1 |
684 |
jeremybenn |
/* Swing Modulo Scheduling implementation.
|
2 |
|
|
Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
|
23 |
|
|
#include "config.h"
|
24 |
|
|
#include "system.h"
|
25 |
|
|
#include "coretypes.h"
|
26 |
|
|
#include "tm.h"
|
27 |
|
|
#include "diagnostic-core.h"
|
28 |
|
|
#include "rtl.h"
|
29 |
|
|
#include "tm_p.h"
|
30 |
|
|
#include "hard-reg-set.h"
|
31 |
|
|
#include "regs.h"
|
32 |
|
|
#include "function.h"
|
33 |
|
|
#include "flags.h"
|
34 |
|
|
#include "insn-config.h"
|
35 |
|
|
#include "insn-attr.h"
|
36 |
|
|
#include "except.h"
|
37 |
|
|
#include "recog.h"
|
38 |
|
|
#include "sched-int.h"
|
39 |
|
|
#include "target.h"
|
40 |
|
|
#include "cfglayout.h"
|
41 |
|
|
#include "cfgloop.h"
|
42 |
|
|
#include "cfghooks.h"
|
43 |
|
|
#include "expr.h"
|
44 |
|
|
#include "params.h"
|
45 |
|
|
#include "gcov-io.h"
|
46 |
|
|
#include "ddg.h"
|
47 |
|
|
#include "timevar.h"
|
48 |
|
|
#include "tree-pass.h"
|
49 |
|
|
#include "dbgcnt.h"
|
50 |
|
|
#include "df.h"
|
51 |
|
|
|
52 |
|
|
#ifdef INSN_SCHEDULING
|
53 |
|
|
|
54 |
|
|
/* This file contains the implementation of the Swing Modulo Scheduler,
|
55 |
|
|
described in the following references:
|
56 |
|
|
[1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
|
57 |
|
|
Lifetime--sensitive modulo scheduling in a production environment.
|
58 |
|
|
IEEE Trans. on Comps., 50(3), March 2001
|
59 |
|
|
[2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
|
60 |
|
|
Swing Modulo Scheduling: A Lifetime Sensitive Approach.
|
61 |
|
|
PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
|
62 |
|
|
|
63 |
|
|
The basic structure is:
|
64 |
|
|
1. Build a data-dependence graph (DDG) for each loop.
|
65 |
|
|
2. Use the DDG to order the insns of a loop (not in topological order
|
66 |
|
|
necessarily, but rather) trying to place each insn after all its
|
67 |
|
|
predecessors _or_ after all its successors.
|
68 |
|
|
3. Compute MII: a lower bound on the number of cycles to schedule the loop.
|
69 |
|
|
4. Use the ordering to perform list-scheduling of the loop:
|
70 |
|
|
1. Set II = MII. We will try to schedule the loop within II cycles.
|
71 |
|
|
2. Try to schedule the insns one by one according to the ordering.
|
72 |
|
|
For each insn compute an interval of cycles by considering already-
|
73 |
|
|
scheduled preds and succs (and associated latencies); try to place
|
74 |
|
|
the insn in the cycles of this window checking for potential
|
75 |
|
|
resource conflicts (using the DFA interface).
|
76 |
|
|
Note: this is different from the cycle-scheduling of schedule_insns;
|
77 |
|
|
here the insns are not scheduled monotonically top-down (nor bottom-
|
78 |
|
|
up).
|
79 |
|
|
3. If failed in scheduling all insns - bump II++ and try again, unless
|
80 |
|
|
II reaches an upper bound MaxII, in which case report failure.
|
81 |
|
|
5. If we succeeded in scheduling the loop within II cycles, we now
|
82 |
|
|
generate prolog and epilog, decrease the counter of the loop, and
|
83 |
|
|
perform modulo variable expansion for live ranges that span more than
|
84 |
|
|
II cycles (i.e. use register copies to prevent a def from overwriting
|
85 |
|
|
itself before reaching the use).
|
86 |
|
|
|
87 |
|
|
SMS works with countable loops (1) whose control part can be easily
|
88 |
|
|
decoupled from the rest of the loop and (2) whose loop count can
|
89 |
|
|
be easily adjusted. This is because we peel a constant number of
|
90 |
|
|
iterations into a prologue and epilogue for which we want to avoid
|
91 |
|
|
emitting the control part, and a kernel which is to iterate that
|
92 |
|
|
constant number of iterations less than the original loop. So the
|
93 |
|
|
control part should be a set of insns clearly identified and having
|
94 |
|
|
its own iv, not otherwise used in the loop (at-least for now), which
|
95 |
|
|
initializes a register before the loop to the number of iterations.
|
96 |
|
|
Currently SMS relies on the do-loop pattern to recognize such loops,
|
97 |
|
|
where (1) the control part comprises of all insns defining and/or
|
98 |
|
|
using a certain 'count' register and (2) the loop count can be
|
99 |
|
|
adjusted by modifying this register prior to the loop.
|
100 |
|
|
TODO: Rely on cfgloop analysis instead. */
|
101 |
|
|
|
102 |
|
|
/* This page defines partial-schedule structures and functions for
|
103 |
|
|
modulo scheduling. */
|
104 |
|
|
|
105 |
|
|
typedef struct partial_schedule *partial_schedule_ptr;
|
106 |
|
|
typedef struct ps_insn *ps_insn_ptr;
|
107 |
|
|
|
108 |
|
|
/* The minimum (absolute) cycle that a node of ps was scheduled in. */
|
109 |
|
|
#define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
|
110 |
|
|
|
111 |
|
|
/* The maximum (absolute) cycle that a node of ps was scheduled in. */
|
112 |
|
|
#define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
|
113 |
|
|
|
114 |
|
|
/* Perform signed modulo, always returning a non-negative value. */
|
115 |
|
|
#define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
|
116 |
|
|
|
117 |
|
|
/* The number of different iterations the nodes in ps span, assuming
|
118 |
|
|
the stage boundaries are placed efficiently. */
|
119 |
|
|
#define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
|
120 |
|
|
+ 1 + ii - 1) / ii)
|
121 |
|
|
/* The stage count of ps. */
|
122 |
|
|
#define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
|
123 |
|
|
|
124 |
|
|
/* A single instruction in the partial schedule. */
|
125 |
|
|
struct ps_insn
|
126 |
|
|
{
|
127 |
|
|
/* Identifies the instruction to be scheduled. Values smaller than
|
128 |
|
|
the ddg's num_nodes refer directly to ddg nodes. A value of
|
129 |
|
|
X - num_nodes refers to register move X. */
|
130 |
|
|
int id;
|
131 |
|
|
|
132 |
|
|
/* The (absolute) cycle in which the PS instruction is scheduled.
|
133 |
|
|
Same as SCHED_TIME (node). */
|
134 |
|
|
int cycle;
|
135 |
|
|
|
136 |
|
|
/* The next/prev PS_INSN in the same row. */
|
137 |
|
|
ps_insn_ptr next_in_row,
|
138 |
|
|
prev_in_row;
|
139 |
|
|
|
140 |
|
|
};
|
141 |
|
|
|
142 |
|
|
/* Information about a register move that has been added to a partial
|
143 |
|
|
schedule. */
|
144 |
|
|
struct ps_reg_move_info
|
145 |
|
|
{
|
146 |
|
|
/* The source of the move is defined by the ps_insn with id DEF.
|
147 |
|
|
The destination is used by the ps_insns with the ids in USES. */
|
148 |
|
|
int def;
|
149 |
|
|
sbitmap uses;
|
150 |
|
|
|
151 |
|
|
/* The original form of USES' instructions used OLD_REG, but they
|
152 |
|
|
should now use NEW_REG. */
|
153 |
|
|
rtx old_reg;
|
154 |
|
|
rtx new_reg;
|
155 |
|
|
|
156 |
|
|
/* The number of consecutive stages that the move occupies. */
|
157 |
|
|
int num_consecutive_stages;
|
158 |
|
|
|
159 |
|
|
/* An instruction that sets NEW_REG to the correct value. The first
|
160 |
|
|
move associated with DEF will have an rhs of OLD_REG; later moves
|
161 |
|
|
use the result of the previous move. */
|
162 |
|
|
rtx insn;
|
163 |
|
|
};
|
164 |
|
|
|
165 |
|
|
typedef struct ps_reg_move_info ps_reg_move_info;
|
166 |
|
|
DEF_VEC_O (ps_reg_move_info);
|
167 |
|
|
DEF_VEC_ALLOC_O (ps_reg_move_info, heap);
|
168 |
|
|
|
169 |
|
|
/* Holds the partial schedule as an array of II rows. Each entry of the
|
170 |
|
|
array points to a linked list of PS_INSNs, which represents the
|
171 |
|
|
instructions that are scheduled for that row. */
|
172 |
|
|
struct partial_schedule
|
173 |
|
|
{
|
174 |
|
|
int ii; /* Number of rows in the partial schedule. */
|
175 |
|
|
int history; /* Threshold for conflict checking using DFA. */
|
176 |
|
|
|
177 |
|
|
/* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
|
178 |
|
|
ps_insn_ptr *rows;
|
179 |
|
|
|
180 |
|
|
/* All the moves added for this partial schedule. Index X has
|
181 |
|
|
a ps_insn id of X + g->num_nodes. */
|
182 |
|
|
VEC (ps_reg_move_info, heap) *reg_moves;
|
183 |
|
|
|
184 |
|
|
/* rows_length[i] holds the number of instructions in the row.
|
185 |
|
|
It is used only (as an optimization) to back off quickly from
|
186 |
|
|
trying to schedule a node in a full row; that is, to avoid running
|
187 |
|
|
through futile DFA state transitions. */
|
188 |
|
|
int *rows_length;
|
189 |
|
|
|
190 |
|
|
/* The earliest absolute cycle of an insn in the partial schedule. */
|
191 |
|
|
int min_cycle;
|
192 |
|
|
|
193 |
|
|
/* The latest absolute cycle of an insn in the partial schedule. */
|
194 |
|
|
int max_cycle;
|
195 |
|
|
|
196 |
|
|
ddg_ptr g; /* The DDG of the insns in the partial schedule. */
|
197 |
|
|
|
198 |
|
|
int stage_count; /* The stage count of the partial schedule. */
|
199 |
|
|
};
|
200 |
|
|
|
201 |
|
|
|
202 |
|
|
static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
|
203 |
|
|
static void free_partial_schedule (partial_schedule_ptr);
|
204 |
|
|
static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
|
205 |
|
|
void print_partial_schedule (partial_schedule_ptr, FILE *);
|
206 |
|
|
static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
|
207 |
|
|
static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
|
208 |
|
|
int, int, sbitmap, sbitmap);
|
209 |
|
|
static void rotate_partial_schedule (partial_schedule_ptr, int);
|
210 |
|
|
void set_row_column_for_ps (partial_schedule_ptr);
|
211 |
|
|
static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
|
212 |
|
|
static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
|
213 |
|
|
|
214 |
|
|
|
215 |
|
|
/* This page defines constants and structures for the modulo scheduling
|
216 |
|
|
driver. */
|
217 |
|
|
|
218 |
|
|
static int sms_order_nodes (ddg_ptr, int, int *, int *);
|
219 |
|
|
static void set_node_sched_params (ddg_ptr);
|
220 |
|
|
static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
|
221 |
|
|
static void permute_partial_schedule (partial_schedule_ptr, rtx);
|
222 |
|
|
static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
|
223 |
|
|
rtx, rtx);
|
224 |
|
|
static int calculate_stage_count (partial_schedule_ptr, int);
|
225 |
|
|
static void calculate_must_precede_follow (ddg_node_ptr, int, int,
|
226 |
|
|
int, int, sbitmap, sbitmap, sbitmap);
|
227 |
|
|
static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
|
228 |
|
|
sbitmap, int, int *, int *, int *);
|
229 |
|
|
static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
|
230 |
|
|
sbitmap, int *, sbitmap, sbitmap);
|
231 |
|
|
static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
|
232 |
|
|
|
233 |
|
|
#define NODE_ASAP(node) ((node)->aux.count)
|
234 |
|
|
|
235 |
|
|
#define SCHED_PARAMS(x) VEC_index (node_sched_params, node_sched_param_vec, x)
|
236 |
|
|
#define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
|
237 |
|
|
#define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
|
238 |
|
|
#define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
|
239 |
|
|
#define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
|
240 |
|
|
|
241 |
|
|
/* The scheduling parameters held for each node. */
|
242 |
|
|
typedef struct node_sched_params
|
243 |
|
|
{
|
244 |
|
|
int time; /* The absolute scheduling cycle. */
|
245 |
|
|
|
246 |
|
|
int row; /* Holds time % ii. */
|
247 |
|
|
int stage; /* Holds time / ii. */
|
248 |
|
|
|
249 |
|
|
/* The column of a node inside the ps. If nodes u, v are on the same row,
|
250 |
|
|
u will precede v if column (u) < column (v). */
|
251 |
|
|
int column;
|
252 |
|
|
} *node_sched_params_ptr;
|
253 |
|
|
|
254 |
|
|
typedef struct node_sched_params node_sched_params;
|
255 |
|
|
DEF_VEC_O (node_sched_params);
|
256 |
|
|
DEF_VEC_ALLOC_O (node_sched_params, heap);
|
257 |
|
|
|
258 |
|
|
/* The following three functions are copied from the current scheduler
|
259 |
|
|
code in order to use sched_analyze() for computing the dependencies.
|
260 |
|
|
They are used when initializing the sched_info structure. */
|
261 |
|
|
static const char *
|
262 |
|
|
sms_print_insn (const_rtx insn, int aligned ATTRIBUTE_UNUSED)
|
263 |
|
|
{
|
264 |
|
|
static char tmp[80];
|
265 |
|
|
|
266 |
|
|
sprintf (tmp, "i%4d", INSN_UID (insn));
|
267 |
|
|
return tmp;
|
268 |
|
|
}
|
269 |
|
|
|
270 |
|
|
static void
|
271 |
|
|
compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
|
272 |
|
|
regset used ATTRIBUTE_UNUSED)
|
273 |
|
|
{
|
274 |
|
|
}
|
275 |
|
|
|
276 |
|
|
static struct common_sched_info_def sms_common_sched_info;
|
277 |
|
|
|
278 |
|
|
static struct sched_deps_info_def sms_sched_deps_info =
|
279 |
|
|
{
|
280 |
|
|
compute_jump_reg_dependencies,
|
281 |
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
282 |
|
|
NULL,
|
283 |
|
|
0, 0, 0
|
284 |
|
|
};
|
285 |
|
|
|
286 |
|
|
static struct haifa_sched_info sms_sched_info =
|
287 |
|
|
{
|
288 |
|
|
NULL,
|
289 |
|
|
NULL,
|
290 |
|
|
NULL,
|
291 |
|
|
NULL,
|
292 |
|
|
NULL,
|
293 |
|
|
sms_print_insn,
|
294 |
|
|
NULL,
|
295 |
|
|
NULL, /* insn_finishes_block_p */
|
296 |
|
|
NULL, NULL,
|
297 |
|
|
NULL, NULL,
|
298 |
|
|
0, 0,
|
299 |
|
|
|
300 |
|
|
NULL, NULL, NULL, NULL,
|
301 |
|
|
NULL, NULL,
|
302 |
|
|
|
303 |
|
|
};
|
304 |
|
|
|
305 |
|
|
/* Partial schedule instruction ID in PS is a register move. Return
|
306 |
|
|
information about it. */
|
307 |
|
|
static struct ps_reg_move_info *
|
308 |
|
|
ps_reg_move (partial_schedule_ptr ps, int id)
|
309 |
|
|
{
|
310 |
|
|
gcc_checking_assert (id >= ps->g->num_nodes);
|
311 |
|
|
return VEC_index (ps_reg_move_info, ps->reg_moves, id - ps->g->num_nodes);
|
312 |
|
|
}
|
313 |
|
|
|
314 |
|
|
/* Return the rtl instruction that is being scheduled by partial schedule
|
315 |
|
|
instruction ID, which belongs to schedule PS. */
|
316 |
|
|
static rtx
|
317 |
|
|
ps_rtl_insn (partial_schedule_ptr ps, int id)
|
318 |
|
|
{
|
319 |
|
|
if (id < ps->g->num_nodes)
|
320 |
|
|
return ps->g->nodes[id].insn;
|
321 |
|
|
else
|
322 |
|
|
return ps_reg_move (ps, id)->insn;
|
323 |
|
|
}
|
324 |
|
|
|
325 |
|
|
/* Partial schedule instruction ID, which belongs to PS, occured in
|
326 |
|
|
the original (unscheduled) loop. Return the first instruction
|
327 |
|
|
in the loop that was associated with ps_rtl_insn (PS, ID).
|
328 |
|
|
If the instruction had some notes before it, this is the first
|
329 |
|
|
of those notes. */
|
330 |
|
|
static rtx
|
331 |
|
|
ps_first_note (partial_schedule_ptr ps, int id)
|
332 |
|
|
{
|
333 |
|
|
gcc_assert (id < ps->g->num_nodes);
|
334 |
|
|
return ps->g->nodes[id].first_note;
|
335 |
|
|
}
|
336 |
|
|
|
337 |
|
|
/* Return the number of consecutive stages that are occupied by
|
338 |
|
|
partial schedule instruction ID in PS. */
|
339 |
|
|
static int
|
340 |
|
|
ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
|
341 |
|
|
{
|
342 |
|
|
if (id < ps->g->num_nodes)
|
343 |
|
|
return 1;
|
344 |
|
|
else
|
345 |
|
|
return ps_reg_move (ps, id)->num_consecutive_stages;
|
346 |
|
|
}
|
347 |
|
|
|
348 |
|
|
/* Given HEAD and TAIL which are the first and last insns in a loop;
|
349 |
|
|
return the register which controls the loop. Return zero if it has
|
350 |
|
|
more than one occurrence in the loop besides the control part or the
|
351 |
|
|
do-loop pattern is not of the form we expect. */
|
352 |
|
|
static rtx
|
353 |
|
|
doloop_register_get (rtx head ATTRIBUTE_UNUSED, rtx tail ATTRIBUTE_UNUSED)
|
354 |
|
|
{
|
355 |
|
|
#ifdef HAVE_doloop_end
|
356 |
|
|
rtx reg, condition, insn, first_insn_not_to_check;
|
357 |
|
|
|
358 |
|
|
if (!JUMP_P (tail))
|
359 |
|
|
return NULL_RTX;
|
360 |
|
|
|
361 |
|
|
/* TODO: Free SMS's dependence on doloop_condition_get. */
|
362 |
|
|
condition = doloop_condition_get (tail);
|
363 |
|
|
if (! condition)
|
364 |
|
|
return NULL_RTX;
|
365 |
|
|
|
366 |
|
|
if (REG_P (XEXP (condition, 0)))
|
367 |
|
|
reg = XEXP (condition, 0);
|
368 |
|
|
else if (GET_CODE (XEXP (condition, 0)) == PLUS
|
369 |
|
|
&& REG_P (XEXP (XEXP (condition, 0), 0)))
|
370 |
|
|
reg = XEXP (XEXP (condition, 0), 0);
|
371 |
|
|
else
|
372 |
|
|
gcc_unreachable ();
|
373 |
|
|
|
374 |
|
|
/* Check that the COUNT_REG has no other occurrences in the loop
|
375 |
|
|
until the decrement. We assume the control part consists of
|
376 |
|
|
either a single (parallel) branch-on-count or a (non-parallel)
|
377 |
|
|
branch immediately preceded by a single (decrement) insn. */
|
378 |
|
|
first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
|
379 |
|
|
: prev_nondebug_insn (tail));
|
380 |
|
|
|
381 |
|
|
for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
|
382 |
|
|
if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
|
383 |
|
|
{
|
384 |
|
|
if (dump_file)
|
385 |
|
|
{
|
386 |
|
|
fprintf (dump_file, "SMS count_reg found ");
|
387 |
|
|
print_rtl_single (dump_file, reg);
|
388 |
|
|
fprintf (dump_file, " outside control in insn:\n");
|
389 |
|
|
print_rtl_single (dump_file, insn);
|
390 |
|
|
}
|
391 |
|
|
|
392 |
|
|
return NULL_RTX;
|
393 |
|
|
}
|
394 |
|
|
|
395 |
|
|
return reg;
|
396 |
|
|
#else
|
397 |
|
|
return NULL_RTX;
|
398 |
|
|
#endif
|
399 |
|
|
}
|
400 |
|
|
|
401 |
|
|
/* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
|
402 |
|
|
that the number of iterations is a compile-time constant. If so,
|
403 |
|
|
return the rtx that sets COUNT_REG to a constant, and set COUNT to
|
404 |
|
|
this constant. Otherwise return 0. */
|
405 |
|
|
static rtx
|
406 |
|
|
const_iteration_count (rtx count_reg, basic_block pre_header,
|
407 |
|
|
HOST_WIDEST_INT * count)
|
408 |
|
|
{
|
409 |
|
|
rtx insn;
|
410 |
|
|
rtx head, tail;
|
411 |
|
|
|
412 |
|
|
if (! pre_header)
|
413 |
|
|
return NULL_RTX;
|
414 |
|
|
|
415 |
|
|
get_ebb_head_tail (pre_header, pre_header, &head, &tail);
|
416 |
|
|
|
417 |
|
|
for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
|
418 |
|
|
if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
|
419 |
|
|
rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
|
420 |
|
|
{
|
421 |
|
|
rtx pat = single_set (insn);
|
422 |
|
|
|
423 |
|
|
if (CONST_INT_P (SET_SRC (pat)))
|
424 |
|
|
{
|
425 |
|
|
*count = INTVAL (SET_SRC (pat));
|
426 |
|
|
return insn;
|
427 |
|
|
}
|
428 |
|
|
|
429 |
|
|
return NULL_RTX;
|
430 |
|
|
}
|
431 |
|
|
|
432 |
|
|
return NULL_RTX;
|
433 |
|
|
}
|
434 |
|
|
|
435 |
|
|
/* A very simple resource-based lower bound on the initiation interval.
|
436 |
|
|
??? Improve the accuracy of this bound by considering the
|
437 |
|
|
utilization of various units. */
|
438 |
|
|
static int
|
439 |
|
|
res_MII (ddg_ptr g)
|
440 |
|
|
{
|
441 |
|
|
if (targetm.sched.sms_res_mii)
|
442 |
|
|
return targetm.sched.sms_res_mii (g);
|
443 |
|
|
|
444 |
|
|
return ((g->num_nodes - g->num_debug) / issue_rate);
|
445 |
|
|
}
|
446 |
|
|
|
447 |
|
|
|
448 |
|
|
/* A vector that contains the sched data for each ps_insn. */
|
449 |
|
|
static VEC (node_sched_params, heap) *node_sched_param_vec;
|
450 |
|
|
|
451 |
|
|
/* Allocate sched_params for each node and initialize it. */
|
452 |
|
|
static void
|
453 |
|
|
set_node_sched_params (ddg_ptr g)
|
454 |
|
|
{
|
455 |
|
|
VEC_truncate (node_sched_params, node_sched_param_vec, 0);
|
456 |
|
|
VEC_safe_grow_cleared (node_sched_params, heap,
|
457 |
|
|
node_sched_param_vec, g->num_nodes);
|
458 |
|
|
}
|
459 |
|
|
|
460 |
|
|
/* Make sure that node_sched_param_vec has an entry for every move in PS. */
|
461 |
|
|
static void
|
462 |
|
|
extend_node_sched_params (partial_schedule_ptr ps)
|
463 |
|
|
{
|
464 |
|
|
VEC_safe_grow_cleared (node_sched_params, heap, node_sched_param_vec,
|
465 |
|
|
ps->g->num_nodes + VEC_length (ps_reg_move_info,
|
466 |
|
|
ps->reg_moves));
|
467 |
|
|
}
|
468 |
|
|
|
469 |
|
|
/* Update the sched_params (time, row and stage) for node U using the II,
|
470 |
|
|
the CYCLE of U and MIN_CYCLE.
|
471 |
|
|
We're not simply taking the following
|
472 |
|
|
SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
|
473 |
|
|
because the stages may not be aligned on cycle 0. */
|
474 |
|
|
static void
|
475 |
|
|
update_node_sched_params (int u, int ii, int cycle, int min_cycle)
|
476 |
|
|
{
|
477 |
|
|
int sc_until_cycle_zero;
|
478 |
|
|
int stage;
|
479 |
|
|
|
480 |
|
|
SCHED_TIME (u) = cycle;
|
481 |
|
|
SCHED_ROW (u) = SMODULO (cycle, ii);
|
482 |
|
|
|
483 |
|
|
/* The calculation of stage count is done adding the number
|
484 |
|
|
of stages before cycle zero and after cycle zero. */
|
485 |
|
|
sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
|
486 |
|
|
|
487 |
|
|
if (SCHED_TIME (u) < 0)
|
488 |
|
|
{
|
489 |
|
|
stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
|
490 |
|
|
SCHED_STAGE (u) = sc_until_cycle_zero - stage;
|
491 |
|
|
}
|
492 |
|
|
else
|
493 |
|
|
{
|
494 |
|
|
stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
|
495 |
|
|
SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
|
496 |
|
|
}
|
497 |
|
|
}
|
498 |
|
|
|
499 |
|
|
static void
|
500 |
|
|
print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
|
501 |
|
|
{
|
502 |
|
|
int i;
|
503 |
|
|
|
504 |
|
|
if (! file)
|
505 |
|
|
return;
|
506 |
|
|
for (i = 0; i < num_nodes; i++)
|
507 |
|
|
{
|
508 |
|
|
node_sched_params_ptr nsp = SCHED_PARAMS (i);
|
509 |
|
|
|
510 |
|
|
fprintf (file, "Node = %d; INSN = %d\n", i,
|
511 |
|
|
INSN_UID (ps_rtl_insn (ps, i)));
|
512 |
|
|
fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
|
513 |
|
|
fprintf (file, " time = %d:\n", nsp->time);
|
514 |
|
|
fprintf (file, " stage = %d:\n", nsp->stage);
|
515 |
|
|
}
|
516 |
|
|
}
|
517 |
|
|
|
518 |
|
|
/* Set SCHED_COLUMN for each instruction in row ROW of PS. */
|
519 |
|
|
static void
|
520 |
|
|
set_columns_for_row (partial_schedule_ptr ps, int row)
|
521 |
|
|
{
|
522 |
|
|
ps_insn_ptr cur_insn;
|
523 |
|
|
int column;
|
524 |
|
|
|
525 |
|
|
column = 0;
|
526 |
|
|
for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
|
527 |
|
|
SCHED_COLUMN (cur_insn->id) = column++;
|
528 |
|
|
}
|
529 |
|
|
|
530 |
|
|
/* Set SCHED_COLUMN for each instruction in PS. */
|
531 |
|
|
static void
|
532 |
|
|
set_columns_for_ps (partial_schedule_ptr ps)
|
533 |
|
|
{
|
534 |
|
|
int row;
|
535 |
|
|
|
536 |
|
|
for (row = 0; row < ps->ii; row++)
|
537 |
|
|
set_columns_for_row (ps, row);
|
538 |
|
|
}
|
539 |
|
|
|
540 |
|
|
/* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
|
541 |
|
|
Its single predecessor has already been scheduled, as has its
|
542 |
|
|
ddg node successors. (The move may have also another move as its
|
543 |
|
|
successor, in which case that successor will be scheduled later.)
|
544 |
|
|
|
545 |
|
|
The move is part of a chain that satisfies register dependencies
|
546 |
|
|
between a producing ddg node and various consuming ddg nodes.
|
547 |
|
|
If some of these dependencies have a distance of 1 (meaning that
|
548 |
|
|
the use is upward-exposed) then DISTANCE1_USES is nonnull and
|
549 |
|
|
contains the set of uses with distance-1 dependencies.
|
550 |
|
|
DISTANCE1_USES is null otherwise.
|
551 |
|
|
|
552 |
|
|
MUST_FOLLOW is a scratch bitmap that is big enough to hold
|
553 |
|
|
all current ps_insn ids.
|
554 |
|
|
|
555 |
|
|
Return true on success. */
|
556 |
|
|
static bool
|
557 |
|
|
schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
|
558 |
|
|
sbitmap distance1_uses, sbitmap must_follow)
|
559 |
|
|
{
|
560 |
|
|
unsigned int u;
|
561 |
|
|
int this_time, this_distance, this_start, this_end, this_latency;
|
562 |
|
|
int start, end, c, ii;
|
563 |
|
|
sbitmap_iterator sbi;
|
564 |
|
|
ps_reg_move_info *move;
|
565 |
|
|
rtx this_insn;
|
566 |
|
|
ps_insn_ptr psi;
|
567 |
|
|
|
568 |
|
|
move = ps_reg_move (ps, i_reg_move);
|
569 |
|
|
ii = ps->ii;
|
570 |
|
|
if (dump_file)
|
571 |
|
|
{
|
572 |
|
|
fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
|
573 |
|
|
", min cycle = %d\n\n", INSN_UID (move->insn), ii,
|
574 |
|
|
PS_MIN_CYCLE (ps));
|
575 |
|
|
print_rtl_single (dump_file, move->insn);
|
576 |
|
|
fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
|
577 |
|
|
fprintf (dump_file, "=========== =========== =====\n");
|
578 |
|
|
}
|
579 |
|
|
|
580 |
|
|
start = INT_MIN;
|
581 |
|
|
end = INT_MAX;
|
582 |
|
|
|
583 |
|
|
/* For dependencies of distance 1 between a producer ddg node A
|
584 |
|
|
and consumer ddg node B, we have a chain of dependencies:
|
585 |
|
|
|
586 |
|
|
A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
|
587 |
|
|
|
588 |
|
|
where Mi is the ith move. For dependencies of distance 0 between
|
589 |
|
|
a producer ddg node A and consumer ddg node C, we have a chain of
|
590 |
|
|
dependencies:
|
591 |
|
|
|
592 |
|
|
A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
|
593 |
|
|
|
594 |
|
|
where Mi' occupies the same position as Mi but occurs a stage later.
|
595 |
|
|
We can only schedule each move once, so if we have both types of
|
596 |
|
|
chain, we model the second as:
|
597 |
|
|
|
598 |
|
|
A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
|
599 |
|
|
|
600 |
|
|
First handle the dependencies between the previously-scheduled
|
601 |
|
|
predecessor and the move. */
|
602 |
|
|
this_insn = ps_rtl_insn (ps, move->def);
|
603 |
|
|
this_latency = insn_latency (this_insn, move->insn);
|
604 |
|
|
this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
|
605 |
|
|
this_time = SCHED_TIME (move->def) - this_distance * ii;
|
606 |
|
|
this_start = this_time + this_latency;
|
607 |
|
|
this_end = this_time + ii;
|
608 |
|
|
if (dump_file)
|
609 |
|
|
fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
|
610 |
|
|
this_start, this_end, SCHED_TIME (move->def),
|
611 |
|
|
INSN_UID (this_insn), this_latency, this_distance,
|
612 |
|
|
INSN_UID (move->insn));
|
613 |
|
|
|
614 |
|
|
if (start < this_start)
|
615 |
|
|
start = this_start;
|
616 |
|
|
if (end > this_end)
|
617 |
|
|
end = this_end;
|
618 |
|
|
|
619 |
|
|
/* Handle the dependencies between the move and previously-scheduled
|
620 |
|
|
successors. */
|
621 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (move->uses, 0, u, sbi)
|
622 |
|
|
{
|
623 |
|
|
this_insn = ps_rtl_insn (ps, u);
|
624 |
|
|
this_latency = insn_latency (move->insn, this_insn);
|
625 |
|
|
if (distance1_uses && !TEST_BIT (distance1_uses, u))
|
626 |
|
|
this_distance = -1;
|
627 |
|
|
else
|
628 |
|
|
this_distance = 0;
|
629 |
|
|
this_time = SCHED_TIME (u) + this_distance * ii;
|
630 |
|
|
this_start = this_time - ii;
|
631 |
|
|
this_end = this_time - this_latency;
|
632 |
|
|
if (dump_file)
|
633 |
|
|
fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
|
634 |
|
|
this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
|
635 |
|
|
this_latency, this_distance, INSN_UID (this_insn));
|
636 |
|
|
|
637 |
|
|
if (start < this_start)
|
638 |
|
|
start = this_start;
|
639 |
|
|
if (end > this_end)
|
640 |
|
|
end = this_end;
|
641 |
|
|
}
|
642 |
|
|
|
643 |
|
|
if (dump_file)
|
644 |
|
|
{
|
645 |
|
|
fprintf (dump_file, "----------- ----------- -----\n");
|
646 |
|
|
fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
|
647 |
|
|
}
|
648 |
|
|
|
649 |
|
|
sbitmap_zero (must_follow);
|
650 |
|
|
SET_BIT (must_follow, move->def);
|
651 |
|
|
|
652 |
|
|
start = MAX (start, end - (ii - 1));
|
653 |
|
|
for (c = end; c >= start; c--)
|
654 |
|
|
{
|
655 |
|
|
psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
|
656 |
|
|
move->uses, must_follow);
|
657 |
|
|
if (psi)
|
658 |
|
|
{
|
659 |
|
|
update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
|
660 |
|
|
if (dump_file)
|
661 |
|
|
fprintf (dump_file, "\nScheduled register move INSN %d at"
|
662 |
|
|
" time %d, row %d\n\n", INSN_UID (move->insn), c,
|
663 |
|
|
SCHED_ROW (i_reg_move));
|
664 |
|
|
return true;
|
665 |
|
|
}
|
666 |
|
|
}
|
667 |
|
|
|
668 |
|
|
if (dump_file)
|
669 |
|
|
fprintf (dump_file, "\nNo available slot\n\n");
|
670 |
|
|
|
671 |
|
|
return false;
|
672 |
|
|
}
|
673 |
|
|
|
674 |
|
|
/*
|
675 |
|
|
Breaking intra-loop register anti-dependences:
|
676 |
|
|
Each intra-loop register anti-dependence implies a cross-iteration true
|
677 |
|
|
dependence of distance 1. Therefore, we can remove such false dependencies
|
678 |
|
|
and figure out if the partial schedule broke them by checking if (for a
|
679 |
|
|
true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
|
680 |
|
|
if so generate a register move. The number of such moves is equal to:
|
681 |
|
|
SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
|
682 |
|
|
nreg_moves = ----------------------------------- + 1 - { dependence.
|
683 |
|
|
ii { 1 if not.
|
684 |
|
|
*/
|
685 |
|
|
static bool
|
686 |
|
|
schedule_reg_moves (partial_schedule_ptr ps)
|
687 |
|
|
{
|
688 |
|
|
ddg_ptr g = ps->g;
|
689 |
|
|
int ii = ps->ii;
|
690 |
|
|
int i;
|
691 |
|
|
|
692 |
|
|
for (i = 0; i < g->num_nodes; i++)
|
693 |
|
|
{
|
694 |
|
|
ddg_node_ptr u = &g->nodes[i];
|
695 |
|
|
ddg_edge_ptr e;
|
696 |
|
|
int nreg_moves = 0, i_reg_move;
|
697 |
|
|
rtx prev_reg, old_reg;
|
698 |
|
|
int first_move;
|
699 |
|
|
int distances[2];
|
700 |
|
|
sbitmap must_follow;
|
701 |
|
|
sbitmap distance1_uses;
|
702 |
|
|
rtx set = single_set (u->insn);
|
703 |
|
|
|
704 |
|
|
/* Skip instructions that do not set a register. */
|
705 |
|
|
if ((set && !REG_P (SET_DEST (set))))
|
706 |
|
|
continue;
|
707 |
|
|
|
708 |
|
|
/* Compute the number of reg_moves needed for u, by looking at life
|
709 |
|
|
ranges started at u (excluding self-loops). */
|
710 |
|
|
distances[0] = distances[1] = false;
|
711 |
|
|
for (e = u->out; e; e = e->next_out)
|
712 |
|
|
if (e->type == TRUE_DEP && e->dest != e->src)
|
713 |
|
|
{
|
714 |
|
|
int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
|
715 |
|
|
- SCHED_TIME (e->src->cuid)) / ii;
|
716 |
|
|
|
717 |
|
|
if (e->distance == 1)
|
718 |
|
|
nreg_moves4e = (SCHED_TIME (e->dest->cuid)
|
719 |
|
|
- SCHED_TIME (e->src->cuid) + ii) / ii;
|
720 |
|
|
|
721 |
|
|
/* If dest precedes src in the schedule of the kernel, then dest
|
722 |
|
|
will read before src writes and we can save one reg_copy. */
|
723 |
|
|
if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
|
724 |
|
|
&& SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
|
725 |
|
|
nreg_moves4e--;
|
726 |
|
|
|
727 |
|
|
if (nreg_moves4e >= 1)
|
728 |
|
|
{
|
729 |
|
|
/* !single_set instructions are not supported yet and
|
730 |
|
|
thus we do not except to encounter them in the loop
|
731 |
|
|
except from the doloop part. For the latter case
|
732 |
|
|
we assume no regmoves are generated as the doloop
|
733 |
|
|
instructions are tied to the branch with an edge. */
|
734 |
|
|
gcc_assert (set);
|
735 |
|
|
/* If the instruction contains auto-inc register then
|
736 |
|
|
validate that the regmov is being generated for the
|
737 |
|
|
target regsiter rather then the inc'ed register. */
|
738 |
|
|
gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
|
739 |
|
|
}
|
740 |
|
|
|
741 |
|
|
if (nreg_moves4e)
|
742 |
|
|
{
|
743 |
|
|
gcc_assert (e->distance < 2);
|
744 |
|
|
distances[e->distance] = true;
|
745 |
|
|
}
|
746 |
|
|
nreg_moves = MAX (nreg_moves, nreg_moves4e);
|
747 |
|
|
}
|
748 |
|
|
|
749 |
|
|
if (nreg_moves == 0)
|
750 |
|
|
continue;
|
751 |
|
|
|
752 |
|
|
/* Create NREG_MOVES register moves. */
|
753 |
|
|
first_move = VEC_length (ps_reg_move_info, ps->reg_moves);
|
754 |
|
|
VEC_safe_grow_cleared (ps_reg_move_info, heap, ps->reg_moves,
|
755 |
|
|
first_move + nreg_moves);
|
756 |
|
|
extend_node_sched_params (ps);
|
757 |
|
|
|
758 |
|
|
/* Record the moves associated with this node. */
|
759 |
|
|
first_move += ps->g->num_nodes;
|
760 |
|
|
|
761 |
|
|
/* Generate each move. */
|
762 |
|
|
old_reg = prev_reg = SET_DEST (single_set (u->insn));
|
763 |
|
|
for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
|
764 |
|
|
{
|
765 |
|
|
ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
|
766 |
|
|
|
767 |
|
|
move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
|
768 |
|
|
move->uses = sbitmap_alloc (first_move + nreg_moves);
|
769 |
|
|
move->old_reg = old_reg;
|
770 |
|
|
move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
|
771 |
|
|
move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
|
772 |
|
|
move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
|
773 |
|
|
sbitmap_zero (move->uses);
|
774 |
|
|
|
775 |
|
|
prev_reg = move->new_reg;
|
776 |
|
|
}
|
777 |
|
|
|
778 |
|
|
distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
|
779 |
|
|
|
780 |
|
|
/* Every use of the register defined by node may require a different
|
781 |
|
|
copy of this register, depending on the time the use is scheduled.
|
782 |
|
|
Record which uses require which move results. */
|
783 |
|
|
for (e = u->out; e; e = e->next_out)
|
784 |
|
|
if (e->type == TRUE_DEP && e->dest != e->src)
|
785 |
|
|
{
|
786 |
|
|
int dest_copy = (SCHED_TIME (e->dest->cuid)
|
787 |
|
|
- SCHED_TIME (e->src->cuid)) / ii;
|
788 |
|
|
|
789 |
|
|
if (e->distance == 1)
|
790 |
|
|
dest_copy = (SCHED_TIME (e->dest->cuid)
|
791 |
|
|
- SCHED_TIME (e->src->cuid) + ii) / ii;
|
792 |
|
|
|
793 |
|
|
if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
|
794 |
|
|
&& SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
|
795 |
|
|
dest_copy--;
|
796 |
|
|
|
797 |
|
|
if (dest_copy)
|
798 |
|
|
{
|
799 |
|
|
ps_reg_move_info *move;
|
800 |
|
|
|
801 |
|
|
move = ps_reg_move (ps, first_move + dest_copy - 1);
|
802 |
|
|
SET_BIT (move->uses, e->dest->cuid);
|
803 |
|
|
if (e->distance == 1)
|
804 |
|
|
SET_BIT (distance1_uses, e->dest->cuid);
|
805 |
|
|
}
|
806 |
|
|
}
|
807 |
|
|
|
808 |
|
|
must_follow = sbitmap_alloc (first_move + nreg_moves);
|
809 |
|
|
for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
|
810 |
|
|
if (!schedule_reg_move (ps, first_move + i_reg_move,
|
811 |
|
|
distance1_uses, must_follow))
|
812 |
|
|
break;
|
813 |
|
|
sbitmap_free (must_follow);
|
814 |
|
|
if (distance1_uses)
|
815 |
|
|
sbitmap_free (distance1_uses);
|
816 |
|
|
if (i_reg_move < nreg_moves)
|
817 |
|
|
return false;
|
818 |
|
|
}
|
819 |
|
|
return true;
|
820 |
|
|
}
|
821 |
|
|
|
822 |
|
|
/* Emit the moves associatied with PS. Apply the substitutions
|
823 |
|
|
associated with them. */
|
824 |
|
|
static void
|
825 |
|
|
apply_reg_moves (partial_schedule_ptr ps)
|
826 |
|
|
{
|
827 |
|
|
ps_reg_move_info *move;
|
828 |
|
|
int i;
|
829 |
|
|
|
830 |
|
|
FOR_EACH_VEC_ELT (ps_reg_move_info, ps->reg_moves, i, move)
|
831 |
|
|
{
|
832 |
|
|
unsigned int i_use;
|
833 |
|
|
sbitmap_iterator sbi;
|
834 |
|
|
|
835 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (move->uses, 0, i_use, sbi)
|
836 |
|
|
{
|
837 |
|
|
replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
|
838 |
|
|
df_insn_rescan (ps->g->nodes[i_use].insn);
|
839 |
|
|
}
|
840 |
|
|
}
|
841 |
|
|
}
|
842 |
|
|
|
843 |
|
|
/* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
|
844 |
|
|
SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
|
845 |
|
|
will move to cycle zero. */
|
846 |
|
|
static void
|
847 |
|
|
reset_sched_times (partial_schedule_ptr ps, int amount)
|
848 |
|
|
{
|
849 |
|
|
int row;
|
850 |
|
|
int ii = ps->ii;
|
851 |
|
|
ps_insn_ptr crr_insn;
|
852 |
|
|
|
853 |
|
|
for (row = 0; row < ii; row++)
|
854 |
|
|
for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
|
855 |
|
|
{
|
856 |
|
|
int u = crr_insn->id;
|
857 |
|
|
int normalized_time = SCHED_TIME (u) - amount;
|
858 |
|
|
int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
|
859 |
|
|
|
860 |
|
|
if (dump_file)
|
861 |
|
|
{
|
862 |
|
|
/* Print the scheduling times after the rotation. */
|
863 |
|
|
rtx insn = ps_rtl_insn (ps, u);
|
864 |
|
|
|
865 |
|
|
fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
|
866 |
|
|
"crr_insn->cycle=%d, min_cycle=%d", u,
|
867 |
|
|
INSN_UID (insn), normalized_time, new_min_cycle);
|
868 |
|
|
if (JUMP_P (insn))
|
869 |
|
|
fprintf (dump_file, " (branch)");
|
870 |
|
|
fprintf (dump_file, "\n");
|
871 |
|
|
}
|
872 |
|
|
|
873 |
|
|
gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
|
874 |
|
|
gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
|
875 |
|
|
|
876 |
|
|
crr_insn->cycle = normalized_time;
|
877 |
|
|
update_node_sched_params (u, ii, normalized_time, new_min_cycle);
|
878 |
|
|
}
|
879 |
|
|
}
|
880 |
|
|
|
881 |
|
|
/* Permute the insns according to their order in PS, from row 0 to
|
882 |
|
|
row ii-1, and position them right before LAST. This schedules
|
883 |
|
|
the insns of the loop kernel. */
|
884 |
|
|
static void
|
885 |
|
|
permute_partial_schedule (partial_schedule_ptr ps, rtx last)
|
886 |
|
|
{
|
887 |
|
|
int ii = ps->ii;
|
888 |
|
|
int row;
|
889 |
|
|
ps_insn_ptr ps_ij;
|
890 |
|
|
|
891 |
|
|
for (row = 0; row < ii ; row++)
|
892 |
|
|
for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
|
893 |
|
|
{
|
894 |
|
|
rtx insn = ps_rtl_insn (ps, ps_ij->id);
|
895 |
|
|
|
896 |
|
|
if (PREV_INSN (last) != insn)
|
897 |
|
|
{
|
898 |
|
|
if (ps_ij->id < ps->g->num_nodes)
|
899 |
|
|
reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
|
900 |
|
|
PREV_INSN (last));
|
901 |
|
|
else
|
902 |
|
|
add_insn_before (insn, last, NULL);
|
903 |
|
|
}
|
904 |
|
|
}
|
905 |
|
|
}
|
906 |
|
|
|
907 |
|
|
/* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
|
908 |
|
|
respectively only if cycle C falls on the border of the scheduling
|
909 |
|
|
window boundaries marked by START and END cycles. STEP is the
|
910 |
|
|
direction of the window. */
|
911 |
|
|
static inline void
|
912 |
|
|
set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
|
913 |
|
|
sbitmap *tmp_precede, sbitmap must_precede, int c,
|
914 |
|
|
int start, int end, int step)
|
915 |
|
|
{
|
916 |
|
|
*tmp_precede = NULL;
|
917 |
|
|
*tmp_follow = NULL;
|
918 |
|
|
|
919 |
|
|
if (c == start)
|
920 |
|
|
{
|
921 |
|
|
if (step == 1)
|
922 |
|
|
*tmp_precede = must_precede;
|
923 |
|
|
else /* step == -1. */
|
924 |
|
|
*tmp_follow = must_follow;
|
925 |
|
|
}
|
926 |
|
|
if (c == end - step)
|
927 |
|
|
{
|
928 |
|
|
if (step == 1)
|
929 |
|
|
*tmp_follow = must_follow;
|
930 |
|
|
else /* step == -1. */
|
931 |
|
|
*tmp_precede = must_precede;
|
932 |
|
|
}
|
933 |
|
|
|
934 |
|
|
}
|
935 |
|
|
|
936 |
|
|
/* Return True if the branch can be moved to row ii-1 while
|
937 |
|
|
normalizing the partial schedule PS to start from cycle zero and thus
|
938 |
|
|
optimize the SC. Otherwise return False. */
|
939 |
|
|
static bool
|
940 |
|
|
optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
|
941 |
|
|
{
|
942 |
|
|
int amount = PS_MIN_CYCLE (ps);
|
943 |
|
|
sbitmap sched_nodes = sbitmap_alloc (g->num_nodes);
|
944 |
|
|
int start, end, step;
|
945 |
|
|
int ii = ps->ii;
|
946 |
|
|
bool ok = false;
|
947 |
|
|
int stage_count, stage_count_curr;
|
948 |
|
|
|
949 |
|
|
/* Compare the SC after normalization and SC after bringing the branch
|
950 |
|
|
to row ii-1. If they are equal just bail out. */
|
951 |
|
|
stage_count = calculate_stage_count (ps, amount);
|
952 |
|
|
stage_count_curr =
|
953 |
|
|
calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
|
954 |
|
|
|
955 |
|
|
if (stage_count == stage_count_curr)
|
956 |
|
|
{
|
957 |
|
|
if (dump_file)
|
958 |
|
|
fprintf (dump_file, "SMS SC already optimized.\n");
|
959 |
|
|
|
960 |
|
|
ok = false;
|
961 |
|
|
goto clear;
|
962 |
|
|
}
|
963 |
|
|
|
964 |
|
|
if (dump_file)
|
965 |
|
|
{
|
966 |
|
|
fprintf (dump_file, "SMS Trying to optimize branch location\n");
|
967 |
|
|
fprintf (dump_file, "SMS partial schedule before trial:\n");
|
968 |
|
|
print_partial_schedule (ps, dump_file);
|
969 |
|
|
}
|
970 |
|
|
|
971 |
|
|
/* First, normalize the partial scheduling. */
|
972 |
|
|
reset_sched_times (ps, amount);
|
973 |
|
|
rotate_partial_schedule (ps, amount);
|
974 |
|
|
if (dump_file)
|
975 |
|
|
{
|
976 |
|
|
fprintf (dump_file,
|
977 |
|
|
"SMS partial schedule after normalization (ii, %d, SC %d):\n",
|
978 |
|
|
ii, stage_count);
|
979 |
|
|
print_partial_schedule (ps, dump_file);
|
980 |
|
|
}
|
981 |
|
|
|
982 |
|
|
if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
|
983 |
|
|
{
|
984 |
|
|
ok = true;
|
985 |
|
|
goto clear;
|
986 |
|
|
}
|
987 |
|
|
|
988 |
|
|
sbitmap_ones (sched_nodes);
|
989 |
|
|
|
990 |
|
|
/* Calculate the new placement of the branch. It should be in row
|
991 |
|
|
ii-1 and fall into it's scheduling window. */
|
992 |
|
|
if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
|
993 |
|
|
&step, &end) == 0)
|
994 |
|
|
{
|
995 |
|
|
bool success;
|
996 |
|
|
ps_insn_ptr next_ps_i;
|
997 |
|
|
int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
|
998 |
|
|
int row = SMODULO (branch_cycle, ps->ii);
|
999 |
|
|
int num_splits = 0;
|
1000 |
|
|
sbitmap must_precede, must_follow, tmp_precede, tmp_follow;
|
1001 |
|
|
int c;
|
1002 |
|
|
|
1003 |
|
|
if (dump_file)
|
1004 |
|
|
fprintf (dump_file, "\nTrying to schedule node %d "
|
1005 |
|
|
"INSN = %d in (%d .. %d) step %d\n",
|
1006 |
|
|
g->closing_branch->cuid,
|
1007 |
|
|
(INSN_UID (g->closing_branch->insn)), start, end, step);
|
1008 |
|
|
|
1009 |
|
|
gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
|
1010 |
|
|
if (step == 1)
|
1011 |
|
|
{
|
1012 |
|
|
c = start + ii - SMODULO (start, ii) - 1;
|
1013 |
|
|
gcc_assert (c >= start);
|
1014 |
|
|
if (c >= end)
|
1015 |
|
|
{
|
1016 |
|
|
ok = false;
|
1017 |
|
|
if (dump_file)
|
1018 |
|
|
fprintf (dump_file,
|
1019 |
|
|
"SMS failed to schedule branch at cycle: %d\n", c);
|
1020 |
|
|
goto clear;
|
1021 |
|
|
}
|
1022 |
|
|
}
|
1023 |
|
|
else
|
1024 |
|
|
{
|
1025 |
|
|
c = start - SMODULO (start, ii) - 1;
|
1026 |
|
|
gcc_assert (c <= start);
|
1027 |
|
|
|
1028 |
|
|
if (c <= end)
|
1029 |
|
|
{
|
1030 |
|
|
if (dump_file)
|
1031 |
|
|
fprintf (dump_file,
|
1032 |
|
|
"SMS failed to schedule branch at cycle: %d\n", c);
|
1033 |
|
|
ok = false;
|
1034 |
|
|
goto clear;
|
1035 |
|
|
}
|
1036 |
|
|
}
|
1037 |
|
|
|
1038 |
|
|
must_precede = sbitmap_alloc (g->num_nodes);
|
1039 |
|
|
must_follow = sbitmap_alloc (g->num_nodes);
|
1040 |
|
|
|
1041 |
|
|
/* Try to schedule the branch is it's new cycle. */
|
1042 |
|
|
calculate_must_precede_follow (g->closing_branch, start, end,
|
1043 |
|
|
step, ii, sched_nodes,
|
1044 |
|
|
must_precede, must_follow);
|
1045 |
|
|
|
1046 |
|
|
set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
|
1047 |
|
|
must_precede, c, start, end, step);
|
1048 |
|
|
|
1049 |
|
|
/* Find the element in the partial schedule related to the closing
|
1050 |
|
|
branch so we can remove it from it's current cycle. */
|
1051 |
|
|
for (next_ps_i = ps->rows[row];
|
1052 |
|
|
next_ps_i; next_ps_i = next_ps_i->next_in_row)
|
1053 |
|
|
if (next_ps_i->id == g->closing_branch->cuid)
|
1054 |
|
|
break;
|
1055 |
|
|
|
1056 |
|
|
remove_node_from_ps (ps, next_ps_i);
|
1057 |
|
|
success =
|
1058 |
|
|
try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
|
1059 |
|
|
sched_nodes, &num_splits,
|
1060 |
|
|
tmp_precede, tmp_follow);
|
1061 |
|
|
gcc_assert (num_splits == 0);
|
1062 |
|
|
if (!success)
|
1063 |
|
|
{
|
1064 |
|
|
if (dump_file)
|
1065 |
|
|
fprintf (dump_file,
|
1066 |
|
|
"SMS failed to schedule branch at cycle: %d, "
|
1067 |
|
|
"bringing it back to cycle %d\n", c, branch_cycle);
|
1068 |
|
|
|
1069 |
|
|
/* The branch was failed to be placed in row ii - 1.
|
1070 |
|
|
Put it back in it's original place in the partial
|
1071 |
|
|
schedualing. */
|
1072 |
|
|
set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
|
1073 |
|
|
must_precede, branch_cycle, start, end,
|
1074 |
|
|
step);
|
1075 |
|
|
success =
|
1076 |
|
|
try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
|
1077 |
|
|
branch_cycle, sched_nodes,
|
1078 |
|
|
&num_splits, tmp_precede,
|
1079 |
|
|
tmp_follow);
|
1080 |
|
|
gcc_assert (success && (num_splits == 0));
|
1081 |
|
|
ok = false;
|
1082 |
|
|
}
|
1083 |
|
|
else
|
1084 |
|
|
{
|
1085 |
|
|
/* The branch is placed in row ii - 1. */
|
1086 |
|
|
if (dump_file)
|
1087 |
|
|
fprintf (dump_file,
|
1088 |
|
|
"SMS success in moving branch to cycle %d\n", c);
|
1089 |
|
|
|
1090 |
|
|
update_node_sched_params (g->closing_branch->cuid, ii, c,
|
1091 |
|
|
PS_MIN_CYCLE (ps));
|
1092 |
|
|
ok = true;
|
1093 |
|
|
}
|
1094 |
|
|
|
1095 |
|
|
free (must_precede);
|
1096 |
|
|
free (must_follow);
|
1097 |
|
|
}
|
1098 |
|
|
|
1099 |
|
|
clear:
|
1100 |
|
|
free (sched_nodes);
|
1101 |
|
|
return ok;
|
1102 |
|
|
}
|
1103 |
|
|
|
1104 |
|
|
static void
|
1105 |
|
|
duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
|
1106 |
|
|
int to_stage, rtx count_reg)
|
1107 |
|
|
{
|
1108 |
|
|
int row;
|
1109 |
|
|
ps_insn_ptr ps_ij;
|
1110 |
|
|
|
1111 |
|
|
for (row = 0; row < ps->ii; row++)
|
1112 |
|
|
for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
|
1113 |
|
|
{
|
1114 |
|
|
int u = ps_ij->id;
|
1115 |
|
|
int first_u, last_u;
|
1116 |
|
|
rtx u_insn;
|
1117 |
|
|
|
1118 |
|
|
/* Do not duplicate any insn which refers to count_reg as it
|
1119 |
|
|
belongs to the control part.
|
1120 |
|
|
The closing branch is scheduled as well and thus should
|
1121 |
|
|
be ignored.
|
1122 |
|
|
TODO: This should be done by analyzing the control part of
|
1123 |
|
|
the loop. */
|
1124 |
|
|
u_insn = ps_rtl_insn (ps, u);
|
1125 |
|
|
if (reg_mentioned_p (count_reg, u_insn)
|
1126 |
|
|
|| JUMP_P (u_insn))
|
1127 |
|
|
continue;
|
1128 |
|
|
|
1129 |
|
|
first_u = SCHED_STAGE (u);
|
1130 |
|
|
last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
|
1131 |
|
|
if (from_stage <= last_u && to_stage >= first_u)
|
1132 |
|
|
{
|
1133 |
|
|
if (u < ps->g->num_nodes)
|
1134 |
|
|
duplicate_insn_chain (ps_first_note (ps, u), u_insn);
|
1135 |
|
|
else
|
1136 |
|
|
emit_insn (copy_rtx (PATTERN (u_insn)));
|
1137 |
|
|
}
|
1138 |
|
|
}
|
1139 |
|
|
}
|
1140 |
|
|
|
1141 |
|
|
|
1142 |
|
|
/* Generate the instructions (including reg_moves) for prolog & epilog. */
|
1143 |
|
|
static void
|
1144 |
|
|
generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
|
1145 |
|
|
rtx count_reg, rtx count_init)
|
1146 |
|
|
{
|
1147 |
|
|
int i;
|
1148 |
|
|
int last_stage = PS_STAGE_COUNT (ps) - 1;
|
1149 |
|
|
edge e;
|
1150 |
|
|
|
1151 |
|
|
/* Generate the prolog, inserting its insns on the loop-entry edge. */
|
1152 |
|
|
start_sequence ();
|
1153 |
|
|
|
1154 |
|
|
if (!count_init)
|
1155 |
|
|
{
|
1156 |
|
|
/* Generate instructions at the beginning of the prolog to
|
1157 |
|
|
adjust the loop count by STAGE_COUNT. If loop count is constant
|
1158 |
|
|
(count_init), this constant is adjusted by STAGE_COUNT in
|
1159 |
|
|
generate_prolog_epilog function. */
|
1160 |
|
|
rtx sub_reg = NULL_RTX;
|
1161 |
|
|
|
1162 |
|
|
sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS,
|
1163 |
|
|
count_reg, GEN_INT (last_stage),
|
1164 |
|
|
count_reg, 1, OPTAB_DIRECT);
|
1165 |
|
|
gcc_assert (REG_P (sub_reg));
|
1166 |
|
|
if (REGNO (sub_reg) != REGNO (count_reg))
|
1167 |
|
|
emit_move_insn (count_reg, sub_reg);
|
1168 |
|
|
}
|
1169 |
|
|
|
1170 |
|
|
for (i = 0; i < last_stage; i++)
|
1171 |
|
|
duplicate_insns_of_cycles (ps, 0, i, count_reg);
|
1172 |
|
|
|
1173 |
|
|
/* Put the prolog on the entry edge. */
|
1174 |
|
|
e = loop_preheader_edge (loop);
|
1175 |
|
|
split_edge_and_insert (e, get_insns ());
|
1176 |
|
|
if (!flag_resched_modulo_sched)
|
1177 |
|
|
e->dest->flags |= BB_DISABLE_SCHEDULE;
|
1178 |
|
|
|
1179 |
|
|
end_sequence ();
|
1180 |
|
|
|
1181 |
|
|
/* Generate the epilog, inserting its insns on the loop-exit edge. */
|
1182 |
|
|
start_sequence ();
|
1183 |
|
|
|
1184 |
|
|
for (i = 0; i < last_stage; i++)
|
1185 |
|
|
duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
|
1186 |
|
|
|
1187 |
|
|
/* Put the epilogue on the exit edge. */
|
1188 |
|
|
gcc_assert (single_exit (loop));
|
1189 |
|
|
e = single_exit (loop);
|
1190 |
|
|
split_edge_and_insert (e, get_insns ());
|
1191 |
|
|
if (!flag_resched_modulo_sched)
|
1192 |
|
|
e->dest->flags |= BB_DISABLE_SCHEDULE;
|
1193 |
|
|
|
1194 |
|
|
end_sequence ();
|
1195 |
|
|
}
|
1196 |
|
|
|
1197 |
|
|
/* Mark LOOP as software pipelined so the later
|
1198 |
|
|
scheduling passes don't touch it. */
|
1199 |
|
|
static void
|
1200 |
|
|
mark_loop_unsched (struct loop *loop)
|
1201 |
|
|
{
|
1202 |
|
|
unsigned i;
|
1203 |
|
|
basic_block *bbs = get_loop_body (loop);
|
1204 |
|
|
|
1205 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
1206 |
|
|
bbs[i]->flags |= BB_DISABLE_SCHEDULE;
|
1207 |
|
|
|
1208 |
|
|
free (bbs);
|
1209 |
|
|
}
|
1210 |
|
|
|
1211 |
|
|
/* Return true if all the BBs of the loop are empty except the
|
1212 |
|
|
loop header. */
|
1213 |
|
|
static bool
|
1214 |
|
|
loop_single_full_bb_p (struct loop *loop)
|
1215 |
|
|
{
|
1216 |
|
|
unsigned i;
|
1217 |
|
|
basic_block *bbs = get_loop_body (loop);
|
1218 |
|
|
|
1219 |
|
|
for (i = 0; i < loop->num_nodes ; i++)
|
1220 |
|
|
{
|
1221 |
|
|
rtx head, tail;
|
1222 |
|
|
bool empty_bb = true;
|
1223 |
|
|
|
1224 |
|
|
if (bbs[i] == loop->header)
|
1225 |
|
|
continue;
|
1226 |
|
|
|
1227 |
|
|
/* Make sure that basic blocks other than the header
|
1228 |
|
|
have only notes labels or jumps. */
|
1229 |
|
|
get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
|
1230 |
|
|
for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
|
1231 |
|
|
{
|
1232 |
|
|
if (NOTE_P (head) || LABEL_P (head)
|
1233 |
|
|
|| (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
|
1234 |
|
|
continue;
|
1235 |
|
|
empty_bb = false;
|
1236 |
|
|
break;
|
1237 |
|
|
}
|
1238 |
|
|
|
1239 |
|
|
if (! empty_bb)
|
1240 |
|
|
{
|
1241 |
|
|
free (bbs);
|
1242 |
|
|
return false;
|
1243 |
|
|
}
|
1244 |
|
|
}
|
1245 |
|
|
free (bbs);
|
1246 |
|
|
return true;
|
1247 |
|
|
}
|
1248 |
|
|
|
1249 |
|
|
/* Dump file:line from INSN's location info to dump_file. */
|
1250 |
|
|
|
1251 |
|
|
static void
|
1252 |
|
|
dump_insn_locator (rtx insn)
|
1253 |
|
|
{
|
1254 |
|
|
if (dump_file && INSN_LOCATOR (insn))
|
1255 |
|
|
{
|
1256 |
|
|
const char *file = insn_file (insn);
|
1257 |
|
|
if (file)
|
1258 |
|
|
fprintf (dump_file, " %s:%i", file, insn_line (insn));
|
1259 |
|
|
}
|
1260 |
|
|
}
|
1261 |
|
|
|
1262 |
|
|
/* A simple loop from SMS point of view; it is a loop that is composed of
|
1263 |
|
|
either a single basic block or two BBs - a header and a latch. */
|
1264 |
|
|
#define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
|
1265 |
|
|
&& (EDGE_COUNT (loop->latch->preds) == 1) \
|
1266 |
|
|
&& (EDGE_COUNT (loop->latch->succs) == 1))
|
1267 |
|
|
|
1268 |
|
|
/* Return true if the loop is in its canonical form and false if not.
|
1269 |
|
|
i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
|
1270 |
|
|
static bool
|
1271 |
|
|
loop_canon_p (struct loop *loop)
|
1272 |
|
|
{
|
1273 |
|
|
|
1274 |
|
|
if (loop->inner || !loop_outer (loop))
|
1275 |
|
|
{
|
1276 |
|
|
if (dump_file)
|
1277 |
|
|
fprintf (dump_file, "SMS loop inner or !loop_outer\n");
|
1278 |
|
|
return false;
|
1279 |
|
|
}
|
1280 |
|
|
|
1281 |
|
|
if (!single_exit (loop))
|
1282 |
|
|
{
|
1283 |
|
|
if (dump_file)
|
1284 |
|
|
{
|
1285 |
|
|
rtx insn = BB_END (loop->header);
|
1286 |
|
|
|
1287 |
|
|
fprintf (dump_file, "SMS loop many exits");
|
1288 |
|
|
dump_insn_locator (insn);
|
1289 |
|
|
fprintf (dump_file, "\n");
|
1290 |
|
|
}
|
1291 |
|
|
return false;
|
1292 |
|
|
}
|
1293 |
|
|
|
1294 |
|
|
if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
|
1295 |
|
|
{
|
1296 |
|
|
if (dump_file)
|
1297 |
|
|
{
|
1298 |
|
|
rtx insn = BB_END (loop->header);
|
1299 |
|
|
|
1300 |
|
|
fprintf (dump_file, "SMS loop many BBs.");
|
1301 |
|
|
dump_insn_locator (insn);
|
1302 |
|
|
fprintf (dump_file, "\n");
|
1303 |
|
|
}
|
1304 |
|
|
return false;
|
1305 |
|
|
}
|
1306 |
|
|
|
1307 |
|
|
return true;
|
1308 |
|
|
}
|
1309 |
|
|
|
1310 |
|
|
/* If there are more than one entry for the loop,
|
1311 |
|
|
make it one by splitting the first entry edge and
|
1312 |
|
|
redirecting the others to the new BB. */
|
1313 |
|
|
static void
|
1314 |
|
|
canon_loop (struct loop *loop)
|
1315 |
|
|
{
|
1316 |
|
|
edge e;
|
1317 |
|
|
edge_iterator i;
|
1318 |
|
|
|
1319 |
|
|
/* Avoid annoying special cases of edges going to exit
|
1320 |
|
|
block. */
|
1321 |
|
|
FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR->preds)
|
1322 |
|
|
if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
|
1323 |
|
|
split_edge (e);
|
1324 |
|
|
|
1325 |
|
|
if (loop->latch == loop->header
|
1326 |
|
|
|| EDGE_COUNT (loop->latch->succs) > 1)
|
1327 |
|
|
{
|
1328 |
|
|
FOR_EACH_EDGE (e, i, loop->header->preds)
|
1329 |
|
|
if (e->src == loop->latch)
|
1330 |
|
|
break;
|
1331 |
|
|
split_edge (e);
|
1332 |
|
|
}
|
1333 |
|
|
}
|
1334 |
|
|
|
1335 |
|
|
/* Setup infos. */
|
1336 |
|
|
static void
|
1337 |
|
|
setup_sched_infos (void)
|
1338 |
|
|
{
|
1339 |
|
|
memcpy (&sms_common_sched_info, &haifa_common_sched_info,
|
1340 |
|
|
sizeof (sms_common_sched_info));
|
1341 |
|
|
sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
|
1342 |
|
|
common_sched_info = &sms_common_sched_info;
|
1343 |
|
|
|
1344 |
|
|
sched_deps_info = &sms_sched_deps_info;
|
1345 |
|
|
current_sched_info = &sms_sched_info;
|
1346 |
|
|
}
|
1347 |
|
|
|
1348 |
|
|
/* Probability in % that the sms-ed loop rolls enough so that optimized
|
1349 |
|
|
version may be entered. Just a guess. */
|
1350 |
|
|
#define PROB_SMS_ENOUGH_ITERATIONS 80
|
1351 |
|
|
|
1352 |
|
|
/* Used to calculate the upper bound of ii. */
|
1353 |
|
|
#define MAXII_FACTOR 2
|
1354 |
|
|
|
1355 |
|
|
/* Main entry point, perform SMS scheduling on the loops of the function
|
1356 |
|
|
that consist of single basic blocks. */
|
1357 |
|
|
static void
|
1358 |
|
|
sms_schedule (void)
|
1359 |
|
|
{
|
1360 |
|
|
rtx insn;
|
1361 |
|
|
ddg_ptr *g_arr, g;
|
1362 |
|
|
int * node_order;
|
1363 |
|
|
int maxii, max_asap;
|
1364 |
|
|
loop_iterator li;
|
1365 |
|
|
partial_schedule_ptr ps;
|
1366 |
|
|
basic_block bb = NULL;
|
1367 |
|
|
struct loop *loop;
|
1368 |
|
|
basic_block condition_bb = NULL;
|
1369 |
|
|
edge latch_edge;
|
1370 |
|
|
gcov_type trip_count = 0;
|
1371 |
|
|
|
1372 |
|
|
loop_optimizer_init (LOOPS_HAVE_PREHEADERS
|
1373 |
|
|
| LOOPS_HAVE_RECORDED_EXITS);
|
1374 |
|
|
if (number_of_loops () <= 1)
|
1375 |
|
|
{
|
1376 |
|
|
loop_optimizer_finalize ();
|
1377 |
|
|
return; /* There are no loops to schedule. */
|
1378 |
|
|
}
|
1379 |
|
|
|
1380 |
|
|
/* Initialize issue_rate. */
|
1381 |
|
|
if (targetm.sched.issue_rate)
|
1382 |
|
|
{
|
1383 |
|
|
int temp = reload_completed;
|
1384 |
|
|
|
1385 |
|
|
reload_completed = 1;
|
1386 |
|
|
issue_rate = targetm.sched.issue_rate ();
|
1387 |
|
|
reload_completed = temp;
|
1388 |
|
|
}
|
1389 |
|
|
else
|
1390 |
|
|
issue_rate = 1;
|
1391 |
|
|
|
1392 |
|
|
/* Initialize the scheduler. */
|
1393 |
|
|
setup_sched_infos ();
|
1394 |
|
|
haifa_sched_init ();
|
1395 |
|
|
|
1396 |
|
|
/* Allocate memory to hold the DDG array one entry for each loop.
|
1397 |
|
|
We use loop->num as index into this array. */
|
1398 |
|
|
g_arr = XCNEWVEC (ddg_ptr, number_of_loops ());
|
1399 |
|
|
|
1400 |
|
|
if (dump_file)
|
1401 |
|
|
{
|
1402 |
|
|
fprintf (dump_file, "\n\nSMS analysis phase\n");
|
1403 |
|
|
fprintf (dump_file, "===================\n\n");
|
1404 |
|
|
}
|
1405 |
|
|
|
1406 |
|
|
/* Build DDGs for all the relevant loops and hold them in G_ARR
|
1407 |
|
|
indexed by the loop index. */
|
1408 |
|
|
FOR_EACH_LOOP (li, loop, 0)
|
1409 |
|
|
{
|
1410 |
|
|
rtx head, tail;
|
1411 |
|
|
rtx count_reg;
|
1412 |
|
|
|
1413 |
|
|
/* For debugging. */
|
1414 |
|
|
if (dbg_cnt (sms_sched_loop) == false)
|
1415 |
|
|
{
|
1416 |
|
|
if (dump_file)
|
1417 |
|
|
fprintf (dump_file, "SMS reached max limit... \n");
|
1418 |
|
|
|
1419 |
|
|
break;
|
1420 |
|
|
}
|
1421 |
|
|
|
1422 |
|
|
if (dump_file)
|
1423 |
|
|
{
|
1424 |
|
|
rtx insn = BB_END (loop->header);
|
1425 |
|
|
|
1426 |
|
|
fprintf (dump_file, "SMS loop num: %d", loop->num);
|
1427 |
|
|
dump_insn_locator (insn);
|
1428 |
|
|
fprintf (dump_file, "\n");
|
1429 |
|
|
}
|
1430 |
|
|
|
1431 |
|
|
if (! loop_canon_p (loop))
|
1432 |
|
|
continue;
|
1433 |
|
|
|
1434 |
|
|
if (! loop_single_full_bb_p (loop))
|
1435 |
|
|
{
|
1436 |
|
|
if (dump_file)
|
1437 |
|
|
fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
|
1438 |
|
|
continue;
|
1439 |
|
|
}
|
1440 |
|
|
|
1441 |
|
|
bb = loop->header;
|
1442 |
|
|
|
1443 |
|
|
get_ebb_head_tail (bb, bb, &head, &tail);
|
1444 |
|
|
latch_edge = loop_latch_edge (loop);
|
1445 |
|
|
gcc_assert (single_exit (loop));
|
1446 |
|
|
if (single_exit (loop)->count)
|
1447 |
|
|
trip_count = latch_edge->count / single_exit (loop)->count;
|
1448 |
|
|
|
1449 |
|
|
/* Perform SMS only on loops that their average count is above threshold. */
|
1450 |
|
|
|
1451 |
|
|
if ( latch_edge->count
|
1452 |
|
|
&& (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
|
1453 |
|
|
{
|
1454 |
|
|
if (dump_file)
|
1455 |
|
|
{
|
1456 |
|
|
dump_insn_locator (tail);
|
1457 |
|
|
fprintf (dump_file, "\nSMS single-bb-loop\n");
|
1458 |
|
|
if (profile_info && flag_branch_probabilities)
|
1459 |
|
|
{
|
1460 |
|
|
fprintf (dump_file, "SMS loop-count ");
|
1461 |
|
|
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
|
1462 |
|
|
(HOST_WIDEST_INT) bb->count);
|
1463 |
|
|
fprintf (dump_file, "\n");
|
1464 |
|
|
fprintf (dump_file, "SMS trip-count ");
|
1465 |
|
|
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
|
1466 |
|
|
(HOST_WIDEST_INT) trip_count);
|
1467 |
|
|
fprintf (dump_file, "\n");
|
1468 |
|
|
fprintf (dump_file, "SMS profile-sum-max ");
|
1469 |
|
|
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
|
1470 |
|
|
(HOST_WIDEST_INT) profile_info->sum_max);
|
1471 |
|
|
fprintf (dump_file, "\n");
|
1472 |
|
|
}
|
1473 |
|
|
}
|
1474 |
|
|
continue;
|
1475 |
|
|
}
|
1476 |
|
|
|
1477 |
|
|
/* Make sure this is a doloop. */
|
1478 |
|
|
if ( !(count_reg = doloop_register_get (head, tail)))
|
1479 |
|
|
{
|
1480 |
|
|
if (dump_file)
|
1481 |
|
|
fprintf (dump_file, "SMS doloop_register_get failed\n");
|
1482 |
|
|
continue;
|
1483 |
|
|
}
|
1484 |
|
|
|
1485 |
|
|
/* Don't handle BBs with calls or barriers
|
1486 |
|
|
or !single_set with the exception of instructions that include
|
1487 |
|
|
count_reg---these instructions are part of the control part
|
1488 |
|
|
that do-loop recognizes.
|
1489 |
|
|
??? Should handle insns defining subregs. */
|
1490 |
|
|
for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
|
1491 |
|
|
{
|
1492 |
|
|
rtx set;
|
1493 |
|
|
|
1494 |
|
|
if (CALL_P (insn)
|
1495 |
|
|
|| BARRIER_P (insn)
|
1496 |
|
|
|| (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
|
1497 |
|
|
&& !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
|
1498 |
|
|
&& !reg_mentioned_p (count_reg, insn))
|
1499 |
|
|
|| (INSN_P (insn) && (set = single_set (insn))
|
1500 |
|
|
&& GET_CODE (SET_DEST (set)) == SUBREG))
|
1501 |
|
|
break;
|
1502 |
|
|
}
|
1503 |
|
|
|
1504 |
|
|
if (insn != NEXT_INSN (tail))
|
1505 |
|
|
{
|
1506 |
|
|
if (dump_file)
|
1507 |
|
|
{
|
1508 |
|
|
if (CALL_P (insn))
|
1509 |
|
|
fprintf (dump_file, "SMS loop-with-call\n");
|
1510 |
|
|
else if (BARRIER_P (insn))
|
1511 |
|
|
fprintf (dump_file, "SMS loop-with-barrier\n");
|
1512 |
|
|
else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
|
1513 |
|
|
&& !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
|
1514 |
|
|
fprintf (dump_file, "SMS loop-with-not-single-set\n");
|
1515 |
|
|
else
|
1516 |
|
|
fprintf (dump_file, "SMS loop with subreg in lhs\n");
|
1517 |
|
|
print_rtl_single (dump_file, insn);
|
1518 |
|
|
}
|
1519 |
|
|
|
1520 |
|
|
continue;
|
1521 |
|
|
}
|
1522 |
|
|
|
1523 |
|
|
/* Always schedule the closing branch with the rest of the
|
1524 |
|
|
instructions. The branch is rotated to be in row ii-1 at the
|
1525 |
|
|
end of the scheduling procedure to make sure it's the last
|
1526 |
|
|
instruction in the iteration. */
|
1527 |
|
|
if (! (g = create_ddg (bb, 1)))
|
1528 |
|
|
{
|
1529 |
|
|
if (dump_file)
|
1530 |
|
|
fprintf (dump_file, "SMS create_ddg failed\n");
|
1531 |
|
|
continue;
|
1532 |
|
|
}
|
1533 |
|
|
|
1534 |
|
|
g_arr[loop->num] = g;
|
1535 |
|
|
if (dump_file)
|
1536 |
|
|
fprintf (dump_file, "...OK\n");
|
1537 |
|
|
|
1538 |
|
|
}
|
1539 |
|
|
if (dump_file)
|
1540 |
|
|
{
|
1541 |
|
|
fprintf (dump_file, "\nSMS transformation phase\n");
|
1542 |
|
|
fprintf (dump_file, "=========================\n\n");
|
1543 |
|
|
}
|
1544 |
|
|
|
1545 |
|
|
/* We don't want to perform SMS on new loops - created by versioning. */
|
1546 |
|
|
FOR_EACH_LOOP (li, loop, 0)
|
1547 |
|
|
{
|
1548 |
|
|
rtx head, tail;
|
1549 |
|
|
rtx count_reg, count_init;
|
1550 |
|
|
int mii, rec_mii, stage_count, min_cycle;
|
1551 |
|
|
HOST_WIDEST_INT loop_count = 0;
|
1552 |
|
|
bool opt_sc_p;
|
1553 |
|
|
|
1554 |
|
|
if (! (g = g_arr[loop->num]))
|
1555 |
|
|
continue;
|
1556 |
|
|
|
1557 |
|
|
if (dump_file)
|
1558 |
|
|
{
|
1559 |
|
|
rtx insn = BB_END (loop->header);
|
1560 |
|
|
|
1561 |
|
|
fprintf (dump_file, "SMS loop num: %d", loop->num);
|
1562 |
|
|
dump_insn_locator (insn);
|
1563 |
|
|
fprintf (dump_file, "\n");
|
1564 |
|
|
|
1565 |
|
|
print_ddg (dump_file, g);
|
1566 |
|
|
}
|
1567 |
|
|
|
1568 |
|
|
get_ebb_head_tail (loop->header, loop->header, &head, &tail);
|
1569 |
|
|
|
1570 |
|
|
latch_edge = loop_latch_edge (loop);
|
1571 |
|
|
gcc_assert (single_exit (loop));
|
1572 |
|
|
if (single_exit (loop)->count)
|
1573 |
|
|
trip_count = latch_edge->count / single_exit (loop)->count;
|
1574 |
|
|
|
1575 |
|
|
if (dump_file)
|
1576 |
|
|
{
|
1577 |
|
|
dump_insn_locator (tail);
|
1578 |
|
|
fprintf (dump_file, "\nSMS single-bb-loop\n");
|
1579 |
|
|
if (profile_info && flag_branch_probabilities)
|
1580 |
|
|
{
|
1581 |
|
|
fprintf (dump_file, "SMS loop-count ");
|
1582 |
|
|
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
|
1583 |
|
|
(HOST_WIDEST_INT) bb->count);
|
1584 |
|
|
fprintf (dump_file, "\n");
|
1585 |
|
|
fprintf (dump_file, "SMS profile-sum-max ");
|
1586 |
|
|
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
|
1587 |
|
|
(HOST_WIDEST_INT) profile_info->sum_max);
|
1588 |
|
|
fprintf (dump_file, "\n");
|
1589 |
|
|
}
|
1590 |
|
|
fprintf (dump_file, "SMS doloop\n");
|
1591 |
|
|
fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
|
1592 |
|
|
fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
|
1593 |
|
|
fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
|
1594 |
|
|
}
|
1595 |
|
|
|
1596 |
|
|
|
1597 |
|
|
/* In case of th loop have doloop register it gets special
|
1598 |
|
|
handling. */
|
1599 |
|
|
count_init = NULL_RTX;
|
1600 |
|
|
if ((count_reg = doloop_register_get (head, tail)))
|
1601 |
|
|
{
|
1602 |
|
|
basic_block pre_header;
|
1603 |
|
|
|
1604 |
|
|
pre_header = loop_preheader_edge (loop)->src;
|
1605 |
|
|
count_init = const_iteration_count (count_reg, pre_header,
|
1606 |
|
|
&loop_count);
|
1607 |
|
|
}
|
1608 |
|
|
gcc_assert (count_reg);
|
1609 |
|
|
|
1610 |
|
|
if (dump_file && count_init)
|
1611 |
|
|
{
|
1612 |
|
|
fprintf (dump_file, "SMS const-doloop ");
|
1613 |
|
|
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
|
1614 |
|
|
loop_count);
|
1615 |
|
|
fprintf (dump_file, "\n");
|
1616 |
|
|
}
|
1617 |
|
|
|
1618 |
|
|
node_order = XNEWVEC (int, g->num_nodes);
|
1619 |
|
|
|
1620 |
|
|
mii = 1; /* Need to pass some estimate of mii. */
|
1621 |
|
|
rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
|
1622 |
|
|
mii = MAX (res_MII (g), rec_mii);
|
1623 |
|
|
maxii = MAX (max_asap, MAXII_FACTOR * mii);
|
1624 |
|
|
|
1625 |
|
|
if (dump_file)
|
1626 |
|
|
fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
|
1627 |
|
|
rec_mii, mii, maxii);
|
1628 |
|
|
|
1629 |
|
|
for (;;)
|
1630 |
|
|
{
|
1631 |
|
|
set_node_sched_params (g);
|
1632 |
|
|
|
1633 |
|
|
stage_count = 0;
|
1634 |
|
|
opt_sc_p = false;
|
1635 |
|
|
ps = sms_schedule_by_order (g, mii, maxii, node_order);
|
1636 |
|
|
|
1637 |
|
|
if (ps)
|
1638 |
|
|
{
|
1639 |
|
|
/* Try to achieve optimized SC by normalizing the partial
|
1640 |
|
|
schedule (having the cycles start from cycle zero).
|
1641 |
|
|
The branch location must be placed in row ii-1 in the
|
1642 |
|
|
final scheduling. If failed, shift all instructions to
|
1643 |
|
|
position the branch in row ii-1. */
|
1644 |
|
|
opt_sc_p = optimize_sc (ps, g);
|
1645 |
|
|
if (opt_sc_p)
|
1646 |
|
|
stage_count = calculate_stage_count (ps, 0);
|
1647 |
|
|
else
|
1648 |
|
|
{
|
1649 |
|
|
/* Bring the branch to cycle ii-1. */
|
1650 |
|
|
int amount = (SCHED_TIME (g->closing_branch->cuid)
|
1651 |
|
|
- (ps->ii - 1));
|
1652 |
|
|
|
1653 |
|
|
if (dump_file)
|
1654 |
|
|
fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
|
1655 |
|
|
|
1656 |
|
|
stage_count = calculate_stage_count (ps, amount);
|
1657 |
|
|
}
|
1658 |
|
|
|
1659 |
|
|
gcc_assert (stage_count >= 1);
|
1660 |
|
|
}
|
1661 |
|
|
|
1662 |
|
|
/* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
|
1663 |
|
|
1 means that there is no interleaving between iterations thus
|
1664 |
|
|
we let the scheduling passes do the job in this case. */
|
1665 |
|
|
if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
|
1666 |
|
|
|| (count_init && (loop_count <= stage_count))
|
1667 |
|
|
|| (flag_branch_probabilities && (trip_count <= stage_count)))
|
1668 |
|
|
{
|
1669 |
|
|
if (dump_file)
|
1670 |
|
|
{
|
1671 |
|
|
fprintf (dump_file, "SMS failed... \n");
|
1672 |
|
|
fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
|
1673 |
|
|
" loop-count=", stage_count);
|
1674 |
|
|
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, loop_count);
|
1675 |
|
|
fprintf (dump_file, ", trip-count=");
|
1676 |
|
|
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, trip_count);
|
1677 |
|
|
fprintf (dump_file, ")\n");
|
1678 |
|
|
}
|
1679 |
|
|
break;
|
1680 |
|
|
}
|
1681 |
|
|
|
1682 |
|
|
if (!opt_sc_p)
|
1683 |
|
|
{
|
1684 |
|
|
/* Rotate the partial schedule to have the branch in row ii-1. */
|
1685 |
|
|
int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
|
1686 |
|
|
|
1687 |
|
|
reset_sched_times (ps, amount);
|
1688 |
|
|
rotate_partial_schedule (ps, amount);
|
1689 |
|
|
}
|
1690 |
|
|
|
1691 |
|
|
set_columns_for_ps (ps);
|
1692 |
|
|
|
1693 |
|
|
min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
|
1694 |
|
|
if (!schedule_reg_moves (ps))
|
1695 |
|
|
{
|
1696 |
|
|
mii = ps->ii + 1;
|
1697 |
|
|
free_partial_schedule (ps);
|
1698 |
|
|
continue;
|
1699 |
|
|
}
|
1700 |
|
|
|
1701 |
|
|
/* Moves that handle incoming values might have been added
|
1702 |
|
|
to a new first stage. Bump the stage count if so.
|
1703 |
|
|
|
1704 |
|
|
??? Perhaps we could consider rotating the schedule here
|
1705 |
|
|
instead? */
|
1706 |
|
|
if (PS_MIN_CYCLE (ps) < min_cycle)
|
1707 |
|
|
{
|
1708 |
|
|
reset_sched_times (ps, 0);
|
1709 |
|
|
stage_count++;
|
1710 |
|
|
}
|
1711 |
|
|
|
1712 |
|
|
/* The stage count should now be correct without rotation. */
|
1713 |
|
|
gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
|
1714 |
|
|
PS_STAGE_COUNT (ps) = stage_count;
|
1715 |
|
|
|
1716 |
|
|
canon_loop (loop);
|
1717 |
|
|
|
1718 |
|
|
if (dump_file)
|
1719 |
|
|
{
|
1720 |
|
|
dump_insn_locator (tail);
|
1721 |
|
|
fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
|
1722 |
|
|
ps->ii, stage_count);
|
1723 |
|
|
print_partial_schedule (ps, dump_file);
|
1724 |
|
|
}
|
1725 |
|
|
|
1726 |
|
|
/* case the BCT count is not known , Do loop-versioning */
|
1727 |
|
|
if (count_reg && ! count_init)
|
1728 |
|
|
{
|
1729 |
|
|
rtx comp_rtx = gen_rtx_fmt_ee (GT, VOIDmode, count_reg,
|
1730 |
|
|
GEN_INT(stage_count));
|
1731 |
|
|
unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
|
1732 |
|
|
* REG_BR_PROB_BASE) / 100;
|
1733 |
|
|
|
1734 |
|
|
loop_version (loop, comp_rtx, &condition_bb,
|
1735 |
|
|
prob, prob, REG_BR_PROB_BASE - prob,
|
1736 |
|
|
true);
|
1737 |
|
|
}
|
1738 |
|
|
|
1739 |
|
|
/* Set new iteration count of loop kernel. */
|
1740 |
|
|
if (count_reg && count_init)
|
1741 |
|
|
SET_SRC (single_set (count_init)) = GEN_INT (loop_count
|
1742 |
|
|
- stage_count + 1);
|
1743 |
|
|
|
1744 |
|
|
/* Now apply the scheduled kernel to the RTL of the loop. */
|
1745 |
|
|
permute_partial_schedule (ps, g->closing_branch->first_note);
|
1746 |
|
|
|
1747 |
|
|
/* Mark this loop as software pipelined so the later
|
1748 |
|
|
scheduling passes don't touch it. */
|
1749 |
|
|
if (! flag_resched_modulo_sched)
|
1750 |
|
|
mark_loop_unsched (loop);
|
1751 |
|
|
|
1752 |
|
|
/* The life-info is not valid any more. */
|
1753 |
|
|
df_set_bb_dirty (g->bb);
|
1754 |
|
|
|
1755 |
|
|
apply_reg_moves (ps);
|
1756 |
|
|
if (dump_file)
|
1757 |
|
|
print_node_sched_params (dump_file, g->num_nodes, ps);
|
1758 |
|
|
/* Generate prolog and epilog. */
|
1759 |
|
|
generate_prolog_epilog (ps, loop, count_reg, count_init);
|
1760 |
|
|
break;
|
1761 |
|
|
}
|
1762 |
|
|
|
1763 |
|
|
free_partial_schedule (ps);
|
1764 |
|
|
VEC_free (node_sched_params, heap, node_sched_param_vec);
|
1765 |
|
|
free (node_order);
|
1766 |
|
|
free_ddg (g);
|
1767 |
|
|
}
|
1768 |
|
|
|
1769 |
|
|
free (g_arr);
|
1770 |
|
|
|
1771 |
|
|
/* Release scheduler data, needed until now because of DFA. */
|
1772 |
|
|
haifa_sched_finish ();
|
1773 |
|
|
loop_optimizer_finalize ();
|
1774 |
|
|
}
|
1775 |
|
|
|
1776 |
|
|
/* The SMS scheduling algorithm itself
|
1777 |
|
|
-----------------------------------
|
1778 |
|
|
Input: 'O' an ordered list of insns of a loop.
|
1779 |
|
|
Output: A scheduling of the loop - kernel, prolog, and epilogue.
|
1780 |
|
|
|
1781 |
|
|
'Q' is the empty Set
|
1782 |
|
|
'PS' is the partial schedule; it holds the currently scheduled nodes with
|
1783 |
|
|
their cycle/slot.
|
1784 |
|
|
'PSP' previously scheduled predecessors.
|
1785 |
|
|
'PSS' previously scheduled successors.
|
1786 |
|
|
't(u)' the cycle where u is scheduled.
|
1787 |
|
|
'l(u)' is the latency of u.
|
1788 |
|
|
'd(v,u)' is the dependence distance from v to u.
|
1789 |
|
|
'ASAP(u)' the earliest time at which u could be scheduled as computed in
|
1790 |
|
|
the node ordering phase.
|
1791 |
|
|
'check_hardware_resources_conflicts(u, PS, c)'
|
1792 |
|
|
run a trace around cycle/slot through DFA model
|
1793 |
|
|
to check resource conflicts involving instruction u
|
1794 |
|
|
at cycle c given the partial schedule PS.
|
1795 |
|
|
'add_to_partial_schedule_at_time(u, PS, c)'
|
1796 |
|
|
Add the node/instruction u to the partial schedule
|
1797 |
|
|
PS at time c.
|
1798 |
|
|
'calculate_register_pressure(PS)'
|
1799 |
|
|
Given a schedule of instructions, calculate the register
|
1800 |
|
|
pressure it implies. One implementation could be the
|
1801 |
|
|
maximum number of overlapping live ranges.
|
1802 |
|
|
'maxRP' The maximum allowed register pressure, it is usually derived from the number
|
1803 |
|
|
registers available in the hardware.
|
1804 |
|
|
|
1805 |
|
|
1. II = MII.
|
1806 |
|
|
2. PS = empty list
|
1807 |
|
|
3. for each node u in O in pre-computed order
|
1808 |
|
|
4. if (PSP(u) != Q && PSS(u) == Q) then
|
1809 |
|
|
5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
|
1810 |
|
|
6. start = Early_start; end = Early_start + II - 1; step = 1
|
1811 |
|
|
11. else if (PSP(u) == Q && PSS(u) != Q) then
|
1812 |
|
|
12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
|
1813 |
|
|
13. start = Late_start; end = Late_start - II + 1; step = -1
|
1814 |
|
|
14. else if (PSP(u) != Q && PSS(u) != Q) then
|
1815 |
|
|
15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
|
1816 |
|
|
16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
|
1817 |
|
|
17. start = Early_start;
|
1818 |
|
|
18. end = min(Early_start + II - 1 , Late_start);
|
1819 |
|
|
19. step = 1
|
1820 |
|
|
20. else "if (PSP(u) == Q && PSS(u) == Q)"
|
1821 |
|
|
21. start = ASAP(u); end = start + II - 1; step = 1
|
1822 |
|
|
22. endif
|
1823 |
|
|
|
1824 |
|
|
23. success = false
|
1825 |
|
|
24. for (c = start ; c != end ; c += step)
|
1826 |
|
|
25. if check_hardware_resources_conflicts(u, PS, c) then
|
1827 |
|
|
26. add_to_partial_schedule_at_time(u, PS, c)
|
1828 |
|
|
27. success = true
|
1829 |
|
|
28. break
|
1830 |
|
|
29. endif
|
1831 |
|
|
30. endfor
|
1832 |
|
|
31. if (success == false) then
|
1833 |
|
|
32. II = II + 1
|
1834 |
|
|
33. if (II > maxII) then
|
1835 |
|
|
34. finish - failed to schedule
|
1836 |
|
|
35. endif
|
1837 |
|
|
36. goto 2.
|
1838 |
|
|
37. endif
|
1839 |
|
|
38. endfor
|
1840 |
|
|
39. if (calculate_register_pressure(PS) > maxRP) then
|
1841 |
|
|
40. goto 32.
|
1842 |
|
|
41. endif
|
1843 |
|
|
42. compute epilogue & prologue
|
1844 |
|
|
43. finish - succeeded to schedule
|
1845 |
|
|
|
1846 |
|
|
??? The algorithm restricts the scheduling window to II cycles.
|
1847 |
|
|
In rare cases, it may be better to allow windows of II+1 cycles.
|
1848 |
|
|
The window would then start and end on the same row, but with
|
1849 |
|
|
different "must precede" and "must follow" requirements. */
|
1850 |
|
|
|
1851 |
|
|
/* A limit on the number of cycles that resource conflicts can span. ??? Should
|
1852 |
|
|
be provided by DFA, and be dependent on the type of insn scheduled. Currently
|
1853 |
|
|
set to 0 to save compile time. */
|
1854 |
|
|
#define DFA_HISTORY SMS_DFA_HISTORY
|
1855 |
|
|
|
1856 |
|
|
/* A threshold for the number of repeated unsuccessful attempts to insert
|
1857 |
|
|
an empty row, before we flush the partial schedule and start over. */
|
1858 |
|
|
#define MAX_SPLIT_NUM 10
|
1859 |
|
|
/* Given the partial schedule PS, this function calculates and returns the
|
1860 |
|
|
cycles in which we can schedule the node with the given index I.
|
1861 |
|
|
NOTE: Here we do the backtracking in SMS, in some special cases. We have
|
1862 |
|
|
noticed that there are several cases in which we fail to SMS the loop
|
1863 |
|
|
because the sched window of a node is empty due to tight data-deps. In
|
1864 |
|
|
such cases we want to unschedule some of the predecessors/successors
|
1865 |
|
|
until we get non-empty scheduling window. It returns -1 if the
|
1866 |
|
|
scheduling window is empty and zero otherwise. */
|
1867 |
|
|
|
1868 |
|
|
static int
|
1869 |
|
|
get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
|
1870 |
|
|
sbitmap sched_nodes, int ii, int *start_p, int *step_p,
|
1871 |
|
|
int *end_p)
|
1872 |
|
|
{
|
1873 |
|
|
int start, step, end;
|
1874 |
|
|
int early_start, late_start;
|
1875 |
|
|
ddg_edge_ptr e;
|
1876 |
|
|
sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
|
1877 |
|
|
sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
|
1878 |
|
|
sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
|
1879 |
|
|
sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
|
1880 |
|
|
int psp_not_empty;
|
1881 |
|
|
int pss_not_empty;
|
1882 |
|
|
int count_preds;
|
1883 |
|
|
int count_succs;
|
1884 |
|
|
|
1885 |
|
|
/* 1. compute sched window for u (start, end, step). */
|
1886 |
|
|
sbitmap_zero (psp);
|
1887 |
|
|
sbitmap_zero (pss);
|
1888 |
|
|
psp_not_empty = sbitmap_a_and_b_cg (psp, u_node_preds, sched_nodes);
|
1889 |
|
|
pss_not_empty = sbitmap_a_and_b_cg (pss, u_node_succs, sched_nodes);
|
1890 |
|
|
|
1891 |
|
|
/* We first compute a forward range (start <= end), then decide whether
|
1892 |
|
|
to reverse it. */
|
1893 |
|
|
early_start = INT_MIN;
|
1894 |
|
|
late_start = INT_MAX;
|
1895 |
|
|
start = INT_MIN;
|
1896 |
|
|
end = INT_MAX;
|
1897 |
|
|
step = 1;
|
1898 |
|
|
|
1899 |
|
|
count_preds = 0;
|
1900 |
|
|
count_succs = 0;
|
1901 |
|
|
|
1902 |
|
|
if (dump_file && (psp_not_empty || pss_not_empty))
|
1903 |
|
|
{
|
1904 |
|
|
fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
|
1905 |
|
|
"; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
|
1906 |
|
|
fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
|
1907 |
|
|
"start", "early start", "late start", "end", "time");
|
1908 |
|
|
fprintf (dump_file, "=========== =========== =========== ==========="
|
1909 |
|
|
" =====\n");
|
1910 |
|
|
}
|
1911 |
|
|
/* Calculate early_start and limit end. Both bounds are inclusive. */
|
1912 |
|
|
if (psp_not_empty)
|
1913 |
|
|
for (e = u_node->in; e != 0; e = e->next_in)
|
1914 |
|
|
{
|
1915 |
|
|
int v = e->src->cuid;
|
1916 |
|
|
|
1917 |
|
|
if (TEST_BIT (sched_nodes, v))
|
1918 |
|
|
{
|
1919 |
|
|
int p_st = SCHED_TIME (v);
|
1920 |
|
|
int earliest = p_st + e->latency - (e->distance * ii);
|
1921 |
|
|
int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
|
1922 |
|
|
|
1923 |
|
|
if (dump_file)
|
1924 |
|
|
{
|
1925 |
|
|
fprintf (dump_file, "%11s %11d %11s %11d %5d",
|
1926 |
|
|
"", earliest, "", latest, p_st);
|
1927 |
|
|
print_ddg_edge (dump_file, e);
|
1928 |
|
|
fprintf (dump_file, "\n");
|
1929 |
|
|
}
|
1930 |
|
|
|
1931 |
|
|
early_start = MAX (early_start, earliest);
|
1932 |
|
|
end = MIN (end, latest);
|
1933 |
|
|
|
1934 |
|
|
if (e->type == TRUE_DEP && e->data_type == REG_DEP)
|
1935 |
|
|
count_preds++;
|
1936 |
|
|
}
|
1937 |
|
|
}
|
1938 |
|
|
|
1939 |
|
|
/* Calculate late_start and limit start. Both bounds are inclusive. */
|
1940 |
|
|
if (pss_not_empty)
|
1941 |
|
|
for (e = u_node->out; e != 0; e = e->next_out)
|
1942 |
|
|
{
|
1943 |
|
|
int v = e->dest->cuid;
|
1944 |
|
|
|
1945 |
|
|
if (TEST_BIT (sched_nodes, v))
|
1946 |
|
|
{
|
1947 |
|
|
int s_st = SCHED_TIME (v);
|
1948 |
|
|
int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
|
1949 |
|
|
int latest = s_st - e->latency + (e->distance * ii);
|
1950 |
|
|
|
1951 |
|
|
if (dump_file)
|
1952 |
|
|
{
|
1953 |
|
|
fprintf (dump_file, "%11d %11s %11d %11s %5d",
|
1954 |
|
|
earliest, "", latest, "", s_st);
|
1955 |
|
|
print_ddg_edge (dump_file, e);
|
1956 |
|
|
fprintf (dump_file, "\n");
|
1957 |
|
|
}
|
1958 |
|
|
|
1959 |
|
|
start = MAX (start, earliest);
|
1960 |
|
|
late_start = MIN (late_start, latest);
|
1961 |
|
|
|
1962 |
|
|
if (e->type == TRUE_DEP && e->data_type == REG_DEP)
|
1963 |
|
|
count_succs++;
|
1964 |
|
|
}
|
1965 |
|
|
}
|
1966 |
|
|
|
1967 |
|
|
if (dump_file && (psp_not_empty || pss_not_empty))
|
1968 |
|
|
{
|
1969 |
|
|
fprintf (dump_file, "----------- ----------- ----------- -----------"
|
1970 |
|
|
" -----\n");
|
1971 |
|
|
fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
|
1972 |
|
|
start, early_start, late_start, end, "",
|
1973 |
|
|
"(max, max, min, min)");
|
1974 |
|
|
}
|
1975 |
|
|
|
1976 |
|
|
/* Get a target scheduling window no bigger than ii. */
|
1977 |
|
|
if (early_start == INT_MIN && late_start == INT_MAX)
|
1978 |
|
|
early_start = NODE_ASAP (u_node);
|
1979 |
|
|
else if (early_start == INT_MIN)
|
1980 |
|
|
early_start = late_start - (ii - 1);
|
1981 |
|
|
late_start = MIN (late_start, early_start + (ii - 1));
|
1982 |
|
|
|
1983 |
|
|
/* Apply memory dependence limits. */
|
1984 |
|
|
start = MAX (start, early_start);
|
1985 |
|
|
end = MIN (end, late_start);
|
1986 |
|
|
|
1987 |
|
|
if (dump_file && (psp_not_empty || pss_not_empty))
|
1988 |
|
|
fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
|
1989 |
|
|
"", start, end, "", "");
|
1990 |
|
|
|
1991 |
|
|
/* If there are at least as many successors as predecessors, schedule the
|
1992 |
|
|
node close to its successors. */
|
1993 |
|
|
if (pss_not_empty && count_succs >= count_preds)
|
1994 |
|
|
{
|
1995 |
|
|
int tmp = end;
|
1996 |
|
|
end = start;
|
1997 |
|
|
start = tmp;
|
1998 |
|
|
step = -1;
|
1999 |
|
|
}
|
2000 |
|
|
|
2001 |
|
|
/* Now that we've finalized the window, make END an exclusive rather
|
2002 |
|
|
than an inclusive bound. */
|
2003 |
|
|
end += step;
|
2004 |
|
|
|
2005 |
|
|
*start_p = start;
|
2006 |
|
|
*step_p = step;
|
2007 |
|
|
*end_p = end;
|
2008 |
|
|
sbitmap_free (psp);
|
2009 |
|
|
sbitmap_free (pss);
|
2010 |
|
|
|
2011 |
|
|
if ((start >= end && step == 1) || (start <= end && step == -1))
|
2012 |
|
|
{
|
2013 |
|
|
if (dump_file)
|
2014 |
|
|
fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
|
2015 |
|
|
start, end, step);
|
2016 |
|
|
return -1;
|
2017 |
|
|
}
|
2018 |
|
|
|
2019 |
|
|
return 0;
|
2020 |
|
|
}
|
2021 |
|
|
|
2022 |
|
|
/* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
|
2023 |
|
|
node currently been scheduled. At the end of the calculation
|
2024 |
|
|
MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
|
2025 |
|
|
U_NODE which are (1) already scheduled in the first/last row of
|
2026 |
|
|
U_NODE's scheduling window, (2) whose dependence inequality with U
|
2027 |
|
|
becomes an equality when U is scheduled in this same row, and (3)
|
2028 |
|
|
whose dependence latency is zero.
|
2029 |
|
|
|
2030 |
|
|
The first and last rows are calculated using the following parameters:
|
2031 |
|
|
START/END rows - The cycles that begins/ends the traversal on the window;
|
2032 |
|
|
searching for an empty cycle to schedule U_NODE.
|
2033 |
|
|
STEP - The direction in which we traverse the window.
|
2034 |
|
|
II - The initiation interval. */
|
2035 |
|
|
|
2036 |
|
|
static void
|
2037 |
|
|
calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
|
2038 |
|
|
int step, int ii, sbitmap sched_nodes,
|
2039 |
|
|
sbitmap must_precede, sbitmap must_follow)
|
2040 |
|
|
{
|
2041 |
|
|
ddg_edge_ptr e;
|
2042 |
|
|
int first_cycle_in_window, last_cycle_in_window;
|
2043 |
|
|
|
2044 |
|
|
gcc_assert (must_precede && must_follow);
|
2045 |
|
|
|
2046 |
|
|
/* Consider the following scheduling window:
|
2047 |
|
|
{first_cycle_in_window, first_cycle_in_window+1, ...,
|
2048 |
|
|
last_cycle_in_window}. If step is 1 then the following will be
|
2049 |
|
|
the order we traverse the window: {start=first_cycle_in_window,
|
2050 |
|
|
first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
|
2051 |
|
|
or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
|
2052 |
|
|
end=first_cycle_in_window-1} if step is -1. */
|
2053 |
|
|
first_cycle_in_window = (step == 1) ? start : end - step;
|
2054 |
|
|
last_cycle_in_window = (step == 1) ? end - step : start;
|
2055 |
|
|
|
2056 |
|
|
sbitmap_zero (must_precede);
|
2057 |
|
|
sbitmap_zero (must_follow);
|
2058 |
|
|
|
2059 |
|
|
if (dump_file)
|
2060 |
|
|
fprintf (dump_file, "\nmust_precede: ");
|
2061 |
|
|
|
2062 |
|
|
/* Instead of checking if:
|
2063 |
|
|
(SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
|
2064 |
|
|
&& ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
|
2065 |
|
|
first_cycle_in_window)
|
2066 |
|
|
&& e->latency == 0
|
2067 |
|
|
we use the fact that latency is non-negative:
|
2068 |
|
|
SCHED_TIME (e->src) - (e->distance * ii) <=
|
2069 |
|
|
SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
|
2070 |
|
|
first_cycle_in_window
|
2071 |
|
|
and check only if
|
2072 |
|
|
SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
|
2073 |
|
|
for (e = u_node->in; e != 0; e = e->next_in)
|
2074 |
|
|
if (TEST_BIT (sched_nodes, e->src->cuid)
|
2075 |
|
|
&& ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
|
2076 |
|
|
first_cycle_in_window))
|
2077 |
|
|
{
|
2078 |
|
|
if (dump_file)
|
2079 |
|
|
fprintf (dump_file, "%d ", e->src->cuid);
|
2080 |
|
|
|
2081 |
|
|
SET_BIT (must_precede, e->src->cuid);
|
2082 |
|
|
}
|
2083 |
|
|
|
2084 |
|
|
if (dump_file)
|
2085 |
|
|
fprintf (dump_file, "\nmust_follow: ");
|
2086 |
|
|
|
2087 |
|
|
/* Instead of checking if:
|
2088 |
|
|
(SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
|
2089 |
|
|
&& ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
|
2090 |
|
|
last_cycle_in_window)
|
2091 |
|
|
&& e->latency == 0
|
2092 |
|
|
we use the fact that latency is non-negative:
|
2093 |
|
|
SCHED_TIME (e->dest) + (e->distance * ii) >=
|
2094 |
|
|
SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
|
2095 |
|
|
last_cycle_in_window
|
2096 |
|
|
and check only if
|
2097 |
|
|
SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
|
2098 |
|
|
for (e = u_node->out; e != 0; e = e->next_out)
|
2099 |
|
|
if (TEST_BIT (sched_nodes, e->dest->cuid)
|
2100 |
|
|
&& ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
|
2101 |
|
|
last_cycle_in_window))
|
2102 |
|
|
{
|
2103 |
|
|
if (dump_file)
|
2104 |
|
|
fprintf (dump_file, "%d ", e->dest->cuid);
|
2105 |
|
|
|
2106 |
|
|
SET_BIT (must_follow, e->dest->cuid);
|
2107 |
|
|
}
|
2108 |
|
|
|
2109 |
|
|
if (dump_file)
|
2110 |
|
|
fprintf (dump_file, "\n");
|
2111 |
|
|
}
|
2112 |
|
|
|
2113 |
|
|
/* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
|
2114 |
|
|
parameters to decide if that's possible:
|
2115 |
|
|
PS - The partial schedule.
|
2116 |
|
|
U - The serial number of U_NODE.
|
2117 |
|
|
NUM_SPLITS - The number of row splits made so far.
|
2118 |
|
|
MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
|
2119 |
|
|
the first row of the scheduling window)
|
2120 |
|
|
MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
|
2121 |
|
|
last row of the scheduling window) */
|
2122 |
|
|
|
2123 |
|
|
static bool
|
2124 |
|
|
try_scheduling_node_in_cycle (partial_schedule_ptr ps,
|
2125 |
|
|
int u, int cycle, sbitmap sched_nodes,
|
2126 |
|
|
int *num_splits, sbitmap must_precede,
|
2127 |
|
|
sbitmap must_follow)
|
2128 |
|
|
{
|
2129 |
|
|
ps_insn_ptr psi;
|
2130 |
|
|
bool success = 0;
|
2131 |
|
|
|
2132 |
|
|
verify_partial_schedule (ps, sched_nodes);
|
2133 |
|
|
psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
|
2134 |
|
|
if (psi)
|
2135 |
|
|
{
|
2136 |
|
|
SCHED_TIME (u) = cycle;
|
2137 |
|
|
SET_BIT (sched_nodes, u);
|
2138 |
|
|
success = 1;
|
2139 |
|
|
*num_splits = 0;
|
2140 |
|
|
if (dump_file)
|
2141 |
|
|
fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
|
2142 |
|
|
|
2143 |
|
|
}
|
2144 |
|
|
|
2145 |
|
|
return success;
|
2146 |
|
|
}
|
2147 |
|
|
|
2148 |
|
|
/* This function implements the scheduling algorithm for SMS according to the
|
2149 |
|
|
above algorithm. */
|
2150 |
|
|
static partial_schedule_ptr
|
2151 |
|
|
sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
|
2152 |
|
|
{
|
2153 |
|
|
int ii = mii;
|
2154 |
|
|
int i, c, success, num_splits = 0;
|
2155 |
|
|
int flush_and_start_over = true;
|
2156 |
|
|
int num_nodes = g->num_nodes;
|
2157 |
|
|
int start, end, step; /* Place together into one struct? */
|
2158 |
|
|
sbitmap sched_nodes = sbitmap_alloc (num_nodes);
|
2159 |
|
|
sbitmap must_precede = sbitmap_alloc (num_nodes);
|
2160 |
|
|
sbitmap must_follow = sbitmap_alloc (num_nodes);
|
2161 |
|
|
sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
|
2162 |
|
|
|
2163 |
|
|
partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
|
2164 |
|
|
|
2165 |
|
|
sbitmap_ones (tobe_scheduled);
|
2166 |
|
|
sbitmap_zero (sched_nodes);
|
2167 |
|
|
|
2168 |
|
|
while (flush_and_start_over && (ii < maxii))
|
2169 |
|
|
{
|
2170 |
|
|
|
2171 |
|
|
if (dump_file)
|
2172 |
|
|
fprintf (dump_file, "Starting with ii=%d\n", ii);
|
2173 |
|
|
flush_and_start_over = false;
|
2174 |
|
|
sbitmap_zero (sched_nodes);
|
2175 |
|
|
|
2176 |
|
|
for (i = 0; i < num_nodes; i++)
|
2177 |
|
|
{
|
2178 |
|
|
int u = nodes_order[i];
|
2179 |
|
|
ddg_node_ptr u_node = &ps->g->nodes[u];
|
2180 |
|
|
rtx insn = u_node->insn;
|
2181 |
|
|
|
2182 |
|
|
if (!NONDEBUG_INSN_P (insn))
|
2183 |
|
|
{
|
2184 |
|
|
RESET_BIT (tobe_scheduled, u);
|
2185 |
|
|
continue;
|
2186 |
|
|
}
|
2187 |
|
|
|
2188 |
|
|
if (TEST_BIT (sched_nodes, u))
|
2189 |
|
|
continue;
|
2190 |
|
|
|
2191 |
|
|
/* Try to get non-empty scheduling window. */
|
2192 |
|
|
success = 0;
|
2193 |
|
|
if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
|
2194 |
|
|
&step, &end) == 0)
|
2195 |
|
|
{
|
2196 |
|
|
if (dump_file)
|
2197 |
|
|
fprintf (dump_file, "\nTrying to schedule node %d "
|
2198 |
|
|
"INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
|
2199 |
|
|
(g->nodes[u].insn)), start, end, step);
|
2200 |
|
|
|
2201 |
|
|
gcc_assert ((step > 0 && start < end)
|
2202 |
|
|
|| (step < 0 && start > end));
|
2203 |
|
|
|
2204 |
|
|
calculate_must_precede_follow (u_node, start, end, step, ii,
|
2205 |
|
|
sched_nodes, must_precede,
|
2206 |
|
|
must_follow);
|
2207 |
|
|
|
2208 |
|
|
for (c = start; c != end; c += step)
|
2209 |
|
|
{
|
2210 |
|
|
sbitmap tmp_precede, tmp_follow;
|
2211 |
|
|
|
2212 |
|
|
set_must_precede_follow (&tmp_follow, must_follow,
|
2213 |
|
|
&tmp_precede, must_precede,
|
2214 |
|
|
c, start, end, step);
|
2215 |
|
|
success =
|
2216 |
|
|
try_scheduling_node_in_cycle (ps, u, c,
|
2217 |
|
|
sched_nodes,
|
2218 |
|
|
&num_splits, tmp_precede,
|
2219 |
|
|
tmp_follow);
|
2220 |
|
|
if (success)
|
2221 |
|
|
break;
|
2222 |
|
|
}
|
2223 |
|
|
|
2224 |
|
|
verify_partial_schedule (ps, sched_nodes);
|
2225 |
|
|
}
|
2226 |
|
|
if (!success)
|
2227 |
|
|
{
|
2228 |
|
|
int split_row;
|
2229 |
|
|
|
2230 |
|
|
if (ii++ == maxii)
|
2231 |
|
|
break;
|
2232 |
|
|
|
2233 |
|
|
if (num_splits >= MAX_SPLIT_NUM)
|
2234 |
|
|
{
|
2235 |
|
|
num_splits = 0;
|
2236 |
|
|
flush_and_start_over = true;
|
2237 |
|
|
verify_partial_schedule (ps, sched_nodes);
|
2238 |
|
|
reset_partial_schedule (ps, ii);
|
2239 |
|
|
verify_partial_schedule (ps, sched_nodes);
|
2240 |
|
|
break;
|
2241 |
|
|
}
|
2242 |
|
|
|
2243 |
|
|
num_splits++;
|
2244 |
|
|
/* The scheduling window is exclusive of 'end'
|
2245 |
|
|
whereas compute_split_window() expects an inclusive,
|
2246 |
|
|
ordered range. */
|
2247 |
|
|
if (step == 1)
|
2248 |
|
|
split_row = compute_split_row (sched_nodes, start, end - 1,
|
2249 |
|
|
ps->ii, u_node);
|
2250 |
|
|
else
|
2251 |
|
|
split_row = compute_split_row (sched_nodes, end + 1, start,
|
2252 |
|
|
ps->ii, u_node);
|
2253 |
|
|
|
2254 |
|
|
ps_insert_empty_row (ps, split_row, sched_nodes);
|
2255 |
|
|
i--; /* Go back and retry node i. */
|
2256 |
|
|
|
2257 |
|
|
if (dump_file)
|
2258 |
|
|
fprintf (dump_file, "num_splits=%d\n", num_splits);
|
2259 |
|
|
}
|
2260 |
|
|
|
2261 |
|
|
/* ??? If (success), check register pressure estimates. */
|
2262 |
|
|
} /* Continue with next node. */
|
2263 |
|
|
} /* While flush_and_start_over. */
|
2264 |
|
|
if (ii >= maxii)
|
2265 |
|
|
{
|
2266 |
|
|
free_partial_schedule (ps);
|
2267 |
|
|
ps = NULL;
|
2268 |
|
|
}
|
2269 |
|
|
else
|
2270 |
|
|
gcc_assert (sbitmap_equal (tobe_scheduled, sched_nodes));
|
2271 |
|
|
|
2272 |
|
|
sbitmap_free (sched_nodes);
|
2273 |
|
|
sbitmap_free (must_precede);
|
2274 |
|
|
sbitmap_free (must_follow);
|
2275 |
|
|
sbitmap_free (tobe_scheduled);
|
2276 |
|
|
|
2277 |
|
|
return ps;
|
2278 |
|
|
}
|
2279 |
|
|
|
2280 |
|
|
/* This function inserts a new empty row into PS at the position
|
2281 |
|
|
according to SPLITROW, keeping all already scheduled instructions
|
2282 |
|
|
intact and updating their SCHED_TIME and cycle accordingly. */
|
2283 |
|
|
static void
|
2284 |
|
|
ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
|
2285 |
|
|
sbitmap sched_nodes)
|
2286 |
|
|
{
|
2287 |
|
|
ps_insn_ptr crr_insn;
|
2288 |
|
|
ps_insn_ptr *rows_new;
|
2289 |
|
|
int ii = ps->ii;
|
2290 |
|
|
int new_ii = ii + 1;
|
2291 |
|
|
int row;
|
2292 |
|
|
int *rows_length_new;
|
2293 |
|
|
|
2294 |
|
|
verify_partial_schedule (ps, sched_nodes);
|
2295 |
|
|
|
2296 |
|
|
/* We normalize sched_time and rotate ps to have only non-negative sched
|
2297 |
|
|
times, for simplicity of updating cycles after inserting new row. */
|
2298 |
|
|
split_row -= ps->min_cycle;
|
2299 |
|
|
split_row = SMODULO (split_row, ii);
|
2300 |
|
|
if (dump_file)
|
2301 |
|
|
fprintf (dump_file, "split_row=%d\n", split_row);
|
2302 |
|
|
|
2303 |
|
|
reset_sched_times (ps, PS_MIN_CYCLE (ps));
|
2304 |
|
|
rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
|
2305 |
|
|
|
2306 |
|
|
rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
|
2307 |
|
|
rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
|
2308 |
|
|
for (row = 0; row < split_row; row++)
|
2309 |
|
|
{
|
2310 |
|
|
rows_new[row] = ps->rows[row];
|
2311 |
|
|
rows_length_new[row] = ps->rows_length[row];
|
2312 |
|
|
ps->rows[row] = NULL;
|
2313 |
|
|
for (crr_insn = rows_new[row];
|
2314 |
|
|
crr_insn; crr_insn = crr_insn->next_in_row)
|
2315 |
|
|
{
|
2316 |
|
|
int u = crr_insn->id;
|
2317 |
|
|
int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
|
2318 |
|
|
|
2319 |
|
|
SCHED_TIME (u) = new_time;
|
2320 |
|
|
crr_insn->cycle = new_time;
|
2321 |
|
|
SCHED_ROW (u) = new_time % new_ii;
|
2322 |
|
|
SCHED_STAGE (u) = new_time / new_ii;
|
2323 |
|
|
}
|
2324 |
|
|
|
2325 |
|
|
}
|
2326 |
|
|
|
2327 |
|
|
rows_new[split_row] = NULL;
|
2328 |
|
|
|
2329 |
|
|
for (row = split_row; row < ii; row++)
|
2330 |
|
|
{
|
2331 |
|
|
rows_new[row + 1] = ps->rows[row];
|
2332 |
|
|
rows_length_new[row + 1] = ps->rows_length[row];
|
2333 |
|
|
ps->rows[row] = NULL;
|
2334 |
|
|
for (crr_insn = rows_new[row + 1];
|
2335 |
|
|
crr_insn; crr_insn = crr_insn->next_in_row)
|
2336 |
|
|
{
|
2337 |
|
|
int u = crr_insn->id;
|
2338 |
|
|
int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
|
2339 |
|
|
|
2340 |
|
|
SCHED_TIME (u) = new_time;
|
2341 |
|
|
crr_insn->cycle = new_time;
|
2342 |
|
|
SCHED_ROW (u) = new_time % new_ii;
|
2343 |
|
|
SCHED_STAGE (u) = new_time / new_ii;
|
2344 |
|
|
}
|
2345 |
|
|
}
|
2346 |
|
|
|
2347 |
|
|
/* Updating ps. */
|
2348 |
|
|
ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
|
2349 |
|
|
+ (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
|
2350 |
|
|
ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
|
2351 |
|
|
+ (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
|
2352 |
|
|
free (ps->rows);
|
2353 |
|
|
ps->rows = rows_new;
|
2354 |
|
|
free (ps->rows_length);
|
2355 |
|
|
ps->rows_length = rows_length_new;
|
2356 |
|
|
ps->ii = new_ii;
|
2357 |
|
|
gcc_assert (ps->min_cycle >= 0);
|
2358 |
|
|
|
2359 |
|
|
verify_partial_schedule (ps, sched_nodes);
|
2360 |
|
|
|
2361 |
|
|
if (dump_file)
|
2362 |
|
|
fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
|
2363 |
|
|
ps->max_cycle);
|
2364 |
|
|
}
|
2365 |
|
|
|
2366 |
|
|
/* Given U_NODE which is the node that failed to be scheduled; LOW and
|
2367 |
|
|
UP which are the boundaries of it's scheduling window; compute using
|
2368 |
|
|
SCHED_NODES and II a row in the partial schedule that can be split
|
2369 |
|
|
which will separate a critical predecessor from a critical successor
|
2370 |
|
|
thereby expanding the window, and return it. */
|
2371 |
|
|
static int
|
2372 |
|
|
compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
|
2373 |
|
|
ddg_node_ptr u_node)
|
2374 |
|
|
{
|
2375 |
|
|
ddg_edge_ptr e;
|
2376 |
|
|
int lower = INT_MIN, upper = INT_MAX;
|
2377 |
|
|
int crit_pred = -1;
|
2378 |
|
|
int crit_succ = -1;
|
2379 |
|
|
int crit_cycle;
|
2380 |
|
|
|
2381 |
|
|
for (e = u_node->in; e != 0; e = e->next_in)
|
2382 |
|
|
{
|
2383 |
|
|
int v = e->src->cuid;
|
2384 |
|
|
|
2385 |
|
|
if (TEST_BIT (sched_nodes, v)
|
2386 |
|
|
&& (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
|
2387 |
|
|
if (SCHED_TIME (v) > lower)
|
2388 |
|
|
{
|
2389 |
|
|
crit_pred = v;
|
2390 |
|
|
lower = SCHED_TIME (v);
|
2391 |
|
|
}
|
2392 |
|
|
}
|
2393 |
|
|
|
2394 |
|
|
if (crit_pred >= 0)
|
2395 |
|
|
{
|
2396 |
|
|
crit_cycle = SCHED_TIME (crit_pred) + 1;
|
2397 |
|
|
return SMODULO (crit_cycle, ii);
|
2398 |
|
|
}
|
2399 |
|
|
|
2400 |
|
|
for (e = u_node->out; e != 0; e = e->next_out)
|
2401 |
|
|
{
|
2402 |
|
|
int v = e->dest->cuid;
|
2403 |
|
|
|
2404 |
|
|
if (TEST_BIT (sched_nodes, v)
|
2405 |
|
|
&& (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
|
2406 |
|
|
if (SCHED_TIME (v) < upper)
|
2407 |
|
|
{
|
2408 |
|
|
crit_succ = v;
|
2409 |
|
|
upper = SCHED_TIME (v);
|
2410 |
|
|
}
|
2411 |
|
|
}
|
2412 |
|
|
|
2413 |
|
|
if (crit_succ >= 0)
|
2414 |
|
|
{
|
2415 |
|
|
crit_cycle = SCHED_TIME (crit_succ);
|
2416 |
|
|
return SMODULO (crit_cycle, ii);
|
2417 |
|
|
}
|
2418 |
|
|
|
2419 |
|
|
if (dump_file)
|
2420 |
|
|
fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
|
2421 |
|
|
|
2422 |
|
|
return SMODULO ((low + up + 1) / 2, ii);
|
2423 |
|
|
}
|
2424 |
|
|
|
2425 |
|
|
static void
|
2426 |
|
|
verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
|
2427 |
|
|
{
|
2428 |
|
|
int row;
|
2429 |
|
|
ps_insn_ptr crr_insn;
|
2430 |
|
|
|
2431 |
|
|
for (row = 0; row < ps->ii; row++)
|
2432 |
|
|
{
|
2433 |
|
|
int length = 0;
|
2434 |
|
|
|
2435 |
|
|
for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
|
2436 |
|
|
{
|
2437 |
|
|
int u = crr_insn->id;
|
2438 |
|
|
|
2439 |
|
|
length++;
|
2440 |
|
|
gcc_assert (TEST_BIT (sched_nodes, u));
|
2441 |
|
|
/* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
|
2442 |
|
|
popcount (sched_nodes) == number of insns in ps. */
|
2443 |
|
|
gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
|
2444 |
|
|
gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
|
2445 |
|
|
}
|
2446 |
|
|
|
2447 |
|
|
gcc_assert (ps->rows_length[row] == length);
|
2448 |
|
|
}
|
2449 |
|
|
}
|
2450 |
|
|
|
2451 |
|
|
|
2452 |
|
|
/* This page implements the algorithm for ordering the nodes of a DDG
|
2453 |
|
|
for modulo scheduling, activated through the
|
2454 |
|
|
"int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
|
2455 |
|
|
|
2456 |
|
|
#define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
|
2457 |
|
|
#define ASAP(x) (ORDER_PARAMS ((x))->asap)
|
2458 |
|
|
#define ALAP(x) (ORDER_PARAMS ((x))->alap)
|
2459 |
|
|
#define HEIGHT(x) (ORDER_PARAMS ((x))->height)
|
2460 |
|
|
#define MOB(x) (ALAP ((x)) - ASAP ((x)))
|
2461 |
|
|
#define DEPTH(x) (ASAP ((x)))
|
2462 |
|
|
|
2463 |
|
|
typedef struct node_order_params * nopa;
|
2464 |
|
|
|
2465 |
|
|
static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
|
2466 |
|
|
static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
|
2467 |
|
|
static nopa calculate_order_params (ddg_ptr, int, int *);
|
2468 |
|
|
static int find_max_asap (ddg_ptr, sbitmap);
|
2469 |
|
|
static int find_max_hv_min_mob (ddg_ptr, sbitmap);
|
2470 |
|
|
static int find_max_dv_min_mob (ddg_ptr, sbitmap);
|
2471 |
|
|
|
2472 |
|
|
enum sms_direction {BOTTOMUP, TOPDOWN};
|
2473 |
|
|
|
2474 |
|
|
struct node_order_params
|
2475 |
|
|
{
|
2476 |
|
|
int asap;
|
2477 |
|
|
int alap;
|
2478 |
|
|
int height;
|
2479 |
|
|
};
|
2480 |
|
|
|
2481 |
|
|
/* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
|
2482 |
|
|
static void
|
2483 |
|
|
check_nodes_order (int *node_order, int num_nodes)
|
2484 |
|
|
{
|
2485 |
|
|
int i;
|
2486 |
|
|
sbitmap tmp = sbitmap_alloc (num_nodes);
|
2487 |
|
|
|
2488 |
|
|
sbitmap_zero (tmp);
|
2489 |
|
|
|
2490 |
|
|
if (dump_file)
|
2491 |
|
|
fprintf (dump_file, "SMS final nodes order: \n");
|
2492 |
|
|
|
2493 |
|
|
for (i = 0; i < num_nodes; i++)
|
2494 |
|
|
{
|
2495 |
|
|
int u = node_order[i];
|
2496 |
|
|
|
2497 |
|
|
if (dump_file)
|
2498 |
|
|
fprintf (dump_file, "%d ", u);
|
2499 |
|
|
gcc_assert (u < num_nodes && u >= 0 && !TEST_BIT (tmp, u));
|
2500 |
|
|
|
2501 |
|
|
SET_BIT (tmp, u);
|
2502 |
|
|
}
|
2503 |
|
|
|
2504 |
|
|
if (dump_file)
|
2505 |
|
|
fprintf (dump_file, "\n");
|
2506 |
|
|
|
2507 |
|
|
sbitmap_free (tmp);
|
2508 |
|
|
}
|
2509 |
|
|
|
2510 |
|
|
/* Order the nodes of G for scheduling and pass the result in
|
2511 |
|
|
NODE_ORDER. Also set aux.count of each node to ASAP.
|
2512 |
|
|
Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
|
2513 |
|
|
static int
|
2514 |
|
|
sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
|
2515 |
|
|
{
|
2516 |
|
|
int i;
|
2517 |
|
|
int rec_mii = 0;
|
2518 |
|
|
ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
|
2519 |
|
|
|
2520 |
|
|
nopa nops = calculate_order_params (g, mii, pmax_asap);
|
2521 |
|
|
|
2522 |
|
|
if (dump_file)
|
2523 |
|
|
print_sccs (dump_file, sccs, g);
|
2524 |
|
|
|
2525 |
|
|
order_nodes_of_sccs (sccs, node_order);
|
2526 |
|
|
|
2527 |
|
|
if (sccs->num_sccs > 0)
|
2528 |
|
|
/* First SCC has the largest recurrence_length. */
|
2529 |
|
|
rec_mii = sccs->sccs[0]->recurrence_length;
|
2530 |
|
|
|
2531 |
|
|
/* Save ASAP before destroying node_order_params. */
|
2532 |
|
|
for (i = 0; i < g->num_nodes; i++)
|
2533 |
|
|
{
|
2534 |
|
|
ddg_node_ptr v = &g->nodes[i];
|
2535 |
|
|
v->aux.count = ASAP (v);
|
2536 |
|
|
}
|
2537 |
|
|
|
2538 |
|
|
free (nops);
|
2539 |
|
|
free_ddg_all_sccs (sccs);
|
2540 |
|
|
check_nodes_order (node_order, g->num_nodes);
|
2541 |
|
|
|
2542 |
|
|
return rec_mii;
|
2543 |
|
|
}
|
2544 |
|
|
|
2545 |
|
|
static void
|
2546 |
|
|
order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
|
2547 |
|
|
{
|
2548 |
|
|
int i, pos = 0;
|
2549 |
|
|
ddg_ptr g = all_sccs->ddg;
|
2550 |
|
|
int num_nodes = g->num_nodes;
|
2551 |
|
|
sbitmap prev_sccs = sbitmap_alloc (num_nodes);
|
2552 |
|
|
sbitmap on_path = sbitmap_alloc (num_nodes);
|
2553 |
|
|
sbitmap tmp = sbitmap_alloc (num_nodes);
|
2554 |
|
|
sbitmap ones = sbitmap_alloc (num_nodes);
|
2555 |
|
|
|
2556 |
|
|
sbitmap_zero (prev_sccs);
|
2557 |
|
|
sbitmap_ones (ones);
|
2558 |
|
|
|
2559 |
|
|
/* Perform the node ordering starting from the SCC with the highest recMII.
|
2560 |
|
|
For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
|
2561 |
|
|
for (i = 0; i < all_sccs->num_sccs; i++)
|
2562 |
|
|
{
|
2563 |
|
|
ddg_scc_ptr scc = all_sccs->sccs[i];
|
2564 |
|
|
|
2565 |
|
|
/* Add nodes on paths from previous SCCs to the current SCC. */
|
2566 |
|
|
find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
|
2567 |
|
|
sbitmap_a_or_b (tmp, scc->nodes, on_path);
|
2568 |
|
|
|
2569 |
|
|
/* Add nodes on paths from the current SCC to previous SCCs. */
|
2570 |
|
|
find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
|
2571 |
|
|
sbitmap_a_or_b (tmp, tmp, on_path);
|
2572 |
|
|
|
2573 |
|
|
/* Remove nodes of previous SCCs from current extended SCC. */
|
2574 |
|
|
sbitmap_difference (tmp, tmp, prev_sccs);
|
2575 |
|
|
|
2576 |
|
|
pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
|
2577 |
|
|
/* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
|
2578 |
|
|
}
|
2579 |
|
|
|
2580 |
|
|
/* Handle the remaining nodes that do not belong to any scc. Each call
|
2581 |
|
|
to order_nodes_in_scc handles a single connected component. */
|
2582 |
|
|
while (pos < g->num_nodes)
|
2583 |
|
|
{
|
2584 |
|
|
sbitmap_difference (tmp, ones, prev_sccs);
|
2585 |
|
|
pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
|
2586 |
|
|
}
|
2587 |
|
|
sbitmap_free (prev_sccs);
|
2588 |
|
|
sbitmap_free (on_path);
|
2589 |
|
|
sbitmap_free (tmp);
|
2590 |
|
|
sbitmap_free (ones);
|
2591 |
|
|
}
|
2592 |
|
|
|
2593 |
|
|
/* MII is needed if we consider backarcs (that do not close recursive cycles). */
|
2594 |
|
|
static struct node_order_params *
|
2595 |
|
|
calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
|
2596 |
|
|
{
|
2597 |
|
|
int u;
|
2598 |
|
|
int max_asap;
|
2599 |
|
|
int num_nodes = g->num_nodes;
|
2600 |
|
|
ddg_edge_ptr e;
|
2601 |
|
|
/* Allocate a place to hold ordering params for each node in the DDG. */
|
2602 |
|
|
nopa node_order_params_arr;
|
2603 |
|
|
|
2604 |
|
|
/* Initialize of ASAP/ALAP/HEIGHT to zero. */
|
2605 |
|
|
node_order_params_arr = (nopa) xcalloc (num_nodes,
|
2606 |
|
|
sizeof (struct node_order_params));
|
2607 |
|
|
|
2608 |
|
|
/* Set the aux pointer of each node to point to its order_params structure. */
|
2609 |
|
|
for (u = 0; u < num_nodes; u++)
|
2610 |
|
|
g->nodes[u].aux.info = &node_order_params_arr[u];
|
2611 |
|
|
|
2612 |
|
|
/* Disregarding a backarc from each recursive cycle to obtain a DAG,
|
2613 |
|
|
calculate ASAP, ALAP, mobility, distance, and height for each node
|
2614 |
|
|
in the dependence (direct acyclic) graph. */
|
2615 |
|
|
|
2616 |
|
|
/* We assume that the nodes in the array are in topological order. */
|
2617 |
|
|
|
2618 |
|
|
max_asap = 0;
|
2619 |
|
|
for (u = 0; u < num_nodes; u++)
|
2620 |
|
|
{
|
2621 |
|
|
ddg_node_ptr u_node = &g->nodes[u];
|
2622 |
|
|
|
2623 |
|
|
ASAP (u_node) = 0;
|
2624 |
|
|
for (e = u_node->in; e; e = e->next_in)
|
2625 |
|
|
if (e->distance == 0)
|
2626 |
|
|
ASAP (u_node) = MAX (ASAP (u_node),
|
2627 |
|
|
ASAP (e->src) + e->latency);
|
2628 |
|
|
max_asap = MAX (max_asap, ASAP (u_node));
|
2629 |
|
|
}
|
2630 |
|
|
|
2631 |
|
|
for (u = num_nodes - 1; u > -1; u--)
|
2632 |
|
|
{
|
2633 |
|
|
ddg_node_ptr u_node = &g->nodes[u];
|
2634 |
|
|
|
2635 |
|
|
ALAP (u_node) = max_asap;
|
2636 |
|
|
HEIGHT (u_node) = 0;
|
2637 |
|
|
for (e = u_node->out; e; e = e->next_out)
|
2638 |
|
|
if (e->distance == 0)
|
2639 |
|
|
{
|
2640 |
|
|
ALAP (u_node) = MIN (ALAP (u_node),
|
2641 |
|
|
ALAP (e->dest) - e->latency);
|
2642 |
|
|
HEIGHT (u_node) = MAX (HEIGHT (u_node),
|
2643 |
|
|
HEIGHT (e->dest) + e->latency);
|
2644 |
|
|
}
|
2645 |
|
|
}
|
2646 |
|
|
if (dump_file)
|
2647 |
|
|
{
|
2648 |
|
|
fprintf (dump_file, "\nOrder params\n");
|
2649 |
|
|
for (u = 0; u < num_nodes; u++)
|
2650 |
|
|
{
|
2651 |
|
|
ddg_node_ptr u_node = &g->nodes[u];
|
2652 |
|
|
|
2653 |
|
|
fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
|
2654 |
|
|
ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
|
2655 |
|
|
}
|
2656 |
|
|
}
|
2657 |
|
|
|
2658 |
|
|
*pmax_asap = max_asap;
|
2659 |
|
|
return node_order_params_arr;
|
2660 |
|
|
}
|
2661 |
|
|
|
2662 |
|
|
static int
|
2663 |
|
|
find_max_asap (ddg_ptr g, sbitmap nodes)
|
2664 |
|
|
{
|
2665 |
|
|
unsigned int u = 0;
|
2666 |
|
|
int max_asap = -1;
|
2667 |
|
|
int result = -1;
|
2668 |
|
|
sbitmap_iterator sbi;
|
2669 |
|
|
|
2670 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
|
2671 |
|
|
{
|
2672 |
|
|
ddg_node_ptr u_node = &g->nodes[u];
|
2673 |
|
|
|
2674 |
|
|
if (max_asap < ASAP (u_node))
|
2675 |
|
|
{
|
2676 |
|
|
max_asap = ASAP (u_node);
|
2677 |
|
|
result = u;
|
2678 |
|
|
}
|
2679 |
|
|
}
|
2680 |
|
|
return result;
|
2681 |
|
|
}
|
2682 |
|
|
|
2683 |
|
|
static int
|
2684 |
|
|
find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
|
2685 |
|
|
{
|
2686 |
|
|
unsigned int u = 0;
|
2687 |
|
|
int max_hv = -1;
|
2688 |
|
|
int min_mob = INT_MAX;
|
2689 |
|
|
int result = -1;
|
2690 |
|
|
sbitmap_iterator sbi;
|
2691 |
|
|
|
2692 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
|
2693 |
|
|
{
|
2694 |
|
|
ddg_node_ptr u_node = &g->nodes[u];
|
2695 |
|
|
|
2696 |
|
|
if (max_hv < HEIGHT (u_node))
|
2697 |
|
|
{
|
2698 |
|
|
max_hv = HEIGHT (u_node);
|
2699 |
|
|
min_mob = MOB (u_node);
|
2700 |
|
|
result = u;
|
2701 |
|
|
}
|
2702 |
|
|
else if ((max_hv == HEIGHT (u_node))
|
2703 |
|
|
&& (min_mob > MOB (u_node)))
|
2704 |
|
|
{
|
2705 |
|
|
min_mob = MOB (u_node);
|
2706 |
|
|
result = u;
|
2707 |
|
|
}
|
2708 |
|
|
}
|
2709 |
|
|
return result;
|
2710 |
|
|
}
|
2711 |
|
|
|
2712 |
|
|
static int
|
2713 |
|
|
find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
|
2714 |
|
|
{
|
2715 |
|
|
unsigned int u = 0;
|
2716 |
|
|
int max_dv = -1;
|
2717 |
|
|
int min_mob = INT_MAX;
|
2718 |
|
|
int result = -1;
|
2719 |
|
|
sbitmap_iterator sbi;
|
2720 |
|
|
|
2721 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
|
2722 |
|
|
{
|
2723 |
|
|
ddg_node_ptr u_node = &g->nodes[u];
|
2724 |
|
|
|
2725 |
|
|
if (max_dv < DEPTH (u_node))
|
2726 |
|
|
{
|
2727 |
|
|
max_dv = DEPTH (u_node);
|
2728 |
|
|
min_mob = MOB (u_node);
|
2729 |
|
|
result = u;
|
2730 |
|
|
}
|
2731 |
|
|
else if ((max_dv == DEPTH (u_node))
|
2732 |
|
|
&& (min_mob > MOB (u_node)))
|
2733 |
|
|
{
|
2734 |
|
|
min_mob = MOB (u_node);
|
2735 |
|
|
result = u;
|
2736 |
|
|
}
|
2737 |
|
|
}
|
2738 |
|
|
return result;
|
2739 |
|
|
}
|
2740 |
|
|
|
2741 |
|
|
/* Places the nodes of SCC into the NODE_ORDER array starting
|
2742 |
|
|
at position POS, according to the SMS ordering algorithm.
|
2743 |
|
|
NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
|
2744 |
|
|
the NODE_ORDER array, starting from position zero. */
|
2745 |
|
|
static int
|
2746 |
|
|
order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
|
2747 |
|
|
int * node_order, int pos)
|
2748 |
|
|
{
|
2749 |
|
|
enum sms_direction dir;
|
2750 |
|
|
int num_nodes = g->num_nodes;
|
2751 |
|
|
sbitmap workset = sbitmap_alloc (num_nodes);
|
2752 |
|
|
sbitmap tmp = sbitmap_alloc (num_nodes);
|
2753 |
|
|
sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
|
2754 |
|
|
sbitmap predecessors = sbitmap_alloc (num_nodes);
|
2755 |
|
|
sbitmap successors = sbitmap_alloc (num_nodes);
|
2756 |
|
|
|
2757 |
|
|
sbitmap_zero (predecessors);
|
2758 |
|
|
find_predecessors (predecessors, g, nodes_ordered);
|
2759 |
|
|
|
2760 |
|
|
sbitmap_zero (successors);
|
2761 |
|
|
find_successors (successors, g, nodes_ordered);
|
2762 |
|
|
|
2763 |
|
|
sbitmap_zero (tmp);
|
2764 |
|
|
if (sbitmap_a_and_b_cg (tmp, predecessors, scc))
|
2765 |
|
|
{
|
2766 |
|
|
sbitmap_copy (workset, tmp);
|
2767 |
|
|
dir = BOTTOMUP;
|
2768 |
|
|
}
|
2769 |
|
|
else if (sbitmap_a_and_b_cg (tmp, successors, scc))
|
2770 |
|
|
{
|
2771 |
|
|
sbitmap_copy (workset, tmp);
|
2772 |
|
|
dir = TOPDOWN;
|
2773 |
|
|
}
|
2774 |
|
|
else
|
2775 |
|
|
{
|
2776 |
|
|
int u;
|
2777 |
|
|
|
2778 |
|
|
sbitmap_zero (workset);
|
2779 |
|
|
if ((u = find_max_asap (g, scc)) >= 0)
|
2780 |
|
|
SET_BIT (workset, u);
|
2781 |
|
|
dir = BOTTOMUP;
|
2782 |
|
|
}
|
2783 |
|
|
|
2784 |
|
|
sbitmap_zero (zero_bitmap);
|
2785 |
|
|
while (!sbitmap_equal (workset, zero_bitmap))
|
2786 |
|
|
{
|
2787 |
|
|
int v;
|
2788 |
|
|
ddg_node_ptr v_node;
|
2789 |
|
|
sbitmap v_node_preds;
|
2790 |
|
|
sbitmap v_node_succs;
|
2791 |
|
|
|
2792 |
|
|
if (dir == TOPDOWN)
|
2793 |
|
|
{
|
2794 |
|
|
while (!sbitmap_equal (workset, zero_bitmap))
|
2795 |
|
|
{
|
2796 |
|
|
v = find_max_hv_min_mob (g, workset);
|
2797 |
|
|
v_node = &g->nodes[v];
|
2798 |
|
|
node_order[pos++] = v;
|
2799 |
|
|
v_node_succs = NODE_SUCCESSORS (v_node);
|
2800 |
|
|
sbitmap_a_and_b (tmp, v_node_succs, scc);
|
2801 |
|
|
|
2802 |
|
|
/* Don't consider the already ordered successors again. */
|
2803 |
|
|
sbitmap_difference (tmp, tmp, nodes_ordered);
|
2804 |
|
|
sbitmap_a_or_b (workset, workset, tmp);
|
2805 |
|
|
RESET_BIT (workset, v);
|
2806 |
|
|
SET_BIT (nodes_ordered, v);
|
2807 |
|
|
}
|
2808 |
|
|
dir = BOTTOMUP;
|
2809 |
|
|
sbitmap_zero (predecessors);
|
2810 |
|
|
find_predecessors (predecessors, g, nodes_ordered);
|
2811 |
|
|
sbitmap_a_and_b (workset, predecessors, scc);
|
2812 |
|
|
}
|
2813 |
|
|
else
|
2814 |
|
|
{
|
2815 |
|
|
while (!sbitmap_equal (workset, zero_bitmap))
|
2816 |
|
|
{
|
2817 |
|
|
v = find_max_dv_min_mob (g, workset);
|
2818 |
|
|
v_node = &g->nodes[v];
|
2819 |
|
|
node_order[pos++] = v;
|
2820 |
|
|
v_node_preds = NODE_PREDECESSORS (v_node);
|
2821 |
|
|
sbitmap_a_and_b (tmp, v_node_preds, scc);
|
2822 |
|
|
|
2823 |
|
|
/* Don't consider the already ordered predecessors again. */
|
2824 |
|
|
sbitmap_difference (tmp, tmp, nodes_ordered);
|
2825 |
|
|
sbitmap_a_or_b (workset, workset, tmp);
|
2826 |
|
|
RESET_BIT (workset, v);
|
2827 |
|
|
SET_BIT (nodes_ordered, v);
|
2828 |
|
|
}
|
2829 |
|
|
dir = TOPDOWN;
|
2830 |
|
|
sbitmap_zero (successors);
|
2831 |
|
|
find_successors (successors, g, nodes_ordered);
|
2832 |
|
|
sbitmap_a_and_b (workset, successors, scc);
|
2833 |
|
|
}
|
2834 |
|
|
}
|
2835 |
|
|
sbitmap_free (tmp);
|
2836 |
|
|
sbitmap_free (workset);
|
2837 |
|
|
sbitmap_free (zero_bitmap);
|
2838 |
|
|
sbitmap_free (predecessors);
|
2839 |
|
|
sbitmap_free (successors);
|
2840 |
|
|
return pos;
|
2841 |
|
|
}
|
2842 |
|
|
|
2843 |
|
|
|
2844 |
|
|
/* This page contains functions for manipulating partial-schedules during
|
2845 |
|
|
modulo scheduling. */
|
2846 |
|
|
|
2847 |
|
|
/* Create a partial schedule and allocate a memory to hold II rows. */
|
2848 |
|
|
|
2849 |
|
|
static partial_schedule_ptr
|
2850 |
|
|
create_partial_schedule (int ii, ddg_ptr g, int history)
|
2851 |
|
|
{
|
2852 |
|
|
partial_schedule_ptr ps = XNEW (struct partial_schedule);
|
2853 |
|
|
ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
|
2854 |
|
|
ps->rows_length = (int *) xcalloc (ii, sizeof (int));
|
2855 |
|
|
ps->reg_moves = NULL;
|
2856 |
|
|
ps->ii = ii;
|
2857 |
|
|
ps->history = history;
|
2858 |
|
|
ps->min_cycle = INT_MAX;
|
2859 |
|
|
ps->max_cycle = INT_MIN;
|
2860 |
|
|
ps->g = g;
|
2861 |
|
|
|
2862 |
|
|
return ps;
|
2863 |
|
|
}
|
2864 |
|
|
|
2865 |
|
|
/* Free the PS_INSNs in rows array of the given partial schedule.
|
2866 |
|
|
??? Consider caching the PS_INSN's. */
|
2867 |
|
|
static void
|
2868 |
|
|
free_ps_insns (partial_schedule_ptr ps)
|
2869 |
|
|
{
|
2870 |
|
|
int i;
|
2871 |
|
|
|
2872 |
|
|
for (i = 0; i < ps->ii; i++)
|
2873 |
|
|
{
|
2874 |
|
|
while (ps->rows[i])
|
2875 |
|
|
{
|
2876 |
|
|
ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
|
2877 |
|
|
|
2878 |
|
|
free (ps->rows[i]);
|
2879 |
|
|
ps->rows[i] = ps_insn;
|
2880 |
|
|
}
|
2881 |
|
|
ps->rows[i] = NULL;
|
2882 |
|
|
}
|
2883 |
|
|
}
|
2884 |
|
|
|
2885 |
|
|
/* Free all the memory allocated to the partial schedule. */
|
2886 |
|
|
|
2887 |
|
|
static void
|
2888 |
|
|
free_partial_schedule (partial_schedule_ptr ps)
|
2889 |
|
|
{
|
2890 |
|
|
ps_reg_move_info *move;
|
2891 |
|
|
unsigned int i;
|
2892 |
|
|
|
2893 |
|
|
if (!ps)
|
2894 |
|
|
return;
|
2895 |
|
|
|
2896 |
|
|
FOR_EACH_VEC_ELT (ps_reg_move_info, ps->reg_moves, i, move)
|
2897 |
|
|
sbitmap_free (move->uses);
|
2898 |
|
|
VEC_free (ps_reg_move_info, heap, ps->reg_moves);
|
2899 |
|
|
|
2900 |
|
|
free_ps_insns (ps);
|
2901 |
|
|
free (ps->rows);
|
2902 |
|
|
free (ps->rows_length);
|
2903 |
|
|
free (ps);
|
2904 |
|
|
}
|
2905 |
|
|
|
2906 |
|
|
/* Clear the rows array with its PS_INSNs, and create a new one with
|
2907 |
|
|
NEW_II rows. */
|
2908 |
|
|
|
2909 |
|
|
static void
|
2910 |
|
|
reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
|
2911 |
|
|
{
|
2912 |
|
|
if (!ps)
|
2913 |
|
|
return;
|
2914 |
|
|
free_ps_insns (ps);
|
2915 |
|
|
if (new_ii == ps->ii)
|
2916 |
|
|
return;
|
2917 |
|
|
ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
|
2918 |
|
|
* sizeof (ps_insn_ptr));
|
2919 |
|
|
memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
|
2920 |
|
|
ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
|
2921 |
|
|
memset (ps->rows_length, 0, new_ii * sizeof (int));
|
2922 |
|
|
ps->ii = new_ii;
|
2923 |
|
|
ps->min_cycle = INT_MAX;
|
2924 |
|
|
ps->max_cycle = INT_MIN;
|
2925 |
|
|
}
|
2926 |
|
|
|
2927 |
|
|
/* Prints the partial schedule as an ii rows array, for each rows
|
2928 |
|
|
print the ids of the insns in it. */
|
2929 |
|
|
void
|
2930 |
|
|
print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
|
2931 |
|
|
{
|
2932 |
|
|
int i;
|
2933 |
|
|
|
2934 |
|
|
for (i = 0; i < ps->ii; i++)
|
2935 |
|
|
{
|
2936 |
|
|
ps_insn_ptr ps_i = ps->rows[i];
|
2937 |
|
|
|
2938 |
|
|
fprintf (dump, "\n[ROW %d ]: ", i);
|
2939 |
|
|
while (ps_i)
|
2940 |
|
|
{
|
2941 |
|
|
rtx insn = ps_rtl_insn (ps, ps_i->id);
|
2942 |
|
|
|
2943 |
|
|
if (JUMP_P (insn))
|
2944 |
|
|
fprintf (dump, "%d (branch), ", INSN_UID (insn));
|
2945 |
|
|
else
|
2946 |
|
|
fprintf (dump, "%d, ", INSN_UID (insn));
|
2947 |
|
|
|
2948 |
|
|
ps_i = ps_i->next_in_row;
|
2949 |
|
|
}
|
2950 |
|
|
}
|
2951 |
|
|
}
|
2952 |
|
|
|
2953 |
|
|
/* Creates an object of PS_INSN and initializes it to the given parameters. */
|
2954 |
|
|
static ps_insn_ptr
|
2955 |
|
|
create_ps_insn (int id, int cycle)
|
2956 |
|
|
{
|
2957 |
|
|
ps_insn_ptr ps_i = XNEW (struct ps_insn);
|
2958 |
|
|
|
2959 |
|
|
ps_i->id = id;
|
2960 |
|
|
ps_i->next_in_row = NULL;
|
2961 |
|
|
ps_i->prev_in_row = NULL;
|
2962 |
|
|
ps_i->cycle = cycle;
|
2963 |
|
|
|
2964 |
|
|
return ps_i;
|
2965 |
|
|
}
|
2966 |
|
|
|
2967 |
|
|
|
2968 |
|
|
/* Removes the given PS_INSN from the partial schedule. */
|
2969 |
|
|
static void
|
2970 |
|
|
remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
|
2971 |
|
|
{
|
2972 |
|
|
int row;
|
2973 |
|
|
|
2974 |
|
|
gcc_assert (ps && ps_i);
|
2975 |
|
|
|
2976 |
|
|
row = SMODULO (ps_i->cycle, ps->ii);
|
2977 |
|
|
if (! ps_i->prev_in_row)
|
2978 |
|
|
{
|
2979 |
|
|
gcc_assert (ps_i == ps->rows[row]);
|
2980 |
|
|
ps->rows[row] = ps_i->next_in_row;
|
2981 |
|
|
if (ps->rows[row])
|
2982 |
|
|
ps->rows[row]->prev_in_row = NULL;
|
2983 |
|
|
}
|
2984 |
|
|
else
|
2985 |
|
|
{
|
2986 |
|
|
ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
|
2987 |
|
|
if (ps_i->next_in_row)
|
2988 |
|
|
ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
|
2989 |
|
|
}
|
2990 |
|
|
|
2991 |
|
|
ps->rows_length[row] -= 1;
|
2992 |
|
|
free (ps_i);
|
2993 |
|
|
return;
|
2994 |
|
|
}
|
2995 |
|
|
|
2996 |
|
|
/* Unlike what literature describes for modulo scheduling (which focuses
|
2997 |
|
|
on VLIW machines) the order of the instructions inside a cycle is
|
2998 |
|
|
important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
|
2999 |
|
|
where the current instruction should go relative to the already
|
3000 |
|
|
scheduled instructions in the given cycle. Go over these
|
3001 |
|
|
instructions and find the first possible column to put it in. */
|
3002 |
|
|
static bool
|
3003 |
|
|
ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
|
3004 |
|
|
sbitmap must_precede, sbitmap must_follow)
|
3005 |
|
|
{
|
3006 |
|
|
ps_insn_ptr next_ps_i;
|
3007 |
|
|
ps_insn_ptr first_must_follow = NULL;
|
3008 |
|
|
ps_insn_ptr last_must_precede = NULL;
|
3009 |
|
|
ps_insn_ptr last_in_row = NULL;
|
3010 |
|
|
int row;
|
3011 |
|
|
|
3012 |
|
|
if (! ps_i)
|
3013 |
|
|
return false;
|
3014 |
|
|
|
3015 |
|
|
row = SMODULO (ps_i->cycle, ps->ii);
|
3016 |
|
|
|
3017 |
|
|
/* Find the first must follow and the last must precede
|
3018 |
|
|
and insert the node immediately after the must precede
|
3019 |
|
|
but make sure that it there is no must follow after it. */
|
3020 |
|
|
for (next_ps_i = ps->rows[row];
|
3021 |
|
|
next_ps_i;
|
3022 |
|
|
next_ps_i = next_ps_i->next_in_row)
|
3023 |
|
|
{
|
3024 |
|
|
if (must_follow
|
3025 |
|
|
&& TEST_BIT (must_follow, next_ps_i->id)
|
3026 |
|
|
&& ! first_must_follow)
|
3027 |
|
|
first_must_follow = next_ps_i;
|
3028 |
|
|
if (must_precede && TEST_BIT (must_precede, next_ps_i->id))
|
3029 |
|
|
{
|
3030 |
|
|
/* If we have already met a node that must follow, then
|
3031 |
|
|
there is no possible column. */
|
3032 |
|
|
if (first_must_follow)
|
3033 |
|
|
return false;
|
3034 |
|
|
else
|
3035 |
|
|
last_must_precede = next_ps_i;
|
3036 |
|
|
}
|
3037 |
|
|
/* The closing branch must be the last in the row. */
|
3038 |
|
|
if (must_precede
|
3039 |
|
|
&& TEST_BIT (must_precede, next_ps_i->id)
|
3040 |
|
|
&& JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
|
3041 |
|
|
return false;
|
3042 |
|
|
|
3043 |
|
|
last_in_row = next_ps_i;
|
3044 |
|
|
}
|
3045 |
|
|
|
3046 |
|
|
/* The closing branch is scheduled as well. Make sure there is no
|
3047 |
|
|
dependent instruction after it as the branch should be the last
|
3048 |
|
|
instruction in the row. */
|
3049 |
|
|
if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
|
3050 |
|
|
{
|
3051 |
|
|
if (first_must_follow)
|
3052 |
|
|
return false;
|
3053 |
|
|
if (last_in_row)
|
3054 |
|
|
{
|
3055 |
|
|
/* Make the branch the last in the row. New instructions
|
3056 |
|
|
will be inserted at the beginning of the row or after the
|
3057 |
|
|
last must_precede instruction thus the branch is guaranteed
|
3058 |
|
|
to remain the last instruction in the row. */
|
3059 |
|
|
last_in_row->next_in_row = ps_i;
|
3060 |
|
|
ps_i->prev_in_row = last_in_row;
|
3061 |
|
|
ps_i->next_in_row = NULL;
|
3062 |
|
|
}
|
3063 |
|
|
else
|
3064 |
|
|
ps->rows[row] = ps_i;
|
3065 |
|
|
return true;
|
3066 |
|
|
}
|
3067 |
|
|
|
3068 |
|
|
/* Now insert the node after INSERT_AFTER_PSI. */
|
3069 |
|
|
|
3070 |
|
|
if (! last_must_precede)
|
3071 |
|
|
{
|
3072 |
|
|
ps_i->next_in_row = ps->rows[row];
|
3073 |
|
|
ps_i->prev_in_row = NULL;
|
3074 |
|
|
if (ps_i->next_in_row)
|
3075 |
|
|
ps_i->next_in_row->prev_in_row = ps_i;
|
3076 |
|
|
ps->rows[row] = ps_i;
|
3077 |
|
|
}
|
3078 |
|
|
else
|
3079 |
|
|
{
|
3080 |
|
|
ps_i->next_in_row = last_must_precede->next_in_row;
|
3081 |
|
|
last_must_precede->next_in_row = ps_i;
|
3082 |
|
|
ps_i->prev_in_row = last_must_precede;
|
3083 |
|
|
if (ps_i->next_in_row)
|
3084 |
|
|
ps_i->next_in_row->prev_in_row = ps_i;
|
3085 |
|
|
}
|
3086 |
|
|
|
3087 |
|
|
return true;
|
3088 |
|
|
}
|
3089 |
|
|
|
3090 |
|
|
/* Advances the PS_INSN one column in its current row; returns false
|
3091 |
|
|
in failure and true in success. Bit N is set in MUST_FOLLOW if
|
3092 |
|
|
the node with cuid N must be come after the node pointed to by
|
3093 |
|
|
PS_I when scheduled in the same cycle. */
|
3094 |
|
|
static int
|
3095 |
|
|
ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
|
3096 |
|
|
sbitmap must_follow)
|
3097 |
|
|
{
|
3098 |
|
|
ps_insn_ptr prev, next;
|
3099 |
|
|
int row;
|
3100 |
|
|
|
3101 |
|
|
if (!ps || !ps_i)
|
3102 |
|
|
return false;
|
3103 |
|
|
|
3104 |
|
|
row = SMODULO (ps_i->cycle, ps->ii);
|
3105 |
|
|
|
3106 |
|
|
if (! ps_i->next_in_row)
|
3107 |
|
|
return false;
|
3108 |
|
|
|
3109 |
|
|
/* Check if next_in_row is dependent on ps_i, both having same sched
|
3110 |
|
|
times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
|
3111 |
|
|
if (must_follow && TEST_BIT (must_follow, ps_i->next_in_row->id))
|
3112 |
|
|
return false;
|
3113 |
|
|
|
3114 |
|
|
/* Advance PS_I over its next_in_row in the doubly linked list. */
|
3115 |
|
|
prev = ps_i->prev_in_row;
|
3116 |
|
|
next = ps_i->next_in_row;
|
3117 |
|
|
|
3118 |
|
|
if (ps_i == ps->rows[row])
|
3119 |
|
|
ps->rows[row] = next;
|
3120 |
|
|
|
3121 |
|
|
ps_i->next_in_row = next->next_in_row;
|
3122 |
|
|
|
3123 |
|
|
if (next->next_in_row)
|
3124 |
|
|
next->next_in_row->prev_in_row = ps_i;
|
3125 |
|
|
|
3126 |
|
|
next->next_in_row = ps_i;
|
3127 |
|
|
ps_i->prev_in_row = next;
|
3128 |
|
|
|
3129 |
|
|
next->prev_in_row = prev;
|
3130 |
|
|
if (prev)
|
3131 |
|
|
prev->next_in_row = next;
|
3132 |
|
|
|
3133 |
|
|
return true;
|
3134 |
|
|
}
|
3135 |
|
|
|
3136 |
|
|
/* Inserts a DDG_NODE to the given partial schedule at the given cycle.
|
3137 |
|
|
Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
|
3138 |
|
|
set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
|
3139 |
|
|
before/after (respectively) the node pointed to by PS_I when scheduled
|
3140 |
|
|
in the same cycle. */
|
3141 |
|
|
static ps_insn_ptr
|
3142 |
|
|
add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
|
3143 |
|
|
sbitmap must_precede, sbitmap must_follow)
|
3144 |
|
|
{
|
3145 |
|
|
ps_insn_ptr ps_i;
|
3146 |
|
|
int row = SMODULO (cycle, ps->ii);
|
3147 |
|
|
|
3148 |
|
|
if (ps->rows_length[row] >= issue_rate)
|
3149 |
|
|
return NULL;
|
3150 |
|
|
|
3151 |
|
|
ps_i = create_ps_insn (id, cycle);
|
3152 |
|
|
|
3153 |
|
|
/* Finds and inserts PS_I according to MUST_FOLLOW and
|
3154 |
|
|
MUST_PRECEDE. */
|
3155 |
|
|
if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
|
3156 |
|
|
{
|
3157 |
|
|
free (ps_i);
|
3158 |
|
|
return NULL;
|
3159 |
|
|
}
|
3160 |
|
|
|
3161 |
|
|
ps->rows_length[row] += 1;
|
3162 |
|
|
return ps_i;
|
3163 |
|
|
}
|
3164 |
|
|
|
3165 |
|
|
/* Advance time one cycle. Assumes DFA is being used. */
|
3166 |
|
|
static void
|
3167 |
|
|
advance_one_cycle (void)
|
3168 |
|
|
{
|
3169 |
|
|
if (targetm.sched.dfa_pre_cycle_insn)
|
3170 |
|
|
state_transition (curr_state,
|
3171 |
|
|
targetm.sched.dfa_pre_cycle_insn ());
|
3172 |
|
|
|
3173 |
|
|
state_transition (curr_state, NULL);
|
3174 |
|
|
|
3175 |
|
|
if (targetm.sched.dfa_post_cycle_insn)
|
3176 |
|
|
state_transition (curr_state,
|
3177 |
|
|
targetm.sched.dfa_post_cycle_insn ());
|
3178 |
|
|
}
|
3179 |
|
|
|
3180 |
|
|
|
3181 |
|
|
|
3182 |
|
|
/* Checks if PS has resource conflicts according to DFA, starting from
|
3183 |
|
|
FROM cycle to TO cycle; returns true if there are conflicts and false
|
3184 |
|
|
if there are no conflicts. Assumes DFA is being used. */
|
3185 |
|
|
static int
|
3186 |
|
|
ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
|
3187 |
|
|
{
|
3188 |
|
|
int cycle;
|
3189 |
|
|
|
3190 |
|
|
state_reset (curr_state);
|
3191 |
|
|
|
3192 |
|
|
for (cycle = from; cycle <= to; cycle++)
|
3193 |
|
|
{
|
3194 |
|
|
ps_insn_ptr crr_insn;
|
3195 |
|
|
/* Holds the remaining issue slots in the current row. */
|
3196 |
|
|
int can_issue_more = issue_rate;
|
3197 |
|
|
|
3198 |
|
|
/* Walk through the DFA for the current row. */
|
3199 |
|
|
for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
|
3200 |
|
|
crr_insn;
|
3201 |
|
|
crr_insn = crr_insn->next_in_row)
|
3202 |
|
|
{
|
3203 |
|
|
rtx insn = ps_rtl_insn (ps, crr_insn->id);
|
3204 |
|
|
|
3205 |
|
|
if (!NONDEBUG_INSN_P (insn))
|
3206 |
|
|
continue;
|
3207 |
|
|
|
3208 |
|
|
/* Check if there is room for the current insn. */
|
3209 |
|
|
if (!can_issue_more || state_dead_lock_p (curr_state))
|
3210 |
|
|
return true;
|
3211 |
|
|
|
3212 |
|
|
/* Update the DFA state and return with failure if the DFA found
|
3213 |
|
|
resource conflicts. */
|
3214 |
|
|
if (state_transition (curr_state, insn) >= 0)
|
3215 |
|
|
return true;
|
3216 |
|
|
|
3217 |
|
|
if (targetm.sched.variable_issue)
|
3218 |
|
|
can_issue_more =
|
3219 |
|
|
targetm.sched.variable_issue (sched_dump, sched_verbose,
|
3220 |
|
|
insn, can_issue_more);
|
3221 |
|
|
/* A naked CLOBBER or USE generates no instruction, so don't
|
3222 |
|
|
let them consume issue slots. */
|
3223 |
|
|
else if (GET_CODE (PATTERN (insn)) != USE
|
3224 |
|
|
&& GET_CODE (PATTERN (insn)) != CLOBBER)
|
3225 |
|
|
can_issue_more--;
|
3226 |
|
|
}
|
3227 |
|
|
|
3228 |
|
|
/* Advance the DFA to the next cycle. */
|
3229 |
|
|
advance_one_cycle ();
|
3230 |
|
|
}
|
3231 |
|
|
return false;
|
3232 |
|
|
}
|
3233 |
|
|
|
3234 |
|
|
/* Checks if the given node causes resource conflicts when added to PS at
|
3235 |
|
|
cycle C. If not the node is added to PS and returned; otherwise zero
|
3236 |
|
|
is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
|
3237 |
|
|
cuid N must be come before/after (respectively) the node pointed to by
|
3238 |
|
|
PS_I when scheduled in the same cycle. */
|
3239 |
|
|
ps_insn_ptr
|
3240 |
|
|
ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
|
3241 |
|
|
int c, sbitmap must_precede,
|
3242 |
|
|
sbitmap must_follow)
|
3243 |
|
|
{
|
3244 |
|
|
int has_conflicts = 0;
|
3245 |
|
|
ps_insn_ptr ps_i;
|
3246 |
|
|
|
3247 |
|
|
/* First add the node to the PS, if this succeeds check for
|
3248 |
|
|
conflicts, trying different issue slots in the same row. */
|
3249 |
|
|
if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
|
3250 |
|
|
return NULL; /* Failed to insert the node at the given cycle. */
|
3251 |
|
|
|
3252 |
|
|
has_conflicts = ps_has_conflicts (ps, c, c)
|
3253 |
|
|
|| (ps->history > 0
|
3254 |
|
|
&& ps_has_conflicts (ps,
|
3255 |
|
|
c - ps->history,
|
3256 |
|
|
c + ps->history));
|
3257 |
|
|
|
3258 |
|
|
/* Try different issue slots to find one that the given node can be
|
3259 |
|
|
scheduled in without conflicts. */
|
3260 |
|
|
while (has_conflicts)
|
3261 |
|
|
{
|
3262 |
|
|
if (! ps_insn_advance_column (ps, ps_i, must_follow))
|
3263 |
|
|
break;
|
3264 |
|
|
has_conflicts = ps_has_conflicts (ps, c, c)
|
3265 |
|
|
|| (ps->history > 0
|
3266 |
|
|
&& ps_has_conflicts (ps,
|
3267 |
|
|
c - ps->history,
|
3268 |
|
|
c + ps->history));
|
3269 |
|
|
}
|
3270 |
|
|
|
3271 |
|
|
if (has_conflicts)
|
3272 |
|
|
{
|
3273 |
|
|
remove_node_from_ps (ps, ps_i);
|
3274 |
|
|
return NULL;
|
3275 |
|
|
}
|
3276 |
|
|
|
3277 |
|
|
ps->min_cycle = MIN (ps->min_cycle, c);
|
3278 |
|
|
ps->max_cycle = MAX (ps->max_cycle, c);
|
3279 |
|
|
return ps_i;
|
3280 |
|
|
}
|
3281 |
|
|
|
3282 |
|
|
/* Calculate the stage count of the partial schedule PS. The calculation
|
3283 |
|
|
takes into account the rotation amount passed in ROTATION_AMOUNT. */
|
3284 |
|
|
int
|
3285 |
|
|
calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
|
3286 |
|
|
{
|
3287 |
|
|
int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
|
3288 |
|
|
int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
|
3289 |
|
|
int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
|
3290 |
|
|
|
3291 |
|
|
/* The calculation of stage count is done adding the number of stages
|
3292 |
|
|
before cycle zero and after cycle zero. */
|
3293 |
|
|
stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
|
3294 |
|
|
|
3295 |
|
|
return stage_count;
|
3296 |
|
|
}
|
3297 |
|
|
|
3298 |
|
|
/* Rotate the rows of PS such that insns scheduled at time
|
3299 |
|
|
START_CYCLE will appear in row 0. Updates max/min_cycles. */
|
3300 |
|
|
void
|
3301 |
|
|
rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
|
3302 |
|
|
{
|
3303 |
|
|
int i, row, backward_rotates;
|
3304 |
|
|
int last_row = ps->ii - 1;
|
3305 |
|
|
|
3306 |
|
|
if (start_cycle == 0)
|
3307 |
|
|
return;
|
3308 |
|
|
|
3309 |
|
|
backward_rotates = SMODULO (start_cycle, ps->ii);
|
3310 |
|
|
|
3311 |
|
|
/* Revisit later and optimize this into a single loop. */
|
3312 |
|
|
for (i = 0; i < backward_rotates; i++)
|
3313 |
|
|
{
|
3314 |
|
|
ps_insn_ptr first_row = ps->rows[0];
|
3315 |
|
|
int first_row_length = ps->rows_length[0];
|
3316 |
|
|
|
3317 |
|
|
for (row = 0; row < last_row; row++)
|
3318 |
|
|
{
|
3319 |
|
|
ps->rows[row] = ps->rows[row + 1];
|
3320 |
|
|
ps->rows_length[row] = ps->rows_length[row + 1];
|
3321 |
|
|
}
|
3322 |
|
|
|
3323 |
|
|
ps->rows[last_row] = first_row;
|
3324 |
|
|
ps->rows_length[last_row] = first_row_length;
|
3325 |
|
|
}
|
3326 |
|
|
|
3327 |
|
|
ps->max_cycle -= start_cycle;
|
3328 |
|
|
ps->min_cycle -= start_cycle;
|
3329 |
|
|
}
|
3330 |
|
|
|
3331 |
|
|
#endif /* INSN_SCHEDULING */
|
3332 |
|
|
|
3333 |
|
|
static bool
|
3334 |
|
|
gate_handle_sms (void)
|
3335 |
|
|
{
|
3336 |
|
|
return (optimize > 0 && flag_modulo_sched);
|
3337 |
|
|
}
|
3338 |
|
|
|
3339 |
|
|
|
3340 |
|
|
/* Run instruction scheduler. */
|
3341 |
|
|
/* Perform SMS module scheduling. */
|
3342 |
|
|
static unsigned int
|
3343 |
|
|
rest_of_handle_sms (void)
|
3344 |
|
|
{
|
3345 |
|
|
#ifdef INSN_SCHEDULING
|
3346 |
|
|
basic_block bb;
|
3347 |
|
|
|
3348 |
|
|
/* Collect loop information to be used in SMS. */
|
3349 |
|
|
cfg_layout_initialize (0);
|
3350 |
|
|
sms_schedule ();
|
3351 |
|
|
|
3352 |
|
|
/* Update the life information, because we add pseudos. */
|
3353 |
|
|
max_regno = max_reg_num ();
|
3354 |
|
|
|
3355 |
|
|
/* Finalize layout changes. */
|
3356 |
|
|
FOR_EACH_BB (bb)
|
3357 |
|
|
if (bb->next_bb != EXIT_BLOCK_PTR)
|
3358 |
|
|
bb->aux = bb->next_bb;
|
3359 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
3360 |
|
|
cfg_layout_finalize ();
|
3361 |
|
|
#endif /* INSN_SCHEDULING */
|
3362 |
|
|
return 0;
|
3363 |
|
|
}
|
3364 |
|
|
|
3365 |
|
|
struct rtl_opt_pass pass_sms =
|
3366 |
|
|
{
|
3367 |
|
|
{
|
3368 |
|
|
RTL_PASS,
|
3369 |
|
|
"sms", /* name */
|
3370 |
|
|
gate_handle_sms, /* gate */
|
3371 |
|
|
rest_of_handle_sms, /* execute */
|
3372 |
|
|
NULL, /* sub */
|
3373 |
|
|
NULL, /* next */
|
3374 |
|
|
0, /* static_pass_number */
|
3375 |
|
|
TV_SMS, /* tv_id */
|
3376 |
|
|
0, /* properties_required */
|
3377 |
|
|
0, /* properties_provided */
|
3378 |
|
|
0, /* properties_destroyed */
|
3379 |
|
|
0, /* todo_flags_start */
|
3380 |
|
|
TODO_df_finish
|
3381 |
|
|
| TODO_verify_flow
|
3382 |
|
|
| TODO_verify_rtl_sharing
|
3383 |
|
|
| TODO_ggc_collect /* todo_flags_finish */
|
3384 |
|
|
}
|
3385 |
|
|
};
|