1 |
684 |
jeremybenn |
/* Expand the basic unary and binary arithmetic operations, for GNU compiler.
|
2 |
|
|
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
3 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
|
4 |
|
|
2011, 2012 Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
|
23 |
|
|
#include "config.h"
|
24 |
|
|
#include "system.h"
|
25 |
|
|
#include "coretypes.h"
|
26 |
|
|
#include "tm.h"
|
27 |
|
|
#include "diagnostic-core.h"
|
28 |
|
|
|
29 |
|
|
/* Include insn-config.h before expr.h so that HAVE_conditional_move
|
30 |
|
|
is properly defined. */
|
31 |
|
|
#include "insn-config.h"
|
32 |
|
|
#include "rtl.h"
|
33 |
|
|
#include "tree.h"
|
34 |
|
|
#include "tm_p.h"
|
35 |
|
|
#include "flags.h"
|
36 |
|
|
#include "function.h"
|
37 |
|
|
#include "except.h"
|
38 |
|
|
#include "expr.h"
|
39 |
|
|
#include "optabs.h"
|
40 |
|
|
#include "libfuncs.h"
|
41 |
|
|
#include "recog.h"
|
42 |
|
|
#include "reload.h"
|
43 |
|
|
#include "ggc.h"
|
44 |
|
|
#include "basic-block.h"
|
45 |
|
|
#include "target.h"
|
46 |
|
|
|
47 |
|
|
struct target_optabs default_target_optabs;
|
48 |
|
|
struct target_libfuncs default_target_libfuncs;
|
49 |
|
|
#if SWITCHABLE_TARGET
|
50 |
|
|
struct target_optabs *this_target_optabs = &default_target_optabs;
|
51 |
|
|
struct target_libfuncs *this_target_libfuncs = &default_target_libfuncs;
|
52 |
|
|
#endif
|
53 |
|
|
|
54 |
|
|
#define libfunc_hash \
|
55 |
|
|
(this_target_libfuncs->x_libfunc_hash)
|
56 |
|
|
|
57 |
|
|
/* Contains the optab used for each rtx code. */
|
58 |
|
|
optab code_to_optab[NUM_RTX_CODE + 1];
|
59 |
|
|
|
60 |
|
|
static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
|
61 |
|
|
enum machine_mode *);
|
62 |
|
|
static rtx expand_unop_direct (enum machine_mode, optab, rtx, rtx, int);
|
63 |
|
|
|
64 |
|
|
/* Debug facility for use in GDB. */
|
65 |
|
|
void debug_optab_libfuncs (void);
|
66 |
|
|
|
67 |
|
|
/* Prefixes for the current version of decimal floating point (BID vs. DPD) */
|
68 |
|
|
#if ENABLE_DECIMAL_BID_FORMAT
|
69 |
|
|
#define DECIMAL_PREFIX "bid_"
|
70 |
|
|
#else
|
71 |
|
|
#define DECIMAL_PREFIX "dpd_"
|
72 |
|
|
#endif
|
73 |
|
|
|
74 |
|
|
/* Used for libfunc_hash. */
|
75 |
|
|
|
76 |
|
|
static hashval_t
|
77 |
|
|
hash_libfunc (const void *p)
|
78 |
|
|
{
|
79 |
|
|
const struct libfunc_entry *const e = (const struct libfunc_entry *) p;
|
80 |
|
|
|
81 |
|
|
return (((int) e->mode1 + (int) e->mode2 * NUM_MACHINE_MODES)
|
82 |
|
|
^ e->optab);
|
83 |
|
|
}
|
84 |
|
|
|
85 |
|
|
/* Used for libfunc_hash. */
|
86 |
|
|
|
87 |
|
|
static int
|
88 |
|
|
eq_libfunc (const void *p, const void *q)
|
89 |
|
|
{
|
90 |
|
|
const struct libfunc_entry *const e1 = (const struct libfunc_entry *) p;
|
91 |
|
|
const struct libfunc_entry *const e2 = (const struct libfunc_entry *) q;
|
92 |
|
|
|
93 |
|
|
return (e1->optab == e2->optab
|
94 |
|
|
&& e1->mode1 == e2->mode1
|
95 |
|
|
&& e1->mode2 == e2->mode2);
|
96 |
|
|
}
|
97 |
|
|
|
98 |
|
|
/* Return libfunc corresponding operation defined by OPTAB converting
|
99 |
|
|
from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
|
100 |
|
|
if no libfunc is available. */
|
101 |
|
|
rtx
|
102 |
|
|
convert_optab_libfunc (convert_optab optab, enum machine_mode mode1,
|
103 |
|
|
enum machine_mode mode2)
|
104 |
|
|
{
|
105 |
|
|
struct libfunc_entry e;
|
106 |
|
|
struct libfunc_entry **slot;
|
107 |
|
|
|
108 |
|
|
e.optab = (size_t) (optab - &convert_optab_table[0]);
|
109 |
|
|
e.mode1 = mode1;
|
110 |
|
|
e.mode2 = mode2;
|
111 |
|
|
slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
|
112 |
|
|
if (!slot)
|
113 |
|
|
{
|
114 |
|
|
if (optab->libcall_gen)
|
115 |
|
|
{
|
116 |
|
|
optab->libcall_gen (optab, optab->libcall_basename, mode1, mode2);
|
117 |
|
|
slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
|
118 |
|
|
if (slot)
|
119 |
|
|
return (*slot)->libfunc;
|
120 |
|
|
else
|
121 |
|
|
return NULL;
|
122 |
|
|
}
|
123 |
|
|
return NULL;
|
124 |
|
|
}
|
125 |
|
|
return (*slot)->libfunc;
|
126 |
|
|
}
|
127 |
|
|
|
128 |
|
|
/* Return libfunc corresponding operation defined by OPTAB in MODE.
|
129 |
|
|
Trigger lazy initialization if needed, return NULL if no libfunc is
|
130 |
|
|
available. */
|
131 |
|
|
rtx
|
132 |
|
|
optab_libfunc (optab optab, enum machine_mode mode)
|
133 |
|
|
{
|
134 |
|
|
struct libfunc_entry e;
|
135 |
|
|
struct libfunc_entry **slot;
|
136 |
|
|
|
137 |
|
|
e.optab = (size_t) (optab - &optab_table[0]);
|
138 |
|
|
e.mode1 = mode;
|
139 |
|
|
e.mode2 = VOIDmode;
|
140 |
|
|
slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
|
141 |
|
|
if (!slot)
|
142 |
|
|
{
|
143 |
|
|
if (optab->libcall_gen)
|
144 |
|
|
{
|
145 |
|
|
optab->libcall_gen (optab, optab->libcall_basename,
|
146 |
|
|
optab->libcall_suffix, mode);
|
147 |
|
|
slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash,
|
148 |
|
|
&e, NO_INSERT);
|
149 |
|
|
if (slot)
|
150 |
|
|
return (*slot)->libfunc;
|
151 |
|
|
else
|
152 |
|
|
return NULL;
|
153 |
|
|
}
|
154 |
|
|
return NULL;
|
155 |
|
|
}
|
156 |
|
|
return (*slot)->libfunc;
|
157 |
|
|
}
|
158 |
|
|
|
159 |
|
|
|
160 |
|
|
/* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
|
161 |
|
|
the result of operation CODE applied to OP0 (and OP1 if it is a binary
|
162 |
|
|
operation).
|
163 |
|
|
|
164 |
|
|
If the last insn does not set TARGET, don't do anything, but return 1.
|
165 |
|
|
|
166 |
|
|
If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
|
167 |
|
|
don't add the REG_EQUAL note but return 0. Our caller can then try
|
168 |
|
|
again, ensuring that TARGET is not one of the operands. */
|
169 |
|
|
|
170 |
|
|
static int
|
171 |
|
|
add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
|
172 |
|
|
{
|
173 |
|
|
rtx last_insn, insn, set;
|
174 |
|
|
rtx note;
|
175 |
|
|
|
176 |
|
|
gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
|
177 |
|
|
|
178 |
|
|
if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
|
179 |
|
|
&& GET_RTX_CLASS (code) != RTX_BIN_ARITH
|
180 |
|
|
&& GET_RTX_CLASS (code) != RTX_COMM_COMPARE
|
181 |
|
|
&& GET_RTX_CLASS (code) != RTX_COMPARE
|
182 |
|
|
&& GET_RTX_CLASS (code) != RTX_UNARY)
|
183 |
|
|
return 1;
|
184 |
|
|
|
185 |
|
|
if (GET_CODE (target) == ZERO_EXTRACT)
|
186 |
|
|
return 1;
|
187 |
|
|
|
188 |
|
|
for (last_insn = insns;
|
189 |
|
|
NEXT_INSN (last_insn) != NULL_RTX;
|
190 |
|
|
last_insn = NEXT_INSN (last_insn))
|
191 |
|
|
;
|
192 |
|
|
|
193 |
|
|
set = single_set (last_insn);
|
194 |
|
|
if (set == NULL_RTX)
|
195 |
|
|
return 1;
|
196 |
|
|
|
197 |
|
|
if (! rtx_equal_p (SET_DEST (set), target)
|
198 |
|
|
/* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
|
199 |
|
|
&& (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
|
200 |
|
|
|| ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
|
201 |
|
|
return 1;
|
202 |
|
|
|
203 |
|
|
/* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
|
204 |
|
|
besides the last insn. */
|
205 |
|
|
if (reg_overlap_mentioned_p (target, op0)
|
206 |
|
|
|| (op1 && reg_overlap_mentioned_p (target, op1)))
|
207 |
|
|
{
|
208 |
|
|
insn = PREV_INSN (last_insn);
|
209 |
|
|
while (insn != NULL_RTX)
|
210 |
|
|
{
|
211 |
|
|
if (reg_set_p (target, insn))
|
212 |
|
|
return 0;
|
213 |
|
|
|
214 |
|
|
insn = PREV_INSN (insn);
|
215 |
|
|
}
|
216 |
|
|
}
|
217 |
|
|
|
218 |
|
|
if (GET_RTX_CLASS (code) == RTX_UNARY)
|
219 |
|
|
switch (code)
|
220 |
|
|
{
|
221 |
|
|
case FFS:
|
222 |
|
|
case CLZ:
|
223 |
|
|
case CTZ:
|
224 |
|
|
case CLRSB:
|
225 |
|
|
case POPCOUNT:
|
226 |
|
|
case PARITY:
|
227 |
|
|
case BSWAP:
|
228 |
|
|
if (GET_MODE (op0) != VOIDmode && GET_MODE (target) != GET_MODE (op0))
|
229 |
|
|
{
|
230 |
|
|
note = gen_rtx_fmt_e (code, GET_MODE (op0), copy_rtx (op0));
|
231 |
|
|
if (GET_MODE_SIZE (GET_MODE (op0))
|
232 |
|
|
> GET_MODE_SIZE (GET_MODE (target)))
|
233 |
|
|
note = simplify_gen_unary (TRUNCATE, GET_MODE (target),
|
234 |
|
|
note, GET_MODE (op0));
|
235 |
|
|
else
|
236 |
|
|
note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target),
|
237 |
|
|
note, GET_MODE (op0));
|
238 |
|
|
break;
|
239 |
|
|
}
|
240 |
|
|
/* FALLTHRU */
|
241 |
|
|
default:
|
242 |
|
|
note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
|
243 |
|
|
break;
|
244 |
|
|
}
|
245 |
|
|
else
|
246 |
|
|
note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
|
247 |
|
|
|
248 |
|
|
set_unique_reg_note (last_insn, REG_EQUAL, note);
|
249 |
|
|
|
250 |
|
|
return 1;
|
251 |
|
|
}
|
252 |
|
|
|
253 |
|
|
/* Given two input operands, OP0 and OP1, determine what the correct from_mode
|
254 |
|
|
for a widening operation would be. In most cases this would be OP0, but if
|
255 |
|
|
that's a constant it'll be VOIDmode, which isn't useful. */
|
256 |
|
|
|
257 |
|
|
static enum machine_mode
|
258 |
|
|
widened_mode (enum machine_mode to_mode, rtx op0, rtx op1)
|
259 |
|
|
{
|
260 |
|
|
enum machine_mode m0 = GET_MODE (op0);
|
261 |
|
|
enum machine_mode m1 = GET_MODE (op1);
|
262 |
|
|
enum machine_mode result;
|
263 |
|
|
|
264 |
|
|
if (m0 == VOIDmode && m1 == VOIDmode)
|
265 |
|
|
return to_mode;
|
266 |
|
|
else if (m0 == VOIDmode || GET_MODE_SIZE (m0) < GET_MODE_SIZE (m1))
|
267 |
|
|
result = m1;
|
268 |
|
|
else
|
269 |
|
|
result = m0;
|
270 |
|
|
|
271 |
|
|
if (GET_MODE_SIZE (result) > GET_MODE_SIZE (to_mode))
|
272 |
|
|
return to_mode;
|
273 |
|
|
|
274 |
|
|
return result;
|
275 |
|
|
}
|
276 |
|
|
|
277 |
|
|
/* Find a widening optab even if it doesn't widen as much as we want.
|
278 |
|
|
E.g. if from_mode is HImode, and to_mode is DImode, and there is no
|
279 |
|
|
direct HI->SI insn, then return SI->DI, if that exists.
|
280 |
|
|
If PERMIT_NON_WIDENING is non-zero then this can be used with
|
281 |
|
|
non-widening optabs also. */
|
282 |
|
|
|
283 |
|
|
enum insn_code
|
284 |
|
|
find_widening_optab_handler_and_mode (optab op, enum machine_mode to_mode,
|
285 |
|
|
enum machine_mode from_mode,
|
286 |
|
|
int permit_non_widening,
|
287 |
|
|
enum machine_mode *found_mode)
|
288 |
|
|
{
|
289 |
|
|
for (; (permit_non_widening || from_mode != to_mode)
|
290 |
|
|
&& GET_MODE_SIZE (from_mode) <= GET_MODE_SIZE (to_mode)
|
291 |
|
|
&& from_mode != VOIDmode;
|
292 |
|
|
from_mode = GET_MODE_WIDER_MODE (from_mode))
|
293 |
|
|
{
|
294 |
|
|
enum insn_code handler = widening_optab_handler (op, to_mode,
|
295 |
|
|
from_mode);
|
296 |
|
|
|
297 |
|
|
if (handler != CODE_FOR_nothing)
|
298 |
|
|
{
|
299 |
|
|
if (found_mode)
|
300 |
|
|
*found_mode = from_mode;
|
301 |
|
|
return handler;
|
302 |
|
|
}
|
303 |
|
|
}
|
304 |
|
|
|
305 |
|
|
return CODE_FOR_nothing;
|
306 |
|
|
}
|
307 |
|
|
|
308 |
|
|
/* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
|
309 |
|
|
says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
|
310 |
|
|
not actually do a sign-extend or zero-extend, but can leave the
|
311 |
|
|
higher-order bits of the result rtx undefined, for example, in the case
|
312 |
|
|
of logical operations, but not right shifts. */
|
313 |
|
|
|
314 |
|
|
static rtx
|
315 |
|
|
widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
|
316 |
|
|
int unsignedp, int no_extend)
|
317 |
|
|
{
|
318 |
|
|
rtx result;
|
319 |
|
|
|
320 |
|
|
/* If we don't have to extend and this is a constant, return it. */
|
321 |
|
|
if (no_extend && GET_MODE (op) == VOIDmode)
|
322 |
|
|
return op;
|
323 |
|
|
|
324 |
|
|
/* If we must extend do so. If OP is a SUBREG for a promoted object, also
|
325 |
|
|
extend since it will be more efficient to do so unless the signedness of
|
326 |
|
|
a promoted object differs from our extension. */
|
327 |
|
|
if (! no_extend
|
328 |
|
|
|| (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
|
329 |
|
|
&& SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
|
330 |
|
|
return convert_modes (mode, oldmode, op, unsignedp);
|
331 |
|
|
|
332 |
|
|
/* If MODE is no wider than a single word, we return a paradoxical
|
333 |
|
|
SUBREG. */
|
334 |
|
|
if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
|
335 |
|
|
return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
|
336 |
|
|
|
337 |
|
|
/* Otherwise, get an object of MODE, clobber it, and set the low-order
|
338 |
|
|
part to OP. */
|
339 |
|
|
|
340 |
|
|
result = gen_reg_rtx (mode);
|
341 |
|
|
emit_clobber (result);
|
342 |
|
|
emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
|
343 |
|
|
return result;
|
344 |
|
|
}
|
345 |
|
|
|
346 |
|
|
/* Return the optab used for computing the operation given by the tree code,
|
347 |
|
|
CODE and the tree EXP. This function is not always usable (for example, it
|
348 |
|
|
cannot give complete results for multiplication or division) but probably
|
349 |
|
|
ought to be relied on more widely throughout the expander. */
|
350 |
|
|
optab
|
351 |
|
|
optab_for_tree_code (enum tree_code code, const_tree type,
|
352 |
|
|
enum optab_subtype subtype)
|
353 |
|
|
{
|
354 |
|
|
bool trapv;
|
355 |
|
|
switch (code)
|
356 |
|
|
{
|
357 |
|
|
case BIT_AND_EXPR:
|
358 |
|
|
return and_optab;
|
359 |
|
|
|
360 |
|
|
case BIT_IOR_EXPR:
|
361 |
|
|
return ior_optab;
|
362 |
|
|
|
363 |
|
|
case BIT_NOT_EXPR:
|
364 |
|
|
return one_cmpl_optab;
|
365 |
|
|
|
366 |
|
|
case BIT_XOR_EXPR:
|
367 |
|
|
return xor_optab;
|
368 |
|
|
|
369 |
|
|
case TRUNC_MOD_EXPR:
|
370 |
|
|
case CEIL_MOD_EXPR:
|
371 |
|
|
case FLOOR_MOD_EXPR:
|
372 |
|
|
case ROUND_MOD_EXPR:
|
373 |
|
|
return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
|
374 |
|
|
|
375 |
|
|
case RDIV_EXPR:
|
376 |
|
|
case TRUNC_DIV_EXPR:
|
377 |
|
|
case CEIL_DIV_EXPR:
|
378 |
|
|
case FLOOR_DIV_EXPR:
|
379 |
|
|
case ROUND_DIV_EXPR:
|
380 |
|
|
case EXACT_DIV_EXPR:
|
381 |
|
|
if (TYPE_SATURATING(type))
|
382 |
|
|
return TYPE_UNSIGNED(type) ? usdiv_optab : ssdiv_optab;
|
383 |
|
|
return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
|
384 |
|
|
|
385 |
|
|
case LSHIFT_EXPR:
|
386 |
|
|
if (TREE_CODE (type) == VECTOR_TYPE)
|
387 |
|
|
{
|
388 |
|
|
if (subtype == optab_vector)
|
389 |
|
|
return TYPE_SATURATING (type) ? NULL : vashl_optab;
|
390 |
|
|
|
391 |
|
|
gcc_assert (subtype == optab_scalar);
|
392 |
|
|
}
|
393 |
|
|
if (TYPE_SATURATING(type))
|
394 |
|
|
return TYPE_UNSIGNED(type) ? usashl_optab : ssashl_optab;
|
395 |
|
|
return ashl_optab;
|
396 |
|
|
|
397 |
|
|
case RSHIFT_EXPR:
|
398 |
|
|
if (TREE_CODE (type) == VECTOR_TYPE)
|
399 |
|
|
{
|
400 |
|
|
if (subtype == optab_vector)
|
401 |
|
|
return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
|
402 |
|
|
|
403 |
|
|
gcc_assert (subtype == optab_scalar);
|
404 |
|
|
}
|
405 |
|
|
return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
|
406 |
|
|
|
407 |
|
|
case LROTATE_EXPR:
|
408 |
|
|
if (TREE_CODE (type) == VECTOR_TYPE)
|
409 |
|
|
{
|
410 |
|
|
if (subtype == optab_vector)
|
411 |
|
|
return vrotl_optab;
|
412 |
|
|
|
413 |
|
|
gcc_assert (subtype == optab_scalar);
|
414 |
|
|
}
|
415 |
|
|
return rotl_optab;
|
416 |
|
|
|
417 |
|
|
case RROTATE_EXPR:
|
418 |
|
|
if (TREE_CODE (type) == VECTOR_TYPE)
|
419 |
|
|
{
|
420 |
|
|
if (subtype == optab_vector)
|
421 |
|
|
return vrotr_optab;
|
422 |
|
|
|
423 |
|
|
gcc_assert (subtype == optab_scalar);
|
424 |
|
|
}
|
425 |
|
|
return rotr_optab;
|
426 |
|
|
|
427 |
|
|
case MAX_EXPR:
|
428 |
|
|
return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
|
429 |
|
|
|
430 |
|
|
case MIN_EXPR:
|
431 |
|
|
return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
|
432 |
|
|
|
433 |
|
|
case REALIGN_LOAD_EXPR:
|
434 |
|
|
return vec_realign_load_optab;
|
435 |
|
|
|
436 |
|
|
case WIDEN_SUM_EXPR:
|
437 |
|
|
return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
|
438 |
|
|
|
439 |
|
|
case DOT_PROD_EXPR:
|
440 |
|
|
return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
|
441 |
|
|
|
442 |
|
|
case WIDEN_MULT_PLUS_EXPR:
|
443 |
|
|
return (TYPE_UNSIGNED (type)
|
444 |
|
|
? (TYPE_SATURATING (type)
|
445 |
|
|
? usmadd_widen_optab : umadd_widen_optab)
|
446 |
|
|
: (TYPE_SATURATING (type)
|
447 |
|
|
? ssmadd_widen_optab : smadd_widen_optab));
|
448 |
|
|
|
449 |
|
|
case WIDEN_MULT_MINUS_EXPR:
|
450 |
|
|
return (TYPE_UNSIGNED (type)
|
451 |
|
|
? (TYPE_SATURATING (type)
|
452 |
|
|
? usmsub_widen_optab : umsub_widen_optab)
|
453 |
|
|
: (TYPE_SATURATING (type)
|
454 |
|
|
? ssmsub_widen_optab : smsub_widen_optab));
|
455 |
|
|
|
456 |
|
|
case FMA_EXPR:
|
457 |
|
|
return fma_optab;
|
458 |
|
|
|
459 |
|
|
case REDUC_MAX_EXPR:
|
460 |
|
|
return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
|
461 |
|
|
|
462 |
|
|
case REDUC_MIN_EXPR:
|
463 |
|
|
return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
|
464 |
|
|
|
465 |
|
|
case REDUC_PLUS_EXPR:
|
466 |
|
|
return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
|
467 |
|
|
|
468 |
|
|
case VEC_LSHIFT_EXPR:
|
469 |
|
|
return vec_shl_optab;
|
470 |
|
|
|
471 |
|
|
case VEC_RSHIFT_EXPR:
|
472 |
|
|
return vec_shr_optab;
|
473 |
|
|
|
474 |
|
|
case VEC_WIDEN_MULT_HI_EXPR:
|
475 |
|
|
return TYPE_UNSIGNED (type) ?
|
476 |
|
|
vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
|
477 |
|
|
|
478 |
|
|
case VEC_WIDEN_MULT_LO_EXPR:
|
479 |
|
|
return TYPE_UNSIGNED (type) ?
|
480 |
|
|
vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
|
481 |
|
|
|
482 |
|
|
case VEC_WIDEN_LSHIFT_HI_EXPR:
|
483 |
|
|
return TYPE_UNSIGNED (type) ?
|
484 |
|
|
vec_widen_ushiftl_hi_optab : vec_widen_sshiftl_hi_optab;
|
485 |
|
|
|
486 |
|
|
case VEC_WIDEN_LSHIFT_LO_EXPR:
|
487 |
|
|
return TYPE_UNSIGNED (type) ?
|
488 |
|
|
vec_widen_ushiftl_lo_optab : vec_widen_sshiftl_lo_optab;
|
489 |
|
|
|
490 |
|
|
case VEC_UNPACK_HI_EXPR:
|
491 |
|
|
return TYPE_UNSIGNED (type) ?
|
492 |
|
|
vec_unpacku_hi_optab : vec_unpacks_hi_optab;
|
493 |
|
|
|
494 |
|
|
case VEC_UNPACK_LO_EXPR:
|
495 |
|
|
return TYPE_UNSIGNED (type) ?
|
496 |
|
|
vec_unpacku_lo_optab : vec_unpacks_lo_optab;
|
497 |
|
|
|
498 |
|
|
case VEC_UNPACK_FLOAT_HI_EXPR:
|
499 |
|
|
/* The signedness is determined from input operand. */
|
500 |
|
|
return TYPE_UNSIGNED (type) ?
|
501 |
|
|
vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
|
502 |
|
|
|
503 |
|
|
case VEC_UNPACK_FLOAT_LO_EXPR:
|
504 |
|
|
/* The signedness is determined from input operand. */
|
505 |
|
|
return TYPE_UNSIGNED (type) ?
|
506 |
|
|
vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
|
507 |
|
|
|
508 |
|
|
case VEC_PACK_TRUNC_EXPR:
|
509 |
|
|
return vec_pack_trunc_optab;
|
510 |
|
|
|
511 |
|
|
case VEC_PACK_SAT_EXPR:
|
512 |
|
|
return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
|
513 |
|
|
|
514 |
|
|
case VEC_PACK_FIX_TRUNC_EXPR:
|
515 |
|
|
/* The signedness is determined from output operand. */
|
516 |
|
|
return TYPE_UNSIGNED (type) ?
|
517 |
|
|
vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
|
518 |
|
|
|
519 |
|
|
default:
|
520 |
|
|
break;
|
521 |
|
|
}
|
522 |
|
|
|
523 |
|
|
trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
|
524 |
|
|
switch (code)
|
525 |
|
|
{
|
526 |
|
|
case POINTER_PLUS_EXPR:
|
527 |
|
|
case PLUS_EXPR:
|
528 |
|
|
if (TYPE_SATURATING(type))
|
529 |
|
|
return TYPE_UNSIGNED(type) ? usadd_optab : ssadd_optab;
|
530 |
|
|
return trapv ? addv_optab : add_optab;
|
531 |
|
|
|
532 |
|
|
case MINUS_EXPR:
|
533 |
|
|
if (TYPE_SATURATING(type))
|
534 |
|
|
return TYPE_UNSIGNED(type) ? ussub_optab : sssub_optab;
|
535 |
|
|
return trapv ? subv_optab : sub_optab;
|
536 |
|
|
|
537 |
|
|
case MULT_EXPR:
|
538 |
|
|
if (TYPE_SATURATING(type))
|
539 |
|
|
return TYPE_UNSIGNED(type) ? usmul_optab : ssmul_optab;
|
540 |
|
|
return trapv ? smulv_optab : smul_optab;
|
541 |
|
|
|
542 |
|
|
case NEGATE_EXPR:
|
543 |
|
|
if (TYPE_SATURATING(type))
|
544 |
|
|
return TYPE_UNSIGNED(type) ? usneg_optab : ssneg_optab;
|
545 |
|
|
return trapv ? negv_optab : neg_optab;
|
546 |
|
|
|
547 |
|
|
case ABS_EXPR:
|
548 |
|
|
return trapv ? absv_optab : abs_optab;
|
549 |
|
|
|
550 |
|
|
default:
|
551 |
|
|
return NULL;
|
552 |
|
|
}
|
553 |
|
|
}
|
554 |
|
|
|
555 |
|
|
|
556 |
|
|
/* Expand vector widening operations.
|
557 |
|
|
|
558 |
|
|
There are two different classes of operations handled here:
|
559 |
|
|
1) Operations whose result is wider than all the arguments to the operation.
|
560 |
|
|
Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
|
561 |
|
|
In this case OP0 and optionally OP1 would be initialized,
|
562 |
|
|
but WIDE_OP wouldn't (not relevant for this case).
|
563 |
|
|
2) Operations whose result is of the same size as the last argument to the
|
564 |
|
|
operation, but wider than all the other arguments to the operation.
|
565 |
|
|
Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
|
566 |
|
|
In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
|
567 |
|
|
|
568 |
|
|
E.g, when called to expand the following operations, this is how
|
569 |
|
|
the arguments will be initialized:
|
570 |
|
|
nops OP0 OP1 WIDE_OP
|
571 |
|
|
widening-sum 2 oprnd0 - oprnd1
|
572 |
|
|
widening-dot-product 3 oprnd0 oprnd1 oprnd2
|
573 |
|
|
widening-mult 2 oprnd0 oprnd1 -
|
574 |
|
|
type-promotion (vec-unpack) 1 oprnd0 - - */
|
575 |
|
|
|
576 |
|
|
rtx
|
577 |
|
|
expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
|
578 |
|
|
rtx target, int unsignedp)
|
579 |
|
|
{
|
580 |
|
|
struct expand_operand eops[4];
|
581 |
|
|
tree oprnd0, oprnd1, oprnd2;
|
582 |
|
|
enum machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
|
583 |
|
|
optab widen_pattern_optab;
|
584 |
|
|
enum insn_code icode;
|
585 |
|
|
int nops = TREE_CODE_LENGTH (ops->code);
|
586 |
|
|
int op;
|
587 |
|
|
|
588 |
|
|
oprnd0 = ops->op0;
|
589 |
|
|
tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
|
590 |
|
|
widen_pattern_optab =
|
591 |
|
|
optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
|
592 |
|
|
if (ops->code == WIDEN_MULT_PLUS_EXPR
|
593 |
|
|
|| ops->code == WIDEN_MULT_MINUS_EXPR)
|
594 |
|
|
icode = find_widening_optab_handler (widen_pattern_optab,
|
595 |
|
|
TYPE_MODE (TREE_TYPE (ops->op2)),
|
596 |
|
|
tmode0, 0);
|
597 |
|
|
else
|
598 |
|
|
icode = optab_handler (widen_pattern_optab, tmode0);
|
599 |
|
|
gcc_assert (icode != CODE_FOR_nothing);
|
600 |
|
|
|
601 |
|
|
if (nops >= 2)
|
602 |
|
|
{
|
603 |
|
|
oprnd1 = ops->op1;
|
604 |
|
|
tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
|
605 |
|
|
}
|
606 |
|
|
|
607 |
|
|
/* The last operand is of a wider mode than the rest of the operands. */
|
608 |
|
|
if (nops == 2)
|
609 |
|
|
wmode = tmode1;
|
610 |
|
|
else if (nops == 3)
|
611 |
|
|
{
|
612 |
|
|
gcc_assert (tmode1 == tmode0);
|
613 |
|
|
gcc_assert (op1);
|
614 |
|
|
oprnd2 = ops->op2;
|
615 |
|
|
wmode = TYPE_MODE (TREE_TYPE (oprnd2));
|
616 |
|
|
}
|
617 |
|
|
|
618 |
|
|
op = 0;
|
619 |
|
|
create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
|
620 |
|
|
create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
|
621 |
|
|
if (op1)
|
622 |
|
|
create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
|
623 |
|
|
if (wide_op)
|
624 |
|
|
create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
|
625 |
|
|
expand_insn (icode, op, eops);
|
626 |
|
|
return eops[0].value;
|
627 |
|
|
}
|
628 |
|
|
|
629 |
|
|
/* Generate code to perform an operation specified by TERNARY_OPTAB
|
630 |
|
|
on operands OP0, OP1 and OP2, with result having machine-mode MODE.
|
631 |
|
|
|
632 |
|
|
UNSIGNEDP is for the case where we have to widen the operands
|
633 |
|
|
to perform the operation. It says to use zero-extension.
|
634 |
|
|
|
635 |
|
|
If TARGET is nonzero, the value
|
636 |
|
|
is generated there, if it is convenient to do so.
|
637 |
|
|
In all cases an rtx is returned for the locus of the value;
|
638 |
|
|
this may or may not be TARGET. */
|
639 |
|
|
|
640 |
|
|
rtx
|
641 |
|
|
expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
|
642 |
|
|
rtx op1, rtx op2, rtx target, int unsignedp)
|
643 |
|
|
{
|
644 |
|
|
struct expand_operand ops[4];
|
645 |
|
|
enum insn_code icode = optab_handler (ternary_optab, mode);
|
646 |
|
|
|
647 |
|
|
gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
|
648 |
|
|
|
649 |
|
|
create_output_operand (&ops[0], target, mode);
|
650 |
|
|
create_convert_operand_from (&ops[1], op0, mode, unsignedp);
|
651 |
|
|
create_convert_operand_from (&ops[2], op1, mode, unsignedp);
|
652 |
|
|
create_convert_operand_from (&ops[3], op2, mode, unsignedp);
|
653 |
|
|
expand_insn (icode, 4, ops);
|
654 |
|
|
return ops[0].value;
|
655 |
|
|
}
|
656 |
|
|
|
657 |
|
|
|
658 |
|
|
/* Like expand_binop, but return a constant rtx if the result can be
|
659 |
|
|
calculated at compile time. The arguments and return value are
|
660 |
|
|
otherwise the same as for expand_binop. */
|
661 |
|
|
|
662 |
|
|
rtx
|
663 |
|
|
simplify_expand_binop (enum machine_mode mode, optab binoptab,
|
664 |
|
|
rtx op0, rtx op1, rtx target, int unsignedp,
|
665 |
|
|
enum optab_methods methods)
|
666 |
|
|
{
|
667 |
|
|
if (CONSTANT_P (op0) && CONSTANT_P (op1))
|
668 |
|
|
{
|
669 |
|
|
rtx x = simplify_binary_operation (binoptab->code, mode, op0, op1);
|
670 |
|
|
|
671 |
|
|
if (x)
|
672 |
|
|
return x;
|
673 |
|
|
}
|
674 |
|
|
|
675 |
|
|
return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
|
676 |
|
|
}
|
677 |
|
|
|
678 |
|
|
/* Like simplify_expand_binop, but always put the result in TARGET.
|
679 |
|
|
Return true if the expansion succeeded. */
|
680 |
|
|
|
681 |
|
|
bool
|
682 |
|
|
force_expand_binop (enum machine_mode mode, optab binoptab,
|
683 |
|
|
rtx op0, rtx op1, rtx target, int unsignedp,
|
684 |
|
|
enum optab_methods methods)
|
685 |
|
|
{
|
686 |
|
|
rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
|
687 |
|
|
target, unsignedp, methods);
|
688 |
|
|
if (x == 0)
|
689 |
|
|
return false;
|
690 |
|
|
if (x != target)
|
691 |
|
|
emit_move_insn (target, x);
|
692 |
|
|
return true;
|
693 |
|
|
}
|
694 |
|
|
|
695 |
|
|
/* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
|
696 |
|
|
|
697 |
|
|
rtx
|
698 |
|
|
expand_vec_shift_expr (sepops ops, rtx target)
|
699 |
|
|
{
|
700 |
|
|
struct expand_operand eops[3];
|
701 |
|
|
enum insn_code icode;
|
702 |
|
|
rtx rtx_op1, rtx_op2;
|
703 |
|
|
enum machine_mode mode = TYPE_MODE (ops->type);
|
704 |
|
|
tree vec_oprnd = ops->op0;
|
705 |
|
|
tree shift_oprnd = ops->op1;
|
706 |
|
|
optab shift_optab;
|
707 |
|
|
|
708 |
|
|
switch (ops->code)
|
709 |
|
|
{
|
710 |
|
|
case VEC_RSHIFT_EXPR:
|
711 |
|
|
shift_optab = vec_shr_optab;
|
712 |
|
|
break;
|
713 |
|
|
case VEC_LSHIFT_EXPR:
|
714 |
|
|
shift_optab = vec_shl_optab;
|
715 |
|
|
break;
|
716 |
|
|
default:
|
717 |
|
|
gcc_unreachable ();
|
718 |
|
|
}
|
719 |
|
|
|
720 |
|
|
icode = optab_handler (shift_optab, mode);
|
721 |
|
|
gcc_assert (icode != CODE_FOR_nothing);
|
722 |
|
|
|
723 |
|
|
rtx_op1 = expand_normal (vec_oprnd);
|
724 |
|
|
rtx_op2 = expand_normal (shift_oprnd);
|
725 |
|
|
|
726 |
|
|
create_output_operand (&eops[0], target, mode);
|
727 |
|
|
create_input_operand (&eops[1], rtx_op1, GET_MODE (rtx_op1));
|
728 |
|
|
create_convert_operand_from_type (&eops[2], rtx_op2, TREE_TYPE (shift_oprnd));
|
729 |
|
|
expand_insn (icode, 3, eops);
|
730 |
|
|
|
731 |
|
|
return eops[0].value;
|
732 |
|
|
}
|
733 |
|
|
|
734 |
|
|
/* Create a new vector value in VMODE with all elements set to OP. The
|
735 |
|
|
mode of OP must be the element mode of VMODE. If OP is a constant,
|
736 |
|
|
then the return value will be a constant. */
|
737 |
|
|
|
738 |
|
|
static rtx
|
739 |
|
|
expand_vector_broadcast (enum machine_mode vmode, rtx op)
|
740 |
|
|
{
|
741 |
|
|
enum insn_code icode;
|
742 |
|
|
rtvec vec;
|
743 |
|
|
rtx ret;
|
744 |
|
|
int i, n;
|
745 |
|
|
|
746 |
|
|
gcc_checking_assert (VECTOR_MODE_P (vmode));
|
747 |
|
|
|
748 |
|
|
n = GET_MODE_NUNITS (vmode);
|
749 |
|
|
vec = rtvec_alloc (n);
|
750 |
|
|
for (i = 0; i < n; ++i)
|
751 |
|
|
RTVEC_ELT (vec, i) = op;
|
752 |
|
|
|
753 |
|
|
if (CONSTANT_P (op))
|
754 |
|
|
return gen_rtx_CONST_VECTOR (vmode, vec);
|
755 |
|
|
|
756 |
|
|
/* ??? If the target doesn't have a vec_init, then we have no easy way
|
757 |
|
|
of performing this operation. Most of this sort of generic support
|
758 |
|
|
is hidden away in the vector lowering support in gimple. */
|
759 |
|
|
icode = optab_handler (vec_init_optab, vmode);
|
760 |
|
|
if (icode == CODE_FOR_nothing)
|
761 |
|
|
return NULL;
|
762 |
|
|
|
763 |
|
|
ret = gen_reg_rtx (vmode);
|
764 |
|
|
emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec)));
|
765 |
|
|
|
766 |
|
|
return ret;
|
767 |
|
|
}
|
768 |
|
|
|
769 |
|
|
/* This subroutine of expand_doubleword_shift handles the cases in which
|
770 |
|
|
the effective shift value is >= BITS_PER_WORD. The arguments and return
|
771 |
|
|
value are the same as for the parent routine, except that SUPERWORD_OP1
|
772 |
|
|
is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
|
773 |
|
|
INTO_TARGET may be null if the caller has decided to calculate it. */
|
774 |
|
|
|
775 |
|
|
static bool
|
776 |
|
|
expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
|
777 |
|
|
rtx outof_target, rtx into_target,
|
778 |
|
|
int unsignedp, enum optab_methods methods)
|
779 |
|
|
{
|
780 |
|
|
if (into_target != 0)
|
781 |
|
|
if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
|
782 |
|
|
into_target, unsignedp, methods))
|
783 |
|
|
return false;
|
784 |
|
|
|
785 |
|
|
if (outof_target != 0)
|
786 |
|
|
{
|
787 |
|
|
/* For a signed right shift, we must fill OUTOF_TARGET with copies
|
788 |
|
|
of the sign bit, otherwise we must fill it with zeros. */
|
789 |
|
|
if (binoptab != ashr_optab)
|
790 |
|
|
emit_move_insn (outof_target, CONST0_RTX (word_mode));
|
791 |
|
|
else
|
792 |
|
|
if (!force_expand_binop (word_mode, binoptab,
|
793 |
|
|
outof_input, GEN_INT (BITS_PER_WORD - 1),
|
794 |
|
|
outof_target, unsignedp, methods))
|
795 |
|
|
return false;
|
796 |
|
|
}
|
797 |
|
|
return true;
|
798 |
|
|
}
|
799 |
|
|
|
800 |
|
|
/* This subroutine of expand_doubleword_shift handles the cases in which
|
801 |
|
|
the effective shift value is < BITS_PER_WORD. The arguments and return
|
802 |
|
|
value are the same as for the parent routine. */
|
803 |
|
|
|
804 |
|
|
static bool
|
805 |
|
|
expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
|
806 |
|
|
rtx outof_input, rtx into_input, rtx op1,
|
807 |
|
|
rtx outof_target, rtx into_target,
|
808 |
|
|
int unsignedp, enum optab_methods methods,
|
809 |
|
|
unsigned HOST_WIDE_INT shift_mask)
|
810 |
|
|
{
|
811 |
|
|
optab reverse_unsigned_shift, unsigned_shift;
|
812 |
|
|
rtx tmp, carries;
|
813 |
|
|
|
814 |
|
|
reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
|
815 |
|
|
unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
|
816 |
|
|
|
817 |
|
|
/* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
|
818 |
|
|
We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
|
819 |
|
|
the opposite direction to BINOPTAB. */
|
820 |
|
|
if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
|
821 |
|
|
{
|
822 |
|
|
carries = outof_input;
|
823 |
|
|
tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
|
824 |
|
|
tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
|
825 |
|
|
0, true, methods);
|
826 |
|
|
}
|
827 |
|
|
else
|
828 |
|
|
{
|
829 |
|
|
/* We must avoid shifting by BITS_PER_WORD bits since that is either
|
830 |
|
|
the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
|
831 |
|
|
has unknown behavior. Do a single shift first, then shift by the
|
832 |
|
|
remainder. It's OK to use ~OP1 as the remainder if shift counts
|
833 |
|
|
are truncated to the mode size. */
|
834 |
|
|
carries = expand_binop (word_mode, reverse_unsigned_shift,
|
835 |
|
|
outof_input, const1_rtx, 0, unsignedp, methods);
|
836 |
|
|
if (shift_mask == BITS_PER_WORD - 1)
|
837 |
|
|
{
|
838 |
|
|
tmp = immed_double_const (-1, -1, op1_mode);
|
839 |
|
|
tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
|
840 |
|
|
0, true, methods);
|
841 |
|
|
}
|
842 |
|
|
else
|
843 |
|
|
{
|
844 |
|
|
tmp = immed_double_const (BITS_PER_WORD - 1, 0, op1_mode);
|
845 |
|
|
tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
|
846 |
|
|
0, true, methods);
|
847 |
|
|
}
|
848 |
|
|
}
|
849 |
|
|
if (tmp == 0 || carries == 0)
|
850 |
|
|
return false;
|
851 |
|
|
carries = expand_binop (word_mode, reverse_unsigned_shift,
|
852 |
|
|
carries, tmp, 0, unsignedp, methods);
|
853 |
|
|
if (carries == 0)
|
854 |
|
|
return false;
|
855 |
|
|
|
856 |
|
|
/* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
|
857 |
|
|
so the result can go directly into INTO_TARGET if convenient. */
|
858 |
|
|
tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
|
859 |
|
|
into_target, unsignedp, methods);
|
860 |
|
|
if (tmp == 0)
|
861 |
|
|
return false;
|
862 |
|
|
|
863 |
|
|
/* Now OR in the bits carried over from OUTOF_INPUT. */
|
864 |
|
|
if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
|
865 |
|
|
into_target, unsignedp, methods))
|
866 |
|
|
return false;
|
867 |
|
|
|
868 |
|
|
/* Use a standard word_mode shift for the out-of half. */
|
869 |
|
|
if (outof_target != 0)
|
870 |
|
|
if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
|
871 |
|
|
outof_target, unsignedp, methods))
|
872 |
|
|
return false;
|
873 |
|
|
|
874 |
|
|
return true;
|
875 |
|
|
}
|
876 |
|
|
|
877 |
|
|
|
878 |
|
|
#ifdef HAVE_conditional_move
|
879 |
|
|
/* Try implementing expand_doubleword_shift using conditional moves.
|
880 |
|
|
The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
|
881 |
|
|
otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
|
882 |
|
|
are the shift counts to use in the former and latter case. All other
|
883 |
|
|
arguments are the same as the parent routine. */
|
884 |
|
|
|
885 |
|
|
static bool
|
886 |
|
|
expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
|
887 |
|
|
enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
|
888 |
|
|
rtx outof_input, rtx into_input,
|
889 |
|
|
rtx subword_op1, rtx superword_op1,
|
890 |
|
|
rtx outof_target, rtx into_target,
|
891 |
|
|
int unsignedp, enum optab_methods methods,
|
892 |
|
|
unsigned HOST_WIDE_INT shift_mask)
|
893 |
|
|
{
|
894 |
|
|
rtx outof_superword, into_superword;
|
895 |
|
|
|
896 |
|
|
/* Put the superword version of the output into OUTOF_SUPERWORD and
|
897 |
|
|
INTO_SUPERWORD. */
|
898 |
|
|
outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
|
899 |
|
|
if (outof_target != 0 && subword_op1 == superword_op1)
|
900 |
|
|
{
|
901 |
|
|
/* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
|
902 |
|
|
OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
|
903 |
|
|
into_superword = outof_target;
|
904 |
|
|
if (!expand_superword_shift (binoptab, outof_input, superword_op1,
|
905 |
|
|
outof_superword, 0, unsignedp, methods))
|
906 |
|
|
return false;
|
907 |
|
|
}
|
908 |
|
|
else
|
909 |
|
|
{
|
910 |
|
|
into_superword = gen_reg_rtx (word_mode);
|
911 |
|
|
if (!expand_superword_shift (binoptab, outof_input, superword_op1,
|
912 |
|
|
outof_superword, into_superword,
|
913 |
|
|
unsignedp, methods))
|
914 |
|
|
return false;
|
915 |
|
|
}
|
916 |
|
|
|
917 |
|
|
/* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
|
918 |
|
|
if (!expand_subword_shift (op1_mode, binoptab,
|
919 |
|
|
outof_input, into_input, subword_op1,
|
920 |
|
|
outof_target, into_target,
|
921 |
|
|
unsignedp, methods, shift_mask))
|
922 |
|
|
return false;
|
923 |
|
|
|
924 |
|
|
/* Select between them. Do the INTO half first because INTO_SUPERWORD
|
925 |
|
|
might be the current value of OUTOF_TARGET. */
|
926 |
|
|
if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
|
927 |
|
|
into_target, into_superword, word_mode, false))
|
928 |
|
|
return false;
|
929 |
|
|
|
930 |
|
|
if (outof_target != 0)
|
931 |
|
|
if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
|
932 |
|
|
outof_target, outof_superword,
|
933 |
|
|
word_mode, false))
|
934 |
|
|
return false;
|
935 |
|
|
|
936 |
|
|
return true;
|
937 |
|
|
}
|
938 |
|
|
#endif
|
939 |
|
|
|
940 |
|
|
/* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
|
941 |
|
|
OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
|
942 |
|
|
input operand; the shift moves bits in the direction OUTOF_INPUT->
|
943 |
|
|
INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
|
944 |
|
|
of the target. OP1 is the shift count and OP1_MODE is its mode.
|
945 |
|
|
If OP1 is constant, it will have been truncated as appropriate
|
946 |
|
|
and is known to be nonzero.
|
947 |
|
|
|
948 |
|
|
If SHIFT_MASK is zero, the result of word shifts is undefined when the
|
949 |
|
|
shift count is outside the range [0, BITS_PER_WORD). This routine must
|
950 |
|
|
avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
|
951 |
|
|
|
952 |
|
|
If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
|
953 |
|
|
masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
|
954 |
|
|
fill with zeros or sign bits as appropriate.
|
955 |
|
|
|
956 |
|
|
If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
|
957 |
|
|
a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
|
958 |
|
|
Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
|
959 |
|
|
In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
|
960 |
|
|
are undefined.
|
961 |
|
|
|
962 |
|
|
BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
|
963 |
|
|
may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
|
964 |
|
|
OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
|
965 |
|
|
function wants to calculate it itself.
|
966 |
|
|
|
967 |
|
|
Return true if the shift could be successfully synthesized. */
|
968 |
|
|
|
969 |
|
|
static bool
|
970 |
|
|
expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
|
971 |
|
|
rtx outof_input, rtx into_input, rtx op1,
|
972 |
|
|
rtx outof_target, rtx into_target,
|
973 |
|
|
int unsignedp, enum optab_methods methods,
|
974 |
|
|
unsigned HOST_WIDE_INT shift_mask)
|
975 |
|
|
{
|
976 |
|
|
rtx superword_op1, tmp, cmp1, cmp2;
|
977 |
|
|
rtx subword_label, done_label;
|
978 |
|
|
enum rtx_code cmp_code;
|
979 |
|
|
|
980 |
|
|
/* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
|
981 |
|
|
fill the result with sign or zero bits as appropriate. If so, the value
|
982 |
|
|
of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
|
983 |
|
|
this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
|
984 |
|
|
and INTO_INPUT), then emit code to set up OUTOF_TARGET.
|
985 |
|
|
|
986 |
|
|
This isn't worthwhile for constant shifts since the optimizers will
|
987 |
|
|
cope better with in-range shift counts. */
|
988 |
|
|
if (shift_mask >= BITS_PER_WORD
|
989 |
|
|
&& outof_target != 0
|
990 |
|
|
&& !CONSTANT_P (op1))
|
991 |
|
|
{
|
992 |
|
|
if (!expand_doubleword_shift (op1_mode, binoptab,
|
993 |
|
|
outof_input, into_input, op1,
|
994 |
|
|
0, into_target,
|
995 |
|
|
unsignedp, methods, shift_mask))
|
996 |
|
|
return false;
|
997 |
|
|
if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
|
998 |
|
|
outof_target, unsignedp, methods))
|
999 |
|
|
return false;
|
1000 |
|
|
return true;
|
1001 |
|
|
}
|
1002 |
|
|
|
1003 |
|
|
/* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
|
1004 |
|
|
is true when the effective shift value is less than BITS_PER_WORD.
|
1005 |
|
|
Set SUPERWORD_OP1 to the shift count that should be used to shift
|
1006 |
|
|
OUTOF_INPUT into INTO_TARGET when the condition is false. */
|
1007 |
|
|
tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
|
1008 |
|
|
if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
|
1009 |
|
|
{
|
1010 |
|
|
/* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
|
1011 |
|
|
is a subword shift count. */
|
1012 |
|
|
cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
|
1013 |
|
|
0, true, methods);
|
1014 |
|
|
cmp2 = CONST0_RTX (op1_mode);
|
1015 |
|
|
cmp_code = EQ;
|
1016 |
|
|
superword_op1 = op1;
|
1017 |
|
|
}
|
1018 |
|
|
else
|
1019 |
|
|
{
|
1020 |
|
|
/* Set CMP1 to OP1 - BITS_PER_WORD. */
|
1021 |
|
|
cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
|
1022 |
|
|
0, true, methods);
|
1023 |
|
|
cmp2 = CONST0_RTX (op1_mode);
|
1024 |
|
|
cmp_code = LT;
|
1025 |
|
|
superword_op1 = cmp1;
|
1026 |
|
|
}
|
1027 |
|
|
if (cmp1 == 0)
|
1028 |
|
|
return false;
|
1029 |
|
|
|
1030 |
|
|
/* If we can compute the condition at compile time, pick the
|
1031 |
|
|
appropriate subroutine. */
|
1032 |
|
|
tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
|
1033 |
|
|
if (tmp != 0 && CONST_INT_P (tmp))
|
1034 |
|
|
{
|
1035 |
|
|
if (tmp == const0_rtx)
|
1036 |
|
|
return expand_superword_shift (binoptab, outof_input, superword_op1,
|
1037 |
|
|
outof_target, into_target,
|
1038 |
|
|
unsignedp, methods);
|
1039 |
|
|
else
|
1040 |
|
|
return expand_subword_shift (op1_mode, binoptab,
|
1041 |
|
|
outof_input, into_input, op1,
|
1042 |
|
|
outof_target, into_target,
|
1043 |
|
|
unsignedp, methods, shift_mask);
|
1044 |
|
|
}
|
1045 |
|
|
|
1046 |
|
|
#ifdef HAVE_conditional_move
|
1047 |
|
|
/* Try using conditional moves to generate straight-line code. */
|
1048 |
|
|
{
|
1049 |
|
|
rtx start = get_last_insn ();
|
1050 |
|
|
if (expand_doubleword_shift_condmove (op1_mode, binoptab,
|
1051 |
|
|
cmp_code, cmp1, cmp2,
|
1052 |
|
|
outof_input, into_input,
|
1053 |
|
|
op1, superword_op1,
|
1054 |
|
|
outof_target, into_target,
|
1055 |
|
|
unsignedp, methods, shift_mask))
|
1056 |
|
|
return true;
|
1057 |
|
|
delete_insns_since (start);
|
1058 |
|
|
}
|
1059 |
|
|
#endif
|
1060 |
|
|
|
1061 |
|
|
/* As a last resort, use branches to select the correct alternative. */
|
1062 |
|
|
subword_label = gen_label_rtx ();
|
1063 |
|
|
done_label = gen_label_rtx ();
|
1064 |
|
|
|
1065 |
|
|
NO_DEFER_POP;
|
1066 |
|
|
do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
|
1067 |
|
|
0, 0, subword_label, -1);
|
1068 |
|
|
OK_DEFER_POP;
|
1069 |
|
|
|
1070 |
|
|
if (!expand_superword_shift (binoptab, outof_input, superword_op1,
|
1071 |
|
|
outof_target, into_target,
|
1072 |
|
|
unsignedp, methods))
|
1073 |
|
|
return false;
|
1074 |
|
|
|
1075 |
|
|
emit_jump_insn (gen_jump (done_label));
|
1076 |
|
|
emit_barrier ();
|
1077 |
|
|
emit_label (subword_label);
|
1078 |
|
|
|
1079 |
|
|
if (!expand_subword_shift (op1_mode, binoptab,
|
1080 |
|
|
outof_input, into_input, op1,
|
1081 |
|
|
outof_target, into_target,
|
1082 |
|
|
unsignedp, methods, shift_mask))
|
1083 |
|
|
return false;
|
1084 |
|
|
|
1085 |
|
|
emit_label (done_label);
|
1086 |
|
|
return true;
|
1087 |
|
|
}
|
1088 |
|
|
|
1089 |
|
|
/* Subroutine of expand_binop. Perform a double word multiplication of
|
1090 |
|
|
operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
|
1091 |
|
|
as the target's word_mode. This function return NULL_RTX if anything
|
1092 |
|
|
goes wrong, in which case it may have already emitted instructions
|
1093 |
|
|
which need to be deleted.
|
1094 |
|
|
|
1095 |
|
|
If we want to multiply two two-word values and have normal and widening
|
1096 |
|
|
multiplies of single-word values, we can do this with three smaller
|
1097 |
|
|
multiplications.
|
1098 |
|
|
|
1099 |
|
|
The multiplication proceeds as follows:
|
1100 |
|
|
_______________________
|
1101 |
|
|
[__op0_high_|__op0_low__]
|
1102 |
|
|
_______________________
|
1103 |
|
|
* [__op1_high_|__op1_low__]
|
1104 |
|
|
_______________________________________________
|
1105 |
|
|
_______________________
|
1106 |
|
|
(1) [__op0_low__*__op1_low__]
|
1107 |
|
|
_______________________
|
1108 |
|
|
(2a) [__op0_low__*__op1_high_]
|
1109 |
|
|
_______________________
|
1110 |
|
|
(2b) [__op0_high_*__op1_low__]
|
1111 |
|
|
_______________________
|
1112 |
|
|
(3) [__op0_high_*__op1_high_]
|
1113 |
|
|
|
1114 |
|
|
|
1115 |
|
|
This gives a 4-word result. Since we are only interested in the
|
1116 |
|
|
lower 2 words, partial result (3) and the upper words of (2a) and
|
1117 |
|
|
(2b) don't need to be calculated. Hence (2a) and (2b) can be
|
1118 |
|
|
calculated using non-widening multiplication.
|
1119 |
|
|
|
1120 |
|
|
(1), however, needs to be calculated with an unsigned widening
|
1121 |
|
|
multiplication. If this operation is not directly supported we
|
1122 |
|
|
try using a signed widening multiplication and adjust the result.
|
1123 |
|
|
This adjustment works as follows:
|
1124 |
|
|
|
1125 |
|
|
If both operands are positive then no adjustment is needed.
|
1126 |
|
|
|
1127 |
|
|
If the operands have different signs, for example op0_low < 0 and
|
1128 |
|
|
op1_low >= 0, the instruction treats the most significant bit of
|
1129 |
|
|
op0_low as a sign bit instead of a bit with significance
|
1130 |
|
|
2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
|
1131 |
|
|
with 2**BITS_PER_WORD - op0_low, and two's complements the
|
1132 |
|
|
result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
|
1133 |
|
|
the result.
|
1134 |
|
|
|
1135 |
|
|
Similarly, if both operands are negative, we need to add
|
1136 |
|
|
(op0_low + op1_low) * 2**BITS_PER_WORD.
|
1137 |
|
|
|
1138 |
|
|
We use a trick to adjust quickly. We logically shift op0_low right
|
1139 |
|
|
(op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
|
1140 |
|
|
op0_high (op1_high) before it is used to calculate 2b (2a). If no
|
1141 |
|
|
logical shift exists, we do an arithmetic right shift and subtract
|
1142 |
|
|
the 0 or -1. */
|
1143 |
|
|
|
1144 |
|
|
static rtx
|
1145 |
|
|
expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
|
1146 |
|
|
bool umulp, enum optab_methods methods)
|
1147 |
|
|
{
|
1148 |
|
|
int low = (WORDS_BIG_ENDIAN ? 1 : 0);
|
1149 |
|
|
int high = (WORDS_BIG_ENDIAN ? 0 : 1);
|
1150 |
|
|
rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
|
1151 |
|
|
rtx product, adjust, product_high, temp;
|
1152 |
|
|
|
1153 |
|
|
rtx op0_high = operand_subword_force (op0, high, mode);
|
1154 |
|
|
rtx op0_low = operand_subword_force (op0, low, mode);
|
1155 |
|
|
rtx op1_high = operand_subword_force (op1, high, mode);
|
1156 |
|
|
rtx op1_low = operand_subword_force (op1, low, mode);
|
1157 |
|
|
|
1158 |
|
|
/* If we're using an unsigned multiply to directly compute the product
|
1159 |
|
|
of the low-order words of the operands and perform any required
|
1160 |
|
|
adjustments of the operands, we begin by trying two more multiplications
|
1161 |
|
|
and then computing the appropriate sum.
|
1162 |
|
|
|
1163 |
|
|
We have checked above that the required addition is provided.
|
1164 |
|
|
Full-word addition will normally always succeed, especially if
|
1165 |
|
|
it is provided at all, so we don't worry about its failure. The
|
1166 |
|
|
multiplication may well fail, however, so we do handle that. */
|
1167 |
|
|
|
1168 |
|
|
if (!umulp)
|
1169 |
|
|
{
|
1170 |
|
|
/* ??? This could be done with emit_store_flag where available. */
|
1171 |
|
|
temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
|
1172 |
|
|
NULL_RTX, 1, methods);
|
1173 |
|
|
if (temp)
|
1174 |
|
|
op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
|
1175 |
|
|
NULL_RTX, 0, OPTAB_DIRECT);
|
1176 |
|
|
else
|
1177 |
|
|
{
|
1178 |
|
|
temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
|
1179 |
|
|
NULL_RTX, 0, methods);
|
1180 |
|
|
if (!temp)
|
1181 |
|
|
return NULL_RTX;
|
1182 |
|
|
op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
|
1183 |
|
|
NULL_RTX, 0, OPTAB_DIRECT);
|
1184 |
|
|
}
|
1185 |
|
|
|
1186 |
|
|
if (!op0_high)
|
1187 |
|
|
return NULL_RTX;
|
1188 |
|
|
}
|
1189 |
|
|
|
1190 |
|
|
adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
|
1191 |
|
|
NULL_RTX, 0, OPTAB_DIRECT);
|
1192 |
|
|
if (!adjust)
|
1193 |
|
|
return NULL_RTX;
|
1194 |
|
|
|
1195 |
|
|
/* OP0_HIGH should now be dead. */
|
1196 |
|
|
|
1197 |
|
|
if (!umulp)
|
1198 |
|
|
{
|
1199 |
|
|
/* ??? This could be done with emit_store_flag where available. */
|
1200 |
|
|
temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
|
1201 |
|
|
NULL_RTX, 1, methods);
|
1202 |
|
|
if (temp)
|
1203 |
|
|
op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
|
1204 |
|
|
NULL_RTX, 0, OPTAB_DIRECT);
|
1205 |
|
|
else
|
1206 |
|
|
{
|
1207 |
|
|
temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
|
1208 |
|
|
NULL_RTX, 0, methods);
|
1209 |
|
|
if (!temp)
|
1210 |
|
|
return NULL_RTX;
|
1211 |
|
|
op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
|
1212 |
|
|
NULL_RTX, 0, OPTAB_DIRECT);
|
1213 |
|
|
}
|
1214 |
|
|
|
1215 |
|
|
if (!op1_high)
|
1216 |
|
|
return NULL_RTX;
|
1217 |
|
|
}
|
1218 |
|
|
|
1219 |
|
|
temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
|
1220 |
|
|
NULL_RTX, 0, OPTAB_DIRECT);
|
1221 |
|
|
if (!temp)
|
1222 |
|
|
return NULL_RTX;
|
1223 |
|
|
|
1224 |
|
|
/* OP1_HIGH should now be dead. */
|
1225 |
|
|
|
1226 |
|
|
adjust = expand_binop (word_mode, add_optab, adjust, temp,
|
1227 |
|
|
NULL_RTX, 0, OPTAB_DIRECT);
|
1228 |
|
|
|
1229 |
|
|
if (target && !REG_P (target))
|
1230 |
|
|
target = NULL_RTX;
|
1231 |
|
|
|
1232 |
|
|
if (umulp)
|
1233 |
|
|
product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
|
1234 |
|
|
target, 1, OPTAB_DIRECT);
|
1235 |
|
|
else
|
1236 |
|
|
product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
|
1237 |
|
|
target, 1, OPTAB_DIRECT);
|
1238 |
|
|
|
1239 |
|
|
if (!product)
|
1240 |
|
|
return NULL_RTX;
|
1241 |
|
|
|
1242 |
|
|
product_high = operand_subword (product, high, 1, mode);
|
1243 |
|
|
adjust = expand_binop (word_mode, add_optab, product_high, adjust,
|
1244 |
|
|
NULL_RTX, 0, OPTAB_DIRECT);
|
1245 |
|
|
emit_move_insn (product_high, adjust);
|
1246 |
|
|
return product;
|
1247 |
|
|
}
|
1248 |
|
|
|
1249 |
|
|
/* Wrapper around expand_binop which takes an rtx code to specify
|
1250 |
|
|
the operation to perform, not an optab pointer. All other
|
1251 |
|
|
arguments are the same. */
|
1252 |
|
|
rtx
|
1253 |
|
|
expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
|
1254 |
|
|
rtx op1, rtx target, int unsignedp,
|
1255 |
|
|
enum optab_methods methods)
|
1256 |
|
|
{
|
1257 |
|
|
optab binop = code_to_optab[(int) code];
|
1258 |
|
|
gcc_assert (binop);
|
1259 |
|
|
|
1260 |
|
|
return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
|
1261 |
|
|
}
|
1262 |
|
|
|
1263 |
|
|
/* Return whether OP0 and OP1 should be swapped when expanding a commutative
|
1264 |
|
|
binop. Order them according to commutative_operand_precedence and, if
|
1265 |
|
|
possible, try to put TARGET or a pseudo first. */
|
1266 |
|
|
static bool
|
1267 |
|
|
swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
|
1268 |
|
|
{
|
1269 |
|
|
int op0_prec = commutative_operand_precedence (op0);
|
1270 |
|
|
int op1_prec = commutative_operand_precedence (op1);
|
1271 |
|
|
|
1272 |
|
|
if (op0_prec < op1_prec)
|
1273 |
|
|
return true;
|
1274 |
|
|
|
1275 |
|
|
if (op0_prec > op1_prec)
|
1276 |
|
|
return false;
|
1277 |
|
|
|
1278 |
|
|
/* With equal precedence, both orders are ok, but it is better if the
|
1279 |
|
|
first operand is TARGET, or if both TARGET and OP0 are pseudos. */
|
1280 |
|
|
if (target == 0 || REG_P (target))
|
1281 |
|
|
return (REG_P (op1) && !REG_P (op0)) || target == op1;
|
1282 |
|
|
else
|
1283 |
|
|
return rtx_equal_p (op1, target);
|
1284 |
|
|
}
|
1285 |
|
|
|
1286 |
|
|
/* Return true if BINOPTAB implements a shift operation. */
|
1287 |
|
|
|
1288 |
|
|
static bool
|
1289 |
|
|
shift_optab_p (optab binoptab)
|
1290 |
|
|
{
|
1291 |
|
|
switch (binoptab->code)
|
1292 |
|
|
{
|
1293 |
|
|
case ASHIFT:
|
1294 |
|
|
case SS_ASHIFT:
|
1295 |
|
|
case US_ASHIFT:
|
1296 |
|
|
case ASHIFTRT:
|
1297 |
|
|
case LSHIFTRT:
|
1298 |
|
|
case ROTATE:
|
1299 |
|
|
case ROTATERT:
|
1300 |
|
|
return true;
|
1301 |
|
|
|
1302 |
|
|
default:
|
1303 |
|
|
return false;
|
1304 |
|
|
}
|
1305 |
|
|
}
|
1306 |
|
|
|
1307 |
|
|
/* Return true if BINOPTAB implements a commutative binary operation. */
|
1308 |
|
|
|
1309 |
|
|
static bool
|
1310 |
|
|
commutative_optab_p (optab binoptab)
|
1311 |
|
|
{
|
1312 |
|
|
return (GET_RTX_CLASS (binoptab->code) == RTX_COMM_ARITH
|
1313 |
|
|
|| binoptab == smul_widen_optab
|
1314 |
|
|
|| binoptab == umul_widen_optab
|
1315 |
|
|
|| binoptab == smul_highpart_optab
|
1316 |
|
|
|| binoptab == umul_highpart_optab);
|
1317 |
|
|
}
|
1318 |
|
|
|
1319 |
|
|
/* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
|
1320 |
|
|
optimizing, and if the operand is a constant that costs more than
|
1321 |
|
|
1 instruction, force the constant into a register and return that
|
1322 |
|
|
register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
|
1323 |
|
|
|
1324 |
|
|
static rtx
|
1325 |
|
|
avoid_expensive_constant (enum machine_mode mode, optab binoptab,
|
1326 |
|
|
int opn, rtx x, bool unsignedp)
|
1327 |
|
|
{
|
1328 |
|
|
bool speed = optimize_insn_for_speed_p ();
|
1329 |
|
|
|
1330 |
|
|
if (mode != VOIDmode
|
1331 |
|
|
&& optimize
|
1332 |
|
|
&& CONSTANT_P (x)
|
1333 |
|
|
&& rtx_cost (x, binoptab->code, opn, speed) > set_src_cost (x, speed))
|
1334 |
|
|
{
|
1335 |
|
|
if (CONST_INT_P (x))
|
1336 |
|
|
{
|
1337 |
|
|
HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
|
1338 |
|
|
if (intval != INTVAL (x))
|
1339 |
|
|
x = GEN_INT (intval);
|
1340 |
|
|
}
|
1341 |
|
|
else
|
1342 |
|
|
x = convert_modes (mode, VOIDmode, x, unsignedp);
|
1343 |
|
|
x = force_reg (mode, x);
|
1344 |
|
|
}
|
1345 |
|
|
return x;
|
1346 |
|
|
}
|
1347 |
|
|
|
1348 |
|
|
/* Helper function for expand_binop: handle the case where there
|
1349 |
|
|
is an insn that directly implements the indicated operation.
|
1350 |
|
|
Returns null if this is not possible. */
|
1351 |
|
|
static rtx
|
1352 |
|
|
expand_binop_directly (enum machine_mode mode, optab binoptab,
|
1353 |
|
|
rtx op0, rtx op1,
|
1354 |
|
|
rtx target, int unsignedp, enum optab_methods methods,
|
1355 |
|
|
rtx last)
|
1356 |
|
|
{
|
1357 |
|
|
enum machine_mode from_mode = widened_mode (mode, op0, op1);
|
1358 |
|
|
enum insn_code icode = find_widening_optab_handler (binoptab, mode,
|
1359 |
|
|
from_mode, 1);
|
1360 |
|
|
enum machine_mode xmode0 = insn_data[(int) icode].operand[1].mode;
|
1361 |
|
|
enum machine_mode xmode1 = insn_data[(int) icode].operand[2].mode;
|
1362 |
|
|
enum machine_mode mode0, mode1, tmp_mode;
|
1363 |
|
|
struct expand_operand ops[3];
|
1364 |
|
|
bool commutative_p;
|
1365 |
|
|
rtx pat;
|
1366 |
|
|
rtx xop0 = op0, xop1 = op1;
|
1367 |
|
|
rtx swap;
|
1368 |
|
|
|
1369 |
|
|
/* If it is a commutative operator and the modes would match
|
1370 |
|
|
if we would swap the operands, we can save the conversions. */
|
1371 |
|
|
commutative_p = commutative_optab_p (binoptab);
|
1372 |
|
|
if (commutative_p
|
1373 |
|
|
&& GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1
|
1374 |
|
|
&& GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode1)
|
1375 |
|
|
{
|
1376 |
|
|
swap = xop0;
|
1377 |
|
|
xop0 = xop1;
|
1378 |
|
|
xop1 = swap;
|
1379 |
|
|
}
|
1380 |
|
|
|
1381 |
|
|
/* If we are optimizing, force expensive constants into a register. */
|
1382 |
|
|
xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp);
|
1383 |
|
|
if (!shift_optab_p (binoptab))
|
1384 |
|
|
xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp);
|
1385 |
|
|
|
1386 |
|
|
/* In case the insn wants input operands in modes different from
|
1387 |
|
|
those of the actual operands, convert the operands. It would
|
1388 |
|
|
seem that we don't need to convert CONST_INTs, but we do, so
|
1389 |
|
|
that they're properly zero-extended, sign-extended or truncated
|
1390 |
|
|
for their mode. */
|
1391 |
|
|
|
1392 |
|
|
mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode;
|
1393 |
|
|
if (xmode0 != VOIDmode && xmode0 != mode0)
|
1394 |
|
|
{
|
1395 |
|
|
xop0 = convert_modes (xmode0, mode0, xop0, unsignedp);
|
1396 |
|
|
mode0 = xmode0;
|
1397 |
|
|
}
|
1398 |
|
|
|
1399 |
|
|
mode1 = GET_MODE (xop1) != VOIDmode ? GET_MODE (xop1) : mode;
|
1400 |
|
|
if (xmode1 != VOIDmode && xmode1 != mode1)
|
1401 |
|
|
{
|
1402 |
|
|
xop1 = convert_modes (xmode1, mode1, xop1, unsignedp);
|
1403 |
|
|
mode1 = xmode1;
|
1404 |
|
|
}
|
1405 |
|
|
|
1406 |
|
|
/* If operation is commutative,
|
1407 |
|
|
try to make the first operand a register.
|
1408 |
|
|
Even better, try to make it the same as the target.
|
1409 |
|
|
Also try to make the last operand a constant. */
|
1410 |
|
|
if (commutative_p
|
1411 |
|
|
&& swap_commutative_operands_with_target (target, xop0, xop1))
|
1412 |
|
|
{
|
1413 |
|
|
swap = xop1;
|
1414 |
|
|
xop1 = xop0;
|
1415 |
|
|
xop0 = swap;
|
1416 |
|
|
}
|
1417 |
|
|
|
1418 |
|
|
/* Now, if insn's predicates don't allow our operands, put them into
|
1419 |
|
|
pseudo regs. */
|
1420 |
|
|
|
1421 |
|
|
if (binoptab == vec_pack_trunc_optab
|
1422 |
|
|
|| binoptab == vec_pack_usat_optab
|
1423 |
|
|
|| binoptab == vec_pack_ssat_optab
|
1424 |
|
|
|| binoptab == vec_pack_ufix_trunc_optab
|
1425 |
|
|
|| binoptab == vec_pack_sfix_trunc_optab)
|
1426 |
|
|
{
|
1427 |
|
|
/* The mode of the result is different then the mode of the
|
1428 |
|
|
arguments. */
|
1429 |
|
|
tmp_mode = insn_data[(int) icode].operand[0].mode;
|
1430 |
|
|
if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
|
1431 |
|
|
{
|
1432 |
|
|
delete_insns_since (last);
|
1433 |
|
|
return NULL_RTX;
|
1434 |
|
|
}
|
1435 |
|
|
}
|
1436 |
|
|
else
|
1437 |
|
|
tmp_mode = mode;
|
1438 |
|
|
|
1439 |
|
|
create_output_operand (&ops[0], target, tmp_mode);
|
1440 |
|
|
create_input_operand (&ops[1], xop0, mode0);
|
1441 |
|
|
create_input_operand (&ops[2], xop1, mode1);
|
1442 |
|
|
pat = maybe_gen_insn (icode, 3, ops);
|
1443 |
|
|
if (pat)
|
1444 |
|
|
{
|
1445 |
|
|
/* If PAT is composed of more than one insn, try to add an appropriate
|
1446 |
|
|
REG_EQUAL note to it. If we can't because TEMP conflicts with an
|
1447 |
|
|
operand, call expand_binop again, this time without a target. */
|
1448 |
|
|
if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
|
1449 |
|
|
&& ! add_equal_note (pat, ops[0].value, binoptab->code,
|
1450 |
|
|
ops[1].value, ops[2].value))
|
1451 |
|
|
{
|
1452 |
|
|
delete_insns_since (last);
|
1453 |
|
|
return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
|
1454 |
|
|
unsignedp, methods);
|
1455 |
|
|
}
|
1456 |
|
|
|
1457 |
|
|
emit_insn (pat);
|
1458 |
|
|
return ops[0].value;
|
1459 |
|
|
}
|
1460 |
|
|
delete_insns_since (last);
|
1461 |
|
|
return NULL_RTX;
|
1462 |
|
|
}
|
1463 |
|
|
|
1464 |
|
|
/* Generate code to perform an operation specified by BINOPTAB
|
1465 |
|
|
on operands OP0 and OP1, with result having machine-mode MODE.
|
1466 |
|
|
|
1467 |
|
|
UNSIGNEDP is for the case where we have to widen the operands
|
1468 |
|
|
to perform the operation. It says to use zero-extension.
|
1469 |
|
|
|
1470 |
|
|
If TARGET is nonzero, the value
|
1471 |
|
|
is generated there, if it is convenient to do so.
|
1472 |
|
|
In all cases an rtx is returned for the locus of the value;
|
1473 |
|
|
this may or may not be TARGET. */
|
1474 |
|
|
|
1475 |
|
|
rtx
|
1476 |
|
|
expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
|
1477 |
|
|
rtx target, int unsignedp, enum optab_methods methods)
|
1478 |
|
|
{
|
1479 |
|
|
enum optab_methods next_methods
|
1480 |
|
|
= (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
|
1481 |
|
|
? OPTAB_WIDEN : methods);
|
1482 |
|
|
enum mode_class mclass;
|
1483 |
|
|
enum machine_mode wider_mode;
|
1484 |
|
|
rtx libfunc;
|
1485 |
|
|
rtx temp;
|
1486 |
|
|
rtx entry_last = get_last_insn ();
|
1487 |
|
|
rtx last;
|
1488 |
|
|
|
1489 |
|
|
mclass = GET_MODE_CLASS (mode);
|
1490 |
|
|
|
1491 |
|
|
/* If subtracting an integer constant, convert this into an addition of
|
1492 |
|
|
the negated constant. */
|
1493 |
|
|
|
1494 |
|
|
if (binoptab == sub_optab && CONST_INT_P (op1))
|
1495 |
|
|
{
|
1496 |
|
|
op1 = negate_rtx (mode, op1);
|
1497 |
|
|
binoptab = add_optab;
|
1498 |
|
|
}
|
1499 |
|
|
|
1500 |
|
|
/* Record where to delete back to if we backtrack. */
|
1501 |
|
|
last = get_last_insn ();
|
1502 |
|
|
|
1503 |
|
|
/* If we can do it with a three-operand insn, do so. */
|
1504 |
|
|
|
1505 |
|
|
if (methods != OPTAB_MUST_WIDEN
|
1506 |
|
|
&& find_widening_optab_handler (binoptab, mode,
|
1507 |
|
|
widened_mode (mode, op0, op1), 1)
|
1508 |
|
|
!= CODE_FOR_nothing)
|
1509 |
|
|
{
|
1510 |
|
|
temp = expand_binop_directly (mode, binoptab, op0, op1, target,
|
1511 |
|
|
unsignedp, methods, last);
|
1512 |
|
|
if (temp)
|
1513 |
|
|
return temp;
|
1514 |
|
|
}
|
1515 |
|
|
|
1516 |
|
|
/* If we were trying to rotate, and that didn't work, try rotating
|
1517 |
|
|
the other direction before falling back to shifts and bitwise-or. */
|
1518 |
|
|
if (((binoptab == rotl_optab
|
1519 |
|
|
&& optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
|
1520 |
|
|
|| (binoptab == rotr_optab
|
1521 |
|
|
&& optab_handler (rotl_optab, mode) != CODE_FOR_nothing))
|
1522 |
|
|
&& mclass == MODE_INT)
|
1523 |
|
|
{
|
1524 |
|
|
optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
|
1525 |
|
|
rtx newop1;
|
1526 |
|
|
unsigned int bits = GET_MODE_PRECISION (mode);
|
1527 |
|
|
|
1528 |
|
|
if (CONST_INT_P (op1))
|
1529 |
|
|
newop1 = GEN_INT (bits - INTVAL (op1));
|
1530 |
|
|
else if (targetm.shift_truncation_mask (mode) == bits - 1)
|
1531 |
|
|
newop1 = negate_rtx (GET_MODE (op1), op1);
|
1532 |
|
|
else
|
1533 |
|
|
newop1 = expand_binop (GET_MODE (op1), sub_optab,
|
1534 |
|
|
GEN_INT (bits), op1,
|
1535 |
|
|
NULL_RTX, unsignedp, OPTAB_DIRECT);
|
1536 |
|
|
|
1537 |
|
|
temp = expand_binop_directly (mode, otheroptab, op0, newop1,
|
1538 |
|
|
target, unsignedp, methods, last);
|
1539 |
|
|
if (temp)
|
1540 |
|
|
return temp;
|
1541 |
|
|
}
|
1542 |
|
|
|
1543 |
|
|
/* If this is a multiply, see if we can do a widening operation that
|
1544 |
|
|
takes operands of this mode and makes a wider mode. */
|
1545 |
|
|
|
1546 |
|
|
if (binoptab == smul_optab
|
1547 |
|
|
&& GET_MODE_2XWIDER_MODE (mode) != VOIDmode
|
1548 |
|
|
&& (widening_optab_handler ((unsignedp ? umul_widen_optab
|
1549 |
|
|
: smul_widen_optab),
|
1550 |
|
|
GET_MODE_2XWIDER_MODE (mode), mode)
|
1551 |
|
|
!= CODE_FOR_nothing))
|
1552 |
|
|
{
|
1553 |
|
|
temp = expand_binop (GET_MODE_2XWIDER_MODE (mode),
|
1554 |
|
|
unsignedp ? umul_widen_optab : smul_widen_optab,
|
1555 |
|
|
op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
|
1556 |
|
|
|
1557 |
|
|
if (temp != 0)
|
1558 |
|
|
{
|
1559 |
|
|
if (GET_MODE_CLASS (mode) == MODE_INT
|
1560 |
|
|
&& TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp)))
|
1561 |
|
|
return gen_lowpart (mode, temp);
|
1562 |
|
|
else
|
1563 |
|
|
return convert_to_mode (mode, temp, unsignedp);
|
1564 |
|
|
}
|
1565 |
|
|
}
|
1566 |
|
|
|
1567 |
|
|
/* If this is a vector shift by a scalar, see if we can do a vector
|
1568 |
|
|
shift by a vector. If so, broadcast the scalar into a vector. */
|
1569 |
|
|
if (mclass == MODE_VECTOR_INT)
|
1570 |
|
|
{
|
1571 |
|
|
optab otheroptab = NULL;
|
1572 |
|
|
|
1573 |
|
|
if (binoptab == ashl_optab)
|
1574 |
|
|
otheroptab = vashl_optab;
|
1575 |
|
|
else if (binoptab == ashr_optab)
|
1576 |
|
|
otheroptab = vashr_optab;
|
1577 |
|
|
else if (binoptab == lshr_optab)
|
1578 |
|
|
otheroptab = vlshr_optab;
|
1579 |
|
|
else if (binoptab == rotl_optab)
|
1580 |
|
|
otheroptab = vrotl_optab;
|
1581 |
|
|
else if (binoptab == rotr_optab)
|
1582 |
|
|
otheroptab = vrotr_optab;
|
1583 |
|
|
|
1584 |
|
|
if (otheroptab && optab_handler (otheroptab, mode) != CODE_FOR_nothing)
|
1585 |
|
|
{
|
1586 |
|
|
rtx vop1 = expand_vector_broadcast (mode, op1);
|
1587 |
|
|
if (vop1)
|
1588 |
|
|
{
|
1589 |
|
|
temp = expand_binop_directly (mode, otheroptab, op0, vop1,
|
1590 |
|
|
target, unsignedp, methods, last);
|
1591 |
|
|
if (temp)
|
1592 |
|
|
return temp;
|
1593 |
|
|
}
|
1594 |
|
|
}
|
1595 |
|
|
}
|
1596 |
|
|
|
1597 |
|
|
/* Look for a wider mode of the same class for which we think we
|
1598 |
|
|
can open-code the operation. Check for a widening multiply at the
|
1599 |
|
|
wider mode as well. */
|
1600 |
|
|
|
1601 |
|
|
if (CLASS_HAS_WIDER_MODES_P (mclass)
|
1602 |
|
|
&& methods != OPTAB_DIRECT && methods != OPTAB_LIB)
|
1603 |
|
|
for (wider_mode = GET_MODE_WIDER_MODE (mode);
|
1604 |
|
|
wider_mode != VOIDmode;
|
1605 |
|
|
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
1606 |
|
|
{
|
1607 |
|
|
if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
|
1608 |
|
|
|| (binoptab == smul_optab
|
1609 |
|
|
&& GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
|
1610 |
|
|
&& (find_widening_optab_handler ((unsignedp
|
1611 |
|
|
? umul_widen_optab
|
1612 |
|
|
: smul_widen_optab),
|
1613 |
|
|
GET_MODE_WIDER_MODE (wider_mode),
|
1614 |
|
|
mode, 0)
|
1615 |
|
|
!= CODE_FOR_nothing)))
|
1616 |
|
|
{
|
1617 |
|
|
rtx xop0 = op0, xop1 = op1;
|
1618 |
|
|
int no_extend = 0;
|
1619 |
|
|
|
1620 |
|
|
/* For certain integer operations, we need not actually extend
|
1621 |
|
|
the narrow operands, as long as we will truncate
|
1622 |
|
|
the results to the same narrowness. */
|
1623 |
|
|
|
1624 |
|
|
if ((binoptab == ior_optab || binoptab == and_optab
|
1625 |
|
|
|| binoptab == xor_optab
|
1626 |
|
|
|| binoptab == add_optab || binoptab == sub_optab
|
1627 |
|
|
|| binoptab == smul_optab || binoptab == ashl_optab)
|
1628 |
|
|
&& mclass == MODE_INT)
|
1629 |
|
|
{
|
1630 |
|
|
no_extend = 1;
|
1631 |
|
|
xop0 = avoid_expensive_constant (mode, binoptab, 0,
|
1632 |
|
|
xop0, unsignedp);
|
1633 |
|
|
if (binoptab != ashl_optab)
|
1634 |
|
|
xop1 = avoid_expensive_constant (mode, binoptab, 1,
|
1635 |
|
|
xop1, unsignedp);
|
1636 |
|
|
}
|
1637 |
|
|
|
1638 |
|
|
xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
|
1639 |
|
|
|
1640 |
|
|
/* The second operand of a shift must always be extended. */
|
1641 |
|
|
xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
|
1642 |
|
|
no_extend && binoptab != ashl_optab);
|
1643 |
|
|
|
1644 |
|
|
temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
|
1645 |
|
|
unsignedp, OPTAB_DIRECT);
|
1646 |
|
|
if (temp)
|
1647 |
|
|
{
|
1648 |
|
|
if (mclass != MODE_INT
|
1649 |
|
|
|| !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
|
1650 |
|
|
{
|
1651 |
|
|
if (target == 0)
|
1652 |
|
|
target = gen_reg_rtx (mode);
|
1653 |
|
|
convert_move (target, temp, 0);
|
1654 |
|
|
return target;
|
1655 |
|
|
}
|
1656 |
|
|
else
|
1657 |
|
|
return gen_lowpart (mode, temp);
|
1658 |
|
|
}
|
1659 |
|
|
else
|
1660 |
|
|
delete_insns_since (last);
|
1661 |
|
|
}
|
1662 |
|
|
}
|
1663 |
|
|
|
1664 |
|
|
/* If operation is commutative,
|
1665 |
|
|
try to make the first operand a register.
|
1666 |
|
|
Even better, try to make it the same as the target.
|
1667 |
|
|
Also try to make the last operand a constant. */
|
1668 |
|
|
if (commutative_optab_p (binoptab)
|
1669 |
|
|
&& swap_commutative_operands_with_target (target, op0, op1))
|
1670 |
|
|
{
|
1671 |
|
|
temp = op1;
|
1672 |
|
|
op1 = op0;
|
1673 |
|
|
op0 = temp;
|
1674 |
|
|
}
|
1675 |
|
|
|
1676 |
|
|
/* These can be done a word at a time. */
|
1677 |
|
|
if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
|
1678 |
|
|
&& mclass == MODE_INT
|
1679 |
|
|
&& GET_MODE_SIZE (mode) > UNITS_PER_WORD
|
1680 |
|
|
&& optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
|
1681 |
|
|
{
|
1682 |
|
|
int i;
|
1683 |
|
|
rtx insns;
|
1684 |
|
|
|
1685 |
|
|
/* If TARGET is the same as one of the operands, the REG_EQUAL note
|
1686 |
|
|
won't be accurate, so use a new target. */
|
1687 |
|
|
if (target == 0
|
1688 |
|
|
|| target == op0
|
1689 |
|
|
|| target == op1
|
1690 |
|
|
|| !valid_multiword_target_p (target))
|
1691 |
|
|
target = gen_reg_rtx (mode);
|
1692 |
|
|
|
1693 |
|
|
start_sequence ();
|
1694 |
|
|
|
1695 |
|
|
/* Do the actual arithmetic. */
|
1696 |
|
|
for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
|
1697 |
|
|
{
|
1698 |
|
|
rtx target_piece = operand_subword (target, i, 1, mode);
|
1699 |
|
|
rtx x = expand_binop (word_mode, binoptab,
|
1700 |
|
|
operand_subword_force (op0, i, mode),
|
1701 |
|
|
operand_subword_force (op1, i, mode),
|
1702 |
|
|
target_piece, unsignedp, next_methods);
|
1703 |
|
|
|
1704 |
|
|
if (x == 0)
|
1705 |
|
|
break;
|
1706 |
|
|
|
1707 |
|
|
if (target_piece != x)
|
1708 |
|
|
emit_move_insn (target_piece, x);
|
1709 |
|
|
}
|
1710 |
|
|
|
1711 |
|
|
insns = get_insns ();
|
1712 |
|
|
end_sequence ();
|
1713 |
|
|
|
1714 |
|
|
if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
|
1715 |
|
|
{
|
1716 |
|
|
emit_insn (insns);
|
1717 |
|
|
return target;
|
1718 |
|
|
}
|
1719 |
|
|
}
|
1720 |
|
|
|
1721 |
|
|
/* Synthesize double word shifts from single word shifts. */
|
1722 |
|
|
if ((binoptab == lshr_optab || binoptab == ashl_optab
|
1723 |
|
|
|| binoptab == ashr_optab)
|
1724 |
|
|
&& mclass == MODE_INT
|
1725 |
|
|
&& (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
|
1726 |
|
|
&& GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
|
1727 |
|
|
&& GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode)
|
1728 |
|
|
&& optab_handler (binoptab, word_mode) != CODE_FOR_nothing
|
1729 |
|
|
&& optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
|
1730 |
|
|
&& optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
|
1731 |
|
|
{
|
1732 |
|
|
unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
|
1733 |
|
|
enum machine_mode op1_mode;
|
1734 |
|
|
|
1735 |
|
|
double_shift_mask = targetm.shift_truncation_mask (mode);
|
1736 |
|
|
shift_mask = targetm.shift_truncation_mask (word_mode);
|
1737 |
|
|
op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
|
1738 |
|
|
|
1739 |
|
|
/* Apply the truncation to constant shifts. */
|
1740 |
|
|
if (double_shift_mask > 0 && CONST_INT_P (op1))
|
1741 |
|
|
op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
|
1742 |
|
|
|
1743 |
|
|
if (op1 == CONST0_RTX (op1_mode))
|
1744 |
|
|
return op0;
|
1745 |
|
|
|
1746 |
|
|
/* Make sure that this is a combination that expand_doubleword_shift
|
1747 |
|
|
can handle. See the comments there for details. */
|
1748 |
|
|
if (double_shift_mask == 0
|
1749 |
|
|
|| (shift_mask == BITS_PER_WORD - 1
|
1750 |
|
|
&& double_shift_mask == BITS_PER_WORD * 2 - 1))
|
1751 |
|
|
{
|
1752 |
|
|
rtx insns;
|
1753 |
|
|
rtx into_target, outof_target;
|
1754 |
|
|
rtx into_input, outof_input;
|
1755 |
|
|
int left_shift, outof_word;
|
1756 |
|
|
|
1757 |
|
|
/* If TARGET is the same as one of the operands, the REG_EQUAL note
|
1758 |
|
|
won't be accurate, so use a new target. */
|
1759 |
|
|
if (target == 0
|
1760 |
|
|
|| target == op0
|
1761 |
|
|
|| target == op1
|
1762 |
|
|
|| !valid_multiword_target_p (target))
|
1763 |
|
|
target = gen_reg_rtx (mode);
|
1764 |
|
|
|
1765 |
|
|
start_sequence ();
|
1766 |
|
|
|
1767 |
|
|
/* OUTOF_* is the word we are shifting bits away from, and
|
1768 |
|
|
INTO_* is the word that we are shifting bits towards, thus
|
1769 |
|
|
they differ depending on the direction of the shift and
|
1770 |
|
|
WORDS_BIG_ENDIAN. */
|
1771 |
|
|
|
1772 |
|
|
left_shift = binoptab == ashl_optab;
|
1773 |
|
|
outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
|
1774 |
|
|
|
1775 |
|
|
outof_target = operand_subword (target, outof_word, 1, mode);
|
1776 |
|
|
into_target = operand_subword (target, 1 - outof_word, 1, mode);
|
1777 |
|
|
|
1778 |
|
|
outof_input = operand_subword_force (op0, outof_word, mode);
|
1779 |
|
|
into_input = operand_subword_force (op0, 1 - outof_word, mode);
|
1780 |
|
|
|
1781 |
|
|
if (expand_doubleword_shift (op1_mode, binoptab,
|
1782 |
|
|
outof_input, into_input, op1,
|
1783 |
|
|
outof_target, into_target,
|
1784 |
|
|
unsignedp, next_methods, shift_mask))
|
1785 |
|
|
{
|
1786 |
|
|
insns = get_insns ();
|
1787 |
|
|
end_sequence ();
|
1788 |
|
|
|
1789 |
|
|
emit_insn (insns);
|
1790 |
|
|
return target;
|
1791 |
|
|
}
|
1792 |
|
|
end_sequence ();
|
1793 |
|
|
}
|
1794 |
|
|
}
|
1795 |
|
|
|
1796 |
|
|
/* Synthesize double word rotates from single word shifts. */
|
1797 |
|
|
if ((binoptab == rotl_optab || binoptab == rotr_optab)
|
1798 |
|
|
&& mclass == MODE_INT
|
1799 |
|
|
&& CONST_INT_P (op1)
|
1800 |
|
|
&& GET_MODE_PRECISION (mode) == 2 * BITS_PER_WORD
|
1801 |
|
|
&& optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
|
1802 |
|
|
&& optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
|
1803 |
|
|
{
|
1804 |
|
|
rtx insns;
|
1805 |
|
|
rtx into_target, outof_target;
|
1806 |
|
|
rtx into_input, outof_input;
|
1807 |
|
|
rtx inter;
|
1808 |
|
|
int shift_count, left_shift, outof_word;
|
1809 |
|
|
|
1810 |
|
|
/* If TARGET is the same as one of the operands, the REG_EQUAL note
|
1811 |
|
|
won't be accurate, so use a new target. Do this also if target is not
|
1812 |
|
|
a REG, first because having a register instead may open optimization
|
1813 |
|
|
opportunities, and second because if target and op0 happen to be MEMs
|
1814 |
|
|
designating the same location, we would risk clobbering it too early
|
1815 |
|
|
in the code sequence we generate below. */
|
1816 |
|
|
if (target == 0
|
1817 |
|
|
|| target == op0
|
1818 |
|
|
|| target == op1
|
1819 |
|
|
|| !REG_P (target)
|
1820 |
|
|
|| !valid_multiword_target_p (target))
|
1821 |
|
|
target = gen_reg_rtx (mode);
|
1822 |
|
|
|
1823 |
|
|
start_sequence ();
|
1824 |
|
|
|
1825 |
|
|
shift_count = INTVAL (op1);
|
1826 |
|
|
|
1827 |
|
|
/* OUTOF_* is the word we are shifting bits away from, and
|
1828 |
|
|
INTO_* is the word that we are shifting bits towards, thus
|
1829 |
|
|
they differ depending on the direction of the shift and
|
1830 |
|
|
WORDS_BIG_ENDIAN. */
|
1831 |
|
|
|
1832 |
|
|
left_shift = (binoptab == rotl_optab);
|
1833 |
|
|
outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
|
1834 |
|
|
|
1835 |
|
|
outof_target = operand_subword (target, outof_word, 1, mode);
|
1836 |
|
|
into_target = operand_subword (target, 1 - outof_word, 1, mode);
|
1837 |
|
|
|
1838 |
|
|
outof_input = operand_subword_force (op0, outof_word, mode);
|
1839 |
|
|
into_input = operand_subword_force (op0, 1 - outof_word, mode);
|
1840 |
|
|
|
1841 |
|
|
if (shift_count == BITS_PER_WORD)
|
1842 |
|
|
{
|
1843 |
|
|
/* This is just a word swap. */
|
1844 |
|
|
emit_move_insn (outof_target, into_input);
|
1845 |
|
|
emit_move_insn (into_target, outof_input);
|
1846 |
|
|
inter = const0_rtx;
|
1847 |
|
|
}
|
1848 |
|
|
else
|
1849 |
|
|
{
|
1850 |
|
|
rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
|
1851 |
|
|
rtx first_shift_count, second_shift_count;
|
1852 |
|
|
optab reverse_unsigned_shift, unsigned_shift;
|
1853 |
|
|
|
1854 |
|
|
reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
|
1855 |
|
|
? lshr_optab : ashl_optab);
|
1856 |
|
|
|
1857 |
|
|
unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
|
1858 |
|
|
? ashl_optab : lshr_optab);
|
1859 |
|
|
|
1860 |
|
|
if (shift_count > BITS_PER_WORD)
|
1861 |
|
|
{
|
1862 |
|
|
first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
|
1863 |
|
|
second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
|
1864 |
|
|
}
|
1865 |
|
|
else
|
1866 |
|
|
{
|
1867 |
|
|
first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
|
1868 |
|
|
second_shift_count = GEN_INT (shift_count);
|
1869 |
|
|
}
|
1870 |
|
|
|
1871 |
|
|
into_temp1 = expand_binop (word_mode, unsigned_shift,
|
1872 |
|
|
outof_input, first_shift_count,
|
1873 |
|
|
NULL_RTX, unsignedp, next_methods);
|
1874 |
|
|
into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
|
1875 |
|
|
into_input, second_shift_count,
|
1876 |
|
|
NULL_RTX, unsignedp, next_methods);
|
1877 |
|
|
|
1878 |
|
|
if (into_temp1 != 0 && into_temp2 != 0)
|
1879 |
|
|
inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
|
1880 |
|
|
into_target, unsignedp, next_methods);
|
1881 |
|
|
else
|
1882 |
|
|
inter = 0;
|
1883 |
|
|
|
1884 |
|
|
if (inter != 0 && inter != into_target)
|
1885 |
|
|
emit_move_insn (into_target, inter);
|
1886 |
|
|
|
1887 |
|
|
outof_temp1 = expand_binop (word_mode, unsigned_shift,
|
1888 |
|
|
into_input, first_shift_count,
|
1889 |
|
|
NULL_RTX, unsignedp, next_methods);
|
1890 |
|
|
outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
|
1891 |
|
|
outof_input, second_shift_count,
|
1892 |
|
|
NULL_RTX, unsignedp, next_methods);
|
1893 |
|
|
|
1894 |
|
|
if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
|
1895 |
|
|
inter = expand_binop (word_mode, ior_optab,
|
1896 |
|
|
outof_temp1, outof_temp2,
|
1897 |
|
|
outof_target, unsignedp, next_methods);
|
1898 |
|
|
|
1899 |
|
|
if (inter != 0 && inter != outof_target)
|
1900 |
|
|
emit_move_insn (outof_target, inter);
|
1901 |
|
|
}
|
1902 |
|
|
|
1903 |
|
|
insns = get_insns ();
|
1904 |
|
|
end_sequence ();
|
1905 |
|
|
|
1906 |
|
|
if (inter != 0)
|
1907 |
|
|
{
|
1908 |
|
|
emit_insn (insns);
|
1909 |
|
|
return target;
|
1910 |
|
|
}
|
1911 |
|
|
}
|
1912 |
|
|
|
1913 |
|
|
/* These can be done a word at a time by propagating carries. */
|
1914 |
|
|
if ((binoptab == add_optab || binoptab == sub_optab)
|
1915 |
|
|
&& mclass == MODE_INT
|
1916 |
|
|
&& GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
|
1917 |
|
|
&& optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
|
1918 |
|
|
{
|
1919 |
|
|
unsigned int i;
|
1920 |
|
|
optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
|
1921 |
|
|
const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
|
1922 |
|
|
rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
|
1923 |
|
|
rtx xop0, xop1, xtarget;
|
1924 |
|
|
|
1925 |
|
|
/* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
|
1926 |
|
|
value is one of those, use it. Otherwise, use 1 since it is the
|
1927 |
|
|
one easiest to get. */
|
1928 |
|
|
#if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
|
1929 |
|
|
int normalizep = STORE_FLAG_VALUE;
|
1930 |
|
|
#else
|
1931 |
|
|
int normalizep = 1;
|
1932 |
|
|
#endif
|
1933 |
|
|
|
1934 |
|
|
/* Prepare the operands. */
|
1935 |
|
|
xop0 = force_reg (mode, op0);
|
1936 |
|
|
xop1 = force_reg (mode, op1);
|
1937 |
|
|
|
1938 |
|
|
xtarget = gen_reg_rtx (mode);
|
1939 |
|
|
|
1940 |
|
|
if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
|
1941 |
|
|
target = xtarget;
|
1942 |
|
|
|
1943 |
|
|
/* Indicate for flow that the entire target reg is being set. */
|
1944 |
|
|
if (REG_P (target))
|
1945 |
|
|
emit_clobber (xtarget);
|
1946 |
|
|
|
1947 |
|
|
/* Do the actual arithmetic. */
|
1948 |
|
|
for (i = 0; i < nwords; i++)
|
1949 |
|
|
{
|
1950 |
|
|
int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
|
1951 |
|
|
rtx target_piece = operand_subword (xtarget, index, 1, mode);
|
1952 |
|
|
rtx op0_piece = operand_subword_force (xop0, index, mode);
|
1953 |
|
|
rtx op1_piece = operand_subword_force (xop1, index, mode);
|
1954 |
|
|
rtx x;
|
1955 |
|
|
|
1956 |
|
|
/* Main add/subtract of the input operands. */
|
1957 |
|
|
x = expand_binop (word_mode, binoptab,
|
1958 |
|
|
op0_piece, op1_piece,
|
1959 |
|
|
target_piece, unsignedp, next_methods);
|
1960 |
|
|
if (x == 0)
|
1961 |
|
|
break;
|
1962 |
|
|
|
1963 |
|
|
if (i + 1 < nwords)
|
1964 |
|
|
{
|
1965 |
|
|
/* Store carry from main add/subtract. */
|
1966 |
|
|
carry_out = gen_reg_rtx (word_mode);
|
1967 |
|
|
carry_out = emit_store_flag_force (carry_out,
|
1968 |
|
|
(binoptab == add_optab
|
1969 |
|
|
? LT : GT),
|
1970 |
|
|
x, op0_piece,
|
1971 |
|
|
word_mode, 1, normalizep);
|
1972 |
|
|
}
|
1973 |
|
|
|
1974 |
|
|
if (i > 0)
|
1975 |
|
|
{
|
1976 |
|
|
rtx newx;
|
1977 |
|
|
|
1978 |
|
|
/* Add/subtract previous carry to main result. */
|
1979 |
|
|
newx = expand_binop (word_mode,
|
1980 |
|
|
normalizep == 1 ? binoptab : otheroptab,
|
1981 |
|
|
x, carry_in,
|
1982 |
|
|
NULL_RTX, 1, next_methods);
|
1983 |
|
|
|
1984 |
|
|
if (i + 1 < nwords)
|
1985 |
|
|
{
|
1986 |
|
|
/* Get out carry from adding/subtracting carry in. */
|
1987 |
|
|
rtx carry_tmp = gen_reg_rtx (word_mode);
|
1988 |
|
|
carry_tmp = emit_store_flag_force (carry_tmp,
|
1989 |
|
|
(binoptab == add_optab
|
1990 |
|
|
? LT : GT),
|
1991 |
|
|
newx, x,
|
1992 |
|
|
word_mode, 1, normalizep);
|
1993 |
|
|
|
1994 |
|
|
/* Logical-ior the two poss. carry together. */
|
1995 |
|
|
carry_out = expand_binop (word_mode, ior_optab,
|
1996 |
|
|
carry_out, carry_tmp,
|
1997 |
|
|
carry_out, 0, next_methods);
|
1998 |
|
|
if (carry_out == 0)
|
1999 |
|
|
break;
|
2000 |
|
|
}
|
2001 |
|
|
emit_move_insn (target_piece, newx);
|
2002 |
|
|
}
|
2003 |
|
|
else
|
2004 |
|
|
{
|
2005 |
|
|
if (x != target_piece)
|
2006 |
|
|
emit_move_insn (target_piece, x);
|
2007 |
|
|
}
|
2008 |
|
|
|
2009 |
|
|
carry_in = carry_out;
|
2010 |
|
|
}
|
2011 |
|
|
|
2012 |
|
|
if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
|
2013 |
|
|
{
|
2014 |
|
|
if (optab_handler (mov_optab, mode) != CODE_FOR_nothing
|
2015 |
|
|
|| ! rtx_equal_p (target, xtarget))
|
2016 |
|
|
{
|
2017 |
|
|
rtx temp = emit_move_insn (target, xtarget);
|
2018 |
|
|
|
2019 |
|
|
set_dst_reg_note (temp, REG_EQUAL,
|
2020 |
|
|
gen_rtx_fmt_ee (binoptab->code, mode,
|
2021 |
|
|
copy_rtx (xop0),
|
2022 |
|
|
copy_rtx (xop1)),
|
2023 |
|
|
target);
|
2024 |
|
|
}
|
2025 |
|
|
else
|
2026 |
|
|
target = xtarget;
|
2027 |
|
|
|
2028 |
|
|
return target;
|
2029 |
|
|
}
|
2030 |
|
|
|
2031 |
|
|
else
|
2032 |
|
|
delete_insns_since (last);
|
2033 |
|
|
}
|
2034 |
|
|
|
2035 |
|
|
/* Attempt to synthesize double word multiplies using a sequence of word
|
2036 |
|
|
mode multiplications. We first attempt to generate a sequence using a
|
2037 |
|
|
more efficient unsigned widening multiply, and if that fails we then
|
2038 |
|
|
try using a signed widening multiply. */
|
2039 |
|
|
|
2040 |
|
|
if (binoptab == smul_optab
|
2041 |
|
|
&& mclass == MODE_INT
|
2042 |
|
|
&& GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
|
2043 |
|
|
&& optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
|
2044 |
|
|
&& optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
|
2045 |
|
|
{
|
2046 |
|
|
rtx product = NULL_RTX;
|
2047 |
|
|
if (widening_optab_handler (umul_widen_optab, mode, word_mode)
|
2048 |
|
|
!= CODE_FOR_nothing)
|
2049 |
|
|
{
|
2050 |
|
|
product = expand_doubleword_mult (mode, op0, op1, target,
|
2051 |
|
|
true, methods);
|
2052 |
|
|
if (!product)
|
2053 |
|
|
delete_insns_since (last);
|
2054 |
|
|
}
|
2055 |
|
|
|
2056 |
|
|
if (product == NULL_RTX
|
2057 |
|
|
&& widening_optab_handler (smul_widen_optab, mode, word_mode)
|
2058 |
|
|
!= CODE_FOR_nothing)
|
2059 |
|
|
{
|
2060 |
|
|
product = expand_doubleword_mult (mode, op0, op1, target,
|
2061 |
|
|
false, methods);
|
2062 |
|
|
if (!product)
|
2063 |
|
|
delete_insns_since (last);
|
2064 |
|
|
}
|
2065 |
|
|
|
2066 |
|
|
if (product != NULL_RTX)
|
2067 |
|
|
{
|
2068 |
|
|
if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
|
2069 |
|
|
{
|
2070 |
|
|
temp = emit_move_insn (target ? target : product, product);
|
2071 |
|
|
set_dst_reg_note (temp,
|
2072 |
|
|
REG_EQUAL,
|
2073 |
|
|
gen_rtx_fmt_ee (MULT, mode,
|
2074 |
|
|
copy_rtx (op0),
|
2075 |
|
|
copy_rtx (op1)),
|
2076 |
|
|
target ? target : product);
|
2077 |
|
|
}
|
2078 |
|
|
return product;
|
2079 |
|
|
}
|
2080 |
|
|
}
|
2081 |
|
|
|
2082 |
|
|
/* It can't be open-coded in this mode.
|
2083 |
|
|
Use a library call if one is available and caller says that's ok. */
|
2084 |
|
|
|
2085 |
|
|
libfunc = optab_libfunc (binoptab, mode);
|
2086 |
|
|
if (libfunc
|
2087 |
|
|
&& (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
|
2088 |
|
|
{
|
2089 |
|
|
rtx insns;
|
2090 |
|
|
rtx op1x = op1;
|
2091 |
|
|
enum machine_mode op1_mode = mode;
|
2092 |
|
|
rtx value;
|
2093 |
|
|
|
2094 |
|
|
start_sequence ();
|
2095 |
|
|
|
2096 |
|
|
if (shift_optab_p (binoptab))
|
2097 |
|
|
{
|
2098 |
|
|
op1_mode = targetm.libgcc_shift_count_mode ();
|
2099 |
|
|
/* Specify unsigned here,
|
2100 |
|
|
since negative shift counts are meaningless. */
|
2101 |
|
|
op1x = convert_to_mode (op1_mode, op1, 1);
|
2102 |
|
|
}
|
2103 |
|
|
|
2104 |
|
|
if (GET_MODE (op0) != VOIDmode
|
2105 |
|
|
&& GET_MODE (op0) != mode)
|
2106 |
|
|
op0 = convert_to_mode (mode, op0, unsignedp);
|
2107 |
|
|
|
2108 |
|
|
/* Pass 1 for NO_QUEUE so we don't lose any increments
|
2109 |
|
|
if the libcall is cse'd or moved. */
|
2110 |
|
|
value = emit_library_call_value (libfunc,
|
2111 |
|
|
NULL_RTX, LCT_CONST, mode, 2,
|
2112 |
|
|
op0, mode, op1x, op1_mode);
|
2113 |
|
|
|
2114 |
|
|
insns = get_insns ();
|
2115 |
|
|
end_sequence ();
|
2116 |
|
|
|
2117 |
|
|
target = gen_reg_rtx (mode);
|
2118 |
|
|
emit_libcall_block (insns, target, value,
|
2119 |
|
|
gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
|
2120 |
|
|
|
2121 |
|
|
return target;
|
2122 |
|
|
}
|
2123 |
|
|
|
2124 |
|
|
delete_insns_since (last);
|
2125 |
|
|
|
2126 |
|
|
/* It can't be done in this mode. Can we do it in a wider mode? */
|
2127 |
|
|
|
2128 |
|
|
if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
|
2129 |
|
|
|| methods == OPTAB_MUST_WIDEN))
|
2130 |
|
|
{
|
2131 |
|
|
/* Caller says, don't even try. */
|
2132 |
|
|
delete_insns_since (entry_last);
|
2133 |
|
|
return 0;
|
2134 |
|
|
}
|
2135 |
|
|
|
2136 |
|
|
/* Compute the value of METHODS to pass to recursive calls.
|
2137 |
|
|
Don't allow widening to be tried recursively. */
|
2138 |
|
|
|
2139 |
|
|
methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
|
2140 |
|
|
|
2141 |
|
|
/* Look for a wider mode of the same class for which it appears we can do
|
2142 |
|
|
the operation. */
|
2143 |
|
|
|
2144 |
|
|
if (CLASS_HAS_WIDER_MODES_P (mclass))
|
2145 |
|
|
{
|
2146 |
|
|
for (wider_mode = GET_MODE_WIDER_MODE (mode);
|
2147 |
|
|
wider_mode != VOIDmode;
|
2148 |
|
|
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
2149 |
|
|
{
|
2150 |
|
|
if (find_widening_optab_handler (binoptab, wider_mode, mode, 1)
|
2151 |
|
|
!= CODE_FOR_nothing
|
2152 |
|
|
|| (methods == OPTAB_LIB
|
2153 |
|
|
&& optab_libfunc (binoptab, wider_mode)))
|
2154 |
|
|
{
|
2155 |
|
|
rtx xop0 = op0, xop1 = op1;
|
2156 |
|
|
int no_extend = 0;
|
2157 |
|
|
|
2158 |
|
|
/* For certain integer operations, we need not actually extend
|
2159 |
|
|
the narrow operands, as long as we will truncate
|
2160 |
|
|
the results to the same narrowness. */
|
2161 |
|
|
|
2162 |
|
|
if ((binoptab == ior_optab || binoptab == and_optab
|
2163 |
|
|
|| binoptab == xor_optab
|
2164 |
|
|
|| binoptab == add_optab || binoptab == sub_optab
|
2165 |
|
|
|| binoptab == smul_optab || binoptab == ashl_optab)
|
2166 |
|
|
&& mclass == MODE_INT)
|
2167 |
|
|
no_extend = 1;
|
2168 |
|
|
|
2169 |
|
|
xop0 = widen_operand (xop0, wider_mode, mode,
|
2170 |
|
|
unsignedp, no_extend);
|
2171 |
|
|
|
2172 |
|
|
/* The second operand of a shift must always be extended. */
|
2173 |
|
|
xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
|
2174 |
|
|
no_extend && binoptab != ashl_optab);
|
2175 |
|
|
|
2176 |
|
|
temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
|
2177 |
|
|
unsignedp, methods);
|
2178 |
|
|
if (temp)
|
2179 |
|
|
{
|
2180 |
|
|
if (mclass != MODE_INT
|
2181 |
|
|
|| !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
|
2182 |
|
|
{
|
2183 |
|
|
if (target == 0)
|
2184 |
|
|
target = gen_reg_rtx (mode);
|
2185 |
|
|
convert_move (target, temp, 0);
|
2186 |
|
|
return target;
|
2187 |
|
|
}
|
2188 |
|
|
else
|
2189 |
|
|
return gen_lowpart (mode, temp);
|
2190 |
|
|
}
|
2191 |
|
|
else
|
2192 |
|
|
delete_insns_since (last);
|
2193 |
|
|
}
|
2194 |
|
|
}
|
2195 |
|
|
}
|
2196 |
|
|
|
2197 |
|
|
delete_insns_since (entry_last);
|
2198 |
|
|
return 0;
|
2199 |
|
|
}
|
2200 |
|
|
|
2201 |
|
|
/* Expand a binary operator which has both signed and unsigned forms.
|
2202 |
|
|
UOPTAB is the optab for unsigned operations, and SOPTAB is for
|
2203 |
|
|
signed operations.
|
2204 |
|
|
|
2205 |
|
|
If we widen unsigned operands, we may use a signed wider operation instead
|
2206 |
|
|
of an unsigned wider operation, since the result would be the same. */
|
2207 |
|
|
|
2208 |
|
|
rtx
|
2209 |
|
|
sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
|
2210 |
|
|
rtx op0, rtx op1, rtx target, int unsignedp,
|
2211 |
|
|
enum optab_methods methods)
|
2212 |
|
|
{
|
2213 |
|
|
rtx temp;
|
2214 |
|
|
optab direct_optab = unsignedp ? uoptab : soptab;
|
2215 |
|
|
struct optab_d wide_soptab;
|
2216 |
|
|
|
2217 |
|
|
/* Do it without widening, if possible. */
|
2218 |
|
|
temp = expand_binop (mode, direct_optab, op0, op1, target,
|
2219 |
|
|
unsignedp, OPTAB_DIRECT);
|
2220 |
|
|
if (temp || methods == OPTAB_DIRECT)
|
2221 |
|
|
return temp;
|
2222 |
|
|
|
2223 |
|
|
/* Try widening to a signed int. Make a fake signed optab that
|
2224 |
|
|
hides any signed insn for direct use. */
|
2225 |
|
|
wide_soptab = *soptab;
|
2226 |
|
|
set_optab_handler (&wide_soptab, mode, CODE_FOR_nothing);
|
2227 |
|
|
/* We don't want to generate new hash table entries from this fake
|
2228 |
|
|
optab. */
|
2229 |
|
|
wide_soptab.libcall_gen = NULL;
|
2230 |
|
|
|
2231 |
|
|
temp = expand_binop (mode, &wide_soptab, op0, op1, target,
|
2232 |
|
|
unsignedp, OPTAB_WIDEN);
|
2233 |
|
|
|
2234 |
|
|
/* For unsigned operands, try widening to an unsigned int. */
|
2235 |
|
|
if (temp == 0 && unsignedp)
|
2236 |
|
|
temp = expand_binop (mode, uoptab, op0, op1, target,
|
2237 |
|
|
unsignedp, OPTAB_WIDEN);
|
2238 |
|
|
if (temp || methods == OPTAB_WIDEN)
|
2239 |
|
|
return temp;
|
2240 |
|
|
|
2241 |
|
|
/* Use the right width libcall if that exists. */
|
2242 |
|
|
temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
|
2243 |
|
|
if (temp || methods == OPTAB_LIB)
|
2244 |
|
|
return temp;
|
2245 |
|
|
|
2246 |
|
|
/* Must widen and use a libcall, use either signed or unsigned. */
|
2247 |
|
|
temp = expand_binop (mode, &wide_soptab, op0, op1, target,
|
2248 |
|
|
unsignedp, methods);
|
2249 |
|
|
if (temp != 0)
|
2250 |
|
|
return temp;
|
2251 |
|
|
if (unsignedp)
|
2252 |
|
|
return expand_binop (mode, uoptab, op0, op1, target,
|
2253 |
|
|
unsignedp, methods);
|
2254 |
|
|
return 0;
|
2255 |
|
|
}
|
2256 |
|
|
|
2257 |
|
|
/* Generate code to perform an operation specified by UNOPPTAB
|
2258 |
|
|
on operand OP0, with two results to TARG0 and TARG1.
|
2259 |
|
|
We assume that the order of the operands for the instruction
|
2260 |
|
|
is TARG0, TARG1, OP0.
|
2261 |
|
|
|
2262 |
|
|
Either TARG0 or TARG1 may be zero, but what that means is that
|
2263 |
|
|
the result is not actually wanted. We will generate it into
|
2264 |
|
|
a dummy pseudo-reg and discard it. They may not both be zero.
|
2265 |
|
|
|
2266 |
|
|
Returns 1 if this operation can be performed; 0 if not. */
|
2267 |
|
|
|
2268 |
|
|
int
|
2269 |
|
|
expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
|
2270 |
|
|
int unsignedp)
|
2271 |
|
|
{
|
2272 |
|
|
enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
|
2273 |
|
|
enum mode_class mclass;
|
2274 |
|
|
enum machine_mode wider_mode;
|
2275 |
|
|
rtx entry_last = get_last_insn ();
|
2276 |
|
|
rtx last;
|
2277 |
|
|
|
2278 |
|
|
mclass = GET_MODE_CLASS (mode);
|
2279 |
|
|
|
2280 |
|
|
if (!targ0)
|
2281 |
|
|
targ0 = gen_reg_rtx (mode);
|
2282 |
|
|
if (!targ1)
|
2283 |
|
|
targ1 = gen_reg_rtx (mode);
|
2284 |
|
|
|
2285 |
|
|
/* Record where to go back to if we fail. */
|
2286 |
|
|
last = get_last_insn ();
|
2287 |
|
|
|
2288 |
|
|
if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
|
2289 |
|
|
{
|
2290 |
|
|
struct expand_operand ops[3];
|
2291 |
|
|
enum insn_code icode = optab_handler (unoptab, mode);
|
2292 |
|
|
|
2293 |
|
|
create_fixed_operand (&ops[0], targ0);
|
2294 |
|
|
create_fixed_operand (&ops[1], targ1);
|
2295 |
|
|
create_convert_operand_from (&ops[2], op0, mode, unsignedp);
|
2296 |
|
|
if (maybe_expand_insn (icode, 3, ops))
|
2297 |
|
|
return 1;
|
2298 |
|
|
}
|
2299 |
|
|
|
2300 |
|
|
/* It can't be done in this mode. Can we do it in a wider mode? */
|
2301 |
|
|
|
2302 |
|
|
if (CLASS_HAS_WIDER_MODES_P (mclass))
|
2303 |
|
|
{
|
2304 |
|
|
for (wider_mode = GET_MODE_WIDER_MODE (mode);
|
2305 |
|
|
wider_mode != VOIDmode;
|
2306 |
|
|
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
2307 |
|
|
{
|
2308 |
|
|
if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
|
2309 |
|
|
{
|
2310 |
|
|
rtx t0 = gen_reg_rtx (wider_mode);
|
2311 |
|
|
rtx t1 = gen_reg_rtx (wider_mode);
|
2312 |
|
|
rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
|
2313 |
|
|
|
2314 |
|
|
if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
|
2315 |
|
|
{
|
2316 |
|
|
convert_move (targ0, t0, unsignedp);
|
2317 |
|
|
convert_move (targ1, t1, unsignedp);
|
2318 |
|
|
return 1;
|
2319 |
|
|
}
|
2320 |
|
|
else
|
2321 |
|
|
delete_insns_since (last);
|
2322 |
|
|
}
|
2323 |
|
|
}
|
2324 |
|
|
}
|
2325 |
|
|
|
2326 |
|
|
delete_insns_since (entry_last);
|
2327 |
|
|
return 0;
|
2328 |
|
|
}
|
2329 |
|
|
|
2330 |
|
|
/* Generate code to perform an operation specified by BINOPTAB
|
2331 |
|
|
on operands OP0 and OP1, with two results to TARG1 and TARG2.
|
2332 |
|
|
We assume that the order of the operands for the instruction
|
2333 |
|
|
is TARG0, OP0, OP1, TARG1, which would fit a pattern like
|
2334 |
|
|
[(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
|
2335 |
|
|
|
2336 |
|
|
Either TARG0 or TARG1 may be zero, but what that means is that
|
2337 |
|
|
the result is not actually wanted. We will generate it into
|
2338 |
|
|
a dummy pseudo-reg and discard it. They may not both be zero.
|
2339 |
|
|
|
2340 |
|
|
Returns 1 if this operation can be performed; 0 if not. */
|
2341 |
|
|
|
2342 |
|
|
int
|
2343 |
|
|
expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
|
2344 |
|
|
int unsignedp)
|
2345 |
|
|
{
|
2346 |
|
|
enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
|
2347 |
|
|
enum mode_class mclass;
|
2348 |
|
|
enum machine_mode wider_mode;
|
2349 |
|
|
rtx entry_last = get_last_insn ();
|
2350 |
|
|
rtx last;
|
2351 |
|
|
|
2352 |
|
|
mclass = GET_MODE_CLASS (mode);
|
2353 |
|
|
|
2354 |
|
|
if (!targ0)
|
2355 |
|
|
targ0 = gen_reg_rtx (mode);
|
2356 |
|
|
if (!targ1)
|
2357 |
|
|
targ1 = gen_reg_rtx (mode);
|
2358 |
|
|
|
2359 |
|
|
/* Record where to go back to if we fail. */
|
2360 |
|
|
last = get_last_insn ();
|
2361 |
|
|
|
2362 |
|
|
if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
|
2363 |
|
|
{
|
2364 |
|
|
struct expand_operand ops[4];
|
2365 |
|
|
enum insn_code icode = optab_handler (binoptab, mode);
|
2366 |
|
|
enum machine_mode mode0 = insn_data[icode].operand[1].mode;
|
2367 |
|
|
enum machine_mode mode1 = insn_data[icode].operand[2].mode;
|
2368 |
|
|
rtx xop0 = op0, xop1 = op1;
|
2369 |
|
|
|
2370 |
|
|
/* If we are optimizing, force expensive constants into a register. */
|
2371 |
|
|
xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp);
|
2372 |
|
|
xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp);
|
2373 |
|
|
|
2374 |
|
|
create_fixed_operand (&ops[0], targ0);
|
2375 |
|
|
create_convert_operand_from (&ops[1], op0, mode, unsignedp);
|
2376 |
|
|
create_convert_operand_from (&ops[2], op1, mode, unsignedp);
|
2377 |
|
|
create_fixed_operand (&ops[3], targ1);
|
2378 |
|
|
if (maybe_expand_insn (icode, 4, ops))
|
2379 |
|
|
return 1;
|
2380 |
|
|
delete_insns_since (last);
|
2381 |
|
|
}
|
2382 |
|
|
|
2383 |
|
|
/* It can't be done in this mode. Can we do it in a wider mode? */
|
2384 |
|
|
|
2385 |
|
|
if (CLASS_HAS_WIDER_MODES_P (mclass))
|
2386 |
|
|
{
|
2387 |
|
|
for (wider_mode = GET_MODE_WIDER_MODE (mode);
|
2388 |
|
|
wider_mode != VOIDmode;
|
2389 |
|
|
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
2390 |
|
|
{
|
2391 |
|
|
if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
|
2392 |
|
|
{
|
2393 |
|
|
rtx t0 = gen_reg_rtx (wider_mode);
|
2394 |
|
|
rtx t1 = gen_reg_rtx (wider_mode);
|
2395 |
|
|
rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
|
2396 |
|
|
rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
|
2397 |
|
|
|
2398 |
|
|
if (expand_twoval_binop (binoptab, cop0, cop1,
|
2399 |
|
|
t0, t1, unsignedp))
|
2400 |
|
|
{
|
2401 |
|
|
convert_move (targ0, t0, unsignedp);
|
2402 |
|
|
convert_move (targ1, t1, unsignedp);
|
2403 |
|
|
return 1;
|
2404 |
|
|
}
|
2405 |
|
|
else
|
2406 |
|
|
delete_insns_since (last);
|
2407 |
|
|
}
|
2408 |
|
|
}
|
2409 |
|
|
}
|
2410 |
|
|
|
2411 |
|
|
delete_insns_since (entry_last);
|
2412 |
|
|
return 0;
|
2413 |
|
|
}
|
2414 |
|
|
|
2415 |
|
|
/* Expand the two-valued library call indicated by BINOPTAB, but
|
2416 |
|
|
preserve only one of the values. If TARG0 is non-NULL, the first
|
2417 |
|
|
value is placed into TARG0; otherwise the second value is placed
|
2418 |
|
|
into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
|
2419 |
|
|
value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
|
2420 |
|
|
This routine assumes that the value returned by the library call is
|
2421 |
|
|
as if the return value was of an integral mode twice as wide as the
|
2422 |
|
|
mode of OP0. Returns 1 if the call was successful. */
|
2423 |
|
|
|
2424 |
|
|
bool
|
2425 |
|
|
expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
|
2426 |
|
|
rtx targ0, rtx targ1, enum rtx_code code)
|
2427 |
|
|
{
|
2428 |
|
|
enum machine_mode mode;
|
2429 |
|
|
enum machine_mode libval_mode;
|
2430 |
|
|
rtx libval;
|
2431 |
|
|
rtx insns;
|
2432 |
|
|
rtx libfunc;
|
2433 |
|
|
|
2434 |
|
|
/* Exactly one of TARG0 or TARG1 should be non-NULL. */
|
2435 |
|
|
gcc_assert (!targ0 != !targ1);
|
2436 |
|
|
|
2437 |
|
|
mode = GET_MODE (op0);
|
2438 |
|
|
libfunc = optab_libfunc (binoptab, mode);
|
2439 |
|
|
if (!libfunc)
|
2440 |
|
|
return false;
|
2441 |
|
|
|
2442 |
|
|
/* The value returned by the library function will have twice as
|
2443 |
|
|
many bits as the nominal MODE. */
|
2444 |
|
|
libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
|
2445 |
|
|
MODE_INT);
|
2446 |
|
|
start_sequence ();
|
2447 |
|
|
libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
|
2448 |
|
|
libval_mode, 2,
|
2449 |
|
|
op0, mode,
|
2450 |
|
|
op1, mode);
|
2451 |
|
|
/* Get the part of VAL containing the value that we want. */
|
2452 |
|
|
libval = simplify_gen_subreg (mode, libval, libval_mode,
|
2453 |
|
|
targ0 ? 0 : GET_MODE_SIZE (mode));
|
2454 |
|
|
insns = get_insns ();
|
2455 |
|
|
end_sequence ();
|
2456 |
|
|
/* Move the into the desired location. */
|
2457 |
|
|
emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
|
2458 |
|
|
gen_rtx_fmt_ee (code, mode, op0, op1));
|
2459 |
|
|
|
2460 |
|
|
return true;
|
2461 |
|
|
}
|
2462 |
|
|
|
2463 |
|
|
|
2464 |
|
|
/* Wrapper around expand_unop which takes an rtx code to specify
|
2465 |
|
|
the operation to perform, not an optab pointer. All other
|
2466 |
|
|
arguments are the same. */
|
2467 |
|
|
rtx
|
2468 |
|
|
expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
|
2469 |
|
|
rtx target, int unsignedp)
|
2470 |
|
|
{
|
2471 |
|
|
optab unop = code_to_optab[(int) code];
|
2472 |
|
|
gcc_assert (unop);
|
2473 |
|
|
|
2474 |
|
|
return expand_unop (mode, unop, op0, target, unsignedp);
|
2475 |
|
|
}
|
2476 |
|
|
|
2477 |
|
|
/* Try calculating
|
2478 |
|
|
(clz:narrow x)
|
2479 |
|
|
as
|
2480 |
|
|
(clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
|
2481 |
|
|
|
2482 |
|
|
A similar operation can be used for clrsb. UNOPTAB says which operation
|
2483 |
|
|
we are trying to expand. */
|
2484 |
|
|
static rtx
|
2485 |
|
|
widen_leading (enum machine_mode mode, rtx op0, rtx target, optab unoptab)
|
2486 |
|
|
{
|
2487 |
|
|
enum mode_class mclass = GET_MODE_CLASS (mode);
|
2488 |
|
|
if (CLASS_HAS_WIDER_MODES_P (mclass))
|
2489 |
|
|
{
|
2490 |
|
|
enum machine_mode wider_mode;
|
2491 |
|
|
for (wider_mode = GET_MODE_WIDER_MODE (mode);
|
2492 |
|
|
wider_mode != VOIDmode;
|
2493 |
|
|
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
2494 |
|
|
{
|
2495 |
|
|
if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
|
2496 |
|
|
{
|
2497 |
|
|
rtx xop0, temp, last;
|
2498 |
|
|
|
2499 |
|
|
last = get_last_insn ();
|
2500 |
|
|
|
2501 |
|
|
if (target == 0)
|
2502 |
|
|
target = gen_reg_rtx (mode);
|
2503 |
|
|
xop0 = widen_operand (op0, wider_mode, mode,
|
2504 |
|
|
unoptab != clrsb_optab, false);
|
2505 |
|
|
temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
|
2506 |
|
|
unoptab != clrsb_optab);
|
2507 |
|
|
if (temp != 0)
|
2508 |
|
|
temp = expand_binop (wider_mode, sub_optab, temp,
|
2509 |
|
|
GEN_INT (GET_MODE_PRECISION (wider_mode)
|
2510 |
|
|
- GET_MODE_PRECISION (mode)),
|
2511 |
|
|
target, true, OPTAB_DIRECT);
|
2512 |
|
|
if (temp == 0)
|
2513 |
|
|
delete_insns_since (last);
|
2514 |
|
|
|
2515 |
|
|
return temp;
|
2516 |
|
|
}
|
2517 |
|
|
}
|
2518 |
|
|
}
|
2519 |
|
|
return 0;
|
2520 |
|
|
}
|
2521 |
|
|
|
2522 |
|
|
/* Try calculating clz of a double-word quantity as two clz's of word-sized
|
2523 |
|
|
quantities, choosing which based on whether the high word is nonzero. */
|
2524 |
|
|
static rtx
|
2525 |
|
|
expand_doubleword_clz (enum machine_mode mode, rtx op0, rtx target)
|
2526 |
|
|
{
|
2527 |
|
|
rtx xop0 = force_reg (mode, op0);
|
2528 |
|
|
rtx subhi = gen_highpart (word_mode, xop0);
|
2529 |
|
|
rtx sublo = gen_lowpart (word_mode, xop0);
|
2530 |
|
|
rtx hi0_label = gen_label_rtx ();
|
2531 |
|
|
rtx after_label = gen_label_rtx ();
|
2532 |
|
|
rtx seq, temp, result;
|
2533 |
|
|
|
2534 |
|
|
/* If we were not given a target, use a word_mode register, not a
|
2535 |
|
|
'mode' register. The result will fit, and nobody is expecting
|
2536 |
|
|
anything bigger (the return type of __builtin_clz* is int). */
|
2537 |
|
|
if (!target)
|
2538 |
|
|
target = gen_reg_rtx (word_mode);
|
2539 |
|
|
|
2540 |
|
|
/* In any case, write to a word_mode scratch in both branches of the
|
2541 |
|
|
conditional, so we can ensure there is a single move insn setting
|
2542 |
|
|
'target' to tag a REG_EQUAL note on. */
|
2543 |
|
|
result = gen_reg_rtx (word_mode);
|
2544 |
|
|
|
2545 |
|
|
start_sequence ();
|
2546 |
|
|
|
2547 |
|
|
/* If the high word is not equal to zero,
|
2548 |
|
|
then clz of the full value is clz of the high word. */
|
2549 |
|
|
emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
|
2550 |
|
|
word_mode, true, hi0_label);
|
2551 |
|
|
|
2552 |
|
|
temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
|
2553 |
|
|
if (!temp)
|
2554 |
|
|
goto fail;
|
2555 |
|
|
|
2556 |
|
|
if (temp != result)
|
2557 |
|
|
convert_move (result, temp, true);
|
2558 |
|
|
|
2559 |
|
|
emit_jump_insn (gen_jump (after_label));
|
2560 |
|
|
emit_barrier ();
|
2561 |
|
|
|
2562 |
|
|
/* Else clz of the full value is clz of the low word plus the number
|
2563 |
|
|
of bits in the high word. */
|
2564 |
|
|
emit_label (hi0_label);
|
2565 |
|
|
|
2566 |
|
|
temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
|
2567 |
|
|
if (!temp)
|
2568 |
|
|
goto fail;
|
2569 |
|
|
temp = expand_binop (word_mode, add_optab, temp,
|
2570 |
|
|
GEN_INT (GET_MODE_BITSIZE (word_mode)),
|
2571 |
|
|
result, true, OPTAB_DIRECT);
|
2572 |
|
|
if (!temp)
|
2573 |
|
|
goto fail;
|
2574 |
|
|
if (temp != result)
|
2575 |
|
|
convert_move (result, temp, true);
|
2576 |
|
|
|
2577 |
|
|
emit_label (after_label);
|
2578 |
|
|
convert_move (target, result, true);
|
2579 |
|
|
|
2580 |
|
|
seq = get_insns ();
|
2581 |
|
|
end_sequence ();
|
2582 |
|
|
|
2583 |
|
|
add_equal_note (seq, target, CLZ, xop0, 0);
|
2584 |
|
|
emit_insn (seq);
|
2585 |
|
|
return target;
|
2586 |
|
|
|
2587 |
|
|
fail:
|
2588 |
|
|
end_sequence ();
|
2589 |
|
|
return 0;
|
2590 |
|
|
}
|
2591 |
|
|
|
2592 |
|
|
/* Try calculating
|
2593 |
|
|
(bswap:narrow x)
|
2594 |
|
|
as
|
2595 |
|
|
(lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
|
2596 |
|
|
static rtx
|
2597 |
|
|
widen_bswap (enum machine_mode mode, rtx op0, rtx target)
|
2598 |
|
|
{
|
2599 |
|
|
enum mode_class mclass = GET_MODE_CLASS (mode);
|
2600 |
|
|
enum machine_mode wider_mode;
|
2601 |
|
|
rtx x, last;
|
2602 |
|
|
|
2603 |
|
|
if (!CLASS_HAS_WIDER_MODES_P (mclass))
|
2604 |
|
|
return NULL_RTX;
|
2605 |
|
|
|
2606 |
|
|
for (wider_mode = GET_MODE_WIDER_MODE (mode);
|
2607 |
|
|
wider_mode != VOIDmode;
|
2608 |
|
|
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
2609 |
|
|
if (optab_handler (bswap_optab, wider_mode) != CODE_FOR_nothing)
|
2610 |
|
|
goto found;
|
2611 |
|
|
return NULL_RTX;
|
2612 |
|
|
|
2613 |
|
|
found:
|
2614 |
|
|
last = get_last_insn ();
|
2615 |
|
|
|
2616 |
|
|
x = widen_operand (op0, wider_mode, mode, true, true);
|
2617 |
|
|
x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
|
2618 |
|
|
|
2619 |
|
|
gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode)
|
2620 |
|
|
&& GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode));
|
2621 |
|
|
if (x != 0)
|
2622 |
|
|
x = expand_shift (RSHIFT_EXPR, wider_mode, x,
|
2623 |
|
|
GET_MODE_BITSIZE (wider_mode)
|
2624 |
|
|
- GET_MODE_BITSIZE (mode),
|
2625 |
|
|
NULL_RTX, true);
|
2626 |
|
|
|
2627 |
|
|
if (x != 0)
|
2628 |
|
|
{
|
2629 |
|
|
if (target == 0)
|
2630 |
|
|
target = gen_reg_rtx (mode);
|
2631 |
|
|
emit_move_insn (target, gen_lowpart (mode, x));
|
2632 |
|
|
}
|
2633 |
|
|
else
|
2634 |
|
|
delete_insns_since (last);
|
2635 |
|
|
|
2636 |
|
|
return target;
|
2637 |
|
|
}
|
2638 |
|
|
|
2639 |
|
|
/* Try calculating bswap as two bswaps of two word-sized operands. */
|
2640 |
|
|
|
2641 |
|
|
static rtx
|
2642 |
|
|
expand_doubleword_bswap (enum machine_mode mode, rtx op, rtx target)
|
2643 |
|
|
{
|
2644 |
|
|
rtx t0, t1;
|
2645 |
|
|
|
2646 |
|
|
t1 = expand_unop (word_mode, bswap_optab,
|
2647 |
|
|
operand_subword_force (op, 0, mode), NULL_RTX, true);
|
2648 |
|
|
t0 = expand_unop (word_mode, bswap_optab,
|
2649 |
|
|
operand_subword_force (op, 1, mode), NULL_RTX, true);
|
2650 |
|
|
|
2651 |
|
|
if (target == 0 || !valid_multiword_target_p (target))
|
2652 |
|
|
target = gen_reg_rtx (mode);
|
2653 |
|
|
if (REG_P (target))
|
2654 |
|
|
emit_clobber (target);
|
2655 |
|
|
emit_move_insn (operand_subword (target, 0, 1, mode), t0);
|
2656 |
|
|
emit_move_insn (operand_subword (target, 1, 1, mode), t1);
|
2657 |
|
|
|
2658 |
|
|
return target;
|
2659 |
|
|
}
|
2660 |
|
|
|
2661 |
|
|
/* Try calculating (parity x) as (and (popcount x) 1), where
|
2662 |
|
|
popcount can also be done in a wider mode. */
|
2663 |
|
|
static rtx
|
2664 |
|
|
expand_parity (enum machine_mode mode, rtx op0, rtx target)
|
2665 |
|
|
{
|
2666 |
|
|
enum mode_class mclass = GET_MODE_CLASS (mode);
|
2667 |
|
|
if (CLASS_HAS_WIDER_MODES_P (mclass))
|
2668 |
|
|
{
|
2669 |
|
|
enum machine_mode wider_mode;
|
2670 |
|
|
for (wider_mode = mode; wider_mode != VOIDmode;
|
2671 |
|
|
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
2672 |
|
|
{
|
2673 |
|
|
if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
|
2674 |
|
|
{
|
2675 |
|
|
rtx xop0, temp, last;
|
2676 |
|
|
|
2677 |
|
|
last = get_last_insn ();
|
2678 |
|
|
|
2679 |
|
|
if (target == 0)
|
2680 |
|
|
target = gen_reg_rtx (mode);
|
2681 |
|
|
xop0 = widen_operand (op0, wider_mode, mode, true, false);
|
2682 |
|
|
temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
|
2683 |
|
|
true);
|
2684 |
|
|
if (temp != 0)
|
2685 |
|
|
temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
|
2686 |
|
|
target, true, OPTAB_DIRECT);
|
2687 |
|
|
if (temp == 0)
|
2688 |
|
|
delete_insns_since (last);
|
2689 |
|
|
|
2690 |
|
|
return temp;
|
2691 |
|
|
}
|
2692 |
|
|
}
|
2693 |
|
|
}
|
2694 |
|
|
return 0;
|
2695 |
|
|
}
|
2696 |
|
|
|
2697 |
|
|
/* Try calculating ctz(x) as K - clz(x & -x) ,
|
2698 |
|
|
where K is GET_MODE_PRECISION(mode) - 1.
|
2699 |
|
|
|
2700 |
|
|
Both __builtin_ctz and __builtin_clz are undefined at zero, so we
|
2701 |
|
|
don't have to worry about what the hardware does in that case. (If
|
2702 |
|
|
the clz instruction produces the usual value at 0, which is K, the
|
2703 |
|
|
result of this code sequence will be -1; expand_ffs, below, relies
|
2704 |
|
|
on this. It might be nice to have it be K instead, for consistency
|
2705 |
|
|
with the (very few) processors that provide a ctz with a defined
|
2706 |
|
|
value, but that would take one more instruction, and it would be
|
2707 |
|
|
less convenient for expand_ffs anyway. */
|
2708 |
|
|
|
2709 |
|
|
static rtx
|
2710 |
|
|
expand_ctz (enum machine_mode mode, rtx op0, rtx target)
|
2711 |
|
|
{
|
2712 |
|
|
rtx seq, temp;
|
2713 |
|
|
|
2714 |
|
|
if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
|
2715 |
|
|
return 0;
|
2716 |
|
|
|
2717 |
|
|
start_sequence ();
|
2718 |
|
|
|
2719 |
|
|
temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
|
2720 |
|
|
if (temp)
|
2721 |
|
|
temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
|
2722 |
|
|
true, OPTAB_DIRECT);
|
2723 |
|
|
if (temp)
|
2724 |
|
|
temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
|
2725 |
|
|
if (temp)
|
2726 |
|
|
temp = expand_binop (mode, sub_optab, GEN_INT (GET_MODE_PRECISION (mode) - 1),
|
2727 |
|
|
temp, target,
|
2728 |
|
|
true, OPTAB_DIRECT);
|
2729 |
|
|
if (temp == 0)
|
2730 |
|
|
{
|
2731 |
|
|
end_sequence ();
|
2732 |
|
|
return 0;
|
2733 |
|
|
}
|
2734 |
|
|
|
2735 |
|
|
seq = get_insns ();
|
2736 |
|
|
end_sequence ();
|
2737 |
|
|
|
2738 |
|
|
add_equal_note (seq, temp, CTZ, op0, 0);
|
2739 |
|
|
emit_insn (seq);
|
2740 |
|
|
return temp;
|
2741 |
|
|
}
|
2742 |
|
|
|
2743 |
|
|
|
2744 |
|
|
/* Try calculating ffs(x) using ctz(x) if we have that instruction, or
|
2745 |
|
|
else with the sequence used by expand_clz.
|
2746 |
|
|
|
2747 |
|
|
The ffs builtin promises to return zero for a zero value and ctz/clz
|
2748 |
|
|
may have an undefined value in that case. If they do not give us a
|
2749 |
|
|
convenient value, we have to generate a test and branch. */
|
2750 |
|
|
static rtx
|
2751 |
|
|
expand_ffs (enum machine_mode mode, rtx op0, rtx target)
|
2752 |
|
|
{
|
2753 |
|
|
HOST_WIDE_INT val = 0;
|
2754 |
|
|
bool defined_at_zero = false;
|
2755 |
|
|
rtx temp, seq;
|
2756 |
|
|
|
2757 |
|
|
if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
|
2758 |
|
|
{
|
2759 |
|
|
start_sequence ();
|
2760 |
|
|
|
2761 |
|
|
temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
|
2762 |
|
|
if (!temp)
|
2763 |
|
|
goto fail;
|
2764 |
|
|
|
2765 |
|
|
defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
|
2766 |
|
|
}
|
2767 |
|
|
else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
|
2768 |
|
|
{
|
2769 |
|
|
start_sequence ();
|
2770 |
|
|
temp = expand_ctz (mode, op0, 0);
|
2771 |
|
|
if (!temp)
|
2772 |
|
|
goto fail;
|
2773 |
|
|
|
2774 |
|
|
if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
|
2775 |
|
|
{
|
2776 |
|
|
defined_at_zero = true;
|
2777 |
|
|
val = (GET_MODE_PRECISION (mode) - 1) - val;
|
2778 |
|
|
}
|
2779 |
|
|
}
|
2780 |
|
|
else
|
2781 |
|
|
return 0;
|
2782 |
|
|
|
2783 |
|
|
if (defined_at_zero && val == -1)
|
2784 |
|
|
/* No correction needed at zero. */;
|
2785 |
|
|
else
|
2786 |
|
|
{
|
2787 |
|
|
/* We don't try to do anything clever with the situation found
|
2788 |
|
|
on some processors (eg Alpha) where ctz(0:mode) ==
|
2789 |
|
|
bitsize(mode). If someone can think of a way to send N to -1
|
2790 |
|
|
and leave alone all values in the range 0..N-1 (where N is a
|
2791 |
|
|
power of two), cheaper than this test-and-branch, please add it.
|
2792 |
|
|
|
2793 |
|
|
The test-and-branch is done after the operation itself, in case
|
2794 |
|
|
the operation sets condition codes that can be recycled for this.
|
2795 |
|
|
(This is true on i386, for instance.) */
|
2796 |
|
|
|
2797 |
|
|
rtx nonzero_label = gen_label_rtx ();
|
2798 |
|
|
emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
|
2799 |
|
|
mode, true, nonzero_label);
|
2800 |
|
|
|
2801 |
|
|
convert_move (temp, GEN_INT (-1), false);
|
2802 |
|
|
emit_label (nonzero_label);
|
2803 |
|
|
}
|
2804 |
|
|
|
2805 |
|
|
/* temp now has a value in the range -1..bitsize-1. ffs is supposed
|
2806 |
|
|
to produce a value in the range 0..bitsize. */
|
2807 |
|
|
temp = expand_binop (mode, add_optab, temp, GEN_INT (1),
|
2808 |
|
|
target, false, OPTAB_DIRECT);
|
2809 |
|
|
if (!temp)
|
2810 |
|
|
goto fail;
|
2811 |
|
|
|
2812 |
|
|
seq = get_insns ();
|
2813 |
|
|
end_sequence ();
|
2814 |
|
|
|
2815 |
|
|
add_equal_note (seq, temp, FFS, op0, 0);
|
2816 |
|
|
emit_insn (seq);
|
2817 |
|
|
return temp;
|
2818 |
|
|
|
2819 |
|
|
fail:
|
2820 |
|
|
end_sequence ();
|
2821 |
|
|
return 0;
|
2822 |
|
|
}
|
2823 |
|
|
|
2824 |
|
|
/* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
|
2825 |
|
|
conditions, VAL may already be a SUBREG against which we cannot generate
|
2826 |
|
|
a further SUBREG. In this case, we expect forcing the value into a
|
2827 |
|
|
register will work around the situation. */
|
2828 |
|
|
|
2829 |
|
|
static rtx
|
2830 |
|
|
lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
|
2831 |
|
|
enum machine_mode imode)
|
2832 |
|
|
{
|
2833 |
|
|
rtx ret;
|
2834 |
|
|
ret = lowpart_subreg (omode, val, imode);
|
2835 |
|
|
if (ret == NULL)
|
2836 |
|
|
{
|
2837 |
|
|
val = force_reg (imode, val);
|
2838 |
|
|
ret = lowpart_subreg (omode, val, imode);
|
2839 |
|
|
gcc_assert (ret != NULL);
|
2840 |
|
|
}
|
2841 |
|
|
return ret;
|
2842 |
|
|
}
|
2843 |
|
|
|
2844 |
|
|
/* Expand a floating point absolute value or negation operation via a
|
2845 |
|
|
logical operation on the sign bit. */
|
2846 |
|
|
|
2847 |
|
|
static rtx
|
2848 |
|
|
expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
|
2849 |
|
|
rtx op0, rtx target)
|
2850 |
|
|
{
|
2851 |
|
|
const struct real_format *fmt;
|
2852 |
|
|
int bitpos, word, nwords, i;
|
2853 |
|
|
enum machine_mode imode;
|
2854 |
|
|
double_int mask;
|
2855 |
|
|
rtx temp, insns;
|
2856 |
|
|
|
2857 |
|
|
/* The format has to have a simple sign bit. */
|
2858 |
|
|
fmt = REAL_MODE_FORMAT (mode);
|
2859 |
|
|
if (fmt == NULL)
|
2860 |
|
|
return NULL_RTX;
|
2861 |
|
|
|
2862 |
|
|
bitpos = fmt->signbit_rw;
|
2863 |
|
|
if (bitpos < 0)
|
2864 |
|
|
return NULL_RTX;
|
2865 |
|
|
|
2866 |
|
|
/* Don't create negative zeros if the format doesn't support them. */
|
2867 |
|
|
if (code == NEG && !fmt->has_signed_zero)
|
2868 |
|
|
return NULL_RTX;
|
2869 |
|
|
|
2870 |
|
|
if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
|
2871 |
|
|
{
|
2872 |
|
|
imode = int_mode_for_mode (mode);
|
2873 |
|
|
if (imode == BLKmode)
|
2874 |
|
|
return NULL_RTX;
|
2875 |
|
|
word = 0;
|
2876 |
|
|
nwords = 1;
|
2877 |
|
|
}
|
2878 |
|
|
else
|
2879 |
|
|
{
|
2880 |
|
|
imode = word_mode;
|
2881 |
|
|
|
2882 |
|
|
if (FLOAT_WORDS_BIG_ENDIAN)
|
2883 |
|
|
word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
|
2884 |
|
|
else
|
2885 |
|
|
word = bitpos / BITS_PER_WORD;
|
2886 |
|
|
bitpos = bitpos % BITS_PER_WORD;
|
2887 |
|
|
nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
|
2888 |
|
|
}
|
2889 |
|
|
|
2890 |
|
|
mask = double_int_setbit (double_int_zero, bitpos);
|
2891 |
|
|
if (code == ABS)
|
2892 |
|
|
mask = double_int_not (mask);
|
2893 |
|
|
|
2894 |
|
|
if (target == 0
|
2895 |
|
|
|| target == op0
|
2896 |
|
|
|| (nwords > 1 && !valid_multiword_target_p (target)))
|
2897 |
|
|
target = gen_reg_rtx (mode);
|
2898 |
|
|
|
2899 |
|
|
if (nwords > 1)
|
2900 |
|
|
{
|
2901 |
|
|
start_sequence ();
|
2902 |
|
|
|
2903 |
|
|
for (i = 0; i < nwords; ++i)
|
2904 |
|
|
{
|
2905 |
|
|
rtx targ_piece = operand_subword (target, i, 1, mode);
|
2906 |
|
|
rtx op0_piece = operand_subword_force (op0, i, mode);
|
2907 |
|
|
|
2908 |
|
|
if (i == word)
|
2909 |
|
|
{
|
2910 |
|
|
temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
|
2911 |
|
|
op0_piece,
|
2912 |
|
|
immed_double_int_const (mask, imode),
|
2913 |
|
|
targ_piece, 1, OPTAB_LIB_WIDEN);
|
2914 |
|
|
if (temp != targ_piece)
|
2915 |
|
|
emit_move_insn (targ_piece, temp);
|
2916 |
|
|
}
|
2917 |
|
|
else
|
2918 |
|
|
emit_move_insn (targ_piece, op0_piece);
|
2919 |
|
|
}
|
2920 |
|
|
|
2921 |
|
|
insns = get_insns ();
|
2922 |
|
|
end_sequence ();
|
2923 |
|
|
|
2924 |
|
|
emit_insn (insns);
|
2925 |
|
|
}
|
2926 |
|
|
else
|
2927 |
|
|
{
|
2928 |
|
|
temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
|
2929 |
|
|
gen_lowpart (imode, op0),
|
2930 |
|
|
immed_double_int_const (mask, imode),
|
2931 |
|
|
gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
|
2932 |
|
|
target = lowpart_subreg_maybe_copy (mode, temp, imode);
|
2933 |
|
|
|
2934 |
|
|
set_dst_reg_note (get_last_insn (), REG_EQUAL,
|
2935 |
|
|
gen_rtx_fmt_e (code, mode, copy_rtx (op0)),
|
2936 |
|
|
target);
|
2937 |
|
|
}
|
2938 |
|
|
|
2939 |
|
|
return target;
|
2940 |
|
|
}
|
2941 |
|
|
|
2942 |
|
|
/* As expand_unop, but will fail rather than attempt the operation in a
|
2943 |
|
|
different mode or with a libcall. */
|
2944 |
|
|
static rtx
|
2945 |
|
|
expand_unop_direct (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
|
2946 |
|
|
int unsignedp)
|
2947 |
|
|
{
|
2948 |
|
|
if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
|
2949 |
|
|
{
|
2950 |
|
|
struct expand_operand ops[2];
|
2951 |
|
|
enum insn_code icode = optab_handler (unoptab, mode);
|
2952 |
|
|
rtx last = get_last_insn ();
|
2953 |
|
|
rtx pat;
|
2954 |
|
|
|
2955 |
|
|
create_output_operand (&ops[0], target, mode);
|
2956 |
|
|
create_convert_operand_from (&ops[1], op0, mode, unsignedp);
|
2957 |
|
|
pat = maybe_gen_insn (icode, 2, ops);
|
2958 |
|
|
if (pat)
|
2959 |
|
|
{
|
2960 |
|
|
if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
|
2961 |
|
|
&& ! add_equal_note (pat, ops[0].value, unoptab->code,
|
2962 |
|
|
ops[1].value, NULL_RTX))
|
2963 |
|
|
{
|
2964 |
|
|
delete_insns_since (last);
|
2965 |
|
|
return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
|
2966 |
|
|
}
|
2967 |
|
|
|
2968 |
|
|
emit_insn (pat);
|
2969 |
|
|
|
2970 |
|
|
return ops[0].value;
|
2971 |
|
|
}
|
2972 |
|
|
}
|
2973 |
|
|
return 0;
|
2974 |
|
|
}
|
2975 |
|
|
|
2976 |
|
|
/* Generate code to perform an operation specified by UNOPTAB
|
2977 |
|
|
on operand OP0, with result having machine-mode MODE.
|
2978 |
|
|
|
2979 |
|
|
UNSIGNEDP is for the case where we have to widen the operands
|
2980 |
|
|
to perform the operation. It says to use zero-extension.
|
2981 |
|
|
|
2982 |
|
|
If TARGET is nonzero, the value
|
2983 |
|
|
is generated there, if it is convenient to do so.
|
2984 |
|
|
In all cases an rtx is returned for the locus of the value;
|
2985 |
|
|
this may or may not be TARGET. */
|
2986 |
|
|
|
2987 |
|
|
rtx
|
2988 |
|
|
expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
|
2989 |
|
|
int unsignedp)
|
2990 |
|
|
{
|
2991 |
|
|
enum mode_class mclass = GET_MODE_CLASS (mode);
|
2992 |
|
|
enum machine_mode wider_mode;
|
2993 |
|
|
rtx temp;
|
2994 |
|
|
rtx libfunc;
|
2995 |
|
|
|
2996 |
|
|
temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
|
2997 |
|
|
if (temp)
|
2998 |
|
|
return temp;
|
2999 |
|
|
|
3000 |
|
|
/* It can't be done in this mode. Can we open-code it in a wider mode? */
|
3001 |
|
|
|
3002 |
|
|
/* Widening (or narrowing) clz needs special treatment. */
|
3003 |
|
|
if (unoptab == clz_optab)
|
3004 |
|
|
{
|
3005 |
|
|
temp = widen_leading (mode, op0, target, unoptab);
|
3006 |
|
|
if (temp)
|
3007 |
|
|
return temp;
|
3008 |
|
|
|
3009 |
|
|
if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
|
3010 |
|
|
&& optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
|
3011 |
|
|
{
|
3012 |
|
|
temp = expand_doubleword_clz (mode, op0, target);
|
3013 |
|
|
if (temp)
|
3014 |
|
|
return temp;
|
3015 |
|
|
}
|
3016 |
|
|
|
3017 |
|
|
goto try_libcall;
|
3018 |
|
|
}
|
3019 |
|
|
|
3020 |
|
|
if (unoptab == clrsb_optab)
|
3021 |
|
|
{
|
3022 |
|
|
temp = widen_leading (mode, op0, target, unoptab);
|
3023 |
|
|
if (temp)
|
3024 |
|
|
return temp;
|
3025 |
|
|
goto try_libcall;
|
3026 |
|
|
}
|
3027 |
|
|
|
3028 |
|
|
/* Widening (or narrowing) bswap needs special treatment. */
|
3029 |
|
|
if (unoptab == bswap_optab)
|
3030 |
|
|
{
|
3031 |
|
|
temp = widen_bswap (mode, op0, target);
|
3032 |
|
|
if (temp)
|
3033 |
|
|
return temp;
|
3034 |
|
|
|
3035 |
|
|
if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
|
3036 |
|
|
&& optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
|
3037 |
|
|
{
|
3038 |
|
|
temp = expand_doubleword_bswap (mode, op0, target);
|
3039 |
|
|
if (temp)
|
3040 |
|
|
return temp;
|
3041 |
|
|
}
|
3042 |
|
|
|
3043 |
|
|
goto try_libcall;
|
3044 |
|
|
}
|
3045 |
|
|
|
3046 |
|
|
if (CLASS_HAS_WIDER_MODES_P (mclass))
|
3047 |
|
|
for (wider_mode = GET_MODE_WIDER_MODE (mode);
|
3048 |
|
|
wider_mode != VOIDmode;
|
3049 |
|
|
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
3050 |
|
|
{
|
3051 |
|
|
if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
|
3052 |
|
|
{
|
3053 |
|
|
rtx xop0 = op0;
|
3054 |
|
|
rtx last = get_last_insn ();
|
3055 |
|
|
|
3056 |
|
|
/* For certain operations, we need not actually extend
|
3057 |
|
|
the narrow operand, as long as we will truncate the
|
3058 |
|
|
results to the same narrowness. */
|
3059 |
|
|
|
3060 |
|
|
xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
|
3061 |
|
|
(unoptab == neg_optab
|
3062 |
|
|
|| unoptab == one_cmpl_optab)
|
3063 |
|
|
&& mclass == MODE_INT);
|
3064 |
|
|
|
3065 |
|
|
temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
|
3066 |
|
|
unsignedp);
|
3067 |
|
|
|
3068 |
|
|
if (temp)
|
3069 |
|
|
{
|
3070 |
|
|
if (mclass != MODE_INT
|
3071 |
|
|
|| !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
|
3072 |
|
|
{
|
3073 |
|
|
if (target == 0)
|
3074 |
|
|
target = gen_reg_rtx (mode);
|
3075 |
|
|
convert_move (target, temp, 0);
|
3076 |
|
|
return target;
|
3077 |
|
|
}
|
3078 |
|
|
else
|
3079 |
|
|
return gen_lowpart (mode, temp);
|
3080 |
|
|
}
|
3081 |
|
|
else
|
3082 |
|
|
delete_insns_since (last);
|
3083 |
|
|
}
|
3084 |
|
|
}
|
3085 |
|
|
|
3086 |
|
|
/* These can be done a word at a time. */
|
3087 |
|
|
if (unoptab == one_cmpl_optab
|
3088 |
|
|
&& mclass == MODE_INT
|
3089 |
|
|
&& GET_MODE_SIZE (mode) > UNITS_PER_WORD
|
3090 |
|
|
&& optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
|
3091 |
|
|
{
|
3092 |
|
|
int i;
|
3093 |
|
|
rtx insns;
|
3094 |
|
|
|
3095 |
|
|
if (target == 0 || target == op0 || !valid_multiword_target_p (target))
|
3096 |
|
|
target = gen_reg_rtx (mode);
|
3097 |
|
|
|
3098 |
|
|
start_sequence ();
|
3099 |
|
|
|
3100 |
|
|
/* Do the actual arithmetic. */
|
3101 |
|
|
for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
|
3102 |
|
|
{
|
3103 |
|
|
rtx target_piece = operand_subword (target, i, 1, mode);
|
3104 |
|
|
rtx x = expand_unop (word_mode, unoptab,
|
3105 |
|
|
operand_subword_force (op0, i, mode),
|
3106 |
|
|
target_piece, unsignedp);
|
3107 |
|
|
|
3108 |
|
|
if (target_piece != x)
|
3109 |
|
|
emit_move_insn (target_piece, x);
|
3110 |
|
|
}
|
3111 |
|
|
|
3112 |
|
|
insns = get_insns ();
|
3113 |
|
|
end_sequence ();
|
3114 |
|
|
|
3115 |
|
|
emit_insn (insns);
|
3116 |
|
|
return target;
|
3117 |
|
|
}
|
3118 |
|
|
|
3119 |
|
|
if (unoptab->code == NEG)
|
3120 |
|
|
{
|
3121 |
|
|
/* Try negating floating point values by flipping the sign bit. */
|
3122 |
|
|
if (SCALAR_FLOAT_MODE_P (mode))
|
3123 |
|
|
{
|
3124 |
|
|
temp = expand_absneg_bit (NEG, mode, op0, target);
|
3125 |
|
|
if (temp)
|
3126 |
|
|
return temp;
|
3127 |
|
|
}
|
3128 |
|
|
|
3129 |
|
|
/* If there is no negation pattern, and we have no negative zero,
|
3130 |
|
|
try subtracting from zero. */
|
3131 |
|
|
if (!HONOR_SIGNED_ZEROS (mode))
|
3132 |
|
|
{
|
3133 |
|
|
temp = expand_binop (mode, (unoptab == negv_optab
|
3134 |
|
|
? subv_optab : sub_optab),
|
3135 |
|
|
CONST0_RTX (mode), op0, target,
|
3136 |
|
|
unsignedp, OPTAB_DIRECT);
|
3137 |
|
|
if (temp)
|
3138 |
|
|
return temp;
|
3139 |
|
|
}
|
3140 |
|
|
}
|
3141 |
|
|
|
3142 |
|
|
/* Try calculating parity (x) as popcount (x) % 2. */
|
3143 |
|
|
if (unoptab == parity_optab)
|
3144 |
|
|
{
|
3145 |
|
|
temp = expand_parity (mode, op0, target);
|
3146 |
|
|
if (temp)
|
3147 |
|
|
return temp;
|
3148 |
|
|
}
|
3149 |
|
|
|
3150 |
|
|
/* Try implementing ffs (x) in terms of clz (x). */
|
3151 |
|
|
if (unoptab == ffs_optab)
|
3152 |
|
|
{
|
3153 |
|
|
temp = expand_ffs (mode, op0, target);
|
3154 |
|
|
if (temp)
|
3155 |
|
|
return temp;
|
3156 |
|
|
}
|
3157 |
|
|
|
3158 |
|
|
/* Try implementing ctz (x) in terms of clz (x). */
|
3159 |
|
|
if (unoptab == ctz_optab)
|
3160 |
|
|
{
|
3161 |
|
|
temp = expand_ctz (mode, op0, target);
|
3162 |
|
|
if (temp)
|
3163 |
|
|
return temp;
|
3164 |
|
|
}
|
3165 |
|
|
|
3166 |
|
|
try_libcall:
|
3167 |
|
|
/* Now try a library call in this mode. */
|
3168 |
|
|
libfunc = optab_libfunc (unoptab, mode);
|
3169 |
|
|
if (libfunc)
|
3170 |
|
|
{
|
3171 |
|
|
rtx insns;
|
3172 |
|
|
rtx value;
|
3173 |
|
|
rtx eq_value;
|
3174 |
|
|
enum machine_mode outmode = mode;
|
3175 |
|
|
|
3176 |
|
|
/* All of these functions return small values. Thus we choose to
|
3177 |
|
|
have them return something that isn't a double-word. */
|
3178 |
|
|
if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
|
3179 |
|
|
|| unoptab == clrsb_optab || unoptab == popcount_optab
|
3180 |
|
|
|| unoptab == parity_optab)
|
3181 |
|
|
outmode
|
3182 |
|
|
= GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
|
3183 |
|
|
optab_libfunc (unoptab, mode)));
|
3184 |
|
|
|
3185 |
|
|
start_sequence ();
|
3186 |
|
|
|
3187 |
|
|
/* Pass 1 for NO_QUEUE so we don't lose any increments
|
3188 |
|
|
if the libcall is cse'd or moved. */
|
3189 |
|
|
value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
|
3190 |
|
|
1, op0, mode);
|
3191 |
|
|
insns = get_insns ();
|
3192 |
|
|
end_sequence ();
|
3193 |
|
|
|
3194 |
|
|
target = gen_reg_rtx (outmode);
|
3195 |
|
|
eq_value = gen_rtx_fmt_e (unoptab->code, mode, op0);
|
3196 |
|
|
if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
|
3197 |
|
|
eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
|
3198 |
|
|
else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
|
3199 |
|
|
eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
|
3200 |
|
|
emit_libcall_block (insns, target, value, eq_value);
|
3201 |
|
|
|
3202 |
|
|
return target;
|
3203 |
|
|
}
|
3204 |
|
|
|
3205 |
|
|
/* It can't be done in this mode. Can we do it in a wider mode? */
|
3206 |
|
|
|
3207 |
|
|
if (CLASS_HAS_WIDER_MODES_P (mclass))
|
3208 |
|
|
{
|
3209 |
|
|
for (wider_mode = GET_MODE_WIDER_MODE (mode);
|
3210 |
|
|
wider_mode != VOIDmode;
|
3211 |
|
|
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
3212 |
|
|
{
|
3213 |
|
|
if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
|
3214 |
|
|
|| optab_libfunc (unoptab, wider_mode))
|
3215 |
|
|
{
|
3216 |
|
|
rtx xop0 = op0;
|
3217 |
|
|
rtx last = get_last_insn ();
|
3218 |
|
|
|
3219 |
|
|
/* For certain operations, we need not actually extend
|
3220 |
|
|
the narrow operand, as long as we will truncate the
|
3221 |
|
|
results to the same narrowness. */
|
3222 |
|
|
|
3223 |
|
|
xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
|
3224 |
|
|
(unoptab == neg_optab
|
3225 |
|
|
|| unoptab == one_cmpl_optab)
|
3226 |
|
|
&& mclass == MODE_INT);
|
3227 |
|
|
|
3228 |
|
|
temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
|
3229 |
|
|
unsignedp);
|
3230 |
|
|
|
3231 |
|
|
/* If we are generating clz using wider mode, adjust the
|
3232 |
|
|
result. Similarly for clrsb. */
|
3233 |
|
|
if ((unoptab == clz_optab || unoptab == clrsb_optab)
|
3234 |
|
|
&& temp != 0)
|
3235 |
|
|
temp = expand_binop (wider_mode, sub_optab, temp,
|
3236 |
|
|
GEN_INT (GET_MODE_PRECISION (wider_mode)
|
3237 |
|
|
- GET_MODE_PRECISION (mode)),
|
3238 |
|
|
target, true, OPTAB_DIRECT);
|
3239 |
|
|
|
3240 |
|
|
if (temp)
|
3241 |
|
|
{
|
3242 |
|
|
if (mclass != MODE_INT)
|
3243 |
|
|
{
|
3244 |
|
|
if (target == 0)
|
3245 |
|
|
target = gen_reg_rtx (mode);
|
3246 |
|
|
convert_move (target, temp, 0);
|
3247 |
|
|
return target;
|
3248 |
|
|
}
|
3249 |
|
|
else
|
3250 |
|
|
return gen_lowpart (mode, temp);
|
3251 |
|
|
}
|
3252 |
|
|
else
|
3253 |
|
|
delete_insns_since (last);
|
3254 |
|
|
}
|
3255 |
|
|
}
|
3256 |
|
|
}
|
3257 |
|
|
|
3258 |
|
|
/* One final attempt at implementing negation via subtraction,
|
3259 |
|
|
this time allowing widening of the operand. */
|
3260 |
|
|
if (unoptab->code == NEG && !HONOR_SIGNED_ZEROS (mode))
|
3261 |
|
|
{
|
3262 |
|
|
rtx temp;
|
3263 |
|
|
temp = expand_binop (mode,
|
3264 |
|
|
unoptab == negv_optab ? subv_optab : sub_optab,
|
3265 |
|
|
CONST0_RTX (mode), op0,
|
3266 |
|
|
target, unsignedp, OPTAB_LIB_WIDEN);
|
3267 |
|
|
if (temp)
|
3268 |
|
|
return temp;
|
3269 |
|
|
}
|
3270 |
|
|
|
3271 |
|
|
return 0;
|
3272 |
|
|
}
|
3273 |
|
|
|
3274 |
|
|
/* Emit code to compute the absolute value of OP0, with result to
|
3275 |
|
|
TARGET if convenient. (TARGET may be 0.) The return value says
|
3276 |
|
|
where the result actually is to be found.
|
3277 |
|
|
|
3278 |
|
|
MODE is the mode of the operand; the mode of the result is
|
3279 |
|
|
different but can be deduced from MODE.
|
3280 |
|
|
|
3281 |
|
|
*/
|
3282 |
|
|
|
3283 |
|
|
rtx
|
3284 |
|
|
expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
|
3285 |
|
|
int result_unsignedp)
|
3286 |
|
|
{
|
3287 |
|
|
rtx temp;
|
3288 |
|
|
|
3289 |
|
|
if (! flag_trapv)
|
3290 |
|
|
result_unsignedp = 1;
|
3291 |
|
|
|
3292 |
|
|
/* First try to do it with a special abs instruction. */
|
3293 |
|
|
temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
|
3294 |
|
|
op0, target, 0);
|
3295 |
|
|
if (temp != 0)
|
3296 |
|
|
return temp;
|
3297 |
|
|
|
3298 |
|
|
/* For floating point modes, try clearing the sign bit. */
|
3299 |
|
|
if (SCALAR_FLOAT_MODE_P (mode))
|
3300 |
|
|
{
|
3301 |
|
|
temp = expand_absneg_bit (ABS, mode, op0, target);
|
3302 |
|
|
if (temp)
|
3303 |
|
|
return temp;
|
3304 |
|
|
}
|
3305 |
|
|
|
3306 |
|
|
/* If we have a MAX insn, we can do this as MAX (x, -x). */
|
3307 |
|
|
if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
|
3308 |
|
|
&& !HONOR_SIGNED_ZEROS (mode))
|
3309 |
|
|
{
|
3310 |
|
|
rtx last = get_last_insn ();
|
3311 |
|
|
|
3312 |
|
|
temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
|
3313 |
|
|
if (temp != 0)
|
3314 |
|
|
temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
|
3315 |
|
|
OPTAB_WIDEN);
|
3316 |
|
|
|
3317 |
|
|
if (temp != 0)
|
3318 |
|
|
return temp;
|
3319 |
|
|
|
3320 |
|
|
delete_insns_since (last);
|
3321 |
|
|
}
|
3322 |
|
|
|
3323 |
|
|
/* If this machine has expensive jumps, we can do integer absolute
|
3324 |
|
|
value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
|
3325 |
|
|
where W is the width of MODE. */
|
3326 |
|
|
|
3327 |
|
|
if (GET_MODE_CLASS (mode) == MODE_INT
|
3328 |
|
|
&& BRANCH_COST (optimize_insn_for_speed_p (),
|
3329 |
|
|
false) >= 2)
|
3330 |
|
|
{
|
3331 |
|
|
rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
|
3332 |
|
|
GET_MODE_PRECISION (mode) - 1,
|
3333 |
|
|
NULL_RTX, 0);
|
3334 |
|
|
|
3335 |
|
|
temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
|
3336 |
|
|
OPTAB_LIB_WIDEN);
|
3337 |
|
|
if (temp != 0)
|
3338 |
|
|
temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
|
3339 |
|
|
temp, extended, target, 0, OPTAB_LIB_WIDEN);
|
3340 |
|
|
|
3341 |
|
|
if (temp != 0)
|
3342 |
|
|
return temp;
|
3343 |
|
|
}
|
3344 |
|
|
|
3345 |
|
|
return NULL_RTX;
|
3346 |
|
|
}
|
3347 |
|
|
|
3348 |
|
|
rtx
|
3349 |
|
|
expand_abs (enum machine_mode mode, rtx op0, rtx target,
|
3350 |
|
|
int result_unsignedp, int safe)
|
3351 |
|
|
{
|
3352 |
|
|
rtx temp, op1;
|
3353 |
|
|
|
3354 |
|
|
if (! flag_trapv)
|
3355 |
|
|
result_unsignedp = 1;
|
3356 |
|
|
|
3357 |
|
|
temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
|
3358 |
|
|
if (temp != 0)
|
3359 |
|
|
return temp;
|
3360 |
|
|
|
3361 |
|
|
/* If that does not win, use conditional jump and negate. */
|
3362 |
|
|
|
3363 |
|
|
/* It is safe to use the target if it is the same
|
3364 |
|
|
as the source if this is also a pseudo register */
|
3365 |
|
|
if (op0 == target && REG_P (op0)
|
3366 |
|
|
&& REGNO (op0) >= FIRST_PSEUDO_REGISTER)
|
3367 |
|
|
safe = 1;
|
3368 |
|
|
|
3369 |
|
|
op1 = gen_label_rtx ();
|
3370 |
|
|
if (target == 0 || ! safe
|
3371 |
|
|
|| GET_MODE (target) != mode
|
3372 |
|
|
|| (MEM_P (target) && MEM_VOLATILE_P (target))
|
3373 |
|
|
|| (REG_P (target)
|
3374 |
|
|
&& REGNO (target) < FIRST_PSEUDO_REGISTER))
|
3375 |
|
|
target = gen_reg_rtx (mode);
|
3376 |
|
|
|
3377 |
|
|
emit_move_insn (target, op0);
|
3378 |
|
|
NO_DEFER_POP;
|
3379 |
|
|
|
3380 |
|
|
do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
|
3381 |
|
|
NULL_RTX, NULL_RTX, op1, -1);
|
3382 |
|
|
|
3383 |
|
|
op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
|
3384 |
|
|
target, target, 0);
|
3385 |
|
|
if (op0 != target)
|
3386 |
|
|
emit_move_insn (target, op0);
|
3387 |
|
|
emit_label (op1);
|
3388 |
|
|
OK_DEFER_POP;
|
3389 |
|
|
return target;
|
3390 |
|
|
}
|
3391 |
|
|
|
3392 |
|
|
/* Emit code to compute the one's complement absolute value of OP0
|
3393 |
|
|
(if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
|
3394 |
|
|
(TARGET may be NULL_RTX.) The return value says where the result
|
3395 |
|
|
actually is to be found.
|
3396 |
|
|
|
3397 |
|
|
MODE is the mode of the operand; the mode of the result is
|
3398 |
|
|
different but can be deduced from MODE. */
|
3399 |
|
|
|
3400 |
|
|
rtx
|
3401 |
|
|
expand_one_cmpl_abs_nojump (enum machine_mode mode, rtx op0, rtx target)
|
3402 |
|
|
{
|
3403 |
|
|
rtx temp;
|
3404 |
|
|
|
3405 |
|
|
/* Not applicable for floating point modes. */
|
3406 |
|
|
if (FLOAT_MODE_P (mode))
|
3407 |
|
|
return NULL_RTX;
|
3408 |
|
|
|
3409 |
|
|
/* If we have a MAX insn, we can do this as MAX (x, ~x). */
|
3410 |
|
|
if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
|
3411 |
|
|
{
|
3412 |
|
|
rtx last = get_last_insn ();
|
3413 |
|
|
|
3414 |
|
|
temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
|
3415 |
|
|
if (temp != 0)
|
3416 |
|
|
temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
|
3417 |
|
|
OPTAB_WIDEN);
|
3418 |
|
|
|
3419 |
|
|
if (temp != 0)
|
3420 |
|
|
return temp;
|
3421 |
|
|
|
3422 |
|
|
delete_insns_since (last);
|
3423 |
|
|
}
|
3424 |
|
|
|
3425 |
|
|
/* If this machine has expensive jumps, we can do one's complement
|
3426 |
|
|
absolute value of X as (((signed) x >> (W-1)) ^ x). */
|
3427 |
|
|
|
3428 |
|
|
if (GET_MODE_CLASS (mode) == MODE_INT
|
3429 |
|
|
&& BRANCH_COST (optimize_insn_for_speed_p (),
|
3430 |
|
|
false) >= 2)
|
3431 |
|
|
{
|
3432 |
|
|
rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
|
3433 |
|
|
GET_MODE_PRECISION (mode) - 1,
|
3434 |
|
|
NULL_RTX, 0);
|
3435 |
|
|
|
3436 |
|
|
temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
|
3437 |
|
|
OPTAB_LIB_WIDEN);
|
3438 |
|
|
|
3439 |
|
|
if (temp != 0)
|
3440 |
|
|
return temp;
|
3441 |
|
|
}
|
3442 |
|
|
|
3443 |
|
|
return NULL_RTX;
|
3444 |
|
|
}
|
3445 |
|
|
|
3446 |
|
|
/* A subroutine of expand_copysign, perform the copysign operation using the
|
3447 |
|
|
abs and neg primitives advertised to exist on the target. The assumption
|
3448 |
|
|
is that we have a split register file, and leaving op0 in fp registers,
|
3449 |
|
|
and not playing with subregs so much, will help the register allocator. */
|
3450 |
|
|
|
3451 |
|
|
static rtx
|
3452 |
|
|
expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
|
3453 |
|
|
int bitpos, bool op0_is_abs)
|
3454 |
|
|
{
|
3455 |
|
|
enum machine_mode imode;
|
3456 |
|
|
enum insn_code icode;
|
3457 |
|
|
rtx sign, label;
|
3458 |
|
|
|
3459 |
|
|
if (target == op1)
|
3460 |
|
|
target = NULL_RTX;
|
3461 |
|
|
|
3462 |
|
|
/* Check if the back end provides an insn that handles signbit for the
|
3463 |
|
|
argument's mode. */
|
3464 |
|
|
icode = optab_handler (signbit_optab, mode);
|
3465 |
|
|
if (icode != CODE_FOR_nothing)
|
3466 |
|
|
{
|
3467 |
|
|
imode = insn_data[(int) icode].operand[0].mode;
|
3468 |
|
|
sign = gen_reg_rtx (imode);
|
3469 |
|
|
emit_unop_insn (icode, sign, op1, UNKNOWN);
|
3470 |
|
|
}
|
3471 |
|
|
else
|
3472 |
|
|
{
|
3473 |
|
|
double_int mask;
|
3474 |
|
|
|
3475 |
|
|
if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
|
3476 |
|
|
{
|
3477 |
|
|
imode = int_mode_for_mode (mode);
|
3478 |
|
|
if (imode == BLKmode)
|
3479 |
|
|
return NULL_RTX;
|
3480 |
|
|
op1 = gen_lowpart (imode, op1);
|
3481 |
|
|
}
|
3482 |
|
|
else
|
3483 |
|
|
{
|
3484 |
|
|
int word;
|
3485 |
|
|
|
3486 |
|
|
imode = word_mode;
|
3487 |
|
|
if (FLOAT_WORDS_BIG_ENDIAN)
|
3488 |
|
|
word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
|
3489 |
|
|
else
|
3490 |
|
|
word = bitpos / BITS_PER_WORD;
|
3491 |
|
|
bitpos = bitpos % BITS_PER_WORD;
|
3492 |
|
|
op1 = operand_subword_force (op1, word, mode);
|
3493 |
|
|
}
|
3494 |
|
|
|
3495 |
|
|
mask = double_int_setbit (double_int_zero, bitpos);
|
3496 |
|
|
|
3497 |
|
|
sign = expand_binop (imode, and_optab, op1,
|
3498 |
|
|
immed_double_int_const (mask, imode),
|
3499 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
3500 |
|
|
}
|
3501 |
|
|
|
3502 |
|
|
if (!op0_is_abs)
|
3503 |
|
|
{
|
3504 |
|
|
op0 = expand_unop (mode, abs_optab, op0, target, 0);
|
3505 |
|
|
if (op0 == NULL)
|
3506 |
|
|
return NULL_RTX;
|
3507 |
|
|
target = op0;
|
3508 |
|
|
}
|
3509 |
|
|
else
|
3510 |
|
|
{
|
3511 |
|
|
if (target == NULL_RTX)
|
3512 |
|
|
target = copy_to_reg (op0);
|
3513 |
|
|
else
|
3514 |
|
|
emit_move_insn (target, op0);
|
3515 |
|
|
}
|
3516 |
|
|
|
3517 |
|
|
label = gen_label_rtx ();
|
3518 |
|
|
emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
|
3519 |
|
|
|
3520 |
|
|
if (GET_CODE (op0) == CONST_DOUBLE)
|
3521 |
|
|
op0 = simplify_unary_operation (NEG, mode, op0, mode);
|
3522 |
|
|
else
|
3523 |
|
|
op0 = expand_unop (mode, neg_optab, op0, target, 0);
|
3524 |
|
|
if (op0 != target)
|
3525 |
|
|
emit_move_insn (target, op0);
|
3526 |
|
|
|
3527 |
|
|
emit_label (label);
|
3528 |
|
|
|
3529 |
|
|
return target;
|
3530 |
|
|
}
|
3531 |
|
|
|
3532 |
|
|
|
3533 |
|
|
/* A subroutine of expand_copysign, perform the entire copysign operation
|
3534 |
|
|
with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
|
3535 |
|
|
is true if op0 is known to have its sign bit clear. */
|
3536 |
|
|
|
3537 |
|
|
static rtx
|
3538 |
|
|
expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
|
3539 |
|
|
int bitpos, bool op0_is_abs)
|
3540 |
|
|
{
|
3541 |
|
|
enum machine_mode imode;
|
3542 |
|
|
double_int mask;
|
3543 |
|
|
int word, nwords, i;
|
3544 |
|
|
rtx temp, insns;
|
3545 |
|
|
|
3546 |
|
|
if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
|
3547 |
|
|
{
|
3548 |
|
|
imode = int_mode_for_mode (mode);
|
3549 |
|
|
if (imode == BLKmode)
|
3550 |
|
|
return NULL_RTX;
|
3551 |
|
|
word = 0;
|
3552 |
|
|
nwords = 1;
|
3553 |
|
|
}
|
3554 |
|
|
else
|
3555 |
|
|
{
|
3556 |
|
|
imode = word_mode;
|
3557 |
|
|
|
3558 |
|
|
if (FLOAT_WORDS_BIG_ENDIAN)
|
3559 |
|
|
word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
|
3560 |
|
|
else
|
3561 |
|
|
word = bitpos / BITS_PER_WORD;
|
3562 |
|
|
bitpos = bitpos % BITS_PER_WORD;
|
3563 |
|
|
nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
|
3564 |
|
|
}
|
3565 |
|
|
|
3566 |
|
|
mask = double_int_setbit (double_int_zero, bitpos);
|
3567 |
|
|
|
3568 |
|
|
if (target == 0
|
3569 |
|
|
|| target == op0
|
3570 |
|
|
|| target == op1
|
3571 |
|
|
|| (nwords > 1 && !valid_multiword_target_p (target)))
|
3572 |
|
|
target = gen_reg_rtx (mode);
|
3573 |
|
|
|
3574 |
|
|
if (nwords > 1)
|
3575 |
|
|
{
|
3576 |
|
|
start_sequence ();
|
3577 |
|
|
|
3578 |
|
|
for (i = 0; i < nwords; ++i)
|
3579 |
|
|
{
|
3580 |
|
|
rtx targ_piece = operand_subword (target, i, 1, mode);
|
3581 |
|
|
rtx op0_piece = operand_subword_force (op0, i, mode);
|
3582 |
|
|
|
3583 |
|
|
if (i == word)
|
3584 |
|
|
{
|
3585 |
|
|
if (!op0_is_abs)
|
3586 |
|
|
op0_piece
|
3587 |
|
|
= expand_binop (imode, and_optab, op0_piece,
|
3588 |
|
|
immed_double_int_const (double_int_not (mask),
|
3589 |
|
|
imode),
|
3590 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
3591 |
|
|
|
3592 |
|
|
op1 = expand_binop (imode, and_optab,
|
3593 |
|
|
operand_subword_force (op1, i, mode),
|
3594 |
|
|
immed_double_int_const (mask, imode),
|
3595 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
3596 |
|
|
|
3597 |
|
|
temp = expand_binop (imode, ior_optab, op0_piece, op1,
|
3598 |
|
|
targ_piece, 1, OPTAB_LIB_WIDEN);
|
3599 |
|
|
if (temp != targ_piece)
|
3600 |
|
|
emit_move_insn (targ_piece, temp);
|
3601 |
|
|
}
|
3602 |
|
|
else
|
3603 |
|
|
emit_move_insn (targ_piece, op0_piece);
|
3604 |
|
|
}
|
3605 |
|
|
|
3606 |
|
|
insns = get_insns ();
|
3607 |
|
|
end_sequence ();
|
3608 |
|
|
|
3609 |
|
|
emit_insn (insns);
|
3610 |
|
|
}
|
3611 |
|
|
else
|
3612 |
|
|
{
|
3613 |
|
|
op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
|
3614 |
|
|
immed_double_int_const (mask, imode),
|
3615 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
3616 |
|
|
|
3617 |
|
|
op0 = gen_lowpart (imode, op0);
|
3618 |
|
|
if (!op0_is_abs)
|
3619 |
|
|
op0 = expand_binop (imode, and_optab, op0,
|
3620 |
|
|
immed_double_int_const (double_int_not (mask),
|
3621 |
|
|
imode),
|
3622 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
3623 |
|
|
|
3624 |
|
|
temp = expand_binop (imode, ior_optab, op0, op1,
|
3625 |
|
|
gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
|
3626 |
|
|
target = lowpart_subreg_maybe_copy (mode, temp, imode);
|
3627 |
|
|
}
|
3628 |
|
|
|
3629 |
|
|
return target;
|
3630 |
|
|
}
|
3631 |
|
|
|
3632 |
|
|
/* Expand the C99 copysign operation. OP0 and OP1 must be the same
|
3633 |
|
|
scalar floating point mode. Return NULL if we do not know how to
|
3634 |
|
|
expand the operation inline. */
|
3635 |
|
|
|
3636 |
|
|
rtx
|
3637 |
|
|
expand_copysign (rtx op0, rtx op1, rtx target)
|
3638 |
|
|
{
|
3639 |
|
|
enum machine_mode mode = GET_MODE (op0);
|
3640 |
|
|
const struct real_format *fmt;
|
3641 |
|
|
bool op0_is_abs;
|
3642 |
|
|
rtx temp;
|
3643 |
|
|
|
3644 |
|
|
gcc_assert (SCALAR_FLOAT_MODE_P (mode));
|
3645 |
|
|
gcc_assert (GET_MODE (op1) == mode);
|
3646 |
|
|
|
3647 |
|
|
/* First try to do it with a special instruction. */
|
3648 |
|
|
temp = expand_binop (mode, copysign_optab, op0, op1,
|
3649 |
|
|
target, 0, OPTAB_DIRECT);
|
3650 |
|
|
if (temp)
|
3651 |
|
|
return temp;
|
3652 |
|
|
|
3653 |
|
|
fmt = REAL_MODE_FORMAT (mode);
|
3654 |
|
|
if (fmt == NULL || !fmt->has_signed_zero)
|
3655 |
|
|
return NULL_RTX;
|
3656 |
|
|
|
3657 |
|
|
op0_is_abs = false;
|
3658 |
|
|
if (GET_CODE (op0) == CONST_DOUBLE)
|
3659 |
|
|
{
|
3660 |
|
|
if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
|
3661 |
|
|
op0 = simplify_unary_operation (ABS, mode, op0, mode);
|
3662 |
|
|
op0_is_abs = true;
|
3663 |
|
|
}
|
3664 |
|
|
|
3665 |
|
|
if (fmt->signbit_ro >= 0
|
3666 |
|
|
&& (GET_CODE (op0) == CONST_DOUBLE
|
3667 |
|
|
|| (optab_handler (neg_optab, mode) != CODE_FOR_nothing
|
3668 |
|
|
&& optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
|
3669 |
|
|
{
|
3670 |
|
|
temp = expand_copysign_absneg (mode, op0, op1, target,
|
3671 |
|
|
fmt->signbit_ro, op0_is_abs);
|
3672 |
|
|
if (temp)
|
3673 |
|
|
return temp;
|
3674 |
|
|
}
|
3675 |
|
|
|
3676 |
|
|
if (fmt->signbit_rw < 0)
|
3677 |
|
|
return NULL_RTX;
|
3678 |
|
|
return expand_copysign_bit (mode, op0, op1, target,
|
3679 |
|
|
fmt->signbit_rw, op0_is_abs);
|
3680 |
|
|
}
|
3681 |
|
|
|
3682 |
|
|
/* Generate an instruction whose insn-code is INSN_CODE,
|
3683 |
|
|
with two operands: an output TARGET and an input OP0.
|
3684 |
|
|
TARGET *must* be nonzero, and the output is always stored there.
|
3685 |
|
|
CODE is an rtx code such that (CODE OP0) is an rtx that describes
|
3686 |
|
|
the value that is stored into TARGET.
|
3687 |
|
|
|
3688 |
|
|
Return false if expansion failed. */
|
3689 |
|
|
|
3690 |
|
|
bool
|
3691 |
|
|
maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
|
3692 |
|
|
enum rtx_code code)
|
3693 |
|
|
{
|
3694 |
|
|
struct expand_operand ops[2];
|
3695 |
|
|
rtx pat;
|
3696 |
|
|
|
3697 |
|
|
create_output_operand (&ops[0], target, GET_MODE (target));
|
3698 |
|
|
create_input_operand (&ops[1], op0, GET_MODE (op0));
|
3699 |
|
|
pat = maybe_gen_insn (icode, 2, ops);
|
3700 |
|
|
if (!pat)
|
3701 |
|
|
return false;
|
3702 |
|
|
|
3703 |
|
|
if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
|
3704 |
|
|
add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX);
|
3705 |
|
|
|
3706 |
|
|
emit_insn (pat);
|
3707 |
|
|
|
3708 |
|
|
if (ops[0].value != target)
|
3709 |
|
|
emit_move_insn (target, ops[0].value);
|
3710 |
|
|
return true;
|
3711 |
|
|
}
|
3712 |
|
|
/* Generate an instruction whose insn-code is INSN_CODE,
|
3713 |
|
|
with two operands: an output TARGET and an input OP0.
|
3714 |
|
|
TARGET *must* be nonzero, and the output is always stored there.
|
3715 |
|
|
CODE is an rtx code such that (CODE OP0) is an rtx that describes
|
3716 |
|
|
the value that is stored into TARGET. */
|
3717 |
|
|
|
3718 |
|
|
void
|
3719 |
|
|
emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
|
3720 |
|
|
{
|
3721 |
|
|
bool ok = maybe_emit_unop_insn (icode, target, op0, code);
|
3722 |
|
|
gcc_assert (ok);
|
3723 |
|
|
}
|
3724 |
|
|
|
3725 |
|
|
struct no_conflict_data
|
3726 |
|
|
{
|
3727 |
|
|
rtx target, first, insn;
|
3728 |
|
|
bool must_stay;
|
3729 |
|
|
};
|
3730 |
|
|
|
3731 |
|
|
/* Called via note_stores by emit_libcall_block. Set P->must_stay if
|
3732 |
|
|
the currently examined clobber / store has to stay in the list of
|
3733 |
|
|
insns that constitute the actual libcall block. */
|
3734 |
|
|
static void
|
3735 |
|
|
no_conflict_move_test (rtx dest, const_rtx set, void *p0)
|
3736 |
|
|
{
|
3737 |
|
|
struct no_conflict_data *p= (struct no_conflict_data *) p0;
|
3738 |
|
|
|
3739 |
|
|
/* If this inns directly contributes to setting the target, it must stay. */
|
3740 |
|
|
if (reg_overlap_mentioned_p (p->target, dest))
|
3741 |
|
|
p->must_stay = true;
|
3742 |
|
|
/* If we haven't committed to keeping any other insns in the list yet,
|
3743 |
|
|
there is nothing more to check. */
|
3744 |
|
|
else if (p->insn == p->first)
|
3745 |
|
|
return;
|
3746 |
|
|
/* If this insn sets / clobbers a register that feeds one of the insns
|
3747 |
|
|
already in the list, this insn has to stay too. */
|
3748 |
|
|
else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
|
3749 |
|
|
|| (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
|
3750 |
|
|
|| reg_used_between_p (dest, p->first, p->insn)
|
3751 |
|
|
/* Likewise if this insn depends on a register set by a previous
|
3752 |
|
|
insn in the list, or if it sets a result (presumably a hard
|
3753 |
|
|
register) that is set or clobbered by a previous insn.
|
3754 |
|
|
N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
|
3755 |
|
|
SET_DEST perform the former check on the address, and the latter
|
3756 |
|
|
check on the MEM. */
|
3757 |
|
|
|| (GET_CODE (set) == SET
|
3758 |
|
|
&& (modified_in_p (SET_SRC (set), p->first)
|
3759 |
|
|
|| modified_in_p (SET_DEST (set), p->first)
|
3760 |
|
|
|| modified_between_p (SET_SRC (set), p->first, p->insn)
|
3761 |
|
|
|| modified_between_p (SET_DEST (set), p->first, p->insn))))
|
3762 |
|
|
p->must_stay = true;
|
3763 |
|
|
}
|
3764 |
|
|
|
3765 |
|
|
|
3766 |
|
|
/* Emit code to make a call to a constant function or a library call.
|
3767 |
|
|
|
3768 |
|
|
INSNS is a list containing all insns emitted in the call.
|
3769 |
|
|
These insns leave the result in RESULT. Our block is to copy RESULT
|
3770 |
|
|
to TARGET, which is logically equivalent to EQUIV.
|
3771 |
|
|
|
3772 |
|
|
We first emit any insns that set a pseudo on the assumption that these are
|
3773 |
|
|
loading constants into registers; doing so allows them to be safely cse'ed
|
3774 |
|
|
between blocks. Then we emit all the other insns in the block, followed by
|
3775 |
|
|
an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
|
3776 |
|
|
note with an operand of EQUIV. */
|
3777 |
|
|
|
3778 |
|
|
void
|
3779 |
|
|
emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
|
3780 |
|
|
{
|
3781 |
|
|
rtx final_dest = target;
|
3782 |
|
|
rtx next, last, insn;
|
3783 |
|
|
|
3784 |
|
|
/* If this is a reg with REG_USERVAR_P set, then it could possibly turn
|
3785 |
|
|
into a MEM later. Protect the libcall block from this change. */
|
3786 |
|
|
if (! REG_P (target) || REG_USERVAR_P (target))
|
3787 |
|
|
target = gen_reg_rtx (GET_MODE (target));
|
3788 |
|
|
|
3789 |
|
|
/* If we're using non-call exceptions, a libcall corresponding to an
|
3790 |
|
|
operation that may trap may also trap. */
|
3791 |
|
|
/* ??? See the comment in front of make_reg_eh_region_note. */
|
3792 |
|
|
if (cfun->can_throw_non_call_exceptions && may_trap_p (equiv))
|
3793 |
|
|
{
|
3794 |
|
|
for (insn = insns; insn; insn = NEXT_INSN (insn))
|
3795 |
|
|
if (CALL_P (insn))
|
3796 |
|
|
{
|
3797 |
|
|
rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
|
3798 |
|
|
if (note)
|
3799 |
|
|
{
|
3800 |
|
|
int lp_nr = INTVAL (XEXP (note, 0));
|
3801 |
|
|
if (lp_nr == 0 || lp_nr == INT_MIN)
|
3802 |
|
|
remove_note (insn, note);
|
3803 |
|
|
}
|
3804 |
|
|
}
|
3805 |
|
|
}
|
3806 |
|
|
else
|
3807 |
|
|
{
|
3808 |
|
|
/* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
|
3809 |
|
|
reg note to indicate that this call cannot throw or execute a nonlocal
|
3810 |
|
|
goto (unless there is already a REG_EH_REGION note, in which case
|
3811 |
|
|
we update it). */
|
3812 |
|
|
for (insn = insns; insn; insn = NEXT_INSN (insn))
|
3813 |
|
|
if (CALL_P (insn))
|
3814 |
|
|
make_reg_eh_region_note_nothrow_nononlocal (insn);
|
3815 |
|
|
}
|
3816 |
|
|
|
3817 |
|
|
/* First emit all insns that set pseudos. Remove them from the list as
|
3818 |
|
|
we go. Avoid insns that set pseudos which were referenced in previous
|
3819 |
|
|
insns. These can be generated by move_by_pieces, for example,
|
3820 |
|
|
to update an address. Similarly, avoid insns that reference things
|
3821 |
|
|
set in previous insns. */
|
3822 |
|
|
|
3823 |
|
|
for (insn = insns; insn; insn = next)
|
3824 |
|
|
{
|
3825 |
|
|
rtx set = single_set (insn);
|
3826 |
|
|
|
3827 |
|
|
next = NEXT_INSN (insn);
|
3828 |
|
|
|
3829 |
|
|
if (set != 0 && REG_P (SET_DEST (set))
|
3830 |
|
|
&& REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
|
3831 |
|
|
{
|
3832 |
|
|
struct no_conflict_data data;
|
3833 |
|
|
|
3834 |
|
|
data.target = const0_rtx;
|
3835 |
|
|
data.first = insns;
|
3836 |
|
|
data.insn = insn;
|
3837 |
|
|
data.must_stay = 0;
|
3838 |
|
|
note_stores (PATTERN (insn), no_conflict_move_test, &data);
|
3839 |
|
|
if (! data.must_stay)
|
3840 |
|
|
{
|
3841 |
|
|
if (PREV_INSN (insn))
|
3842 |
|
|
NEXT_INSN (PREV_INSN (insn)) = next;
|
3843 |
|
|
else
|
3844 |
|
|
insns = next;
|
3845 |
|
|
|
3846 |
|
|
if (next)
|
3847 |
|
|
PREV_INSN (next) = PREV_INSN (insn);
|
3848 |
|
|
|
3849 |
|
|
add_insn (insn);
|
3850 |
|
|
}
|
3851 |
|
|
}
|
3852 |
|
|
|
3853 |
|
|
/* Some ports use a loop to copy large arguments onto the stack.
|
3854 |
|
|
Don't move anything outside such a loop. */
|
3855 |
|
|
if (LABEL_P (insn))
|
3856 |
|
|
break;
|
3857 |
|
|
}
|
3858 |
|
|
|
3859 |
|
|
/* Write the remaining insns followed by the final copy. */
|
3860 |
|
|
for (insn = insns; insn; insn = next)
|
3861 |
|
|
{
|
3862 |
|
|
next = NEXT_INSN (insn);
|
3863 |
|
|
|
3864 |
|
|
add_insn (insn);
|
3865 |
|
|
}
|
3866 |
|
|
|
3867 |
|
|
last = emit_move_insn (target, result);
|
3868 |
|
|
set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target);
|
3869 |
|
|
|
3870 |
|
|
if (final_dest != target)
|
3871 |
|
|
emit_move_insn (final_dest, target);
|
3872 |
|
|
}
|
3873 |
|
|
|
3874 |
|
|
/* Nonzero if we can perform a comparison of mode MODE straightforwardly.
|
3875 |
|
|
PURPOSE describes how this comparison will be used. CODE is the rtx
|
3876 |
|
|
comparison code we will be using.
|
3877 |
|
|
|
3878 |
|
|
??? Actually, CODE is slightly weaker than that. A target is still
|
3879 |
|
|
required to implement all of the normal bcc operations, but not
|
3880 |
|
|
required to implement all (or any) of the unordered bcc operations. */
|
3881 |
|
|
|
3882 |
|
|
int
|
3883 |
|
|
can_compare_p (enum rtx_code code, enum machine_mode mode,
|
3884 |
|
|
enum can_compare_purpose purpose)
|
3885 |
|
|
{
|
3886 |
|
|
rtx test;
|
3887 |
|
|
test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
|
3888 |
|
|
do
|
3889 |
|
|
{
|
3890 |
|
|
enum insn_code icode;
|
3891 |
|
|
|
3892 |
|
|
if (purpose == ccp_jump
|
3893 |
|
|
&& (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
|
3894 |
|
|
&& insn_operand_matches (icode, 0, test))
|
3895 |
|
|
return 1;
|
3896 |
|
|
if (purpose == ccp_store_flag
|
3897 |
|
|
&& (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
|
3898 |
|
|
&& insn_operand_matches (icode, 1, test))
|
3899 |
|
|
return 1;
|
3900 |
|
|
if (purpose == ccp_cmov
|
3901 |
|
|
&& optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
|
3902 |
|
|
return 1;
|
3903 |
|
|
|
3904 |
|
|
mode = GET_MODE_WIDER_MODE (mode);
|
3905 |
|
|
PUT_MODE (test, mode);
|
3906 |
|
|
}
|
3907 |
|
|
while (mode != VOIDmode);
|
3908 |
|
|
|
3909 |
|
|
return 0;
|
3910 |
|
|
}
|
3911 |
|
|
|
3912 |
|
|
/* This function is called when we are going to emit a compare instruction that
|
3913 |
|
|
compares the values found in *PX and *PY, using the rtl operator COMPARISON.
|
3914 |
|
|
|
3915 |
|
|
*PMODE is the mode of the inputs (in case they are const_int).
|
3916 |
|
|
*PUNSIGNEDP nonzero says that the operands are unsigned;
|
3917 |
|
|
this matters if they need to be widened (as given by METHODS).
|
3918 |
|
|
|
3919 |
|
|
If they have mode BLKmode, then SIZE specifies the size of both operands.
|
3920 |
|
|
|
3921 |
|
|
This function performs all the setup necessary so that the caller only has
|
3922 |
|
|
to emit a single comparison insn. This setup can involve doing a BLKmode
|
3923 |
|
|
comparison or emitting a library call to perform the comparison if no insn
|
3924 |
|
|
is available to handle it.
|
3925 |
|
|
The values which are passed in through pointers can be modified; the caller
|
3926 |
|
|
should perform the comparison on the modified values. Constant
|
3927 |
|
|
comparisons must have already been folded. */
|
3928 |
|
|
|
3929 |
|
|
static void
|
3930 |
|
|
prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
|
3931 |
|
|
int unsignedp, enum optab_methods methods,
|
3932 |
|
|
rtx *ptest, enum machine_mode *pmode)
|
3933 |
|
|
{
|
3934 |
|
|
enum machine_mode mode = *pmode;
|
3935 |
|
|
rtx libfunc, test;
|
3936 |
|
|
enum machine_mode cmp_mode;
|
3937 |
|
|
enum mode_class mclass;
|
3938 |
|
|
|
3939 |
|
|
/* The other methods are not needed. */
|
3940 |
|
|
gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
|
3941 |
|
|
|| methods == OPTAB_LIB_WIDEN);
|
3942 |
|
|
|
3943 |
|
|
/* If we are optimizing, force expensive constants into a register. */
|
3944 |
|
|
if (CONSTANT_P (x) && optimize
|
3945 |
|
|
&& (rtx_cost (x, COMPARE, 0, optimize_insn_for_speed_p ())
|
3946 |
|
|
> COSTS_N_INSNS (1)))
|
3947 |
|
|
x = force_reg (mode, x);
|
3948 |
|
|
|
3949 |
|
|
if (CONSTANT_P (y) && optimize
|
3950 |
|
|
&& (rtx_cost (y, COMPARE, 1, optimize_insn_for_speed_p ())
|
3951 |
|
|
> COSTS_N_INSNS (1)))
|
3952 |
|
|
y = force_reg (mode, y);
|
3953 |
|
|
|
3954 |
|
|
#ifdef HAVE_cc0
|
3955 |
|
|
/* Make sure if we have a canonical comparison. The RTL
|
3956 |
|
|
documentation states that canonical comparisons are required only
|
3957 |
|
|
for targets which have cc0. */
|
3958 |
|
|
gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
|
3959 |
|
|
#endif
|
3960 |
|
|
|
3961 |
|
|
/* Don't let both operands fail to indicate the mode. */
|
3962 |
|
|
if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
|
3963 |
|
|
x = force_reg (mode, x);
|
3964 |
|
|
if (mode == VOIDmode)
|
3965 |
|
|
mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
|
3966 |
|
|
|
3967 |
|
|
/* Handle all BLKmode compares. */
|
3968 |
|
|
|
3969 |
|
|
if (mode == BLKmode)
|
3970 |
|
|
{
|
3971 |
|
|
enum machine_mode result_mode;
|
3972 |
|
|
enum insn_code cmp_code;
|
3973 |
|
|
tree length_type;
|
3974 |
|
|
rtx libfunc;
|
3975 |
|
|
rtx result;
|
3976 |
|
|
rtx opalign
|
3977 |
|
|
= GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
|
3978 |
|
|
|
3979 |
|
|
gcc_assert (size);
|
3980 |
|
|
|
3981 |
|
|
/* Try to use a memory block compare insn - either cmpstr
|
3982 |
|
|
or cmpmem will do. */
|
3983 |
|
|
for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
3984 |
|
|
cmp_mode != VOIDmode;
|
3985 |
|
|
cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
|
3986 |
|
|
{
|
3987 |
|
|
cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
|
3988 |
|
|
if (cmp_code == CODE_FOR_nothing)
|
3989 |
|
|
cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
|
3990 |
|
|
if (cmp_code == CODE_FOR_nothing)
|
3991 |
|
|
cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
|
3992 |
|
|
if (cmp_code == CODE_FOR_nothing)
|
3993 |
|
|
continue;
|
3994 |
|
|
|
3995 |
|
|
/* Must make sure the size fits the insn's mode. */
|
3996 |
|
|
if ((CONST_INT_P (size)
|
3997 |
|
|
&& INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
|
3998 |
|
|
|| (GET_MODE_BITSIZE (GET_MODE (size))
|
3999 |
|
|
> GET_MODE_BITSIZE (cmp_mode)))
|
4000 |
|
|
continue;
|
4001 |
|
|
|
4002 |
|
|
result_mode = insn_data[cmp_code].operand[0].mode;
|
4003 |
|
|
result = gen_reg_rtx (result_mode);
|
4004 |
|
|
size = convert_to_mode (cmp_mode, size, 1);
|
4005 |
|
|
emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
|
4006 |
|
|
|
4007 |
|
|
*ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
|
4008 |
|
|
*pmode = result_mode;
|
4009 |
|
|
return;
|
4010 |
|
|
}
|
4011 |
|
|
|
4012 |
|
|
if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
|
4013 |
|
|
goto fail;
|
4014 |
|
|
|
4015 |
|
|
/* Otherwise call a library function, memcmp. */
|
4016 |
|
|
libfunc = memcmp_libfunc;
|
4017 |
|
|
length_type = sizetype;
|
4018 |
|
|
result_mode = TYPE_MODE (integer_type_node);
|
4019 |
|
|
cmp_mode = TYPE_MODE (length_type);
|
4020 |
|
|
size = convert_to_mode (TYPE_MODE (length_type), size,
|
4021 |
|
|
TYPE_UNSIGNED (length_type));
|
4022 |
|
|
|
4023 |
|
|
result = emit_library_call_value (libfunc, 0, LCT_PURE,
|
4024 |
|
|
result_mode, 3,
|
4025 |
|
|
XEXP (x, 0), Pmode,
|
4026 |
|
|
XEXP (y, 0), Pmode,
|
4027 |
|
|
size, cmp_mode);
|
4028 |
|
|
|
4029 |
|
|
*ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
|
4030 |
|
|
*pmode = result_mode;
|
4031 |
|
|
return;
|
4032 |
|
|
}
|
4033 |
|
|
|
4034 |
|
|
/* Don't allow operands to the compare to trap, as that can put the
|
4035 |
|
|
compare and branch in different basic blocks. */
|
4036 |
|
|
if (cfun->can_throw_non_call_exceptions)
|
4037 |
|
|
{
|
4038 |
|
|
if (may_trap_p (x))
|
4039 |
|
|
x = force_reg (mode, x);
|
4040 |
|
|
if (may_trap_p (y))
|
4041 |
|
|
y = force_reg (mode, y);
|
4042 |
|
|
}
|
4043 |
|
|
|
4044 |
|
|
if (GET_MODE_CLASS (mode) == MODE_CC)
|
4045 |
|
|
{
|
4046 |
|
|
gcc_assert (can_compare_p (comparison, CCmode, ccp_jump));
|
4047 |
|
|
*ptest = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
|
4048 |
|
|
return;
|
4049 |
|
|
}
|
4050 |
|
|
|
4051 |
|
|
mclass = GET_MODE_CLASS (mode);
|
4052 |
|
|
test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
|
4053 |
|
|
cmp_mode = mode;
|
4054 |
|
|
do
|
4055 |
|
|
{
|
4056 |
|
|
enum insn_code icode;
|
4057 |
|
|
icode = optab_handler (cbranch_optab, cmp_mode);
|
4058 |
|
|
if (icode != CODE_FOR_nothing
|
4059 |
|
|
&& insn_operand_matches (icode, 0, test))
|
4060 |
|
|
{
|
4061 |
|
|
rtx last = get_last_insn ();
|
4062 |
|
|
rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
|
4063 |
|
|
rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
|
4064 |
|
|
if (op0 && op1
|
4065 |
|
|
&& insn_operand_matches (icode, 1, op0)
|
4066 |
|
|
&& insn_operand_matches (icode, 2, op1))
|
4067 |
|
|
{
|
4068 |
|
|
XEXP (test, 0) = op0;
|
4069 |
|
|
XEXP (test, 1) = op1;
|
4070 |
|
|
*ptest = test;
|
4071 |
|
|
*pmode = cmp_mode;
|
4072 |
|
|
return;
|
4073 |
|
|
}
|
4074 |
|
|
delete_insns_since (last);
|
4075 |
|
|
}
|
4076 |
|
|
|
4077 |
|
|
if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
|
4078 |
|
|
break;
|
4079 |
|
|
cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
|
4080 |
|
|
}
|
4081 |
|
|
while (cmp_mode != VOIDmode);
|
4082 |
|
|
|
4083 |
|
|
if (methods != OPTAB_LIB_WIDEN)
|
4084 |
|
|
goto fail;
|
4085 |
|
|
|
4086 |
|
|
if (!SCALAR_FLOAT_MODE_P (mode))
|
4087 |
|
|
{
|
4088 |
|
|
rtx result;
|
4089 |
|
|
|
4090 |
|
|
/* Handle a libcall just for the mode we are using. */
|
4091 |
|
|
libfunc = optab_libfunc (cmp_optab, mode);
|
4092 |
|
|
gcc_assert (libfunc);
|
4093 |
|
|
|
4094 |
|
|
/* If we want unsigned, and this mode has a distinct unsigned
|
4095 |
|
|
comparison routine, use that. */
|
4096 |
|
|
if (unsignedp)
|
4097 |
|
|
{
|
4098 |
|
|
rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
|
4099 |
|
|
if (ulibfunc)
|
4100 |
|
|
libfunc = ulibfunc;
|
4101 |
|
|
}
|
4102 |
|
|
|
4103 |
|
|
result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
|
4104 |
|
|
targetm.libgcc_cmp_return_mode (),
|
4105 |
|
|
2, x, mode, y, mode);
|
4106 |
|
|
|
4107 |
|
|
/* There are two kinds of comparison routines. Biased routines
|
4108 |
|
|
return 0/1/2, and unbiased routines return -1/0/1. Other parts
|
4109 |
|
|
of gcc expect that the comparison operation is equivalent
|
4110 |
|
|
to the modified comparison. For signed comparisons compare the
|
4111 |
|
|
result against 1 in the biased case, and zero in the unbiased
|
4112 |
|
|
case. For unsigned comparisons always compare against 1 after
|
4113 |
|
|
biasing the unbiased result by adding 1. This gives us a way to
|
4114 |
|
|
represent LTU.
|
4115 |
|
|
The comparisons in the fixed-point helper library are always
|
4116 |
|
|
biased. */
|
4117 |
|
|
x = result;
|
4118 |
|
|
y = const1_rtx;
|
4119 |
|
|
|
4120 |
|
|
if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode))
|
4121 |
|
|
{
|
4122 |
|
|
if (unsignedp)
|
4123 |
|
|
x = plus_constant (result, 1);
|
4124 |
|
|
else
|
4125 |
|
|
y = const0_rtx;
|
4126 |
|
|
}
|
4127 |
|
|
|
4128 |
|
|
*pmode = word_mode;
|
4129 |
|
|
prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
|
4130 |
|
|
ptest, pmode);
|
4131 |
|
|
}
|
4132 |
|
|
else
|
4133 |
|
|
prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
|
4134 |
|
|
|
4135 |
|
|
return;
|
4136 |
|
|
|
4137 |
|
|
fail:
|
4138 |
|
|
*ptest = NULL_RTX;
|
4139 |
|
|
}
|
4140 |
|
|
|
4141 |
|
|
/* Before emitting an insn with code ICODE, make sure that X, which is going
|
4142 |
|
|
to be used for operand OPNUM of the insn, is converted from mode MODE to
|
4143 |
|
|
WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
|
4144 |
|
|
that it is accepted by the operand predicate. Return the new value. */
|
4145 |
|
|
|
4146 |
|
|
rtx
|
4147 |
|
|
prepare_operand (enum insn_code icode, rtx x, int opnum, enum machine_mode mode,
|
4148 |
|
|
enum machine_mode wider_mode, int unsignedp)
|
4149 |
|
|
{
|
4150 |
|
|
if (mode != wider_mode)
|
4151 |
|
|
x = convert_modes (wider_mode, mode, x, unsignedp);
|
4152 |
|
|
|
4153 |
|
|
if (!insn_operand_matches (icode, opnum, x))
|
4154 |
|
|
{
|
4155 |
|
|
if (reload_completed)
|
4156 |
|
|
return NULL_RTX;
|
4157 |
|
|
x = copy_to_mode_reg (insn_data[(int) icode].operand[opnum].mode, x);
|
4158 |
|
|
}
|
4159 |
|
|
|
4160 |
|
|
return x;
|
4161 |
|
|
}
|
4162 |
|
|
|
4163 |
|
|
/* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
|
4164 |
|
|
we can do the branch. */
|
4165 |
|
|
|
4166 |
|
|
static void
|
4167 |
|
|
emit_cmp_and_jump_insn_1 (rtx test, enum machine_mode mode, rtx label)
|
4168 |
|
|
{
|
4169 |
|
|
enum machine_mode optab_mode;
|
4170 |
|
|
enum mode_class mclass;
|
4171 |
|
|
enum insn_code icode;
|
4172 |
|
|
|
4173 |
|
|
mclass = GET_MODE_CLASS (mode);
|
4174 |
|
|
optab_mode = (mclass == MODE_CC) ? CCmode : mode;
|
4175 |
|
|
icode = optab_handler (cbranch_optab, optab_mode);
|
4176 |
|
|
|
4177 |
|
|
gcc_assert (icode != CODE_FOR_nothing);
|
4178 |
|
|
gcc_assert (insn_operand_matches (icode, 0, test));
|
4179 |
|
|
emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0), XEXP (test, 1), label));
|
4180 |
|
|
}
|
4181 |
|
|
|
4182 |
|
|
/* Generate code to compare X with Y so that the condition codes are
|
4183 |
|
|
set and to jump to LABEL if the condition is true. If X is a
|
4184 |
|
|
constant and Y is not a constant, then the comparison is swapped to
|
4185 |
|
|
ensure that the comparison RTL has the canonical form.
|
4186 |
|
|
|
4187 |
|
|
UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
|
4188 |
|
|
need to be widened. UNSIGNEDP is also used to select the proper
|
4189 |
|
|
branch condition code.
|
4190 |
|
|
|
4191 |
|
|
If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
|
4192 |
|
|
|
4193 |
|
|
MODE is the mode of the inputs (in case they are const_int).
|
4194 |
|
|
|
4195 |
|
|
COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
|
4196 |
|
|
It will be potentially converted into an unsigned variant based on
|
4197 |
|
|
UNSIGNEDP to select a proper jump instruction. */
|
4198 |
|
|
|
4199 |
|
|
void
|
4200 |
|
|
emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
|
4201 |
|
|
enum machine_mode mode, int unsignedp, rtx label)
|
4202 |
|
|
{
|
4203 |
|
|
rtx op0 = x, op1 = y;
|
4204 |
|
|
rtx test;
|
4205 |
|
|
|
4206 |
|
|
/* Swap operands and condition to ensure canonical RTL. */
|
4207 |
|
|
if (swap_commutative_operands_p (x, y)
|
4208 |
|
|
&& can_compare_p (swap_condition (comparison), mode, ccp_jump))
|
4209 |
|
|
{
|
4210 |
|
|
op0 = y, op1 = x;
|
4211 |
|
|
comparison = swap_condition (comparison);
|
4212 |
|
|
}
|
4213 |
|
|
|
4214 |
|
|
/* If OP0 is still a constant, then both X and Y must be constants
|
4215 |
|
|
or the opposite comparison is not supported. Force X into a register
|
4216 |
|
|
to create canonical RTL. */
|
4217 |
|
|
if (CONSTANT_P (op0))
|
4218 |
|
|
op0 = force_reg (mode, op0);
|
4219 |
|
|
|
4220 |
|
|
if (unsignedp)
|
4221 |
|
|
comparison = unsigned_condition (comparison);
|
4222 |
|
|
|
4223 |
|
|
prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
|
4224 |
|
|
&test, &mode);
|
4225 |
|
|
emit_cmp_and_jump_insn_1 (test, mode, label);
|
4226 |
|
|
}
|
4227 |
|
|
|
4228 |
|
|
|
4229 |
|
|
/* Emit a library call comparison between floating point X and Y.
|
4230 |
|
|
COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
|
4231 |
|
|
|
4232 |
|
|
static void
|
4233 |
|
|
prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
|
4234 |
|
|
rtx *ptest, enum machine_mode *pmode)
|
4235 |
|
|
{
|
4236 |
|
|
enum rtx_code swapped = swap_condition (comparison);
|
4237 |
|
|
enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
|
4238 |
|
|
enum machine_mode orig_mode = GET_MODE (x);
|
4239 |
|
|
enum machine_mode mode, cmp_mode;
|
4240 |
|
|
rtx true_rtx, false_rtx;
|
4241 |
|
|
rtx value, target, insns, equiv;
|
4242 |
|
|
rtx libfunc = 0;
|
4243 |
|
|
bool reversed_p = false;
|
4244 |
|
|
cmp_mode = targetm.libgcc_cmp_return_mode ();
|
4245 |
|
|
|
4246 |
|
|
for (mode = orig_mode;
|
4247 |
|
|
mode != VOIDmode;
|
4248 |
|
|
mode = GET_MODE_WIDER_MODE (mode))
|
4249 |
|
|
{
|
4250 |
|
|
if (code_to_optab[comparison]
|
4251 |
|
|
&& (libfunc = optab_libfunc (code_to_optab[comparison], mode)))
|
4252 |
|
|
break;
|
4253 |
|
|
|
4254 |
|
|
if (code_to_optab[swapped]
|
4255 |
|
|
&& (libfunc = optab_libfunc (code_to_optab[swapped], mode)))
|
4256 |
|
|
{
|
4257 |
|
|
rtx tmp;
|
4258 |
|
|
tmp = x; x = y; y = tmp;
|
4259 |
|
|
comparison = swapped;
|
4260 |
|
|
break;
|
4261 |
|
|
}
|
4262 |
|
|
|
4263 |
|
|
if (code_to_optab[reversed]
|
4264 |
|
|
&& (libfunc = optab_libfunc (code_to_optab[reversed], mode)))
|
4265 |
|
|
{
|
4266 |
|
|
comparison = reversed;
|
4267 |
|
|
reversed_p = true;
|
4268 |
|
|
break;
|
4269 |
|
|
}
|
4270 |
|
|
}
|
4271 |
|
|
|
4272 |
|
|
gcc_assert (mode != VOIDmode);
|
4273 |
|
|
|
4274 |
|
|
if (mode != orig_mode)
|
4275 |
|
|
{
|
4276 |
|
|
x = convert_to_mode (mode, x, 0);
|
4277 |
|
|
y = convert_to_mode (mode, y, 0);
|
4278 |
|
|
}
|
4279 |
|
|
|
4280 |
|
|
/* Attach a REG_EQUAL note describing the semantics of the libcall to
|
4281 |
|
|
the RTL. The allows the RTL optimizers to delete the libcall if the
|
4282 |
|
|
condition can be determined at compile-time. */
|
4283 |
|
|
if (comparison == UNORDERED
|
4284 |
|
|
|| FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
|
4285 |
|
|
{
|
4286 |
|
|
true_rtx = const_true_rtx;
|
4287 |
|
|
false_rtx = const0_rtx;
|
4288 |
|
|
}
|
4289 |
|
|
else
|
4290 |
|
|
{
|
4291 |
|
|
switch (comparison)
|
4292 |
|
|
{
|
4293 |
|
|
case EQ:
|
4294 |
|
|
true_rtx = const0_rtx;
|
4295 |
|
|
false_rtx = const_true_rtx;
|
4296 |
|
|
break;
|
4297 |
|
|
|
4298 |
|
|
case NE:
|
4299 |
|
|
true_rtx = const_true_rtx;
|
4300 |
|
|
false_rtx = const0_rtx;
|
4301 |
|
|
break;
|
4302 |
|
|
|
4303 |
|
|
case GT:
|
4304 |
|
|
true_rtx = const1_rtx;
|
4305 |
|
|
false_rtx = const0_rtx;
|
4306 |
|
|
break;
|
4307 |
|
|
|
4308 |
|
|
case GE:
|
4309 |
|
|
true_rtx = const0_rtx;
|
4310 |
|
|
false_rtx = constm1_rtx;
|
4311 |
|
|
break;
|
4312 |
|
|
|
4313 |
|
|
case LT:
|
4314 |
|
|
true_rtx = constm1_rtx;
|
4315 |
|
|
false_rtx = const0_rtx;
|
4316 |
|
|
break;
|
4317 |
|
|
|
4318 |
|
|
case LE:
|
4319 |
|
|
true_rtx = const0_rtx;
|
4320 |
|
|
false_rtx = const1_rtx;
|
4321 |
|
|
break;
|
4322 |
|
|
|
4323 |
|
|
default:
|
4324 |
|
|
gcc_unreachable ();
|
4325 |
|
|
}
|
4326 |
|
|
}
|
4327 |
|
|
|
4328 |
|
|
if (comparison == UNORDERED)
|
4329 |
|
|
{
|
4330 |
|
|
rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
|
4331 |
|
|
equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
|
4332 |
|
|
equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
|
4333 |
|
|
temp, const_true_rtx, equiv);
|
4334 |
|
|
}
|
4335 |
|
|
else
|
4336 |
|
|
{
|
4337 |
|
|
equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
|
4338 |
|
|
if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
|
4339 |
|
|
equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
|
4340 |
|
|
equiv, true_rtx, false_rtx);
|
4341 |
|
|
}
|
4342 |
|
|
|
4343 |
|
|
start_sequence ();
|
4344 |
|
|
value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
|
4345 |
|
|
cmp_mode, 2, x, mode, y, mode);
|
4346 |
|
|
insns = get_insns ();
|
4347 |
|
|
end_sequence ();
|
4348 |
|
|
|
4349 |
|
|
target = gen_reg_rtx (cmp_mode);
|
4350 |
|
|
emit_libcall_block (insns, target, value, equiv);
|
4351 |
|
|
|
4352 |
|
|
if (comparison == UNORDERED
|
4353 |
|
|
|| FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
|
4354 |
|
|
|| reversed_p)
|
4355 |
|
|
*ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
|
4356 |
|
|
else
|
4357 |
|
|
*ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
|
4358 |
|
|
|
4359 |
|
|
*pmode = cmp_mode;
|
4360 |
|
|
}
|
4361 |
|
|
|
4362 |
|
|
/* Generate code to indirectly jump to a location given in the rtx LOC. */
|
4363 |
|
|
|
4364 |
|
|
void
|
4365 |
|
|
emit_indirect_jump (rtx loc)
|
4366 |
|
|
{
|
4367 |
|
|
struct expand_operand ops[1];
|
4368 |
|
|
|
4369 |
|
|
create_address_operand (&ops[0], loc);
|
4370 |
|
|
expand_jump_insn (CODE_FOR_indirect_jump, 1, ops);
|
4371 |
|
|
emit_barrier ();
|
4372 |
|
|
}
|
4373 |
|
|
|
4374 |
|
|
#ifdef HAVE_conditional_move
|
4375 |
|
|
|
4376 |
|
|
/* Emit a conditional move instruction if the machine supports one for that
|
4377 |
|
|
condition and machine mode.
|
4378 |
|
|
|
4379 |
|
|
OP0 and OP1 are the operands that should be compared using CODE. CMODE is
|
4380 |
|
|
the mode to use should they be constants. If it is VOIDmode, they cannot
|
4381 |
|
|
both be constants.
|
4382 |
|
|
|
4383 |
|
|
OP2 should be stored in TARGET if the comparison is true, otherwise OP3
|
4384 |
|
|
should be stored there. MODE is the mode to use should they be constants.
|
4385 |
|
|
If it is VOIDmode, they cannot both be constants.
|
4386 |
|
|
|
4387 |
|
|
The result is either TARGET (perhaps modified) or NULL_RTX if the operation
|
4388 |
|
|
is not supported. */
|
4389 |
|
|
|
4390 |
|
|
rtx
|
4391 |
|
|
emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
|
4392 |
|
|
enum machine_mode cmode, rtx op2, rtx op3,
|
4393 |
|
|
enum machine_mode mode, int unsignedp)
|
4394 |
|
|
{
|
4395 |
|
|
rtx tem, comparison, last;
|
4396 |
|
|
enum insn_code icode;
|
4397 |
|
|
enum rtx_code reversed;
|
4398 |
|
|
|
4399 |
|
|
/* If one operand is constant, make it the second one. Only do this
|
4400 |
|
|
if the other operand is not constant as well. */
|
4401 |
|
|
|
4402 |
|
|
if (swap_commutative_operands_p (op0, op1))
|
4403 |
|
|
{
|
4404 |
|
|
tem = op0;
|
4405 |
|
|
op0 = op1;
|
4406 |
|
|
op1 = tem;
|
4407 |
|
|
code = swap_condition (code);
|
4408 |
|
|
}
|
4409 |
|
|
|
4410 |
|
|
/* get_condition will prefer to generate LT and GT even if the old
|
4411 |
|
|
comparison was against zero, so undo that canonicalization here since
|
4412 |
|
|
comparisons against zero are cheaper. */
|
4413 |
|
|
if (code == LT && op1 == const1_rtx)
|
4414 |
|
|
code = LE, op1 = const0_rtx;
|
4415 |
|
|
else if (code == GT && op1 == constm1_rtx)
|
4416 |
|
|
code = GE, op1 = const0_rtx;
|
4417 |
|
|
|
4418 |
|
|
if (cmode == VOIDmode)
|
4419 |
|
|
cmode = GET_MODE (op0);
|
4420 |
|
|
|
4421 |
|
|
if (swap_commutative_operands_p (op2, op3)
|
4422 |
|
|
&& ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
|
4423 |
|
|
!= UNKNOWN))
|
4424 |
|
|
{
|
4425 |
|
|
tem = op2;
|
4426 |
|
|
op2 = op3;
|
4427 |
|
|
op3 = tem;
|
4428 |
|
|
code = reversed;
|
4429 |
|
|
}
|
4430 |
|
|
|
4431 |
|
|
if (mode == VOIDmode)
|
4432 |
|
|
mode = GET_MODE (op2);
|
4433 |
|
|
|
4434 |
|
|
icode = direct_optab_handler (movcc_optab, mode);
|
4435 |
|
|
|
4436 |
|
|
if (icode == CODE_FOR_nothing)
|
4437 |
|
|
return 0;
|
4438 |
|
|
|
4439 |
|
|
if (!target)
|
4440 |
|
|
target = gen_reg_rtx (mode);
|
4441 |
|
|
|
4442 |
|
|
code = unsignedp ? unsigned_condition (code) : code;
|
4443 |
|
|
comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
|
4444 |
|
|
|
4445 |
|
|
/* We can get const0_rtx or const_true_rtx in some circumstances. Just
|
4446 |
|
|
return NULL and let the caller figure out how best to deal with this
|
4447 |
|
|
situation. */
|
4448 |
|
|
if (!COMPARISON_P (comparison))
|
4449 |
|
|
return NULL_RTX;
|
4450 |
|
|
|
4451 |
|
|
do_pending_stack_adjust ();
|
4452 |
|
|
last = get_last_insn ();
|
4453 |
|
|
prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
|
4454 |
|
|
GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
|
4455 |
|
|
&comparison, &cmode);
|
4456 |
|
|
if (comparison)
|
4457 |
|
|
{
|
4458 |
|
|
struct expand_operand ops[4];
|
4459 |
|
|
|
4460 |
|
|
create_output_operand (&ops[0], target, mode);
|
4461 |
|
|
create_fixed_operand (&ops[1], comparison);
|
4462 |
|
|
create_input_operand (&ops[2], op2, mode);
|
4463 |
|
|
create_input_operand (&ops[3], op3, mode);
|
4464 |
|
|
if (maybe_expand_insn (icode, 4, ops))
|
4465 |
|
|
{
|
4466 |
|
|
if (ops[0].value != target)
|
4467 |
|
|
convert_move (target, ops[0].value, false);
|
4468 |
|
|
return target;
|
4469 |
|
|
}
|
4470 |
|
|
}
|
4471 |
|
|
delete_insns_since (last);
|
4472 |
|
|
return NULL_RTX;
|
4473 |
|
|
}
|
4474 |
|
|
|
4475 |
|
|
/* Return nonzero if a conditional move of mode MODE is supported.
|
4476 |
|
|
|
4477 |
|
|
This function is for combine so it can tell whether an insn that looks
|
4478 |
|
|
like a conditional move is actually supported by the hardware. If we
|
4479 |
|
|
guess wrong we lose a bit on optimization, but that's it. */
|
4480 |
|
|
/* ??? sparc64 supports conditionally moving integers values based on fp
|
4481 |
|
|
comparisons, and vice versa. How do we handle them? */
|
4482 |
|
|
|
4483 |
|
|
int
|
4484 |
|
|
can_conditionally_move_p (enum machine_mode mode)
|
4485 |
|
|
{
|
4486 |
|
|
if (direct_optab_handler (movcc_optab, mode) != CODE_FOR_nothing)
|
4487 |
|
|
return 1;
|
4488 |
|
|
|
4489 |
|
|
return 0;
|
4490 |
|
|
}
|
4491 |
|
|
|
4492 |
|
|
#endif /* HAVE_conditional_move */
|
4493 |
|
|
|
4494 |
|
|
/* Emit a conditional addition instruction if the machine supports one for that
|
4495 |
|
|
condition and machine mode.
|
4496 |
|
|
|
4497 |
|
|
OP0 and OP1 are the operands that should be compared using CODE. CMODE is
|
4498 |
|
|
the mode to use should they be constants. If it is VOIDmode, they cannot
|
4499 |
|
|
both be constants.
|
4500 |
|
|
|
4501 |
|
|
OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
|
4502 |
|
|
should be stored there. MODE is the mode to use should they be constants.
|
4503 |
|
|
If it is VOIDmode, they cannot both be constants.
|
4504 |
|
|
|
4505 |
|
|
The result is either TARGET (perhaps modified) or NULL_RTX if the operation
|
4506 |
|
|
is not supported. */
|
4507 |
|
|
|
4508 |
|
|
rtx
|
4509 |
|
|
emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
|
4510 |
|
|
enum machine_mode cmode, rtx op2, rtx op3,
|
4511 |
|
|
enum machine_mode mode, int unsignedp)
|
4512 |
|
|
{
|
4513 |
|
|
rtx tem, comparison, last;
|
4514 |
|
|
enum insn_code icode;
|
4515 |
|
|
enum rtx_code reversed;
|
4516 |
|
|
|
4517 |
|
|
/* If one operand is constant, make it the second one. Only do this
|
4518 |
|
|
if the other operand is not constant as well. */
|
4519 |
|
|
|
4520 |
|
|
if (swap_commutative_operands_p (op0, op1))
|
4521 |
|
|
{
|
4522 |
|
|
tem = op0;
|
4523 |
|
|
op0 = op1;
|
4524 |
|
|
op1 = tem;
|
4525 |
|
|
code = swap_condition (code);
|
4526 |
|
|
}
|
4527 |
|
|
|
4528 |
|
|
/* get_condition will prefer to generate LT and GT even if the old
|
4529 |
|
|
comparison was against zero, so undo that canonicalization here since
|
4530 |
|
|
comparisons against zero are cheaper. */
|
4531 |
|
|
if (code == LT && op1 == const1_rtx)
|
4532 |
|
|
code = LE, op1 = const0_rtx;
|
4533 |
|
|
else if (code == GT && op1 == constm1_rtx)
|
4534 |
|
|
code = GE, op1 = const0_rtx;
|
4535 |
|
|
|
4536 |
|
|
if (cmode == VOIDmode)
|
4537 |
|
|
cmode = GET_MODE (op0);
|
4538 |
|
|
|
4539 |
|
|
if (swap_commutative_operands_p (op2, op3)
|
4540 |
|
|
&& ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
|
4541 |
|
|
!= UNKNOWN))
|
4542 |
|
|
{
|
4543 |
|
|
tem = op2;
|
4544 |
|
|
op2 = op3;
|
4545 |
|
|
op3 = tem;
|
4546 |
|
|
code = reversed;
|
4547 |
|
|
}
|
4548 |
|
|
|
4549 |
|
|
if (mode == VOIDmode)
|
4550 |
|
|
mode = GET_MODE (op2);
|
4551 |
|
|
|
4552 |
|
|
icode = optab_handler (addcc_optab, mode);
|
4553 |
|
|
|
4554 |
|
|
if (icode == CODE_FOR_nothing)
|
4555 |
|
|
return 0;
|
4556 |
|
|
|
4557 |
|
|
if (!target)
|
4558 |
|
|
target = gen_reg_rtx (mode);
|
4559 |
|
|
|
4560 |
|
|
code = unsignedp ? unsigned_condition (code) : code;
|
4561 |
|
|
comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
|
4562 |
|
|
|
4563 |
|
|
/* We can get const0_rtx or const_true_rtx in some circumstances. Just
|
4564 |
|
|
return NULL and let the caller figure out how best to deal with this
|
4565 |
|
|
situation. */
|
4566 |
|
|
if (!COMPARISON_P (comparison))
|
4567 |
|
|
return NULL_RTX;
|
4568 |
|
|
|
4569 |
|
|
do_pending_stack_adjust ();
|
4570 |
|
|
last = get_last_insn ();
|
4571 |
|
|
prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
|
4572 |
|
|
GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
|
4573 |
|
|
&comparison, &cmode);
|
4574 |
|
|
if (comparison)
|
4575 |
|
|
{
|
4576 |
|
|
struct expand_operand ops[4];
|
4577 |
|
|
|
4578 |
|
|
create_output_operand (&ops[0], target, mode);
|
4579 |
|
|
create_fixed_operand (&ops[1], comparison);
|
4580 |
|
|
create_input_operand (&ops[2], op2, mode);
|
4581 |
|
|
create_input_operand (&ops[3], op3, mode);
|
4582 |
|
|
if (maybe_expand_insn (icode, 4, ops))
|
4583 |
|
|
{
|
4584 |
|
|
if (ops[0].value != target)
|
4585 |
|
|
convert_move (target, ops[0].value, false);
|
4586 |
|
|
return target;
|
4587 |
|
|
}
|
4588 |
|
|
}
|
4589 |
|
|
delete_insns_since (last);
|
4590 |
|
|
return NULL_RTX;
|
4591 |
|
|
}
|
4592 |
|
|
|
4593 |
|
|
/* These functions attempt to generate an insn body, rather than
|
4594 |
|
|
emitting the insn, but if the gen function already emits them, we
|
4595 |
|
|
make no attempt to turn them back into naked patterns. */
|
4596 |
|
|
|
4597 |
|
|
/* Generate and return an insn body to add Y to X. */
|
4598 |
|
|
|
4599 |
|
|
rtx
|
4600 |
|
|
gen_add2_insn (rtx x, rtx y)
|
4601 |
|
|
{
|
4602 |
|
|
enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
|
4603 |
|
|
|
4604 |
|
|
gcc_assert (insn_operand_matches (icode, 0, x));
|
4605 |
|
|
gcc_assert (insn_operand_matches (icode, 1, x));
|
4606 |
|
|
gcc_assert (insn_operand_matches (icode, 2, y));
|
4607 |
|
|
|
4608 |
|
|
return GEN_FCN (icode) (x, x, y);
|
4609 |
|
|
}
|
4610 |
|
|
|
4611 |
|
|
/* Generate and return an insn body to add r1 and c,
|
4612 |
|
|
storing the result in r0. */
|
4613 |
|
|
|
4614 |
|
|
rtx
|
4615 |
|
|
gen_add3_insn (rtx r0, rtx r1, rtx c)
|
4616 |
|
|
{
|
4617 |
|
|
enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
|
4618 |
|
|
|
4619 |
|
|
if (icode == CODE_FOR_nothing
|
4620 |
|
|
|| !insn_operand_matches (icode, 0, r0)
|
4621 |
|
|
|| !insn_operand_matches (icode, 1, r1)
|
4622 |
|
|
|| !insn_operand_matches (icode, 2, c))
|
4623 |
|
|
return NULL_RTX;
|
4624 |
|
|
|
4625 |
|
|
return GEN_FCN (icode) (r0, r1, c);
|
4626 |
|
|
}
|
4627 |
|
|
|
4628 |
|
|
int
|
4629 |
|
|
have_add2_insn (rtx x, rtx y)
|
4630 |
|
|
{
|
4631 |
|
|
enum insn_code icode;
|
4632 |
|
|
|
4633 |
|
|
gcc_assert (GET_MODE (x) != VOIDmode);
|
4634 |
|
|
|
4635 |
|
|
icode = optab_handler (add_optab, GET_MODE (x));
|
4636 |
|
|
|
4637 |
|
|
if (icode == CODE_FOR_nothing)
|
4638 |
|
|
return 0;
|
4639 |
|
|
|
4640 |
|
|
if (!insn_operand_matches (icode, 0, x)
|
4641 |
|
|
|| !insn_operand_matches (icode, 1, x)
|
4642 |
|
|
|| !insn_operand_matches (icode, 2, y))
|
4643 |
|
|
return 0;
|
4644 |
|
|
|
4645 |
|
|
return 1;
|
4646 |
|
|
}
|
4647 |
|
|
|
4648 |
|
|
/* Generate and return an insn body to subtract Y from X. */
|
4649 |
|
|
|
4650 |
|
|
rtx
|
4651 |
|
|
gen_sub2_insn (rtx x, rtx y)
|
4652 |
|
|
{
|
4653 |
|
|
enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
|
4654 |
|
|
|
4655 |
|
|
gcc_assert (insn_operand_matches (icode, 0, x));
|
4656 |
|
|
gcc_assert (insn_operand_matches (icode, 1, x));
|
4657 |
|
|
gcc_assert (insn_operand_matches (icode, 2, y));
|
4658 |
|
|
|
4659 |
|
|
return GEN_FCN (icode) (x, x, y);
|
4660 |
|
|
}
|
4661 |
|
|
|
4662 |
|
|
/* Generate and return an insn body to subtract r1 and c,
|
4663 |
|
|
storing the result in r0. */
|
4664 |
|
|
|
4665 |
|
|
rtx
|
4666 |
|
|
gen_sub3_insn (rtx r0, rtx r1, rtx c)
|
4667 |
|
|
{
|
4668 |
|
|
enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
|
4669 |
|
|
|
4670 |
|
|
if (icode == CODE_FOR_nothing
|
4671 |
|
|
|| !insn_operand_matches (icode, 0, r0)
|
4672 |
|
|
|| !insn_operand_matches (icode, 1, r1)
|
4673 |
|
|
|| !insn_operand_matches (icode, 2, c))
|
4674 |
|
|
return NULL_RTX;
|
4675 |
|
|
|
4676 |
|
|
return GEN_FCN (icode) (r0, r1, c);
|
4677 |
|
|
}
|
4678 |
|
|
|
4679 |
|
|
int
|
4680 |
|
|
have_sub2_insn (rtx x, rtx y)
|
4681 |
|
|
{
|
4682 |
|
|
enum insn_code icode;
|
4683 |
|
|
|
4684 |
|
|
gcc_assert (GET_MODE (x) != VOIDmode);
|
4685 |
|
|
|
4686 |
|
|
icode = optab_handler (sub_optab, GET_MODE (x));
|
4687 |
|
|
|
4688 |
|
|
if (icode == CODE_FOR_nothing)
|
4689 |
|
|
return 0;
|
4690 |
|
|
|
4691 |
|
|
if (!insn_operand_matches (icode, 0, x)
|
4692 |
|
|
|| !insn_operand_matches (icode, 1, x)
|
4693 |
|
|
|| !insn_operand_matches (icode, 2, y))
|
4694 |
|
|
return 0;
|
4695 |
|
|
|
4696 |
|
|
return 1;
|
4697 |
|
|
}
|
4698 |
|
|
|
4699 |
|
|
/* Generate the body of an instruction to copy Y into X.
|
4700 |
|
|
It may be a list of insns, if one insn isn't enough. */
|
4701 |
|
|
|
4702 |
|
|
rtx
|
4703 |
|
|
gen_move_insn (rtx x, rtx y)
|
4704 |
|
|
{
|
4705 |
|
|
rtx seq;
|
4706 |
|
|
|
4707 |
|
|
start_sequence ();
|
4708 |
|
|
emit_move_insn_1 (x, y);
|
4709 |
|
|
seq = get_insns ();
|
4710 |
|
|
end_sequence ();
|
4711 |
|
|
return seq;
|
4712 |
|
|
}
|
4713 |
|
|
|
4714 |
|
|
/* Return the insn code used to extend FROM_MODE to TO_MODE.
|
4715 |
|
|
UNSIGNEDP specifies zero-extension instead of sign-extension. If
|
4716 |
|
|
no such operation exists, CODE_FOR_nothing will be returned. */
|
4717 |
|
|
|
4718 |
|
|
enum insn_code
|
4719 |
|
|
can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
|
4720 |
|
|
int unsignedp)
|
4721 |
|
|
{
|
4722 |
|
|
convert_optab tab;
|
4723 |
|
|
#ifdef HAVE_ptr_extend
|
4724 |
|
|
if (unsignedp < 0)
|
4725 |
|
|
return CODE_FOR_ptr_extend;
|
4726 |
|
|
#endif
|
4727 |
|
|
|
4728 |
|
|
tab = unsignedp ? zext_optab : sext_optab;
|
4729 |
|
|
return convert_optab_handler (tab, to_mode, from_mode);
|
4730 |
|
|
}
|
4731 |
|
|
|
4732 |
|
|
/* Generate the body of an insn to extend Y (with mode MFROM)
|
4733 |
|
|
into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
|
4734 |
|
|
|
4735 |
|
|
rtx
|
4736 |
|
|
gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
|
4737 |
|
|
enum machine_mode mfrom, int unsignedp)
|
4738 |
|
|
{
|
4739 |
|
|
enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
|
4740 |
|
|
return GEN_FCN (icode) (x, y);
|
4741 |
|
|
}
|
4742 |
|
|
|
4743 |
|
|
/* can_fix_p and can_float_p say whether the target machine
|
4744 |
|
|
can directly convert a given fixed point type to
|
4745 |
|
|
a given floating point type, or vice versa.
|
4746 |
|
|
The returned value is the CODE_FOR_... value to use,
|
4747 |
|
|
or CODE_FOR_nothing if these modes cannot be directly converted.
|
4748 |
|
|
|
4749 |
|
|
*TRUNCP_PTR is set to 1 if it is necessary to output
|
4750 |
|
|
an explicit FTRUNC insn before the fix insn; otherwise 0. */
|
4751 |
|
|
|
4752 |
|
|
static enum insn_code
|
4753 |
|
|
can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
|
4754 |
|
|
int unsignedp, int *truncp_ptr)
|
4755 |
|
|
{
|
4756 |
|
|
convert_optab tab;
|
4757 |
|
|
enum insn_code icode;
|
4758 |
|
|
|
4759 |
|
|
tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
|
4760 |
|
|
icode = convert_optab_handler (tab, fixmode, fltmode);
|
4761 |
|
|
if (icode != CODE_FOR_nothing)
|
4762 |
|
|
{
|
4763 |
|
|
*truncp_ptr = 0;
|
4764 |
|
|
return icode;
|
4765 |
|
|
}
|
4766 |
|
|
|
4767 |
|
|
/* FIXME: This requires a port to define both FIX and FTRUNC pattern
|
4768 |
|
|
for this to work. We need to rework the fix* and ftrunc* patterns
|
4769 |
|
|
and documentation. */
|
4770 |
|
|
tab = unsignedp ? ufix_optab : sfix_optab;
|
4771 |
|
|
icode = convert_optab_handler (tab, fixmode, fltmode);
|
4772 |
|
|
if (icode != CODE_FOR_nothing
|
4773 |
|
|
&& optab_handler (ftrunc_optab, fltmode) != CODE_FOR_nothing)
|
4774 |
|
|
{
|
4775 |
|
|
*truncp_ptr = 1;
|
4776 |
|
|
return icode;
|
4777 |
|
|
}
|
4778 |
|
|
|
4779 |
|
|
*truncp_ptr = 0;
|
4780 |
|
|
return CODE_FOR_nothing;
|
4781 |
|
|
}
|
4782 |
|
|
|
4783 |
|
|
enum insn_code
|
4784 |
|
|
can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
|
4785 |
|
|
int unsignedp)
|
4786 |
|
|
{
|
4787 |
|
|
convert_optab tab;
|
4788 |
|
|
|
4789 |
|
|
tab = unsignedp ? ufloat_optab : sfloat_optab;
|
4790 |
|
|
return convert_optab_handler (tab, fltmode, fixmode);
|
4791 |
|
|
}
|
4792 |
|
|
|
4793 |
|
|
/* Function supportable_convert_operation
|
4794 |
|
|
|
4795 |
|
|
Check whether an operation represented by the code CODE is a
|
4796 |
|
|
convert operation that is supported by the target platform in
|
4797 |
|
|
vector form (i.e., when operating on arguments of type VECTYPE_IN
|
4798 |
|
|
producing a result of type VECTYPE_OUT).
|
4799 |
|
|
|
4800 |
|
|
Convert operations we currently support directly are FIX_TRUNC and FLOAT.
|
4801 |
|
|
This function checks if these operations are supported
|
4802 |
|
|
by the target platform either directly (via vector tree-codes), or via
|
4803 |
|
|
target builtins.
|
4804 |
|
|
|
4805 |
|
|
Output:
|
4806 |
|
|
- CODE1 is code of vector operation to be used when
|
4807 |
|
|
vectorizing the operation, if available.
|
4808 |
|
|
- DECL is decl of target builtin functions to be used
|
4809 |
|
|
when vectorizing the operation, if available. In this case,
|
4810 |
|
|
CODE1 is CALL_EXPR. */
|
4811 |
|
|
|
4812 |
|
|
bool
|
4813 |
|
|
supportable_convert_operation (enum tree_code code,
|
4814 |
|
|
tree vectype_out, tree vectype_in,
|
4815 |
|
|
tree *decl, enum tree_code *code1)
|
4816 |
|
|
{
|
4817 |
|
|
enum machine_mode m1,m2;
|
4818 |
|
|
int truncp;
|
4819 |
|
|
|
4820 |
|
|
m1 = TYPE_MODE (vectype_out);
|
4821 |
|
|
m2 = TYPE_MODE (vectype_in);
|
4822 |
|
|
|
4823 |
|
|
/* First check if we can done conversion directly. */
|
4824 |
|
|
if ((code == FIX_TRUNC_EXPR
|
4825 |
|
|
&& can_fix_p (m1,m2,TYPE_UNSIGNED (vectype_out), &truncp)
|
4826 |
|
|
!= CODE_FOR_nothing)
|
4827 |
|
|
|| (code == FLOAT_EXPR
|
4828 |
|
|
&& can_float_p (m1,m2,TYPE_UNSIGNED (vectype_in))
|
4829 |
|
|
!= CODE_FOR_nothing))
|
4830 |
|
|
{
|
4831 |
|
|
*code1 = code;
|
4832 |
|
|
return true;
|
4833 |
|
|
}
|
4834 |
|
|
|
4835 |
|
|
/* Now check for builtin. */
|
4836 |
|
|
if (targetm.vectorize.builtin_conversion
|
4837 |
|
|
&& targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in))
|
4838 |
|
|
{
|
4839 |
|
|
*code1 = CALL_EXPR;
|
4840 |
|
|
*decl = targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in);
|
4841 |
|
|
return true;
|
4842 |
|
|
}
|
4843 |
|
|
return false;
|
4844 |
|
|
}
|
4845 |
|
|
|
4846 |
|
|
|
4847 |
|
|
/* Generate code to convert FROM to floating point
|
4848 |
|
|
and store in TO. FROM must be fixed point and not VOIDmode.
|
4849 |
|
|
UNSIGNEDP nonzero means regard FROM as unsigned.
|
4850 |
|
|
Normally this is done by correcting the final value
|
4851 |
|
|
if it is negative. */
|
4852 |
|
|
|
4853 |
|
|
void
|
4854 |
|
|
expand_float (rtx to, rtx from, int unsignedp)
|
4855 |
|
|
{
|
4856 |
|
|
enum insn_code icode;
|
4857 |
|
|
rtx target = to;
|
4858 |
|
|
enum machine_mode fmode, imode;
|
4859 |
|
|
bool can_do_signed = false;
|
4860 |
|
|
|
4861 |
|
|
/* Crash now, because we won't be able to decide which mode to use. */
|
4862 |
|
|
gcc_assert (GET_MODE (from) != VOIDmode);
|
4863 |
|
|
|
4864 |
|
|
/* Look for an insn to do the conversion. Do it in the specified
|
4865 |
|
|
modes if possible; otherwise convert either input, output or both to
|
4866 |
|
|
wider mode. If the integer mode is wider than the mode of FROM,
|
4867 |
|
|
we can do the conversion signed even if the input is unsigned. */
|
4868 |
|
|
|
4869 |
|
|
for (fmode = GET_MODE (to); fmode != VOIDmode;
|
4870 |
|
|
fmode = GET_MODE_WIDER_MODE (fmode))
|
4871 |
|
|
for (imode = GET_MODE (from); imode != VOIDmode;
|
4872 |
|
|
imode = GET_MODE_WIDER_MODE (imode))
|
4873 |
|
|
{
|
4874 |
|
|
int doing_unsigned = unsignedp;
|
4875 |
|
|
|
4876 |
|
|
if (fmode != GET_MODE (to)
|
4877 |
|
|
&& significand_size (fmode) < GET_MODE_PRECISION (GET_MODE (from)))
|
4878 |
|
|
continue;
|
4879 |
|
|
|
4880 |
|
|
icode = can_float_p (fmode, imode, unsignedp);
|
4881 |
|
|
if (icode == CODE_FOR_nothing && unsignedp)
|
4882 |
|
|
{
|
4883 |
|
|
enum insn_code scode = can_float_p (fmode, imode, 0);
|
4884 |
|
|
if (scode != CODE_FOR_nothing)
|
4885 |
|
|
can_do_signed = true;
|
4886 |
|
|
if (imode != GET_MODE (from))
|
4887 |
|
|
icode = scode, doing_unsigned = 0;
|
4888 |
|
|
}
|
4889 |
|
|
|
4890 |
|
|
if (icode != CODE_FOR_nothing)
|
4891 |
|
|
{
|
4892 |
|
|
if (imode != GET_MODE (from))
|
4893 |
|
|
from = convert_to_mode (imode, from, unsignedp);
|
4894 |
|
|
|
4895 |
|
|
if (fmode != GET_MODE (to))
|
4896 |
|
|
target = gen_reg_rtx (fmode);
|
4897 |
|
|
|
4898 |
|
|
emit_unop_insn (icode, target, from,
|
4899 |
|
|
doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
|
4900 |
|
|
|
4901 |
|
|
if (target != to)
|
4902 |
|
|
convert_move (to, target, 0);
|
4903 |
|
|
return;
|
4904 |
|
|
}
|
4905 |
|
|
}
|
4906 |
|
|
|
4907 |
|
|
/* Unsigned integer, and no way to convert directly. Convert as signed,
|
4908 |
|
|
then unconditionally adjust the result. */
|
4909 |
|
|
if (unsignedp && can_do_signed)
|
4910 |
|
|
{
|
4911 |
|
|
rtx label = gen_label_rtx ();
|
4912 |
|
|
rtx temp;
|
4913 |
|
|
REAL_VALUE_TYPE offset;
|
4914 |
|
|
|
4915 |
|
|
/* Look for a usable floating mode FMODE wider than the source and at
|
4916 |
|
|
least as wide as the target. Using FMODE will avoid rounding woes
|
4917 |
|
|
with unsigned values greater than the signed maximum value. */
|
4918 |
|
|
|
4919 |
|
|
for (fmode = GET_MODE (to); fmode != VOIDmode;
|
4920 |
|
|
fmode = GET_MODE_WIDER_MODE (fmode))
|
4921 |
|
|
if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
|
4922 |
|
|
&& can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
|
4923 |
|
|
break;
|
4924 |
|
|
|
4925 |
|
|
if (fmode == VOIDmode)
|
4926 |
|
|
{
|
4927 |
|
|
/* There is no such mode. Pretend the target is wide enough. */
|
4928 |
|
|
fmode = GET_MODE (to);
|
4929 |
|
|
|
4930 |
|
|
/* Avoid double-rounding when TO is narrower than FROM. */
|
4931 |
|
|
if ((significand_size (fmode) + 1)
|
4932 |
|
|
< GET_MODE_PRECISION (GET_MODE (from)))
|
4933 |
|
|
{
|
4934 |
|
|
rtx temp1;
|
4935 |
|
|
rtx neglabel = gen_label_rtx ();
|
4936 |
|
|
|
4937 |
|
|
/* Don't use TARGET if it isn't a register, is a hard register,
|
4938 |
|
|
or is the wrong mode. */
|
4939 |
|
|
if (!REG_P (target)
|
4940 |
|
|
|| REGNO (target) < FIRST_PSEUDO_REGISTER
|
4941 |
|
|
|| GET_MODE (target) != fmode)
|
4942 |
|
|
target = gen_reg_rtx (fmode);
|
4943 |
|
|
|
4944 |
|
|
imode = GET_MODE (from);
|
4945 |
|
|
do_pending_stack_adjust ();
|
4946 |
|
|
|
4947 |
|
|
/* Test whether the sign bit is set. */
|
4948 |
|
|
emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
|
4949 |
|
|
0, neglabel);
|
4950 |
|
|
|
4951 |
|
|
/* The sign bit is not set. Convert as signed. */
|
4952 |
|
|
expand_float (target, from, 0);
|
4953 |
|
|
emit_jump_insn (gen_jump (label));
|
4954 |
|
|
emit_barrier ();
|
4955 |
|
|
|
4956 |
|
|
/* The sign bit is set.
|
4957 |
|
|
Convert to a usable (positive signed) value by shifting right
|
4958 |
|
|
one bit, while remembering if a nonzero bit was shifted
|
4959 |
|
|
out; i.e., compute (from & 1) | (from >> 1). */
|
4960 |
|
|
|
4961 |
|
|
emit_label (neglabel);
|
4962 |
|
|
temp = expand_binop (imode, and_optab, from, const1_rtx,
|
4963 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
4964 |
|
|
temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1);
|
4965 |
|
|
temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
|
4966 |
|
|
OPTAB_LIB_WIDEN);
|
4967 |
|
|
expand_float (target, temp, 0);
|
4968 |
|
|
|
4969 |
|
|
/* Multiply by 2 to undo the shift above. */
|
4970 |
|
|
temp = expand_binop (fmode, add_optab, target, target,
|
4971 |
|
|
target, 0, OPTAB_LIB_WIDEN);
|
4972 |
|
|
if (temp != target)
|
4973 |
|
|
emit_move_insn (target, temp);
|
4974 |
|
|
|
4975 |
|
|
do_pending_stack_adjust ();
|
4976 |
|
|
emit_label (label);
|
4977 |
|
|
goto done;
|
4978 |
|
|
}
|
4979 |
|
|
}
|
4980 |
|
|
|
4981 |
|
|
/* If we are about to do some arithmetic to correct for an
|
4982 |
|
|
unsigned operand, do it in a pseudo-register. */
|
4983 |
|
|
|
4984 |
|
|
if (GET_MODE (to) != fmode
|
4985 |
|
|
|| !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
|
4986 |
|
|
target = gen_reg_rtx (fmode);
|
4987 |
|
|
|
4988 |
|
|
/* Convert as signed integer to floating. */
|
4989 |
|
|
expand_float (target, from, 0);
|
4990 |
|
|
|
4991 |
|
|
/* If FROM is negative (and therefore TO is negative),
|
4992 |
|
|
correct its value by 2**bitwidth. */
|
4993 |
|
|
|
4994 |
|
|
do_pending_stack_adjust ();
|
4995 |
|
|
emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
|
4996 |
|
|
0, label);
|
4997 |
|
|
|
4998 |
|
|
|
4999 |
|
|
real_2expN (&offset, GET_MODE_PRECISION (GET_MODE (from)), fmode);
|
5000 |
|
|
temp = expand_binop (fmode, add_optab, target,
|
5001 |
|
|
CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
|
5002 |
|
|
target, 0, OPTAB_LIB_WIDEN);
|
5003 |
|
|
if (temp != target)
|
5004 |
|
|
emit_move_insn (target, temp);
|
5005 |
|
|
|
5006 |
|
|
do_pending_stack_adjust ();
|
5007 |
|
|
emit_label (label);
|
5008 |
|
|
goto done;
|
5009 |
|
|
}
|
5010 |
|
|
|
5011 |
|
|
/* No hardware instruction available; call a library routine. */
|
5012 |
|
|
{
|
5013 |
|
|
rtx libfunc;
|
5014 |
|
|
rtx insns;
|
5015 |
|
|
rtx value;
|
5016 |
|
|
convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
|
5017 |
|
|
|
5018 |
|
|
if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
|
5019 |
|
|
from = convert_to_mode (SImode, from, unsignedp);
|
5020 |
|
|
|
5021 |
|
|
libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
|
5022 |
|
|
gcc_assert (libfunc);
|
5023 |
|
|
|
5024 |
|
|
start_sequence ();
|
5025 |
|
|
|
5026 |
|
|
value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
|
5027 |
|
|
GET_MODE (to), 1, from,
|
5028 |
|
|
GET_MODE (from));
|
5029 |
|
|
insns = get_insns ();
|
5030 |
|
|
end_sequence ();
|
5031 |
|
|
|
5032 |
|
|
emit_libcall_block (insns, target, value,
|
5033 |
|
|
gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
|
5034 |
|
|
GET_MODE (to), from));
|
5035 |
|
|
}
|
5036 |
|
|
|
5037 |
|
|
done:
|
5038 |
|
|
|
5039 |
|
|
/* Copy result to requested destination
|
5040 |
|
|
if we have been computing in a temp location. */
|
5041 |
|
|
|
5042 |
|
|
if (target != to)
|
5043 |
|
|
{
|
5044 |
|
|
if (GET_MODE (target) == GET_MODE (to))
|
5045 |
|
|
emit_move_insn (to, target);
|
5046 |
|
|
else
|
5047 |
|
|
convert_move (to, target, 0);
|
5048 |
|
|
}
|
5049 |
|
|
}
|
5050 |
|
|
|
5051 |
|
|
/* Generate code to convert FROM to fixed point and store in TO. FROM
|
5052 |
|
|
must be floating point. */
|
5053 |
|
|
|
5054 |
|
|
void
|
5055 |
|
|
expand_fix (rtx to, rtx from, int unsignedp)
|
5056 |
|
|
{
|
5057 |
|
|
enum insn_code icode;
|
5058 |
|
|
rtx target = to;
|
5059 |
|
|
enum machine_mode fmode, imode;
|
5060 |
|
|
int must_trunc = 0;
|
5061 |
|
|
|
5062 |
|
|
/* We first try to find a pair of modes, one real and one integer, at
|
5063 |
|
|
least as wide as FROM and TO, respectively, in which we can open-code
|
5064 |
|
|
this conversion. If the integer mode is wider than the mode of TO,
|
5065 |
|
|
we can do the conversion either signed or unsigned. */
|
5066 |
|
|
|
5067 |
|
|
for (fmode = GET_MODE (from); fmode != VOIDmode;
|
5068 |
|
|
fmode = GET_MODE_WIDER_MODE (fmode))
|
5069 |
|
|
for (imode = GET_MODE (to); imode != VOIDmode;
|
5070 |
|
|
imode = GET_MODE_WIDER_MODE (imode))
|
5071 |
|
|
{
|
5072 |
|
|
int doing_unsigned = unsignedp;
|
5073 |
|
|
|
5074 |
|
|
icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
|
5075 |
|
|
if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
|
5076 |
|
|
icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
|
5077 |
|
|
|
5078 |
|
|
if (icode != CODE_FOR_nothing)
|
5079 |
|
|
{
|
5080 |
|
|
rtx last = get_last_insn ();
|
5081 |
|
|
if (fmode != GET_MODE (from))
|
5082 |
|
|
from = convert_to_mode (fmode, from, 0);
|
5083 |
|
|
|
5084 |
|
|
if (must_trunc)
|
5085 |
|
|
{
|
5086 |
|
|
rtx temp = gen_reg_rtx (GET_MODE (from));
|
5087 |
|
|
from = expand_unop (GET_MODE (from), ftrunc_optab, from,
|
5088 |
|
|
temp, 0);
|
5089 |
|
|
}
|
5090 |
|
|
|
5091 |
|
|
if (imode != GET_MODE (to))
|
5092 |
|
|
target = gen_reg_rtx (imode);
|
5093 |
|
|
|
5094 |
|
|
if (maybe_emit_unop_insn (icode, target, from,
|
5095 |
|
|
doing_unsigned ? UNSIGNED_FIX : FIX))
|
5096 |
|
|
{
|
5097 |
|
|
if (target != to)
|
5098 |
|
|
convert_move (to, target, unsignedp);
|
5099 |
|
|
return;
|
5100 |
|
|
}
|
5101 |
|
|
delete_insns_since (last);
|
5102 |
|
|
}
|
5103 |
|
|
}
|
5104 |
|
|
|
5105 |
|
|
/* For an unsigned conversion, there is one more way to do it.
|
5106 |
|
|
If we have a signed conversion, we generate code that compares
|
5107 |
|
|
the real value to the largest representable positive number. If if
|
5108 |
|
|
is smaller, the conversion is done normally. Otherwise, subtract
|
5109 |
|
|
one plus the highest signed number, convert, and add it back.
|
5110 |
|
|
|
5111 |
|
|
We only need to check all real modes, since we know we didn't find
|
5112 |
|
|
anything with a wider integer mode.
|
5113 |
|
|
|
5114 |
|
|
This code used to extend FP value into mode wider than the destination.
|
5115 |
|
|
This is needed for decimal float modes which cannot accurately
|
5116 |
|
|
represent one plus the highest signed number of the same size, but
|
5117 |
|
|
not for binary modes. Consider, for instance conversion from SFmode
|
5118 |
|
|
into DImode.
|
5119 |
|
|
|
5120 |
|
|
The hot path through the code is dealing with inputs smaller than 2^63
|
5121 |
|
|
and doing just the conversion, so there is no bits to lose.
|
5122 |
|
|
|
5123 |
|
|
In the other path we know the value is positive in the range 2^63..2^64-1
|
5124 |
|
|
inclusive. (as for other input overflow happens and result is undefined)
|
5125 |
|
|
So we know that the most important bit set in mantissa corresponds to
|
5126 |
|
|
2^63. The subtraction of 2^63 should not generate any rounding as it
|
5127 |
|
|
simply clears out that bit. The rest is trivial. */
|
5128 |
|
|
|
5129 |
|
|
if (unsignedp && GET_MODE_PRECISION (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
|
5130 |
|
|
for (fmode = GET_MODE (from); fmode != VOIDmode;
|
5131 |
|
|
fmode = GET_MODE_WIDER_MODE (fmode))
|
5132 |
|
|
if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
|
5133 |
|
|
&& (!DECIMAL_FLOAT_MODE_P (fmode)
|
5134 |
|
|
|| GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (GET_MODE (to))))
|
5135 |
|
|
{
|
5136 |
|
|
int bitsize;
|
5137 |
|
|
REAL_VALUE_TYPE offset;
|
5138 |
|
|
rtx limit, lab1, lab2, insn;
|
5139 |
|
|
|
5140 |
|
|
bitsize = GET_MODE_PRECISION (GET_MODE (to));
|
5141 |
|
|
real_2expN (&offset, bitsize - 1, fmode);
|
5142 |
|
|
limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
|
5143 |
|
|
lab1 = gen_label_rtx ();
|
5144 |
|
|
lab2 = gen_label_rtx ();
|
5145 |
|
|
|
5146 |
|
|
if (fmode != GET_MODE (from))
|
5147 |
|
|
from = convert_to_mode (fmode, from, 0);
|
5148 |
|
|
|
5149 |
|
|
/* See if we need to do the subtraction. */
|
5150 |
|
|
do_pending_stack_adjust ();
|
5151 |
|
|
emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
|
5152 |
|
|
0, lab1);
|
5153 |
|
|
|
5154 |
|
|
/* If not, do the signed "fix" and branch around fixup code. */
|
5155 |
|
|
expand_fix (to, from, 0);
|
5156 |
|
|
emit_jump_insn (gen_jump (lab2));
|
5157 |
|
|
emit_barrier ();
|
5158 |
|
|
|
5159 |
|
|
/* Otherwise, subtract 2**(N-1), convert to signed number,
|
5160 |
|
|
then add 2**(N-1). Do the addition using XOR since this
|
5161 |
|
|
will often generate better code. */
|
5162 |
|
|
emit_label (lab1);
|
5163 |
|
|
target = expand_binop (GET_MODE (from), sub_optab, from, limit,
|
5164 |
|
|
NULL_RTX, 0, OPTAB_LIB_WIDEN);
|
5165 |
|
|
expand_fix (to, target, 0);
|
5166 |
|
|
target = expand_binop (GET_MODE (to), xor_optab, to,
|
5167 |
|
|
gen_int_mode
|
5168 |
|
|
((HOST_WIDE_INT) 1 << (bitsize - 1),
|
5169 |
|
|
GET_MODE (to)),
|
5170 |
|
|
to, 1, OPTAB_LIB_WIDEN);
|
5171 |
|
|
|
5172 |
|
|
if (target != to)
|
5173 |
|
|
emit_move_insn (to, target);
|
5174 |
|
|
|
5175 |
|
|
emit_label (lab2);
|
5176 |
|
|
|
5177 |
|
|
if (optab_handler (mov_optab, GET_MODE (to)) != CODE_FOR_nothing)
|
5178 |
|
|
{
|
5179 |
|
|
/* Make a place for a REG_NOTE and add it. */
|
5180 |
|
|
insn = emit_move_insn (to, to);
|
5181 |
|
|
set_dst_reg_note (insn, REG_EQUAL,
|
5182 |
|
|
gen_rtx_fmt_e (UNSIGNED_FIX, GET_MODE (to),
|
5183 |
|
|
copy_rtx (from)),
|
5184 |
|
|
to);
|
5185 |
|
|
}
|
5186 |
|
|
|
5187 |
|
|
return;
|
5188 |
|
|
}
|
5189 |
|
|
|
5190 |
|
|
/* We can't do it with an insn, so use a library call. But first ensure
|
5191 |
|
|
that the mode of TO is at least as wide as SImode, since those are the
|
5192 |
|
|
only library calls we know about. */
|
5193 |
|
|
|
5194 |
|
|
if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
|
5195 |
|
|
{
|
5196 |
|
|
target = gen_reg_rtx (SImode);
|
5197 |
|
|
|
5198 |
|
|
expand_fix (target, from, unsignedp);
|
5199 |
|
|
}
|
5200 |
|
|
else
|
5201 |
|
|
{
|
5202 |
|
|
rtx insns;
|
5203 |
|
|
rtx value;
|
5204 |
|
|
rtx libfunc;
|
5205 |
|
|
|
5206 |
|
|
convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
|
5207 |
|
|
libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
|
5208 |
|
|
gcc_assert (libfunc);
|
5209 |
|
|
|
5210 |
|
|
start_sequence ();
|
5211 |
|
|
|
5212 |
|
|
value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
|
5213 |
|
|
GET_MODE (to), 1, from,
|
5214 |
|
|
GET_MODE (from));
|
5215 |
|
|
insns = get_insns ();
|
5216 |
|
|
end_sequence ();
|
5217 |
|
|
|
5218 |
|
|
emit_libcall_block (insns, target, value,
|
5219 |
|
|
gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
|
5220 |
|
|
GET_MODE (to), from));
|
5221 |
|
|
}
|
5222 |
|
|
|
5223 |
|
|
if (target != to)
|
5224 |
|
|
{
|
5225 |
|
|
if (GET_MODE (to) == GET_MODE (target))
|
5226 |
|
|
emit_move_insn (to, target);
|
5227 |
|
|
else
|
5228 |
|
|
convert_move (to, target, 0);
|
5229 |
|
|
}
|
5230 |
|
|
}
|
5231 |
|
|
|
5232 |
|
|
/* Generate code to convert FROM or TO a fixed-point.
|
5233 |
|
|
If UINTP is true, either TO or FROM is an unsigned integer.
|
5234 |
|
|
If SATP is true, we need to saturate the result. */
|
5235 |
|
|
|
5236 |
|
|
void
|
5237 |
|
|
expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
|
5238 |
|
|
{
|
5239 |
|
|
enum machine_mode to_mode = GET_MODE (to);
|
5240 |
|
|
enum machine_mode from_mode = GET_MODE (from);
|
5241 |
|
|
convert_optab tab;
|
5242 |
|
|
enum rtx_code this_code;
|
5243 |
|
|
enum insn_code code;
|
5244 |
|
|
rtx insns, value;
|
5245 |
|
|
rtx libfunc;
|
5246 |
|
|
|
5247 |
|
|
if (to_mode == from_mode)
|
5248 |
|
|
{
|
5249 |
|
|
emit_move_insn (to, from);
|
5250 |
|
|
return;
|
5251 |
|
|
}
|
5252 |
|
|
|
5253 |
|
|
if (uintp)
|
5254 |
|
|
{
|
5255 |
|
|
tab = satp ? satfractuns_optab : fractuns_optab;
|
5256 |
|
|
this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
|
5257 |
|
|
}
|
5258 |
|
|
else
|
5259 |
|
|
{
|
5260 |
|
|
tab = satp ? satfract_optab : fract_optab;
|
5261 |
|
|
this_code = satp ? SAT_FRACT : FRACT_CONVERT;
|
5262 |
|
|
}
|
5263 |
|
|
code = convert_optab_handler (tab, to_mode, from_mode);
|
5264 |
|
|
if (code != CODE_FOR_nothing)
|
5265 |
|
|
{
|
5266 |
|
|
emit_unop_insn (code, to, from, this_code);
|
5267 |
|
|
return;
|
5268 |
|
|
}
|
5269 |
|
|
|
5270 |
|
|
libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
|
5271 |
|
|
gcc_assert (libfunc);
|
5272 |
|
|
|
5273 |
|
|
start_sequence ();
|
5274 |
|
|
value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
|
5275 |
|
|
1, from, from_mode);
|
5276 |
|
|
insns = get_insns ();
|
5277 |
|
|
end_sequence ();
|
5278 |
|
|
|
5279 |
|
|
emit_libcall_block (insns, to, value,
|
5280 |
|
|
gen_rtx_fmt_e (tab->code, to_mode, from));
|
5281 |
|
|
}
|
5282 |
|
|
|
5283 |
|
|
/* Generate code to convert FROM to fixed point and store in TO. FROM
|
5284 |
|
|
must be floating point, TO must be signed. Use the conversion optab
|
5285 |
|
|
TAB to do the conversion. */
|
5286 |
|
|
|
5287 |
|
|
bool
|
5288 |
|
|
expand_sfix_optab (rtx to, rtx from, convert_optab tab)
|
5289 |
|
|
{
|
5290 |
|
|
enum insn_code icode;
|
5291 |
|
|
rtx target = to;
|
5292 |
|
|
enum machine_mode fmode, imode;
|
5293 |
|
|
|
5294 |
|
|
/* We first try to find a pair of modes, one real and one integer, at
|
5295 |
|
|
least as wide as FROM and TO, respectively, in which we can open-code
|
5296 |
|
|
this conversion. If the integer mode is wider than the mode of TO,
|
5297 |
|
|
we can do the conversion either signed or unsigned. */
|
5298 |
|
|
|
5299 |
|
|
for (fmode = GET_MODE (from); fmode != VOIDmode;
|
5300 |
|
|
fmode = GET_MODE_WIDER_MODE (fmode))
|
5301 |
|
|
for (imode = GET_MODE (to); imode != VOIDmode;
|
5302 |
|
|
imode = GET_MODE_WIDER_MODE (imode))
|
5303 |
|
|
{
|
5304 |
|
|
icode = convert_optab_handler (tab, imode, fmode);
|
5305 |
|
|
if (icode != CODE_FOR_nothing)
|
5306 |
|
|
{
|
5307 |
|
|
rtx last = get_last_insn ();
|
5308 |
|
|
if (fmode != GET_MODE (from))
|
5309 |
|
|
from = convert_to_mode (fmode, from, 0);
|
5310 |
|
|
|
5311 |
|
|
if (imode != GET_MODE (to))
|
5312 |
|
|
target = gen_reg_rtx (imode);
|
5313 |
|
|
|
5314 |
|
|
if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
|
5315 |
|
|
{
|
5316 |
|
|
delete_insns_since (last);
|
5317 |
|
|
continue;
|
5318 |
|
|
}
|
5319 |
|
|
if (target != to)
|
5320 |
|
|
convert_move (to, target, 0);
|
5321 |
|
|
return true;
|
5322 |
|
|
}
|
5323 |
|
|
}
|
5324 |
|
|
|
5325 |
|
|
return false;
|
5326 |
|
|
}
|
5327 |
|
|
|
5328 |
|
|
/* Report whether we have an instruction to perform the operation
|
5329 |
|
|
specified by CODE on operands of mode MODE. */
|
5330 |
|
|
int
|
5331 |
|
|
have_insn_for (enum rtx_code code, enum machine_mode mode)
|
5332 |
|
|
{
|
5333 |
|
|
return (code_to_optab[(int) code] != 0
|
5334 |
|
|
&& (optab_handler (code_to_optab[(int) code], mode)
|
5335 |
|
|
!= CODE_FOR_nothing));
|
5336 |
|
|
}
|
5337 |
|
|
|
5338 |
|
|
/* Set all insn_code fields to CODE_FOR_nothing. */
|
5339 |
|
|
|
5340 |
|
|
static void
|
5341 |
|
|
init_insn_codes (void)
|
5342 |
|
|
{
|
5343 |
|
|
memset (optab_table, 0, sizeof (optab_table));
|
5344 |
|
|
memset (convert_optab_table, 0, sizeof (convert_optab_table));
|
5345 |
|
|
memset (direct_optab_table, 0, sizeof (direct_optab_table));
|
5346 |
|
|
}
|
5347 |
|
|
|
5348 |
|
|
/* Initialize OP's code to CODE, and write it into the code_to_optab table. */
|
5349 |
|
|
static inline void
|
5350 |
|
|
init_optab (optab op, enum rtx_code code)
|
5351 |
|
|
{
|
5352 |
|
|
op->code = code;
|
5353 |
|
|
code_to_optab[(int) code] = op;
|
5354 |
|
|
}
|
5355 |
|
|
|
5356 |
|
|
/* Same, but fill in its code as CODE, and do _not_ write it into
|
5357 |
|
|
the code_to_optab table. */
|
5358 |
|
|
static inline void
|
5359 |
|
|
init_optabv (optab op, enum rtx_code code)
|
5360 |
|
|
{
|
5361 |
|
|
op->code = code;
|
5362 |
|
|
}
|
5363 |
|
|
|
5364 |
|
|
/* Conversion optabs never go in the code_to_optab table. */
|
5365 |
|
|
static void
|
5366 |
|
|
init_convert_optab (convert_optab op, enum rtx_code code)
|
5367 |
|
|
{
|
5368 |
|
|
op->code = code;
|
5369 |
|
|
}
|
5370 |
|
|
|
5371 |
|
|
/* Initialize the libfunc fields of an entire group of entries in some
|
5372 |
|
|
optab. Each entry is set equal to a string consisting of a leading
|
5373 |
|
|
pair of underscores followed by a generic operation name followed by
|
5374 |
|
|
a mode name (downshifted to lowercase) followed by a single character
|
5375 |
|
|
representing the number of operands for the given operation (which is
|
5376 |
|
|
usually one of the characters '2', '3', or '4').
|
5377 |
|
|
|
5378 |
|
|
OPTABLE is the table in which libfunc fields are to be initialized.
|
5379 |
|
|
OPNAME is the generic (string) name of the operation.
|
5380 |
|
|
SUFFIX is the character which specifies the number of operands for
|
5381 |
|
|
the given generic operation.
|
5382 |
|
|
MODE is the mode to generate for.
|
5383 |
|
|
*/
|
5384 |
|
|
|
5385 |
|
|
static void
|
5386 |
|
|
gen_libfunc (optab optable, const char *opname, int suffix, enum machine_mode mode)
|
5387 |
|
|
{
|
5388 |
|
|
unsigned opname_len = strlen (opname);
|
5389 |
|
|
const char *mname = GET_MODE_NAME (mode);
|
5390 |
|
|
unsigned mname_len = strlen (mname);
|
5391 |
|
|
int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
|
5392 |
|
|
int len = prefix_len + opname_len + mname_len + 1 + 1;
|
5393 |
|
|
char *libfunc_name = XALLOCAVEC (char, len);
|
5394 |
|
|
char *p;
|
5395 |
|
|
const char *q;
|
5396 |
|
|
|
5397 |
|
|
p = libfunc_name;
|
5398 |
|
|
*p++ = '_';
|
5399 |
|
|
*p++ = '_';
|
5400 |
|
|
if (targetm.libfunc_gnu_prefix)
|
5401 |
|
|
{
|
5402 |
|
|
*p++ = 'g';
|
5403 |
|
|
*p++ = 'n';
|
5404 |
|
|
*p++ = 'u';
|
5405 |
|
|
*p++ = '_';
|
5406 |
|
|
}
|
5407 |
|
|
for (q = opname; *q; )
|
5408 |
|
|
*p++ = *q++;
|
5409 |
|
|
for (q = mname; *q; q++)
|
5410 |
|
|
*p++ = TOLOWER (*q);
|
5411 |
|
|
*p++ = suffix;
|
5412 |
|
|
*p = '\0';
|
5413 |
|
|
|
5414 |
|
|
set_optab_libfunc (optable, mode,
|
5415 |
|
|
ggc_alloc_string (libfunc_name, p - libfunc_name));
|
5416 |
|
|
}
|
5417 |
|
|
|
5418 |
|
|
/* Like gen_libfunc, but verify that integer operation is involved. */
|
5419 |
|
|
|
5420 |
|
|
static void
|
5421 |
|
|
gen_int_libfunc (optab optable, const char *opname, char suffix,
|
5422 |
|
|
enum machine_mode mode)
|
5423 |
|
|
{
|
5424 |
|
|
int maxsize = 2 * BITS_PER_WORD;
|
5425 |
|
|
|
5426 |
|
|
if (GET_MODE_CLASS (mode) != MODE_INT)
|
5427 |
|
|
return;
|
5428 |
|
|
if (maxsize < LONG_LONG_TYPE_SIZE)
|
5429 |
|
|
maxsize = LONG_LONG_TYPE_SIZE;
|
5430 |
|
|
if (GET_MODE_CLASS (mode) != MODE_INT
|
5431 |
|
|
|| mode < word_mode || GET_MODE_BITSIZE (mode) > maxsize)
|
5432 |
|
|
return;
|
5433 |
|
|
gen_libfunc (optable, opname, suffix, mode);
|
5434 |
|
|
}
|
5435 |
|
|
|
5436 |
|
|
/* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
|
5437 |
|
|
|
5438 |
|
|
static void
|
5439 |
|
|
gen_fp_libfunc (optab optable, const char *opname, char suffix,
|
5440 |
|
|
enum machine_mode mode)
|
5441 |
|
|
{
|
5442 |
|
|
char *dec_opname;
|
5443 |
|
|
|
5444 |
|
|
if (GET_MODE_CLASS (mode) == MODE_FLOAT)
|
5445 |
|
|
gen_libfunc (optable, opname, suffix, mode);
|
5446 |
|
|
if (DECIMAL_FLOAT_MODE_P (mode))
|
5447 |
|
|
{
|
5448 |
|
|
dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
|
5449 |
|
|
/* For BID support, change the name to have either a bid_ or dpd_ prefix
|
5450 |
|
|
depending on the low level floating format used. */
|
5451 |
|
|
memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
|
5452 |
|
|
strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
|
5453 |
|
|
gen_libfunc (optable, dec_opname, suffix, mode);
|
5454 |
|
|
}
|
5455 |
|
|
}
|
5456 |
|
|
|
5457 |
|
|
/* Like gen_libfunc, but verify that fixed-point operation is involved. */
|
5458 |
|
|
|
5459 |
|
|
static void
|
5460 |
|
|
gen_fixed_libfunc (optab optable, const char *opname, char suffix,
|
5461 |
|
|
enum machine_mode mode)
|
5462 |
|
|
{
|
5463 |
|
|
if (!ALL_FIXED_POINT_MODE_P (mode))
|
5464 |
|
|
return;
|
5465 |
|
|
gen_libfunc (optable, opname, suffix, mode);
|
5466 |
|
|
}
|
5467 |
|
|
|
5468 |
|
|
/* Like gen_libfunc, but verify that signed fixed-point operation is
|
5469 |
|
|
involved. */
|
5470 |
|
|
|
5471 |
|
|
static void
|
5472 |
|
|
gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
|
5473 |
|
|
enum machine_mode mode)
|
5474 |
|
|
{
|
5475 |
|
|
if (!SIGNED_FIXED_POINT_MODE_P (mode))
|
5476 |
|
|
return;
|
5477 |
|
|
gen_libfunc (optable, opname, suffix, mode);
|
5478 |
|
|
}
|
5479 |
|
|
|
5480 |
|
|
/* Like gen_libfunc, but verify that unsigned fixed-point operation is
|
5481 |
|
|
involved. */
|
5482 |
|
|
|
5483 |
|
|
static void
|
5484 |
|
|
gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
|
5485 |
|
|
enum machine_mode mode)
|
5486 |
|
|
{
|
5487 |
|
|
if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
|
5488 |
|
|
return;
|
5489 |
|
|
gen_libfunc (optable, opname, suffix, mode);
|
5490 |
|
|
}
|
5491 |
|
|
|
5492 |
|
|
/* Like gen_libfunc, but verify that FP or INT operation is involved. */
|
5493 |
|
|
|
5494 |
|
|
static void
|
5495 |
|
|
gen_int_fp_libfunc (optab optable, const char *name, char suffix,
|
5496 |
|
|
enum machine_mode mode)
|
5497 |
|
|
{
|
5498 |
|
|
if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
|
5499 |
|
|
gen_fp_libfunc (optable, name, suffix, mode);
|
5500 |
|
|
if (INTEGRAL_MODE_P (mode))
|
5501 |
|
|
gen_int_libfunc (optable, name, suffix, mode);
|
5502 |
|
|
}
|
5503 |
|
|
|
5504 |
|
|
/* Like gen_libfunc, but verify that FP or INT operation is involved
|
5505 |
|
|
and add 'v' suffix for integer operation. */
|
5506 |
|
|
|
5507 |
|
|
static void
|
5508 |
|
|
gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
|
5509 |
|
|
enum machine_mode mode)
|
5510 |
|
|
{
|
5511 |
|
|
if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
|
5512 |
|
|
gen_fp_libfunc (optable, name, suffix, mode);
|
5513 |
|
|
if (GET_MODE_CLASS (mode) == MODE_INT)
|
5514 |
|
|
{
|
5515 |
|
|
int len = strlen (name);
|
5516 |
|
|
char *v_name = XALLOCAVEC (char, len + 2);
|
5517 |
|
|
strcpy (v_name, name);
|
5518 |
|
|
v_name[len] = 'v';
|
5519 |
|
|
v_name[len + 1] = 0;
|
5520 |
|
|
gen_int_libfunc (optable, v_name, suffix, mode);
|
5521 |
|
|
}
|
5522 |
|
|
}
|
5523 |
|
|
|
5524 |
|
|
/* Like gen_libfunc, but verify that FP or INT or FIXED operation is
|
5525 |
|
|
involved. */
|
5526 |
|
|
|
5527 |
|
|
static void
|
5528 |
|
|
gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
|
5529 |
|
|
enum machine_mode mode)
|
5530 |
|
|
{
|
5531 |
|
|
if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
|
5532 |
|
|
gen_fp_libfunc (optable, name, suffix, mode);
|
5533 |
|
|
if (INTEGRAL_MODE_P (mode))
|
5534 |
|
|
gen_int_libfunc (optable, name, suffix, mode);
|
5535 |
|
|
if (ALL_FIXED_POINT_MODE_P (mode))
|
5536 |
|
|
gen_fixed_libfunc (optable, name, suffix, mode);
|
5537 |
|
|
}
|
5538 |
|
|
|
5539 |
|
|
/* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
|
5540 |
|
|
involved. */
|
5541 |
|
|
|
5542 |
|
|
static void
|
5543 |
|
|
gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
|
5544 |
|
|
enum machine_mode mode)
|
5545 |
|
|
{
|
5546 |
|
|
if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
|
5547 |
|
|
gen_fp_libfunc (optable, name, suffix, mode);
|
5548 |
|
|
if (INTEGRAL_MODE_P (mode))
|
5549 |
|
|
gen_int_libfunc (optable, name, suffix, mode);
|
5550 |
|
|
if (SIGNED_FIXED_POINT_MODE_P (mode))
|
5551 |
|
|
gen_signed_fixed_libfunc (optable, name, suffix, mode);
|
5552 |
|
|
}
|
5553 |
|
|
|
5554 |
|
|
/* Like gen_libfunc, but verify that INT or FIXED operation is
|
5555 |
|
|
involved. */
|
5556 |
|
|
|
5557 |
|
|
static void
|
5558 |
|
|
gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
|
5559 |
|
|
enum machine_mode mode)
|
5560 |
|
|
{
|
5561 |
|
|
if (INTEGRAL_MODE_P (mode))
|
5562 |
|
|
gen_int_libfunc (optable, name, suffix, mode);
|
5563 |
|
|
if (ALL_FIXED_POINT_MODE_P (mode))
|
5564 |
|
|
gen_fixed_libfunc (optable, name, suffix, mode);
|
5565 |
|
|
}
|
5566 |
|
|
|
5567 |
|
|
/* Like gen_libfunc, but verify that INT or signed FIXED operation is
|
5568 |
|
|
involved. */
|
5569 |
|
|
|
5570 |
|
|
static void
|
5571 |
|
|
gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
|
5572 |
|
|
enum machine_mode mode)
|
5573 |
|
|
{
|
5574 |
|
|
if (INTEGRAL_MODE_P (mode))
|
5575 |
|
|
gen_int_libfunc (optable, name, suffix, mode);
|
5576 |
|
|
if (SIGNED_FIXED_POINT_MODE_P (mode))
|
5577 |
|
|
gen_signed_fixed_libfunc (optable, name, suffix, mode);
|
5578 |
|
|
}
|
5579 |
|
|
|
5580 |
|
|
/* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
|
5581 |
|
|
involved. */
|
5582 |
|
|
|
5583 |
|
|
static void
|
5584 |
|
|
gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
|
5585 |
|
|
enum machine_mode mode)
|
5586 |
|
|
{
|
5587 |
|
|
if (INTEGRAL_MODE_P (mode))
|
5588 |
|
|
gen_int_libfunc (optable, name, suffix, mode);
|
5589 |
|
|
if (UNSIGNED_FIXED_POINT_MODE_P (mode))
|
5590 |
|
|
gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
|
5591 |
|
|
}
|
5592 |
|
|
|
5593 |
|
|
/* Initialize the libfunc fields of an entire group of entries of an
|
5594 |
|
|
inter-mode-class conversion optab. The string formation rules are
|
5595 |
|
|
similar to the ones for init_libfuncs, above, but instead of having
|
5596 |
|
|
a mode name and an operand count these functions have two mode names
|
5597 |
|
|
and no operand count. */
|
5598 |
|
|
|
5599 |
|
|
static void
|
5600 |
|
|
gen_interclass_conv_libfunc (convert_optab tab,
|
5601 |
|
|
const char *opname,
|
5602 |
|
|
enum machine_mode tmode,
|
5603 |
|
|
enum machine_mode fmode)
|
5604 |
|
|
{
|
5605 |
|
|
size_t opname_len = strlen (opname);
|
5606 |
|
|
size_t mname_len = 0;
|
5607 |
|
|
|
5608 |
|
|
const char *fname, *tname;
|
5609 |
|
|
const char *q;
|
5610 |
|
|
int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
|
5611 |
|
|
char *libfunc_name, *suffix;
|
5612 |
|
|
char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
|
5613 |
|
|
char *p;
|
5614 |
|
|
|
5615 |
|
|
/* If this is a decimal conversion, add the current BID vs. DPD prefix that
|
5616 |
|
|
depends on which underlying decimal floating point format is used. */
|
5617 |
|
|
const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
|
5618 |
|
|
|
5619 |
|
|
mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
|
5620 |
|
|
|
5621 |
|
|
nondec_name = XALLOCAVEC (char, prefix_len + opname_len + mname_len + 1 + 1);
|
5622 |
|
|
nondec_name[0] = '_';
|
5623 |
|
|
nondec_name[1] = '_';
|
5624 |
|
|
if (targetm.libfunc_gnu_prefix)
|
5625 |
|
|
{
|
5626 |
|
|
nondec_name[2] = 'g';
|
5627 |
|
|
nondec_name[3] = 'n';
|
5628 |
|
|
nondec_name[4] = 'u';
|
5629 |
|
|
nondec_name[5] = '_';
|
5630 |
|
|
}
|
5631 |
|
|
|
5632 |
|
|
memcpy (&nondec_name[prefix_len], opname, opname_len);
|
5633 |
|
|
nondec_suffix = nondec_name + opname_len + prefix_len;
|
5634 |
|
|
|
5635 |
|
|
dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
|
5636 |
|
|
dec_name[0] = '_';
|
5637 |
|
|
dec_name[1] = '_';
|
5638 |
|
|
memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
|
5639 |
|
|
memcpy (&dec_name[2+dec_len], opname, opname_len);
|
5640 |
|
|
dec_suffix = dec_name + dec_len + opname_len + 2;
|
5641 |
|
|
|
5642 |
|
|
fname = GET_MODE_NAME (fmode);
|
5643 |
|
|
tname = GET_MODE_NAME (tmode);
|
5644 |
|
|
|
5645 |
|
|
if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
|
5646 |
|
|
{
|
5647 |
|
|
libfunc_name = dec_name;
|
5648 |
|
|
suffix = dec_suffix;
|
5649 |
|
|
}
|
5650 |
|
|
else
|
5651 |
|
|
{
|
5652 |
|
|
libfunc_name = nondec_name;
|
5653 |
|
|
suffix = nondec_suffix;
|
5654 |
|
|
}
|
5655 |
|
|
|
5656 |
|
|
p = suffix;
|
5657 |
|
|
for (q = fname; *q; p++, q++)
|
5658 |
|
|
*p = TOLOWER (*q);
|
5659 |
|
|
for (q = tname; *q; p++, q++)
|
5660 |
|
|
*p = TOLOWER (*q);
|
5661 |
|
|
|
5662 |
|
|
*p = '\0';
|
5663 |
|
|
|
5664 |
|
|
set_conv_libfunc (tab, tmode, fmode,
|
5665 |
|
|
ggc_alloc_string (libfunc_name, p - libfunc_name));
|
5666 |
|
|
}
|
5667 |
|
|
|
5668 |
|
|
/* Same as gen_interclass_conv_libfunc but verify that we are producing
|
5669 |
|
|
int->fp conversion. */
|
5670 |
|
|
|
5671 |
|
|
static void
|
5672 |
|
|
gen_int_to_fp_conv_libfunc (convert_optab tab,
|
5673 |
|
|
const char *opname,
|
5674 |
|
|
enum machine_mode tmode,
|
5675 |
|
|
enum machine_mode fmode)
|
5676 |
|
|
{
|
5677 |
|
|
if (GET_MODE_CLASS (fmode) != MODE_INT)
|
5678 |
|
|
return;
|
5679 |
|
|
if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
|
5680 |
|
|
return;
|
5681 |
|
|
gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
|
5682 |
|
|
}
|
5683 |
|
|
|
5684 |
|
|
/* ufloat_optab is special by using floatun for FP and floatuns decimal fp
|
5685 |
|
|
naming scheme. */
|
5686 |
|
|
|
5687 |
|
|
static void
|
5688 |
|
|
gen_ufloat_conv_libfunc (convert_optab tab,
|
5689 |
|
|
const char *opname ATTRIBUTE_UNUSED,
|
5690 |
|
|
enum machine_mode tmode,
|
5691 |
|
|
enum machine_mode fmode)
|
5692 |
|
|
{
|
5693 |
|
|
if (DECIMAL_FLOAT_MODE_P (tmode))
|
5694 |
|
|
gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
|
5695 |
|
|
else
|
5696 |
|
|
gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
|
5697 |
|
|
}
|
5698 |
|
|
|
5699 |
|
|
/* Same as gen_interclass_conv_libfunc but verify that we are producing
|
5700 |
|
|
fp->int conversion. */
|
5701 |
|
|
|
5702 |
|
|
static void
|
5703 |
|
|
gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
|
5704 |
|
|
const char *opname,
|
5705 |
|
|
enum machine_mode tmode,
|
5706 |
|
|
enum machine_mode fmode)
|
5707 |
|
|
{
|
5708 |
|
|
if (GET_MODE_CLASS (fmode) != MODE_INT)
|
5709 |
|
|
return;
|
5710 |
|
|
if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
|
5711 |
|
|
return;
|
5712 |
|
|
gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
|
5713 |
|
|
}
|
5714 |
|
|
|
5715 |
|
|
/* Same as gen_interclass_conv_libfunc but verify that we are producing
|
5716 |
|
|
fp->int conversion with no decimal floating point involved. */
|
5717 |
|
|
|
5718 |
|
|
static void
|
5719 |
|
|
gen_fp_to_int_conv_libfunc (convert_optab tab,
|
5720 |
|
|
const char *opname,
|
5721 |
|
|
enum machine_mode tmode,
|
5722 |
|
|
enum machine_mode fmode)
|
5723 |
|
|
{
|
5724 |
|
|
if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
|
5725 |
|
|
return;
|
5726 |
|
|
if (GET_MODE_CLASS (tmode) != MODE_INT)
|
5727 |
|
|
return;
|
5728 |
|
|
gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
|
5729 |
|
|
}
|
5730 |
|
|
|
5731 |
|
|
/* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
|
5732 |
|
|
The string formation rules are
|
5733 |
|
|
similar to the ones for init_libfunc, above. */
|
5734 |
|
|
|
5735 |
|
|
static void
|
5736 |
|
|
gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
|
5737 |
|
|
enum machine_mode tmode, enum machine_mode fmode)
|
5738 |
|
|
{
|
5739 |
|
|
size_t opname_len = strlen (opname);
|
5740 |
|
|
size_t mname_len = 0;
|
5741 |
|
|
|
5742 |
|
|
const char *fname, *tname;
|
5743 |
|
|
const char *q;
|
5744 |
|
|
int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
|
5745 |
|
|
char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
|
5746 |
|
|
char *libfunc_name, *suffix;
|
5747 |
|
|
char *p;
|
5748 |
|
|
|
5749 |
|
|
/* If this is a decimal conversion, add the current BID vs. DPD prefix that
|
5750 |
|
|
depends on which underlying decimal floating point format is used. */
|
5751 |
|
|
const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
|
5752 |
|
|
|
5753 |
|
|
mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
|
5754 |
|
|
|
5755 |
|
|
nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
|
5756 |
|
|
nondec_name[0] = '_';
|
5757 |
|
|
nondec_name[1] = '_';
|
5758 |
|
|
if (targetm.libfunc_gnu_prefix)
|
5759 |
|
|
{
|
5760 |
|
|
nondec_name[2] = 'g';
|
5761 |
|
|
nondec_name[3] = 'n';
|
5762 |
|
|
nondec_name[4] = 'u';
|
5763 |
|
|
nondec_name[5] = '_';
|
5764 |
|
|
}
|
5765 |
|
|
memcpy (&nondec_name[prefix_len], opname, opname_len);
|
5766 |
|
|
nondec_suffix = nondec_name + opname_len + prefix_len;
|
5767 |
|
|
|
5768 |
|
|
dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
|
5769 |
|
|
dec_name[0] = '_';
|
5770 |
|
|
dec_name[1] = '_';
|
5771 |
|
|
memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
|
5772 |
|
|
memcpy (&dec_name[2 + dec_len], opname, opname_len);
|
5773 |
|
|
dec_suffix = dec_name + dec_len + opname_len + 2;
|
5774 |
|
|
|
5775 |
|
|
fname = GET_MODE_NAME (fmode);
|
5776 |
|
|
tname = GET_MODE_NAME (tmode);
|
5777 |
|
|
|
5778 |
|
|
if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
|
5779 |
|
|
{
|
5780 |
|
|
libfunc_name = dec_name;
|
5781 |
|
|
suffix = dec_suffix;
|
5782 |
|
|
}
|
5783 |
|
|
else
|
5784 |
|
|
{
|
5785 |
|
|
libfunc_name = nondec_name;
|
5786 |
|
|
suffix = nondec_suffix;
|
5787 |
|
|
}
|
5788 |
|
|
|
5789 |
|
|
p = suffix;
|
5790 |
|
|
for (q = fname; *q; p++, q++)
|
5791 |
|
|
*p = TOLOWER (*q);
|
5792 |
|
|
for (q = tname; *q; p++, q++)
|
5793 |
|
|
*p = TOLOWER (*q);
|
5794 |
|
|
|
5795 |
|
|
*p++ = '2';
|
5796 |
|
|
*p = '\0';
|
5797 |
|
|
|
5798 |
|
|
set_conv_libfunc (tab, tmode, fmode,
|
5799 |
|
|
ggc_alloc_string (libfunc_name, p - libfunc_name));
|
5800 |
|
|
}
|
5801 |
|
|
|
5802 |
|
|
/* Pick proper libcall for trunc_optab. We need to chose if we do
|
5803 |
|
|
truncation or extension and interclass or intraclass. */
|
5804 |
|
|
|
5805 |
|
|
static void
|
5806 |
|
|
gen_trunc_conv_libfunc (convert_optab tab,
|
5807 |
|
|
const char *opname,
|
5808 |
|
|
enum machine_mode tmode,
|
5809 |
|
|
enum machine_mode fmode)
|
5810 |
|
|
{
|
5811 |
|
|
if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
|
5812 |
|
|
return;
|
5813 |
|
|
if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
|
5814 |
|
|
return;
|
5815 |
|
|
if (tmode == fmode)
|
5816 |
|
|
return;
|
5817 |
|
|
|
5818 |
|
|
if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
|
5819 |
|
|
|| (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
|
5820 |
|
|
gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
|
5821 |
|
|
|
5822 |
|
|
if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
|
5823 |
|
|
return;
|
5824 |
|
|
|
5825 |
|
|
if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
|
5826 |
|
|
&& GET_MODE_CLASS (fmode) == MODE_FLOAT)
|
5827 |
|
|
|| (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
|
5828 |
|
|
gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
|
5829 |
|
|
}
|
5830 |
|
|
|
5831 |
|
|
/* Pick proper libcall for extend_optab. We need to chose if we do
|
5832 |
|
|
truncation or extension and interclass or intraclass. */
|
5833 |
|
|
|
5834 |
|
|
static void
|
5835 |
|
|
gen_extend_conv_libfunc (convert_optab tab,
|
5836 |
|
|
const char *opname ATTRIBUTE_UNUSED,
|
5837 |
|
|
enum machine_mode tmode,
|
5838 |
|
|
enum machine_mode fmode)
|
5839 |
|
|
{
|
5840 |
|
|
if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
|
5841 |
|
|
return;
|
5842 |
|
|
if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
|
5843 |
|
|
return;
|
5844 |
|
|
if (tmode == fmode)
|
5845 |
|
|
return;
|
5846 |
|
|
|
5847 |
|
|
if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
|
5848 |
|
|
|| (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
|
5849 |
|
|
gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
|
5850 |
|
|
|
5851 |
|
|
if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
|
5852 |
|
|
return;
|
5853 |
|
|
|
5854 |
|
|
if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
|
5855 |
|
|
&& GET_MODE_CLASS (fmode) == MODE_FLOAT)
|
5856 |
|
|
|| (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
|
5857 |
|
|
gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
|
5858 |
|
|
}
|
5859 |
|
|
|
5860 |
|
|
/* Pick proper libcall for fract_optab. We need to chose if we do
|
5861 |
|
|
interclass or intraclass. */
|
5862 |
|
|
|
5863 |
|
|
static void
|
5864 |
|
|
gen_fract_conv_libfunc (convert_optab tab,
|
5865 |
|
|
const char *opname,
|
5866 |
|
|
enum machine_mode tmode,
|
5867 |
|
|
enum machine_mode fmode)
|
5868 |
|
|
{
|
5869 |
|
|
if (tmode == fmode)
|
5870 |
|
|
return;
|
5871 |
|
|
if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
|
5872 |
|
|
return;
|
5873 |
|
|
|
5874 |
|
|
if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
|
5875 |
|
|
gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
|
5876 |
|
|
else
|
5877 |
|
|
gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
|
5878 |
|
|
}
|
5879 |
|
|
|
5880 |
|
|
/* Pick proper libcall for fractuns_optab. */
|
5881 |
|
|
|
5882 |
|
|
static void
|
5883 |
|
|
gen_fractuns_conv_libfunc (convert_optab tab,
|
5884 |
|
|
const char *opname,
|
5885 |
|
|
enum machine_mode tmode,
|
5886 |
|
|
enum machine_mode fmode)
|
5887 |
|
|
{
|
5888 |
|
|
if (tmode == fmode)
|
5889 |
|
|
return;
|
5890 |
|
|
/* One mode must be a fixed-point mode, and the other must be an integer
|
5891 |
|
|
mode. */
|
5892 |
|
|
if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
|
5893 |
|
|
|| (ALL_FIXED_POINT_MODE_P (fmode)
|
5894 |
|
|
&& GET_MODE_CLASS (tmode) == MODE_INT)))
|
5895 |
|
|
return;
|
5896 |
|
|
|
5897 |
|
|
gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
|
5898 |
|
|
}
|
5899 |
|
|
|
5900 |
|
|
/* Pick proper libcall for satfract_optab. We need to chose if we do
|
5901 |
|
|
interclass or intraclass. */
|
5902 |
|
|
|
5903 |
|
|
static void
|
5904 |
|
|
gen_satfract_conv_libfunc (convert_optab tab,
|
5905 |
|
|
const char *opname,
|
5906 |
|
|
enum machine_mode tmode,
|
5907 |
|
|
enum machine_mode fmode)
|
5908 |
|
|
{
|
5909 |
|
|
if (tmode == fmode)
|
5910 |
|
|
return;
|
5911 |
|
|
/* TMODE must be a fixed-point mode. */
|
5912 |
|
|
if (!ALL_FIXED_POINT_MODE_P (tmode))
|
5913 |
|
|
return;
|
5914 |
|
|
|
5915 |
|
|
if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
|
5916 |
|
|
gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
|
5917 |
|
|
else
|
5918 |
|
|
gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
|
5919 |
|
|
}
|
5920 |
|
|
|
5921 |
|
|
/* Pick proper libcall for satfractuns_optab. */
|
5922 |
|
|
|
5923 |
|
|
static void
|
5924 |
|
|
gen_satfractuns_conv_libfunc (convert_optab tab,
|
5925 |
|
|
const char *opname,
|
5926 |
|
|
enum machine_mode tmode,
|
5927 |
|
|
enum machine_mode fmode)
|
5928 |
|
|
{
|
5929 |
|
|
if (tmode == fmode)
|
5930 |
|
|
return;
|
5931 |
|
|
/* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
|
5932 |
|
|
if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
|
5933 |
|
|
return;
|
5934 |
|
|
|
5935 |
|
|
gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
|
5936 |
|
|
}
|
5937 |
|
|
|
5938 |
|
|
/* A table of previously-created libfuncs, hashed by name. */
|
5939 |
|
|
static GTY ((param_is (union tree_node))) htab_t libfunc_decls;
|
5940 |
|
|
|
5941 |
|
|
/* Hashtable callbacks for libfunc_decls. */
|
5942 |
|
|
|
5943 |
|
|
static hashval_t
|
5944 |
|
|
libfunc_decl_hash (const void *entry)
|
5945 |
|
|
{
|
5946 |
|
|
return IDENTIFIER_HASH_VALUE (DECL_NAME ((const_tree) entry));
|
5947 |
|
|
}
|
5948 |
|
|
|
5949 |
|
|
static int
|
5950 |
|
|
libfunc_decl_eq (const void *entry1, const void *entry2)
|
5951 |
|
|
{
|
5952 |
|
|
return DECL_NAME ((const_tree) entry1) == (const_tree) entry2;
|
5953 |
|
|
}
|
5954 |
|
|
|
5955 |
|
|
/* Build a decl for a libfunc named NAME. */
|
5956 |
|
|
|
5957 |
|
|
tree
|
5958 |
|
|
build_libfunc_function (const char *name)
|
5959 |
|
|
{
|
5960 |
|
|
tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
|
5961 |
|
|
get_identifier (name),
|
5962 |
|
|
build_function_type (integer_type_node, NULL_TREE));
|
5963 |
|
|
/* ??? We don't have any type information except for this is
|
5964 |
|
|
a function. Pretend this is "int foo()". */
|
5965 |
|
|
DECL_ARTIFICIAL (decl) = 1;
|
5966 |
|
|
DECL_EXTERNAL (decl) = 1;
|
5967 |
|
|
TREE_PUBLIC (decl) = 1;
|
5968 |
|
|
gcc_assert (DECL_ASSEMBLER_NAME (decl));
|
5969 |
|
|
|
5970 |
|
|
/* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
|
5971 |
|
|
are the flags assigned by targetm.encode_section_info. */
|
5972 |
|
|
SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
|
5973 |
|
|
|
5974 |
|
|
return decl;
|
5975 |
|
|
}
|
5976 |
|
|
|
5977 |
|
|
rtx
|
5978 |
|
|
init_one_libfunc (const char *name)
|
5979 |
|
|
{
|
5980 |
|
|
tree id, decl;
|
5981 |
|
|
void **slot;
|
5982 |
|
|
hashval_t hash;
|
5983 |
|
|
|
5984 |
|
|
if (libfunc_decls == NULL)
|
5985 |
|
|
libfunc_decls = htab_create_ggc (37, libfunc_decl_hash,
|
5986 |
|
|
libfunc_decl_eq, NULL);
|
5987 |
|
|
|
5988 |
|
|
/* See if we have already created a libfunc decl for this function. */
|
5989 |
|
|
id = get_identifier (name);
|
5990 |
|
|
hash = IDENTIFIER_HASH_VALUE (id);
|
5991 |
|
|
slot = htab_find_slot_with_hash (libfunc_decls, id, hash, INSERT);
|
5992 |
|
|
decl = (tree) *slot;
|
5993 |
|
|
if (decl == NULL)
|
5994 |
|
|
{
|
5995 |
|
|
/* Create a new decl, so that it can be passed to
|
5996 |
|
|
targetm.encode_section_info. */
|
5997 |
|
|
decl = build_libfunc_function (name);
|
5998 |
|
|
*slot = decl;
|
5999 |
|
|
}
|
6000 |
|
|
return XEXP (DECL_RTL (decl), 0);
|
6001 |
|
|
}
|
6002 |
|
|
|
6003 |
|
|
/* Adjust the assembler name of libfunc NAME to ASMSPEC. */
|
6004 |
|
|
|
6005 |
|
|
rtx
|
6006 |
|
|
set_user_assembler_libfunc (const char *name, const char *asmspec)
|
6007 |
|
|
{
|
6008 |
|
|
tree id, decl;
|
6009 |
|
|
void **slot;
|
6010 |
|
|
hashval_t hash;
|
6011 |
|
|
|
6012 |
|
|
id = get_identifier (name);
|
6013 |
|
|
hash = IDENTIFIER_HASH_VALUE (id);
|
6014 |
|
|
slot = htab_find_slot_with_hash (libfunc_decls, id, hash, NO_INSERT);
|
6015 |
|
|
gcc_assert (slot);
|
6016 |
|
|
decl = (tree) *slot;
|
6017 |
|
|
set_user_assembler_name (decl, asmspec);
|
6018 |
|
|
return XEXP (DECL_RTL (decl), 0);
|
6019 |
|
|
}
|
6020 |
|
|
|
6021 |
|
|
/* Call this to reset the function entry for one optab (OPTABLE) in mode
|
6022 |
|
|
MODE to NAME, which should be either 0 or a string constant. */
|
6023 |
|
|
void
|
6024 |
|
|
set_optab_libfunc (optab optable, enum machine_mode mode, const char *name)
|
6025 |
|
|
{
|
6026 |
|
|
rtx val;
|
6027 |
|
|
struct libfunc_entry e;
|
6028 |
|
|
struct libfunc_entry **slot;
|
6029 |
|
|
e.optab = (size_t) (optable - &optab_table[0]);
|
6030 |
|
|
e.mode1 = mode;
|
6031 |
|
|
e.mode2 = VOIDmode;
|
6032 |
|
|
|
6033 |
|
|
if (name)
|
6034 |
|
|
val = init_one_libfunc (name);
|
6035 |
|
|
else
|
6036 |
|
|
val = 0;
|
6037 |
|
|
slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
|
6038 |
|
|
if (*slot == NULL)
|
6039 |
|
|
*slot = ggc_alloc_libfunc_entry ();
|
6040 |
|
|
(*slot)->optab = (size_t) (optable - &optab_table[0]);
|
6041 |
|
|
(*slot)->mode1 = mode;
|
6042 |
|
|
(*slot)->mode2 = VOIDmode;
|
6043 |
|
|
(*slot)->libfunc = val;
|
6044 |
|
|
}
|
6045 |
|
|
|
6046 |
|
|
/* Call this to reset the function entry for one conversion optab
|
6047 |
|
|
(OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
|
6048 |
|
|
either 0 or a string constant. */
|
6049 |
|
|
void
|
6050 |
|
|
set_conv_libfunc (convert_optab optable, enum machine_mode tmode,
|
6051 |
|
|
enum machine_mode fmode, const char *name)
|
6052 |
|
|
{
|
6053 |
|
|
rtx val;
|
6054 |
|
|
struct libfunc_entry e;
|
6055 |
|
|
struct libfunc_entry **slot;
|
6056 |
|
|
e.optab = (size_t) (optable - &convert_optab_table[0]);
|
6057 |
|
|
e.mode1 = tmode;
|
6058 |
|
|
e.mode2 = fmode;
|
6059 |
|
|
|
6060 |
|
|
if (name)
|
6061 |
|
|
val = init_one_libfunc (name);
|
6062 |
|
|
else
|
6063 |
|
|
val = 0;
|
6064 |
|
|
slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
|
6065 |
|
|
if (*slot == NULL)
|
6066 |
|
|
*slot = ggc_alloc_libfunc_entry ();
|
6067 |
|
|
(*slot)->optab = (size_t) (optable - &convert_optab_table[0]);
|
6068 |
|
|
(*slot)->mode1 = tmode;
|
6069 |
|
|
(*slot)->mode2 = fmode;
|
6070 |
|
|
(*slot)->libfunc = val;
|
6071 |
|
|
}
|
6072 |
|
|
|
6073 |
|
|
/* Call this to initialize the contents of the optabs
|
6074 |
|
|
appropriately for the current target machine. */
|
6075 |
|
|
|
6076 |
|
|
void
|
6077 |
|
|
init_optabs (void)
|
6078 |
|
|
{
|
6079 |
|
|
if (libfunc_hash)
|
6080 |
|
|
{
|
6081 |
|
|
htab_empty (libfunc_hash);
|
6082 |
|
|
/* We statically initialize the insn_codes with the equivalent of
|
6083 |
|
|
CODE_FOR_nothing. Repeat the process if reinitialising. */
|
6084 |
|
|
init_insn_codes ();
|
6085 |
|
|
}
|
6086 |
|
|
else
|
6087 |
|
|
libfunc_hash = htab_create_ggc (10, hash_libfunc, eq_libfunc, NULL);
|
6088 |
|
|
|
6089 |
|
|
init_optab (add_optab, PLUS);
|
6090 |
|
|
init_optabv (addv_optab, PLUS);
|
6091 |
|
|
init_optab (sub_optab, MINUS);
|
6092 |
|
|
init_optabv (subv_optab, MINUS);
|
6093 |
|
|
init_optab (ssadd_optab, SS_PLUS);
|
6094 |
|
|
init_optab (usadd_optab, US_PLUS);
|
6095 |
|
|
init_optab (sssub_optab, SS_MINUS);
|
6096 |
|
|
init_optab (ussub_optab, US_MINUS);
|
6097 |
|
|
init_optab (smul_optab, MULT);
|
6098 |
|
|
init_optab (ssmul_optab, SS_MULT);
|
6099 |
|
|
init_optab (usmul_optab, US_MULT);
|
6100 |
|
|
init_optabv (smulv_optab, MULT);
|
6101 |
|
|
init_optab (smul_highpart_optab, UNKNOWN);
|
6102 |
|
|
init_optab (umul_highpart_optab, UNKNOWN);
|
6103 |
|
|
init_optab (smul_widen_optab, UNKNOWN);
|
6104 |
|
|
init_optab (umul_widen_optab, UNKNOWN);
|
6105 |
|
|
init_optab (usmul_widen_optab, UNKNOWN);
|
6106 |
|
|
init_optab (smadd_widen_optab, UNKNOWN);
|
6107 |
|
|
init_optab (umadd_widen_optab, UNKNOWN);
|
6108 |
|
|
init_optab (ssmadd_widen_optab, UNKNOWN);
|
6109 |
|
|
init_optab (usmadd_widen_optab, UNKNOWN);
|
6110 |
|
|
init_optab (smsub_widen_optab, UNKNOWN);
|
6111 |
|
|
init_optab (umsub_widen_optab, UNKNOWN);
|
6112 |
|
|
init_optab (ssmsub_widen_optab, UNKNOWN);
|
6113 |
|
|
init_optab (usmsub_widen_optab, UNKNOWN);
|
6114 |
|
|
init_optab (sdiv_optab, DIV);
|
6115 |
|
|
init_optab (ssdiv_optab, SS_DIV);
|
6116 |
|
|
init_optab (usdiv_optab, US_DIV);
|
6117 |
|
|
init_optabv (sdivv_optab, DIV);
|
6118 |
|
|
init_optab (sdivmod_optab, UNKNOWN);
|
6119 |
|
|
init_optab (udiv_optab, UDIV);
|
6120 |
|
|
init_optab (udivmod_optab, UNKNOWN);
|
6121 |
|
|
init_optab (smod_optab, MOD);
|
6122 |
|
|
init_optab (umod_optab, UMOD);
|
6123 |
|
|
init_optab (fmod_optab, UNKNOWN);
|
6124 |
|
|
init_optab (remainder_optab, UNKNOWN);
|
6125 |
|
|
init_optab (ftrunc_optab, UNKNOWN);
|
6126 |
|
|
init_optab (and_optab, AND);
|
6127 |
|
|
init_optab (ior_optab, IOR);
|
6128 |
|
|
init_optab (xor_optab, XOR);
|
6129 |
|
|
init_optab (ashl_optab, ASHIFT);
|
6130 |
|
|
init_optab (ssashl_optab, SS_ASHIFT);
|
6131 |
|
|
init_optab (usashl_optab, US_ASHIFT);
|
6132 |
|
|
init_optab (ashr_optab, ASHIFTRT);
|
6133 |
|
|
init_optab (lshr_optab, LSHIFTRT);
|
6134 |
|
|
init_optabv (vashl_optab, ASHIFT);
|
6135 |
|
|
init_optabv (vashr_optab, ASHIFTRT);
|
6136 |
|
|
init_optabv (vlshr_optab, LSHIFTRT);
|
6137 |
|
|
init_optab (rotl_optab, ROTATE);
|
6138 |
|
|
init_optab (rotr_optab, ROTATERT);
|
6139 |
|
|
init_optab (smin_optab, SMIN);
|
6140 |
|
|
init_optab (smax_optab, SMAX);
|
6141 |
|
|
init_optab (umin_optab, UMIN);
|
6142 |
|
|
init_optab (umax_optab, UMAX);
|
6143 |
|
|
init_optab (pow_optab, UNKNOWN);
|
6144 |
|
|
init_optab (atan2_optab, UNKNOWN);
|
6145 |
|
|
init_optab (fma_optab, FMA);
|
6146 |
|
|
init_optab (fms_optab, UNKNOWN);
|
6147 |
|
|
init_optab (fnma_optab, UNKNOWN);
|
6148 |
|
|
init_optab (fnms_optab, UNKNOWN);
|
6149 |
|
|
|
6150 |
|
|
/* These three have codes assigned exclusively for the sake of
|
6151 |
|
|
have_insn_for. */
|
6152 |
|
|
init_optab (mov_optab, SET);
|
6153 |
|
|
init_optab (movstrict_optab, STRICT_LOW_PART);
|
6154 |
|
|
init_optab (cbranch_optab, COMPARE);
|
6155 |
|
|
|
6156 |
|
|
init_optab (cmov_optab, UNKNOWN);
|
6157 |
|
|
init_optab (cstore_optab, UNKNOWN);
|
6158 |
|
|
init_optab (ctrap_optab, UNKNOWN);
|
6159 |
|
|
|
6160 |
|
|
init_optab (storent_optab, UNKNOWN);
|
6161 |
|
|
|
6162 |
|
|
init_optab (cmp_optab, UNKNOWN);
|
6163 |
|
|
init_optab (ucmp_optab, UNKNOWN);
|
6164 |
|
|
|
6165 |
|
|
init_optab (eq_optab, EQ);
|
6166 |
|
|
init_optab (ne_optab, NE);
|
6167 |
|
|
init_optab (gt_optab, GT);
|
6168 |
|
|
init_optab (ge_optab, GE);
|
6169 |
|
|
init_optab (lt_optab, LT);
|
6170 |
|
|
init_optab (le_optab, LE);
|
6171 |
|
|
init_optab (unord_optab, UNORDERED);
|
6172 |
|
|
|
6173 |
|
|
init_optab (neg_optab, NEG);
|
6174 |
|
|
init_optab (ssneg_optab, SS_NEG);
|
6175 |
|
|
init_optab (usneg_optab, US_NEG);
|
6176 |
|
|
init_optabv (negv_optab, NEG);
|
6177 |
|
|
init_optab (abs_optab, ABS);
|
6178 |
|
|
init_optabv (absv_optab, ABS);
|
6179 |
|
|
init_optab (addcc_optab, UNKNOWN);
|
6180 |
|
|
init_optab (one_cmpl_optab, NOT);
|
6181 |
|
|
init_optab (bswap_optab, BSWAP);
|
6182 |
|
|
init_optab (ffs_optab, FFS);
|
6183 |
|
|
init_optab (clz_optab, CLZ);
|
6184 |
|
|
init_optab (ctz_optab, CTZ);
|
6185 |
|
|
init_optab (clrsb_optab, CLRSB);
|
6186 |
|
|
init_optab (popcount_optab, POPCOUNT);
|
6187 |
|
|
init_optab (parity_optab, PARITY);
|
6188 |
|
|
init_optab (sqrt_optab, SQRT);
|
6189 |
|
|
init_optab (floor_optab, UNKNOWN);
|
6190 |
|
|
init_optab (ceil_optab, UNKNOWN);
|
6191 |
|
|
init_optab (round_optab, UNKNOWN);
|
6192 |
|
|
init_optab (btrunc_optab, UNKNOWN);
|
6193 |
|
|
init_optab (nearbyint_optab, UNKNOWN);
|
6194 |
|
|
init_optab (rint_optab, UNKNOWN);
|
6195 |
|
|
init_optab (sincos_optab, UNKNOWN);
|
6196 |
|
|
init_optab (sin_optab, UNKNOWN);
|
6197 |
|
|
init_optab (asin_optab, UNKNOWN);
|
6198 |
|
|
init_optab (cos_optab, UNKNOWN);
|
6199 |
|
|
init_optab (acos_optab, UNKNOWN);
|
6200 |
|
|
init_optab (exp_optab, UNKNOWN);
|
6201 |
|
|
init_optab (exp10_optab, UNKNOWN);
|
6202 |
|
|
init_optab (exp2_optab, UNKNOWN);
|
6203 |
|
|
init_optab (expm1_optab, UNKNOWN);
|
6204 |
|
|
init_optab (ldexp_optab, UNKNOWN);
|
6205 |
|
|
init_optab (scalb_optab, UNKNOWN);
|
6206 |
|
|
init_optab (significand_optab, UNKNOWN);
|
6207 |
|
|
init_optab (logb_optab, UNKNOWN);
|
6208 |
|
|
init_optab (ilogb_optab, UNKNOWN);
|
6209 |
|
|
init_optab (log_optab, UNKNOWN);
|
6210 |
|
|
init_optab (log10_optab, UNKNOWN);
|
6211 |
|
|
init_optab (log2_optab, UNKNOWN);
|
6212 |
|
|
init_optab (log1p_optab, UNKNOWN);
|
6213 |
|
|
init_optab (tan_optab, UNKNOWN);
|
6214 |
|
|
init_optab (atan_optab, UNKNOWN);
|
6215 |
|
|
init_optab (copysign_optab, UNKNOWN);
|
6216 |
|
|
init_optab (signbit_optab, UNKNOWN);
|
6217 |
|
|
|
6218 |
|
|
init_optab (isinf_optab, UNKNOWN);
|
6219 |
|
|
|
6220 |
|
|
init_optab (strlen_optab, UNKNOWN);
|
6221 |
|
|
init_optab (push_optab, UNKNOWN);
|
6222 |
|
|
|
6223 |
|
|
init_optab (reduc_smax_optab, UNKNOWN);
|
6224 |
|
|
init_optab (reduc_umax_optab, UNKNOWN);
|
6225 |
|
|
init_optab (reduc_smin_optab, UNKNOWN);
|
6226 |
|
|
init_optab (reduc_umin_optab, UNKNOWN);
|
6227 |
|
|
init_optab (reduc_splus_optab, UNKNOWN);
|
6228 |
|
|
init_optab (reduc_uplus_optab, UNKNOWN);
|
6229 |
|
|
|
6230 |
|
|
init_optab (ssum_widen_optab, UNKNOWN);
|
6231 |
|
|
init_optab (usum_widen_optab, UNKNOWN);
|
6232 |
|
|
init_optab (sdot_prod_optab, UNKNOWN);
|
6233 |
|
|
init_optab (udot_prod_optab, UNKNOWN);
|
6234 |
|
|
|
6235 |
|
|
init_optab (vec_extract_optab, UNKNOWN);
|
6236 |
|
|
init_optab (vec_set_optab, UNKNOWN);
|
6237 |
|
|
init_optab (vec_init_optab, UNKNOWN);
|
6238 |
|
|
init_optab (vec_shl_optab, UNKNOWN);
|
6239 |
|
|
init_optab (vec_shr_optab, UNKNOWN);
|
6240 |
|
|
init_optab (vec_realign_load_optab, UNKNOWN);
|
6241 |
|
|
init_optab (movmisalign_optab, UNKNOWN);
|
6242 |
|
|
init_optab (vec_widen_umult_hi_optab, UNKNOWN);
|
6243 |
|
|
init_optab (vec_widen_umult_lo_optab, UNKNOWN);
|
6244 |
|
|
init_optab (vec_widen_smult_hi_optab, UNKNOWN);
|
6245 |
|
|
init_optab (vec_widen_smult_lo_optab, UNKNOWN);
|
6246 |
|
|
init_optab (vec_widen_ushiftl_hi_optab, UNKNOWN);
|
6247 |
|
|
init_optab (vec_widen_ushiftl_lo_optab, UNKNOWN);
|
6248 |
|
|
init_optab (vec_widen_sshiftl_hi_optab, UNKNOWN);
|
6249 |
|
|
init_optab (vec_widen_sshiftl_lo_optab, UNKNOWN);
|
6250 |
|
|
init_optab (vec_unpacks_hi_optab, UNKNOWN);
|
6251 |
|
|
init_optab (vec_unpacks_lo_optab, UNKNOWN);
|
6252 |
|
|
init_optab (vec_unpacku_hi_optab, UNKNOWN);
|
6253 |
|
|
init_optab (vec_unpacku_lo_optab, UNKNOWN);
|
6254 |
|
|
init_optab (vec_unpacks_float_hi_optab, UNKNOWN);
|
6255 |
|
|
init_optab (vec_unpacks_float_lo_optab, UNKNOWN);
|
6256 |
|
|
init_optab (vec_unpacku_float_hi_optab, UNKNOWN);
|
6257 |
|
|
init_optab (vec_unpacku_float_lo_optab, UNKNOWN);
|
6258 |
|
|
init_optab (vec_pack_trunc_optab, UNKNOWN);
|
6259 |
|
|
init_optab (vec_pack_usat_optab, UNKNOWN);
|
6260 |
|
|
init_optab (vec_pack_ssat_optab, UNKNOWN);
|
6261 |
|
|
init_optab (vec_pack_ufix_trunc_optab, UNKNOWN);
|
6262 |
|
|
init_optab (vec_pack_sfix_trunc_optab, UNKNOWN);
|
6263 |
|
|
|
6264 |
|
|
init_optab (powi_optab, UNKNOWN);
|
6265 |
|
|
|
6266 |
|
|
/* Conversions. */
|
6267 |
|
|
init_convert_optab (sext_optab, SIGN_EXTEND);
|
6268 |
|
|
init_convert_optab (zext_optab, ZERO_EXTEND);
|
6269 |
|
|
init_convert_optab (trunc_optab, TRUNCATE);
|
6270 |
|
|
init_convert_optab (sfix_optab, FIX);
|
6271 |
|
|
init_convert_optab (ufix_optab, UNSIGNED_FIX);
|
6272 |
|
|
init_convert_optab (sfixtrunc_optab, UNKNOWN);
|
6273 |
|
|
init_convert_optab (ufixtrunc_optab, UNKNOWN);
|
6274 |
|
|
init_convert_optab (sfloat_optab, FLOAT);
|
6275 |
|
|
init_convert_optab (ufloat_optab, UNSIGNED_FLOAT);
|
6276 |
|
|
init_convert_optab (lrint_optab, UNKNOWN);
|
6277 |
|
|
init_convert_optab (lround_optab, UNKNOWN);
|
6278 |
|
|
init_convert_optab (lfloor_optab, UNKNOWN);
|
6279 |
|
|
init_convert_optab (lceil_optab, UNKNOWN);
|
6280 |
|
|
|
6281 |
|
|
init_convert_optab (fract_optab, FRACT_CONVERT);
|
6282 |
|
|
init_convert_optab (fractuns_optab, UNSIGNED_FRACT_CONVERT);
|
6283 |
|
|
init_convert_optab (satfract_optab, SAT_FRACT);
|
6284 |
|
|
init_convert_optab (satfractuns_optab, UNSIGNED_SAT_FRACT);
|
6285 |
|
|
|
6286 |
|
|
/* Fill in the optabs with the insns we support. */
|
6287 |
|
|
init_all_optabs ();
|
6288 |
|
|
|
6289 |
|
|
/* Initialize the optabs with the names of the library functions. */
|
6290 |
|
|
add_optab->libcall_basename = "add";
|
6291 |
|
|
add_optab->libcall_suffix = '3';
|
6292 |
|
|
add_optab->libcall_gen = gen_int_fp_fixed_libfunc;
|
6293 |
|
|
addv_optab->libcall_basename = "add";
|
6294 |
|
|
addv_optab->libcall_suffix = '3';
|
6295 |
|
|
addv_optab->libcall_gen = gen_intv_fp_libfunc;
|
6296 |
|
|
ssadd_optab->libcall_basename = "ssadd";
|
6297 |
|
|
ssadd_optab->libcall_suffix = '3';
|
6298 |
|
|
ssadd_optab->libcall_gen = gen_signed_fixed_libfunc;
|
6299 |
|
|
usadd_optab->libcall_basename = "usadd";
|
6300 |
|
|
usadd_optab->libcall_suffix = '3';
|
6301 |
|
|
usadd_optab->libcall_gen = gen_unsigned_fixed_libfunc;
|
6302 |
|
|
sub_optab->libcall_basename = "sub";
|
6303 |
|
|
sub_optab->libcall_suffix = '3';
|
6304 |
|
|
sub_optab->libcall_gen = gen_int_fp_fixed_libfunc;
|
6305 |
|
|
subv_optab->libcall_basename = "sub";
|
6306 |
|
|
subv_optab->libcall_suffix = '3';
|
6307 |
|
|
subv_optab->libcall_gen = gen_intv_fp_libfunc;
|
6308 |
|
|
sssub_optab->libcall_basename = "sssub";
|
6309 |
|
|
sssub_optab->libcall_suffix = '3';
|
6310 |
|
|
sssub_optab->libcall_gen = gen_signed_fixed_libfunc;
|
6311 |
|
|
ussub_optab->libcall_basename = "ussub";
|
6312 |
|
|
ussub_optab->libcall_suffix = '3';
|
6313 |
|
|
ussub_optab->libcall_gen = gen_unsigned_fixed_libfunc;
|
6314 |
|
|
smul_optab->libcall_basename = "mul";
|
6315 |
|
|
smul_optab->libcall_suffix = '3';
|
6316 |
|
|
smul_optab->libcall_gen = gen_int_fp_fixed_libfunc;
|
6317 |
|
|
smulv_optab->libcall_basename = "mul";
|
6318 |
|
|
smulv_optab->libcall_suffix = '3';
|
6319 |
|
|
smulv_optab->libcall_gen = gen_intv_fp_libfunc;
|
6320 |
|
|
ssmul_optab->libcall_basename = "ssmul";
|
6321 |
|
|
ssmul_optab->libcall_suffix = '3';
|
6322 |
|
|
ssmul_optab->libcall_gen = gen_signed_fixed_libfunc;
|
6323 |
|
|
usmul_optab->libcall_basename = "usmul";
|
6324 |
|
|
usmul_optab->libcall_suffix = '3';
|
6325 |
|
|
usmul_optab->libcall_gen = gen_unsigned_fixed_libfunc;
|
6326 |
|
|
sdiv_optab->libcall_basename = "div";
|
6327 |
|
|
sdiv_optab->libcall_suffix = '3';
|
6328 |
|
|
sdiv_optab->libcall_gen = gen_int_fp_signed_fixed_libfunc;
|
6329 |
|
|
sdivv_optab->libcall_basename = "divv";
|
6330 |
|
|
sdivv_optab->libcall_suffix = '3';
|
6331 |
|
|
sdivv_optab->libcall_gen = gen_int_libfunc;
|
6332 |
|
|
ssdiv_optab->libcall_basename = "ssdiv";
|
6333 |
|
|
ssdiv_optab->libcall_suffix = '3';
|
6334 |
|
|
ssdiv_optab->libcall_gen = gen_signed_fixed_libfunc;
|
6335 |
|
|
udiv_optab->libcall_basename = "udiv";
|
6336 |
|
|
udiv_optab->libcall_suffix = '3';
|
6337 |
|
|
udiv_optab->libcall_gen = gen_int_unsigned_fixed_libfunc;
|
6338 |
|
|
usdiv_optab->libcall_basename = "usdiv";
|
6339 |
|
|
usdiv_optab->libcall_suffix = '3';
|
6340 |
|
|
usdiv_optab->libcall_gen = gen_unsigned_fixed_libfunc;
|
6341 |
|
|
sdivmod_optab->libcall_basename = "divmod";
|
6342 |
|
|
sdivmod_optab->libcall_suffix = '4';
|
6343 |
|
|
sdivmod_optab->libcall_gen = gen_int_libfunc;
|
6344 |
|
|
udivmod_optab->libcall_basename = "udivmod";
|
6345 |
|
|
udivmod_optab->libcall_suffix = '4';
|
6346 |
|
|
udivmod_optab->libcall_gen = gen_int_libfunc;
|
6347 |
|
|
smod_optab->libcall_basename = "mod";
|
6348 |
|
|
smod_optab->libcall_suffix = '3';
|
6349 |
|
|
smod_optab->libcall_gen = gen_int_libfunc;
|
6350 |
|
|
umod_optab->libcall_basename = "umod";
|
6351 |
|
|
umod_optab->libcall_suffix = '3';
|
6352 |
|
|
umod_optab->libcall_gen = gen_int_libfunc;
|
6353 |
|
|
ftrunc_optab->libcall_basename = "ftrunc";
|
6354 |
|
|
ftrunc_optab->libcall_suffix = '2';
|
6355 |
|
|
ftrunc_optab->libcall_gen = gen_fp_libfunc;
|
6356 |
|
|
and_optab->libcall_basename = "and";
|
6357 |
|
|
and_optab->libcall_suffix = '3';
|
6358 |
|
|
and_optab->libcall_gen = gen_int_libfunc;
|
6359 |
|
|
ior_optab->libcall_basename = "ior";
|
6360 |
|
|
ior_optab->libcall_suffix = '3';
|
6361 |
|
|
ior_optab->libcall_gen = gen_int_libfunc;
|
6362 |
|
|
xor_optab->libcall_basename = "xor";
|
6363 |
|
|
xor_optab->libcall_suffix = '3';
|
6364 |
|
|
xor_optab->libcall_gen = gen_int_libfunc;
|
6365 |
|
|
ashl_optab->libcall_basename = "ashl";
|
6366 |
|
|
ashl_optab->libcall_suffix = '3';
|
6367 |
|
|
ashl_optab->libcall_gen = gen_int_fixed_libfunc;
|
6368 |
|
|
ssashl_optab->libcall_basename = "ssashl";
|
6369 |
|
|
ssashl_optab->libcall_suffix = '3';
|
6370 |
|
|
ssashl_optab->libcall_gen = gen_signed_fixed_libfunc;
|
6371 |
|
|
usashl_optab->libcall_basename = "usashl";
|
6372 |
|
|
usashl_optab->libcall_suffix = '3';
|
6373 |
|
|
usashl_optab->libcall_gen = gen_unsigned_fixed_libfunc;
|
6374 |
|
|
ashr_optab->libcall_basename = "ashr";
|
6375 |
|
|
ashr_optab->libcall_suffix = '3';
|
6376 |
|
|
ashr_optab->libcall_gen = gen_int_signed_fixed_libfunc;
|
6377 |
|
|
lshr_optab->libcall_basename = "lshr";
|
6378 |
|
|
lshr_optab->libcall_suffix = '3';
|
6379 |
|
|
lshr_optab->libcall_gen = gen_int_unsigned_fixed_libfunc;
|
6380 |
|
|
smin_optab->libcall_basename = "min";
|
6381 |
|
|
smin_optab->libcall_suffix = '3';
|
6382 |
|
|
smin_optab->libcall_gen = gen_int_fp_libfunc;
|
6383 |
|
|
smax_optab->libcall_basename = "max";
|
6384 |
|
|
smax_optab->libcall_suffix = '3';
|
6385 |
|
|
smax_optab->libcall_gen = gen_int_fp_libfunc;
|
6386 |
|
|
umin_optab->libcall_basename = "umin";
|
6387 |
|
|
umin_optab->libcall_suffix = '3';
|
6388 |
|
|
umin_optab->libcall_gen = gen_int_libfunc;
|
6389 |
|
|
umax_optab->libcall_basename = "umax";
|
6390 |
|
|
umax_optab->libcall_suffix = '3';
|
6391 |
|
|
umax_optab->libcall_gen = gen_int_libfunc;
|
6392 |
|
|
neg_optab->libcall_basename = "neg";
|
6393 |
|
|
neg_optab->libcall_suffix = '2';
|
6394 |
|
|
neg_optab->libcall_gen = gen_int_fp_fixed_libfunc;
|
6395 |
|
|
ssneg_optab->libcall_basename = "ssneg";
|
6396 |
|
|
ssneg_optab->libcall_suffix = '2';
|
6397 |
|
|
ssneg_optab->libcall_gen = gen_signed_fixed_libfunc;
|
6398 |
|
|
usneg_optab->libcall_basename = "usneg";
|
6399 |
|
|
usneg_optab->libcall_suffix = '2';
|
6400 |
|
|
usneg_optab->libcall_gen = gen_unsigned_fixed_libfunc;
|
6401 |
|
|
negv_optab->libcall_basename = "neg";
|
6402 |
|
|
negv_optab->libcall_suffix = '2';
|
6403 |
|
|
negv_optab->libcall_gen = gen_intv_fp_libfunc;
|
6404 |
|
|
one_cmpl_optab->libcall_basename = "one_cmpl";
|
6405 |
|
|
one_cmpl_optab->libcall_suffix = '2';
|
6406 |
|
|
one_cmpl_optab->libcall_gen = gen_int_libfunc;
|
6407 |
|
|
ffs_optab->libcall_basename = "ffs";
|
6408 |
|
|
ffs_optab->libcall_suffix = '2';
|
6409 |
|
|
ffs_optab->libcall_gen = gen_int_libfunc;
|
6410 |
|
|
clz_optab->libcall_basename = "clz";
|
6411 |
|
|
clz_optab->libcall_suffix = '2';
|
6412 |
|
|
clz_optab->libcall_gen = gen_int_libfunc;
|
6413 |
|
|
ctz_optab->libcall_basename = "ctz";
|
6414 |
|
|
ctz_optab->libcall_suffix = '2';
|
6415 |
|
|
ctz_optab->libcall_gen = gen_int_libfunc;
|
6416 |
|
|
clrsb_optab->libcall_basename = "clrsb";
|
6417 |
|
|
clrsb_optab->libcall_suffix = '2';
|
6418 |
|
|
clrsb_optab->libcall_gen = gen_int_libfunc;
|
6419 |
|
|
popcount_optab->libcall_basename = "popcount";
|
6420 |
|
|
popcount_optab->libcall_suffix = '2';
|
6421 |
|
|
popcount_optab->libcall_gen = gen_int_libfunc;
|
6422 |
|
|
parity_optab->libcall_basename = "parity";
|
6423 |
|
|
parity_optab->libcall_suffix = '2';
|
6424 |
|
|
parity_optab->libcall_gen = gen_int_libfunc;
|
6425 |
|
|
|
6426 |
|
|
/* Comparison libcalls for integers MUST come in pairs,
|
6427 |
|
|
signed/unsigned. */
|
6428 |
|
|
cmp_optab->libcall_basename = "cmp";
|
6429 |
|
|
cmp_optab->libcall_suffix = '2';
|
6430 |
|
|
cmp_optab->libcall_gen = gen_int_fp_fixed_libfunc;
|
6431 |
|
|
ucmp_optab->libcall_basename = "ucmp";
|
6432 |
|
|
ucmp_optab->libcall_suffix = '2';
|
6433 |
|
|
ucmp_optab->libcall_gen = gen_int_libfunc;
|
6434 |
|
|
|
6435 |
|
|
/* EQ etc are floating point only. */
|
6436 |
|
|
eq_optab->libcall_basename = "eq";
|
6437 |
|
|
eq_optab->libcall_suffix = '2';
|
6438 |
|
|
eq_optab->libcall_gen = gen_fp_libfunc;
|
6439 |
|
|
ne_optab->libcall_basename = "ne";
|
6440 |
|
|
ne_optab->libcall_suffix = '2';
|
6441 |
|
|
ne_optab->libcall_gen = gen_fp_libfunc;
|
6442 |
|
|
gt_optab->libcall_basename = "gt";
|
6443 |
|
|
gt_optab->libcall_suffix = '2';
|
6444 |
|
|
gt_optab->libcall_gen = gen_fp_libfunc;
|
6445 |
|
|
ge_optab->libcall_basename = "ge";
|
6446 |
|
|
ge_optab->libcall_suffix = '2';
|
6447 |
|
|
ge_optab->libcall_gen = gen_fp_libfunc;
|
6448 |
|
|
lt_optab->libcall_basename = "lt";
|
6449 |
|
|
lt_optab->libcall_suffix = '2';
|
6450 |
|
|
lt_optab->libcall_gen = gen_fp_libfunc;
|
6451 |
|
|
le_optab->libcall_basename = "le";
|
6452 |
|
|
le_optab->libcall_suffix = '2';
|
6453 |
|
|
le_optab->libcall_gen = gen_fp_libfunc;
|
6454 |
|
|
unord_optab->libcall_basename = "unord";
|
6455 |
|
|
unord_optab->libcall_suffix = '2';
|
6456 |
|
|
unord_optab->libcall_gen = gen_fp_libfunc;
|
6457 |
|
|
|
6458 |
|
|
powi_optab->libcall_basename = "powi";
|
6459 |
|
|
powi_optab->libcall_suffix = '2';
|
6460 |
|
|
powi_optab->libcall_gen = gen_fp_libfunc;
|
6461 |
|
|
|
6462 |
|
|
/* Conversions. */
|
6463 |
|
|
sfloat_optab->libcall_basename = "float";
|
6464 |
|
|
sfloat_optab->libcall_gen = gen_int_to_fp_conv_libfunc;
|
6465 |
|
|
ufloat_optab->libcall_gen = gen_ufloat_conv_libfunc;
|
6466 |
|
|
sfix_optab->libcall_basename = "fix";
|
6467 |
|
|
sfix_optab->libcall_gen = gen_fp_to_int_conv_libfunc;
|
6468 |
|
|
ufix_optab->libcall_basename = "fixuns";
|
6469 |
|
|
ufix_optab->libcall_gen = gen_fp_to_int_conv_libfunc;
|
6470 |
|
|
lrint_optab->libcall_basename = "lrint";
|
6471 |
|
|
lrint_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
|
6472 |
|
|
lround_optab->libcall_basename = "lround";
|
6473 |
|
|
lround_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
|
6474 |
|
|
lfloor_optab->libcall_basename = "lfloor";
|
6475 |
|
|
lfloor_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
|
6476 |
|
|
lceil_optab->libcall_basename = "lceil";
|
6477 |
|
|
lceil_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
|
6478 |
|
|
|
6479 |
|
|
/* trunc_optab is also used for FLOAT_EXTEND. */
|
6480 |
|
|
sext_optab->libcall_basename = "extend";
|
6481 |
|
|
sext_optab->libcall_gen = gen_extend_conv_libfunc;
|
6482 |
|
|
trunc_optab->libcall_basename = "trunc";
|
6483 |
|
|
trunc_optab->libcall_gen = gen_trunc_conv_libfunc;
|
6484 |
|
|
|
6485 |
|
|
/* Conversions for fixed-point modes and other modes. */
|
6486 |
|
|
fract_optab->libcall_basename = "fract";
|
6487 |
|
|
fract_optab->libcall_gen = gen_fract_conv_libfunc;
|
6488 |
|
|
satfract_optab->libcall_basename = "satfract";
|
6489 |
|
|
satfract_optab->libcall_gen = gen_satfract_conv_libfunc;
|
6490 |
|
|
fractuns_optab->libcall_basename = "fractuns";
|
6491 |
|
|
fractuns_optab->libcall_gen = gen_fractuns_conv_libfunc;
|
6492 |
|
|
satfractuns_optab->libcall_basename = "satfractuns";
|
6493 |
|
|
satfractuns_optab->libcall_gen = gen_satfractuns_conv_libfunc;
|
6494 |
|
|
|
6495 |
|
|
/* The ffs function operates on `int'. Fall back on it if we do not
|
6496 |
|
|
have a libgcc2 function for that width. */
|
6497 |
|
|
if (INT_TYPE_SIZE < BITS_PER_WORD)
|
6498 |
|
|
set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
|
6499 |
|
|
"ffs");
|
6500 |
|
|
|
6501 |
|
|
/* Explicitly initialize the bswap libfuncs since we need them to be
|
6502 |
|
|
valid for things other than word_mode. */
|
6503 |
|
|
if (targetm.libfunc_gnu_prefix)
|
6504 |
|
|
{
|
6505 |
|
|
set_optab_libfunc (bswap_optab, SImode, "__gnu_bswapsi2");
|
6506 |
|
|
set_optab_libfunc (bswap_optab, DImode, "__gnu_bswapdi2");
|
6507 |
|
|
}
|
6508 |
|
|
else
|
6509 |
|
|
{
|
6510 |
|
|
set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
|
6511 |
|
|
set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
|
6512 |
|
|
}
|
6513 |
|
|
|
6514 |
|
|
/* Use cabs for double complex abs, since systems generally have cabs.
|
6515 |
|
|
Don't define any libcall for float complex, so that cabs will be used. */
|
6516 |
|
|
if (complex_double_type_node)
|
6517 |
|
|
set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node), "cabs");
|
6518 |
|
|
|
6519 |
|
|
abort_libfunc = init_one_libfunc ("abort");
|
6520 |
|
|
memcpy_libfunc = init_one_libfunc ("memcpy");
|
6521 |
|
|
memmove_libfunc = init_one_libfunc ("memmove");
|
6522 |
|
|
memcmp_libfunc = init_one_libfunc ("memcmp");
|
6523 |
|
|
memset_libfunc = init_one_libfunc ("memset");
|
6524 |
|
|
setbits_libfunc = init_one_libfunc ("__setbits");
|
6525 |
|
|
|
6526 |
|
|
#ifndef DONT_USE_BUILTIN_SETJMP
|
6527 |
|
|
setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
|
6528 |
|
|
longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
|
6529 |
|
|
#else
|
6530 |
|
|
setjmp_libfunc = init_one_libfunc ("setjmp");
|
6531 |
|
|
longjmp_libfunc = init_one_libfunc ("longjmp");
|
6532 |
|
|
#endif
|
6533 |
|
|
unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
|
6534 |
|
|
unwind_sjlj_unregister_libfunc
|
6535 |
|
|
= init_one_libfunc ("_Unwind_SjLj_Unregister");
|
6536 |
|
|
|
6537 |
|
|
/* For function entry/exit instrumentation. */
|
6538 |
|
|
profile_function_entry_libfunc
|
6539 |
|
|
= init_one_libfunc ("__cyg_profile_func_enter");
|
6540 |
|
|
profile_function_exit_libfunc
|
6541 |
|
|
= init_one_libfunc ("__cyg_profile_func_exit");
|
6542 |
|
|
|
6543 |
|
|
gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
|
6544 |
|
|
|
6545 |
|
|
/* Allow the target to add more libcalls or rename some, etc. */
|
6546 |
|
|
targetm.init_libfuncs ();
|
6547 |
|
|
}
|
6548 |
|
|
|
6549 |
|
|
/* A helper function for init_sync_libfuncs. Using the basename BASE,
|
6550 |
|
|
install libfuncs into TAB for BASE_N for 1 <= N <= MAX. */
|
6551 |
|
|
|
6552 |
|
|
static void
|
6553 |
|
|
init_sync_libfuncs_1 (optab tab, const char *base, int max)
|
6554 |
|
|
{
|
6555 |
|
|
enum machine_mode mode;
|
6556 |
|
|
char buf[64];
|
6557 |
|
|
size_t len = strlen (base);
|
6558 |
|
|
int i;
|
6559 |
|
|
|
6560 |
|
|
gcc_assert (max <= 8);
|
6561 |
|
|
gcc_assert (len + 3 < sizeof (buf));
|
6562 |
|
|
|
6563 |
|
|
memcpy (buf, base, len);
|
6564 |
|
|
buf[len] = '_';
|
6565 |
|
|
buf[len + 1] = '0';
|
6566 |
|
|
buf[len + 2] = '\0';
|
6567 |
|
|
|
6568 |
|
|
mode = QImode;
|
6569 |
|
|
for (i = 1; i <= max; i *= 2)
|
6570 |
|
|
{
|
6571 |
|
|
buf[len + 1] = '0' + i;
|
6572 |
|
|
set_optab_libfunc (tab, mode, buf);
|
6573 |
|
|
mode = GET_MODE_2XWIDER_MODE (mode);
|
6574 |
|
|
}
|
6575 |
|
|
}
|
6576 |
|
|
|
6577 |
|
|
void
|
6578 |
|
|
init_sync_libfuncs (int max)
|
6579 |
|
|
{
|
6580 |
|
|
init_sync_libfuncs_1 (sync_compare_and_swap_optab,
|
6581 |
|
|
"__sync_val_compare_and_swap", max);
|
6582 |
|
|
init_sync_libfuncs_1 (sync_lock_test_and_set_optab,
|
6583 |
|
|
"__sync_lock_test_and_set", max);
|
6584 |
|
|
|
6585 |
|
|
init_sync_libfuncs_1 (sync_old_add_optab, "__sync_fetch_and_add", max);
|
6586 |
|
|
init_sync_libfuncs_1 (sync_old_sub_optab, "__sync_fetch_and_sub", max);
|
6587 |
|
|
init_sync_libfuncs_1 (sync_old_ior_optab, "__sync_fetch_and_or", max);
|
6588 |
|
|
init_sync_libfuncs_1 (sync_old_and_optab, "__sync_fetch_and_and", max);
|
6589 |
|
|
init_sync_libfuncs_1 (sync_old_xor_optab, "__sync_fetch_and_xor", max);
|
6590 |
|
|
init_sync_libfuncs_1 (sync_old_nand_optab, "__sync_fetch_and_nand", max);
|
6591 |
|
|
|
6592 |
|
|
init_sync_libfuncs_1 (sync_new_add_optab, "__sync_add_and_fetch", max);
|
6593 |
|
|
init_sync_libfuncs_1 (sync_new_sub_optab, "__sync_sub_and_fetch", max);
|
6594 |
|
|
init_sync_libfuncs_1 (sync_new_ior_optab, "__sync_or_and_fetch", max);
|
6595 |
|
|
init_sync_libfuncs_1 (sync_new_and_optab, "__sync_and_and_fetch", max);
|
6596 |
|
|
init_sync_libfuncs_1 (sync_new_xor_optab, "__sync_xor_and_fetch", max);
|
6597 |
|
|
init_sync_libfuncs_1 (sync_new_nand_optab, "__sync_nand_and_fetch", max);
|
6598 |
|
|
}
|
6599 |
|
|
|
6600 |
|
|
/* Print information about the current contents of the optabs on
|
6601 |
|
|
STDERR. */
|
6602 |
|
|
|
6603 |
|
|
DEBUG_FUNCTION void
|
6604 |
|
|
debug_optab_libfuncs (void)
|
6605 |
|
|
{
|
6606 |
|
|
int i;
|
6607 |
|
|
int j;
|
6608 |
|
|
int k;
|
6609 |
|
|
|
6610 |
|
|
/* Dump the arithmetic optabs. */
|
6611 |
|
|
for (i = 0; i != (int) OTI_MAX; i++)
|
6612 |
|
|
for (j = 0; j < NUM_MACHINE_MODES; ++j)
|
6613 |
|
|
{
|
6614 |
|
|
optab o;
|
6615 |
|
|
rtx l;
|
6616 |
|
|
|
6617 |
|
|
o = &optab_table[i];
|
6618 |
|
|
l = optab_libfunc (o, (enum machine_mode) j);
|
6619 |
|
|
if (l)
|
6620 |
|
|
{
|
6621 |
|
|
gcc_assert (GET_CODE (l) == SYMBOL_REF);
|
6622 |
|
|
fprintf (stderr, "%s\t%s:\t%s\n",
|
6623 |
|
|
GET_RTX_NAME (o->code),
|
6624 |
|
|
GET_MODE_NAME (j),
|
6625 |
|
|
XSTR (l, 0));
|
6626 |
|
|
}
|
6627 |
|
|
}
|
6628 |
|
|
|
6629 |
|
|
/* Dump the conversion optabs. */
|
6630 |
|
|
for (i = 0; i < (int) COI_MAX; ++i)
|
6631 |
|
|
for (j = 0; j < NUM_MACHINE_MODES; ++j)
|
6632 |
|
|
for (k = 0; k < NUM_MACHINE_MODES; ++k)
|
6633 |
|
|
{
|
6634 |
|
|
convert_optab o;
|
6635 |
|
|
rtx l;
|
6636 |
|
|
|
6637 |
|
|
o = &convert_optab_table[i];
|
6638 |
|
|
l = convert_optab_libfunc (o, (enum machine_mode) j,
|
6639 |
|
|
(enum machine_mode) k);
|
6640 |
|
|
if (l)
|
6641 |
|
|
{
|
6642 |
|
|
gcc_assert (GET_CODE (l) == SYMBOL_REF);
|
6643 |
|
|
fprintf (stderr, "%s\t%s\t%s:\t%s\n",
|
6644 |
|
|
GET_RTX_NAME (o->code),
|
6645 |
|
|
GET_MODE_NAME (j),
|
6646 |
|
|
GET_MODE_NAME (k),
|
6647 |
|
|
XSTR (l, 0));
|
6648 |
|
|
}
|
6649 |
|
|
}
|
6650 |
|
|
}
|
6651 |
|
|
|
6652 |
|
|
|
6653 |
|
|
/* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
|
6654 |
|
|
CODE. Return 0 on failure. */
|
6655 |
|
|
|
6656 |
|
|
rtx
|
6657 |
|
|
gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
|
6658 |
|
|
{
|
6659 |
|
|
enum machine_mode mode = GET_MODE (op1);
|
6660 |
|
|
enum insn_code icode;
|
6661 |
|
|
rtx insn;
|
6662 |
|
|
rtx trap_rtx;
|
6663 |
|
|
|
6664 |
|
|
if (mode == VOIDmode)
|
6665 |
|
|
return 0;
|
6666 |
|
|
|
6667 |
|
|
icode = optab_handler (ctrap_optab, mode);
|
6668 |
|
|
if (icode == CODE_FOR_nothing)
|
6669 |
|
|
return 0;
|
6670 |
|
|
|
6671 |
|
|
/* Some targets only accept a zero trap code. */
|
6672 |
|
|
if (!insn_operand_matches (icode, 3, tcode))
|
6673 |
|
|
return 0;
|
6674 |
|
|
|
6675 |
|
|
do_pending_stack_adjust ();
|
6676 |
|
|
start_sequence ();
|
6677 |
|
|
prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
|
6678 |
|
|
&trap_rtx, &mode);
|
6679 |
|
|
if (!trap_rtx)
|
6680 |
|
|
insn = NULL_RTX;
|
6681 |
|
|
else
|
6682 |
|
|
insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
|
6683 |
|
|
tcode);
|
6684 |
|
|
|
6685 |
|
|
/* If that failed, then give up. */
|
6686 |
|
|
if (insn == 0)
|
6687 |
|
|
{
|
6688 |
|
|
end_sequence ();
|
6689 |
|
|
return 0;
|
6690 |
|
|
}
|
6691 |
|
|
|
6692 |
|
|
emit_insn (insn);
|
6693 |
|
|
insn = get_insns ();
|
6694 |
|
|
end_sequence ();
|
6695 |
|
|
return insn;
|
6696 |
|
|
}
|
6697 |
|
|
|
6698 |
|
|
/* Return rtx code for TCODE. Use UNSIGNEDP to select signed
|
6699 |
|
|
or unsigned operation code. */
|
6700 |
|
|
|
6701 |
|
|
static enum rtx_code
|
6702 |
|
|
get_rtx_code (enum tree_code tcode, bool unsignedp)
|
6703 |
|
|
{
|
6704 |
|
|
enum rtx_code code;
|
6705 |
|
|
switch (tcode)
|
6706 |
|
|
{
|
6707 |
|
|
case EQ_EXPR:
|
6708 |
|
|
code = EQ;
|
6709 |
|
|
break;
|
6710 |
|
|
case NE_EXPR:
|
6711 |
|
|
code = NE;
|
6712 |
|
|
break;
|
6713 |
|
|
case LT_EXPR:
|
6714 |
|
|
code = unsignedp ? LTU : LT;
|
6715 |
|
|
break;
|
6716 |
|
|
case LE_EXPR:
|
6717 |
|
|
code = unsignedp ? LEU : LE;
|
6718 |
|
|
break;
|
6719 |
|
|
case GT_EXPR:
|
6720 |
|
|
code = unsignedp ? GTU : GT;
|
6721 |
|
|
break;
|
6722 |
|
|
case GE_EXPR:
|
6723 |
|
|
code = unsignedp ? GEU : GE;
|
6724 |
|
|
break;
|
6725 |
|
|
|
6726 |
|
|
case UNORDERED_EXPR:
|
6727 |
|
|
code = UNORDERED;
|
6728 |
|
|
break;
|
6729 |
|
|
case ORDERED_EXPR:
|
6730 |
|
|
code = ORDERED;
|
6731 |
|
|
break;
|
6732 |
|
|
case UNLT_EXPR:
|
6733 |
|
|
code = UNLT;
|
6734 |
|
|
break;
|
6735 |
|
|
case UNLE_EXPR:
|
6736 |
|
|
code = UNLE;
|
6737 |
|
|
break;
|
6738 |
|
|
case UNGT_EXPR:
|
6739 |
|
|
code = UNGT;
|
6740 |
|
|
break;
|
6741 |
|
|
case UNGE_EXPR:
|
6742 |
|
|
code = UNGE;
|
6743 |
|
|
break;
|
6744 |
|
|
case UNEQ_EXPR:
|
6745 |
|
|
code = UNEQ;
|
6746 |
|
|
break;
|
6747 |
|
|
case LTGT_EXPR:
|
6748 |
|
|
code = LTGT;
|
6749 |
|
|
break;
|
6750 |
|
|
|
6751 |
|
|
default:
|
6752 |
|
|
gcc_unreachable ();
|
6753 |
|
|
}
|
6754 |
|
|
return code;
|
6755 |
|
|
}
|
6756 |
|
|
|
6757 |
|
|
/* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
|
6758 |
|
|
unsigned operators. Do not generate compare instruction. */
|
6759 |
|
|
|
6760 |
|
|
static rtx
|
6761 |
|
|
vector_compare_rtx (tree cond, bool unsignedp, enum insn_code icode)
|
6762 |
|
|
{
|
6763 |
|
|
struct expand_operand ops[2];
|
6764 |
|
|
enum rtx_code rcode;
|
6765 |
|
|
tree t_op0, t_op1;
|
6766 |
|
|
rtx rtx_op0, rtx_op1;
|
6767 |
|
|
|
6768 |
|
|
/* This is unlikely. While generating VEC_COND_EXPR, auto vectorizer
|
6769 |
|
|
ensures that condition is a relational operation. */
|
6770 |
|
|
gcc_assert (COMPARISON_CLASS_P (cond));
|
6771 |
|
|
|
6772 |
|
|
rcode = get_rtx_code (TREE_CODE (cond), unsignedp);
|
6773 |
|
|
t_op0 = TREE_OPERAND (cond, 0);
|
6774 |
|
|
t_op1 = TREE_OPERAND (cond, 1);
|
6775 |
|
|
|
6776 |
|
|
/* Expand operands. */
|
6777 |
|
|
rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
|
6778 |
|
|
EXPAND_STACK_PARM);
|
6779 |
|
|
rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
|
6780 |
|
|
EXPAND_STACK_PARM);
|
6781 |
|
|
|
6782 |
|
|
create_input_operand (&ops[0], rtx_op0, GET_MODE (rtx_op0));
|
6783 |
|
|
create_input_operand (&ops[1], rtx_op1, GET_MODE (rtx_op1));
|
6784 |
|
|
if (!maybe_legitimize_operands (icode, 4, 2, ops))
|
6785 |
|
|
gcc_unreachable ();
|
6786 |
|
|
return gen_rtx_fmt_ee (rcode, VOIDmode, ops[0].value, ops[1].value);
|
6787 |
|
|
}
|
6788 |
|
|
|
6789 |
|
|
/* Return true if VEC_PERM_EXPR can be expanded using SIMD extensions
|
6790 |
|
|
of the CPU. SEL may be NULL, which stands for an unknown constant. */
|
6791 |
|
|
|
6792 |
|
|
bool
|
6793 |
|
|
can_vec_perm_p (enum machine_mode mode, bool variable,
|
6794 |
|
|
const unsigned char *sel)
|
6795 |
|
|
{
|
6796 |
|
|
enum machine_mode qimode;
|
6797 |
|
|
|
6798 |
|
|
/* If the target doesn't implement a vector mode for the vector type,
|
6799 |
|
|
then no operations are supported. */
|
6800 |
|
|
if (!VECTOR_MODE_P (mode))
|
6801 |
|
|
return false;
|
6802 |
|
|
|
6803 |
|
|
if (!variable)
|
6804 |
|
|
{
|
6805 |
|
|
if (direct_optab_handler (vec_perm_const_optab, mode) != CODE_FOR_nothing
|
6806 |
|
|
&& (sel == NULL
|
6807 |
|
|
|| targetm.vectorize.vec_perm_const_ok == NULL
|
6808 |
|
|
|| targetm.vectorize.vec_perm_const_ok (mode, sel)))
|
6809 |
|
|
return true;
|
6810 |
|
|
}
|
6811 |
|
|
|
6812 |
|
|
if (direct_optab_handler (vec_perm_optab, mode) != CODE_FOR_nothing)
|
6813 |
|
|
return true;
|
6814 |
|
|
|
6815 |
|
|
/* We allow fallback to a QI vector mode, and adjust the mask. */
|
6816 |
|
|
if (GET_MODE_INNER (mode) == QImode)
|
6817 |
|
|
return false;
|
6818 |
|
|
qimode = mode_for_vector (QImode, GET_MODE_SIZE (mode));
|
6819 |
|
|
if (!VECTOR_MODE_P (qimode))
|
6820 |
|
|
return false;
|
6821 |
|
|
|
6822 |
|
|
/* ??? For completeness, we ought to check the QImode version of
|
6823 |
|
|
vec_perm_const_optab. But all users of this implicit lowering
|
6824 |
|
|
feature implement the variable vec_perm_optab. */
|
6825 |
|
|
if (direct_optab_handler (vec_perm_optab, qimode) == CODE_FOR_nothing)
|
6826 |
|
|
return false;
|
6827 |
|
|
|
6828 |
|
|
/* In order to support the lowering of variable permutations,
|
6829 |
|
|
we need to support shifts and adds. */
|
6830 |
|
|
if (variable)
|
6831 |
|
|
{
|
6832 |
|
|
if (GET_MODE_UNIT_SIZE (mode) > 2
|
6833 |
|
|
&& optab_handler (ashl_optab, mode) == CODE_FOR_nothing
|
6834 |
|
|
&& optab_handler (vashl_optab, mode) == CODE_FOR_nothing)
|
6835 |
|
|
return false;
|
6836 |
|
|
if (optab_handler (add_optab, qimode) == CODE_FOR_nothing)
|
6837 |
|
|
return false;
|
6838 |
|
|
}
|
6839 |
|
|
|
6840 |
|
|
return true;
|
6841 |
|
|
}
|
6842 |
|
|
|
6843 |
|
|
/* A subroutine of expand_vec_perm for expanding one vec_perm insn. */
|
6844 |
|
|
|
6845 |
|
|
static rtx
|
6846 |
|
|
expand_vec_perm_1 (enum insn_code icode, rtx target,
|
6847 |
|
|
rtx v0, rtx v1, rtx sel)
|
6848 |
|
|
{
|
6849 |
|
|
enum machine_mode tmode = GET_MODE (target);
|
6850 |
|
|
enum machine_mode smode = GET_MODE (sel);
|
6851 |
|
|
struct expand_operand ops[4];
|
6852 |
|
|
|
6853 |
|
|
create_output_operand (&ops[0], target, tmode);
|
6854 |
|
|
create_input_operand (&ops[3], sel, smode);
|
6855 |
|
|
|
6856 |
|
|
/* Make an effort to preserve v0 == v1. The target expander is able to
|
6857 |
|
|
rely on this to determine if we're permuting a single input operand. */
|
6858 |
|
|
if (rtx_equal_p (v0, v1))
|
6859 |
|
|
{
|
6860 |
|
|
if (!insn_operand_matches (icode, 1, v0))
|
6861 |
|
|
v0 = force_reg (tmode, v0);
|
6862 |
|
|
gcc_checking_assert (insn_operand_matches (icode, 1, v0));
|
6863 |
|
|
gcc_checking_assert (insn_operand_matches (icode, 2, v0));
|
6864 |
|
|
|
6865 |
|
|
create_fixed_operand (&ops[1], v0);
|
6866 |
|
|
create_fixed_operand (&ops[2], v0);
|
6867 |
|
|
}
|
6868 |
|
|
else
|
6869 |
|
|
{
|
6870 |
|
|
create_input_operand (&ops[1], v0, tmode);
|
6871 |
|
|
create_input_operand (&ops[2], v1, tmode);
|
6872 |
|
|
}
|
6873 |
|
|
|
6874 |
|
|
if (maybe_expand_insn (icode, 4, ops))
|
6875 |
|
|
return ops[0].value;
|
6876 |
|
|
return NULL_RTX;
|
6877 |
|
|
}
|
6878 |
|
|
|
6879 |
|
|
/* Generate instructions for vec_perm optab given its mode
|
6880 |
|
|
and three operands. */
|
6881 |
|
|
|
6882 |
|
|
rtx
|
6883 |
|
|
expand_vec_perm (enum machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
|
6884 |
|
|
{
|
6885 |
|
|
enum insn_code icode;
|
6886 |
|
|
enum machine_mode qimode;
|
6887 |
|
|
unsigned int i, w, e, u;
|
6888 |
|
|
rtx tmp, sel_qi = NULL;
|
6889 |
|
|
rtvec vec;
|
6890 |
|
|
|
6891 |
|
|
if (!target || GET_MODE (target) != mode)
|
6892 |
|
|
target = gen_reg_rtx (mode);
|
6893 |
|
|
|
6894 |
|
|
w = GET_MODE_SIZE (mode);
|
6895 |
|
|
e = GET_MODE_NUNITS (mode);
|
6896 |
|
|
u = GET_MODE_UNIT_SIZE (mode);
|
6897 |
|
|
|
6898 |
|
|
/* Set QIMODE to a different vector mode with byte elements.
|
6899 |
|
|
If no such mode, or if MODE already has byte elements, use VOIDmode. */
|
6900 |
|
|
qimode = VOIDmode;
|
6901 |
|
|
if (GET_MODE_INNER (mode) != QImode)
|
6902 |
|
|
{
|
6903 |
|
|
qimode = mode_for_vector (QImode, w);
|
6904 |
|
|
if (!VECTOR_MODE_P (qimode))
|
6905 |
|
|
qimode = VOIDmode;
|
6906 |
|
|
}
|
6907 |
|
|
|
6908 |
|
|
/* If the input is a constant, expand it specially. */
|
6909 |
|
|
gcc_assert (GET_MODE_CLASS (GET_MODE (sel)) == MODE_VECTOR_INT);
|
6910 |
|
|
if (GET_CODE (sel) == CONST_VECTOR)
|
6911 |
|
|
{
|
6912 |
|
|
icode = direct_optab_handler (vec_perm_const_optab, mode);
|
6913 |
|
|
if (icode != CODE_FOR_nothing)
|
6914 |
|
|
{
|
6915 |
|
|
tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
|
6916 |
|
|
if (tmp)
|
6917 |
|
|
return tmp;
|
6918 |
|
|
}
|
6919 |
|
|
|
6920 |
|
|
/* Fall back to a constant byte-based permutation. */
|
6921 |
|
|
if (qimode != VOIDmode)
|
6922 |
|
|
{
|
6923 |
|
|
vec = rtvec_alloc (w);
|
6924 |
|
|
for (i = 0; i < e; ++i)
|
6925 |
|
|
{
|
6926 |
|
|
unsigned int j, this_e;
|
6927 |
|
|
|
6928 |
|
|
this_e = INTVAL (CONST_VECTOR_ELT (sel, i));
|
6929 |
|
|
this_e &= 2 * e - 1;
|
6930 |
|
|
this_e *= u;
|
6931 |
|
|
|
6932 |
|
|
for (j = 0; j < u; ++j)
|
6933 |
|
|
RTVEC_ELT (vec, i * u + j) = GEN_INT (this_e + j);
|
6934 |
|
|
}
|
6935 |
|
|
sel_qi = gen_rtx_CONST_VECTOR (qimode, vec);
|
6936 |
|
|
|
6937 |
|
|
icode = direct_optab_handler (vec_perm_const_optab, qimode);
|
6938 |
|
|
if (icode != CODE_FOR_nothing)
|
6939 |
|
|
{
|
6940 |
|
|
tmp = expand_vec_perm_1 (icode, gen_lowpart (qimode, target),
|
6941 |
|
|
gen_lowpart (qimode, v0),
|
6942 |
|
|
gen_lowpart (qimode, v1), sel_qi);
|
6943 |
|
|
if (tmp)
|
6944 |
|
|
return gen_lowpart (mode, tmp);
|
6945 |
|
|
}
|
6946 |
|
|
}
|
6947 |
|
|
}
|
6948 |
|
|
|
6949 |
|
|
/* Otherwise expand as a fully variable permuation. */
|
6950 |
|
|
icode = direct_optab_handler (vec_perm_optab, mode);
|
6951 |
|
|
if (icode != CODE_FOR_nothing)
|
6952 |
|
|
{
|
6953 |
|
|
tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
|
6954 |
|
|
if (tmp)
|
6955 |
|
|
return tmp;
|
6956 |
|
|
}
|
6957 |
|
|
|
6958 |
|
|
/* As a special case to aid several targets, lower the element-based
|
6959 |
|
|
permutation to a byte-based permutation and try again. */
|
6960 |
|
|
if (qimode == VOIDmode)
|
6961 |
|
|
return NULL_RTX;
|
6962 |
|
|
icode = direct_optab_handler (vec_perm_optab, qimode);
|
6963 |
|
|
if (icode == CODE_FOR_nothing)
|
6964 |
|
|
return NULL_RTX;
|
6965 |
|
|
|
6966 |
|
|
if (sel_qi == NULL)
|
6967 |
|
|
{
|
6968 |
|
|
/* Multiply each element by its byte size. */
|
6969 |
|
|
enum machine_mode selmode = GET_MODE (sel);
|
6970 |
|
|
if (u == 2)
|
6971 |
|
|
sel = expand_simple_binop (selmode, PLUS, sel, sel,
|
6972 |
|
|
sel, 0, OPTAB_DIRECT);
|
6973 |
|
|
else
|
6974 |
|
|
sel = expand_simple_binop (selmode, ASHIFT, sel,
|
6975 |
|
|
GEN_INT (exact_log2 (u)),
|
6976 |
|
|
sel, 0, OPTAB_DIRECT);
|
6977 |
|
|
gcc_assert (sel != NULL);
|
6978 |
|
|
|
6979 |
|
|
/* Broadcast the low byte each element into each of its bytes. */
|
6980 |
|
|
vec = rtvec_alloc (w);
|
6981 |
|
|
for (i = 0; i < w; ++i)
|
6982 |
|
|
{
|
6983 |
|
|
int this_e = i / u * u;
|
6984 |
|
|
if (BYTES_BIG_ENDIAN)
|
6985 |
|
|
this_e += u - 1;
|
6986 |
|
|
RTVEC_ELT (vec, i) = GEN_INT (this_e);
|
6987 |
|
|
}
|
6988 |
|
|
tmp = gen_rtx_CONST_VECTOR (qimode, vec);
|
6989 |
|
|
sel = gen_lowpart (qimode, sel);
|
6990 |
|
|
sel = expand_vec_perm (qimode, sel, sel, tmp, NULL);
|
6991 |
|
|
gcc_assert (sel != NULL);
|
6992 |
|
|
|
6993 |
|
|
/* Add the byte offset to each byte element. */
|
6994 |
|
|
/* Note that the definition of the indicies here is memory ordering,
|
6995 |
|
|
so there should be no difference between big and little endian. */
|
6996 |
|
|
vec = rtvec_alloc (w);
|
6997 |
|
|
for (i = 0; i < w; ++i)
|
6998 |
|
|
RTVEC_ELT (vec, i) = GEN_INT (i % u);
|
6999 |
|
|
tmp = gen_rtx_CONST_VECTOR (qimode, vec);
|
7000 |
|
|
sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp,
|
7001 |
|
|
sel, 0, OPTAB_DIRECT);
|
7002 |
|
|
gcc_assert (sel_qi != NULL);
|
7003 |
|
|
}
|
7004 |
|
|
|
7005 |
|
|
tmp = expand_vec_perm_1 (icode, gen_lowpart (qimode, target),
|
7006 |
|
|
gen_lowpart (qimode, v0),
|
7007 |
|
|
gen_lowpart (qimode, v1), sel_qi);
|
7008 |
|
|
if (tmp)
|
7009 |
|
|
tmp = gen_lowpart (mode, tmp);
|
7010 |
|
|
return tmp;
|
7011 |
|
|
}
|
7012 |
|
|
|
7013 |
|
|
/* Return insn code for a conditional operator with a comparison in
|
7014 |
|
|
mode CMODE, unsigned if UNS is true, resulting in a value of mode VMODE. */
|
7015 |
|
|
|
7016 |
|
|
static inline enum insn_code
|
7017 |
|
|
get_vcond_icode (enum machine_mode vmode, enum machine_mode cmode, bool uns)
|
7018 |
|
|
{
|
7019 |
|
|
enum insn_code icode = CODE_FOR_nothing;
|
7020 |
|
|
if (uns)
|
7021 |
|
|
icode = convert_optab_handler (vcondu_optab, vmode, cmode);
|
7022 |
|
|
else
|
7023 |
|
|
icode = convert_optab_handler (vcond_optab, vmode, cmode);
|
7024 |
|
|
return icode;
|
7025 |
|
|
}
|
7026 |
|
|
|
7027 |
|
|
/* Return TRUE iff, appropriate vector insns are available
|
7028 |
|
|
for vector cond expr with vector type VALUE_TYPE and a comparison
|
7029 |
|
|
with operand vector types in CMP_OP_TYPE. */
|
7030 |
|
|
|
7031 |
|
|
bool
|
7032 |
|
|
expand_vec_cond_expr_p (tree value_type, tree cmp_op_type)
|
7033 |
|
|
{
|
7034 |
|
|
enum machine_mode value_mode = TYPE_MODE (value_type);
|
7035 |
|
|
enum machine_mode cmp_op_mode = TYPE_MODE (cmp_op_type);
|
7036 |
|
|
if (GET_MODE_SIZE (value_mode) != GET_MODE_SIZE (cmp_op_mode)
|
7037 |
|
|
|| GET_MODE_NUNITS (value_mode) != GET_MODE_NUNITS (cmp_op_mode)
|
7038 |
|
|
|| get_vcond_icode (TYPE_MODE (value_type), TYPE_MODE (cmp_op_type),
|
7039 |
|
|
TYPE_UNSIGNED (cmp_op_type)) == CODE_FOR_nothing)
|
7040 |
|
|
return false;
|
7041 |
|
|
return true;
|
7042 |
|
|
}
|
7043 |
|
|
|
7044 |
|
|
/* Generate insns for a VEC_COND_EXPR, given its TYPE and its
|
7045 |
|
|
three operands. */
|
7046 |
|
|
|
7047 |
|
|
rtx
|
7048 |
|
|
expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
|
7049 |
|
|
rtx target)
|
7050 |
|
|
{
|
7051 |
|
|
struct expand_operand ops[6];
|
7052 |
|
|
enum insn_code icode;
|
7053 |
|
|
rtx comparison, rtx_op1, rtx_op2;
|
7054 |
|
|
enum machine_mode mode = TYPE_MODE (vec_cond_type);
|
7055 |
|
|
enum machine_mode cmp_op_mode;
|
7056 |
|
|
bool unsignedp;
|
7057 |
|
|
|
7058 |
|
|
gcc_assert (COMPARISON_CLASS_P (op0));
|
7059 |
|
|
|
7060 |
|
|
unsignedp = TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op0, 0)));
|
7061 |
|
|
cmp_op_mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (op0, 0)));
|
7062 |
|
|
|
7063 |
|
|
gcc_assert (GET_MODE_SIZE (mode) == GET_MODE_SIZE (cmp_op_mode)
|
7064 |
|
|
&& GET_MODE_NUNITS (mode) == GET_MODE_NUNITS (cmp_op_mode));
|
7065 |
|
|
|
7066 |
|
|
icode = get_vcond_icode (mode, cmp_op_mode, unsignedp);
|
7067 |
|
|
if (icode == CODE_FOR_nothing)
|
7068 |
|
|
return 0;
|
7069 |
|
|
|
7070 |
|
|
comparison = vector_compare_rtx (op0, unsignedp, icode);
|
7071 |
|
|
rtx_op1 = expand_normal (op1);
|
7072 |
|
|
rtx_op2 = expand_normal (op2);
|
7073 |
|
|
|
7074 |
|
|
create_output_operand (&ops[0], target, mode);
|
7075 |
|
|
create_input_operand (&ops[1], rtx_op1, mode);
|
7076 |
|
|
create_input_operand (&ops[2], rtx_op2, mode);
|
7077 |
|
|
create_fixed_operand (&ops[3], comparison);
|
7078 |
|
|
create_fixed_operand (&ops[4], XEXP (comparison, 0));
|
7079 |
|
|
create_fixed_operand (&ops[5], XEXP (comparison, 1));
|
7080 |
|
|
expand_insn (icode, 6, ops);
|
7081 |
|
|
return ops[0].value;
|
7082 |
|
|
}
|
7083 |
|
|
|
7084 |
|
|
|
7085 |
|
|
/* Return true if there is a compare_and_swap pattern. */
|
7086 |
|
|
|
7087 |
|
|
bool
|
7088 |
|
|
can_compare_and_swap_p (enum machine_mode mode, bool allow_libcall)
|
7089 |
|
|
{
|
7090 |
|
|
enum insn_code icode;
|
7091 |
|
|
|
7092 |
|
|
/* Check for __atomic_compare_and_swap. */
|
7093 |
|
|
icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
|
7094 |
|
|
if (icode != CODE_FOR_nothing)
|
7095 |
|
|
return true;
|
7096 |
|
|
|
7097 |
|
|
/* Check for __sync_compare_and_swap. */
|
7098 |
|
|
icode = optab_handler (sync_compare_and_swap_optab, mode);
|
7099 |
|
|
if (icode != CODE_FOR_nothing)
|
7100 |
|
|
return true;
|
7101 |
|
|
if (allow_libcall && optab_libfunc (sync_compare_and_swap_optab, mode))
|
7102 |
|
|
return true;
|
7103 |
|
|
|
7104 |
|
|
/* No inline compare and swap. */
|
7105 |
|
|
return false;
|
7106 |
|
|
}
|
7107 |
|
|
|
7108 |
|
|
/* Return true if an atomic exchange can be performed. */
|
7109 |
|
|
|
7110 |
|
|
bool
|
7111 |
|
|
can_atomic_exchange_p (enum machine_mode mode, bool allow_libcall)
|
7112 |
|
|
{
|
7113 |
|
|
enum insn_code icode;
|
7114 |
|
|
|
7115 |
|
|
/* Check for __atomic_exchange. */
|
7116 |
|
|
icode = direct_optab_handler (atomic_exchange_optab, mode);
|
7117 |
|
|
if (icode != CODE_FOR_nothing)
|
7118 |
|
|
return true;
|
7119 |
|
|
|
7120 |
|
|
/* Don't check __sync_test_and_set, as on some platforms that
|
7121 |
|
|
has reduced functionality. Targets that really do support
|
7122 |
|
|
a proper exchange should simply be updated to the __atomics. */
|
7123 |
|
|
|
7124 |
|
|
return can_compare_and_swap_p (mode, allow_libcall);
|
7125 |
|
|
}
|
7126 |
|
|
|
7127 |
|
|
|
7128 |
|
|
/* Helper function to find the MODE_CC set in a sync_compare_and_swap
|
7129 |
|
|
pattern. */
|
7130 |
|
|
|
7131 |
|
|
static void
|
7132 |
|
|
find_cc_set (rtx x, const_rtx pat, void *data)
|
7133 |
|
|
{
|
7134 |
|
|
if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
|
7135 |
|
|
&& GET_CODE (pat) == SET)
|
7136 |
|
|
{
|
7137 |
|
|
rtx *p_cc_reg = (rtx *) data;
|
7138 |
|
|
gcc_assert (!*p_cc_reg);
|
7139 |
|
|
*p_cc_reg = x;
|
7140 |
|
|
}
|
7141 |
|
|
}
|
7142 |
|
|
|
7143 |
|
|
/* This is a helper function for the other atomic operations. This function
|
7144 |
|
|
emits a loop that contains SEQ that iterates until a compare-and-swap
|
7145 |
|
|
operation at the end succeeds. MEM is the memory to be modified. SEQ is
|
7146 |
|
|
a set of instructions that takes a value from OLD_REG as an input and
|
7147 |
|
|
produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
|
7148 |
|
|
set to the current contents of MEM. After SEQ, a compare-and-swap will
|
7149 |
|
|
attempt to update MEM with NEW_REG. The function returns true when the
|
7150 |
|
|
loop was generated successfully. */
|
7151 |
|
|
|
7152 |
|
|
static bool
|
7153 |
|
|
expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
|
7154 |
|
|
{
|
7155 |
|
|
enum machine_mode mode = GET_MODE (mem);
|
7156 |
|
|
rtx label, cmp_reg, success, oldval;
|
7157 |
|
|
|
7158 |
|
|
/* The loop we want to generate looks like
|
7159 |
|
|
|
7160 |
|
|
cmp_reg = mem;
|
7161 |
|
|
label:
|
7162 |
|
|
old_reg = cmp_reg;
|
7163 |
|
|
seq;
|
7164 |
|
|
(success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
|
7165 |
|
|
if (success)
|
7166 |
|
|
goto label;
|
7167 |
|
|
|
7168 |
|
|
Note that we only do the plain load from memory once. Subsequent
|
7169 |
|
|
iterations use the value loaded by the compare-and-swap pattern. */
|
7170 |
|
|
|
7171 |
|
|
label = gen_label_rtx ();
|
7172 |
|
|
cmp_reg = gen_reg_rtx (mode);
|
7173 |
|
|
|
7174 |
|
|
emit_move_insn (cmp_reg, mem);
|
7175 |
|
|
emit_label (label);
|
7176 |
|
|
emit_move_insn (old_reg, cmp_reg);
|
7177 |
|
|
if (seq)
|
7178 |
|
|
emit_insn (seq);
|
7179 |
|
|
|
7180 |
|
|
success = NULL_RTX;
|
7181 |
|
|
oldval = cmp_reg;
|
7182 |
|
|
if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
|
7183 |
|
|
new_reg, false, MEMMODEL_SEQ_CST,
|
7184 |
|
|
MEMMODEL_RELAXED))
|
7185 |
|
|
return false;
|
7186 |
|
|
|
7187 |
|
|
if (oldval != cmp_reg)
|
7188 |
|
|
emit_move_insn (cmp_reg, oldval);
|
7189 |
|
|
|
7190 |
|
|
/* ??? Mark this jump predicted not taken? */
|
7191 |
|
|
emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
|
7192 |
|
|
GET_MODE (success), 1, label);
|
7193 |
|
|
return true;
|
7194 |
|
|
}
|
7195 |
|
|
|
7196 |
|
|
|
7197 |
|
|
/* This function tries to emit an atomic_exchange intruction. VAL is written
|
7198 |
|
|
to *MEM using memory model MODEL. The previous contents of *MEM are returned,
|
7199 |
|
|
using TARGET if possible. */
|
7200 |
|
|
|
7201 |
|
|
static rtx
|
7202 |
|
|
maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
|
7203 |
|
|
{
|
7204 |
|
|
enum machine_mode mode = GET_MODE (mem);
|
7205 |
|
|
enum insn_code icode;
|
7206 |
|
|
|
7207 |
|
|
/* If the target supports the exchange directly, great. */
|
7208 |
|
|
icode = direct_optab_handler (atomic_exchange_optab, mode);
|
7209 |
|
|
if (icode != CODE_FOR_nothing)
|
7210 |
|
|
{
|
7211 |
|
|
struct expand_operand ops[4];
|
7212 |
|
|
|
7213 |
|
|
create_output_operand (&ops[0], target, mode);
|
7214 |
|
|
create_fixed_operand (&ops[1], mem);
|
7215 |
|
|
/* VAL may have been promoted to a wider mode. Shrink it if so. */
|
7216 |
|
|
create_convert_operand_to (&ops[2], val, mode, true);
|
7217 |
|
|
create_integer_operand (&ops[3], model);
|
7218 |
|
|
if (maybe_expand_insn (icode, 4, ops))
|
7219 |
|
|
return ops[0].value;
|
7220 |
|
|
}
|
7221 |
|
|
|
7222 |
|
|
return NULL_RTX;
|
7223 |
|
|
}
|
7224 |
|
|
|
7225 |
|
|
/* This function tries to implement an atomic exchange operation using
|
7226 |
|
|
__sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
|
7227 |
|
|
The previous contents of *MEM are returned, using TARGET if possible.
|
7228 |
|
|
Since this instructionn is an acquire barrier only, stronger memory
|
7229 |
|
|
models may require additional barriers to be emitted. */
|
7230 |
|
|
|
7231 |
|
|
static rtx
|
7232 |
|
|
maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val,
|
7233 |
|
|
enum memmodel model)
|
7234 |
|
|
{
|
7235 |
|
|
enum machine_mode mode = GET_MODE (mem);
|
7236 |
|
|
enum insn_code icode;
|
7237 |
|
|
rtx last_insn = get_last_insn ();
|
7238 |
|
|
|
7239 |
|
|
icode = optab_handler (sync_lock_test_and_set_optab, mode);
|
7240 |
|
|
|
7241 |
|
|
/* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
|
7242 |
|
|
exists, and the memory model is stronger than acquire, add a release
|
7243 |
|
|
barrier before the instruction. */
|
7244 |
|
|
|
7245 |
|
|
if (model == MEMMODEL_SEQ_CST
|
7246 |
|
|
|| model == MEMMODEL_RELEASE
|
7247 |
|
|
|| model == MEMMODEL_ACQ_REL)
|
7248 |
|
|
expand_mem_thread_fence (model);
|
7249 |
|
|
|
7250 |
|
|
if (icode != CODE_FOR_nothing)
|
7251 |
|
|
{
|
7252 |
|
|
struct expand_operand ops[3];
|
7253 |
|
|
create_output_operand (&ops[0], target, mode);
|
7254 |
|
|
create_fixed_operand (&ops[1], mem);
|
7255 |
|
|
/* VAL may have been promoted to a wider mode. Shrink it if so. */
|
7256 |
|
|
create_convert_operand_to (&ops[2], val, mode, true);
|
7257 |
|
|
if (maybe_expand_insn (icode, 3, ops))
|
7258 |
|
|
return ops[0].value;
|
7259 |
|
|
}
|
7260 |
|
|
|
7261 |
|
|
/* If an external test-and-set libcall is provided, use that instead of
|
7262 |
|
|
any external compare-and-swap that we might get from the compare-and-
|
7263 |
|
|
swap-loop expansion later. */
|
7264 |
|
|
if (!can_compare_and_swap_p (mode, false))
|
7265 |
|
|
{
|
7266 |
|
|
rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode);
|
7267 |
|
|
if (libfunc != NULL)
|
7268 |
|
|
{
|
7269 |
|
|
rtx addr;
|
7270 |
|
|
|
7271 |
|
|
addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
|
7272 |
|
|
return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
|
7273 |
|
|
mode, 2, addr, ptr_mode,
|
7274 |
|
|
val, mode);
|
7275 |
|
|
}
|
7276 |
|
|
}
|
7277 |
|
|
|
7278 |
|
|
/* If the test_and_set can't be emitted, eliminate any barrier that might
|
7279 |
|
|
have been emitted. */
|
7280 |
|
|
delete_insns_since (last_insn);
|
7281 |
|
|
return NULL_RTX;
|
7282 |
|
|
}
|
7283 |
|
|
|
7284 |
|
|
/* This function tries to implement an atomic exchange operation using a
|
7285 |
|
|
compare_and_swap loop. VAL is written to *MEM. The previous contents of
|
7286 |
|
|
*MEM are returned, using TARGET if possible. No memory model is required
|
7287 |
|
|
since a compare_and_swap loop is seq-cst. */
|
7288 |
|
|
|
7289 |
|
|
static rtx
|
7290 |
|
|
maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
|
7291 |
|
|
{
|
7292 |
|
|
enum machine_mode mode = GET_MODE (mem);
|
7293 |
|
|
|
7294 |
|
|
if (can_compare_and_swap_p (mode, true))
|
7295 |
|
|
{
|
7296 |
|
|
if (!target || !register_operand (target, mode))
|
7297 |
|
|
target = gen_reg_rtx (mode);
|
7298 |
|
|
if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
|
7299 |
|
|
val = convert_modes (mode, GET_MODE (val), val, 1);
|
7300 |
|
|
if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
|
7301 |
|
|
return target;
|
7302 |
|
|
}
|
7303 |
|
|
|
7304 |
|
|
return NULL_RTX;
|
7305 |
|
|
}
|
7306 |
|
|
|
7307 |
|
|
/* This function tries to implement an atomic test-and-set operation
|
7308 |
|
|
using the atomic_test_and_set instruction pattern. A boolean value
|
7309 |
|
|
is returned from the operation, using TARGET if possible. */
|
7310 |
|
|
|
7311 |
|
|
#ifndef HAVE_atomic_test_and_set
|
7312 |
|
|
#define HAVE_atomic_test_and_set 0
|
7313 |
|
|
#define CODE_FOR_atomic_test_and_set CODE_FOR_nothing
|
7314 |
|
|
#endif
|
7315 |
|
|
|
7316 |
|
|
static rtx
|
7317 |
|
|
maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
|
7318 |
|
|
{
|
7319 |
|
|
enum machine_mode pat_bool_mode;
|
7320 |
|
|
struct expand_operand ops[3];
|
7321 |
|
|
|
7322 |
|
|
if (!HAVE_atomic_test_and_set)
|
7323 |
|
|
return NULL_RTX;
|
7324 |
|
|
|
7325 |
|
|
/* While we always get QImode from __atomic_test_and_set, we get
|
7326 |
|
|
other memory modes from __sync_lock_test_and_set. Note that we
|
7327 |
|
|
use no endian adjustment here. This matches the 4.6 behavior
|
7328 |
|
|
in the Sparc backend. */
|
7329 |
|
|
gcc_checking_assert
|
7330 |
|
|
(insn_data[CODE_FOR_atomic_test_and_set].operand[1].mode == QImode);
|
7331 |
|
|
if (GET_MODE (mem) != QImode)
|
7332 |
|
|
mem = adjust_address_nv (mem, QImode, 0);
|
7333 |
|
|
|
7334 |
|
|
pat_bool_mode = insn_data[CODE_FOR_atomic_test_and_set].operand[0].mode;
|
7335 |
|
|
create_output_operand (&ops[0], target, pat_bool_mode);
|
7336 |
|
|
create_fixed_operand (&ops[1], mem);
|
7337 |
|
|
create_integer_operand (&ops[2], model);
|
7338 |
|
|
|
7339 |
|
|
if (maybe_expand_insn (CODE_FOR_atomic_test_and_set, 3, ops))
|
7340 |
|
|
return ops[0].value;
|
7341 |
|
|
return NULL_RTX;
|
7342 |
|
|
}
|
7343 |
|
|
|
7344 |
|
|
/* This function expands the legacy _sync_lock test_and_set operation which is
|
7345 |
|
|
generally an atomic exchange. Some limited targets only allow the
|
7346 |
|
|
constant 1 to be stored. This is an ACQUIRE operation.
|
7347 |
|
|
|
7348 |
|
|
TARGET is an optional place to stick the return value.
|
7349 |
|
|
MEM is where VAL is stored. */
|
7350 |
|
|
|
7351 |
|
|
rtx
|
7352 |
|
|
expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
|
7353 |
|
|
{
|
7354 |
|
|
rtx ret;
|
7355 |
|
|
|
7356 |
|
|
/* Try an atomic_exchange first. */
|
7357 |
|
|
ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_ACQUIRE);
|
7358 |
|
|
if (ret)
|
7359 |
|
|
return ret;
|
7360 |
|
|
|
7361 |
|
|
ret = maybe_emit_sync_lock_test_and_set (target, mem, val, MEMMODEL_ACQUIRE);
|
7362 |
|
|
if (ret)
|
7363 |
|
|
return ret;
|
7364 |
|
|
|
7365 |
|
|
ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
|
7366 |
|
|
if (ret)
|
7367 |
|
|
return ret;
|
7368 |
|
|
|
7369 |
|
|
/* If there are no other options, try atomic_test_and_set if the value
|
7370 |
|
|
being stored is 1. */
|
7371 |
|
|
if (val == const1_rtx)
|
7372 |
|
|
ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_ACQUIRE);
|
7373 |
|
|
|
7374 |
|
|
return ret;
|
7375 |
|
|
}
|
7376 |
|
|
|
7377 |
|
|
/* This function expands the atomic test_and_set operation:
|
7378 |
|
|
atomically store a boolean TRUE into MEM and return the previous value.
|
7379 |
|
|
|
7380 |
|
|
MEMMODEL is the memory model variant to use.
|
7381 |
|
|
TARGET is an optional place to stick the return value. */
|
7382 |
|
|
|
7383 |
|
|
rtx
|
7384 |
|
|
expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
|
7385 |
|
|
{
|
7386 |
|
|
enum machine_mode mode = GET_MODE (mem);
|
7387 |
|
|
rtx ret;
|
7388 |
|
|
|
7389 |
|
|
ret = maybe_emit_atomic_test_and_set (target, mem, model);
|
7390 |
|
|
if (ret)
|
7391 |
|
|
return ret;
|
7392 |
|
|
|
7393 |
|
|
if (target == NULL_RTX)
|
7394 |
|
|
target = gen_reg_rtx (mode);
|
7395 |
|
|
|
7396 |
|
|
/* If there is no test and set, try exchange, then a compare_and_swap loop,
|
7397 |
|
|
then __sync_test_and_set. */
|
7398 |
|
|
ret = maybe_emit_atomic_exchange (target, mem, const1_rtx, model);
|
7399 |
|
|
if (ret)
|
7400 |
|
|
return ret;
|
7401 |
|
|
|
7402 |
|
|
ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, const1_rtx);
|
7403 |
|
|
if (ret)
|
7404 |
|
|
return ret;
|
7405 |
|
|
|
7406 |
|
|
ret = maybe_emit_sync_lock_test_and_set (target, mem, const1_rtx, model);
|
7407 |
|
|
if (ret)
|
7408 |
|
|
return ret;
|
7409 |
|
|
|
7410 |
|
|
/* Failing all else, assume a single threaded environment and simply perform
|
7411 |
|
|
the operation. */
|
7412 |
|
|
emit_move_insn (target, mem);
|
7413 |
|
|
emit_move_insn (mem, const1_rtx);
|
7414 |
|
|
return target;
|
7415 |
|
|
}
|
7416 |
|
|
|
7417 |
|
|
/* This function expands the atomic exchange operation:
|
7418 |
|
|
atomically store VAL in MEM and return the previous value in MEM.
|
7419 |
|
|
|
7420 |
|
|
MEMMODEL is the memory model variant to use.
|
7421 |
|
|
TARGET is an optional place to stick the return value. */
|
7422 |
|
|
|
7423 |
|
|
rtx
|
7424 |
|
|
expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
|
7425 |
|
|
{
|
7426 |
|
|
rtx ret;
|
7427 |
|
|
|
7428 |
|
|
ret = maybe_emit_atomic_exchange (target, mem, val, model);
|
7429 |
|
|
|
7430 |
|
|
/* Next try a compare-and-swap loop for the exchange. */
|
7431 |
|
|
if (!ret)
|
7432 |
|
|
ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
|
7433 |
|
|
|
7434 |
|
|
return ret;
|
7435 |
|
|
}
|
7436 |
|
|
|
7437 |
|
|
/* This function expands the atomic compare exchange operation:
|
7438 |
|
|
|
7439 |
|
|
*PTARGET_BOOL is an optional place to store the boolean success/failure.
|
7440 |
|
|
*PTARGET_OVAL is an optional place to store the old value from memory.
|
7441 |
|
|
Both target parameters may be NULL to indicate that we do not care about
|
7442 |
|
|
that return value. Both target parameters are updated on success to
|
7443 |
|
|
the actual location of the corresponding result.
|
7444 |
|
|
|
7445 |
|
|
MEMMODEL is the memory model variant to use.
|
7446 |
|
|
|
7447 |
|
|
The return value of the function is true for success. */
|
7448 |
|
|
|
7449 |
|
|
bool
|
7450 |
|
|
expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval,
|
7451 |
|
|
rtx mem, rtx expected, rtx desired,
|
7452 |
|
|
bool is_weak, enum memmodel succ_model,
|
7453 |
|
|
enum memmodel fail_model)
|
7454 |
|
|
{
|
7455 |
|
|
enum machine_mode mode = GET_MODE (mem);
|
7456 |
|
|
struct expand_operand ops[8];
|
7457 |
|
|
enum insn_code icode;
|
7458 |
|
|
rtx target_oval, target_bool = NULL_RTX;
|
7459 |
|
|
rtx libfunc;
|
7460 |
|
|
|
7461 |
|
|
/* Load expected into a register for the compare and swap. */
|
7462 |
|
|
if (MEM_P (expected))
|
7463 |
|
|
expected = copy_to_reg (expected);
|
7464 |
|
|
|
7465 |
|
|
/* Make sure we always have some place to put the return oldval.
|
7466 |
|
|
Further, make sure that place is distinct from the input expected,
|
7467 |
|
|
just in case we need that path down below. */
|
7468 |
|
|
if (ptarget_oval == NULL
|
7469 |
|
|
|| (target_oval = *ptarget_oval) == NULL
|
7470 |
|
|
|| reg_overlap_mentioned_p (expected, target_oval))
|
7471 |
|
|
target_oval = gen_reg_rtx (mode);
|
7472 |
|
|
|
7473 |
|
|
icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
|
7474 |
|
|
if (icode != CODE_FOR_nothing)
|
7475 |
|
|
{
|
7476 |
|
|
enum machine_mode bool_mode = insn_data[icode].operand[0].mode;
|
7477 |
|
|
|
7478 |
|
|
/* Make sure we always have a place for the bool operand. */
|
7479 |
|
|
if (ptarget_bool == NULL
|
7480 |
|
|
|| (target_bool = *ptarget_bool) == NULL
|
7481 |
|
|
|| GET_MODE (target_bool) != bool_mode)
|
7482 |
|
|
target_bool = gen_reg_rtx (bool_mode);
|
7483 |
|
|
|
7484 |
|
|
/* Emit the compare_and_swap. */
|
7485 |
|
|
create_output_operand (&ops[0], target_bool, bool_mode);
|
7486 |
|
|
create_output_operand (&ops[1], target_oval, mode);
|
7487 |
|
|
create_fixed_operand (&ops[2], mem);
|
7488 |
|
|
create_convert_operand_to (&ops[3], expected, mode, true);
|
7489 |
|
|
create_convert_operand_to (&ops[4], desired, mode, true);
|
7490 |
|
|
create_integer_operand (&ops[5], is_weak);
|
7491 |
|
|
create_integer_operand (&ops[6], succ_model);
|
7492 |
|
|
create_integer_operand (&ops[7], fail_model);
|
7493 |
|
|
expand_insn (icode, 8, ops);
|
7494 |
|
|
|
7495 |
|
|
/* Return success/failure. */
|
7496 |
|
|
target_bool = ops[0].value;
|
7497 |
|
|
target_oval = ops[1].value;
|
7498 |
|
|
goto success;
|
7499 |
|
|
}
|
7500 |
|
|
|
7501 |
|
|
/* Otherwise fall back to the original __sync_val_compare_and_swap
|
7502 |
|
|
which is always seq-cst. */
|
7503 |
|
|
icode = optab_handler (sync_compare_and_swap_optab, mode);
|
7504 |
|
|
if (icode != CODE_FOR_nothing)
|
7505 |
|
|
{
|
7506 |
|
|
rtx cc_reg;
|
7507 |
|
|
|
7508 |
|
|
create_output_operand (&ops[0], target_oval, mode);
|
7509 |
|
|
create_fixed_operand (&ops[1], mem);
|
7510 |
|
|
create_convert_operand_to (&ops[2], expected, mode, true);
|
7511 |
|
|
create_convert_operand_to (&ops[3], desired, mode, true);
|
7512 |
|
|
if (!maybe_expand_insn (icode, 4, ops))
|
7513 |
|
|
return false;
|
7514 |
|
|
|
7515 |
|
|
target_oval = ops[0].value;
|
7516 |
|
|
|
7517 |
|
|
/* If the caller isn't interested in the boolean return value,
|
7518 |
|
|
skip the computation of it. */
|
7519 |
|
|
if (ptarget_bool == NULL)
|
7520 |
|
|
goto success;
|
7521 |
|
|
|
7522 |
|
|
/* Otherwise, work out if the compare-and-swap succeeded. */
|
7523 |
|
|
cc_reg = NULL_RTX;
|
7524 |
|
|
if (have_insn_for (COMPARE, CCmode))
|
7525 |
|
|
note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
|
7526 |
|
|
if (cc_reg)
|
7527 |
|
|
{
|
7528 |
|
|
target_bool = emit_store_flag_force (target_bool, EQ, cc_reg,
|
7529 |
|
|
const0_rtx, VOIDmode, 0, 1);
|
7530 |
|
|
goto success;
|
7531 |
|
|
}
|
7532 |
|
|
goto success_bool_from_val;
|
7533 |
|
|
}
|
7534 |
|
|
|
7535 |
|
|
/* Also check for library support for __sync_val_compare_and_swap. */
|
7536 |
|
|
libfunc = optab_libfunc (sync_compare_and_swap_optab, mode);
|
7537 |
|
|
if (libfunc != NULL)
|
7538 |
|
|
{
|
7539 |
|
|
rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
|
7540 |
|
|
target_oval = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
|
7541 |
|
|
mode, 3, addr, ptr_mode,
|
7542 |
|
|
expected, mode, desired, mode);
|
7543 |
|
|
|
7544 |
|
|
/* Compute the boolean return value only if requested. */
|
7545 |
|
|
if (ptarget_bool)
|
7546 |
|
|
goto success_bool_from_val;
|
7547 |
|
|
else
|
7548 |
|
|
goto success;
|
7549 |
|
|
}
|
7550 |
|
|
|
7551 |
|
|
/* Failure. */
|
7552 |
|
|
return false;
|
7553 |
|
|
|
7554 |
|
|
success_bool_from_val:
|
7555 |
|
|
target_bool = emit_store_flag_force (target_bool, EQ, target_oval,
|
7556 |
|
|
expected, VOIDmode, 1, 1);
|
7557 |
|
|
success:
|
7558 |
|
|
/* Make sure that the oval output winds up where the caller asked. */
|
7559 |
|
|
if (ptarget_oval)
|
7560 |
|
|
*ptarget_oval = target_oval;
|
7561 |
|
|
if (ptarget_bool)
|
7562 |
|
|
*ptarget_bool = target_bool;
|
7563 |
|
|
return true;
|
7564 |
|
|
}
|
7565 |
|
|
|
7566 |
|
|
/* Generate asm volatile("" : : : "memory") as the memory barrier. */
|
7567 |
|
|
|
7568 |
|
|
static void
|
7569 |
|
|
expand_asm_memory_barrier (void)
|
7570 |
|
|
{
|
7571 |
|
|
rtx asm_op, clob;
|
7572 |
|
|
|
7573 |
|
|
asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, empty_string, empty_string, 0,
|
7574 |
|
|
rtvec_alloc (0), rtvec_alloc (0),
|
7575 |
|
|
rtvec_alloc (0), UNKNOWN_LOCATION);
|
7576 |
|
|
MEM_VOLATILE_P (asm_op) = 1;
|
7577 |
|
|
|
7578 |
|
|
clob = gen_rtx_SCRATCH (VOIDmode);
|
7579 |
|
|
clob = gen_rtx_MEM (BLKmode, clob);
|
7580 |
|
|
clob = gen_rtx_CLOBBER (VOIDmode, clob);
|
7581 |
|
|
|
7582 |
|
|
emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob)));
|
7583 |
|
|
}
|
7584 |
|
|
|
7585 |
|
|
/* This routine will either emit the mem_thread_fence pattern or issue a
|
7586 |
|
|
sync_synchronize to generate a fence for memory model MEMMODEL. */
|
7587 |
|
|
|
7588 |
|
|
#ifndef HAVE_mem_thread_fence
|
7589 |
|
|
# define HAVE_mem_thread_fence 0
|
7590 |
|
|
# define gen_mem_thread_fence(x) (gcc_unreachable (), NULL_RTX)
|
7591 |
|
|
#endif
|
7592 |
|
|
#ifndef HAVE_memory_barrier
|
7593 |
|
|
# define HAVE_memory_barrier 0
|
7594 |
|
|
# define gen_memory_barrier() (gcc_unreachable (), NULL_RTX)
|
7595 |
|
|
#endif
|
7596 |
|
|
|
7597 |
|
|
void
|
7598 |
|
|
expand_mem_thread_fence (enum memmodel model)
|
7599 |
|
|
{
|
7600 |
|
|
if (HAVE_mem_thread_fence)
|
7601 |
|
|
emit_insn (gen_mem_thread_fence (GEN_INT (model)));
|
7602 |
|
|
else if (model != MEMMODEL_RELAXED)
|
7603 |
|
|
{
|
7604 |
|
|
if (HAVE_memory_barrier)
|
7605 |
|
|
emit_insn (gen_memory_barrier ());
|
7606 |
|
|
else if (synchronize_libfunc != NULL_RTX)
|
7607 |
|
|
emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode, 0);
|
7608 |
|
|
else
|
7609 |
|
|
expand_asm_memory_barrier ();
|
7610 |
|
|
}
|
7611 |
|
|
}
|
7612 |
|
|
|
7613 |
|
|
/* This routine will either emit the mem_signal_fence pattern or issue a
|
7614 |
|
|
sync_synchronize to generate a fence for memory model MEMMODEL. */
|
7615 |
|
|
|
7616 |
|
|
#ifndef HAVE_mem_signal_fence
|
7617 |
|
|
# define HAVE_mem_signal_fence 0
|
7618 |
|
|
# define gen_mem_signal_fence(x) (gcc_unreachable (), NULL_RTX)
|
7619 |
|
|
#endif
|
7620 |
|
|
|
7621 |
|
|
void
|
7622 |
|
|
expand_mem_signal_fence (enum memmodel model)
|
7623 |
|
|
{
|
7624 |
|
|
if (HAVE_mem_signal_fence)
|
7625 |
|
|
emit_insn (gen_mem_signal_fence (GEN_INT (model)));
|
7626 |
|
|
else if (model != MEMMODEL_RELAXED)
|
7627 |
|
|
{
|
7628 |
|
|
/* By default targets are coherent between a thread and the signal
|
7629 |
|
|
handler running on the same thread. Thus this really becomes a
|
7630 |
|
|
compiler barrier, in that stores must not be sunk past
|
7631 |
|
|
(or raised above) a given point. */
|
7632 |
|
|
expand_asm_memory_barrier ();
|
7633 |
|
|
}
|
7634 |
|
|
}
|
7635 |
|
|
|
7636 |
|
|
/* This function expands the atomic load operation:
|
7637 |
|
|
return the atomically loaded value in MEM.
|
7638 |
|
|
|
7639 |
|
|
MEMMODEL is the memory model variant to use.
|
7640 |
|
|
TARGET is an option place to stick the return value. */
|
7641 |
|
|
|
7642 |
|
|
rtx
|
7643 |
|
|
expand_atomic_load (rtx target, rtx mem, enum memmodel model)
|
7644 |
|
|
{
|
7645 |
|
|
enum machine_mode mode = GET_MODE (mem);
|
7646 |
|
|
enum insn_code icode;
|
7647 |
|
|
|
7648 |
|
|
/* If the target supports the load directly, great. */
|
7649 |
|
|
icode = direct_optab_handler (atomic_load_optab, mode);
|
7650 |
|
|
if (icode != CODE_FOR_nothing)
|
7651 |
|
|
{
|
7652 |
|
|
struct expand_operand ops[3];
|
7653 |
|
|
|
7654 |
|
|
create_output_operand (&ops[0], target, mode);
|
7655 |
|
|
create_fixed_operand (&ops[1], mem);
|
7656 |
|
|
create_integer_operand (&ops[2], model);
|
7657 |
|
|
if (maybe_expand_insn (icode, 3, ops))
|
7658 |
|
|
return ops[0].value;
|
7659 |
|
|
}
|
7660 |
|
|
|
7661 |
|
|
/* If the size of the object is greater than word size on this target,
|
7662 |
|
|
then we assume that a load will not be atomic. */
|
7663 |
|
|
if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
|
7664 |
|
|
{
|
7665 |
|
|
/* Issue val = compare_and_swap (mem, 0, 0).
|
7666 |
|
|
This may cause the occasional harmless store of 0 when the value is
|
7667 |
|
|
already 0, but it seems to be OK according to the standards guys. */
|
7668 |
|
|
if (expand_atomic_compare_and_swap (NULL, &target, mem, const0_rtx,
|
7669 |
|
|
const0_rtx, false, model, model))
|
7670 |
|
|
return target;
|
7671 |
|
|
else
|
7672 |
|
|
/* Otherwise there is no atomic load, leave the library call. */
|
7673 |
|
|
return NULL_RTX;
|
7674 |
|
|
}
|
7675 |
|
|
|
7676 |
|
|
/* Otherwise assume loads are atomic, and emit the proper barriers. */
|
7677 |
|
|
if (!target || target == const0_rtx)
|
7678 |
|
|
target = gen_reg_rtx (mode);
|
7679 |
|
|
|
7680 |
|
|
/* Emit the appropriate barrier before the load. */
|
7681 |
|
|
expand_mem_thread_fence (model);
|
7682 |
|
|
|
7683 |
|
|
emit_move_insn (target, mem);
|
7684 |
|
|
|
7685 |
|
|
/* For SEQ_CST, also emit a barrier after the load. */
|
7686 |
|
|
if (model == MEMMODEL_SEQ_CST)
|
7687 |
|
|
expand_mem_thread_fence (model);
|
7688 |
|
|
|
7689 |
|
|
return target;
|
7690 |
|
|
}
|
7691 |
|
|
|
7692 |
|
|
/* This function expands the atomic store operation:
|
7693 |
|
|
Atomically store VAL in MEM.
|
7694 |
|
|
MEMMODEL is the memory model variant to use.
|
7695 |
|
|
USE_RELEASE is true if __sync_lock_release can be used as a fall back.
|
7696 |
|
|
function returns const0_rtx if a pattern was emitted. */
|
7697 |
|
|
|
7698 |
|
|
rtx
|
7699 |
|
|
expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
|
7700 |
|
|
{
|
7701 |
|
|
enum machine_mode mode = GET_MODE (mem);
|
7702 |
|
|
enum insn_code icode;
|
7703 |
|
|
struct expand_operand ops[3];
|
7704 |
|
|
|
7705 |
|
|
/* If the target supports the store directly, great. */
|
7706 |
|
|
icode = direct_optab_handler (atomic_store_optab, mode);
|
7707 |
|
|
if (icode != CODE_FOR_nothing)
|
7708 |
|
|
{
|
7709 |
|
|
create_fixed_operand (&ops[0], mem);
|
7710 |
|
|
create_input_operand (&ops[1], val, mode);
|
7711 |
|
|
create_integer_operand (&ops[2], model);
|
7712 |
|
|
if (maybe_expand_insn (icode, 3, ops))
|
7713 |
|
|
return const0_rtx;
|
7714 |
|
|
}
|
7715 |
|
|
|
7716 |
|
|
/* If using __sync_lock_release is a viable alternative, try it. */
|
7717 |
|
|
if (use_release)
|
7718 |
|
|
{
|
7719 |
|
|
icode = direct_optab_handler (sync_lock_release_optab, mode);
|
7720 |
|
|
if (icode != CODE_FOR_nothing)
|
7721 |
|
|
{
|
7722 |
|
|
create_fixed_operand (&ops[0], mem);
|
7723 |
|
|
create_input_operand (&ops[1], const0_rtx, mode);
|
7724 |
|
|
if (maybe_expand_insn (icode, 2, ops))
|
7725 |
|
|
{
|
7726 |
|
|
/* lock_release is only a release barrier. */
|
7727 |
|
|
if (model == MEMMODEL_SEQ_CST)
|
7728 |
|
|
expand_mem_thread_fence (model);
|
7729 |
|
|
return const0_rtx;
|
7730 |
|
|
}
|
7731 |
|
|
}
|
7732 |
|
|
}
|
7733 |
|
|
|
7734 |
|
|
/* If the size of the object is greater than word size on this target,
|
7735 |
|
|
a default store will not be atomic, Try a mem_exchange and throw away
|
7736 |
|
|
the result. If that doesn't work, don't do anything. */
|
7737 |
|
|
if (GET_MODE_PRECISION(mode) > BITS_PER_WORD)
|
7738 |
|
|
{
|
7739 |
|
|
rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model);
|
7740 |
|
|
if (!target)
|
7741 |
|
|
target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem, val);
|
7742 |
|
|
if (target)
|
7743 |
|
|
return const0_rtx;
|
7744 |
|
|
else
|
7745 |
|
|
return NULL_RTX;
|
7746 |
|
|
}
|
7747 |
|
|
|
7748 |
|
|
/* If there is no mem_store, default to a move with barriers */
|
7749 |
|
|
if (model == MEMMODEL_SEQ_CST || model == MEMMODEL_RELEASE)
|
7750 |
|
|
expand_mem_thread_fence (model);
|
7751 |
|
|
|
7752 |
|
|
emit_move_insn (mem, val);
|
7753 |
|
|
|
7754 |
|
|
/* For SEQ_CST, also emit a barrier after the load. */
|
7755 |
|
|
if (model == MEMMODEL_SEQ_CST)
|
7756 |
|
|
expand_mem_thread_fence (model);
|
7757 |
|
|
|
7758 |
|
|
return const0_rtx;
|
7759 |
|
|
}
|
7760 |
|
|
|
7761 |
|
|
|
7762 |
|
|
/* Structure containing the pointers and values required to process the
|
7763 |
|
|
various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
|
7764 |
|
|
|
7765 |
|
|
struct atomic_op_functions
|
7766 |
|
|
{
|
7767 |
|
|
direct_optab mem_fetch_before;
|
7768 |
|
|
direct_optab mem_fetch_after;
|
7769 |
|
|
direct_optab mem_no_result;
|
7770 |
|
|
optab fetch_before;
|
7771 |
|
|
optab fetch_after;
|
7772 |
|
|
direct_optab no_result;
|
7773 |
|
|
enum rtx_code reverse_code;
|
7774 |
|
|
};
|
7775 |
|
|
|
7776 |
|
|
|
7777 |
|
|
/* Fill in structure pointed to by OP with the various optab entries for an
|
7778 |
|
|
operation of type CODE. */
|
7779 |
|
|
|
7780 |
|
|
static void
|
7781 |
|
|
get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
|
7782 |
|
|
{
|
7783 |
|
|
gcc_assert (op!= NULL);
|
7784 |
|
|
|
7785 |
|
|
/* If SWITCHABLE_TARGET is defined, then subtargets can be switched
|
7786 |
|
|
in the source code during compilation, and the optab entries are not
|
7787 |
|
|
computable until runtime. Fill in the values at runtime. */
|
7788 |
|
|
switch (code)
|
7789 |
|
|
{
|
7790 |
|
|
case PLUS:
|
7791 |
|
|
op->mem_fetch_before = atomic_fetch_add_optab;
|
7792 |
|
|
op->mem_fetch_after = atomic_add_fetch_optab;
|
7793 |
|
|
op->mem_no_result = atomic_add_optab;
|
7794 |
|
|
op->fetch_before = sync_old_add_optab;
|
7795 |
|
|
op->fetch_after = sync_new_add_optab;
|
7796 |
|
|
op->no_result = sync_add_optab;
|
7797 |
|
|
op->reverse_code = MINUS;
|
7798 |
|
|
break;
|
7799 |
|
|
case MINUS:
|
7800 |
|
|
op->mem_fetch_before = atomic_fetch_sub_optab;
|
7801 |
|
|
op->mem_fetch_after = atomic_sub_fetch_optab;
|
7802 |
|
|
op->mem_no_result = atomic_sub_optab;
|
7803 |
|
|
op->fetch_before = sync_old_sub_optab;
|
7804 |
|
|
op->fetch_after = sync_new_sub_optab;
|
7805 |
|
|
op->no_result = sync_sub_optab;
|
7806 |
|
|
op->reverse_code = PLUS;
|
7807 |
|
|
break;
|
7808 |
|
|
case XOR:
|
7809 |
|
|
op->mem_fetch_before = atomic_fetch_xor_optab;
|
7810 |
|
|
op->mem_fetch_after = atomic_xor_fetch_optab;
|
7811 |
|
|
op->mem_no_result = atomic_xor_optab;
|
7812 |
|
|
op->fetch_before = sync_old_xor_optab;
|
7813 |
|
|
op->fetch_after = sync_new_xor_optab;
|
7814 |
|
|
op->no_result = sync_xor_optab;
|
7815 |
|
|
op->reverse_code = XOR;
|
7816 |
|
|
break;
|
7817 |
|
|
case AND:
|
7818 |
|
|
op->mem_fetch_before = atomic_fetch_and_optab;
|
7819 |
|
|
op->mem_fetch_after = atomic_and_fetch_optab;
|
7820 |
|
|
op->mem_no_result = atomic_and_optab;
|
7821 |
|
|
op->fetch_before = sync_old_and_optab;
|
7822 |
|
|
op->fetch_after = sync_new_and_optab;
|
7823 |
|
|
op->no_result = sync_and_optab;
|
7824 |
|
|
op->reverse_code = UNKNOWN;
|
7825 |
|
|
break;
|
7826 |
|
|
case IOR:
|
7827 |
|
|
op->mem_fetch_before = atomic_fetch_or_optab;
|
7828 |
|
|
op->mem_fetch_after = atomic_or_fetch_optab;
|
7829 |
|
|
op->mem_no_result = atomic_or_optab;
|
7830 |
|
|
op->fetch_before = sync_old_ior_optab;
|
7831 |
|
|
op->fetch_after = sync_new_ior_optab;
|
7832 |
|
|
op->no_result = sync_ior_optab;
|
7833 |
|
|
op->reverse_code = UNKNOWN;
|
7834 |
|
|
break;
|
7835 |
|
|
case NOT:
|
7836 |
|
|
op->mem_fetch_before = atomic_fetch_nand_optab;
|
7837 |
|
|
op->mem_fetch_after = atomic_nand_fetch_optab;
|
7838 |
|
|
op->mem_no_result = atomic_nand_optab;
|
7839 |
|
|
op->fetch_before = sync_old_nand_optab;
|
7840 |
|
|
op->fetch_after = sync_new_nand_optab;
|
7841 |
|
|
op->no_result = sync_nand_optab;
|
7842 |
|
|
op->reverse_code = UNKNOWN;
|
7843 |
|
|
break;
|
7844 |
|
|
default:
|
7845 |
|
|
gcc_unreachable ();
|
7846 |
|
|
}
|
7847 |
|
|
}
|
7848 |
|
|
|
7849 |
|
|
/* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
|
7850 |
|
|
using memory order MODEL. If AFTER is true the operation needs to return
|
7851 |
|
|
the value of *MEM after the operation, otherwise the previous value.
|
7852 |
|
|
TARGET is an optional place to place the result. The result is unused if
|
7853 |
|
|
it is const0_rtx.
|
7854 |
|
|
Return the result if there is a better sequence, otherwise NULL_RTX. */
|
7855 |
|
|
|
7856 |
|
|
static rtx
|
7857 |
|
|
maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
|
7858 |
|
|
enum memmodel model, bool after)
|
7859 |
|
|
{
|
7860 |
|
|
/* If the value is prefetched, or not used, it may be possible to replace
|
7861 |
|
|
the sequence with a native exchange operation. */
|
7862 |
|
|
if (!after || target == const0_rtx)
|
7863 |
|
|
{
|
7864 |
|
|
/* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
|
7865 |
|
|
if (code == AND && val == const0_rtx)
|
7866 |
|
|
{
|
7867 |
|
|
if (target == const0_rtx)
|
7868 |
|
|
target = gen_reg_rtx (GET_MODE (mem));
|
7869 |
|
|
return maybe_emit_atomic_exchange (target, mem, val, model);
|
7870 |
|
|
}
|
7871 |
|
|
|
7872 |
|
|
/* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
|
7873 |
|
|
if (code == IOR && val == constm1_rtx)
|
7874 |
|
|
{
|
7875 |
|
|
if (target == const0_rtx)
|
7876 |
|
|
target = gen_reg_rtx (GET_MODE (mem));
|
7877 |
|
|
return maybe_emit_atomic_exchange (target, mem, val, model);
|
7878 |
|
|
}
|
7879 |
|
|
}
|
7880 |
|
|
|
7881 |
|
|
return NULL_RTX;
|
7882 |
|
|
}
|
7883 |
|
|
|
7884 |
|
|
/* Try to emit an instruction for a specific operation varaition.
|
7885 |
|
|
OPTAB contains the OP functions.
|
7886 |
|
|
TARGET is an optional place to return the result. const0_rtx means unused.
|
7887 |
|
|
MEM is the memory location to operate on.
|
7888 |
|
|
VAL is the value to use in the operation.
|
7889 |
|
|
USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
|
7890 |
|
|
MODEL is the memory model, if used.
|
7891 |
|
|
AFTER is true if the returned result is the value after the operation. */
|
7892 |
|
|
|
7893 |
|
|
static rtx
|
7894 |
|
|
maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem,
|
7895 |
|
|
rtx val, bool use_memmodel, enum memmodel model, bool after)
|
7896 |
|
|
{
|
7897 |
|
|
enum machine_mode mode = GET_MODE (mem);
|
7898 |
|
|
struct expand_operand ops[4];
|
7899 |
|
|
enum insn_code icode;
|
7900 |
|
|
int op_counter = 0;
|
7901 |
|
|
int num_ops;
|
7902 |
|
|
|
7903 |
|
|
/* Check to see if there is a result returned. */
|
7904 |
|
|
if (target == const0_rtx)
|
7905 |
|
|
{
|
7906 |
|
|
if (use_memmodel)
|
7907 |
|
|
{
|
7908 |
|
|
icode = direct_optab_handler (optab->mem_no_result, mode);
|
7909 |
|
|
create_integer_operand (&ops[2], model);
|
7910 |
|
|
num_ops = 3;
|
7911 |
|
|
}
|
7912 |
|
|
else
|
7913 |
|
|
{
|
7914 |
|
|
icode = direct_optab_handler (optab->no_result, mode);
|
7915 |
|
|
num_ops = 2;
|
7916 |
|
|
}
|
7917 |
|
|
}
|
7918 |
|
|
/* Otherwise, we need to generate a result. */
|
7919 |
|
|
else
|
7920 |
|
|
{
|
7921 |
|
|
if (use_memmodel)
|
7922 |
|
|
{
|
7923 |
|
|
icode = direct_optab_handler (after ? optab->mem_fetch_after
|
7924 |
|
|
: optab->mem_fetch_before, mode);
|
7925 |
|
|
create_integer_operand (&ops[3], model);
|
7926 |
|
|
num_ops = 4;
|
7927 |
|
|
}
|
7928 |
|
|
else
|
7929 |
|
|
{
|
7930 |
|
|
icode = optab_handler (after ? optab->fetch_after
|
7931 |
|
|
: optab->fetch_before, mode);
|
7932 |
|
|
num_ops = 3;
|
7933 |
|
|
}
|
7934 |
|
|
create_output_operand (&ops[op_counter++], target, mode);
|
7935 |
|
|
}
|
7936 |
|
|
if (icode == CODE_FOR_nothing)
|
7937 |
|
|
return NULL_RTX;
|
7938 |
|
|
|
7939 |
|
|
create_fixed_operand (&ops[op_counter++], mem);
|
7940 |
|
|
/* VAL may have been promoted to a wider mode. Shrink it if so. */
|
7941 |
|
|
create_convert_operand_to (&ops[op_counter++], val, mode, true);
|
7942 |
|
|
|
7943 |
|
|
if (maybe_expand_insn (icode, num_ops, ops))
|
7944 |
|
|
return (target == const0_rtx ? const0_rtx : ops[0].value);
|
7945 |
|
|
|
7946 |
|
|
return NULL_RTX;
|
7947 |
|
|
}
|
7948 |
|
|
|
7949 |
|
|
|
7950 |
|
|
/* This function expands an atomic fetch_OP or OP_fetch operation:
|
7951 |
|
|
TARGET is an option place to stick the return value. const0_rtx indicates
|
7952 |
|
|
the result is unused.
|
7953 |
|
|
atomically fetch MEM, perform the operation with VAL and return it to MEM.
|
7954 |
|
|
CODE is the operation being performed (OP)
|
7955 |
|
|
MEMMODEL is the memory model variant to use.
|
7956 |
|
|
AFTER is true to return the result of the operation (OP_fetch).
|
7957 |
|
|
AFTER is false to return the value before the operation (fetch_OP). */
|
7958 |
|
|
rtx
|
7959 |
|
|
expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
|
7960 |
|
|
enum memmodel model, bool after)
|
7961 |
|
|
{
|
7962 |
|
|
enum machine_mode mode = GET_MODE (mem);
|
7963 |
|
|
struct atomic_op_functions optab;
|
7964 |
|
|
rtx result;
|
7965 |
|
|
bool unused_result = (target == const0_rtx);
|
7966 |
|
|
|
7967 |
|
|
get_atomic_op_for_code (&optab, code);
|
7968 |
|
|
|
7969 |
|
|
/* Check to see if there are any better instructions. */
|
7970 |
|
|
result = maybe_optimize_fetch_op (target, mem, val, code, model, after);
|
7971 |
|
|
if (result)
|
7972 |
|
|
return result;
|
7973 |
|
|
|
7974 |
|
|
/* Check for the case where the result isn't used and try those patterns. */
|
7975 |
|
|
if (unused_result)
|
7976 |
|
|
{
|
7977 |
|
|
/* Try the memory model variant first. */
|
7978 |
|
|
result = maybe_emit_op (&optab, target, mem, val, true, model, true);
|
7979 |
|
|
if (result)
|
7980 |
|
|
return result;
|
7981 |
|
|
|
7982 |
|
|
/* Next try the old style withuot a memory model. */
|
7983 |
|
|
result = maybe_emit_op (&optab, target, mem, val, false, model, true);
|
7984 |
|
|
if (result)
|
7985 |
|
|
return result;
|
7986 |
|
|
|
7987 |
|
|
/* There is no no-result pattern, so try patterns with a result. */
|
7988 |
|
|
target = NULL_RTX;
|
7989 |
|
|
}
|
7990 |
|
|
|
7991 |
|
|
/* Try the __atomic version. */
|
7992 |
|
|
result = maybe_emit_op (&optab, target, mem, val, true, model, after);
|
7993 |
|
|
if (result)
|
7994 |
|
|
return result;
|
7995 |
|
|
|
7996 |
|
|
/* Try the older __sync version. */
|
7997 |
|
|
result = maybe_emit_op (&optab, target, mem, val, false, model, after);
|
7998 |
|
|
if (result)
|
7999 |
|
|
return result;
|
8000 |
|
|
|
8001 |
|
|
/* If the fetch value can be calculated from the other variation of fetch,
|
8002 |
|
|
try that operation. */
|
8003 |
|
|
if (after || unused_result || optab.reverse_code != UNKNOWN)
|
8004 |
|
|
{
|
8005 |
|
|
/* Try the __atomic version, then the older __sync version. */
|
8006 |
|
|
result = maybe_emit_op (&optab, target, mem, val, true, model, !after);
|
8007 |
|
|
if (!result)
|
8008 |
|
|
result = maybe_emit_op (&optab, target, mem, val, false, model, !after);
|
8009 |
|
|
|
8010 |
|
|
if (result)
|
8011 |
|
|
{
|
8012 |
|
|
/* If the result isn't used, no need to do compensation code. */
|
8013 |
|
|
if (unused_result)
|
8014 |
|
|
return result;
|
8015 |
|
|
|
8016 |
|
|
/* Issue compensation code. Fetch_after == fetch_before OP val.
|
8017 |
|
|
Fetch_before == after REVERSE_OP val. */
|
8018 |
|
|
if (!after)
|
8019 |
|
|
code = optab.reverse_code;
|
8020 |
|
|
if (code == NOT)
|
8021 |
|
|
{
|
8022 |
|
|
result = expand_simple_binop (mode, AND, result, val, NULL_RTX,
|
8023 |
|
|
true, OPTAB_LIB_WIDEN);
|
8024 |
|
|
result = expand_simple_unop (mode, NOT, result, target, true);
|
8025 |
|
|
}
|
8026 |
|
|
else
|
8027 |
|
|
result = expand_simple_binop (mode, code, result, val, target,
|
8028 |
|
|
true, OPTAB_LIB_WIDEN);
|
8029 |
|
|
return result;
|
8030 |
|
|
}
|
8031 |
|
|
}
|
8032 |
|
|
|
8033 |
|
|
/* Try the __sync libcalls only if we can't do compare-and-swap inline. */
|
8034 |
|
|
if (!can_compare_and_swap_p (mode, false))
|
8035 |
|
|
{
|
8036 |
|
|
rtx libfunc;
|
8037 |
|
|
bool fixup = false;
|
8038 |
|
|
|
8039 |
|
|
libfunc = optab_libfunc (after ? optab.fetch_after
|
8040 |
|
|
: optab.fetch_before, mode);
|
8041 |
|
|
if (libfunc == NULL
|
8042 |
|
|
&& (after || unused_result || optab.reverse_code != UNKNOWN))
|
8043 |
|
|
{
|
8044 |
|
|
fixup = true;
|
8045 |
|
|
if (!after)
|
8046 |
|
|
code = optab.reverse_code;
|
8047 |
|
|
libfunc = optab_libfunc (after ? optab.fetch_before
|
8048 |
|
|
: optab.fetch_after, mode);
|
8049 |
|
|
}
|
8050 |
|
|
if (libfunc != NULL)
|
8051 |
|
|
{
|
8052 |
|
|
rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
|
8053 |
|
|
result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode,
|
8054 |
|
|
2, addr, ptr_mode, val, mode);
|
8055 |
|
|
|
8056 |
|
|
if (!unused_result && fixup)
|
8057 |
|
|
result = expand_simple_binop (mode, code, result, val, target,
|
8058 |
|
|
true, OPTAB_LIB_WIDEN);
|
8059 |
|
|
return result;
|
8060 |
|
|
}
|
8061 |
|
|
}
|
8062 |
|
|
|
8063 |
|
|
/* If nothing else has succeeded, default to a compare and swap loop. */
|
8064 |
|
|
if (can_compare_and_swap_p (mode, true))
|
8065 |
|
|
{
|
8066 |
|
|
rtx insn;
|
8067 |
|
|
rtx t0 = gen_reg_rtx (mode), t1;
|
8068 |
|
|
|
8069 |
|
|
start_sequence ();
|
8070 |
|
|
|
8071 |
|
|
/* If the result is used, get a register for it. */
|
8072 |
|
|
if (!unused_result)
|
8073 |
|
|
{
|
8074 |
|
|
if (!target || !register_operand (target, mode))
|
8075 |
|
|
target = gen_reg_rtx (mode);
|
8076 |
|
|
/* If fetch_before, copy the value now. */
|
8077 |
|
|
if (!after)
|
8078 |
|
|
emit_move_insn (target, t0);
|
8079 |
|
|
}
|
8080 |
|
|
else
|
8081 |
|
|
target = const0_rtx;
|
8082 |
|
|
|
8083 |
|
|
t1 = t0;
|
8084 |
|
|
if (code == NOT)
|
8085 |
|
|
{
|
8086 |
|
|
t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
|
8087 |
|
|
true, OPTAB_LIB_WIDEN);
|
8088 |
|
|
t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
|
8089 |
|
|
}
|
8090 |
|
|
else
|
8091 |
|
|
t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true,
|
8092 |
|
|
OPTAB_LIB_WIDEN);
|
8093 |
|
|
|
8094 |
|
|
/* For after, copy the value now. */
|
8095 |
|
|
if (!unused_result && after)
|
8096 |
|
|
emit_move_insn (target, t1);
|
8097 |
|
|
insn = get_insns ();
|
8098 |
|
|
end_sequence ();
|
8099 |
|
|
|
8100 |
|
|
if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
|
8101 |
|
|
return target;
|
8102 |
|
|
}
|
8103 |
|
|
|
8104 |
|
|
return NULL_RTX;
|
8105 |
|
|
}
|
8106 |
|
|
|
8107 |
|
|
/* Return true if OPERAND is suitable for operand number OPNO of
|
8108 |
|
|
instruction ICODE. */
|
8109 |
|
|
|
8110 |
|
|
bool
|
8111 |
|
|
insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
|
8112 |
|
|
{
|
8113 |
|
|
return (!insn_data[(int) icode].operand[opno].predicate
|
8114 |
|
|
|| (insn_data[(int) icode].operand[opno].predicate
|
8115 |
|
|
(operand, insn_data[(int) icode].operand[opno].mode)));
|
8116 |
|
|
}
|
8117 |
|
|
|
8118 |
|
|
/* TARGET is a target of a multiword operation that we are going to
|
8119 |
|
|
implement as a series of word-mode operations. Return true if
|
8120 |
|
|
TARGET is suitable for this purpose. */
|
8121 |
|
|
|
8122 |
|
|
bool
|
8123 |
|
|
valid_multiword_target_p (rtx target)
|
8124 |
|
|
{
|
8125 |
|
|
enum machine_mode mode;
|
8126 |
|
|
int i;
|
8127 |
|
|
|
8128 |
|
|
mode = GET_MODE (target);
|
8129 |
|
|
for (i = 0; i < GET_MODE_SIZE (mode); i += UNITS_PER_WORD)
|
8130 |
|
|
if (!validate_subreg (word_mode, mode, target, i))
|
8131 |
|
|
return false;
|
8132 |
|
|
return true;
|
8133 |
|
|
}
|
8134 |
|
|
|
8135 |
|
|
/* Like maybe_legitimize_operand, but do not change the code of the
|
8136 |
|
|
current rtx value. */
|
8137 |
|
|
|
8138 |
|
|
static bool
|
8139 |
|
|
maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno,
|
8140 |
|
|
struct expand_operand *op)
|
8141 |
|
|
{
|
8142 |
|
|
/* See if the operand matches in its current form. */
|
8143 |
|
|
if (insn_operand_matches (icode, opno, op->value))
|
8144 |
|
|
return true;
|
8145 |
|
|
|
8146 |
|
|
/* If the operand is a memory whose address has no side effects,
|
8147 |
|
|
try forcing the address into a non-virtual pseudo register.
|
8148 |
|
|
The check for side effects is important because copy_to_mode_reg
|
8149 |
|
|
cannot handle things like auto-modified addresses. */
|
8150 |
|
|
if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value))
|
8151 |
|
|
{
|
8152 |
|
|
rtx addr, mem;
|
8153 |
|
|
|
8154 |
|
|
mem = op->value;
|
8155 |
|
|
addr = XEXP (mem, 0);
|
8156 |
|
|
if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER)
|
8157 |
|
|
&& !side_effects_p (addr))
|
8158 |
|
|
{
|
8159 |
|
|
rtx last;
|
8160 |
|
|
enum machine_mode mode;
|
8161 |
|
|
|
8162 |
|
|
last = get_last_insn ();
|
8163 |
|
|
mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
|
8164 |
|
|
mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr));
|
8165 |
|
|
if (insn_operand_matches (icode, opno, mem))
|
8166 |
|
|
{
|
8167 |
|
|
op->value = mem;
|
8168 |
|
|
return true;
|
8169 |
|
|
}
|
8170 |
|
|
delete_insns_since (last);
|
8171 |
|
|
}
|
8172 |
|
|
}
|
8173 |
|
|
|
8174 |
|
|
return false;
|
8175 |
|
|
}
|
8176 |
|
|
|
8177 |
|
|
/* Try to make OP match operand OPNO of instruction ICODE. Return true
|
8178 |
|
|
on success, storing the new operand value back in OP. */
|
8179 |
|
|
|
8180 |
|
|
static bool
|
8181 |
|
|
maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
|
8182 |
|
|
struct expand_operand *op)
|
8183 |
|
|
{
|
8184 |
|
|
enum machine_mode mode, imode;
|
8185 |
|
|
bool old_volatile_ok, result;
|
8186 |
|
|
|
8187 |
|
|
mode = op->mode;
|
8188 |
|
|
switch (op->type)
|
8189 |
|
|
{
|
8190 |
|
|
case EXPAND_FIXED:
|
8191 |
|
|
old_volatile_ok = volatile_ok;
|
8192 |
|
|
volatile_ok = true;
|
8193 |
|
|
result = maybe_legitimize_operand_same_code (icode, opno, op);
|
8194 |
|
|
volatile_ok = old_volatile_ok;
|
8195 |
|
|
return result;
|
8196 |
|
|
|
8197 |
|
|
case EXPAND_OUTPUT:
|
8198 |
|
|
gcc_assert (mode != VOIDmode);
|
8199 |
|
|
if (op->value
|
8200 |
|
|
&& op->value != const0_rtx
|
8201 |
|
|
&& GET_MODE (op->value) == mode
|
8202 |
|
|
&& maybe_legitimize_operand_same_code (icode, opno, op))
|
8203 |
|
|
return true;
|
8204 |
|
|
|
8205 |
|
|
op->value = gen_reg_rtx (mode);
|
8206 |
|
|
break;
|
8207 |
|
|
|
8208 |
|
|
case EXPAND_INPUT:
|
8209 |
|
|
input:
|
8210 |
|
|
gcc_assert (mode != VOIDmode);
|
8211 |
|
|
gcc_assert (GET_MODE (op->value) == VOIDmode
|
8212 |
|
|
|| GET_MODE (op->value) == mode);
|
8213 |
|
|
if (maybe_legitimize_operand_same_code (icode, opno, op))
|
8214 |
|
|
return true;
|
8215 |
|
|
|
8216 |
|
|
op->value = copy_to_mode_reg (mode, op->value);
|
8217 |
|
|
break;
|
8218 |
|
|
|
8219 |
|
|
case EXPAND_CONVERT_TO:
|
8220 |
|
|
gcc_assert (mode != VOIDmode);
|
8221 |
|
|
op->value = convert_to_mode (mode, op->value, op->unsigned_p);
|
8222 |
|
|
goto input;
|
8223 |
|
|
|
8224 |
|
|
case EXPAND_CONVERT_FROM:
|
8225 |
|
|
if (GET_MODE (op->value) != VOIDmode)
|
8226 |
|
|
mode = GET_MODE (op->value);
|
8227 |
|
|
else
|
8228 |
|
|
/* The caller must tell us what mode this value has. */
|
8229 |
|
|
gcc_assert (mode != VOIDmode);
|
8230 |
|
|
|
8231 |
|
|
imode = insn_data[(int) icode].operand[opno].mode;
|
8232 |
|
|
if (imode != VOIDmode && imode != mode)
|
8233 |
|
|
{
|
8234 |
|
|
op->value = convert_modes (imode, mode, op->value, op->unsigned_p);
|
8235 |
|
|
mode = imode;
|
8236 |
|
|
}
|
8237 |
|
|
goto input;
|
8238 |
|
|
|
8239 |
|
|
case EXPAND_ADDRESS:
|
8240 |
|
|
gcc_assert (mode != VOIDmode);
|
8241 |
|
|
op->value = convert_memory_address (mode, op->value);
|
8242 |
|
|
goto input;
|
8243 |
|
|
|
8244 |
|
|
case EXPAND_INTEGER:
|
8245 |
|
|
mode = insn_data[(int) icode].operand[opno].mode;
|
8246 |
|
|
if (mode != VOIDmode && const_int_operand (op->value, mode))
|
8247 |
|
|
goto input;
|
8248 |
|
|
break;
|
8249 |
|
|
}
|
8250 |
|
|
return insn_operand_matches (icode, opno, op->value);
|
8251 |
|
|
}
|
8252 |
|
|
|
8253 |
|
|
/* Make OP describe an input operand that should have the same value
|
8254 |
|
|
as VALUE, after any mode conversion that the target might request.
|
8255 |
|
|
TYPE is the type of VALUE. */
|
8256 |
|
|
|
8257 |
|
|
void
|
8258 |
|
|
create_convert_operand_from_type (struct expand_operand *op,
|
8259 |
|
|
rtx value, tree type)
|
8260 |
|
|
{
|
8261 |
|
|
create_convert_operand_from (op, value, TYPE_MODE (type),
|
8262 |
|
|
TYPE_UNSIGNED (type));
|
8263 |
|
|
}
|
8264 |
|
|
|
8265 |
|
|
/* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
|
8266 |
|
|
of instruction ICODE. Return true on success, leaving the new operand
|
8267 |
|
|
values in the OPS themselves. Emit no code on failure. */
|
8268 |
|
|
|
8269 |
|
|
bool
|
8270 |
|
|
maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
|
8271 |
|
|
unsigned int nops, struct expand_operand *ops)
|
8272 |
|
|
{
|
8273 |
|
|
rtx last;
|
8274 |
|
|
unsigned int i;
|
8275 |
|
|
|
8276 |
|
|
last = get_last_insn ();
|
8277 |
|
|
for (i = 0; i < nops; i++)
|
8278 |
|
|
if (!maybe_legitimize_operand (icode, opno + i, &ops[i]))
|
8279 |
|
|
{
|
8280 |
|
|
delete_insns_since (last);
|
8281 |
|
|
return false;
|
8282 |
|
|
}
|
8283 |
|
|
return true;
|
8284 |
|
|
}
|
8285 |
|
|
|
8286 |
|
|
/* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
|
8287 |
|
|
as its operands. Return the instruction pattern on success,
|
8288 |
|
|
and emit any necessary set-up code. Return null and emit no
|
8289 |
|
|
code on failure. */
|
8290 |
|
|
|
8291 |
|
|
rtx
|
8292 |
|
|
maybe_gen_insn (enum insn_code icode, unsigned int nops,
|
8293 |
|
|
struct expand_operand *ops)
|
8294 |
|
|
{
|
8295 |
|
|
gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args);
|
8296 |
|
|
if (!maybe_legitimize_operands (icode, 0, nops, ops))
|
8297 |
|
|
return NULL_RTX;
|
8298 |
|
|
|
8299 |
|
|
switch (nops)
|
8300 |
|
|
{
|
8301 |
|
|
case 1:
|
8302 |
|
|
return GEN_FCN (icode) (ops[0].value);
|
8303 |
|
|
case 2:
|
8304 |
|
|
return GEN_FCN (icode) (ops[0].value, ops[1].value);
|
8305 |
|
|
case 3:
|
8306 |
|
|
return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
|
8307 |
|
|
case 4:
|
8308 |
|
|
return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
|
8309 |
|
|
ops[3].value);
|
8310 |
|
|
case 5:
|
8311 |
|
|
return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
|
8312 |
|
|
ops[3].value, ops[4].value);
|
8313 |
|
|
case 6:
|
8314 |
|
|
return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
|
8315 |
|
|
ops[3].value, ops[4].value, ops[5].value);
|
8316 |
|
|
case 7:
|
8317 |
|
|
return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
|
8318 |
|
|
ops[3].value, ops[4].value, ops[5].value,
|
8319 |
|
|
ops[6].value);
|
8320 |
|
|
case 8:
|
8321 |
|
|
return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
|
8322 |
|
|
ops[3].value, ops[4].value, ops[5].value,
|
8323 |
|
|
ops[6].value, ops[7].value);
|
8324 |
|
|
}
|
8325 |
|
|
gcc_unreachable ();
|
8326 |
|
|
}
|
8327 |
|
|
|
8328 |
|
|
/* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
|
8329 |
|
|
as its operands. Return true on success and emit no code on failure. */
|
8330 |
|
|
|
8331 |
|
|
bool
|
8332 |
|
|
maybe_expand_insn (enum insn_code icode, unsigned int nops,
|
8333 |
|
|
struct expand_operand *ops)
|
8334 |
|
|
{
|
8335 |
|
|
rtx pat = maybe_gen_insn (icode, nops, ops);
|
8336 |
|
|
if (pat)
|
8337 |
|
|
{
|
8338 |
|
|
emit_insn (pat);
|
8339 |
|
|
return true;
|
8340 |
|
|
}
|
8341 |
|
|
return false;
|
8342 |
|
|
}
|
8343 |
|
|
|
8344 |
|
|
/* Like maybe_expand_insn, but for jumps. */
|
8345 |
|
|
|
8346 |
|
|
bool
|
8347 |
|
|
maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
|
8348 |
|
|
struct expand_operand *ops)
|
8349 |
|
|
{
|
8350 |
|
|
rtx pat = maybe_gen_insn (icode, nops, ops);
|
8351 |
|
|
if (pat)
|
8352 |
|
|
{
|
8353 |
|
|
emit_jump_insn (pat);
|
8354 |
|
|
return true;
|
8355 |
|
|
}
|
8356 |
|
|
return false;
|
8357 |
|
|
}
|
8358 |
|
|
|
8359 |
|
|
/* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
|
8360 |
|
|
as its operands. */
|
8361 |
|
|
|
8362 |
|
|
void
|
8363 |
|
|
expand_insn (enum insn_code icode, unsigned int nops,
|
8364 |
|
|
struct expand_operand *ops)
|
8365 |
|
|
{
|
8366 |
|
|
if (!maybe_expand_insn (icode, nops, ops))
|
8367 |
|
|
gcc_unreachable ();
|
8368 |
|
|
}
|
8369 |
|
|
|
8370 |
|
|
/* Like expand_insn, but for jumps. */
|
8371 |
|
|
|
8372 |
|
|
void
|
8373 |
|
|
expand_jump_insn (enum insn_code icode, unsigned int nops,
|
8374 |
|
|
struct expand_operand *ops)
|
8375 |
|
|
{
|
8376 |
|
|
if (!maybe_expand_jump_insn (icode, nops, ops))
|
8377 |
|
|
gcc_unreachable ();
|
8378 |
|
|
}
|
8379 |
|
|
|
8380 |
|
|
#include "gt-optabs.h"
|