| 1 |
684 |
jeremybenn |
/* Post reload partially redundant load elimination
|
| 2 |
|
|
Copyright (C) 2004, 2005, 2006, 2007, 2008, 2010, 2011
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GCC.
|
| 6 |
|
|
|
| 7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 8 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 9 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 10 |
|
|
version.
|
| 11 |
|
|
|
| 12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 15 |
|
|
for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
#include "config.h"
|
| 22 |
|
|
#include "system.h"
|
| 23 |
|
|
#include "coretypes.h"
|
| 24 |
|
|
#include "tm.h"
|
| 25 |
|
|
#include "diagnostic-core.h"
|
| 26 |
|
|
|
| 27 |
|
|
#include "rtl.h"
|
| 28 |
|
|
#include "tree.h"
|
| 29 |
|
|
#include "tm_p.h"
|
| 30 |
|
|
#include "regs.h"
|
| 31 |
|
|
#include "hard-reg-set.h"
|
| 32 |
|
|
#include "flags.h"
|
| 33 |
|
|
#include "insn-config.h"
|
| 34 |
|
|
#include "recog.h"
|
| 35 |
|
|
#include "basic-block.h"
|
| 36 |
|
|
#include "output.h"
|
| 37 |
|
|
#include "function.h"
|
| 38 |
|
|
#include "expr.h"
|
| 39 |
|
|
#include "except.h"
|
| 40 |
|
|
#include "intl.h"
|
| 41 |
|
|
#include "obstack.h"
|
| 42 |
|
|
#include "hashtab.h"
|
| 43 |
|
|
#include "params.h"
|
| 44 |
|
|
#include "target.h"
|
| 45 |
|
|
#include "timevar.h"
|
| 46 |
|
|
#include "tree-pass.h"
|
| 47 |
|
|
#include "dbgcnt.h"
|
| 48 |
|
|
|
| 49 |
|
|
/* The following code implements gcse after reload, the purpose of this
|
| 50 |
|
|
pass is to cleanup redundant loads generated by reload and other
|
| 51 |
|
|
optimizations that come after gcse. It searches for simple inter-block
|
| 52 |
|
|
redundancies and tries to eliminate them by adding moves and loads
|
| 53 |
|
|
in cold places.
|
| 54 |
|
|
|
| 55 |
|
|
Perform partially redundant load elimination, try to eliminate redundant
|
| 56 |
|
|
loads created by the reload pass. We try to look for full or partial
|
| 57 |
|
|
redundant loads fed by one or more loads/stores in predecessor BBs,
|
| 58 |
|
|
and try adding loads to make them fully redundant. We also check if
|
| 59 |
|
|
it's worth adding loads to be able to delete the redundant load.
|
| 60 |
|
|
|
| 61 |
|
|
Algorithm:
|
| 62 |
|
|
1. Build available expressions hash table:
|
| 63 |
|
|
For each load/store instruction, if the loaded/stored memory didn't
|
| 64 |
|
|
change until the end of the basic block add this memory expression to
|
| 65 |
|
|
the hash table.
|
| 66 |
|
|
2. Perform Redundancy elimination:
|
| 67 |
|
|
For each load instruction do the following:
|
| 68 |
|
|
perform partial redundancy elimination, check if it's worth adding
|
| 69 |
|
|
loads to make the load fully redundant. If so add loads and
|
| 70 |
|
|
register copies and delete the load.
|
| 71 |
|
|
3. Delete instructions made redundant in step 2.
|
| 72 |
|
|
|
| 73 |
|
|
Future enhancement:
|
| 74 |
|
|
If the loaded register is used/defined between load and some store,
|
| 75 |
|
|
look for some other free register between load and all its stores,
|
| 76 |
|
|
and replace the load with a copy from this register to the loaded
|
| 77 |
|
|
register.
|
| 78 |
|
|
*/
|
| 79 |
|
|
|
| 80 |
|
|
|
| 81 |
|
|
/* Keep statistics of this pass. */
|
| 82 |
|
|
static struct
|
| 83 |
|
|
{
|
| 84 |
|
|
int moves_inserted;
|
| 85 |
|
|
int copies_inserted;
|
| 86 |
|
|
int insns_deleted;
|
| 87 |
|
|
} stats;
|
| 88 |
|
|
|
| 89 |
|
|
/* We need to keep a hash table of expressions. The table entries are of
|
| 90 |
|
|
type 'struct expr', and for each expression there is a single linked
|
| 91 |
|
|
list of occurrences. */
|
| 92 |
|
|
|
| 93 |
|
|
/* The table itself. */
|
| 94 |
|
|
static htab_t expr_table;
|
| 95 |
|
|
|
| 96 |
|
|
/* Expression elements in the hash table. */
|
| 97 |
|
|
struct expr
|
| 98 |
|
|
{
|
| 99 |
|
|
/* The expression (SET_SRC for expressions, PATTERN for assignments). */
|
| 100 |
|
|
rtx expr;
|
| 101 |
|
|
|
| 102 |
|
|
/* The same hash for this entry. */
|
| 103 |
|
|
hashval_t hash;
|
| 104 |
|
|
|
| 105 |
|
|
/* List of available occurrence in basic blocks in the function. */
|
| 106 |
|
|
struct occr *avail_occr;
|
| 107 |
|
|
};
|
| 108 |
|
|
|
| 109 |
|
|
static struct obstack expr_obstack;
|
| 110 |
|
|
|
| 111 |
|
|
/* Occurrence of an expression.
|
| 112 |
|
|
There is at most one occurrence per basic block. If a pattern appears
|
| 113 |
|
|
more than once, the last appearance is used. */
|
| 114 |
|
|
|
| 115 |
|
|
struct occr
|
| 116 |
|
|
{
|
| 117 |
|
|
/* Next occurrence of this expression. */
|
| 118 |
|
|
struct occr *next;
|
| 119 |
|
|
/* The insn that computes the expression. */
|
| 120 |
|
|
rtx insn;
|
| 121 |
|
|
/* Nonzero if this [anticipatable] occurrence has been deleted. */
|
| 122 |
|
|
char deleted_p;
|
| 123 |
|
|
};
|
| 124 |
|
|
|
| 125 |
|
|
static struct obstack occr_obstack;
|
| 126 |
|
|
|
| 127 |
|
|
/* The following structure holds the information about the occurrences of
|
| 128 |
|
|
the redundant instructions. */
|
| 129 |
|
|
struct unoccr
|
| 130 |
|
|
{
|
| 131 |
|
|
struct unoccr *next;
|
| 132 |
|
|
edge pred;
|
| 133 |
|
|
rtx insn;
|
| 134 |
|
|
};
|
| 135 |
|
|
|
| 136 |
|
|
static struct obstack unoccr_obstack;
|
| 137 |
|
|
|
| 138 |
|
|
/* Array where each element is the CUID if the insn that last set the hard
|
| 139 |
|
|
register with the number of the element, since the start of the current
|
| 140 |
|
|
basic block.
|
| 141 |
|
|
|
| 142 |
|
|
This array is used during the building of the hash table (step 1) to
|
| 143 |
|
|
determine if a reg is killed before the end of a basic block.
|
| 144 |
|
|
|
| 145 |
|
|
It is also used when eliminating partial redundancies (step 2) to see
|
| 146 |
|
|
if a reg was modified since the start of a basic block. */
|
| 147 |
|
|
static int *reg_avail_info;
|
| 148 |
|
|
|
| 149 |
|
|
/* A list of insns that may modify memory within the current basic block. */
|
| 150 |
|
|
struct modifies_mem
|
| 151 |
|
|
{
|
| 152 |
|
|
rtx insn;
|
| 153 |
|
|
struct modifies_mem *next;
|
| 154 |
|
|
};
|
| 155 |
|
|
static struct modifies_mem *modifies_mem_list;
|
| 156 |
|
|
|
| 157 |
|
|
/* The modifies_mem structs also go on an obstack, only this obstack is
|
| 158 |
|
|
freed each time after completing the analysis or transformations on
|
| 159 |
|
|
a basic block. So we allocate a dummy modifies_mem_obstack_bottom
|
| 160 |
|
|
object on the obstack to keep track of the bottom of the obstack. */
|
| 161 |
|
|
static struct obstack modifies_mem_obstack;
|
| 162 |
|
|
static struct modifies_mem *modifies_mem_obstack_bottom;
|
| 163 |
|
|
|
| 164 |
|
|
/* Mapping of insn UIDs to CUIDs.
|
| 165 |
|
|
CUIDs are like UIDs except they increase monotonically in each basic
|
| 166 |
|
|
block, have no gaps, and only apply to real insns. */
|
| 167 |
|
|
static int *uid_cuid;
|
| 168 |
|
|
#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
|
| 169 |
|
|
|
| 170 |
|
|
|
| 171 |
|
|
/* Helpers for memory allocation/freeing. */
|
| 172 |
|
|
static void alloc_mem (void);
|
| 173 |
|
|
static void free_mem (void);
|
| 174 |
|
|
|
| 175 |
|
|
/* Support for hash table construction and transformations. */
|
| 176 |
|
|
static bool oprs_unchanged_p (rtx, rtx, bool);
|
| 177 |
|
|
static void record_last_reg_set_info (rtx, rtx);
|
| 178 |
|
|
static void record_last_reg_set_info_regno (rtx, int);
|
| 179 |
|
|
static void record_last_mem_set_info (rtx);
|
| 180 |
|
|
static void record_last_set_info (rtx, const_rtx, void *);
|
| 181 |
|
|
static void record_opr_changes (rtx);
|
| 182 |
|
|
|
| 183 |
|
|
static void find_mem_conflicts (rtx, const_rtx, void *);
|
| 184 |
|
|
static int load_killed_in_block_p (int, rtx, bool);
|
| 185 |
|
|
static void reset_opr_set_tables (void);
|
| 186 |
|
|
|
| 187 |
|
|
/* Hash table support. */
|
| 188 |
|
|
static hashval_t hash_expr (rtx, int *);
|
| 189 |
|
|
static hashval_t hash_expr_for_htab (const void *);
|
| 190 |
|
|
static int expr_equiv_p (const void *, const void *);
|
| 191 |
|
|
static void insert_expr_in_table (rtx, rtx);
|
| 192 |
|
|
static struct expr *lookup_expr_in_table (rtx);
|
| 193 |
|
|
static int dump_hash_table_entry (void **, void *);
|
| 194 |
|
|
static void dump_hash_table (FILE *);
|
| 195 |
|
|
|
| 196 |
|
|
/* Helpers for eliminate_partially_redundant_load. */
|
| 197 |
|
|
static bool reg_killed_on_edge (rtx, edge);
|
| 198 |
|
|
static bool reg_used_on_edge (rtx, edge);
|
| 199 |
|
|
|
| 200 |
|
|
static rtx get_avail_load_store_reg (rtx);
|
| 201 |
|
|
|
| 202 |
|
|
static bool bb_has_well_behaved_predecessors (basic_block);
|
| 203 |
|
|
static struct occr* get_bb_avail_insn (basic_block, struct occr *);
|
| 204 |
|
|
static void hash_scan_set (rtx);
|
| 205 |
|
|
static void compute_hash_table (void);
|
| 206 |
|
|
|
| 207 |
|
|
/* The work horses of this pass. */
|
| 208 |
|
|
static void eliminate_partially_redundant_load (basic_block,
|
| 209 |
|
|
rtx,
|
| 210 |
|
|
struct expr *);
|
| 211 |
|
|
static void eliminate_partially_redundant_loads (void);
|
| 212 |
|
|
|
| 213 |
|
|
|
| 214 |
|
|
/* Allocate memory for the CUID mapping array and register/memory
|
| 215 |
|
|
tracking tables. */
|
| 216 |
|
|
|
| 217 |
|
|
static void
|
| 218 |
|
|
alloc_mem (void)
|
| 219 |
|
|
{
|
| 220 |
|
|
int i;
|
| 221 |
|
|
basic_block bb;
|
| 222 |
|
|
rtx insn;
|
| 223 |
|
|
|
| 224 |
|
|
/* Find the largest UID and create a mapping from UIDs to CUIDs. */
|
| 225 |
|
|
uid_cuid = XCNEWVEC (int, get_max_uid () + 1);
|
| 226 |
|
|
i = 1;
|
| 227 |
|
|
FOR_EACH_BB (bb)
|
| 228 |
|
|
FOR_BB_INSNS (bb, insn)
|
| 229 |
|
|
{
|
| 230 |
|
|
if (INSN_P (insn))
|
| 231 |
|
|
uid_cuid[INSN_UID (insn)] = i++;
|
| 232 |
|
|
else
|
| 233 |
|
|
uid_cuid[INSN_UID (insn)] = i;
|
| 234 |
|
|
}
|
| 235 |
|
|
|
| 236 |
|
|
/* Allocate the available expressions hash table. We don't want to
|
| 237 |
|
|
make the hash table too small, but unnecessarily making it too large
|
| 238 |
|
|
also doesn't help. The i/4 is a gcse.c relic, and seems like a
|
| 239 |
|
|
reasonable choice. */
|
| 240 |
|
|
expr_table = htab_create (MAX (i / 4, 13),
|
| 241 |
|
|
hash_expr_for_htab, expr_equiv_p, NULL);
|
| 242 |
|
|
|
| 243 |
|
|
/* We allocate everything on obstacks because we often can roll back
|
| 244 |
|
|
the whole obstack to some point. Freeing obstacks is very fast. */
|
| 245 |
|
|
gcc_obstack_init (&expr_obstack);
|
| 246 |
|
|
gcc_obstack_init (&occr_obstack);
|
| 247 |
|
|
gcc_obstack_init (&unoccr_obstack);
|
| 248 |
|
|
gcc_obstack_init (&modifies_mem_obstack);
|
| 249 |
|
|
|
| 250 |
|
|
/* Working array used to track the last set for each register
|
| 251 |
|
|
in the current block. */
|
| 252 |
|
|
reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
|
| 253 |
|
|
|
| 254 |
|
|
/* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
|
| 255 |
|
|
can roll it back in reset_opr_set_tables. */
|
| 256 |
|
|
modifies_mem_obstack_bottom =
|
| 257 |
|
|
(struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
|
| 258 |
|
|
sizeof (struct modifies_mem));
|
| 259 |
|
|
}
|
| 260 |
|
|
|
| 261 |
|
|
/* Free memory allocated by alloc_mem. */
|
| 262 |
|
|
|
| 263 |
|
|
static void
|
| 264 |
|
|
free_mem (void)
|
| 265 |
|
|
{
|
| 266 |
|
|
free (uid_cuid);
|
| 267 |
|
|
|
| 268 |
|
|
htab_delete (expr_table);
|
| 269 |
|
|
|
| 270 |
|
|
obstack_free (&expr_obstack, NULL);
|
| 271 |
|
|
obstack_free (&occr_obstack, NULL);
|
| 272 |
|
|
obstack_free (&unoccr_obstack, NULL);
|
| 273 |
|
|
obstack_free (&modifies_mem_obstack, NULL);
|
| 274 |
|
|
|
| 275 |
|
|
free (reg_avail_info);
|
| 276 |
|
|
}
|
| 277 |
|
|
|
| 278 |
|
|
|
| 279 |
|
|
/* Hash expression X.
|
| 280 |
|
|
DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
|
| 281 |
|
|
or if the expression contains something we don't want to insert in the
|
| 282 |
|
|
table. */
|
| 283 |
|
|
|
| 284 |
|
|
static hashval_t
|
| 285 |
|
|
hash_expr (rtx x, int *do_not_record_p)
|
| 286 |
|
|
{
|
| 287 |
|
|
*do_not_record_p = 0;
|
| 288 |
|
|
return hash_rtx (x, GET_MODE (x), do_not_record_p,
|
| 289 |
|
|
NULL, /*have_reg_qty=*/false);
|
| 290 |
|
|
}
|
| 291 |
|
|
|
| 292 |
|
|
/* Callback for hashtab.
|
| 293 |
|
|
Return the hash value for expression EXP. We don't actually hash
|
| 294 |
|
|
here, we just return the cached hash value. */
|
| 295 |
|
|
|
| 296 |
|
|
static hashval_t
|
| 297 |
|
|
hash_expr_for_htab (const void *expp)
|
| 298 |
|
|
{
|
| 299 |
|
|
const struct expr *const exp = (const struct expr *) expp;
|
| 300 |
|
|
return exp->hash;
|
| 301 |
|
|
}
|
| 302 |
|
|
|
| 303 |
|
|
/* Callback for hashtab.
|
| 304 |
|
|
Return nonzero if exp1 is equivalent to exp2. */
|
| 305 |
|
|
|
| 306 |
|
|
static int
|
| 307 |
|
|
expr_equiv_p (const void *exp1p, const void *exp2p)
|
| 308 |
|
|
{
|
| 309 |
|
|
const struct expr *const exp1 = (const struct expr *) exp1p;
|
| 310 |
|
|
const struct expr *const exp2 = (const struct expr *) exp2p;
|
| 311 |
|
|
int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
|
| 312 |
|
|
|
| 313 |
|
|
gcc_assert (!equiv_p || exp1->hash == exp2->hash);
|
| 314 |
|
|
return equiv_p;
|
| 315 |
|
|
}
|
| 316 |
|
|
|
| 317 |
|
|
|
| 318 |
|
|
/* Insert expression X in INSN in the hash TABLE.
|
| 319 |
|
|
If it is already present, record it as the last occurrence in INSN's
|
| 320 |
|
|
basic block. */
|
| 321 |
|
|
|
| 322 |
|
|
static void
|
| 323 |
|
|
insert_expr_in_table (rtx x, rtx insn)
|
| 324 |
|
|
{
|
| 325 |
|
|
int do_not_record_p;
|
| 326 |
|
|
hashval_t hash;
|
| 327 |
|
|
struct expr *cur_expr, **slot;
|
| 328 |
|
|
struct occr *avail_occr, *last_occr = NULL;
|
| 329 |
|
|
|
| 330 |
|
|
hash = hash_expr (x, &do_not_record_p);
|
| 331 |
|
|
|
| 332 |
|
|
/* Do not insert expression in the table if it contains volatile operands,
|
| 333 |
|
|
or if hash_expr determines the expression is something we don't want
|
| 334 |
|
|
to or can't handle. */
|
| 335 |
|
|
if (do_not_record_p)
|
| 336 |
|
|
return;
|
| 337 |
|
|
|
| 338 |
|
|
/* We anticipate that redundant expressions are rare, so for convenience
|
| 339 |
|
|
allocate a new hash table element here already and set its fields.
|
| 340 |
|
|
If we don't do this, we need a hack with a static struct expr. Anyway,
|
| 341 |
|
|
obstack_free is really fast and one more obstack_alloc doesn't hurt if
|
| 342 |
|
|
we're going to see more expressions later on. */
|
| 343 |
|
|
cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
|
| 344 |
|
|
sizeof (struct expr));
|
| 345 |
|
|
cur_expr->expr = x;
|
| 346 |
|
|
cur_expr->hash = hash;
|
| 347 |
|
|
cur_expr->avail_occr = NULL;
|
| 348 |
|
|
|
| 349 |
|
|
slot = (struct expr **) htab_find_slot_with_hash (expr_table, cur_expr,
|
| 350 |
|
|
hash, INSERT);
|
| 351 |
|
|
|
| 352 |
|
|
if (! (*slot))
|
| 353 |
|
|
/* The expression isn't found, so insert it. */
|
| 354 |
|
|
*slot = cur_expr;
|
| 355 |
|
|
else
|
| 356 |
|
|
{
|
| 357 |
|
|
/* The expression is already in the table, so roll back the
|
| 358 |
|
|
obstack and use the existing table entry. */
|
| 359 |
|
|
obstack_free (&expr_obstack, cur_expr);
|
| 360 |
|
|
cur_expr = *slot;
|
| 361 |
|
|
}
|
| 362 |
|
|
|
| 363 |
|
|
/* Search for another occurrence in the same basic block. */
|
| 364 |
|
|
avail_occr = cur_expr->avail_occr;
|
| 365 |
|
|
while (avail_occr
|
| 366 |
|
|
&& BLOCK_FOR_INSN (avail_occr->insn) != BLOCK_FOR_INSN (insn))
|
| 367 |
|
|
{
|
| 368 |
|
|
/* If an occurrence isn't found, save a pointer to the end of
|
| 369 |
|
|
the list. */
|
| 370 |
|
|
last_occr = avail_occr;
|
| 371 |
|
|
avail_occr = avail_occr->next;
|
| 372 |
|
|
}
|
| 373 |
|
|
|
| 374 |
|
|
if (avail_occr)
|
| 375 |
|
|
/* Found another instance of the expression in the same basic block.
|
| 376 |
|
|
Prefer this occurrence to the currently recorded one. We want
|
| 377 |
|
|
the last one in the block and the block is scanned from start
|
| 378 |
|
|
to end. */
|
| 379 |
|
|
avail_occr->insn = insn;
|
| 380 |
|
|
else
|
| 381 |
|
|
{
|
| 382 |
|
|
/* First occurrence of this expression in this basic block. */
|
| 383 |
|
|
avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
|
| 384 |
|
|
sizeof (struct occr));
|
| 385 |
|
|
|
| 386 |
|
|
/* First occurrence of this expression in any block? */
|
| 387 |
|
|
if (cur_expr->avail_occr == NULL)
|
| 388 |
|
|
cur_expr->avail_occr = avail_occr;
|
| 389 |
|
|
else
|
| 390 |
|
|
last_occr->next = avail_occr;
|
| 391 |
|
|
|
| 392 |
|
|
avail_occr->insn = insn;
|
| 393 |
|
|
avail_occr->next = NULL;
|
| 394 |
|
|
avail_occr->deleted_p = 0;
|
| 395 |
|
|
}
|
| 396 |
|
|
}
|
| 397 |
|
|
|
| 398 |
|
|
|
| 399 |
|
|
/* Lookup pattern PAT in the expression hash table.
|
| 400 |
|
|
The result is a pointer to the table entry, or NULL if not found. */
|
| 401 |
|
|
|
| 402 |
|
|
static struct expr *
|
| 403 |
|
|
lookup_expr_in_table (rtx pat)
|
| 404 |
|
|
{
|
| 405 |
|
|
int do_not_record_p;
|
| 406 |
|
|
struct expr **slot, *tmp_expr;
|
| 407 |
|
|
hashval_t hash = hash_expr (pat, &do_not_record_p);
|
| 408 |
|
|
|
| 409 |
|
|
if (do_not_record_p)
|
| 410 |
|
|
return NULL;
|
| 411 |
|
|
|
| 412 |
|
|
tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
|
| 413 |
|
|
sizeof (struct expr));
|
| 414 |
|
|
tmp_expr->expr = pat;
|
| 415 |
|
|
tmp_expr->hash = hash;
|
| 416 |
|
|
tmp_expr->avail_occr = NULL;
|
| 417 |
|
|
|
| 418 |
|
|
slot = (struct expr **) htab_find_slot_with_hash (expr_table, tmp_expr,
|
| 419 |
|
|
hash, INSERT);
|
| 420 |
|
|
obstack_free (&expr_obstack, tmp_expr);
|
| 421 |
|
|
|
| 422 |
|
|
if (!slot)
|
| 423 |
|
|
return NULL;
|
| 424 |
|
|
else
|
| 425 |
|
|
return (*slot);
|
| 426 |
|
|
}
|
| 427 |
|
|
|
| 428 |
|
|
|
| 429 |
|
|
/* Dump all expressions and occurrences that are currently in the
|
| 430 |
|
|
expression hash table to FILE. */
|
| 431 |
|
|
|
| 432 |
|
|
/* This helper is called via htab_traverse. */
|
| 433 |
|
|
static int
|
| 434 |
|
|
dump_hash_table_entry (void **slot, void *filep)
|
| 435 |
|
|
{
|
| 436 |
|
|
struct expr *expr = (struct expr *) *slot;
|
| 437 |
|
|
FILE *file = (FILE *) filep;
|
| 438 |
|
|
struct occr *occr;
|
| 439 |
|
|
|
| 440 |
|
|
fprintf (file, "expr: ");
|
| 441 |
|
|
print_rtl (file, expr->expr);
|
| 442 |
|
|
fprintf (file,"\nhashcode: %u\n", expr->hash);
|
| 443 |
|
|
fprintf (file,"list of occurrences:\n");
|
| 444 |
|
|
occr = expr->avail_occr;
|
| 445 |
|
|
while (occr)
|
| 446 |
|
|
{
|
| 447 |
|
|
rtx insn = occr->insn;
|
| 448 |
|
|
print_rtl_single (file, insn);
|
| 449 |
|
|
fprintf (file, "\n");
|
| 450 |
|
|
occr = occr->next;
|
| 451 |
|
|
}
|
| 452 |
|
|
fprintf (file, "\n");
|
| 453 |
|
|
return 1;
|
| 454 |
|
|
}
|
| 455 |
|
|
|
| 456 |
|
|
static void
|
| 457 |
|
|
dump_hash_table (FILE *file)
|
| 458 |
|
|
{
|
| 459 |
|
|
fprintf (file, "\n\nexpression hash table\n");
|
| 460 |
|
|
fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
|
| 461 |
|
|
(long) htab_size (expr_table),
|
| 462 |
|
|
(long) htab_elements (expr_table),
|
| 463 |
|
|
htab_collisions (expr_table));
|
| 464 |
|
|
if (htab_elements (expr_table) > 0)
|
| 465 |
|
|
{
|
| 466 |
|
|
fprintf (file, "\n\ntable entries:\n");
|
| 467 |
|
|
htab_traverse (expr_table, dump_hash_table_entry, file);
|
| 468 |
|
|
}
|
| 469 |
|
|
fprintf (file, "\n");
|
| 470 |
|
|
}
|
| 471 |
|
|
|
| 472 |
|
|
/* Return true if register X is recorded as being set by an instruction
|
| 473 |
|
|
whose CUID is greater than the one given. */
|
| 474 |
|
|
|
| 475 |
|
|
static bool
|
| 476 |
|
|
reg_changed_after_insn_p (rtx x, int cuid)
|
| 477 |
|
|
{
|
| 478 |
|
|
unsigned int regno, end_regno;
|
| 479 |
|
|
|
| 480 |
|
|
regno = REGNO (x);
|
| 481 |
|
|
end_regno = END_HARD_REGNO (x);
|
| 482 |
|
|
do
|
| 483 |
|
|
if (reg_avail_info[regno] > cuid)
|
| 484 |
|
|
return true;
|
| 485 |
|
|
while (++regno < end_regno);
|
| 486 |
|
|
return false;
|
| 487 |
|
|
}
|
| 488 |
|
|
|
| 489 |
|
|
/* Return nonzero if the operands of expression X are unchanged
|
| 490 |
|
|
1) from the start of INSN's basic block up to but not including INSN
|
| 491 |
|
|
if AFTER_INSN is false, or
|
| 492 |
|
|
2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
|
| 493 |
|
|
|
| 494 |
|
|
static bool
|
| 495 |
|
|
oprs_unchanged_p (rtx x, rtx insn, bool after_insn)
|
| 496 |
|
|
{
|
| 497 |
|
|
int i, j;
|
| 498 |
|
|
enum rtx_code code;
|
| 499 |
|
|
const char *fmt;
|
| 500 |
|
|
|
| 501 |
|
|
if (x == 0)
|
| 502 |
|
|
return 1;
|
| 503 |
|
|
|
| 504 |
|
|
code = GET_CODE (x);
|
| 505 |
|
|
switch (code)
|
| 506 |
|
|
{
|
| 507 |
|
|
case REG:
|
| 508 |
|
|
/* We are called after register allocation. */
|
| 509 |
|
|
gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
|
| 510 |
|
|
if (after_insn)
|
| 511 |
|
|
return !reg_changed_after_insn_p (x, INSN_CUID (insn) - 1);
|
| 512 |
|
|
else
|
| 513 |
|
|
return !reg_changed_after_insn_p (x, 0);
|
| 514 |
|
|
|
| 515 |
|
|
case MEM:
|
| 516 |
|
|
if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
|
| 517 |
|
|
return 0;
|
| 518 |
|
|
else
|
| 519 |
|
|
return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
|
| 520 |
|
|
|
| 521 |
|
|
case PC:
|
| 522 |
|
|
case CC0: /*FIXME*/
|
| 523 |
|
|
case CONST:
|
| 524 |
|
|
case CONST_INT:
|
| 525 |
|
|
case CONST_DOUBLE:
|
| 526 |
|
|
case CONST_FIXED:
|
| 527 |
|
|
case CONST_VECTOR:
|
| 528 |
|
|
case SYMBOL_REF:
|
| 529 |
|
|
case LABEL_REF:
|
| 530 |
|
|
case ADDR_VEC:
|
| 531 |
|
|
case ADDR_DIFF_VEC:
|
| 532 |
|
|
return 1;
|
| 533 |
|
|
|
| 534 |
|
|
case PRE_DEC:
|
| 535 |
|
|
case PRE_INC:
|
| 536 |
|
|
case POST_DEC:
|
| 537 |
|
|
case POST_INC:
|
| 538 |
|
|
case PRE_MODIFY:
|
| 539 |
|
|
case POST_MODIFY:
|
| 540 |
|
|
if (after_insn)
|
| 541 |
|
|
return 0;
|
| 542 |
|
|
break;
|
| 543 |
|
|
|
| 544 |
|
|
default:
|
| 545 |
|
|
break;
|
| 546 |
|
|
}
|
| 547 |
|
|
|
| 548 |
|
|
for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
|
| 549 |
|
|
{
|
| 550 |
|
|
if (fmt[i] == 'e')
|
| 551 |
|
|
{
|
| 552 |
|
|
if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
|
| 553 |
|
|
return 0;
|
| 554 |
|
|
}
|
| 555 |
|
|
else if (fmt[i] == 'E')
|
| 556 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
| 557 |
|
|
if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
|
| 558 |
|
|
return 0;
|
| 559 |
|
|
}
|
| 560 |
|
|
|
| 561 |
|
|
return 1;
|
| 562 |
|
|
}
|
| 563 |
|
|
|
| 564 |
|
|
|
| 565 |
|
|
/* Used for communication between find_mem_conflicts and
|
| 566 |
|
|
load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
|
| 567 |
|
|
conflict between two memory references.
|
| 568 |
|
|
This is a bit of a hack to work around the limitations of note_stores. */
|
| 569 |
|
|
static int mems_conflict_p;
|
| 570 |
|
|
|
| 571 |
|
|
/* DEST is the output of an instruction. If it is a memory reference, and
|
| 572 |
|
|
possibly conflicts with the load found in DATA, then set mems_conflict_p
|
| 573 |
|
|
to a nonzero value. */
|
| 574 |
|
|
|
| 575 |
|
|
static void
|
| 576 |
|
|
find_mem_conflicts (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
|
| 577 |
|
|
void *data)
|
| 578 |
|
|
{
|
| 579 |
|
|
rtx mem_op = (rtx) data;
|
| 580 |
|
|
|
| 581 |
|
|
while (GET_CODE (dest) == SUBREG
|
| 582 |
|
|
|| GET_CODE (dest) == ZERO_EXTRACT
|
| 583 |
|
|
|| GET_CODE (dest) == STRICT_LOW_PART)
|
| 584 |
|
|
dest = XEXP (dest, 0);
|
| 585 |
|
|
|
| 586 |
|
|
/* If DEST is not a MEM, then it will not conflict with the load. Note
|
| 587 |
|
|
that function calls are assumed to clobber memory, but are handled
|
| 588 |
|
|
elsewhere. */
|
| 589 |
|
|
if (! MEM_P (dest))
|
| 590 |
|
|
return;
|
| 591 |
|
|
|
| 592 |
|
|
if (true_dependence (dest, GET_MODE (dest), mem_op))
|
| 593 |
|
|
mems_conflict_p = 1;
|
| 594 |
|
|
}
|
| 595 |
|
|
|
| 596 |
|
|
|
| 597 |
|
|
/* Return nonzero if the expression in X (a memory reference) is killed
|
| 598 |
|
|
in the current basic block before (if AFTER_INSN is false) or after
|
| 599 |
|
|
(if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
|
| 600 |
|
|
|
| 601 |
|
|
This function assumes that the modifies_mem table is flushed when
|
| 602 |
|
|
the hash table construction or redundancy elimination phases start
|
| 603 |
|
|
processing a new basic block. */
|
| 604 |
|
|
|
| 605 |
|
|
static int
|
| 606 |
|
|
load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
|
| 607 |
|
|
{
|
| 608 |
|
|
struct modifies_mem *list_entry = modifies_mem_list;
|
| 609 |
|
|
|
| 610 |
|
|
while (list_entry)
|
| 611 |
|
|
{
|
| 612 |
|
|
rtx setter = list_entry->insn;
|
| 613 |
|
|
|
| 614 |
|
|
/* Ignore entries in the list that do not apply. */
|
| 615 |
|
|
if ((after_insn
|
| 616 |
|
|
&& INSN_CUID (setter) < uid_limit)
|
| 617 |
|
|
|| (! after_insn
|
| 618 |
|
|
&& INSN_CUID (setter) > uid_limit))
|
| 619 |
|
|
{
|
| 620 |
|
|
list_entry = list_entry->next;
|
| 621 |
|
|
continue;
|
| 622 |
|
|
}
|
| 623 |
|
|
|
| 624 |
|
|
/* If SETTER is a call everything is clobbered. Note that calls
|
| 625 |
|
|
to pure functions are never put on the list, so we need not
|
| 626 |
|
|
worry about them. */
|
| 627 |
|
|
if (CALL_P (setter))
|
| 628 |
|
|
return 1;
|
| 629 |
|
|
|
| 630 |
|
|
/* SETTER must be an insn of some kind that sets memory. Call
|
| 631 |
|
|
note_stores to examine each hunk of memory that is modified.
|
| 632 |
|
|
It will set mems_conflict_p to nonzero if there may be a
|
| 633 |
|
|
conflict between X and SETTER. */
|
| 634 |
|
|
mems_conflict_p = 0;
|
| 635 |
|
|
note_stores (PATTERN (setter), find_mem_conflicts, x);
|
| 636 |
|
|
if (mems_conflict_p)
|
| 637 |
|
|
return 1;
|
| 638 |
|
|
|
| 639 |
|
|
list_entry = list_entry->next;
|
| 640 |
|
|
}
|
| 641 |
|
|
return 0;
|
| 642 |
|
|
}
|
| 643 |
|
|
|
| 644 |
|
|
|
| 645 |
|
|
/* Record register first/last/block set information for REGNO in INSN. */
|
| 646 |
|
|
|
| 647 |
|
|
static inline void
|
| 648 |
|
|
record_last_reg_set_info (rtx insn, rtx reg)
|
| 649 |
|
|
{
|
| 650 |
|
|
unsigned int regno, end_regno;
|
| 651 |
|
|
|
| 652 |
|
|
regno = REGNO (reg);
|
| 653 |
|
|
end_regno = END_HARD_REGNO (reg);
|
| 654 |
|
|
do
|
| 655 |
|
|
reg_avail_info[regno] = INSN_CUID (insn);
|
| 656 |
|
|
while (++regno < end_regno);
|
| 657 |
|
|
}
|
| 658 |
|
|
|
| 659 |
|
|
static inline void
|
| 660 |
|
|
record_last_reg_set_info_regno (rtx insn, int regno)
|
| 661 |
|
|
{
|
| 662 |
|
|
reg_avail_info[regno] = INSN_CUID (insn);
|
| 663 |
|
|
}
|
| 664 |
|
|
|
| 665 |
|
|
|
| 666 |
|
|
/* Record memory modification information for INSN. We do not actually care
|
| 667 |
|
|
about the memory location(s) that are set, or even how they are set (consider
|
| 668 |
|
|
a CALL_INSN). We merely need to record which insns modify memory. */
|
| 669 |
|
|
|
| 670 |
|
|
static void
|
| 671 |
|
|
record_last_mem_set_info (rtx insn)
|
| 672 |
|
|
{
|
| 673 |
|
|
struct modifies_mem *list_entry;
|
| 674 |
|
|
|
| 675 |
|
|
list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
|
| 676 |
|
|
sizeof (struct modifies_mem));
|
| 677 |
|
|
list_entry->insn = insn;
|
| 678 |
|
|
list_entry->next = modifies_mem_list;
|
| 679 |
|
|
modifies_mem_list = list_entry;
|
| 680 |
|
|
}
|
| 681 |
|
|
|
| 682 |
|
|
/* Called from compute_hash_table via note_stores to handle one
|
| 683 |
|
|
SET or CLOBBER in an insn. DATA is really the instruction in which
|
| 684 |
|
|
the SET is taking place. */
|
| 685 |
|
|
|
| 686 |
|
|
static void
|
| 687 |
|
|
record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
|
| 688 |
|
|
{
|
| 689 |
|
|
rtx last_set_insn = (rtx) data;
|
| 690 |
|
|
|
| 691 |
|
|
if (GET_CODE (dest) == SUBREG)
|
| 692 |
|
|
dest = SUBREG_REG (dest);
|
| 693 |
|
|
|
| 694 |
|
|
if (REG_P (dest))
|
| 695 |
|
|
record_last_reg_set_info (last_set_insn, dest);
|
| 696 |
|
|
else if (MEM_P (dest))
|
| 697 |
|
|
{
|
| 698 |
|
|
/* Ignore pushes, they don't clobber memory. They may still
|
| 699 |
|
|
clobber the stack pointer though. Some targets do argument
|
| 700 |
|
|
pushes without adding REG_INC notes. See e.g. PR25196,
|
| 701 |
|
|
where a pushsi2 on i386 doesn't have REG_INC notes. Note
|
| 702 |
|
|
such changes here too. */
|
| 703 |
|
|
if (! push_operand (dest, GET_MODE (dest)))
|
| 704 |
|
|
record_last_mem_set_info (last_set_insn);
|
| 705 |
|
|
else
|
| 706 |
|
|
record_last_reg_set_info_regno (last_set_insn, STACK_POINTER_REGNUM);
|
| 707 |
|
|
}
|
| 708 |
|
|
}
|
| 709 |
|
|
|
| 710 |
|
|
|
| 711 |
|
|
/* Reset tables used to keep track of what's still available since the
|
| 712 |
|
|
start of the block. */
|
| 713 |
|
|
|
| 714 |
|
|
static void
|
| 715 |
|
|
reset_opr_set_tables (void)
|
| 716 |
|
|
{
|
| 717 |
|
|
memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
|
| 718 |
|
|
obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
|
| 719 |
|
|
modifies_mem_list = NULL;
|
| 720 |
|
|
}
|
| 721 |
|
|
|
| 722 |
|
|
|
| 723 |
|
|
/* Record things set by INSN.
|
| 724 |
|
|
This data is used by oprs_unchanged_p. */
|
| 725 |
|
|
|
| 726 |
|
|
static void
|
| 727 |
|
|
record_opr_changes (rtx insn)
|
| 728 |
|
|
{
|
| 729 |
|
|
rtx note;
|
| 730 |
|
|
|
| 731 |
|
|
/* Find all stores and record them. */
|
| 732 |
|
|
note_stores (PATTERN (insn), record_last_set_info, insn);
|
| 733 |
|
|
|
| 734 |
|
|
/* Also record autoincremented REGs for this insn as changed. */
|
| 735 |
|
|
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
| 736 |
|
|
if (REG_NOTE_KIND (note) == REG_INC)
|
| 737 |
|
|
record_last_reg_set_info (insn, XEXP (note, 0));
|
| 738 |
|
|
|
| 739 |
|
|
/* Finally, if this is a call, record all call clobbers. */
|
| 740 |
|
|
if (CALL_P (insn))
|
| 741 |
|
|
{
|
| 742 |
|
|
unsigned int regno;
|
| 743 |
|
|
rtx link, x;
|
| 744 |
|
|
|
| 745 |
|
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
| 746 |
|
|
if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
|
| 747 |
|
|
record_last_reg_set_info_regno (insn, regno);
|
| 748 |
|
|
|
| 749 |
|
|
for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
|
| 750 |
|
|
if (GET_CODE (XEXP (link, 0)) == CLOBBER)
|
| 751 |
|
|
{
|
| 752 |
|
|
x = XEXP (XEXP (link, 0), 0);
|
| 753 |
|
|
if (REG_P (x))
|
| 754 |
|
|
{
|
| 755 |
|
|
gcc_assert (HARD_REGISTER_P (x));
|
| 756 |
|
|
record_last_reg_set_info (insn, x);
|
| 757 |
|
|
}
|
| 758 |
|
|
}
|
| 759 |
|
|
|
| 760 |
|
|
if (! RTL_CONST_OR_PURE_CALL_P (insn))
|
| 761 |
|
|
record_last_mem_set_info (insn);
|
| 762 |
|
|
}
|
| 763 |
|
|
}
|
| 764 |
|
|
|
| 765 |
|
|
|
| 766 |
|
|
/* Scan the pattern of INSN and add an entry to the hash TABLE.
|
| 767 |
|
|
After reload we are interested in loads/stores only. */
|
| 768 |
|
|
|
| 769 |
|
|
static void
|
| 770 |
|
|
hash_scan_set (rtx insn)
|
| 771 |
|
|
{
|
| 772 |
|
|
rtx pat = PATTERN (insn);
|
| 773 |
|
|
rtx src = SET_SRC (pat);
|
| 774 |
|
|
rtx dest = SET_DEST (pat);
|
| 775 |
|
|
|
| 776 |
|
|
/* We are only interested in loads and stores. */
|
| 777 |
|
|
if (! MEM_P (src) && ! MEM_P (dest))
|
| 778 |
|
|
return;
|
| 779 |
|
|
|
| 780 |
|
|
/* Don't mess with jumps and nops. */
|
| 781 |
|
|
if (JUMP_P (insn) || set_noop_p (pat))
|
| 782 |
|
|
return;
|
| 783 |
|
|
|
| 784 |
|
|
if (REG_P (dest))
|
| 785 |
|
|
{
|
| 786 |
|
|
if (/* Don't CSE something if we can't do a reg/reg copy. */
|
| 787 |
|
|
can_copy_p (GET_MODE (dest))
|
| 788 |
|
|
/* Is SET_SRC something we want to gcse? */
|
| 789 |
|
|
&& general_operand (src, GET_MODE (src))
|
| 790 |
|
|
#ifdef STACK_REGS
|
| 791 |
|
|
/* Never consider insns touching the register stack. It may
|
| 792 |
|
|
create situations that reg-stack cannot handle (e.g. a stack
|
| 793 |
|
|
register live across an abnormal edge). */
|
| 794 |
|
|
&& (REGNO (dest) < FIRST_STACK_REG || REGNO (dest) > LAST_STACK_REG)
|
| 795 |
|
|
#endif
|
| 796 |
|
|
/* An expression is not available if its operands are
|
| 797 |
|
|
subsequently modified, including this insn. */
|
| 798 |
|
|
&& oprs_unchanged_p (src, insn, true))
|
| 799 |
|
|
{
|
| 800 |
|
|
insert_expr_in_table (src, insn);
|
| 801 |
|
|
}
|
| 802 |
|
|
}
|
| 803 |
|
|
else if (REG_P (src))
|
| 804 |
|
|
{
|
| 805 |
|
|
/* Only record sets of pseudo-regs in the hash table. */
|
| 806 |
|
|
if (/* Don't CSE something if we can't do a reg/reg copy. */
|
| 807 |
|
|
can_copy_p (GET_MODE (src))
|
| 808 |
|
|
/* Is SET_DEST something we want to gcse? */
|
| 809 |
|
|
&& general_operand (dest, GET_MODE (dest))
|
| 810 |
|
|
#ifdef STACK_REGS
|
| 811 |
|
|
/* As above for STACK_REGS. */
|
| 812 |
|
|
&& (REGNO (src) < FIRST_STACK_REG || REGNO (src) > LAST_STACK_REG)
|
| 813 |
|
|
#endif
|
| 814 |
|
|
&& ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
|
| 815 |
|
|
/* Check if the memory expression is killed after insn. */
|
| 816 |
|
|
&& ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
|
| 817 |
|
|
&& oprs_unchanged_p (XEXP (dest, 0), insn, true))
|
| 818 |
|
|
{
|
| 819 |
|
|
insert_expr_in_table (dest, insn);
|
| 820 |
|
|
}
|
| 821 |
|
|
}
|
| 822 |
|
|
}
|
| 823 |
|
|
|
| 824 |
|
|
|
| 825 |
|
|
/* Create hash table of memory expressions available at end of basic
|
| 826 |
|
|
blocks. Basically you should think of this hash table as the
|
| 827 |
|
|
representation of AVAIL_OUT. This is the set of expressions that
|
| 828 |
|
|
is generated in a basic block and not killed before the end of the
|
| 829 |
|
|
same basic block. Notice that this is really a local computation. */
|
| 830 |
|
|
|
| 831 |
|
|
static void
|
| 832 |
|
|
compute_hash_table (void)
|
| 833 |
|
|
{
|
| 834 |
|
|
basic_block bb;
|
| 835 |
|
|
|
| 836 |
|
|
FOR_EACH_BB (bb)
|
| 837 |
|
|
{
|
| 838 |
|
|
rtx insn;
|
| 839 |
|
|
|
| 840 |
|
|
/* First pass over the instructions records information used to
|
| 841 |
|
|
determine when registers and memory are last set.
|
| 842 |
|
|
Since we compute a "local" AVAIL_OUT, reset the tables that
|
| 843 |
|
|
help us keep track of what has been modified since the start
|
| 844 |
|
|
of the block. */
|
| 845 |
|
|
reset_opr_set_tables ();
|
| 846 |
|
|
FOR_BB_INSNS (bb, insn)
|
| 847 |
|
|
{
|
| 848 |
|
|
if (INSN_P (insn))
|
| 849 |
|
|
record_opr_changes (insn);
|
| 850 |
|
|
}
|
| 851 |
|
|
|
| 852 |
|
|
/* The next pass actually builds the hash table. */
|
| 853 |
|
|
FOR_BB_INSNS (bb, insn)
|
| 854 |
|
|
if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
|
| 855 |
|
|
hash_scan_set (insn);
|
| 856 |
|
|
}
|
| 857 |
|
|
}
|
| 858 |
|
|
|
| 859 |
|
|
|
| 860 |
|
|
/* Check if register REG is killed in any insn waiting to be inserted on
|
| 861 |
|
|
edge E. This function is required to check that our data flow analysis
|
| 862 |
|
|
is still valid prior to commit_edge_insertions. */
|
| 863 |
|
|
|
| 864 |
|
|
static bool
|
| 865 |
|
|
reg_killed_on_edge (rtx reg, edge e)
|
| 866 |
|
|
{
|
| 867 |
|
|
rtx insn;
|
| 868 |
|
|
|
| 869 |
|
|
for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
|
| 870 |
|
|
if (INSN_P (insn) && reg_set_p (reg, insn))
|
| 871 |
|
|
return true;
|
| 872 |
|
|
|
| 873 |
|
|
return false;
|
| 874 |
|
|
}
|
| 875 |
|
|
|
| 876 |
|
|
/* Similar to above - check if register REG is used in any insn waiting
|
| 877 |
|
|
to be inserted on edge E.
|
| 878 |
|
|
Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
|
| 879 |
|
|
with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
|
| 880 |
|
|
|
| 881 |
|
|
static bool
|
| 882 |
|
|
reg_used_on_edge (rtx reg, edge e)
|
| 883 |
|
|
{
|
| 884 |
|
|
rtx insn;
|
| 885 |
|
|
|
| 886 |
|
|
for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
|
| 887 |
|
|
if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
|
| 888 |
|
|
return true;
|
| 889 |
|
|
|
| 890 |
|
|
return false;
|
| 891 |
|
|
}
|
| 892 |
|
|
|
| 893 |
|
|
/* Return the loaded/stored register of a load/store instruction. */
|
| 894 |
|
|
|
| 895 |
|
|
static rtx
|
| 896 |
|
|
get_avail_load_store_reg (rtx insn)
|
| 897 |
|
|
{
|
| 898 |
|
|
if (REG_P (SET_DEST (PATTERN (insn))))
|
| 899 |
|
|
/* A load. */
|
| 900 |
|
|
return SET_DEST(PATTERN(insn));
|
| 901 |
|
|
else
|
| 902 |
|
|
{
|
| 903 |
|
|
/* A store. */
|
| 904 |
|
|
gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
|
| 905 |
|
|
return SET_SRC (PATTERN (insn));
|
| 906 |
|
|
}
|
| 907 |
|
|
}
|
| 908 |
|
|
|
| 909 |
|
|
/* Return nonzero if the predecessors of BB are "well behaved". */
|
| 910 |
|
|
|
| 911 |
|
|
static bool
|
| 912 |
|
|
bb_has_well_behaved_predecessors (basic_block bb)
|
| 913 |
|
|
{
|
| 914 |
|
|
edge pred;
|
| 915 |
|
|
edge_iterator ei;
|
| 916 |
|
|
|
| 917 |
|
|
if (EDGE_COUNT (bb->preds) == 0)
|
| 918 |
|
|
return false;
|
| 919 |
|
|
|
| 920 |
|
|
FOR_EACH_EDGE (pred, ei, bb->preds)
|
| 921 |
|
|
{
|
| 922 |
|
|
if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
|
| 923 |
|
|
return false;
|
| 924 |
|
|
|
| 925 |
|
|
if ((pred->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
|
| 926 |
|
|
return false;
|
| 927 |
|
|
|
| 928 |
|
|
if (JUMP_TABLE_DATA_P (BB_END (pred->src)))
|
| 929 |
|
|
return false;
|
| 930 |
|
|
}
|
| 931 |
|
|
return true;
|
| 932 |
|
|
}
|
| 933 |
|
|
|
| 934 |
|
|
|
| 935 |
|
|
/* Search for the occurrences of expression in BB. */
|
| 936 |
|
|
|
| 937 |
|
|
static struct occr*
|
| 938 |
|
|
get_bb_avail_insn (basic_block bb, struct occr *occr)
|
| 939 |
|
|
{
|
| 940 |
|
|
for (; occr != NULL; occr = occr->next)
|
| 941 |
|
|
if (BLOCK_FOR_INSN (occr->insn) == bb)
|
| 942 |
|
|
return occr;
|
| 943 |
|
|
return NULL;
|
| 944 |
|
|
}
|
| 945 |
|
|
|
| 946 |
|
|
|
| 947 |
|
|
/* This handles the case where several stores feed a partially redundant
|
| 948 |
|
|
load. It checks if the redundancy elimination is possible and if it's
|
| 949 |
|
|
worth it.
|
| 950 |
|
|
|
| 951 |
|
|
Redundancy elimination is possible if,
|
| 952 |
|
|
1) None of the operands of an insn have been modified since the start
|
| 953 |
|
|
of the current basic block.
|
| 954 |
|
|
2) In any predecessor of the current basic block, the same expression
|
| 955 |
|
|
is generated.
|
| 956 |
|
|
|
| 957 |
|
|
See the function body for the heuristics that determine if eliminating
|
| 958 |
|
|
a redundancy is also worth doing, assuming it is possible. */
|
| 959 |
|
|
|
| 960 |
|
|
static void
|
| 961 |
|
|
eliminate_partially_redundant_load (basic_block bb, rtx insn,
|
| 962 |
|
|
struct expr *expr)
|
| 963 |
|
|
{
|
| 964 |
|
|
edge pred;
|
| 965 |
|
|
rtx avail_insn = NULL_RTX;
|
| 966 |
|
|
rtx avail_reg;
|
| 967 |
|
|
rtx dest, pat;
|
| 968 |
|
|
struct occr *a_occr;
|
| 969 |
|
|
struct unoccr *occr, *avail_occrs = NULL;
|
| 970 |
|
|
struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
|
| 971 |
|
|
int npred_ok = 0;
|
| 972 |
|
|
gcov_type ok_count = 0; /* Redundant load execution count. */
|
| 973 |
|
|
gcov_type critical_count = 0; /* Execution count of critical edges. */
|
| 974 |
|
|
edge_iterator ei;
|
| 975 |
|
|
bool critical_edge_split = false;
|
| 976 |
|
|
|
| 977 |
|
|
/* The execution count of the loads to be added to make the
|
| 978 |
|
|
load fully redundant. */
|
| 979 |
|
|
gcov_type not_ok_count = 0;
|
| 980 |
|
|
basic_block pred_bb;
|
| 981 |
|
|
|
| 982 |
|
|
pat = PATTERN (insn);
|
| 983 |
|
|
dest = SET_DEST (pat);
|
| 984 |
|
|
|
| 985 |
|
|
/* Check that the loaded register is not used, set, or killed from the
|
| 986 |
|
|
beginning of the block. */
|
| 987 |
|
|
if (reg_changed_after_insn_p (dest, 0)
|
| 988 |
|
|
|| reg_used_between_p (dest, PREV_INSN (BB_HEAD (bb)), insn))
|
| 989 |
|
|
return;
|
| 990 |
|
|
|
| 991 |
|
|
/* Check potential for replacing load with copy for predecessors. */
|
| 992 |
|
|
FOR_EACH_EDGE (pred, ei, bb->preds)
|
| 993 |
|
|
{
|
| 994 |
|
|
rtx next_pred_bb_end;
|
| 995 |
|
|
|
| 996 |
|
|
avail_insn = NULL_RTX;
|
| 997 |
|
|
avail_reg = NULL_RTX;
|
| 998 |
|
|
pred_bb = pred->src;
|
| 999 |
|
|
next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
|
| 1000 |
|
|
for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
|
| 1001 |
|
|
a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
|
| 1002 |
|
|
{
|
| 1003 |
|
|
/* Check if the loaded register is not used. */
|
| 1004 |
|
|
avail_insn = a_occr->insn;
|
| 1005 |
|
|
avail_reg = get_avail_load_store_reg (avail_insn);
|
| 1006 |
|
|
gcc_assert (avail_reg);
|
| 1007 |
|
|
|
| 1008 |
|
|
/* Make sure we can generate a move from register avail_reg to
|
| 1009 |
|
|
dest. */
|
| 1010 |
|
|
extract_insn (gen_move_insn (copy_rtx (dest),
|
| 1011 |
|
|
copy_rtx (avail_reg)));
|
| 1012 |
|
|
if (! constrain_operands (1)
|
| 1013 |
|
|
|| reg_killed_on_edge (avail_reg, pred)
|
| 1014 |
|
|
|| reg_used_on_edge (dest, pred))
|
| 1015 |
|
|
{
|
| 1016 |
|
|
avail_insn = NULL;
|
| 1017 |
|
|
continue;
|
| 1018 |
|
|
}
|
| 1019 |
|
|
if (!reg_set_between_p (avail_reg, avail_insn, next_pred_bb_end))
|
| 1020 |
|
|
/* AVAIL_INSN remains non-null. */
|
| 1021 |
|
|
break;
|
| 1022 |
|
|
else
|
| 1023 |
|
|
avail_insn = NULL;
|
| 1024 |
|
|
}
|
| 1025 |
|
|
|
| 1026 |
|
|
if (EDGE_CRITICAL_P (pred))
|
| 1027 |
|
|
critical_count += pred->count;
|
| 1028 |
|
|
|
| 1029 |
|
|
if (avail_insn != NULL_RTX)
|
| 1030 |
|
|
{
|
| 1031 |
|
|
npred_ok++;
|
| 1032 |
|
|
ok_count += pred->count;
|
| 1033 |
|
|
if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest),
|
| 1034 |
|
|
copy_rtx (avail_reg)))))
|
| 1035 |
|
|
{
|
| 1036 |
|
|
/* Check if there is going to be a split. */
|
| 1037 |
|
|
if (EDGE_CRITICAL_P (pred))
|
| 1038 |
|
|
critical_edge_split = true;
|
| 1039 |
|
|
}
|
| 1040 |
|
|
else /* Its a dead move no need to generate. */
|
| 1041 |
|
|
continue;
|
| 1042 |
|
|
occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
|
| 1043 |
|
|
sizeof (struct unoccr));
|
| 1044 |
|
|
occr->insn = avail_insn;
|
| 1045 |
|
|
occr->pred = pred;
|
| 1046 |
|
|
occr->next = avail_occrs;
|
| 1047 |
|
|
avail_occrs = occr;
|
| 1048 |
|
|
if (! rollback_unoccr)
|
| 1049 |
|
|
rollback_unoccr = occr;
|
| 1050 |
|
|
}
|
| 1051 |
|
|
else
|
| 1052 |
|
|
{
|
| 1053 |
|
|
/* Adding a load on a critical edge will cause a split. */
|
| 1054 |
|
|
if (EDGE_CRITICAL_P (pred))
|
| 1055 |
|
|
critical_edge_split = true;
|
| 1056 |
|
|
not_ok_count += pred->count;
|
| 1057 |
|
|
unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
|
| 1058 |
|
|
sizeof (struct unoccr));
|
| 1059 |
|
|
unoccr->insn = NULL_RTX;
|
| 1060 |
|
|
unoccr->pred = pred;
|
| 1061 |
|
|
unoccr->next = unavail_occrs;
|
| 1062 |
|
|
unavail_occrs = unoccr;
|
| 1063 |
|
|
if (! rollback_unoccr)
|
| 1064 |
|
|
rollback_unoccr = unoccr;
|
| 1065 |
|
|
}
|
| 1066 |
|
|
}
|
| 1067 |
|
|
|
| 1068 |
|
|
if (/* No load can be replaced by copy. */
|
| 1069 |
|
|
npred_ok == 0
|
| 1070 |
|
|
/* Prevent exploding the code. */
|
| 1071 |
|
|
|| (optimize_bb_for_size_p (bb) && npred_ok > 1)
|
| 1072 |
|
|
/* If we don't have profile information we cannot tell if splitting
|
| 1073 |
|
|
a critical edge is profitable or not so don't do it. */
|
| 1074 |
|
|
|| ((! profile_info || ! flag_branch_probabilities
|
| 1075 |
|
|
|| targetm.cannot_modify_jumps_p ())
|
| 1076 |
|
|
&& critical_edge_split))
|
| 1077 |
|
|
goto cleanup;
|
| 1078 |
|
|
|
| 1079 |
|
|
/* Check if it's worth applying the partial redundancy elimination. */
|
| 1080 |
|
|
if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
|
| 1081 |
|
|
goto cleanup;
|
| 1082 |
|
|
if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
|
| 1083 |
|
|
goto cleanup;
|
| 1084 |
|
|
|
| 1085 |
|
|
/* Generate moves to the loaded register from where
|
| 1086 |
|
|
the memory is available. */
|
| 1087 |
|
|
for (occr = avail_occrs; occr; occr = occr->next)
|
| 1088 |
|
|
{
|
| 1089 |
|
|
avail_insn = occr->insn;
|
| 1090 |
|
|
pred = occr->pred;
|
| 1091 |
|
|
/* Set avail_reg to be the register having the value of the
|
| 1092 |
|
|
memory. */
|
| 1093 |
|
|
avail_reg = get_avail_load_store_reg (avail_insn);
|
| 1094 |
|
|
gcc_assert (avail_reg);
|
| 1095 |
|
|
|
| 1096 |
|
|
insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
|
| 1097 |
|
|
copy_rtx (avail_reg)),
|
| 1098 |
|
|
pred);
|
| 1099 |
|
|
stats.moves_inserted++;
|
| 1100 |
|
|
|
| 1101 |
|
|
if (dump_file)
|
| 1102 |
|
|
fprintf (dump_file,
|
| 1103 |
|
|
"generating move from %d to %d on edge from %d to %d\n",
|
| 1104 |
|
|
REGNO (avail_reg),
|
| 1105 |
|
|
REGNO (dest),
|
| 1106 |
|
|
pred->src->index,
|
| 1107 |
|
|
pred->dest->index);
|
| 1108 |
|
|
}
|
| 1109 |
|
|
|
| 1110 |
|
|
/* Regenerate loads where the memory is unavailable. */
|
| 1111 |
|
|
for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
|
| 1112 |
|
|
{
|
| 1113 |
|
|
pred = unoccr->pred;
|
| 1114 |
|
|
insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
|
| 1115 |
|
|
stats.copies_inserted++;
|
| 1116 |
|
|
|
| 1117 |
|
|
if (dump_file)
|
| 1118 |
|
|
{
|
| 1119 |
|
|
fprintf (dump_file,
|
| 1120 |
|
|
"generating on edge from %d to %d a copy of load: ",
|
| 1121 |
|
|
pred->src->index,
|
| 1122 |
|
|
pred->dest->index);
|
| 1123 |
|
|
print_rtl (dump_file, PATTERN (insn));
|
| 1124 |
|
|
fprintf (dump_file, "\n");
|
| 1125 |
|
|
}
|
| 1126 |
|
|
}
|
| 1127 |
|
|
|
| 1128 |
|
|
/* Delete the insn if it is not available in this block and mark it
|
| 1129 |
|
|
for deletion if it is available. If insn is available it may help
|
| 1130 |
|
|
discover additional redundancies, so mark it for later deletion. */
|
| 1131 |
|
|
for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
|
| 1132 |
|
|
a_occr && (a_occr->insn != insn);
|
| 1133 |
|
|
a_occr = get_bb_avail_insn (bb, a_occr->next))
|
| 1134 |
|
|
;
|
| 1135 |
|
|
|
| 1136 |
|
|
if (!a_occr)
|
| 1137 |
|
|
{
|
| 1138 |
|
|
stats.insns_deleted++;
|
| 1139 |
|
|
|
| 1140 |
|
|
if (dump_file)
|
| 1141 |
|
|
{
|
| 1142 |
|
|
fprintf (dump_file, "deleting insn:\n");
|
| 1143 |
|
|
print_rtl_single (dump_file, insn);
|
| 1144 |
|
|
fprintf (dump_file, "\n");
|
| 1145 |
|
|
}
|
| 1146 |
|
|
delete_insn (insn);
|
| 1147 |
|
|
}
|
| 1148 |
|
|
else
|
| 1149 |
|
|
a_occr->deleted_p = 1;
|
| 1150 |
|
|
|
| 1151 |
|
|
cleanup:
|
| 1152 |
|
|
if (rollback_unoccr)
|
| 1153 |
|
|
obstack_free (&unoccr_obstack, rollback_unoccr);
|
| 1154 |
|
|
}
|
| 1155 |
|
|
|
| 1156 |
|
|
/* Performing the redundancy elimination as described before. */
|
| 1157 |
|
|
|
| 1158 |
|
|
static void
|
| 1159 |
|
|
eliminate_partially_redundant_loads (void)
|
| 1160 |
|
|
{
|
| 1161 |
|
|
rtx insn;
|
| 1162 |
|
|
basic_block bb;
|
| 1163 |
|
|
|
| 1164 |
|
|
/* Note we start at block 1. */
|
| 1165 |
|
|
|
| 1166 |
|
|
if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
|
| 1167 |
|
|
return;
|
| 1168 |
|
|
|
| 1169 |
|
|
FOR_BB_BETWEEN (bb,
|
| 1170 |
|
|
ENTRY_BLOCK_PTR->next_bb->next_bb,
|
| 1171 |
|
|
EXIT_BLOCK_PTR,
|
| 1172 |
|
|
next_bb)
|
| 1173 |
|
|
{
|
| 1174 |
|
|
/* Don't try anything on basic blocks with strange predecessors. */
|
| 1175 |
|
|
if (! bb_has_well_behaved_predecessors (bb))
|
| 1176 |
|
|
continue;
|
| 1177 |
|
|
|
| 1178 |
|
|
/* Do not try anything on cold basic blocks. */
|
| 1179 |
|
|
if (optimize_bb_for_size_p (bb))
|
| 1180 |
|
|
continue;
|
| 1181 |
|
|
|
| 1182 |
|
|
/* Reset the table of things changed since the start of the current
|
| 1183 |
|
|
basic block. */
|
| 1184 |
|
|
reset_opr_set_tables ();
|
| 1185 |
|
|
|
| 1186 |
|
|
/* Look at all insns in the current basic block and see if there are
|
| 1187 |
|
|
any loads in it that we can record. */
|
| 1188 |
|
|
FOR_BB_INSNS (bb, insn)
|
| 1189 |
|
|
{
|
| 1190 |
|
|
/* Is it a load - of the form (set (reg) (mem))? */
|
| 1191 |
|
|
if (NONJUMP_INSN_P (insn)
|
| 1192 |
|
|
&& GET_CODE (PATTERN (insn)) == SET
|
| 1193 |
|
|
&& REG_P (SET_DEST (PATTERN (insn)))
|
| 1194 |
|
|
&& MEM_P (SET_SRC (PATTERN (insn))))
|
| 1195 |
|
|
{
|
| 1196 |
|
|
rtx pat = PATTERN (insn);
|
| 1197 |
|
|
rtx src = SET_SRC (pat);
|
| 1198 |
|
|
struct expr *expr;
|
| 1199 |
|
|
|
| 1200 |
|
|
if (!MEM_VOLATILE_P (src)
|
| 1201 |
|
|
&& GET_MODE (src) != BLKmode
|
| 1202 |
|
|
&& general_operand (src, GET_MODE (src))
|
| 1203 |
|
|
/* Are the operands unchanged since the start of the
|
| 1204 |
|
|
block? */
|
| 1205 |
|
|
&& oprs_unchanged_p (src, insn, false)
|
| 1206 |
|
|
&& !(cfun->can_throw_non_call_exceptions && may_trap_p (src))
|
| 1207 |
|
|
&& !side_effects_p (src)
|
| 1208 |
|
|
/* Is the expression recorded? */
|
| 1209 |
|
|
&& (expr = lookup_expr_in_table (src)) != NULL)
|
| 1210 |
|
|
{
|
| 1211 |
|
|
/* We now have a load (insn) and an available memory at
|
| 1212 |
|
|
its BB start (expr). Try to remove the loads if it is
|
| 1213 |
|
|
redundant. */
|
| 1214 |
|
|
eliminate_partially_redundant_load (bb, insn, expr);
|
| 1215 |
|
|
}
|
| 1216 |
|
|
}
|
| 1217 |
|
|
|
| 1218 |
|
|
/* Keep track of everything modified by this insn, so that we
|
| 1219 |
|
|
know what has been modified since the start of the current
|
| 1220 |
|
|
basic block. */
|
| 1221 |
|
|
if (INSN_P (insn))
|
| 1222 |
|
|
record_opr_changes (insn);
|
| 1223 |
|
|
}
|
| 1224 |
|
|
}
|
| 1225 |
|
|
|
| 1226 |
|
|
commit_edge_insertions ();
|
| 1227 |
|
|
}
|
| 1228 |
|
|
|
| 1229 |
|
|
/* Go over the expression hash table and delete insns that were
|
| 1230 |
|
|
marked for later deletion. */
|
| 1231 |
|
|
|
| 1232 |
|
|
/* This helper is called via htab_traverse. */
|
| 1233 |
|
|
static int
|
| 1234 |
|
|
delete_redundant_insns_1 (void **slot, void *data ATTRIBUTE_UNUSED)
|
| 1235 |
|
|
{
|
| 1236 |
|
|
struct expr *expr = (struct expr *) *slot;
|
| 1237 |
|
|
struct occr *occr;
|
| 1238 |
|
|
|
| 1239 |
|
|
for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
|
| 1240 |
|
|
{
|
| 1241 |
|
|
if (occr->deleted_p && dbg_cnt (gcse2_delete))
|
| 1242 |
|
|
{
|
| 1243 |
|
|
delete_insn (occr->insn);
|
| 1244 |
|
|
stats.insns_deleted++;
|
| 1245 |
|
|
|
| 1246 |
|
|
if (dump_file)
|
| 1247 |
|
|
{
|
| 1248 |
|
|
fprintf (dump_file, "deleting insn:\n");
|
| 1249 |
|
|
print_rtl_single (dump_file, occr->insn);
|
| 1250 |
|
|
fprintf (dump_file, "\n");
|
| 1251 |
|
|
}
|
| 1252 |
|
|
}
|
| 1253 |
|
|
}
|
| 1254 |
|
|
|
| 1255 |
|
|
return 1;
|
| 1256 |
|
|
}
|
| 1257 |
|
|
|
| 1258 |
|
|
static void
|
| 1259 |
|
|
delete_redundant_insns (void)
|
| 1260 |
|
|
{
|
| 1261 |
|
|
htab_traverse (expr_table, delete_redundant_insns_1, NULL);
|
| 1262 |
|
|
if (dump_file)
|
| 1263 |
|
|
fprintf (dump_file, "\n");
|
| 1264 |
|
|
}
|
| 1265 |
|
|
|
| 1266 |
|
|
/* Main entry point of the GCSE after reload - clean some redundant loads
|
| 1267 |
|
|
due to spilling. */
|
| 1268 |
|
|
|
| 1269 |
|
|
static void
|
| 1270 |
|
|
gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
|
| 1271 |
|
|
{
|
| 1272 |
|
|
|
| 1273 |
|
|
memset (&stats, 0, sizeof (stats));
|
| 1274 |
|
|
|
| 1275 |
|
|
/* Allocate memory for this pass.
|
| 1276 |
|
|
Also computes and initializes the insns' CUIDs. */
|
| 1277 |
|
|
alloc_mem ();
|
| 1278 |
|
|
|
| 1279 |
|
|
/* We need alias analysis. */
|
| 1280 |
|
|
init_alias_analysis ();
|
| 1281 |
|
|
|
| 1282 |
|
|
compute_hash_table ();
|
| 1283 |
|
|
|
| 1284 |
|
|
if (dump_file)
|
| 1285 |
|
|
dump_hash_table (dump_file);
|
| 1286 |
|
|
|
| 1287 |
|
|
if (htab_elements (expr_table) > 0)
|
| 1288 |
|
|
{
|
| 1289 |
|
|
eliminate_partially_redundant_loads ();
|
| 1290 |
|
|
delete_redundant_insns ();
|
| 1291 |
|
|
|
| 1292 |
|
|
if (dump_file)
|
| 1293 |
|
|
{
|
| 1294 |
|
|
fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
|
| 1295 |
|
|
fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
|
| 1296 |
|
|
fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
|
| 1297 |
|
|
fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
|
| 1298 |
|
|
fprintf (dump_file, "\n\n");
|
| 1299 |
|
|
}
|
| 1300 |
|
|
|
| 1301 |
|
|
statistics_counter_event (cfun, "copies inserted",
|
| 1302 |
|
|
stats.copies_inserted);
|
| 1303 |
|
|
statistics_counter_event (cfun, "moves inserted",
|
| 1304 |
|
|
stats.moves_inserted);
|
| 1305 |
|
|
statistics_counter_event (cfun, "insns deleted",
|
| 1306 |
|
|
stats.insns_deleted);
|
| 1307 |
|
|
}
|
| 1308 |
|
|
|
| 1309 |
|
|
/* We are finished with alias. */
|
| 1310 |
|
|
end_alias_analysis ();
|
| 1311 |
|
|
|
| 1312 |
|
|
free_mem ();
|
| 1313 |
|
|
}
|
| 1314 |
|
|
|
| 1315 |
|
|
|
| 1316 |
|
|
static bool
|
| 1317 |
|
|
gate_handle_gcse2 (void)
|
| 1318 |
|
|
{
|
| 1319 |
|
|
return (optimize > 0 && flag_gcse_after_reload
|
| 1320 |
|
|
&& optimize_function_for_speed_p (cfun));
|
| 1321 |
|
|
}
|
| 1322 |
|
|
|
| 1323 |
|
|
|
| 1324 |
|
|
static unsigned int
|
| 1325 |
|
|
rest_of_handle_gcse2 (void)
|
| 1326 |
|
|
{
|
| 1327 |
|
|
gcse_after_reload_main (get_insns ());
|
| 1328 |
|
|
rebuild_jump_labels (get_insns ());
|
| 1329 |
|
|
return 0;
|
| 1330 |
|
|
}
|
| 1331 |
|
|
|
| 1332 |
|
|
struct rtl_opt_pass pass_gcse2 =
|
| 1333 |
|
|
{
|
| 1334 |
|
|
{
|
| 1335 |
|
|
RTL_PASS,
|
| 1336 |
|
|
"gcse2", /* name */
|
| 1337 |
|
|
gate_handle_gcse2, /* gate */
|
| 1338 |
|
|
rest_of_handle_gcse2, /* execute */
|
| 1339 |
|
|
NULL, /* sub */
|
| 1340 |
|
|
NULL, /* next */
|
| 1341 |
|
|
0, /* static_pass_number */
|
| 1342 |
|
|
TV_GCSE_AFTER_RELOAD, /* tv_id */
|
| 1343 |
|
|
0, /* properties_required */
|
| 1344 |
|
|
0, /* properties_provided */
|
| 1345 |
|
|
0, /* properties_destroyed */
|
| 1346 |
|
|
0, /* todo_flags_start */
|
| 1347 |
|
|
TODO_verify_rtl_sharing
|
| 1348 |
|
|
| TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
|
| 1349 |
|
|
}
|
| 1350 |
|
|
};
|