1 |
684 |
jeremybenn |
/* Register renaming for the GNU compiler.
|
2 |
|
|
Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
|
3 |
|
|
2010 Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
8 |
|
|
under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
10 |
|
|
any later version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
13 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
14 |
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
15 |
|
|
License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "config.h"
|
22 |
|
|
#include "system.h"
|
23 |
|
|
#include "coretypes.h"
|
24 |
|
|
#include "tm.h"
|
25 |
|
|
#include "rtl-error.h"
|
26 |
|
|
#include "tm_p.h"
|
27 |
|
|
#include "insn-config.h"
|
28 |
|
|
#include "regs.h"
|
29 |
|
|
#include "addresses.h"
|
30 |
|
|
#include "hard-reg-set.h"
|
31 |
|
|
#include "basic-block.h"
|
32 |
|
|
#include "reload.h"
|
33 |
|
|
#include "output.h"
|
34 |
|
|
#include "function.h"
|
35 |
|
|
#include "recog.h"
|
36 |
|
|
#include "flags.h"
|
37 |
|
|
#include "obstack.h"
|
38 |
|
|
#include "timevar.h"
|
39 |
|
|
#include "tree-pass.h"
|
40 |
|
|
#include "df.h"
|
41 |
|
|
#include "target.h"
|
42 |
|
|
#include "emit-rtl.h"
|
43 |
|
|
#include "regrename.h"
|
44 |
|
|
|
45 |
|
|
/* This file implements the RTL register renaming pass of the compiler. It is
|
46 |
|
|
a semi-local pass whose goal is to maximize the usage of the register file
|
47 |
|
|
of the processor by substituting registers for others in the solution given
|
48 |
|
|
by the register allocator. The algorithm is as follows:
|
49 |
|
|
|
50 |
|
|
1. Local def/use chains are built: within each basic block, chains are
|
51 |
|
|
opened and closed; if a chain isn't closed at the end of the block,
|
52 |
|
|
it is dropped. We pre-open chains if we have already examined a
|
53 |
|
|
predecessor block and found chains live at the end which match
|
54 |
|
|
live registers at the start of the new block.
|
55 |
|
|
|
56 |
|
|
2. We try to combine the local chains across basic block boundaries by
|
57 |
|
|
comparing chains that were open at the start or end of a block to
|
58 |
|
|
those in successor/predecessor blocks.
|
59 |
|
|
|
60 |
|
|
3. For each chain, the set of possible renaming registers is computed.
|
61 |
|
|
This takes into account the renaming of previously processed chains.
|
62 |
|
|
Optionally, a preferred class is computed for the renaming register.
|
63 |
|
|
|
64 |
|
|
4. The best renaming register is computed for the chain in the above set,
|
65 |
|
|
using a round-robin allocation. If a preferred class exists, then the
|
66 |
|
|
round-robin allocation is done within the class first, if possible.
|
67 |
|
|
The round-robin allocation of renaming registers itself is global.
|
68 |
|
|
|
69 |
|
|
5. If a renaming register has been found, it is substituted in the chain.
|
70 |
|
|
|
71 |
|
|
Targets can parameterize the pass by specifying a preferred class for the
|
72 |
|
|
renaming register for a given (super)class of registers to be renamed. */
|
73 |
|
|
|
74 |
|
|
#if HOST_BITS_PER_WIDE_INT <= MAX_RECOG_OPERANDS
|
75 |
|
|
#error "Use a different bitmap implementation for untracked_operands."
|
76 |
|
|
#endif
|
77 |
|
|
|
78 |
|
|
enum scan_actions
|
79 |
|
|
{
|
80 |
|
|
terminate_write,
|
81 |
|
|
terminate_dead,
|
82 |
|
|
mark_all_read,
|
83 |
|
|
mark_read,
|
84 |
|
|
mark_write,
|
85 |
|
|
/* mark_access is for marking the destination regs in
|
86 |
|
|
REG_FRAME_RELATED_EXPR notes (as if they were read) so that the
|
87 |
|
|
note is updated properly. */
|
88 |
|
|
mark_access
|
89 |
|
|
};
|
90 |
|
|
|
91 |
|
|
static const char * const scan_actions_name[] =
|
92 |
|
|
{
|
93 |
|
|
"terminate_write",
|
94 |
|
|
"terminate_dead",
|
95 |
|
|
"mark_all_read",
|
96 |
|
|
"mark_read",
|
97 |
|
|
"mark_write",
|
98 |
|
|
"mark_access"
|
99 |
|
|
};
|
100 |
|
|
|
101 |
|
|
/* TICK and THIS_TICK are used to record the last time we saw each
|
102 |
|
|
register. */
|
103 |
|
|
static int tick[FIRST_PSEUDO_REGISTER];
|
104 |
|
|
static int this_tick = 0;
|
105 |
|
|
|
106 |
|
|
static struct obstack rename_obstack;
|
107 |
|
|
|
108 |
|
|
/* If nonnull, the code calling into the register renamer requested
|
109 |
|
|
information about insn operands, and we store it here. */
|
110 |
|
|
VEC(insn_rr_info, heap) *insn_rr;
|
111 |
|
|
|
112 |
|
|
static void scan_rtx (rtx, rtx *, enum reg_class, enum scan_actions,
|
113 |
|
|
enum op_type);
|
114 |
|
|
static bool build_def_use (basic_block);
|
115 |
|
|
|
116 |
|
|
/* The id to be given to the next opened chain. */
|
117 |
|
|
static unsigned current_id;
|
118 |
|
|
|
119 |
|
|
/* A mapping of unique id numbers to chains. */
|
120 |
|
|
static VEC(du_head_p, heap) *id_to_chain;
|
121 |
|
|
|
122 |
|
|
/* List of currently open chains. */
|
123 |
|
|
static struct du_head *open_chains;
|
124 |
|
|
|
125 |
|
|
/* Bitmap of open chains. The bits set always match the list found in
|
126 |
|
|
open_chains. */
|
127 |
|
|
static bitmap_head open_chains_set;
|
128 |
|
|
|
129 |
|
|
/* Record the registers being tracked in open_chains. */
|
130 |
|
|
static HARD_REG_SET live_in_chains;
|
131 |
|
|
|
132 |
|
|
/* Record the registers that are live but not tracked. The intersection
|
133 |
|
|
between this and live_in_chains is empty. */
|
134 |
|
|
static HARD_REG_SET live_hard_regs;
|
135 |
|
|
|
136 |
|
|
/* Set while scanning RTL if INSN_RR is nonnull, i.e. if the current analysis
|
137 |
|
|
is for a caller that requires operand data. Used in
|
138 |
|
|
record_operand_use. */
|
139 |
|
|
static operand_rr_info *cur_operand;
|
140 |
|
|
|
141 |
|
|
/* Return the chain corresponding to id number ID. Take into account that
|
142 |
|
|
chains may have been merged. */
|
143 |
|
|
du_head_p
|
144 |
|
|
regrename_chain_from_id (unsigned int id)
|
145 |
|
|
{
|
146 |
|
|
du_head_p first_chain = VEC_index (du_head_p, id_to_chain, id);
|
147 |
|
|
du_head_p chain = first_chain;
|
148 |
|
|
while (chain->id != id)
|
149 |
|
|
{
|
150 |
|
|
id = chain->id;
|
151 |
|
|
chain = VEC_index (du_head_p, id_to_chain, id);
|
152 |
|
|
}
|
153 |
|
|
first_chain->id = id;
|
154 |
|
|
return chain;
|
155 |
|
|
}
|
156 |
|
|
|
157 |
|
|
/* Dump all def/use chains, starting at id FROM. */
|
158 |
|
|
|
159 |
|
|
static void
|
160 |
|
|
dump_def_use_chain (int from)
|
161 |
|
|
{
|
162 |
|
|
du_head_p head;
|
163 |
|
|
int i;
|
164 |
|
|
FOR_EACH_VEC_ELT_FROM (du_head_p, id_to_chain, i, head, from)
|
165 |
|
|
{
|
166 |
|
|
struct du_chain *this_du = head->first;
|
167 |
|
|
|
168 |
|
|
fprintf (dump_file, "Register %s (%d):",
|
169 |
|
|
reg_names[head->regno], head->nregs);
|
170 |
|
|
while (this_du)
|
171 |
|
|
{
|
172 |
|
|
fprintf (dump_file, " %d [%s]", INSN_UID (this_du->insn),
|
173 |
|
|
reg_class_names[this_du->cl]);
|
174 |
|
|
this_du = this_du->next_use;
|
175 |
|
|
}
|
176 |
|
|
fprintf (dump_file, "\n");
|
177 |
|
|
head = head->next_chain;
|
178 |
|
|
}
|
179 |
|
|
}
|
180 |
|
|
|
181 |
|
|
static void
|
182 |
|
|
free_chain_data (void)
|
183 |
|
|
{
|
184 |
|
|
int i;
|
185 |
|
|
du_head_p ptr;
|
186 |
|
|
for (i = 0; VEC_iterate(du_head_p, id_to_chain, i, ptr); i++)
|
187 |
|
|
bitmap_clear (&ptr->conflicts);
|
188 |
|
|
|
189 |
|
|
VEC_free (du_head_p, heap, id_to_chain);
|
190 |
|
|
}
|
191 |
|
|
|
192 |
|
|
/* Walk all chains starting with CHAINS and record that they conflict with
|
193 |
|
|
another chain whose id is ID. */
|
194 |
|
|
|
195 |
|
|
static void
|
196 |
|
|
mark_conflict (struct du_head *chains, unsigned id)
|
197 |
|
|
{
|
198 |
|
|
while (chains)
|
199 |
|
|
{
|
200 |
|
|
bitmap_set_bit (&chains->conflicts, id);
|
201 |
|
|
chains = chains->next_chain;
|
202 |
|
|
}
|
203 |
|
|
}
|
204 |
|
|
|
205 |
|
|
/* Examine cur_operand, and if it is nonnull, record information about the
|
206 |
|
|
use THIS_DU which is part of the chain HEAD. */
|
207 |
|
|
|
208 |
|
|
static void
|
209 |
|
|
record_operand_use (struct du_head *head, struct du_chain *this_du)
|
210 |
|
|
{
|
211 |
|
|
if (cur_operand == NULL)
|
212 |
|
|
return;
|
213 |
|
|
gcc_assert (cur_operand->n_chains < MAX_REGS_PER_ADDRESS);
|
214 |
|
|
cur_operand->heads[cur_operand->n_chains] = head;
|
215 |
|
|
cur_operand->chains[cur_operand->n_chains++] = this_du;
|
216 |
|
|
}
|
217 |
|
|
|
218 |
|
|
/* Create a new chain for THIS_NREGS registers starting at THIS_REGNO,
|
219 |
|
|
and record its occurrence in *LOC, which is being written to in INSN.
|
220 |
|
|
This access requires a register of class CL. */
|
221 |
|
|
|
222 |
|
|
static du_head_p
|
223 |
|
|
create_new_chain (unsigned this_regno, unsigned this_nregs, rtx *loc,
|
224 |
|
|
rtx insn, enum reg_class cl)
|
225 |
|
|
{
|
226 |
|
|
struct du_head *head = XOBNEW (&rename_obstack, struct du_head);
|
227 |
|
|
struct du_chain *this_du;
|
228 |
|
|
int nregs;
|
229 |
|
|
|
230 |
|
|
head->next_chain = open_chains;
|
231 |
|
|
head->regno = this_regno;
|
232 |
|
|
head->nregs = this_nregs;
|
233 |
|
|
head->need_caller_save_reg = 0;
|
234 |
|
|
head->cannot_rename = 0;
|
235 |
|
|
|
236 |
|
|
VEC_safe_push (du_head_p, heap, id_to_chain, head);
|
237 |
|
|
head->id = current_id++;
|
238 |
|
|
|
239 |
|
|
bitmap_initialize (&head->conflicts, &bitmap_default_obstack);
|
240 |
|
|
bitmap_copy (&head->conflicts, &open_chains_set);
|
241 |
|
|
mark_conflict (open_chains, head->id);
|
242 |
|
|
|
243 |
|
|
/* Since we're tracking this as a chain now, remove it from the
|
244 |
|
|
list of conflicting live hard registers and track it in
|
245 |
|
|
live_in_chains instead. */
|
246 |
|
|
nregs = head->nregs;
|
247 |
|
|
while (nregs-- > 0)
|
248 |
|
|
{
|
249 |
|
|
SET_HARD_REG_BIT (live_in_chains, head->regno + nregs);
|
250 |
|
|
CLEAR_HARD_REG_BIT (live_hard_regs, head->regno + nregs);
|
251 |
|
|
}
|
252 |
|
|
|
253 |
|
|
COPY_HARD_REG_SET (head->hard_conflicts, live_hard_regs);
|
254 |
|
|
bitmap_set_bit (&open_chains_set, head->id);
|
255 |
|
|
|
256 |
|
|
open_chains = head;
|
257 |
|
|
|
258 |
|
|
if (dump_file)
|
259 |
|
|
{
|
260 |
|
|
fprintf (dump_file, "Creating chain %s (%d)",
|
261 |
|
|
reg_names[head->regno], head->id);
|
262 |
|
|
if (insn != NULL_RTX)
|
263 |
|
|
fprintf (dump_file, " at insn %d", INSN_UID (insn));
|
264 |
|
|
fprintf (dump_file, "\n");
|
265 |
|
|
}
|
266 |
|
|
|
267 |
|
|
if (insn == NULL_RTX)
|
268 |
|
|
{
|
269 |
|
|
head->first = head->last = NULL;
|
270 |
|
|
return head;
|
271 |
|
|
}
|
272 |
|
|
|
273 |
|
|
this_du = XOBNEW (&rename_obstack, struct du_chain);
|
274 |
|
|
head->first = head->last = this_du;
|
275 |
|
|
|
276 |
|
|
this_du->next_use = 0;
|
277 |
|
|
this_du->loc = loc;
|
278 |
|
|
this_du->insn = insn;
|
279 |
|
|
this_du->cl = cl;
|
280 |
|
|
record_operand_use (head, this_du);
|
281 |
|
|
return head;
|
282 |
|
|
}
|
283 |
|
|
|
284 |
|
|
/* For a def-use chain HEAD, find which registers overlap its lifetime and
|
285 |
|
|
set the corresponding bits in *PSET. */
|
286 |
|
|
|
287 |
|
|
static void
|
288 |
|
|
merge_overlapping_regs (HARD_REG_SET *pset, struct du_head *head)
|
289 |
|
|
{
|
290 |
|
|
bitmap_iterator bi;
|
291 |
|
|
unsigned i;
|
292 |
|
|
IOR_HARD_REG_SET (*pset, head->hard_conflicts);
|
293 |
|
|
EXECUTE_IF_SET_IN_BITMAP (&head->conflicts, 0, i, bi)
|
294 |
|
|
{
|
295 |
|
|
du_head_p other = regrename_chain_from_id (i);
|
296 |
|
|
unsigned j = other->nregs;
|
297 |
|
|
gcc_assert (other != head);
|
298 |
|
|
while (j-- > 0)
|
299 |
|
|
SET_HARD_REG_BIT (*pset, other->regno + j);
|
300 |
|
|
}
|
301 |
|
|
}
|
302 |
|
|
|
303 |
|
|
/* Check if NEW_REG can be the candidate register to rename for
|
304 |
|
|
REG in THIS_HEAD chain. THIS_UNAVAILABLE is a set of unavailable hard
|
305 |
|
|
registers. */
|
306 |
|
|
|
307 |
|
|
static bool
|
308 |
|
|
check_new_reg_p (int reg ATTRIBUTE_UNUSED, int new_reg,
|
309 |
|
|
struct du_head *this_head, HARD_REG_SET this_unavailable)
|
310 |
|
|
{
|
311 |
|
|
enum machine_mode mode = GET_MODE (*this_head->first->loc);
|
312 |
|
|
int nregs = hard_regno_nregs[new_reg][mode];
|
313 |
|
|
int i;
|
314 |
|
|
struct du_chain *tmp;
|
315 |
|
|
|
316 |
|
|
for (i = nregs - 1; i >= 0; --i)
|
317 |
|
|
if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
|
318 |
|
|
|| fixed_regs[new_reg + i]
|
319 |
|
|
|| global_regs[new_reg + i]
|
320 |
|
|
/* Can't use regs which aren't saved by the prologue. */
|
321 |
|
|
|| (! df_regs_ever_live_p (new_reg + i)
|
322 |
|
|
&& ! call_used_regs[new_reg + i])
|
323 |
|
|
#ifdef LEAF_REGISTERS
|
324 |
|
|
/* We can't use a non-leaf register if we're in a
|
325 |
|
|
leaf function. */
|
326 |
|
|
|| (current_function_is_leaf
|
327 |
|
|
&& !LEAF_REGISTERS[new_reg + i])
|
328 |
|
|
#endif
|
329 |
|
|
#ifdef HARD_REGNO_RENAME_OK
|
330 |
|
|
|| ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i)
|
331 |
|
|
#endif
|
332 |
|
|
)
|
333 |
|
|
return false;
|
334 |
|
|
|
335 |
|
|
/* See whether it accepts all modes that occur in
|
336 |
|
|
definition and uses. */
|
337 |
|
|
for (tmp = this_head->first; tmp; tmp = tmp->next_use)
|
338 |
|
|
if ((! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc))
|
339 |
|
|
&& ! DEBUG_INSN_P (tmp->insn))
|
340 |
|
|
|| (this_head->need_caller_save_reg
|
341 |
|
|
&& ! (HARD_REGNO_CALL_PART_CLOBBERED
|
342 |
|
|
(reg, GET_MODE (*tmp->loc)))
|
343 |
|
|
&& (HARD_REGNO_CALL_PART_CLOBBERED
|
344 |
|
|
(new_reg, GET_MODE (*tmp->loc)))))
|
345 |
|
|
return false;
|
346 |
|
|
|
347 |
|
|
return true;
|
348 |
|
|
}
|
349 |
|
|
|
350 |
|
|
/* For the chain THIS_HEAD, compute and return the best register to
|
351 |
|
|
rename to. SUPER_CLASS is the superunion of register classes in
|
352 |
|
|
the chain. UNAVAILABLE is a set of registers that cannot be used.
|
353 |
|
|
OLD_REG is the register currently used for the chain. */
|
354 |
|
|
|
355 |
|
|
int
|
356 |
|
|
find_best_rename_reg (du_head_p this_head, enum reg_class super_class,
|
357 |
|
|
HARD_REG_SET *unavailable, int old_reg)
|
358 |
|
|
{
|
359 |
|
|
bool has_preferred_class;
|
360 |
|
|
enum reg_class preferred_class;
|
361 |
|
|
int pass;
|
362 |
|
|
int best_new_reg = old_reg;
|
363 |
|
|
|
364 |
|
|
/* Further narrow the set of registers we can use for renaming.
|
365 |
|
|
If the chain needs a call-saved register, mark the call-used
|
366 |
|
|
registers as unavailable. */
|
367 |
|
|
if (this_head->need_caller_save_reg)
|
368 |
|
|
IOR_HARD_REG_SET (*unavailable, call_used_reg_set);
|
369 |
|
|
|
370 |
|
|
/* Mark registers that overlap this chain's lifetime as unavailable. */
|
371 |
|
|
merge_overlapping_regs (unavailable, this_head);
|
372 |
|
|
|
373 |
|
|
/* Compute preferred rename class of super union of all the classes
|
374 |
|
|
in the chain. */
|
375 |
|
|
preferred_class
|
376 |
|
|
= (enum reg_class) targetm.preferred_rename_class (super_class);
|
377 |
|
|
|
378 |
|
|
/* If PREFERRED_CLASS is not NO_REGS, we iterate in the first pass
|
379 |
|
|
over registers that belong to PREFERRED_CLASS and try to find the
|
380 |
|
|
best register within the class. If that failed, we iterate in
|
381 |
|
|
the second pass over registers that don't belong to the class.
|
382 |
|
|
If PREFERRED_CLASS is NO_REGS, we iterate over all registers in
|
383 |
|
|
ascending order without any preference. */
|
384 |
|
|
has_preferred_class = (preferred_class != NO_REGS);
|
385 |
|
|
for (pass = (has_preferred_class ? 0 : 1); pass < 2; pass++)
|
386 |
|
|
{
|
387 |
|
|
int new_reg;
|
388 |
|
|
for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
|
389 |
|
|
{
|
390 |
|
|
if (has_preferred_class
|
391 |
|
|
&& (pass == 0)
|
392 |
|
|
!= TEST_HARD_REG_BIT (reg_class_contents[preferred_class],
|
393 |
|
|
new_reg))
|
394 |
|
|
continue;
|
395 |
|
|
|
396 |
|
|
/* In the first pass, we force the renaming of registers that
|
397 |
|
|
don't belong to PREFERRED_CLASS to registers that do, even
|
398 |
|
|
though the latters were used not very long ago. */
|
399 |
|
|
if (check_new_reg_p (old_reg, new_reg, this_head,
|
400 |
|
|
*unavailable)
|
401 |
|
|
&& ((pass == 0
|
402 |
|
|
&& !TEST_HARD_REG_BIT (reg_class_contents[preferred_class],
|
403 |
|
|
best_new_reg))
|
404 |
|
|
|| tick[best_new_reg] > tick[new_reg]))
|
405 |
|
|
best_new_reg = new_reg;
|
406 |
|
|
}
|
407 |
|
|
if (pass == 0 && best_new_reg != old_reg)
|
408 |
|
|
break;
|
409 |
|
|
}
|
410 |
|
|
return best_new_reg;
|
411 |
|
|
}
|
412 |
|
|
|
413 |
|
|
/* Perform register renaming on the current function. */
|
414 |
|
|
static void
|
415 |
|
|
rename_chains (void)
|
416 |
|
|
{
|
417 |
|
|
HARD_REG_SET unavailable;
|
418 |
|
|
du_head_p this_head;
|
419 |
|
|
int i;
|
420 |
|
|
|
421 |
|
|
memset (tick, 0, sizeof tick);
|
422 |
|
|
|
423 |
|
|
CLEAR_HARD_REG_SET (unavailable);
|
424 |
|
|
/* Don't clobber traceback for noreturn functions. */
|
425 |
|
|
if (frame_pointer_needed)
|
426 |
|
|
{
|
427 |
|
|
add_to_hard_reg_set (&unavailable, Pmode, FRAME_POINTER_REGNUM);
|
428 |
|
|
#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
|
429 |
|
|
add_to_hard_reg_set (&unavailable, Pmode, HARD_FRAME_POINTER_REGNUM);
|
430 |
|
|
#endif
|
431 |
|
|
}
|
432 |
|
|
|
433 |
|
|
FOR_EACH_VEC_ELT (du_head_p, id_to_chain, i, this_head)
|
434 |
|
|
{
|
435 |
|
|
int best_new_reg;
|
436 |
|
|
int n_uses;
|
437 |
|
|
struct du_chain *tmp;
|
438 |
|
|
HARD_REG_SET this_unavailable;
|
439 |
|
|
int reg = this_head->regno;
|
440 |
|
|
enum reg_class super_class = NO_REGS;
|
441 |
|
|
|
442 |
|
|
if (this_head->cannot_rename)
|
443 |
|
|
continue;
|
444 |
|
|
|
445 |
|
|
if (fixed_regs[reg] || global_regs[reg]
|
446 |
|
|
#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
|
447 |
|
|
|| (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM)
|
448 |
|
|
#else
|
449 |
|
|
|| (frame_pointer_needed && reg == FRAME_POINTER_REGNUM)
|
450 |
|
|
#endif
|
451 |
|
|
)
|
452 |
|
|
continue;
|
453 |
|
|
|
454 |
|
|
COPY_HARD_REG_SET (this_unavailable, unavailable);
|
455 |
|
|
|
456 |
|
|
/* Iterate over elements in the chain in order to:
|
457 |
|
|
1. Count number of uses, and narrow the set of registers we can
|
458 |
|
|
use for renaming.
|
459 |
|
|
2. Compute the superunion of register classes in this chain. */
|
460 |
|
|
n_uses = 0;
|
461 |
|
|
super_class = NO_REGS;
|
462 |
|
|
for (tmp = this_head->first; tmp; tmp = tmp->next_use)
|
463 |
|
|
{
|
464 |
|
|
if (DEBUG_INSN_P (tmp->insn))
|
465 |
|
|
continue;
|
466 |
|
|
n_uses++;
|
467 |
|
|
IOR_COMPL_HARD_REG_SET (this_unavailable,
|
468 |
|
|
reg_class_contents[tmp->cl]);
|
469 |
|
|
super_class
|
470 |
|
|
= reg_class_superunion[(int) super_class][(int) tmp->cl];
|
471 |
|
|
}
|
472 |
|
|
|
473 |
|
|
if (n_uses < 2)
|
474 |
|
|
continue;
|
475 |
|
|
|
476 |
|
|
best_new_reg = find_best_rename_reg (this_head, super_class,
|
477 |
|
|
&this_unavailable, reg);
|
478 |
|
|
|
479 |
|
|
if (dump_file)
|
480 |
|
|
{
|
481 |
|
|
fprintf (dump_file, "Register %s in insn %d",
|
482 |
|
|
reg_names[reg], INSN_UID (this_head->first->insn));
|
483 |
|
|
if (this_head->need_caller_save_reg)
|
484 |
|
|
fprintf (dump_file, " crosses a call");
|
485 |
|
|
}
|
486 |
|
|
|
487 |
|
|
if (best_new_reg == reg)
|
488 |
|
|
{
|
489 |
|
|
tick[reg] = ++this_tick;
|
490 |
|
|
if (dump_file)
|
491 |
|
|
fprintf (dump_file, "; no available better choice\n");
|
492 |
|
|
continue;
|
493 |
|
|
}
|
494 |
|
|
|
495 |
|
|
if (dump_file)
|
496 |
|
|
fprintf (dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
|
497 |
|
|
|
498 |
|
|
regrename_do_replace (this_head, best_new_reg);
|
499 |
|
|
tick[best_new_reg] = ++this_tick;
|
500 |
|
|
df_set_regs_ever_live (best_new_reg, true);
|
501 |
|
|
}
|
502 |
|
|
}
|
503 |
|
|
|
504 |
|
|
/* A structure to record information for each hard register at the start of
|
505 |
|
|
a basic block. */
|
506 |
|
|
struct incoming_reg_info {
|
507 |
|
|
/* Holds the number of registers used in the chain that gave us information
|
508 |
|
|
about this register. Zero means no information known yet, while a
|
509 |
|
|
negative value is used for something that is part of, but not the first
|
510 |
|
|
register in a multi-register value. */
|
511 |
|
|
int nregs;
|
512 |
|
|
/* Set to true if we have accesses that conflict in the number of registers
|
513 |
|
|
used. */
|
514 |
|
|
bool unusable;
|
515 |
|
|
};
|
516 |
|
|
|
517 |
|
|
/* A structure recording information about each basic block. It is saved
|
518 |
|
|
and restored around basic block boundaries.
|
519 |
|
|
A pointer to such a structure is stored in each basic block's aux field
|
520 |
|
|
during regrename_analyze, except for blocks we know can't be optimized
|
521 |
|
|
(such as entry and exit blocks). */
|
522 |
|
|
struct bb_rename_info
|
523 |
|
|
{
|
524 |
|
|
/* The basic block corresponding to this structure. */
|
525 |
|
|
basic_block bb;
|
526 |
|
|
/* Copies of the global information. */
|
527 |
|
|
bitmap_head open_chains_set;
|
528 |
|
|
bitmap_head incoming_open_chains_set;
|
529 |
|
|
struct incoming_reg_info incoming[FIRST_PSEUDO_REGISTER];
|
530 |
|
|
};
|
531 |
|
|
|
532 |
|
|
/* Initialize a rename_info structure P for basic block BB, which starts a new
|
533 |
|
|
scan. */
|
534 |
|
|
static void
|
535 |
|
|
init_rename_info (struct bb_rename_info *p, basic_block bb)
|
536 |
|
|
{
|
537 |
|
|
int i;
|
538 |
|
|
df_ref *def_rec;
|
539 |
|
|
HARD_REG_SET start_chains_set;
|
540 |
|
|
|
541 |
|
|
p->bb = bb;
|
542 |
|
|
bitmap_initialize (&p->open_chains_set, &bitmap_default_obstack);
|
543 |
|
|
bitmap_initialize (&p->incoming_open_chains_set, &bitmap_default_obstack);
|
544 |
|
|
|
545 |
|
|
open_chains = NULL;
|
546 |
|
|
bitmap_clear (&open_chains_set);
|
547 |
|
|
|
548 |
|
|
CLEAR_HARD_REG_SET (live_in_chains);
|
549 |
|
|
REG_SET_TO_HARD_REG_SET (live_hard_regs, df_get_live_in (bb));
|
550 |
|
|
for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
|
551 |
|
|
{
|
552 |
|
|
df_ref def = *def_rec;
|
553 |
|
|
if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
|
554 |
|
|
SET_HARD_REG_BIT (live_hard_regs, DF_REF_REGNO (def));
|
555 |
|
|
}
|
556 |
|
|
|
557 |
|
|
/* Open chains based on information from (at least one) predecessor
|
558 |
|
|
block. This gives us a chance later on to combine chains across
|
559 |
|
|
basic block boundaries. Inconsistencies (in access sizes) will
|
560 |
|
|
be caught normally and dealt with conservatively by disabling the
|
561 |
|
|
chain for renaming, and there is no risk of losing optimization
|
562 |
|
|
opportunities by opening chains either: if we did not open the
|
563 |
|
|
chains, we'd have to track the live register as a hard reg, and
|
564 |
|
|
we'd be unable to rename it in any case. */
|
565 |
|
|
CLEAR_HARD_REG_SET (start_chains_set);
|
566 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
567 |
|
|
{
|
568 |
|
|
struct incoming_reg_info *iri = p->incoming + i;
|
569 |
|
|
if (iri->nregs > 0 && !iri->unusable
|
570 |
|
|
&& range_in_hard_reg_set_p (live_hard_regs, i, iri->nregs))
|
571 |
|
|
{
|
572 |
|
|
SET_HARD_REG_BIT (start_chains_set, i);
|
573 |
|
|
remove_range_from_hard_reg_set (&live_hard_regs, i, iri->nregs);
|
574 |
|
|
}
|
575 |
|
|
}
|
576 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
577 |
|
|
{
|
578 |
|
|
struct incoming_reg_info *iri = p->incoming + i;
|
579 |
|
|
if (TEST_HARD_REG_BIT (start_chains_set, i))
|
580 |
|
|
{
|
581 |
|
|
du_head_p chain;
|
582 |
|
|
if (dump_file)
|
583 |
|
|
fprintf (dump_file, "opening incoming chain\n");
|
584 |
|
|
chain = create_new_chain (i, iri->nregs, NULL, NULL_RTX, NO_REGS);
|
585 |
|
|
bitmap_set_bit (&p->incoming_open_chains_set, chain->id);
|
586 |
|
|
}
|
587 |
|
|
}
|
588 |
|
|
}
|
589 |
|
|
|
590 |
|
|
/* Record in RI that the block corresponding to it has an incoming
|
591 |
|
|
live value, described by CHAIN. */
|
592 |
|
|
static void
|
593 |
|
|
set_incoming_from_chain (struct bb_rename_info *ri, du_head_p chain)
|
594 |
|
|
{
|
595 |
|
|
int i;
|
596 |
|
|
int incoming_nregs = ri->incoming[chain->regno].nregs;
|
597 |
|
|
int nregs;
|
598 |
|
|
|
599 |
|
|
/* If we've recorded the same information before, everything is fine. */
|
600 |
|
|
if (incoming_nregs == chain->nregs)
|
601 |
|
|
{
|
602 |
|
|
if (dump_file)
|
603 |
|
|
fprintf (dump_file, "reg %d/%d already recorded\n",
|
604 |
|
|
chain->regno, chain->nregs);
|
605 |
|
|
return;
|
606 |
|
|
}
|
607 |
|
|
|
608 |
|
|
/* If we have no information for any of the involved registers, update
|
609 |
|
|
the incoming array. */
|
610 |
|
|
nregs = chain->nregs;
|
611 |
|
|
while (nregs-- > 0)
|
612 |
|
|
if (ri->incoming[chain->regno + nregs].nregs != 0
|
613 |
|
|
|| ri->incoming[chain->regno + nregs].unusable)
|
614 |
|
|
break;
|
615 |
|
|
if (nregs < 0)
|
616 |
|
|
{
|
617 |
|
|
nregs = chain->nregs;
|
618 |
|
|
ri->incoming[chain->regno].nregs = nregs;
|
619 |
|
|
while (nregs-- > 1)
|
620 |
|
|
ri->incoming[chain->regno + nregs].nregs = -nregs;
|
621 |
|
|
if (dump_file)
|
622 |
|
|
fprintf (dump_file, "recorded reg %d/%d\n",
|
623 |
|
|
chain->regno, chain->nregs);
|
624 |
|
|
return;
|
625 |
|
|
}
|
626 |
|
|
|
627 |
|
|
/* There must be some kind of conflict. Prevent both the old and
|
628 |
|
|
new ranges from being used. */
|
629 |
|
|
if (incoming_nregs < 0)
|
630 |
|
|
ri->incoming[chain->regno + incoming_nregs].unusable = true;
|
631 |
|
|
for (i = 0; i < chain->nregs; i++)
|
632 |
|
|
ri->incoming[chain->regno + i].unusable = true;
|
633 |
|
|
}
|
634 |
|
|
|
635 |
|
|
/* Merge the two chains C1 and C2 so that all conflict information is
|
636 |
|
|
recorded and C1, and the id of C2 is changed to that of C1. */
|
637 |
|
|
static void
|
638 |
|
|
merge_chains (du_head_p c1, du_head_p c2)
|
639 |
|
|
{
|
640 |
|
|
if (c1 == c2)
|
641 |
|
|
return;
|
642 |
|
|
|
643 |
|
|
if (c2->first != NULL)
|
644 |
|
|
{
|
645 |
|
|
if (c1->first == NULL)
|
646 |
|
|
c1->first = c2->first;
|
647 |
|
|
else
|
648 |
|
|
c1->last->next_use = c2->first;
|
649 |
|
|
c1->last = c2->last;
|
650 |
|
|
}
|
651 |
|
|
|
652 |
|
|
c2->first = c2->last = NULL;
|
653 |
|
|
c2->id = c1->id;
|
654 |
|
|
|
655 |
|
|
IOR_HARD_REG_SET (c1->hard_conflicts, c2->hard_conflicts);
|
656 |
|
|
bitmap_ior_into (&c1->conflicts, &c2->conflicts);
|
657 |
|
|
|
658 |
|
|
c1->need_caller_save_reg |= c2->need_caller_save_reg;
|
659 |
|
|
c1->cannot_rename |= c2->cannot_rename;
|
660 |
|
|
}
|
661 |
|
|
|
662 |
|
|
/* Analyze the current function and build chains for renaming. */
|
663 |
|
|
|
664 |
|
|
void
|
665 |
|
|
regrename_analyze (bitmap bb_mask)
|
666 |
|
|
{
|
667 |
|
|
struct bb_rename_info *rename_info;
|
668 |
|
|
int i;
|
669 |
|
|
basic_block bb;
|
670 |
|
|
int n_bbs;
|
671 |
|
|
int *inverse_postorder;
|
672 |
|
|
|
673 |
|
|
inverse_postorder = XNEWVEC (int, last_basic_block);
|
674 |
|
|
n_bbs = pre_and_rev_post_order_compute (NULL, inverse_postorder, false);
|
675 |
|
|
|
676 |
|
|
/* Gather some information about the blocks in this function. */
|
677 |
|
|
rename_info = XCNEWVEC (struct bb_rename_info, n_basic_blocks);
|
678 |
|
|
i = 0;
|
679 |
|
|
FOR_EACH_BB (bb)
|
680 |
|
|
{
|
681 |
|
|
struct bb_rename_info *ri = rename_info + i;
|
682 |
|
|
ri->bb = bb;
|
683 |
|
|
if (bb_mask != NULL && !bitmap_bit_p (bb_mask, bb->index))
|
684 |
|
|
bb->aux = NULL;
|
685 |
|
|
else
|
686 |
|
|
bb->aux = ri;
|
687 |
|
|
i++;
|
688 |
|
|
}
|
689 |
|
|
|
690 |
|
|
current_id = 0;
|
691 |
|
|
id_to_chain = VEC_alloc (du_head_p, heap, 0);
|
692 |
|
|
bitmap_initialize (&open_chains_set, &bitmap_default_obstack);
|
693 |
|
|
|
694 |
|
|
/* The order in which we visit blocks ensures that whenever
|
695 |
|
|
possible, we only process a block after at least one of its
|
696 |
|
|
predecessors, which provides a "seeding" effect to make the logic
|
697 |
|
|
in set_incoming_from_chain and init_rename_info useful. */
|
698 |
|
|
|
699 |
|
|
for (i = 0; i < n_bbs; i++)
|
700 |
|
|
{
|
701 |
|
|
basic_block bb1 = BASIC_BLOCK (inverse_postorder[i]);
|
702 |
|
|
struct bb_rename_info *this_info;
|
703 |
|
|
bool success;
|
704 |
|
|
edge e;
|
705 |
|
|
edge_iterator ei;
|
706 |
|
|
int old_length = VEC_length (du_head_p, id_to_chain);
|
707 |
|
|
|
708 |
|
|
this_info = (struct bb_rename_info *) bb1->aux;
|
709 |
|
|
if (this_info == NULL)
|
710 |
|
|
continue;
|
711 |
|
|
|
712 |
|
|
if (dump_file)
|
713 |
|
|
fprintf (dump_file, "\nprocessing block %d:\n", bb1->index);
|
714 |
|
|
|
715 |
|
|
init_rename_info (this_info, bb1);
|
716 |
|
|
|
717 |
|
|
success = build_def_use (bb1);
|
718 |
|
|
if (!success)
|
719 |
|
|
{
|
720 |
|
|
if (dump_file)
|
721 |
|
|
fprintf (dump_file, "failed\n");
|
722 |
|
|
bb1->aux = NULL;
|
723 |
|
|
VEC_truncate (du_head_p, id_to_chain, old_length);
|
724 |
|
|
current_id = old_length;
|
725 |
|
|
bitmap_clear (&this_info->incoming_open_chains_set);
|
726 |
|
|
open_chains = NULL;
|
727 |
|
|
if (insn_rr != NULL)
|
728 |
|
|
{
|
729 |
|
|
rtx insn;
|
730 |
|
|
FOR_BB_INSNS (bb1, insn)
|
731 |
|
|
{
|
732 |
|
|
insn_rr_info *p = VEC_index (insn_rr_info, insn_rr,
|
733 |
|
|
INSN_UID (insn));
|
734 |
|
|
p->op_info = NULL;
|
735 |
|
|
}
|
736 |
|
|
}
|
737 |
|
|
continue;
|
738 |
|
|
}
|
739 |
|
|
|
740 |
|
|
if (dump_file)
|
741 |
|
|
dump_def_use_chain (old_length);
|
742 |
|
|
bitmap_copy (&this_info->open_chains_set, &open_chains_set);
|
743 |
|
|
|
744 |
|
|
/* Add successor blocks to the worklist if necessary, and record
|
745 |
|
|
data about our own open chains at the end of this block, which
|
746 |
|
|
will be used to pre-open chains when processing the successors. */
|
747 |
|
|
FOR_EACH_EDGE (e, ei, bb1->succs)
|
748 |
|
|
{
|
749 |
|
|
struct bb_rename_info *dest_ri;
|
750 |
|
|
struct du_head *chain;
|
751 |
|
|
|
752 |
|
|
if (dump_file)
|
753 |
|
|
fprintf (dump_file, "successor block %d\n", e->dest->index);
|
754 |
|
|
|
755 |
|
|
if (e->flags & (EDGE_EH | EDGE_ABNORMAL))
|
756 |
|
|
continue;
|
757 |
|
|
dest_ri = (struct bb_rename_info *)e->dest->aux;
|
758 |
|
|
if (dest_ri == NULL)
|
759 |
|
|
continue;
|
760 |
|
|
for (chain = open_chains; chain; chain = chain->next_chain)
|
761 |
|
|
set_incoming_from_chain (dest_ri, chain);
|
762 |
|
|
}
|
763 |
|
|
}
|
764 |
|
|
|
765 |
|
|
free (inverse_postorder);
|
766 |
|
|
|
767 |
|
|
/* Now, combine the chains data we have gathered across basic block
|
768 |
|
|
boundaries.
|
769 |
|
|
|
770 |
|
|
For every basic block, there may be chains open at the start, or at the
|
771 |
|
|
end. Rather than exclude them from renaming, we look for open chains
|
772 |
|
|
with matching registers at the other side of the CFG edge.
|
773 |
|
|
|
774 |
|
|
For a given chain using register R, open at the start of block B, we
|
775 |
|
|
must find an open chain using R on the other side of every edge leading
|
776 |
|
|
to B, if the register is live across this edge. In the code below,
|
777 |
|
|
N_PREDS_USED counts the number of edges where the register is live, and
|
778 |
|
|
N_PREDS_JOINED counts those where we found an appropriate chain for
|
779 |
|
|
joining.
|
780 |
|
|
|
781 |
|
|
We perform the analysis for both incoming and outgoing edges, but we
|
782 |
|
|
only need to merge once (in the second part, after verifying outgoing
|
783 |
|
|
edges). */
|
784 |
|
|
FOR_EACH_BB (bb)
|
785 |
|
|
{
|
786 |
|
|
struct bb_rename_info *bb_ri = (struct bb_rename_info *) bb->aux;
|
787 |
|
|
unsigned j;
|
788 |
|
|
bitmap_iterator bi;
|
789 |
|
|
|
790 |
|
|
if (bb_ri == NULL)
|
791 |
|
|
continue;
|
792 |
|
|
|
793 |
|
|
if (dump_file)
|
794 |
|
|
fprintf (dump_file, "processing bb %d in edges\n", bb->index);
|
795 |
|
|
|
796 |
|
|
EXECUTE_IF_SET_IN_BITMAP (&bb_ri->incoming_open_chains_set, 0, j, bi)
|
797 |
|
|
{
|
798 |
|
|
edge e;
|
799 |
|
|
edge_iterator ei;
|
800 |
|
|
struct du_head *chain = regrename_chain_from_id (j);
|
801 |
|
|
int n_preds_used = 0, n_preds_joined = 0;
|
802 |
|
|
|
803 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
804 |
|
|
{
|
805 |
|
|
struct bb_rename_info *src_ri;
|
806 |
|
|
unsigned k;
|
807 |
|
|
bitmap_iterator bi2;
|
808 |
|
|
HARD_REG_SET live;
|
809 |
|
|
bool success = false;
|
810 |
|
|
|
811 |
|
|
REG_SET_TO_HARD_REG_SET (live, df_get_live_out (e->src));
|
812 |
|
|
if (!range_overlaps_hard_reg_set_p (live, chain->regno,
|
813 |
|
|
chain->nregs))
|
814 |
|
|
continue;
|
815 |
|
|
n_preds_used++;
|
816 |
|
|
|
817 |
|
|
if (e->flags & (EDGE_EH | EDGE_ABNORMAL))
|
818 |
|
|
continue;
|
819 |
|
|
|
820 |
|
|
src_ri = (struct bb_rename_info *)e->src->aux;
|
821 |
|
|
if (src_ri == NULL)
|
822 |
|
|
continue;
|
823 |
|
|
|
824 |
|
|
EXECUTE_IF_SET_IN_BITMAP (&src_ri->open_chains_set,
|
825 |
|
|
0, k, bi2)
|
826 |
|
|
{
|
827 |
|
|
struct du_head *outgoing_chain = regrename_chain_from_id (k);
|
828 |
|
|
|
829 |
|
|
if (outgoing_chain->regno == chain->regno
|
830 |
|
|
&& outgoing_chain->nregs == chain->nregs)
|
831 |
|
|
{
|
832 |
|
|
n_preds_joined++;
|
833 |
|
|
success = true;
|
834 |
|
|
break;
|
835 |
|
|
}
|
836 |
|
|
}
|
837 |
|
|
if (!success && dump_file)
|
838 |
|
|
fprintf (dump_file, "failure to match with pred block %d\n",
|
839 |
|
|
e->src->index);
|
840 |
|
|
}
|
841 |
|
|
if (n_preds_joined < n_preds_used)
|
842 |
|
|
{
|
843 |
|
|
if (dump_file)
|
844 |
|
|
fprintf (dump_file, "cannot rename chain %d\n", j);
|
845 |
|
|
chain->cannot_rename = 1;
|
846 |
|
|
}
|
847 |
|
|
}
|
848 |
|
|
}
|
849 |
|
|
FOR_EACH_BB (bb)
|
850 |
|
|
{
|
851 |
|
|
struct bb_rename_info *bb_ri = (struct bb_rename_info *) bb->aux;
|
852 |
|
|
unsigned j;
|
853 |
|
|
bitmap_iterator bi;
|
854 |
|
|
|
855 |
|
|
if (bb_ri == NULL)
|
856 |
|
|
continue;
|
857 |
|
|
|
858 |
|
|
if (dump_file)
|
859 |
|
|
fprintf (dump_file, "processing bb %d out edges\n", bb->index);
|
860 |
|
|
|
861 |
|
|
EXECUTE_IF_SET_IN_BITMAP (&bb_ri->open_chains_set, 0, j, bi)
|
862 |
|
|
{
|
863 |
|
|
edge e;
|
864 |
|
|
edge_iterator ei;
|
865 |
|
|
struct du_head *chain = regrename_chain_from_id (j);
|
866 |
|
|
int n_succs_used = 0, n_succs_joined = 0;
|
867 |
|
|
|
868 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
869 |
|
|
{
|
870 |
|
|
bool printed = false;
|
871 |
|
|
struct bb_rename_info *dest_ri;
|
872 |
|
|
unsigned k;
|
873 |
|
|
bitmap_iterator bi2;
|
874 |
|
|
HARD_REG_SET live;
|
875 |
|
|
|
876 |
|
|
REG_SET_TO_HARD_REG_SET (live, df_get_live_in (e->dest));
|
877 |
|
|
if (!range_overlaps_hard_reg_set_p (live, chain->regno,
|
878 |
|
|
chain->nregs))
|
879 |
|
|
continue;
|
880 |
|
|
|
881 |
|
|
n_succs_used++;
|
882 |
|
|
|
883 |
|
|
dest_ri = (struct bb_rename_info *)e->dest->aux;
|
884 |
|
|
if (dest_ri == NULL)
|
885 |
|
|
continue;
|
886 |
|
|
|
887 |
|
|
EXECUTE_IF_SET_IN_BITMAP (&dest_ri->incoming_open_chains_set,
|
888 |
|
|
0, k, bi2)
|
889 |
|
|
{
|
890 |
|
|
struct du_head *incoming_chain = regrename_chain_from_id (k);
|
891 |
|
|
|
892 |
|
|
if (incoming_chain->regno == chain->regno
|
893 |
|
|
&& incoming_chain->nregs == chain->nregs)
|
894 |
|
|
{
|
895 |
|
|
if (dump_file)
|
896 |
|
|
{
|
897 |
|
|
if (!printed)
|
898 |
|
|
fprintf (dump_file,
|
899 |
|
|
"merging blocks for edge %d -> %d\n",
|
900 |
|
|
e->src->index, e->dest->index);
|
901 |
|
|
printed = true;
|
902 |
|
|
fprintf (dump_file,
|
903 |
|
|
" merging chains %d (->%d) and %d (->%d) [%s]\n",
|
904 |
|
|
k, incoming_chain->id, j, chain->id,
|
905 |
|
|
reg_names[incoming_chain->regno]);
|
906 |
|
|
}
|
907 |
|
|
|
908 |
|
|
merge_chains (chain, incoming_chain);
|
909 |
|
|
n_succs_joined++;
|
910 |
|
|
break;
|
911 |
|
|
}
|
912 |
|
|
}
|
913 |
|
|
}
|
914 |
|
|
if (n_succs_joined < n_succs_used)
|
915 |
|
|
{
|
916 |
|
|
if (dump_file)
|
917 |
|
|
fprintf (dump_file, "cannot rename chain %d\n",
|
918 |
|
|
j);
|
919 |
|
|
chain->cannot_rename = 1;
|
920 |
|
|
}
|
921 |
|
|
}
|
922 |
|
|
}
|
923 |
|
|
|
924 |
|
|
free (rename_info);
|
925 |
|
|
|
926 |
|
|
FOR_EACH_BB (bb)
|
927 |
|
|
bb->aux = NULL;
|
928 |
|
|
}
|
929 |
|
|
|
930 |
|
|
void
|
931 |
|
|
regrename_do_replace (struct du_head *head, int reg)
|
932 |
|
|
{
|
933 |
|
|
struct du_chain *chain;
|
934 |
|
|
unsigned int base_regno = head->regno;
|
935 |
|
|
enum machine_mode mode;
|
936 |
|
|
|
937 |
|
|
for (chain = head->first; chain; chain = chain->next_use)
|
938 |
|
|
{
|
939 |
|
|
unsigned int regno = ORIGINAL_REGNO (*chain->loc);
|
940 |
|
|
struct reg_attrs *attr = REG_ATTRS (*chain->loc);
|
941 |
|
|
int reg_ptr = REG_POINTER (*chain->loc);
|
942 |
|
|
|
943 |
|
|
if (DEBUG_INSN_P (chain->insn) && REGNO (*chain->loc) != base_regno)
|
944 |
|
|
INSN_VAR_LOCATION_LOC (chain->insn) = gen_rtx_UNKNOWN_VAR_LOC ();
|
945 |
|
|
else
|
946 |
|
|
{
|
947 |
|
|
*chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg);
|
948 |
|
|
if (regno >= FIRST_PSEUDO_REGISTER)
|
949 |
|
|
ORIGINAL_REGNO (*chain->loc) = regno;
|
950 |
|
|
REG_ATTRS (*chain->loc) = attr;
|
951 |
|
|
REG_POINTER (*chain->loc) = reg_ptr;
|
952 |
|
|
}
|
953 |
|
|
|
954 |
|
|
df_insn_rescan (chain->insn);
|
955 |
|
|
}
|
956 |
|
|
|
957 |
|
|
mode = GET_MODE (*head->first->loc);
|
958 |
|
|
head->regno = reg;
|
959 |
|
|
head->nregs = hard_regno_nregs[reg][mode];
|
960 |
|
|
}
|
961 |
|
|
|
962 |
|
|
|
963 |
|
|
/* True if we found a register with a size mismatch, which means that we
|
964 |
|
|
can't track its lifetime accurately. If so, we abort the current block
|
965 |
|
|
without renaming. */
|
966 |
|
|
static bool fail_current_block;
|
967 |
|
|
|
968 |
|
|
/* Return true if OP is a reg for which all bits are set in PSET, false
|
969 |
|
|
if all bits are clear.
|
970 |
|
|
In other cases, set fail_current_block and return false. */
|
971 |
|
|
|
972 |
|
|
static bool
|
973 |
|
|
verify_reg_in_set (rtx op, HARD_REG_SET *pset)
|
974 |
|
|
{
|
975 |
|
|
unsigned regno, nregs;
|
976 |
|
|
bool all_live, all_dead;
|
977 |
|
|
if (!REG_P (op))
|
978 |
|
|
return false;
|
979 |
|
|
|
980 |
|
|
regno = REGNO (op);
|
981 |
|
|
nregs = hard_regno_nregs[regno][GET_MODE (op)];
|
982 |
|
|
all_live = all_dead = true;
|
983 |
|
|
while (nregs-- > 0)
|
984 |
|
|
if (TEST_HARD_REG_BIT (*pset, regno + nregs))
|
985 |
|
|
all_dead = false;
|
986 |
|
|
else
|
987 |
|
|
all_live = false;
|
988 |
|
|
if (!all_dead && !all_live)
|
989 |
|
|
{
|
990 |
|
|
fail_current_block = true;
|
991 |
|
|
return false;
|
992 |
|
|
}
|
993 |
|
|
return all_live;
|
994 |
|
|
}
|
995 |
|
|
|
996 |
|
|
/* Return true if OP is a reg that is being tracked already in some form.
|
997 |
|
|
May set fail_current_block if it sees an unhandled case of overlap. */
|
998 |
|
|
|
999 |
|
|
static bool
|
1000 |
|
|
verify_reg_tracked (rtx op)
|
1001 |
|
|
{
|
1002 |
|
|
return (verify_reg_in_set (op, &live_hard_regs)
|
1003 |
|
|
|| verify_reg_in_set (op, &live_in_chains));
|
1004 |
|
|
}
|
1005 |
|
|
|
1006 |
|
|
/* Called through note_stores. DATA points to a rtx_code, either SET or
|
1007 |
|
|
CLOBBER, which tells us which kind of rtx to look at. If we have a
|
1008 |
|
|
match, record the set register in live_hard_regs and in the hard_conflicts
|
1009 |
|
|
bitmap of open chains. */
|
1010 |
|
|
|
1011 |
|
|
static void
|
1012 |
|
|
note_sets_clobbers (rtx x, const_rtx set, void *data)
|
1013 |
|
|
{
|
1014 |
|
|
enum rtx_code code = *(enum rtx_code *)data;
|
1015 |
|
|
struct du_head *chain;
|
1016 |
|
|
|
1017 |
|
|
if (GET_CODE (x) == SUBREG)
|
1018 |
|
|
x = SUBREG_REG (x);
|
1019 |
|
|
if (!REG_P (x) || GET_CODE (set) != code)
|
1020 |
|
|
return;
|
1021 |
|
|
/* There must not be pseudos at this point. */
|
1022 |
|
|
gcc_assert (HARD_REGISTER_P (x));
|
1023 |
|
|
add_to_hard_reg_set (&live_hard_regs, GET_MODE (x), REGNO (x));
|
1024 |
|
|
for (chain = open_chains; chain; chain = chain->next_chain)
|
1025 |
|
|
add_to_hard_reg_set (&chain->hard_conflicts, GET_MODE (x), REGNO (x));
|
1026 |
|
|
}
|
1027 |
|
|
|
1028 |
|
|
static void
|
1029 |
|
|
scan_rtx_reg (rtx insn, rtx *loc, enum reg_class cl, enum scan_actions action,
|
1030 |
|
|
enum op_type type)
|
1031 |
|
|
{
|
1032 |
|
|
struct du_head **p;
|
1033 |
|
|
rtx x = *loc;
|
1034 |
|
|
enum machine_mode mode = GET_MODE (x);
|
1035 |
|
|
unsigned this_regno = REGNO (x);
|
1036 |
|
|
int this_nregs = hard_regno_nregs[this_regno][mode];
|
1037 |
|
|
|
1038 |
|
|
if (action == mark_write)
|
1039 |
|
|
{
|
1040 |
|
|
if (type == OP_OUT)
|
1041 |
|
|
create_new_chain (this_regno, this_nregs, loc, insn, cl);
|
1042 |
|
|
return;
|
1043 |
|
|
}
|
1044 |
|
|
|
1045 |
|
|
if ((type == OP_OUT) != (action == terminate_write || action == mark_access))
|
1046 |
|
|
return;
|
1047 |
|
|
|
1048 |
|
|
for (p = &open_chains; *p;)
|
1049 |
|
|
{
|
1050 |
|
|
struct du_head *head = *p;
|
1051 |
|
|
struct du_head *next = head->next_chain;
|
1052 |
|
|
int exact_match = (head->regno == this_regno
|
1053 |
|
|
&& head->nregs == this_nregs);
|
1054 |
|
|
int superset = (this_regno <= head->regno
|
1055 |
|
|
&& this_regno + this_nregs >= head->regno + head->nregs);
|
1056 |
|
|
int subset = (this_regno >= head->regno
|
1057 |
|
|
&& this_regno + this_nregs <= head->regno + head->nregs);
|
1058 |
|
|
|
1059 |
|
|
if (!bitmap_bit_p (&open_chains_set, head->id)
|
1060 |
|
|
|| head->regno + head->nregs <= this_regno
|
1061 |
|
|
|| this_regno + this_nregs <= head->regno)
|
1062 |
|
|
{
|
1063 |
|
|
p = &head->next_chain;
|
1064 |
|
|
continue;
|
1065 |
|
|
}
|
1066 |
|
|
|
1067 |
|
|
if (action == mark_read || action == mark_access)
|
1068 |
|
|
{
|
1069 |
|
|
/* ??? Class NO_REGS can happen if the md file makes use of
|
1070 |
|
|
EXTRA_CONSTRAINTS to match registers. Which is arguably
|
1071 |
|
|
wrong, but there we are. */
|
1072 |
|
|
|
1073 |
|
|
if (cl == NO_REGS || (!exact_match && !DEBUG_INSN_P (insn)))
|
1074 |
|
|
{
|
1075 |
|
|
if (dump_file)
|
1076 |
|
|
fprintf (dump_file,
|
1077 |
|
|
"Cannot rename chain %s (%d) at insn %d (%s)\n",
|
1078 |
|
|
reg_names[head->regno], head->id, INSN_UID (insn),
|
1079 |
|
|
scan_actions_name[(int) action]);
|
1080 |
|
|
head->cannot_rename = 1;
|
1081 |
|
|
if (superset)
|
1082 |
|
|
{
|
1083 |
|
|
unsigned nregs = this_nregs;
|
1084 |
|
|
head->regno = this_regno;
|
1085 |
|
|
head->nregs = this_nregs;
|
1086 |
|
|
while (nregs-- > 0)
|
1087 |
|
|
SET_HARD_REG_BIT (live_in_chains, head->regno + nregs);
|
1088 |
|
|
if (dump_file)
|
1089 |
|
|
fprintf (dump_file,
|
1090 |
|
|
"Widening register in chain %s (%d) at insn %d\n",
|
1091 |
|
|
reg_names[head->regno], head->id, INSN_UID (insn));
|
1092 |
|
|
}
|
1093 |
|
|
else if (!subset)
|
1094 |
|
|
{
|
1095 |
|
|
fail_current_block = true;
|
1096 |
|
|
if (dump_file)
|
1097 |
|
|
fprintf (dump_file,
|
1098 |
|
|
"Failing basic block due to unhandled overlap\n");
|
1099 |
|
|
}
|
1100 |
|
|
}
|
1101 |
|
|
else
|
1102 |
|
|
{
|
1103 |
|
|
struct du_chain *this_du;
|
1104 |
|
|
this_du = XOBNEW (&rename_obstack, struct du_chain);
|
1105 |
|
|
this_du->next_use = 0;
|
1106 |
|
|
this_du->loc = loc;
|
1107 |
|
|
this_du->insn = insn;
|
1108 |
|
|
this_du->cl = cl;
|
1109 |
|
|
if (head->first == NULL)
|
1110 |
|
|
head->first = this_du;
|
1111 |
|
|
else
|
1112 |
|
|
head->last->next_use = this_du;
|
1113 |
|
|
record_operand_use (head, this_du);
|
1114 |
|
|
head->last = this_du;
|
1115 |
|
|
}
|
1116 |
|
|
/* Avoid adding the same location in a DEBUG_INSN multiple times,
|
1117 |
|
|
which could happen with non-exact overlap. */
|
1118 |
|
|
if (DEBUG_INSN_P (insn))
|
1119 |
|
|
return;
|
1120 |
|
|
/* Otherwise, find any other chains that do not match exactly;
|
1121 |
|
|
ensure they all get marked unrenamable. */
|
1122 |
|
|
p = &head->next_chain;
|
1123 |
|
|
continue;
|
1124 |
|
|
}
|
1125 |
|
|
|
1126 |
|
|
/* Whether the terminated chain can be used for renaming
|
1127 |
|
|
depends on the action and this being an exact match.
|
1128 |
|
|
In either case, we remove this element from open_chains. */
|
1129 |
|
|
|
1130 |
|
|
if ((action == terminate_dead || action == terminate_write)
|
1131 |
|
|
&& (superset || subset))
|
1132 |
|
|
{
|
1133 |
|
|
unsigned nregs;
|
1134 |
|
|
|
1135 |
|
|
if (subset && !superset)
|
1136 |
|
|
head->cannot_rename = 1;
|
1137 |
|
|
bitmap_clear_bit (&open_chains_set, head->id);
|
1138 |
|
|
|
1139 |
|
|
nregs = head->nregs;
|
1140 |
|
|
while (nregs-- > 0)
|
1141 |
|
|
{
|
1142 |
|
|
CLEAR_HARD_REG_BIT (live_in_chains, head->regno + nregs);
|
1143 |
|
|
if (subset && !superset
|
1144 |
|
|
&& (head->regno + nregs < this_regno
|
1145 |
|
|
|| head->regno + nregs >= this_regno + this_nregs))
|
1146 |
|
|
SET_HARD_REG_BIT (live_hard_regs, head->regno + nregs);
|
1147 |
|
|
}
|
1148 |
|
|
|
1149 |
|
|
*p = next;
|
1150 |
|
|
if (dump_file)
|
1151 |
|
|
fprintf (dump_file,
|
1152 |
|
|
"Closing chain %s (%d) at insn %d (%s%s)\n",
|
1153 |
|
|
reg_names[head->regno], head->id, INSN_UID (insn),
|
1154 |
|
|
scan_actions_name[(int) action],
|
1155 |
|
|
superset ? ", superset" : subset ? ", subset" : "");
|
1156 |
|
|
}
|
1157 |
|
|
else if (action == terminate_dead || action == terminate_write)
|
1158 |
|
|
{
|
1159 |
|
|
/* In this case, tracking liveness gets too hard. Fail the
|
1160 |
|
|
entire basic block. */
|
1161 |
|
|
if (dump_file)
|
1162 |
|
|
fprintf (dump_file,
|
1163 |
|
|
"Failing basic block due to unhandled overlap\n");
|
1164 |
|
|
fail_current_block = true;
|
1165 |
|
|
return;
|
1166 |
|
|
}
|
1167 |
|
|
else
|
1168 |
|
|
{
|
1169 |
|
|
head->cannot_rename = 1;
|
1170 |
|
|
if (dump_file)
|
1171 |
|
|
fprintf (dump_file,
|
1172 |
|
|
"Cannot rename chain %s (%d) at insn %d (%s)\n",
|
1173 |
|
|
reg_names[head->regno], head->id, INSN_UID (insn),
|
1174 |
|
|
scan_actions_name[(int) action]);
|
1175 |
|
|
p = &head->next_chain;
|
1176 |
|
|
}
|
1177 |
|
|
}
|
1178 |
|
|
}
|
1179 |
|
|
|
1180 |
|
|
/* Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
|
1181 |
|
|
BASE_REG_CLASS depending on how the register is being considered. */
|
1182 |
|
|
|
1183 |
|
|
static void
|
1184 |
|
|
scan_rtx_address (rtx insn, rtx *loc, enum reg_class cl,
|
1185 |
|
|
enum scan_actions action, enum machine_mode mode,
|
1186 |
|
|
addr_space_t as)
|
1187 |
|
|
{
|
1188 |
|
|
rtx x = *loc;
|
1189 |
|
|
RTX_CODE code = GET_CODE (x);
|
1190 |
|
|
const char *fmt;
|
1191 |
|
|
int i, j;
|
1192 |
|
|
|
1193 |
|
|
if (action == mark_write || action == mark_access)
|
1194 |
|
|
return;
|
1195 |
|
|
|
1196 |
|
|
switch (code)
|
1197 |
|
|
{
|
1198 |
|
|
case PLUS:
|
1199 |
|
|
{
|
1200 |
|
|
rtx orig_op0 = XEXP (x, 0);
|
1201 |
|
|
rtx orig_op1 = XEXP (x, 1);
|
1202 |
|
|
RTX_CODE code0 = GET_CODE (orig_op0);
|
1203 |
|
|
RTX_CODE code1 = GET_CODE (orig_op1);
|
1204 |
|
|
rtx op0 = orig_op0;
|
1205 |
|
|
rtx op1 = orig_op1;
|
1206 |
|
|
rtx *locI = NULL;
|
1207 |
|
|
rtx *locB = NULL;
|
1208 |
|
|
enum rtx_code index_code = SCRATCH;
|
1209 |
|
|
|
1210 |
|
|
if (GET_CODE (op0) == SUBREG)
|
1211 |
|
|
{
|
1212 |
|
|
op0 = SUBREG_REG (op0);
|
1213 |
|
|
code0 = GET_CODE (op0);
|
1214 |
|
|
}
|
1215 |
|
|
|
1216 |
|
|
if (GET_CODE (op1) == SUBREG)
|
1217 |
|
|
{
|
1218 |
|
|
op1 = SUBREG_REG (op1);
|
1219 |
|
|
code1 = GET_CODE (op1);
|
1220 |
|
|
}
|
1221 |
|
|
|
1222 |
|
|
if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
|
1223 |
|
|
|| code0 == ZERO_EXTEND || code1 == MEM)
|
1224 |
|
|
{
|
1225 |
|
|
locI = &XEXP (x, 0);
|
1226 |
|
|
locB = &XEXP (x, 1);
|
1227 |
|
|
index_code = GET_CODE (*locI);
|
1228 |
|
|
}
|
1229 |
|
|
else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
|
1230 |
|
|
|| code1 == ZERO_EXTEND || code0 == MEM)
|
1231 |
|
|
{
|
1232 |
|
|
locI = &XEXP (x, 1);
|
1233 |
|
|
locB = &XEXP (x, 0);
|
1234 |
|
|
index_code = GET_CODE (*locI);
|
1235 |
|
|
}
|
1236 |
|
|
else if (code0 == CONST_INT || code0 == CONST
|
1237 |
|
|
|| code0 == SYMBOL_REF || code0 == LABEL_REF)
|
1238 |
|
|
{
|
1239 |
|
|
locB = &XEXP (x, 1);
|
1240 |
|
|
index_code = GET_CODE (XEXP (x, 0));
|
1241 |
|
|
}
|
1242 |
|
|
else if (code1 == CONST_INT || code1 == CONST
|
1243 |
|
|
|| code1 == SYMBOL_REF || code1 == LABEL_REF)
|
1244 |
|
|
{
|
1245 |
|
|
locB = &XEXP (x, 0);
|
1246 |
|
|
index_code = GET_CODE (XEXP (x, 1));
|
1247 |
|
|
}
|
1248 |
|
|
else if (code0 == REG && code1 == REG)
|
1249 |
|
|
{
|
1250 |
|
|
int index_op;
|
1251 |
|
|
unsigned regno0 = REGNO (op0), regno1 = REGNO (op1);
|
1252 |
|
|
|
1253 |
|
|
if (REGNO_OK_FOR_INDEX_P (regno1)
|
1254 |
|
|
&& regno_ok_for_base_p (regno0, mode, as, PLUS, REG))
|
1255 |
|
|
index_op = 1;
|
1256 |
|
|
else if (REGNO_OK_FOR_INDEX_P (regno0)
|
1257 |
|
|
&& regno_ok_for_base_p (regno1, mode, as, PLUS, REG))
|
1258 |
|
|
index_op = 0;
|
1259 |
|
|
else if (regno_ok_for_base_p (regno0, mode, as, PLUS, REG)
|
1260 |
|
|
|| REGNO_OK_FOR_INDEX_P (regno1))
|
1261 |
|
|
index_op = 1;
|
1262 |
|
|
else if (regno_ok_for_base_p (regno1, mode, as, PLUS, REG))
|
1263 |
|
|
index_op = 0;
|
1264 |
|
|
else
|
1265 |
|
|
index_op = 1;
|
1266 |
|
|
|
1267 |
|
|
locI = &XEXP (x, index_op);
|
1268 |
|
|
locB = &XEXP (x, !index_op);
|
1269 |
|
|
index_code = GET_CODE (*locI);
|
1270 |
|
|
}
|
1271 |
|
|
else if (code0 == REG)
|
1272 |
|
|
{
|
1273 |
|
|
locI = &XEXP (x, 0);
|
1274 |
|
|
locB = &XEXP (x, 1);
|
1275 |
|
|
index_code = GET_CODE (*locI);
|
1276 |
|
|
}
|
1277 |
|
|
else if (code1 == REG)
|
1278 |
|
|
{
|
1279 |
|
|
locI = &XEXP (x, 1);
|
1280 |
|
|
locB = &XEXP (x, 0);
|
1281 |
|
|
index_code = GET_CODE (*locI);
|
1282 |
|
|
}
|
1283 |
|
|
|
1284 |
|
|
if (locI)
|
1285 |
|
|
scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode, as);
|
1286 |
|
|
if (locB)
|
1287 |
|
|
scan_rtx_address (insn, locB,
|
1288 |
|
|
base_reg_class (mode, as, PLUS, index_code),
|
1289 |
|
|
action, mode, as);
|
1290 |
|
|
|
1291 |
|
|
return;
|
1292 |
|
|
}
|
1293 |
|
|
|
1294 |
|
|
case POST_INC:
|
1295 |
|
|
case POST_DEC:
|
1296 |
|
|
case POST_MODIFY:
|
1297 |
|
|
case PRE_INC:
|
1298 |
|
|
case PRE_DEC:
|
1299 |
|
|
case PRE_MODIFY:
|
1300 |
|
|
#ifndef AUTO_INC_DEC
|
1301 |
|
|
/* If the target doesn't claim to handle autoinc, this must be
|
1302 |
|
|
something special, like a stack push. Kill this chain. */
|
1303 |
|
|
action = mark_all_read;
|
1304 |
|
|
#endif
|
1305 |
|
|
break;
|
1306 |
|
|
|
1307 |
|
|
case MEM:
|
1308 |
|
|
scan_rtx_address (insn, &XEXP (x, 0),
|
1309 |
|
|
base_reg_class (GET_MODE (x), MEM_ADDR_SPACE (x),
|
1310 |
|
|
MEM, SCRATCH),
|
1311 |
|
|
action, GET_MODE (x), MEM_ADDR_SPACE (x));
|
1312 |
|
|
return;
|
1313 |
|
|
|
1314 |
|
|
case REG:
|
1315 |
|
|
scan_rtx_reg (insn, loc, cl, action, OP_IN);
|
1316 |
|
|
return;
|
1317 |
|
|
|
1318 |
|
|
default:
|
1319 |
|
|
break;
|
1320 |
|
|
}
|
1321 |
|
|
|
1322 |
|
|
fmt = GET_RTX_FORMAT (code);
|
1323 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
1324 |
|
|
{
|
1325 |
|
|
if (fmt[i] == 'e')
|
1326 |
|
|
scan_rtx_address (insn, &XEXP (x, i), cl, action, mode, as);
|
1327 |
|
|
else if (fmt[i] == 'E')
|
1328 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
1329 |
|
|
scan_rtx_address (insn, &XVECEXP (x, i, j), cl, action, mode, as);
|
1330 |
|
|
}
|
1331 |
|
|
}
|
1332 |
|
|
|
1333 |
|
|
static void
|
1334 |
|
|
scan_rtx (rtx insn, rtx *loc, enum reg_class cl, enum scan_actions action,
|
1335 |
|
|
enum op_type type)
|
1336 |
|
|
{
|
1337 |
|
|
const char *fmt;
|
1338 |
|
|
rtx x = *loc;
|
1339 |
|
|
enum rtx_code code = GET_CODE (x);
|
1340 |
|
|
int i, j;
|
1341 |
|
|
|
1342 |
|
|
code = GET_CODE (x);
|
1343 |
|
|
switch (code)
|
1344 |
|
|
{
|
1345 |
|
|
case CONST:
|
1346 |
|
|
case CONST_INT:
|
1347 |
|
|
case CONST_DOUBLE:
|
1348 |
|
|
case CONST_FIXED:
|
1349 |
|
|
case CONST_VECTOR:
|
1350 |
|
|
case SYMBOL_REF:
|
1351 |
|
|
case LABEL_REF:
|
1352 |
|
|
case CC0:
|
1353 |
|
|
case PC:
|
1354 |
|
|
return;
|
1355 |
|
|
|
1356 |
|
|
case REG:
|
1357 |
|
|
scan_rtx_reg (insn, loc, cl, action, type);
|
1358 |
|
|
return;
|
1359 |
|
|
|
1360 |
|
|
case MEM:
|
1361 |
|
|
scan_rtx_address (insn, &XEXP (x, 0),
|
1362 |
|
|
base_reg_class (GET_MODE (x), MEM_ADDR_SPACE (x),
|
1363 |
|
|
MEM, SCRATCH),
|
1364 |
|
|
action, GET_MODE (x), MEM_ADDR_SPACE (x));
|
1365 |
|
|
return;
|
1366 |
|
|
|
1367 |
|
|
case SET:
|
1368 |
|
|
scan_rtx (insn, &SET_SRC (x), cl, action, OP_IN);
|
1369 |
|
|
scan_rtx (insn, &SET_DEST (x), cl, action,
|
1370 |
|
|
(GET_CODE (PATTERN (insn)) == COND_EXEC
|
1371 |
|
|
&& verify_reg_tracked (SET_DEST (x))) ? OP_INOUT : OP_OUT);
|
1372 |
|
|
return;
|
1373 |
|
|
|
1374 |
|
|
case STRICT_LOW_PART:
|
1375 |
|
|
scan_rtx (insn, &XEXP (x, 0), cl, action,
|
1376 |
|
|
verify_reg_tracked (XEXP (x, 0)) ? OP_INOUT : OP_OUT);
|
1377 |
|
|
return;
|
1378 |
|
|
|
1379 |
|
|
case ZERO_EXTRACT:
|
1380 |
|
|
case SIGN_EXTRACT:
|
1381 |
|
|
scan_rtx (insn, &XEXP (x, 0), cl, action,
|
1382 |
|
|
(type == OP_IN ? OP_IN :
|
1383 |
|
|
verify_reg_tracked (XEXP (x, 0)) ? OP_INOUT : OP_OUT));
|
1384 |
|
|
scan_rtx (insn, &XEXP (x, 1), cl, action, OP_IN);
|
1385 |
|
|
scan_rtx (insn, &XEXP (x, 2), cl, action, OP_IN);
|
1386 |
|
|
return;
|
1387 |
|
|
|
1388 |
|
|
case POST_INC:
|
1389 |
|
|
case PRE_INC:
|
1390 |
|
|
case POST_DEC:
|
1391 |
|
|
case PRE_DEC:
|
1392 |
|
|
case POST_MODIFY:
|
1393 |
|
|
case PRE_MODIFY:
|
1394 |
|
|
/* Should only happen inside MEM. */
|
1395 |
|
|
gcc_unreachable ();
|
1396 |
|
|
|
1397 |
|
|
case CLOBBER:
|
1398 |
|
|
scan_rtx (insn, &SET_DEST (x), cl, action,
|
1399 |
|
|
(GET_CODE (PATTERN (insn)) == COND_EXEC
|
1400 |
|
|
&& verify_reg_tracked (SET_DEST (x))) ? OP_INOUT : OP_OUT);
|
1401 |
|
|
return;
|
1402 |
|
|
|
1403 |
|
|
case EXPR_LIST:
|
1404 |
|
|
scan_rtx (insn, &XEXP (x, 0), cl, action, type);
|
1405 |
|
|
if (XEXP (x, 1))
|
1406 |
|
|
scan_rtx (insn, &XEXP (x, 1), cl, action, type);
|
1407 |
|
|
return;
|
1408 |
|
|
|
1409 |
|
|
default:
|
1410 |
|
|
break;
|
1411 |
|
|
}
|
1412 |
|
|
|
1413 |
|
|
fmt = GET_RTX_FORMAT (code);
|
1414 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
1415 |
|
|
{
|
1416 |
|
|
if (fmt[i] == 'e')
|
1417 |
|
|
scan_rtx (insn, &XEXP (x, i), cl, action, type);
|
1418 |
|
|
else if (fmt[i] == 'E')
|
1419 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
1420 |
|
|
scan_rtx (insn, &XVECEXP (x, i, j), cl, action, type);
|
1421 |
|
|
}
|
1422 |
|
|
}
|
1423 |
|
|
|
1424 |
|
|
/* Hide operands of the current insn (of which there are N_OPS) by
|
1425 |
|
|
substituting cc0 for them.
|
1426 |
|
|
Previous values are stored in the OLD_OPERANDS and OLD_DUPS.
|
1427 |
|
|
For every bit set in DO_NOT_HIDE, we leave the operand alone.
|
1428 |
|
|
If INOUT_AND_EC_ONLY is set, we only do this for OP_INOUT type operands
|
1429 |
|
|
and earlyclobbers. */
|
1430 |
|
|
|
1431 |
|
|
static void
|
1432 |
|
|
hide_operands (int n_ops, rtx *old_operands, rtx *old_dups,
|
1433 |
|
|
unsigned HOST_WIDE_INT do_not_hide, bool inout_and_ec_only)
|
1434 |
|
|
{
|
1435 |
|
|
int i;
|
1436 |
|
|
int alt = which_alternative;
|
1437 |
|
|
for (i = 0; i < n_ops; i++)
|
1438 |
|
|
{
|
1439 |
|
|
old_operands[i] = recog_data.operand[i];
|
1440 |
|
|
/* Don't squash match_operator or match_parallel here, since
|
1441 |
|
|
we don't know that all of the contained registers are
|
1442 |
|
|
reachable by proper operands. */
|
1443 |
|
|
if (recog_data.constraints[i][0] == '\0')
|
1444 |
|
|
continue;
|
1445 |
|
|
if (do_not_hide & (1 << i))
|
1446 |
|
|
continue;
|
1447 |
|
|
if (!inout_and_ec_only || recog_data.operand_type[i] == OP_INOUT
|
1448 |
|
|
|| recog_op_alt[i][alt].earlyclobber)
|
1449 |
|
|
*recog_data.operand_loc[i] = cc0_rtx;
|
1450 |
|
|
}
|
1451 |
|
|
for (i = 0; i < recog_data.n_dups; i++)
|
1452 |
|
|
{
|
1453 |
|
|
int opn = recog_data.dup_num[i];
|
1454 |
|
|
old_dups[i] = *recog_data.dup_loc[i];
|
1455 |
|
|
if (do_not_hide & (1 << opn))
|
1456 |
|
|
continue;
|
1457 |
|
|
if (!inout_and_ec_only || recog_data.operand_type[opn] == OP_INOUT
|
1458 |
|
|
|| recog_op_alt[opn][alt].earlyclobber)
|
1459 |
|
|
*recog_data.dup_loc[i] = cc0_rtx;
|
1460 |
|
|
}
|
1461 |
|
|
}
|
1462 |
|
|
|
1463 |
|
|
/* Undo the substitution performed by hide_operands. INSN is the insn we
|
1464 |
|
|
are processing; the arguments are the same as in hide_operands. */
|
1465 |
|
|
|
1466 |
|
|
static void
|
1467 |
|
|
restore_operands (rtx insn, int n_ops, rtx *old_operands, rtx *old_dups)
|
1468 |
|
|
{
|
1469 |
|
|
int i;
|
1470 |
|
|
for (i = 0; i < recog_data.n_dups; i++)
|
1471 |
|
|
*recog_data.dup_loc[i] = old_dups[i];
|
1472 |
|
|
for (i = 0; i < n_ops; i++)
|
1473 |
|
|
*recog_data.operand_loc[i] = old_operands[i];
|
1474 |
|
|
if (recog_data.n_dups)
|
1475 |
|
|
df_insn_rescan (insn);
|
1476 |
|
|
}
|
1477 |
|
|
|
1478 |
|
|
/* For each output operand of INSN, call scan_rtx to create a new
|
1479 |
|
|
open chain. Do this only for normal or earlyclobber outputs,
|
1480 |
|
|
depending on EARLYCLOBBER. If INSN_INFO is nonnull, use it to
|
1481 |
|
|
record information about the operands in the insn. */
|
1482 |
|
|
|
1483 |
|
|
static void
|
1484 |
|
|
record_out_operands (rtx insn, bool earlyclobber, insn_rr_info *insn_info)
|
1485 |
|
|
{
|
1486 |
|
|
int n_ops = recog_data.n_operands;
|
1487 |
|
|
int alt = which_alternative;
|
1488 |
|
|
|
1489 |
|
|
int i;
|
1490 |
|
|
|
1491 |
|
|
for (i = 0; i < n_ops + recog_data.n_dups; i++)
|
1492 |
|
|
{
|
1493 |
|
|
int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
|
1494 |
|
|
rtx *loc = (i < n_ops
|
1495 |
|
|
? recog_data.operand_loc[opn]
|
1496 |
|
|
: recog_data.dup_loc[i - n_ops]);
|
1497 |
|
|
rtx op = *loc;
|
1498 |
|
|
enum reg_class cl = recog_op_alt[opn][alt].cl;
|
1499 |
|
|
|
1500 |
|
|
struct du_head *prev_open;
|
1501 |
|
|
|
1502 |
|
|
if (recog_data.operand_type[opn] != OP_OUT
|
1503 |
|
|
|| recog_op_alt[opn][alt].earlyclobber != earlyclobber)
|
1504 |
|
|
continue;
|
1505 |
|
|
|
1506 |
|
|
if (insn_info)
|
1507 |
|
|
cur_operand = insn_info->op_info + i;
|
1508 |
|
|
|
1509 |
|
|
prev_open = open_chains;
|
1510 |
|
|
scan_rtx (insn, loc, cl, mark_write, OP_OUT);
|
1511 |
|
|
|
1512 |
|
|
/* ??? Many targets have output constraints on the SET_DEST
|
1513 |
|
|
of a call insn, which is stupid, since these are certainly
|
1514 |
|
|
ABI defined hard registers. For these, and for asm operands
|
1515 |
|
|
that originally referenced hard registers, we must record that
|
1516 |
|
|
the chain cannot be renamed. */
|
1517 |
|
|
if (CALL_P (insn)
|
1518 |
|
|
|| (asm_noperands (PATTERN (insn)) > 0
|
1519 |
|
|
&& REG_P (op)
|
1520 |
|
|
&& REGNO (op) == ORIGINAL_REGNO (op)))
|
1521 |
|
|
{
|
1522 |
|
|
if (prev_open != open_chains)
|
1523 |
|
|
open_chains->cannot_rename = 1;
|
1524 |
|
|
}
|
1525 |
|
|
}
|
1526 |
|
|
cur_operand = NULL;
|
1527 |
|
|
}
|
1528 |
|
|
|
1529 |
|
|
/* Build def/use chain. */
|
1530 |
|
|
|
1531 |
|
|
static bool
|
1532 |
|
|
build_def_use (basic_block bb)
|
1533 |
|
|
{
|
1534 |
|
|
rtx insn;
|
1535 |
|
|
unsigned HOST_WIDE_INT untracked_operands;
|
1536 |
|
|
|
1537 |
|
|
fail_current_block = false;
|
1538 |
|
|
|
1539 |
|
|
for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
|
1540 |
|
|
{
|
1541 |
|
|
if (NONDEBUG_INSN_P (insn))
|
1542 |
|
|
{
|
1543 |
|
|
int n_ops;
|
1544 |
|
|
rtx note;
|
1545 |
|
|
rtx old_operands[MAX_RECOG_OPERANDS];
|
1546 |
|
|
rtx old_dups[MAX_DUP_OPERANDS];
|
1547 |
|
|
int i;
|
1548 |
|
|
int alt;
|
1549 |
|
|
int predicated;
|
1550 |
|
|
enum rtx_code set_code = SET;
|
1551 |
|
|
enum rtx_code clobber_code = CLOBBER;
|
1552 |
|
|
insn_rr_info *insn_info = NULL;
|
1553 |
|
|
|
1554 |
|
|
/* Process the insn, determining its effect on the def-use
|
1555 |
|
|
chains and live hard registers. We perform the following
|
1556 |
|
|
steps with the register references in the insn, simulating
|
1557 |
|
|
its effect:
|
1558 |
|
|
(1) Deal with earlyclobber operands and CLOBBERs of non-operands
|
1559 |
|
|
by creating chains and marking hard regs live.
|
1560 |
|
|
(2) Any read outside an operand causes any chain it overlaps
|
1561 |
|
|
with to be marked unrenamable.
|
1562 |
|
|
(3) Any read inside an operand is added if there's already
|
1563 |
|
|
an open chain for it.
|
1564 |
|
|
(4) For any REG_DEAD note we find, close open chains that
|
1565 |
|
|
overlap it.
|
1566 |
|
|
(5) For any non-earlyclobber write we find, close open chains
|
1567 |
|
|
that overlap it.
|
1568 |
|
|
(6) For any non-earlyclobber write we find in an operand, make
|
1569 |
|
|
a new chain or mark the hard register as live.
|
1570 |
|
|
(7) For any REG_UNUSED, close any chains we just opened.
|
1571 |
|
|
|
1572 |
|
|
We cannot deal with situations where we track a reg in one mode
|
1573 |
|
|
and see a reference in another mode; these will cause the chain
|
1574 |
|
|
to be marked unrenamable or even cause us to abort the entire
|
1575 |
|
|
basic block. */
|
1576 |
|
|
|
1577 |
|
|
extract_insn (insn);
|
1578 |
|
|
if (! constrain_operands (1))
|
1579 |
|
|
fatal_insn_not_found (insn);
|
1580 |
|
|
preprocess_constraints ();
|
1581 |
|
|
alt = which_alternative;
|
1582 |
|
|
n_ops = recog_data.n_operands;
|
1583 |
|
|
untracked_operands = 0;
|
1584 |
|
|
|
1585 |
|
|
if (insn_rr != NULL)
|
1586 |
|
|
{
|
1587 |
|
|
insn_info = VEC_index (insn_rr_info, insn_rr, INSN_UID (insn));
|
1588 |
|
|
insn_info->op_info = XOBNEWVEC (&rename_obstack, operand_rr_info,
|
1589 |
|
|
recog_data.n_operands);
|
1590 |
|
|
memset (insn_info->op_info, 0,
|
1591 |
|
|
sizeof (operand_rr_info) * recog_data.n_operands);
|
1592 |
|
|
}
|
1593 |
|
|
|
1594 |
|
|
/* Simplify the code below by rewriting things to reflect
|
1595 |
|
|
matching constraints. Also promote OP_OUT to OP_INOUT in
|
1596 |
|
|
predicated instructions, but only for register operands
|
1597 |
|
|
that are already tracked, so that we can create a chain
|
1598 |
|
|
when the first SET makes a register live. */
|
1599 |
|
|
|
1600 |
|
|
predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
|
1601 |
|
|
for (i = 0; i < n_ops; ++i)
|
1602 |
|
|
{
|
1603 |
|
|
rtx op = recog_data.operand[i];
|
1604 |
|
|
int matches = recog_op_alt[i][alt].matches;
|
1605 |
|
|
if (matches >= 0)
|
1606 |
|
|
recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
|
1607 |
|
|
if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
|
1608 |
|
|
|| (predicated && recog_data.operand_type[i] == OP_OUT))
|
1609 |
|
|
{
|
1610 |
|
|
recog_data.operand_type[i] = OP_INOUT;
|
1611 |
|
|
/* A special case to deal with instruction patterns that
|
1612 |
|
|
have matching operands with different modes. If we're
|
1613 |
|
|
not already tracking such a reg, we won't start here,
|
1614 |
|
|
and we must instead make sure to make the operand visible
|
1615 |
|
|
to the machinery that tracks hard registers. */
|
1616 |
|
|
if (matches >= 0
|
1617 |
|
|
&& (GET_MODE_SIZE (recog_data.operand_mode[i])
|
1618 |
|
|
!= GET_MODE_SIZE (recog_data.operand_mode[matches]))
|
1619 |
|
|
&& !verify_reg_in_set (op, &live_in_chains))
|
1620 |
|
|
{
|
1621 |
|
|
untracked_operands |= 1 << i;
|
1622 |
|
|
untracked_operands |= 1 << matches;
|
1623 |
|
|
}
|
1624 |
|
|
}
|
1625 |
|
|
/* If there's an in-out operand with a register that is not
|
1626 |
|
|
being tracked at all yet, open a chain. */
|
1627 |
|
|
if (recog_data.operand_type[i] == OP_INOUT
|
1628 |
|
|
&& !(untracked_operands & (1 << i))
|
1629 |
|
|
&& REG_P (op)
|
1630 |
|
|
&& !verify_reg_tracked (op))
|
1631 |
|
|
{
|
1632 |
|
|
enum machine_mode mode = GET_MODE (op);
|
1633 |
|
|
unsigned this_regno = REGNO (op);
|
1634 |
|
|
unsigned this_nregs = hard_regno_nregs[this_regno][mode];
|
1635 |
|
|
create_new_chain (this_regno, this_nregs, NULL, NULL_RTX,
|
1636 |
|
|
NO_REGS);
|
1637 |
|
|
}
|
1638 |
|
|
}
|
1639 |
|
|
|
1640 |
|
|
if (fail_current_block)
|
1641 |
|
|
break;
|
1642 |
|
|
|
1643 |
|
|
/* Step 1a: Mark hard registers that are clobbered in this insn,
|
1644 |
|
|
outside an operand, as live. */
|
1645 |
|
|
hide_operands (n_ops, old_operands, old_dups, untracked_operands,
|
1646 |
|
|
false);
|
1647 |
|
|
note_stores (PATTERN (insn), note_sets_clobbers, &clobber_code);
|
1648 |
|
|
restore_operands (insn, n_ops, old_operands, old_dups);
|
1649 |
|
|
|
1650 |
|
|
/* Step 1b: Begin new chains for earlyclobbered writes inside
|
1651 |
|
|
operands. */
|
1652 |
|
|
record_out_operands (insn, true, insn_info);
|
1653 |
|
|
|
1654 |
|
|
/* Step 2: Mark chains for which we have reads outside operands
|
1655 |
|
|
as unrenamable.
|
1656 |
|
|
We do this by munging all operands into CC0, and closing
|
1657 |
|
|
everything remaining. */
|
1658 |
|
|
|
1659 |
|
|
hide_operands (n_ops, old_operands, old_dups, untracked_operands,
|
1660 |
|
|
false);
|
1661 |
|
|
scan_rtx (insn, &PATTERN (insn), NO_REGS, mark_all_read, OP_IN);
|
1662 |
|
|
restore_operands (insn, n_ops, old_operands, old_dups);
|
1663 |
|
|
|
1664 |
|
|
/* Step 2B: Can't rename function call argument registers. */
|
1665 |
|
|
if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
|
1666 |
|
|
scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
|
1667 |
|
|
NO_REGS, mark_all_read, OP_IN);
|
1668 |
|
|
|
1669 |
|
|
/* Step 2C: Can't rename asm operands that were originally
|
1670 |
|
|
hard registers. */
|
1671 |
|
|
if (asm_noperands (PATTERN (insn)) > 0)
|
1672 |
|
|
for (i = 0; i < n_ops; i++)
|
1673 |
|
|
{
|
1674 |
|
|
rtx *loc = recog_data.operand_loc[i];
|
1675 |
|
|
rtx op = *loc;
|
1676 |
|
|
|
1677 |
|
|
if (REG_P (op)
|
1678 |
|
|
&& REGNO (op) == ORIGINAL_REGNO (op)
|
1679 |
|
|
&& (recog_data.operand_type[i] == OP_IN
|
1680 |
|
|
|| recog_data.operand_type[i] == OP_INOUT))
|
1681 |
|
|
scan_rtx (insn, loc, NO_REGS, mark_all_read, OP_IN);
|
1682 |
|
|
}
|
1683 |
|
|
|
1684 |
|
|
/* Step 3: Append to chains for reads inside operands. */
|
1685 |
|
|
for (i = 0; i < n_ops + recog_data.n_dups; i++)
|
1686 |
|
|
{
|
1687 |
|
|
int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
|
1688 |
|
|
rtx *loc = (i < n_ops
|
1689 |
|
|
? recog_data.operand_loc[opn]
|
1690 |
|
|
: recog_data.dup_loc[i - n_ops]);
|
1691 |
|
|
enum reg_class cl = recog_op_alt[opn][alt].cl;
|
1692 |
|
|
enum op_type type = recog_data.operand_type[opn];
|
1693 |
|
|
|
1694 |
|
|
/* Don't scan match_operand here, since we've no reg class
|
1695 |
|
|
information to pass down. Any operands that we could
|
1696 |
|
|
substitute in will be represented elsewhere. */
|
1697 |
|
|
if (recog_data.constraints[opn][0] == '\0'
|
1698 |
|
|
|| untracked_operands & (1 << opn))
|
1699 |
|
|
continue;
|
1700 |
|
|
|
1701 |
|
|
if (insn_info)
|
1702 |
|
|
cur_operand = i == opn ? insn_info->op_info + i : NULL;
|
1703 |
|
|
if (recog_op_alt[opn][alt].is_address)
|
1704 |
|
|
scan_rtx_address (insn, loc, cl, mark_read,
|
1705 |
|
|
VOIDmode, ADDR_SPACE_GENERIC);
|
1706 |
|
|
else
|
1707 |
|
|
scan_rtx (insn, loc, cl, mark_read, type);
|
1708 |
|
|
}
|
1709 |
|
|
cur_operand = NULL;
|
1710 |
|
|
|
1711 |
|
|
/* Step 3B: Record updates for regs in REG_INC notes, and
|
1712 |
|
|
source regs in REG_FRAME_RELATED_EXPR notes. */
|
1713 |
|
|
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
1714 |
|
|
if (REG_NOTE_KIND (note) == REG_INC
|
1715 |
|
|
|| REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
|
1716 |
|
|
scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
|
1717 |
|
|
OP_INOUT);
|
1718 |
|
|
|
1719 |
|
|
/* Step 4: Close chains for registers that die here. */
|
1720 |
|
|
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
1721 |
|
|
if (REG_NOTE_KIND (note) == REG_DEAD)
|
1722 |
|
|
{
|
1723 |
|
|
remove_from_hard_reg_set (&live_hard_regs,
|
1724 |
|
|
GET_MODE (XEXP (note, 0)),
|
1725 |
|
|
REGNO (XEXP (note, 0)));
|
1726 |
|
|
scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
|
1727 |
|
|
OP_IN);
|
1728 |
|
|
}
|
1729 |
|
|
|
1730 |
|
|
/* Step 4B: If this is a call, any chain live at this point
|
1731 |
|
|
requires a caller-saved reg. */
|
1732 |
|
|
if (CALL_P (insn))
|
1733 |
|
|
{
|
1734 |
|
|
struct du_head *p;
|
1735 |
|
|
for (p = open_chains; p; p = p->next_chain)
|
1736 |
|
|
p->need_caller_save_reg = 1;
|
1737 |
|
|
}
|
1738 |
|
|
|
1739 |
|
|
/* Step 5: Close open chains that overlap writes. Similar to
|
1740 |
|
|
step 2, we hide in-out operands, since we do not want to
|
1741 |
|
|
close these chains. We also hide earlyclobber operands,
|
1742 |
|
|
since we've opened chains for them in step 1, and earlier
|
1743 |
|
|
chains they would overlap with must have been closed at
|
1744 |
|
|
the previous insn at the latest, as such operands cannot
|
1745 |
|
|
possibly overlap with any input operands. */
|
1746 |
|
|
|
1747 |
|
|
hide_operands (n_ops, old_operands, old_dups, untracked_operands,
|
1748 |
|
|
true);
|
1749 |
|
|
scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN);
|
1750 |
|
|
restore_operands (insn, n_ops, old_operands, old_dups);
|
1751 |
|
|
|
1752 |
|
|
/* Step 6a: Mark hard registers that are set in this insn,
|
1753 |
|
|
outside an operand, as live. */
|
1754 |
|
|
hide_operands (n_ops, old_operands, old_dups, untracked_operands,
|
1755 |
|
|
false);
|
1756 |
|
|
note_stores (PATTERN (insn), note_sets_clobbers, &set_code);
|
1757 |
|
|
restore_operands (insn, n_ops, old_operands, old_dups);
|
1758 |
|
|
|
1759 |
|
|
/* Step 6b: Begin new chains for writes inside operands. */
|
1760 |
|
|
record_out_operands (insn, false, insn_info);
|
1761 |
|
|
|
1762 |
|
|
/* Step 6c: Record destination regs in REG_FRAME_RELATED_EXPR
|
1763 |
|
|
notes for update. */
|
1764 |
|
|
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
1765 |
|
|
if (REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
|
1766 |
|
|
scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_access,
|
1767 |
|
|
OP_INOUT);
|
1768 |
|
|
|
1769 |
|
|
/* Step 7: Close chains for registers that were never
|
1770 |
|
|
really used here. */
|
1771 |
|
|
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
1772 |
|
|
if (REG_NOTE_KIND (note) == REG_UNUSED)
|
1773 |
|
|
{
|
1774 |
|
|
remove_from_hard_reg_set (&live_hard_regs,
|
1775 |
|
|
GET_MODE (XEXP (note, 0)),
|
1776 |
|
|
REGNO (XEXP (note, 0)));
|
1777 |
|
|
scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
|
1778 |
|
|
OP_IN);
|
1779 |
|
|
}
|
1780 |
|
|
}
|
1781 |
|
|
else if (DEBUG_INSN_P (insn)
|
1782 |
|
|
&& !VAR_LOC_UNKNOWN_P (INSN_VAR_LOCATION_LOC (insn)))
|
1783 |
|
|
{
|
1784 |
|
|
scan_rtx (insn, &INSN_VAR_LOCATION_LOC (insn),
|
1785 |
|
|
ALL_REGS, mark_read, OP_IN);
|
1786 |
|
|
}
|
1787 |
|
|
if (insn == BB_END (bb))
|
1788 |
|
|
break;
|
1789 |
|
|
}
|
1790 |
|
|
|
1791 |
|
|
if (fail_current_block)
|
1792 |
|
|
return false;
|
1793 |
|
|
|
1794 |
|
|
return true;
|
1795 |
|
|
}
|
1796 |
|
|
|
1797 |
|
|
/* Initialize the register renamer. If INSN_INFO is true, ensure that
|
1798 |
|
|
insn_rr is nonnull. */
|
1799 |
|
|
void
|
1800 |
|
|
regrename_init (bool insn_info)
|
1801 |
|
|
{
|
1802 |
|
|
gcc_obstack_init (&rename_obstack);
|
1803 |
|
|
insn_rr = NULL;
|
1804 |
|
|
if (insn_info)
|
1805 |
|
|
VEC_safe_grow_cleared (insn_rr_info, heap, insn_rr, get_max_uid ());
|
1806 |
|
|
}
|
1807 |
|
|
|
1808 |
|
|
/* Free all global data used by the register renamer. */
|
1809 |
|
|
void
|
1810 |
|
|
regrename_finish (void)
|
1811 |
|
|
{
|
1812 |
|
|
VEC_free (insn_rr_info, heap, insn_rr);
|
1813 |
|
|
free_chain_data ();
|
1814 |
|
|
obstack_free (&rename_obstack, NULL);
|
1815 |
|
|
}
|
1816 |
|
|
|
1817 |
|
|
/* Perform register renaming on the current function. */
|
1818 |
|
|
|
1819 |
|
|
static unsigned int
|
1820 |
|
|
regrename_optimize (void)
|
1821 |
|
|
{
|
1822 |
|
|
df_set_flags (DF_LR_RUN_DCE);
|
1823 |
|
|
df_note_add_problem ();
|
1824 |
|
|
df_analyze ();
|
1825 |
|
|
df_set_flags (DF_DEFER_INSN_RESCAN);
|
1826 |
|
|
|
1827 |
|
|
regrename_init (false);
|
1828 |
|
|
|
1829 |
|
|
regrename_analyze (NULL);
|
1830 |
|
|
|
1831 |
|
|
rename_chains ();
|
1832 |
|
|
|
1833 |
|
|
regrename_finish ();
|
1834 |
|
|
|
1835 |
|
|
return 0;
|
1836 |
|
|
}
|
1837 |
|
|
|
1838 |
|
|
static bool
|
1839 |
|
|
gate_handle_regrename (void)
|
1840 |
|
|
{
|
1841 |
|
|
return (optimize > 0 && (flag_rename_registers));
|
1842 |
|
|
}
|
1843 |
|
|
|
1844 |
|
|
struct rtl_opt_pass pass_regrename =
|
1845 |
|
|
{
|
1846 |
|
|
{
|
1847 |
|
|
RTL_PASS,
|
1848 |
|
|
"rnreg", /* name */
|
1849 |
|
|
gate_handle_regrename, /* gate */
|
1850 |
|
|
regrename_optimize, /* execute */
|
1851 |
|
|
NULL, /* sub */
|
1852 |
|
|
NULL, /* next */
|
1853 |
|
|
0, /* static_pass_number */
|
1854 |
|
|
TV_RENAME_REGISTERS, /* tv_id */
|
1855 |
|
|
0, /* properties_required */
|
1856 |
|
|
0, /* properties_provided */
|
1857 |
|
|
0, /* properties_destroyed */
|
1858 |
|
|
0, /* todo_flags_start */
|
1859 |
|
|
TODO_df_finish | TODO_verify_rtl_sharing |
|
1860 |
|
|
|
1861 |
|
|
}
|
1862 |
|
|
};
|