OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [reg-stack.c] - Blame information for rev 774

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 684 jeremybenn
/* Register to Stack convert for GNU compiler.
2
   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3
   2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010, 2011, 2012
4
   Free Software Foundation, Inc.
5
 
6
   This file is part of GCC.
7
 
8
   GCC is free software; you can redistribute it and/or modify it
9
   under the terms of the GNU General Public License as published by
10
   the Free Software Foundation; either version 3, or (at your option)
11
   any later version.
12
 
13
   GCC is distributed in the hope that it will be useful, but WITHOUT
14
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
16
   License for more details.
17
 
18
   You should have received a copy of the GNU General Public License
19
   along with GCC; see the file COPYING3.  If not see
20
   <http://www.gnu.org/licenses/>.  */
21
 
22
/* This pass converts stack-like registers from the "flat register
23
   file" model that gcc uses, to a stack convention that the 387 uses.
24
 
25
   * The form of the input:
26
 
27
   On input, the function consists of insn that have had their
28
   registers fully allocated to a set of "virtual" registers.  Note that
29
   the word "virtual" is used differently here than elsewhere in gcc: for
30
   each virtual stack reg, there is a hard reg, but the mapping between
31
   them is not known until this pass is run.  On output, hard register
32
   numbers have been substituted, and various pop and exchange insns have
33
   been emitted.  The hard register numbers and the virtual register
34
   numbers completely overlap - before this pass, all stack register
35
   numbers are virtual, and afterward they are all hard.
36
 
37
   The virtual registers can be manipulated normally by gcc, and their
38
   semantics are the same as for normal registers.  After the hard
39
   register numbers are substituted, the semantics of an insn containing
40
   stack-like regs are not the same as for an insn with normal regs: for
41
   instance, it is not safe to delete an insn that appears to be a no-op
42
   move.  In general, no insn containing hard regs should be changed
43
   after this pass is done.
44
 
45
   * The form of the output:
46
 
47
   After this pass, hard register numbers represent the distance from
48
   the current top of stack to the desired register.  A reference to
49
   FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50
   represents the register just below that, and so forth.  Also, REG_DEAD
51
   notes indicate whether or not a stack register should be popped.
52
 
53
   A "swap" insn looks like a parallel of two patterns, where each
54
   pattern is a SET: one sets A to B, the other B to A.
55
 
56
   A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57
   and whose SET_DEST is REG or MEM.  Any other SET_DEST, such as PLUS,
58
   will replace the existing stack top, not push a new value.
59
 
60
   A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61
   SET_SRC is REG or MEM.
62
 
63
   The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64
   appears ambiguous.  As a special case, the presence of a REG_DEAD note
65
   for FIRST_STACK_REG differentiates between a load insn and a pop.
66
 
67
   If a REG_DEAD is present, the insn represents a "pop" that discards
68
   the top of the register stack.  If there is no REG_DEAD note, then the
69
   insn represents a "dup" or a push of the current top of stack onto the
70
   stack.
71
 
72
   * Methodology:
73
 
74
   Existing REG_DEAD and REG_UNUSED notes for stack registers are
75
   deleted and recreated from scratch.  REG_DEAD is never created for a
76
   SET_DEST, only REG_UNUSED.
77
 
78
   * asm_operands:
79
 
80
   There are several rules on the usage of stack-like regs in
81
   asm_operands insns.  These rules apply only to the operands that are
82
   stack-like regs:
83
 
84
   1. Given a set of input regs that die in an asm_operands, it is
85
      necessary to know which are implicitly popped by the asm, and
86
      which must be explicitly popped by gcc.
87
 
88
        An input reg that is implicitly popped by the asm must be
89
        explicitly clobbered, unless it is constrained to match an
90
        output operand.
91
 
92
   2. For any input reg that is implicitly popped by an asm, it is
93
      necessary to know how to adjust the stack to compensate for the pop.
94
      If any non-popped input is closer to the top of the reg-stack than
95
      the implicitly popped reg, it would not be possible to know what the
96
      stack looked like - it's not clear how the rest of the stack "slides
97
      up".
98
 
99
        All implicitly popped input regs must be closer to the top of
100
        the reg-stack than any input that is not implicitly popped.
101
 
102
   3. It is possible that if an input dies in an insn, reload might
103
      use the input reg for an output reload.  Consider this example:
104
 
105
                asm ("foo" : "=t" (a) : "f" (b));
106
 
107
      This asm says that input B is not popped by the asm, and that
108
      the asm pushes a result onto the reg-stack, i.e., the stack is one
109
      deeper after the asm than it was before.  But, it is possible that
110
      reload will think that it can use the same reg for both the input and
111
      the output, if input B dies in this insn.
112
 
113
        If any input operand uses the "f" constraint, all output reg
114
        constraints must use the "&" earlyclobber.
115
 
116
      The asm above would be written as
117
 
118
                asm ("foo" : "=&t" (a) : "f" (b));
119
 
120
   4. Some operands need to be in particular places on the stack.  All
121
      output operands fall in this category - there is no other way to
122
      know which regs the outputs appear in unless the user indicates
123
      this in the constraints.
124
 
125
        Output operands must specifically indicate which reg an output
126
        appears in after an asm.  "=f" is not allowed: the operand
127
        constraints must select a class with a single reg.
128
 
129
   5. Output operands may not be "inserted" between existing stack regs.
130
      Since no 387 opcode uses a read/write operand, all output operands
131
      are dead before the asm_operands, and are pushed by the asm_operands.
132
      It makes no sense to push anywhere but the top of the reg-stack.
133
 
134
        Output operands must start at the top of the reg-stack: output
135
        operands may not "skip" a reg.
136
 
137
   6. Some asm statements may need extra stack space for internal
138
      calculations.  This can be guaranteed by clobbering stack registers
139
      unrelated to the inputs and outputs.
140
 
141
   Here are a couple of reasonable asms to want to write.  This asm
142
   takes one input, which is internally popped, and produces two outputs.
143
 
144
        asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
145
 
146
   This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147
   and replaces them with one output.  The user must code the "st(1)"
148
   clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
149
 
150
        asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
151
 
152
*/
153
 
154
#include "config.h"
155
#include "system.h"
156
#include "coretypes.h"
157
#include "tm.h"
158
#include "tree.h"
159
#include "rtl-error.h"
160
#include "tm_p.h"
161
#include "function.h"
162
#include "insn-config.h"
163
#include "regs.h"
164
#include "hard-reg-set.h"
165
#include "flags.h"
166
#include "recog.h"
167
#include "output.h"
168
#include "basic-block.h"
169
#include "cfglayout.h"
170
#include "reload.h"
171
#include "ggc.h"
172
#include "timevar.h"
173
#include "tree-pass.h"
174
#include "target.h"
175
#include "df.h"
176
#include "vecprim.h"
177
#include "emit-rtl.h"  /* FIXME: Can go away once crtl is moved to rtl.h.  */
178
 
179
#ifdef STACK_REGS
180
 
181
/* We use this array to cache info about insns, because otherwise we
182
   spend too much time in stack_regs_mentioned_p.
183
 
184
   Indexed by insn UIDs.  A value of zero is uninitialized, one indicates
185
   the insn uses stack registers, two indicates the insn does not use
186
   stack registers.  */
187
static VEC(char,heap) *stack_regs_mentioned_data;
188
 
189
#define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
190
 
191
int regstack_completed = 0;
192
 
193
/* This is the basic stack record.  TOP is an index into REG[] such
194
   that REG[TOP] is the top of stack.  If TOP is -1 the stack is empty.
195
 
196
   If TOP is -2, REG[] is not yet initialized.  Stack initialization
197
   consists of placing each live reg in array `reg' and setting `top'
198
   appropriately.
199
 
200
   REG_SET indicates which registers are live.  */
201
 
202
typedef struct stack_def
203
{
204
  int top;                      /* index to top stack element */
205
  HARD_REG_SET reg_set;         /* set of live registers */
206
  unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
207
} *stack;
208
 
209
/* This is used to carry information about basic blocks.  It is
210
   attached to the AUX field of the standard CFG block.  */
211
 
212
typedef struct block_info_def
213
{
214
  struct stack_def stack_in;    /* Input stack configuration.  */
215
  struct stack_def stack_out;   /* Output stack configuration.  */
216
  HARD_REG_SET out_reg_set;     /* Stack regs live on output.  */
217
  int done;                     /* True if block already converted.  */
218
  int predecessors;             /* Number of predecessors that need
219
                                   to be visited.  */
220
} *block_info;
221
 
222
#define BLOCK_INFO(B)   ((block_info) (B)->aux)
223
 
224
/* Passed to change_stack to indicate where to emit insns.  */
225
enum emit_where
226
{
227
  EMIT_AFTER,
228
  EMIT_BEFORE
229
};
230
 
231
/* The block we're currently working on.  */
232
static basic_block current_block;
233
 
234
/* In the current_block, whether we're processing the first register
235
   stack or call instruction, i.e. the regstack is currently the
236
   same as BLOCK_INFO(current_block)->stack_in.  */
237
static bool starting_stack_p;
238
 
239
/* This is the register file for all register after conversion.  */
240
static rtx
241
  FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
242
 
243
#define FP_MODE_REG(regno,mode) \
244
  (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
245
 
246
/* Used to initialize uninitialized registers.  */
247
static rtx not_a_num;
248
 
249
/* Forward declarations */
250
 
251
static int stack_regs_mentioned_p (const_rtx pat);
252
static void pop_stack (stack, int);
253
static rtx *get_true_reg (rtx *);
254
 
255
static int check_asm_stack_operands (rtx);
256
static void get_asm_operands_in_out (rtx, int *, int *);
257
static rtx stack_result (tree);
258
static void replace_reg (rtx *, int);
259
static void remove_regno_note (rtx, enum reg_note, unsigned int);
260
static int get_hard_regnum (stack, rtx);
261
static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
262
static void swap_to_top(rtx, stack, rtx, rtx);
263
static bool move_for_stack_reg (rtx, stack, rtx);
264
static bool move_nan_for_stack_reg (rtx, stack, rtx);
265
static int swap_rtx_condition_1 (rtx);
266
static int swap_rtx_condition (rtx);
267
static void compare_for_stack_reg (rtx, stack, rtx);
268
static bool subst_stack_regs_pat (rtx, stack, rtx);
269
static void subst_asm_stack_regs (rtx, stack);
270
static bool subst_stack_regs (rtx, stack);
271
static void change_stack (rtx, stack, stack, enum emit_where);
272
static void print_stack (FILE *, stack);
273
static rtx next_flags_user (rtx);
274
 
275
/* Return nonzero if any stack register is mentioned somewhere within PAT.  */
276
 
277
static int
278
stack_regs_mentioned_p (const_rtx pat)
279
{
280
  const char *fmt;
281
  int i;
282
 
283
  if (STACK_REG_P (pat))
284
    return 1;
285
 
286
  fmt = GET_RTX_FORMAT (GET_CODE (pat));
287
  for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
288
    {
289
      if (fmt[i] == 'E')
290
        {
291
          int j;
292
 
293
          for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
294
            if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
295
              return 1;
296
        }
297
      else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
298
        return 1;
299
    }
300
 
301
  return 0;
302
}
303
 
304
/* Return nonzero if INSN mentions stacked registers, else return zero.  */
305
 
306
int
307
stack_regs_mentioned (const_rtx insn)
308
{
309
  unsigned int uid, max;
310
  int test;
311
 
312
  if (! INSN_P (insn) || !stack_regs_mentioned_data)
313
    return 0;
314
 
315
  uid = INSN_UID (insn);
316
  max = VEC_length (char, stack_regs_mentioned_data);
317
  if (uid >= max)
318
    {
319
      /* Allocate some extra size to avoid too many reallocs, but
320
         do not grow too quickly.  */
321
      max = uid + uid / 20 + 1;
322
      VEC_safe_grow_cleared (char, heap, stack_regs_mentioned_data, max);
323
    }
324
 
325
  test = VEC_index (char, stack_regs_mentioned_data, uid);
326
  if (test == 0)
327
    {
328
      /* This insn has yet to be examined.  Do so now.  */
329
      test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
330
      VEC_replace (char, stack_regs_mentioned_data, uid, test);
331
    }
332
 
333
  return test == 1;
334
}
335
 
336
static rtx ix86_flags_rtx;
337
 
338
static rtx
339
next_flags_user (rtx insn)
340
{
341
  /* Search forward looking for the first use of this value.
342
     Stop at block boundaries.  */
343
 
344
  while (insn != BB_END (current_block))
345
    {
346
      insn = NEXT_INSN (insn);
347
 
348
      if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
349
        return insn;
350
 
351
      if (CALL_P (insn))
352
        return NULL_RTX;
353
    }
354
  return NULL_RTX;
355
}
356
 
357
/* Reorganize the stack into ascending numbers, before this insn.  */
358
 
359
static void
360
straighten_stack (rtx insn, stack regstack)
361
{
362
  struct stack_def temp_stack;
363
  int top;
364
 
365
  /* If there is only a single register on the stack, then the stack is
366
     already in increasing order and no reorganization is needed.
367
 
368
     Similarly if the stack is empty.  */
369
  if (regstack->top <= 0)
370
    return;
371
 
372
  COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
373
 
374
  for (top = temp_stack.top = regstack->top; top >= 0; top--)
375
    temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
376
 
377
  change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
378
}
379
 
380
/* Pop a register from the stack.  */
381
 
382
static void
383
pop_stack (stack regstack, int regno)
384
{
385
  int top = regstack->top;
386
 
387
  CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
388
  regstack->top--;
389
  /* If regno was not at the top of stack then adjust stack.  */
390
  if (regstack->reg [top] != regno)
391
    {
392
      int i;
393
      for (i = regstack->top; i >= 0; i--)
394
        if (regstack->reg [i] == regno)
395
          {
396
            int j;
397
            for (j = i; j < top; j++)
398
              regstack->reg [j] = regstack->reg [j + 1];
399
            break;
400
          }
401
    }
402
}
403
 
404
/* Return a pointer to the REG expression within PAT.  If PAT is not a
405
   REG, possible enclosed by a conversion rtx, return the inner part of
406
   PAT that stopped the search.  */
407
 
408
static rtx *
409
get_true_reg (rtx *pat)
410
{
411
  for (;;)
412
    switch (GET_CODE (*pat))
413
      {
414
      case SUBREG:
415
        /* Eliminate FP subregister accesses in favor of the
416
           actual FP register in use.  */
417
        {
418
          rtx subreg;
419
          if (FP_REG_P (subreg = SUBREG_REG (*pat)))
420
            {
421
              int regno_off = subreg_regno_offset (REGNO (subreg),
422
                                                   GET_MODE (subreg),
423
                                                   SUBREG_BYTE (*pat),
424
                                                   GET_MODE (*pat));
425
              *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
426
                                  GET_MODE (subreg));
427
              return pat;
428
            }
429
        }
430
      case FLOAT:
431
      case FIX:
432
      case FLOAT_EXTEND:
433
        pat = & XEXP (*pat, 0);
434
        break;
435
 
436
      case UNSPEC:
437
        if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
438
            || XINT (*pat, 1) == UNSPEC_LDA)
439
          pat = & XVECEXP (*pat, 0, 0);
440
        return pat;
441
 
442
      case FLOAT_TRUNCATE:
443
        if (!flag_unsafe_math_optimizations)
444
          return pat;
445
        pat = & XEXP (*pat, 0);
446
        break;
447
 
448
      default:
449
        return pat;
450
      }
451
}
452
 
453
/* Set if we find any malformed asms in a block.  */
454
static bool any_malformed_asm;
455
 
456
/* There are many rules that an asm statement for stack-like regs must
457
   follow.  Those rules are explained at the top of this file: the rule
458
   numbers below refer to that explanation.  */
459
 
460
static int
461
check_asm_stack_operands (rtx insn)
462
{
463
  int i;
464
  int n_clobbers;
465
  int malformed_asm = 0;
466
  rtx body = PATTERN (insn);
467
 
468
  char reg_used_as_output[FIRST_PSEUDO_REGISTER];
469
  char implicitly_dies[FIRST_PSEUDO_REGISTER];
470
  int alt;
471
 
472
  rtx *clobber_reg = 0;
473
  int n_inputs, n_outputs;
474
 
475
  /* Find out what the constraints require.  If no constraint
476
     alternative matches, this asm is malformed.  */
477
  extract_insn (insn);
478
  constrain_operands (1);
479
  alt = which_alternative;
480
 
481
  preprocess_constraints ();
482
 
483
  get_asm_operands_in_out (body, &n_outputs, &n_inputs);
484
 
485
  if (alt < 0)
486
    {
487
      malformed_asm = 1;
488
      /* Avoid further trouble with this insn.  */
489
      PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
490
      return 0;
491
    }
492
 
493
  /* Strip SUBREGs here to make the following code simpler.  */
494
  for (i = 0; i < recog_data.n_operands; i++)
495
    if (GET_CODE (recog_data.operand[i]) == SUBREG
496
        && REG_P (SUBREG_REG (recog_data.operand[i])))
497
      recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
498
 
499
  /* Set up CLOBBER_REG.  */
500
 
501
  n_clobbers = 0;
502
 
503
  if (GET_CODE (body) == PARALLEL)
504
    {
505
      clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
506
 
507
      for (i = 0; i < XVECLEN (body, 0); i++)
508
        if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
509
          {
510
            rtx clobber = XVECEXP (body, 0, i);
511
            rtx reg = XEXP (clobber, 0);
512
 
513
            if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
514
              reg = SUBREG_REG (reg);
515
 
516
            if (STACK_REG_P (reg))
517
              {
518
                clobber_reg[n_clobbers] = reg;
519
                n_clobbers++;
520
              }
521
          }
522
    }
523
 
524
  /* Enforce rule #4: Output operands must specifically indicate which
525
     reg an output appears in after an asm.  "=f" is not allowed: the
526
     operand constraints must select a class with a single reg.
527
 
528
     Also enforce rule #5: Output operands must start at the top of
529
     the reg-stack: output operands may not "skip" a reg.  */
530
 
531
  memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
532
  for (i = 0; i < n_outputs; i++)
533
    if (STACK_REG_P (recog_data.operand[i]))
534
      {
535
        if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
536
          {
537
            error_for_asm (insn, "output constraint %d must specify a single register", i);
538
            malformed_asm = 1;
539
          }
540
        else
541
          {
542
            int j;
543
 
544
            for (j = 0; j < n_clobbers; j++)
545
              if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
546
                {
547
                  error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
548
                                 i, reg_names [REGNO (clobber_reg[j])]);
549
                  malformed_asm = 1;
550
                  break;
551
                }
552
            if (j == n_clobbers)
553
              reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
554
          }
555
      }
556
 
557
 
558
  /* Search for first non-popped reg.  */
559
  for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
560
    if (! reg_used_as_output[i])
561
      break;
562
 
563
  /* If there are any other popped regs, that's an error.  */
564
  for (; i < LAST_STACK_REG + 1; i++)
565
    if (reg_used_as_output[i])
566
      break;
567
 
568
  if (i != LAST_STACK_REG + 1)
569
    {
570
      error_for_asm (insn, "output regs must be grouped at top of stack");
571
      malformed_asm = 1;
572
    }
573
 
574
  /* Enforce rule #2: All implicitly popped input regs must be closer
575
     to the top of the reg-stack than any input that is not implicitly
576
     popped.  */
577
 
578
  memset (implicitly_dies, 0, sizeof (implicitly_dies));
579
  for (i = n_outputs; i < n_outputs + n_inputs; i++)
580
    if (STACK_REG_P (recog_data.operand[i]))
581
      {
582
        /* An input reg is implicitly popped if it is tied to an
583
           output, or if there is a CLOBBER for it.  */
584
        int j;
585
 
586
        for (j = 0; j < n_clobbers; j++)
587
          if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
588
            break;
589
 
590
        if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
591
          implicitly_dies[REGNO (recog_data.operand[i])] = 1;
592
      }
593
 
594
  /* Search for first non-popped reg.  */
595
  for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
596
    if (! implicitly_dies[i])
597
      break;
598
 
599
  /* If there are any other popped regs, that's an error.  */
600
  for (; i < LAST_STACK_REG + 1; i++)
601
    if (implicitly_dies[i])
602
      break;
603
 
604
  if (i != LAST_STACK_REG + 1)
605
    {
606
      error_for_asm (insn,
607
                     "implicitly popped regs must be grouped at top of stack");
608
      malformed_asm = 1;
609
    }
610
 
611
  /* Enforce rule #3: If any input operand uses the "f" constraint, all
612
     output constraints must use the "&" earlyclobber.
613
 
614
     ??? Detect this more deterministically by having constrain_asm_operands
615
     record any earlyclobber.  */
616
 
617
  for (i = n_outputs; i < n_outputs + n_inputs; i++)
618
    if (recog_op_alt[i][alt].matches == -1)
619
      {
620
        int j;
621
 
622
        for (j = 0; j < n_outputs; j++)
623
          if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
624
            {
625
              error_for_asm (insn,
626
                             "output operand %d must use %<&%> constraint", j);
627
              malformed_asm = 1;
628
            }
629
      }
630
 
631
  if (malformed_asm)
632
    {
633
      /* Avoid further trouble with this insn.  */
634
      PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
635
      any_malformed_asm = true;
636
      return 0;
637
    }
638
 
639
  return 1;
640
}
641
 
642
/* Calculate the number of inputs and outputs in BODY, an
643
   asm_operands.  N_OPERANDS is the total number of operands, and
644
   N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
645
   placed.  */
646
 
647
static void
648
get_asm_operands_in_out (rtx body, int *pout, int *pin)
649
{
650
  rtx asmop = extract_asm_operands (body);
651
 
652
  *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
653
  *pout = (recog_data.n_operands
654
           - ASM_OPERANDS_INPUT_LENGTH (asmop)
655
           - ASM_OPERANDS_LABEL_LENGTH (asmop));
656
}
657
 
658
/* If current function returns its result in an fp stack register,
659
   return the REG.  Otherwise, return 0.  */
660
 
661
static rtx
662
stack_result (tree decl)
663
{
664
  rtx result;
665
 
666
  /* If the value is supposed to be returned in memory, then clearly
667
     it is not returned in a stack register.  */
668
  if (aggregate_value_p (DECL_RESULT (decl), decl))
669
    return 0;
670
 
671
  result = DECL_RTL_IF_SET (DECL_RESULT (decl));
672
  if (result != 0)
673
    result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
674
                                           decl, true);
675
 
676
  return result != 0 && STACK_REG_P (result) ? result : 0;
677
}
678
 
679
 
680
/*
681
 * This section deals with stack register substitution, and forms the second
682
 * pass over the RTL.
683
 */
684
 
685
/* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
686
   the desired hard REGNO.  */
687
 
688
static void
689
replace_reg (rtx *reg, int regno)
690
{
691
  gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
692
  gcc_assert (STACK_REG_P (*reg));
693
 
694
  gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
695
              || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
696
 
697
  *reg = FP_MODE_REG (regno, GET_MODE (*reg));
698
}
699
 
700
/* Remove a note of type NOTE, which must be found, for register
701
   number REGNO from INSN.  Remove only one such note.  */
702
 
703
static void
704
remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
705
{
706
  rtx *note_link, this_rtx;
707
 
708
  note_link = &REG_NOTES (insn);
709
  for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
710
    if (REG_NOTE_KIND (this_rtx) == note
711
        && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
712
      {
713
        *note_link = XEXP (this_rtx, 1);
714
        return;
715
      }
716
    else
717
      note_link = &XEXP (this_rtx, 1);
718
 
719
  gcc_unreachable ();
720
}
721
 
722
/* Find the hard register number of virtual register REG in REGSTACK.
723
   The hard register number is relative to the top of the stack.  -1 is
724
   returned if the register is not found.  */
725
 
726
static int
727
get_hard_regnum (stack regstack, rtx reg)
728
{
729
  int i;
730
 
731
  gcc_assert (STACK_REG_P (reg));
732
 
733
  for (i = regstack->top; i >= 0; i--)
734
    if (regstack->reg[i] == REGNO (reg))
735
      break;
736
 
737
  return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
738
}
739
 
740
/* Emit an insn to pop virtual register REG before or after INSN.
741
   REGSTACK is the stack state after INSN and is updated to reflect this
742
   pop.  WHEN is either emit_insn_before or emit_insn_after.  A pop insn
743
   is represented as a SET whose destination is the register to be popped
744
   and source is the top of stack.  A death note for the top of stack
745
   cases the movdf pattern to pop.  */
746
 
747
static rtx
748
emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
749
{
750
  rtx pop_insn, pop_rtx;
751
  int hard_regno;
752
 
753
  /* For complex types take care to pop both halves.  These may survive in
754
     CLOBBER and USE expressions.  */
755
  if (COMPLEX_MODE_P (GET_MODE (reg)))
756
    {
757
      rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
758
      rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
759
 
760
      pop_insn = NULL_RTX;
761
      if (get_hard_regnum (regstack, reg1) >= 0)
762
        pop_insn = emit_pop_insn (insn, regstack, reg1, where);
763
      if (get_hard_regnum (regstack, reg2) >= 0)
764
        pop_insn = emit_pop_insn (insn, regstack, reg2, where);
765
      gcc_assert (pop_insn);
766
      return pop_insn;
767
    }
768
 
769
  hard_regno = get_hard_regnum (regstack, reg);
770
 
771
  gcc_assert (hard_regno >= FIRST_STACK_REG);
772
 
773
  pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
774
                         FP_MODE_REG (FIRST_STACK_REG, DFmode));
775
 
776
  if (where == EMIT_AFTER)
777
    pop_insn = emit_insn_after (pop_rtx, insn);
778
  else
779
    pop_insn = emit_insn_before (pop_rtx, insn);
780
 
781
  add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
782
 
783
  regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
784
    = regstack->reg[regstack->top];
785
  regstack->top -= 1;
786
  CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
787
 
788
  return pop_insn;
789
}
790
 
791
/* Emit an insn before or after INSN to swap virtual register REG with
792
   the top of stack.  REGSTACK is the stack state before the swap, and
793
   is updated to reflect the swap.  A swap insn is represented as a
794
   PARALLEL of two patterns: each pattern moves one reg to the other.
795
 
796
   If REG is already at the top of the stack, no insn is emitted.  */
797
 
798
static void
799
emit_swap_insn (rtx insn, stack regstack, rtx reg)
800
{
801
  int hard_regno;
802
  rtx swap_rtx;
803
  int tmp, other_reg;           /* swap regno temps */
804
  rtx i1;                       /* the stack-reg insn prior to INSN */
805
  rtx i1set = NULL_RTX;         /* the SET rtx within I1 */
806
 
807
  hard_regno = get_hard_regnum (regstack, reg);
808
 
809
  if (hard_regno == FIRST_STACK_REG)
810
    return;
811
  if (hard_regno == -1)
812
    {
813
      /* Something failed if the register wasn't on the stack.  If we had
814
         malformed asms, we zapped the instruction itself, but that didn't
815
         produce the same pattern of register sets as before.  To prevent
816
         further failure, adjust REGSTACK to include REG at TOP.  */
817
      gcc_assert (any_malformed_asm);
818
      regstack->reg[++regstack->top] = REGNO (reg);
819
      return;
820
    }
821
  gcc_assert (hard_regno >= FIRST_STACK_REG);
822
 
823
  other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
824
 
825
  tmp = regstack->reg[other_reg];
826
  regstack->reg[other_reg] = regstack->reg[regstack->top];
827
  regstack->reg[regstack->top] = tmp;
828
 
829
  /* Find the previous insn involving stack regs, but don't pass a
830
     block boundary.  */
831
  i1 = NULL;
832
  if (current_block && insn != BB_HEAD (current_block))
833
    {
834
      rtx tmp = PREV_INSN (insn);
835
      rtx limit = PREV_INSN (BB_HEAD (current_block));
836
      while (tmp != limit)
837
        {
838
          if (LABEL_P (tmp)
839
              || CALL_P (tmp)
840
              || NOTE_INSN_BASIC_BLOCK_P (tmp)
841
              || (NONJUMP_INSN_P (tmp)
842
                  && stack_regs_mentioned (tmp)))
843
            {
844
              i1 = tmp;
845
              break;
846
            }
847
          tmp = PREV_INSN (tmp);
848
        }
849
    }
850
 
851
  if (i1 != NULL_RTX
852
      && (i1set = single_set (i1)) != NULL_RTX)
853
    {
854
      rtx i1src = *get_true_reg (&SET_SRC (i1set));
855
      rtx i1dest = *get_true_reg (&SET_DEST (i1set));
856
 
857
      /* If the previous register stack push was from the reg we are to
858
         swap with, omit the swap.  */
859
 
860
      if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
861
          && REG_P (i1src)
862
          && REGNO (i1src) == (unsigned) hard_regno - 1
863
          && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
864
        return;
865
 
866
      /* If the previous insn wrote to the reg we are to swap with,
867
         omit the swap.  */
868
 
869
      if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
870
          && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
871
          && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
872
        return;
873
    }
874
 
875
  /* Avoid emitting the swap if this is the first register stack insn
876
     of the current_block.  Instead update the current_block's stack_in
877
     and let compensate edges take care of this for us.  */
878
  if (current_block && starting_stack_p)
879
    {
880
      BLOCK_INFO (current_block)->stack_in = *regstack;
881
      starting_stack_p = false;
882
      return;
883
    }
884
 
885
  swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
886
                         FP_MODE_REG (FIRST_STACK_REG, XFmode));
887
 
888
  if (i1)
889
    emit_insn_after (swap_rtx, i1);
890
  else if (current_block)
891
    emit_insn_before (swap_rtx, BB_HEAD (current_block));
892
  else
893
    emit_insn_before (swap_rtx, insn);
894
}
895
 
896
/* Emit an insns before INSN to swap virtual register SRC1 with
897
   the top of stack and virtual register SRC2 with second stack
898
   slot. REGSTACK is the stack state before the swaps, and
899
   is updated to reflect the swaps.  A swap insn is represented as a
900
   PARALLEL of two patterns: each pattern moves one reg to the other.
901
 
902
   If SRC1 and/or SRC2 are already at the right place, no swap insn
903
   is emitted.  */
904
 
905
static void
906
swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
907
{
908
  struct stack_def temp_stack;
909
  int regno, j, k, temp;
910
 
911
  temp_stack = *regstack;
912
 
913
  /* Place operand 1 at the top of stack.  */
914
  regno = get_hard_regnum (&temp_stack, src1);
915
  gcc_assert (regno >= 0);
916
  if (regno != FIRST_STACK_REG)
917
    {
918
      k = temp_stack.top - (regno - FIRST_STACK_REG);
919
      j = temp_stack.top;
920
 
921
      temp = temp_stack.reg[k];
922
      temp_stack.reg[k] = temp_stack.reg[j];
923
      temp_stack.reg[j] = temp;
924
    }
925
 
926
  /* Place operand 2 next on the stack.  */
927
  regno = get_hard_regnum (&temp_stack, src2);
928
  gcc_assert (regno >= 0);
929
  if (regno != FIRST_STACK_REG + 1)
930
    {
931
      k = temp_stack.top - (regno - FIRST_STACK_REG);
932
      j = temp_stack.top - 1;
933
 
934
      temp = temp_stack.reg[k];
935
      temp_stack.reg[k] = temp_stack.reg[j];
936
      temp_stack.reg[j] = temp;
937
    }
938
 
939
  change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
940
}
941
 
942
/* Handle a move to or from a stack register in PAT, which is in INSN.
943
   REGSTACK is the current stack.  Return whether a control flow insn
944
   was deleted in the process.  */
945
 
946
static bool
947
move_for_stack_reg (rtx insn, stack regstack, rtx pat)
948
{
949
  rtx *psrc =  get_true_reg (&SET_SRC (pat));
950
  rtx *pdest = get_true_reg (&SET_DEST (pat));
951
  rtx src, dest;
952
  rtx note;
953
  bool control_flow_insn_deleted = false;
954
 
955
  src = *psrc; dest = *pdest;
956
 
957
  if (STACK_REG_P (src) && STACK_REG_P (dest))
958
    {
959
      /* Write from one stack reg to another.  If SRC dies here, then
960
         just change the register mapping and delete the insn.  */
961
 
962
      note = find_regno_note (insn, REG_DEAD, REGNO (src));
963
      if (note)
964
        {
965
          int i;
966
 
967
          /* If this is a no-op move, there must not be a REG_DEAD note.  */
968
          gcc_assert (REGNO (src) != REGNO (dest));
969
 
970
          for (i = regstack->top; i >= 0; i--)
971
            if (regstack->reg[i] == REGNO (src))
972
              break;
973
 
974
          /* The destination must be dead, or life analysis is borked.  */
975
          gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
976
 
977
          /* If the source is not live, this is yet another case of
978
             uninitialized variables.  Load up a NaN instead.  */
979
          if (i < 0)
980
            return move_nan_for_stack_reg (insn, regstack, dest);
981
 
982
          /* It is possible that the dest is unused after this insn.
983
             If so, just pop the src.  */
984
 
985
          if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
986
            emit_pop_insn (insn, regstack, src, EMIT_AFTER);
987
          else
988
            {
989
              regstack->reg[i] = REGNO (dest);
990
              SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
991
              CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
992
            }
993
 
994
          control_flow_insn_deleted |= control_flow_insn_p (insn);
995
          delete_insn (insn);
996
          return control_flow_insn_deleted;
997
        }
998
 
999
      /* The source reg does not die.  */
1000
 
1001
      /* If this appears to be a no-op move, delete it, or else it
1002
         will confuse the machine description output patterns. But if
1003
         it is REG_UNUSED, we must pop the reg now, as per-insn processing
1004
         for REG_UNUSED will not work for deleted insns.  */
1005
 
1006
      if (REGNO (src) == REGNO (dest))
1007
        {
1008
          if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1009
            emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1010
 
1011
          control_flow_insn_deleted |= control_flow_insn_p (insn);
1012
          delete_insn (insn);
1013
          return control_flow_insn_deleted;
1014
        }
1015
 
1016
      /* The destination ought to be dead.  */
1017
      gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1018
 
1019
      replace_reg (psrc, get_hard_regnum (regstack, src));
1020
 
1021
      regstack->reg[++regstack->top] = REGNO (dest);
1022
      SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1023
      replace_reg (pdest, FIRST_STACK_REG);
1024
    }
1025
  else if (STACK_REG_P (src))
1026
    {
1027
      /* Save from a stack reg to MEM, or possibly integer reg.  Since
1028
         only top of stack may be saved, emit an exchange first if
1029
         needs be.  */
1030
 
1031
      emit_swap_insn (insn, regstack, src);
1032
 
1033
      note = find_regno_note (insn, REG_DEAD, REGNO (src));
1034
      if (note)
1035
        {
1036
          replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1037
          regstack->top--;
1038
          CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1039
        }
1040
      else if ((GET_MODE (src) == XFmode)
1041
               && regstack->top < REG_STACK_SIZE - 1)
1042
        {
1043
          /* A 387 cannot write an XFmode value to a MEM without
1044
             clobbering the source reg.  The output code can handle
1045
             this by reading back the value from the MEM.
1046
             But it is more efficient to use a temp register if one is
1047
             available.  Push the source value here if the register
1048
             stack is not full, and then write the value to memory via
1049
             a pop.  */
1050
          rtx push_rtx;
1051
          rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1052
 
1053
          push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1054
          emit_insn_before (push_rtx, insn);
1055
          add_reg_note (insn, REG_DEAD, top_stack_reg);
1056
        }
1057
 
1058
      replace_reg (psrc, FIRST_STACK_REG);
1059
    }
1060
  else
1061
    {
1062
      rtx pat = PATTERN (insn);
1063
 
1064
      gcc_assert (STACK_REG_P (dest));
1065
 
1066
      /* Load from MEM, or possibly integer REG or constant, into the
1067
         stack regs.  The actual target is always the top of the
1068
         stack. The stack mapping is changed to reflect that DEST is
1069
         now at top of stack.  */
1070
 
1071
      /* The destination ought to be dead.  However, there is a
1072
         special case with i387 UNSPEC_TAN, where destination is live
1073
         (an argument to fptan) but inherent load of 1.0 is modelled
1074
         as a load from a constant.  */
1075
      if (GET_CODE (pat) == PARALLEL
1076
          && XVECLEN (pat, 0) == 2
1077
          && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1078
          && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1079
          && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1080
        emit_swap_insn (insn, regstack, dest);
1081
      else
1082
        gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1083
 
1084
      gcc_assert (regstack->top < REG_STACK_SIZE);
1085
 
1086
      regstack->reg[++regstack->top] = REGNO (dest);
1087
      SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1088
      replace_reg (pdest, FIRST_STACK_REG);
1089
    }
1090
 
1091
  return control_flow_insn_deleted;
1092
}
1093
 
1094
/* A helper function which replaces INSN with a pattern that loads up
1095
   a NaN into DEST, then invokes move_for_stack_reg.  */
1096
 
1097
static bool
1098
move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1099
{
1100
  rtx pat;
1101
 
1102
  dest = FP_MODE_REG (REGNO (dest), SFmode);
1103
  pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1104
  PATTERN (insn) = pat;
1105
  INSN_CODE (insn) = -1;
1106
 
1107
  return move_for_stack_reg (insn, regstack, pat);
1108
}
1109
 
1110
/* Swap the condition on a branch, if there is one.  Return true if we
1111
   found a condition to swap.  False if the condition was not used as
1112
   such.  */
1113
 
1114
static int
1115
swap_rtx_condition_1 (rtx pat)
1116
{
1117
  const char *fmt;
1118
  int i, r = 0;
1119
 
1120
  if (COMPARISON_P (pat))
1121
    {
1122
      PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1123
      r = 1;
1124
    }
1125
  else
1126
    {
1127
      fmt = GET_RTX_FORMAT (GET_CODE (pat));
1128
      for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1129
        {
1130
          if (fmt[i] == 'E')
1131
            {
1132
              int j;
1133
 
1134
              for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1135
                r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1136
            }
1137
          else if (fmt[i] == 'e')
1138
            r |= swap_rtx_condition_1 (XEXP (pat, i));
1139
        }
1140
    }
1141
 
1142
  return r;
1143
}
1144
 
1145
static int
1146
swap_rtx_condition (rtx insn)
1147
{
1148
  rtx pat = PATTERN (insn);
1149
 
1150
  /* We're looking for a single set to cc0 or an HImode temporary.  */
1151
 
1152
  if (GET_CODE (pat) == SET
1153
      && REG_P (SET_DEST (pat))
1154
      && REGNO (SET_DEST (pat)) == FLAGS_REG)
1155
    {
1156
      insn = next_flags_user (insn);
1157
      if (insn == NULL_RTX)
1158
        return 0;
1159
      pat = PATTERN (insn);
1160
    }
1161
 
1162
  /* See if this is, or ends in, a fnstsw.  If so, we're not doing anything
1163
     with the cc value right now.  We may be able to search for one
1164
     though.  */
1165
 
1166
  if (GET_CODE (pat) == SET
1167
      && GET_CODE (SET_SRC (pat)) == UNSPEC
1168
      && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1169
    {
1170
      rtx dest = SET_DEST (pat);
1171
 
1172
      /* Search forward looking for the first use of this value.
1173
         Stop at block boundaries.  */
1174
      while (insn != BB_END (current_block))
1175
        {
1176
          insn = NEXT_INSN (insn);
1177
          if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1178
            break;
1179
          if (CALL_P (insn))
1180
            return 0;
1181
        }
1182
 
1183
      /* We haven't found it.  */
1184
      if (insn == BB_END (current_block))
1185
        return 0;
1186
 
1187
      /* So we've found the insn using this value.  If it is anything
1188
         other than sahf or the value does not die (meaning we'd have
1189
         to search further), then we must give up.  */
1190
      pat = PATTERN (insn);
1191
      if (GET_CODE (pat) != SET
1192
          || GET_CODE (SET_SRC (pat)) != UNSPEC
1193
          || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1194
          || ! dead_or_set_p (insn, dest))
1195
        return 0;
1196
 
1197
      /* Now we are prepared to handle this as a normal cc0 setter.  */
1198
      insn = next_flags_user (insn);
1199
      if (insn == NULL_RTX)
1200
        return 0;
1201
      pat = PATTERN (insn);
1202
    }
1203
 
1204
  if (swap_rtx_condition_1 (pat))
1205
    {
1206
      int fail = 0;
1207
      INSN_CODE (insn) = -1;
1208
      if (recog_memoized (insn) == -1)
1209
        fail = 1;
1210
      /* In case the flags don't die here, recurse to try fix
1211
         following user too.  */
1212
      else if (! dead_or_set_p (insn, ix86_flags_rtx))
1213
        {
1214
          insn = next_flags_user (insn);
1215
          if (!insn || !swap_rtx_condition (insn))
1216
            fail = 1;
1217
        }
1218
      if (fail)
1219
        {
1220
          swap_rtx_condition_1 (pat);
1221
          return 0;
1222
        }
1223
      return 1;
1224
    }
1225
  return 0;
1226
}
1227
 
1228
/* Handle a comparison.  Special care needs to be taken to avoid
1229
   causing comparisons that a 387 cannot do correctly, such as EQ.
1230
 
1231
   Also, a pop insn may need to be emitted.  The 387 does have an
1232
   `fcompp' insn that can pop two regs, but it is sometimes too expensive
1233
   to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1234
   set up.  */
1235
 
1236
static void
1237
compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1238
{
1239
  rtx *src1, *src2;
1240
  rtx src1_note, src2_note;
1241
 
1242
  src1 = get_true_reg (&XEXP (pat_src, 0));
1243
  src2 = get_true_reg (&XEXP (pat_src, 1));
1244
 
1245
  /* ??? If fxch turns out to be cheaper than fstp, give priority to
1246
     registers that die in this insn - move those to stack top first.  */
1247
  if ((! STACK_REG_P (*src1)
1248
       || (STACK_REG_P (*src2)
1249
           && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1250
      && swap_rtx_condition (insn))
1251
    {
1252
      rtx temp;
1253
      temp = XEXP (pat_src, 0);
1254
      XEXP (pat_src, 0) = XEXP (pat_src, 1);
1255
      XEXP (pat_src, 1) = temp;
1256
 
1257
      src1 = get_true_reg (&XEXP (pat_src, 0));
1258
      src2 = get_true_reg (&XEXP (pat_src, 1));
1259
 
1260
      INSN_CODE (insn) = -1;
1261
    }
1262
 
1263
  /* We will fix any death note later.  */
1264
 
1265
  src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1266
 
1267
  if (STACK_REG_P (*src2))
1268
    src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1269
  else
1270
    src2_note = NULL_RTX;
1271
 
1272
  emit_swap_insn (insn, regstack, *src1);
1273
 
1274
  replace_reg (src1, FIRST_STACK_REG);
1275
 
1276
  if (STACK_REG_P (*src2))
1277
    replace_reg (src2, get_hard_regnum (regstack, *src2));
1278
 
1279
  if (src1_note)
1280
    {
1281
      pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1282
      replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1283
    }
1284
 
1285
  /* If the second operand dies, handle that.  But if the operands are
1286
     the same stack register, don't bother, because only one death is
1287
     needed, and it was just handled.  */
1288
 
1289
  if (src2_note
1290
      && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1291
            && REGNO (*src1) == REGNO (*src2)))
1292
    {
1293
      /* As a special case, two regs may die in this insn if src2 is
1294
         next to top of stack and the top of stack also dies.  Since
1295
         we have already popped src1, "next to top of stack" is really
1296
         at top (FIRST_STACK_REG) now.  */
1297
 
1298
      if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1299
          && src1_note)
1300
        {
1301
          pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1302
          replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1303
        }
1304
      else
1305
        {
1306
          /* The 386 can only represent death of the first operand in
1307
             the case handled above.  In all other cases, emit a separate
1308
             pop and remove the death note from here.  */
1309
 
1310
          /* link_cc0_insns (insn); */
1311
 
1312
          remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1313
 
1314
          emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1315
                         EMIT_AFTER);
1316
        }
1317
    }
1318
}
1319
 
1320
/* Substitute new registers in LOC, which is part of a debug insn.
1321
   REGSTACK is the current register layout.  */
1322
 
1323
static int
1324
subst_stack_regs_in_debug_insn (rtx *loc, void *data)
1325
{
1326
  stack regstack = (stack)data;
1327
  int hard_regno;
1328
 
1329
  if (!STACK_REG_P (*loc))
1330
    return 0;
1331
 
1332
  hard_regno = get_hard_regnum (regstack, *loc);
1333
 
1334
  /* If we can't find an active register, reset this debug insn.  */
1335
  if (hard_regno == -1)
1336
    return 1;
1337
 
1338
  gcc_assert (hard_regno >= FIRST_STACK_REG);
1339
 
1340
  replace_reg (loc, hard_regno);
1341
 
1342
  return -1;
1343
}
1344
 
1345
/* Substitute hardware stack regs in debug insn INSN, using stack
1346
   layout REGSTACK.  If we can't find a hardware stack reg for any of
1347
   the REGs in it, reset the debug insn.  */
1348
 
1349
static void
1350
subst_all_stack_regs_in_debug_insn (rtx insn, struct stack_def *regstack)
1351
{
1352
  int ret = for_each_rtx (&INSN_VAR_LOCATION_LOC (insn),
1353
                          subst_stack_regs_in_debug_insn,
1354
                          regstack);
1355
 
1356
  if (ret == 1)
1357
    INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1358
  else
1359
    gcc_checking_assert (ret == 0);
1360
}
1361
 
1362
/* Substitute new registers in PAT, which is part of INSN.  REGSTACK
1363
   is the current register layout.  Return whether a control flow insn
1364
   was deleted in the process.  */
1365
 
1366
static bool
1367
subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1368
{
1369
  rtx *dest, *src;
1370
  bool control_flow_insn_deleted = false;
1371
 
1372
  switch (GET_CODE (pat))
1373
    {
1374
    case USE:
1375
      /* Deaths in USE insns can happen in non optimizing compilation.
1376
         Handle them by popping the dying register.  */
1377
      src = get_true_reg (&XEXP (pat, 0));
1378
      if (STACK_REG_P (*src)
1379
          && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1380
        {
1381
          /* USEs are ignored for liveness information so USEs of dead
1382
             register might happen.  */
1383
          if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1384
            emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1385
          return control_flow_insn_deleted;
1386
        }
1387
      /* Uninitialized USE might happen for functions returning uninitialized
1388
         value.  We will properly initialize the USE on the edge to EXIT_BLOCK,
1389
         so it is safe to ignore the use here. This is consistent with behavior
1390
         of dataflow analyzer that ignores USE too.  (This also imply that
1391
         forcibly initializing the register to NaN here would lead to ICE later,
1392
         since the REG_DEAD notes are not issued.)  */
1393
      break;
1394
 
1395
    case VAR_LOCATION:
1396
      gcc_unreachable ();
1397
 
1398
    case CLOBBER:
1399
      {
1400
        rtx note;
1401
 
1402
        dest = get_true_reg (&XEXP (pat, 0));
1403
        if (STACK_REG_P (*dest))
1404
          {
1405
            note = find_reg_note (insn, REG_DEAD, *dest);
1406
 
1407
            if (pat != PATTERN (insn))
1408
              {
1409
                /* The fix_truncdi_1 pattern wants to be able to
1410
                   allocate its own scratch register.  It does this by
1411
                   clobbering an fp reg so that it is assured of an
1412
                   empty reg-stack register.  If the register is live,
1413
                   kill it now.  Remove the DEAD/UNUSED note so we
1414
                   don't try to kill it later too.
1415
 
1416
                   In reality the UNUSED note can be absent in some
1417
                   complicated cases when the register is reused for
1418
                   partially set variable.  */
1419
 
1420
                if (note)
1421
                  emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1422
                else
1423
                  note = find_reg_note (insn, REG_UNUSED, *dest);
1424
                if (note)
1425
                  remove_note (insn, note);
1426
                replace_reg (dest, FIRST_STACK_REG + 1);
1427
              }
1428
            else
1429
              {
1430
                /* A top-level clobber with no REG_DEAD, and no hard-regnum
1431
                   indicates an uninitialized value.  Because reload removed
1432
                   all other clobbers, this must be due to a function
1433
                   returning without a value.  Load up a NaN.  */
1434
 
1435
                if (!note)
1436
                  {
1437
                    rtx t = *dest;
1438
                    if (COMPLEX_MODE_P (GET_MODE (t)))
1439
                      {
1440
                        rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1441
                        if (get_hard_regnum (regstack, u) == -1)
1442
                          {
1443
                            rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1444
                            rtx insn2 = emit_insn_before (pat2, insn);
1445
                            control_flow_insn_deleted
1446
                              |= move_nan_for_stack_reg (insn2, regstack, u);
1447
                          }
1448
                      }
1449
                    if (get_hard_regnum (regstack, t) == -1)
1450
                      control_flow_insn_deleted
1451
                        |= move_nan_for_stack_reg (insn, regstack, t);
1452
                  }
1453
              }
1454
          }
1455
        break;
1456
      }
1457
 
1458
    case SET:
1459
      {
1460
        rtx *src1 = (rtx *) 0, *src2;
1461
        rtx src1_note, src2_note;
1462
        rtx pat_src;
1463
 
1464
        dest = get_true_reg (&SET_DEST (pat));
1465
        src  = get_true_reg (&SET_SRC (pat));
1466
        pat_src = SET_SRC (pat);
1467
 
1468
        /* See if this is a `movM' pattern, and handle elsewhere if so.  */
1469
        if (STACK_REG_P (*src)
1470
            || (STACK_REG_P (*dest)
1471
                && (REG_P (*src) || MEM_P (*src)
1472
                    || GET_CODE (*src) == CONST_DOUBLE)))
1473
          {
1474
            control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1475
            break;
1476
          }
1477
 
1478
        switch (GET_CODE (pat_src))
1479
          {
1480
          case COMPARE:
1481
            compare_for_stack_reg (insn, regstack, pat_src);
1482
            break;
1483
 
1484
          case CALL:
1485
            {
1486
              int count;
1487
              for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1488
                   --count >= 0;)
1489
                {
1490
                  regstack->reg[++regstack->top] = REGNO (*dest) + count;
1491
                  SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1492
                }
1493
            }
1494
            replace_reg (dest, FIRST_STACK_REG);
1495
            break;
1496
 
1497
          case REG:
1498
            /* This is a `tstM2' case.  */
1499
            gcc_assert (*dest == cc0_rtx);
1500
            src1 = src;
1501
 
1502
            /* Fall through.  */
1503
 
1504
          case FLOAT_TRUNCATE:
1505
          case SQRT:
1506
          case ABS:
1507
          case NEG:
1508
            /* These insns only operate on the top of the stack. DEST might
1509
               be cc0_rtx if we're processing a tstM pattern. Also, it's
1510
               possible that the tstM case results in a REG_DEAD note on the
1511
               source.  */
1512
 
1513
            if (src1 == 0)
1514
              src1 = get_true_reg (&XEXP (pat_src, 0));
1515
 
1516
            emit_swap_insn (insn, regstack, *src1);
1517
 
1518
            src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1519
 
1520
            if (STACK_REG_P (*dest))
1521
              replace_reg (dest, FIRST_STACK_REG);
1522
 
1523
            if (src1_note)
1524
              {
1525
                replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1526
                regstack->top--;
1527
                CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1528
              }
1529
 
1530
            replace_reg (src1, FIRST_STACK_REG);
1531
            break;
1532
 
1533
          case MINUS:
1534
          case DIV:
1535
            /* On i386, reversed forms of subM3 and divM3 exist for
1536
               MODE_FLOAT, so the same code that works for addM3 and mulM3
1537
               can be used.  */
1538
          case MULT:
1539
          case PLUS:
1540
            /* These insns can accept the top of stack as a destination
1541
               from a stack reg or mem, or can use the top of stack as a
1542
               source and some other stack register (possibly top of stack)
1543
               as a destination.  */
1544
 
1545
            src1 = get_true_reg (&XEXP (pat_src, 0));
1546
            src2 = get_true_reg (&XEXP (pat_src, 1));
1547
 
1548
            /* We will fix any death note later.  */
1549
 
1550
            if (STACK_REG_P (*src1))
1551
              src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1552
            else
1553
              src1_note = NULL_RTX;
1554
            if (STACK_REG_P (*src2))
1555
              src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1556
            else
1557
              src2_note = NULL_RTX;
1558
 
1559
            /* If either operand is not a stack register, then the dest
1560
               must be top of stack.  */
1561
 
1562
            if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1563
              emit_swap_insn (insn, regstack, *dest);
1564
            else
1565
              {
1566
                /* Both operands are REG.  If neither operand is already
1567
                   at the top of stack, choose to make the one that is the
1568
                   dest the new top of stack.  */
1569
 
1570
                int src1_hard_regnum, src2_hard_regnum;
1571
 
1572
                src1_hard_regnum = get_hard_regnum (regstack, *src1);
1573
                src2_hard_regnum = get_hard_regnum (regstack, *src2);
1574
 
1575
                /* If the source is not live, this is yet another case of
1576
                   uninitialized variables.  Load up a NaN instead.  */
1577
                if (src1_hard_regnum == -1)
1578
                  {
1579
                    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1580
                    rtx insn2 = emit_insn_before (pat2, insn);
1581
                    control_flow_insn_deleted
1582
                      |= move_nan_for_stack_reg (insn2, regstack, *src1);
1583
                  }
1584
                if (src2_hard_regnum == -1)
1585
                  {
1586
                    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1587
                    rtx insn2 = emit_insn_before (pat2, insn);
1588
                    control_flow_insn_deleted
1589
                      |= move_nan_for_stack_reg (insn2, regstack, *src2);
1590
                  }
1591
 
1592
                if (src1_hard_regnum != FIRST_STACK_REG
1593
                    && src2_hard_regnum != FIRST_STACK_REG)
1594
                  emit_swap_insn (insn, regstack, *dest);
1595
              }
1596
 
1597
            if (STACK_REG_P (*src1))
1598
              replace_reg (src1, get_hard_regnum (regstack, *src1));
1599
            if (STACK_REG_P (*src2))
1600
              replace_reg (src2, get_hard_regnum (regstack, *src2));
1601
 
1602
            if (src1_note)
1603
              {
1604
                rtx src1_reg = XEXP (src1_note, 0);
1605
 
1606
                /* If the register that dies is at the top of stack, then
1607
                   the destination is somewhere else - merely substitute it.
1608
                   But if the reg that dies is not at top of stack, then
1609
                   move the top of stack to the dead reg, as though we had
1610
                   done the insn and then a store-with-pop.  */
1611
 
1612
                if (REGNO (src1_reg) == regstack->reg[regstack->top])
1613
                  {
1614
                    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1615
                    replace_reg (dest, get_hard_regnum (regstack, *dest));
1616
                  }
1617
                else
1618
                  {
1619
                    int regno = get_hard_regnum (regstack, src1_reg);
1620
 
1621
                    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1622
                    replace_reg (dest, regno);
1623
 
1624
                    regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1625
                      = regstack->reg[regstack->top];
1626
                  }
1627
 
1628
                CLEAR_HARD_REG_BIT (regstack->reg_set,
1629
                                    REGNO (XEXP (src1_note, 0)));
1630
                replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1631
                regstack->top--;
1632
              }
1633
            else if (src2_note)
1634
              {
1635
                rtx src2_reg = XEXP (src2_note, 0);
1636
                if (REGNO (src2_reg) == regstack->reg[regstack->top])
1637
                  {
1638
                    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1639
                    replace_reg (dest, get_hard_regnum (regstack, *dest));
1640
                  }
1641
                else
1642
                  {
1643
                    int regno = get_hard_regnum (regstack, src2_reg);
1644
 
1645
                    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1646
                    replace_reg (dest, regno);
1647
 
1648
                    regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1649
                      = regstack->reg[regstack->top];
1650
                  }
1651
 
1652
                CLEAR_HARD_REG_BIT (regstack->reg_set,
1653
                                    REGNO (XEXP (src2_note, 0)));
1654
                replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1655
                regstack->top--;
1656
              }
1657
            else
1658
              {
1659
                SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1660
                replace_reg (dest, get_hard_regnum (regstack, *dest));
1661
              }
1662
 
1663
            /* Keep operand 1 matching with destination.  */
1664
            if (COMMUTATIVE_ARITH_P (pat_src)
1665
                && REG_P (*src1) && REG_P (*src2)
1666
                && REGNO (*src1) != REGNO (*dest))
1667
             {
1668
                int tmp = REGNO (*src1);
1669
                replace_reg (src1, REGNO (*src2));
1670
                replace_reg (src2, tmp);
1671
             }
1672
            break;
1673
 
1674
          case UNSPEC:
1675
            switch (XINT (pat_src, 1))
1676
              {
1677
              case UNSPEC_STA:
1678
              case UNSPEC_FIST:
1679
 
1680
              case UNSPEC_FIST_FLOOR:
1681
              case UNSPEC_FIST_CEIL:
1682
 
1683
                /* These insns only operate on the top of the stack.  */
1684
 
1685
                src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1686
                emit_swap_insn (insn, regstack, *src1);
1687
 
1688
                src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1689
 
1690
                if (STACK_REG_P (*dest))
1691
                  replace_reg (dest, FIRST_STACK_REG);
1692
 
1693
                if (src1_note)
1694
                  {
1695
                    replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1696
                    regstack->top--;
1697
                    CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1698
                  }
1699
 
1700
                replace_reg (src1, FIRST_STACK_REG);
1701
                break;
1702
 
1703
              case UNSPEC_FXAM:
1704
 
1705
                /* This insn only operate on the top of the stack.  */
1706
 
1707
                src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1708
                emit_swap_insn (insn, regstack, *src1);
1709
 
1710
                src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1711
 
1712
                replace_reg (src1, FIRST_STACK_REG);
1713
 
1714
                if (src1_note)
1715
                  {
1716
                    remove_regno_note (insn, REG_DEAD,
1717
                                       REGNO (XEXP (src1_note, 0)));
1718
                    emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1719
                                   EMIT_AFTER);
1720
                  }
1721
 
1722
                break;
1723
 
1724
              case UNSPEC_SIN:
1725
              case UNSPEC_COS:
1726
              case UNSPEC_FRNDINT:
1727
              case UNSPEC_F2XM1:
1728
 
1729
              case UNSPEC_FRNDINT_FLOOR:
1730
              case UNSPEC_FRNDINT_CEIL:
1731
              case UNSPEC_FRNDINT_TRUNC:
1732
              case UNSPEC_FRNDINT_MASK_PM:
1733
 
1734
                /* Above insns operate on the top of the stack.  */
1735
 
1736
              case UNSPEC_SINCOS_COS:
1737
              case UNSPEC_XTRACT_FRACT:
1738
 
1739
                /* Above insns operate on the top two stack slots,
1740
                   first part of one input, double output insn.  */
1741
 
1742
                src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1743
 
1744
                emit_swap_insn (insn, regstack, *src1);
1745
 
1746
                /* Input should never die, it is replaced with output.  */
1747
                src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1748
                gcc_assert (!src1_note);
1749
 
1750
                if (STACK_REG_P (*dest))
1751
                  replace_reg (dest, FIRST_STACK_REG);
1752
 
1753
                replace_reg (src1, FIRST_STACK_REG);
1754
                break;
1755
 
1756
              case UNSPEC_SINCOS_SIN:
1757
              case UNSPEC_XTRACT_EXP:
1758
 
1759
                /* These insns operate on the top two stack slots,
1760
                   second part of one input, double output insn.  */
1761
 
1762
                regstack->top++;
1763
                /* FALLTHRU */
1764
 
1765
              case UNSPEC_TAN:
1766
 
1767
                /* For UNSPEC_TAN, regstack->top is already increased
1768
                   by inherent load of constant 1.0.  */
1769
 
1770
                /* Output value is generated in the second stack slot.
1771
                   Move current value from second slot to the top.  */
1772
                regstack->reg[regstack->top]
1773
                  = regstack->reg[regstack->top - 1];
1774
 
1775
                gcc_assert (STACK_REG_P (*dest));
1776
 
1777
                regstack->reg[regstack->top - 1] = REGNO (*dest);
1778
                SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1779
                replace_reg (dest, FIRST_STACK_REG + 1);
1780
 
1781
                src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1782
 
1783
                replace_reg (src1, FIRST_STACK_REG);
1784
                break;
1785
 
1786
              case UNSPEC_FPATAN:
1787
              case UNSPEC_FYL2X:
1788
              case UNSPEC_FYL2XP1:
1789
                /* These insns operate on the top two stack slots.  */
1790
 
1791
                src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1792
                src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1793
 
1794
                src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1795
                src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1796
 
1797
                swap_to_top (insn, regstack, *src1, *src2);
1798
 
1799
                replace_reg (src1, FIRST_STACK_REG);
1800
                replace_reg (src2, FIRST_STACK_REG + 1);
1801
 
1802
                if (src1_note)
1803
                  replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1804
                if (src2_note)
1805
                  replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1806
 
1807
                /* Pop both input operands from the stack.  */
1808
                CLEAR_HARD_REG_BIT (regstack->reg_set,
1809
                                    regstack->reg[regstack->top]);
1810
                CLEAR_HARD_REG_BIT (regstack->reg_set,
1811
                                    regstack->reg[regstack->top - 1]);
1812
                regstack->top -= 2;
1813
 
1814
                /* Push the result back onto the stack.  */
1815
                regstack->reg[++regstack->top] = REGNO (*dest);
1816
                SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1817
                replace_reg (dest, FIRST_STACK_REG);
1818
                break;
1819
 
1820
              case UNSPEC_FSCALE_FRACT:
1821
              case UNSPEC_FPREM_F:
1822
              case UNSPEC_FPREM1_F:
1823
                /* These insns operate on the top two stack slots,
1824
                   first part of double input, double output insn.  */
1825
 
1826
                src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1827
                src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1828
 
1829
                src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1830
                src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1831
 
1832
                /* Inputs should never die, they are
1833
                   replaced with outputs.  */
1834
                gcc_assert (!src1_note);
1835
                gcc_assert (!src2_note);
1836
 
1837
                swap_to_top (insn, regstack, *src1, *src2);
1838
 
1839
                /* Push the result back onto stack. Empty stack slot
1840
                   will be filled in second part of insn.  */
1841
                if (STACK_REG_P (*dest))
1842
                  {
1843
                    regstack->reg[regstack->top] = REGNO (*dest);
1844
                    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1845
                    replace_reg (dest, FIRST_STACK_REG);
1846
                  }
1847
 
1848
                replace_reg (src1, FIRST_STACK_REG);
1849
                replace_reg (src2, FIRST_STACK_REG + 1);
1850
                break;
1851
 
1852
              case UNSPEC_FSCALE_EXP:
1853
              case UNSPEC_FPREM_U:
1854
              case UNSPEC_FPREM1_U:
1855
                /* These insns operate on the top two stack slots,
1856
                   second part of double input, double output insn.  */
1857
 
1858
                src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1859
                src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1860
 
1861
                /* Push the result back onto stack. Fill empty slot from
1862
                   first part of insn and fix top of stack pointer.  */
1863
                if (STACK_REG_P (*dest))
1864
                  {
1865
                    regstack->reg[regstack->top - 1] = REGNO (*dest);
1866
                    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1867
                    replace_reg (dest, FIRST_STACK_REG + 1);
1868
                  }
1869
 
1870
                replace_reg (src1, FIRST_STACK_REG);
1871
                replace_reg (src2, FIRST_STACK_REG + 1);
1872
                break;
1873
 
1874
              case UNSPEC_C2_FLAG:
1875
                /* This insn operates on the top two stack slots,
1876
                   third part of C2 setting double input insn.  */
1877
 
1878
                src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1879
                src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1880
 
1881
                replace_reg (src1, FIRST_STACK_REG);
1882
                replace_reg (src2, FIRST_STACK_REG + 1);
1883
                break;
1884
 
1885
              case UNSPEC_SAHF:
1886
                /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1887
                   The combination matches the PPRO fcomi instruction.  */
1888
 
1889
                pat_src = XVECEXP (pat_src, 0, 0);
1890
                gcc_assert (GET_CODE (pat_src) == UNSPEC);
1891
                gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1892
                /* Fall through.  */
1893
 
1894
              case UNSPEC_FNSTSW:
1895
                /* Combined fcomp+fnstsw generated for doing well with
1896
                   CSE.  When optimizing this would have been broken
1897
                   up before now.  */
1898
 
1899
                pat_src = XVECEXP (pat_src, 0, 0);
1900
                gcc_assert (GET_CODE (pat_src) == COMPARE);
1901
 
1902
                compare_for_stack_reg (insn, regstack, pat_src);
1903
                break;
1904
 
1905
              default:
1906
                gcc_unreachable ();
1907
              }
1908
            break;
1909
 
1910
          case IF_THEN_ELSE:
1911
            /* This insn requires the top of stack to be the destination.  */
1912
 
1913
            src1 = get_true_reg (&XEXP (pat_src, 1));
1914
            src2 = get_true_reg (&XEXP (pat_src, 2));
1915
 
1916
            src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1917
            src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1918
 
1919
            /* If the comparison operator is an FP comparison operator,
1920
               it is handled correctly by compare_for_stack_reg () who
1921
               will move the destination to the top of stack. But if the
1922
               comparison operator is not an FP comparison operator, we
1923
               have to handle it here.  */
1924
            if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1925
                && REGNO (*dest) != regstack->reg[regstack->top])
1926
              {
1927
                /* In case one of operands is the top of stack and the operands
1928
                   dies, it is safe to make it the destination operand by
1929
                   reversing the direction of cmove and avoid fxch.  */
1930
                if ((REGNO (*src1) == regstack->reg[regstack->top]
1931
                     && src1_note)
1932
                    || (REGNO (*src2) == regstack->reg[regstack->top]
1933
                        && src2_note))
1934
                  {
1935
                    int idx1 = (get_hard_regnum (regstack, *src1)
1936
                                - FIRST_STACK_REG);
1937
                    int idx2 = (get_hard_regnum (regstack, *src2)
1938
                                - FIRST_STACK_REG);
1939
 
1940
                    /* Make reg-stack believe that the operands are already
1941
                       swapped on the stack */
1942
                    regstack->reg[regstack->top - idx1] = REGNO (*src2);
1943
                    regstack->reg[regstack->top - idx2] = REGNO (*src1);
1944
 
1945
                    /* Reverse condition to compensate the operand swap.
1946
                       i386 do have comparison always reversible.  */
1947
                    PUT_CODE (XEXP (pat_src, 0),
1948
                              reversed_comparison_code (XEXP (pat_src, 0), insn));
1949
                  }
1950
                else
1951
                  emit_swap_insn (insn, regstack, *dest);
1952
              }
1953
 
1954
            {
1955
              rtx src_note [3];
1956
              int i;
1957
 
1958
              src_note[0] = 0;
1959
              src_note[1] = src1_note;
1960
              src_note[2] = src2_note;
1961
 
1962
              if (STACK_REG_P (*src1))
1963
                replace_reg (src1, get_hard_regnum (regstack, *src1));
1964
              if (STACK_REG_P (*src2))
1965
                replace_reg (src2, get_hard_regnum (regstack, *src2));
1966
 
1967
              for (i = 1; i <= 2; i++)
1968
                if (src_note [i])
1969
                  {
1970
                    int regno = REGNO (XEXP (src_note[i], 0));
1971
 
1972
                    /* If the register that dies is not at the top of
1973
                       stack, then move the top of stack to the dead reg.
1974
                       Top of stack should never die, as it is the
1975
                       destination.  */
1976
                    gcc_assert (regno != regstack->reg[regstack->top]);
1977
                    remove_regno_note (insn, REG_DEAD, regno);
1978
                    emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1979
                                    EMIT_AFTER);
1980
                  }
1981
            }
1982
 
1983
            /* Make dest the top of stack.  Add dest to regstack if
1984
               not present.  */
1985
            if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1986
              regstack->reg[++regstack->top] = REGNO (*dest);
1987
            SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1988
            replace_reg (dest, FIRST_STACK_REG);
1989
            break;
1990
 
1991
          default:
1992
            gcc_unreachable ();
1993
          }
1994
        break;
1995
      }
1996
 
1997
    default:
1998
      break;
1999
    }
2000
 
2001
  return control_flow_insn_deleted;
2002
}
2003
 
2004
/* Substitute hard regnums for any stack regs in INSN, which has
2005
   N_INPUTS inputs and N_OUTPUTS outputs.  REGSTACK is the stack info
2006
   before the insn, and is updated with changes made here.
2007
 
2008
   There are several requirements and assumptions about the use of
2009
   stack-like regs in asm statements.  These rules are enforced by
2010
   record_asm_stack_regs; see comments there for details.  Any
2011
   asm_operands left in the RTL at this point may be assume to meet the
2012
   requirements, since record_asm_stack_regs removes any problem asm.  */
2013
 
2014
static void
2015
subst_asm_stack_regs (rtx insn, stack regstack)
2016
{
2017
  rtx body = PATTERN (insn);
2018
  int alt;
2019
 
2020
  rtx *note_reg;                /* Array of note contents */
2021
  rtx **note_loc;               /* Address of REG field of each note */
2022
  enum reg_note *note_kind;     /* The type of each note */
2023
 
2024
  rtx *clobber_reg = 0;
2025
  rtx **clobber_loc = 0;
2026
 
2027
  struct stack_def temp_stack;
2028
  int n_notes;
2029
  int n_clobbers;
2030
  rtx note;
2031
  int i;
2032
  int n_inputs, n_outputs;
2033
 
2034
  if (! check_asm_stack_operands (insn))
2035
    return;
2036
 
2037
  /* Find out what the constraints required.  If no constraint
2038
     alternative matches, that is a compiler bug: we should have caught
2039
     such an insn in check_asm_stack_operands.  */
2040
  extract_insn (insn);
2041
  constrain_operands (1);
2042
  alt = which_alternative;
2043
 
2044
  preprocess_constraints ();
2045
 
2046
  get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2047
 
2048
  gcc_assert (alt >= 0);
2049
 
2050
  /* Strip SUBREGs here to make the following code simpler.  */
2051
  for (i = 0; i < recog_data.n_operands; i++)
2052
    if (GET_CODE (recog_data.operand[i]) == SUBREG
2053
        && REG_P (SUBREG_REG (recog_data.operand[i])))
2054
      {
2055
        recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2056
        recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2057
      }
2058
 
2059
  /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND.  */
2060
 
2061
  for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2062
    i++;
2063
 
2064
  note_reg = XALLOCAVEC (rtx, i);
2065
  note_loc = XALLOCAVEC (rtx *, i);
2066
  note_kind = XALLOCAVEC (enum reg_note, i);
2067
 
2068
  n_notes = 0;
2069
  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2070
    {
2071
      rtx reg = XEXP (note, 0);
2072
      rtx *loc = & XEXP (note, 0);
2073
 
2074
      if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2075
        {
2076
          loc = & SUBREG_REG (reg);
2077
          reg = SUBREG_REG (reg);
2078
        }
2079
 
2080
      if (STACK_REG_P (reg)
2081
          && (REG_NOTE_KIND (note) == REG_DEAD
2082
              || REG_NOTE_KIND (note) == REG_UNUSED))
2083
        {
2084
          note_reg[n_notes] = reg;
2085
          note_loc[n_notes] = loc;
2086
          note_kind[n_notes] = REG_NOTE_KIND (note);
2087
          n_notes++;
2088
        }
2089
    }
2090
 
2091
  /* Set up CLOBBER_REG and CLOBBER_LOC.  */
2092
 
2093
  n_clobbers = 0;
2094
 
2095
  if (GET_CODE (body) == PARALLEL)
2096
    {
2097
      clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2098
      clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2099
 
2100
      for (i = 0; i < XVECLEN (body, 0); i++)
2101
        if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2102
          {
2103
            rtx clobber = XVECEXP (body, 0, i);
2104
            rtx reg = XEXP (clobber, 0);
2105
            rtx *loc = & XEXP (clobber, 0);
2106
 
2107
            if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2108
              {
2109
                loc = & SUBREG_REG (reg);
2110
                reg = SUBREG_REG (reg);
2111
              }
2112
 
2113
            if (STACK_REG_P (reg))
2114
              {
2115
                clobber_reg[n_clobbers] = reg;
2116
                clobber_loc[n_clobbers] = loc;
2117
                n_clobbers++;
2118
              }
2119
          }
2120
    }
2121
 
2122
  temp_stack = *regstack;
2123
 
2124
  /* Put the input regs into the desired place in TEMP_STACK.  */
2125
 
2126
  for (i = n_outputs; i < n_outputs + n_inputs; i++)
2127
    if (STACK_REG_P (recog_data.operand[i])
2128
        && reg_class_subset_p (recog_op_alt[i][alt].cl,
2129
                               FLOAT_REGS)
2130
        && recog_op_alt[i][alt].cl != FLOAT_REGS)
2131
      {
2132
        /* If an operand needs to be in a particular reg in
2133
           FLOAT_REGS, the constraint was either 't' or 'u'.  Since
2134
           these constraints are for single register classes, and
2135
           reload guaranteed that operand[i] is already in that class,
2136
           we can just use REGNO (recog_data.operand[i]) to know which
2137
           actual reg this operand needs to be in.  */
2138
 
2139
        int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2140
 
2141
        gcc_assert (regno >= 0);
2142
 
2143
        if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2144
          {
2145
            /* recog_data.operand[i] is not in the right place.  Find
2146
               it and swap it with whatever is already in I's place.
2147
               K is where recog_data.operand[i] is now.  J is where it
2148
               should be.  */
2149
            int j, k, temp;
2150
 
2151
            k = temp_stack.top - (regno - FIRST_STACK_REG);
2152
            j = (temp_stack.top
2153
                 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2154
 
2155
            temp = temp_stack.reg[k];
2156
            temp_stack.reg[k] = temp_stack.reg[j];
2157
            temp_stack.reg[j] = temp;
2158
          }
2159
      }
2160
 
2161
  /* Emit insns before INSN to make sure the reg-stack is in the right
2162
     order.  */
2163
 
2164
  change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2165
 
2166
  /* Make the needed input register substitutions.  Do death notes and
2167
     clobbers too, because these are for inputs, not outputs.  */
2168
 
2169
  for (i = n_outputs; i < n_outputs + n_inputs; i++)
2170
    if (STACK_REG_P (recog_data.operand[i]))
2171
      {
2172
        int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2173
 
2174
        gcc_assert (regnum >= 0);
2175
 
2176
        replace_reg (recog_data.operand_loc[i], regnum);
2177
      }
2178
 
2179
  for (i = 0; i < n_notes; i++)
2180
    if (note_kind[i] == REG_DEAD)
2181
      {
2182
        int regnum = get_hard_regnum (regstack, note_reg[i]);
2183
 
2184
        gcc_assert (regnum >= 0);
2185
 
2186
        replace_reg (note_loc[i], regnum);
2187
      }
2188
 
2189
  for (i = 0; i < n_clobbers; i++)
2190
    {
2191
      /* It's OK for a CLOBBER to reference a reg that is not live.
2192
         Don't try to replace it in that case.  */
2193
      int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2194
 
2195
      if (regnum >= 0)
2196
        {
2197
          /* Sigh - clobbers always have QImode.  But replace_reg knows
2198
             that these regs can't be MODE_INT and will assert.  Just put
2199
             the right reg there without calling replace_reg.  */
2200
 
2201
          *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2202
        }
2203
    }
2204
 
2205
  /* Now remove from REGSTACK any inputs that the asm implicitly popped.  */
2206
 
2207
  for (i = n_outputs; i < n_outputs + n_inputs; i++)
2208
    if (STACK_REG_P (recog_data.operand[i]))
2209
      {
2210
        /* An input reg is implicitly popped if it is tied to an
2211
           output, or if there is a CLOBBER for it.  */
2212
        int j;
2213
 
2214
        for (j = 0; j < n_clobbers; j++)
2215
          if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2216
            break;
2217
 
2218
        if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2219
          {
2220
            /* recog_data.operand[i] might not be at the top of stack.
2221
               But that's OK, because all we need to do is pop the
2222
               right number of regs off of the top of the reg-stack.
2223
               record_asm_stack_regs guaranteed that all implicitly
2224
               popped regs were grouped at the top of the reg-stack.  */
2225
 
2226
            CLEAR_HARD_REG_BIT (regstack->reg_set,
2227
                                regstack->reg[regstack->top]);
2228
            regstack->top--;
2229
          }
2230
      }
2231
 
2232
  /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2233
     Note that there isn't any need to substitute register numbers.
2234
     ???  Explain why this is true.  */
2235
 
2236
  for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2237
    {
2238
      /* See if there is an output for this hard reg.  */
2239
      int j;
2240
 
2241
      for (j = 0; j < n_outputs; j++)
2242
        if (STACK_REG_P (recog_data.operand[j])
2243
            && REGNO (recog_data.operand[j]) == (unsigned) i)
2244
          {
2245
            regstack->reg[++regstack->top] = i;
2246
            SET_HARD_REG_BIT (regstack->reg_set, i);
2247
            break;
2248
          }
2249
    }
2250
 
2251
  /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2252
     input that the asm didn't implicitly pop.  If the asm didn't
2253
     implicitly pop an input reg, that reg will still be live.
2254
 
2255
     Note that we can't use find_regno_note here: the register numbers
2256
     in the death notes have already been substituted.  */
2257
 
2258
  for (i = 0; i < n_outputs; i++)
2259
    if (STACK_REG_P (recog_data.operand[i]))
2260
      {
2261
        int j;
2262
 
2263
        for (j = 0; j < n_notes; j++)
2264
          if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2265
              && note_kind[j] == REG_UNUSED)
2266
            {
2267
              insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2268
                                    EMIT_AFTER);
2269
              break;
2270
            }
2271
      }
2272
 
2273
  for (i = n_outputs; i < n_outputs + n_inputs; i++)
2274
    if (STACK_REG_P (recog_data.operand[i]))
2275
      {
2276
        int j;
2277
 
2278
        for (j = 0; j < n_notes; j++)
2279
          if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2280
              && note_kind[j] == REG_DEAD
2281
              && TEST_HARD_REG_BIT (regstack->reg_set,
2282
                                    REGNO (recog_data.operand[i])))
2283
            {
2284
              insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2285
                                    EMIT_AFTER);
2286
              break;
2287
            }
2288
      }
2289
}
2290
 
2291
/* Substitute stack hard reg numbers for stack virtual registers in
2292
   INSN.  Non-stack register numbers are not changed.  REGSTACK is the
2293
   current stack content.  Insns may be emitted as needed to arrange the
2294
   stack for the 387 based on the contents of the insn.  Return whether
2295
   a control flow insn was deleted in the process.  */
2296
 
2297
static bool
2298
subst_stack_regs (rtx insn, stack regstack)
2299
{
2300
  rtx *note_link, note;
2301
  bool control_flow_insn_deleted = false;
2302
  int i;
2303
 
2304
  if (CALL_P (insn))
2305
    {
2306
      int top = regstack->top;
2307
 
2308
      /* If there are any floating point parameters to be passed in
2309
         registers for this call, make sure they are in the right
2310
         order.  */
2311
 
2312
      if (top >= 0)
2313
        {
2314
          straighten_stack (insn, regstack);
2315
 
2316
          /* Now mark the arguments as dead after the call.  */
2317
 
2318
          while (regstack->top >= 0)
2319
            {
2320
              CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2321
              regstack->top--;
2322
            }
2323
        }
2324
    }
2325
 
2326
  /* Do the actual substitution if any stack regs are mentioned.
2327
     Since we only record whether entire insn mentions stack regs, and
2328
     subst_stack_regs_pat only works for patterns that contain stack regs,
2329
     we must check each pattern in a parallel here.  A call_value_pop could
2330
     fail otherwise.  */
2331
 
2332
  if (stack_regs_mentioned (insn))
2333
    {
2334
      int n_operands = asm_noperands (PATTERN (insn));
2335
      if (n_operands >= 0)
2336
        {
2337
          /* This insn is an `asm' with operands.  Decode the operands,
2338
             decide how many are inputs, and do register substitution.
2339
             Any REG_UNUSED notes will be handled by subst_asm_stack_regs.  */
2340
 
2341
          subst_asm_stack_regs (insn, regstack);
2342
          return control_flow_insn_deleted;
2343
        }
2344
 
2345
      if (GET_CODE (PATTERN (insn)) == PARALLEL)
2346
        for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2347
          {
2348
            if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2349
              {
2350
                if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2351
                   XVECEXP (PATTERN (insn), 0, i)
2352
                     = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2353
                control_flow_insn_deleted
2354
                  |= subst_stack_regs_pat (insn, regstack,
2355
                                           XVECEXP (PATTERN (insn), 0, i));
2356
              }
2357
          }
2358
      else
2359
        control_flow_insn_deleted
2360
          |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2361
    }
2362
 
2363
  /* subst_stack_regs_pat may have deleted a no-op insn.  If so, any
2364
     REG_UNUSED will already have been dealt with, so just return.  */
2365
 
2366
  if (NOTE_P (insn) || INSN_DELETED_P (insn))
2367
    return control_flow_insn_deleted;
2368
 
2369
  /* If this a noreturn call, we can't insert pop insns after it.
2370
     Instead, reset the stack state to empty.  */
2371
  if (CALL_P (insn)
2372
      && find_reg_note (insn, REG_NORETURN, NULL))
2373
    {
2374
      regstack->top = -1;
2375
      CLEAR_HARD_REG_SET (regstack->reg_set);
2376
      return control_flow_insn_deleted;
2377
    }
2378
 
2379
  /* If there is a REG_UNUSED note on a stack register on this insn,
2380
     the indicated reg must be popped.  The REG_UNUSED note is removed,
2381
     since the form of the newly emitted pop insn references the reg,
2382
     making it no longer `unset'.  */
2383
 
2384
  note_link = &REG_NOTES (insn);
2385
  for (note = *note_link; note; note = XEXP (note, 1))
2386
    if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2387
      {
2388
        *note_link = XEXP (note, 1);
2389
        insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2390
      }
2391
    else
2392
      note_link = &XEXP (note, 1);
2393
 
2394
  return control_flow_insn_deleted;
2395
}
2396
 
2397
/* Change the organization of the stack so that it fits a new basic
2398
   block.  Some registers might have to be popped, but there can never be
2399
   a register live in the new block that is not now live.
2400
 
2401
   Insert any needed insns before or after INSN, as indicated by
2402
   WHERE.  OLD is the original stack layout, and NEW is the desired
2403
   form.  OLD is updated to reflect the code emitted, i.e., it will be
2404
   the same as NEW upon return.
2405
 
2406
   This function will not preserve block_end[].  But that information
2407
   is no longer needed once this has executed.  */
2408
 
2409
static void
2410
change_stack (rtx insn, stack old, stack new_stack, enum emit_where where)
2411
{
2412
  int reg;
2413
  int update_end = 0;
2414
  int i;
2415
 
2416
  /* Stack adjustments for the first insn in a block update the
2417
     current_block's stack_in instead of inserting insns directly.
2418
     compensate_edges will add the necessary code later.  */
2419
  if (current_block
2420
      && starting_stack_p
2421
      && where == EMIT_BEFORE)
2422
    {
2423
      BLOCK_INFO (current_block)->stack_in = *new_stack;
2424
      starting_stack_p = false;
2425
      *old = *new_stack;
2426
      return;
2427
    }
2428
 
2429
  /* We will be inserting new insns "backwards".  If we are to insert
2430
     after INSN, find the next insn, and insert before it.  */
2431
 
2432
  if (where == EMIT_AFTER)
2433
    {
2434
      if (current_block && BB_END (current_block) == insn)
2435
        update_end = 1;
2436
      insn = NEXT_INSN (insn);
2437
    }
2438
 
2439
  /* Initialize partially dead variables.  */
2440
  for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2441
    if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2442
        && !TEST_HARD_REG_BIT (old->reg_set, i))
2443
      {
2444
        old->reg[++old->top] = i;
2445
        SET_HARD_REG_BIT (old->reg_set, i);
2446
        emit_insn_before (gen_rtx_SET (VOIDmode,
2447
                                       FP_MODE_REG (i, SFmode), not_a_num), insn);
2448
      }
2449
 
2450
  /* Pop any registers that are not needed in the new block.  */
2451
 
2452
  /* If the destination block's stack already has a specified layout
2453
     and contains two or more registers, use a more intelligent algorithm
2454
     to pop registers that minimizes the number number of fxchs below.  */
2455
  if (new_stack->top > 0)
2456
    {
2457
      bool slots[REG_STACK_SIZE];
2458
      int pops[REG_STACK_SIZE];
2459
      int next, dest, topsrc;
2460
 
2461
      /* First pass to determine the free slots.  */
2462
      for (reg = 0; reg <= new_stack->top; reg++)
2463
        slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2464
 
2465
      /* Second pass to allocate preferred slots.  */
2466
      topsrc = -1;
2467
      for (reg = old->top; reg > new_stack->top; reg--)
2468
        if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2469
          {
2470
            dest = -1;
2471
            for (next = 0; next <= new_stack->top; next++)
2472
              if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2473
                {
2474
                  /* If this is a preference for the new top of stack, record
2475
                     the fact by remembering it's old->reg in topsrc.  */
2476
                  if (next == new_stack->top)
2477
                    topsrc = reg;
2478
                  slots[next] = true;
2479
                  dest = next;
2480
                  break;
2481
                }
2482
            pops[reg] = dest;
2483
          }
2484
        else
2485
          pops[reg] = reg;
2486
 
2487
      /* Intentionally, avoid placing the top of stack in it's correct
2488
         location, if we still need to permute the stack below and we
2489
         can usefully place it somewhere else.  This is the case if any
2490
         slot is still unallocated, in which case we should place the
2491
         top of stack there.  */
2492
      if (topsrc != -1)
2493
        for (reg = 0; reg < new_stack->top; reg++)
2494
          if (!slots[reg])
2495
            {
2496
              pops[topsrc] = reg;
2497
              slots[new_stack->top] = false;
2498
              slots[reg] = true;
2499
              break;
2500
            }
2501
 
2502
      /* Third pass allocates remaining slots and emits pop insns.  */
2503
      next = new_stack->top;
2504
      for (reg = old->top; reg > new_stack->top; reg--)
2505
        {
2506
          dest = pops[reg];
2507
          if (dest == -1)
2508
            {
2509
              /* Find next free slot.  */
2510
              while (slots[next])
2511
                next--;
2512
              dest = next--;
2513
            }
2514
          emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2515
                         EMIT_BEFORE);
2516
        }
2517
    }
2518
  else
2519
    {
2520
      /* The following loop attempts to maximize the number of times we
2521
         pop the top of the stack, as this permits the use of the faster
2522
         ffreep instruction on platforms that support it.  */
2523
      int live, next;
2524
 
2525
      live = 0;
2526
      for (reg = 0; reg <= old->top; reg++)
2527
        if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2528
          live++;
2529
 
2530
      next = live;
2531
      while (old->top >= live)
2532
        if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2533
          {
2534
            while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2535
              next--;
2536
            emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2537
                           EMIT_BEFORE);
2538
          }
2539
        else
2540
          emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2541
                         EMIT_BEFORE);
2542
    }
2543
 
2544
  if (new_stack->top == -2)
2545
    {
2546
      /* If the new block has never been processed, then it can inherit
2547
         the old stack order.  */
2548
 
2549
      new_stack->top = old->top;
2550
      memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2551
    }
2552
  else
2553
    {
2554
      /* This block has been entered before, and we must match the
2555
         previously selected stack order.  */
2556
 
2557
      /* By now, the only difference should be the order of the stack,
2558
         not their depth or liveliness.  */
2559
 
2560
      gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2561
      gcc_assert (old->top == new_stack->top);
2562
 
2563
      /* If the stack is not empty (new_stack->top != -1), loop here emitting
2564
         swaps until the stack is correct.
2565
 
2566
         The worst case number of swaps emitted is N + 2, where N is the
2567
         depth of the stack.  In some cases, the reg at the top of
2568
         stack may be correct, but swapped anyway in order to fix
2569
         other regs.  But since we never swap any other reg away from
2570
         its correct slot, this algorithm will converge.  */
2571
 
2572
      if (new_stack->top != -1)
2573
        do
2574
          {
2575
            /* Swap the reg at top of stack into the position it is
2576
               supposed to be in, until the correct top of stack appears.  */
2577
 
2578
            while (old->reg[old->top] != new_stack->reg[new_stack->top])
2579
              {
2580
                for (reg = new_stack->top; reg >= 0; reg--)
2581
                  if (new_stack->reg[reg] == old->reg[old->top])
2582
                    break;
2583
 
2584
                gcc_assert (reg != -1);
2585
 
2586
                emit_swap_insn (insn, old,
2587
                                FP_MODE_REG (old->reg[reg], DFmode));
2588
              }
2589
 
2590
            /* See if any regs remain incorrect.  If so, bring an
2591
             incorrect reg to the top of stack, and let the while loop
2592
             above fix it.  */
2593
 
2594
            for (reg = new_stack->top; reg >= 0; reg--)
2595
              if (new_stack->reg[reg] != old->reg[reg])
2596
                {
2597
                  emit_swap_insn (insn, old,
2598
                                  FP_MODE_REG (old->reg[reg], DFmode));
2599
                  break;
2600
                }
2601
          } while (reg >= 0);
2602
 
2603
      /* At this point there must be no differences.  */
2604
 
2605
      for (reg = old->top; reg >= 0; reg--)
2606
        gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2607
    }
2608
 
2609
  if (update_end)
2610
    BB_END (current_block) = PREV_INSN (insn);
2611
}
2612
 
2613
/* Print stack configuration.  */
2614
 
2615
static void
2616
print_stack (FILE *file, stack s)
2617
{
2618
  if (! file)
2619
    return;
2620
 
2621
  if (s->top == -2)
2622
    fprintf (file, "uninitialized\n");
2623
  else if (s->top == -1)
2624
    fprintf (file, "empty\n");
2625
  else
2626
    {
2627
      int i;
2628
      fputs ("[ ", file);
2629
      for (i = 0; i <= s->top; ++i)
2630
        fprintf (file, "%d ", s->reg[i]);
2631
      fputs ("]\n", file);
2632
    }
2633
}
2634
 
2635
/* This function was doing life analysis.  We now let the regular live
2636
   code do it's job, so we only need to check some extra invariants
2637
   that reg-stack expects.  Primary among these being that all registers
2638
   are initialized before use.
2639
 
2640
   The function returns true when code was emitted to CFG edges and
2641
   commit_edge_insertions needs to be called.  */
2642
 
2643
static int
2644
convert_regs_entry (void)
2645
{
2646
  int inserted = 0;
2647
  edge e;
2648
  edge_iterator ei;
2649
 
2650
  /* Load something into each stack register live at function entry.
2651
     Such live registers can be caused by uninitialized variables or
2652
     functions not returning values on all paths.  In order to keep
2653
     the push/pop code happy, and to not scrog the register stack, we
2654
     must put something in these registers.  Use a QNaN.
2655
 
2656
     Note that we are inserting converted code here.  This code is
2657
     never seen by the convert_regs pass.  */
2658
 
2659
  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2660
    {
2661
      basic_block block = e->dest;
2662
      block_info bi = BLOCK_INFO (block);
2663
      int reg, top = -1;
2664
 
2665
      for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2666
        if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2667
          {
2668
            rtx init;
2669
 
2670
            bi->stack_in.reg[++top] = reg;
2671
 
2672
            init = gen_rtx_SET (VOIDmode,
2673
                                FP_MODE_REG (FIRST_STACK_REG, SFmode),
2674
                                not_a_num);
2675
            insert_insn_on_edge (init, e);
2676
            inserted = 1;
2677
          }
2678
 
2679
      bi->stack_in.top = top;
2680
    }
2681
 
2682
  return inserted;
2683
}
2684
 
2685
/* Construct the desired stack for function exit.  This will either
2686
   be `empty', or the function return value at top-of-stack.  */
2687
 
2688
static void
2689
convert_regs_exit (void)
2690
{
2691
  int value_reg_low, value_reg_high;
2692
  stack output_stack;
2693
  rtx retvalue;
2694
 
2695
  retvalue = stack_result (current_function_decl);
2696
  value_reg_low = value_reg_high = -1;
2697
  if (retvalue)
2698
    {
2699
      value_reg_low = REGNO (retvalue);
2700
      value_reg_high = END_HARD_REGNO (retvalue) - 1;
2701
    }
2702
 
2703
  output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2704
  if (value_reg_low == -1)
2705
    output_stack->top = -1;
2706
  else
2707
    {
2708
      int reg;
2709
 
2710
      output_stack->top = value_reg_high - value_reg_low;
2711
      for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2712
        {
2713
          output_stack->reg[value_reg_high - reg] = reg;
2714
          SET_HARD_REG_BIT (output_stack->reg_set, reg);
2715
        }
2716
    }
2717
}
2718
 
2719
/* Copy the stack info from the end of edge E's source block to the
2720
   start of E's destination block.  */
2721
 
2722
static void
2723
propagate_stack (edge e)
2724
{
2725
  stack src_stack = &BLOCK_INFO (e->src)->stack_out;
2726
  stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2727
  int reg;
2728
 
2729
  /* Preserve the order of the original stack, but check whether
2730
     any pops are needed.  */
2731
  dest_stack->top = -1;
2732
  for (reg = 0; reg <= src_stack->top; ++reg)
2733
    if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2734
      dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2735
 
2736
  /* Push in any partially dead values.  */
2737
  for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2738
    if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2739
        && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2740
      dest_stack->reg[++dest_stack->top] = reg;
2741
}
2742
 
2743
 
2744
/* Adjust the stack of edge E's source block on exit to match the stack
2745
   of it's target block upon input.  The stack layouts of both blocks
2746
   should have been defined by now.  */
2747
 
2748
static bool
2749
compensate_edge (edge e)
2750
{
2751
  basic_block source = e->src, target = e->dest;
2752
  stack target_stack = &BLOCK_INFO (target)->stack_in;
2753
  stack source_stack = &BLOCK_INFO (source)->stack_out;
2754
  struct stack_def regstack;
2755
  int reg;
2756
 
2757
  if (dump_file)
2758
    fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2759
 
2760
  gcc_assert (target_stack->top != -2);
2761
 
2762
  /* Check whether stacks are identical.  */
2763
  if (target_stack->top == source_stack->top)
2764
    {
2765
      for (reg = target_stack->top; reg >= 0; --reg)
2766
        if (target_stack->reg[reg] != source_stack->reg[reg])
2767
          break;
2768
 
2769
      if (reg == -1)
2770
        {
2771
          if (dump_file)
2772
            fprintf (dump_file, "no changes needed\n");
2773
          return false;
2774
        }
2775
    }
2776
 
2777
  if (dump_file)
2778
    {
2779
      fprintf (dump_file, "correcting stack to ");
2780
      print_stack (dump_file, target_stack);
2781
    }
2782
 
2783
  /* Abnormal calls may appear to have values live in st(0), but the
2784
     abnormal return path will not have actually loaded the values.  */
2785
  if (e->flags & EDGE_ABNORMAL_CALL)
2786
    {
2787
      /* Assert that the lifetimes are as we expect -- one value
2788
         live at st(0) on the end of the source block, and no
2789
         values live at the beginning of the destination block.
2790
         For complex return values, we may have st(1) live as well.  */
2791
      gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2792
      gcc_assert (target_stack->top == -1);
2793
      return false;
2794
    }
2795
 
2796
  /* Handle non-call EH edges specially.  The normal return path have
2797
     values in registers.  These will be popped en masse by the unwind
2798
     library.  */
2799
  if (e->flags & EDGE_EH)
2800
    {
2801
      gcc_assert (target_stack->top == -1);
2802
      return false;
2803
    }
2804
 
2805
  /* We don't support abnormal edges.  Global takes care to
2806
     avoid any live register across them, so we should never
2807
     have to insert instructions on such edges.  */
2808
  gcc_assert (! (e->flags & EDGE_ABNORMAL));
2809
 
2810
  /* Make a copy of source_stack as change_stack is destructive.  */
2811
  regstack = *source_stack;
2812
 
2813
  /* It is better to output directly to the end of the block
2814
     instead of to the edge, because emit_swap can do minimal
2815
     insn scheduling.  We can do this when there is only one
2816
     edge out, and it is not abnormal.  */
2817
  if (EDGE_COUNT (source->succs) == 1)
2818
    {
2819
      current_block = source;
2820
      change_stack (BB_END (source), &regstack, target_stack,
2821
                    (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2822
    }
2823
  else
2824
    {
2825
      rtx seq, after;
2826
 
2827
      current_block = NULL;
2828
      start_sequence ();
2829
 
2830
      /* ??? change_stack needs some point to emit insns after.  */
2831
      after = emit_note (NOTE_INSN_DELETED);
2832
 
2833
      change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2834
 
2835
      seq = get_insns ();
2836
      end_sequence ();
2837
 
2838
      insert_insn_on_edge (seq, e);
2839
      return true;
2840
    }
2841
  return false;
2842
}
2843
 
2844
/* Traverse all non-entry edges in the CFG, and emit the necessary
2845
   edge compensation code to change the stack from stack_out of the
2846
   source block to the stack_in of the destination block.  */
2847
 
2848
static bool
2849
compensate_edges (void)
2850
{
2851
  bool inserted = false;
2852
  basic_block bb;
2853
 
2854
  starting_stack_p = false;
2855
 
2856
  FOR_EACH_BB (bb)
2857
    if (bb != ENTRY_BLOCK_PTR)
2858
      {
2859
        edge e;
2860
        edge_iterator ei;
2861
 
2862
        FOR_EACH_EDGE (e, ei, bb->succs)
2863
          inserted |= compensate_edge (e);
2864
      }
2865
  return inserted;
2866
}
2867
 
2868
/* Select the better of two edges E1 and E2 to use to determine the
2869
   stack layout for their shared destination basic block.  This is
2870
   typically the more frequently executed.  The edge E1 may be NULL
2871
   (in which case E2 is returned), but E2 is always non-NULL.  */
2872
 
2873
static edge
2874
better_edge (edge e1, edge e2)
2875
{
2876
  if (!e1)
2877
    return e2;
2878
 
2879
  if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2880
    return e1;
2881
  if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2882
    return e2;
2883
 
2884
  if (e1->count > e2->count)
2885
    return e1;
2886
  if (e1->count < e2->count)
2887
    return e2;
2888
 
2889
  /* Prefer critical edges to minimize inserting compensation code on
2890
     critical edges.  */
2891
 
2892
  if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2893
    return EDGE_CRITICAL_P (e1) ? e1 : e2;
2894
 
2895
  /* Avoid non-deterministic behavior.  */
2896
  return (e1->src->index < e2->src->index) ? e1 : e2;
2897
}
2898
 
2899
/* Convert stack register references in one block.  Return true if the CFG
2900
   has been modified in the process.  */
2901
 
2902
static bool
2903
convert_regs_1 (basic_block block)
2904
{
2905
  struct stack_def regstack;
2906
  block_info bi = BLOCK_INFO (block);
2907
  int reg;
2908
  rtx insn, next;
2909
  bool control_flow_insn_deleted = false;
2910
  bool cfg_altered = false;
2911
  int debug_insns_with_starting_stack = 0;
2912
 
2913
  any_malformed_asm = false;
2914
 
2915
  /* Choose an initial stack layout, if one hasn't already been chosen.  */
2916
  if (bi->stack_in.top == -2)
2917
    {
2918
      edge e, beste = NULL;
2919
      edge_iterator ei;
2920
 
2921
      /* Select the best incoming edge (typically the most frequent) to
2922
         use as a template for this basic block.  */
2923
      FOR_EACH_EDGE (e, ei, block->preds)
2924
        if (BLOCK_INFO (e->src)->done)
2925
          beste = better_edge (beste, e);
2926
 
2927
      if (beste)
2928
        propagate_stack (beste);
2929
      else
2930
        {
2931
          /* No predecessors.  Create an arbitrary input stack.  */
2932
          bi->stack_in.top = -1;
2933
          for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2934
            if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2935
              bi->stack_in.reg[++bi->stack_in.top] = reg;
2936
        }
2937
    }
2938
 
2939
  if (dump_file)
2940
    {
2941
      fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2942
      print_stack (dump_file, &bi->stack_in);
2943
    }
2944
 
2945
  /* Process all insns in this block.  Keep track of NEXT so that we
2946
     don't process insns emitted while substituting in INSN.  */
2947
  current_block = block;
2948
  next = BB_HEAD (block);
2949
  regstack = bi->stack_in;
2950
  starting_stack_p = true;
2951
 
2952
  do
2953
    {
2954
      insn = next;
2955
      next = NEXT_INSN (insn);
2956
 
2957
      /* Ensure we have not missed a block boundary.  */
2958
      gcc_assert (next);
2959
      if (insn == BB_END (block))
2960
        next = NULL;
2961
 
2962
      /* Don't bother processing unless there is a stack reg
2963
         mentioned or if it's a CALL_INSN.  */
2964
      if (DEBUG_INSN_P (insn))
2965
        {
2966
          if (starting_stack_p)
2967
            debug_insns_with_starting_stack++;
2968
          else
2969
            {
2970
              subst_all_stack_regs_in_debug_insn (insn, &regstack);
2971
 
2972
              /* Nothing must ever die at a debug insn.  If something
2973
                 is referenced in it that becomes dead, it should have
2974
                 died before and the reference in the debug insn
2975
                 should have been removed so as to avoid changing code
2976
                 generation.  */
2977
              gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
2978
            }
2979
        }
2980
      else if (stack_regs_mentioned (insn)
2981
               || CALL_P (insn))
2982
        {
2983
          if (dump_file)
2984
            {
2985
              fprintf (dump_file, "  insn %d input stack: ",
2986
                       INSN_UID (insn));
2987
              print_stack (dump_file, &regstack);
2988
            }
2989
          control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2990
          starting_stack_p = false;
2991
        }
2992
    }
2993
  while (next);
2994
 
2995
  if (debug_insns_with_starting_stack)
2996
    {
2997
      /* Since it's the first non-debug instruction that determines
2998
         the stack requirements of the current basic block, we refrain
2999
         from updating debug insns before it in the loop above, and
3000
         fix them up here.  */
3001
      for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
3002
           insn = NEXT_INSN (insn))
3003
        {
3004
          if (!DEBUG_INSN_P (insn))
3005
            continue;
3006
 
3007
          debug_insns_with_starting_stack--;
3008
          subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
3009
        }
3010
    }
3011
 
3012
  if (dump_file)
3013
    {
3014
      fprintf (dump_file, "Expected live registers [");
3015
      for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3016
        if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3017
          fprintf (dump_file, " %d", reg);
3018
      fprintf (dump_file, " ]\nOutput stack: ");
3019
      print_stack (dump_file, &regstack);
3020
    }
3021
 
3022
  insn = BB_END (block);
3023
  if (JUMP_P (insn))
3024
    insn = PREV_INSN (insn);
3025
 
3026
  /* If the function is declared to return a value, but it returns one
3027
     in only some cases, some registers might come live here.  Emit
3028
     necessary moves for them.  */
3029
 
3030
  for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3031
    {
3032
      if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3033
          && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3034
        {
3035
          rtx set;
3036
 
3037
          if (dump_file)
3038
            fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3039
 
3040
          set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
3041
          insn = emit_insn_after (set, insn);
3042
          control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3043
        }
3044
    }
3045
 
3046
  /* Amongst the insns possibly deleted during the substitution process above,
3047
     might have been the only trapping insn in the block.  We purge the now
3048
     possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3049
     called at the end of convert_regs.  The order in which we process the
3050
     blocks ensures that we never delete an already processed edge.
3051
 
3052
     Note that, at this point, the CFG may have been damaged by the emission
3053
     of instructions after an abnormal call, which moves the basic block end
3054
     (and is the reason why we call fixup_abnormal_edges later).  So we must
3055
     be sure that the trapping insn has been deleted before trying to purge
3056
     dead edges, otherwise we risk purging valid edges.
3057
 
3058
     ??? We are normally supposed not to delete trapping insns, so we pretend
3059
     that the insns deleted above don't actually trap.  It would have been
3060
     better to detect this earlier and avoid creating the EH edge in the first
3061
     place, still, but we don't have enough information at that time.  */
3062
 
3063
  if (control_flow_insn_deleted)
3064
    cfg_altered |= purge_dead_edges (block);
3065
 
3066
  /* Something failed if the stack lives don't match.  If we had malformed
3067
     asms, we zapped the instruction itself, but that didn't produce the
3068
     same pattern of register kills as before.  */
3069
 
3070
  gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3071
              || any_malformed_asm);
3072
  bi->stack_out = regstack;
3073
  bi->done = true;
3074
 
3075
  return cfg_altered;
3076
}
3077
 
3078
/* Convert registers in all blocks reachable from BLOCK.  Return true if the
3079
   CFG has been modified in the process.  */
3080
 
3081
static bool
3082
convert_regs_2 (basic_block block)
3083
{
3084
  basic_block *stack, *sp;
3085
  bool cfg_altered = false;
3086
 
3087
  /* We process the blocks in a top-down manner, in a way such that one block
3088
     is only processed after all its predecessors.  The number of predecessors
3089
     of every block has already been computed.  */
3090
 
3091
  stack = XNEWVEC (basic_block, n_basic_blocks);
3092
  sp = stack;
3093
 
3094
  *sp++ = block;
3095
 
3096
  do
3097
    {
3098
      edge e;
3099
      edge_iterator ei;
3100
 
3101
      block = *--sp;
3102
 
3103
      /* Processing BLOCK is achieved by convert_regs_1, which may purge
3104
         some dead EH outgoing edge after the deletion of the trapping
3105
         insn inside the block.  Since the number of predecessors of
3106
         BLOCK's successors was computed based on the initial edge set,
3107
         we check the necessity to process some of these successors
3108
         before such an edge deletion may happen.  However, there is
3109
         a pitfall: if BLOCK is the only predecessor of a successor and
3110
         the edge between them happens to be deleted, the successor
3111
         becomes unreachable and should not be processed.  The problem
3112
         is that there is no way to preventively detect this case so we
3113
         stack the successor in all cases and hand over the task of
3114
         fixing up the discrepancy to convert_regs_1.  */
3115
 
3116
      FOR_EACH_EDGE (e, ei, block->succs)
3117
        if (! (e->flags & EDGE_DFS_BACK))
3118
          {
3119
            BLOCK_INFO (e->dest)->predecessors--;
3120
            if (!BLOCK_INFO (e->dest)->predecessors)
3121
              *sp++ = e->dest;
3122
          }
3123
 
3124
      cfg_altered |= convert_regs_1 (block);
3125
    }
3126
  while (sp != stack);
3127
 
3128
  free (stack);
3129
 
3130
  return cfg_altered;
3131
}
3132
 
3133
/* Traverse all basic blocks in a function, converting the register
3134
   references in each insn from the "flat" register file that gcc uses,
3135
   to the stack-like registers the 387 uses.  */
3136
 
3137
static void
3138
convert_regs (void)
3139
{
3140
  bool cfg_altered = false;
3141
  int inserted;
3142
  basic_block b;
3143
  edge e;
3144
  edge_iterator ei;
3145
 
3146
  /* Initialize uninitialized registers on function entry.  */
3147
  inserted = convert_regs_entry ();
3148
 
3149
  /* Construct the desired stack for function exit.  */
3150
  convert_regs_exit ();
3151
  BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3152
 
3153
  /* ??? Future: process inner loops first, and give them arbitrary
3154
     initial stacks which emit_swap_insn can modify.  This ought to
3155
     prevent double fxch that often appears at the head of a loop.  */
3156
 
3157
  /* Process all blocks reachable from all entry points.  */
3158
  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3159
    cfg_altered |= convert_regs_2 (e->dest);
3160
 
3161
  /* ??? Process all unreachable blocks.  Though there's no excuse
3162
     for keeping these even when not optimizing.  */
3163
  FOR_EACH_BB (b)
3164
    {
3165
      block_info bi = BLOCK_INFO (b);
3166
 
3167
      if (! bi->done)
3168
        cfg_altered |= convert_regs_2 (b);
3169
    }
3170
 
3171
  /* We must fix up abnormal edges before inserting compensation code
3172
     because both mechanisms insert insns on edges.  */
3173
  inserted |= fixup_abnormal_edges ();
3174
 
3175
  inserted |= compensate_edges ();
3176
 
3177
  clear_aux_for_blocks ();
3178
 
3179
  if (inserted)
3180
    commit_edge_insertions ();
3181
 
3182
  if (cfg_altered)
3183
    cleanup_cfg (0);
3184
 
3185
  if (dump_file)
3186
    fputc ('\n', dump_file);
3187
}
3188
 
3189
/* Convert register usage from "flat" register file usage to a "stack
3190
   register file.  FILE is the dump file, if used.
3191
 
3192
   Construct a CFG and run life analysis.  Then convert each insn one
3193
   by one.  Run a last cleanup_cfg pass, if optimizing, to eliminate
3194
   code duplication created when the converter inserts pop insns on
3195
   the edges.  */
3196
 
3197
static bool
3198
reg_to_stack (void)
3199
{
3200
  basic_block bb;
3201
  int i;
3202
  int max_uid;
3203
 
3204
  /* Clean up previous run.  */
3205
  if (stack_regs_mentioned_data != NULL)
3206
    VEC_free (char, heap, stack_regs_mentioned_data);
3207
 
3208
  /* See if there is something to do.  Flow analysis is quite
3209
     expensive so we might save some compilation time.  */
3210
  for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3211
    if (df_regs_ever_live_p (i))
3212
      break;
3213
  if (i > LAST_STACK_REG)
3214
    return false;
3215
 
3216
  df_note_add_problem ();
3217
  df_analyze ();
3218
 
3219
  mark_dfs_back_edges ();
3220
 
3221
  /* Set up block info for each basic block.  */
3222
  alloc_aux_for_blocks (sizeof (struct block_info_def));
3223
  FOR_EACH_BB (bb)
3224
    {
3225
      block_info bi = BLOCK_INFO (bb);
3226
      edge_iterator ei;
3227
      edge e;
3228
      int reg;
3229
 
3230
      FOR_EACH_EDGE (e, ei, bb->preds)
3231
        if (!(e->flags & EDGE_DFS_BACK)
3232
            && e->src != ENTRY_BLOCK_PTR)
3233
          bi->predecessors++;
3234
 
3235
      /* Set current register status at last instruction `uninitialized'.  */
3236
      bi->stack_in.top = -2;
3237
 
3238
      /* Copy live_at_end and live_at_start into temporaries.  */
3239
      for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3240
        {
3241
          if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3242
            SET_HARD_REG_BIT (bi->out_reg_set, reg);
3243
          if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3244
            SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3245
        }
3246
    }
3247
 
3248
  /* Create the replacement registers up front.  */
3249
  for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3250
    {
3251
      enum machine_mode mode;
3252
      for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3253
           mode != VOIDmode;
3254
           mode = GET_MODE_WIDER_MODE (mode))
3255
        FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3256
      for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3257
           mode != VOIDmode;
3258
           mode = GET_MODE_WIDER_MODE (mode))
3259
        FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3260
    }
3261
 
3262
  ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3263
 
3264
  /* A QNaN for initializing uninitialized variables.
3265
 
3266
     ??? We can't load from constant memory in PIC mode, because
3267
     we're inserting these instructions before the prologue and
3268
     the PIC register hasn't been set up.  In that case, fall back
3269
     on zero, which we can get from `fldz'.  */
3270
 
3271
  if ((flag_pic && !TARGET_64BIT)
3272
      || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3273
    not_a_num = CONST0_RTX (SFmode);
3274
  else
3275
    {
3276
      REAL_VALUE_TYPE r;
3277
 
3278
      real_nan (&r, "", 1, SFmode);
3279
      not_a_num = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode);
3280
      not_a_num = force_const_mem (SFmode, not_a_num);
3281
    }
3282
 
3283
  /* Allocate a cache for stack_regs_mentioned.  */
3284
  max_uid = get_max_uid ();
3285
  stack_regs_mentioned_data = VEC_alloc (char, heap, max_uid + 1);
3286
  memset (VEC_address (char, stack_regs_mentioned_data),
3287
          0, sizeof (char) * (max_uid + 1));
3288
 
3289
  convert_regs ();
3290
 
3291
  free_aux_for_blocks ();
3292
  return true;
3293
}
3294
#endif /* STACK_REGS */
3295
 
3296
static bool
3297
gate_handle_stack_regs (void)
3298
{
3299
#ifdef STACK_REGS
3300
  return 1;
3301
#else
3302
  return 0;
3303
#endif
3304
}
3305
 
3306
struct rtl_opt_pass pass_stack_regs =
3307
{
3308
 {
3309
  RTL_PASS,
3310
  "*stack_regs",                        /* name */
3311
  gate_handle_stack_regs,               /* gate */
3312
  NULL,                                 /* execute */
3313
  NULL,                                 /* sub */
3314
  NULL,                                 /* next */
3315
  0,                                    /* static_pass_number */
3316
  TV_REG_STACK,                         /* tv_id */
3317
  0,                                    /* properties_required */
3318
  0,                                    /* properties_provided */
3319
  0,                                    /* properties_destroyed */
3320
  0,                                    /* todo_flags_start */
3321
 
3322
 }
3323
};
3324
 
3325
/* Convert register usage from flat register file usage to a stack
3326
   register file.  */
3327
static unsigned int
3328
rest_of_handle_stack_regs (void)
3329
{
3330
#ifdef STACK_REGS
3331
  reg_to_stack ();
3332
  regstack_completed = 1;
3333
#endif
3334
  return 0;
3335
}
3336
 
3337
struct rtl_opt_pass pass_stack_regs_run =
3338
{
3339
 {
3340
  RTL_PASS,
3341
  "stack",                              /* name */
3342
  NULL,                                 /* gate */
3343
  rest_of_handle_stack_regs,            /* execute */
3344
  NULL,                                 /* sub */
3345
  NULL,                                 /* next */
3346
  0,                                    /* static_pass_number */
3347
  TV_REG_STACK,                         /* tv_id */
3348
  0,                                    /* properties_required */
3349
  0,                                    /* properties_provided */
3350
  0,                                    /* properties_destroyed */
3351
  0,                                    /* todo_flags_start */
3352
  TODO_df_finish | TODO_verify_rtl_sharing |
3353
  TODO_ggc_collect                      /* todo_flags_finish */
3354
 }
3355
};

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.