| 1 |
684 |
jeremybenn |
/* Perform instruction reorganizations for delay slot filling.
|
| 2 |
|
|
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
|
| 3 |
|
|
2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
| 4 |
|
|
Free Software Foundation, Inc.
|
| 5 |
|
|
Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
|
| 6 |
|
|
Hacked by Michael Tiemann (tiemann@cygnus.com).
|
| 7 |
|
|
|
| 8 |
|
|
This file is part of GCC.
|
| 9 |
|
|
|
| 10 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 11 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 12 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 13 |
|
|
version.
|
| 14 |
|
|
|
| 15 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 16 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 17 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 18 |
|
|
for more details.
|
| 19 |
|
|
|
| 20 |
|
|
You should have received a copy of the GNU General Public License
|
| 21 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 22 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 23 |
|
|
|
| 24 |
|
|
/* Instruction reorganization pass.
|
| 25 |
|
|
|
| 26 |
|
|
This pass runs after register allocation and final jump
|
| 27 |
|
|
optimization. It should be the last pass to run before peephole.
|
| 28 |
|
|
It serves primarily to fill delay slots of insns, typically branch
|
| 29 |
|
|
and call insns. Other insns typically involve more complicated
|
| 30 |
|
|
interactions of data dependencies and resource constraints, and
|
| 31 |
|
|
are better handled by scheduling before register allocation (by the
|
| 32 |
|
|
function `schedule_insns').
|
| 33 |
|
|
|
| 34 |
|
|
The Branch Penalty is the number of extra cycles that are needed to
|
| 35 |
|
|
execute a branch insn. On an ideal machine, branches take a single
|
| 36 |
|
|
cycle, and the Branch Penalty is 0. Several RISC machines approach
|
| 37 |
|
|
branch delays differently:
|
| 38 |
|
|
|
| 39 |
|
|
The MIPS has a single branch delay slot. Most insns
|
| 40 |
|
|
(except other branches) can be used to fill this slot. When the
|
| 41 |
|
|
slot is filled, two insns execute in two cycles, reducing the
|
| 42 |
|
|
branch penalty to zero.
|
| 43 |
|
|
|
| 44 |
|
|
The SPARC always has a branch delay slot, but its effects can be
|
| 45 |
|
|
annulled when the branch is not taken. This means that failing to
|
| 46 |
|
|
find other sources of insns, we can hoist an insn from the branch
|
| 47 |
|
|
target that would only be safe to execute knowing that the branch
|
| 48 |
|
|
is taken.
|
| 49 |
|
|
|
| 50 |
|
|
The HP-PA always has a branch delay slot. For unconditional branches
|
| 51 |
|
|
its effects can be annulled when the branch is taken. The effects
|
| 52 |
|
|
of the delay slot in a conditional branch can be nullified for forward
|
| 53 |
|
|
taken branches, or for untaken backward branches. This means
|
| 54 |
|
|
we can hoist insns from the fall-through path for forward branches or
|
| 55 |
|
|
steal insns from the target of backward branches.
|
| 56 |
|
|
|
| 57 |
|
|
The TMS320C3x and C4x have three branch delay slots. When the three
|
| 58 |
|
|
slots are filled, the branch penalty is zero. Most insns can fill the
|
| 59 |
|
|
delay slots except jump insns.
|
| 60 |
|
|
|
| 61 |
|
|
Three techniques for filling delay slots have been implemented so far:
|
| 62 |
|
|
|
| 63 |
|
|
(1) `fill_simple_delay_slots' is the simplest, most efficient way
|
| 64 |
|
|
to fill delay slots. This pass first looks for insns which come
|
| 65 |
|
|
from before the branch and which are safe to execute after the
|
| 66 |
|
|
branch. Then it searches after the insn requiring delay slots or,
|
| 67 |
|
|
in the case of a branch, for insns that are after the point at
|
| 68 |
|
|
which the branch merges into the fallthrough code, if such a point
|
| 69 |
|
|
exists. When such insns are found, the branch penalty decreases
|
| 70 |
|
|
and no code expansion takes place.
|
| 71 |
|
|
|
| 72 |
|
|
(2) `fill_eager_delay_slots' is more complicated: it is used for
|
| 73 |
|
|
scheduling conditional jumps, or for scheduling jumps which cannot
|
| 74 |
|
|
be filled using (1). A machine need not have annulled jumps to use
|
| 75 |
|
|
this strategy, but it helps (by keeping more options open).
|
| 76 |
|
|
`fill_eager_delay_slots' tries to guess the direction the branch
|
| 77 |
|
|
will go; if it guesses right 100% of the time, it can reduce the
|
| 78 |
|
|
branch penalty as much as `fill_simple_delay_slots' does. If it
|
| 79 |
|
|
guesses wrong 100% of the time, it might as well schedule nops. When
|
| 80 |
|
|
`fill_eager_delay_slots' takes insns from the fall-through path of
|
| 81 |
|
|
the jump, usually there is no code expansion; when it takes insns
|
| 82 |
|
|
from the branch target, there is code expansion if it is not the
|
| 83 |
|
|
only way to reach that target.
|
| 84 |
|
|
|
| 85 |
|
|
(3) `relax_delay_slots' uses a set of rules to simplify code that
|
| 86 |
|
|
has been reorganized by (1) and (2). It finds cases where
|
| 87 |
|
|
conditional test can be eliminated, jumps can be threaded, extra
|
| 88 |
|
|
insns can be eliminated, etc. It is the job of (1) and (2) to do a
|
| 89 |
|
|
good job of scheduling locally; `relax_delay_slots' takes care of
|
| 90 |
|
|
making the various individual schedules work well together. It is
|
| 91 |
|
|
especially tuned to handle the control flow interactions of branch
|
| 92 |
|
|
insns. It does nothing for insns with delay slots that do not
|
| 93 |
|
|
branch.
|
| 94 |
|
|
|
| 95 |
|
|
On machines that use CC0, we are very conservative. We will not make
|
| 96 |
|
|
a copy of an insn involving CC0 since we want to maintain a 1-1
|
| 97 |
|
|
correspondence between the insn that sets and uses CC0. The insns are
|
| 98 |
|
|
allowed to be separated by placing an insn that sets CC0 (but not an insn
|
| 99 |
|
|
that uses CC0; we could do this, but it doesn't seem worthwhile) in a
|
| 100 |
|
|
delay slot. In that case, we point each insn at the other with REG_CC_USER
|
| 101 |
|
|
and REG_CC_SETTER notes. Note that these restrictions affect very few
|
| 102 |
|
|
machines because most RISC machines with delay slots will not use CC0
|
| 103 |
|
|
(the RT is the only known exception at this point).
|
| 104 |
|
|
|
| 105 |
|
|
Not yet implemented:
|
| 106 |
|
|
|
| 107 |
|
|
The Acorn Risc Machine can conditionally execute most insns, so
|
| 108 |
|
|
it is profitable to move single insns into a position to execute
|
| 109 |
|
|
based on the condition code of the previous insn.
|
| 110 |
|
|
|
| 111 |
|
|
The HP-PA can conditionally nullify insns, providing a similar
|
| 112 |
|
|
effect to the ARM, differing mostly in which insn is "in charge". */
|
| 113 |
|
|
|
| 114 |
|
|
#include "config.h"
|
| 115 |
|
|
#include "system.h"
|
| 116 |
|
|
#include "coretypes.h"
|
| 117 |
|
|
#include "tm.h"
|
| 118 |
|
|
#include "diagnostic-core.h"
|
| 119 |
|
|
#include "rtl.h"
|
| 120 |
|
|
#include "tm_p.h"
|
| 121 |
|
|
#include "expr.h"
|
| 122 |
|
|
#include "function.h"
|
| 123 |
|
|
#include "insn-config.h"
|
| 124 |
|
|
#include "conditions.h"
|
| 125 |
|
|
#include "hard-reg-set.h"
|
| 126 |
|
|
#include "basic-block.h"
|
| 127 |
|
|
#include "regs.h"
|
| 128 |
|
|
#include "recog.h"
|
| 129 |
|
|
#include "flags.h"
|
| 130 |
|
|
#include "output.h"
|
| 131 |
|
|
#include "obstack.h"
|
| 132 |
|
|
#include "insn-attr.h"
|
| 133 |
|
|
#include "resource.h"
|
| 134 |
|
|
#include "except.h"
|
| 135 |
|
|
#include "params.h"
|
| 136 |
|
|
#include "timevar.h"
|
| 137 |
|
|
#include "target.h"
|
| 138 |
|
|
#include "tree-pass.h"
|
| 139 |
|
|
|
| 140 |
|
|
#ifdef DELAY_SLOTS
|
| 141 |
|
|
|
| 142 |
|
|
#ifndef ANNUL_IFTRUE_SLOTS
|
| 143 |
|
|
#define eligible_for_annul_true(INSN, SLOTS, TRIAL, FLAGS) 0
|
| 144 |
|
|
#endif
|
| 145 |
|
|
#ifndef ANNUL_IFFALSE_SLOTS
|
| 146 |
|
|
#define eligible_for_annul_false(INSN, SLOTS, TRIAL, FLAGS) 0
|
| 147 |
|
|
#endif
|
| 148 |
|
|
|
| 149 |
|
|
/* Insns which have delay slots that have not yet been filled. */
|
| 150 |
|
|
|
| 151 |
|
|
static struct obstack unfilled_slots_obstack;
|
| 152 |
|
|
static rtx *unfilled_firstobj;
|
| 153 |
|
|
|
| 154 |
|
|
/* Define macros to refer to the first and last slot containing unfilled
|
| 155 |
|
|
insns. These are used because the list may move and its address
|
| 156 |
|
|
should be recomputed at each use. */
|
| 157 |
|
|
|
| 158 |
|
|
#define unfilled_slots_base \
|
| 159 |
|
|
((rtx *) obstack_base (&unfilled_slots_obstack))
|
| 160 |
|
|
|
| 161 |
|
|
#define unfilled_slots_next \
|
| 162 |
|
|
((rtx *) obstack_next_free (&unfilled_slots_obstack))
|
| 163 |
|
|
|
| 164 |
|
|
/* Points to the label before the end of the function, or before a
|
| 165 |
|
|
return insn. */
|
| 166 |
|
|
static rtx function_return_label;
|
| 167 |
|
|
/* Likewise for a simple_return. */
|
| 168 |
|
|
static rtx function_simple_return_label;
|
| 169 |
|
|
|
| 170 |
|
|
/* Mapping between INSN_UID's and position in the code since INSN_UID's do
|
| 171 |
|
|
not always monotonically increase. */
|
| 172 |
|
|
static int *uid_to_ruid;
|
| 173 |
|
|
|
| 174 |
|
|
/* Highest valid index in `uid_to_ruid'. */
|
| 175 |
|
|
static int max_uid;
|
| 176 |
|
|
|
| 177 |
|
|
static int stop_search_p (rtx, int);
|
| 178 |
|
|
static int resource_conflicts_p (struct resources *, struct resources *);
|
| 179 |
|
|
static int insn_references_resource_p (rtx, struct resources *, bool);
|
| 180 |
|
|
static int insn_sets_resource_p (rtx, struct resources *, bool);
|
| 181 |
|
|
static rtx find_end_label (rtx);
|
| 182 |
|
|
static rtx emit_delay_sequence (rtx, rtx, int);
|
| 183 |
|
|
static rtx add_to_delay_list (rtx, rtx);
|
| 184 |
|
|
static rtx delete_from_delay_slot (rtx);
|
| 185 |
|
|
static void delete_scheduled_jump (rtx);
|
| 186 |
|
|
static void note_delay_statistics (int, int);
|
| 187 |
|
|
#if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
|
| 188 |
|
|
static rtx optimize_skip (rtx);
|
| 189 |
|
|
#endif
|
| 190 |
|
|
static int get_jump_flags (rtx, rtx);
|
| 191 |
|
|
static int rare_destination (rtx);
|
| 192 |
|
|
static int mostly_true_jump (rtx, rtx);
|
| 193 |
|
|
static rtx get_branch_condition (rtx, rtx);
|
| 194 |
|
|
static int condition_dominates_p (rtx, rtx);
|
| 195 |
|
|
static int redirect_with_delay_slots_safe_p (rtx, rtx, rtx);
|
| 196 |
|
|
static int redirect_with_delay_list_safe_p (rtx, rtx, rtx);
|
| 197 |
|
|
static int check_annul_list_true_false (int, rtx);
|
| 198 |
|
|
static rtx steal_delay_list_from_target (rtx, rtx, rtx, rtx,
|
| 199 |
|
|
struct resources *,
|
| 200 |
|
|
struct resources *,
|
| 201 |
|
|
struct resources *,
|
| 202 |
|
|
int, int *, int *, rtx *);
|
| 203 |
|
|
static rtx steal_delay_list_from_fallthrough (rtx, rtx, rtx, rtx,
|
| 204 |
|
|
struct resources *,
|
| 205 |
|
|
struct resources *,
|
| 206 |
|
|
struct resources *,
|
| 207 |
|
|
int, int *, int *);
|
| 208 |
|
|
static void try_merge_delay_insns (rtx, rtx);
|
| 209 |
|
|
static rtx redundant_insn (rtx, rtx, rtx);
|
| 210 |
|
|
static int own_thread_p (rtx, rtx, int);
|
| 211 |
|
|
static void update_block (rtx, rtx);
|
| 212 |
|
|
static int reorg_redirect_jump (rtx, rtx);
|
| 213 |
|
|
static void update_reg_dead_notes (rtx, rtx);
|
| 214 |
|
|
static void fix_reg_dead_note (rtx, rtx);
|
| 215 |
|
|
static void update_reg_unused_notes (rtx, rtx);
|
| 216 |
|
|
static void fill_simple_delay_slots (int);
|
| 217 |
|
|
static rtx fill_slots_from_thread (rtx, rtx, rtx, rtx,
|
| 218 |
|
|
int, int, int, int,
|
| 219 |
|
|
int *, rtx);
|
| 220 |
|
|
static void fill_eager_delay_slots (void);
|
| 221 |
|
|
static void relax_delay_slots (rtx);
|
| 222 |
|
|
static void make_return_insns (rtx);
|
| 223 |
|
|
|
| 224 |
|
|
/* A wrapper around next_active_insn which takes care to return ret_rtx
|
| 225 |
|
|
unchanged. */
|
| 226 |
|
|
|
| 227 |
|
|
static rtx
|
| 228 |
|
|
first_active_target_insn (rtx insn)
|
| 229 |
|
|
{
|
| 230 |
|
|
if (ANY_RETURN_P (insn))
|
| 231 |
|
|
return insn;
|
| 232 |
|
|
return next_active_insn (insn);
|
| 233 |
|
|
}
|
| 234 |
|
|
|
| 235 |
|
|
/* Return true iff INSN is a simplejump, or any kind of return insn. */
|
| 236 |
|
|
|
| 237 |
|
|
static bool
|
| 238 |
|
|
simplejump_or_return_p (rtx insn)
|
| 239 |
|
|
{
|
| 240 |
|
|
return (JUMP_P (insn)
|
| 241 |
|
|
&& (simplejump_p (insn) || ANY_RETURN_P (PATTERN (insn))));
|
| 242 |
|
|
}
|
| 243 |
|
|
|
| 244 |
|
|
/* Return TRUE if this insn should stop the search for insn to fill delay
|
| 245 |
|
|
slots. LABELS_P indicates that labels should terminate the search.
|
| 246 |
|
|
In all cases, jumps terminate the search. */
|
| 247 |
|
|
|
| 248 |
|
|
static int
|
| 249 |
|
|
stop_search_p (rtx insn, int labels_p)
|
| 250 |
|
|
{
|
| 251 |
|
|
if (insn == 0)
|
| 252 |
|
|
return 1;
|
| 253 |
|
|
|
| 254 |
|
|
/* If the insn can throw an exception that is caught within the function,
|
| 255 |
|
|
it may effectively perform a jump from the viewpoint of the function.
|
| 256 |
|
|
Therefore act like for a jump. */
|
| 257 |
|
|
if (can_throw_internal (insn))
|
| 258 |
|
|
return 1;
|
| 259 |
|
|
|
| 260 |
|
|
switch (GET_CODE (insn))
|
| 261 |
|
|
{
|
| 262 |
|
|
case NOTE:
|
| 263 |
|
|
case CALL_INSN:
|
| 264 |
|
|
return 0;
|
| 265 |
|
|
|
| 266 |
|
|
case CODE_LABEL:
|
| 267 |
|
|
return labels_p;
|
| 268 |
|
|
|
| 269 |
|
|
case JUMP_INSN:
|
| 270 |
|
|
case BARRIER:
|
| 271 |
|
|
return 1;
|
| 272 |
|
|
|
| 273 |
|
|
case INSN:
|
| 274 |
|
|
/* OK unless it contains a delay slot or is an `asm' insn of some type.
|
| 275 |
|
|
We don't know anything about these. */
|
| 276 |
|
|
return (GET_CODE (PATTERN (insn)) == SEQUENCE
|
| 277 |
|
|
|| GET_CODE (PATTERN (insn)) == ASM_INPUT
|
| 278 |
|
|
|| asm_noperands (PATTERN (insn)) >= 0);
|
| 279 |
|
|
|
| 280 |
|
|
default:
|
| 281 |
|
|
gcc_unreachable ();
|
| 282 |
|
|
}
|
| 283 |
|
|
}
|
| 284 |
|
|
|
| 285 |
|
|
/* Return TRUE if any resources are marked in both RES1 and RES2 or if either
|
| 286 |
|
|
resource set contains a volatile memory reference. Otherwise, return FALSE. */
|
| 287 |
|
|
|
| 288 |
|
|
static int
|
| 289 |
|
|
resource_conflicts_p (struct resources *res1, struct resources *res2)
|
| 290 |
|
|
{
|
| 291 |
|
|
if ((res1->cc && res2->cc) || (res1->memory && res2->memory)
|
| 292 |
|
|
|| (res1->unch_memory && res2->unch_memory)
|
| 293 |
|
|
|| res1->volatil || res2->volatil)
|
| 294 |
|
|
return 1;
|
| 295 |
|
|
|
| 296 |
|
|
#ifdef HARD_REG_SET
|
| 297 |
|
|
return (res1->regs & res2->regs) != HARD_CONST (0);
|
| 298 |
|
|
#else
|
| 299 |
|
|
{
|
| 300 |
|
|
int i;
|
| 301 |
|
|
|
| 302 |
|
|
for (i = 0; i < HARD_REG_SET_LONGS; i++)
|
| 303 |
|
|
if ((res1->regs[i] & res2->regs[i]) != 0)
|
| 304 |
|
|
return 1;
|
| 305 |
|
|
return 0;
|
| 306 |
|
|
}
|
| 307 |
|
|
#endif
|
| 308 |
|
|
}
|
| 309 |
|
|
|
| 310 |
|
|
/* Return TRUE if any resource marked in RES, a `struct resources', is
|
| 311 |
|
|
referenced by INSN. If INCLUDE_DELAYED_EFFECTS is set, return if the called
|
| 312 |
|
|
routine is using those resources.
|
| 313 |
|
|
|
| 314 |
|
|
We compute this by computing all the resources referenced by INSN and
|
| 315 |
|
|
seeing if this conflicts with RES. It might be faster to directly check
|
| 316 |
|
|
ourselves, and this is the way it used to work, but it means duplicating
|
| 317 |
|
|
a large block of complex code. */
|
| 318 |
|
|
|
| 319 |
|
|
static int
|
| 320 |
|
|
insn_references_resource_p (rtx insn, struct resources *res,
|
| 321 |
|
|
bool include_delayed_effects)
|
| 322 |
|
|
{
|
| 323 |
|
|
struct resources insn_res;
|
| 324 |
|
|
|
| 325 |
|
|
CLEAR_RESOURCE (&insn_res);
|
| 326 |
|
|
mark_referenced_resources (insn, &insn_res, include_delayed_effects);
|
| 327 |
|
|
return resource_conflicts_p (&insn_res, res);
|
| 328 |
|
|
}
|
| 329 |
|
|
|
| 330 |
|
|
/* Return TRUE if INSN modifies resources that are marked in RES.
|
| 331 |
|
|
INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
|
| 332 |
|
|
included. CC0 is only modified if it is explicitly set; see comments
|
| 333 |
|
|
in front of mark_set_resources for details. */
|
| 334 |
|
|
|
| 335 |
|
|
static int
|
| 336 |
|
|
insn_sets_resource_p (rtx insn, struct resources *res,
|
| 337 |
|
|
bool include_delayed_effects)
|
| 338 |
|
|
{
|
| 339 |
|
|
struct resources insn_sets;
|
| 340 |
|
|
|
| 341 |
|
|
CLEAR_RESOURCE (&insn_sets);
|
| 342 |
|
|
mark_set_resources (insn, &insn_sets, 0,
|
| 343 |
|
|
(include_delayed_effects
|
| 344 |
|
|
? MARK_SRC_DEST_CALL
|
| 345 |
|
|
: MARK_SRC_DEST));
|
| 346 |
|
|
return resource_conflicts_p (&insn_sets, res);
|
| 347 |
|
|
}
|
| 348 |
|
|
|
| 349 |
|
|
/* Find a label at the end of the function or before a RETURN. If there
|
| 350 |
|
|
is none, try to make one. If that fails, returns 0.
|
| 351 |
|
|
|
| 352 |
|
|
The property of such a label is that it is placed just before the
|
| 353 |
|
|
epilogue or a bare RETURN insn, so that another bare RETURN can be
|
| 354 |
|
|
turned into a jump to the label unconditionally. In particular, the
|
| 355 |
|
|
label cannot be placed before a RETURN insn with a filled delay slot.
|
| 356 |
|
|
|
| 357 |
|
|
??? There may be a problem with the current implementation. Suppose
|
| 358 |
|
|
we start with a bare RETURN insn and call find_end_label. It may set
|
| 359 |
|
|
function_return_label just before the RETURN. Suppose the machinery
|
| 360 |
|
|
is able to fill the delay slot of the RETURN insn afterwards. Then
|
| 361 |
|
|
function_return_label is no longer valid according to the property
|
| 362 |
|
|
described above and find_end_label will still return it unmodified.
|
| 363 |
|
|
Note that this is probably mitigated by the following observation:
|
| 364 |
|
|
once function_return_label is made, it is very likely the target of
|
| 365 |
|
|
a jump, so filling the delay slot of the RETURN will be much more
|
| 366 |
|
|
difficult.
|
| 367 |
|
|
KIND is either simple_return_rtx or ret_rtx, indicating which type of
|
| 368 |
|
|
return we're looking for. */
|
| 369 |
|
|
|
| 370 |
|
|
static rtx
|
| 371 |
|
|
find_end_label (rtx kind)
|
| 372 |
|
|
{
|
| 373 |
|
|
rtx insn;
|
| 374 |
|
|
rtx *plabel;
|
| 375 |
|
|
|
| 376 |
|
|
if (kind == ret_rtx)
|
| 377 |
|
|
plabel = &function_return_label;
|
| 378 |
|
|
else
|
| 379 |
|
|
{
|
| 380 |
|
|
gcc_assert (kind == simple_return_rtx);
|
| 381 |
|
|
plabel = &function_simple_return_label;
|
| 382 |
|
|
}
|
| 383 |
|
|
|
| 384 |
|
|
/* If we found one previously, return it. */
|
| 385 |
|
|
if (*plabel)
|
| 386 |
|
|
return *plabel;
|
| 387 |
|
|
|
| 388 |
|
|
/* Otherwise, see if there is a label at the end of the function. If there
|
| 389 |
|
|
is, it must be that RETURN insns aren't needed, so that is our return
|
| 390 |
|
|
label and we don't have to do anything else. */
|
| 391 |
|
|
|
| 392 |
|
|
insn = get_last_insn ();
|
| 393 |
|
|
while (NOTE_P (insn)
|
| 394 |
|
|
|| (NONJUMP_INSN_P (insn)
|
| 395 |
|
|
&& (GET_CODE (PATTERN (insn)) == USE
|
| 396 |
|
|
|| GET_CODE (PATTERN (insn)) == CLOBBER)))
|
| 397 |
|
|
insn = PREV_INSN (insn);
|
| 398 |
|
|
|
| 399 |
|
|
/* When a target threads its epilogue we might already have a
|
| 400 |
|
|
suitable return insn. If so put a label before it for the
|
| 401 |
|
|
function_return_label. */
|
| 402 |
|
|
if (BARRIER_P (insn)
|
| 403 |
|
|
&& JUMP_P (PREV_INSN (insn))
|
| 404 |
|
|
&& PATTERN (PREV_INSN (insn)) == kind)
|
| 405 |
|
|
{
|
| 406 |
|
|
rtx temp = PREV_INSN (PREV_INSN (insn));
|
| 407 |
|
|
rtx label = gen_label_rtx ();
|
| 408 |
|
|
LABEL_NUSES (label) = 0;
|
| 409 |
|
|
|
| 410 |
|
|
/* Put the label before any USE insns that may precede the RETURN
|
| 411 |
|
|
insn. */
|
| 412 |
|
|
while (GET_CODE (temp) == USE)
|
| 413 |
|
|
temp = PREV_INSN (temp);
|
| 414 |
|
|
|
| 415 |
|
|
emit_label_after (label, temp);
|
| 416 |
|
|
*plabel = label;
|
| 417 |
|
|
}
|
| 418 |
|
|
|
| 419 |
|
|
else if (LABEL_P (insn))
|
| 420 |
|
|
*plabel = insn;
|
| 421 |
|
|
else
|
| 422 |
|
|
{
|
| 423 |
|
|
rtx label = gen_label_rtx ();
|
| 424 |
|
|
LABEL_NUSES (label) = 0;
|
| 425 |
|
|
/* If the basic block reorder pass moves the return insn to
|
| 426 |
|
|
some other place try to locate it again and put our
|
| 427 |
|
|
function_return_label there. */
|
| 428 |
|
|
while (insn && ! (JUMP_P (insn) && (PATTERN (insn) == kind)))
|
| 429 |
|
|
insn = PREV_INSN (insn);
|
| 430 |
|
|
if (insn)
|
| 431 |
|
|
{
|
| 432 |
|
|
insn = PREV_INSN (insn);
|
| 433 |
|
|
|
| 434 |
|
|
/* Put the label before any USE insns that may precede the
|
| 435 |
|
|
RETURN insn. */
|
| 436 |
|
|
while (GET_CODE (insn) == USE)
|
| 437 |
|
|
insn = PREV_INSN (insn);
|
| 438 |
|
|
|
| 439 |
|
|
emit_label_after (label, insn);
|
| 440 |
|
|
}
|
| 441 |
|
|
else
|
| 442 |
|
|
{
|
| 443 |
|
|
#ifdef HAVE_epilogue
|
| 444 |
|
|
if (HAVE_epilogue
|
| 445 |
|
|
#ifdef HAVE_return
|
| 446 |
|
|
&& ! HAVE_return
|
| 447 |
|
|
#endif
|
| 448 |
|
|
)
|
| 449 |
|
|
/* The RETURN insn has its delay slot filled so we cannot
|
| 450 |
|
|
emit the label just before it. Since we already have
|
| 451 |
|
|
an epilogue and cannot emit a new RETURN, we cannot
|
| 452 |
|
|
emit the label at all. */
|
| 453 |
|
|
return NULL_RTX;
|
| 454 |
|
|
#endif /* HAVE_epilogue */
|
| 455 |
|
|
|
| 456 |
|
|
/* Otherwise, make a new label and emit a RETURN and BARRIER,
|
| 457 |
|
|
if needed. */
|
| 458 |
|
|
emit_label (label);
|
| 459 |
|
|
#ifdef HAVE_return
|
| 460 |
|
|
/* We don't bother trying to create a return insn if the
|
| 461 |
|
|
epilogue has filled delay-slots; we would have to try and
|
| 462 |
|
|
move the delay-slot fillers to the delay-slots for the new
|
| 463 |
|
|
return insn or in front of the new return insn. */
|
| 464 |
|
|
if (crtl->epilogue_delay_list == NULL
|
| 465 |
|
|
&& HAVE_return)
|
| 466 |
|
|
{
|
| 467 |
|
|
/* The return we make may have delay slots too. */
|
| 468 |
|
|
rtx insn = gen_return ();
|
| 469 |
|
|
insn = emit_jump_insn (insn);
|
| 470 |
|
|
set_return_jump_label (insn);
|
| 471 |
|
|
emit_barrier ();
|
| 472 |
|
|
if (num_delay_slots (insn) > 0)
|
| 473 |
|
|
obstack_ptr_grow (&unfilled_slots_obstack, insn);
|
| 474 |
|
|
}
|
| 475 |
|
|
#endif
|
| 476 |
|
|
}
|
| 477 |
|
|
*plabel = label;
|
| 478 |
|
|
}
|
| 479 |
|
|
|
| 480 |
|
|
/* Show one additional use for this label so it won't go away until
|
| 481 |
|
|
we are done. */
|
| 482 |
|
|
++LABEL_NUSES (*plabel);
|
| 483 |
|
|
|
| 484 |
|
|
return *plabel;
|
| 485 |
|
|
}
|
| 486 |
|
|
|
| 487 |
|
|
/* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
|
| 488 |
|
|
the pattern of INSN with the SEQUENCE.
|
| 489 |
|
|
|
| 490 |
|
|
Chain the insns so that NEXT_INSN of each insn in the sequence points to
|
| 491 |
|
|
the next and NEXT_INSN of the last insn in the sequence points to
|
| 492 |
|
|
the first insn after the sequence. Similarly for PREV_INSN. This makes
|
| 493 |
|
|
it easier to scan all insns.
|
| 494 |
|
|
|
| 495 |
|
|
Returns the SEQUENCE that replaces INSN. */
|
| 496 |
|
|
|
| 497 |
|
|
static rtx
|
| 498 |
|
|
emit_delay_sequence (rtx insn, rtx list, int length)
|
| 499 |
|
|
{
|
| 500 |
|
|
int i = 1;
|
| 501 |
|
|
rtx li;
|
| 502 |
|
|
int had_barrier = 0;
|
| 503 |
|
|
|
| 504 |
|
|
/* Allocate the rtvec to hold the insns and the SEQUENCE. */
|
| 505 |
|
|
rtvec seqv = rtvec_alloc (length + 1);
|
| 506 |
|
|
rtx seq = gen_rtx_SEQUENCE (VOIDmode, seqv);
|
| 507 |
|
|
rtx seq_insn = make_insn_raw (seq);
|
| 508 |
|
|
rtx first = get_insns ();
|
| 509 |
|
|
rtx last = get_last_insn ();
|
| 510 |
|
|
|
| 511 |
|
|
/* Make a copy of the insn having delay slots. */
|
| 512 |
|
|
rtx delay_insn = copy_rtx (insn);
|
| 513 |
|
|
|
| 514 |
|
|
/* If INSN is followed by a BARRIER, delete the BARRIER since it will only
|
| 515 |
|
|
confuse further processing. Update LAST in case it was the last insn.
|
| 516 |
|
|
We will put the BARRIER back in later. */
|
| 517 |
|
|
if (NEXT_INSN (insn) && BARRIER_P (NEXT_INSN (insn)))
|
| 518 |
|
|
{
|
| 519 |
|
|
delete_related_insns (NEXT_INSN (insn));
|
| 520 |
|
|
last = get_last_insn ();
|
| 521 |
|
|
had_barrier = 1;
|
| 522 |
|
|
}
|
| 523 |
|
|
|
| 524 |
|
|
/* Splice our SEQUENCE into the insn stream where INSN used to be. */
|
| 525 |
|
|
NEXT_INSN (seq_insn) = NEXT_INSN (insn);
|
| 526 |
|
|
PREV_INSN (seq_insn) = PREV_INSN (insn);
|
| 527 |
|
|
|
| 528 |
|
|
if (insn != last)
|
| 529 |
|
|
PREV_INSN (NEXT_INSN (seq_insn)) = seq_insn;
|
| 530 |
|
|
|
| 531 |
|
|
if (insn != first)
|
| 532 |
|
|
NEXT_INSN (PREV_INSN (seq_insn)) = seq_insn;
|
| 533 |
|
|
|
| 534 |
|
|
/* Note the calls to set_new_first_and_last_insn must occur after
|
| 535 |
|
|
SEQ_INSN has been completely spliced into the insn stream.
|
| 536 |
|
|
|
| 537 |
|
|
Otherwise CUR_INSN_UID will get set to an incorrect value because
|
| 538 |
|
|
set_new_first_and_last_insn will not find SEQ_INSN in the chain. */
|
| 539 |
|
|
if (insn == last)
|
| 540 |
|
|
set_new_first_and_last_insn (first, seq_insn);
|
| 541 |
|
|
|
| 542 |
|
|
if (insn == first)
|
| 543 |
|
|
set_new_first_and_last_insn (seq_insn, last);
|
| 544 |
|
|
|
| 545 |
|
|
/* Build our SEQUENCE and rebuild the insn chain. */
|
| 546 |
|
|
XVECEXP (seq, 0, 0) = delay_insn;
|
| 547 |
|
|
INSN_DELETED_P (delay_insn) = 0;
|
| 548 |
|
|
PREV_INSN (delay_insn) = PREV_INSN (seq_insn);
|
| 549 |
|
|
|
| 550 |
|
|
INSN_LOCATOR (seq_insn) = INSN_LOCATOR (delay_insn);
|
| 551 |
|
|
|
| 552 |
|
|
for (li = list; li; li = XEXP (li, 1), i++)
|
| 553 |
|
|
{
|
| 554 |
|
|
rtx tem = XEXP (li, 0);
|
| 555 |
|
|
rtx note, next;
|
| 556 |
|
|
|
| 557 |
|
|
/* Show that this copy of the insn isn't deleted. */
|
| 558 |
|
|
INSN_DELETED_P (tem) = 0;
|
| 559 |
|
|
|
| 560 |
|
|
XVECEXP (seq, 0, i) = tem;
|
| 561 |
|
|
PREV_INSN (tem) = XVECEXP (seq, 0, i - 1);
|
| 562 |
|
|
NEXT_INSN (XVECEXP (seq, 0, i - 1)) = tem;
|
| 563 |
|
|
|
| 564 |
|
|
/* SPARC assembler, for instance, emit warning when debug info is output
|
| 565 |
|
|
into the delay slot. */
|
| 566 |
|
|
if (INSN_LOCATOR (tem) && !INSN_LOCATOR (seq_insn))
|
| 567 |
|
|
INSN_LOCATOR (seq_insn) = INSN_LOCATOR (tem);
|
| 568 |
|
|
INSN_LOCATOR (tem) = 0;
|
| 569 |
|
|
|
| 570 |
|
|
for (note = REG_NOTES (tem); note; note = next)
|
| 571 |
|
|
{
|
| 572 |
|
|
next = XEXP (note, 1);
|
| 573 |
|
|
switch (REG_NOTE_KIND (note))
|
| 574 |
|
|
{
|
| 575 |
|
|
case REG_DEAD:
|
| 576 |
|
|
/* Remove any REG_DEAD notes because we can't rely on them now
|
| 577 |
|
|
that the insn has been moved. */
|
| 578 |
|
|
remove_note (tem, note);
|
| 579 |
|
|
break;
|
| 580 |
|
|
|
| 581 |
|
|
case REG_LABEL_OPERAND:
|
| 582 |
|
|
case REG_LABEL_TARGET:
|
| 583 |
|
|
/* Keep the label reference count up to date. */
|
| 584 |
|
|
if (LABEL_P (XEXP (note, 0)))
|
| 585 |
|
|
LABEL_NUSES (XEXP (note, 0)) ++;
|
| 586 |
|
|
break;
|
| 587 |
|
|
|
| 588 |
|
|
default:
|
| 589 |
|
|
break;
|
| 590 |
|
|
}
|
| 591 |
|
|
}
|
| 592 |
|
|
}
|
| 593 |
|
|
|
| 594 |
|
|
NEXT_INSN (XVECEXP (seq, 0, length)) = NEXT_INSN (seq_insn);
|
| 595 |
|
|
|
| 596 |
|
|
/* If the previous insn is a SEQUENCE, update the NEXT_INSN pointer on the
|
| 597 |
|
|
last insn in that SEQUENCE to point to us. Similarly for the first
|
| 598 |
|
|
insn in the following insn if it is a SEQUENCE. */
|
| 599 |
|
|
|
| 600 |
|
|
if (PREV_INSN (seq_insn) && NONJUMP_INSN_P (PREV_INSN (seq_insn))
|
| 601 |
|
|
&& GET_CODE (PATTERN (PREV_INSN (seq_insn))) == SEQUENCE)
|
| 602 |
|
|
NEXT_INSN (XVECEXP (PATTERN (PREV_INSN (seq_insn)), 0,
|
| 603 |
|
|
XVECLEN (PATTERN (PREV_INSN (seq_insn)), 0) - 1))
|
| 604 |
|
|
= seq_insn;
|
| 605 |
|
|
|
| 606 |
|
|
if (NEXT_INSN (seq_insn) && NONJUMP_INSN_P (NEXT_INSN (seq_insn))
|
| 607 |
|
|
&& GET_CODE (PATTERN (NEXT_INSN (seq_insn))) == SEQUENCE)
|
| 608 |
|
|
PREV_INSN (XVECEXP (PATTERN (NEXT_INSN (seq_insn)), 0, 0)) = seq_insn;
|
| 609 |
|
|
|
| 610 |
|
|
/* If there used to be a BARRIER, put it back. */
|
| 611 |
|
|
if (had_barrier)
|
| 612 |
|
|
emit_barrier_after (seq_insn);
|
| 613 |
|
|
|
| 614 |
|
|
gcc_assert (i == length + 1);
|
| 615 |
|
|
|
| 616 |
|
|
return seq_insn;
|
| 617 |
|
|
}
|
| 618 |
|
|
|
| 619 |
|
|
/* Add INSN to DELAY_LIST and return the head of the new list. The list must
|
| 620 |
|
|
be in the order in which the insns are to be executed. */
|
| 621 |
|
|
|
| 622 |
|
|
static rtx
|
| 623 |
|
|
add_to_delay_list (rtx insn, rtx delay_list)
|
| 624 |
|
|
{
|
| 625 |
|
|
/* If we have an empty list, just make a new list element. If
|
| 626 |
|
|
INSN has its block number recorded, clear it since we may
|
| 627 |
|
|
be moving the insn to a new block. */
|
| 628 |
|
|
|
| 629 |
|
|
if (delay_list == 0)
|
| 630 |
|
|
{
|
| 631 |
|
|
clear_hashed_info_for_insn (insn);
|
| 632 |
|
|
return gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
|
| 633 |
|
|
}
|
| 634 |
|
|
|
| 635 |
|
|
/* Otherwise this must be an INSN_LIST. Add INSN to the end of the
|
| 636 |
|
|
list. */
|
| 637 |
|
|
XEXP (delay_list, 1) = add_to_delay_list (insn, XEXP (delay_list, 1));
|
| 638 |
|
|
|
| 639 |
|
|
return delay_list;
|
| 640 |
|
|
}
|
| 641 |
|
|
|
| 642 |
|
|
/* Delete INSN from the delay slot of the insn that it is in, which may
|
| 643 |
|
|
produce an insn with no delay slots. Return the new insn. */
|
| 644 |
|
|
|
| 645 |
|
|
static rtx
|
| 646 |
|
|
delete_from_delay_slot (rtx insn)
|
| 647 |
|
|
{
|
| 648 |
|
|
rtx trial, seq_insn, seq, prev;
|
| 649 |
|
|
rtx delay_list = 0;
|
| 650 |
|
|
int i;
|
| 651 |
|
|
int had_barrier = 0;
|
| 652 |
|
|
|
| 653 |
|
|
/* We first must find the insn containing the SEQUENCE with INSN in its
|
| 654 |
|
|
delay slot. Do this by finding an insn, TRIAL, where
|
| 655 |
|
|
PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
|
| 656 |
|
|
|
| 657 |
|
|
for (trial = insn;
|
| 658 |
|
|
PREV_INSN (NEXT_INSN (trial)) == trial;
|
| 659 |
|
|
trial = NEXT_INSN (trial))
|
| 660 |
|
|
;
|
| 661 |
|
|
|
| 662 |
|
|
seq_insn = PREV_INSN (NEXT_INSN (trial));
|
| 663 |
|
|
seq = PATTERN (seq_insn);
|
| 664 |
|
|
|
| 665 |
|
|
if (NEXT_INSN (seq_insn) && BARRIER_P (NEXT_INSN (seq_insn)))
|
| 666 |
|
|
had_barrier = 1;
|
| 667 |
|
|
|
| 668 |
|
|
/* Create a delay list consisting of all the insns other than the one
|
| 669 |
|
|
we are deleting (unless we were the only one). */
|
| 670 |
|
|
if (XVECLEN (seq, 0) > 2)
|
| 671 |
|
|
for (i = 1; i < XVECLEN (seq, 0); i++)
|
| 672 |
|
|
if (XVECEXP (seq, 0, i) != insn)
|
| 673 |
|
|
delay_list = add_to_delay_list (XVECEXP (seq, 0, i), delay_list);
|
| 674 |
|
|
|
| 675 |
|
|
/* Delete the old SEQUENCE, re-emit the insn that used to have the delay
|
| 676 |
|
|
list, and rebuild the delay list if non-empty. */
|
| 677 |
|
|
prev = PREV_INSN (seq_insn);
|
| 678 |
|
|
trial = XVECEXP (seq, 0, 0);
|
| 679 |
|
|
delete_related_insns (seq_insn);
|
| 680 |
|
|
add_insn_after (trial, prev, NULL);
|
| 681 |
|
|
|
| 682 |
|
|
/* If there was a barrier after the old SEQUENCE, remit it. */
|
| 683 |
|
|
if (had_barrier)
|
| 684 |
|
|
emit_barrier_after (trial);
|
| 685 |
|
|
|
| 686 |
|
|
/* If there are any delay insns, remit them. Otherwise clear the
|
| 687 |
|
|
annul flag. */
|
| 688 |
|
|
if (delay_list)
|
| 689 |
|
|
trial = emit_delay_sequence (trial, delay_list, XVECLEN (seq, 0) - 2);
|
| 690 |
|
|
else if (JUMP_P (trial))
|
| 691 |
|
|
INSN_ANNULLED_BRANCH_P (trial) = 0;
|
| 692 |
|
|
|
| 693 |
|
|
INSN_FROM_TARGET_P (insn) = 0;
|
| 694 |
|
|
|
| 695 |
|
|
/* Show we need to fill this insn again. */
|
| 696 |
|
|
obstack_ptr_grow (&unfilled_slots_obstack, trial);
|
| 697 |
|
|
|
| 698 |
|
|
return trial;
|
| 699 |
|
|
}
|
| 700 |
|
|
|
| 701 |
|
|
/* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down
|
| 702 |
|
|
the insn that sets CC0 for it and delete it too. */
|
| 703 |
|
|
|
| 704 |
|
|
static void
|
| 705 |
|
|
delete_scheduled_jump (rtx insn)
|
| 706 |
|
|
{
|
| 707 |
|
|
/* Delete the insn that sets cc0 for us. On machines without cc0, we could
|
| 708 |
|
|
delete the insn that sets the condition code, but it is hard to find it.
|
| 709 |
|
|
Since this case is rare anyway, don't bother trying; there would likely
|
| 710 |
|
|
be other insns that became dead anyway, which we wouldn't know to
|
| 711 |
|
|
delete. */
|
| 712 |
|
|
|
| 713 |
|
|
#ifdef HAVE_cc0
|
| 714 |
|
|
if (reg_mentioned_p (cc0_rtx, insn))
|
| 715 |
|
|
{
|
| 716 |
|
|
rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
|
| 717 |
|
|
|
| 718 |
|
|
/* If a reg-note was found, it points to an insn to set CC0. This
|
| 719 |
|
|
insn is in the delay list of some other insn. So delete it from
|
| 720 |
|
|
the delay list it was in. */
|
| 721 |
|
|
if (note)
|
| 722 |
|
|
{
|
| 723 |
|
|
if (! FIND_REG_INC_NOTE (XEXP (note, 0), NULL_RTX)
|
| 724 |
|
|
&& sets_cc0_p (PATTERN (XEXP (note, 0))) == 1)
|
| 725 |
|
|
delete_from_delay_slot (XEXP (note, 0));
|
| 726 |
|
|
}
|
| 727 |
|
|
else
|
| 728 |
|
|
{
|
| 729 |
|
|
/* The insn setting CC0 is our previous insn, but it may be in
|
| 730 |
|
|
a delay slot. It will be the last insn in the delay slot, if
|
| 731 |
|
|
it is. */
|
| 732 |
|
|
rtx trial = previous_insn (insn);
|
| 733 |
|
|
if (NOTE_P (trial))
|
| 734 |
|
|
trial = prev_nonnote_insn (trial);
|
| 735 |
|
|
if (sets_cc0_p (PATTERN (trial)) != 1
|
| 736 |
|
|
|| FIND_REG_INC_NOTE (trial, NULL_RTX))
|
| 737 |
|
|
return;
|
| 738 |
|
|
if (PREV_INSN (NEXT_INSN (trial)) == trial)
|
| 739 |
|
|
delete_related_insns (trial);
|
| 740 |
|
|
else
|
| 741 |
|
|
delete_from_delay_slot (trial);
|
| 742 |
|
|
}
|
| 743 |
|
|
}
|
| 744 |
|
|
#endif
|
| 745 |
|
|
|
| 746 |
|
|
delete_related_insns (insn);
|
| 747 |
|
|
}
|
| 748 |
|
|
|
| 749 |
|
|
/* Counters for delay-slot filling. */
|
| 750 |
|
|
|
| 751 |
|
|
#define NUM_REORG_FUNCTIONS 2
|
| 752 |
|
|
#define MAX_DELAY_HISTOGRAM 3
|
| 753 |
|
|
#define MAX_REORG_PASSES 2
|
| 754 |
|
|
|
| 755 |
|
|
static int num_insns_needing_delays[NUM_REORG_FUNCTIONS][MAX_REORG_PASSES];
|
| 756 |
|
|
|
| 757 |
|
|
static int num_filled_delays[NUM_REORG_FUNCTIONS][MAX_DELAY_HISTOGRAM+1][MAX_REORG_PASSES];
|
| 758 |
|
|
|
| 759 |
|
|
static int reorg_pass_number;
|
| 760 |
|
|
|
| 761 |
|
|
static void
|
| 762 |
|
|
note_delay_statistics (int slots_filled, int index)
|
| 763 |
|
|
{
|
| 764 |
|
|
num_insns_needing_delays[index][reorg_pass_number]++;
|
| 765 |
|
|
if (slots_filled > MAX_DELAY_HISTOGRAM)
|
| 766 |
|
|
slots_filled = MAX_DELAY_HISTOGRAM;
|
| 767 |
|
|
num_filled_delays[index][slots_filled][reorg_pass_number]++;
|
| 768 |
|
|
}
|
| 769 |
|
|
|
| 770 |
|
|
#if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
|
| 771 |
|
|
|
| 772 |
|
|
/* Optimize the following cases:
|
| 773 |
|
|
|
| 774 |
|
|
1. When a conditional branch skips over only one instruction,
|
| 775 |
|
|
use an annulling branch and put that insn in the delay slot.
|
| 776 |
|
|
Use either a branch that annuls when the condition if true or
|
| 777 |
|
|
invert the test with a branch that annuls when the condition is
|
| 778 |
|
|
false. This saves insns, since otherwise we must copy an insn
|
| 779 |
|
|
from the L1 target.
|
| 780 |
|
|
|
| 781 |
|
|
(orig) (skip) (otherwise)
|
| 782 |
|
|
Bcc.n L1 Bcc',a L1 Bcc,a L1'
|
| 783 |
|
|
insn insn insn2
|
| 784 |
|
|
L1: L1: L1:
|
| 785 |
|
|
insn2 insn2 insn2
|
| 786 |
|
|
insn3 insn3 L1':
|
| 787 |
|
|
insn3
|
| 788 |
|
|
|
| 789 |
|
|
2. When a conditional branch skips over only one instruction,
|
| 790 |
|
|
and after that, it unconditionally branches somewhere else,
|
| 791 |
|
|
perform the similar optimization. This saves executing the
|
| 792 |
|
|
second branch in the case where the inverted condition is true.
|
| 793 |
|
|
|
| 794 |
|
|
Bcc.n L1 Bcc',a L2
|
| 795 |
|
|
insn insn
|
| 796 |
|
|
L1: L1:
|
| 797 |
|
|
Bra L2 Bra L2
|
| 798 |
|
|
|
| 799 |
|
|
INSN is a JUMP_INSN.
|
| 800 |
|
|
|
| 801 |
|
|
This should be expanded to skip over N insns, where N is the number
|
| 802 |
|
|
of delay slots required. */
|
| 803 |
|
|
|
| 804 |
|
|
static rtx
|
| 805 |
|
|
optimize_skip (rtx insn)
|
| 806 |
|
|
{
|
| 807 |
|
|
rtx trial = next_nonnote_insn (insn);
|
| 808 |
|
|
rtx next_trial = next_active_insn (trial);
|
| 809 |
|
|
rtx delay_list = 0;
|
| 810 |
|
|
int flags;
|
| 811 |
|
|
|
| 812 |
|
|
flags = get_jump_flags (insn, JUMP_LABEL (insn));
|
| 813 |
|
|
|
| 814 |
|
|
if (trial == 0
|
| 815 |
|
|
|| !NONJUMP_INSN_P (trial)
|
| 816 |
|
|
|| GET_CODE (PATTERN (trial)) == SEQUENCE
|
| 817 |
|
|
|| recog_memoized (trial) < 0
|
| 818 |
|
|
|| (! eligible_for_annul_false (insn, 0, trial, flags)
|
| 819 |
|
|
&& ! eligible_for_annul_true (insn, 0, trial, flags))
|
| 820 |
|
|
|| can_throw_internal (trial))
|
| 821 |
|
|
return 0;
|
| 822 |
|
|
|
| 823 |
|
|
/* There are two cases where we are just executing one insn (we assume
|
| 824 |
|
|
here that a branch requires only one insn; this should be generalized
|
| 825 |
|
|
at some point): Where the branch goes around a single insn or where
|
| 826 |
|
|
we have one insn followed by a branch to the same label we branch to.
|
| 827 |
|
|
In both of these cases, inverting the jump and annulling the delay
|
| 828 |
|
|
slot give the same effect in fewer insns. */
|
| 829 |
|
|
if ((next_trial == next_active_insn (JUMP_LABEL (insn))
|
| 830 |
|
|
&& ! (next_trial == 0 && crtl->epilogue_delay_list != 0))
|
| 831 |
|
|
|| (next_trial != 0
|
| 832 |
|
|
&& simplejump_or_return_p (next_trial)
|
| 833 |
|
|
&& JUMP_LABEL (insn) == JUMP_LABEL (next_trial)))
|
| 834 |
|
|
{
|
| 835 |
|
|
if (eligible_for_annul_false (insn, 0, trial, flags))
|
| 836 |
|
|
{
|
| 837 |
|
|
if (invert_jump (insn, JUMP_LABEL (insn), 1))
|
| 838 |
|
|
INSN_FROM_TARGET_P (trial) = 1;
|
| 839 |
|
|
else if (! eligible_for_annul_true (insn, 0, trial, flags))
|
| 840 |
|
|
return 0;
|
| 841 |
|
|
}
|
| 842 |
|
|
|
| 843 |
|
|
delay_list = add_to_delay_list (trial, NULL_RTX);
|
| 844 |
|
|
next_trial = next_active_insn (trial);
|
| 845 |
|
|
update_block (trial, trial);
|
| 846 |
|
|
delete_related_insns (trial);
|
| 847 |
|
|
|
| 848 |
|
|
/* Also, if we are targeting an unconditional
|
| 849 |
|
|
branch, thread our jump to the target of that branch. Don't
|
| 850 |
|
|
change this into a RETURN here, because it may not accept what
|
| 851 |
|
|
we have in the delay slot. We'll fix this up later. */
|
| 852 |
|
|
if (next_trial && simplejump_or_return_p (next_trial))
|
| 853 |
|
|
{
|
| 854 |
|
|
rtx target_label = JUMP_LABEL (next_trial);
|
| 855 |
|
|
if (ANY_RETURN_P (target_label))
|
| 856 |
|
|
target_label = find_end_label (target_label);
|
| 857 |
|
|
|
| 858 |
|
|
if (target_label)
|
| 859 |
|
|
{
|
| 860 |
|
|
/* Recompute the flags based on TARGET_LABEL since threading
|
| 861 |
|
|
the jump to TARGET_LABEL may change the direction of the
|
| 862 |
|
|
jump (which may change the circumstances in which the
|
| 863 |
|
|
delay slot is nullified). */
|
| 864 |
|
|
flags = get_jump_flags (insn, target_label);
|
| 865 |
|
|
if (eligible_for_annul_true (insn, 0, trial, flags))
|
| 866 |
|
|
reorg_redirect_jump (insn, target_label);
|
| 867 |
|
|
}
|
| 868 |
|
|
}
|
| 869 |
|
|
|
| 870 |
|
|
INSN_ANNULLED_BRANCH_P (insn) = 1;
|
| 871 |
|
|
}
|
| 872 |
|
|
|
| 873 |
|
|
return delay_list;
|
| 874 |
|
|
}
|
| 875 |
|
|
#endif
|
| 876 |
|
|
|
| 877 |
|
|
/* Encode and return branch direction and prediction information for
|
| 878 |
|
|
INSN assuming it will jump to LABEL.
|
| 879 |
|
|
|
| 880 |
|
|
Non conditional branches return no direction information and
|
| 881 |
|
|
are predicted as very likely taken. */
|
| 882 |
|
|
|
| 883 |
|
|
static int
|
| 884 |
|
|
get_jump_flags (rtx insn, rtx label)
|
| 885 |
|
|
{
|
| 886 |
|
|
int flags;
|
| 887 |
|
|
|
| 888 |
|
|
/* get_jump_flags can be passed any insn with delay slots, these may
|
| 889 |
|
|
be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
|
| 890 |
|
|
direction information, and only if they are conditional jumps.
|
| 891 |
|
|
|
| 892 |
|
|
If LABEL is a return, then there is no way to determine the branch
|
| 893 |
|
|
direction. */
|
| 894 |
|
|
if (JUMP_P (insn)
|
| 895 |
|
|
&& (condjump_p (insn) || condjump_in_parallel_p (insn))
|
| 896 |
|
|
&& !ANY_RETURN_P (label)
|
| 897 |
|
|
&& INSN_UID (insn) <= max_uid
|
| 898 |
|
|
&& INSN_UID (label) <= max_uid)
|
| 899 |
|
|
flags
|
| 900 |
|
|
= (uid_to_ruid[INSN_UID (label)] > uid_to_ruid[INSN_UID (insn)])
|
| 901 |
|
|
? ATTR_FLAG_forward : ATTR_FLAG_backward;
|
| 902 |
|
|
/* No valid direction information. */
|
| 903 |
|
|
else
|
| 904 |
|
|
flags = 0;
|
| 905 |
|
|
|
| 906 |
|
|
/* If insn is a conditional branch call mostly_true_jump to get
|
| 907 |
|
|
determine the branch prediction.
|
| 908 |
|
|
|
| 909 |
|
|
Non conditional branches are predicted as very likely taken. */
|
| 910 |
|
|
if (JUMP_P (insn)
|
| 911 |
|
|
&& (condjump_p (insn) || condjump_in_parallel_p (insn)))
|
| 912 |
|
|
{
|
| 913 |
|
|
int prediction;
|
| 914 |
|
|
|
| 915 |
|
|
prediction = mostly_true_jump (insn, get_branch_condition (insn, label));
|
| 916 |
|
|
switch (prediction)
|
| 917 |
|
|
{
|
| 918 |
|
|
case 2:
|
| 919 |
|
|
flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
|
| 920 |
|
|
break;
|
| 921 |
|
|
case 1:
|
| 922 |
|
|
flags |= ATTR_FLAG_likely;
|
| 923 |
|
|
break;
|
| 924 |
|
|
case 0:
|
| 925 |
|
|
flags |= ATTR_FLAG_unlikely;
|
| 926 |
|
|
break;
|
| 927 |
|
|
case -1:
|
| 928 |
|
|
flags |= (ATTR_FLAG_very_unlikely | ATTR_FLAG_unlikely);
|
| 929 |
|
|
break;
|
| 930 |
|
|
|
| 931 |
|
|
default:
|
| 932 |
|
|
gcc_unreachable ();
|
| 933 |
|
|
}
|
| 934 |
|
|
}
|
| 935 |
|
|
else
|
| 936 |
|
|
flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
|
| 937 |
|
|
|
| 938 |
|
|
return flags;
|
| 939 |
|
|
}
|
| 940 |
|
|
|
| 941 |
|
|
/* Return 1 if INSN is a destination that will be branched to rarely (the
|
| 942 |
|
|
return point of a function); return 2 if DEST will be branched to very
|
| 943 |
|
|
rarely (a call to a function that doesn't return). Otherwise,
|
| 944 |
|
|
return 0. */
|
| 945 |
|
|
|
| 946 |
|
|
static int
|
| 947 |
|
|
rare_destination (rtx insn)
|
| 948 |
|
|
{
|
| 949 |
|
|
int jump_count = 0;
|
| 950 |
|
|
rtx next;
|
| 951 |
|
|
|
| 952 |
|
|
for (; insn && !ANY_RETURN_P (insn); insn = next)
|
| 953 |
|
|
{
|
| 954 |
|
|
if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
|
| 955 |
|
|
insn = XVECEXP (PATTERN (insn), 0, 0);
|
| 956 |
|
|
|
| 957 |
|
|
next = NEXT_INSN (insn);
|
| 958 |
|
|
|
| 959 |
|
|
switch (GET_CODE (insn))
|
| 960 |
|
|
{
|
| 961 |
|
|
case CODE_LABEL:
|
| 962 |
|
|
return 0;
|
| 963 |
|
|
case BARRIER:
|
| 964 |
|
|
/* A BARRIER can either be after a JUMP_INSN or a CALL_INSN. We
|
| 965 |
|
|
don't scan past JUMP_INSNs, so any barrier we find here must
|
| 966 |
|
|
have been after a CALL_INSN and hence mean the call doesn't
|
| 967 |
|
|
return. */
|
| 968 |
|
|
return 2;
|
| 969 |
|
|
case JUMP_INSN:
|
| 970 |
|
|
if (ANY_RETURN_P (PATTERN (insn)))
|
| 971 |
|
|
return 1;
|
| 972 |
|
|
else if (simplejump_p (insn)
|
| 973 |
|
|
&& jump_count++ < 10)
|
| 974 |
|
|
next = JUMP_LABEL (insn);
|
| 975 |
|
|
else
|
| 976 |
|
|
return 0;
|
| 977 |
|
|
|
| 978 |
|
|
default:
|
| 979 |
|
|
break;
|
| 980 |
|
|
}
|
| 981 |
|
|
}
|
| 982 |
|
|
|
| 983 |
|
|
/* If we got here it means we hit the end of the function. So this
|
| 984 |
|
|
is an unlikely destination. */
|
| 985 |
|
|
|
| 986 |
|
|
return 1;
|
| 987 |
|
|
}
|
| 988 |
|
|
|
| 989 |
|
|
/* Return truth value of the statement that this branch
|
| 990 |
|
|
is mostly taken. If we think that the branch is extremely likely
|
| 991 |
|
|
to be taken, we return 2. If the branch is slightly more likely to be
|
| 992 |
|
|
taken, return 1. If the branch is slightly less likely to be taken,
|
| 993 |
|
|
return 0 and if the branch is highly unlikely to be taken, return -1.
|
| 994 |
|
|
|
| 995 |
|
|
CONDITION, if nonzero, is the condition that JUMP_INSN is testing. */
|
| 996 |
|
|
|
| 997 |
|
|
static int
|
| 998 |
|
|
mostly_true_jump (rtx jump_insn, rtx condition)
|
| 999 |
|
|
{
|
| 1000 |
|
|
rtx target_label = JUMP_LABEL (jump_insn);
|
| 1001 |
|
|
rtx note;
|
| 1002 |
|
|
int rare_dest, rare_fallthrough;
|
| 1003 |
|
|
|
| 1004 |
|
|
/* If branch probabilities are available, then use that number since it
|
| 1005 |
|
|
always gives a correct answer. */
|
| 1006 |
|
|
note = find_reg_note (jump_insn, REG_BR_PROB, 0);
|
| 1007 |
|
|
if (note)
|
| 1008 |
|
|
{
|
| 1009 |
|
|
int prob = INTVAL (XEXP (note, 0));
|
| 1010 |
|
|
|
| 1011 |
|
|
if (prob >= REG_BR_PROB_BASE * 9 / 10)
|
| 1012 |
|
|
return 2;
|
| 1013 |
|
|
else if (prob >= REG_BR_PROB_BASE / 2)
|
| 1014 |
|
|
return 1;
|
| 1015 |
|
|
else if (prob >= REG_BR_PROB_BASE / 10)
|
| 1016 |
|
|
return 0;
|
| 1017 |
|
|
else
|
| 1018 |
|
|
return -1;
|
| 1019 |
|
|
}
|
| 1020 |
|
|
|
| 1021 |
|
|
/* Look at the relative rarities of the fallthrough and destination. If
|
| 1022 |
|
|
they differ, we can predict the branch that way. */
|
| 1023 |
|
|
rare_dest = rare_destination (target_label);
|
| 1024 |
|
|
rare_fallthrough = rare_destination (NEXT_INSN (jump_insn));
|
| 1025 |
|
|
|
| 1026 |
|
|
switch (rare_fallthrough - rare_dest)
|
| 1027 |
|
|
{
|
| 1028 |
|
|
case -2:
|
| 1029 |
|
|
return -1;
|
| 1030 |
|
|
case -1:
|
| 1031 |
|
|
return 0;
|
| 1032 |
|
|
case 0:
|
| 1033 |
|
|
break;
|
| 1034 |
|
|
case 1:
|
| 1035 |
|
|
return 1;
|
| 1036 |
|
|
case 2:
|
| 1037 |
|
|
return 2;
|
| 1038 |
|
|
}
|
| 1039 |
|
|
|
| 1040 |
|
|
/* If we couldn't figure out what this jump was, assume it won't be
|
| 1041 |
|
|
taken. This should be rare. */
|
| 1042 |
|
|
if (condition == 0)
|
| 1043 |
|
|
return 0;
|
| 1044 |
|
|
|
| 1045 |
|
|
/* Predict backward branches usually take, forward branches usually not. If
|
| 1046 |
|
|
we don't know whether this is forward or backward, assume the branch
|
| 1047 |
|
|
will be taken, since most are. */
|
| 1048 |
|
|
return (ANY_RETURN_P (target_label) || INSN_UID (jump_insn) > max_uid
|
| 1049 |
|
|
|| INSN_UID (target_label) > max_uid
|
| 1050 |
|
|
|| (uid_to_ruid[INSN_UID (jump_insn)]
|
| 1051 |
|
|
> uid_to_ruid[INSN_UID (target_label)]));
|
| 1052 |
|
|
}
|
| 1053 |
|
|
|
| 1054 |
|
|
/* Return the condition under which INSN will branch to TARGET. If TARGET
|
| 1055 |
|
|
is zero, return the condition under which INSN will return. If INSN is
|
| 1056 |
|
|
an unconditional branch, return const_true_rtx. If INSN isn't a simple
|
| 1057 |
|
|
type of jump, or it doesn't go to TARGET, return 0. */
|
| 1058 |
|
|
|
| 1059 |
|
|
static rtx
|
| 1060 |
|
|
get_branch_condition (rtx insn, rtx target)
|
| 1061 |
|
|
{
|
| 1062 |
|
|
rtx pat = PATTERN (insn);
|
| 1063 |
|
|
rtx src;
|
| 1064 |
|
|
|
| 1065 |
|
|
if (condjump_in_parallel_p (insn))
|
| 1066 |
|
|
pat = XVECEXP (pat, 0, 0);
|
| 1067 |
|
|
|
| 1068 |
|
|
if (ANY_RETURN_P (pat))
|
| 1069 |
|
|
return pat == target ? const_true_rtx : 0;
|
| 1070 |
|
|
|
| 1071 |
|
|
if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx)
|
| 1072 |
|
|
return 0;
|
| 1073 |
|
|
|
| 1074 |
|
|
src = SET_SRC (pat);
|
| 1075 |
|
|
if (GET_CODE (src) == LABEL_REF && XEXP (src, 0) == target)
|
| 1076 |
|
|
return const_true_rtx;
|
| 1077 |
|
|
|
| 1078 |
|
|
else if (GET_CODE (src) == IF_THEN_ELSE
|
| 1079 |
|
|
&& XEXP (src, 2) == pc_rtx
|
| 1080 |
|
|
&& GET_CODE (XEXP (src, 1)) == LABEL_REF
|
| 1081 |
|
|
&& XEXP (XEXP (src, 1), 0) == target)
|
| 1082 |
|
|
return XEXP (src, 0);
|
| 1083 |
|
|
|
| 1084 |
|
|
else if (GET_CODE (src) == IF_THEN_ELSE
|
| 1085 |
|
|
&& XEXP (src, 1) == pc_rtx
|
| 1086 |
|
|
&& GET_CODE (XEXP (src, 2)) == LABEL_REF
|
| 1087 |
|
|
&& XEXP (XEXP (src, 2), 0) == target)
|
| 1088 |
|
|
{
|
| 1089 |
|
|
enum rtx_code rev;
|
| 1090 |
|
|
rev = reversed_comparison_code (XEXP (src, 0), insn);
|
| 1091 |
|
|
if (rev != UNKNOWN)
|
| 1092 |
|
|
return gen_rtx_fmt_ee (rev, GET_MODE (XEXP (src, 0)),
|
| 1093 |
|
|
XEXP (XEXP (src, 0), 0),
|
| 1094 |
|
|
XEXP (XEXP (src, 0), 1));
|
| 1095 |
|
|
}
|
| 1096 |
|
|
|
| 1097 |
|
|
return 0;
|
| 1098 |
|
|
}
|
| 1099 |
|
|
|
| 1100 |
|
|
/* Return nonzero if CONDITION is more strict than the condition of
|
| 1101 |
|
|
INSN, i.e., if INSN will always branch if CONDITION is true. */
|
| 1102 |
|
|
|
| 1103 |
|
|
static int
|
| 1104 |
|
|
condition_dominates_p (rtx condition, rtx insn)
|
| 1105 |
|
|
{
|
| 1106 |
|
|
rtx other_condition = get_branch_condition (insn, JUMP_LABEL (insn));
|
| 1107 |
|
|
enum rtx_code code = GET_CODE (condition);
|
| 1108 |
|
|
enum rtx_code other_code;
|
| 1109 |
|
|
|
| 1110 |
|
|
if (rtx_equal_p (condition, other_condition)
|
| 1111 |
|
|
|| other_condition == const_true_rtx)
|
| 1112 |
|
|
return 1;
|
| 1113 |
|
|
|
| 1114 |
|
|
else if (condition == const_true_rtx || other_condition == 0)
|
| 1115 |
|
|
return 0;
|
| 1116 |
|
|
|
| 1117 |
|
|
other_code = GET_CODE (other_condition);
|
| 1118 |
|
|
if (GET_RTX_LENGTH (code) != 2 || GET_RTX_LENGTH (other_code) != 2
|
| 1119 |
|
|
|| ! rtx_equal_p (XEXP (condition, 0), XEXP (other_condition, 0))
|
| 1120 |
|
|
|| ! rtx_equal_p (XEXP (condition, 1), XEXP (other_condition, 1)))
|
| 1121 |
|
|
return 0;
|
| 1122 |
|
|
|
| 1123 |
|
|
return comparison_dominates_p (code, other_code);
|
| 1124 |
|
|
}
|
| 1125 |
|
|
|
| 1126 |
|
|
/* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
|
| 1127 |
|
|
any insns already in the delay slot of JUMP. */
|
| 1128 |
|
|
|
| 1129 |
|
|
static int
|
| 1130 |
|
|
redirect_with_delay_slots_safe_p (rtx jump, rtx newlabel, rtx seq)
|
| 1131 |
|
|
{
|
| 1132 |
|
|
int flags, i;
|
| 1133 |
|
|
rtx pat = PATTERN (seq);
|
| 1134 |
|
|
|
| 1135 |
|
|
/* Make sure all the delay slots of this jump would still
|
| 1136 |
|
|
be valid after threading the jump. If they are still
|
| 1137 |
|
|
valid, then return nonzero. */
|
| 1138 |
|
|
|
| 1139 |
|
|
flags = get_jump_flags (jump, newlabel);
|
| 1140 |
|
|
for (i = 1; i < XVECLEN (pat, 0); i++)
|
| 1141 |
|
|
if (! (
|
| 1142 |
|
|
#ifdef ANNUL_IFFALSE_SLOTS
|
| 1143 |
|
|
(INSN_ANNULLED_BRANCH_P (jump)
|
| 1144 |
|
|
&& INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
|
| 1145 |
|
|
? eligible_for_annul_false (jump, i - 1,
|
| 1146 |
|
|
XVECEXP (pat, 0, i), flags) :
|
| 1147 |
|
|
#endif
|
| 1148 |
|
|
#ifdef ANNUL_IFTRUE_SLOTS
|
| 1149 |
|
|
(INSN_ANNULLED_BRANCH_P (jump)
|
| 1150 |
|
|
&& ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
|
| 1151 |
|
|
? eligible_for_annul_true (jump, i - 1,
|
| 1152 |
|
|
XVECEXP (pat, 0, i), flags) :
|
| 1153 |
|
|
#endif
|
| 1154 |
|
|
eligible_for_delay (jump, i - 1, XVECEXP (pat, 0, i), flags)))
|
| 1155 |
|
|
break;
|
| 1156 |
|
|
|
| 1157 |
|
|
return (i == XVECLEN (pat, 0));
|
| 1158 |
|
|
}
|
| 1159 |
|
|
|
| 1160 |
|
|
/* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
|
| 1161 |
|
|
any insns we wish to place in the delay slot of JUMP. */
|
| 1162 |
|
|
|
| 1163 |
|
|
static int
|
| 1164 |
|
|
redirect_with_delay_list_safe_p (rtx jump, rtx newlabel, rtx delay_list)
|
| 1165 |
|
|
{
|
| 1166 |
|
|
int flags, i;
|
| 1167 |
|
|
rtx li;
|
| 1168 |
|
|
|
| 1169 |
|
|
/* Make sure all the insns in DELAY_LIST would still be
|
| 1170 |
|
|
valid after threading the jump. If they are still
|
| 1171 |
|
|
valid, then return nonzero. */
|
| 1172 |
|
|
|
| 1173 |
|
|
flags = get_jump_flags (jump, newlabel);
|
| 1174 |
|
|
for (li = delay_list, i = 0; li; li = XEXP (li, 1), i++)
|
| 1175 |
|
|
if (! (
|
| 1176 |
|
|
#ifdef ANNUL_IFFALSE_SLOTS
|
| 1177 |
|
|
(INSN_ANNULLED_BRANCH_P (jump)
|
| 1178 |
|
|
&& INSN_FROM_TARGET_P (XEXP (li, 0)))
|
| 1179 |
|
|
? eligible_for_annul_false (jump, i, XEXP (li, 0), flags) :
|
| 1180 |
|
|
#endif
|
| 1181 |
|
|
#ifdef ANNUL_IFTRUE_SLOTS
|
| 1182 |
|
|
(INSN_ANNULLED_BRANCH_P (jump)
|
| 1183 |
|
|
&& ! INSN_FROM_TARGET_P (XEXP (li, 0)))
|
| 1184 |
|
|
? eligible_for_annul_true (jump, i, XEXP (li, 0), flags) :
|
| 1185 |
|
|
#endif
|
| 1186 |
|
|
eligible_for_delay (jump, i, XEXP (li, 0), flags)))
|
| 1187 |
|
|
break;
|
| 1188 |
|
|
|
| 1189 |
|
|
return (li == NULL);
|
| 1190 |
|
|
}
|
| 1191 |
|
|
|
| 1192 |
|
|
/* DELAY_LIST is a list of insns that have already been placed into delay
|
| 1193 |
|
|
slots. See if all of them have the same annulling status as ANNUL_TRUE_P.
|
| 1194 |
|
|
If not, return 0; otherwise return 1. */
|
| 1195 |
|
|
|
| 1196 |
|
|
static int
|
| 1197 |
|
|
check_annul_list_true_false (int annul_true_p, rtx delay_list)
|
| 1198 |
|
|
{
|
| 1199 |
|
|
rtx temp;
|
| 1200 |
|
|
|
| 1201 |
|
|
if (delay_list)
|
| 1202 |
|
|
{
|
| 1203 |
|
|
for (temp = delay_list; temp; temp = XEXP (temp, 1))
|
| 1204 |
|
|
{
|
| 1205 |
|
|
rtx trial = XEXP (temp, 0);
|
| 1206 |
|
|
|
| 1207 |
|
|
if ((annul_true_p && INSN_FROM_TARGET_P (trial))
|
| 1208 |
|
|
|| (!annul_true_p && !INSN_FROM_TARGET_P (trial)))
|
| 1209 |
|
|
return 0;
|
| 1210 |
|
|
}
|
| 1211 |
|
|
}
|
| 1212 |
|
|
|
| 1213 |
|
|
return 1;
|
| 1214 |
|
|
}
|
| 1215 |
|
|
|
| 1216 |
|
|
/* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
|
| 1217 |
|
|
the condition tested by INSN is CONDITION and the resources shown in
|
| 1218 |
|
|
OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
|
| 1219 |
|
|
from SEQ's delay list, in addition to whatever insns it may execute
|
| 1220 |
|
|
(in DELAY_LIST). SETS and NEEDED are denote resources already set and
|
| 1221 |
|
|
needed while searching for delay slot insns. Return the concatenated
|
| 1222 |
|
|
delay list if possible, otherwise, return 0.
|
| 1223 |
|
|
|
| 1224 |
|
|
SLOTS_TO_FILL is the total number of slots required by INSN, and
|
| 1225 |
|
|
PSLOTS_FILLED points to the number filled so far (also the number of
|
| 1226 |
|
|
insns in DELAY_LIST). It is updated with the number that have been
|
| 1227 |
|
|
filled from the SEQUENCE, if any.
|
| 1228 |
|
|
|
| 1229 |
|
|
PANNUL_P points to a nonzero value if we already know that we need
|
| 1230 |
|
|
to annul INSN. If this routine determines that annulling is needed,
|
| 1231 |
|
|
it may set that value nonzero.
|
| 1232 |
|
|
|
| 1233 |
|
|
PNEW_THREAD points to a location that is to receive the place at which
|
| 1234 |
|
|
execution should continue. */
|
| 1235 |
|
|
|
| 1236 |
|
|
static rtx
|
| 1237 |
|
|
steal_delay_list_from_target (rtx insn, rtx condition, rtx seq,
|
| 1238 |
|
|
rtx delay_list, struct resources *sets,
|
| 1239 |
|
|
struct resources *needed,
|
| 1240 |
|
|
struct resources *other_needed,
|
| 1241 |
|
|
int slots_to_fill, int *pslots_filled,
|
| 1242 |
|
|
int *pannul_p, rtx *pnew_thread)
|
| 1243 |
|
|
{
|
| 1244 |
|
|
rtx temp;
|
| 1245 |
|
|
int slots_remaining = slots_to_fill - *pslots_filled;
|
| 1246 |
|
|
int total_slots_filled = *pslots_filled;
|
| 1247 |
|
|
rtx new_delay_list = 0;
|
| 1248 |
|
|
int must_annul = *pannul_p;
|
| 1249 |
|
|
int used_annul = 0;
|
| 1250 |
|
|
int i;
|
| 1251 |
|
|
struct resources cc_set;
|
| 1252 |
|
|
|
| 1253 |
|
|
/* We can't do anything if there are more delay slots in SEQ than we
|
| 1254 |
|
|
can handle, or if we don't know that it will be a taken branch.
|
| 1255 |
|
|
We know that it will be a taken branch if it is either an unconditional
|
| 1256 |
|
|
branch or a conditional branch with a stricter branch condition.
|
| 1257 |
|
|
|
| 1258 |
|
|
Also, exit if the branch has more than one set, since then it is computing
|
| 1259 |
|
|
other results that can't be ignored, e.g. the HPPA mov&branch instruction.
|
| 1260 |
|
|
??? It may be possible to move other sets into INSN in addition to
|
| 1261 |
|
|
moving the instructions in the delay slots.
|
| 1262 |
|
|
|
| 1263 |
|
|
We can not steal the delay list if one of the instructions in the
|
| 1264 |
|
|
current delay_list modifies the condition codes and the jump in the
|
| 1265 |
|
|
sequence is a conditional jump. We can not do this because we can
|
| 1266 |
|
|
not change the direction of the jump because the condition codes
|
| 1267 |
|
|
will effect the direction of the jump in the sequence. */
|
| 1268 |
|
|
|
| 1269 |
|
|
CLEAR_RESOURCE (&cc_set);
|
| 1270 |
|
|
for (temp = delay_list; temp; temp = XEXP (temp, 1))
|
| 1271 |
|
|
{
|
| 1272 |
|
|
rtx trial = XEXP (temp, 0);
|
| 1273 |
|
|
|
| 1274 |
|
|
mark_set_resources (trial, &cc_set, 0, MARK_SRC_DEST_CALL);
|
| 1275 |
|
|
if (insn_references_resource_p (XVECEXP (seq , 0, 0), &cc_set, false))
|
| 1276 |
|
|
return delay_list;
|
| 1277 |
|
|
}
|
| 1278 |
|
|
|
| 1279 |
|
|
if (XVECLEN (seq, 0) - 1 > slots_remaining
|
| 1280 |
|
|
|| ! condition_dominates_p (condition, XVECEXP (seq, 0, 0))
|
| 1281 |
|
|
|| ! single_set (XVECEXP (seq, 0, 0)))
|
| 1282 |
|
|
return delay_list;
|
| 1283 |
|
|
|
| 1284 |
|
|
#ifdef MD_CAN_REDIRECT_BRANCH
|
| 1285 |
|
|
/* On some targets, branches with delay slots can have a limited
|
| 1286 |
|
|
displacement. Give the back end a chance to tell us we can't do
|
| 1287 |
|
|
this. */
|
| 1288 |
|
|
if (! MD_CAN_REDIRECT_BRANCH (insn, XVECEXP (seq, 0, 0)))
|
| 1289 |
|
|
return delay_list;
|
| 1290 |
|
|
#endif
|
| 1291 |
|
|
|
| 1292 |
|
|
for (i = 1; i < XVECLEN (seq, 0); i++)
|
| 1293 |
|
|
{
|
| 1294 |
|
|
rtx trial = XVECEXP (seq, 0, i);
|
| 1295 |
|
|
int flags;
|
| 1296 |
|
|
|
| 1297 |
|
|
if (insn_references_resource_p (trial, sets, false)
|
| 1298 |
|
|
|| insn_sets_resource_p (trial, needed, false)
|
| 1299 |
|
|
|| insn_sets_resource_p (trial, sets, false)
|
| 1300 |
|
|
#ifdef HAVE_cc0
|
| 1301 |
|
|
/* If TRIAL sets CC0, we can't copy it, so we can't steal this
|
| 1302 |
|
|
delay list. */
|
| 1303 |
|
|
|| find_reg_note (trial, REG_CC_USER, NULL_RTX)
|
| 1304 |
|
|
#endif
|
| 1305 |
|
|
/* If TRIAL is from the fallthrough code of an annulled branch insn
|
| 1306 |
|
|
in SEQ, we cannot use it. */
|
| 1307 |
|
|
|| (INSN_ANNULLED_BRANCH_P (XVECEXP (seq, 0, 0))
|
| 1308 |
|
|
&& ! INSN_FROM_TARGET_P (trial)))
|
| 1309 |
|
|
return delay_list;
|
| 1310 |
|
|
|
| 1311 |
|
|
/* If this insn was already done (usually in a previous delay slot),
|
| 1312 |
|
|
pretend we put it in our delay slot. */
|
| 1313 |
|
|
if (redundant_insn (trial, insn, new_delay_list))
|
| 1314 |
|
|
continue;
|
| 1315 |
|
|
|
| 1316 |
|
|
/* We will end up re-vectoring this branch, so compute flags
|
| 1317 |
|
|
based on jumping to the new label. */
|
| 1318 |
|
|
flags = get_jump_flags (insn, JUMP_LABEL (XVECEXP (seq, 0, 0)));
|
| 1319 |
|
|
|
| 1320 |
|
|
if (! must_annul
|
| 1321 |
|
|
&& ((condition == const_true_rtx
|
| 1322 |
|
|
|| (! insn_sets_resource_p (trial, other_needed, false)
|
| 1323 |
|
|
&& ! may_trap_or_fault_p (PATTERN (trial)))))
|
| 1324 |
|
|
? eligible_for_delay (insn, total_slots_filled, trial, flags)
|
| 1325 |
|
|
: (must_annul || (delay_list == NULL && new_delay_list == NULL))
|
| 1326 |
|
|
&& (must_annul = 1,
|
| 1327 |
|
|
check_annul_list_true_false (0, delay_list)
|
| 1328 |
|
|
&& check_annul_list_true_false (0, new_delay_list)
|
| 1329 |
|
|
&& eligible_for_annul_false (insn, total_slots_filled,
|
| 1330 |
|
|
trial, flags)))
|
| 1331 |
|
|
{
|
| 1332 |
|
|
if (must_annul)
|
| 1333 |
|
|
used_annul = 1;
|
| 1334 |
|
|
temp = copy_rtx (trial);
|
| 1335 |
|
|
INSN_FROM_TARGET_P (temp) = 1;
|
| 1336 |
|
|
new_delay_list = add_to_delay_list (temp, new_delay_list);
|
| 1337 |
|
|
total_slots_filled++;
|
| 1338 |
|
|
|
| 1339 |
|
|
if (--slots_remaining == 0)
|
| 1340 |
|
|
break;
|
| 1341 |
|
|
}
|
| 1342 |
|
|
else
|
| 1343 |
|
|
return delay_list;
|
| 1344 |
|
|
}
|
| 1345 |
|
|
|
| 1346 |
|
|
/* Show the place to which we will be branching. */
|
| 1347 |
|
|
*pnew_thread = first_active_target_insn (JUMP_LABEL (XVECEXP (seq, 0, 0)));
|
| 1348 |
|
|
|
| 1349 |
|
|
/* Add any new insns to the delay list and update the count of the
|
| 1350 |
|
|
number of slots filled. */
|
| 1351 |
|
|
*pslots_filled = total_slots_filled;
|
| 1352 |
|
|
if (used_annul)
|
| 1353 |
|
|
*pannul_p = 1;
|
| 1354 |
|
|
|
| 1355 |
|
|
if (delay_list == 0)
|
| 1356 |
|
|
return new_delay_list;
|
| 1357 |
|
|
|
| 1358 |
|
|
for (temp = new_delay_list; temp; temp = XEXP (temp, 1))
|
| 1359 |
|
|
delay_list = add_to_delay_list (XEXP (temp, 0), delay_list);
|
| 1360 |
|
|
|
| 1361 |
|
|
return delay_list;
|
| 1362 |
|
|
}
|
| 1363 |
|
|
|
| 1364 |
|
|
/* Similar to steal_delay_list_from_target except that SEQ is on the
|
| 1365 |
|
|
fallthrough path of INSN. Here we only do something if the delay insn
|
| 1366 |
|
|
of SEQ is an unconditional branch. In that case we steal its delay slot
|
| 1367 |
|
|
for INSN since unconditional branches are much easier to fill. */
|
| 1368 |
|
|
|
| 1369 |
|
|
static rtx
|
| 1370 |
|
|
steal_delay_list_from_fallthrough (rtx insn, rtx condition, rtx seq,
|
| 1371 |
|
|
rtx delay_list, struct resources *sets,
|
| 1372 |
|
|
struct resources *needed,
|
| 1373 |
|
|
struct resources *other_needed,
|
| 1374 |
|
|
int slots_to_fill, int *pslots_filled,
|
| 1375 |
|
|
int *pannul_p)
|
| 1376 |
|
|
{
|
| 1377 |
|
|
int i;
|
| 1378 |
|
|
int flags;
|
| 1379 |
|
|
int must_annul = *pannul_p;
|
| 1380 |
|
|
int used_annul = 0;
|
| 1381 |
|
|
|
| 1382 |
|
|
flags = get_jump_flags (insn, JUMP_LABEL (insn));
|
| 1383 |
|
|
|
| 1384 |
|
|
/* We can't do anything if SEQ's delay insn isn't an
|
| 1385 |
|
|
unconditional branch. */
|
| 1386 |
|
|
|
| 1387 |
|
|
if (! simplejump_or_return_p (XVECEXP (seq, 0, 0)))
|
| 1388 |
|
|
return delay_list;
|
| 1389 |
|
|
|
| 1390 |
|
|
for (i = 1; i < XVECLEN (seq, 0); i++)
|
| 1391 |
|
|
{
|
| 1392 |
|
|
rtx trial = XVECEXP (seq, 0, i);
|
| 1393 |
|
|
|
| 1394 |
|
|
/* If TRIAL sets CC0, stealing it will move it too far from the use
|
| 1395 |
|
|
of CC0. */
|
| 1396 |
|
|
if (insn_references_resource_p (trial, sets, false)
|
| 1397 |
|
|
|| insn_sets_resource_p (trial, needed, false)
|
| 1398 |
|
|
|| insn_sets_resource_p (trial, sets, false)
|
| 1399 |
|
|
#ifdef HAVE_cc0
|
| 1400 |
|
|
|| sets_cc0_p (PATTERN (trial))
|
| 1401 |
|
|
#endif
|
| 1402 |
|
|
)
|
| 1403 |
|
|
|
| 1404 |
|
|
break;
|
| 1405 |
|
|
|
| 1406 |
|
|
/* If this insn was already done, we don't need it. */
|
| 1407 |
|
|
if (redundant_insn (trial, insn, delay_list))
|
| 1408 |
|
|
{
|
| 1409 |
|
|
delete_from_delay_slot (trial);
|
| 1410 |
|
|
continue;
|
| 1411 |
|
|
}
|
| 1412 |
|
|
|
| 1413 |
|
|
if (! must_annul
|
| 1414 |
|
|
&& ((condition == const_true_rtx
|
| 1415 |
|
|
|| (! insn_sets_resource_p (trial, other_needed, false)
|
| 1416 |
|
|
&& ! may_trap_or_fault_p (PATTERN (trial)))))
|
| 1417 |
|
|
? eligible_for_delay (insn, *pslots_filled, trial, flags)
|
| 1418 |
|
|
: (must_annul || delay_list == NULL) && (must_annul = 1,
|
| 1419 |
|
|
check_annul_list_true_false (1, delay_list)
|
| 1420 |
|
|
&& eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
|
| 1421 |
|
|
{
|
| 1422 |
|
|
if (must_annul)
|
| 1423 |
|
|
used_annul = 1;
|
| 1424 |
|
|
delete_from_delay_slot (trial);
|
| 1425 |
|
|
delay_list = add_to_delay_list (trial, delay_list);
|
| 1426 |
|
|
|
| 1427 |
|
|
if (++(*pslots_filled) == slots_to_fill)
|
| 1428 |
|
|
break;
|
| 1429 |
|
|
}
|
| 1430 |
|
|
else
|
| 1431 |
|
|
break;
|
| 1432 |
|
|
}
|
| 1433 |
|
|
|
| 1434 |
|
|
if (used_annul)
|
| 1435 |
|
|
*pannul_p = 1;
|
| 1436 |
|
|
return delay_list;
|
| 1437 |
|
|
}
|
| 1438 |
|
|
|
| 1439 |
|
|
/* Try merging insns starting at THREAD which match exactly the insns in
|
| 1440 |
|
|
INSN's delay list.
|
| 1441 |
|
|
|
| 1442 |
|
|
If all insns were matched and the insn was previously annulling, the
|
| 1443 |
|
|
annul bit will be cleared.
|
| 1444 |
|
|
|
| 1445 |
|
|
For each insn that is merged, if the branch is or will be non-annulling,
|
| 1446 |
|
|
we delete the merged insn. */
|
| 1447 |
|
|
|
| 1448 |
|
|
static void
|
| 1449 |
|
|
try_merge_delay_insns (rtx insn, rtx thread)
|
| 1450 |
|
|
{
|
| 1451 |
|
|
rtx trial, next_trial;
|
| 1452 |
|
|
rtx delay_insn = XVECEXP (PATTERN (insn), 0, 0);
|
| 1453 |
|
|
int annul_p = JUMP_P (delay_insn) && INSN_ANNULLED_BRANCH_P (delay_insn);
|
| 1454 |
|
|
int slot_number = 1;
|
| 1455 |
|
|
int num_slots = XVECLEN (PATTERN (insn), 0);
|
| 1456 |
|
|
rtx next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
|
| 1457 |
|
|
struct resources set, needed;
|
| 1458 |
|
|
rtx merged_insns = 0;
|
| 1459 |
|
|
int i;
|
| 1460 |
|
|
int flags;
|
| 1461 |
|
|
|
| 1462 |
|
|
flags = get_jump_flags (delay_insn, JUMP_LABEL (delay_insn));
|
| 1463 |
|
|
|
| 1464 |
|
|
CLEAR_RESOURCE (&needed);
|
| 1465 |
|
|
CLEAR_RESOURCE (&set);
|
| 1466 |
|
|
|
| 1467 |
|
|
/* If this is not an annulling branch, take into account anything needed in
|
| 1468 |
|
|
INSN's delay slot. This prevents two increments from being incorrectly
|
| 1469 |
|
|
folded into one. If we are annulling, this would be the correct
|
| 1470 |
|
|
thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
|
| 1471 |
|
|
will essentially disable this optimization. This method is somewhat of
|
| 1472 |
|
|
a kludge, but I don't see a better way.) */
|
| 1473 |
|
|
if (! annul_p)
|
| 1474 |
|
|
for (i = 1 ; i < num_slots; i++)
|
| 1475 |
|
|
if (XVECEXP (PATTERN (insn), 0, i))
|
| 1476 |
|
|
mark_referenced_resources (XVECEXP (PATTERN (insn), 0, i), &needed,
|
| 1477 |
|
|
true);
|
| 1478 |
|
|
|
| 1479 |
|
|
for (trial = thread; !stop_search_p (trial, 1); trial = next_trial)
|
| 1480 |
|
|
{
|
| 1481 |
|
|
rtx pat = PATTERN (trial);
|
| 1482 |
|
|
rtx oldtrial = trial;
|
| 1483 |
|
|
|
| 1484 |
|
|
next_trial = next_nonnote_insn (trial);
|
| 1485 |
|
|
|
| 1486 |
|
|
/* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
|
| 1487 |
|
|
if (NONJUMP_INSN_P (trial)
|
| 1488 |
|
|
&& (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER))
|
| 1489 |
|
|
continue;
|
| 1490 |
|
|
|
| 1491 |
|
|
if (GET_CODE (next_to_match) == GET_CODE (trial)
|
| 1492 |
|
|
#ifdef HAVE_cc0
|
| 1493 |
|
|
/* We can't share an insn that sets cc0. */
|
| 1494 |
|
|
&& ! sets_cc0_p (pat)
|
| 1495 |
|
|
#endif
|
| 1496 |
|
|
&& ! insn_references_resource_p (trial, &set, true)
|
| 1497 |
|
|
&& ! insn_sets_resource_p (trial, &set, true)
|
| 1498 |
|
|
&& ! insn_sets_resource_p (trial, &needed, true)
|
| 1499 |
|
|
&& (trial = try_split (pat, trial, 0)) != 0
|
| 1500 |
|
|
/* Update next_trial, in case try_split succeeded. */
|
| 1501 |
|
|
&& (next_trial = next_nonnote_insn (trial))
|
| 1502 |
|
|
/* Likewise THREAD. */
|
| 1503 |
|
|
&& (thread = oldtrial == thread ? trial : thread)
|
| 1504 |
|
|
&& rtx_equal_p (PATTERN (next_to_match), PATTERN (trial))
|
| 1505 |
|
|
/* Have to test this condition if annul condition is different
|
| 1506 |
|
|
from (and less restrictive than) non-annulling one. */
|
| 1507 |
|
|
&& eligible_for_delay (delay_insn, slot_number - 1, trial, flags))
|
| 1508 |
|
|
{
|
| 1509 |
|
|
|
| 1510 |
|
|
if (! annul_p)
|
| 1511 |
|
|
{
|
| 1512 |
|
|
update_block (trial, thread);
|
| 1513 |
|
|
if (trial == thread)
|
| 1514 |
|
|
thread = next_active_insn (thread);
|
| 1515 |
|
|
|
| 1516 |
|
|
delete_related_insns (trial);
|
| 1517 |
|
|
INSN_FROM_TARGET_P (next_to_match) = 0;
|
| 1518 |
|
|
}
|
| 1519 |
|
|
else
|
| 1520 |
|
|
merged_insns = gen_rtx_INSN_LIST (VOIDmode, trial, merged_insns);
|
| 1521 |
|
|
|
| 1522 |
|
|
if (++slot_number == num_slots)
|
| 1523 |
|
|
break;
|
| 1524 |
|
|
|
| 1525 |
|
|
next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
|
| 1526 |
|
|
}
|
| 1527 |
|
|
|
| 1528 |
|
|
mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
|
| 1529 |
|
|
mark_referenced_resources (trial, &needed, true);
|
| 1530 |
|
|
}
|
| 1531 |
|
|
|
| 1532 |
|
|
/* See if we stopped on a filled insn. If we did, try to see if its
|
| 1533 |
|
|
delay slots match. */
|
| 1534 |
|
|
if (slot_number != num_slots
|
| 1535 |
|
|
&& trial && NONJUMP_INSN_P (trial)
|
| 1536 |
|
|
&& GET_CODE (PATTERN (trial)) == SEQUENCE
|
| 1537 |
|
|
&& !(JUMP_P (XVECEXP (PATTERN (trial), 0, 0))
|
| 1538 |
|
|
&& INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial), 0, 0))))
|
| 1539 |
|
|
{
|
| 1540 |
|
|
rtx pat = PATTERN (trial);
|
| 1541 |
|
|
rtx filled_insn = XVECEXP (pat, 0, 0);
|
| 1542 |
|
|
|
| 1543 |
|
|
/* Account for resources set/needed by the filled insn. */
|
| 1544 |
|
|
mark_set_resources (filled_insn, &set, 0, MARK_SRC_DEST_CALL);
|
| 1545 |
|
|
mark_referenced_resources (filled_insn, &needed, true);
|
| 1546 |
|
|
|
| 1547 |
|
|
for (i = 1; i < XVECLEN (pat, 0); i++)
|
| 1548 |
|
|
{
|
| 1549 |
|
|
rtx dtrial = XVECEXP (pat, 0, i);
|
| 1550 |
|
|
|
| 1551 |
|
|
if (! insn_references_resource_p (dtrial, &set, true)
|
| 1552 |
|
|
&& ! insn_sets_resource_p (dtrial, &set, true)
|
| 1553 |
|
|
&& ! insn_sets_resource_p (dtrial, &needed, true)
|
| 1554 |
|
|
#ifdef HAVE_cc0
|
| 1555 |
|
|
&& ! sets_cc0_p (PATTERN (dtrial))
|
| 1556 |
|
|
#endif
|
| 1557 |
|
|
&& rtx_equal_p (PATTERN (next_to_match), PATTERN (dtrial))
|
| 1558 |
|
|
&& eligible_for_delay (delay_insn, slot_number - 1, dtrial, flags))
|
| 1559 |
|
|
{
|
| 1560 |
|
|
if (! annul_p)
|
| 1561 |
|
|
{
|
| 1562 |
|
|
rtx new_rtx;
|
| 1563 |
|
|
|
| 1564 |
|
|
update_block (dtrial, thread);
|
| 1565 |
|
|
new_rtx = delete_from_delay_slot (dtrial);
|
| 1566 |
|
|
if (INSN_DELETED_P (thread))
|
| 1567 |
|
|
thread = new_rtx;
|
| 1568 |
|
|
INSN_FROM_TARGET_P (next_to_match) = 0;
|
| 1569 |
|
|
}
|
| 1570 |
|
|
else
|
| 1571 |
|
|
merged_insns = gen_rtx_INSN_LIST (SImode, dtrial,
|
| 1572 |
|
|
merged_insns);
|
| 1573 |
|
|
|
| 1574 |
|
|
if (++slot_number == num_slots)
|
| 1575 |
|
|
break;
|
| 1576 |
|
|
|
| 1577 |
|
|
next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
|
| 1578 |
|
|
}
|
| 1579 |
|
|
else
|
| 1580 |
|
|
{
|
| 1581 |
|
|
/* Keep track of the set/referenced resources for the delay
|
| 1582 |
|
|
slots of any trial insns we encounter. */
|
| 1583 |
|
|
mark_set_resources (dtrial, &set, 0, MARK_SRC_DEST_CALL);
|
| 1584 |
|
|
mark_referenced_resources (dtrial, &needed, true);
|
| 1585 |
|
|
}
|
| 1586 |
|
|
}
|
| 1587 |
|
|
}
|
| 1588 |
|
|
|
| 1589 |
|
|
/* If all insns in the delay slot have been matched and we were previously
|
| 1590 |
|
|
annulling the branch, we need not any more. In that case delete all the
|
| 1591 |
|
|
merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn in
|
| 1592 |
|
|
the delay list so that we know that it isn't only being used at the
|
| 1593 |
|
|
target. */
|
| 1594 |
|
|
if (slot_number == num_slots && annul_p)
|
| 1595 |
|
|
{
|
| 1596 |
|
|
for (; merged_insns; merged_insns = XEXP (merged_insns, 1))
|
| 1597 |
|
|
{
|
| 1598 |
|
|
if (GET_MODE (merged_insns) == SImode)
|
| 1599 |
|
|
{
|
| 1600 |
|
|
rtx new_rtx;
|
| 1601 |
|
|
|
| 1602 |
|
|
update_block (XEXP (merged_insns, 0), thread);
|
| 1603 |
|
|
new_rtx = delete_from_delay_slot (XEXP (merged_insns, 0));
|
| 1604 |
|
|
if (INSN_DELETED_P (thread))
|
| 1605 |
|
|
thread = new_rtx;
|
| 1606 |
|
|
}
|
| 1607 |
|
|
else
|
| 1608 |
|
|
{
|
| 1609 |
|
|
update_block (XEXP (merged_insns, 0), thread);
|
| 1610 |
|
|
delete_related_insns (XEXP (merged_insns, 0));
|
| 1611 |
|
|
}
|
| 1612 |
|
|
}
|
| 1613 |
|
|
|
| 1614 |
|
|
INSN_ANNULLED_BRANCH_P (delay_insn) = 0;
|
| 1615 |
|
|
|
| 1616 |
|
|
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
|
| 1617 |
|
|
INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)) = 0;
|
| 1618 |
|
|
}
|
| 1619 |
|
|
}
|
| 1620 |
|
|
|
| 1621 |
|
|
/* See if INSN is redundant with an insn in front of TARGET. Often this
|
| 1622 |
|
|
is called when INSN is a candidate for a delay slot of TARGET.
|
| 1623 |
|
|
DELAY_LIST are insns that will be placed in delay slots of TARGET in front
|
| 1624 |
|
|
of INSN. Often INSN will be redundant with an insn in a delay slot of
|
| 1625 |
|
|
some previous insn. This happens when we have a series of branches to the
|
| 1626 |
|
|
same label; in that case the first insn at the target might want to go
|
| 1627 |
|
|
into each of the delay slots.
|
| 1628 |
|
|
|
| 1629 |
|
|
If we are not careful, this routine can take up a significant fraction
|
| 1630 |
|
|
of the total compilation time (4%), but only wins rarely. Hence we
|
| 1631 |
|
|
speed this routine up by making two passes. The first pass goes back
|
| 1632 |
|
|
until it hits a label and sees if it finds an insn with an identical
|
| 1633 |
|
|
pattern. Only in this (relatively rare) event does it check for
|
| 1634 |
|
|
data conflicts.
|
| 1635 |
|
|
|
| 1636 |
|
|
We do not split insns we encounter. This could cause us not to find a
|
| 1637 |
|
|
redundant insn, but the cost of splitting seems greater than the possible
|
| 1638 |
|
|
gain in rare cases. */
|
| 1639 |
|
|
|
| 1640 |
|
|
static rtx
|
| 1641 |
|
|
redundant_insn (rtx insn, rtx target, rtx delay_list)
|
| 1642 |
|
|
{
|
| 1643 |
|
|
rtx target_main = target;
|
| 1644 |
|
|
rtx ipat = PATTERN (insn);
|
| 1645 |
|
|
rtx trial, pat;
|
| 1646 |
|
|
struct resources needed, set;
|
| 1647 |
|
|
int i;
|
| 1648 |
|
|
unsigned insns_to_search;
|
| 1649 |
|
|
|
| 1650 |
|
|
/* If INSN has any REG_UNUSED notes, it can't match anything since we
|
| 1651 |
|
|
are allowed to not actually assign to such a register. */
|
| 1652 |
|
|
if (find_reg_note (insn, REG_UNUSED, NULL_RTX) != 0)
|
| 1653 |
|
|
return 0;
|
| 1654 |
|
|
|
| 1655 |
|
|
/* Scan backwards looking for a match. */
|
| 1656 |
|
|
for (trial = PREV_INSN (target),
|
| 1657 |
|
|
insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
|
| 1658 |
|
|
trial && insns_to_search > 0;
|
| 1659 |
|
|
trial = PREV_INSN (trial))
|
| 1660 |
|
|
{
|
| 1661 |
|
|
if (LABEL_P (trial))
|
| 1662 |
|
|
return 0;
|
| 1663 |
|
|
|
| 1664 |
|
|
if (!NONDEBUG_INSN_P (trial))
|
| 1665 |
|
|
continue;
|
| 1666 |
|
|
--insns_to_search;
|
| 1667 |
|
|
|
| 1668 |
|
|
pat = PATTERN (trial);
|
| 1669 |
|
|
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
|
| 1670 |
|
|
continue;
|
| 1671 |
|
|
|
| 1672 |
|
|
if (GET_CODE (pat) == SEQUENCE)
|
| 1673 |
|
|
{
|
| 1674 |
|
|
/* Stop for a CALL and its delay slots because it is difficult to
|
| 1675 |
|
|
track its resource needs correctly. */
|
| 1676 |
|
|
if (CALL_P (XVECEXP (pat, 0, 0)))
|
| 1677 |
|
|
return 0;
|
| 1678 |
|
|
|
| 1679 |
|
|
/* Stop for an INSN or JUMP_INSN with delayed effects and its delay
|
| 1680 |
|
|
slots because it is difficult to track its resource needs
|
| 1681 |
|
|
correctly. */
|
| 1682 |
|
|
|
| 1683 |
|
|
#ifdef INSN_SETS_ARE_DELAYED
|
| 1684 |
|
|
if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
|
| 1685 |
|
|
return 0;
|
| 1686 |
|
|
#endif
|
| 1687 |
|
|
|
| 1688 |
|
|
#ifdef INSN_REFERENCES_ARE_DELAYED
|
| 1689 |
|
|
if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
|
| 1690 |
|
|
return 0;
|
| 1691 |
|
|
#endif
|
| 1692 |
|
|
|
| 1693 |
|
|
/* See if any of the insns in the delay slot match, updating
|
| 1694 |
|
|
resource requirements as we go. */
|
| 1695 |
|
|
for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
|
| 1696 |
|
|
if (GET_CODE (XVECEXP (pat, 0, i)) == GET_CODE (insn)
|
| 1697 |
|
|
&& rtx_equal_p (PATTERN (XVECEXP (pat, 0, i)), ipat)
|
| 1698 |
|
|
&& ! find_reg_note (XVECEXP (pat, 0, i), REG_UNUSED, NULL_RTX))
|
| 1699 |
|
|
break;
|
| 1700 |
|
|
|
| 1701 |
|
|
/* If found a match, exit this loop early. */
|
| 1702 |
|
|
if (i > 0)
|
| 1703 |
|
|
break;
|
| 1704 |
|
|
}
|
| 1705 |
|
|
|
| 1706 |
|
|
else if (GET_CODE (trial) == GET_CODE (insn) && rtx_equal_p (pat, ipat)
|
| 1707 |
|
|
&& ! find_reg_note (trial, REG_UNUSED, NULL_RTX))
|
| 1708 |
|
|
break;
|
| 1709 |
|
|
}
|
| 1710 |
|
|
|
| 1711 |
|
|
/* If we didn't find an insn that matches, return 0. */
|
| 1712 |
|
|
if (trial == 0)
|
| 1713 |
|
|
return 0;
|
| 1714 |
|
|
|
| 1715 |
|
|
/* See what resources this insn sets and needs. If they overlap, or
|
| 1716 |
|
|
if this insn references CC0, it can't be redundant. */
|
| 1717 |
|
|
|
| 1718 |
|
|
CLEAR_RESOURCE (&needed);
|
| 1719 |
|
|
CLEAR_RESOURCE (&set);
|
| 1720 |
|
|
mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
|
| 1721 |
|
|
mark_referenced_resources (insn, &needed, true);
|
| 1722 |
|
|
|
| 1723 |
|
|
/* If TARGET is a SEQUENCE, get the main insn. */
|
| 1724 |
|
|
if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
|
| 1725 |
|
|
target_main = XVECEXP (PATTERN (target), 0, 0);
|
| 1726 |
|
|
|
| 1727 |
|
|
if (resource_conflicts_p (&needed, &set)
|
| 1728 |
|
|
#ifdef HAVE_cc0
|
| 1729 |
|
|
|| reg_mentioned_p (cc0_rtx, ipat)
|
| 1730 |
|
|
#endif
|
| 1731 |
|
|
/* The insn requiring the delay may not set anything needed or set by
|
| 1732 |
|
|
INSN. */
|
| 1733 |
|
|
|| insn_sets_resource_p (target_main, &needed, true)
|
| 1734 |
|
|
|| insn_sets_resource_p (target_main, &set, true))
|
| 1735 |
|
|
return 0;
|
| 1736 |
|
|
|
| 1737 |
|
|
/* Insns we pass may not set either NEEDED or SET, so merge them for
|
| 1738 |
|
|
simpler tests. */
|
| 1739 |
|
|
needed.memory |= set.memory;
|
| 1740 |
|
|
needed.unch_memory |= set.unch_memory;
|
| 1741 |
|
|
IOR_HARD_REG_SET (needed.regs, set.regs);
|
| 1742 |
|
|
|
| 1743 |
|
|
/* This insn isn't redundant if it conflicts with an insn that either is
|
| 1744 |
|
|
or will be in a delay slot of TARGET. */
|
| 1745 |
|
|
|
| 1746 |
|
|
while (delay_list)
|
| 1747 |
|
|
{
|
| 1748 |
|
|
if (insn_sets_resource_p (XEXP (delay_list, 0), &needed, true))
|
| 1749 |
|
|
return 0;
|
| 1750 |
|
|
delay_list = XEXP (delay_list, 1);
|
| 1751 |
|
|
}
|
| 1752 |
|
|
|
| 1753 |
|
|
if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
|
| 1754 |
|
|
for (i = 1; i < XVECLEN (PATTERN (target), 0); i++)
|
| 1755 |
|
|
if (insn_sets_resource_p (XVECEXP (PATTERN (target), 0, i), &needed,
|
| 1756 |
|
|
true))
|
| 1757 |
|
|
return 0;
|
| 1758 |
|
|
|
| 1759 |
|
|
/* Scan backwards until we reach a label or an insn that uses something
|
| 1760 |
|
|
INSN sets or sets something insn uses or sets. */
|
| 1761 |
|
|
|
| 1762 |
|
|
for (trial = PREV_INSN (target),
|
| 1763 |
|
|
insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
|
| 1764 |
|
|
trial && !LABEL_P (trial) && insns_to_search > 0;
|
| 1765 |
|
|
trial = PREV_INSN (trial))
|
| 1766 |
|
|
{
|
| 1767 |
|
|
if (!NONDEBUG_INSN_P (trial))
|
| 1768 |
|
|
continue;
|
| 1769 |
|
|
--insns_to_search;
|
| 1770 |
|
|
|
| 1771 |
|
|
pat = PATTERN (trial);
|
| 1772 |
|
|
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
|
| 1773 |
|
|
continue;
|
| 1774 |
|
|
|
| 1775 |
|
|
if (GET_CODE (pat) == SEQUENCE)
|
| 1776 |
|
|
{
|
| 1777 |
|
|
bool annul_p = false;
|
| 1778 |
|
|
rtx control = XVECEXP (pat, 0, 0);
|
| 1779 |
|
|
|
| 1780 |
|
|
/* If this is a CALL_INSN and its delay slots, it is hard to track
|
| 1781 |
|
|
the resource needs properly, so give up. */
|
| 1782 |
|
|
if (CALL_P (control))
|
| 1783 |
|
|
return 0;
|
| 1784 |
|
|
|
| 1785 |
|
|
/* If this is an INSN or JUMP_INSN with delayed effects, it
|
| 1786 |
|
|
is hard to track the resource needs properly, so give up. */
|
| 1787 |
|
|
|
| 1788 |
|
|
#ifdef INSN_SETS_ARE_DELAYED
|
| 1789 |
|
|
if (INSN_SETS_ARE_DELAYED (control))
|
| 1790 |
|
|
return 0;
|
| 1791 |
|
|
#endif
|
| 1792 |
|
|
|
| 1793 |
|
|
#ifdef INSN_REFERENCES_ARE_DELAYED
|
| 1794 |
|
|
if (INSN_REFERENCES_ARE_DELAYED (control))
|
| 1795 |
|
|
return 0;
|
| 1796 |
|
|
#endif
|
| 1797 |
|
|
|
| 1798 |
|
|
if (JUMP_P (control))
|
| 1799 |
|
|
annul_p = INSN_ANNULLED_BRANCH_P (control);
|
| 1800 |
|
|
|
| 1801 |
|
|
/* See if any of the insns in the delay slot match, updating
|
| 1802 |
|
|
resource requirements as we go. */
|
| 1803 |
|
|
for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
|
| 1804 |
|
|
{
|
| 1805 |
|
|
rtx candidate = XVECEXP (pat, 0, i);
|
| 1806 |
|
|
|
| 1807 |
|
|
/* If an insn will be annulled if the branch is false, it isn't
|
| 1808 |
|
|
considered as a possible duplicate insn. */
|
| 1809 |
|
|
if (rtx_equal_p (PATTERN (candidate), ipat)
|
| 1810 |
|
|
&& ! (annul_p && INSN_FROM_TARGET_P (candidate)))
|
| 1811 |
|
|
{
|
| 1812 |
|
|
/* Show that this insn will be used in the sequel. */
|
| 1813 |
|
|
INSN_FROM_TARGET_P (candidate) = 0;
|
| 1814 |
|
|
return candidate;
|
| 1815 |
|
|
}
|
| 1816 |
|
|
|
| 1817 |
|
|
/* Unless this is an annulled insn from the target of a branch,
|
| 1818 |
|
|
we must stop if it sets anything needed or set by INSN. */
|
| 1819 |
|
|
if ((!annul_p || !INSN_FROM_TARGET_P (candidate))
|
| 1820 |
|
|
&& insn_sets_resource_p (candidate, &needed, true))
|
| 1821 |
|
|
return 0;
|
| 1822 |
|
|
}
|
| 1823 |
|
|
|
| 1824 |
|
|
/* If the insn requiring the delay slot conflicts with INSN, we
|
| 1825 |
|
|
must stop. */
|
| 1826 |
|
|
if (insn_sets_resource_p (control, &needed, true))
|
| 1827 |
|
|
return 0;
|
| 1828 |
|
|
}
|
| 1829 |
|
|
else
|
| 1830 |
|
|
{
|
| 1831 |
|
|
/* See if TRIAL is the same as INSN. */
|
| 1832 |
|
|
pat = PATTERN (trial);
|
| 1833 |
|
|
if (rtx_equal_p (pat, ipat))
|
| 1834 |
|
|
return trial;
|
| 1835 |
|
|
|
| 1836 |
|
|
/* Can't go any further if TRIAL conflicts with INSN. */
|
| 1837 |
|
|
if (insn_sets_resource_p (trial, &needed, true))
|
| 1838 |
|
|
return 0;
|
| 1839 |
|
|
}
|
| 1840 |
|
|
}
|
| 1841 |
|
|
|
| 1842 |
|
|
return 0;
|
| 1843 |
|
|
}
|
| 1844 |
|
|
|
| 1845 |
|
|
/* Return 1 if THREAD can only be executed in one way. If LABEL is nonzero,
|
| 1846 |
|
|
it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
|
| 1847 |
|
|
is nonzero, we are allowed to fall into this thread; otherwise, we are
|
| 1848 |
|
|
not.
|
| 1849 |
|
|
|
| 1850 |
|
|
If LABEL is used more than one or we pass a label other than LABEL before
|
| 1851 |
|
|
finding an active insn, we do not own this thread. */
|
| 1852 |
|
|
|
| 1853 |
|
|
static int
|
| 1854 |
|
|
own_thread_p (rtx thread, rtx label, int allow_fallthrough)
|
| 1855 |
|
|
{
|
| 1856 |
|
|
rtx active_insn;
|
| 1857 |
|
|
rtx insn;
|
| 1858 |
|
|
|
| 1859 |
|
|
/* We don't own the function end. */
|
| 1860 |
|
|
if (thread == 0 || ANY_RETURN_P (thread))
|
| 1861 |
|
|
return 0;
|
| 1862 |
|
|
|
| 1863 |
|
|
/* Get the first active insn, or THREAD, if it is an active insn. */
|
| 1864 |
|
|
active_insn = next_active_insn (PREV_INSN (thread));
|
| 1865 |
|
|
|
| 1866 |
|
|
for (insn = thread; insn != active_insn; insn = NEXT_INSN (insn))
|
| 1867 |
|
|
if (LABEL_P (insn)
|
| 1868 |
|
|
&& (insn != label || LABEL_NUSES (insn) != 1))
|
| 1869 |
|
|
return 0;
|
| 1870 |
|
|
|
| 1871 |
|
|
if (allow_fallthrough)
|
| 1872 |
|
|
return 1;
|
| 1873 |
|
|
|
| 1874 |
|
|
/* Ensure that we reach a BARRIER before any insn or label. */
|
| 1875 |
|
|
for (insn = prev_nonnote_insn (thread);
|
| 1876 |
|
|
insn == 0 || !BARRIER_P (insn);
|
| 1877 |
|
|
insn = prev_nonnote_insn (insn))
|
| 1878 |
|
|
if (insn == 0
|
| 1879 |
|
|
|| LABEL_P (insn)
|
| 1880 |
|
|
|| (NONJUMP_INSN_P (insn)
|
| 1881 |
|
|
&& GET_CODE (PATTERN (insn)) != USE
|
| 1882 |
|
|
&& GET_CODE (PATTERN (insn)) != CLOBBER))
|
| 1883 |
|
|
return 0;
|
| 1884 |
|
|
|
| 1885 |
|
|
return 1;
|
| 1886 |
|
|
}
|
| 1887 |
|
|
|
| 1888 |
|
|
/* Called when INSN is being moved from a location near the target of a jump.
|
| 1889 |
|
|
We leave a marker of the form (use (INSN)) immediately in front
|
| 1890 |
|
|
of WHERE for mark_target_live_regs. These markers will be deleted when
|
| 1891 |
|
|
reorg finishes.
|
| 1892 |
|
|
|
| 1893 |
|
|
We used to try to update the live status of registers if WHERE is at
|
| 1894 |
|
|
the start of a basic block, but that can't work since we may remove a
|
| 1895 |
|
|
BARRIER in relax_delay_slots. */
|
| 1896 |
|
|
|
| 1897 |
|
|
static void
|
| 1898 |
|
|
update_block (rtx insn, rtx where)
|
| 1899 |
|
|
{
|
| 1900 |
|
|
/* Ignore if this was in a delay slot and it came from the target of
|
| 1901 |
|
|
a branch. */
|
| 1902 |
|
|
if (INSN_FROM_TARGET_P (insn))
|
| 1903 |
|
|
return;
|
| 1904 |
|
|
|
| 1905 |
|
|
emit_insn_before (gen_rtx_USE (VOIDmode, insn), where);
|
| 1906 |
|
|
|
| 1907 |
|
|
/* INSN might be making a value live in a block where it didn't use to
|
| 1908 |
|
|
be. So recompute liveness information for this block. */
|
| 1909 |
|
|
|
| 1910 |
|
|
incr_ticks_for_insn (insn);
|
| 1911 |
|
|
}
|
| 1912 |
|
|
|
| 1913 |
|
|
/* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
|
| 1914 |
|
|
the basic block containing the jump. */
|
| 1915 |
|
|
|
| 1916 |
|
|
static int
|
| 1917 |
|
|
reorg_redirect_jump (rtx jump, rtx nlabel)
|
| 1918 |
|
|
{
|
| 1919 |
|
|
incr_ticks_for_insn (jump);
|
| 1920 |
|
|
return redirect_jump (jump, nlabel, 1);
|
| 1921 |
|
|
}
|
| 1922 |
|
|
|
| 1923 |
|
|
/* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
|
| 1924 |
|
|
We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
|
| 1925 |
|
|
that reference values used in INSN. If we find one, then we move the
|
| 1926 |
|
|
REG_DEAD note to INSN.
|
| 1927 |
|
|
|
| 1928 |
|
|
This is needed to handle the case where a later insn (after INSN) has a
|
| 1929 |
|
|
REG_DEAD note for a register used by INSN, and this later insn subsequently
|
| 1930 |
|
|
gets moved before a CODE_LABEL because it is a redundant insn. In this
|
| 1931 |
|
|
case, mark_target_live_regs may be confused into thinking the register
|
| 1932 |
|
|
is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
|
| 1933 |
|
|
|
| 1934 |
|
|
static void
|
| 1935 |
|
|
update_reg_dead_notes (rtx insn, rtx delayed_insn)
|
| 1936 |
|
|
{
|
| 1937 |
|
|
rtx p, link, next;
|
| 1938 |
|
|
|
| 1939 |
|
|
for (p = next_nonnote_insn (insn); p != delayed_insn;
|
| 1940 |
|
|
p = next_nonnote_insn (p))
|
| 1941 |
|
|
for (link = REG_NOTES (p); link; link = next)
|
| 1942 |
|
|
{
|
| 1943 |
|
|
next = XEXP (link, 1);
|
| 1944 |
|
|
|
| 1945 |
|
|
if (REG_NOTE_KIND (link) != REG_DEAD
|
| 1946 |
|
|
|| !REG_P (XEXP (link, 0)))
|
| 1947 |
|
|
continue;
|
| 1948 |
|
|
|
| 1949 |
|
|
if (reg_referenced_p (XEXP (link, 0), PATTERN (insn)))
|
| 1950 |
|
|
{
|
| 1951 |
|
|
/* Move the REG_DEAD note from P to INSN. */
|
| 1952 |
|
|
remove_note (p, link);
|
| 1953 |
|
|
XEXP (link, 1) = REG_NOTES (insn);
|
| 1954 |
|
|
REG_NOTES (insn) = link;
|
| 1955 |
|
|
}
|
| 1956 |
|
|
}
|
| 1957 |
|
|
}
|
| 1958 |
|
|
|
| 1959 |
|
|
/* Called when an insn redundant with start_insn is deleted. If there
|
| 1960 |
|
|
is a REG_DEAD note for the target of start_insn between start_insn
|
| 1961 |
|
|
and stop_insn, then the REG_DEAD note needs to be deleted since the
|
| 1962 |
|
|
value no longer dies there.
|
| 1963 |
|
|
|
| 1964 |
|
|
If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
|
| 1965 |
|
|
confused into thinking the register is dead. */
|
| 1966 |
|
|
|
| 1967 |
|
|
static void
|
| 1968 |
|
|
fix_reg_dead_note (rtx start_insn, rtx stop_insn)
|
| 1969 |
|
|
{
|
| 1970 |
|
|
rtx p, link, next;
|
| 1971 |
|
|
|
| 1972 |
|
|
for (p = next_nonnote_insn (start_insn); p != stop_insn;
|
| 1973 |
|
|
p = next_nonnote_insn (p))
|
| 1974 |
|
|
for (link = REG_NOTES (p); link; link = next)
|
| 1975 |
|
|
{
|
| 1976 |
|
|
next = XEXP (link, 1);
|
| 1977 |
|
|
|
| 1978 |
|
|
if (REG_NOTE_KIND (link) != REG_DEAD
|
| 1979 |
|
|
|| !REG_P (XEXP (link, 0)))
|
| 1980 |
|
|
continue;
|
| 1981 |
|
|
|
| 1982 |
|
|
if (reg_set_p (XEXP (link, 0), PATTERN (start_insn)))
|
| 1983 |
|
|
{
|
| 1984 |
|
|
remove_note (p, link);
|
| 1985 |
|
|
return;
|
| 1986 |
|
|
}
|
| 1987 |
|
|
}
|
| 1988 |
|
|
}
|
| 1989 |
|
|
|
| 1990 |
|
|
/* Delete any REG_UNUSED notes that exist on INSN but not on REDUNDANT_INSN.
|
| 1991 |
|
|
|
| 1992 |
|
|
This handles the case of udivmodXi4 instructions which optimize their
|
| 1993 |
|
|
output depending on whether any REG_UNUSED notes are present.
|
| 1994 |
|
|
we must make sure that INSN calculates as many results as REDUNDANT_INSN
|
| 1995 |
|
|
does. */
|
| 1996 |
|
|
|
| 1997 |
|
|
static void
|
| 1998 |
|
|
update_reg_unused_notes (rtx insn, rtx redundant_insn)
|
| 1999 |
|
|
{
|
| 2000 |
|
|
rtx link, next;
|
| 2001 |
|
|
|
| 2002 |
|
|
for (link = REG_NOTES (insn); link; link = next)
|
| 2003 |
|
|
{
|
| 2004 |
|
|
next = XEXP (link, 1);
|
| 2005 |
|
|
|
| 2006 |
|
|
if (REG_NOTE_KIND (link) != REG_UNUSED
|
| 2007 |
|
|
|| !REG_P (XEXP (link, 0)))
|
| 2008 |
|
|
continue;
|
| 2009 |
|
|
|
| 2010 |
|
|
if (! find_regno_note (redundant_insn, REG_UNUSED,
|
| 2011 |
|
|
REGNO (XEXP (link, 0))))
|
| 2012 |
|
|
remove_note (insn, link);
|
| 2013 |
|
|
}
|
| 2014 |
|
|
}
|
| 2015 |
|
|
|
| 2016 |
|
|
/* Return the label before INSN, or put a new label there. */
|
| 2017 |
|
|
|
| 2018 |
|
|
static rtx
|
| 2019 |
|
|
get_label_before (rtx insn)
|
| 2020 |
|
|
{
|
| 2021 |
|
|
rtx label;
|
| 2022 |
|
|
|
| 2023 |
|
|
/* Find an existing label at this point
|
| 2024 |
|
|
or make a new one if there is none. */
|
| 2025 |
|
|
label = prev_nonnote_insn (insn);
|
| 2026 |
|
|
|
| 2027 |
|
|
if (label == 0 || !LABEL_P (label))
|
| 2028 |
|
|
{
|
| 2029 |
|
|
rtx prev = PREV_INSN (insn);
|
| 2030 |
|
|
|
| 2031 |
|
|
label = gen_label_rtx ();
|
| 2032 |
|
|
emit_label_after (label, prev);
|
| 2033 |
|
|
LABEL_NUSES (label) = 0;
|
| 2034 |
|
|
}
|
| 2035 |
|
|
return label;
|
| 2036 |
|
|
}
|
| 2037 |
|
|
|
| 2038 |
|
|
/* Scan a function looking for insns that need a delay slot and find insns to
|
| 2039 |
|
|
put into the delay slot.
|
| 2040 |
|
|
|
| 2041 |
|
|
NON_JUMPS_P is nonzero if we are to only try to fill non-jump insns (such
|
| 2042 |
|
|
as calls). We do these first since we don't want jump insns (that are
|
| 2043 |
|
|
easier to fill) to get the only insns that could be used for non-jump insns.
|
| 2044 |
|
|
When it is zero, only try to fill JUMP_INSNs.
|
| 2045 |
|
|
|
| 2046 |
|
|
When slots are filled in this manner, the insns (including the
|
| 2047 |
|
|
delay_insn) are put together in a SEQUENCE rtx. In this fashion,
|
| 2048 |
|
|
it is possible to tell whether a delay slot has really been filled
|
| 2049 |
|
|
or not. `final' knows how to deal with this, by communicating
|
| 2050 |
|
|
through FINAL_SEQUENCE. */
|
| 2051 |
|
|
|
| 2052 |
|
|
static void
|
| 2053 |
|
|
fill_simple_delay_slots (int non_jumps_p)
|
| 2054 |
|
|
{
|
| 2055 |
|
|
rtx insn, pat, trial, next_trial;
|
| 2056 |
|
|
int i;
|
| 2057 |
|
|
int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
|
| 2058 |
|
|
struct resources needed, set;
|
| 2059 |
|
|
int slots_to_fill, slots_filled;
|
| 2060 |
|
|
rtx delay_list;
|
| 2061 |
|
|
|
| 2062 |
|
|
for (i = 0; i < num_unfilled_slots; i++)
|
| 2063 |
|
|
{
|
| 2064 |
|
|
int flags;
|
| 2065 |
|
|
/* Get the next insn to fill. If it has already had any slots assigned,
|
| 2066 |
|
|
we can't do anything with it. Maybe we'll improve this later. */
|
| 2067 |
|
|
|
| 2068 |
|
|
insn = unfilled_slots_base[i];
|
| 2069 |
|
|
if (insn == 0
|
| 2070 |
|
|
|| INSN_DELETED_P (insn)
|
| 2071 |
|
|
|| (NONJUMP_INSN_P (insn)
|
| 2072 |
|
|
&& GET_CODE (PATTERN (insn)) == SEQUENCE)
|
| 2073 |
|
|
|| (JUMP_P (insn) && non_jumps_p)
|
| 2074 |
|
|
|| (!JUMP_P (insn) && ! non_jumps_p))
|
| 2075 |
|
|
continue;
|
| 2076 |
|
|
|
| 2077 |
|
|
/* It may have been that this insn used to need delay slots, but
|
| 2078 |
|
|
now doesn't; ignore in that case. This can happen, for example,
|
| 2079 |
|
|
on the HP PA RISC, where the number of delay slots depends on
|
| 2080 |
|
|
what insns are nearby. */
|
| 2081 |
|
|
slots_to_fill = num_delay_slots (insn);
|
| 2082 |
|
|
|
| 2083 |
|
|
/* Some machine description have defined instructions to have
|
| 2084 |
|
|
delay slots only in certain circumstances which may depend on
|
| 2085 |
|
|
nearby insns (which change due to reorg's actions).
|
| 2086 |
|
|
|
| 2087 |
|
|
For example, the PA port normally has delay slots for unconditional
|
| 2088 |
|
|
jumps.
|
| 2089 |
|
|
|
| 2090 |
|
|
However, the PA port claims such jumps do not have a delay slot
|
| 2091 |
|
|
if they are immediate successors of certain CALL_INSNs. This
|
| 2092 |
|
|
allows the port to favor filling the delay slot of the call with
|
| 2093 |
|
|
the unconditional jump. */
|
| 2094 |
|
|
if (slots_to_fill == 0)
|
| 2095 |
|
|
continue;
|
| 2096 |
|
|
|
| 2097 |
|
|
/* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
|
| 2098 |
|
|
says how many. After initialization, first try optimizing
|
| 2099 |
|
|
|
| 2100 |
|
|
call _foo call _foo
|
| 2101 |
|
|
nop add %o7,.-L1,%o7
|
| 2102 |
|
|
b,a L1
|
| 2103 |
|
|
nop
|
| 2104 |
|
|
|
| 2105 |
|
|
If this case applies, the delay slot of the call is filled with
|
| 2106 |
|
|
the unconditional jump. This is done first to avoid having the
|
| 2107 |
|
|
delay slot of the call filled in the backward scan. Also, since
|
| 2108 |
|
|
the unconditional jump is likely to also have a delay slot, that
|
| 2109 |
|
|
insn must exist when it is subsequently scanned.
|
| 2110 |
|
|
|
| 2111 |
|
|
This is tried on each insn with delay slots as some machines
|
| 2112 |
|
|
have insns which perform calls, but are not represented as
|
| 2113 |
|
|
CALL_INSNs. */
|
| 2114 |
|
|
|
| 2115 |
|
|
slots_filled = 0;
|
| 2116 |
|
|
delay_list = 0;
|
| 2117 |
|
|
|
| 2118 |
|
|
if (JUMP_P (insn))
|
| 2119 |
|
|
flags = get_jump_flags (insn, JUMP_LABEL (insn));
|
| 2120 |
|
|
else
|
| 2121 |
|
|
flags = get_jump_flags (insn, NULL_RTX);
|
| 2122 |
|
|
|
| 2123 |
|
|
if ((trial = next_active_insn (insn))
|
| 2124 |
|
|
&& JUMP_P (trial)
|
| 2125 |
|
|
&& simplejump_p (trial)
|
| 2126 |
|
|
&& eligible_for_delay (insn, slots_filled, trial, flags)
|
| 2127 |
|
|
&& no_labels_between_p (insn, trial)
|
| 2128 |
|
|
&& ! can_throw_internal (trial))
|
| 2129 |
|
|
{
|
| 2130 |
|
|
rtx *tmp;
|
| 2131 |
|
|
slots_filled++;
|
| 2132 |
|
|
delay_list = add_to_delay_list (trial, delay_list);
|
| 2133 |
|
|
|
| 2134 |
|
|
/* TRIAL may have had its delay slot filled, then unfilled. When
|
| 2135 |
|
|
the delay slot is unfilled, TRIAL is placed back on the unfilled
|
| 2136 |
|
|
slots obstack. Unfortunately, it is placed on the end of the
|
| 2137 |
|
|
obstack, not in its original location. Therefore, we must search
|
| 2138 |
|
|
from entry i + 1 to the end of the unfilled slots obstack to
|
| 2139 |
|
|
try and find TRIAL. */
|
| 2140 |
|
|
tmp = &unfilled_slots_base[i + 1];
|
| 2141 |
|
|
while (*tmp != trial && tmp != unfilled_slots_next)
|
| 2142 |
|
|
tmp++;
|
| 2143 |
|
|
|
| 2144 |
|
|
/* Remove the unconditional jump from consideration for delay slot
|
| 2145 |
|
|
filling and unthread it. */
|
| 2146 |
|
|
if (*tmp == trial)
|
| 2147 |
|
|
*tmp = 0;
|
| 2148 |
|
|
{
|
| 2149 |
|
|
rtx next = NEXT_INSN (trial);
|
| 2150 |
|
|
rtx prev = PREV_INSN (trial);
|
| 2151 |
|
|
if (prev)
|
| 2152 |
|
|
NEXT_INSN (prev) = next;
|
| 2153 |
|
|
if (next)
|
| 2154 |
|
|
PREV_INSN (next) = prev;
|
| 2155 |
|
|
}
|
| 2156 |
|
|
}
|
| 2157 |
|
|
|
| 2158 |
|
|
/* Now, scan backwards from the insn to search for a potential
|
| 2159 |
|
|
delay-slot candidate. Stop searching when a label or jump is hit.
|
| 2160 |
|
|
|
| 2161 |
|
|
For each candidate, if it is to go into the delay slot (moved
|
| 2162 |
|
|
forward in execution sequence), it must not need or set any resources
|
| 2163 |
|
|
that were set by later insns and must not set any resources that
|
| 2164 |
|
|
are needed for those insns.
|
| 2165 |
|
|
|
| 2166 |
|
|
The delay slot insn itself sets resources unless it is a call
|
| 2167 |
|
|
(in which case the called routine, not the insn itself, is doing
|
| 2168 |
|
|
the setting). */
|
| 2169 |
|
|
|
| 2170 |
|
|
if (slots_filled < slots_to_fill)
|
| 2171 |
|
|
{
|
| 2172 |
|
|
CLEAR_RESOURCE (&needed);
|
| 2173 |
|
|
CLEAR_RESOURCE (&set);
|
| 2174 |
|
|
mark_set_resources (insn, &set, 0, MARK_SRC_DEST);
|
| 2175 |
|
|
mark_referenced_resources (insn, &needed, false);
|
| 2176 |
|
|
|
| 2177 |
|
|
for (trial = prev_nonnote_insn (insn); ! stop_search_p (trial, 1);
|
| 2178 |
|
|
trial = next_trial)
|
| 2179 |
|
|
{
|
| 2180 |
|
|
next_trial = prev_nonnote_insn (trial);
|
| 2181 |
|
|
|
| 2182 |
|
|
/* This must be an INSN or CALL_INSN. */
|
| 2183 |
|
|
pat = PATTERN (trial);
|
| 2184 |
|
|
|
| 2185 |
|
|
/* Stand-alone USE and CLOBBER are just for flow. */
|
| 2186 |
|
|
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
|
| 2187 |
|
|
continue;
|
| 2188 |
|
|
|
| 2189 |
|
|
/* Check for resource conflict first, to avoid unnecessary
|
| 2190 |
|
|
splitting. */
|
| 2191 |
|
|
if (! insn_references_resource_p (trial, &set, true)
|
| 2192 |
|
|
&& ! insn_sets_resource_p (trial, &set, true)
|
| 2193 |
|
|
&& ! insn_sets_resource_p (trial, &needed, true)
|
| 2194 |
|
|
#ifdef HAVE_cc0
|
| 2195 |
|
|
/* Can't separate set of cc0 from its use. */
|
| 2196 |
|
|
&& ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
|
| 2197 |
|
|
#endif
|
| 2198 |
|
|
&& ! can_throw_internal (trial))
|
| 2199 |
|
|
{
|
| 2200 |
|
|
trial = try_split (pat, trial, 1);
|
| 2201 |
|
|
next_trial = prev_nonnote_insn (trial);
|
| 2202 |
|
|
if (eligible_for_delay (insn, slots_filled, trial, flags))
|
| 2203 |
|
|
{
|
| 2204 |
|
|
/* In this case, we are searching backward, so if we
|
| 2205 |
|
|
find insns to put on the delay list, we want
|
| 2206 |
|
|
to put them at the head, rather than the
|
| 2207 |
|
|
tail, of the list. */
|
| 2208 |
|
|
|
| 2209 |
|
|
update_reg_dead_notes (trial, insn);
|
| 2210 |
|
|
delay_list = gen_rtx_INSN_LIST (VOIDmode,
|
| 2211 |
|
|
trial, delay_list);
|
| 2212 |
|
|
update_block (trial, trial);
|
| 2213 |
|
|
delete_related_insns (trial);
|
| 2214 |
|
|
if (slots_to_fill == ++slots_filled)
|
| 2215 |
|
|
break;
|
| 2216 |
|
|
continue;
|
| 2217 |
|
|
}
|
| 2218 |
|
|
}
|
| 2219 |
|
|
|
| 2220 |
|
|
mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
|
| 2221 |
|
|
mark_referenced_resources (trial, &needed, true);
|
| 2222 |
|
|
}
|
| 2223 |
|
|
}
|
| 2224 |
|
|
|
| 2225 |
|
|
/* If all needed slots haven't been filled, we come here. */
|
| 2226 |
|
|
|
| 2227 |
|
|
/* Try to optimize case of jumping around a single insn. */
|
| 2228 |
|
|
#if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
|
| 2229 |
|
|
if (slots_filled != slots_to_fill
|
| 2230 |
|
|
&& delay_list == 0
|
| 2231 |
|
|
&& JUMP_P (insn)
|
| 2232 |
|
|
&& (condjump_p (insn) || condjump_in_parallel_p (insn)))
|
| 2233 |
|
|
{
|
| 2234 |
|
|
delay_list = optimize_skip (insn);
|
| 2235 |
|
|
if (delay_list)
|
| 2236 |
|
|
slots_filled += 1;
|
| 2237 |
|
|
}
|
| 2238 |
|
|
#endif
|
| 2239 |
|
|
|
| 2240 |
|
|
/* Try to get insns from beyond the insn needing the delay slot.
|
| 2241 |
|
|
These insns can neither set or reference resources set in insns being
|
| 2242 |
|
|
skipped, cannot set resources in the insn being skipped, and, if this
|
| 2243 |
|
|
is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
|
| 2244 |
|
|
call might not return).
|
| 2245 |
|
|
|
| 2246 |
|
|
There used to be code which continued past the target label if
|
| 2247 |
|
|
we saw all uses of the target label. This code did not work,
|
| 2248 |
|
|
because it failed to account for some instructions which were
|
| 2249 |
|
|
both annulled and marked as from the target. This can happen as a
|
| 2250 |
|
|
result of optimize_skip. Since this code was redundant with
|
| 2251 |
|
|
fill_eager_delay_slots anyways, it was just deleted. */
|
| 2252 |
|
|
|
| 2253 |
|
|
if (slots_filled != slots_to_fill
|
| 2254 |
|
|
/* If this instruction could throw an exception which is
|
| 2255 |
|
|
caught in the same function, then it's not safe to fill
|
| 2256 |
|
|
the delay slot with an instruction from beyond this
|
| 2257 |
|
|
point. For example, consider:
|
| 2258 |
|
|
|
| 2259 |
|
|
int i = 2;
|
| 2260 |
|
|
|
| 2261 |
|
|
try {
|
| 2262 |
|
|
f();
|
| 2263 |
|
|
i = 3;
|
| 2264 |
|
|
} catch (...) {}
|
| 2265 |
|
|
|
| 2266 |
|
|
return i;
|
| 2267 |
|
|
|
| 2268 |
|
|
Even though `i' is a local variable, we must be sure not
|
| 2269 |
|
|
to put `i = 3' in the delay slot if `f' might throw an
|
| 2270 |
|
|
exception.
|
| 2271 |
|
|
|
| 2272 |
|
|
Presumably, we should also check to see if we could get
|
| 2273 |
|
|
back to this function via `setjmp'. */
|
| 2274 |
|
|
&& ! can_throw_internal (insn)
|
| 2275 |
|
|
&& (!JUMP_P (insn)
|
| 2276 |
|
|
|| ((condjump_p (insn) || condjump_in_parallel_p (insn))
|
| 2277 |
|
|
&& ! simplejump_p (insn)
|
| 2278 |
|
|
&& !ANY_RETURN_P (JUMP_LABEL (insn)))))
|
| 2279 |
|
|
{
|
| 2280 |
|
|
/* Invariant: If insn is a JUMP_INSN, the insn's jump
|
| 2281 |
|
|
label. Otherwise, zero. */
|
| 2282 |
|
|
rtx target = 0;
|
| 2283 |
|
|
int maybe_never = 0;
|
| 2284 |
|
|
rtx pat, trial_delay;
|
| 2285 |
|
|
|
| 2286 |
|
|
CLEAR_RESOURCE (&needed);
|
| 2287 |
|
|
CLEAR_RESOURCE (&set);
|
| 2288 |
|
|
|
| 2289 |
|
|
if (CALL_P (insn))
|
| 2290 |
|
|
{
|
| 2291 |
|
|
mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
|
| 2292 |
|
|
mark_referenced_resources (insn, &needed, true);
|
| 2293 |
|
|
maybe_never = 1;
|
| 2294 |
|
|
}
|
| 2295 |
|
|
else
|
| 2296 |
|
|
{
|
| 2297 |
|
|
mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
|
| 2298 |
|
|
mark_referenced_resources (insn, &needed, true);
|
| 2299 |
|
|
if (JUMP_P (insn))
|
| 2300 |
|
|
target = JUMP_LABEL (insn);
|
| 2301 |
|
|
}
|
| 2302 |
|
|
|
| 2303 |
|
|
if (target == 0 || ANY_RETURN_P (target))
|
| 2304 |
|
|
for (trial = next_nonnote_insn (insn); !stop_search_p (trial, 1);
|
| 2305 |
|
|
trial = next_trial)
|
| 2306 |
|
|
{
|
| 2307 |
|
|
next_trial = next_nonnote_insn (trial);
|
| 2308 |
|
|
|
| 2309 |
|
|
/* This must be an INSN or CALL_INSN. */
|
| 2310 |
|
|
pat = PATTERN (trial);
|
| 2311 |
|
|
|
| 2312 |
|
|
/* Stand-alone USE and CLOBBER are just for flow. */
|
| 2313 |
|
|
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
|
| 2314 |
|
|
continue;
|
| 2315 |
|
|
|
| 2316 |
|
|
/* If this already has filled delay slots, get the insn needing
|
| 2317 |
|
|
the delay slots. */
|
| 2318 |
|
|
if (GET_CODE (pat) == SEQUENCE)
|
| 2319 |
|
|
trial_delay = XVECEXP (pat, 0, 0);
|
| 2320 |
|
|
else
|
| 2321 |
|
|
trial_delay = trial;
|
| 2322 |
|
|
|
| 2323 |
|
|
/* Stop our search when seeing a jump. */
|
| 2324 |
|
|
if (JUMP_P (trial_delay))
|
| 2325 |
|
|
break;
|
| 2326 |
|
|
|
| 2327 |
|
|
/* See if we have a resource problem before we try to
|
| 2328 |
|
|
split. */
|
| 2329 |
|
|
if (GET_CODE (pat) != SEQUENCE
|
| 2330 |
|
|
&& ! insn_references_resource_p (trial, &set, true)
|
| 2331 |
|
|
&& ! insn_sets_resource_p (trial, &set, true)
|
| 2332 |
|
|
&& ! insn_sets_resource_p (trial, &needed, true)
|
| 2333 |
|
|
#ifdef HAVE_cc0
|
| 2334 |
|
|
&& ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
|
| 2335 |
|
|
#endif
|
| 2336 |
|
|
&& ! (maybe_never && may_trap_or_fault_p (pat))
|
| 2337 |
|
|
&& (trial = try_split (pat, trial, 0))
|
| 2338 |
|
|
&& eligible_for_delay (insn, slots_filled, trial, flags)
|
| 2339 |
|
|
&& ! can_throw_internal(trial))
|
| 2340 |
|
|
{
|
| 2341 |
|
|
next_trial = next_nonnote_insn (trial);
|
| 2342 |
|
|
delay_list = add_to_delay_list (trial, delay_list);
|
| 2343 |
|
|
|
| 2344 |
|
|
#ifdef HAVE_cc0
|
| 2345 |
|
|
if (reg_mentioned_p (cc0_rtx, pat))
|
| 2346 |
|
|
link_cc0_insns (trial);
|
| 2347 |
|
|
#endif
|
| 2348 |
|
|
|
| 2349 |
|
|
delete_related_insns (trial);
|
| 2350 |
|
|
if (slots_to_fill == ++slots_filled)
|
| 2351 |
|
|
break;
|
| 2352 |
|
|
continue;
|
| 2353 |
|
|
}
|
| 2354 |
|
|
|
| 2355 |
|
|
mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
|
| 2356 |
|
|
mark_referenced_resources (trial, &needed, true);
|
| 2357 |
|
|
|
| 2358 |
|
|
/* Ensure we don't put insns between the setting of cc and the
|
| 2359 |
|
|
comparison by moving a setting of cc into an earlier delay
|
| 2360 |
|
|
slot since these insns could clobber the condition code. */
|
| 2361 |
|
|
set.cc = 1;
|
| 2362 |
|
|
|
| 2363 |
|
|
/* If this is a call or jump, we might not get here. */
|
| 2364 |
|
|
if (CALL_P (trial_delay)
|
| 2365 |
|
|
|| JUMP_P (trial_delay))
|
| 2366 |
|
|
maybe_never = 1;
|
| 2367 |
|
|
}
|
| 2368 |
|
|
|
| 2369 |
|
|
/* If there are slots left to fill and our search was stopped by an
|
| 2370 |
|
|
unconditional branch, try the insn at the branch target. We can
|
| 2371 |
|
|
redirect the branch if it works.
|
| 2372 |
|
|
|
| 2373 |
|
|
Don't do this if the insn at the branch target is a branch. */
|
| 2374 |
|
|
if (slots_to_fill != slots_filled
|
| 2375 |
|
|
&& trial
|
| 2376 |
|
|
&& jump_to_label_p (trial)
|
| 2377 |
|
|
&& simplejump_p (trial)
|
| 2378 |
|
|
&& (target == 0 || JUMP_LABEL (trial) == target)
|
| 2379 |
|
|
&& (next_trial = next_active_insn (JUMP_LABEL (trial))) != 0
|
| 2380 |
|
|
&& ! (NONJUMP_INSN_P (next_trial)
|
| 2381 |
|
|
&& GET_CODE (PATTERN (next_trial)) == SEQUENCE)
|
| 2382 |
|
|
&& !JUMP_P (next_trial)
|
| 2383 |
|
|
&& ! insn_references_resource_p (next_trial, &set, true)
|
| 2384 |
|
|
&& ! insn_sets_resource_p (next_trial, &set, true)
|
| 2385 |
|
|
&& ! insn_sets_resource_p (next_trial, &needed, true)
|
| 2386 |
|
|
#ifdef HAVE_cc0
|
| 2387 |
|
|
&& ! reg_mentioned_p (cc0_rtx, PATTERN (next_trial))
|
| 2388 |
|
|
#endif
|
| 2389 |
|
|
&& ! (maybe_never && may_trap_or_fault_p (PATTERN (next_trial)))
|
| 2390 |
|
|
&& (next_trial = try_split (PATTERN (next_trial), next_trial, 0))
|
| 2391 |
|
|
&& eligible_for_delay (insn, slots_filled, next_trial, flags)
|
| 2392 |
|
|
&& ! can_throw_internal (trial))
|
| 2393 |
|
|
{
|
| 2394 |
|
|
/* See comment in relax_delay_slots about necessity of using
|
| 2395 |
|
|
next_real_insn here. */
|
| 2396 |
|
|
rtx new_label = next_real_insn (next_trial);
|
| 2397 |
|
|
|
| 2398 |
|
|
if (new_label != 0)
|
| 2399 |
|
|
new_label = get_label_before (new_label);
|
| 2400 |
|
|
else
|
| 2401 |
|
|
new_label = find_end_label (simple_return_rtx);
|
| 2402 |
|
|
|
| 2403 |
|
|
if (new_label)
|
| 2404 |
|
|
{
|
| 2405 |
|
|
delay_list
|
| 2406 |
|
|
= add_to_delay_list (copy_rtx (next_trial), delay_list);
|
| 2407 |
|
|
slots_filled++;
|
| 2408 |
|
|
reorg_redirect_jump (trial, new_label);
|
| 2409 |
|
|
|
| 2410 |
|
|
/* If we merged because we both jumped to the same place,
|
| 2411 |
|
|
redirect the original insn also. */
|
| 2412 |
|
|
if (target)
|
| 2413 |
|
|
reorg_redirect_jump (insn, new_label);
|
| 2414 |
|
|
}
|
| 2415 |
|
|
}
|
| 2416 |
|
|
}
|
| 2417 |
|
|
|
| 2418 |
|
|
/* If this is an unconditional jump, then try to get insns from the
|
| 2419 |
|
|
target of the jump. */
|
| 2420 |
|
|
if (JUMP_P (insn)
|
| 2421 |
|
|
&& simplejump_p (insn)
|
| 2422 |
|
|
&& slots_filled != slots_to_fill)
|
| 2423 |
|
|
delay_list
|
| 2424 |
|
|
= fill_slots_from_thread (insn, const_true_rtx,
|
| 2425 |
|
|
next_active_insn (JUMP_LABEL (insn)),
|
| 2426 |
|
|
NULL, 1, 1,
|
| 2427 |
|
|
own_thread_p (JUMP_LABEL (insn),
|
| 2428 |
|
|
JUMP_LABEL (insn), 0),
|
| 2429 |
|
|
slots_to_fill, &slots_filled,
|
| 2430 |
|
|
delay_list);
|
| 2431 |
|
|
|
| 2432 |
|
|
if (delay_list)
|
| 2433 |
|
|
unfilled_slots_base[i]
|
| 2434 |
|
|
= emit_delay_sequence (insn, delay_list, slots_filled);
|
| 2435 |
|
|
|
| 2436 |
|
|
if (slots_to_fill == slots_filled)
|
| 2437 |
|
|
unfilled_slots_base[i] = 0;
|
| 2438 |
|
|
|
| 2439 |
|
|
note_delay_statistics (slots_filled, 0);
|
| 2440 |
|
|
}
|
| 2441 |
|
|
|
| 2442 |
|
|
#ifdef DELAY_SLOTS_FOR_EPILOGUE
|
| 2443 |
|
|
/* See if the epilogue needs any delay slots. Try to fill them if so.
|
| 2444 |
|
|
The only thing we can do is scan backwards from the end of the
|
| 2445 |
|
|
function. If we did this in a previous pass, it is incorrect to do it
|
| 2446 |
|
|
again. */
|
| 2447 |
|
|
if (crtl->epilogue_delay_list)
|
| 2448 |
|
|
return;
|
| 2449 |
|
|
|
| 2450 |
|
|
slots_to_fill = DELAY_SLOTS_FOR_EPILOGUE;
|
| 2451 |
|
|
if (slots_to_fill == 0)
|
| 2452 |
|
|
return;
|
| 2453 |
|
|
|
| 2454 |
|
|
slots_filled = 0;
|
| 2455 |
|
|
CLEAR_RESOURCE (&set);
|
| 2456 |
|
|
|
| 2457 |
|
|
/* The frame pointer and stack pointer are needed at the beginning of
|
| 2458 |
|
|
the epilogue, so instructions setting them can not be put in the
|
| 2459 |
|
|
epilogue delay slot. However, everything else needed at function
|
| 2460 |
|
|
end is safe, so we don't want to use end_of_function_needs here. */
|
| 2461 |
|
|
CLEAR_RESOURCE (&needed);
|
| 2462 |
|
|
if (frame_pointer_needed)
|
| 2463 |
|
|
{
|
| 2464 |
|
|
SET_HARD_REG_BIT (needed.regs, FRAME_POINTER_REGNUM);
|
| 2465 |
|
|
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
| 2466 |
|
|
SET_HARD_REG_BIT (needed.regs, HARD_FRAME_POINTER_REGNUM);
|
| 2467 |
|
|
#endif
|
| 2468 |
|
|
if (! EXIT_IGNORE_STACK
|
| 2469 |
|
|
|| current_function_sp_is_unchanging)
|
| 2470 |
|
|
SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
|
| 2471 |
|
|
}
|
| 2472 |
|
|
else
|
| 2473 |
|
|
SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
|
| 2474 |
|
|
|
| 2475 |
|
|
#ifdef EPILOGUE_USES
|
| 2476 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
| 2477 |
|
|
{
|
| 2478 |
|
|
if (EPILOGUE_USES (i))
|
| 2479 |
|
|
SET_HARD_REG_BIT (needed.regs, i);
|
| 2480 |
|
|
}
|
| 2481 |
|
|
#endif
|
| 2482 |
|
|
|
| 2483 |
|
|
for (trial = get_last_insn (); ! stop_search_p (trial, 1);
|
| 2484 |
|
|
trial = PREV_INSN (trial))
|
| 2485 |
|
|
{
|
| 2486 |
|
|
if (NOTE_P (trial))
|
| 2487 |
|
|
continue;
|
| 2488 |
|
|
pat = PATTERN (trial);
|
| 2489 |
|
|
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
|
| 2490 |
|
|
continue;
|
| 2491 |
|
|
|
| 2492 |
|
|
if (! insn_references_resource_p (trial, &set, true)
|
| 2493 |
|
|
&& ! insn_sets_resource_p (trial, &needed, true)
|
| 2494 |
|
|
&& ! insn_sets_resource_p (trial, &set, true)
|
| 2495 |
|
|
#ifdef HAVE_cc0
|
| 2496 |
|
|
/* Don't want to mess with cc0 here. */
|
| 2497 |
|
|
&& ! reg_mentioned_p (cc0_rtx, pat)
|
| 2498 |
|
|
#endif
|
| 2499 |
|
|
&& ! can_throw_internal (trial))
|
| 2500 |
|
|
{
|
| 2501 |
|
|
trial = try_split (pat, trial, 1);
|
| 2502 |
|
|
if (ELIGIBLE_FOR_EPILOGUE_DELAY (trial, slots_filled))
|
| 2503 |
|
|
{
|
| 2504 |
|
|
/* Here as well we are searching backward, so put the
|
| 2505 |
|
|
insns we find on the head of the list. */
|
| 2506 |
|
|
|
| 2507 |
|
|
crtl->epilogue_delay_list
|
| 2508 |
|
|
= gen_rtx_INSN_LIST (VOIDmode, trial,
|
| 2509 |
|
|
crtl->epilogue_delay_list);
|
| 2510 |
|
|
mark_end_of_function_resources (trial, true);
|
| 2511 |
|
|
update_block (trial, trial);
|
| 2512 |
|
|
delete_related_insns (trial);
|
| 2513 |
|
|
|
| 2514 |
|
|
/* Clear deleted bit so final.c will output the insn. */
|
| 2515 |
|
|
INSN_DELETED_P (trial) = 0;
|
| 2516 |
|
|
|
| 2517 |
|
|
if (slots_to_fill == ++slots_filled)
|
| 2518 |
|
|
break;
|
| 2519 |
|
|
continue;
|
| 2520 |
|
|
}
|
| 2521 |
|
|
}
|
| 2522 |
|
|
|
| 2523 |
|
|
mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
|
| 2524 |
|
|
mark_referenced_resources (trial, &needed, true);
|
| 2525 |
|
|
}
|
| 2526 |
|
|
|
| 2527 |
|
|
note_delay_statistics (slots_filled, 0);
|
| 2528 |
|
|
#endif
|
| 2529 |
|
|
}
|
| 2530 |
|
|
|
| 2531 |
|
|
/* Follow any unconditional jump at LABEL;
|
| 2532 |
|
|
return the ultimate label reached by any such chain of jumps.
|
| 2533 |
|
|
Return a suitable return rtx if the chain ultimately leads to a
|
| 2534 |
|
|
return instruction.
|
| 2535 |
|
|
If LABEL is not followed by a jump, return LABEL.
|
| 2536 |
|
|
If the chain loops or we can't find end, return LABEL,
|
| 2537 |
|
|
since that tells caller to avoid changing the insn. */
|
| 2538 |
|
|
|
| 2539 |
|
|
static rtx
|
| 2540 |
|
|
follow_jumps (rtx label)
|
| 2541 |
|
|
{
|
| 2542 |
|
|
rtx insn;
|
| 2543 |
|
|
rtx next;
|
| 2544 |
|
|
rtx value = label;
|
| 2545 |
|
|
int depth;
|
| 2546 |
|
|
|
| 2547 |
|
|
if (ANY_RETURN_P (label))
|
| 2548 |
|
|
return label;
|
| 2549 |
|
|
for (depth = 0;
|
| 2550 |
|
|
(depth < 10
|
| 2551 |
|
|
&& (insn = next_active_insn (value)) != 0
|
| 2552 |
|
|
&& JUMP_P (insn)
|
| 2553 |
|
|
&& JUMP_LABEL (insn) != NULL_RTX
|
| 2554 |
|
|
&& ((any_uncondjump_p (insn) && onlyjump_p (insn))
|
| 2555 |
|
|
|| ANY_RETURN_P (PATTERN (insn)))
|
| 2556 |
|
|
&& (next = NEXT_INSN (insn))
|
| 2557 |
|
|
&& BARRIER_P (next));
|
| 2558 |
|
|
depth++)
|
| 2559 |
|
|
{
|
| 2560 |
|
|
rtx this_label = JUMP_LABEL (insn);
|
| 2561 |
|
|
rtx tem;
|
| 2562 |
|
|
|
| 2563 |
|
|
/* If we have found a cycle, make the insn jump to itself. */
|
| 2564 |
|
|
if (this_label == label)
|
| 2565 |
|
|
return label;
|
| 2566 |
|
|
if (ANY_RETURN_P (this_label))
|
| 2567 |
|
|
return this_label;
|
| 2568 |
|
|
tem = next_active_insn (this_label);
|
| 2569 |
|
|
if (tem
|
| 2570 |
|
|
&& (GET_CODE (PATTERN (tem)) == ADDR_VEC
|
| 2571 |
|
|
|| GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
|
| 2572 |
|
|
break;
|
| 2573 |
|
|
|
| 2574 |
|
|
value = this_label;
|
| 2575 |
|
|
}
|
| 2576 |
|
|
if (depth == 10)
|
| 2577 |
|
|
return label;
|
| 2578 |
|
|
return value;
|
| 2579 |
|
|
}
|
| 2580 |
|
|
|
| 2581 |
|
|
/* Try to find insns to place in delay slots.
|
| 2582 |
|
|
|
| 2583 |
|
|
INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
|
| 2584 |
|
|
or is an unconditional branch if CONDITION is const_true_rtx.
|
| 2585 |
|
|
*PSLOTS_FILLED is updated with the number of slots that we have filled.
|
| 2586 |
|
|
|
| 2587 |
|
|
THREAD is a flow-of-control, either the insns to be executed if the
|
| 2588 |
|
|
branch is true or if the branch is false, THREAD_IF_TRUE says which.
|
| 2589 |
|
|
|
| 2590 |
|
|
OPPOSITE_THREAD is the thread in the opposite direction. It is used
|
| 2591 |
|
|
to see if any potential delay slot insns set things needed there.
|
| 2592 |
|
|
|
| 2593 |
|
|
LIKELY is nonzero if it is extremely likely that the branch will be
|
| 2594 |
|
|
taken and THREAD_IF_TRUE is set. This is used for the branch at the
|
| 2595 |
|
|
end of a loop back up to the top.
|
| 2596 |
|
|
|
| 2597 |
|
|
OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the
|
| 2598 |
|
|
thread. I.e., it is the fallthrough code of our jump or the target of the
|
| 2599 |
|
|
jump when we are the only jump going there.
|
| 2600 |
|
|
|
| 2601 |
|
|
If OWN_THREAD is false, it must be the "true" thread of a jump. In that
|
| 2602 |
|
|
case, we can only take insns from the head of the thread for our delay
|
| 2603 |
|
|
slot. We then adjust the jump to point after the insns we have taken. */
|
| 2604 |
|
|
|
| 2605 |
|
|
static rtx
|
| 2606 |
|
|
fill_slots_from_thread (rtx insn, rtx condition, rtx thread,
|
| 2607 |
|
|
rtx opposite_thread, int likely, int thread_if_true,
|
| 2608 |
|
|
int own_thread, int slots_to_fill,
|
| 2609 |
|
|
int *pslots_filled, rtx delay_list)
|
| 2610 |
|
|
{
|
| 2611 |
|
|
rtx new_thread;
|
| 2612 |
|
|
struct resources opposite_needed, set, needed;
|
| 2613 |
|
|
rtx trial;
|
| 2614 |
|
|
int lose = 0;
|
| 2615 |
|
|
int must_annul = 0;
|
| 2616 |
|
|
int flags;
|
| 2617 |
|
|
|
| 2618 |
|
|
/* Validate our arguments. */
|
| 2619 |
|
|
gcc_assert(condition != const_true_rtx || thread_if_true);
|
| 2620 |
|
|
gcc_assert(own_thread || thread_if_true);
|
| 2621 |
|
|
|
| 2622 |
|
|
flags = get_jump_flags (insn, JUMP_LABEL (insn));
|
| 2623 |
|
|
|
| 2624 |
|
|
/* If our thread is the end of subroutine, we can't get any delay
|
| 2625 |
|
|
insns from that. */
|
| 2626 |
|
|
if (thread == NULL_RTX || ANY_RETURN_P (thread))
|
| 2627 |
|
|
return delay_list;
|
| 2628 |
|
|
|
| 2629 |
|
|
/* If this is an unconditional branch, nothing is needed at the
|
| 2630 |
|
|
opposite thread. Otherwise, compute what is needed there. */
|
| 2631 |
|
|
if (condition == const_true_rtx)
|
| 2632 |
|
|
CLEAR_RESOURCE (&opposite_needed);
|
| 2633 |
|
|
else
|
| 2634 |
|
|
mark_target_live_regs (get_insns (), opposite_thread, &opposite_needed);
|
| 2635 |
|
|
|
| 2636 |
|
|
/* If the insn at THREAD can be split, do it here to avoid having to
|
| 2637 |
|
|
update THREAD and NEW_THREAD if it is done in the loop below. Also
|
| 2638 |
|
|
initialize NEW_THREAD. */
|
| 2639 |
|
|
|
| 2640 |
|
|
new_thread = thread = try_split (PATTERN (thread), thread, 0);
|
| 2641 |
|
|
|
| 2642 |
|
|
/* Scan insns at THREAD. We are looking for an insn that can be removed
|
| 2643 |
|
|
from THREAD (it neither sets nor references resources that were set
|
| 2644 |
|
|
ahead of it and it doesn't set anything needs by the insns ahead of
|
| 2645 |
|
|
it) and that either can be placed in an annulling insn or aren't
|
| 2646 |
|
|
needed at OPPOSITE_THREAD. */
|
| 2647 |
|
|
|
| 2648 |
|
|
CLEAR_RESOURCE (&needed);
|
| 2649 |
|
|
CLEAR_RESOURCE (&set);
|
| 2650 |
|
|
|
| 2651 |
|
|
/* If we do not own this thread, we must stop as soon as we find
|
| 2652 |
|
|
something that we can't put in a delay slot, since all we can do
|
| 2653 |
|
|
is branch into THREAD at a later point. Therefore, labels stop
|
| 2654 |
|
|
the search if this is not the `true' thread. */
|
| 2655 |
|
|
|
| 2656 |
|
|
for (trial = thread;
|
| 2657 |
|
|
! stop_search_p (trial, ! thread_if_true) && (! lose || own_thread);
|
| 2658 |
|
|
trial = next_nonnote_insn (trial))
|
| 2659 |
|
|
{
|
| 2660 |
|
|
rtx pat, old_trial;
|
| 2661 |
|
|
|
| 2662 |
|
|
/* If we have passed a label, we no longer own this thread. */
|
| 2663 |
|
|
if (LABEL_P (trial))
|
| 2664 |
|
|
{
|
| 2665 |
|
|
own_thread = 0;
|
| 2666 |
|
|
continue;
|
| 2667 |
|
|
}
|
| 2668 |
|
|
|
| 2669 |
|
|
pat = PATTERN (trial);
|
| 2670 |
|
|
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
|
| 2671 |
|
|
continue;
|
| 2672 |
|
|
|
| 2673 |
|
|
/* If TRIAL conflicts with the insns ahead of it, we lose. Also,
|
| 2674 |
|
|
don't separate or copy insns that set and use CC0. */
|
| 2675 |
|
|
if (! insn_references_resource_p (trial, &set, true)
|
| 2676 |
|
|
&& ! insn_sets_resource_p (trial, &set, true)
|
| 2677 |
|
|
&& ! insn_sets_resource_p (trial, &needed, true)
|
| 2678 |
|
|
#ifdef HAVE_cc0
|
| 2679 |
|
|
&& ! (reg_mentioned_p (cc0_rtx, pat)
|
| 2680 |
|
|
&& (! own_thread || ! sets_cc0_p (pat)))
|
| 2681 |
|
|
#endif
|
| 2682 |
|
|
&& ! can_throw_internal (trial))
|
| 2683 |
|
|
{
|
| 2684 |
|
|
rtx prior_insn;
|
| 2685 |
|
|
|
| 2686 |
|
|
/* If TRIAL is redundant with some insn before INSN, we don't
|
| 2687 |
|
|
actually need to add it to the delay list; we can merely pretend
|
| 2688 |
|
|
we did. */
|
| 2689 |
|
|
if ((prior_insn = redundant_insn (trial, insn, delay_list)))
|
| 2690 |
|
|
{
|
| 2691 |
|
|
fix_reg_dead_note (prior_insn, insn);
|
| 2692 |
|
|
if (own_thread)
|
| 2693 |
|
|
{
|
| 2694 |
|
|
update_block (trial, thread);
|
| 2695 |
|
|
if (trial == thread)
|
| 2696 |
|
|
{
|
| 2697 |
|
|
thread = next_active_insn (thread);
|
| 2698 |
|
|
if (new_thread == trial)
|
| 2699 |
|
|
new_thread = thread;
|
| 2700 |
|
|
}
|
| 2701 |
|
|
|
| 2702 |
|
|
delete_related_insns (trial);
|
| 2703 |
|
|
}
|
| 2704 |
|
|
else
|
| 2705 |
|
|
{
|
| 2706 |
|
|
update_reg_unused_notes (prior_insn, trial);
|
| 2707 |
|
|
new_thread = next_active_insn (trial);
|
| 2708 |
|
|
}
|
| 2709 |
|
|
|
| 2710 |
|
|
continue;
|
| 2711 |
|
|
}
|
| 2712 |
|
|
|
| 2713 |
|
|
/* There are two ways we can win: If TRIAL doesn't set anything
|
| 2714 |
|
|
needed at the opposite thread and can't trap, or if it can
|
| 2715 |
|
|
go into an annulled delay slot. */
|
| 2716 |
|
|
if (!must_annul
|
| 2717 |
|
|
&& (condition == const_true_rtx
|
| 2718 |
|
|
|| (! insn_sets_resource_p (trial, &opposite_needed, true)
|
| 2719 |
|
|
&& ! may_trap_or_fault_p (pat)
|
| 2720 |
|
|
&& ! RTX_FRAME_RELATED_P (trial))))
|
| 2721 |
|
|
{
|
| 2722 |
|
|
old_trial = trial;
|
| 2723 |
|
|
trial = try_split (pat, trial, 0);
|
| 2724 |
|
|
if (new_thread == old_trial)
|
| 2725 |
|
|
new_thread = trial;
|
| 2726 |
|
|
if (thread == old_trial)
|
| 2727 |
|
|
thread = trial;
|
| 2728 |
|
|
pat = PATTERN (trial);
|
| 2729 |
|
|
if (eligible_for_delay (insn, *pslots_filled, trial, flags))
|
| 2730 |
|
|
goto winner;
|
| 2731 |
|
|
}
|
| 2732 |
|
|
else if (0
|
| 2733 |
|
|
#ifdef ANNUL_IFTRUE_SLOTS
|
| 2734 |
|
|
|| ! thread_if_true
|
| 2735 |
|
|
#endif
|
| 2736 |
|
|
#ifdef ANNUL_IFFALSE_SLOTS
|
| 2737 |
|
|
|| thread_if_true
|
| 2738 |
|
|
#endif
|
| 2739 |
|
|
)
|
| 2740 |
|
|
{
|
| 2741 |
|
|
old_trial = trial;
|
| 2742 |
|
|
trial = try_split (pat, trial, 0);
|
| 2743 |
|
|
if (new_thread == old_trial)
|
| 2744 |
|
|
new_thread = trial;
|
| 2745 |
|
|
if (thread == old_trial)
|
| 2746 |
|
|
thread = trial;
|
| 2747 |
|
|
pat = PATTERN (trial);
|
| 2748 |
|
|
if ((must_annul || delay_list == NULL) && (thread_if_true
|
| 2749 |
|
|
? check_annul_list_true_false (0, delay_list)
|
| 2750 |
|
|
&& eligible_for_annul_false (insn, *pslots_filled, trial, flags)
|
| 2751 |
|
|
: check_annul_list_true_false (1, delay_list)
|
| 2752 |
|
|
&& eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
|
| 2753 |
|
|
{
|
| 2754 |
|
|
rtx temp;
|
| 2755 |
|
|
|
| 2756 |
|
|
must_annul = 1;
|
| 2757 |
|
|
winner:
|
| 2758 |
|
|
|
| 2759 |
|
|
#ifdef HAVE_cc0
|
| 2760 |
|
|
if (reg_mentioned_p (cc0_rtx, pat))
|
| 2761 |
|
|
link_cc0_insns (trial);
|
| 2762 |
|
|
#endif
|
| 2763 |
|
|
|
| 2764 |
|
|
/* If we own this thread, delete the insn. If this is the
|
| 2765 |
|
|
destination of a branch, show that a basic block status
|
| 2766 |
|
|
may have been updated. In any case, mark the new
|
| 2767 |
|
|
starting point of this thread. */
|
| 2768 |
|
|
if (own_thread)
|
| 2769 |
|
|
{
|
| 2770 |
|
|
rtx note;
|
| 2771 |
|
|
|
| 2772 |
|
|
update_block (trial, thread);
|
| 2773 |
|
|
if (trial == thread)
|
| 2774 |
|
|
{
|
| 2775 |
|
|
thread = next_active_insn (thread);
|
| 2776 |
|
|
if (new_thread == trial)
|
| 2777 |
|
|
new_thread = thread;
|
| 2778 |
|
|
}
|
| 2779 |
|
|
|
| 2780 |
|
|
/* We are moving this insn, not deleting it. We must
|
| 2781 |
|
|
temporarily increment the use count on any referenced
|
| 2782 |
|
|
label lest it be deleted by delete_related_insns. */
|
| 2783 |
|
|
for (note = REG_NOTES (trial);
|
| 2784 |
|
|
note != NULL_RTX;
|
| 2785 |
|
|
note = XEXP (note, 1))
|
| 2786 |
|
|
if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
|
| 2787 |
|
|
|| REG_NOTE_KIND (note) == REG_LABEL_TARGET)
|
| 2788 |
|
|
{
|
| 2789 |
|
|
/* REG_LABEL_OPERAND could be
|
| 2790 |
|
|
NOTE_INSN_DELETED_LABEL too. */
|
| 2791 |
|
|
if (LABEL_P (XEXP (note, 0)))
|
| 2792 |
|
|
LABEL_NUSES (XEXP (note, 0))++;
|
| 2793 |
|
|
else
|
| 2794 |
|
|
gcc_assert (REG_NOTE_KIND (note)
|
| 2795 |
|
|
== REG_LABEL_OPERAND);
|
| 2796 |
|
|
}
|
| 2797 |
|
|
if (jump_to_label_p (trial))
|
| 2798 |
|
|
LABEL_NUSES (JUMP_LABEL (trial))++;
|
| 2799 |
|
|
|
| 2800 |
|
|
delete_related_insns (trial);
|
| 2801 |
|
|
|
| 2802 |
|
|
for (note = REG_NOTES (trial);
|
| 2803 |
|
|
note != NULL_RTX;
|
| 2804 |
|
|
note = XEXP (note, 1))
|
| 2805 |
|
|
if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
|
| 2806 |
|
|
|| REG_NOTE_KIND (note) == REG_LABEL_TARGET)
|
| 2807 |
|
|
{
|
| 2808 |
|
|
/* REG_LABEL_OPERAND could be
|
| 2809 |
|
|
NOTE_INSN_DELETED_LABEL too. */
|
| 2810 |
|
|
if (LABEL_P (XEXP (note, 0)))
|
| 2811 |
|
|
LABEL_NUSES (XEXP (note, 0))--;
|
| 2812 |
|
|
else
|
| 2813 |
|
|
gcc_assert (REG_NOTE_KIND (note)
|
| 2814 |
|
|
== REG_LABEL_OPERAND);
|
| 2815 |
|
|
}
|
| 2816 |
|
|
if (jump_to_label_p (trial))
|
| 2817 |
|
|
LABEL_NUSES (JUMP_LABEL (trial))--;
|
| 2818 |
|
|
}
|
| 2819 |
|
|
else
|
| 2820 |
|
|
new_thread = next_active_insn (trial);
|
| 2821 |
|
|
|
| 2822 |
|
|
temp = own_thread ? trial : copy_rtx (trial);
|
| 2823 |
|
|
if (thread_if_true)
|
| 2824 |
|
|
INSN_FROM_TARGET_P (temp) = 1;
|
| 2825 |
|
|
|
| 2826 |
|
|
delay_list = add_to_delay_list (temp, delay_list);
|
| 2827 |
|
|
|
| 2828 |
|
|
if (slots_to_fill == ++(*pslots_filled))
|
| 2829 |
|
|
{
|
| 2830 |
|
|
/* Even though we have filled all the slots, we
|
| 2831 |
|
|
may be branching to a location that has a
|
| 2832 |
|
|
redundant insn. Skip any if so. */
|
| 2833 |
|
|
while (new_thread && ! own_thread
|
| 2834 |
|
|
&& ! insn_sets_resource_p (new_thread, &set, true)
|
| 2835 |
|
|
&& ! insn_sets_resource_p (new_thread, &needed,
|
| 2836 |
|
|
true)
|
| 2837 |
|
|
&& ! insn_references_resource_p (new_thread,
|
| 2838 |
|
|
&set, true)
|
| 2839 |
|
|
&& (prior_insn
|
| 2840 |
|
|
= redundant_insn (new_thread, insn,
|
| 2841 |
|
|
delay_list)))
|
| 2842 |
|
|
{
|
| 2843 |
|
|
/* We know we do not own the thread, so no need
|
| 2844 |
|
|
to call update_block and delete_insn. */
|
| 2845 |
|
|
fix_reg_dead_note (prior_insn, insn);
|
| 2846 |
|
|
update_reg_unused_notes (prior_insn, new_thread);
|
| 2847 |
|
|
new_thread = next_active_insn (new_thread);
|
| 2848 |
|
|
}
|
| 2849 |
|
|
break;
|
| 2850 |
|
|
}
|
| 2851 |
|
|
|
| 2852 |
|
|
continue;
|
| 2853 |
|
|
}
|
| 2854 |
|
|
}
|
| 2855 |
|
|
}
|
| 2856 |
|
|
|
| 2857 |
|
|
/* This insn can't go into a delay slot. */
|
| 2858 |
|
|
lose = 1;
|
| 2859 |
|
|
mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
|
| 2860 |
|
|
mark_referenced_resources (trial, &needed, true);
|
| 2861 |
|
|
|
| 2862 |
|
|
/* Ensure we don't put insns between the setting of cc and the comparison
|
| 2863 |
|
|
by moving a setting of cc into an earlier delay slot since these insns
|
| 2864 |
|
|
could clobber the condition code. */
|
| 2865 |
|
|
set.cc = 1;
|
| 2866 |
|
|
|
| 2867 |
|
|
/* If this insn is a register-register copy and the next insn has
|
| 2868 |
|
|
a use of our destination, change it to use our source. That way,
|
| 2869 |
|
|
it will become a candidate for our delay slot the next time
|
| 2870 |
|
|
through this loop. This case occurs commonly in loops that
|
| 2871 |
|
|
scan a list.
|
| 2872 |
|
|
|
| 2873 |
|
|
We could check for more complex cases than those tested below,
|
| 2874 |
|
|
but it doesn't seem worth it. It might also be a good idea to try
|
| 2875 |
|
|
to swap the two insns. That might do better.
|
| 2876 |
|
|
|
| 2877 |
|
|
We can't do this if the next insn modifies our destination, because
|
| 2878 |
|
|
that would make the replacement into the insn invalid. We also can't
|
| 2879 |
|
|
do this if it modifies our source, because it might be an earlyclobber
|
| 2880 |
|
|
operand. This latter test also prevents updating the contents of
|
| 2881 |
|
|
a PRE_INC. We also can't do this if there's overlap of source and
|
| 2882 |
|
|
destination. Overlap may happen for larger-than-register-size modes. */
|
| 2883 |
|
|
|
| 2884 |
|
|
if (NONJUMP_INSN_P (trial) && GET_CODE (pat) == SET
|
| 2885 |
|
|
&& REG_P (SET_SRC (pat))
|
| 2886 |
|
|
&& REG_P (SET_DEST (pat))
|
| 2887 |
|
|
&& !reg_overlap_mentioned_p (SET_DEST (pat), SET_SRC (pat)))
|
| 2888 |
|
|
{
|
| 2889 |
|
|
rtx next = next_nonnote_insn (trial);
|
| 2890 |
|
|
|
| 2891 |
|
|
if (next && NONJUMP_INSN_P (next)
|
| 2892 |
|
|
&& GET_CODE (PATTERN (next)) != USE
|
| 2893 |
|
|
&& ! reg_set_p (SET_DEST (pat), next)
|
| 2894 |
|
|
&& ! reg_set_p (SET_SRC (pat), next)
|
| 2895 |
|
|
&& reg_referenced_p (SET_DEST (pat), PATTERN (next))
|
| 2896 |
|
|
&& ! modified_in_p (SET_DEST (pat), next))
|
| 2897 |
|
|
validate_replace_rtx (SET_DEST (pat), SET_SRC (pat), next);
|
| 2898 |
|
|
}
|
| 2899 |
|
|
}
|
| 2900 |
|
|
|
| 2901 |
|
|
/* If we stopped on a branch insn that has delay slots, see if we can
|
| 2902 |
|
|
steal some of the insns in those slots. */
|
| 2903 |
|
|
if (trial && NONJUMP_INSN_P (trial)
|
| 2904 |
|
|
&& GET_CODE (PATTERN (trial)) == SEQUENCE
|
| 2905 |
|
|
&& JUMP_P (XVECEXP (PATTERN (trial), 0, 0)))
|
| 2906 |
|
|
{
|
| 2907 |
|
|
/* If this is the `true' thread, we will want to follow the jump,
|
| 2908 |
|
|
so we can only do this if we have taken everything up to here. */
|
| 2909 |
|
|
if (thread_if_true && trial == new_thread)
|
| 2910 |
|
|
{
|
| 2911 |
|
|
delay_list
|
| 2912 |
|
|
= steal_delay_list_from_target (insn, condition, PATTERN (trial),
|
| 2913 |
|
|
delay_list, &set, &needed,
|
| 2914 |
|
|
&opposite_needed, slots_to_fill,
|
| 2915 |
|
|
pslots_filled, &must_annul,
|
| 2916 |
|
|
&new_thread);
|
| 2917 |
|
|
/* If we owned the thread and are told that it branched
|
| 2918 |
|
|
elsewhere, make sure we own the thread at the new location. */
|
| 2919 |
|
|
if (own_thread && trial != new_thread)
|
| 2920 |
|
|
own_thread = own_thread_p (new_thread, new_thread, 0);
|
| 2921 |
|
|
}
|
| 2922 |
|
|
else if (! thread_if_true)
|
| 2923 |
|
|
delay_list
|
| 2924 |
|
|
= steal_delay_list_from_fallthrough (insn, condition,
|
| 2925 |
|
|
PATTERN (trial),
|
| 2926 |
|
|
delay_list, &set, &needed,
|
| 2927 |
|
|
&opposite_needed, slots_to_fill,
|
| 2928 |
|
|
pslots_filled, &must_annul);
|
| 2929 |
|
|
}
|
| 2930 |
|
|
|
| 2931 |
|
|
/* If we haven't found anything for this delay slot and it is very
|
| 2932 |
|
|
likely that the branch will be taken, see if the insn at our target
|
| 2933 |
|
|
increments or decrements a register with an increment that does not
|
| 2934 |
|
|
depend on the destination register. If so, try to place the opposite
|
| 2935 |
|
|
arithmetic insn after the jump insn and put the arithmetic insn in the
|
| 2936 |
|
|
delay slot. If we can't do this, return. */
|
| 2937 |
|
|
if (delay_list == 0 && likely
|
| 2938 |
|
|
&& new_thread && !ANY_RETURN_P (new_thread)
|
| 2939 |
|
|
&& NONJUMP_INSN_P (new_thread)
|
| 2940 |
|
|
&& !RTX_FRAME_RELATED_P (new_thread)
|
| 2941 |
|
|
&& GET_CODE (PATTERN (new_thread)) != ASM_INPUT
|
| 2942 |
|
|
&& asm_noperands (PATTERN (new_thread)) < 0)
|
| 2943 |
|
|
{
|
| 2944 |
|
|
rtx pat = PATTERN (new_thread);
|
| 2945 |
|
|
rtx dest;
|
| 2946 |
|
|
rtx src;
|
| 2947 |
|
|
|
| 2948 |
|
|
trial = new_thread;
|
| 2949 |
|
|
pat = PATTERN (trial);
|
| 2950 |
|
|
|
| 2951 |
|
|
if (!NONJUMP_INSN_P (trial)
|
| 2952 |
|
|
|| GET_CODE (pat) != SET
|
| 2953 |
|
|
|| ! eligible_for_delay (insn, 0, trial, flags)
|
| 2954 |
|
|
|| can_throw_internal (trial))
|
| 2955 |
|
|
return 0;
|
| 2956 |
|
|
|
| 2957 |
|
|
dest = SET_DEST (pat), src = SET_SRC (pat);
|
| 2958 |
|
|
if ((GET_CODE (src) == PLUS || GET_CODE (src) == MINUS)
|
| 2959 |
|
|
&& rtx_equal_p (XEXP (src, 0), dest)
|
| 2960 |
|
|
&& (!FLOAT_MODE_P (GET_MODE (src))
|
| 2961 |
|
|
|| flag_unsafe_math_optimizations)
|
| 2962 |
|
|
&& ! reg_overlap_mentioned_p (dest, XEXP (src, 1))
|
| 2963 |
|
|
&& ! side_effects_p (pat))
|
| 2964 |
|
|
{
|
| 2965 |
|
|
rtx other = XEXP (src, 1);
|
| 2966 |
|
|
rtx new_arith;
|
| 2967 |
|
|
rtx ninsn;
|
| 2968 |
|
|
|
| 2969 |
|
|
/* If this is a constant adjustment, use the same code with
|
| 2970 |
|
|
the negated constant. Otherwise, reverse the sense of the
|
| 2971 |
|
|
arithmetic. */
|
| 2972 |
|
|
if (CONST_INT_P (other))
|
| 2973 |
|
|
new_arith = gen_rtx_fmt_ee (GET_CODE (src), GET_MODE (src), dest,
|
| 2974 |
|
|
negate_rtx (GET_MODE (src), other));
|
| 2975 |
|
|
else
|
| 2976 |
|
|
new_arith = gen_rtx_fmt_ee (GET_CODE (src) == PLUS ? MINUS : PLUS,
|
| 2977 |
|
|
GET_MODE (src), dest, other);
|
| 2978 |
|
|
|
| 2979 |
|
|
ninsn = emit_insn_after (gen_rtx_SET (VOIDmode, dest, new_arith),
|
| 2980 |
|
|
insn);
|
| 2981 |
|
|
|
| 2982 |
|
|
if (recog_memoized (ninsn) < 0
|
| 2983 |
|
|
|| (extract_insn (ninsn), ! constrain_operands (1)))
|
| 2984 |
|
|
{
|
| 2985 |
|
|
delete_related_insns (ninsn);
|
| 2986 |
|
|
return 0;
|
| 2987 |
|
|
}
|
| 2988 |
|
|
|
| 2989 |
|
|
if (own_thread)
|
| 2990 |
|
|
{
|
| 2991 |
|
|
update_block (trial, thread);
|
| 2992 |
|
|
if (trial == thread)
|
| 2993 |
|
|
{
|
| 2994 |
|
|
thread = next_active_insn (thread);
|
| 2995 |
|
|
if (new_thread == trial)
|
| 2996 |
|
|
new_thread = thread;
|
| 2997 |
|
|
}
|
| 2998 |
|
|
delete_related_insns (trial);
|
| 2999 |
|
|
}
|
| 3000 |
|
|
else
|
| 3001 |
|
|
new_thread = next_active_insn (trial);
|
| 3002 |
|
|
|
| 3003 |
|
|
ninsn = own_thread ? trial : copy_rtx (trial);
|
| 3004 |
|
|
if (thread_if_true)
|
| 3005 |
|
|
INSN_FROM_TARGET_P (ninsn) = 1;
|
| 3006 |
|
|
|
| 3007 |
|
|
delay_list = add_to_delay_list (ninsn, NULL_RTX);
|
| 3008 |
|
|
(*pslots_filled)++;
|
| 3009 |
|
|
}
|
| 3010 |
|
|
}
|
| 3011 |
|
|
|
| 3012 |
|
|
if (delay_list && must_annul)
|
| 3013 |
|
|
INSN_ANNULLED_BRANCH_P (insn) = 1;
|
| 3014 |
|
|
|
| 3015 |
|
|
/* If we are to branch into the middle of this thread, find an appropriate
|
| 3016 |
|
|
label or make a new one if none, and redirect INSN to it. If we hit the
|
| 3017 |
|
|
end of the function, use the end-of-function label. */
|
| 3018 |
|
|
if (new_thread != thread)
|
| 3019 |
|
|
{
|
| 3020 |
|
|
rtx label;
|
| 3021 |
|
|
|
| 3022 |
|
|
gcc_assert (thread_if_true);
|
| 3023 |
|
|
|
| 3024 |
|
|
if (new_thread && simplejump_or_return_p (new_thread)
|
| 3025 |
|
|
&& redirect_with_delay_list_safe_p (insn,
|
| 3026 |
|
|
JUMP_LABEL (new_thread),
|
| 3027 |
|
|
delay_list))
|
| 3028 |
|
|
new_thread = follow_jumps (JUMP_LABEL (new_thread));
|
| 3029 |
|
|
|
| 3030 |
|
|
if (ANY_RETURN_P (new_thread))
|
| 3031 |
|
|
label = find_end_label (new_thread);
|
| 3032 |
|
|
else if (LABEL_P (new_thread))
|
| 3033 |
|
|
label = new_thread;
|
| 3034 |
|
|
else
|
| 3035 |
|
|
label = get_label_before (new_thread);
|
| 3036 |
|
|
|
| 3037 |
|
|
if (label)
|
| 3038 |
|
|
reorg_redirect_jump (insn, label);
|
| 3039 |
|
|
}
|
| 3040 |
|
|
|
| 3041 |
|
|
return delay_list;
|
| 3042 |
|
|
}
|
| 3043 |
|
|
|
| 3044 |
|
|
/* Make another attempt to find insns to place in delay slots.
|
| 3045 |
|
|
|
| 3046 |
|
|
We previously looked for insns located in front of the delay insn
|
| 3047 |
|
|
and, for non-jump delay insns, located behind the delay insn.
|
| 3048 |
|
|
|
| 3049 |
|
|
Here only try to schedule jump insns and try to move insns from either
|
| 3050 |
|
|
the target or the following insns into the delay slot. If annulling is
|
| 3051 |
|
|
supported, we will be likely to do this. Otherwise, we can do this only
|
| 3052 |
|
|
if safe. */
|
| 3053 |
|
|
|
| 3054 |
|
|
static void
|
| 3055 |
|
|
fill_eager_delay_slots (void)
|
| 3056 |
|
|
{
|
| 3057 |
|
|
rtx insn;
|
| 3058 |
|
|
int i;
|
| 3059 |
|
|
int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
|
| 3060 |
|
|
|
| 3061 |
|
|
for (i = 0; i < num_unfilled_slots; i++)
|
| 3062 |
|
|
{
|
| 3063 |
|
|
rtx condition;
|
| 3064 |
|
|
rtx target_label, insn_at_target, fallthrough_insn;
|
| 3065 |
|
|
rtx delay_list = 0;
|
| 3066 |
|
|
int own_target;
|
| 3067 |
|
|
int own_fallthrough;
|
| 3068 |
|
|
int prediction, slots_to_fill, slots_filled;
|
| 3069 |
|
|
|
| 3070 |
|
|
insn = unfilled_slots_base[i];
|
| 3071 |
|
|
if (insn == 0
|
| 3072 |
|
|
|| INSN_DELETED_P (insn)
|
| 3073 |
|
|
|| !JUMP_P (insn)
|
| 3074 |
|
|
|| ! (condjump_p (insn) || condjump_in_parallel_p (insn)))
|
| 3075 |
|
|
continue;
|
| 3076 |
|
|
|
| 3077 |
|
|
slots_to_fill = num_delay_slots (insn);
|
| 3078 |
|
|
/* Some machine description have defined instructions to have
|
| 3079 |
|
|
delay slots only in certain circumstances which may depend on
|
| 3080 |
|
|
nearby insns (which change due to reorg's actions).
|
| 3081 |
|
|
|
| 3082 |
|
|
For example, the PA port normally has delay slots for unconditional
|
| 3083 |
|
|
jumps.
|
| 3084 |
|
|
|
| 3085 |
|
|
However, the PA port claims such jumps do not have a delay slot
|
| 3086 |
|
|
if they are immediate successors of certain CALL_INSNs. This
|
| 3087 |
|
|
allows the port to favor filling the delay slot of the call with
|
| 3088 |
|
|
the unconditional jump. */
|
| 3089 |
|
|
if (slots_to_fill == 0)
|
| 3090 |
|
|
continue;
|
| 3091 |
|
|
|
| 3092 |
|
|
slots_filled = 0;
|
| 3093 |
|
|
target_label = JUMP_LABEL (insn);
|
| 3094 |
|
|
condition = get_branch_condition (insn, target_label);
|
| 3095 |
|
|
|
| 3096 |
|
|
if (condition == 0)
|
| 3097 |
|
|
continue;
|
| 3098 |
|
|
|
| 3099 |
|
|
/* Get the next active fallthrough and target insns and see if we own
|
| 3100 |
|
|
them. Then see whether the branch is likely true. We don't need
|
| 3101 |
|
|
to do a lot of this for unconditional branches. */
|
| 3102 |
|
|
|
| 3103 |
|
|
insn_at_target = first_active_target_insn (target_label);
|
| 3104 |
|
|
own_target = own_thread_p (target_label, target_label, 0);
|
| 3105 |
|
|
|
| 3106 |
|
|
if (condition == const_true_rtx)
|
| 3107 |
|
|
{
|
| 3108 |
|
|
own_fallthrough = 0;
|
| 3109 |
|
|
fallthrough_insn = 0;
|
| 3110 |
|
|
prediction = 2;
|
| 3111 |
|
|
}
|
| 3112 |
|
|
else
|
| 3113 |
|
|
{
|
| 3114 |
|
|
fallthrough_insn = next_active_insn (insn);
|
| 3115 |
|
|
own_fallthrough = own_thread_p (NEXT_INSN (insn), NULL_RTX, 1);
|
| 3116 |
|
|
prediction = mostly_true_jump (insn, condition);
|
| 3117 |
|
|
}
|
| 3118 |
|
|
|
| 3119 |
|
|
/* If this insn is expected to branch, first try to get insns from our
|
| 3120 |
|
|
target, then our fallthrough insns. If it is not expected to branch,
|
| 3121 |
|
|
try the other order. */
|
| 3122 |
|
|
|
| 3123 |
|
|
if (prediction > 0)
|
| 3124 |
|
|
{
|
| 3125 |
|
|
delay_list
|
| 3126 |
|
|
= fill_slots_from_thread (insn, condition, insn_at_target,
|
| 3127 |
|
|
fallthrough_insn, prediction == 2, 1,
|
| 3128 |
|
|
own_target,
|
| 3129 |
|
|
slots_to_fill, &slots_filled, delay_list);
|
| 3130 |
|
|
|
| 3131 |
|
|
if (delay_list == 0 && own_fallthrough)
|
| 3132 |
|
|
{
|
| 3133 |
|
|
/* Even though we didn't find anything for delay slots,
|
| 3134 |
|
|
we might have found a redundant insn which we deleted
|
| 3135 |
|
|
from the thread that was filled. So we have to recompute
|
| 3136 |
|
|
the next insn at the target. */
|
| 3137 |
|
|
target_label = JUMP_LABEL (insn);
|
| 3138 |
|
|
insn_at_target = first_active_target_insn (target_label);
|
| 3139 |
|
|
|
| 3140 |
|
|
delay_list
|
| 3141 |
|
|
= fill_slots_from_thread (insn, condition, fallthrough_insn,
|
| 3142 |
|
|
insn_at_target, 0, 0,
|
| 3143 |
|
|
own_fallthrough,
|
| 3144 |
|
|
slots_to_fill, &slots_filled,
|
| 3145 |
|
|
delay_list);
|
| 3146 |
|
|
}
|
| 3147 |
|
|
}
|
| 3148 |
|
|
else
|
| 3149 |
|
|
{
|
| 3150 |
|
|
if (own_fallthrough)
|
| 3151 |
|
|
delay_list
|
| 3152 |
|
|
= fill_slots_from_thread (insn, condition, fallthrough_insn,
|
| 3153 |
|
|
insn_at_target, 0, 0,
|
| 3154 |
|
|
own_fallthrough,
|
| 3155 |
|
|
slots_to_fill, &slots_filled,
|
| 3156 |
|
|
delay_list);
|
| 3157 |
|
|
|
| 3158 |
|
|
if (delay_list == 0)
|
| 3159 |
|
|
delay_list
|
| 3160 |
|
|
= fill_slots_from_thread (insn, condition, insn_at_target,
|
| 3161 |
|
|
next_active_insn (insn), 0, 1,
|
| 3162 |
|
|
own_target,
|
| 3163 |
|
|
slots_to_fill, &slots_filled,
|
| 3164 |
|
|
delay_list);
|
| 3165 |
|
|
}
|
| 3166 |
|
|
|
| 3167 |
|
|
if (delay_list)
|
| 3168 |
|
|
unfilled_slots_base[i]
|
| 3169 |
|
|
= emit_delay_sequence (insn, delay_list, slots_filled);
|
| 3170 |
|
|
|
| 3171 |
|
|
if (slots_to_fill == slots_filled)
|
| 3172 |
|
|
unfilled_slots_base[i] = 0;
|
| 3173 |
|
|
|
| 3174 |
|
|
note_delay_statistics (slots_filled, 1);
|
| 3175 |
|
|
}
|
| 3176 |
|
|
}
|
| 3177 |
|
|
|
| 3178 |
|
|
static void delete_computation (rtx insn);
|
| 3179 |
|
|
|
| 3180 |
|
|
/* Recursively delete prior insns that compute the value (used only by INSN
|
| 3181 |
|
|
which the caller is deleting) stored in the register mentioned by NOTE
|
| 3182 |
|
|
which is a REG_DEAD note associated with INSN. */
|
| 3183 |
|
|
|
| 3184 |
|
|
static void
|
| 3185 |
|
|
delete_prior_computation (rtx note, rtx insn)
|
| 3186 |
|
|
{
|
| 3187 |
|
|
rtx our_prev;
|
| 3188 |
|
|
rtx reg = XEXP (note, 0);
|
| 3189 |
|
|
|
| 3190 |
|
|
for (our_prev = prev_nonnote_insn (insn);
|
| 3191 |
|
|
our_prev && (NONJUMP_INSN_P (our_prev)
|
| 3192 |
|
|
|| CALL_P (our_prev));
|
| 3193 |
|
|
our_prev = prev_nonnote_insn (our_prev))
|
| 3194 |
|
|
{
|
| 3195 |
|
|
rtx pat = PATTERN (our_prev);
|
| 3196 |
|
|
|
| 3197 |
|
|
/* If we reach a CALL which is not calling a const function
|
| 3198 |
|
|
or the callee pops the arguments, then give up. */
|
| 3199 |
|
|
if (CALL_P (our_prev)
|
| 3200 |
|
|
&& (! RTL_CONST_CALL_P (our_prev)
|
| 3201 |
|
|
|| GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
|
| 3202 |
|
|
break;
|
| 3203 |
|
|
|
| 3204 |
|
|
/* If we reach a SEQUENCE, it is too complex to try to
|
| 3205 |
|
|
do anything with it, so give up. We can be run during
|
| 3206 |
|
|
and after reorg, so SEQUENCE rtl can legitimately show
|
| 3207 |
|
|
up here. */
|
| 3208 |
|
|
if (GET_CODE (pat) == SEQUENCE)
|
| 3209 |
|
|
break;
|
| 3210 |
|
|
|
| 3211 |
|
|
if (GET_CODE (pat) == USE
|
| 3212 |
|
|
&& NONJUMP_INSN_P (XEXP (pat, 0)))
|
| 3213 |
|
|
/* reorg creates USEs that look like this. We leave them
|
| 3214 |
|
|
alone because reorg needs them for its own purposes. */
|
| 3215 |
|
|
break;
|
| 3216 |
|
|
|
| 3217 |
|
|
if (reg_set_p (reg, pat))
|
| 3218 |
|
|
{
|
| 3219 |
|
|
if (side_effects_p (pat) && !CALL_P (our_prev))
|
| 3220 |
|
|
break;
|
| 3221 |
|
|
|
| 3222 |
|
|
if (GET_CODE (pat) == PARALLEL)
|
| 3223 |
|
|
{
|
| 3224 |
|
|
/* If we find a SET of something else, we can't
|
| 3225 |
|
|
delete the insn. */
|
| 3226 |
|
|
|
| 3227 |
|
|
int i;
|
| 3228 |
|
|
|
| 3229 |
|
|
for (i = 0; i < XVECLEN (pat, 0); i++)
|
| 3230 |
|
|
{
|
| 3231 |
|
|
rtx part = XVECEXP (pat, 0, i);
|
| 3232 |
|
|
|
| 3233 |
|
|
if (GET_CODE (part) == SET
|
| 3234 |
|
|
&& SET_DEST (part) != reg)
|
| 3235 |
|
|
break;
|
| 3236 |
|
|
}
|
| 3237 |
|
|
|
| 3238 |
|
|
if (i == XVECLEN (pat, 0))
|
| 3239 |
|
|
delete_computation (our_prev);
|
| 3240 |
|
|
}
|
| 3241 |
|
|
else if (GET_CODE (pat) == SET
|
| 3242 |
|
|
&& REG_P (SET_DEST (pat)))
|
| 3243 |
|
|
{
|
| 3244 |
|
|
int dest_regno = REGNO (SET_DEST (pat));
|
| 3245 |
|
|
int dest_endregno = END_REGNO (SET_DEST (pat));
|
| 3246 |
|
|
int regno = REGNO (reg);
|
| 3247 |
|
|
int endregno = END_REGNO (reg);
|
| 3248 |
|
|
|
| 3249 |
|
|
if (dest_regno >= regno
|
| 3250 |
|
|
&& dest_endregno <= endregno)
|
| 3251 |
|
|
delete_computation (our_prev);
|
| 3252 |
|
|
|
| 3253 |
|
|
/* We may have a multi-word hard register and some, but not
|
| 3254 |
|
|
all, of the words of the register are needed in subsequent
|
| 3255 |
|
|
insns. Write REG_UNUSED notes for those parts that were not
|
| 3256 |
|
|
needed. */
|
| 3257 |
|
|
else if (dest_regno <= regno
|
| 3258 |
|
|
&& dest_endregno >= endregno)
|
| 3259 |
|
|
{
|
| 3260 |
|
|
int i;
|
| 3261 |
|
|
|
| 3262 |
|
|
add_reg_note (our_prev, REG_UNUSED, reg);
|
| 3263 |
|
|
|
| 3264 |
|
|
for (i = dest_regno; i < dest_endregno; i++)
|
| 3265 |
|
|
if (! find_regno_note (our_prev, REG_UNUSED, i))
|
| 3266 |
|
|
break;
|
| 3267 |
|
|
|
| 3268 |
|
|
if (i == dest_endregno)
|
| 3269 |
|
|
delete_computation (our_prev);
|
| 3270 |
|
|
}
|
| 3271 |
|
|
}
|
| 3272 |
|
|
|
| 3273 |
|
|
break;
|
| 3274 |
|
|
}
|
| 3275 |
|
|
|
| 3276 |
|
|
/* If PAT references the register that dies here, it is an
|
| 3277 |
|
|
additional use. Hence any prior SET isn't dead. However, this
|
| 3278 |
|
|
insn becomes the new place for the REG_DEAD note. */
|
| 3279 |
|
|
if (reg_overlap_mentioned_p (reg, pat))
|
| 3280 |
|
|
{
|
| 3281 |
|
|
XEXP (note, 1) = REG_NOTES (our_prev);
|
| 3282 |
|
|
REG_NOTES (our_prev) = note;
|
| 3283 |
|
|
break;
|
| 3284 |
|
|
}
|
| 3285 |
|
|
}
|
| 3286 |
|
|
}
|
| 3287 |
|
|
|
| 3288 |
|
|
/* Delete INSN and recursively delete insns that compute values used only
|
| 3289 |
|
|
by INSN. This uses the REG_DEAD notes computed during flow analysis.
|
| 3290 |
|
|
|
| 3291 |
|
|
Look at all our REG_DEAD notes. If a previous insn does nothing other
|
| 3292 |
|
|
than set a register that dies in this insn, we can delete that insn
|
| 3293 |
|
|
as well.
|
| 3294 |
|
|
|
| 3295 |
|
|
On machines with CC0, if CC0 is used in this insn, we may be able to
|
| 3296 |
|
|
delete the insn that set it. */
|
| 3297 |
|
|
|
| 3298 |
|
|
static void
|
| 3299 |
|
|
delete_computation (rtx insn)
|
| 3300 |
|
|
{
|
| 3301 |
|
|
rtx note, next;
|
| 3302 |
|
|
|
| 3303 |
|
|
#ifdef HAVE_cc0
|
| 3304 |
|
|
if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
|
| 3305 |
|
|
{
|
| 3306 |
|
|
rtx prev = prev_nonnote_insn (insn);
|
| 3307 |
|
|
/* We assume that at this stage
|
| 3308 |
|
|
CC's are always set explicitly
|
| 3309 |
|
|
and always immediately before the jump that
|
| 3310 |
|
|
will use them. So if the previous insn
|
| 3311 |
|
|
exists to set the CC's, delete it
|
| 3312 |
|
|
(unless it performs auto-increments, etc.). */
|
| 3313 |
|
|
if (prev && NONJUMP_INSN_P (prev)
|
| 3314 |
|
|
&& sets_cc0_p (PATTERN (prev)))
|
| 3315 |
|
|
{
|
| 3316 |
|
|
if (sets_cc0_p (PATTERN (prev)) > 0
|
| 3317 |
|
|
&& ! side_effects_p (PATTERN (prev)))
|
| 3318 |
|
|
delete_computation (prev);
|
| 3319 |
|
|
else
|
| 3320 |
|
|
/* Otherwise, show that cc0 won't be used. */
|
| 3321 |
|
|
add_reg_note (prev, REG_UNUSED, cc0_rtx);
|
| 3322 |
|
|
}
|
| 3323 |
|
|
}
|
| 3324 |
|
|
#endif
|
| 3325 |
|
|
|
| 3326 |
|
|
for (note = REG_NOTES (insn); note; note = next)
|
| 3327 |
|
|
{
|
| 3328 |
|
|
next = XEXP (note, 1);
|
| 3329 |
|
|
|
| 3330 |
|
|
if (REG_NOTE_KIND (note) != REG_DEAD
|
| 3331 |
|
|
/* Verify that the REG_NOTE is legitimate. */
|
| 3332 |
|
|
|| !REG_P (XEXP (note, 0)))
|
| 3333 |
|
|
continue;
|
| 3334 |
|
|
|
| 3335 |
|
|
delete_prior_computation (note, insn);
|
| 3336 |
|
|
}
|
| 3337 |
|
|
|
| 3338 |
|
|
delete_related_insns (insn);
|
| 3339 |
|
|
}
|
| 3340 |
|
|
|
| 3341 |
|
|
/* If all INSN does is set the pc, delete it,
|
| 3342 |
|
|
and delete the insn that set the condition codes for it
|
| 3343 |
|
|
if that's what the previous thing was. */
|
| 3344 |
|
|
|
| 3345 |
|
|
static void
|
| 3346 |
|
|
delete_jump (rtx insn)
|
| 3347 |
|
|
{
|
| 3348 |
|
|
rtx set = single_set (insn);
|
| 3349 |
|
|
|
| 3350 |
|
|
if (set && GET_CODE (SET_DEST (set)) == PC)
|
| 3351 |
|
|
delete_computation (insn);
|
| 3352 |
|
|
}
|
| 3353 |
|
|
|
| 3354 |
|
|
static rtx
|
| 3355 |
|
|
label_before_next_insn (rtx x, rtx scan_limit)
|
| 3356 |
|
|
{
|
| 3357 |
|
|
rtx insn = next_active_insn (x);
|
| 3358 |
|
|
while (insn)
|
| 3359 |
|
|
{
|
| 3360 |
|
|
insn = PREV_INSN (insn);
|
| 3361 |
|
|
if (insn == scan_limit || insn == NULL_RTX)
|
| 3362 |
|
|
return NULL_RTX;
|
| 3363 |
|
|
if (LABEL_P (insn))
|
| 3364 |
|
|
break;
|
| 3365 |
|
|
}
|
| 3366 |
|
|
return insn;
|
| 3367 |
|
|
}
|
| 3368 |
|
|
|
| 3369 |
|
|
|
| 3370 |
|
|
/* Once we have tried two ways to fill a delay slot, make a pass over the
|
| 3371 |
|
|
code to try to improve the results and to do such things as more jump
|
| 3372 |
|
|
threading. */
|
| 3373 |
|
|
|
| 3374 |
|
|
static void
|
| 3375 |
|
|
relax_delay_slots (rtx first)
|
| 3376 |
|
|
{
|
| 3377 |
|
|
rtx insn, next, pat;
|
| 3378 |
|
|
rtx trial, delay_insn, target_label;
|
| 3379 |
|
|
|
| 3380 |
|
|
/* Look at every JUMP_INSN and see if we can improve it. */
|
| 3381 |
|
|
for (insn = first; insn; insn = next)
|
| 3382 |
|
|
{
|
| 3383 |
|
|
rtx other;
|
| 3384 |
|
|
|
| 3385 |
|
|
next = next_active_insn (insn);
|
| 3386 |
|
|
|
| 3387 |
|
|
/* If this is a jump insn, see if it now jumps to a jump, jumps to
|
| 3388 |
|
|
the next insn, or jumps to a label that is not the last of a
|
| 3389 |
|
|
group of consecutive labels. */
|
| 3390 |
|
|
if (JUMP_P (insn)
|
| 3391 |
|
|
&& (condjump_p (insn) || condjump_in_parallel_p (insn))
|
| 3392 |
|
|
&& !ANY_RETURN_P (target_label = JUMP_LABEL (insn)))
|
| 3393 |
|
|
{
|
| 3394 |
|
|
target_label = skip_consecutive_labels (follow_jumps (target_label));
|
| 3395 |
|
|
if (ANY_RETURN_P (target_label))
|
| 3396 |
|
|
target_label = find_end_label (target_label);
|
| 3397 |
|
|
|
| 3398 |
|
|
if (target_label && next_active_insn (target_label) == next
|
| 3399 |
|
|
&& ! condjump_in_parallel_p (insn))
|
| 3400 |
|
|
{
|
| 3401 |
|
|
delete_jump (insn);
|
| 3402 |
|
|
continue;
|
| 3403 |
|
|
}
|
| 3404 |
|
|
|
| 3405 |
|
|
if (target_label && target_label != JUMP_LABEL (insn))
|
| 3406 |
|
|
reorg_redirect_jump (insn, target_label);
|
| 3407 |
|
|
|
| 3408 |
|
|
/* See if this jump conditionally branches around an unconditional
|
| 3409 |
|
|
jump. If so, invert this jump and point it to the target of the
|
| 3410 |
|
|
second jump. */
|
| 3411 |
|
|
if (next && simplejump_or_return_p (next)
|
| 3412 |
|
|
&& any_condjump_p (insn)
|
| 3413 |
|
|
&& target_label
|
| 3414 |
|
|
&& next_active_insn (target_label) == next_active_insn (next)
|
| 3415 |
|
|
&& no_labels_between_p (insn, next))
|
| 3416 |
|
|
{
|
| 3417 |
|
|
rtx label = JUMP_LABEL (next);
|
| 3418 |
|
|
|
| 3419 |
|
|
/* Be careful how we do this to avoid deleting code or
|
| 3420 |
|
|
labels that are momentarily dead. See similar optimization
|
| 3421 |
|
|
in jump.c.
|
| 3422 |
|
|
|
| 3423 |
|
|
We also need to ensure we properly handle the case when
|
| 3424 |
|
|
invert_jump fails. */
|
| 3425 |
|
|
|
| 3426 |
|
|
++LABEL_NUSES (target_label);
|
| 3427 |
|
|
if (!ANY_RETURN_P (label))
|
| 3428 |
|
|
++LABEL_NUSES (label);
|
| 3429 |
|
|
|
| 3430 |
|
|
if (invert_jump (insn, label, 1))
|
| 3431 |
|
|
{
|
| 3432 |
|
|
delete_related_insns (next);
|
| 3433 |
|
|
next = insn;
|
| 3434 |
|
|
}
|
| 3435 |
|
|
|
| 3436 |
|
|
if (!ANY_RETURN_P (label))
|
| 3437 |
|
|
--LABEL_NUSES (label);
|
| 3438 |
|
|
|
| 3439 |
|
|
if (--LABEL_NUSES (target_label) == 0)
|
| 3440 |
|
|
delete_related_insns (target_label);
|
| 3441 |
|
|
|
| 3442 |
|
|
continue;
|
| 3443 |
|
|
}
|
| 3444 |
|
|
}
|
| 3445 |
|
|
|
| 3446 |
|
|
/* If this is an unconditional jump and the previous insn is a
|
| 3447 |
|
|
conditional jump, try reversing the condition of the previous
|
| 3448 |
|
|
insn and swapping our targets. The next pass might be able to
|
| 3449 |
|
|
fill the slots.
|
| 3450 |
|
|
|
| 3451 |
|
|
Don't do this if we expect the conditional branch to be true, because
|
| 3452 |
|
|
we would then be making the more common case longer. */
|
| 3453 |
|
|
|
| 3454 |
|
|
if (simplejump_or_return_p (insn)
|
| 3455 |
|
|
&& (other = prev_active_insn (insn)) != 0
|
| 3456 |
|
|
&& any_condjump_p (other)
|
| 3457 |
|
|
&& no_labels_between_p (other, insn)
|
| 3458 |
|
|
&& 0 > mostly_true_jump (other,
|
| 3459 |
|
|
get_branch_condition (other,
|
| 3460 |
|
|
JUMP_LABEL (other))))
|
| 3461 |
|
|
{
|
| 3462 |
|
|
rtx other_target = JUMP_LABEL (other);
|
| 3463 |
|
|
target_label = JUMP_LABEL (insn);
|
| 3464 |
|
|
|
| 3465 |
|
|
if (invert_jump (other, target_label, 0))
|
| 3466 |
|
|
reorg_redirect_jump (insn, other_target);
|
| 3467 |
|
|
}
|
| 3468 |
|
|
|
| 3469 |
|
|
/* Now look only at cases where we have filled a delay slot. */
|
| 3470 |
|
|
if (!NONJUMP_INSN_P (insn)
|
| 3471 |
|
|
|| GET_CODE (PATTERN (insn)) != SEQUENCE)
|
| 3472 |
|
|
continue;
|
| 3473 |
|
|
|
| 3474 |
|
|
pat = PATTERN (insn);
|
| 3475 |
|
|
delay_insn = XVECEXP (pat, 0, 0);
|
| 3476 |
|
|
|
| 3477 |
|
|
/* See if the first insn in the delay slot is redundant with some
|
| 3478 |
|
|
previous insn. Remove it from the delay slot if so; then set up
|
| 3479 |
|
|
to reprocess this insn. */
|
| 3480 |
|
|
if (redundant_insn (XVECEXP (pat, 0, 1), delay_insn, 0))
|
| 3481 |
|
|
{
|
| 3482 |
|
|
delete_from_delay_slot (XVECEXP (pat, 0, 1));
|
| 3483 |
|
|
next = prev_active_insn (next);
|
| 3484 |
|
|
continue;
|
| 3485 |
|
|
}
|
| 3486 |
|
|
|
| 3487 |
|
|
/* See if we have a RETURN insn with a filled delay slot followed
|
| 3488 |
|
|
by a RETURN insn with an unfilled a delay slot. If so, we can delete
|
| 3489 |
|
|
the first RETURN (but not its delay insn). This gives the same
|
| 3490 |
|
|
effect in fewer instructions.
|
| 3491 |
|
|
|
| 3492 |
|
|
Only do so if optimizing for size since this results in slower, but
|
| 3493 |
|
|
smaller code. */
|
| 3494 |
|
|
if (optimize_function_for_size_p (cfun)
|
| 3495 |
|
|
&& ANY_RETURN_P (PATTERN (delay_insn))
|
| 3496 |
|
|
&& next
|
| 3497 |
|
|
&& JUMP_P (next)
|
| 3498 |
|
|
&& PATTERN (next) == PATTERN (delay_insn))
|
| 3499 |
|
|
{
|
| 3500 |
|
|
rtx after;
|
| 3501 |
|
|
int i;
|
| 3502 |
|
|
|
| 3503 |
|
|
/* Delete the RETURN and just execute the delay list insns.
|
| 3504 |
|
|
|
| 3505 |
|
|
We do this by deleting the INSN containing the SEQUENCE, then
|
| 3506 |
|
|
re-emitting the insns separately, and then deleting the RETURN.
|
| 3507 |
|
|
This allows the count of the jump target to be properly
|
| 3508 |
|
|
decremented.
|
| 3509 |
|
|
|
| 3510 |
|
|
Note that we need to change the INSN_UID of the re-emitted insns
|
| 3511 |
|
|
since it is used to hash the insns for mark_target_live_regs and
|
| 3512 |
|
|
the re-emitted insns will no longer be wrapped up in a SEQUENCE.
|
| 3513 |
|
|
|
| 3514 |
|
|
Clear the from target bit, since these insns are no longer
|
| 3515 |
|
|
in delay slots. */
|
| 3516 |
|
|
for (i = 0; i < XVECLEN (pat, 0); i++)
|
| 3517 |
|
|
INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
|
| 3518 |
|
|
|
| 3519 |
|
|
trial = PREV_INSN (insn);
|
| 3520 |
|
|
delete_related_insns (insn);
|
| 3521 |
|
|
gcc_assert (GET_CODE (pat) == SEQUENCE);
|
| 3522 |
|
|
add_insn_after (delay_insn, trial, NULL);
|
| 3523 |
|
|
after = delay_insn;
|
| 3524 |
|
|
for (i = 1; i < XVECLEN (pat, 0); i++)
|
| 3525 |
|
|
after = emit_copy_of_insn_after (XVECEXP (pat, 0, i), after);
|
| 3526 |
|
|
delete_scheduled_jump (delay_insn);
|
| 3527 |
|
|
continue;
|
| 3528 |
|
|
}
|
| 3529 |
|
|
|
| 3530 |
|
|
/* Now look only at the cases where we have a filled JUMP_INSN. */
|
| 3531 |
|
|
if (!JUMP_P (XVECEXP (PATTERN (insn), 0, 0))
|
| 3532 |
|
|
|| ! (condjump_p (XVECEXP (PATTERN (insn), 0, 0))
|
| 3533 |
|
|
|| condjump_in_parallel_p (XVECEXP (PATTERN (insn), 0, 0))))
|
| 3534 |
|
|
continue;
|
| 3535 |
|
|
|
| 3536 |
|
|
target_label = JUMP_LABEL (delay_insn);
|
| 3537 |
|
|
if (target_label && ANY_RETURN_P (target_label))
|
| 3538 |
|
|
continue;
|
| 3539 |
|
|
|
| 3540 |
|
|
/* If this jump goes to another unconditional jump, thread it, but
|
| 3541 |
|
|
don't convert a jump into a RETURN here. */
|
| 3542 |
|
|
trial = skip_consecutive_labels (follow_jumps (target_label));
|
| 3543 |
|
|
if (ANY_RETURN_P (trial))
|
| 3544 |
|
|
trial = find_end_label (trial);
|
| 3545 |
|
|
|
| 3546 |
|
|
if (trial && trial != target_label
|
| 3547 |
|
|
&& redirect_with_delay_slots_safe_p (delay_insn, trial, insn))
|
| 3548 |
|
|
{
|
| 3549 |
|
|
reorg_redirect_jump (delay_insn, trial);
|
| 3550 |
|
|
target_label = trial;
|
| 3551 |
|
|
}
|
| 3552 |
|
|
|
| 3553 |
|
|
/* If the first insn at TARGET_LABEL is redundant with a previous
|
| 3554 |
|
|
insn, redirect the jump to the following insn and process again.
|
| 3555 |
|
|
We use next_real_insn instead of next_active_insn so we
|
| 3556 |
|
|
don't skip USE-markers, or we'll end up with incorrect
|
| 3557 |
|
|
liveness info. */
|
| 3558 |
|
|
trial = next_real_insn (target_label);
|
| 3559 |
|
|
if (trial && GET_CODE (PATTERN (trial)) != SEQUENCE
|
| 3560 |
|
|
&& redundant_insn (trial, insn, 0)
|
| 3561 |
|
|
&& ! can_throw_internal (trial))
|
| 3562 |
|
|
{
|
| 3563 |
|
|
/* Figure out where to emit the special USE insn so we don't
|
| 3564 |
|
|
later incorrectly compute register live/death info. */
|
| 3565 |
|
|
rtx tmp = next_active_insn (trial);
|
| 3566 |
|
|
if (tmp == 0)
|
| 3567 |
|
|
tmp = find_end_label (simple_return_rtx);
|
| 3568 |
|
|
|
| 3569 |
|
|
if (tmp)
|
| 3570 |
|
|
{
|
| 3571 |
|
|
/* Insert the special USE insn and update dataflow info. */
|
| 3572 |
|
|
update_block (trial, tmp);
|
| 3573 |
|
|
|
| 3574 |
|
|
/* Now emit a label before the special USE insn, and
|
| 3575 |
|
|
redirect our jump to the new label. */
|
| 3576 |
|
|
target_label = get_label_before (PREV_INSN (tmp));
|
| 3577 |
|
|
reorg_redirect_jump (delay_insn, target_label);
|
| 3578 |
|
|
next = insn;
|
| 3579 |
|
|
continue;
|
| 3580 |
|
|
}
|
| 3581 |
|
|
}
|
| 3582 |
|
|
|
| 3583 |
|
|
/* Similarly, if it is an unconditional jump with one insn in its
|
| 3584 |
|
|
delay list and that insn is redundant, thread the jump. */
|
| 3585 |
|
|
if (trial && GET_CODE (PATTERN (trial)) == SEQUENCE
|
| 3586 |
|
|
&& XVECLEN (PATTERN (trial), 0) == 2
|
| 3587 |
|
|
&& JUMP_P (XVECEXP (PATTERN (trial), 0, 0))
|
| 3588 |
|
|
&& simplejump_or_return_p (XVECEXP (PATTERN (trial), 0, 0))
|
| 3589 |
|
|
&& redundant_insn (XVECEXP (PATTERN (trial), 0, 1), insn, 0))
|
| 3590 |
|
|
{
|
| 3591 |
|
|
target_label = JUMP_LABEL (XVECEXP (PATTERN (trial), 0, 0));
|
| 3592 |
|
|
if (ANY_RETURN_P (target_label))
|
| 3593 |
|
|
target_label = find_end_label (target_label);
|
| 3594 |
|
|
|
| 3595 |
|
|
if (target_label
|
| 3596 |
|
|
&& redirect_with_delay_slots_safe_p (delay_insn, target_label,
|
| 3597 |
|
|
insn))
|
| 3598 |
|
|
{
|
| 3599 |
|
|
reorg_redirect_jump (delay_insn, target_label);
|
| 3600 |
|
|
next = insn;
|
| 3601 |
|
|
continue;
|
| 3602 |
|
|
}
|
| 3603 |
|
|
}
|
| 3604 |
|
|
|
| 3605 |
|
|
/* See if we have a simple (conditional) jump that is useless. */
|
| 3606 |
|
|
if (! INSN_ANNULLED_BRANCH_P (delay_insn)
|
| 3607 |
|
|
&& ! condjump_in_parallel_p (delay_insn)
|
| 3608 |
|
|
&& prev_active_insn (target_label) == insn
|
| 3609 |
|
|
&& ! BARRIER_P (prev_nonnote_insn (target_label))
|
| 3610 |
|
|
#ifdef HAVE_cc0
|
| 3611 |
|
|
/* If the last insn in the delay slot sets CC0 for some insn,
|
| 3612 |
|
|
various code assumes that it is in a delay slot. We could
|
| 3613 |
|
|
put it back where it belonged and delete the register notes,
|
| 3614 |
|
|
but it doesn't seem worthwhile in this uncommon case. */
|
| 3615 |
|
|
&& ! find_reg_note (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1),
|
| 3616 |
|
|
REG_CC_USER, NULL_RTX)
|
| 3617 |
|
|
#endif
|
| 3618 |
|
|
)
|
| 3619 |
|
|
{
|
| 3620 |
|
|
rtx after;
|
| 3621 |
|
|
int i;
|
| 3622 |
|
|
|
| 3623 |
|
|
/* All this insn does is execute its delay list and jump to the
|
| 3624 |
|
|
following insn. So delete the jump and just execute the delay
|
| 3625 |
|
|
list insns.
|
| 3626 |
|
|
|
| 3627 |
|
|
We do this by deleting the INSN containing the SEQUENCE, then
|
| 3628 |
|
|
re-emitting the insns separately, and then deleting the jump.
|
| 3629 |
|
|
This allows the count of the jump target to be properly
|
| 3630 |
|
|
decremented.
|
| 3631 |
|
|
|
| 3632 |
|
|
Note that we need to change the INSN_UID of the re-emitted insns
|
| 3633 |
|
|
since it is used to hash the insns for mark_target_live_regs and
|
| 3634 |
|
|
the re-emitted insns will no longer be wrapped up in a SEQUENCE.
|
| 3635 |
|
|
|
| 3636 |
|
|
Clear the from target bit, since these insns are no longer
|
| 3637 |
|
|
in delay slots. */
|
| 3638 |
|
|
for (i = 0; i < XVECLEN (pat, 0); i++)
|
| 3639 |
|
|
INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
|
| 3640 |
|
|
|
| 3641 |
|
|
trial = PREV_INSN (insn);
|
| 3642 |
|
|
delete_related_insns (insn);
|
| 3643 |
|
|
gcc_assert (GET_CODE (pat) == SEQUENCE);
|
| 3644 |
|
|
add_insn_after (delay_insn, trial, NULL);
|
| 3645 |
|
|
after = delay_insn;
|
| 3646 |
|
|
for (i = 1; i < XVECLEN (pat, 0); i++)
|
| 3647 |
|
|
after = emit_copy_of_insn_after (XVECEXP (pat, 0, i), after);
|
| 3648 |
|
|
delete_scheduled_jump (delay_insn);
|
| 3649 |
|
|
continue;
|
| 3650 |
|
|
}
|
| 3651 |
|
|
|
| 3652 |
|
|
/* See if this is an unconditional jump around a single insn which is
|
| 3653 |
|
|
identical to the one in its delay slot. In this case, we can just
|
| 3654 |
|
|
delete the branch and the insn in its delay slot. */
|
| 3655 |
|
|
if (next && NONJUMP_INSN_P (next)
|
| 3656 |
|
|
&& label_before_next_insn (next, insn) == target_label
|
| 3657 |
|
|
&& simplejump_p (insn)
|
| 3658 |
|
|
&& XVECLEN (pat, 0) == 2
|
| 3659 |
|
|
&& rtx_equal_p (PATTERN (next), PATTERN (XVECEXP (pat, 0, 1))))
|
| 3660 |
|
|
{
|
| 3661 |
|
|
delete_related_insns (insn);
|
| 3662 |
|
|
continue;
|
| 3663 |
|
|
}
|
| 3664 |
|
|
|
| 3665 |
|
|
/* See if this jump (with its delay slots) conditionally branches
|
| 3666 |
|
|
around an unconditional jump (without delay slots). If so, invert
|
| 3667 |
|
|
this jump and point it to the target of the second jump. We cannot
|
| 3668 |
|
|
do this for annulled jumps, though. Again, don't convert a jump to
|
| 3669 |
|
|
a RETURN here. */
|
| 3670 |
|
|
if (! INSN_ANNULLED_BRANCH_P (delay_insn)
|
| 3671 |
|
|
&& any_condjump_p (delay_insn)
|
| 3672 |
|
|
&& next && simplejump_or_return_p (next)
|
| 3673 |
|
|
&& next_active_insn (target_label) == next_active_insn (next)
|
| 3674 |
|
|
&& no_labels_between_p (insn, next))
|
| 3675 |
|
|
{
|
| 3676 |
|
|
rtx label = JUMP_LABEL (next);
|
| 3677 |
|
|
rtx old_label = JUMP_LABEL (delay_insn);
|
| 3678 |
|
|
|
| 3679 |
|
|
if (ANY_RETURN_P (label))
|
| 3680 |
|
|
label = find_end_label (label);
|
| 3681 |
|
|
|
| 3682 |
|
|
/* find_end_label can generate a new label. Check this first. */
|
| 3683 |
|
|
if (label
|
| 3684 |
|
|
&& no_labels_between_p (insn, next)
|
| 3685 |
|
|
&& redirect_with_delay_slots_safe_p (delay_insn, label, insn))
|
| 3686 |
|
|
{
|
| 3687 |
|
|
/* Be careful how we do this to avoid deleting code or labels
|
| 3688 |
|
|
that are momentarily dead. See similar optimization in
|
| 3689 |
|
|
jump.c */
|
| 3690 |
|
|
if (old_label)
|
| 3691 |
|
|
++LABEL_NUSES (old_label);
|
| 3692 |
|
|
|
| 3693 |
|
|
if (invert_jump (delay_insn, label, 1))
|
| 3694 |
|
|
{
|
| 3695 |
|
|
int i;
|
| 3696 |
|
|
|
| 3697 |
|
|
/* Must update the INSN_FROM_TARGET_P bits now that
|
| 3698 |
|
|
the branch is reversed, so that mark_target_live_regs
|
| 3699 |
|
|
will handle the delay slot insn correctly. */
|
| 3700 |
|
|
for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
|
| 3701 |
|
|
{
|
| 3702 |
|
|
rtx slot = XVECEXP (PATTERN (insn), 0, i);
|
| 3703 |
|
|
INSN_FROM_TARGET_P (slot) = ! INSN_FROM_TARGET_P (slot);
|
| 3704 |
|
|
}
|
| 3705 |
|
|
|
| 3706 |
|
|
delete_related_insns (next);
|
| 3707 |
|
|
next = insn;
|
| 3708 |
|
|
}
|
| 3709 |
|
|
|
| 3710 |
|
|
if (old_label && --LABEL_NUSES (old_label) == 0)
|
| 3711 |
|
|
delete_related_insns (old_label);
|
| 3712 |
|
|
continue;
|
| 3713 |
|
|
}
|
| 3714 |
|
|
}
|
| 3715 |
|
|
|
| 3716 |
|
|
/* If we own the thread opposite the way this insn branches, see if we
|
| 3717 |
|
|
can merge its delay slots with following insns. */
|
| 3718 |
|
|
if (INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
|
| 3719 |
|
|
&& own_thread_p (NEXT_INSN (insn), 0, 1))
|
| 3720 |
|
|
try_merge_delay_insns (insn, next);
|
| 3721 |
|
|
else if (! INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
|
| 3722 |
|
|
&& own_thread_p (target_label, target_label, 0))
|
| 3723 |
|
|
try_merge_delay_insns (insn, next_active_insn (target_label));
|
| 3724 |
|
|
|
| 3725 |
|
|
/* If we get here, we haven't deleted INSN. But we may have deleted
|
| 3726 |
|
|
NEXT, so recompute it. */
|
| 3727 |
|
|
next = next_active_insn (insn);
|
| 3728 |
|
|
}
|
| 3729 |
|
|
}
|
| 3730 |
|
|
|
| 3731 |
|
|
|
| 3732 |
|
|
/* Look for filled jumps to the end of function label. We can try to convert
|
| 3733 |
|
|
them into RETURN insns if the insns in the delay slot are valid for the
|
| 3734 |
|
|
RETURN as well. */
|
| 3735 |
|
|
|
| 3736 |
|
|
static void
|
| 3737 |
|
|
make_return_insns (rtx first)
|
| 3738 |
|
|
{
|
| 3739 |
|
|
rtx insn, jump_insn, pat;
|
| 3740 |
|
|
rtx real_return_label = function_return_label;
|
| 3741 |
|
|
rtx real_simple_return_label = function_simple_return_label;
|
| 3742 |
|
|
int slots, i;
|
| 3743 |
|
|
|
| 3744 |
|
|
#ifdef DELAY_SLOTS_FOR_EPILOGUE
|
| 3745 |
|
|
/* If a previous pass filled delay slots in the epilogue, things get a
|
| 3746 |
|
|
bit more complicated, as those filler insns would generally (without
|
| 3747 |
|
|
data flow analysis) have to be executed after any existing branch
|
| 3748 |
|
|
delay slot filler insns. It is also unknown whether such a
|
| 3749 |
|
|
transformation would actually be profitable. Note that the existing
|
| 3750 |
|
|
code only cares for branches with (some) filled delay slots. */
|
| 3751 |
|
|
if (crtl->epilogue_delay_list != NULL)
|
| 3752 |
|
|
return;
|
| 3753 |
|
|
#endif
|
| 3754 |
|
|
|
| 3755 |
|
|
/* See if there is a RETURN insn in the function other than the one we
|
| 3756 |
|
|
made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
|
| 3757 |
|
|
into a RETURN to jump to it. */
|
| 3758 |
|
|
for (insn = first; insn; insn = NEXT_INSN (insn))
|
| 3759 |
|
|
if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn)))
|
| 3760 |
|
|
{
|
| 3761 |
|
|
rtx t = get_label_before (insn);
|
| 3762 |
|
|
if (PATTERN (insn) == ret_rtx)
|
| 3763 |
|
|
real_return_label = t;
|
| 3764 |
|
|
else
|
| 3765 |
|
|
real_simple_return_label = t;
|
| 3766 |
|
|
break;
|
| 3767 |
|
|
}
|
| 3768 |
|
|
|
| 3769 |
|
|
/* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
|
| 3770 |
|
|
was equal to END_OF_FUNCTION_LABEL. */
|
| 3771 |
|
|
if (real_return_label)
|
| 3772 |
|
|
LABEL_NUSES (real_return_label)++;
|
| 3773 |
|
|
if (real_simple_return_label)
|
| 3774 |
|
|
LABEL_NUSES (real_simple_return_label)++;
|
| 3775 |
|
|
|
| 3776 |
|
|
/* Clear the list of insns to fill so we can use it. */
|
| 3777 |
|
|
obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
|
| 3778 |
|
|
|
| 3779 |
|
|
for (insn = first; insn; insn = NEXT_INSN (insn))
|
| 3780 |
|
|
{
|
| 3781 |
|
|
int flags;
|
| 3782 |
|
|
rtx kind, real_label;
|
| 3783 |
|
|
|
| 3784 |
|
|
/* Only look at filled JUMP_INSNs that go to the end of function
|
| 3785 |
|
|
label. */
|
| 3786 |
|
|
if (!NONJUMP_INSN_P (insn)
|
| 3787 |
|
|
|| GET_CODE (PATTERN (insn)) != SEQUENCE
|
| 3788 |
|
|
|| !jump_to_label_p (XVECEXP (PATTERN (insn), 0, 0)))
|
| 3789 |
|
|
continue;
|
| 3790 |
|
|
|
| 3791 |
|
|
if (JUMP_LABEL (XVECEXP (PATTERN (insn), 0, 0)) == function_return_label)
|
| 3792 |
|
|
{
|
| 3793 |
|
|
kind = ret_rtx;
|
| 3794 |
|
|
real_label = real_return_label;
|
| 3795 |
|
|
}
|
| 3796 |
|
|
else if (JUMP_LABEL (XVECEXP (PATTERN (insn), 0, 0))
|
| 3797 |
|
|
== function_simple_return_label)
|
| 3798 |
|
|
{
|
| 3799 |
|
|
kind = simple_return_rtx;
|
| 3800 |
|
|
real_label = real_simple_return_label;
|
| 3801 |
|
|
}
|
| 3802 |
|
|
else
|
| 3803 |
|
|
continue;
|
| 3804 |
|
|
|
| 3805 |
|
|
pat = PATTERN (insn);
|
| 3806 |
|
|
jump_insn = XVECEXP (pat, 0, 0);
|
| 3807 |
|
|
|
| 3808 |
|
|
/* If we can't make the jump into a RETURN, try to redirect it to the best
|
| 3809 |
|
|
RETURN and go on to the next insn. */
|
| 3810 |
|
|
if (!reorg_redirect_jump (jump_insn, kind))
|
| 3811 |
|
|
{
|
| 3812 |
|
|
/* Make sure redirecting the jump will not invalidate the delay
|
| 3813 |
|
|
slot insns. */
|
| 3814 |
|
|
if (redirect_with_delay_slots_safe_p (jump_insn, real_label, insn))
|
| 3815 |
|
|
reorg_redirect_jump (jump_insn, real_label);
|
| 3816 |
|
|
continue;
|
| 3817 |
|
|
}
|
| 3818 |
|
|
|
| 3819 |
|
|
/* See if this RETURN can accept the insns current in its delay slot.
|
| 3820 |
|
|
It can if it has more or an equal number of slots and the contents
|
| 3821 |
|
|
of each is valid. */
|
| 3822 |
|
|
|
| 3823 |
|
|
flags = get_jump_flags (jump_insn, JUMP_LABEL (jump_insn));
|
| 3824 |
|
|
slots = num_delay_slots (jump_insn);
|
| 3825 |
|
|
if (slots >= XVECLEN (pat, 0) - 1)
|
| 3826 |
|
|
{
|
| 3827 |
|
|
for (i = 1; i < XVECLEN (pat, 0); i++)
|
| 3828 |
|
|
if (! (
|
| 3829 |
|
|
#ifdef ANNUL_IFFALSE_SLOTS
|
| 3830 |
|
|
(INSN_ANNULLED_BRANCH_P (jump_insn)
|
| 3831 |
|
|
&& INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
|
| 3832 |
|
|
? eligible_for_annul_false (jump_insn, i - 1,
|
| 3833 |
|
|
XVECEXP (pat, 0, i), flags) :
|
| 3834 |
|
|
#endif
|
| 3835 |
|
|
#ifdef ANNUL_IFTRUE_SLOTS
|
| 3836 |
|
|
(INSN_ANNULLED_BRANCH_P (jump_insn)
|
| 3837 |
|
|
&& ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
|
| 3838 |
|
|
? eligible_for_annul_true (jump_insn, i - 1,
|
| 3839 |
|
|
XVECEXP (pat, 0, i), flags) :
|
| 3840 |
|
|
#endif
|
| 3841 |
|
|
eligible_for_delay (jump_insn, i - 1,
|
| 3842 |
|
|
XVECEXP (pat, 0, i), flags)))
|
| 3843 |
|
|
break;
|
| 3844 |
|
|
}
|
| 3845 |
|
|
else
|
| 3846 |
|
|
i = 0;
|
| 3847 |
|
|
|
| 3848 |
|
|
if (i == XVECLEN (pat, 0))
|
| 3849 |
|
|
continue;
|
| 3850 |
|
|
|
| 3851 |
|
|
/* We have to do something with this insn. If it is an unconditional
|
| 3852 |
|
|
RETURN, delete the SEQUENCE and output the individual insns,
|
| 3853 |
|
|
followed by the RETURN. Then set things up so we try to find
|
| 3854 |
|
|
insns for its delay slots, if it needs some. */
|
| 3855 |
|
|
if (ANY_RETURN_P (PATTERN (jump_insn)))
|
| 3856 |
|
|
{
|
| 3857 |
|
|
rtx prev = PREV_INSN (insn);
|
| 3858 |
|
|
|
| 3859 |
|
|
delete_related_insns (insn);
|
| 3860 |
|
|
for (i = 1; i < XVECLEN (pat, 0); i++)
|
| 3861 |
|
|
prev = emit_insn_after (PATTERN (XVECEXP (pat, 0, i)), prev);
|
| 3862 |
|
|
|
| 3863 |
|
|
insn = emit_jump_insn_after (PATTERN (jump_insn), prev);
|
| 3864 |
|
|
emit_barrier_after (insn);
|
| 3865 |
|
|
|
| 3866 |
|
|
if (slots)
|
| 3867 |
|
|
obstack_ptr_grow (&unfilled_slots_obstack, insn);
|
| 3868 |
|
|
}
|
| 3869 |
|
|
else
|
| 3870 |
|
|
/* It is probably more efficient to keep this with its current
|
| 3871 |
|
|
delay slot as a branch to a RETURN. */
|
| 3872 |
|
|
reorg_redirect_jump (jump_insn, real_label);
|
| 3873 |
|
|
}
|
| 3874 |
|
|
|
| 3875 |
|
|
/* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
|
| 3876 |
|
|
new delay slots we have created. */
|
| 3877 |
|
|
if (real_return_label != NULL_RTX && --LABEL_NUSES (real_return_label) == 0)
|
| 3878 |
|
|
delete_related_insns (real_return_label);
|
| 3879 |
|
|
if (real_simple_return_label != NULL_RTX
|
| 3880 |
|
|
&& --LABEL_NUSES (real_simple_return_label) == 0)
|
| 3881 |
|
|
delete_related_insns (real_simple_return_label);
|
| 3882 |
|
|
|
| 3883 |
|
|
fill_simple_delay_slots (1);
|
| 3884 |
|
|
fill_simple_delay_slots (0);
|
| 3885 |
|
|
}
|
| 3886 |
|
|
|
| 3887 |
|
|
/* Try to find insns to place in delay slots. */
|
| 3888 |
|
|
|
| 3889 |
|
|
void
|
| 3890 |
|
|
dbr_schedule (rtx first)
|
| 3891 |
|
|
{
|
| 3892 |
|
|
rtx insn, next, epilogue_insn = 0;
|
| 3893 |
|
|
int i;
|
| 3894 |
|
|
bool need_return_insns;
|
| 3895 |
|
|
|
| 3896 |
|
|
/* If the current function has no insns other than the prologue and
|
| 3897 |
|
|
epilogue, then do not try to fill any delay slots. */
|
| 3898 |
|
|
if (n_basic_blocks == NUM_FIXED_BLOCKS)
|
| 3899 |
|
|
return;
|
| 3900 |
|
|
|
| 3901 |
|
|
/* Find the highest INSN_UID and allocate and initialize our map from
|
| 3902 |
|
|
INSN_UID's to position in code. */
|
| 3903 |
|
|
for (max_uid = 0, insn = first; insn; insn = NEXT_INSN (insn))
|
| 3904 |
|
|
{
|
| 3905 |
|
|
if (INSN_UID (insn) > max_uid)
|
| 3906 |
|
|
max_uid = INSN_UID (insn);
|
| 3907 |
|
|
if (NOTE_P (insn)
|
| 3908 |
|
|
&& NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
|
| 3909 |
|
|
epilogue_insn = insn;
|
| 3910 |
|
|
}
|
| 3911 |
|
|
|
| 3912 |
|
|
uid_to_ruid = XNEWVEC (int, max_uid + 1);
|
| 3913 |
|
|
for (i = 0, insn = first; insn; i++, insn = NEXT_INSN (insn))
|
| 3914 |
|
|
uid_to_ruid[INSN_UID (insn)] = i;
|
| 3915 |
|
|
|
| 3916 |
|
|
/* Initialize the list of insns that need filling. */
|
| 3917 |
|
|
if (unfilled_firstobj == 0)
|
| 3918 |
|
|
{
|
| 3919 |
|
|
gcc_obstack_init (&unfilled_slots_obstack);
|
| 3920 |
|
|
unfilled_firstobj = XOBNEWVAR (&unfilled_slots_obstack, rtx, 0);
|
| 3921 |
|
|
}
|
| 3922 |
|
|
|
| 3923 |
|
|
for (insn = next_active_insn (first); insn; insn = next_active_insn (insn))
|
| 3924 |
|
|
{
|
| 3925 |
|
|
rtx target;
|
| 3926 |
|
|
|
| 3927 |
|
|
if (JUMP_P (insn))
|
| 3928 |
|
|
INSN_ANNULLED_BRANCH_P (insn) = 0;
|
| 3929 |
|
|
INSN_FROM_TARGET_P (insn) = 0;
|
| 3930 |
|
|
|
| 3931 |
|
|
/* Skip vector tables. We can't get attributes for them. */
|
| 3932 |
|
|
if (JUMP_TABLE_DATA_P (insn))
|
| 3933 |
|
|
continue;
|
| 3934 |
|
|
|
| 3935 |
|
|
if (num_delay_slots (insn) > 0)
|
| 3936 |
|
|
obstack_ptr_grow (&unfilled_slots_obstack, insn);
|
| 3937 |
|
|
|
| 3938 |
|
|
/* Ensure all jumps go to the last of a set of consecutive labels. */
|
| 3939 |
|
|
if (JUMP_P (insn)
|
| 3940 |
|
|
&& (condjump_p (insn) || condjump_in_parallel_p (insn))
|
| 3941 |
|
|
&& !ANY_RETURN_P (JUMP_LABEL (insn))
|
| 3942 |
|
|
&& ((target = skip_consecutive_labels (JUMP_LABEL (insn)))
|
| 3943 |
|
|
!= JUMP_LABEL (insn)))
|
| 3944 |
|
|
redirect_jump (insn, target, 1);
|
| 3945 |
|
|
}
|
| 3946 |
|
|
|
| 3947 |
|
|
init_resource_info (epilogue_insn);
|
| 3948 |
|
|
|
| 3949 |
|
|
/* Show we haven't computed an end-of-function label yet. */
|
| 3950 |
|
|
function_return_label = function_simple_return_label = NULL_RTX;
|
| 3951 |
|
|
|
| 3952 |
|
|
/* Initialize the statistics for this function. */
|
| 3953 |
|
|
memset (num_insns_needing_delays, 0, sizeof num_insns_needing_delays);
|
| 3954 |
|
|
memset (num_filled_delays, 0, sizeof num_filled_delays);
|
| 3955 |
|
|
|
| 3956 |
|
|
/* Now do the delay slot filling. Try everything twice in case earlier
|
| 3957 |
|
|
changes make more slots fillable. */
|
| 3958 |
|
|
|
| 3959 |
|
|
for (reorg_pass_number = 0;
|
| 3960 |
|
|
reorg_pass_number < MAX_REORG_PASSES;
|
| 3961 |
|
|
reorg_pass_number++)
|
| 3962 |
|
|
{
|
| 3963 |
|
|
fill_simple_delay_slots (1);
|
| 3964 |
|
|
fill_simple_delay_slots (0);
|
| 3965 |
|
|
fill_eager_delay_slots ();
|
| 3966 |
|
|
relax_delay_slots (first);
|
| 3967 |
|
|
}
|
| 3968 |
|
|
|
| 3969 |
|
|
/* If we made an end of function label, indicate that it is now
|
| 3970 |
|
|
safe to delete it by undoing our prior adjustment to LABEL_NUSES.
|
| 3971 |
|
|
If it is now unused, delete it. */
|
| 3972 |
|
|
if (function_return_label && --LABEL_NUSES (function_return_label) == 0)
|
| 3973 |
|
|
delete_related_insns (function_return_label);
|
| 3974 |
|
|
if (function_simple_return_label
|
| 3975 |
|
|
&& --LABEL_NUSES (function_simple_return_label) == 0)
|
| 3976 |
|
|
delete_related_insns (function_simple_return_label);
|
| 3977 |
|
|
|
| 3978 |
|
|
need_return_insns = false;
|
| 3979 |
|
|
#ifdef HAVE_return
|
| 3980 |
|
|
need_return_insns |= HAVE_return && function_return_label != 0;
|
| 3981 |
|
|
#endif
|
| 3982 |
|
|
#ifdef HAVE_simple_return
|
| 3983 |
|
|
need_return_insns |= HAVE_simple_return && function_simple_return_label != 0;
|
| 3984 |
|
|
#endif
|
| 3985 |
|
|
if (need_return_insns)
|
| 3986 |
|
|
make_return_insns (first);
|
| 3987 |
|
|
|
| 3988 |
|
|
/* Delete any USE insns made by update_block; subsequent passes don't need
|
| 3989 |
|
|
them or know how to deal with them. */
|
| 3990 |
|
|
for (insn = first; insn; insn = next)
|
| 3991 |
|
|
{
|
| 3992 |
|
|
next = NEXT_INSN (insn);
|
| 3993 |
|
|
|
| 3994 |
|
|
if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
|
| 3995 |
|
|
&& INSN_P (XEXP (PATTERN (insn), 0)))
|
| 3996 |
|
|
next = delete_related_insns (insn);
|
| 3997 |
|
|
}
|
| 3998 |
|
|
|
| 3999 |
|
|
obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
|
| 4000 |
|
|
|
| 4001 |
|
|
/* It is not clear why the line below is needed, but it does seem to be. */
|
| 4002 |
|
|
unfilled_firstobj = XOBNEWVAR (&unfilled_slots_obstack, rtx, 0);
|
| 4003 |
|
|
|
| 4004 |
|
|
if (dump_file)
|
| 4005 |
|
|
{
|
| 4006 |
|
|
int i, j, need_comma;
|
| 4007 |
|
|
int total_delay_slots[MAX_DELAY_HISTOGRAM + 1];
|
| 4008 |
|
|
int total_annul_slots[MAX_DELAY_HISTOGRAM + 1];
|
| 4009 |
|
|
|
| 4010 |
|
|
for (reorg_pass_number = 0;
|
| 4011 |
|
|
reorg_pass_number < MAX_REORG_PASSES;
|
| 4012 |
|
|
reorg_pass_number++)
|
| 4013 |
|
|
{
|
| 4014 |
|
|
fprintf (dump_file, ";; Reorg pass #%d:\n", reorg_pass_number + 1);
|
| 4015 |
|
|
for (i = 0; i < NUM_REORG_FUNCTIONS; i++)
|
| 4016 |
|
|
{
|
| 4017 |
|
|
need_comma = 0;
|
| 4018 |
|
|
fprintf (dump_file, ";; Reorg function #%d\n", i);
|
| 4019 |
|
|
|
| 4020 |
|
|
fprintf (dump_file, ";; %d insns needing delay slots\n;; ",
|
| 4021 |
|
|
num_insns_needing_delays[i][reorg_pass_number]);
|
| 4022 |
|
|
|
| 4023 |
|
|
for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
|
| 4024 |
|
|
if (num_filled_delays[i][j][reorg_pass_number])
|
| 4025 |
|
|
{
|
| 4026 |
|
|
if (need_comma)
|
| 4027 |
|
|
fprintf (dump_file, ", ");
|
| 4028 |
|
|
need_comma = 1;
|
| 4029 |
|
|
fprintf (dump_file, "%d got %d delays",
|
| 4030 |
|
|
num_filled_delays[i][j][reorg_pass_number], j);
|
| 4031 |
|
|
}
|
| 4032 |
|
|
fprintf (dump_file, "\n");
|
| 4033 |
|
|
}
|
| 4034 |
|
|
}
|
| 4035 |
|
|
memset (total_delay_slots, 0, sizeof total_delay_slots);
|
| 4036 |
|
|
memset (total_annul_slots, 0, sizeof total_annul_slots);
|
| 4037 |
|
|
for (insn = first; insn; insn = NEXT_INSN (insn))
|
| 4038 |
|
|
{
|
| 4039 |
|
|
if (! INSN_DELETED_P (insn)
|
| 4040 |
|
|
&& NONJUMP_INSN_P (insn)
|
| 4041 |
|
|
&& GET_CODE (PATTERN (insn)) != USE
|
| 4042 |
|
|
&& GET_CODE (PATTERN (insn)) != CLOBBER)
|
| 4043 |
|
|
{
|
| 4044 |
|
|
if (GET_CODE (PATTERN (insn)) == SEQUENCE)
|
| 4045 |
|
|
{
|
| 4046 |
|
|
rtx control;
|
| 4047 |
|
|
j = XVECLEN (PATTERN (insn), 0) - 1;
|
| 4048 |
|
|
if (j > MAX_DELAY_HISTOGRAM)
|
| 4049 |
|
|
j = MAX_DELAY_HISTOGRAM;
|
| 4050 |
|
|
control = XVECEXP (PATTERN (insn), 0, 0);
|
| 4051 |
|
|
if (JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control))
|
| 4052 |
|
|
total_annul_slots[j]++;
|
| 4053 |
|
|
else
|
| 4054 |
|
|
total_delay_slots[j]++;
|
| 4055 |
|
|
}
|
| 4056 |
|
|
else if (num_delay_slots (insn) > 0)
|
| 4057 |
|
|
total_delay_slots[0]++;
|
| 4058 |
|
|
}
|
| 4059 |
|
|
}
|
| 4060 |
|
|
fprintf (dump_file, ";; Reorg totals: ");
|
| 4061 |
|
|
need_comma = 0;
|
| 4062 |
|
|
for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
|
| 4063 |
|
|
{
|
| 4064 |
|
|
if (total_delay_slots[j])
|
| 4065 |
|
|
{
|
| 4066 |
|
|
if (need_comma)
|
| 4067 |
|
|
fprintf (dump_file, ", ");
|
| 4068 |
|
|
need_comma = 1;
|
| 4069 |
|
|
fprintf (dump_file, "%d got %d delays", total_delay_slots[j], j);
|
| 4070 |
|
|
}
|
| 4071 |
|
|
}
|
| 4072 |
|
|
fprintf (dump_file, "\n");
|
| 4073 |
|
|
#if defined (ANNUL_IFTRUE_SLOTS) || defined (ANNUL_IFFALSE_SLOTS)
|
| 4074 |
|
|
fprintf (dump_file, ";; Reorg annuls: ");
|
| 4075 |
|
|
need_comma = 0;
|
| 4076 |
|
|
for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
|
| 4077 |
|
|
{
|
| 4078 |
|
|
if (total_annul_slots[j])
|
| 4079 |
|
|
{
|
| 4080 |
|
|
if (need_comma)
|
| 4081 |
|
|
fprintf (dump_file, ", ");
|
| 4082 |
|
|
need_comma = 1;
|
| 4083 |
|
|
fprintf (dump_file, "%d got %d delays", total_annul_slots[j], j);
|
| 4084 |
|
|
}
|
| 4085 |
|
|
}
|
| 4086 |
|
|
fprintf (dump_file, "\n");
|
| 4087 |
|
|
#endif
|
| 4088 |
|
|
fprintf (dump_file, "\n");
|
| 4089 |
|
|
}
|
| 4090 |
|
|
|
| 4091 |
|
|
/* For all JUMP insns, fill in branch prediction notes, so that during
|
| 4092 |
|
|
assembler output a target can set branch prediction bits in the code.
|
| 4093 |
|
|
We have to do this now, as up until this point the destinations of
|
| 4094 |
|
|
JUMPS can be moved around and changed, but past right here that cannot
|
| 4095 |
|
|
happen. */
|
| 4096 |
|
|
for (insn = first; insn; insn = NEXT_INSN (insn))
|
| 4097 |
|
|
{
|
| 4098 |
|
|
int pred_flags;
|
| 4099 |
|
|
|
| 4100 |
|
|
if (NONJUMP_INSN_P (insn))
|
| 4101 |
|
|
{
|
| 4102 |
|
|
rtx pat = PATTERN (insn);
|
| 4103 |
|
|
|
| 4104 |
|
|
if (GET_CODE (pat) == SEQUENCE)
|
| 4105 |
|
|
insn = XVECEXP (pat, 0, 0);
|
| 4106 |
|
|
}
|
| 4107 |
|
|
if (!JUMP_P (insn))
|
| 4108 |
|
|
continue;
|
| 4109 |
|
|
|
| 4110 |
|
|
pred_flags = get_jump_flags (insn, JUMP_LABEL (insn));
|
| 4111 |
|
|
add_reg_note (insn, REG_BR_PRED, GEN_INT (pred_flags));
|
| 4112 |
|
|
}
|
| 4113 |
|
|
free_resource_info ();
|
| 4114 |
|
|
free (uid_to_ruid);
|
| 4115 |
|
|
#ifdef DELAY_SLOTS_FOR_EPILOGUE
|
| 4116 |
|
|
/* SPARC assembler, for instance, emit warning when debug info is output
|
| 4117 |
|
|
into the delay slot. */
|
| 4118 |
|
|
{
|
| 4119 |
|
|
rtx link;
|
| 4120 |
|
|
|
| 4121 |
|
|
for (link = crtl->epilogue_delay_list;
|
| 4122 |
|
|
link;
|
| 4123 |
|
|
link = XEXP (link, 1))
|
| 4124 |
|
|
INSN_LOCATOR (XEXP (link, 0)) = 0;
|
| 4125 |
|
|
}
|
| 4126 |
|
|
|
| 4127 |
|
|
#endif
|
| 4128 |
|
|
crtl->dbr_scheduled_p = true;
|
| 4129 |
|
|
}
|
| 4130 |
|
|
#endif /* DELAY_SLOTS */
|
| 4131 |
|
|
|
| 4132 |
|
|
static bool
|
| 4133 |
|
|
gate_handle_delay_slots (void)
|
| 4134 |
|
|
{
|
| 4135 |
|
|
#ifdef DELAY_SLOTS
|
| 4136 |
|
|
/* At -O0 dataflow info isn't updated after RA. */
|
| 4137 |
|
|
return optimize > 0 && flag_delayed_branch && !crtl->dbr_scheduled_p;
|
| 4138 |
|
|
#else
|
| 4139 |
|
|
return 0;
|
| 4140 |
|
|
#endif
|
| 4141 |
|
|
}
|
| 4142 |
|
|
|
| 4143 |
|
|
/* Run delay slot optimization. */
|
| 4144 |
|
|
static unsigned int
|
| 4145 |
|
|
rest_of_handle_delay_slots (void)
|
| 4146 |
|
|
{
|
| 4147 |
|
|
#ifdef DELAY_SLOTS
|
| 4148 |
|
|
dbr_schedule (get_insns ());
|
| 4149 |
|
|
#endif
|
| 4150 |
|
|
return 0;
|
| 4151 |
|
|
}
|
| 4152 |
|
|
|
| 4153 |
|
|
struct rtl_opt_pass pass_delay_slots =
|
| 4154 |
|
|
{
|
| 4155 |
|
|
{
|
| 4156 |
|
|
RTL_PASS,
|
| 4157 |
|
|
"dbr", /* name */
|
| 4158 |
|
|
gate_handle_delay_slots, /* gate */
|
| 4159 |
|
|
rest_of_handle_delay_slots, /* execute */
|
| 4160 |
|
|
NULL, /* sub */
|
| 4161 |
|
|
NULL, /* next */
|
| 4162 |
|
|
0, /* static_pass_number */
|
| 4163 |
|
|
TV_DBR_SCHED, /* tv_id */
|
| 4164 |
|
|
0, /* properties_required */
|
| 4165 |
|
|
0, /* properties_provided */
|
| 4166 |
|
|
0, /* properties_destroyed */
|
| 4167 |
|
|
0, /* todo_flags_start */
|
| 4168 |
|
|
TODO_ggc_collect /* todo_flags_finish */
|
| 4169 |
|
|
}
|
| 4170 |
|
|
};
|
| 4171 |
|
|
|
| 4172 |
|
|
/* Machine dependent reorg pass. */
|
| 4173 |
|
|
static bool
|
| 4174 |
|
|
gate_handle_machine_reorg (void)
|
| 4175 |
|
|
{
|
| 4176 |
|
|
return targetm.machine_dependent_reorg != 0;
|
| 4177 |
|
|
}
|
| 4178 |
|
|
|
| 4179 |
|
|
|
| 4180 |
|
|
static unsigned int
|
| 4181 |
|
|
rest_of_handle_machine_reorg (void)
|
| 4182 |
|
|
{
|
| 4183 |
|
|
targetm.machine_dependent_reorg ();
|
| 4184 |
|
|
return 0;
|
| 4185 |
|
|
}
|
| 4186 |
|
|
|
| 4187 |
|
|
struct rtl_opt_pass pass_machine_reorg =
|
| 4188 |
|
|
{
|
| 4189 |
|
|
{
|
| 4190 |
|
|
RTL_PASS,
|
| 4191 |
|
|
"mach", /* name */
|
| 4192 |
|
|
gate_handle_machine_reorg, /* gate */
|
| 4193 |
|
|
rest_of_handle_machine_reorg, /* execute */
|
| 4194 |
|
|
NULL, /* sub */
|
| 4195 |
|
|
NULL, /* next */
|
| 4196 |
|
|
0, /* static_pass_number */
|
| 4197 |
|
|
TV_MACH_DEP, /* tv_id */
|
| 4198 |
|
|
0, /* properties_required */
|
| 4199 |
|
|
0, /* properties_provided */
|
| 4200 |
|
|
0, /* properties_destroyed */
|
| 4201 |
|
|
0, /* todo_flags_start */
|
| 4202 |
|
|
TODO_ggc_collect /* todo_flags_finish */
|
| 4203 |
|
|
}
|
| 4204 |
|
|
};
|