 1017 |
|
|
if (dump_file)
|
| 1018 |
|
|
fprintf (dump_file,
|
| 1019 |
|
|
"SMS failed to schedule branch at cycle: %d\n", c);
|
| 1020 |
|
|
goto clear;
|
| 1021 |
|
|
}
|
| 1022 |
|
|
}
|
| 1023 |
|
|
else
|
| 1024 |
|
|
{
|
| 1025 |
|
|
c = start - SMODULO (start, ii) - 1;
|
| 1026 |
|
|
gcc_assert (c <= start);
|
| 1027 |
|
|
|
| 1028 |
|
|
if (c <= end)
|
| 1029 |
|
|
{
|
| 1030 |
|
|
if (dump_file)
|
| 1031 |
|
|
fprintf (dump_file,
|
| 1032 |
|
|
"SMS failed to schedule branch at cycle: %d\n", c);
|
| 1033 |
|
|
ok = false;
|
| 1034 |
|
|
goto clear;
|
| 1035 |
|
|
}
|
| 1036 |
|
|
}
|
| 1037 |
|
|
|
| 1038 |
|
|
must_precede = sbitmap_alloc (g->num_nodes);
|
| 1039 |
|
|
must_follow = sbitmap_alloc (g->num_nodes);
|
| 1040 |
|
|
|
| 1041 |
|
|
/* Try to schedule the branch is it's new cycle. */
|
| 1042 |
|
|
calculate_must_precede_follow (g->closing_branch, start, end,
|
| 1043 |
|
|
step, ii, sched_nodes,
|
| 1044 |
|
|
must_precede, must_follow);
|
| 1045 |
|
|
|
| 1046 |
|
|
set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
|
| 1047 |
|
|
must_precede, c, start, end, step);
|
| 1048 |
|
|
|
| 1049 |
|
|
/* Find the element in the partial schedule related to the closing
|
| 1050 |
|
|
branch so we can remove it from it's current cycle. */
|
| 1051 |
|
|
for (next_ps_i = ps->rows[row];
|
| 1052 |
|
|
next_ps_i; next_ps_i = next_ps_i->next_in_row)
|
| 1053 |
|
|
if (next_ps_i->id == g->closing_branch->cuid)
|
| 1054 |
|
|
break;
|
| 1055 |
|
|
|
| 1056 |
|
|
remove_node_from_ps (ps, next_ps_i);
|
| 1057 |
|
|
success =
|
| 1058 |
|
|
try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
|
| 1059 |
|
|
sched_nodes, &num_splits,
|
| 1060 |
|
|
tmp_precede, tmp_follow);
|
| 1061 |
|
|
gcc_assert (num_splits == 0);
|
| 1062 |
|
|
if (!success)
|
| 1063 |
|
|
{
|
| 1064 |
|
|
if (dump_file)
|
| 1065 |
|
|
fprintf (dump_file,
|
| 1066 |
|
|
"SMS failed to schedule branch at cycle: %d, "
|
| 1067 |
|
|
"bringing it back to cycle %d\n", c, branch_cycle);
|
| 1068 |
|
|
|
| 1069 |
|
|
/* The branch was failed to be placed in row ii - 1.
|
| 1070 |
|
|
Put it back in it's original place in the partial
|
| 1071 |
|
|
schedualing. */
|
| 1072 |
|
|
set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
|
| 1073 |
|
|
must_precede, branch_cycle, start, end,
|
| 1074 |
|
|
step);
|
| 1075 |
|
|
success =
|
| 1076 |
|
|
try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
|
| 1077 |
|
|
branch_cycle, sched_nodes,
|
| 1078 |
|
|
&num_splits, tmp_precede,
|
| 1079 |
|
|
tmp_follow);
|
| 1080 |
|
|
gcc_assert (success && (num_splits == 0));
|
| 1081 |
|
|
ok = false;
|
| 1082 |
|
|
}
|
| 1083 |
|
|
else
|
| 1084 |
|
|
{
|
| 1085 |
|
|
/* The branch is placed in row ii - 1. */
|
| 1086 |
|
|
if (dump_file)
|
| 1087 |
|
|
fprintf (dump_file,
|
| 1088 |
|
|
"SMS success in moving branch to cycle %d\n", c);
|
| 1089 |
|
|
|
| 1090 |
|
|
update_node_sched_params (g->closing_branch->cuid, ii, c,
|
| 1091 |
|
|
PS_MIN_CYCLE (ps));
|
| 1092 |
|
|
ok = true;
|
| 1093 |
|
|
}
|
| 1094 |
|
|
|
| 1095 |
|
|
free (must_precede);
|
| 1096 |
|
|
free (must_follow);
|
| 1097 |
|
|
}
|
| 1098 |
|
|
|
| 1099 |
|
|
clear:
|
| 1100 |
|
|
free (sched_nodes);
|
| 1101 |
|
|
return ok;
|
| 1102 |
|
|
}
|
| 1103 |
|
|
|
| 1104 |
|
|
static void
|
| 1105 |
|
|
duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
|
| 1106 |
|
|
int to_stage, rtx count_reg)
|
| 1107 |
|
|
{
|
| 1108 |
|
|
int row;
|
| 1109 |
|
|
ps_insn_ptr ps_ij;
|
| 1110 |
|
|
|
| 1111 |
|
|
for (row = 0; row < ps->ii; row++)
|
| 1112 |
|
|
for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
|
| 1113 |
|
|
{
|
| 1114 |
|
|
int u = ps_ij->id;
|
| 1115 |
|
|
int first_u, last_u;
|
| 1116 |
|
|
rtx u_insn;
|
| 1117 |
|
|
|
| 1118 |
|
|
/* Do not duplicate any insn which refers to count_reg as it
|
| 1119 |
|
|
belongs to the control part.
|
| 1120 |
|
|
The closing branch is scheduled as well and thus should
|
| 1121 |
|
|
be ignored.
|
| 1122 |
|
|
TODO: This should be done by analyzing the control part of
|
| 1123 |
|
|
the loop. */
|
| 1124 |
|
|
u_insn = ps_rtl_insn (ps, u);
|
| 1125 |
|
|
if (reg_mentioned_p (count_reg, u_insn)
|
| 1126 |
|
|
|| JUMP_P (u_insn))
|
| 1127 |
|
|
continue;
|
| 1128 |
|
|
|
| 1129 |
|
|
first_u = SCHED_STAGE (u);
|
| 1130 |
|
|
last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
|
| 1131 |
|
|
if (from_stage <= last_u && to_stage >= first_u)
|
| 1132 |
|
|
{
|
| 1133 |
|
|
if (u < ps->g->num_nodes)
|
| 1134 |
|
|
duplicate_insn_chain (ps_first_note (ps, u), u_insn);
|
| 1135 |
|
|
else
|
| 1136 |
|
|
emit_insn (copy_rtx (PATTERN (u_insn)));
|
| 1137 |
|
|
}
|
| 1138 |
|
|
}
|
| 1139 |
|
|
}
|
| 1140 |
|
|
|
| 1141 |
|
|
|
| 1142 |
|
|
/* Generate the instructions (including reg_moves) for prolog & epilog. */
|
| 1143 |
|
|
static void
|
| 1144 |
|
|
generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
|
| 1145 |
|
|
rtx count_reg, rtx count_init)
|
| 1146 |
|
|
{
|
| 1147 |
|
|
int i;
|
| 1148 |
|
|
int last_stage = PS_STAGE_COUNT (ps) - 1;
|
| 1149 |
|
|
edge e;
|
| 1150 |
|
|
|
| 1151 |
|
|
/* Generate the prolog, inserting its insns on the loop-entry edge. */
|
| 1152 |
|
|
start_sequence ();
|
| 1153 |
|
|
|
| 1154 |
|
|
if (!count_init)
|
| 1155 |
|
|
{
|
| 1156 |
|
|
/* Generate instructions at the beginning of the prolog to
|
| 1157 |
|
|
adjust the loop count by STAGE_COUNT. If loop count is constant
|
| 1158 |
|
|
(count_init), this constant is adjusted by STAGE_COUNT in
|
| 1159 |
|
|
generate_prolog_epilog function. */
|
| 1160 |
|
|
rtx sub_reg = NULL_RTX;
|
| 1161 |
|
|
|
| 1162 |
|
|
sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS,
|
| 1163 |
|
|
count_reg, GEN_INT (last_stage),
|
| 1164 |
|
|
count_reg, 1, OPTAB_DIRECT);
|
| 1165 |
|
|
gcc_assert (REG_P (sub_reg));
|
| 1166 |
|
|
if (REGNO (sub_reg) != REGNO (count_reg))
|
| 1167 |
|
|
emit_move_insn (count_reg, sub_reg);
|
| 1168 |
|
|
}
|
| 1169 |
|
|
|
| 1170 |
|
|
for (i = 0; i < last_stage; i++)
|
| 1171 |
|
|
duplicate_insns_of_cycles (ps, 0, i, count_reg);
|
| 1172 |
|
|
|
| 1173 |
|
|
/* Put the prolog on the entry edge. */
|
| 1174 |
|
|
e = loop_preheader_edge (loop);
|
| 1175 |
|
|
split_edge_and_insert (e, get_insns ());
|
| 1176 |
|
|
if (!flag_resched_modulo_sched)
|
| 1177 |
|
|
e->dest->flags |= BB_DISABLE_SCHEDULE;
|
| 1178 |
|
|
|
| 1179 |
|
|
end_sequence ();
|
| 1180 |
|
|
|
| 1181 |
|
|
/* Generate the epilog, inserting its insns on the loop-exit edge. */
|
| 1182 |
|
|
start_sequence ();
|
| 1183 |
|
|
|
| 1184 |
|
|
for (i = 0; i < last_stage; i++)
|
| 1185 |
|
|
duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
|
| 1186 |
|
|
|
| 1187 |
|
|
/* Put the epilogue on the exit edge. */
|
| 1188 |
|
|
gcc_assert (single_exit (loop));
|
| 1189 |
|
|
e = single_exit (loop);
|
| 1190 |
|
|
split_edge_and_insert (e, get_insns ());
|
| 1191 |
|
|
if (!flag_resched_modulo_sched)
|
| 1192 |
|
|
e->dest->flags |= BB_DISABLE_SCHEDULE;
|
| 1193 |
|
|
|
| 1194 |
|
|
end_sequence ();
|
| 1195 |
|
|
}
|
| 1196 |
|
|
|
| 1197 |
|
|
/* Mark LOOP as software pipelined so the later
|
| 1198 |
|
|
scheduling passes don't touch it. */
|
| 1199 |
|
|
static void
|
| 1200 |
|
|
mark_loop_unsched (struct loop *loop)
|
| 1201 |
|
|
{
|
| 1202 |
|
|
unsigned i;
|
| 1203 |
|
|
basic_block *bbs = get_loop_body (loop);
|
| 1204 |
|
|
|
| 1205 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
| 1206 |
|
|
bbs[i]->flags |= BB_DISABLE_SCHEDULE;
|
| 1207 |
|
|
|
| 1208 |
|
|
free (bbs);
|
| 1209 |
|
|
}
|
| 1210 |
|
|
|
| 1211 |
|
|
/* Return true if all the BBs of the loop are empty except the
|
| 1212 |
|
|
loop header. */
|
| 1213 |
|
|
static bool
|
| 1214 |
|
|
loop_single_full_bb_p (struct loop *loop)
|
| 1215 |
|
|
{
|
| 1216 |
|
|
unsigned i;
|
| 1217 |
|
|
basic_block *bbs = get_loop_body (loop);
|
| 1218 |
|
|
|
| 1219 |
|
|
for (i = 0; i < loop->num_nodes ; i++)
|
| 1220 |
|
|
{
|
| 1221 |
|
|
rtx head, tail;
|
| 1222 |
|
|
bool empty_bb = true;
|
| 1223 |
|
|
|
| 1224 |
|
|
if (bbs[i] == loop->header)
|
| 1225 |
|
|
continue;
|
| 1226 |
|
|
|
| 1227 |
|
|
/* Make sure that basic blocks other than the header
|
| 1228 |
|
|
have only notes labels or jumps. */
|
| 1229 |
|
|
get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
|
| 1230 |
|
|
for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
|
| 1231 |
|
|
{
|
| 1232 |
|
|
if (NOTE_P (head) || LABEL_P (head)
|
| 1233 |
|
|
|| (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
|
| 1234 |
|
|
continue;
|
| 1235 |
|
|
empty_bb = false;
|
| 1236 |
|
|
break;
|
| 1237 |
|
|
}
|
| 1238 |
|
|
|
| 1239 |
|
|
if (! empty_bb)
|
| 1240 |
|
|
{
|
| 1241 |
|
|
free (bbs);
|
| 1242 |
|
|
return false;
|
| 1243 |
|
|
}
|
| 1244 |
|
|
}
|
| 1245 |
|
|
free (bbs);
|
| 1246 |
|
|
return true;
|
| 1247 |
|
|
}
|
| 1248 |
|
|
|
| 1249 |
|
|
/* Dump file:line from INSN's location info to dump_file. */
|
| 1250 |
|
|
|
| 1251 |
|
|
static void
|
| 1252 |
|
|
dump_insn_locator (rtx insn)
|
| 1253 |
|
|
{
|
| 1254 |
|
|
if (dump_file && INSN_LOCATOR (insn))
|
| 1255 |
|
|
{
|
| 1256 |
|
|
const char *file = insn_file (insn);
|
| 1257 |
|
|
if (file)
|
| 1258 |
|
|
fprintf (dump_file, " %s:%i", file, insn_line (insn));
|
| 1259 |
|
|
}
|
| 1260 |
|
|
}
|
| 1261 |
|
|
|
| 1262 |
|
|
/* A simple loop from SMS point of view; it is a loop that is composed of
|
| 1263 |
|
|
either a single basic block or two BBs - a header and a latch. */
|
| 1264 |
|
|
#define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
|
| 1265 |
|
|
&& (EDGE_COUNT (loop->latch->preds) == 1) \
|
| 1266 |
|
|
&& (EDGE_COUNT (loop->latch->succs) == 1))
|
| 1267 |
|
|
|
| 1268 |
|
|
/* Return true if the loop is in its canonical form and false if not.
|
| 1269 |
|
|
i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
|
| 1270 |
|
|
static bool
|
| 1271 |
|
|
loop_canon_p (struct loop *loop)
|
| 1272 |
|
|
{
|
| 1273 |
|
|
|
| 1274 |
|
|
if (loop->inner || !loop_outer (loop))
|
| 1275 |
|
|
{
|
| 1276 |
|
|
if (dump_file)
|
| 1277 |
|
|
fprintf (dump_file, "SMS loop inner or !loop_outer\n");
|
| 1278 |
|
|
return false;
|
| 1279 |
|
|
}
|
| 1280 |
|
|
|
| 1281 |
|
|
if (!single_exit (loop))
|
| 1282 |
|
|
{
|
| 1283 |
|
|
if (dump_file)
|
| 1284 |
|
|
{
|
| 1285 |
|
|
rtx insn = BB_END (loop->header);
|
| 1286 |
|
|
|
| 1287 |
|
|
fprintf (dump_file, "SMS loop many exits");
|
| 1288 |
|
|
dump_insn_locator (insn);
|
| 1289 |
|
|
fprintf (dump_file, "\n");
|
| 1290 |
|
|
}
|
| 1291 |
|
|
return false;
|
| 1292 |
|
|
}
|
| 1293 |
|
|
|
| 1294 |
|
|
if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
|
| 1295 |
|
|
{
|
| 1296 |
|
|
if (dump_file)
|
| 1297 |
|
|
{
|
| 1298 |
|
|
rtx insn = BB_END (loop->header);
|
| 1299 |
|
|
|
| 1300 |
|
|
fprintf (dump_file, "SMS loop many BBs.");
|
| 1301 |
|
|
dump_insn_locator (insn);
|
| 1302 |
|
|
fprintf (dump_file, "\n");
|
| 1303 |
|
|
}
|
| 1304 |
|
|
return false;
|
| 1305 |
|
|
}
|
| 1306 |
|
|
|
| 1307 |
|
|
return true;
|
| 1308 |
|
|
}
|
| 1309 |
|
|
|
| 1310 |
|
|
/* If there are more than one entry for the loop,
|
| 1311 |
|
|
make it one by splitting the first entry edge and
|
| 1312 |
|
|
redirecting the others to the new BB. */
|
| 1313 |
|
|
static void
|
| 1314 |
|
|
canon_loop (struct loop *loop)
|
| 1315 |
|
|
{
|
| 1316 |
|
|
edge e;
|
| 1317 |
|
|
edge_iterator i;
|
| 1318 |
|
|
|
| 1319 |
|
|
/* Avoid annoying special cases of edges going to exit
|
| 1320 |
|
|
block. */
|
| 1321 |
|
|
FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR->preds)
|
| 1322 |
|
|
if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
|
| 1323 |
|
|
split_edge (e);
|
| 1324 |
|
|
|
| 1325 |
|
|
if (loop->latch == loop->header
|
| 1326 |
|
|
|| EDGE_COUNT (loop->latch->succs) > 1)
|
| 1327 |
|
|
{
|
| 1328 |
|
|
FOR_EACH_EDGE (e, i, loop->header->preds)
|
| 1329 |
|
|
if (e->src == loop->latch)
|
| 1330 |
|
|
break;
|
| 1331 |
|
|
split_edge (e);
|
| 1332 |
|
|
}
|
| 1333 |
|
|
}
|
| 1334 |
|
|
|
| 1335 |
|
|
/* Setup infos. */
|
| 1336 |
|
|
static void
|
| 1337 |
|
|
setup_sched_infos (void)
|
| 1338 |
|
|
{
|
| 1339 |
|
|
memcpy (&sms_common_sched_info, &haifa_common_sched_info,
|
| 1340 |
|
|
sizeof (sms_common_sched_info));
|
| 1341 |
|
|
sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
|
| 1342 |
|
|
common_sched_info = &sms_common_sched_info;
|
| 1343 |
|
|
|
| 1344 |
|
|
sched_deps_info = &sms_sched_deps_info;
|
| 1345 |
|
|
current_sched_info = &sms_sched_info;
|
| 1346 |
|
|
}
|
| 1347 |
|
|
|
| 1348 |
|
|
/* Probability in % that the sms-ed loop rolls enough so that optimized
|
| 1349 |
|
|
version may be entered. Just a guess. */
|
| 1350 |
|
|
#define PROB_SMS_ENOUGH_ITERATIONS 80
|
| 1351 |
|
|
|
| 1352 |
|
|
/* Used to calculate the upper bound of ii. */
|
| 1353 |
|
|
#define MAXII_FACTOR 2
|
| 1354 |
|
|
|
| 1355 |
|
|
/* Main entry point, perform SMS scheduling on the loops of the function
|
| 1356 |
|
|
that consist of single basic blocks. */
|
| 1357 |
|
|
static void
|
| 1358 |
|
|
sms_schedule (void)
|
| 1359 |
|
|
{
|
| 1360 |
|
|
rtx insn;
|
| 1361 |
|
|
ddg_ptr *g_arr, g;
|
| 1362 |
|
|
int * node_order;
|
| 1363 |
|
|
int maxii, max_asap;
|
| 1364 |
|
|
loop_iterator li;
|
| 1365 |
|
|
partial_schedule_ptr ps;
|
| 1366 |
|
|
basic_block bb = NULL;
|
| 1367 |
|
|
struct loop *loop;
|
| 1368 |
|
|
basic_block condition_bb = NULL;
|
| 1369 |
|
|
edge latch_edge;
|
| 1370 |
|
|
gcov_type trip_count = 0;
|
| 1371 |
|
|
|
| 1372 |
|
|
loop_optimizer_init (LOOPS_HAVE_PREHEADERS
|
| 1373 |
|
|
| LOOPS_HAVE_RECORDED_EXITS);
|
| 1374 |
|
|
if (number_of_loops () <= 1)
|
| 1375 |
|
|
{
|
| 1376 |
|
|
loop_optimizer_finalize ();
|
| 1377 |
|
|
return; /* There are no loops to schedule. */
|
| 1378 |
|
|
}
|
| 1379 |
|
|
|
| 1380 |
|
|
/* Initialize issue_rate. */
|
| 1381 |
|
|
if (targetm.sched.issue_rate)
|
| 1382 |
|
|
{
|
| 1383 |
|
|
int temp = reload_completed;
|
| 1384 |
|
|
|
| 1385 |
|
|
reload_completed = 1;
|
| 1386 |
|
|
issue_rate = targetm.sched.issue_rate ();
|
| 1387 |
|
|
reload_completed = temp;
|
| 1388 |
|
|
}
|
| 1389 |
|
|
else
|
| 1390 |
|
|
issue_rate = 1;
|
| 1391 |
|
|
|
| 1392 |
|
|
/* Initialize the scheduler. */
|
| 1393 |
|
|
setup_sched_infos ();
|
| 1394 |
|
|
haifa_sched_init ();
|
| 1395 |
|
|
|
| 1396 |
|
|
/* Allocate memory to hold the DDG array one entry for each loop.
|
| 1397 |
|
|
We use loop->num as index into this array. */
|
| 1398 |
|
|
g_arr = XCNEWVEC (ddg_ptr, number_of_loops ());
|
| 1399 |
|
|
|
| 1400 |
|
|
if (dump_file)
|
| 1401 |
|
|
{
|
| 1402 |
|
|
fprintf (dump_file, "\n\nSMS analysis phase\n");
|
| 1403 |
|
|
fprintf (dump_file, "===================\n\n");
|
| 1404 |
|
|
}
|
| 1405 |
|
|
|
| 1406 |
|
|
/* Build DDGs for all the relevant loops and hold them in G_ARR
|
| 1407 |
|
|
indexed by the loop index. */
|
| 1408 |
|
|
FOR_EACH_LOOP (li, loop, 0)
|
| 1409 |
|
|
{
|
| 1410 |
|
|
rtx head, tail;
|
| 1411 |
|
|
rtx count_reg;
|
| 1412 |
|
|
|
| 1413 |
|
|
/* For debugging. */
|
| 1414 |
|
|
if (dbg_cnt (sms_sched_loop) == false)
|
| 1415 |
|
|
{
|
| 1416 |
|
|
if (dump_file)
|
| 1417 |
|
|
fprintf (dump_file, "SMS reached max limit... \n");
|
| 1418 |
|
|
|
| 1419 |
|
|
break;
|
| 1420 |
|
|
}
|
| 1421 |
|
|
|
| 1422 |
|
|
if (dump_file)
|
| 1423 |
|
|
{
|
| 1424 |
|
|
rtx insn = BB_END (loop->header);
|
| 1425 |
|
|
|
| 1426 |
|
|
fprintf (dump_file, "SMS loop num: %d", loop->num);
|
| 1427 |
|
|
dump_insn_locator (insn);
|
| 1428 |
|
|
fprintf (dump_file, "\n");
|
| 1429 |
|
|
}
|
| 1430 |
|
|
|
| 1431 |
|
|
if (! loop_canon_p (loop))
|
| 1432 |
|
|
continue;
|
| 1433 |
|
|
|
| 1434 |
|
|
if (! loop_single_full_bb_p (loop))
|
| 1435 |
|
|
{
|
| 1436 |
|
|
if (dump_file)
|
| 1437 |
|
|
fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
|
| 1438 |
|
|
continue;
|
| 1439 |
|
|
}
|
| 1440 |
|
|
|
| 1441 |
|
|
bb = loop->header;
|
| 1442 |
|
|
|
| 1443 |
|
|
get_ebb_head_tail (bb, bb, &head, &tail);
|
| 1444 |
|
|
latch_edge = loop_latch_edge (loop);
|
| 1445 |
|
|
gcc_assert (single_exit (loop));
|
| 1446 |
|
|
if (single_exit (loop)->count)
|
| 1447 |
|
|
trip_count = latch_edge->count / single_exit (loop)->count;
|
| 1448 |
|
|
|
| 1449 |
|
|
/* Perform SMS only on loops that their average count is above threshold. */
|
| 1450 |
|
|
|
| 1451 |
|
|
if ( latch_edge->count
|
| 1452 |
|
|
&& (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
|
| 1453 |
|
|
{
|
| 1454 |
|
|
if (dump_file)
|
| 1455 |
|
|
{
|
| 1456 |
|
|
dump_insn_locator (tail);
|
| 1457 |
|
|
fprintf (dump_file, "\nSMS single-bb-loop\n");
|
| 1458 |
|
|
if (profile_info && flag_branch_probabilities)
|
| 1459 |
|
|
{
|
| 1460 |
|
|
fprintf (dump_file, "SMS loop-count ");
|
| 1461 |
|
|
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
|
| 1462 |
|
|
(HOST_WIDEST_INT) bb->count);
|
| 1463 |
|
|
fprintf (dump_file, "\n");
|
| 1464 |
|
|
fprintf (dump_file, "SMS trip-count ");
|
| 1465 |
|
|
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
|
| 1466 |
|
|
(HOST_WIDEST_INT) trip_count);
|
| 1467 |
|
|
fprintf (dump_file, "\n");
|
| 1468 |
|
|
fprintf (dump_file, "SMS profile-sum-max ");
|
| 1469 |
|
|
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
|
| 1470 |
|
|
(HOST_WIDEST_INT) profile_info->sum_max);
|
| 1471 |
|
|
fprintf (dump_file, "\n");
|
| 1472 |
|
|
}
|
| 1473 |
|
|
}
|
| 1474 |
|
|
continue;
|
| 1475 |
|
|
}
|
| 1476 |
|
|
|
| 1477 |
|
|
/* Make sure this is a doloop. */
|
| 1478 |
|
|
if ( !(count_reg = doloop_register_get (head, tail)))
|
| 1479 |
|
|
{
|
| 1480 |
|
|
if (dump_file)
|
| 1481 |
|
|
fprintf (dump_file, "SMS doloop_register_get failed\n");
|
| 1482 |
|
|
continue;
|
| 1483 |
|
|
}
|
| 1484 |
|
|
|
| 1485 |
|
|
/* Don't handle BBs with calls or barriers
|
| 1486 |
|
|
or !single_set with the exception of instructions that include
|
| 1487 |
|
|
count_reg---these instructions are part of the control part
|
| 1488 |
|
|
that do-loop recognizes.
|
| 1489 |
|
|
??? Should handle insns defining subregs. */
|
| 1490 |
|
|
for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
|
| 1491 |
|
|
{
|
| 1492 |
|
|
rtx set;
|
| 1493 |
|
|
|
| 1494 |
|
|
if (CALL_P (insn)
|
| 1495 |
|
|
|| BARRIER_P (insn)
|
| 1496 |
|
|
|| (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
|
| 1497 |
|
|
&& !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
|
| 1498 |
|
|
&& !reg_mentioned_p (count_reg, insn))
|
| 1499 |
|
|
|| (INSN_P (insn) && (set = single_set (insn))
|
| 1500 |
|
|
&& GET_CODE (SET_DEST (set)) == SUBREG))
|
| 1501 |
|
|
break;
|
| 1502 |
|
|
}
|
| 1503 |
|
|
|
| 1504 |
|
|
if (insn != NEXT_INSN (tail))
|
| 1505 |
|
|
{
|
| 1506 |
|
|
if (dump_file)
|
| 1507 |
|
|
{
|
| 1508 |
|
|
if (CALL_P (insn))
|
| 1509 |
|
|
fprintf (dump_file, "SMS loop-with-call\n");
|
| 1510 |
|
|
else if (BARRIER_P (insn))
|
| 1511 |
|
|
fprintf (dump_file, "SMS loop-with-barrier\n");
|
| 1512 |
|
|
else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
|
| 1513 |
|
|
&& !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
|
| 1514 |
|
|
fprintf (dump_file, "SMS loop-with-not-single-set\n");
|
| 1515 |
|
|
else
|
| 1516 |
|
|
fprintf (dump_file, "SMS loop with subreg in lhs\n");
|
| 1517 |
|
|
print_rtl_single (dump_file, insn);
|
| 1518 |
|
|
}
|
| 1519 |
|
|
|
| 1520 |
|
|
continue;
|
| 1521 |
|
|
}
|
| 1522 |
|
|
|
| 1523 |
|
|
/* Always schedule the closing branch with the rest of the
|
| 1524 |
|
|
instructions. The branch is rotated to be in row ii-1 at the
|
| 1525 |
|
|
end of the scheduling procedure to make sure it's the last
|
| 1526 |
|
|
instruction in the iteration. */
|
| 1527 |
|
|
if (! (g = create_ddg (bb, 1)))
|
| 1528 |
|
|
{
|
| 1529 |
|
|
if (dump_file)
|
| 1530 |
|
|
fprintf (dump_file, "SMS create_ddg failed\n");
|
| 1531 |
|
|
continue;
|
| 1532 |
|
|
}
|
| 1533 |
|
|
|
| 1534 |
|
|
g_arr[loop->num] = g;
|
| 1535 |
|
|
if (dump_file)
|
| 1536 |
|
|
fprintf (dump_file, "...OK\n");
|
| 1537 |
|
|
|
| 1538 |
|
|
}
|
| 1539 |
|
|
if (dump_file)
|
| 1540 |
|
|
{
|
| 1541 |
|
|
fprintf (dump_file, "\nSMS transformation phase\n");
|
| 1542 |
|
|
fprintf (dump_file, "=========================\n\n");
|
| 1543 |
|
|
}
|
| 1544 |
|
|
|
| 1545 |
|
|
/* We don't want to perform SMS on new loops - created by versioning. */
|
| 1546 |
|
|
FOR_EACH_LOOP (li, loop, 0)
|
| 1547 |
|
|
{
|
| 1548 |
|
|
rtx head, tail;
|
| 1549 |
|
|
rtx count_reg, count_init;
|
| 1550 |
|
|
int mii, rec_mii, stage_count, min_cycle;
|
| 1551 |
|
|
HOST_WIDEST_INT loop_count = 0;
|
| 1552 |
|
|
bool opt_sc_p;
|
| 1553 |
|
|
|
| 1554 |
|
|
if (! (g = g_arr[loop->num]))
|
| 1555 |
|
|
continue;
|
| 1556 |
|
|
|
| 1557 |
|
|
if (dump_file)
|
| 1558 |
|
|
{
|
| 1559 |
|
|
rtx insn = BB_END (loop->header);
|
| 1560 |
|
|
|
| 1561 |
|
|
fprintf (dump_file, "SMS loop num: %d", loop->num);
|
| 1562 |
|
|
dump_insn_locator (insn);
|
| 1563 |
|
|
fprintf (dump_file, "\n");
|
| 1564 |
|
|
|
| 1565 |
|
|
print_ddg (dump_file, g);
|
| 1566 |
|
|
}
|
| 1567 |
|
|
|
| 1568 |
|
|
get_ebb_head_tail (loop->header, loop->header, &head, &tail);
|
| 1569 |
|
|
|
| 1570 |
|
|
latch_edge = loop_latch_edge (loop);
|
| 1571 |
|
|
gcc_assert (single_exit (loop));
|
| 1572 |
|
|
if (single_exit (loop)->count)
|
| 1573 |
|
|
trip_count = latch_edge->count / single_exit (loop)->count;
|
| 1574 |
|
|
|
| 1575 |
|
|
if (dump_file)
|
| 1576 |
|
|
{
|
| 1577 |
|
|
dump_insn_locator (tail);
|
| 1578 |
|
|
fprintf (dump_file, "\nSMS single-bb-loop\n");
|
| 1579 |
|
|
if (profile_info && flag_branch_probabilities)
|
| 1580 |
|
|
{
|
| 1581 |
|
|
fprintf (dump_file, "SMS loop-count ");
|
| 1582 |
|
|
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
|
| 1583 |
|
|
(HOST_WIDEST_INT) bb->count);
|
| 1584 |
|
|
fprintf (dump_file, "\n");
|
| 1585 |
|
|
fprintf (dump_file, "SMS profile-sum-max ");
|
| 1586 |
|
|
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
|
| 1587 |
|
|
(HOST_WIDEST_INT) profile_info->sum_max);
|
| 1588 |
|
|
fprintf (dump_file, "\n");
|
| 1589 |
|
|
}
|
| 1590 |
|
|
fprintf (dump_file, "SMS doloop\n");
|
| 1591 |
|
|
fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
|
| 1592 |
|
|
fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
|
| 1593 |
|
|
fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
|
| 1594 |
|
|
}
|
| 1595 |
|
|
|
| 1596 |
|
|
|
| 1597 |
|
|
/* In case of th loop have doloop register it gets special
|
| 1598 |
|
|
handling. */
|
| 1599 |
|
|
count_init = NULL_RTX;
|
| 1600 |
|
|
if ((count_reg = doloop_register_get (head, tail)))
|
| 1601 |
|
|
{
|
| 1602 |
|
|
basic_block pre_header;
|
| 1603 |
|
|
|
| 1604 |
|
|
pre_header = loop_preheader_edge (loop)->src;
|
| 1605 |
|
|
count_init = const_iteration_count (count_reg, pre_header,
|
| 1606 |
|
|
&loop_count);
|
| 1607 |
|
|
}
|
| 1608 |
|
|
gcc_assert (count_reg);
|
| 1609 |
|
|
|
| 1610 |
|
|
if (dump_file && count_init)
|
| 1611 |
|
|
{
|
| 1612 |
|
|
fprintf (dump_file, "SMS const-doloop ");
|
| 1613 |
|
|
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
|
| 1614 |
|
|
loop_count);
|
| 1615 |
|
|
fprintf (dump_file, "\n");
|
| 1616 |
|
|
}
|
| 1617 |
|
|
|
| 1618 |
|
|
node_order = XNEWVEC (int, g->num_nodes);
|
| 1619 |
|
|
|
| 1620 |
|
|
mii = 1; /* Need to pass some estimate of mii. */
|
| 1621 |
|
|
rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
|
| 1622 |
|
|
mii = MAX (res_MII (g), rec_mii);
|
| 1623 |
|
|
maxii = MAX (max_asap, MAXII_FACTOR * mii);
|
| 1624 |
|
|
|
| 1625 |
|
|
if (dump_file)
|
| 1626 |
|
|
fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
|
| 1627 |
|
|
rec_mii, mii, maxii);
|
| 1628 |
|
|
|
| 1629 |
|
|
for (;;)
|
| 1630 |
|
|
{
|
| 1631 |
|
|
set_node_sched_params (g);
|
| 1632 |
|
|
|
| 1633 |
|
|
stage_count = 0;
|
| 1634 |
|
|
opt_sc_p = false;
|
| 1635 |
|
|
ps = sms_schedule_by_order (g, mii, maxii, node_order);
|
| 1636 |
|
|
|
| 1637 |
|
|
if (ps)
|
| 1638 |
|
|
{
|
| 1639 |
|
|
/* Try to achieve optimized SC by normalizing the partial
|
| 1640 |
|
|
schedule (having the cycles start from cycle zero).
|
| 1641 |
|
|
The branch location must be placed in row ii-1 in the
|
| 1642 |
|
|
final scheduling. If failed, shift all instructions to
|
| 1643 |
|
|
position the branch in row ii-1. */
|
| 1644 |
|
|
opt_sc_p = optimize_sc (ps, g);
|
| 1645 |
|
|
if (opt_sc_p)
|
| 1646 |
|
|
stage_count = calculate_stage_count (ps, 0);
|
| 1647 |
|
|
else
|
| 1648 |
|
|
{
|
| 1649 |
|
|
/* Bring the branch to cycle ii-1. */
|
| 1650 |
|
|
int amount = (SCHED_TIME (g->closing_branch->cuid)
|
| 1651 |
|
|
- (ps->ii - 1));
|
| 1652 |
|
|
|
| 1653 |
|
|
if (dump_file)
|
| 1654 |
|
|
fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
|
| 1655 |
|
|
|
| 1656 |
|
|
stage_count = calculate_stage_count (ps, amount);
|
| 1657 |
|
|
}
|
| 1658 |
|
|
|
| 1659 |
|
|
gcc_assert (stage_count >= 1);
|
| 1660 |
|
|
}
|
| 1661 |
|
|
|
| 1662 |
|
|
/* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
|
| 1663 |
|
|
1 means that there is no interleaving between iterations thus
|
| 1664 |
|
|
we let the scheduling passes do the job in this case. */
|
| 1665 |
|
|
if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
|
| 1666 |
|
|
|| (count_init && (loop_count <= stage_count))
|
| 1667 |
|
|
|| (flag_branch_probabilities && (trip_count <= stage_count)))
|
| 1668 |
|
|
{
|
| 1669 |
|
|
if (dump_file)
|
| 1670 |
|
|
{
|
| 1671 |
|
|
fprintf (dump_file, "SMS failed... \n");
|
| 1672 |
|
|
fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
|
| 1673 |
|
|
" loop-count=", stage_count);
|
| 1674 |
|
|
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, loop_count);
|
| 1675 |
|
|
fprintf (dump_file, ", trip-count=");
|
| 1676 |
|
|
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, trip_count);
|
| 1677 |
|
|
fprintf (dump_file, ")\n");
|
| 1678 |
|
|
}
|
| 1679 |
|
|
break;
|
| 1680 |
|
|
}
|
| 1681 |
|
|
|
| 1682 |
|
|
if (!opt_sc_p)
|
| 1683 |
|
|
{
|
| 1684 |
|
|
/* Rotate the partial schedule to have the branch in row ii-1. */
|
| 1685 |
|
|
int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
|
| 1686 |
|
|
|
| 1687 |
|
|
reset_sched_times (ps, amount);
|
| 1688 |
|
|
rotate_partial_schedule (ps, amount);
|
| 1689 |
|
|
}
|
| 1690 |
|
|
|
| 1691 |
|
|
set_columns_for_ps (ps);
|
| 1692 |
|
|
|
| 1693 |
|
|
min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
|
| 1694 |
|
|
if (!schedule_reg_moves (ps))
|
| 1695 |
|
|
{
|
| 1696 |
|
|
mii = ps->ii + 1;
|
| 1697 |
|
|
free_partial_schedule (ps);
|
| 1698 |
|
|
continue;
|
| 1699 |
|
|
}
|
| 1700 |
|
|
|
| 1701 |
|
|
/* Moves that handle incoming values might have been added
|
| 1702 |
|
|
to a new first stage. Bump the stage count if so.
|
| 1703 |
|
|
|
| 1704 |
|
|
??? Perhaps we could consider rotating the schedule here
|
| 1705 |
|
|
instead? */
|
| 1706 |
|
|
if (PS_MIN_CYCLE (ps) < min_cycle)
|
| 1707 |
|
|
{
|
| 1708 |
|
|
reset_sched_times (ps, 0);
|
| 1709 |
|
|
stage_count++;
|
| 1710 |
|
|
}
|
| 1711 |
|
|
|
| 1712 |
|
|
/* The stage count should now be correct without rotation. */
|
| 1713 |
|
|
gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
|
| 1714 |
|
|
PS_STAGE_COUNT (ps) = stage_count;
|
| 1715 |
|
|
|
| 1716 |
|
|
canon_loop (loop);
|
| 1717 |
|
|
|
| 1718 |
|
|
if (dump_file)
|
| 1719 |
|
|
{
|
| 1720 |
|
|
dump_insn_locator (tail);
|
| 1721 |
|
|
fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
|
| 1722 |
|
|
ps->ii, stage_count);
|
| 1723 |
|
|
print_partial_schedule (ps, dump_file);
|
| 1724 |
|
|
}
|
| 1725 |
|
|
|
| 1726 |
|
|
/* case the BCT count is not known , Do loop-versioning */
|
| 1727 |
|
|
if (count_reg && ! count_init)
|
| 1728 |
|
|
{
|
| 1729 |
|
|
rtx comp_rtx = gen_rtx_fmt_ee (GT, VOIDmode, count_reg,
|
| 1730 |
|
|
GEN_INT(stage_count));
|
| 1731 |
|
|
unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
|
| 1732 |
|
|
* REG_BR_PROB_BASE) / 100;
|
| 1733 |
|
|
|
| 1734 |
|
|
loop_version (loop, comp_rtx, &condition_bb,
|
| 1735 |
|
|
prob, prob, REG_BR_PROB_BASE - prob,
|
| 1736 |
|
|
true);
|
| 1737 |
|
|
}
|
| 1738 |
|
|
|
| 1739 |
|
|
/* Set new iteration count of loop kernel. */
|
| 1740 |
|
|
if (count_reg && count_init)
|
| 1741 |
|
|
SET_SRC (single_set (count_init)) = GEN_INT (loop_count
|
| 1742 |
|
|
- stage_count + 1);
|
| 1743 |
|
|
|
| 1744 |
|
|
/* Now apply the scheduled kernel to the RTL of the loop. */
|
| 1745 |
|
|
permute_partial_schedule (ps, g->closing_branch->first_note);
|
| 1746 |
|
|
|
| 1747 |
|
|
/* Mark this loop as software pipelined so the later
|
| 1748 |
|
|
scheduling passes don't touch it. */
|
| 1749 |
|
|
if (! flag_resched_modulo_sched)
|
| 1750 |
|
|
mark_loop_unsched (loop);
|
| 1751 |
|
|
|
| 1752 |
|
|
/* The life-info is not valid any more. */
|
| 1753 |
|
|
df_set_bb_dirty (g->bb);
|
| 1754 |
|
|
|
| 1755 |
|
|
apply_reg_moves (ps);
|
| 1756 |
|
|
if (dump_file)
|
| 1757 |
|
|
print_node_sched_params (dump_file, g->num_nodes, ps);
|
| 1758 |
|
|
/* Generate prolog and epilog. */
|
| 1759 |
|
|
generate_prolog_epilog (ps, loop, count_reg, count_init);
|
| 1760 |
|
|
break;
|
| 1761 |
|
|
}
|
| 1762 |
|
|
|
| 1763 |
|
|
free_partial_schedule (ps);
|
| 1764 |
|
|
VEC_free (node_sched_params, heap, node_sched_param_vec);
|
| 1765 |
|
|
free (node_order);
|
| 1766 |
|
|
free_ddg (g);
|
| 1767 |
|
|
}
|
| 1768 |
|
|
|
| 1769 |
|
|
free (g_arr);
|
| 1770 |
|
|
|
| 1771 |
|
|
/* Release scheduler data, needed until now because of DFA. */
|
| 1772 |
|
|
haifa_sched_finish ();
|
| 1773 |
|
|
loop_optimizer_finalize ();
|
| 1774 |
|
|
}
|
| 1775 |
|
|
|
| 1776 |
|
|
/* The SMS scheduling algorithm itself
|
| 1777 |
|
|
-----------------------------------
|
| 1778 |
|
|
Input: 'O' an ordered list of insns of a loop.
|
| 1779 |
|
|
Output: A scheduling of the loop - kernel, prolog, and epilogue.
|
| 1780 |
|
|
|
| 1781 |
|
|
'Q' is the empty Set
|
| 1782 |
|
|
'PS' is the partial schedule; it holds the currently scheduled nodes with
|
| 1783 |
|
|
their cycle/slot.
|
| 1784 |
|
|
'PSP' previously scheduled predecessors.
|
| 1785 |
|
|
'PSS' previously scheduled successors.
|
| 1786 |
|
|
't(u)' the cycle where u is scheduled.
|
| 1787 |
|
|
'l(u)' is the latency of u.
|
| 1788 |
|
|
'd(v,u)' is the dependence distance from v to u.
|
| 1789 |
|
|
'ASAP(u)' the earliest time at which u could be scheduled as computed in
|
| 1790 |
|
|
the node ordering phase.
|
| 1791 |
|
|
'check_hardware_resources_conflicts(u, PS, c)'
|
| 1792 |
|
|
run a trace around cycle/slot through DFA model
|
| 1793 |
|
|
to check resource conflicts involving instruction u
|
| 1794 |
|
|
at cycle c given the partial schedule PS.
|
| 1795 |
|
|
'add_to_partial_schedule_at_time(u, PS, c)'
|
| 1796 |
|
|
Add the node/instruction u to the partial schedule
|
| 1797 |
|
|
PS at time c.
|
| 1798 |
|
|
'calculate_register_pressure(PS)'
|
| 1799 |
|
|
Given a schedule of instructions, calculate the register
|
| 1800 |
|
|
pressure it implies. One implementation could be the
|
| 1801 |
|
|
maximum number of overlapping live ranges.
|
| 1802 |
|
|
'maxRP' The maximum allowed register pressure, it is usually derived from the number
|
| 1803 |
|
|
registers available in the hardware.
|
| 1804 |
|
|
|
| 1805 |
|
|
1. II = MII.
|
| 1806 |
|
|
2. PS = empty list
|
| 1807 |
|
|
3. for each node u in O in pre-computed order
|
| 1808 |
|
|
4. if (PSP(u) != Q && PSS(u) == Q) then
|
| 1809 |
|
|
5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
|
| 1810 |
|
|
6. start = Early_start; end = Early_start + II - 1; step = 1
|
| 1811 |
|
|
11. else if (PSP(u) == Q && PSS(u) != Q) then
|
| 1812 |
|
|
12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
|
| 1813 |
|
|
13. start = Late_start; end = Late_start - II + 1; step = -1
|
| 1814 |
|
|
14. else if (PSP(u) != Q && PSS(u) != Q) then
|
| 1815 |
|
|
15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
|
| 1816 |
|
|
16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
|
| 1817 |
|
|
17. start = Early_start;
|
| 1818 |
|
|
18. end = min(Early_start + II - 1 , Late_start);
|
| 1819 |
|
|
19. step = 1
|
| 1820 |
|
|
20. else "if (PSP(u) == Q && PSS(u) == Q)"
|
| 1821 |
|
|
21. start = ASAP(u); end = start + II - 1; step = 1
|
| 1822 |
|
|
22. endif
|
| 1823 |
|
|
|
| 1824 |
|
|
23. success = false
|
| 1825 |
|
|
24. for (c = start ; c != end ; c += step)
|
| 1826 |
|
|
25. if check_hardware_resources_conflicts(u, PS, c) then
|
| 1827 |
|
|
26. add_to_partial_schedule_at_time(u, PS, c)
|
| 1828 |
|
|
27. success = true
|
| 1829 |
|
|
28. break
|
| 1830 |
|
|
29. endif
|
| 1831 |
|
|
30. endfor
|
| 1832 |
|
|
31. if (success == false) then
|
| 1833 |
|
|
32. II = II + 1
|
| 1834 |
|
|
33. if (II > maxII) then
|
| 1835 |
|
|
34. finish - failed to schedule
|
| 1836 |
|
|
35. endif
|
| 1837 |
|
|
36. goto 2.
|
| 1838 |
|
|
37. endif
|
| 1839 |
|
|
38. endfor
|
| 1840 |
|
|
39. if (calculate_register_pressure(PS) > maxRP) then
|
| 1841 |
|
|
40. goto 32.
|
| 1842 |
|
|
41. endif
|
| 1843 |
|
|
42. compute epilogue & prologue
|
| 1844 |
|
|
43. finish - succeeded to schedule
|
| 1845 |
|
|
|
| 1846 |
|
|
??? The algorithm restricts the scheduling window to II cycles.
|
| 1847 |
|
|
In rare cases, it may be better to allow windows of II+1 cycles.
|
| 1848 |
|
|
The window would then start and end on the same row, but with
|
| 1849 |
|
|
different "must precede" and "must follow" requirements. */
|
| 1850 |
|
|
|
| 1851 |
|
|
/* A limit on the number of cycles that resource conflicts can span. ??? Should
|
| 1852 |
|
|
be provided by DFA, and be dependent on the type of insn scheduled. Currently
|
| 1853 |
|
|
set to 0 to save compile time. */
|
| 1854 |
|
|
#define DFA_HISTORY SMS_DFA_HISTORY
|
| 1855 |
|
|
|
| 1856 |
|
|
/* A threshold for the number of repeated unsuccessful attempts to insert
|
| 1857 |
|
|
an empty row, before we flush the partial schedule and start over. */
|
| 1858 |
|
|
#define MAX_SPLIT_NUM 10
|
| 1859 |
|
|
/* Given the partial schedule PS, this function calculates and returns the
|
| 1860 |
|
|
cycles in which we can schedule the node with the given index I.
|
| 1861 |
|
|
NOTE: Here we do the backtracking in SMS, in some special cases. We have
|
| 1862 |
|
|
noticed that there are several cases in which we fail to SMS the loop
|
| 1863 |
|
|
because the sched window of a node is empty due to tight data-deps. In
|
| 1864 |
|
|
such cases we want to unschedule some of the predecessors/successors
|
| 1865 |
|
|
until we get non-empty scheduling window. It returns -1 if the
|
| 1866 |
|
|
scheduling window is empty and zero otherwise. */
|
| 1867 |
|
|
|
| 1868 |
|
|
static int
|
| 1869 |
|
|
get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
|
| 1870 |
|
|
sbitmap sched_nodes, int ii, int *start_p, int *step_p,
|
| 1871 |
|
|
int *end_p)
|
| 1872 |
|
|
{
|
| 1873 |
|
|
int start, step, end;
|
| 1874 |
|
|
int early_start, late_start;
|
| 1875 |
|
|
ddg_edge_ptr e;
|
| 1876 |
|
|
sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
|
| 1877 |
|
|
sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
|
| 1878 |
|
|
sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
|
| 1879 |
|
|
sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
|
| 1880 |
|
|
int psp_not_empty;
|
| 1881 |
|
|
int pss_not_empty;
|
| 1882 |
|
|
int count_preds;
|
| 1883 |
|
|
int count_succs;
|
| 1884 |
|
|
|
| 1885 |
|
|
/* 1. compute sched window for u (start, end, step). */
|
| 1886 |
|
|
sbitmap_zero (psp);
|
| 1887 |
|
|
sbitmap_zero (pss);
|
| 1888 |
|
|
psp_not_empty = sbitmap_a_and_b_cg (psp, u_node_preds, sched_nodes);
|
| 1889 |
|
|
pss_not_empty = sbitmap_a_and_b_cg (pss, u_node_succs, sched_nodes);
|
| 1890 |
|
|
|
| 1891 |
|
|
/* We first compute a forward range (start <= end), then decide whether
|
| 1892 |
|
|
to reverse it. */
|
| 1893 |
|
|
early_start = INT_MIN;
|
| 1894 |
|
|
late_start = INT_MAX;
|
| 1895 |
|
|
start = INT_MIN;
|
| 1896 |
|
|
end = INT_MAX;
|
| 1897 |
|
|
step = 1;
|
| 1898 |
|
|
|
| 1899 |
|
|
count_preds = 0;
|
| 1900 |
|
|
count_succs = 0;
|
| 1901 |
|
|
|
| 1902 |
|
|
if (dump_file && (psp_not_empty || pss_not_empty))
|
| 1903 |
|
|
{
|
| 1904 |
|
|
fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
|
| 1905 |
|
|
"; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
|
| 1906 |
|
|
fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
|
| 1907 |
|
|
"start", "early start", "late start", "end", "time");
|
| 1908 |
|
|
fprintf (dump_file, "=========== =========== =========== ==========="
|
| 1909 |
|
|
" =====\n");
|
| 1910 |
|
|
}
|
| 1911 |
|
|
/* Calculate early_start and limit end. Both bounds are inclusive. */
|
| 1912 |
|
|
if (psp_not_empty)
|
| 1913 |
|
|
for (e = u_node->in; e != 0; e = e->next_in)
|
| 1914 |
|
|
{
|
| 1915 |
|
|
int v = e->src->cuid;
|
| 1916 |
|
|
|
| 1917 |
|
|
if (TEST_BIT (sched_nodes, v))
|
| 1918 |
|
|
{
|
| 1919 |
|
|
int p_st = SCHED_TIME (v);
|
| 1920 |
|
|
int earliest = p_st + e->latency - (e->distance * ii);
|
| 1921 |
|
|
int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
|
| 1922 |
|
|
|
| 1923 |
|
|
if (dump_file)
|
| 1924 |
|
|
{
|
| 1925 |
|
|
fprintf (dump_file, "%11s %11d %11s %11d %5d",
|
| 1926 |
|
|
"", earliest, "", latest, p_st);
|
| 1927 |
|
|
print_ddg_edge (dump_file, e);
|
| 1928 |
|
|
fprintf (dump_file, "\n");
|
| 1929 |
|
|
}
|
| 1930 |
|
|
|
| 1931 |
|
|
early_start = MAX (early_start, earliest);
|
| 1932 |
|
|
end = MIN (end, latest);
|
| 1933 |
|
|
|
| 1934 |
|
|
if (e->type == TRUE_DEP && e->data_type == REG_DEP)
|
| 1935 |
|
|
count_preds++;
|
| 1936 |
|
|
}
|
| 1937 |
|
|
}
|
| 1938 |
|
|
|
| 1939 |
|
|
/* Calculate late_start and limit start. Both bounds are inclusive. */
|
| 1940 |
|
|
if (pss_not_empty)
|
| 1941 |
|
|
for (e = u_node->out; e != 0; e = e->next_out)
|
| 1942 |
|
|
{
|
| 1943 |
|
|
int v = e->dest->cuid;
|
| 1944 |
|
|
|
| 1945 |
|
|
if (TEST_BIT (sched_nodes, v))
|
| 1946 |
|
|
{
|
| 1947 |
|
|
int s_st = SCHED_TIME (v);
|
| 1948 |
|
|
int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
|
| 1949 |
|
|
int latest = s_st - e->latency + (e->distance * ii);
|
| 1950 |
|
|
|
| 1951 |
|
|
if (dump_file)
|
| 1952 |
|
|
{
|
| 1953 |
|
|
fprintf (dump_file, "%11d %11s %11d %11s %5d",
|
| 1954 |
|
|
earliest, "", latest, "", s_st);
|
| 1955 |
|
|
print_ddg_edge (dump_file, e);
|
| 1956 |
|
|
fprintf (dump_file, "\n");
|
| 1957 |
|
|
}
|
| 1958 |
|
|
|
| 1959 |
|
|
start = MAX (start, earliest);
|
| 1960 |
|
|
late_start = MIN (late_start, latest);
|
| 1961 |
|
|
|
| 1962 |
|
|
if (e->type == TRUE_DEP && e->data_type == REG_DEP)
|
| 1963 |
|
|
count_succs++;
|
| 1964 |
|
|
}
|
| 1965 |
|
|
}
|
| 1966 |
|
|
|
| 1967 |
|
|
if (dump_file && (psp_not_empty || pss_not_empty))
|
| 1968 |
|
|
{
|
| 1969 |
|
|
fprintf (dump_file, "----------- ----------- ----------- -----------"
|
| 1970 |
|
|
" -----\n");
|
| 1971 |
|
|
fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
|
| 1972 |
|
|
start, early_start, late_start, end, "",
|
| 1973 |
|
|
"(max, max, min, min)");
|
| 1974 |
|
|
}
|
| 1975 |
|
|
|
| 1976 |
|
|
/* Get a target scheduling window no bigger than ii. */
|
| 1977 |
|
|
if (early_start == INT_MIN && late_start == INT_MAX)
|
| 1978 |
|
|
early_start = NODE_ASAP (u_node);
|
| 1979 |
|
|
else if (early_start == INT_MIN)
|
| 1980 |
|
|
early_start = late_start - (ii - 1);
|
| 1981 |
|
|
late_start = MIN (late_start, early_start + (ii - 1));
|
| 1982 |
|
|
|
| 1983 |
|
|
/* Apply memory dependence limits. */
|
| 1984 |
|
|
start = MAX (start, early_start);
|
| 1985 |
|
|
end = MIN (end, late_start);
|
| 1986 |
|
|
|
| 1987 |
|
|
if (dump_file && (psp_not_empty || pss_not_empty))
|
| 1988 |
|
|
fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
|
| 1989 |
|
|
"", start, end, "", "");
|
| 1990 |
|
|
|
| 1991 |
|
|
/* If there are at least as many successors as predecessors, schedule the
|
| 1992 |
|
|
node close to its successors. */
|
| 1993 |
|
|
if (pss_not_empty && count_succs >= count_preds)
|
| 1994 |
|
|
{
|
| 1995 |
|
|
int tmp = end;
|
| 1996 |
|
|
end = start;
|
| 1997 |
|
|
start = tmp;
|
| 1998 |
|
|
step = -1;
|
| 1999 |
|
|
}
|
| 2000 |
|
|
|
| 2001 |
|
|
/* Now that we've finalized the window, make END an exclusive rather
|
| 2002 |
|
|
than an inclusive bound. */
|
| 2003 |
|
|
end += step;
|
| 2004 |
|
|
|
| 2005 |
|
|
*start_p = start;
|
| 2006 |
|
|
*step_p = step;
|
| 2007 |
|
|
*end_p = end;
|
| 2008 |
|
|
sbitmap_free (psp);
|
| 2009 |
|
|
sbitmap_free (pss);
|
| 2010 |
|
|
|
| 2011 |
|
|
if ((start >= end && step == 1) || (start <= end && step == -1))
|
| 2012 |
|
|
{
|
| 2013 |
|
|
if (dump_file)
|
| 2014 |
|
|
fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
|
| 2015 |
|
|
start, end, step);
|
| 2016 |
|
|
return -1;
|
| 2017 |
|
|
}
|
| 2018 |
|
|
|
| 2019 |
|
|
return 0;
|
| 2020 |
|
|
}
|
| 2021 |
|
|
|
| 2022 |
|
|
/* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
|
| 2023 |
|
|
node currently been scheduled. At the end of the calculation
|
| 2024 |
|
|
MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
|
| 2025 |
|
|
U_NODE which are (1) already scheduled in the first/last row of
|
| 2026 |
|
|
U_NODE's scheduling window, (2) whose dependence inequality with U
|
| 2027 |
|
|
becomes an equality when U is scheduled in this same row, and (3)
|
| 2028 |
|
|
whose dependence latency is zero.
|
| 2029 |
|
|
|
| 2030 |
|
|
The first and last rows are calculated using the following parameters:
|
| 2031 |
|
|
START/END rows - The cycles that begins/ends the traversal on the window;
|
| 2032 |
|
|
searching for an empty cycle to schedule U_NODE.
|
| 2033 |
|
|
STEP - The direction in which we traverse the window.
|
| 2034 |
|
|
II - The initiation interval. */
|
| 2035 |
|
|
|
| 2036 |
|
|
static void
|
| 2037 |
|
|
calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
|
| 2038 |
|
|
int step, int ii, sbitmap sched_nodes,
|
| 2039 |
|
|
sbitmap must_precede, sbitmap must_follow)
|
| 2040 |
|
|
{
|
| 2041 |
|
|
ddg_edge_ptr e;
|
| 2042 |
|
|
int first_cycle_in_window, last_cycle_in_window;
|
| 2043 |
|
|
|
| 2044 |
|
|
gcc_assert (must_precede && must_follow);
|
| 2045 |
|
|
|
| 2046 |
|
|
/* Consider the following scheduling window:
|
| 2047 |
|
|
{first_cycle_in_window, first_cycle_in_window+1, ...,
|
| 2048 |
|
|
last_cycle_in_window}. If step is 1 then the following will be
|
| 2049 |
|
|
the order we traverse the window: {start=first_cycle_in_window,
|
| 2050 |
|
|
first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
|
| 2051 |
|
|
or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
|
| 2052 |
|
|
end=first_cycle_in_window-1} if step is -1. */
|
| 2053 |
|
|
first_cycle_in_window = (step == 1) ? start : end - step;
|
| 2054 |
|
|
last_cycle_in_window = (step == 1) ? end - step : start;
|
| 2055 |
|
|
|
| 2056 |
|
|
sbitmap_zero (must_precede);
|
| 2057 |
|
|
sbitmap_zero (must_follow);
|
| 2058 |
|
|
|
| 2059 |
|
|
if (dump_file)
|
| 2060 |
|
|
fprintf (dump_file, "\nmust_precede: ");
|
| 2061 |
|
|
|
| 2062 |
|
|
/* Instead of checking if:
|
| 2063 |
|
|
(SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
|
| 2064 |
|
|
&& ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
|
| 2065 |
|
|
first_cycle_in_window)
|
| 2066 |
|
|
&& e->latency == 0
|
| 2067 |
|
|
we use the fact that latency is non-negative:
|
| 2068 |
|
|
SCHED_TIME (e->src) - (e->distance * ii) <=
|
| 2069 |
|
|
SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
|
| 2070 |
|
|
first_cycle_in_window
|
| 2071 |
|
|
and check only if
|
| 2072 |
|
|
SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
|
| 2073 |
|
|
for (e = u_node->in; e != 0; e = e->next_in)
|
| 2074 |
|
|
if (TEST_BIT (sched_nodes, e->src->cuid)
|
| 2075 |
|
|
&& ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
|
| 2076 |
|
|
first_cycle_in_window))
|
| 2077 |
|
|
{
|
| 2078 |
|
|
if (dump_file)
|
| 2079 |
|
|
fprintf (dump_file, "%d ", e->src->cuid);
|
| 2080 |
|
|
|
| 2081 |
|
|
SET_BIT (must_precede, e->src->cuid);
|
| 2082 |
|
|
}
|
| 2083 |
|
|
|
| 2084 |
|
|
if (dump_file)
|
| 2085 |
|
|
fprintf (dump_file, "\nmust_follow: ");
|
| 2086 |
|
|
|
| 2087 |
|
|
/* Instead of checking if:
|
| 2088 |
|
|
(SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
|
| 2089 |
|
|
&& ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
|
| 2090 |
|
|
last_cycle_in_window)
|
| 2091 |
|
|
&& e->latency == 0
|
| 2092 |
|
|
we use the fact that latency is non-negative:
|
| 2093 |
|
|
SCHED_TIME (e->dest) + (e->distance * ii) >=
|
| 2094 |
|
|
SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
|
| 2095 |
|
|
last_cycle_in_window
|
| 2096 |
|
|
and check only if
|
| 2097 |
|
|
SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
|
| 2098 |
|
|
for (e = u_node->out; e != 0; e = e->next_out)
|
| 2099 |
|
|
if (TEST_BIT (sched_nodes, e->dest->cuid)
|
| 2100 |
|
|
&& ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
|
| 2101 |
|
|
last_cycle_in_window))
|
| 2102 |
|
|
{
|
| 2103 |
|
|
if (dump_file)
|
| 2104 |
|
|
fprintf (dump_file, "%d ", e->dest->cuid);
|
| 2105 |
|
|
|
| 2106 |
|
|
SET_BIT (must_follow, e->dest->cuid);
|
| 2107 |
|
|
}
|
| 2108 |
|
|
|
| 2109 |
|
|
if (dump_file)
|
| 2110 |
|
|
fprintf (dump_file, "\n");
|
| 2111 |
|
|
}
|
| 2112 |
|
|
|
| 2113 |
|
|
/* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
|
| 2114 |
|
|
parameters to decide if that's possible:
|
| 2115 |
|
|
PS - The partial schedule.
|
| 2116 |
|
|
U - The serial number of U_NODE.
|
| 2117 |
|
|
NUM_SPLITS - The number of row splits made so far.
|
| 2118 |
|
|
MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
|
| 2119 |
|
|
the first row of the scheduling window)
|
| 2120 |
|
|
MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
|
| 2121 |
|
|
last row of the scheduling window) */
|
| 2122 |
|
|
|
| 2123 |
|
|
static bool
|
| 2124 |
|
|
try_scheduling_node_in_cycle (partial_schedule_ptr ps,
|
| 2125 |
|
|
int u, int cycle, sbitmap sched_nodes,
|
| 2126 |
|
|
int *num_splits, sbitmap must_precede,
|
| 2127 |
|
|
sbitmap must_follow)
|
| 2128 |
|
|
{
|
| 2129 |
|
|
ps_insn_ptr psi;
|
| 2130 |
|
|
bool success = 0;
|
| 2131 |
|
|
|
| 2132 |
|
|
verify_partial_schedule (ps, sched_nodes);
|
| 2133 |
|
|
psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
|
| 2134 |
|
|
if (psi)
|
| 2135 |
|
|
{
|
| 2136 |
|
|
SCHED_TIME (u) = cycle;
|
| 2137 |
|
|
SET_BIT (sched_nodes, u);
|
| 2138 |
|
|
success = 1;
|
| 2139 |
|
|
*num_splits = 0;
|
| 2140 |
|
|
if (dump_file)
|
| 2141 |
|
|
fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
|
| 2142 |
|
|
|
| 2143 |
|
|
}
|
| 2144 |
|
|
|
| 2145 |
|
|
return success;
|
| 2146 |
|
|
}
|
| 2147 |
|
|
|
| 2148 |
|
|
/* This function implements the scheduling algorithm for SMS according to the
|
| 2149 |
|
|
above algorithm. */
|
| 2150 |
|
|
static partial_schedule_ptr
|
| 2151 |
|
|
sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
|
| 2152 |
|
|
{
|
| 2153 |
|
|
int ii = mii;
|
| 2154 |
|
|
int i, c, success, num_splits = 0;
|
| 2155 |
|
|
int flush_and_start_over = true;
|
| 2156 |
|
|
int num_nodes = g->num_nodes;
|
| 2157 |
|
|
int start, end, step; /* Place together into one struct? */
|
| 2158 |
|
|
sbitmap sched_nodes = sbitmap_alloc (num_nodes);
|
| 2159 |
|
|
sbitmap must_precede = sbitmap_alloc (num_nodes);
|
| 2160 |
|
|
sbitmap must_follow = sbitmap_alloc (num_nodes);
|
| 2161 |
|
|
sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
|
| 2162 |
|
|
|
| 2163 |
|
|
partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
|
| 2164 |
|
|
|
| 2165 |
|
|
sbitmap_ones (tobe_scheduled);
|
| 2166 |
|
|
sbitmap_zero (sched_nodes);
|
| 2167 |
|
|
|
| 2168 |
|
|
while (flush_and_start_over && (ii < maxii))
|
| 2169 |
|
|
{
|
| 2170 |
|
|
|
| 2171 |
|
|
if (dump_file)
|
| 2172 |
|
|
fprintf (dump_file, "Starting with ii=%d\n", ii);
|
| 2173 |
|
|
flush_and_start_over = false;
|
| 2174 |
|
|
sbitmap_zero (sched_nodes);
|
| 2175 |
|
|
|
| 2176 |
|
|
for (i = 0; i < num_nodes; i++)
|
| 2177 |
|
|
{
|
| 2178 |
|
|
int u = nodes_order[i];
|
| 2179 |
|
|
ddg_node_ptr u_node = &ps->g->nodes[u];
|
| 2180 |
|
|
rtx insn = u_node->insn;
|
| 2181 |
|
|
|
| 2182 |
|
|
if (!NONDEBUG_INSN_P (insn))
|
| 2183 |
|
|
{
|
| 2184 |
|
|
RESET_BIT (tobe_scheduled, u);
|
| 2185 |
|
|
continue;
|
| 2186 |
|
|
}
|
| 2187 |
|
|
|
| 2188 |
|
|
if (TEST_BIT (sched_nodes, u))
|
| 2189 |
|
|
continue;
|
| 2190 |
|
|
|
| 2191 |
|
|
/* Try to get non-empty scheduling window. */
|
| 2192 |
|
|
success = 0;
|
| 2193 |
|
|
if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
|
| 2194 |
|
|
&step, &end) == 0)
|
| 2195 |
|
|
{
|
| 2196 |
|
|
if (dump_file)
|
| 2197 |
|
|
fprintf (dump_file, "\nTrying to schedule node %d "
|
| 2198 |
|
|
"INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
|
| 2199 |
|
|
(g->nodes[u].insn)), start, end, step);
|
| 2200 |
|
|
|
| 2201 |
|
|
gcc_assert ((step > 0 && start < end)
|
| 2202 |
|
|
|| (step < 0 && start > end));
|
| 2203 |
|
|
|
| 2204 |
|
|
calculate_must_precede_follow (u_node, start, end, step, ii,
|
| 2205 |
|
|
sched_nodes, must_precede,
|
| 2206 |
|
|
must_follow);
|
| 2207 |
|
|
|
| 2208 |
|
|
for (c = start; c != end; c += step)
|
| 2209 |
|
|
{
|
| 2210 |
|
|
sbitmap tmp_precede, tmp_follow;
|
| 2211 |
|
|
|
| 2212 |
|
|
set_must_precede_follow (&tmp_follow, must_follow,
|
| 2213 |
|
|
&tmp_precede, must_precede,
|
| 2214 |
|
|
c, start, end, step);
|
| 2215 |
|
|
success =
|
| 2216 |
|
|
try_scheduling_node_in_cycle (ps, u, c,
|
| 2217 |
|
|
sched_nodes,
|
| 2218 |
|
|
&num_splits, tmp_precede,
|
| 2219 |
|
|
tmp_follow);
|
| 2220 |
|
|
if (success)
|
| 2221 |
|
|
break;
|
| 2222 |
|
|
}
|
| 2223 |
|
|
|
| 2224 |
|
|
verify_partial_schedule (ps, sched_nodes);
|
| 2225 |
|
|
}
|
| 2226 |
|
|
if (!success)
|
| 2227 |
|
|
{
|
| 2228 |
|
|
int split_row;
|
| 2229 |
|
|
|
| 2230 |
|
|
if (ii++ == maxii)
|
| 2231 |
|
|
break;
|
| 2232 |
|
|
|
| 2233 |
|
|
if (num_splits >= MAX_SPLIT_NUM)
|
| 2234 |
|
|
{
|
| 2235 |
|
|
num_splits = 0;
|
| 2236 |
|
|
flush_and_start_over = true;
|
| 2237 |
|
|
verify_partial_schedule (ps, sched_nodes);
|
| 2238 |
|
|
reset_partial_schedule (ps, ii);
|
| 2239 |
|
|
verify_partial_schedule (ps, sched_nodes);
|
| 2240 |
|
|
break;
|
| 2241 |
|
|
}
|
| 2242 |
|
|
|
| 2243 |
|
|
num_splits++;
|
| 2244 |
|
|
/* The scheduling window is exclusive of 'end'
|
| 2245 |
|
|
whereas compute_split_window() expects an inclusive,
|
| 2246 |
|
|
ordered range. */
|
| 2247 |
|
|
if (step == 1)
|
| 2248 |
|
|
split_row = compute_split_row (sched_nodes, start, end - 1,
|
| 2249 |
|
|
ps->ii, u_node);
|
| 2250 |
|
|
else
|
| 2251 |
|
|
split_row = compute_split_row (sched_nodes, end + 1, start,
|
| 2252 |
|
|
ps->ii, u_node);
|
| 2253 |
|
|
|
| 2254 |
|
|
ps_insert_empty_row (ps, split_row, sched_nodes);
|
| 2255 |
|
|
i--; /* Go back and retry node i. */
|
| 2256 |
|
|
|
| 2257 |
|
|
if (dump_file)
|
| 2258 |
|
|
fprintf (dump_file, "num_splits=%d\n", num_splits);
|
| 2259 |
|
|
}
|
| 2260 |
|
|
|
| 2261 |
|
|
/* ??? If (success), check register pressure estimates. */
|
| 2262 |
|
|
} /* Continue with next node. */
|
| 2263 |
|
|
} /* While flush_and_start_over. */
|
| 2264 |
|
|
if (ii >= maxii)
|
| 2265 |
|
|
{
|
| 2266 |
|
|
free_partial_schedule (ps);
|
| 2267 |
|
|
ps = NULL;
|
| 2268 |
|
|
}
|
| 2269 |
|
|
else
|
| 2270 |
|
|
gcc_assert (sbitmap_equal (tobe_scheduled, sched_nodes));
|
| 2271 |
|
|
|
| 2272 |
|
|
sbitmap_free (sched_nodes);
|
| 2273 |
|
|
sbitmap_free (must_precede);
|
| 2274 |
|
|
sbitmap_free (must_follow);
|
| 2275 |
|
|
sbitmap_free (tobe_scheduled);
|
| 2276 |
|
|
|
| 2277 |
|
|
return ps;
|
| 2278 |
|
|
}
|
| 2279 |
|
|
|
| 2280 |
|
|
/* This function inserts a new empty row into PS at the position
|
| 2281 |
|
|
according to SPLITROW, keeping all already scheduled instructions
|
| 2282 |
|
|
intact and updating their SCHED_TIME and cycle accordingly. */
|
| 2283 |
|
|
static void
|
| 2284 |
|
|
ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
|
| 2285 |
|
|
sbitmap sched_nodes)
|
| 2286 |
|
|
{
|
| 2287 |
|
|
ps_insn_ptr crr_insn;
|
| 2288 |
|
|
ps_insn_ptr *rows_new;
|
| 2289 |
|
|
int ii = ps->ii;
|
| 2290 |
|
|
int new_ii = ii + 1;
|
| 2291 |
|
|
int row;
|
| 2292 |
|
|
int *rows_length_new;
|
| 2293 |
|
|
|
| 2294 |
|
|
verify_partial_schedule (ps, sched_nodes);
|
| 2295 |
|
|
|
| 2296 |
|
|
/* We normalize sched_time and rotate ps to have only non-negative sched
|
| 2297 |
|
|
times, for simplicity of updating cycles after inserting new row. */
|
| 2298 |
|
|
split_row -= ps->min_cycle;
|
| 2299 |
|
|
split_row = SMODULO (split_row, ii);
|
| 2300 |
|
|
if (dump_file)
|
| 2301 |
|
|
fprintf (dump_file, "split_row=%d\n", split_row);
|
| 2302 |
|
|
|
| 2303 |
|
|
reset_sched_times (ps, PS_MIN_CYCLE (ps));
|
| 2304 |
|
|
rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
|
| 2305 |
|
|
|
| 2306 |
|
|
rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
|
| 2307 |
|
|
rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
|
| 2308 |
|
|
for (row = 0; row < split_row; row++)
|
| 2309 |
|
|
{
|
| 2310 |
|
|
rows_new[row] = ps->rows[row];
|
| 2311 |
|
|
rows_length_new[row] = ps->rows_length[row];
|
| 2312 |
|
|
ps->rows[row] = NULL;
|
| 2313 |
|
|
for (crr_insn = rows_new[row];
|
| 2314 |
|
|
crr_insn; crr_insn = crr_insn->next_in_row)
|
| 2315 |
|
|
{
|
| 2316 |
|
|
int u = crr_insn->id;
|
| 2317 |
|
|
int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
|
| 2318 |
|
|
|
| 2319 |
|
|
SCHED_TIME (u) = new_time;
|
| 2320 |
|
|
crr_insn->cycle = new_time;
|
| 2321 |
|
|
SCHED_ROW (u) = new_time % new_ii;
|
| 2322 |
|
|
SCHED_STAGE (u) = new_time / new_ii;
|
| 2323 |
|
|
}
|
| 2324 |
|
|
|
| 2325 |
|
|
}
|
| 2326 |
|
|
|
| 2327 |
|
|
rows_new[split_row] = NULL;
|
| 2328 |
|
|
|
| 2329 |
|
|
for (row = split_row; row < ii; row++)
|
| 2330 |
|
|
{
|
| 2331 |
|
|
rows_new[row + 1] = ps->rows[row];
|
| 2332 |
|
|
rows_length_new[row + 1] = ps->rows_length[row];
|
| 2333 |
|
|
ps->rows[row] = NULL;
|
| 2334 |
|
|
for (crr_insn = rows_new[row + 1];
|
| 2335 |
|
|
crr_insn; crr_insn = crr_insn->next_in_row)
|
| 2336 |
|
|
{
|
| 2337 |
|
|
int u = crr_insn->id;
|
| 2338 |
|
|
int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
|
| 2339 |
|
|
|
| 2340 |
|
|
SCHED_TIME (u) = new_time;
|
| 2341 |
|
|
crr_insn->cycle = new_time;
|
| 2342 |
|
|
SCHED_ROW (u) = new_time % new_ii;
|
| 2343 |
|
|
SCHED_STAGE (u) = new_time / new_ii;
|
| 2344 |
|
|
}
|
| 2345 |
|
|
}
|
| 2346 |
|
|
|
| 2347 |
|
|
/* Updating ps. */
|
| 2348 |
|
|
ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
|
| 2349 |
|
|
+ (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
|
| 2350 |
|
|
ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
|
| 2351 |
|
|
+ (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
|
| 2352 |
|
|
free (ps->rows);
|
| 2353 |
|
|
ps->rows = rows_new;
|
| 2354 |
|
|
free (ps->rows_length);
|
| 2355 |
|
|
ps->rows_length = rows_length_new;
|
| 2356 |
|
|
ps->ii = new_ii;
|
| 2357 |
|
|
gcc_assert (ps->min_cycle >= 0);
|
| 2358 |
|
|
|
| 2359 |
|
|
verify_partial_schedule (ps, sched_nodes);
|
| 2360 |
|
|
|
| 2361 |
|
|
if (dump_file)
|
| 2362 |
|
|
fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
|
| 2363 |
|
|
ps->max_cycle);
|
| 2364 |
|
|
}
|
| 2365 |
|
|
|
| 2366 |
|
|
/* Given U_NODE which is the node that failed to be scheduled; LOW and
|
| 2367 |
|
|
UP which are the boundaries of it's scheduling window; compute using
|
| 2368 |
|
|
SCHED_NODES and II a row in the partial schedule that can be split
|
| 2369 |
|
|
which will separate a critical predecessor from a critical successor
|
| 2370 |
|
|
thereby expanding the window, and return it. */
|
| 2371 |
|
|
static int
|
| 2372 |
|
|
compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
|
| 2373 |
|
|
ddg_node_ptr u_node)
|
| 2374 |
|
|
{
|
| 2375 |
|
|
ddg_edge_ptr e;
|
| 2376 |
|
|
int lower = INT_MIN, upper = INT_MAX;
|
| 2377 |
|
|
int crit_pred = -1;
|
| 2378 |
|
|
int crit_succ = -1;
|
| 2379 |
|
|
int crit_cycle;
|
| 2380 |
|
|
|
| 2381 |
|
|
for (e = u_node->in; e != 0; e = e->next_in)
|
| 2382 |
|
|
{
|
| 2383 |
|
|
int v = e->src->cuid;
|
| 2384 |
|
|
|
| 2385 |
|
|
if (TEST_BIT (sched_nodes, v)
|
| 2386 |
|
|
&& (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
|
| 2387 |
|
|
if (SCHED_TIME (v) > lower)
|
| 2388 |
|
|
{
|
| 2389 |
|
|
crit_pred = v;
|
| 2390 |
|
|
lower = SCHED_TIME (v);
|
| 2391 |
|
|
}
|
| 2392 |
|
|
}
|
| 2393 |
|
|
|
| 2394 |
|
|
if (crit_pred >= 0)
|
| 2395 |
|
|
{
|
| 2396 |
|
|
crit_cycle = SCHED_TIME (crit_pred) + 1;
|
| 2397 |
|
|
return SMODULO (crit_cycle, ii);
|
| 2398 |
|
|
}
|
| 2399 |
|
|
|
| 2400 |
|
|
for (e = u_node->out; e != 0; e = e->next_out)
|
| 2401 |
|
|
{
|
| 2402 |
|
|
int v = e->dest->cuid;
|
| 2403 |
|
|
|
| 2404 |
|
|
if (TEST_BIT (sched_nodes, v)
|
| 2405 |
|
|
&& (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
|
| 2406 |
|
|
if (SCHED_TIME (v) < upper)
|
| 2407 |
|
|
{
|
| 2408 |
|
|
crit_succ = v;
|
| 2409 |
|
|
upper = SCHED_TIME (v);
|
| 2410 |
|
|
}
|
| 2411 |
|
|
}
|
| 2412 |
|
|
|
| 2413 |
|
|
if (crit_succ >= 0)
|
| 2414 |
|
|
{
|
| 2415 |
|
|
crit_cycle = SCHED_TIME (crit_succ);
|
| 2416 |
|
|
return SMODULO (crit_cycle, ii);
|
| 2417 |
|
|
}
|
| 2418 |
|
|
|
| 2419 |
|
|
if (dump_file)
|
| 2420 |
|
|
fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
|
| 2421 |
|
|
|
| 2422 |
|
|
return SMODULO ((low + up + 1) / 2, ii);
|
| 2423 |
|
|
}
|
| 2424 |
|
|
|
| 2425 |
|
|
static void
|
| 2426 |
|
|
verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
|
| 2427 |
|
|
{
|
| 2428 |
|
|
int row;
|
| 2429 |
|
|
ps_insn_ptr crr_insn;
|
| 2430 |
|
|
|
| 2431 |
|
|
for (row = 0; row < ps->ii; row++)
|
| 2432 |
|
|
{
|
| 2433 |
|
|
int length = 0;
|
| 2434 |
|
|
|
| 2435 |
|
|
for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
|
| 2436 |
|
|
{
|
| 2437 |
|
|
int u = crr_insn->id;
|
| 2438 |
|
|
|
| 2439 |
|
|
length++;
|
| 2440 |
|
|
gcc_assert (TEST_BIT (sched_nodes, u));
|
| 2441 |
|
|
/* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
|
| 2442 |
|
|
popcount (sched_nodes) == number of insns in ps. */
|
| 2443 |
|
|
gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
|
| 2444 |
|
|
gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
|
| 2445 |
|
|
}
|
| 2446 |
|
|
|
| 2447 |
|
|
gcc_assert (ps->rows_length[row] == length);
|
| 2448 |
|
|
}
|
| 2449 |
|
|
}
|
| 2450 |
|
|
|
| 2451 |
|
|
|
| 2452 |
|
|
/* This page implements the algorithm for ordering the nodes of a DDG
|
| 2453 |
|
|
for modulo scheduling, activated through the
|
| 2454 |
|
|
"int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
|
| 2455 |
|
|
|
| 2456 |
|
|
#define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
|
| 2457 |
|
|
#define ASAP(x) (ORDER_PARAMS ((x))->asap)
|
| 2458 |
|
|
#define ALAP(x) (ORDER_PARAMS ((x))->alap)
|
| 2459 |
|
|
#define HEIGHT(x) (ORDER_PARAMS ((x))->height)
|
| 2460 |
|
|
#define MOB(x) (ALAP ((x)) - ASAP ((x)))
|
| 2461 |
|
|
#define DEPTH(x) (ASAP ((x)))
|
| 2462 |
|
|
|
| 2463 |
|
|
typedef struct node_order_params * nopa;
|
| 2464 |
|
|
|
| 2465 |
|
|
static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
|
| 2466 |
|
|
static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
|
| 2467 |
|
|
static nopa calculate_order_params (ddg_ptr, int, int *);
|
| 2468 |
|
|
static int find_max_asap (ddg_ptr, sbitmap);
|
| 2469 |
|
|
static int find_max_hv_min_mob (ddg_ptr, sbitmap);
|
| 2470 |
|
|
static int find_max_dv_min_mob (ddg_ptr, sbitmap);
|
| 2471 |
|
|
|
| 2472 |
|
|
enum sms_direction {BOTTOMUP, TOPDOWN};
|
| 2473 |
|
|
|
| 2474 |
|
|
struct node_order_params
|
| 2475 |
|
|
{
|
| 2476 |
|
|
int asap;
|
| 2477 |
|
|
int alap;
|
| 2478 |
|
|
int height;
|
| 2479 |
|
|
};
|
| 2480 |
|
|
|
| 2481 |
|
|
/* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
|
| 2482 |
|
|
static void
|
| 2483 |
|
|
check_nodes_order (int *node_order, int num_nodes)
|
| 2484 |
|
|
{
|
| 2485 |
|
|
int i;
|
| 2486 |
|
|
sbitmap tmp = sbitmap_alloc (num_nodes);
|
| 2487 |
|
|
|
| 2488 |
|
|
sbitmap_zero (tmp);
|
| 2489 |
|
|
|
| 2490 |
|
|
if (dump_file)
|
| 2491 |
|
|
fprintf (dump_file, "SMS final nodes order: \n");
|
| 2492 |
|
|
|
| 2493 |
|
|
for (i = 0; i < num_nodes; i++)
|
| 2494 |
|
|
{
|
| 2495 |
|
|
int u = node_order[i];
|
| 2496 |
|
|
|
| 2497 |
|
|
if (dump_file)
|
| 2498 |
|
|
fprintf (dump_file, "%d ", u);
|
| 2499 |
|
|
gcc_assert (u < num_nodes && u >= 0 && !TEST_BIT (tmp, u));
|
| 2500 |
|
|
|
| 2501 |
|
|
SET_BIT (tmp, u);
|
| 2502 |
|
|
}
|
| 2503 |
|
|
|
| 2504 |
|
|
if (dump_file)
|
| 2505 |
|
|
fprintf (dump_file, "\n");
|
| 2506 |
|
|
|
| 2507 |
|
|
sbitmap_free (tmp);
|
| 2508 |
|
|
}
|
| 2509 |
|
|
|
| 2510 |
|
|
/* Order the nodes of G for scheduling and pass the result in
|
| 2511 |
|
|
NODE_ORDER. Also set aux.count of each node to ASAP.
|
| 2512 |
|
|
Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
|
| 2513 |
|
|
static int
|
| 2514 |
|
|
sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
|
| 2515 |
|
|
{
|
| 2516 |
|
|
int i;
|
| 2517 |
|
|
int rec_mii = 0;
|
| 2518 |
|
|
ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
|
| 2519 |
|
|
|
| 2520 |
|
|
nopa nops = calculate_order_params (g, mii, pmax_asap);
|
| 2521 |
|
|
|
| 2522 |
|
|
if (dump_file)
|
| 2523 |
|
|
print_sccs (dump_file, sccs, g);
|
| 2524 |
|
|
|
| 2525 |
|
|
order_nodes_of_sccs (sccs, node_order);
|
| 2526 |
|
|
|
| 2527 |
|
|
if (sccs->num_sccs > 0)
|
| 2528 |
|
|
/* First SCC has the largest recurrence_length. */
|
| 2529 |
|
|
rec_mii = sccs->sccs[0]->recurrence_length;
|
| 2530 |
|
|
|
| 2531 |
|
|
/* Save ASAP before destroying node_order_params. */
|
| 2532 |
|
|
for (i = 0; i < g->num_nodes; i++)
|
| 2533 |
|
|
{
|
| 2534 |
|
|
ddg_node_ptr v = &g->nodes[i];
|
| 2535 |
|
|
v->aux.count = ASAP (v);
|
| 2536 |
|
|
}
|
| 2537 |
|
|
|
| 2538 |
|
|
free (nops);
|
| 2539 |
|
|
free_ddg_all_sccs (sccs);
|
| 2540 |
|
|
check_nodes_order (node_order, g->num_nodes);
|
| 2541 |
|
|
|
| 2542 |
|
|
return rec_mii;
|
| 2543 |
|
|
}
|
| 2544 |
|
|
|
| 2545 |
|
|
static void
|
| 2546 |
|
|
order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
|
| 2547 |
|
|
{
|
| 2548 |
|
|
int i, pos = 0;
|
| 2549 |
|
|
ddg_ptr g = all_sccs->ddg;
|
| 2550 |
|
|
int num_nodes = g->num_nodes;
|
| 2551 |
|
|
sbitmap prev_sccs = sbitmap_alloc (num_nodes);
|
| 2552 |
|
|
sbitmap on_path = sbitmap_alloc (num_nodes);
|
| 2553 |
|
|
sbitmap tmp = sbitmap_alloc (num_nodes);
|
| 2554 |
|
|
sbitmap ones = sbitmap_alloc (num_nodes);
|
| 2555 |
|
|
|
| 2556 |
|
|
sbitmap_zero (prev_sccs);
|
| 2557 |
|
|
sbitmap_ones (ones);
|
| 2558 |
|
|
|
| 2559 |
|
|
/* Perform the node ordering starting from the SCC with the highest recMII.
|
| 2560 |
|
|
For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
|
| 2561 |
|
|
for (i = 0; i < all_sccs->num_sccs; i++)
|
| 2562 |
|
|
{
|
| 2563 |
|
|
ddg_scc_ptr scc = all_sccs->sccs[i];
|
| 2564 |
|
|
|
| 2565 |
|
|
/* Add nodes on paths from previous SCCs to the current SCC. */
|
| 2566 |
|
|
find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
|
| 2567 |
|
|
sbitmap_a_or_b (tmp, scc->nodes, on_path);
|
| 2568 |
|
|
|
| 2569 |
|
|
/* Add nodes on paths from the current SCC to previous SCCs. */
|
| 2570 |
|
|
find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
|
| 2571 |
|
|
sbitmap_a_or_b (tmp, tmp, on_path);
|
| 2572 |
|
|
|
| 2573 |
|
|
/* Remove nodes of previous SCCs from current extended SCC. */
|
| 2574 |
|
|
sbitmap_difference (tmp, tmp, prev_sccs);
|
| 2575 |
|
|
|
| 2576 |
|
|
pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
|
| 2577 |
|
|
/* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
|
| 2578 |
|
|
}
|
| 2579 |
|
|
|
| 2580 |
|
|
/* Handle the remaining nodes that do not belong to any scc. Each call
|
| 2581 |
|
|
to order_nodes_in_scc handles a single connected component. */
|
| 2582 |
|
|
while (pos < g->num_nodes)
|
| 2583 |
|
|
{
|
| 2584 |
|
|
sbitmap_difference (tmp, ones, prev_sccs);
|
| 2585 |
|
|
pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
|
| 2586 |
|
|
}
|
| 2587 |
|
|
sbitmap_free (prev_sccs);
|
| 2588 |
|
|
sbitmap_free (on_path);
|
| 2589 |
|
|
sbitmap_free (tmp);
|
| 2590 |
|
|
sbitmap_free (ones);
|
| 2591 |
|
|
}
|
| 2592 |
|
|
|
| 2593 |
|
|
/* MII is needed if we consider backarcs (that do not close recursive cycles). */
|
| 2594 |
|
|
static struct node_order_params *
|
| 2595 |
|
|
calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
|
| 2596 |
|
|
{
|
| 2597 |
|
|
int u;
|
| 2598 |
|
|
int max_asap;
|
| 2599 |
|
|
int num_nodes = g->num_nodes;
|
| 2600 |
|
|
ddg_edge_ptr e;
|
| 2601 |
|
|
/* Allocate a place to hold ordering params for each node in the DDG. */
|
| 2602 |
|
|
nopa node_order_params_arr;
|
| 2603 |
|
|
|
| 2604 |
|
|
/* Initialize of ASAP/ALAP/HEIGHT to zero. */
|
| 2605 |
|
|
node_order_params_arr = (nopa) xcalloc (num_nodes,
|
| 2606 |
|
|
sizeof (struct node_order_params));
|
| 2607 |
|
|
|
| 2608 |
|
|
/* Set the aux pointer of each node to point to its order_params structure. */
|
| 2609 |
|
|
for (u = 0; u < num_nodes; u++)
|
| 2610 |
|
|
g->nodes[u].aux.info = &node_order_params_arr[u];
|
| 2611 |
|
|
|
| 2612 |
|
|
/* Disregarding a backarc from each recursive cycle to obtain a DAG,
|
| 2613 |
|
|
calculate ASAP, ALAP, mobility, distance, and height for each node
|
| 2614 |
|
|
in the dependence (direct acyclic) graph. */
|
| 2615 |
|
|
|
| 2616 |
|
|
/* We assume that the nodes in the array are in topological order. */
|
| 2617 |
|
|
|
| 2618 |
|
|
max_asap = 0;
|
| 2619 |
|
|
for (u = 0; u < num_nodes; u++)
|
| 2620 |
|
|
{
|
| 2621 |
|
|
ddg_node_ptr u_node = &g->nodes[u];
|
| 2622 |
|
|
|
| 2623 |
|
|
ASAP (u_node) = 0;
|
| 2624 |
|
|
for (e = u_node->in; e; e = e->next_in)
|
| 2625 |
|
|
if (e->distance == 0)
|
| 2626 |
|
|
ASAP (u_node) = MAX (ASAP (u_node),
|
| 2627 |
|
|
ASAP (e->src) + e->latency);
|
| 2628 |
|
|
max_asap = MAX (max_asap, ASAP (u_node));
|
| 2629 |
|
|
}
|
| 2630 |
|
|
|
| 2631 |
|
|
for (u = num_nodes - 1; u > -1; u--)
|
| 2632 |
|
|
{
|
| 2633 |
|
|
ddg_node_ptr u_node = &g->nodes[u];
|
| 2634 |
|
|
|
| 2635 |
|
|
ALAP (u_node) = max_asap;
|
| 2636 |
|
|
HEIGHT (u_node) = 0;
|
| 2637 |
|
|
for (e = u_node->out; e; e = e->next_out)
|
| 2638 |
|
|
if (e->distance == 0)
|
| 2639 |
|
|
{
|
| 2640 |
|
|
ALAP (u_node) = MIN (ALAP (u_node),
|
| 2641 |
|
|
ALAP (e->dest) - e->latency);
|
| 2642 |
|
|
HEIGHT (u_node) = MAX (HEIGHT (u_node),
|
| 2643 |
|
|
HEIGHT (e->dest) + e->latency);
|
| 2644 |
|
|
}
|
| 2645 |
|
|
}
|
| 2646 |
|
|
if (dump_file)
|
| 2647 |
|
|
{
|
| 2648 |
|
|
fprintf (dump_file, "\nOrder params\n");
|
| 2649 |
|
|
for (u = 0; u < num_nodes; u++)
|
| 2650 |
|
|
{
|
| 2651 |
|
|
ddg_node_ptr u_node = &g->nodes[u];
|
| 2652 |
|
|
|
| 2653 |
|
|
fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
|
| 2654 |
|
|
ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
|
| 2655 |
|
|
}
|
| 2656 |
|
|
}
|
| 2657 |
|
|
|
| 2658 |
|
|
*pmax_asap = max_asap;
|
| 2659 |
|
|
return node_order_params_arr;
|
| 2660 |
|
|
}
|
| 2661 |
|
|
|
| 2662 |
|
|
static int
|
| 2663 |
|
|
find_max_asap (ddg_ptr g, sbitmap nodes)
|
| 2664 |
|
|
{
|
| 2665 |
|
|
unsigned int u = 0;
|
| 2666 |
|
|
int max_asap = -1;
|
| 2667 |
|
|
int result = -1;
|
| 2668 |
|
|
sbitmap_iterator sbi;
|
| 2669 |
|
|
|
| 2670 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
|
| 2671 |
|
|
{
|
| 2672 |
|
|
ddg_node_ptr u_node = &g->nodes[u];
|
| 2673 |
|
|
|
| 2674 |
|
|
if (max_asap < ASAP (u_node))
|
| 2675 |
|
|
{
|
| 2676 |
|
|
max_asap = ASAP (u_node);
|
| 2677 |
|
|
result = u;
|
| 2678 |
|
|
}
|
| 2679 |
|
|
}
|
| 2680 |
|
|
return result;
|
| 2681 |
|
|
}
|
| 2682 |
|
|
|
| 2683 |
|
|
static int
|
| 2684 |
|
|
find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
|
| 2685 |
|
|
{
|
| 2686 |
|
|
unsigned int u = 0;
|
| 2687 |
|
|
int max_hv = -1;
|
| 2688 |
|
|
int min_mob = INT_MAX;
|
| 2689 |
|
|
int result = -1;
|
| 2690 |
|
|
sbitmap_iterator sbi;
|
| 2691 |
|
|
|
| 2692 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
|
| 2693 |
|
|
{
|
| 2694 |
|
|
ddg_node_ptr u_node = &g->nodes[u];
|
| 2695 |
|
|
|
| 2696 |
|
|
if (max_hv < HEIGHT (u_node))
|
| 2697 |
|
|
{
|
| 2698 |
|
|
max_hv = HEIGHT (u_node);
|
| 2699 |
|
|
min_mob = MOB (u_node);
|
| 2700 |
|
|
result = u;
|
| 2701 |
|
|
}
|
| 2702 |
|
|
else if ((max_hv == HEIGHT (u_node))
|
| 2703 |
|
|
&& (min_mob > MOB (u_node)))
|
| 2704 |
|
|
{
|
| 2705 |
|
|
min_mob = MOB (u_node);
|
| 2706 |
|
|
result = u;
|
| 2707 |
|
|
}
|
| 2708 |
|
|
}
|
| 2709 |
|
|
return result;
|
| 2710 |
|
|
}
|
| 2711 |
|
|
|
| 2712 |
|
|
static int
|
| 2713 |
|
|
find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
|
| 2714 |
|
|
{
|
| 2715 |
|
|
unsigned int u = 0;
|
| 2716 |
|
|
int max_dv = -1;
|
| 2717 |
|
|
int min_mob = INT_MAX;
|
| 2718 |
|
|
int result = -1;
|
| 2719 |
|
|
sbitmap_iterator sbi;
|
| 2720 |
|
|
|
| 2721 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
|
| 2722 |
|
|
{
|
| 2723 |
|
|
ddg_node_ptr u_node = &g->nodes[u];
|
| 2724 |
|
|
|
| 2725 |
|
|
if (max_dv < DEPTH (u_node))
|
| 2726 |
|
|
{
|
| 2727 |
|
|
max_dv = DEPTH (u_node);
|
| 2728 |
|
|
min_mob = MOB (u_node);
|
| 2729 |
|
|
result = u;
|
| 2730 |
|
|
}
|
| 2731 |
|
|
else if ((max_dv == DEPTH (u_node))
|
| 2732 |
|
|
&& (min_mob > MOB (u_node)))
|
| 2733 |
|
|
{
|
| 2734 |
|
|
min_mob = MOB (u_node);
|
| 2735 |
|
|
result = u;
|
| 2736 |
|
|
}
|
| 2737 |
|
|
}
|
| 2738 |
|
|
return result;
|
| 2739 |
|
|
}
|
| 2740 |
|
|
|
| 2741 |
|
|
/* Places the nodes of SCC into the NODE_ORDER array starting
|
| 2742 |
|
|
at position POS, according to the SMS ordering algorithm.
|
| 2743 |
|
|
NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
|
| 2744 |
|
|
the NODE_ORDER array, starting from position zero. */
|
| 2745 |
|
|
static int
|
| 2746 |
|
|
order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
|
| 2747 |
|
|
int * node_order, int pos)
|
| 2748 |
|
|
{
|
| 2749 |
|
|
enum sms_direction dir;
|
| 2750 |
|
|
int num_nodes = g->num_nodes;
|
| 2751 |
|
|
sbitmap workset = sbitmap_alloc (num_nodes);
|
| 2752 |
|
|
sbitmap tmp = sbitmap_alloc (num_nodes);
|
| 2753 |
|
|
sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
|
| 2754 |
|
|
sbitmap predecessors = sbitmap_alloc (num_nodes);
|
| 2755 |
|
|
sbitmap successors = sbitmap_alloc (num_nodes);
|
| 2756 |
|
|
|
| 2757 |
|
|
sbitmap_zero (predecessors);
|
| 2758 |
|
|
find_predecessors (predecessors, g, nodes_ordered);
|
| 2759 |
|
|
|
| 2760 |
|
|
sbitmap_zero (successors);
|
| 2761 |
|
|
find_successors (successors, g, nodes_ordered);
|
| 2762 |
|
|
|
| 2763 |
|
|
sbitmap_zero (tmp);
|
| 2764 |
|
|
if (sbitmap_a_and_b_cg (tmp, predecessors, scc))
|
| 2765 |
|
|
{
|
| 2766 |
|
|
sbitmap_copy (workset, tmp);
|
| 2767 |
|
|
dir = BOTTOMUP;
|
| 2768 |
|
|
}
|
| 2769 |
|
|
else if (sbitmap_a_and_b_cg (tmp, successors, scc))
|
| 2770 |
|
|
{
|
| 2771 |
|
|
sbitmap_copy (workset, tmp);
|
| 2772 |
|
|
dir = TOPDOWN;
|
| 2773 |
|
|
}
|
| 2774 |
|
|
else
|
| 2775 |
|
|
{
|
| 2776 |
|
|
int u;
|
| 2777 |
|
|
|
| 2778 |
|
|
sbitmap_zero (workset);
|
| 2779 |
|
|
if ((u = find_max_asap (g, scc)) >= 0)
|
| 2780 |
|
|
SET_BIT (workset, u);
|
| 2781 |
|
|
dir = BOTTOMUP;
|
| 2782 |
|
|
}
|
| 2783 |
|
|
|
| 2784 |
|
|
sbitmap_zero (zero_bitmap);
|
| 2785 |
|
|
while (!sbitmap_equal (workset, zero_bitmap))
|
| 2786 |
|
|
{
|
| 2787 |
|
|
int v;
|
| 2788 |
|
|
ddg_node_ptr v_node;
|
| 2789 |
|
|
sbitmap v_node_preds;
|
| 2790 |
|
|
sbitmap v_node_succs;
|
| 2791 |
|
|
|
| 2792 |
|
|
if (dir == TOPDOWN)
|
| 2793 |
|
|
{
|
| 2794 |
|
|
while (!sbitmap_equal (workset, zero_bitmap))
|
| 2795 |
|
|
{
|
| 2796 |
|
|
v = find_max_hv_min_mob (g, workset);
|
| 2797 |
|
|
v_node = &g->nodes[v];
|
| 2798 |
|
|
node_order[pos++] = v;
|
| 2799 |
|
|
v_node_succs = NODE_SUCCESSORS (v_node);
|
| 2800 |
|
|
sbitmap_a_and_b (tmp, v_node_succs, scc);
|
| 2801 |
|
|
|
| 2802 |
|
|
/* Don't consider the already ordered successors again. */
|
| 2803 |
|
|
sbitmap_difference (tmp, tmp, nodes_ordered);
|
| 2804 |
|
|
sbitmap_a_or_b (workset, workset, tmp);
|
| 2805 |
|
|
RESET_BIT (workset, v);
|
| 2806 |
|
|
SET_BIT (nodes_ordered, v);
|
| 2807 |
|
|
}
|
| 2808 |
|
|
dir = BOTTOMUP;
|
| 2809 |
|
|
sbitmap_zero (predecessors);
|
| 2810 |
|
|
find_predecessors (predecessors, g, nodes_ordered);
|
| 2811 |
|
|
sbitmap_a_and_b (workset, predecessors, scc);
|
| 2812 |
|
|
}
|
| 2813 |
|
|
else
|
| 2814 |
|
|
{
|
| 2815 |
|
|
while (!sbitmap_equal (workset, zero_bitmap))
|
| 2816 |
|
|
{
|
| 2817 |
|
|
v = find_max_dv_min_mob (g, workset);
|
| 2818 |
|
|
v_node = &g->nodes[v];
|
| 2819 |
|
|
node_order[pos++] = v;
|
| 2820 |
|
|
v_node_preds = NODE_PREDECESSORS (v_node);
|
| 2821 |
|
|
sbitmap_a_and_b (tmp, v_node_preds, scc);
|
| 2822 |
|
|
|
| 2823 |
|
|
/* Don't consider the already ordered predecessors again. */
|
| 2824 |
|
|
sbitmap_difference (tmp, tmp, nodes_ordered);
|
| 2825 |
|
|
sbitmap_a_or_b (workset, workset, tmp);
|
| 2826 |
|
|
RESET_BIT (workset, v);
|
| 2827 |
|
|
SET_BIT (nodes_ordered, v);
|
| 2828 |
|
|
}
|
| 2829 |
|
|
dir = TOPDOWN;
|
| 2830 |
|
|
sbitmap_zero (successors);
|
| 2831 |
|
|
find_successors (successors, g, nodes_ordered);
|
| 2832 |
|
|
sbitmap_a_and_b (workset, successors, scc);
|
| 2833 |
|
|
}
|
| 2834 |
|
|
}
|
| 2835 |
|
|
sbitmap_free (tmp);
|
| 2836 |
|
|
sbitmap_free (workset);
|
| 2837 |
|
|
sbitmap_free (zero_bitmap);
|
| 2838 |
|
|
sbitmap_free (predecessors);
|
| 2839 |
|
|
sbitmap_free (successors);
|
| 2840 |
|
|
return pos;
|
| 2841 |
|
|
}
|
| 2842 |
|
|
|
| 2843 |
|
|
|
| 2844 |
|
|
/* This page contains functions for manipulating partial-schedules during
|
| 2845 |
|
|
modulo scheduling. */
|
| 2846 |
|
|
|
| 2847 |
|
|
/* Create a partial schedule and allocate a memory to hold II rows. */
|
| 2848 |
|
|
|
| 2849 |
|
|
static partial_schedule_ptr
|
| 2850 |
|
|
create_partial_schedule (int ii, ddg_ptr g, int history)
|
| 2851 |
|
|
{
|
| 2852 |
|
|
partial_schedule_ptr ps = XNEW (struct partial_schedule);
|
| 2853 |
|
|
ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
|
| 2854 |
|
|
ps->rows_length = (int *) xcalloc (ii, sizeof (int));
|
| 2855 |
|
|
ps->reg_moves = NULL;
|
| 2856 |
|
|
ps->ii = ii;
|
| 2857 |
|
|
ps->history = history;
|
| 2858 |
|
|
ps->min_cycle = INT_MAX;
|
| 2859 |
|
|
ps->max_cycle = INT_MIN;
|
| 2860 |
|
|
ps->g = g;
|
| 2861 |
|
|
|
| 2862 |
|
|
return ps;
|
| 2863 |
|
|
}
|
| 2864 |
|
|
|
| 2865 |
|
|
/* Free the PS_INSNs in rows array of the given partial schedule.
|
| 2866 |
|
|
??? Consider caching the PS_INSN's. */
|
| 2867 |
|
|
static void
|
| 2868 |
|
|
free_ps_insns (partial_schedule_ptr ps)
|
| 2869 |
|
|
{
|
| 2870 |
|
|
int i;
|
| 2871 |
|
|
|
| 2872 |
|
|
for (i = 0; i < ps->ii; i++)
|
| 2873 |
|
|
{
|
| 2874 |
|
|
while (ps->rows[i])
|
| 2875 |
|
|
{
|
| 2876 |
|
|
ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
|
| 2877 |
|
|
|
| 2878 |
|
|
free (ps->rows[i]);
|
| 2879 |
|
|
ps->rows[i] = ps_insn;
|
| 2880 |
|
|
}
|
| 2881 |
|
|
ps->rows[i] = NULL;
|
| 2882 |
|
|
}
|
| 2883 |
|
|
}
|
| 2884 |
|
|
|
| 2885 |
|
|
/* Free all the memory allocated to the partial schedule. */
|
| 2886 |
|
|
|
| 2887 |
|
|
static void
|
| 2888 |
|
|
free_partial_schedule (partial_schedule_ptr ps)
|
| 2889 |
|
|
{
|
| 2890 |
|
|
ps_reg_move_info *move;
|
| 2891 |
|
|
unsigned int i;
|
| 2892 |
|
|
|
| 2893 |
|
|
if (!ps)
|
| 2894 |
|
|
return;
|
| 2895 |
|
|
|
| 2896 |
|
|
FOR_EACH_VEC_ELT (ps_reg_move_info, ps->reg_moves, i, move)
|
| 2897 |
|
|
sbitmap_free (move->uses);
|
| 2898 |
|
|
VEC_free (ps_reg_move_info, heap, ps->reg_moves);
|
| 2899 |
|
|
|
| 2900 |
|
|
free_ps_insns (ps);
|
| 2901 |
|
|
free (ps->rows);
|
| 2902 |
|
|
free (ps->rows_length);
|
| 2903 |
|
|
free (ps);
|
| 2904 |
|
|
}
|
| 2905 |
|
|
|
| 2906 |
|
|
/* Clear the rows array with its PS_INSNs, and create a new one with
|
| 2907 |
|
|
NEW_II rows. */
|
| 2908 |
|
|
|
| 2909 |
|
|
static void
|
| 2910 |
|
|
reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
|
| 2911 |
|
|
{
|
| 2912 |
|
|
if (!ps)
|
| 2913 |
|
|
return;
|
| 2914 |
|
|
free_ps_insns (ps);
|
| 2915 |
|
|
if (new_ii == ps->ii)
|
| 2916 |
|
|
return;
|
| 2917 |
|
|
ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
|
| 2918 |
|
|
* sizeof (ps_insn_ptr));
|
| 2919 |
|
|
memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
|
| 2920 |
|
|
ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
|
| 2921 |
|
|
memset (ps->rows_length, 0, new_ii * sizeof (int));
|
| 2922 |
|
|
ps->ii = new_ii;
|
| 2923 |
|
|
ps->min_cycle = INT_MAX;
|
| 2924 |
|
|
ps->max_cycle = INT_MIN;
|
| 2925 |
|
|
}
|
| 2926 |
|
|
|
| 2927 |
|
|
/* Prints the partial schedule as an ii rows array, for each rows
|
| 2928 |
|
|
print the ids of the insns in it. */
|
| 2929 |
|
|
void
|
| 2930 |
|
|
print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
|
| 2931 |
|
|
{
|
| 2932 |
|
|
int i;
|
| 2933 |
|
|
|
| 2934 |
|
|
for (i = 0; i < ps->ii; i++)
|
| 2935 |
|
|
{
|
| 2936 |
|
|
ps_insn_ptr ps_i = ps->rows[i];
|
| 2937 |
|
|
|
| 2938 |
|
|
fprintf (dump, "\n[ROW %d ]: ", i);
|
| 2939 |
|
|
while (ps_i)
|
| 2940 |
|
|
{
|
| 2941 |
|
|
rtx insn = ps_rtl_insn (ps, ps_i->id);
|
| 2942 |
|
|
|
| 2943 |
|
|
if (JUMP_P (insn))
|
| 2944 |
|
|
fprintf (dump, "%d (branch), ", INSN_UID (insn));
|
| 2945 |
|
|
else
|
| 2946 |
|
|
fprintf (dump, "%d, ", INSN_UID (insn));
|
| 2947 |
|
|
|
| 2948 |
|
|
ps_i = ps_i->next_in_row;
|
| 2949 |
|
|
}
|
| 2950 |
|
|
}
|
| 2951 |
|
|
}
|
| 2952 |
|
|
|
| 2953 |
|
|
/* Creates an object of PS_INSN and initializes it to the given parameters. */
|
| 2954 |
|
|
static ps_insn_ptr
|
| 2955 |
|
|
create_ps_insn (int id, int cycle)
|
| 2956 |
|
|
{
|
| 2957 |
|
|
ps_insn_ptr ps_i = XNEW (struct ps_insn);
|
| 2958 |
|
|
|
| 2959 |
|
|
ps_i->id = id;
|
| 2960 |
|
|
ps_i->next_in_row = NULL;
|
| 2961 |
|
|
ps_i->prev_in_row = NULL;
|
| 2962 |
|
|
ps_i->cycle = cycle;
|
| 2963 |
|
|
|
| 2964 |
|
|
return ps_i;
|
| 2965 |
|
|
}
|
| 2966 |
|
|
|
| 2967 |
|
|
|
| 2968 |
|
|
/* Removes the given PS_INSN from the partial schedule. */
|
| 2969 |
|
|
static void
|
| 2970 |
|
|
remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
|
| 2971 |
|
|
{
|
| 2972 |
|
|
int row;
|
| 2973 |
|
|
|
| 2974 |
|
|
gcc_assert (ps && ps_i);
|
| 2975 |
|
|
|
| 2976 |
|
|
row = SMODULO (ps_i->cycle, ps->ii);
|
| 2977 |
|
|
if (! ps_i->prev_in_row)
|
| 2978 |
|
|
{
|
| 2979 |
|
|
gcc_assert (ps_i == ps->rows[row]);
|
| 2980 |
|
|
ps->rows[row] = ps_i->next_in_row;
|
| 2981 |
|
|
if (ps->rows[row])
|
| 2982 |
|
|
ps->rows[row]->prev_in_row = NULL;
|
| 2983 |
|
|
}
|
| 2984 |
|
|
else
|
| 2985 |
|
|
{
|
| 2986 |
|
|
ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
|
| 2987 |
|
|
if (ps_i->next_in_row)
|
| 2988 |
|
|
ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
|
| 2989 |
|
|
}
|
| 2990 |
|
|
|
| 2991 |
|
|
ps->rows_length[row] -= 1;
|
| 2992 |
|
|
free (ps_i);
|
| 2993 |
|
|
return;
|
| 2994 |
|
|
}
|
| 2995 |
|
|
|
| 2996 |
|
|
/* Unlike what literature describes for modulo scheduling (which focuses
|
| 2997 |
|
|
on VLIW machines) the order of the instructions inside a cycle is
|
| 2998 |
|
|
important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
|
| 2999 |
|
|
where the current instruction should go relative to the already
|
| 3000 |
|
|
scheduled instructions in the given cycle. Go over these
|
| 3001 |
|
|
instructions and find the first possible column to put it in. */
|
| 3002 |
|
|
static bool
|
| 3003 |
|
|
ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
|
| 3004 |
|
|
sbitmap must_precede, sbitmap must_follow)
|
| 3005 |
|
|
{
|
| 3006 |
|
|
ps_insn_ptr next_ps_i;
|
| 3007 |
|
|
ps_insn_ptr first_must_follow = NULL;
|
| 3008 |
|
|
ps_insn_ptr last_must_precede = NULL;
|
| 3009 |
|
|
ps_insn_ptr last_in_row = NULL;
|
| 3010 |
|
|
int row;
|
| 3011 |
|
|
|
| 3012 |
|
|
if (! ps_i)
|
| 3013 |
|
|
return false;
|
| 3014 |
|
|
|
| 3015 |
|
|
row = SMODULO (ps_i->cycle, ps->ii);
|
| 3016 |
|
|
|
| 3017 |
|
|
/* Find the first must follow and the last must precede
|
| 3018 |
|
|
and insert the node immediately after the must precede
|
| 3019 |
|
|
but make sure that it there is no must follow after it. */
|
| 3020 |
|
|
for (next_ps_i = ps->rows[row];
|
| 3021 |
|
|
next_ps_i;
|
| 3022 |
|
|
next_ps_i = next_ps_i->next_in_row)
|
| 3023 |
|
|
{
|
| 3024 |
|
|
if (must_follow
|
| 3025 |
|
|
&& TEST_BIT (must_follow, next_ps_i->id)
|
| 3026 |
|
|
&& ! first_must_follow)
|
| 3027 |
|
|
first_must_follow = next_ps_i;
|
| 3028 |
|
|
if (must_precede && TEST_BIT (must_precede, next_ps_i->id))
|
| 3029 |
|
|
{
|
| 3030 |
|
|
/* If we have already met a node that must follow, then
|
| 3031 |
|
|
there is no possible column. */
|
| 3032 |
|
|
if (first_must_follow)
|
| 3033 |
|
|
return false;
|
| 3034 |
|
|
else
|
| 3035 |
|
|
last_must_precede = next_ps_i;
|
| 3036 |
|
|
}
|
| 3037 |
|
|
/* The closing branch must be the last in the row. */
|
| 3038 |
|
|
if (must_precede
|
| 3039 |
|
|
&& TEST_BIT (must_precede, next_ps_i->id)
|
| 3040 |
|
|
&& JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
|
| 3041 |
|
|
return false;
|
| 3042 |
|
|
|
| 3043 |
|
|
last_in_row = next_ps_i;
|
| 3044 |
|
|
}
|
| 3045 |
|
|
|
| 3046 |
|
|
/* The closing branch is scheduled as well. Make sure there is no
|
| 3047 |
|
|
dependent instruction after it as the branch should be the last
|
| 3048 |
|
|
instruction in the row. */
|
| 3049 |
|
|
if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
|
| 3050 |
|
|
{
|
| 3051 |
|
|
if (first_must_follow)
|
| 3052 |
|
|
return false;
|
| 3053 |
|
|
if (last_in_row)
|
| 3054 |
|
|
{
|
| 3055 |
|
|
/* Make the branch the last in the row. New instructions
|
| 3056 |
|
|
will be inserted at the beginning of the row or after the
|
| 3057 |
|
|
last must_precede instruction thus the branch is guaranteed
|
| 3058 |
|
|
to remain the last instruction in the row. */
|
| 3059 |
|
|
last_in_row->next_in_row = ps_i;
|
| 3060 |
|
|
ps_i->prev_in_row = last_in_row;
|
| 3061 |
|
|
ps_i->next_in_row = NULL;
|
| 3062 |
|
|
}
|
| 3063 |
|
|
else
|
| 3064 |
|
|
ps->rows[row] = ps_i;
|
| 3065 |
|
|
return true;
|
| 3066 |
|
|
}
|
| 3067 |
|
|
|
| 3068 |
|
|
/* Now insert the node after INSERT_AFTER_PSI. */
|
| 3069 |
|
|
|
| 3070 |
|
|
if (! last_must_precede)
|
| 3071 |
|
|
{
|
| 3072 |
|
|
ps_i->next_in_row = ps->rows[row];
|
| 3073 |
|
|
ps_i->prev_in_row = NULL;
|
| 3074 |
|
|
if (ps_i->next_in_row)
|
| 3075 |
|
|
ps_i->next_in_row->prev_in_row = ps_i;
|
| 3076 |
|
|
ps->rows[row] = ps_i;
|
| 3077 |
|
|
}
|
| 3078 |
|
|
else
|
| 3079 |
|
|
{
|
| 3080 |
|
|
ps_i->next_in_row = last_must_precede->next_in_row;
|
| 3081 |
|
|
last_must_precede->next_in_row = ps_i;
|
| 3082 |
|
|
ps_i->prev_in_row = last_must_precede;
|
| 3083 |
|
|
if (ps_i->next_in_row)
|
| 3084 |
|
|
ps_i->next_in_row->prev_in_row = ps_i;
|
| 3085 |
|
|
}
|
| 3086 |
|
|
|
| 3087 |
|
|
return true;
|
| 3088 |
|
|
}
|
| 3089 |
|
|
|
| 3090 |
|
|
/* Advances the PS_INSN one column in its current row; returns false
|
| 3091 |
|
|
in failure and true in success. Bit N is set in MUST_FOLLOW if
|
| 3092 |
|
|
the node with cuid N must be come after the node pointed to by
|
| 3093 |
|
|
PS_I when scheduled in the same cycle. */
|
| 3094 |
|
|
static int
|
| 3095 |
|
|
ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
|
| 3096 |
|
|
sbitmap must_follow)
|
| 3097 |
|
|
{
|
| 3098 |
|
|
ps_insn_ptr prev, next;
|
| 3099 |
|
|
int row;
|
| 3100 |
|
|
|
| 3101 |
|
|
if (!ps || !ps_i)
|
| 3102 |
|
|
return false;
|
| 3103 |
|
|
|
| 3104 |
|
|
row = SMODULO (ps_i->cycle, ps->ii);
|
| 3105 |
|
|
|
| 3106 |
|
|
if (! ps_i->next_in_row)
|
| 3107 |
|
|
return false;
|
| 3108 |
|
|
|
| 3109 |
|
|
/* Check if next_in_row is dependent on ps_i, both having same sched
|
| 3110 |
|
|
times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
|
| 3111 |
|
|
if (must_follow && TEST_BIT (must_follow, ps_i->next_in_row->id))
|
| 3112 |
|
|
return false;
|
| 3113 |
|
|
|
| 3114 |
|
|
/* Advance PS_I over its next_in_row in the doubly linked list. */
|
| 3115 |
|
|
prev = ps_i->prev_in_row;
|
| 3116 |
|
|
next = ps_i->next_in_row;
|
| 3117 |
|
|
|
| 3118 |
|
|
if (ps_i == ps->rows[row])
|
| 3119 |
|
|
ps->rows[row] = next;
|
| 3120 |
|
|
|
| 3121 |
|
|
ps_i->next_in_row = next->next_in_row;
|
| 3122 |
|
|
|
| 3123 |
|
|
if (next->next_in_row)
|
| 3124 |
|
|
next->next_in_row->prev_in_row = ps_i;
|
| 3125 |
|
|
|
| 3126 |
|
|
next->next_in_row = ps_i;
|
| 3127 |
|
|
ps_i->prev_in_row = next;
|
| 3128 |
|
|
|
| 3129 |
|
|
next->prev_in_row = prev;
|
| 3130 |
|
|
if (prev)
|
| 3131 |
|
|
prev->next_in_row = next;
|
| 3132 |
|
|
|
| 3133 |
|
|
return true;
|
| 3134 |
|
|
}
|
| 3135 |
|
|
|
| 3136 |
|
|
/* Inserts a DDG_NODE to the given partial schedule at the given cycle.
|
| 3137 |
|
|
Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
|
| 3138 |
|
|
set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
|
| 3139 |
|
|
before/after (respectively) the node pointed to by PS_I when scheduled
|
| 3140 |
|
|
in the same cycle. */
|
| 3141 |
|
|
static ps_insn_ptr
|
| 3142 |
|
|
add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
|
| 3143 |
|
|
sbitmap must_precede, sbitmap must_follow)
|
| 3144 |
|
|
{
|
| 3145 |
|
|
ps_insn_ptr ps_i;
|
| 3146 |
|
|
int row = SMODULO (cycle, ps->ii);
|
| 3147 |
|
|
|
| 3148 |
|
|
if (ps->rows_length[row] >= issue_rate)
|
| 3149 |
|
|
return NULL;
|
| 3150 |
|
|
|
| 3151 |
|
|
ps_i = create_ps_insn (id, cycle);
|
| 3152 |
|
|
|
| 3153 |
|
|
/* Finds and inserts PS_I according to MUST_FOLLOW and
|
| 3154 |
|
|
MUST_PRECEDE. */
|
| 3155 |
|
|
if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
|
| 3156 |
|
|
{
|
| 3157 |
|
|
free (ps_i);
|
| 3158 |
|
|
return NULL;
|
| 3159 |
|
|
}
|
| 3160 |
|
|
|
| 3161 |
|
|
ps->rows_length[row] += 1;
|
| 3162 |
|
|
return ps_i;
|
| 3163 |
|
|
}
|
| 3164 |
|
|
|
| 3165 |
|
|
/* Advance time one cycle. Assumes DFA is being used. */
|
| 3166 |
|
|
static void
|
| 3167 |
|
|
advance_one_cycle (void)
|
| 3168 |
|
|
{
|
| 3169 |
|
|
if (targetm.sched.dfa_pre_cycle_insn)
|
| 3170 |
|
|
state_transition (curr_state,
|
| 3171 |
|
|
targetm.sched.dfa_pre_cycle_insn ());
|
| 3172 |
|
|
|
| 3173 |
|
|
state_transition (curr_state, NULL);
|
| 3174 |
|
|
|
| 3175 |
|
|
if (targetm.sched.dfa_post_cycle_insn)
|
| 3176 |
|
|
state_transition (curr_state,
|
| 3177 |
|
|
targetm.sched.dfa_post_cycle_insn ());
|
| 3178 |
|
|
}
|
| 3179 |
|
|
|
| 3180 |
|
|
|
| 3181 |
|
|
|
| 3182 |
|
|
/* Checks if PS has resource conflicts according to DFA, starting from
|
| 3183 |
|
|
FROM cycle to TO cycle; returns true if there are conflicts and false
|
| 3184 |
|
|
if there are no conflicts. Assumes DFA is being used. */
|
| 3185 |
|
|
static int
|
| 3186 |
|
|
ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
|
| 3187 |
|
|
{
|
| 3188 |
|
|
int cycle;
|
| 3189 |
|
|
|
| 3190 |
|
|
state_reset (curr_state);
|
| 3191 |
|
|
|
| 3192 |
|
|
for (cycle = from; cycle <= to; cycle++)
|
| 3193 |
|
|
{
|
| 3194 |
|
|
ps_insn_ptr crr_insn;
|
| 3195 |
|
|
/* Holds the remaining issue slots in the current row. */
|
| 3196 |
|
|
int can_issue_more = issue_rate;
|
| 3197 |
|
|
|
| 3198 |
|
|
/* Walk through the DFA for the current row. */
|
| 3199 |
|
|
for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
|
| 3200 |
|
|
crr_insn;
|
| 3201 |
|
|
crr_insn = crr_insn->next_in_row)
|
| 3202 |
|
|
{
|
| 3203 |
|
|
rtx insn = ps_rtl_insn (ps, crr_insn->id);
|
| 3204 |
|
|
|
| 3205 |
|
|
if (!NONDEBUG_INSN_P (insn))
|
| 3206 |
|
|
continue;
|
| 3207 |
|
|
|
| 3208 |
|
|
/* Check if there is room for the current insn. */
|
| 3209 |
|
|
if (!can_issue_more || state_dead_lock_p (curr_state))
|
| 3210 |
|
|
return true;
|
| 3211 |
|
|
|
| 3212 |
|
|
/* Update the DFA state and return with failure if the DFA found
|
| 3213 |
|
|
resource conflicts. */
|
| 3214 |
|
|
if (state_transition (curr_state, insn) >= 0)
|
| 3215 |
|
|
return true;
|
| 3216 |
|
|
|
| 3217 |
|
|
if (targetm.sched.variable_issue)
|
| 3218 |
|
|
can_issue_more =
|
| 3219 |
|
|
targetm.sched.variable_issue (sched_dump, sched_verbose,
|
| 3220 |
|
|
insn, can_issue_more);
|
| 3221 |
|
|
/* A naked CLOBBER or USE generates no instruction, so don't
|
| 3222 |
|
|
let them consume issue slots. */
|
| 3223 |
|
|
else if (GET_CODE (PATTERN (insn)) != USE
|
| 3224 |
|
|
&& GET_CODE (PATTERN (insn)) != CLOBBER)
|
| 3225 |
|
|
can_issue_more--;
|
| 3226 |
|
|
}
|
| 3227 |
|
|
|
| 3228 |
|
|
/* Advance the DFA to the next cycle. */
|
| 3229 |
|
|
advance_one_cycle ();
|
| 3230 |
|
|
}
|
| 3231 |
|
|
return false;
|
| 3232 |
|
|
}
|
| 3233 |
|
|
|
| 3234 |
|
|
/* Checks if the given node causes resource conflicts when added to PS at
|
| 3235 |
|
|
cycle C. If not the node is added to PS and returned; otherwise zero
|
| 3236 |
|
|
is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
|
| 3237 |
|
|
cuid N must be come before/after (respectively) the node pointed to by
|
| 3238 |
|
|
PS_I when scheduled in the same cycle. */
|
| 3239 |
|
|
ps_insn_ptr
|
| 3240 |
|
|
ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
|
| 3241 |
|
|
int c, sbitmap must_precede,
|
| 3242 |
|
|
sbitmap must_follow)
|
| 3243 |
|
|
{
|
| 3244 |
|
|
int has_conflicts = 0;
|
| 3245 |
|
|
ps_insn_ptr ps_i;
|
| 3246 |
|
|
|
| 3247 |
|
|
/* First add the node to the PS, if this succeeds check for
|
| 3248 |
|
|
conflicts, trying different issue slots in the same row. */
|
| 3249 |
|
|
if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
|
| 3250 |
|
|
return NULL; /* Failed to insert the node at the given cycle. */
|
| 3251 |
|
|
|
| 3252 |
|
|
has_conflicts = ps_has_conflicts (ps, c, c)
|
| 3253 |
|
|
|| (ps->history > 0
|
| 3254 |
|
|
&& ps_has_conflicts (ps,
|
| 3255 |
|
|
c - ps->history,
|
| 3256 |
|
|
c + ps->history));
|
| 3257 |
|
|
|
| 3258 |
|
|
/* Try different issue slots to find one that the given node can be
|
| 3259 |
|
|
scheduled in without conflicts. */
|
| 3260 |
|
|
while (has_conflicts)
|
| 3261 |
|
|
{
|
| 3262 |
|
|
if (! ps_insn_advance_column (ps, ps_i, must_follow))
|
| 3263 |
|
|
break;
|
| 3264 |
|
|
has_conflicts = ps_has_conflicts (ps, c, c)
|
| 3265 |
|
|
|| (ps->history > 0
|
| 3266 |
|
|
&& ps_has_conflicts (ps,
|
| 3267 |
|
|
c - ps->history,
|
| 3268 |
|
|
c + ps->history));
|
| 3269 |
|
|
}
|
| 3270 |
|
|
|
| 3271 |
|
|
if (has_conflicts)
|
| 3272 |
|
|
{
|
| 3273 |
|
|
remove_node_from_ps (ps, ps_i);
|
| 3274 |
|
|
return NULL;
|
| 3275 |
|
|
}
|
| 3276 |
|
|
|
| 3277 |
|
|
ps->min_cycle = MIN (ps->min_cycle, c);
|
| 3278 |
|
|
ps->max_cycle = MAX (ps->max_cycle, c);
|
| 3279 |
|
|
return ps_i;
|
| 3280 |
|
|
}
|
| 3281 |
|
|
|
| 3282 |
|
|
/* Calculate the stage count of the partial schedule PS. The calculation
|
| 3283 |
|
|
takes into account the rotation amount passed in ROTATION_AMOUNT. */
|
| 3284 |
|
|
int
|
| 3285 |
|
|
calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
|
| 3286 |
|
|
{
|
| 3287 |
|
|
int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
|
| 3288 |
|
|
int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
|
| 3289 |
|
|
int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
|
| 3290 |
|
|
|
| 3291 |
|
|
/* The calculation of stage count is done adding the number of stages
|
| 3292 |
|
|
before cycle zero and after cycle zero. */
|
| 3293 |
|
|
stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
|
| 3294 |
|
|
|
| 3295 |
|
|
return stage_count;
|
| 3296 |
|
|
}
|
| 3297 |
|
|
|
| 3298 |
|
|
/* Rotate the rows of PS such that insns scheduled at time
|
| 3299 |
|
|
START_CYCLE will appear in row 0. Updates max/min_cycles. */
|
| 3300 |
|
|
void
|
| 3301 |
|
|
rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
|
| 3302 |
|
|
{
|
| 3303 |
|
|
int i, row, backward_rotates;
|
| 3304 |
|
|
int last_row = ps->ii - 1;
|
| 3305 |
|
|
|
| 3306 |
|
|
if (start_cycle == 0)
|
| 3307 |
|
|
return;
|
| 3308 |
|
|
|
| 3309 |
|
|
backward_rotates = SMODULO (start_cycle, ps->ii);
|
| 3310 |
|
|
|
| 3311 |
|
|
/* Revisit later and optimize this into a single loop. */
|
| 3312 |
|
|
for (i = 0; i < backward_rotates; i++)
|
| 3313 |
|
|
{
|
| 3314 |
|
|
ps_insn_ptr first_row = ps->rows[0];
|
| 3315 |
|
|
int first_row_length = ps->rows_length[0];
|
| 3316 |
|
|
|
| 3317 |
|
|
for (row = 0; row < last_row; row++)
|
| 3318 |
|
|
{
|
| 3319 |
|
|
ps->rows[row] = ps->rows[row + 1];
|
| 3320 |
|
|
ps->rows_length[row] = ps->rows_length[row + 1];
|
| 3321 |
|
|
}
|
| 3322 |
|
|
|
| 3323 |
|
|
ps->rows[last_row] = first_row;
|
| 3324 |
|
|
ps->rows_length[last_row] = first_row_length;
|
| 3325 |
|
|
}
|
| 3326 |
|
|
|
| 3327 |
|
|
ps->max_cycle -= start_cycle;
|
| 3328 |
|
|
ps->min_cycle -= start_cycle;
|
| 3329 |
|
|
}
|
| 3330 |
|
|
|
| 3331 |
|
|
#endif /* INSN_SCHEDULING */
|
| 3332 |
|
|
|
| 3333 |
|
|
static bool
|
| 3334 |
|
|
gate_handle_sms (void)
|
| 3335 |
|
|
{
|
| 3336 |
|
|
return (optimize > 0 && flag_modulo_sched);
|
| 3337 |
|
|
}
|
| 3338 |
|
|
|
| 3339 |
|
|
|
| 3340 |
|
|
/* Run instruction scheduler. */
|
| 3341 |
|
|
/* Perform SMS module scheduling. */
|
| 3342 |
|
|
static unsigned int
|
| 3343 |
|
|
rest_of_handle_sms (void)
|
| 3344 |
|
|
{
|
| 3345 |
|
|
#ifdef INSN_SCHEDULING
|
| 3346 |
|
|
basic_block bb;
|
| 3347 |
|
|
|
| 3348 |
|
|
/* Collect loop information to be used in SMS. */
|
| 3349 |
|
|
cfg_layout_initialize (0);
|
| 3350 |
|
|
sms_schedule ();
|
| 3351 |
|
|
|
| 3352 |
|
|
/* Update the life information, because we add pseudos. */
|
| 3353 |
|
|
max_regno = max_reg_num ();
|
| 3354 |
|
|
|
| 3355 |
|
|
/* Finalize layout changes. */
|
| 3356 |
|
|
FOR_EACH_BB (bb)
|
| 3357 |
|
|
if (bb->next_bb != EXIT_BLOCK_PTR)
|
| 3358 |
|
|
bb->aux = bb->next_bb;
|
| 3359 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
| 3360 |
|
|
cfg_layout_finalize ();
|
| 3361 |
|
|
#endif /* INSN_SCHEDULING */
|
| 3362 |
|
|
return 0;
|
| 3363 |
|
|
}
|
| 3364 |
|
|
|
| 3365 |
|
|
struct rtl_opt_pass pass_sms =
|
| 3366 |
|
|
{
|
| 3367 |
|
|
{
|
| 3368 |
|
|
RTL_PASS,
|
| 3369 |
|
|
"sms", /* name */
|
| 3370 |
|
|
gate_handle_sms, /* gate */
|
| 3371 |
|
|
rest_of_handle_sms, /* execute */
|
| 3372 |
|
|
NULL, /* sub */
|
| 3373 |
|
|
NULL, /* next */
|
| 3374 |
|
|
0, /* static_pass_number */
|
| 3375 |
|
|
TV_SMS, /* tv_id */
|
| 3376 |
|
|
0, /* properties_required */
|
| 3377 |
|
|
0, /* properties_provided */
|
| 3378 |
|
|
0, /* properties_destroyed */
|
| 3379 |
|
|
0, /* todo_flags_start */
|
| 3380 |
|
|
TODO_df_finish
|
| 3381 |
|
|
| TODO_verify_flow
|
| 3382 |
|
|
| TODO_verify_rtl_sharing
|
| 3383 |
|
|
| TODO_ggc_collect /* todo_flags_finish */
|
| 3384 |
|
|
}
|
| 3385 |
|
|
};
|