1 |
684 |
jeremybenn |
/* Perform instruction reorganizations for delay slot filling.
|
2 |
|
|
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
|
3 |
|
|
2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
|
6 |
|
|
Hacked by Michael Tiemann (tiemann@cygnus.com).
|
7 |
|
|
|
8 |
|
|
This file is part of GCC.
|
9 |
|
|
|
10 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
11 |
|
|
the terms of the GNU General Public License as published by the Free
|
12 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
13 |
|
|
version.
|
14 |
|
|
|
15 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
16 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
17 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
18 |
|
|
for more details.
|
19 |
|
|
|
20 |
|
|
You should have received a copy of the GNU General Public License
|
21 |
|
|
along with GCC; see the file COPYING3. If not see
|
22 |
|
|
<http://www.gnu.org/licenses/>. */
|
23 |
|
|
|
24 |
|
|
/* Instruction reorganization pass.
|
25 |
|
|
|
26 |
|
|
This pass runs after register allocation and final jump
|
27 |
|
|
optimization. It should be the last pass to run before peephole.
|
28 |
|
|
It serves primarily to fill delay slots of insns, typically branch
|
29 |
|
|
and call insns. Other insns typically involve more complicated
|
30 |
|
|
interactions of data dependencies and resource constraints, and
|
31 |
|
|
are better handled by scheduling before register allocation (by the
|
32 |
|
|
function `schedule_insns').
|
33 |
|
|
|
34 |
|
|
The Branch Penalty is the number of extra cycles that are needed to
|
35 |
|
|
execute a branch insn. On an ideal machine, branches take a single
|
36 |
|
|
cycle, and the Branch Penalty is 0. Several RISC machines approach
|
37 |
|
|
branch delays differently:
|
38 |
|
|
|
39 |
|
|
The MIPS has a single branch delay slot. Most insns
|
40 |
|
|
(except other branches) can be used to fill this slot. When the
|
41 |
|
|
slot is filled, two insns execute in two cycles, reducing the
|
42 |
|
|
branch penalty to zero.
|
43 |
|
|
|
44 |
|
|
The SPARC always has a branch delay slot, but its effects can be
|
45 |
|
|
annulled when the branch is not taken. This means that failing to
|
46 |
|
|
find other sources of insns, we can hoist an insn from the branch
|
47 |
|
|
target that would only be safe to execute knowing that the branch
|
48 |
|
|
is taken.
|
49 |
|
|
|
50 |
|
|
The HP-PA always has a branch delay slot. For unconditional branches
|
51 |
|
|
its effects can be annulled when the branch is taken. The effects
|
52 |
|
|
of the delay slot in a conditional branch can be nullified for forward
|
53 |
|
|
taken branches, or for untaken backward branches. This means
|
54 |
|
|
we can hoist insns from the fall-through path for forward branches or
|
55 |
|
|
steal insns from the target of backward branches.
|
56 |
|
|
|
57 |
|
|
The TMS320C3x and C4x have three branch delay slots. When the three
|
58 |
|
|
slots are filled, the branch penalty is zero. Most insns can fill the
|
59 |
|
|
delay slots except jump insns.
|
60 |
|
|
|
61 |
|
|
Three techniques for filling delay slots have been implemented so far:
|
62 |
|
|
|
63 |
|
|
(1) `fill_simple_delay_slots' is the simplest, most efficient way
|
64 |
|
|
to fill delay slots. This pass first looks for insns which come
|
65 |
|
|
from before the branch and which are safe to execute after the
|
66 |
|
|
branch. Then it searches after the insn requiring delay slots or,
|
67 |
|
|
in the case of a branch, for insns that are after the point at
|
68 |
|
|
which the branch merges into the fallthrough code, if such a point
|
69 |
|
|
exists. When such insns are found, the branch penalty decreases
|
70 |
|
|
and no code expansion takes place.
|
71 |
|
|
|
72 |
|
|
(2) `fill_eager_delay_slots' is more complicated: it is used for
|
73 |
|
|
scheduling conditional jumps, or for scheduling jumps which cannot
|
74 |
|
|
be filled using (1). A machine need not have annulled jumps to use
|
75 |
|
|
this strategy, but it helps (by keeping more options open).
|
76 |
|
|
`fill_eager_delay_slots' tries to guess the direction the branch
|
77 |
|
|
will go; if it guesses right 100% of the time, it can reduce the
|
78 |
|
|
branch penalty as much as `fill_simple_delay_slots' does. If it
|
79 |
|
|
guesses wrong 100% of the time, it might as well schedule nops. When
|
80 |
|
|
`fill_eager_delay_slots' takes insns from the fall-through path of
|
81 |
|
|
the jump, usually there is no code expansion; when it takes insns
|
82 |
|
|
from the branch target, there is code expansion if it is not the
|
83 |
|
|
only way to reach that target.
|
84 |
|
|
|
85 |
|
|
(3) `relax_delay_slots' uses a set of rules to simplify code that
|
86 |
|
|
has been reorganized by (1) and (2). It finds cases where
|
87 |
|
|
conditional test can be eliminated, jumps can be threaded, extra
|
88 |
|
|
insns can be eliminated, etc. It is the job of (1) and (2) to do a
|
89 |
|
|
good job of scheduling locally; `relax_delay_slots' takes care of
|
90 |
|
|
making the various individual schedules work well together. It is
|
91 |
|
|
especially tuned to handle the control flow interactions of branch
|
92 |
|
|
insns. It does nothing for insns with delay slots that do not
|
93 |
|
|
branch.
|
94 |
|
|
|
95 |
|
|
On machines that use CC0, we are very conservative. We will not make
|
96 |
|
|
a copy of an insn involving CC0 since we want to maintain a 1-1
|
97 |
|
|
correspondence between the insn that sets and uses CC0. The insns are
|
98 |
|
|
allowed to be separated by placing an insn that sets CC0 (but not an insn
|
99 |
|
|
that uses CC0; we could do this, but it doesn't seem worthwhile) in a
|
100 |
|
|
delay slot. In that case, we point each insn at the other with REG_CC_USER
|
101 |
|
|
and REG_CC_SETTER notes. Note that these restrictions affect very few
|
102 |
|
|
machines because most RISC machines with delay slots will not use CC0
|
103 |
|
|
(the RT is the only known exception at this point).
|
104 |
|
|
|
105 |
|
|
Not yet implemented:
|
106 |
|
|
|
107 |
|
|
The Acorn Risc Machine can conditionally execute most insns, so
|
108 |
|
|
it is profitable to move single insns into a position to execute
|
109 |
|
|
based on the condition code of the previous insn.
|
110 |
|
|
|
111 |
|
|
The HP-PA can conditionally nullify insns, providing a similar
|
112 |
|
|
effect to the ARM, differing mostly in which insn is "in charge". */
|
113 |
|
|
|
114 |
|
|
#include "config.h"
|
115 |
|
|
#include "system.h"
|
116 |
|
|
#include "coretypes.h"
|
117 |
|
|
#include "tm.h"
|
118 |
|
|
#include "diagnostic-core.h"
|
119 |
|
|
#include "rtl.h"
|
120 |
|
|
#include "tm_p.h"
|
121 |
|
|
#include "expr.h"
|
122 |
|
|
#include "function.h"
|
123 |
|
|
#include "insn-config.h"
|
124 |
|
|
#include "conditions.h"
|
125 |
|
|
#include "hard-reg-set.h"
|
126 |
|
|
#include "basic-block.h"
|
127 |
|
|
#include "regs.h"
|
128 |
|
|
#include "recog.h"
|
129 |
|
|
#include "flags.h"
|
130 |
|
|
#include "output.h"
|
131 |
|
|
#include "obstack.h"
|
132 |
|
|
#include "insn-attr.h"
|
133 |
|
|
#include "resource.h"
|
134 |
|
|
#include "except.h"
|
135 |
|
|
#include "params.h"
|
136 |
|
|
#include "timevar.h"
|
137 |
|
|
#include "target.h"
|
138 |
|
|
#include "tree-pass.h"
|
139 |
|
|
|
140 |
|
|
#ifdef DELAY_SLOTS
|
141 |
|
|
|
142 |
|
|
#ifndef ANNUL_IFTRUE_SLOTS
|
143 |
|
|
#define eligible_for_annul_true(INSN, SLOTS, TRIAL, FLAGS) 0
|
144 |
|
|
#endif
|
145 |
|
|
#ifndef ANNUL_IFFALSE_SLOTS
|
146 |
|
|
#define eligible_for_annul_false(INSN, SLOTS, TRIAL, FLAGS) 0
|
147 |
|
|
#endif
|
148 |
|
|
|
149 |
|
|
/* Insns which have delay slots that have not yet been filled. */
|
150 |
|
|
|
151 |
|
|
static struct obstack unfilled_slots_obstack;
|
152 |
|
|
static rtx *unfilled_firstobj;
|
153 |
|
|
|
154 |
|
|
/* Define macros to refer to the first and last slot containing unfilled
|
155 |
|
|
insns. These are used because the list may move and its address
|
156 |
|
|
should be recomputed at each use. */
|
157 |
|
|
|
158 |
|
|
#define unfilled_slots_base \
|
159 |
|
|
((rtx *) obstack_base (&unfilled_slots_obstack))
|
160 |
|
|
|
161 |
|
|
#define unfilled_slots_next \
|
162 |
|
|
((rtx *) obstack_next_free (&unfilled_slots_obstack))
|
163 |
|
|
|
164 |
|
|
/* Points to the label before the end of the function, or before a
|
165 |
|
|
return insn. */
|
166 |
|
|
static rtx function_return_label;
|
167 |
|
|
/* Likewise for a simple_return. */
|
168 |
|
|
static rtx function_simple_return_label;
|
169 |
|
|
|
170 |
|
|
/* Mapping between INSN_UID's and position in the code since INSN_UID's do
|
171 |
|
|
not always monotonically increase. */
|
172 |
|
|
static int *uid_to_ruid;
|
173 |
|
|
|
174 |
|
|
/* Highest valid index in `uid_to_ruid'. */
|
175 |
|
|
static int max_uid;
|
176 |
|
|
|
177 |
|
|
static int stop_search_p (rtx, int);
|
178 |
|
|
static int resource_conflicts_p (struct resources *, struct resources *);
|
179 |
|
|
static int insn_references_resource_p (rtx, struct resources *, bool);
|
180 |
|
|
static int insn_sets_resource_p (rtx, struct resources *, bool);
|
181 |
|
|
static rtx find_end_label (rtx);
|
182 |
|
|
static rtx emit_delay_sequence (rtx, rtx, int);
|
183 |
|
|
static rtx add_to_delay_list (rtx, rtx);
|
184 |
|
|
static rtx delete_from_delay_slot (rtx);
|
185 |
|
|
static void delete_scheduled_jump (rtx);
|
186 |
|
|
static void note_delay_statistics (int, int);
|
187 |
|
|
#if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
|
188 |
|
|
static rtx optimize_skip (rtx);
|
189 |
|
|
#endif
|
190 |
|
|
static int get_jump_flags (rtx, rtx);
|
191 |
|
|
static int rare_destination (rtx);
|
192 |
|
|
static int mostly_true_jump (rtx, rtx);
|
193 |
|
|
static rtx get_branch_condition (rtx, rtx);
|
194 |
|
|
static int condition_dominates_p (rtx, rtx);
|
195 |
|
|
static int redirect_with_delay_slots_safe_p (rtx, rtx, rtx);
|
196 |
|
|
static int redirect_with_delay_list_safe_p (rtx, rtx, rtx);
|
197 |
|
|
static int check_annul_list_true_false (int, rtx);
|
198 |
|
|
static rtx steal_delay_list_from_target (rtx, rtx, rtx, rtx,
|
199 |
|
|
struct resources *,
|
200 |
|
|
struct resources *,
|
201 |
|
|
struct resources *,
|
202 |
|
|
int, int *, int *, rtx *);
|
203 |
|
|
static rtx steal_delay_list_from_fallthrough (rtx, rtx, rtx, rtx,
|
204 |
|
|
struct resources *,
|
205 |
|
|
struct resources *,
|
206 |
|
|
struct resources *,
|
207 |
|
|
int, int *, int *);
|
208 |
|
|
static void try_merge_delay_insns (rtx, rtx);
|
209 |
|
|
static rtx redundant_insn (rtx, rtx, rtx);
|
210 |
|
|
static int own_thread_p (rtx, rtx, int);
|
211 |
|
|
static void update_block (rtx, rtx);
|
212 |
|
|
static int reorg_redirect_jump (rtx, rtx);
|
213 |
|
|
static void update_reg_dead_notes (rtx, rtx);
|
214 |
|
|
static void fix_reg_dead_note (rtx, rtx);
|
215 |
|
|
static void update_reg_unused_notes (rtx, rtx);
|
216 |
|
|
static void fill_simple_delay_slots (int);
|
217 |
|
|
static rtx fill_slots_from_thread (rtx, rtx, rtx, rtx,
|
218 |
|
|
int, int, int, int,
|
219 |
|
|
int *, rtx);
|
220 |
|
|
static void fill_eager_delay_slots (void);
|
221 |
|
|
static void relax_delay_slots (rtx);
|
222 |
|
|
static void make_return_insns (rtx);
|
223 |
|
|
|
224 |
|
|
/* A wrapper around next_active_insn which takes care to return ret_rtx
|
225 |
|
|
unchanged. */
|
226 |
|
|
|
227 |
|
|
static rtx
|
228 |
|
|
first_active_target_insn (rtx insn)
|
229 |
|
|
{
|
230 |
|
|
if (ANY_RETURN_P (insn))
|
231 |
|
|
return insn;
|
232 |
|
|
return next_active_insn (insn);
|
233 |
|
|
}
|
234 |
|
|
|
235 |
|
|
/* Return true iff INSN is a simplejump, or any kind of return insn. */
|
236 |
|
|
|
237 |
|
|
static bool
|
238 |
|
|
simplejump_or_return_p (rtx insn)
|
239 |
|
|
{
|
240 |
|
|
return (JUMP_P (insn)
|
241 |
|
|
&& (simplejump_p (insn) || ANY_RETURN_P (PATTERN (insn))));
|
242 |
|
|
}
|
243 |
|
|
|
244 |
|
|
/* Return TRUE if this insn should stop the search for insn to fill delay
|
245 |
|
|
slots. LABELS_P indicates that labels should terminate the search.
|
246 |
|
|
In all cases, jumps terminate the search. */
|
247 |
|
|
|
248 |
|
|
static int
|
249 |
|
|
stop_search_p (rtx insn, int labels_p)
|
250 |
|
|
{
|
251 |
|
|
if (insn == 0)
|
252 |
|
|
return 1;
|
253 |
|
|
|
254 |
|
|
/* If the insn can throw an exception that is caught within the function,
|
255 |
|
|
it may effectively perform a jump from the viewpoint of the function.
|
256 |
|
|
Therefore act like for a jump. */
|
257 |
|
|
if (can_throw_internal (insn))
|
258 |
|
|
return 1;
|
259 |
|
|
|
260 |
|
|
switch (GET_CODE (insn))
|
261 |
|
|
{
|
262 |
|
|
case NOTE:
|
263 |
|
|
case CALL_INSN:
|
264 |
|
|
return 0;
|
265 |
|
|
|
266 |
|
|
case CODE_LABEL:
|
267 |
|
|
return labels_p;
|
268 |
|
|
|
269 |
|
|
case JUMP_INSN:
|
270 |
|
|
case BARRIER:
|
271 |
|
|
return 1;
|
272 |
|
|
|
273 |
|
|
case INSN:
|
274 |
|
|
/* OK unless it contains a delay slot or is an `asm' insn of some type.
|
275 |
|
|
We don't know anything about these. */
|
276 |
|
|
return (GET_CODE (PATTERN (insn)) == SEQUENCE
|
277 |
|
|
|| GET_CODE (PATTERN (insn)) == ASM_INPUT
|
278 |
|
|
|| asm_noperands (PATTERN (insn)) >= 0);
|
279 |
|
|
|
280 |
|
|
default:
|
281 |
|
|
gcc_unreachable ();
|
282 |
|
|
}
|
283 |
|
|
}
|
284 |
|
|
|
285 |
|
|
/* Return TRUE if any resources are marked in both RES1 and RES2 or if either
|
286 |
|
|
resource set contains a volatile memory reference. Otherwise, return FALSE. */
|
287 |
|
|
|
288 |
|
|
static int
|
289 |
|
|
resource_conflicts_p (struct resources *res1, struct resources *res2)
|
290 |
|
|
{
|
291 |
|
|
if ((res1->cc && res2->cc) || (res1->memory && res2->memory)
|
292 |
|
|
|| (res1->unch_memory && res2->unch_memory)
|
293 |
|
|
|| res1->volatil || res2->volatil)
|
294 |
|
|
return 1;
|
295 |
|
|
|
296 |
|
|
#ifdef HARD_REG_SET
|
297 |
|
|
return (res1->regs & res2->regs) != HARD_CONST (0);
|
298 |
|
|
#else
|
299 |
|
|
{
|
300 |
|
|
int i;
|
301 |
|
|
|
302 |
|
|
for (i = 0; i < HARD_REG_SET_LONGS; i++)
|
303 |
|
|
if ((res1->regs[i] & res2->regs[i]) != 0)
|
304 |
|
|
return 1;
|
305 |
|
|
return 0;
|
306 |
|
|
}
|
307 |
|
|
#endif
|
308 |
|
|
}
|
309 |
|
|
|
310 |
|
|
/* Return TRUE if any resource marked in RES, a `struct resources', is
|
311 |
|
|
referenced by INSN. If INCLUDE_DELAYED_EFFECTS is set, return if the called
|
312 |
|
|
routine is using those resources.
|
313 |
|
|
|
314 |
|
|
We compute this by computing all the resources referenced by INSN and
|
315 |
|
|
seeing if this conflicts with RES. It might be faster to directly check
|
316 |
|
|
ourselves, and this is the way it used to work, but it means duplicating
|
317 |
|
|
a large block of complex code. */
|
318 |
|
|
|
319 |
|
|
static int
|
320 |
|
|
insn_references_resource_p (rtx insn, struct resources *res,
|
321 |
|
|
bool include_delayed_effects)
|
322 |
|
|
{
|
323 |
|
|
struct resources insn_res;
|
324 |
|
|
|
325 |
|
|
CLEAR_RESOURCE (&insn_res);
|
326 |
|
|
mark_referenced_resources (insn, &insn_res, include_delayed_effects);
|
327 |
|
|
return resource_conflicts_p (&insn_res, res);
|
328 |
|
|
}
|
329 |
|
|
|
330 |
|
|
/* Return TRUE if INSN modifies resources that are marked in RES.
|
331 |
|
|
INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
|
332 |
|
|
included. CC0 is only modified if it is explicitly set; see comments
|
333 |
|
|
in front of mark_set_resources for details. */
|
334 |
|
|
|
335 |
|
|
static int
|
336 |
|
|
insn_sets_resource_p (rtx insn, struct resources *res,
|
337 |
|
|
bool include_delayed_effects)
|
338 |
|
|
{
|
339 |
|
|
struct resources insn_sets;
|
340 |
|
|
|
341 |
|
|
CLEAR_RESOURCE (&insn_sets);
|
342 |
|
|
mark_set_resources (insn, &insn_sets, 0,
|
343 |
|
|
(include_delayed_effects
|
344 |
|
|
? MARK_SRC_DEST_CALL
|
345 |
|
|
: MARK_SRC_DEST));
|
346 |
|
|
return resource_conflicts_p (&insn_sets, res);
|
347 |
|
|
}
|
348 |
|
|
|
349 |
|
|
/* Find a label at the end of the function or before a RETURN. If there
|
350 |
|
|
is none, try to make one. If that fails, returns 0.
|
351 |
|
|
|
352 |
|
|
The property of such a label is that it is placed just before the
|
353 |
|
|
epilogue or a bare RETURN insn, so that another bare RETURN can be
|
354 |
|
|
turned into a jump to the label unconditionally. In particular, the
|
355 |
|
|
label cannot be placed before a RETURN insn with a filled delay slot.
|
356 |
|
|
|
357 |
|
|
??? There may be a problem with the current implementation. Suppose
|
358 |
|
|
we start with a bare RETURN insn and call find_end_label. It may set
|
359 |
|
|
function_return_label just before the RETURN. Suppose the machinery
|
360 |
|
|
is able to fill the delay slot of the RETURN insn afterwards. Then
|
361 |
|
|
function_return_label is no longer valid according to the property
|
362 |
|
|
described above and find_end_label will still return it unmodified.
|
363 |
|
|
Note that this is probably mitigated by the following observation:
|
364 |
|
|
once function_return_label is made, it is very likely the target of
|
365 |
|
|
a jump, so filling the delay slot of the RETURN will be much more
|
366 |
|
|
difficult.
|
367 |
|
|
KIND is either simple_return_rtx or ret_rtx, indicating which type of
|
368 |
|
|
return we're looking for. */
|
369 |
|
|
|
370 |
|
|
static rtx
|
371 |
|
|
find_end_label (rtx kind)
|
372 |
|
|
{
|
373 |
|
|
rtx insn;
|
374 |
|
|
rtx *plabel;
|
375 |
|
|
|
376 |
|
|
if (kind == ret_rtx)
|
377 |
|
|
plabel = &function_return_label;
|
378 |
|
|
else
|
379 |
|
|
{
|
380 |
|
|
gcc_assert (kind == simple_return_rtx);
|
381 |
|
|
plabel = &function_simple_return_label;
|
382 |
|
|
}
|
383 |
|
|
|
384 |
|
|
/* If we found one previously, return it. */
|
385 |
|
|
if (*plabel)
|
386 |
|
|
return *plabel;
|
387 |
|
|
|
388 |
|
|
/* Otherwise, see if there is a label at the end of the function. If there
|
389 |
|
|
is, it must be that RETURN insns aren't needed, so that is our return
|
390 |
|
|
label and we don't have to do anything else. */
|
391 |
|
|
|
392 |
|
|
insn = get_last_insn ();
|
393 |
|
|
while (NOTE_P (insn)
|
394 |
|
|
|| (NONJUMP_INSN_P (insn)
|
395 |
|
|
&& (GET_CODE (PATTERN (insn)) == USE
|
396 |
|
|
|| GET_CODE (PATTERN (insn)) == CLOBBER)))
|
397 |
|
|
insn = PREV_INSN (insn);
|
398 |
|
|
|
399 |
|
|
/* When a target threads its epilogue we might already have a
|
400 |
|
|
suitable return insn. If so put a label before it for the
|
401 |
|
|
function_return_label. */
|
402 |
|
|
if (BARRIER_P (insn)
|
403 |
|
|
&& JUMP_P (PREV_INSN (insn))
|
404 |
|
|
&& PATTERN (PREV_INSN (insn)) == kind)
|
405 |
|
|
{
|
406 |
|
|
rtx temp = PREV_INSN (PREV_INSN (insn));
|
407 |
|
|
rtx label = gen_label_rtx ();
|
408 |
|
|
LABEL_NUSES (label) = 0;
|
409 |
|
|
|
410 |
|
|
/* Put the label before any USE insns that may precede the RETURN
|
411 |
|
|
insn. */
|
412 |
|
|
while (GET_CODE (temp) == USE)
|
413 |
|
|
temp = PREV_INSN (temp);
|
414 |
|
|
|
415 |
|
|
emit_label_after (label, temp);
|
416 |
|
|
*plabel = label;
|
417 |
|
|
}
|
418 |
|
|
|
419 |
|
|
else if (LABEL_P (insn))
|
420 |
|
|
*plabel = insn;
|
421 |
|
|
else
|
422 |
|
|
{
|
423 |
|
|
rtx label = gen_label_rtx ();
|
424 |
|
|
LABEL_NUSES (label) = 0;
|
425 |
|
|
/* If the basic block reorder pass moves the return insn to
|
426 |
|
|
some other place try to locate it again and put our
|
427 |
|
|
function_return_label there. */
|
428 |
|
|
while (insn && ! (JUMP_P (insn) && (PATTERN (insn) == kind)))
|
429 |
|
|
insn = PREV_INSN (insn);
|
430 |
|
|
if (insn)
|
431 |
|
|
{
|
432 |
|
|
insn = PREV_INSN (insn);
|
433 |
|
|
|
434 |
|
|
/* Put the label before any USE insns that may precede the
|
435 |
|
|
RETURN insn. */
|
436 |
|
|
while (GET_CODE (insn) == USE)
|
437 |
|
|
insn = PREV_INSN (insn);
|
438 |
|
|
|
439 |
|
|
emit_label_after (label, insn);
|
440 |
|
|
}
|
441 |
|
|
else
|
442 |
|
|
{
|
443 |
|
|
#ifdef HAVE_epilogue
|
444 |
|
|
if (HAVE_epilogue
|
445 |
|
|
#ifdef HAVE_return
|
446 |
|
|
&& ! HAVE_return
|
447 |
|
|
#endif
|
448 |
|
|
)
|
449 |
|
|
/* The RETURN insn has its delay slot filled so we cannot
|
450 |
|
|
emit the label just before it. Since we already have
|
451 |
|
|
an epilogue and cannot emit a new RETURN, we cannot
|
452 |
|
|
emit the label at all. */
|
453 |
|
|
return NULL_RTX;
|
454 |
|
|
#endif /* HAVE_epilogue */
|
455 |
|
|
|
456 |
|
|
/* Otherwise, make a new label and emit a RETURN and BARRIER,
|
457 |
|
|
if needed. */
|
458 |
|
|
emit_label (label);
|
459 |
|
|
#ifdef HAVE_return
|
460 |
|
|
/* We don't bother trying to create a return insn if the
|
461 |
|
|
epilogue has filled delay-slots; we would have to try and
|
462 |
|
|
move the delay-slot fillers to the delay-slots for the new
|
463 |
|
|
return insn or in front of the new return insn. */
|
464 |
|
|
if (crtl->epilogue_delay_list == NULL
|
465 |
|
|
&& HAVE_return)
|
466 |
|
|
{
|
467 |
|
|
/* The return we make may have delay slots too. */
|
468 |
|
|
rtx insn = gen_return ();
|
469 |
|
|
insn = emit_jump_insn (insn);
|
470 |
|
|
set_return_jump_label (insn);
|
471 |
|
|
emit_barrier ();
|
472 |
|
|
if (num_delay_slots (insn) > 0)
|
473 |
|
|
obstack_ptr_grow (&unfilled_slots_obstack, insn);
|
474 |
|
|
}
|
475 |
|
|
#endif
|
476 |
|
|
}
|
477 |
|
|
*plabel = label;
|
478 |
|
|
}
|
479 |
|
|
|
480 |
|
|
/* Show one additional use for this label so it won't go away until
|
481 |
|
|
we are done. */
|
482 |
|
|
++LABEL_NUSES (*plabel);
|
483 |
|
|
|
484 |
|
|
return *plabel;
|
485 |
|
|
}
|
486 |
|
|
|
487 |
|
|
/* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
|
488 |
|
|
the pattern of INSN with the SEQUENCE.
|
489 |
|
|
|
490 |
|
|
Chain the insns so that NEXT_INSN of each insn in the sequence points to
|
491 |
|
|
the next and NEXT_INSN of the last insn in the sequence points to
|
492 |
|
|
the first insn after the sequence. Similarly for PREV_INSN. This makes
|
493 |
|
|
it easier to scan all insns.
|
494 |
|
|
|
495 |
|
|
Returns the SEQUENCE that replaces INSN. */
|
496 |
|
|
|
497 |
|
|
static rtx
|
498 |
|
|
emit_delay_sequence (rtx insn, rtx list, int length)
|
499 |
|
|
{
|
500 |
|
|
int i = 1;
|
501 |
|
|
rtx li;
|
502 |
|
|
int had_barrier = 0;
|
503 |
|
|
|
504 |
|
|
/* Allocate the rtvec to hold the insns and the SEQUENCE. */
|
505 |
|
|
rtvec seqv = rtvec_alloc (length + 1);
|
506 |
|
|
rtx seq = gen_rtx_SEQUENCE (VOIDmode, seqv);
|
507 |
|
|
rtx seq_insn = make_insn_raw (seq);
|
508 |
|
|
rtx first = get_insns ();
|
509 |
|
|
rtx last = get_last_insn ();
|
510 |
|
|
|
511 |
|
|
/* Make a copy of the insn having delay slots. */
|
512 |
|
|
rtx delay_insn = copy_rtx (insn);
|
513 |
|
|
|
514 |
|
|
/* If INSN is followed by a BARRIER, delete the BARRIER since it will only
|
515 |
|
|
confuse further processing. Update LAST in case it was the last insn.
|
516 |
|
|
We will put the BARRIER back in later. */
|
517 |
|
|
if (NEXT_INSN (insn) && BARRIER_P (NEXT_INSN (insn)))
|
518 |
|
|
{
|
519 |
|
|
delete_related_insns (NEXT_INSN (insn));
|
520 |
|
|
last = get_last_insn ();
|
521 |
|
|
had_barrier = 1;
|
522 |
|
|
}
|
523 |
|
|
|
524 |
|
|
/* Splice our SEQUENCE into the insn stream where INSN used to be. */
|
525 |
|
|
NEXT_INSN (seq_insn) = NEXT_INSN (insn);
|
526 |
|
|
PREV_INSN (seq_insn) = PREV_INSN (insn);
|
527 |
|
|
|
528 |
|
|
if (insn != last)
|
529 |
|
|
PREV_INSN (NEXT_INSN (seq_insn)) = seq_insn;
|
530 |
|
|
|
531 |
|
|
if (insn != first)
|
532 |
|
|
NEXT_INSN (PREV_INSN (seq_insn)) = seq_insn;
|
533 |
|
|
|
534 |
|
|
/* Note the calls to set_new_first_and_last_insn must occur after
|
535 |
|
|
SEQ_INSN has been completely spliced into the insn stream.
|
536 |
|
|
|
537 |
|
|
Otherwise CUR_INSN_UID will get set to an incorrect value because
|
538 |
|
|
set_new_first_and_last_insn will not find SEQ_INSN in the chain. */
|
539 |
|
|
if (insn == last)
|
540 |
|
|
set_new_first_and_last_insn (first, seq_insn);
|
541 |
|
|
|
542 |
|
|
if (insn == first)
|
543 |
|
|
set_new_first_and_last_insn (seq_insn, last);
|
544 |
|
|
|
545 |
|
|
/* Build our SEQUENCE and rebuild the insn chain. */
|
546 |
|
|
XVECEXP (seq, 0, 0) = delay_insn;
|
547 |
|
|
INSN_DELETED_P (delay_insn) = 0;
|
548 |
|
|
PREV_INSN (delay_insn) = PREV_INSN (seq_insn);
|
549 |
|
|
|
550 |
|
|
INSN_LOCATOR (seq_insn) = INSN_LOCATOR (delay_insn);
|
551 |
|
|
|
552 |
|
|
for (li = list; li; li = XEXP (li, 1), i++)
|
553 |
|
|
{
|
554 |
|
|
rtx tem = XEXP (li, 0);
|
555 |
|
|
rtx note, next;
|
556 |
|
|
|
557 |
|
|
/* Show that this copy of the insn isn't deleted. */
|
558 |
|
|
INSN_DELETED_P (tem) = 0;
|
559 |
|
|
|
560 |
|
|
XVECEXP (seq, 0, i) = tem;
|
561 |
|
|
PREV_INSN (tem) = XVECEXP (seq, 0, i - 1);
|
562 |
|
|
NEXT_INSN (XVECEXP (seq, 0, i - 1)) = tem;
|
563 |
|
|
|
564 |
|
|
/* SPARC assembler, for instance, emit warning when debug info is output
|
565 |
|
|
into the delay slot. */
|
566 |
|
|
if (INSN_LOCATOR (tem) && !INSN_LOCATOR (seq_insn))
|
567 |
|
|
INSN_LOCATOR (seq_insn) = INSN_LOCATOR (tem);
|
568 |
|
|
INSN_LOCATOR (tem) = 0;
|
569 |
|
|
|
570 |
|
|
for (note = REG_NOTES (tem); note; note = next)
|
571 |
|
|
{
|
572 |
|
|
next = XEXP (note, 1);
|
573 |
|
|
switch (REG_NOTE_KIND (note))
|
574 |
|
|
{
|
575 |
|
|
case REG_DEAD:
|
576 |
|
|
/* Remove any REG_DEAD notes because we can't rely on them now
|
577 |
|
|
that the insn has been moved. */
|
578 |
|
|
remove_note (tem, note);
|
579 |
|
|
break;
|
580 |
|
|
|
581 |
|
|
case REG_LABEL_OPERAND:
|
582 |
|
|
case REG_LABEL_TARGET:
|
583 |
|
|
/* Keep the label reference count up to date. */
|
584 |
|
|
if (LABEL_P (XEXP (note, 0)))
|
585 |
|
|
LABEL_NUSES (XEXP (note, 0)) ++;
|
586 |
|
|
break;
|
587 |
|
|
|
588 |
|
|
default:
|
589 |
|
|
break;
|
590 |
|
|
}
|
591 |
|
|
}
|
592 |
|
|
}
|
593 |
|
|
|
594 |
|
|
NEXT_INSN (XVECEXP (seq, 0, length)) = NEXT_INSN (seq_insn);
|
595 |
|
|
|
596 |
|
|
/* If the previous insn is a SEQUENCE, update the NEXT_INSN pointer on the
|
597 |
|
|
last insn in that SEQUENCE to point to us. Similarly for the first
|
598 |
|
|
insn in the following insn if it is a SEQUENCE. */
|
599 |
|
|
|
600 |
|
|
if (PREV_INSN (seq_insn) && NONJUMP_INSN_P (PREV_INSN (seq_insn))
|
601 |
|
|
&& GET_CODE (PATTERN (PREV_INSN (seq_insn))) == SEQUENCE)
|
602 |
|
|
NEXT_INSN (XVECEXP (PATTERN (PREV_INSN (seq_insn)), 0,
|
603 |
|
|
XVECLEN (PATTERN (PREV_INSN (seq_insn)), 0) - 1))
|
604 |
|
|
= seq_insn;
|
605 |
|
|
|
606 |
|
|
if (NEXT_INSN (seq_insn) && NONJUMP_INSN_P (NEXT_INSN (seq_insn))
|
607 |
|
|
&& GET_CODE (PATTERN (NEXT_INSN (seq_insn))) == SEQUENCE)
|
608 |
|
|
PREV_INSN (XVECEXP (PATTERN (NEXT_INSN (seq_insn)), 0, 0)) = seq_insn;
|
609 |
|
|
|
610 |
|
|
/* If there used to be a BARRIER, put it back. */
|
611 |
|
|
if (had_barrier)
|
612 |
|
|
emit_barrier_after (seq_insn);
|
613 |
|
|
|
614 |
|
|
gcc_assert (i == length + 1);
|
615 |
|
|
|
616 |
|
|
return seq_insn;
|
617 |
|
|
}
|
618 |
|
|
|
619 |
|
|
/* Add INSN to DELAY_LIST and return the head of the new list. The list must
|
620 |
|
|
be in the order in which the insns are to be executed. */
|
621 |
|
|
|
622 |
|
|
static rtx
|
623 |
|
|
add_to_delay_list (rtx insn, rtx delay_list)
|
624 |
|
|
{
|
625 |
|
|
/* If we have an empty list, just make a new list element. If
|
626 |
|
|
INSN has its block number recorded, clear it since we may
|
627 |
|
|
be moving the insn to a new block. */
|
628 |
|
|
|
629 |
|
|
if (delay_list == 0)
|
630 |
|
|
{
|
631 |
|
|
clear_hashed_info_for_insn (insn);
|
632 |
|
|
return gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
|
633 |
|
|
}
|
634 |
|
|
|
635 |
|
|
/* Otherwise this must be an INSN_LIST. Add INSN to the end of the
|
636 |
|
|
list. */
|
637 |
|
|
XEXP (delay_list, 1) = add_to_delay_list (insn, XEXP (delay_list, 1));
|
638 |
|
|
|
639 |
|
|
return delay_list;
|
640 |
|
|
}
|
641 |
|
|
|
642 |
|
|
/* Delete INSN from the delay slot of the insn that it is in, which may
|
643 |
|
|
produce an insn with no delay slots. Return the new insn. */
|
644 |
|
|
|
645 |
|
|
static rtx
|
646 |
|
|
delete_from_delay_slot (rtx insn)
|
647 |
|
|
{
|
648 |
|
|
rtx trial, seq_insn, seq, prev;
|
649 |
|
|
rtx delay_list = 0;
|
650 |
|
|
int i;
|
651 |
|
|
int had_barrier = 0;
|
652 |
|
|
|
653 |
|
|
/* We first must find the insn containing the SEQUENCE with INSN in its
|
654 |
|
|
delay slot. Do this by finding an insn, TRIAL, where
|
655 |
|
|
PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
|
656 |
|
|
|
657 |
|
|
for (trial = insn;
|
658 |
|
|
PREV_INSN (NEXT_INSN (trial)) == trial;
|
659 |
|
|
trial = NEXT_INSN (trial))
|
660 |
|
|
;
|
661 |
|
|
|
662 |
|
|
seq_insn = PREV_INSN (NEXT_INSN (trial));
|
663 |
|
|
seq = PATTERN (seq_insn);
|
664 |
|
|
|
665 |
|
|
if (NEXT_INSN (seq_insn) && BARRIER_P (NEXT_INSN (seq_insn)))
|
666 |
|
|
had_barrier = 1;
|
667 |
|
|
|
668 |
|
|
/* Create a delay list consisting of all the insns other than the one
|
669 |
|
|
we are deleting (unless we were the only one). */
|
670 |
|
|
if (XVECLEN (seq, 0) > 2)
|
671 |
|
|
for (i = 1; i < XVECLEN (seq, 0); i++)
|
672 |
|
|
if (XVECEXP (seq, 0, i) != insn)
|
673 |
|
|
delay_list = add_to_delay_list (XVECEXP (seq, 0, i), delay_list);
|
674 |
|
|
|
675 |
|
|
/* Delete the old SEQUENCE, re-emit the insn that used to have the delay
|
676 |
|
|
list, and rebuild the delay list if non-empty. */
|
677 |
|
|
prev = PREV_INSN (seq_insn);
|
678 |
|
|
trial = XVECEXP (seq, 0, 0);
|
679 |
|
|
delete_related_insns (seq_insn);
|
680 |
|
|
add_insn_after (trial, prev, NULL);
|
681 |
|
|
|
682 |
|
|
/* If there was a barrier after the old SEQUENCE, remit it. */
|
683 |
|
|
if (had_barrier)
|
684 |
|
|
emit_barrier_after (trial);
|
685 |
|
|
|
686 |
|
|
/* If there are any delay insns, remit them. Otherwise clear the
|
687 |
|
|
annul flag. */
|
688 |
|
|
if (delay_list)
|
689 |
|
|
trial = emit_delay_sequence (trial, delay_list, XVECLEN (seq, 0) - 2);
|
690 |
|
|
else if (JUMP_P (trial))
|
691 |
|
|
INSN_ANNULLED_BRANCH_P (trial) = 0;
|
692 |
|
|
|
693 |
|
|
INSN_FROM_TARGET_P (insn) = 0;
|
694 |
|
|
|
695 |
|
|
/* Show we need to fill this insn again. */
|
696 |
|
|
obstack_ptr_grow (&unfilled_slots_obstack, trial);
|
697 |
|
|
|
698 |
|
|
return trial;
|
699 |
|
|
}
|
700 |
|
|
|
701 |
|
|
/* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down
|
702 |
|
|
the insn that sets CC0 for it and delete it too. */
|
703 |
|
|
|
704 |
|
|
static void
|
705 |
|
|
delete_scheduled_jump (rtx insn)
|
706 |
|
|
{
|
707 |
|
|
/* Delete the insn that sets cc0 for us. On machines without cc0, we could
|
708 |
|
|
delete the insn that sets the condition code, but it is hard to find it.
|
709 |
|
|
Since this case is rare anyway, don't bother trying; there would likely
|
710 |
|
|
be other insns that became dead anyway, which we wouldn't know to
|
711 |
|
|
delete. */
|
712 |
|
|
|
713 |
|
|
#ifdef HAVE_cc0
|
714 |
|
|
if (reg_mentioned_p (cc0_rtx, insn))
|
715 |
|
|
{
|
716 |
|
|
rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
|
717 |
|
|
|
718 |
|
|
/* If a reg-note was found, it points to an insn to set CC0. This
|
719 |
|
|
insn is in the delay list of some other insn. So delete it from
|
720 |
|
|
the delay list it was in. */
|
721 |
|
|
if (note)
|
722 |
|
|
{
|
723 |
|
|
if (! FIND_REG_INC_NOTE (XEXP (note, 0), NULL_RTX)
|
724 |
|
|
&& sets_cc0_p (PATTERN (XEXP (note, 0))) == 1)
|
725 |
|
|
delete_from_delay_slot (XEXP (note, 0));
|
726 |
|
|
}
|
727 |
|
|
else
|
728 |
|
|
{
|
729 |
|
|
/* The insn setting CC0 is our previous insn, but it may be in
|
730 |
|
|
a delay slot. It will be the last insn in the delay slot, if
|
731 |
|
|
it is. */
|
732 |
|
|
rtx trial = previous_insn (insn);
|
733 |
|
|
if (NOTE_P (trial))
|
734 |
|
|
trial = prev_nonnote_insn (trial);
|
735 |
|
|
if (sets_cc0_p (PATTERN (trial)) != 1
|
736 |
|
|
|| FIND_REG_INC_NOTE (trial, NULL_RTX))
|
737 |
|
|
return;
|
738 |
|
|
if (PREV_INSN (NEXT_INSN (trial)) == trial)
|
739 |
|
|
delete_related_insns (trial);
|
740 |
|
|
else
|
741 |
|
|
delete_from_delay_slot (trial);
|
742 |
|
|
}
|
743 |
|
|
}
|
744 |
|
|
#endif
|
745 |
|
|
|
746 |
|
|
delete_related_insns (insn);
|
747 |
|
|
}
|
748 |
|
|
|
749 |
|
|
/* Counters for delay-slot filling. */
|
750 |
|
|
|
751 |
|
|
#define NUM_REORG_FUNCTIONS 2
|
752 |
|
|
#define MAX_DELAY_HISTOGRAM 3
|
753 |
|
|
#define MAX_REORG_PASSES 2
|
754 |
|
|
|
755 |
|
|
static int num_insns_needing_delays[NUM_REORG_FUNCTIONS][MAX_REORG_PASSES];
|
756 |
|
|
|
757 |
|
|
static int num_filled_delays[NUM_REORG_FUNCTIONS][MAX_DELAY_HISTOGRAM+1][MAX_REORG_PASSES];
|
758 |
|
|
|
759 |
|
|
static int reorg_pass_number;
|
760 |
|
|
|
761 |
|
|
static void
|
762 |
|
|
note_delay_statistics (int slots_filled, int index)
|
763 |
|
|
{
|
764 |
|
|
num_insns_needing_delays[index][reorg_pass_number]++;
|
765 |
|
|
if (slots_filled > MAX_DELAY_HISTOGRAM)
|
766 |
|
|
slots_filled = MAX_DELAY_HISTOGRAM;
|
767 |
|
|
num_filled_delays[index][slots_filled][reorg_pass_number]++;
|
768 |
|
|
}
|
769 |
|
|
|
770 |
|
|
#if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
|
771 |
|
|
|
772 |
|
|
/* Optimize the following cases:
|
773 |
|
|
|
774 |
|
|
1. When a conditional branch skips over only one instruction,
|
775 |
|
|
use an annulling branch and put that insn in the delay slot.
|
776 |
|
|
Use either a branch that annuls when the condition if true or
|
777 |
|
|
invert the test with a branch that annuls when the condition is
|
778 |
|
|
false. This saves insns, since otherwise we must copy an insn
|
779 |
|
|
from the L1 target.
|
780 |
|
|
|
781 |
|
|
(orig) (skip) (otherwise)
|
782 |
|
|
Bcc.n L1 Bcc',a L1 Bcc,a L1'
|
783 |
|
|
insn insn insn2
|
784 |
|
|
L1: L1: L1:
|
785 |
|
|
insn2 insn2 insn2
|
786 |
|
|
insn3 insn3 L1':
|
787 |
|
|
insn3
|
788 |
|
|
|
789 |
|
|
2. When a conditional branch skips over only one instruction,
|
790 |
|
|
and after that, it unconditionally branches somewhere else,
|
791 |
|
|
perform the similar optimization. This saves executing the
|
792 |
|
|
second branch in the case where the inverted condition is true.
|
793 |
|
|
|
794 |
|
|
Bcc.n L1 Bcc',a L2
|
795 |
|
|
insn insn
|
796 |
|
|
L1: L1:
|
797 |
|
|
Bra L2 Bra L2
|
798 |
|
|
|
799 |
|
|
INSN is a JUMP_INSN.
|
800 |
|
|
|
801 |
|
|
This should be expanded to skip over N insns, where N is the number
|
802 |
|
|
of delay slots required. */
|
803 |
|
|
|
804 |
|
|
static rtx
|
805 |
|
|
optimize_skip (rtx insn)
|
806 |
|
|
{
|
807 |
|
|
rtx trial = next_nonnote_insn (insn);
|
808 |
|
|
rtx next_trial = next_active_insn (trial);
|
809 |
|
|
rtx delay_list = 0;
|
810 |
|
|
int flags;
|
811 |
|
|
|
812 |
|
|
flags = get_jump_flags (insn, JUMP_LABEL (insn));
|
813 |
|
|
|
814 |
|
|
if (trial == 0
|
815 |
|
|
|| !NONJUMP_INSN_P (trial)
|
816 |
|
|
|| GET_CODE (PATTERN (trial)) == SEQUENCE
|
817 |
|
|
|| recog_memoized (trial) < 0
|
818 |
|
|
|| (! eligible_for_annul_false (insn, 0, trial, flags)
|
819 |
|
|
&& ! eligible_for_annul_true (insn, 0, trial, flags))
|
820 |
|
|
|| can_throw_internal (trial))
|
821 |
|
|
return 0;
|
822 |
|
|
|
823 |
|
|
/* There are two cases where we are just executing one insn (we assume
|
824 |
|
|
here that a branch requires only one insn; this should be generalized
|
825 |
|
|
at some point): Where the branch goes around a single insn or where
|
826 |
|
|
we have one insn followed by a branch to the same label we branch to.
|
827 |
|
|
In both of these cases, inverting the jump and annulling the delay
|
828 |
|
|
slot give the same effect in fewer insns. */
|
829 |
|
|
if ((next_trial == next_active_insn (JUMP_LABEL (insn))
|
830 |
|
|
&& ! (next_trial == 0 && crtl->epilogue_delay_list != 0))
|
831 |
|
|
|| (next_trial != 0
|
832 |
|
|
&& simplejump_or_return_p (next_trial)
|
833 |
|
|
&& JUMP_LABEL (insn) == JUMP_LABEL (next_trial)))
|
834 |
|
|
{
|
835 |
|
|
if (eligible_for_annul_false (insn, 0, trial, flags))
|
836 |
|
|
{
|
837 |
|
|
if (invert_jump (insn, JUMP_LABEL (insn), 1))
|
838 |
|
|
INSN_FROM_TARGET_P (trial) = 1;
|
839 |
|
|
else if (! eligible_for_annul_true (insn, 0, trial, flags))
|
840 |
|
|
return 0;
|
841 |
|
|
}
|
842 |
|
|
|
843 |
|
|
delay_list = add_to_delay_list (trial, NULL_RTX);
|
844 |
|
|
next_trial = next_active_insn (trial);
|
845 |
|
|
update_block (trial, trial);
|
846 |
|
|
delete_related_insns (trial);
|
847 |
|
|
|
848 |
|
|
/* Also, if we are targeting an unconditional
|
849 |
|
|
branch, thread our jump to the target of that branch. Don't
|
850 |
|
|
change this into a RETURN here, because it may not accept what
|
851 |
|
|
we have in the delay slot. We'll fix this up later. */
|
852 |
|
|
if (next_trial && simplejump_or_return_p (next_trial))
|
853 |
|
|
{
|
854 |
|
|
rtx target_label = JUMP_LABEL (next_trial);
|
855 |
|
|
if (ANY_RETURN_P (target_label))
|
856 |
|
|
target_label = find_end_label (target_label);
|
857 |
|
|
|
858 |
|
|
if (target_label)
|
859 |
|
|
{
|
860 |
|
|
/* Recompute the flags based on TARGET_LABEL since threading
|
861 |
|
|
the jump to TARGET_LABEL may change the direction of the
|
862 |
|
|
jump (which may change the circumstances in which the
|
863 |
|
|
delay slot is nullified). */
|
864 |
|
|
flags = get_jump_flags (insn, target_label);
|
865 |
|
|
if (eligible_for_annul_true (insn, 0, trial, flags))
|
866 |
|
|
reorg_redirect_jump (insn, target_label);
|
867 |
|
|
}
|
868 |
|
|
}
|
869 |
|
|
|
870 |
|
|
INSN_ANNULLED_BRANCH_P (insn) = 1;
|
871 |
|
|
}
|
872 |
|
|
|
873 |
|
|
return delay_list;
|
874 |
|
|
}
|
875 |
|
|
#endif
|
876 |
|
|
|
877 |
|
|
/* Encode and return branch direction and prediction information for
|
878 |
|
|
INSN assuming it will jump to LABEL.
|
879 |
|
|
|
880 |
|
|
Non conditional branches return no direction information and
|
881 |
|
|
are predicted as very likely taken. */
|
882 |
|
|
|
883 |
|
|
static int
|
884 |
|
|
get_jump_flags (rtx insn, rtx label)
|
885 |
|
|
{
|
886 |
|
|
int flags;
|
887 |
|
|
|
888 |
|
|
/* get_jump_flags can be passed any insn with delay slots, these may
|
889 |
|
|
be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
|
890 |
|
|
direction information, and only if they are conditional jumps.
|
891 |
|
|
|
892 |
|
|
If LABEL is a return, then there is no way to determine the branch
|
893 |
|
|
direction. */
|
894 |
|
|
if (JUMP_P (insn)
|
895 |
|
|
&& (condjump_p (insn) || condjump_in_parallel_p (insn))
|
896 |
|
|
&& !ANY_RETURN_P (label)
|
897 |
|
|
&& INSN_UID (insn) <= max_uid
|
898 |
|
|
&& INSN_UID (label) <= max_uid)
|
899 |
|
|
flags
|
900 |
|
|
= (uid_to_ruid[INSN_UID (label)] > uid_to_ruid[INSN_UID (insn)])
|
901 |
|
|
? ATTR_FLAG_forward : ATTR_FLAG_backward;
|
902 |
|
|
/* No valid direction information. */
|
903 |
|
|
else
|
904 |
|
|
flags = 0;
|
905 |
|
|
|
906 |
|
|
/* If insn is a conditional branch call mostly_true_jump to get
|
907 |
|
|
determine the branch prediction.
|
908 |
|
|
|
909 |
|
|
Non conditional branches are predicted as very likely taken. */
|
910 |
|
|
if (JUMP_P (insn)
|
911 |
|
|
&& (condjump_p (insn) || condjump_in_parallel_p (insn)))
|
912 |
|
|
{
|
913 |
|
|
int prediction;
|
914 |
|
|
|
915 |
|
|
prediction = mostly_true_jump (insn, get_branch_condition (insn, label));
|
916 |
|
|
switch (prediction)
|
917 |
|
|
{
|
918 |
|
|
case 2:
|
919 |
|
|
flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
|
920 |
|
|
break;
|
921 |
|
|
case 1:
|
922 |
|
|
flags |= ATTR_FLAG_likely;
|
923 |
|
|
break;
|
924 |
|
|
case 0:
|
925 |
|
|
flags |= ATTR_FLAG_unlikely;
|
926 |
|
|
break;
|
927 |
|
|
case -1:
|
928 |
|
|
flags |= (ATTR_FLAG_very_unlikely | ATTR_FLAG_unlikely);
|
929 |
|
|
break;
|
930 |
|
|
|
931 |
|
|
default:
|
932 |
|
|
gcc_unreachable ();
|
933 |
|
|
}
|
934 |
|
|
}
|
935 |
|
|
else
|
936 |
|
|
flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
|
937 |
|
|
|
938 |
|
|
return flags;
|
939 |
|
|
}
|
940 |
|
|
|
941 |
|
|
/* Return 1 if INSN is a destination that will be branched to rarely (the
|
942 |
|
|
return point of a function); return 2 if DEST will be branched to very
|
943 |
|
|
rarely (a call to a function that doesn't return). Otherwise,
|
944 |
|
|
return 0. */
|
945 |
|
|
|
946 |
|
|
static int
|
947 |
|
|
rare_destination (rtx insn)
|
948 |
|
|
{
|
949 |
|
|
int jump_count = 0;
|
950 |
|
|
rtx next;
|
951 |
|
|
|
952 |
|
|
for (; insn && !ANY_RETURN_P (insn); insn = next)
|
953 |
|
|
{
|
954 |
|
|
if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
|
955 |
|
|
insn = XVECEXP (PATTERN (insn), 0, 0);
|
956 |
|
|
|
957 |
|
|
next = NEXT_INSN (insn);
|
958 |
|
|
|
959 |
|
|
switch (GET_CODE (insn))
|
960 |
|
|
{
|
961 |
|
|
case CODE_LABEL:
|
962 |
|
|
return 0;
|
963 |
|
|
case BARRIER:
|
964 |
|
|
/* A BARRIER can either be after a JUMP_INSN or a CALL_INSN. We
|
965 |
|
|
don't scan past JUMP_INSNs, so any barrier we find here must
|
966 |
|
|
have been after a CALL_INSN and hence mean the call doesn't
|
967 |
|
|
return. */
|
968 |
|
|
return 2;
|
969 |
|
|
case JUMP_INSN:
|
970 |
|
|
if (ANY_RETURN_P (PATTERN (insn)))
|
971 |
|
|
return 1;
|
972 |
|
|
else if (simplejump_p (insn)
|
973 |
|
|
&& jump_count++ < 10)
|
974 |
|
|
next = JUMP_LABEL (insn);
|
975 |
|
|
else
|
976 |
|
|
return 0;
|
977 |
|
|
|
978 |
|
|
default:
|
979 |
|
|
break;
|
980 |
|
|
}
|
981 |
|
|
}
|
982 |
|
|
|
983 |
|
|
/* If we got here it means we hit the end of the function. So this
|
984 |
|
|
is an unlikely destination. */
|
985 |
|
|
|
986 |
|
|
return 1;
|
987 |
|
|
}
|
988 |
|
|
|
989 |
|
|
/* Return truth value of the statement that this branch
|
990 |
|
|
is mostly taken. If we think that the branch is extremely likely
|
991 |
|
|
to be taken, we return 2. If the branch is slightly more likely to be
|
992 |
|
|
taken, return 1. If the branch is slightly less likely to be taken,
|
993 |
|
|
return 0 and if the branch is highly unlikely to be taken, return -1.
|
994 |
|
|
|
995 |
|
|
CONDITION, if nonzero, is the condition that JUMP_INSN is testing. */
|
996 |
|
|
|
997 |
|
|
static int
|
998 |
|
|
mostly_true_jump (rtx jump_insn, rtx condition)
|
999 |
|
|
{
|
1000 |
|
|
rtx target_label = JUMP_LABEL (jump_insn);
|
1001 |
|
|
rtx note;
|
1002 |
|
|
int rare_dest, rare_fallthrough;
|
1003 |
|
|
|
1004 |
|
|
/* If branch probabilities are available, then use that number since it
|
1005 |
|
|
always gives a correct answer. */
|
1006 |
|
|
note = find_reg_note (jump_insn, REG_BR_PROB, 0);
|
1007 |
|
|
if (note)
|
1008 |
|
|
{
|
1009 |
|
|
int prob = INTVAL (XEXP (note, 0));
|
1010 |
|
|
|
1011 |
|
|
if (prob >= REG_BR_PROB_BASE * 9 / 10)
|
1012 |
|
|
return 2;
|
1013 |
|
|
else if (prob >= REG_BR_PROB_BASE / 2)
|
1014 |
|
|
return 1;
|
1015 |
|
|
else if (prob >= REG_BR_PROB_BASE / 10)
|
1016 |
|
|
return 0;
|
1017 |
|
|
else
|
1018 |
|
|
return -1;
|
1019 |
|
|
}
|
1020 |
|
|
|
1021 |
|
|
/* Look at the relative rarities of the fallthrough and destination. If
|
1022 |
|
|
they differ, we can predict the branch that way. */
|
1023 |
|
|
rare_dest = rare_destination (target_label);
|
1024 |
|
|
rare_fallthrough = rare_destination (NEXT_INSN (jump_insn));
|
1025 |
|
|
|
1026 |
|
|
switch (rare_fallthrough - rare_dest)
|
1027 |
|
|
{
|
1028 |
|
|
case -2:
|
1029 |
|
|
return -1;
|
1030 |
|
|
case -1:
|
1031 |
|
|
return 0;
|
1032 |
|
|
case 0:
|
1033 |
|
|
break;
|
1034 |
|
|
case 1:
|
1035 |
|
|
return 1;
|
1036 |
|
|
case 2:
|
1037 |
|
|
return 2;
|
1038 |
|
|
}
|
1039 |
|
|
|
1040 |
|
|
/* If we couldn't figure out what this jump was, assume it won't be
|
1041 |
|
|
taken. This should be rare. */
|
1042 |
|
|
if (condition == 0)
|
1043 |
|
|
return 0;
|
1044 |
|
|
|
1045 |
|
|
/* Predict backward branches usually take, forward branches usually not. If
|
1046 |
|
|
we don't know whether this is forward or backward, assume the branch
|
1047 |
|
|
will be taken, since most are. */
|
1048 |
|
|
return (ANY_RETURN_P (target_label) || INSN_UID (jump_insn) > max_uid
|
1049 |
|
|
|| INSN_UID (target_label) > max_uid
|
1050 |
|
|
|| (uid_to_ruid[INSN_UID (jump_insn)]
|
1051 |
|
|
> uid_to_ruid[INSN_UID (target_label)]));
|
1052 |
|
|
}
|
1053 |
|
|
|
1054 |
|
|
/* Return the condition under which INSN will branch to TARGET. If TARGET
|
1055 |
|
|
is zero, return the condition under which INSN will return. If INSN is
|
1056 |
|
|
an unconditional branch, return const_true_rtx. If INSN isn't a simple
|
1057 |
|
|
type of jump, or it doesn't go to TARGET, return 0. */
|
1058 |
|
|
|
1059 |
|
|
static rtx
|
1060 |
|
|
get_branch_condition (rtx insn, rtx target)
|
1061 |
|
|
{
|
1062 |
|
|
rtx pat = PATTERN (insn);
|
1063 |
|
|
rtx src;
|
1064 |
|
|
|
1065 |
|
|
if (condjump_in_parallel_p (insn))
|
1066 |
|
|
pat = XVECEXP (pat, 0, 0);
|
1067 |
|
|
|
1068 |
|
|
if (ANY_RETURN_P (pat))
|
1069 |
|
|
return pat == target ? const_true_rtx : 0;
|
1070 |
|
|
|
1071 |
|
|
if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx)
|
1072 |
|
|
return 0;
|
1073 |
|
|
|
1074 |
|
|
src = SET_SRC (pat);
|
1075 |
|
|
if (GET_CODE (src) == LABEL_REF && XEXP (src, 0) == target)
|
1076 |
|
|
return const_true_rtx;
|
1077 |
|
|
|
1078 |
|
|
else if (GET_CODE (src) == IF_THEN_ELSE
|
1079 |
|
|
&& XEXP (src, 2) == pc_rtx
|
1080 |
|
|
&& GET_CODE (XEXP (src, 1)) == LABEL_REF
|
1081 |
|
|
&& XEXP (XEXP (src, 1), 0) == target)
|
1082 |
|
|
return XEXP (src, 0);
|
1083 |
|
|
|
1084 |
|
|
else if (GET_CODE (src) == IF_THEN_ELSE
|
1085 |
|
|
&& XEXP (src, 1) == pc_rtx
|
1086 |
|
|
&& GET_CODE (XEXP (src, 2)) == LABEL_REF
|
1087 |
|
|
&& XEXP (XEXP (src, 2), 0) == target)
|
1088 |
|
|
{
|
1089 |
|
|
enum rtx_code rev;
|
1090 |
|
|
rev = reversed_comparison_code (XEXP (src, 0), insn);
|
1091 |
|
|
if (rev != UNKNOWN)
|
1092 |
|
|
return gen_rtx_fmt_ee (rev, GET_MODE (XEXP (src, 0)),
|
1093 |
|
|
XEXP (XEXP (src, 0), 0),
|
1094 |
|
|
XEXP (XEXP (src, 0), 1));
|
1095 |
|
|
}
|
1096 |
|
|
|
1097 |
|
|
return 0;
|
1098 |
|
|
}
|
1099 |
|
|
|
1100 |
|
|
/* Return nonzero if CONDITION is more strict than the condition of
|
1101 |
|
|
INSN, i.e., if INSN will always branch if CONDITION is true. */
|
1102 |
|
|
|
1103 |
|
|
static int
|
1104 |
|
|
condition_dominates_p (rtx condition, rtx insn)
|
1105 |
|
|
{
|
1106 |
|
|
rtx other_condition = get_branch_condition (insn, JUMP_LABEL (insn));
|
1107 |
|
|
enum rtx_code code = GET_CODE (condition);
|
1108 |
|
|
enum rtx_code other_code;
|
1109 |
|
|
|
1110 |
|
|
if (rtx_equal_p (condition, other_condition)
|
1111 |
|
|
|| other_condition == const_true_rtx)
|
1112 |
|
|
return 1;
|
1113 |
|
|
|
1114 |
|
|
else if (condition == const_true_rtx || other_condition == 0)
|
1115 |
|
|
return 0;
|
1116 |
|
|
|
1117 |
|
|
other_code = GET_CODE (other_condition);
|
1118 |
|
|
if (GET_RTX_LENGTH (code) != 2 || GET_RTX_LENGTH (other_code) != 2
|
1119 |
|
|
|| ! rtx_equal_p (XEXP (condition, 0), XEXP (other_condition, 0))
|
1120 |
|
|
|| ! rtx_equal_p (XEXP (condition, 1), XEXP (other_condition, 1)))
|
1121 |
|
|
return 0;
|
1122 |
|
|
|
1123 |
|
|
return comparison_dominates_p (code, other_code);
|
1124 |
|
|
}
|
1125 |
|
|
|
1126 |
|
|
/* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
|
1127 |
|
|
any insns already in the delay slot of JUMP. */
|
1128 |
|
|
|
1129 |
|
|
static int
|
1130 |
|
|
redirect_with_delay_slots_safe_p (rtx jump, rtx newlabel, rtx seq)
|
1131 |
|
|
{
|
1132 |
|
|
int flags, i;
|
1133 |
|
|
rtx pat = PATTERN (seq);
|
1134 |
|
|
|
1135 |
|
|
/* Make sure all the delay slots of this jump would still
|
1136 |
|
|
be valid after threading the jump. If they are still
|
1137 |
|
|
valid, then return nonzero. */
|
1138 |
|
|
|
1139 |
|
|
flags = get_jump_flags (jump, newlabel);
|
1140 |
|
|
for (i = 1; i < XVECLEN (pat, 0); i++)
|
1141 |
|
|
if (! (
|
1142 |
|
|
#ifdef ANNUL_IFFALSE_SLOTS
|
1143 |
|
|
(INSN_ANNULLED_BRANCH_P (jump)
|
1144 |
|
|
&& INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
|
1145 |
|
|
? eligible_for_annul_false (jump, i - 1,
|
1146 |
|
|
XVECEXP (pat, 0, i), flags) :
|
1147 |
|
|
#endif
|
1148 |
|
|
#ifdef ANNUL_IFTRUE_SLOTS
|
1149 |
|
|
(INSN_ANNULLED_BRANCH_P (jump)
|
1150 |
|
|
&& ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
|
1151 |
|
|
? eligible_for_annul_true (jump, i - 1,
|
1152 |
|
|
XVECEXP (pat, 0, i), flags) :
|
1153 |
|
|
#endif
|
1154 |
|
|
eligible_for_delay (jump, i - 1, XVECEXP (pat, 0, i), flags)))
|
1155 |
|
|
break;
|
1156 |
|
|
|
1157 |
|
|
return (i == XVECLEN (pat, 0));
|
1158 |
|
|
}
|
1159 |
|
|
|
1160 |
|
|
/* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
|
1161 |
|
|
any insns we wish to place in the delay slot of JUMP. */
|
1162 |
|
|
|
1163 |
|
|
static int
|
1164 |
|
|
redirect_with_delay_list_safe_p (rtx jump, rtx newlabel, rtx delay_list)
|
1165 |
|
|
{
|
1166 |
|
|
int flags, i;
|
1167 |
|
|
rtx li;
|
1168 |
|
|
|
1169 |
|
|
/* Make sure all the insns in DELAY_LIST would still be
|
1170 |
|
|
valid after threading the jump. If they are still
|
1171 |
|
|
valid, then return nonzero. */
|
1172 |
|
|
|
1173 |
|
|
flags = get_jump_flags (jump, newlabel);
|
1174 |
|
|
for (li = delay_list, i = 0; li; li = XEXP (li, 1), i++)
|
1175 |
|
|
if (! (
|
1176 |
|
|
#ifdef ANNUL_IFFALSE_SLOTS
|
1177 |
|
|
(INSN_ANNULLED_BRANCH_P (jump)
|
1178 |
|
|
&& INSN_FROM_TARGET_P (XEXP (li, 0)))
|
1179 |
|
|
? eligible_for_annul_false (jump, i, XEXP (li, 0), flags) :
|
1180 |
|
|
#endif
|
1181 |
|
|
#ifdef ANNUL_IFTRUE_SLOTS
|
1182 |
|
|
(INSN_ANNULLED_BRANCH_P (jump)
|
1183 |
|
|
&& ! INSN_FROM_TARGET_P (XEXP (li, 0)))
|
1184 |
|
|
? eligible_for_annul_true (jump, i, XEXP (li, 0), flags) :
|
1185 |
|
|
#endif
|
1186 |
|
|
eligible_for_delay (jump, i, XEXP (li, 0), flags)))
|
1187 |
|
|
break;
|
1188 |
|
|
|
1189 |
|
|
return (li == NULL);
|
1190 |
|
|
}
|
1191 |
|
|
|
1192 |
|
|
/* DELAY_LIST is a list of insns that have already been placed into delay
|
1193 |
|
|
slots. See if all of them have the same annulling status as ANNUL_TRUE_P.
|
1194 |
|
|
If not, return 0; otherwise return 1. */
|
1195 |
|
|
|
1196 |
|
|
static int
|
1197 |
|
|
check_annul_list_true_false (int annul_true_p, rtx delay_list)
|
1198 |
|
|
{
|
1199 |
|
|
rtx temp;
|
1200 |
|
|
|
1201 |
|
|
if (delay_list)
|
1202 |
|
|
{
|
1203 |
|
|
for (temp = delay_list; temp; temp = XEXP (temp, 1))
|
1204 |
|
|
{
|
1205 |
|
|
rtx trial = XEXP (temp, 0);
|
1206 |
|
|
|
1207 |
|
|
if ((annul_true_p && INSN_FROM_TARGET_P (trial))
|
1208 |
|
|
|| (!annul_true_p && !INSN_FROM_TARGET_P (trial)))
|
1209 |
|
|
return 0;
|
1210 |
|
|
}
|
1211 |
|
|
}
|
1212 |
|
|
|
1213 |
|
|
return 1;
|
1214 |
|
|
}
|
1215 |
|
|
|
1216 |
|
|
/* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
|
1217 |
|
|
the condition tested by INSN is CONDITION and the resources shown in
|
1218 |
|
|
OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
|
1219 |
|
|
from SEQ's delay list, in addition to whatever insns it may execute
|
1220 |
|
|
(in DELAY_LIST). SETS and NEEDED are denote resources already set and
|
1221 |
|
|
needed while searching for delay slot insns. Return the concatenated
|
1222 |
|
|
delay list if possible, otherwise, return 0.
|
1223 |
|
|
|
1224 |
|
|
SLOTS_TO_FILL is the total number of slots required by INSN, and
|
1225 |
|
|
PSLOTS_FILLED points to the number filled so far (also the number of
|
1226 |
|
|
insns in DELAY_LIST). It is updated with the number that have been
|
1227 |
|
|
filled from the SEQUENCE, if any.
|
1228 |
|
|
|
1229 |
|
|
PANNUL_P points to a nonzero value if we already know that we need
|
1230 |
|
|
to annul INSN. If this routine determines that annulling is needed,
|
1231 |
|
|
it may set that value nonzero.
|
1232 |
|
|
|
1233 |
|
|
PNEW_THREAD points to a location that is to receive the place at which
|
1234 |
|
|
execution should continue. */
|
1235 |
|
|
|
1236 |
|
|
static rtx
|
1237 |
|
|
steal_delay_list_from_target (rtx insn, rtx condition, rtx seq,
|
1238 |
|
|
rtx delay_list, struct resources *sets,
|
1239 |
|
|
struct resources *needed,
|
1240 |
|
|
struct resources *other_needed,
|
1241 |
|
|
int slots_to_fill, int *pslots_filled,
|
1242 |
|
|
int *pannul_p, rtx *pnew_thread)
|
1243 |
|
|
{
|
1244 |
|
|
rtx temp;
|
1245 |
|
|
int slots_remaining = slots_to_fill - *pslots_filled;
|
1246 |
|
|
int total_slots_filled = *pslots_filled;
|
1247 |
|
|
rtx new_delay_list = 0;
|
1248 |
|
|
int must_annul = *pannul_p;
|
1249 |
|
|
int used_annul = 0;
|
1250 |
|
|
int i;
|
1251 |
|
|
struct resources cc_set;
|
1252 |
|
|
|
1253 |
|
|
/* We can't do anything if there are more delay slots in SEQ than we
|
1254 |
|
|
can handle, or if we don't know that it will be a taken branch.
|
1255 |
|
|
We know that it will be a taken branch if it is either an unconditional
|
1256 |
|
|
branch or a conditional branch with a stricter branch condition.
|
1257 |
|
|
|
1258 |
|
|
Also, exit if the branch has more than one set, since then it is computing
|
1259 |
|
|
other results that can't be ignored, e.g. the HPPA mov&branch instruction.
|
1260 |
|
|
??? It may be possible to move other sets into INSN in addition to
|
1261 |
|
|
moving the instructions in the delay slots.
|
1262 |
|
|
|
1263 |
|
|
We can not steal the delay list if one of the instructions in the
|
1264 |
|
|
current delay_list modifies the condition codes and the jump in the
|
1265 |
|
|
sequence is a conditional jump. We can not do this because we can
|
1266 |
|
|
not change the direction of the jump because the condition codes
|
1267 |
|
|
will effect the direction of the jump in the sequence. */
|
1268 |
|
|
|
1269 |
|
|
CLEAR_RESOURCE (&cc_set);
|
1270 |
|
|
for (temp = delay_list; temp; temp = XEXP (temp, 1))
|
1271 |
|
|
{
|
1272 |
|
|
rtx trial = XEXP (temp, 0);
|
1273 |
|
|
|
1274 |
|
|
mark_set_resources (trial, &cc_set, 0, MARK_SRC_DEST_CALL);
|
1275 |
|
|
if (insn_references_resource_p (XVECEXP (seq , 0, 0), &cc_set, false))
|
1276 |
|
|
return delay_list;
|
1277 |
|
|
}
|
1278 |
|
|
|
1279 |
|
|
if (XVECLEN (seq, 0) - 1 > slots_remaining
|
1280 |
|
|
|| ! condition_dominates_p (condition, XVECEXP (seq, 0, 0))
|
1281 |
|
|
|| ! single_set (XVECEXP (seq, 0, 0)))
|
1282 |
|
|
return delay_list;
|
1283 |
|
|
|
1284 |
|
|
#ifdef MD_CAN_REDIRECT_BRANCH
|
1285 |
|
|
/* On some targets, branches with delay slots can have a limited
|
1286 |
|
|
displacement. Give the back end a chance to tell us we can't do
|
1287 |
|
|
this. */
|
1288 |
|
|
if (! MD_CAN_REDIRECT_BRANCH (insn, XVECEXP (seq, 0, 0)))
|
1289 |
|
|
return delay_list;
|
1290 |
|
|
#endif
|
1291 |
|
|
|
1292 |
|
|
for (i = 1; i < XVECLEN (seq, 0); i++)
|
1293 |
|
|
{
|
1294 |
|
|
rtx trial = XVECEXP (seq, 0, i);
|
1295 |
|
|
int flags;
|
1296 |
|
|
|
1297 |
|
|
if (insn_references_resource_p (trial, sets, false)
|
1298 |
|
|
|| insn_sets_resource_p (trial, needed, false)
|
1299 |
|
|
|| insn_sets_resource_p (trial, sets, false)
|
1300 |
|
|
#ifdef HAVE_cc0
|
1301 |
|
|
/* If TRIAL sets CC0, we can't copy it, so we can't steal this
|
1302 |
|
|
delay list. */
|
1303 |
|
|
|| find_reg_note (trial, REG_CC_USER, NULL_RTX)
|
1304 |
|
|
#endif
|
1305 |
|
|
/* If TRIAL is from the fallthrough code of an annulled branch insn
|
1306 |
|
|
in SEQ, we cannot use it. */
|
1307 |
|
|
|| (INSN_ANNULLED_BRANCH_P (XVECEXP (seq, 0, 0))
|
1308 |
|
|
&& ! INSN_FROM_TARGET_P (trial)))
|
1309 |
|
|
return delay_list;
|
1310 |
|
|
|
1311 |
|
|
/* If this insn was already done (usually in a previous delay slot),
|
1312 |
|
|
pretend we put it in our delay slot. */
|
1313 |
|
|
if (redundant_insn (trial, insn, new_delay_list))
|
1314 |
|
|
continue;
|
1315 |
|
|
|
1316 |
|
|
/* We will end up re-vectoring this branch, so compute flags
|
1317 |
|
|
based on jumping to the new label. */
|
1318 |
|
|
flags = get_jump_flags (insn, JUMP_LABEL (XVECEXP (seq, 0, 0)));
|
1319 |
|
|
|
1320 |
|
|
if (! must_annul
|
1321 |
|
|
&& ((condition == const_true_rtx
|
1322 |
|
|
|| (! insn_sets_resource_p (trial, other_needed, false)
|
1323 |
|
|
&& ! may_trap_or_fault_p (PATTERN (trial)))))
|
1324 |
|
|
? eligible_for_delay (insn, total_slots_filled, trial, flags)
|
1325 |
|
|
: (must_annul || (delay_list == NULL && new_delay_list == NULL))
|
1326 |
|
|
&& (must_annul = 1,
|
1327 |
|
|
check_annul_list_true_false (0, delay_list)
|
1328 |
|
|
&& check_annul_list_true_false (0, new_delay_list)
|
1329 |
|
|
&& eligible_for_annul_false (insn, total_slots_filled,
|
1330 |
|
|
trial, flags)))
|
1331 |
|
|
{
|
1332 |
|
|
if (must_annul)
|
1333 |
|
|
used_annul = 1;
|
1334 |
|
|
temp = copy_rtx (trial);
|
1335 |
|
|
INSN_FROM_TARGET_P (temp) = 1;
|
1336 |
|
|
new_delay_list = add_to_delay_list (temp, new_delay_list);
|
1337 |
|
|
total_slots_filled++;
|
1338 |
|
|
|
1339 |
|
|
if (--slots_remaining == 0)
|
1340 |
|
|
break;
|
1341 |
|
|
}
|
1342 |
|
|
else
|
1343 |
|
|
return delay_list;
|
1344 |
|
|
}
|
1345 |
|
|
|
1346 |
|
|
/* Show the place to which we will be branching. */
|
1347 |
|
|
*pnew_thread = first_active_target_insn (JUMP_LABEL (XVECEXP (seq, 0, 0)));
|
1348 |
|
|
|
1349 |
|
|
/* Add any new insns to the delay list and update the count of the
|
1350 |
|
|
number of slots filled. */
|
1351 |
|
|
*pslots_filled = total_slots_filled;
|
1352 |
|
|
if (used_annul)
|
1353 |
|
|
*pannul_p = 1;
|
1354 |
|
|
|
1355 |
|
|
if (delay_list == 0)
|
1356 |
|
|
return new_delay_list;
|
1357 |
|
|
|
1358 |
|
|
for (temp = new_delay_list; temp; temp = XEXP (temp, 1))
|
1359 |
|
|
delay_list = add_to_delay_list (XEXP (temp, 0), delay_list);
|
1360 |
|
|
|
1361 |
|
|
return delay_list;
|
1362 |
|
|
}
|
1363 |
|
|
|
1364 |
|
|
/* Similar to steal_delay_list_from_target except that SEQ is on the
|
1365 |
|
|
fallthrough path of INSN. Here we only do something if the delay insn
|
1366 |
|
|
of SEQ is an unconditional branch. In that case we steal its delay slot
|
1367 |
|
|
for INSN since unconditional branches are much easier to fill. */
|
1368 |
|
|
|
1369 |
|
|
static rtx
|
1370 |
|
|
steal_delay_list_from_fallthrough (rtx insn, rtx condition, rtx seq,
|
1371 |
|
|
rtx delay_list, struct resources *sets,
|
1372 |
|
|
struct resources *needed,
|
1373 |
|
|
struct resources *other_needed,
|
1374 |
|
|
int slots_to_fill, int *pslots_filled,
|
1375 |
|
|
int *pannul_p)
|
1376 |
|
|
{
|
1377 |
|
|
int i;
|
1378 |
|
|
int flags;
|
1379 |
|
|
int must_annul = *pannul_p;
|
1380 |
|
|
int used_annul = 0;
|
1381 |
|
|
|
1382 |
|
|
flags = get_jump_flags (insn, JUMP_LABEL (insn));
|
1383 |
|
|
|
1384 |
|
|
/* We can't do anything if SEQ's delay insn isn't an
|
1385 |
|
|
unconditional branch. */
|
1386 |
|
|
|
1387 |
|
|
if (! simplejump_or_return_p (XVECEXP (seq, 0, 0)))
|
1388 |
|
|
return delay_list;
|
1389 |
|
|
|
1390 |
|
|
for (i = 1; i < XVECLEN (seq, 0); i++)
|
1391 |
|
|
{
|
1392 |
|
|
rtx trial = XVECEXP (seq, 0, i);
|
1393 |
|
|
|
1394 |
|
|
/* If TRIAL sets CC0, stealing it will move it too far from the use
|
1395 |
|
|
of CC0. */
|
1396 |
|
|
if (insn_references_resource_p (trial, sets, false)
|
1397 |
|
|
|| insn_sets_resource_p (trial, needed, false)
|
1398 |
|
|
|| insn_sets_resource_p (trial, sets, false)
|
1399 |
|
|
#ifdef HAVE_cc0
|
1400 |
|
|
|| sets_cc0_p (PATTERN (trial))
|
1401 |
|
|
#endif
|
1402 |
|
|
)
|
1403 |
|
|
|
1404 |
|
|
break;
|
1405 |
|
|
|
1406 |
|
|
/* If this insn was already done, we don't need it. */
|
1407 |
|
|
if (redundant_insn (trial, insn, delay_list))
|
1408 |
|
|
{
|
1409 |
|
|
delete_from_delay_slot (trial);
|
1410 |
|
|
continue;
|
1411 |
|
|
}
|
1412 |
|
|
|
1413 |
|
|
if (! must_annul
|
1414 |
|
|
&& ((condition == const_true_rtx
|
1415 |
|
|
|| (! insn_sets_resource_p (trial, other_needed, false)
|
1416 |
|
|
&& ! may_trap_or_fault_p (PATTERN (trial)))))
|
1417 |
|
|
? eligible_for_delay (insn, *pslots_filled, trial, flags)
|
1418 |
|
|
: (must_annul || delay_list == NULL) && (must_annul = 1,
|
1419 |
|
|
check_annul_list_true_false (1, delay_list)
|
1420 |
|
|
&& eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
|
1421 |
|
|
{
|
1422 |
|
|
if (must_annul)
|
1423 |
|
|
used_annul = 1;
|
1424 |
|
|
delete_from_delay_slot (trial);
|
1425 |
|
|
delay_list = add_to_delay_list (trial, delay_list);
|
1426 |
|
|
|
1427 |
|
|
if (++(*pslots_filled) == slots_to_fill)
|
1428 |
|
|
break;
|
1429 |
|
|
}
|
1430 |
|
|
else
|
1431 |
|
|
break;
|
1432 |
|
|
}
|
1433 |
|
|
|
1434 |
|
|
if (used_annul)
|
1435 |
|
|
*pannul_p = 1;
|
1436 |
|
|
return delay_list;
|
1437 |
|
|
}
|
1438 |
|
|
|
1439 |
|
|
/* Try merging insns starting at THREAD which match exactly the insns in
|
1440 |
|
|
INSN's delay list.
|
1441 |
|
|
|
1442 |
|
|
If all insns were matched and the insn was previously annulling, the
|
1443 |
|
|
annul bit will be cleared.
|
1444 |
|
|
|
1445 |
|
|
For each insn that is merged, if the branch is or will be non-annulling,
|
1446 |
|
|
we delete the merged insn. */
|
1447 |
|
|
|
1448 |
|
|
static void
|
1449 |
|
|
try_merge_delay_insns (rtx insn, rtx thread)
|
1450 |
|
|
{
|
1451 |
|
|
rtx trial, next_trial;
|
1452 |
|
|
rtx delay_insn = XVECEXP (PATTERN (insn), 0, 0);
|
1453 |
|
|
int annul_p = JUMP_P (delay_insn) && INSN_ANNULLED_BRANCH_P (delay_insn);
|
1454 |
|
|
int slot_number = 1;
|
1455 |
|
|
int num_slots = XVECLEN (PATTERN (insn), 0);
|
1456 |
|
|
rtx next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
|
1457 |
|
|
struct resources set, needed;
|
1458 |
|
|
rtx merged_insns = 0;
|
1459 |
|
|
int i;
|
1460 |
|
|
int flags;
|
1461 |
|
|
|
1462 |
|
|
flags = get_jump_flags (delay_insn, JUMP_LABEL (delay_insn));
|
1463 |
|
|
|
1464 |
|
|
CLEAR_RESOURCE (&needed);
|
1465 |
|
|
CLEAR_RESOURCE (&set);
|
1466 |
|
|
|
1467 |
|
|
/* If this is not an annulling branch, take into account anything needed in
|
1468 |
|
|
INSN's delay slot. This prevents two increments from being incorrectly
|
1469 |
|
|
folded into one. If we are annulling, this would be the correct
|
1470 |
|
|
thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
|
1471 |
|
|
will essentially disable this optimization. This method is somewhat of
|
1472 |
|
|
a kludge, but I don't see a better way.) */
|
1473 |
|
|
if (! annul_p)
|
1474 |
|
|
for (i = 1 ; i < num_slots; i++)
|
1475 |
|
|
if (XVECEXP (PATTERN (insn), 0, i))
|
1476 |
|
|
mark_referenced_resources (XVECEXP (PATTERN (insn), 0, i), &needed,
|
1477 |
|
|
true);
|
1478 |
|
|
|
1479 |
|
|
for (trial = thread; !stop_search_p (trial, 1); trial = next_trial)
|
1480 |
|
|
{
|
1481 |
|
|
rtx pat = PATTERN (trial);
|
1482 |
|
|
rtx oldtrial = trial;
|
1483 |
|
|
|
1484 |
|
|
next_trial = next_nonnote_insn (trial);
|
1485 |
|
|
|
1486 |
|
|
/* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
|
1487 |
|
|
if (NONJUMP_INSN_P (trial)
|
1488 |
|
|
&& (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER))
|
1489 |
|
|
continue;
|
1490 |
|
|
|
1491 |
|
|
if (GET_CODE (next_to_match) == GET_CODE (trial)
|
1492 |
|
|
#ifdef HAVE_cc0
|
1493 |
|
|
/* We can't share an insn that sets cc0. */
|
1494 |
|
|
&& ! sets_cc0_p (pat)
|
1495 |
|
|
#endif
|
1496 |
|
|
&& ! insn_references_resource_p (trial, &set, true)
|
1497 |
|
|
&& ! insn_sets_resource_p (trial, &set, true)
|
1498 |
|
|
&& ! insn_sets_resource_p (trial, &needed, true)
|
1499 |
|
|
&& (trial = try_split (pat, trial, 0)) != 0
|
1500 |
|
|
/* Update next_trial, in case try_split succeeded. */
|
1501 |
|
|
&& (next_trial = next_nonnote_insn (trial))
|
1502 |
|
|
/* Likewise THREAD. */
|
1503 |
|
|
&& (thread = oldtrial == thread ? trial : thread)
|
1504 |
|
|
&& rtx_equal_p (PATTERN (next_to_match), PATTERN (trial))
|
1505 |
|
|
/* Have to test this condition if annul condition is different
|
1506 |
|
|
from (and less restrictive than) non-annulling one. */
|
1507 |
|
|
&& eligible_for_delay (delay_insn, slot_number - 1, trial, flags))
|
1508 |
|
|
{
|
1509 |
|
|
|
1510 |
|
|
if (! annul_p)
|
1511 |
|
|
{
|
1512 |
|
|
update_block (trial, thread);
|
1513 |
|
|
if (trial == thread)
|
1514 |
|
|
thread = next_active_insn (thread);
|
1515 |
|
|
|
1516 |
|
|
delete_related_insns (trial);
|
1517 |
|
|
INSN_FROM_TARGET_P (next_to_match) = 0;
|
1518 |
|
|
}
|
1519 |
|
|
else
|
1520 |
|
|
merged_insns = gen_rtx_INSN_LIST (VOIDmode, trial, merged_insns);
|
1521 |
|
|
|
1522 |
|
|
if (++slot_number == num_slots)
|
1523 |
|
|
break;
|
1524 |
|
|
|
1525 |
|
|
next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
|
1526 |
|
|
}
|
1527 |
|
|
|
1528 |
|
|
mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
|
1529 |
|
|
mark_referenced_resources (trial, &needed, true);
|
1530 |
|
|
}
|
1531 |
|
|
|
1532 |
|
|
/* See if we stopped on a filled insn. If we did, try to see if its
|
1533 |
|
|
delay slots match. */
|
1534 |
|
|
if (slot_number != num_slots
|
1535 |
|
|
&& trial && NONJUMP_INSN_P (trial)
|
1536 |
|
|
&& GET_CODE (PATTERN (trial)) == SEQUENCE
|
1537 |
|
|
&& !(JUMP_P (XVECEXP (PATTERN (trial), 0, 0))
|
1538 |
|
|
&& INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial), 0, 0))))
|
1539 |
|
|
{
|
1540 |
|
|
rtx pat = PATTERN (trial);
|
1541 |
|
|
rtx filled_insn = XVECEXP (pat, 0, 0);
|
1542 |
|
|
|
1543 |
|
|
/* Account for resources set/needed by the filled insn. */
|
1544 |
|
|
mark_set_resources (filled_insn, &set, 0, MARK_SRC_DEST_CALL);
|
1545 |
|
|
mark_referenced_resources (filled_insn, &needed, true);
|
1546 |
|
|
|
1547 |
|
|
for (i = 1; i < XVECLEN (pat, 0); i++)
|
1548 |
|
|
{
|
1549 |
|
|
rtx dtrial = XVECEXP (pat, 0, i);
|
1550 |
|
|
|
1551 |
|
|
if (! insn_references_resource_p (dtrial, &set, true)
|
1552 |
|
|
&& ! insn_sets_resource_p (dtrial, &set, true)
|
1553 |
|
|
&& ! insn_sets_resource_p (dtrial, &needed, true)
|
1554 |
|
|
#ifdef HAVE_cc0
|
1555 |
|
|
&& ! sets_cc0_p (PATTERN (dtrial))
|
1556 |
|
|
#endif
|
1557 |
|
|
&& rtx_equal_p (PATTERN (next_to_match), PATTERN (dtrial))
|
1558 |
|
|
&& eligible_for_delay (delay_insn, slot_number - 1, dtrial, flags))
|
1559 |
|
|
{
|
1560 |
|
|
if (! annul_p)
|
1561 |
|
|
{
|
1562 |
|
|
rtx new_rtx;
|
1563 |
|
|
|
1564 |
|
|
update_block (dtrial, thread);
|
1565 |
|
|
new_rtx = delete_from_delay_slot (dtrial);
|
1566 |
|
|
if (INSN_DELETED_P (thread))
|
1567 |
|
|
thread = new_rtx;
|
1568 |
|
|
INSN_FROM_TARGET_P (next_to_match) = 0;
|
1569 |
|
|
}
|
1570 |
|
|
else
|
1571 |
|
|
merged_insns = gen_rtx_INSN_LIST (SImode, dtrial,
|
1572 |
|
|
merged_insns);
|
1573 |
|
|
|
1574 |
|
|
if (++slot_number == num_slots)
|
1575 |
|
|
break;
|
1576 |
|
|
|
1577 |
|
|
next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
|
1578 |
|
|
}
|
1579 |
|
|
else
|
1580 |
|
|
{
|
1581 |
|
|
/* Keep track of the set/referenced resources for the delay
|
1582 |
|
|
slots of any trial insns we encounter. */
|
1583 |
|
|
mark_set_resources (dtrial, &set, 0, MARK_SRC_DEST_CALL);
|
1584 |
|
|
mark_referenced_resources (dtrial, &needed, true);
|
1585 |
|
|
}
|
1586 |
|
|
}
|
1587 |
|
|
}
|
1588 |
|
|
|
1589 |
|
|
/* If all insns in the delay slot have been matched and we were previously
|
1590 |
|
|
annulling the branch, we need not any more. In that case delete all the
|
1591 |
|
|
merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn in
|
1592 |
|
|
the delay list so that we know that it isn't only being used at the
|
1593 |
|
|
target. */
|
1594 |
|
|
if (slot_number == num_slots && annul_p)
|
1595 |
|
|
{
|
1596 |
|
|
for (; merged_insns; merged_insns = XEXP (merged_insns, 1))
|
1597 |
|
|
{
|
1598 |
|
|
if (GET_MODE (merged_insns) == SImode)
|
1599 |
|
|
{
|
1600 |
|
|
rtx new_rtx;
|
1601 |
|
|
|
1602 |
|
|
update_block (XEXP (merged_insns, 0), thread);
|
1603 |
|
|
new_rtx = delete_from_delay_slot (XEXP (merged_insns, 0));
|
1604 |
|
|
if (INSN_DELETED_P (thread))
|
1605 |
|
|
thread = new_rtx;
|
1606 |
|
|
}
|
1607 |
|
|
else
|
1608 |
|
|
{
|
1609 |
|
|
update_block (XEXP (merged_insns, 0), thread);
|
1610 |
|
|
delete_related_insns (XEXP (merged_insns, 0));
|
1611 |
|
|
}
|
1612 |
|
|
}
|
1613 |
|
|
|
1614 |
|
|
INSN_ANNULLED_BRANCH_P (delay_insn) = 0;
|
1615 |
|
|
|
1616 |
|
|
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
|
1617 |
|
|
INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)) = 0;
|
1618 |
|
|
}
|
1619 |
|
|
}
|
1620 |
|
|
|
1621 |
|
|
/* See if INSN is redundant with an insn in front of TARGET. Often this
|
1622 |
|
|
is called when INSN is a candidate for a delay slot of TARGET.
|
1623 |
|
|
DELAY_LIST are insns that will be placed in delay slots of TARGET in front
|
1624 |
|
|
of INSN. Often INSN will be redundant with an insn in a delay slot of
|
1625 |
|
|
some previous insn. This happens when we have a series of branches to the
|
1626 |
|
|
same label; in that case the first insn at the target might want to go
|
1627 |
|
|
into each of the delay slots.
|
1628 |
|
|
|
1629 |
|
|
If we are not careful, this routine can take up a significant fraction
|
1630 |
|
|
of the total compilation time (4%), but only wins rarely. Hence we
|
1631 |
|
|
speed this routine up by making two passes. The first pass goes back
|
1632 |
|
|
until it hits a label and sees if it finds an insn with an identical
|
1633 |
|
|
pattern. Only in this (relatively rare) event does it check for
|
1634 |
|
|
data conflicts.
|
1635 |
|
|
|
1636 |
|
|
We do not split insns we encounter. This could cause us not to find a
|
1637 |
|
|
redundant insn, but the cost of splitting seems greater than the possible
|
1638 |
|
|
gain in rare cases. */
|
1639 |
|
|
|
1640 |
|
|
static rtx
|
1641 |
|
|
redundant_insn (rtx insn, rtx target, rtx delay_list)
|
1642 |
|
|
{
|
1643 |
|
|
rtx target_main = target;
|
1644 |
|
|
rtx ipat = PATTERN (insn);
|
1645 |
|
|
rtx trial, pat;
|
1646 |
|
|
struct resources needed, set;
|
1647 |
|
|
int i;
|
1648 |
|
|
unsigned insns_to_search;
|
1649 |
|
|
|
1650 |
|
|
/* If INSN has any REG_UNUSED notes, it can't match anything since we
|
1651 |
|
|
are allowed to not actually assign to such a register. */
|
1652 |
|
|
if (find_reg_note (insn, REG_UNUSED, NULL_RTX) != 0)
|
1653 |
|
|
return 0;
|
1654 |
|
|
|
1655 |
|
|
/* Scan backwards looking for a match. */
|
1656 |
|
|
for (trial = PREV_INSN (target),
|
1657 |
|
|
insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
|
1658 |
|
|
trial && insns_to_search > 0;
|
1659 |
|
|
trial = PREV_INSN (trial))
|
1660 |
|
|
{
|
1661 |
|
|
if (LABEL_P (trial))
|
1662 |
|
|
return 0;
|
1663 |
|
|
|
1664 |
|
|
if (!NONDEBUG_INSN_P (trial))
|
1665 |
|
|
continue;
|
1666 |
|
|
--insns_to_search;
|
1667 |
|
|
|
1668 |
|
|
pat = PATTERN (trial);
|
1669 |
|
|
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
|
1670 |
|
|
continue;
|
1671 |
|
|
|
1672 |
|
|
if (GET_CODE (pat) == SEQUENCE)
|
1673 |
|
|
{
|
1674 |
|
|
/* Stop for a CALL and its delay slots because it is difficult to
|
1675 |
|
|
track its resource needs correctly. */
|
1676 |
|
|
if (CALL_P (XVECEXP (pat, 0, 0)))
|
1677 |
|
|
return 0;
|
1678 |
|
|
|
1679 |
|
|
/* Stop for an INSN or JUMP_INSN with delayed effects and its delay
|
1680 |
|
|
slots because it is difficult to track its resource needs
|
1681 |
|
|
correctly. */
|
1682 |
|
|
|
1683 |
|
|
#ifdef INSN_SETS_ARE_DELAYED
|
1684 |
|
|
if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
|
1685 |
|
|
return 0;
|
1686 |
|
|
#endif
|
1687 |
|
|
|
1688 |
|
|
#ifdef INSN_REFERENCES_ARE_DELAYED
|
1689 |
|
|
if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
|
1690 |
|
|
return 0;
|
1691 |
|
|
#endif
|
1692 |
|
|
|
1693 |
|
|
/* See if any of the insns in the delay slot match, updating
|
1694 |
|
|
resource requirements as we go. */
|
1695 |
|
|
for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
|
1696 |
|
|
if (GET_CODE (XVECEXP (pat, 0, i)) == GET_CODE (insn)
|
1697 |
|
|
&& rtx_equal_p (PATTERN (XVECEXP (pat, 0, i)), ipat)
|
1698 |
|
|
&& ! find_reg_note (XVECEXP (pat, 0, i), REG_UNUSED, NULL_RTX))
|
1699 |
|
|
break;
|
1700 |
|
|
|
1701 |
|
|
/* If found a match, exit this loop early. */
|
1702 |
|
|
if (i > 0)
|
1703 |
|
|
break;
|
1704 |
|
|
}
|
1705 |
|
|
|
1706 |
|
|
else if (GET_CODE (trial) == GET_CODE (insn) && rtx_equal_p (pat, ipat)
|
1707 |
|
|
&& ! find_reg_note (trial, REG_UNUSED, NULL_RTX))
|
1708 |
|
|
break;
|
1709 |
|
|
}
|
1710 |
|
|
|
1711 |
|
|
/* If we didn't find an insn that matches, return 0. */
|
1712 |
|
|
if (trial == 0)
|
1713 |
|
|
return 0;
|
1714 |
|
|
|
1715 |
|
|
/* See what resources this insn sets and needs. If they overlap, or
|
1716 |
|
|
if this insn references CC0, it can't be redundant. */
|
1717 |
|
|
|
1718 |
|
|
CLEAR_RESOURCE (&needed);
|
1719 |
|
|
CLEAR_RESOURCE (&set);
|
1720 |
|
|
mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
|
1721 |
|
|
mark_referenced_resources (insn, &needed, true);
|
1722 |
|
|
|
1723 |
|
|
/* If TARGET is a SEQUENCE, get the main insn. */
|
1724 |
|
|
if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
|
1725 |
|
|
target_main = XVECEXP (PATTERN (target), 0, 0);
|
1726 |
|
|
|
1727 |
|
|
if (resource_conflicts_p (&needed, &set)
|
1728 |
|
|
#ifdef HAVE_cc0
|
1729 |
|
|
|| reg_mentioned_p (cc0_rtx, ipat)
|
1730 |
|
|
#endif
|
1731 |
|
|
/* The insn requiring the delay may not set anything needed or set by
|
1732 |
|
|
INSN. */
|
1733 |
|
|
|| insn_sets_resource_p (target_main, &needed, true)
|
1734 |
|
|
|| insn_sets_resource_p (target_main, &set, true))
|
1735 |
|
|
return 0;
|
1736 |
|
|
|
1737 |
|
|
/* Insns we pass may not set either NEEDED or SET, so merge them for
|
1738 |
|
|
simpler tests. */
|
1739 |
|
|
needed.memory |= set.memory;
|
1740 |
|
|
needed.unch_memory |= set.unch_memory;
|
1741 |
|
|
IOR_HARD_REG_SET (needed.regs, set.regs);
|
1742 |
|
|
|
1743 |
|
|
/* This insn isn't redundant if it conflicts with an insn that either is
|
1744 |
|
|
or will be in a delay slot of TARGET. */
|
1745 |
|
|
|
1746 |
|
|
while (delay_list)
|
1747 |
|
|
{
|
1748 |
|
|
if (insn_sets_resource_p (XEXP (delay_list, 0), &needed, true))
|
1749 |
|
|
return 0;
|
1750 |
|
|
delay_list = XEXP (delay_list, 1);
|
1751 |
|
|
}
|
1752 |
|
|
|
1753 |
|
|
if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
|
1754 |
|
|
for (i = 1; i < XVECLEN (PATTERN (target), 0); i++)
|
1755 |
|
|
if (insn_sets_resource_p (XVECEXP (PATTERN (target), 0, i), &needed,
|
1756 |
|
|
true))
|
1757 |
|
|
return 0;
|
1758 |
|
|
|
1759 |
|
|
/* Scan backwards until we reach a label or an insn that uses something
|
1760 |
|
|
INSN sets or sets something insn uses or sets. */
|
1761 |
|
|
|
1762 |
|
|
for (trial = PREV_INSN (target),
|
1763 |
|
|
insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
|
1764 |
|
|
trial && !LABEL_P (trial) && insns_to_search > 0;
|
1765 |
|
|
trial = PREV_INSN (trial))
|
1766 |
|
|
{
|
1767 |
|
|
if (!NONDEBUG_INSN_P (trial))
|
1768 |
|
|
continue;
|
1769 |
|
|
--insns_to_search;
|
1770 |
|
|
|
1771 |
|
|
pat = PATTERN (trial);
|
1772 |
|
|
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
|
1773 |
|
|
continue;
|
1774 |
|
|
|
1775 |
|
|
if (GET_CODE (pat) == SEQUENCE)
|
1776 |
|
|
{
|
1777 |
|
|
bool annul_p = false;
|
1778 |
|
|
rtx control = XVECEXP (pat, 0, 0);
|
1779 |
|
|
|
1780 |
|
|
/* If this is a CALL_INSN and its delay slots, it is hard to track
|
1781 |
|
|
the resource needs properly, so give up. */
|
1782 |
|
|
if (CALL_P (control))
|
1783 |
|
|
return 0;
|
1784 |
|
|
|
1785 |
|
|
/* If this is an INSN or JUMP_INSN with delayed effects, it
|
1786 |
|
|
is hard to track the resource needs properly, so give up. */
|
1787 |
|
|
|
1788 |
|
|
#ifdef INSN_SETS_ARE_DELAYED
|
1789 |
|
|
if (INSN_SETS_ARE_DELAYED (control))
|
1790 |
|
|
return 0;
|
1791 |
|
|
#endif
|
1792 |
|
|
|
1793 |
|
|
#ifdef INSN_REFERENCES_ARE_DELAYED
|
1794 |
|
|
if (INSN_REFERENCES_ARE_DELAYED (control))
|
1795 |
|
|
return 0;
|
1796 |
|
|
#endif
|
1797 |
|
|
|
1798 |
|
|
if (JUMP_P (control))
|
1799 |
|
|
annul_p = INSN_ANNULLED_BRANCH_P (control);
|
1800 |
|
|
|
1801 |
|
|
/* See if any of the insns in the delay slot match, updating
|
1802 |
|
|
resource requirements as we go. */
|
1803 |
|
|
for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
|
1804 |
|
|
{
|
1805 |
|
|
rtx candidate = XVECEXP (pat, 0, i);
|
1806 |
|
|
|
1807 |
|
|
/* If an insn will be annulled if the branch is false, it isn't
|
1808 |
|
|
considered as a possible duplicate insn. */
|
1809 |
|
|
if (rtx_equal_p (PATTERN (candidate), ipat)
|
1810 |
|
|
&& ! (annul_p && INSN_FROM_TARGET_P (candidate)))
|
1811 |
|
|
{
|
1812 |
|
|
/* Show that this insn will be used in the sequel. */
|
1813 |
|
|
INSN_FROM_TARGET_P (candidate) = 0;
|
1814 |
|
|
return candidate;
|
1815 |
|
|
}
|
1816 |
|
|
|
1817 |
|
|
/* Unless this is an annulled insn from the target of a branch,
|
1818 |
|
|
we must stop if it sets anything needed or set by INSN. */
|
1819 |
|
|
if ((!annul_p || !INSN_FROM_TARGET_P (candidate))
|
1820 |
|
|
&& insn_sets_resource_p (candidate, &needed, true))
|
1821 |
|
|
return 0;
|
1822 |
|
|
}
|
1823 |
|
|
|
1824 |
|
|
/* If the insn requiring the delay slot conflicts with INSN, we
|
1825 |
|
|
must stop. */
|
1826 |
|
|
if (insn_sets_resource_p (control, &needed, true))
|
1827 |
|
|
return 0;
|
1828 |
|
|
}
|
1829 |
|
|
else
|
1830 |
|
|
{
|
1831 |
|
|
/* See if TRIAL is the same as INSN. */
|
1832 |
|
|
pat = PATTERN (trial);
|
1833 |
|
|
if (rtx_equal_p (pat, ipat))
|
1834 |
|
|
return trial;
|
1835 |
|
|
|
1836 |
|
|
/* Can't go any further if TRIAL conflicts with INSN. */
|
1837 |
|
|
if (insn_sets_resource_p (trial, &needed, true))
|
1838 |
|
|
return 0;
|
1839 |
|
|
}
|
1840 |
|
|
}
|
1841 |
|
|
|
1842 |
|
|
return 0;
|
1843 |
|
|
}
|
1844 |
|
|
|
1845 |
|
|
/* Return 1 if THREAD can only be executed in one way. If LABEL is nonzero,
|
1846 |
|
|
it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
|
1847 |
|
|
is nonzero, we are allowed to fall into this thread; otherwise, we are
|
1848 |
|
|
not.
|
1849 |
|
|
|
1850 |
|
|
If LABEL is used more than one or we pass a label other than LABEL before
|
1851 |
|
|
finding an active insn, we do not own this thread. */
|
1852 |
|
|
|
1853 |
|
|
static int
|
1854 |
|
|
own_thread_p (rtx thread, rtx label, int allow_fallthrough)
|
1855 |
|
|
{
|
1856 |
|
|
rtx active_insn;
|
1857 |
|
|
rtx insn;
|
1858 |
|
|
|
1859 |
|
|
/* We don't own the function end. */
|
1860 |
|
|
if (thread == 0 || ANY_RETURN_P (thread))
|
1861 |
|
|
return 0;
|
1862 |
|
|
|
1863 |
|
|
/* Get the first active insn, or THREAD, if it is an active insn. */
|
1864 |
|
|
active_insn = next_active_insn (PREV_INSN (thread));
|
1865 |
|
|
|
1866 |
|
|
for (insn = thread; insn != active_insn; insn = NEXT_INSN (insn))
|
1867 |
|
|
if (LABEL_P (insn)
|
1868 |
|
|
&& (insn != label || LABEL_NUSES (insn) != 1))
|
1869 |
|
|
return 0;
|
1870 |
|
|
|
1871 |
|
|
if (allow_fallthrough)
|
1872 |
|
|
return 1;
|
1873 |
|
|
|
1874 |
|
|
/* Ensure that we reach a BARRIER before any insn or label. */
|
1875 |
|
|
for (insn = prev_nonnote_insn (thread);
|
1876 |
|
|
insn == 0 || !BARRIER_P (insn);
|
1877 |
|
|
insn = prev_nonnote_insn (insn))
|
1878 |
|
|
if (insn == 0
|
1879 |
|
|
|| LABEL_P (insn)
|
1880 |
|
|
|| (NONJUMP_INSN_P (insn)
|
1881 |
|
|
&& GET_CODE (PATTERN (insn)) != USE
|
1882 |
|
|
&& GET_CODE (PATTERN (insn)) != CLOBBER))
|
1883 |
|
|
return 0;
|
1884 |
|
|
|
1885 |
|
|
return 1;
|
1886 |
|
|
}
|
1887 |
|
|
|
1888 |
|
|
/* Called when INSN is being moved from a location near the target of a jump.
|
1889 |
|
|
We leave a marker of the form (use (INSN)) immediately in front
|
1890 |
|
|
of WHERE for mark_target_live_regs. These markers will be deleted when
|
1891 |
|
|
reorg finishes.
|
1892 |
|
|
|
1893 |
|
|
We used to try to update the live status of registers if WHERE is at
|
1894 |
|
|
the start of a basic block, but that can't work since we may remove a
|
1895 |
|
|
BARRIER in relax_delay_slots. */
|
1896 |
|
|
|
1897 |
|
|
static void
|
1898 |
|
|
update_block (rtx insn, rtx where)
|
1899 |
|
|
{
|
1900 |
|
|
/* Ignore if this was in a delay slot and it came from the target of
|
1901 |
|
|
a branch. */
|
1902 |
|
|
if (INSN_FROM_TARGET_P (insn))
|
1903 |
|
|
return;
|
1904 |
|
|
|
1905 |
|
|
emit_insn_before (gen_rtx_USE (VOIDmode, insn), where);
|
1906 |
|
|
|
1907 |
|
|
/* INSN might be making a value live in a block where it didn't use to
|
1908 |
|
|
be. So recompute liveness information for this block. */
|
1909 |
|
|
|
1910 |
|
|
incr_ticks_for_insn (insn);
|
1911 |
|
|
}
|
1912 |
|
|
|
1913 |
|
|
/* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
|
1914 |
|
|
the basic block containing the jump. */
|
1915 |
|
|
|
1916 |
|
|
static int
|
1917 |
|
|
reorg_redirect_jump (rtx jump, rtx nlabel)
|
1918 |
|
|
{
|
1919 |
|
|
incr_ticks_for_insn (jump);
|
1920 |
|
|
return redirect_jump (jump, nlabel, 1);
|
1921 |
|
|
}
|
1922 |
|
|
|
1923 |
|
|
/* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
|
1924 |
|
|
We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
|
1925 |
|
|
that reference values used in INSN. If we find one, then we move the
|
1926 |
|
|
REG_DEAD note to INSN.
|
1927 |
|
|
|
1928 |
|
|
This is needed to handle the case where a later insn (after INSN) has a
|
1929 |
|
|
REG_DEAD note for a register used by INSN, and this later insn subsequently
|
1930 |
|
|
gets moved before a CODE_LABEL because it is a redundant insn. In this
|
1931 |
|
|
case, mark_target_live_regs may be confused into thinking the register
|
1932 |
|
|
is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
|
1933 |
|
|
|
1934 |
|
|
static void
|
1935 |
|
|
update_reg_dead_notes (rtx insn, rtx delayed_insn)
|
1936 |
|
|
{
|
1937 |
|
|
rtx p, link, next;
|
1938 |
|
|
|
1939 |
|
|
for (p = next_nonnote_insn (insn); p != delayed_insn;
|
1940 |
|
|
p = next_nonnote_insn (p))
|
1941 |
|
|
for (link = REG_NOTES (p); link; link = next)
|
1942 |
|
|
{
|
1943 |
|
|
next = XEXP (link, 1);
|
1944 |
|
|
|
1945 |
|
|
if (REG_NOTE_KIND (link) != REG_DEAD
|
1946 |
|
|
|| !REG_P (XEXP (link, 0)))
|
1947 |
|
|
continue;
|
1948 |
|
|
|
1949 |
|
|
if (reg_referenced_p (XEXP (link, 0), PATTERN (insn)))
|
1950 |
|
|
{
|
1951 |
|
|
/* Move the REG_DEAD note from P to INSN. */
|
1952 |
|
|
remove_note (p, link);
|
1953 |
|
|
XEXP (link, 1) = REG_NOTES (insn);
|
1954 |
|
|
REG_NOTES (insn) = link;
|
1955 |
|
|
}
|
1956 |
|
|
}
|
1957 |
|
|
}
|
1958 |
|
|
|
1959 |
|
|
/* Called when an insn redundant with start_insn is deleted. If there
|
1960 |
|
|
is a REG_DEAD note for the target of start_insn between start_insn
|
1961 |
|
|
and stop_insn, then the REG_DEAD note needs to be deleted since the
|
1962 |
|
|
value no longer dies there.
|
1963 |
|
|
|
1964 |
|
|
If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
|
1965 |
|
|
confused into thinking the register is dead. */
|
1966 |
|
|
|
1967 |
|
|
static void
|
1968 |
|
|
fix_reg_dead_note (rtx start_insn, rtx stop_insn)
|
1969 |
|
|
{
|
1970 |
|
|
rtx p, link, next;
|
1971 |
|
|
|
1972 |
|
|
for (p = next_nonnote_insn (start_insn); p != stop_insn;
|
1973 |
|
|
p = next_nonnote_insn (p))
|
1974 |
|
|
for (link = REG_NOTES (p); link; link = next)
|
1975 |
|
|
{
|
1976 |
|
|
next = XEXP (link, 1);
|
1977 |
|
|
|
1978 |
|
|
if (REG_NOTE_KIND (link) != REG_DEAD
|
1979 |
|
|
|| !REG_P (XEXP (link, 0)))
|
1980 |
|
|
continue;
|
1981 |
|
|
|
1982 |
|
|
if (reg_set_p (XEXP (link, 0), PATTERN (start_insn)))
|
1983 |
|
|
{
|
1984 |
|
|
remove_note (p, link);
|
1985 |
|
|
return;
|
1986 |
|
|
}
|
1987 |
|
|
}
|
1988 |
|
|
}
|
1989 |
|
|
|
1990 |
|
|
/* Delete any REG_UNUSED notes that exist on INSN but not on REDUNDANT_INSN.
|
1991 |
|
|
|
1992 |
|
|
This handles the case of udivmodXi4 instructions which optimize their
|
1993 |
|
|
output depending on whether any REG_UNUSED notes are present.
|
1994 |
|
|
we must make sure that INSN calculates as many results as REDUNDANT_INSN
|
1995 |
|
|
does. */
|
1996 |
|
|
|
1997 |
|
|
static void
|
1998 |
|
|
update_reg_unused_notes (rtx insn, rtx redundant_insn)
|
1999 |
|
|
{
|
2000 |
|
|
rtx link, next;
|
2001 |
|
|
|
2002 |
|
|
for (link = REG_NOTES (insn); link; link = next)
|
2003 |
|
|
{
|
2004 |
|
|
next = XEXP (link, 1);
|
2005 |
|
|
|
2006 |
|
|
if (REG_NOTE_KIND (link) != REG_UNUSED
|
2007 |
|
|
|| !REG_P (XEXP (link, 0)))
|
2008 |
|
|
continue;
|
2009 |
|
|
|
2010 |
|
|
if (! find_regno_note (redundant_insn, REG_UNUSED,
|
2011 |
|
|
REGNO (XEXP (link, 0))))
|
2012 |
|
|
remove_note (insn, link);
|
2013 |
|
|
}
|
2014 |
|
|
}
|
2015 |
|
|
|
2016 |
|
|
/* Return the label before INSN, or put a new label there. */
|
2017 |
|
|
|
2018 |
|
|
static rtx
|
2019 |
|
|
get_label_before (rtx insn)
|
2020 |
|
|
{
|
2021 |
|
|
rtx label;
|
2022 |
|
|
|
2023 |
|
|
/* Find an existing label at this point
|
2024 |
|
|
or make a new one if there is none. */
|
2025 |
|
|
label = prev_nonnote_insn (insn);
|
2026 |
|
|
|
2027 |
|
|
if (label == 0 || !LABEL_P (label))
|
2028 |
|
|
{
|
2029 |
|
|
rtx prev = PREV_INSN (insn);
|
2030 |
|
|
|
2031 |
|
|
label = gen_label_rtx ();
|
2032 |
|
|
emit_label_after (label, prev);
|
2033 |
|
|
LABEL_NUSES (label) = 0;
|
2034 |
|
|
}
|
2035 |
|
|
return label;
|
2036 |
|
|
}
|
2037 |
|
|
|
2038 |
|
|
/* Scan a function looking for insns that need a delay slot and find insns to
|
2039 |
|
|
put into the delay slot.
|
2040 |
|
|
|
2041 |
|
|
NON_JUMPS_P is nonzero if we are to only try to fill non-jump insns (such
|
2042 |
|
|
as calls). We do these first since we don't want jump insns (that are
|
2043 |
|
|
easier to fill) to get the only insns that could be used for non-jump insns.
|
2044 |
|
|
When it is zero, only try to fill JUMP_INSNs.
|
2045 |
|
|
|
2046 |
|
|
When slots are filled in this manner, the insns (including the
|
2047 |
|
|
delay_insn) are put together in a SEQUENCE rtx. In this fashion,
|
2048 |
|
|
it is possible to tell whether a delay slot has really been filled
|
2049 |
|
|
or not. `final' knows how to deal with this, by communicating
|
2050 |
|
|
through FINAL_SEQUENCE. */
|
2051 |
|
|
|
2052 |
|
|
static void
|
2053 |
|
|
fill_simple_delay_slots (int non_jumps_p)
|
2054 |
|
|
{
|
2055 |
|
|
rtx insn, pat, trial, next_trial;
|
2056 |
|
|
int i;
|
2057 |
|
|
int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
|
2058 |
|
|
struct resources needed, set;
|
2059 |
|
|
int slots_to_fill, slots_filled;
|
2060 |
|
|
rtx delay_list;
|
2061 |
|
|
|
2062 |
|
|
for (i = 0; i < num_unfilled_slots; i++)
|
2063 |
|
|
{
|
2064 |
|
|
int flags;
|
2065 |
|
|
/* Get the next insn to fill. If it has already had any slots assigned,
|
2066 |
|
|
we can't do anything with it. Maybe we'll improve this later. */
|
2067 |
|
|
|
2068 |
|
|
insn = unfilled_slots_base[i];
|
2069 |
|
|
if (insn == 0
|
2070 |
|
|
|| INSN_DELETED_P (insn)
|
2071 |
|
|
|| (NONJUMP_INSN_P (insn)
|
2072 |
|
|
&& GET_CODE (PATTERN (insn)) == SEQUENCE)
|
2073 |
|
|
|| (JUMP_P (insn) && non_jumps_p)
|
2074 |
|
|
|| (!JUMP_P (insn) && ! non_jumps_p))
|
2075 |
|
|
continue;
|
2076 |
|
|
|
2077 |
|
|
/* It may have been that this insn used to need delay slots, but
|
2078 |
|
|
now doesn't; ignore in that case. This can happen, for example,
|
2079 |
|
|
on the HP PA RISC, where the number of delay slots depends on
|
2080 |
|
|
what insns are nearby. */
|
2081 |
|
|
slots_to_fill = num_delay_slots (insn);
|
2082 |
|
|
|
2083 |
|
|
/* Some machine description have defined instructions to have
|
2084 |
|
|
delay slots only in certain circumstances which may depend on
|
2085 |
|
|
nearby insns (which change due to reorg's actions).
|
2086 |
|
|
|
2087 |
|
|
For example, the PA port normally has delay slots for unconditional
|
2088 |
|
|
jumps.
|
2089 |
|
|
|
2090 |
|
|
However, the PA port claims such jumps do not have a delay slot
|
2091 |
|
|
if they are immediate successors of certain CALL_INSNs. This
|
2092 |
|
|
allows the port to favor filling the delay slot of the call with
|
2093 |
|
|
the unconditional jump. */
|
2094 |
|
|
if (slots_to_fill == 0)
|
2095 |
|
|
continue;
|
2096 |
|
|
|
2097 |
|
|
/* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
|
2098 |
|
|
says how many. After initialization, first try optimizing
|
2099 |
|
|
|
2100 |
|
|
call _foo call _foo
|
2101 |
|
|
nop add %o7,.-L1,%o7
|
2102 |
|
|
b,a L1
|
2103 |
|
|
nop
|
2104 |
|
|
|
2105 |
|
|
If this case applies, the delay slot of the call is filled with
|
2106 |
|
|
the unconditional jump. This is done first to avoid having the
|
2107 |
|
|
delay slot of the call filled in the backward scan. Also, since
|
2108 |
|
|
the unconditional jump is likely to also have a delay slot, that
|
2109 |
|
|
insn must exist when it is subsequently scanned.
|
2110 |
|
|
|
2111 |
|
|
This is tried on each insn with delay slots as some machines
|
2112 |
|
|
have insns which perform calls, but are not represented as
|
2113 |
|
|
CALL_INSNs. */
|
2114 |
|
|
|
2115 |
|
|
slots_filled = 0;
|
2116 |
|
|
delay_list = 0;
|
2117 |
|
|
|
2118 |
|
|
if (JUMP_P (insn))
|
2119 |
|
|
flags = get_jump_flags (insn, JUMP_LABEL (insn));
|
2120 |
|
|
else
|
2121 |
|
|
flags = get_jump_flags (insn, NULL_RTX);
|
2122 |
|
|
|
2123 |
|
|
if ((trial = next_active_insn (insn))
|
2124 |
|
|
&& JUMP_P (trial)
|
2125 |
|
|
&& simplejump_p (trial)
|
2126 |
|
|
&& eligible_for_delay (insn, slots_filled, trial, flags)
|
2127 |
|
|
&& no_labels_between_p (insn, trial)
|
2128 |
|
|
&& ! can_throw_internal (trial))
|
2129 |
|
|
{
|
2130 |
|
|
rtx *tmp;
|
2131 |
|
|
slots_filled++;
|
2132 |
|
|
delay_list = add_to_delay_list (trial, delay_list);
|
2133 |
|
|
|
2134 |
|
|
/* TRIAL may have had its delay slot filled, then unfilled. When
|
2135 |
|
|
the delay slot is unfilled, TRIAL is placed back on the unfilled
|
2136 |
|
|
slots obstack. Unfortunately, it is placed on the end of the
|
2137 |
|
|
obstack, not in its original location. Therefore, we must search
|
2138 |
|
|
from entry i + 1 to the end of the unfilled slots obstack to
|
2139 |
|
|
try and find TRIAL. */
|
2140 |
|
|
tmp = &unfilled_slots_base[i + 1];
|
2141 |
|
|
while (*tmp != trial && tmp != unfilled_slots_next)
|
2142 |
|
|
tmp++;
|
2143 |
|
|
|
2144 |
|
|
/* Remove the unconditional jump from consideration for delay slot
|
2145 |
|
|
filling and unthread it. */
|
2146 |
|
|
if (*tmp == trial)
|
2147 |
|
|
*tmp = 0;
|
2148 |
|
|
{
|
2149 |
|
|
rtx next = NEXT_INSN (trial);
|
2150 |
|
|
rtx prev = PREV_INSN (trial);
|
2151 |
|
|
if (prev)
|
2152 |
|
|
NEXT_INSN (prev) = next;
|
2153 |
|
|
if (next)
|
2154 |
|
|
PREV_INSN (next) = prev;
|
2155 |
|
|
}
|
2156 |
|
|
}
|
2157 |
|
|
|
2158 |
|
|
/* Now, scan backwards from the insn to search for a potential
|
2159 |
|
|
delay-slot candidate. Stop searching when a label or jump is hit.
|
2160 |
|
|
|
2161 |
|
|
For each candidate, if it is to go into the delay slot (moved
|
2162 |
|
|
forward in execution sequence), it must not need or set any resources
|
2163 |
|
|
that were set by later insns and must not set any resources that
|
2164 |
|
|
are needed for those insns.
|
2165 |
|
|
|
2166 |
|
|
The delay slot insn itself sets resources unless it is a call
|
2167 |
|
|
(in which case the called routine, not the insn itself, is doing
|
2168 |
|
|
the setting). */
|
2169 |
|
|
|
2170 |
|
|
if (slots_filled < slots_to_fill)
|
2171 |
|
|
{
|
2172 |
|
|
CLEAR_RESOURCE (&needed);
|
2173 |
|
|
CLEAR_RESOURCE (&set);
|
2174 |
|
|
mark_set_resources (insn, &set, 0, MARK_SRC_DEST);
|
2175 |
|
|
mark_referenced_resources (insn, &needed, false);
|
2176 |
|
|
|
2177 |
|
|
for (trial = prev_nonnote_insn (insn); ! stop_search_p (trial, 1);
|
2178 |
|
|
trial = next_trial)
|
2179 |
|
|
{
|
2180 |
|
|
next_trial = prev_nonnote_insn (trial);
|
2181 |
|
|
|
2182 |
|
|
/* This must be an INSN or CALL_INSN. */
|
2183 |
|
|
pat = PATTERN (trial);
|
2184 |
|
|
|
2185 |
|
|
/* Stand-alone USE and CLOBBER are just for flow. */
|
2186 |
|
|
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
|
2187 |
|
|
continue;
|
2188 |
|
|
|
2189 |
|
|
/* Check for resource conflict first, to avoid unnecessary
|
2190 |
|
|
splitting. */
|
2191 |
|
|
if (! insn_references_resource_p (trial, &set, true)
|
2192 |
|
|
&& ! insn_sets_resource_p (trial, &set, true)
|
2193 |
|
|
&& ! insn_sets_resource_p (trial, &needed, true)
|
2194 |
|
|
#ifdef HAVE_cc0
|
2195 |
|
|
/* Can't separate set of cc0 from its use. */
|
2196 |
|
|
&& ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
|
2197 |
|
|
#endif
|
2198 |
|
|
&& ! can_throw_internal (trial))
|
2199 |
|
|
{
|
2200 |
|
|
trial = try_split (pat, trial, 1);
|
2201 |
|
|
next_trial = prev_nonnote_insn (trial);
|
2202 |
|
|
if (eligible_for_delay (insn, slots_filled, trial, flags))
|
2203 |
|
|
{
|
2204 |
|
|
/* In this case, we are searching backward, so if we
|
2205 |
|
|
find insns to put on the delay list, we want
|
2206 |
|
|
to put them at the head, rather than the
|
2207 |
|
|
tail, of the list. */
|
2208 |
|
|
|
2209 |
|
|
update_reg_dead_notes (trial, insn);
|
2210 |
|
|
delay_list = gen_rtx_INSN_LIST (VOIDmode,
|
2211 |
|
|
trial, delay_list);
|
2212 |
|
|
update_block (trial, trial);
|
2213 |
|
|
delete_related_insns (trial);
|
2214 |
|
|
if (slots_to_fill == ++slots_filled)
|
2215 |
|
|
break;
|
2216 |
|
|
continue;
|
2217 |
|
|
}
|
2218 |
|
|
}
|
2219 |
|
|
|
2220 |
|
|
mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
|
2221 |
|
|
mark_referenced_resources (trial, &needed, true);
|
2222 |
|
|
}
|
2223 |
|
|
}
|
2224 |
|
|
|
2225 |
|
|
/* If all needed slots haven't been filled, we come here. */
|
2226 |
|
|
|
2227 |
|
|
/* Try to optimize case of jumping around a single insn. */
|
2228 |
|
|
#if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
|
2229 |
|
|
if (slots_filled != slots_to_fill
|
2230 |
|
|
&& delay_list == 0
|
2231 |
|
|
&& JUMP_P (insn)
|
2232 |
|
|
&& (condjump_p (insn) || condjump_in_parallel_p (insn)))
|
2233 |
|
|
{
|
2234 |
|
|
delay_list = optimize_skip (insn);
|
2235 |
|
|
if (delay_list)
|
2236 |
|
|
slots_filled += 1;
|
2237 |
|
|
}
|
2238 |
|
|
#endif
|
2239 |
|
|
|
2240 |
|
|
/* Try to get insns from beyond the insn needing the delay slot.
|
2241 |
|
|
These insns can neither set or reference resources set in insns being
|
2242 |
|
|
skipped, cannot set resources in the insn being skipped, and, if this
|
2243 |
|
|
is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
|
2244 |
|
|
call might not return).
|
2245 |
|
|
|
2246 |
|
|
There used to be code which continued past the target label if
|
2247 |
|
|
we saw all uses of the target label. This code did not work,
|
2248 |
|
|
because it failed to account for some instructions which were
|
2249 |
|
|
both annulled and marked as from the target. This can happen as a
|
2250 |
|
|
result of optimize_skip. Since this code was redundant with
|
2251 |
|
|
fill_eager_delay_slots anyways, it was just deleted. */
|
2252 |
|
|
|
2253 |
|
|
if (slots_filled != slots_to_fill
|
2254 |
|
|
/* If this instruction could throw an exception which is
|
2255 |
|
|
caught in the same function, then it's not safe to fill
|
2256 |
|
|
the delay slot with an instruction from beyond this
|
2257 |
|
|
point. For example, consider:
|
2258 |
|
|
|
2259 |
|
|
int i = 2;
|
2260 |
|
|
|
2261 |
|
|
try {
|
2262 |
|
|
f();
|
2263 |
|
|
i = 3;
|
2264 |
|
|
} catch (...) {}
|
2265 |
|
|
|
2266 |
|
|
return i;
|
2267 |
|
|
|
2268 |
|
|
Even though `i' is a local variable, we must be sure not
|
2269 |
|
|
to put `i = 3' in the delay slot if `f' might throw an
|
2270 |
|
|
exception.
|
2271 |
|
|
|
2272 |
|
|
Presumably, we should also check to see if we could get
|
2273 |
|
|
back to this function via `setjmp'. */
|
2274 |
|
|
&& ! can_throw_internal (insn)
|
2275 |
|
|
&& (!JUMP_P (insn)
|
2276 |
|
|
|| ((condjump_p (insn) || condjump_in_parallel_p (insn))
|
2277 |
|
|
&& ! simplejump_p (insn)
|
2278 |
|
|
&& !ANY_RETURN_P (JUMP_LABEL (insn)))))
|
2279 |
|
|
{
|
2280 |
|
|
/* Invariant: If insn is a JUMP_INSN, the insn's jump
|
2281 |
|
|
label. Otherwise, zero. */
|
2282 |
|
|
rtx target = 0;
|
2283 |
|
|
int maybe_never = 0;
|
2284 |
|
|
rtx pat, trial_delay;
|
2285 |
|
|
|
2286 |
|
|
CLEAR_RESOURCE (&needed);
|
2287 |
|
|
CLEAR_RESOURCE (&set);
|
2288 |
|
|
|
2289 |
|
|
if (CALL_P (insn))
|
2290 |
|
|
{
|
2291 |
|
|
mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
|
2292 |
|
|
mark_referenced_resources (insn, &needed, true);
|
2293 |
|
|
maybe_never = 1;
|
2294 |
|
|
}
|
2295 |
|
|
else
|
2296 |
|
|
{
|
2297 |
|
|
mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
|
2298 |
|
|
mark_referenced_resources (insn, &needed, true);
|
2299 |
|
|
if (JUMP_P (insn))
|
2300 |
|
|
target = JUMP_LABEL (insn);
|
2301 |
|
|
}
|
2302 |
|
|
|
2303 |
|
|
if (target == 0 || ANY_RETURN_P (target))
|
2304 |
|
|
for (trial = next_nonnote_insn (insn); !stop_search_p (trial, 1);
|
2305 |
|
|
trial = next_trial)
|
2306 |
|
|
{
|
2307 |
|
|
next_trial = next_nonnote_insn (trial);
|
2308 |
|
|
|
2309 |
|
|
/* This must be an INSN or CALL_INSN. */
|
2310 |
|
|
pat = PATTERN (trial);
|
2311 |
|
|
|
2312 |
|
|
/* Stand-alone USE and CLOBBER are just for flow. */
|
2313 |
|
|
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
|
2314 |
|
|
continue;
|
2315 |
|
|
|
2316 |
|
|
/* If this already has filled delay slots, get the insn needing
|
2317 |
|
|
the delay slots. */
|
2318 |
|
|
if (GET_CODE (pat) == SEQUENCE)
|
2319 |
|
|
trial_delay = XVECEXP (pat, 0, 0);
|
2320 |
|
|
else
|
2321 |
|
|
trial_delay = trial;
|
2322 |
|
|
|
2323 |
|
|
/* Stop our search when seeing a jump. */
|
2324 |
|
|
if (JUMP_P (trial_delay))
|
2325 |
|
|
break;
|
2326 |
|
|
|
2327 |
|
|
/* See if we have a resource problem before we try to
|
2328 |
|
|
split. */
|
2329 |
|
|
if (GET_CODE (pat) != SEQUENCE
|
2330 |
|
|
&& ! insn_references_resource_p (trial, &set, true)
|
2331 |
|
|
&& ! insn_sets_resource_p (trial, &set, true)
|
2332 |
|
|
&& ! insn_sets_resource_p (trial, &needed, true)
|
2333 |
|
|
#ifdef HAVE_cc0
|
2334 |
|
|
&& ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
|
2335 |
|
|
#endif
|
2336 |
|
|
&& ! (maybe_never && may_trap_or_fault_p (pat))
|
2337 |
|
|
&& (trial = try_split (pat, trial, 0))
|
2338 |
|
|
&& eligible_for_delay (insn, slots_filled, trial, flags)
|
2339 |
|
|
&& ! can_throw_internal(trial))
|
2340 |
|
|
{
|
2341 |
|
|
next_trial = next_nonnote_insn (trial);
|
2342 |
|
|
delay_list = add_to_delay_list (trial, delay_list);
|
2343 |
|
|
|
2344 |
|
|
#ifdef HAVE_cc0
|
2345 |
|
|
if (reg_mentioned_p (cc0_rtx, pat))
|
2346 |
|
|
link_cc0_insns (trial);
|
2347 |
|
|
#endif
|
2348 |
|
|
|
2349 |
|
|
delete_related_insns (trial);
|
2350 |
|
|
if (slots_to_fill == ++slots_filled)
|
2351 |
|
|
break;
|
2352 |
|
|
continue;
|
2353 |
|
|
}
|
2354 |
|
|
|
2355 |
|
|
mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
|
2356 |
|
|
mark_referenced_resources (trial, &needed, true);
|
2357 |
|
|
|
2358 |
|
|
/* Ensure we don't put insns between the setting of cc and the
|
2359 |
|
|
comparison by moving a setting of cc into an earlier delay
|
2360 |
|
|
slot since these insns could clobber the condition code. */
|
2361 |
|
|
set.cc = 1;
|
2362 |
|
|
|
2363 |
|
|
/* If this is a call or jump, we might not get here. */
|
2364 |
|
|
if (CALL_P (trial_delay)
|
2365 |
|
|
|| JUMP_P (trial_delay))
|
2366 |
|
|
maybe_never = 1;
|
2367 |
|
|
}
|
2368 |
|
|
|
2369 |
|
|
/* If there are slots left to fill and our search was stopped by an
|
2370 |
|
|
unconditional branch, try the insn at the branch target. We can
|
2371 |
|
|
redirect the branch if it works.
|
2372 |
|
|
|
2373 |
|
|
Don't do this if the insn at the branch target is a branch. */
|
2374 |
|
|
if (slots_to_fill != slots_filled
|
2375 |
|
|
&& trial
|
2376 |
|
|
&& jump_to_label_p (trial)
|
2377 |
|
|
&& simplejump_p (trial)
|
2378 |
|
|
&& (target == 0 || JUMP_LABEL (trial) == target)
|
2379 |
|
|
&& (next_trial = next_active_insn (JUMP_LABEL (trial))) != 0
|
2380 |
|
|
&& ! (NONJUMP_INSN_P (next_trial)
|
2381 |
|
|
&& GET_CODE (PATTERN (next_trial)) == SEQUENCE)
|
2382 |
|
|
&& !JUMP_P (next_trial)
|
2383 |
|
|
&& ! insn_references_resource_p (next_trial, &set, true)
|
2384 |
|
|
&& ! insn_sets_resource_p (next_trial, &set, true)
|
2385 |
|
|
&& ! insn_sets_resource_p (next_trial, &needed, true)
|
2386 |
|
|
#ifdef HAVE_cc0
|
2387 |
|
|
&& ! reg_mentioned_p (cc0_rtx, PATTERN (next_trial))
|
2388 |
|
|
#endif
|
2389 |
|
|
&& ! (maybe_never && may_trap_or_fault_p (PATTERN (next_trial)))
|
2390 |
|
|
&& (next_trial = try_split (PATTERN (next_trial), next_trial, 0))
|
2391 |
|
|
&& eligible_for_delay (insn, slots_filled, next_trial, flags)
|
2392 |
|
|
&& ! can_throw_internal (trial))
|
2393 |
|
|
{
|
2394 |
|
|
/* See comment in relax_delay_slots about necessity of using
|
2395 |
|
|
next_real_insn here. */
|
2396 |
|
|
rtx new_label = next_real_insn (next_trial);
|
2397 |
|
|
|
2398 |
|
|
if (new_label != 0)
|
2399 |
|
|
new_label = get_label_before (new_label);
|
2400 |
|
|
else
|
2401 |
|
|
new_label = find_end_label (simple_return_rtx);
|
2402 |
|
|
|
2403 |
|
|
if (new_label)
|
2404 |
|
|
{
|
2405 |
|
|
delay_list
|
2406 |
|
|
= add_to_delay_list (copy_rtx (next_trial), delay_list);
|
2407 |
|
|
slots_filled++;
|
2408 |
|
|
reorg_redirect_jump (trial, new_label);
|
2409 |
|
|
|
2410 |
|
|
/* If we merged because we both jumped to the same place,
|
2411 |
|
|
redirect the original insn also. */
|
2412 |
|
|
if (target)
|
2413 |
|
|
reorg_redirect_jump (insn, new_label);
|
2414 |
|
|
}
|
2415 |
|
|
}
|
2416 |
|
|
}
|
2417 |
|
|
|
2418 |
|
|
/* If this is an unconditional jump, then try to get insns from the
|
2419 |
|
|
target of the jump. */
|
2420 |
|
|
if (JUMP_P (insn)
|
2421 |
|
|
&& simplejump_p (insn)
|
2422 |
|
|
&& slots_filled != slots_to_fill)
|
2423 |
|
|
delay_list
|
2424 |
|
|
= fill_slots_from_thread (insn, const_true_rtx,
|
2425 |
|
|
next_active_insn (JUMP_LABEL (insn)),
|
2426 |
|
|
NULL, 1, 1,
|
2427 |
|
|
own_thread_p (JUMP_LABEL (insn),
|
2428 |
|
|
JUMP_LABEL (insn), 0),
|
2429 |
|
|
slots_to_fill, &slots_filled,
|
2430 |
|
|
delay_list);
|
2431 |
|
|
|
2432 |
|
|
if (delay_list)
|
2433 |
|
|
unfilled_slots_base[i]
|
2434 |
|
|
= emit_delay_sequence (insn, delay_list, slots_filled);
|
2435 |
|
|
|
2436 |
|
|
if (slots_to_fill == slots_filled)
|
2437 |
|
|
unfilled_slots_base[i] = 0;
|
2438 |
|
|
|
2439 |
|
|
note_delay_statistics (slots_filled, 0);
|
2440 |
|
|
}
|
2441 |
|
|
|
2442 |
|
|
#ifdef DELAY_SLOTS_FOR_EPILOGUE
|
2443 |
|
|
/* See if the epilogue needs any delay slots. Try to fill them if so.
|
2444 |
|
|
The only thing we can do is scan backwards from the end of the
|
2445 |
|
|
function. If we did this in a previous pass, it is incorrect to do it
|
2446 |
|
|
again. */
|
2447 |
|
|
if (crtl->epilogue_delay_list)
|
2448 |
|
|
return;
|
2449 |
|
|
|
2450 |
|
|
slots_to_fill = DELAY_SLOTS_FOR_EPILOGUE;
|
2451 |
|
|
if (slots_to_fill == 0)
|
2452 |
|
|
return;
|
2453 |
|
|
|
2454 |
|
|
slots_filled = 0;
|
2455 |
|
|
CLEAR_RESOURCE (&set);
|
2456 |
|
|
|
2457 |
|
|
/* The frame pointer and stack pointer are needed at the beginning of
|
2458 |
|
|
the epilogue, so instructions setting them can not be put in the
|
2459 |
|
|
epilogue delay slot. However, everything else needed at function
|
2460 |
|
|
end is safe, so we don't want to use end_of_function_needs here. */
|
2461 |
|
|
CLEAR_RESOURCE (&needed);
|
2462 |
|
|
if (frame_pointer_needed)
|
2463 |
|
|
{
|
2464 |
|
|
SET_HARD_REG_BIT (needed.regs, FRAME_POINTER_REGNUM);
|
2465 |
|
|
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
2466 |
|
|
SET_HARD_REG_BIT (needed.regs, HARD_FRAME_POINTER_REGNUM);
|
2467 |
|
|
#endif
|
2468 |
|
|
if (! EXIT_IGNORE_STACK
|
2469 |
|
|
|| current_function_sp_is_unchanging)
|
2470 |
|
|
SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
|
2471 |
|
|
}
|
2472 |
|
|
else
|
2473 |
|
|
SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
|
2474 |
|
|
|
2475 |
|
|
#ifdef EPILOGUE_USES
|
2476 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
2477 |
|
|
{
|
2478 |
|
|
if (EPILOGUE_USES (i))
|
2479 |
|
|
SET_HARD_REG_BIT (needed.regs, i);
|
2480 |
|
|
}
|
2481 |
|
|
#endif
|
2482 |
|
|
|
2483 |
|
|
for (trial = get_last_insn (); ! stop_search_p (trial, 1);
|
2484 |
|
|
trial = PREV_INSN (trial))
|
2485 |
|
|
{
|
2486 |
|
|
if (NOTE_P (trial))
|
2487 |
|
|
continue;
|
2488 |
|
|
pat = PATTERN (trial);
|
2489 |
|
|
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
|
2490 |
|
|
continue;
|
2491 |
|
|
|
2492 |
|
|
if (! insn_references_resource_p (trial, &set, true)
|
2493 |
|
|
&& ! insn_sets_resource_p (trial, &needed, true)
|
2494 |
|
|
&& ! insn_sets_resource_p (trial, &set, true)
|
2495 |
|
|
#ifdef HAVE_cc0
|
2496 |
|
|
/* Don't want to mess with cc0 here. */
|
2497 |
|
|
&& ! reg_mentioned_p (cc0_rtx, pat)
|
2498 |
|
|
#endif
|
2499 |
|
|
&& ! can_throw_internal (trial))
|
2500 |
|
|
{
|
2501 |
|
|
trial = try_split (pat, trial, 1);
|
2502 |
|
|
if (ELIGIBLE_FOR_EPILOGUE_DELAY (trial, slots_filled))
|
2503 |
|
|
{
|
2504 |
|
|
/* Here as well we are searching backward, so put the
|
2505 |
|
|
insns we find on the head of the list. */
|
2506 |
|
|
|
2507 |
|
|
crtl->epilogue_delay_list
|
2508 |
|
|
= gen_rtx_INSN_LIST (VOIDmode, trial,
|
2509 |
|
|
crtl->epilogue_delay_list);
|
2510 |
|
|
mark_end_of_function_resources (trial, true);
|
2511 |
|
|
update_block (trial, trial);
|
2512 |
|
|
delete_related_insns (trial);
|
2513 |
|
|
|
2514 |
|
|
/* Clear deleted bit so final.c will output the insn. */
|
2515 |
|
|
INSN_DELETED_P (trial) = 0;
|
2516 |
|
|
|
2517 |
|
|
if (slots_to_fill == ++slots_filled)
|
2518 |
|
|
break;
|
2519 |
|
|
continue;
|
2520 |
|
|
}
|
2521 |
|
|
}
|
2522 |
|
|
|
2523 |
|
|
mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
|
2524 |
|
|
mark_referenced_resources (trial, &needed, true);
|
2525 |
|
|
}
|
2526 |
|
|
|
2527 |
|
|
note_delay_statistics (slots_filled, 0);
|
2528 |
|
|
#endif
|
2529 |
|
|
}
|
2530 |
|
|
|
2531 |
|
|
/* Follow any unconditional jump at LABEL;
|
2532 |
|
|
return the ultimate label reached by any such chain of jumps.
|
2533 |
|
|
Return a suitable return rtx if the chain ultimately leads to a
|
2534 |
|
|
return instruction.
|
2535 |
|
|
If LABEL is not followed by a jump, return LABEL.
|
2536 |
|
|
If the chain loops or we can't find end, return LABEL,
|
2537 |
|
|
since that tells caller to avoid changing the insn. */
|
2538 |
|
|
|
2539 |
|
|
static rtx
|
2540 |
|
|
follow_jumps (rtx label)
|
2541 |
|
|
{
|
2542 |
|
|
rtx insn;
|
2543 |
|
|
rtx next;
|
2544 |
|
|
rtx value = label;
|
2545 |
|
|
int depth;
|
2546 |
|
|
|
2547 |
|
|
if (ANY_RETURN_P (label))
|
2548 |
|
|
return label;
|
2549 |
|
|
for (depth = 0;
|
2550 |
|
|
(depth < 10
|
2551 |
|
|
&& (insn = next_active_insn (value)) != 0
|
2552 |
|
|
&& JUMP_P (insn)
|
2553 |
|
|
&& JUMP_LABEL (insn) != NULL_RTX
|
2554 |
|
|
&& ((any_uncondjump_p (insn) && onlyjump_p (insn))
|
2555 |
|
|
|| ANY_RETURN_P (PATTERN (insn)))
|
2556 |
|
|
&& (next = NEXT_INSN (insn))
|
2557 |
|
|
&& BARRIER_P (next));
|
2558 |
|
|
depth++)
|
2559 |
|
|
{
|
2560 |
|
|
rtx this_label = JUMP_LABEL (insn);
|
2561 |
|
|
rtx tem;
|
2562 |
|
|
|
2563 |
|
|
/* If we have found a cycle, make the insn jump to itself. */
|
2564 |
|
|
if (this_label == label)
|
2565 |
|
|
return label;
|
2566 |
|
|
if (ANY_RETURN_P (this_label))
|
2567 |
|
|
return this_label;
|
2568 |
|
|
tem = next_active_insn (this_label);
|
2569 |
|
|
if (tem
|
2570 |
|
|
&& (GET_CODE (PATTERN (tem)) == ADDR_VEC
|
2571 |
|
|
|| GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
|
2572 |
|
|
break;
|
2573 |
|
|
|
2574 |
|
|
value = this_label;
|
2575 |
|
|
}
|
2576 |
|
|
if (depth == 10)
|
2577 |
|
|
return label;
|
2578 |
|
|
return value;
|
2579 |
|
|
}
|
2580 |
|
|
|
2581 |
|
|
/* Try to find insns to place in delay slots.
|
2582 |
|
|
|
2583 |
|
|
INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
|
2584 |
|
|
or is an unconditional branch if CONDITION is const_true_rtx.
|
2585 |
|
|
*PSLOTS_FILLED is updated with the number of slots that we have filled.
|
2586 |
|
|
|
2587 |
|
|
THREAD is a flow-of-control, either the insns to be executed if the
|
2588 |
|
|
branch is true or if the branch is false, THREAD_IF_TRUE says which.
|
2589 |
|
|
|
2590 |
|
|
OPPOSITE_THREAD is the thread in the opposite direction. It is used
|
2591 |
|
|
to see if any potential delay slot insns set things needed there.
|
2592 |
|
|
|
2593 |
|
|
LIKELY is nonzero if it is extremely likely that the branch will be
|
2594 |
|
|
taken and THREAD_IF_TRUE is set. This is used for the branch at the
|
2595 |
|
|
end of a loop back up to the top.
|
2596 |
|
|
|
2597 |
|
|
OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the
|
2598 |
|
|
thread. I.e., it is the fallthrough code of our jump or the target of the
|
2599 |
|
|
jump when we are the only jump going there.
|
2600 |
|
|
|
2601 |
|
|
If OWN_THREAD is false, it must be the "true" thread of a jump. In that
|
2602 |
|
|
case, we can only take insns from the head of the thread for our delay
|
2603 |
|
|
slot. We then adjust the jump to point after the insns we have taken. */
|
2604 |
|
|
|
2605 |
|
|
static rtx
|
2606 |
|
|
fill_slots_from_thread (rtx insn, rtx condition, rtx thread,
|
2607 |
|
|
rtx opposite_thread, int likely, int thread_if_true,
|
2608 |
|
|
int own_thread, int slots_to_fill,
|
2609 |
|
|
int *pslots_filled, rtx delay_list)
|
2610 |
|
|
{
|
2611 |
|
|
rtx new_thread;
|
2612 |
|
|
struct resources opposite_needed, set, needed;
|
2613 |
|
|
rtx trial;
|
2614 |
|
|
int lose = 0;
|
2615 |
|
|
int must_annul = 0;
|
2616 |
|
|
int flags;
|
2617 |
|
|
|
2618 |
|
|
/* Validate our arguments. */
|
2619 |
|
|
gcc_assert(condition != const_true_rtx || thread_if_true);
|
2620 |
|
|
gcc_assert(own_thread || thread_if_true);
|
2621 |
|
|
|
2622 |
|
|
flags = get_jump_flags (insn, JUMP_LABEL (insn));
|
2623 |
|
|
|
2624 |
|
|
/* If our thread is the end of subroutine, we can't get any delay
|
2625 |
|
|
insns from that. */
|
2626 |
|
|
if (thread == NULL_RTX || ANY_RETURN_P (thread))
|
2627 |
|
|
return delay_list;
|
2628 |
|
|
|
2629 |
|
|
/* If this is an unconditional branch, nothing is needed at the
|
2630 |
|
|
opposite thread. Otherwise, compute what is needed there. */
|
2631 |
|
|
if (condition == const_true_rtx)
|
2632 |
|
|
CLEAR_RESOURCE (&opposite_needed);
|
2633 |
|
|
else
|
2634 |
|
|
mark_target_live_regs (get_insns (), opposite_thread, &opposite_needed);
|
2635 |
|
|
|
2636 |
|
|
/* If the insn at THREAD can be split, do it here to avoid having to
|
2637 |
|
|
update THREAD and NEW_THREAD if it is done in the loop below. Also
|
2638 |
|
|
initialize NEW_THREAD. */
|
2639 |
|
|
|
2640 |
|
|
new_thread = thread = try_split (PATTERN (thread), thread, 0);
|
2641 |
|
|
|
2642 |
|
|
/* Scan insns at THREAD. We are looking for an insn that can be removed
|
2643 |
|
|
from THREAD (it neither sets nor references resources that were set
|
2644 |
|
|
ahead of it and it doesn't set anything needs by the insns ahead of
|
2645 |
|
|
it) and that either can be placed in an annulling insn or aren't
|
2646 |
|
|
needed at OPPOSITE_THREAD. */
|
2647 |
|
|
|
2648 |
|
|
CLEAR_RESOURCE (&needed);
|
2649 |
|
|
CLEAR_RESOURCE (&set);
|
2650 |
|
|
|
2651 |
|
|
/* If we do not own this thread, we must stop as soon as we find
|
2652 |
|
|
something that we can't put in a delay slot, since all we can do
|
2653 |
|
|
is branch into THREAD at a later point. Therefore, labels stop
|
2654 |
|
|
the search if this is not the `true' thread. */
|
2655 |
|
|
|
2656 |
|
|
for (trial = thread;
|
2657 |
|
|
! stop_search_p (trial, ! thread_if_true) && (! lose || own_thread);
|
2658 |
|
|
trial = next_nonnote_insn (trial))
|
2659 |
|
|
{
|
2660 |
|
|
rtx pat, old_trial;
|
2661 |
|
|
|
2662 |
|
|
/* If we have passed a label, we no longer own this thread. */
|
2663 |
|
|
if (LABEL_P (trial))
|
2664 |
|
|
{
|
2665 |
|
|
own_thread = 0;
|
2666 |
|
|
continue;
|
2667 |
|
|
}
|
2668 |
|
|
|
2669 |
|
|
pat = PATTERN (trial);
|
2670 |
|
|
if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
|
2671 |
|
|
continue;
|
2672 |
|
|
|
2673 |
|
|
/* If TRIAL conflicts with the insns ahead of it, we lose. Also,
|
2674 |
|
|
don't separate or copy insns that set and use CC0. */
|
2675 |
|
|
if (! insn_references_resource_p (trial, &set, true)
|
2676 |
|
|
&& ! insn_sets_resource_p (trial, &set, true)
|
2677 |
|
|
&& ! insn_sets_resource_p (trial, &needed, true)
|
2678 |
|
|
#ifdef HAVE_cc0
|
2679 |
|
|
&& ! (reg_mentioned_p (cc0_rtx, pat)
|
2680 |
|
|
&& (! own_thread || ! sets_cc0_p (pat)))
|
2681 |
|
|
#endif
|
2682 |
|
|
&& ! can_throw_internal (trial))
|
2683 |
|
|
{
|
2684 |
|
|
rtx prior_insn;
|
2685 |
|
|
|
2686 |
|
|
/* If TRIAL is redundant with some insn before INSN, we don't
|
2687 |
|
|
actually need to add it to the delay list; we can merely pretend
|
2688 |
|
|
we did. */
|
2689 |
|
|
if ((prior_insn = redundant_insn (trial, insn, delay_list)))
|
2690 |
|
|
{
|
2691 |
|
|
fix_reg_dead_note (prior_insn, insn);
|
2692 |
|
|
if (own_thread)
|
2693 |
|
|
{
|
2694 |
|
|
update_block (trial, thread);
|
2695 |
|
|
if (trial == thread)
|
2696 |
|
|
{
|
2697 |
|
|
thread = next_active_insn (thread);
|
2698 |
|
|
if (new_thread == trial)
|
2699 |
|
|
new_thread = thread;
|
2700 |
|
|
}
|
2701 |
|
|
|
2702 |
|
|
delete_related_insns (trial);
|
2703 |
|
|
}
|
2704 |
|
|
else
|
2705 |
|
|
{
|
2706 |
|
|
update_reg_unused_notes (prior_insn, trial);
|
2707 |
|
|
new_thread = next_active_insn (trial);
|
2708 |
|
|
}
|
2709 |
|
|
|
2710 |
|
|
continue;
|
2711 |
|
|
}
|
2712 |
|
|
|
2713 |
|
|
/* There are two ways we can win: If TRIAL doesn't set anything
|
2714 |
|
|
needed at the opposite thread and can't trap, or if it can
|
2715 |
|
|
go into an annulled delay slot. */
|
2716 |
|
|
if (!must_annul
|
2717 |
|
|
&& (condition == const_true_rtx
|
2718 |
|
|
|| (! insn_sets_resource_p (trial, &opposite_needed, true)
|
2719 |
|
|
&& ! may_trap_or_fault_p (pat)
|
2720 |
|
|
&& ! RTX_FRAME_RELATED_P (trial))))
|
2721 |
|
|
{
|
2722 |
|
|
old_trial = trial;
|
2723 |
|
|
trial = try_split (pat, trial, 0);
|
2724 |
|
|
if (new_thread == old_trial)
|
2725 |
|
|
new_thread = trial;
|
2726 |
|
|
if (thread == old_trial)
|
2727 |
|
|
thread = trial;
|
2728 |
|
|
pat = PATTERN (trial);
|
2729 |
|
|
if (eligible_for_delay (insn, *pslots_filled, trial, flags))
|
2730 |
|
|
goto winner;
|
2731 |
|
|
}
|
2732 |
|
|
else if (0
|
2733 |
|
|
#ifdef ANNUL_IFTRUE_SLOTS
|
2734 |
|
|
|| ! thread_if_true
|
2735 |
|
|
#endif
|
2736 |
|
|
#ifdef ANNUL_IFFALSE_SLOTS
|
2737 |
|
|
|| thread_if_true
|
2738 |
|
|
#endif
|
2739 |
|
|
)
|
2740 |
|
|
{
|
2741 |
|
|
old_trial = trial;
|
2742 |
|
|
trial = try_split (pat, trial, 0);
|
2743 |
|
|
if (new_thread == old_trial)
|
2744 |
|
|
new_thread = trial;
|
2745 |
|
|
if (thread == old_trial)
|
2746 |
|
|
thread = trial;
|
2747 |
|
|
pat = PATTERN (trial);
|
2748 |
|
|
if ((must_annul || delay_list == NULL) && (thread_if_true
|
2749 |
|
|
? check_annul_list_true_false (0, delay_list)
|
2750 |
|
|
&& eligible_for_annul_false (insn, *pslots_filled, trial, flags)
|
2751 |
|
|
: check_annul_list_true_false (1, delay_list)
|
2752 |
|
|
&& eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
|
2753 |
|
|
{
|
2754 |
|
|
rtx temp;
|
2755 |
|
|
|
2756 |
|
|
must_annul = 1;
|
2757 |
|
|
winner:
|
2758 |
|
|
|
2759 |
|
|
#ifdef HAVE_cc0
|
2760 |
|
|
if (reg_mentioned_p (cc0_rtx, pat))
|
2761 |
|
|
link_cc0_insns (trial);
|
2762 |
|
|
#endif
|
2763 |
|
|
|
2764 |
|
|
/* If we own this thread, delete the insn. If this is the
|
2765 |
|
|
destination of a branch, show that a basic block status
|
2766 |
|
|
may have been updated. In any case, mark the new
|
2767 |
|
|
starting point of this thread. */
|
2768 |
|
|
if (own_thread)
|
2769 |
|
|
{
|
2770 |
|
|
rtx note;
|
2771 |
|
|
|
2772 |
|
|
update_block (trial, thread);
|
2773 |
|
|
if (trial == thread)
|
2774 |
|
|
{
|
2775 |
|
|
thread = next_active_insn (thread);
|
2776 |
|
|
if (new_thread == trial)
|
2777 |
|
|
new_thread = thread;
|
2778 |
|
|
}
|
2779 |
|
|
|
2780 |
|
|
/* We are moving this insn, not deleting it. We must
|
2781 |
|
|
temporarily increment the use count on any referenced
|
2782 |
|
|
label lest it be deleted by delete_related_insns. */
|
2783 |
|
|
for (note = REG_NOTES (trial);
|
2784 |
|
|
note != NULL_RTX;
|
2785 |
|
|
note = XEXP (note, 1))
|
2786 |
|
|
if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
|
2787 |
|
|
|| REG_NOTE_KIND (note) == REG_LABEL_TARGET)
|
2788 |
|
|
{
|
2789 |
|
|
/* REG_LABEL_OPERAND could be
|
2790 |
|
|
NOTE_INSN_DELETED_LABEL too. */
|
2791 |
|
|
if (LABEL_P (XEXP (note, 0)))
|
2792 |
|
|
LABEL_NUSES (XEXP (note, 0))++;
|
2793 |
|
|
else
|
2794 |
|
|
gcc_assert (REG_NOTE_KIND (note)
|
2795 |
|
|
== REG_LABEL_OPERAND);
|
2796 |
|
|
}
|
2797 |
|
|
if (jump_to_label_p (trial))
|
2798 |
|
|
LABEL_NUSES (JUMP_LABEL (trial))++;
|
2799 |
|
|
|
2800 |
|
|
delete_related_insns (trial);
|
2801 |
|
|
|
2802 |
|
|
for (note = REG_NOTES (trial);
|
2803 |
|
|
note != NULL_RTX;
|
2804 |
|
|
note = XEXP (note, 1))
|
2805 |
|
|
if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
|
2806 |
|
|
|| REG_NOTE_KIND (note) == REG_LABEL_TARGET)
|
2807 |
|
|
{
|
2808 |
|
|
/* REG_LABEL_OPERAND could be
|
2809 |
|
|
NOTE_INSN_DELETED_LABEL too. */
|
2810 |
|
|
if (LABEL_P (XEXP (note, 0)))
|
2811 |
|
|
LABEL_NUSES (XEXP (note, 0))--;
|
2812 |
|
|
else
|
2813 |
|
|
gcc_assert (REG_NOTE_KIND (note)
|
2814 |
|
|
== REG_LABEL_OPERAND);
|
2815 |
|
|
}
|
2816 |
|
|
if (jump_to_label_p (trial))
|
2817 |
|
|
LABEL_NUSES (JUMP_LABEL (trial))--;
|
2818 |
|
|
}
|
2819 |
|
|
else
|
2820 |
|
|
new_thread = next_active_insn (trial);
|
2821 |
|
|
|
2822 |
|
|
temp = own_thread ? trial : copy_rtx (trial);
|
2823 |
|
|
if (thread_if_true)
|
2824 |
|
|
INSN_FROM_TARGET_P (temp) = 1;
|
2825 |
|
|
|
2826 |
|
|
delay_list = add_to_delay_list (temp, delay_list);
|
2827 |
|
|
|
2828 |
|
|
if (slots_to_fill == ++(*pslots_filled))
|
2829 |
|
|
{
|
2830 |
|
|
/* Even though we have filled all the slots, we
|
2831 |
|
|
may be branching to a location that has a
|
2832 |
|
|
redundant insn. Skip any if so. */
|
2833 |
|
|
while (new_thread && ! own_thread
|
2834 |
|
|
&& ! insn_sets_resource_p (new_thread, &set, true)
|
2835 |
|
|
&& ! insn_sets_resource_p (new_thread, &needed,
|
2836 |
|
|
true)
|
2837 |
|
|
&& ! insn_references_resource_p (new_thread,
|
2838 |
|
|
&set, true)
|
2839 |
|
|
&& (prior_insn
|
2840 |
|
|
= redundant_insn (new_thread, insn,
|
2841 |
|
|
delay_list)))
|
2842 |
|
|
{
|
2843 |
|
|
/* We know we do not own the thread, so no need
|
2844 |
|
|
to call update_block and delete_insn. */
|
2845 |
|
|
fix_reg_dead_note (prior_insn, insn);
|
2846 |
|
|
update_reg_unused_notes (prior_insn, new_thread);
|
2847 |
|
|
new_thread = next_active_insn (new_thread);
|
2848 |
|
|
}
|
2849 |
|
|
break;
|
2850 |
|
|
}
|
2851 |
|
|
|
2852 |
|
|
continue;
|
2853 |
|
|
}
|
2854 |
|
|
}
|
2855 |
|
|
}
|
2856 |
|
|
|
2857 |
|
|
/* This insn can't go into a delay slot. */
|
2858 |
|
|
lose = 1;
|
2859 |
|
|
mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
|
2860 |
|
|
mark_referenced_resources (trial, &needed, true);
|
2861 |
|
|
|
2862 |
|
|
/* Ensure we don't put insns between the setting of cc and the comparison
|
2863 |
|
|
by moving a setting of cc into an earlier delay slot since these insns
|
2864 |
|
|
could clobber the condition code. */
|
2865 |
|
|
set.cc = 1;
|
2866 |
|
|
|
2867 |
|
|
/* If this insn is a register-register copy and the next insn has
|
2868 |
|
|
a use of our destination, change it to use our source. That way,
|
2869 |
|
|
it will become a candidate for our delay slot the next time
|
2870 |
|
|
through this loop. This case occurs commonly in loops that
|
2871 |
|
|
scan a list.
|
2872 |
|
|
|
2873 |
|
|
We could check for more complex cases than those tested below,
|
2874 |
|
|
but it doesn't seem worth it. It might also be a good idea to try
|
2875 |
|
|
to swap the two insns. That might do better.
|
2876 |
|
|
|
2877 |
|
|
We can't do this if the next insn modifies our destination, because
|
2878 |
|
|
that would make the replacement into the insn invalid. We also can't
|
2879 |
|
|
do this if it modifies our source, because it might be an earlyclobber
|
2880 |
|
|
operand. This latter test also prevents updating the contents of
|
2881 |
|
|
a PRE_INC. We also can't do this if there's overlap of source and
|
2882 |
|
|
destination. Overlap may happen for larger-than-register-size modes. */
|
2883 |
|
|
|
2884 |
|
|
if (NONJUMP_INSN_P (trial) && GET_CODE (pat) == SET
|
2885 |
|
|
&& REG_P (SET_SRC (pat))
|
2886 |
|
|
&& REG_P (SET_DEST (pat))
|
2887 |
|
|
&& !reg_overlap_mentioned_p (SET_DEST (pat), SET_SRC (pat)))
|
2888 |
|
|
{
|
2889 |
|
|
rtx next = next_nonnote_insn (trial);
|
2890 |
|
|
|
2891 |
|
|
if (next && NONJUMP_INSN_P (next)
|
2892 |
|
|
&& GET_CODE (PATTERN (next)) != USE
|
2893 |
|
|
&& ! reg_set_p (SET_DEST (pat), next)
|
2894 |
|
|
&& ! reg_set_p (SET_SRC (pat), next)
|
2895 |
|
|
&& reg_referenced_p (SET_DEST (pat), PATTERN (next))
|
2896 |
|
|
&& ! modified_in_p (SET_DEST (pat), next))
|
2897 |
|
|
validate_replace_rtx (SET_DEST (pat), SET_SRC (pat), next);
|
2898 |
|
|
}
|
2899 |
|
|
}
|
2900 |
|
|
|
2901 |
|
|
/* If we stopped on a branch insn that has delay slots, see if we can
|
2902 |
|
|
steal some of the insns in those slots. */
|
2903 |
|
|
if (trial && NONJUMP_INSN_P (trial)
|
2904 |
|
|
&& GET_CODE (PATTERN (trial)) == SEQUENCE
|
2905 |
|
|
&& JUMP_P (XVECEXP (PATTERN (trial), 0, 0)))
|
2906 |
|
|
{
|
2907 |
|
|
/* If this is the `true' thread, we will want to follow the jump,
|
2908 |
|
|
so we can only do this if we have taken everything up to here. */
|
2909 |
|
|
if (thread_if_true && trial == new_thread)
|
2910 |
|
|
{
|
2911 |
|
|
delay_list
|
2912 |
|
|
= steal_delay_list_from_target (insn, condition, PATTERN (trial),
|
2913 |
|
|
delay_list, &set, &needed,
|
2914 |
|
|
&opposite_needed, slots_to_fill,
|
2915 |
|
|
pslots_filled, &must_annul,
|
2916 |
|
|
&new_thread);
|
2917 |
|
|
/* If we owned the thread and are told that it branched
|
2918 |
|
|
elsewhere, make sure we own the thread at the new location. */
|
2919 |
|
|
if (own_thread && trial != new_thread)
|
2920 |
|
|
own_thread = own_thread_p (new_thread, new_thread, 0);
|
2921 |
|
|
}
|
2922 |
|
|
else if (! thread_if_true)
|
2923 |
|
|
delay_list
|
2924 |
|
|
= steal_delay_list_from_fallthrough (insn, condition,
|
2925 |
|
|
PATTERN (trial),
|
2926 |
|
|
delay_list, &set, &needed,
|
2927 |
|
|
&opposite_needed, slots_to_fill,
|
2928 |
|
|
pslots_filled, &must_annul);
|
2929 |
|
|
}
|
2930 |
|
|
|
2931 |
|
|
/* If we haven't found anything for this delay slot and it is very
|
2932 |
|
|
likely that the branch will be taken, see if the insn at our target
|
2933 |
|
|
increments or decrements a register with an increment that does not
|
2934 |
|
|
depend on the destination register. If so, try to place the opposite
|
2935 |
|
|
arithmetic insn after the jump insn and put the arithmetic insn in the
|
2936 |
|
|
delay slot. If we can't do this, return. */
|
2937 |
|
|
if (delay_list == 0 && likely
|
2938 |
|
|
&& new_thread && !ANY_RETURN_P (new_thread)
|
2939 |
|
|
&& NONJUMP_INSN_P (new_thread)
|
2940 |
|
|
&& !RTX_FRAME_RELATED_P (new_thread)
|
2941 |
|
|
&& GET_CODE (PATTERN (new_thread)) != ASM_INPUT
|
2942 |
|
|
&& asm_noperands (PATTERN (new_thread)) < 0)
|
2943 |
|
|
{
|
2944 |
|
|
rtx pat = PATTERN (new_thread);
|
2945 |
|
|
rtx dest;
|
2946 |
|
|
rtx src;
|
2947 |
|
|
|
2948 |
|
|
trial = new_thread;
|
2949 |
|
|
pat = PATTERN (trial);
|
2950 |
|
|
|
2951 |
|
|
if (!NONJUMP_INSN_P (trial)
|
2952 |
|
|
|| GET_CODE (pat) != SET
|
2953 |
|
|
|| ! eligible_for_delay (insn, 0, trial, flags)
|
2954 |
|
|
|| can_throw_internal (trial))
|
2955 |
|
|
return 0;
|
2956 |
|
|
|
2957 |
|
|
dest = SET_DEST (pat), src = SET_SRC (pat);
|
2958 |
|
|
if ((GET_CODE (src) == PLUS || GET_CODE (src) == MINUS)
|
2959 |
|
|
&& rtx_equal_p (XEXP (src, 0), dest)
|
2960 |
|
|
&& (!FLOAT_MODE_P (GET_MODE (src))
|
2961 |
|
|
|| flag_unsafe_math_optimizations)
|
2962 |
|
|
&& ! reg_overlap_mentioned_p (dest, XEXP (src, 1))
|
2963 |
|
|
&& ! side_effects_p (pat))
|
2964 |
|
|
{
|
2965 |
|
|
rtx other = XEXP (src, 1);
|
2966 |
|
|
rtx new_arith;
|
2967 |
|
|
rtx ninsn;
|
2968 |
|
|
|
2969 |
|
|
/* If this is a constant adjustment, use the same code with
|
2970 |
|
|
the negated constant. Otherwise, reverse the sense of the
|
2971 |
|
|
arithmetic. */
|
2972 |
|
|
if (CONST_INT_P (other))
|
2973 |
|
|
new_arith = gen_rtx_fmt_ee (GET_CODE (src), GET_MODE (src), dest,
|
2974 |
|
|
negate_rtx (GET_MODE (src), other));
|
2975 |
|
|
else
|
2976 |
|
|
new_arith = gen_rtx_fmt_ee (GET_CODE (src) == PLUS ? MINUS : PLUS,
|
2977 |
|
|
GET_MODE (src), dest, other);
|
2978 |
|
|
|
2979 |
|
|
ninsn = emit_insn_after (gen_rtx_SET (VOIDmode, dest, new_arith),
|
2980 |
|
|
insn);
|
2981 |
|
|
|
2982 |
|
|
if (recog_memoized (ninsn) < 0
|
2983 |
|
|
|| (extract_insn (ninsn), ! constrain_operands (1)))
|
2984 |
|
|
{
|
2985 |
|
|
delete_related_insns (ninsn);
|
2986 |
|
|
return 0;
|
2987 |
|
|
}
|
2988 |
|
|
|
2989 |
|
|
if (own_thread)
|
2990 |
|
|
{
|
2991 |
|
|
update_block (trial, thread);
|
2992 |
|
|
if (trial == thread)
|
2993 |
|
|
{
|
2994 |
|
|
thread = next_active_insn (thread);
|
2995 |
|
|
if (new_thread == trial)
|
2996 |
|
|
new_thread = thread;
|
2997 |
|
|
}
|
2998 |
|
|
delete_related_insns (trial);
|
2999 |
|
|
}
|
3000 |
|
|
else
|
3001 |
|
|
new_thread = next_active_insn (trial);
|
3002 |
|
|
|
3003 |
|
|
ninsn = own_thread ? trial : copy_rtx (trial);
|
3004 |
|
|
if (thread_if_true)
|
3005 |
|
|
INSN_FROM_TARGET_P (ninsn) = 1;
|
3006 |
|
|
|
3007 |
|
|
delay_list = add_to_delay_list (ninsn, NULL_RTX);
|
3008 |
|
|
(*pslots_filled)++;
|
3009 |
|
|
}
|
3010 |
|
|
}
|
3011 |
|
|
|
3012 |
|
|
if (delay_list && must_annul)
|
3013 |
|
|
INSN_ANNULLED_BRANCH_P (insn) = 1;
|
3014 |
|
|
|
3015 |
|
|
/* If we are to branch into the middle of this thread, find an appropriate
|
3016 |
|
|
label or make a new one if none, and redirect INSN to it. If we hit the
|
3017 |
|
|
end of the function, use the end-of-function label. */
|
3018 |
|
|
if (new_thread != thread)
|
3019 |
|
|
{
|
3020 |
|
|
rtx label;
|
3021 |
|
|
|
3022 |
|
|
gcc_assert (thread_if_true);
|
3023 |
|
|
|
3024 |
|
|
if (new_thread && simplejump_or_return_p (new_thread)
|
3025 |
|
|
&& redirect_with_delay_list_safe_p (insn,
|
3026 |
|
|
JUMP_LABEL (new_thread),
|
3027 |
|
|
delay_list))
|
3028 |
|
|
new_thread = follow_jumps (JUMP_LABEL (new_thread));
|
3029 |
|
|
|
3030 |
|
|
if (ANY_RETURN_P (new_thread))
|
3031 |
|
|
label = find_end_label (new_thread);
|
3032 |
|
|
else if (LABEL_P (new_thread))
|
3033 |
|
|
label = new_thread;
|
3034 |
|
|
else
|
3035 |
|
|
label = get_label_before (new_thread);
|
3036 |
|
|
|
3037 |
|
|
if (label)
|
3038 |
|
|
reorg_redirect_jump (insn, label);
|
3039 |
|
|
}
|
3040 |
|
|
|
3041 |
|
|
return delay_list;
|
3042 |
|
|
}
|
3043 |
|
|
|
3044 |
|
|
/* Make another attempt to find insns to place in delay slots.
|
3045 |
|
|
|
3046 |
|
|
We previously looked for insns located in front of the delay insn
|
3047 |
|
|
and, for non-jump delay insns, located behind the delay insn.
|
3048 |
|
|
|
3049 |
|
|
Here only try to schedule jump insns and try to move insns from either
|
3050 |
|
|
the target or the following insns into the delay slot. If annulling is
|
3051 |
|
|
supported, we will be likely to do this. Otherwise, we can do this only
|
3052 |
|
|
if safe. */
|
3053 |
|
|
|
3054 |
|
|
static void
|
3055 |
|
|
fill_eager_delay_slots (void)
|
3056 |
|
|
{
|
3057 |
|
|
rtx insn;
|
3058 |
|
|
int i;
|
3059 |
|
|
int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
|
3060 |
|
|
|
3061 |
|
|
for (i = 0; i < num_unfilled_slots; i++)
|
3062 |
|
|
{
|
3063 |
|
|
rtx condition;
|
3064 |
|
|
rtx target_label, insn_at_target, fallthrough_insn;
|
3065 |
|
|
rtx delay_list = 0;
|
3066 |
|
|
int own_target;
|
3067 |
|
|
int own_fallthrough;
|
3068 |
|
|
int prediction, slots_to_fill, slots_filled;
|
3069 |
|
|
|
3070 |
|
|
insn = unfilled_slots_base[i];
|
3071 |
|
|
if (insn == 0
|
3072 |
|
|
|| INSN_DELETED_P (insn)
|
3073 |
|
|
|| !JUMP_P (insn)
|
3074 |
|
|
|| ! (condjump_p (insn) || condjump_in_parallel_p (insn)))
|
3075 |
|
|
continue;
|
3076 |
|
|
|
3077 |
|
|
slots_to_fill = num_delay_slots (insn);
|
3078 |
|
|
/* Some machine description have defined instructions to have
|
3079 |
|
|
delay slots only in certain circumstances which may depend on
|
3080 |
|
|
nearby insns (which change due to reorg's actions).
|
3081 |
|
|
|
3082 |
|
|
For example, the PA port normally has delay slots for unconditional
|
3083 |
|
|
jumps.
|
3084 |
|
|
|
3085 |
|
|
However, the PA port claims such jumps do not have a delay slot
|
3086 |
|
|
if they are immediate successors of certain CALL_INSNs. This
|
3087 |
|
|
allows the port to favor filling the delay slot of the call with
|
3088 |
|
|
the unconditional jump. */
|
3089 |
|
|
if (slots_to_fill == 0)
|
3090 |
|
|
continue;
|
3091 |
|
|
|
3092 |
|
|
slots_filled = 0;
|
3093 |
|
|
target_label = JUMP_LABEL (insn);
|
3094 |
|
|
condition = get_branch_condition (insn, target_label);
|
3095 |
|
|
|
3096 |
|
|
if (condition == 0)
|
3097 |
|
|
continue;
|
3098 |
|
|
|
3099 |
|
|
/* Get the next active fallthrough and target insns and see if we own
|
3100 |
|
|
them. Then see whether the branch is likely true. We don't need
|
3101 |
|
|
to do a lot of this for unconditional branches. */
|
3102 |
|
|
|
3103 |
|
|
insn_at_target = first_active_target_insn (target_label);
|
3104 |
|
|
own_target = own_thread_p (target_label, target_label, 0);
|
3105 |
|
|
|
3106 |
|
|
if (condition == const_true_rtx)
|
3107 |
|
|
{
|
3108 |
|
|
own_fallthrough = 0;
|
3109 |
|
|
fallthrough_insn = 0;
|
3110 |
|
|
prediction = 2;
|
3111 |
|
|
}
|
3112 |
|
|
else
|
3113 |
|
|
{
|
3114 |
|
|
fallthrough_insn = next_active_insn (insn);
|
3115 |
|
|
own_fallthrough = own_thread_p (NEXT_INSN (insn), NULL_RTX, 1);
|
3116 |
|
|
prediction = mostly_true_jump (insn, condition);
|
3117 |
|
|
}
|
3118 |
|
|
|
3119 |
|
|
/* If this insn is expected to branch, first try to get insns from our
|
3120 |
|
|
target, then our fallthrough insns. If it is not expected to branch,
|
3121 |
|
|
try the other order. */
|
3122 |
|
|
|
3123 |
|
|
if (prediction > 0)
|
3124 |
|
|
{
|
3125 |
|
|
delay_list
|
3126 |
|
|
= fill_slots_from_thread (insn, condition, insn_at_target,
|
3127 |
|
|
fallthrough_insn, prediction == 2, 1,
|
3128 |
|
|
own_target,
|
3129 |
|
|
slots_to_fill, &slots_filled, delay_list);
|
3130 |
|
|
|
3131 |
|
|
if (delay_list == 0 && own_fallthrough)
|
3132 |
|
|
{
|
3133 |
|
|
/* Even though we didn't find anything for delay slots,
|
3134 |
|
|
we might have found a redundant insn which we deleted
|
3135 |
|
|
from the thread that was filled. So we have to recompute
|
3136 |
|
|
the next insn at the target. */
|
3137 |
|
|
target_label = JUMP_LABEL (insn);
|
3138 |
|
|
insn_at_target = first_active_target_insn (target_label);
|
3139 |
|
|
|
3140 |
|
|
delay_list
|
3141 |
|
|
= fill_slots_from_thread (insn, condition, fallthrough_insn,
|
3142 |
|
|
insn_at_target, 0, 0,
|
3143 |
|
|
own_fallthrough,
|
3144 |
|
|
slots_to_fill, &slots_filled,
|
3145 |
|
|
delay_list);
|
3146 |
|
|
}
|
3147 |
|
|
}
|
3148 |
|
|
else
|
3149 |
|
|
{
|
3150 |
|
|
if (own_fallthrough)
|
3151 |
|
|
delay_list
|
3152 |
|
|
= fill_slots_from_thread (insn, condition, fallthrough_insn,
|
3153 |
|
|
insn_at_target, 0, 0,
|
3154 |
|
|
own_fallthrough,
|
3155 |
|
|
slots_to_fill, &slots_filled,
|
3156 |
|
|
delay_list);
|
3157 |
|
|
|
3158 |
|
|
if (delay_list == 0)
|
3159 |
|
|
delay_list
|
3160 |
|
|
= fill_slots_from_thread (insn, condition, insn_at_target,
|
3161 |
|
|
next_active_insn (insn), 0, 1,
|
3162 |
|
|
own_target,
|
3163 |
|
|
slots_to_fill, &slots_filled,
|
3164 |
|
|
delay_list);
|
3165 |
|
|
}
|
3166 |
|
|
|
3167 |
|
|
if (delay_list)
|
3168 |
|
|
unfilled_slots_base[i]
|
3169 |
|
|
= emit_delay_sequence (insn, delay_list, slots_filled);
|
3170 |
|
|
|
3171 |
|
|
if (slots_to_fill == slots_filled)
|
3172 |
|
|
unfilled_slots_base[i] = 0;
|
3173 |
|
|
|
3174 |
|
|
note_delay_statistics (slots_filled, 1);
|
3175 |
|
|
}
|
3176 |
|
|
}
|
3177 |
|
|
|
3178 |
|
|
static void delete_computation (rtx insn);
|
3179 |
|
|
|
3180 |
|
|
/* Recursively delete prior insns that compute the value (used only by INSN
|
3181 |
|
|
which the caller is deleting) stored in the register mentioned by NOTE
|
3182 |
|
|
which is a REG_DEAD note associated with INSN. */
|
3183 |
|
|
|
3184 |
|
|
static void
|
3185 |
|
|
delete_prior_computation (rtx note, rtx insn)
|
3186 |
|
|
{
|
3187 |
|
|
rtx our_prev;
|
3188 |
|
|
rtx reg = XEXP (note, 0);
|
3189 |
|
|
|
3190 |
|
|
for (our_prev = prev_nonnote_insn (insn);
|
3191 |
|
|
our_prev && (NONJUMP_INSN_P (our_prev)
|
3192 |
|
|
|| CALL_P (our_prev));
|
3193 |
|
|
our_prev = prev_nonnote_insn (our_prev))
|
3194 |
|
|
{
|
3195 |
|
|
rtx pat = PATTERN (our_prev);
|
3196 |
|
|
|
3197 |
|
|
/* If we reach a CALL which is not calling a const function
|
3198 |
|
|
or the callee pops the arguments, then give up. */
|
3199 |
|
|
if (CALL_P (our_prev)
|
3200 |
|
|
&& (! RTL_CONST_CALL_P (our_prev)
|
3201 |
|
|
|| GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
|
3202 |
|
|
break;
|
3203 |
|
|
|
3204 |
|
|
/* If we reach a SEQUENCE, it is too complex to try to
|
3205 |
|
|
do anything with it, so give up. We can be run during
|
3206 |
|
|
and after reorg, so SEQUENCE rtl can legitimately show
|
3207 |
|
|
up here. */
|
3208 |
|
|
if (GET_CODE (pat) == SEQUENCE)
|
3209 |
|
|
break;
|
3210 |
|
|
|
3211 |
|
|
if (GET_CODE (pat) == USE
|
3212 |
|
|
&& NONJUMP_INSN_P (XEXP (pat, 0)))
|
3213 |
|
|
/* reorg creates USEs that look like this. We leave them
|
3214 |
|
|
alone because reorg needs them for its own purposes. */
|
3215 |
|
|
break;
|
3216 |
|
|
|
3217 |
|
|
if (reg_set_p (reg, pat))
|
3218 |
|
|
{
|
3219 |
|
|
if (side_effects_p (pat) && !CALL_P (our_prev))
|
3220 |
|
|
break;
|
3221 |
|
|
|
3222 |
|
|
if (GET_CODE (pat) == PARALLEL)
|
3223 |
|
|
{
|
3224 |
|
|
/* If we find a SET of something else, we can't
|
3225 |
|
|
delete the insn. */
|
3226 |
|
|
|
3227 |
|
|
int i;
|
3228 |
|
|
|
3229 |
|
|
for (i = 0; i < XVECLEN (pat, 0); i++)
|
3230 |
|
|
{
|
3231 |
|
|
rtx part = XVECEXP (pat, 0, i);
|
3232 |
|
|
|
3233 |
|
|
if (GET_CODE (part) == SET
|
3234 |
|
|
&& SET_DEST (part) != reg)
|
3235 |
|
|
break;
|
3236 |
|
|
}
|
3237 |
|
|
|
3238 |
|
|
if (i == XVECLEN (pat, 0))
|
3239 |
|
|
delete_computation (our_prev);
|
3240 |
|
|
}
|
3241 |
|
|
else if (GET_CODE (pat) == SET
|
3242 |
|
|
&& REG_P (SET_DEST (pat)))
|
3243 |
|
|
{
|
3244 |
|
|
int dest_regno = REGNO (SET_DEST (pat));
|
3245 |
|
|
int dest_endregno = END_REGNO (SET_DEST (pat));
|
3246 |
|
|
int regno = REGNO (reg);
|
3247 |
|
|
int endregno = END_REGNO (reg);
|
3248 |
|
|
|
3249 |
|
|
if (dest_regno >= regno
|
3250 |
|
|
&& dest_endregno <= endregno)
|
3251 |
|
|
delete_computation (our_prev);
|
3252 |
|
|
|
3253 |
|
|
/* We may have a multi-word hard register and some, but not
|
3254 |
|
|
all, of the words of the register are needed in subsequent
|
3255 |
|
|
insns. Write REG_UNUSED notes for those parts that were not
|
3256 |
|
|
needed. */
|
3257 |
|
|
else if (dest_regno <= regno
|
3258 |
|
|
&& dest_endregno >= endregno)
|
3259 |
|
|
{
|
3260 |
|
|
int i;
|
3261 |
|
|
|
3262 |
|
|
add_reg_note (our_prev, REG_UNUSED, reg);
|
3263 |
|
|
|
3264 |
|
|
for (i = dest_regno; i < dest_endregno; i++)
|
3265 |
|
|
if (! find_regno_note (our_prev, REG_UNUSED, i))
|
3266 |
|
|
break;
|
3267 |
|
|
|
3268 |
|
|
if (i == dest_endregno)
|
3269 |
|
|
delete_computation (our_prev);
|
3270 |
|
|
}
|
3271 |
|
|
}
|
3272 |
|
|
|
3273 |
|
|
break;
|
3274 |
|
|
}
|
3275 |
|
|
|
3276 |
|
|
/* If PAT references the register that dies here, it is an
|
3277 |
|
|
additional use. Hence any prior SET isn't dead. However, this
|
3278 |
|
|
insn becomes the new place for the REG_DEAD note. */
|
3279 |
|
|
if (reg_overlap_mentioned_p (reg, pat))
|
3280 |
|
|
{
|
3281 |
|
|
XEXP (note, 1) = REG_NOTES (our_prev);
|
3282 |
|
|
REG_NOTES (our_prev) = note;
|
3283 |
|
|
break;
|
3284 |
|
|
}
|
3285 |
|
|
}
|
3286 |
|
|
}
|
3287 |
|
|
|
3288 |
|
|
/* Delete INSN and recursively delete insns that compute values used only
|
3289 |
|
|
by INSN. This uses the REG_DEAD notes computed during flow analysis.
|
3290 |
|
|
|
3291 |
|
|
Look at all our REG_DEAD notes. If a previous insn does nothing other
|
3292 |
|
|
than set a register that dies in this insn, we can delete that insn
|
3293 |
|
|
as well.
|
3294 |
|
|
|
3295 |
|
|
On machines with CC0, if CC0 is used in this insn, we may be able to
|
3296 |
|
|
delete the insn that set it. */
|
3297 |
|
|
|
3298 |
|
|
static void
|
3299 |
|
|
delete_computation (rtx insn)
|
3300 |
|
|
{
|
3301 |
|
|
rtx note, next;
|
3302 |
|
|
|
3303 |
|
|
#ifdef HAVE_cc0
|
3304 |
|
|
if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
|
3305 |
|
|
{
|
3306 |
|
|
rtx prev = prev_nonnote_insn (insn);
|
3307 |
|
|
/* We assume that at this stage
|
3308 |
|
|
CC's are always set explicitly
|
3309 |
|
|
and always immediately before the jump that
|
3310 |
|
|
will use them. So if the previous insn
|
3311 |
|
|
exists to set the CC's, delete it
|
3312 |
|
|
(unless it performs auto-increments, etc.). */
|
3313 |
|
|
if (prev && NONJUMP_INSN_P (prev)
|
3314 |
|
|
&& sets_cc0_p (PATTERN (prev)))
|
3315 |
|
|
{
|
3316 |
|
|
if (sets_cc0_p (PATTERN (prev)) > 0
|
3317 |
|
|
&& ! side_effects_p (PATTERN (prev)))
|
3318 |
|
|
delete_computation (prev);
|
3319 |
|
|
else
|
3320 |
|
|
/* Otherwise, show that cc0 won't be used. */
|
3321 |
|
|
add_reg_note (prev, REG_UNUSED, cc0_rtx);
|
3322 |
|
|
}
|
3323 |
|
|
}
|
3324 |
|
|
#endif
|
3325 |
|
|
|
3326 |
|
|
for (note = REG_NOTES (insn); note; note = next)
|
3327 |
|
|
{
|
3328 |
|
|
next = XEXP (note, 1);
|
3329 |
|
|
|
3330 |
|
|
if (REG_NOTE_KIND (note) != REG_DEAD
|
3331 |
|
|
/* Verify that the REG_NOTE is legitimate. */
|
3332 |
|
|
|| !REG_P (XEXP (note, 0)))
|
3333 |
|
|
continue;
|
3334 |
|
|
|
3335 |
|
|
delete_prior_computation (note, insn);
|
3336 |
|
|
}
|
3337 |
|
|
|
3338 |
|
|
delete_related_insns (insn);
|
3339 |
|
|
}
|
3340 |
|
|
|
3341 |
|
|
/* If all INSN does is set the pc, delete it,
|
3342 |
|
|
and delete the insn that set the condition codes for it
|
3343 |
|
|
if that's what the previous thing was. */
|
3344 |
|
|
|
3345 |
|
|
static void
|
3346 |
|
|
delete_jump (rtx insn)
|
3347 |
|
|
{
|
3348 |
|
|
rtx set = single_set (insn);
|
3349 |
|
|
|
3350 |
|
|
if (set && GET_CODE (SET_DEST (set)) == PC)
|
3351 |
|
|
delete_computation (insn);
|
3352 |
|
|
}
|
3353 |
|
|
|
3354 |
|
|
static rtx
|
3355 |
|
|
label_before_next_insn (rtx x, rtx scan_limit)
|
3356 |
|
|
{
|
3357 |
|
|
rtx insn = next_active_insn (x);
|
3358 |
|
|
while (insn)
|
3359 |
|
|
{
|
3360 |
|
|
insn = PREV_INSN (insn);
|
3361 |
|
|
if (insn == scan_limit || insn == NULL_RTX)
|
3362 |
|
|
return NULL_RTX;
|
3363 |
|
|
if (LABEL_P (insn))
|
3364 |
|
|
break;
|
3365 |
|
|
}
|
3366 |
|
|
return insn;
|
3367 |
|
|
}
|
3368 |
|
|
|
3369 |
|
|
|
3370 |
|
|
/* Once we have tried two ways to fill a delay slot, make a pass over the
|
3371 |
|
|
code to try to improve the results and to do such things as more jump
|
3372 |
|
|
threading. */
|
3373 |
|
|
|
3374 |
|
|
static void
|
3375 |
|
|
relax_delay_slots (rtx first)
|
3376 |
|
|
{
|
3377 |
|
|
rtx insn, next, pat;
|
3378 |
|
|
rtx trial, delay_insn, target_label;
|
3379 |
|
|
|
3380 |
|
|
/* Look at every JUMP_INSN and see if we can improve it. */
|
3381 |
|
|
for (insn = first; insn; insn = next)
|
3382 |
|
|
{
|
3383 |
|
|
rtx other;
|
3384 |
|
|
|
3385 |
|
|
next = next_active_insn (insn);
|
3386 |
|
|
|
3387 |
|
|
/* If this is a jump insn, see if it now jumps to a jump, jumps to
|
3388 |
|
|
the next insn, or jumps to a label that is not the last of a
|
3389 |
|
|
group of consecutive labels. */
|
3390 |
|
|
if (JUMP_P (insn)
|
3391 |
|
|
&& (condjump_p (insn) || condjump_in_parallel_p (insn))
|
3392 |
|
|
&& !ANY_RETURN_P (target_label = JUMP_LABEL (insn)))
|
3393 |
|
|
{
|
3394 |
|
|
target_label = skip_consecutive_labels (follow_jumps (target_label));
|
3395 |
|
|
if (ANY_RETURN_P (target_label))
|
3396 |
|
|
target_label = find_end_label (target_label);
|
3397 |
|
|
|
3398 |
|
|
if (target_label && next_active_insn (target_label) == next
|
3399 |
|
|
&& ! condjump_in_parallel_p (insn))
|
3400 |
|
|
{
|
3401 |
|
|
delete_jump (insn);
|
3402 |
|
|
continue;
|
3403 |
|
|
}
|
3404 |
|
|
|
3405 |
|
|
if (target_label && target_label != JUMP_LABEL (insn))
|
3406 |
|
|
reorg_redirect_jump (insn, target_label);
|
3407 |
|
|
|
3408 |
|
|
/* See if this jump conditionally branches around an unconditional
|
3409 |
|
|
jump. If so, invert this jump and point it to the target of the
|
3410 |
|
|
second jump. */
|
3411 |
|
|
if (next && simplejump_or_return_p (next)
|
3412 |
|
|
&& any_condjump_p (insn)
|
3413 |
|
|
&& target_label
|
3414 |
|
|
&& next_active_insn (target_label) == next_active_insn (next)
|
3415 |
|
|
&& no_labels_between_p (insn, next))
|
3416 |
|
|
{
|
3417 |
|
|
rtx label = JUMP_LABEL (next);
|
3418 |
|
|
|
3419 |
|
|
/* Be careful how we do this to avoid deleting code or
|
3420 |
|
|
labels that are momentarily dead. See similar optimization
|
3421 |
|
|
in jump.c.
|
3422 |
|
|
|
3423 |
|
|
We also need to ensure we properly handle the case when
|
3424 |
|
|
invert_jump fails. */
|
3425 |
|
|
|
3426 |
|
|
++LABEL_NUSES (target_label);
|
3427 |
|
|
if (!ANY_RETURN_P (label))
|
3428 |
|
|
++LABEL_NUSES (label);
|
3429 |
|
|
|
3430 |
|
|
if (invert_jump (insn, label, 1))
|
3431 |
|
|
{
|
3432 |
|
|
delete_related_insns (next);
|
3433 |
|
|
next = insn;
|
3434 |
|
|
}
|
3435 |
|
|
|
3436 |
|
|
if (!ANY_RETURN_P (label))
|
3437 |
|
|
--LABEL_NUSES (label);
|
3438 |
|
|
|
3439 |
|
|
if (--LABEL_NUSES (target_label) == 0)
|
3440 |
|
|
delete_related_insns (target_label);
|
3441 |
|
|
|
3442 |
|
|
continue;
|
3443 |
|
|
}
|
3444 |
|
|
}
|
3445 |
|
|
|
3446 |
|
|
/* If this is an unconditional jump and the previous insn is a
|
3447 |
|
|
conditional jump, try reversing the condition of the previous
|
3448 |
|
|
insn and swapping our targets. The next pass might be able to
|
3449 |
|
|
fill the slots.
|
3450 |
|
|
|
3451 |
|
|
Don't do this if we expect the conditional branch to be true, because
|
3452 |
|
|
we would then be making the more common case longer. */
|
3453 |
|
|
|
3454 |
|
|
if (simplejump_or_return_p (insn)
|
3455 |
|
|
&& (other = prev_active_insn (insn)) != 0
|
3456 |
|
|
&& any_condjump_p (other)
|
3457 |
|
|
&& no_labels_between_p (other, insn)
|
3458 |
|
|
&& 0 > mostly_true_jump (other,
|
3459 |
|
|
get_branch_condition (other,
|
3460 |
|
|
JUMP_LABEL (other))))
|
3461 |
|
|
{
|
3462 |
|
|
rtx other_target = JUMP_LABEL (other);
|
3463 |
|
|
target_label = JUMP_LABEL (insn);
|
3464 |
|
|
|
3465 |
|
|
if (invert_jump (other, target_label, 0))
|
3466 |
|
|
reorg_redirect_jump (insn, other_target);
|
3467 |
|
|
}
|
3468 |
|
|
|
3469 |
|
|
/* Now look only at cases where we have filled a delay slot. */
|
3470 |
|
|
if (!NONJUMP_INSN_P (insn)
|
3471 |
|
|
|| GET_CODE (PATTERN (insn)) != SEQUENCE)
|
3472 |
|
|
continue;
|
3473 |
|
|
|
3474 |
|
|
pat = PATTERN (insn);
|
3475 |
|
|
delay_insn = XVECEXP (pat, 0, 0);
|
3476 |
|
|
|
3477 |
|
|
/* See if the first insn in the delay slot is redundant with some
|
3478 |
|
|
previous insn. Remove it from the delay slot if so; then set up
|
3479 |
|
|
to reprocess this insn. */
|
3480 |
|
|
if (redundant_insn (XVECEXP (pat, 0, 1), delay_insn, 0))
|
3481 |
|
|
{
|
3482 |
|
|
delete_from_delay_slot (XVECEXP (pat, 0, 1));
|
3483 |
|
|
next = prev_active_insn (next);
|
3484 |
|
|
continue;
|
3485 |
|
|
}
|
3486 |
|
|
|
3487 |
|
|
/* See if we have a RETURN insn with a filled delay slot followed
|
3488 |
|
|
by a RETURN insn with an unfilled a delay slot. If so, we can delete
|
3489 |
|
|
the first RETURN (but not its delay insn). This gives the same
|
3490 |
|
|
effect in fewer instructions.
|
3491 |
|
|
|
3492 |
|
|
Only do so if optimizing for size since this results in slower, but
|
3493 |
|
|
smaller code. */
|
3494 |
|
|
if (optimize_function_for_size_p (cfun)
|
3495 |
|
|
&& ANY_RETURN_P (PATTERN (delay_insn))
|
3496 |
|
|
&& next
|
3497 |
|
|
&& JUMP_P (next)
|
3498 |
|
|
&& PATTERN (next) == PATTERN (delay_insn))
|
3499 |
|
|
{
|
3500 |
|
|
rtx after;
|
3501 |
|
|
int i;
|
3502 |
|
|
|
3503 |
|
|
/* Delete the RETURN and just execute the delay list insns.
|
3504 |
|
|
|
3505 |
|
|
We do this by deleting the INSN containing the SEQUENCE, then
|
3506 |
|
|
re-emitting the insns separately, and then deleting the RETURN.
|
3507 |
|
|
This allows the count of the jump target to be properly
|
3508 |
|
|
decremented.
|
3509 |
|
|
|
3510 |
|
|
Note that we need to change the INSN_UID of the re-emitted insns
|
3511 |
|
|
since it is used to hash the insns for mark_target_live_regs and
|
3512 |
|
|
the re-emitted insns will no longer be wrapped up in a SEQUENCE.
|
3513 |
|
|
|
3514 |
|
|
Clear the from target bit, since these insns are no longer
|
3515 |
|
|
in delay slots. */
|
3516 |
|
|
for (i = 0; i < XVECLEN (pat, 0); i++)
|
3517 |
|
|
INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
|
3518 |
|
|
|
3519 |
|
|
trial = PREV_INSN (insn);
|
3520 |
|
|
delete_related_insns (insn);
|
3521 |
|
|
gcc_assert (GET_CODE (pat) == SEQUENCE);
|
3522 |
|
|
add_insn_after (delay_insn, trial, NULL);
|
3523 |
|
|
after = delay_insn;
|
3524 |
|
|
for (i = 1; i < XVECLEN (pat, 0); i++)
|
3525 |
|
|
after = emit_copy_of_insn_after (XVECEXP (pat, 0, i), after);
|
3526 |
|
|
delete_scheduled_jump (delay_insn);
|
3527 |
|
|
continue;
|
3528 |
|
|
}
|
3529 |
|
|
|
3530 |
|
|
/* Now look only at the cases where we have a filled JUMP_INSN. */
|
3531 |
|
|
if (!JUMP_P (XVECEXP (PATTERN (insn), 0, 0))
|
3532 |
|
|
|| ! (condjump_p (XVECEXP (PATTERN (insn), 0, 0))
|
3533 |
|
|
|| condjump_in_parallel_p (XVECEXP (PATTERN (insn), 0, 0))))
|
3534 |
|
|
continue;
|
3535 |
|
|
|
3536 |
|
|
target_label = JUMP_LABEL (delay_insn);
|
3537 |
|
|
if (target_label && ANY_RETURN_P (target_label))
|
3538 |
|
|
continue;
|
3539 |
|
|
|
3540 |
|
|
/* If this jump goes to another unconditional jump, thread it, but
|
3541 |
|
|
don't convert a jump into a RETURN here. */
|
3542 |
|
|
trial = skip_consecutive_labels (follow_jumps (target_label));
|
3543 |
|
|
if (ANY_RETURN_P (trial))
|
3544 |
|
|
trial = find_end_label (trial);
|
3545 |
|
|
|
3546 |
|
|
if (trial && trial != target_label
|
3547 |
|
|
&& redirect_with_delay_slots_safe_p (delay_insn, trial, insn))
|
3548 |
|
|
{
|
3549 |
|
|
reorg_redirect_jump (delay_insn, trial);
|
3550 |
|
|
target_label = trial;
|
3551 |
|
|
}
|
3552 |
|
|
|
3553 |
|
|
/* If the first insn at TARGET_LABEL is redundant with a previous
|
3554 |
|
|
insn, redirect the jump to the following insn and process again.
|
3555 |
|
|
We use next_real_insn instead of next_active_insn so we
|
3556 |
|
|
don't skip USE-markers, or we'll end up with incorrect
|
3557 |
|
|
liveness info. */
|
3558 |
|
|
trial = next_real_insn (target_label);
|
3559 |
|
|
if (trial && GET_CODE (PATTERN (trial)) != SEQUENCE
|
3560 |
|
|
&& redundant_insn (trial, insn, 0)
|
3561 |
|
|
&& ! can_throw_internal (trial))
|
3562 |
|
|
{
|
3563 |
|
|
/* Figure out where to emit the special USE insn so we don't
|
3564 |
|
|
later incorrectly compute register live/death info. */
|
3565 |
|
|
rtx tmp = next_active_insn (trial);
|
3566 |
|
|
if (tmp == 0)
|
3567 |
|
|
tmp = find_end_label (simple_return_rtx);
|
3568 |
|
|
|
3569 |
|
|
if (tmp)
|
3570 |
|
|
{
|
3571 |
|
|
/* Insert the special USE insn and update dataflow info. */
|
3572 |
|
|
update_block (trial, tmp);
|
3573 |
|
|
|
3574 |
|
|
/* Now emit a label before the special USE insn, and
|
3575 |
|
|
redirect our jump to the new label. */
|
3576 |
|
|
target_label = get_label_before (PREV_INSN (tmp));
|
3577 |
|
|
reorg_redirect_jump (delay_insn, target_label);
|
3578 |
|
|
next = insn;
|
3579 |
|
|
continue;
|
3580 |
|
|
}
|
3581 |
|
|
}
|
3582 |
|
|
|
3583 |
|
|
/* Similarly, if it is an unconditional jump with one insn in its
|
3584 |
|
|
delay list and that insn is redundant, thread the jump. */
|
3585 |
|
|
if (trial && GET_CODE (PATTERN (trial)) == SEQUENCE
|
3586 |
|
|
&& XVECLEN (PATTERN (trial), 0) == 2
|
3587 |
|
|
&& JUMP_P (XVECEXP (PATTERN (trial), 0, 0))
|
3588 |
|
|
&& simplejump_or_return_p (XVECEXP (PATTERN (trial), 0, 0))
|
3589 |
|
|
&& redundant_insn (XVECEXP (PATTERN (trial), 0, 1), insn, 0))
|
3590 |
|
|
{
|
3591 |
|
|
target_label = JUMP_LABEL (XVECEXP (PATTERN (trial), 0, 0));
|
3592 |
|
|
if (ANY_RETURN_P (target_label))
|
3593 |
|
|
target_label = find_end_label (target_label);
|
3594 |
|
|
|
3595 |
|
|
if (target_label
|
3596 |
|
|
&& redirect_with_delay_slots_safe_p (delay_insn, target_label,
|
3597 |
|
|
insn))
|
3598 |
|
|
{
|
3599 |
|
|
reorg_redirect_jump (delay_insn, target_label);
|
3600 |
|
|
next = insn;
|
3601 |
|
|
continue;
|
3602 |
|
|
}
|
3603 |
|
|
}
|
3604 |
|
|
|
3605 |
|
|
/* See if we have a simple (conditional) jump that is useless. */
|
3606 |
|
|
if (! INSN_ANNULLED_BRANCH_P (delay_insn)
|
3607 |
|
|
&& ! condjump_in_parallel_p (delay_insn)
|
3608 |
|
|
&& prev_active_insn (target_label) == insn
|
3609 |
|
|
&& ! BARRIER_P (prev_nonnote_insn (target_label))
|
3610 |
|
|
#ifdef HAVE_cc0
|
3611 |
|
|
/* If the last insn in the delay slot sets CC0 for some insn,
|
3612 |
|
|
various code assumes that it is in a delay slot. We could
|
3613 |
|
|
put it back where it belonged and delete the register notes,
|
3614 |
|
|
but it doesn't seem worthwhile in this uncommon case. */
|
3615 |
|
|
&& ! find_reg_note (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1),
|
3616 |
|
|
REG_CC_USER, NULL_RTX)
|
3617 |
|
|
#endif
|
3618 |
|
|
)
|
3619 |
|
|
{
|
3620 |
|
|
rtx after;
|
3621 |
|
|
int i;
|
3622 |
|
|
|
3623 |
|
|
/* All this insn does is execute its delay list and jump to the
|
3624 |
|
|
following insn. So delete the jump and just execute the delay
|
3625 |
|
|
list insns.
|
3626 |
|
|
|
3627 |
|
|
We do this by deleting the INSN containing the SEQUENCE, then
|
3628 |
|
|
re-emitting the insns separately, and then deleting the jump.
|
3629 |
|
|
This allows the count of the jump target to be properly
|
3630 |
|
|
decremented.
|
3631 |
|
|
|
3632 |
|
|
Note that we need to change the INSN_UID of the re-emitted insns
|
3633 |
|
|
since it is used to hash the insns for mark_target_live_regs and
|
3634 |
|
|
the re-emitted insns will no longer be wrapped up in a SEQUENCE.
|
3635 |
|
|
|
3636 |
|
|
Clear the from target bit, since these insns are no longer
|
3637 |
|
|
in delay slots. */
|
3638 |
|
|
for (i = 0; i < XVECLEN (pat, 0); i++)
|
3639 |
|
|
INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
|
3640 |
|
|
|
3641 |
|
|
trial = PREV_INSN (insn);
|
3642 |
|
|
delete_related_insns (insn);
|
3643 |
|
|
gcc_assert (GET_CODE (pat) == SEQUENCE);
|
3644 |
|
|
add_insn_after (delay_insn, trial, NULL);
|
3645 |
|
|
after = delay_insn;
|
3646 |
|
|
for (i = 1; i < XVECLEN (pat, 0); i++)
|
3647 |
|
|
after = emit_copy_of_insn_after (XVECEXP (pat, 0, i), after);
|
3648 |
|
|
delete_scheduled_jump (delay_insn);
|
3649 |
|
|
continue;
|
3650 |
|
|
}
|
3651 |
|
|
|
3652 |
|
|
/* See if this is an unconditional jump around a single insn which is
|
3653 |
|
|
identical to the one in its delay slot. In this case, we can just
|
3654 |
|
|
delete the branch and the insn in its delay slot. */
|
3655 |
|
|
if (next && NONJUMP_INSN_P (next)
|
3656 |
|
|
&& label_before_next_insn (next, insn) == target_label
|
3657 |
|
|
&& simplejump_p (insn)
|
3658 |
|
|
&& XVECLEN (pat, 0) == 2
|
3659 |
|
|
&& rtx_equal_p (PATTERN (next), PATTERN (XVECEXP (pat, 0, 1))))
|
3660 |
|
|
{
|
3661 |
|
|
delete_related_insns (insn);
|
3662 |
|
|
continue;
|
3663 |
|
|
}
|
3664 |
|
|
|
3665 |
|
|
/* See if this jump (with its delay slots) conditionally branches
|
3666 |
|
|
around an unconditional jump (without delay slots). If so, invert
|
3667 |
|
|
this jump and point it to the target of the second jump. We cannot
|
3668 |
|
|
do this for annulled jumps, though. Again, don't convert a jump to
|
3669 |
|
|
a RETURN here. */
|
3670 |
|
|
if (! INSN_ANNULLED_BRANCH_P (delay_insn)
|
3671 |
|
|
&& any_condjump_p (delay_insn)
|
3672 |
|
|
&& next && simplejump_or_return_p (next)
|
3673 |
|
|
&& next_active_insn (target_label) == next_active_insn (next)
|
3674 |
|
|
&& no_labels_between_p (insn, next))
|
3675 |
|
|
{
|
3676 |
|
|
rtx label = JUMP_LABEL (next);
|
3677 |
|
|
rtx old_label = JUMP_LABEL (delay_insn);
|
3678 |
|
|
|
3679 |
|
|
if (ANY_RETURN_P (label))
|
3680 |
|
|
label = find_end_label (label);
|
3681 |
|
|
|
3682 |
|
|
/* find_end_label can generate a new label. Check this first. */
|
3683 |
|
|
if (label
|
3684 |
|
|
&& no_labels_between_p (insn, next)
|
3685 |
|
|
&& redirect_with_delay_slots_safe_p (delay_insn, label, insn))
|
3686 |
|
|
{
|
3687 |
|
|
/* Be careful how we do this to avoid deleting code or labels
|
3688 |
|
|
that are momentarily dead. See similar optimization in
|
3689 |
|
|
jump.c */
|
3690 |
|
|
if (old_label)
|
3691 |
|
|
++LABEL_NUSES (old_label);
|
3692 |
|
|
|
3693 |
|
|
if (invert_jump (delay_insn, label, 1))
|
3694 |
|
|
{
|
3695 |
|
|
int i;
|
3696 |
|
|
|
3697 |
|
|
/* Must update the INSN_FROM_TARGET_P bits now that
|
3698 |
|
|
the branch is reversed, so that mark_target_live_regs
|
3699 |
|
|
will handle the delay slot insn correctly. */
|
3700 |
|
|
for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
|
3701 |
|
|
{
|
3702 |
|
|
rtx slot = XVECEXP (PATTERN (insn), 0, i);
|
3703 |
|
|
INSN_FROM_TARGET_P (slot) = ! INSN_FROM_TARGET_P (slot);
|
3704 |
|
|
}
|
3705 |
|
|
|
3706 |
|
|
delete_related_insns (next);
|
3707 |
|
|
next = insn;
|
3708 |
|
|
}
|
3709 |
|
|
|
3710 |
|
|
if (old_label && --LABEL_NUSES (old_label) == 0)
|
3711 |
|
|
delete_related_insns (old_label);
|
3712 |
|
|
continue;
|
3713 |
|
|
}
|
3714 |
|
|
}
|
3715 |
|
|
|
3716 |
|
|
/* If we own the thread opposite the way this insn branches, see if we
|
3717 |
|
|
can merge its delay slots with following insns. */
|
3718 |
|
|
if (INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
|
3719 |
|
|
&& own_thread_p (NEXT_INSN (insn), 0, 1))
|
3720 |
|
|
try_merge_delay_insns (insn, next);
|
3721 |
|
|
else if (! INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
|
3722 |
|
|
&& own_thread_p (target_label, target_label, 0))
|
3723 |
|
|
try_merge_delay_insns (insn, next_active_insn (target_label));
|
3724 |
|
|
|
3725 |
|
|
/* If we get here, we haven't deleted INSN. But we may have deleted
|
3726 |
|
|
NEXT, so recompute it. */
|
3727 |
|
|
next = next_active_insn (insn);
|
3728 |
|
|
}
|
3729 |
|
|
}
|
3730 |
|
|
|
3731 |
|
|
|
3732 |
|
|
/* Look for filled jumps to the end of function label. We can try to convert
|
3733 |
|
|
them into RETURN insns if the insns in the delay slot are valid for the
|
3734 |
|
|
RETURN as well. */
|
3735 |
|
|
|
3736 |
|
|
static void
|
3737 |
|
|
make_return_insns (rtx first)
|
3738 |
|
|
{
|
3739 |
|
|
rtx insn, jump_insn, pat;
|
3740 |
|
|
rtx real_return_label = function_return_label;
|
3741 |
|
|
rtx real_simple_return_label = function_simple_return_label;
|
3742 |
|
|
int slots, i;
|
3743 |
|
|
|
3744 |
|
|
#ifdef DELAY_SLOTS_FOR_EPILOGUE
|
3745 |
|
|
/* If a previous pass filled delay slots in the epilogue, things get a
|
3746 |
|
|
bit more complicated, as those filler insns would generally (without
|
3747 |
|
|
data flow analysis) have to be executed after any existing branch
|
3748 |
|
|
delay slot filler insns. It is also unknown whether such a
|
3749 |
|
|
transformation would actually be profitable. Note that the existing
|
3750 |
|
|
code only cares for branches with (some) filled delay slots. */
|
3751 |
|
|
if (crtl->epilogue_delay_list != NULL)
|
3752 |
|
|
return;
|
3753 |
|
|
#endif
|
3754 |
|
|
|
3755 |
|
|
/* See if there is a RETURN insn in the function other than the one we
|
3756 |
|
|
made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
|
3757 |
|
|
into a RETURN to jump to it. */
|
3758 |
|
|
for (insn = first; insn; insn = NEXT_INSN (insn))
|
3759 |
|
|
if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn)))
|
3760 |
|
|
{
|
3761 |
|
|
rtx t = get_label_before (insn);
|
3762 |
|
|
if (PATTERN (insn) == ret_rtx)
|
3763 |
|
|
real_return_label = t;
|
3764 |
|
|
else
|
3765 |
|
|
real_simple_return_label = t;
|
3766 |
|
|
break;
|
3767 |
|
|
}
|
3768 |
|
|
|
3769 |
|
|
/* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
|
3770 |
|
|
was equal to END_OF_FUNCTION_LABEL. */
|
3771 |
|
|
if (real_return_label)
|
3772 |
|
|
LABEL_NUSES (real_return_label)++;
|
3773 |
|
|
if (real_simple_return_label)
|
3774 |
|
|
LABEL_NUSES (real_simple_return_label)++;
|
3775 |
|
|
|
3776 |
|
|
/* Clear the list of insns to fill so we can use it. */
|
3777 |
|
|
obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
|
3778 |
|
|
|
3779 |
|
|
for (insn = first; insn; insn = NEXT_INSN (insn))
|
3780 |
|
|
{
|
3781 |
|
|
int flags;
|
3782 |
|
|
rtx kind, real_label;
|
3783 |
|
|
|
3784 |
|
|
/* Only look at filled JUMP_INSNs that go to the end of function
|
3785 |
|
|
label. */
|
3786 |
|
|
if (!NONJUMP_INSN_P (insn)
|
3787 |
|
|
|| GET_CODE (PATTERN (insn)) != SEQUENCE
|
3788 |
|
|
|| !jump_to_label_p (XVECEXP (PATTERN (insn), 0, 0)))
|
3789 |
|
|
continue;
|
3790 |
|
|
|
3791 |
|
|
if (JUMP_LABEL (XVECEXP (PATTERN (insn), 0, 0)) == function_return_label)
|
3792 |
|
|
{
|
3793 |
|
|
kind = ret_rtx;
|
3794 |
|
|
real_label = real_return_label;
|
3795 |
|
|
}
|
3796 |
|
|
else if (JUMP_LABEL (XVECEXP (PATTERN (insn), 0, 0))
|
3797 |
|
|
== function_simple_return_label)
|
3798 |
|
|
{
|
3799 |
|
|
kind = simple_return_rtx;
|
3800 |
|
|
real_label = real_simple_return_label;
|
3801 |
|
|
}
|
3802 |
|
|
else
|
3803 |
|
|
continue;
|
3804 |
|
|
|
3805 |
|
|
pat = PATTERN (insn);
|
3806 |
|
|
jump_insn = XVECEXP (pat, 0, 0);
|
3807 |
|
|
|
3808 |
|
|
/* If we can't make the jump into a RETURN, try to redirect it to the best
|
3809 |
|
|
RETURN and go on to the next insn. */
|
3810 |
|
|
if (!reorg_redirect_jump (jump_insn, kind))
|
3811 |
|
|
{
|
3812 |
|
|
/* Make sure redirecting the jump will not invalidate the delay
|
3813 |
|
|
slot insns. */
|
3814 |
|
|
if (redirect_with_delay_slots_safe_p (jump_insn, real_label, insn))
|
3815 |
|
|
reorg_redirect_jump (jump_insn, real_label);
|
3816 |
|
|
continue;
|
3817 |
|
|
}
|
3818 |
|
|
|
3819 |
|
|
/* See if this RETURN can accept the insns current in its delay slot.
|
3820 |
|
|
It can if it has more or an equal number of slots and the contents
|
3821 |
|
|
of each is valid. */
|
3822 |
|
|
|
3823 |
|
|
flags = get_jump_flags (jump_insn, JUMP_LABEL (jump_insn));
|
3824 |
|
|
slots = num_delay_slots (jump_insn);
|
3825 |
|
|
if (slots >= XVECLEN (pat, 0) - 1)
|
3826 |
|
|
{
|
3827 |
|
|
for (i = 1; i < XVECLEN (pat, 0); i++)
|
3828 |
|
|
if (! (
|
3829 |
|
|
#ifdef ANNUL_IFFALSE_SLOTS
|
3830 |
|
|
(INSN_ANNULLED_BRANCH_P (jump_insn)
|
3831 |
|
|
&& INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
|
3832 |
|
|
? eligible_for_annul_false (jump_insn, i - 1,
|
3833 |
|
|
XVECEXP (pat, 0, i), flags) :
|
3834 |
|
|
#endif
|
3835 |
|
|
#ifdef ANNUL_IFTRUE_SLOTS
|
3836 |
|
|
(INSN_ANNULLED_BRANCH_P (jump_insn)
|
3837 |
|
|
&& ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
|
3838 |
|
|
? eligible_for_annul_true (jump_insn, i - 1,
|
3839 |
|
|
XVECEXP (pat, 0, i), flags) :
|
3840 |
|
|
#endif
|
3841 |
|
|
eligible_for_delay (jump_insn, i - 1,
|
3842 |
|
|
XVECEXP (pat, 0, i), flags)))
|
3843 |
|
|
break;
|
3844 |
|
|
}
|
3845 |
|
|
else
|
3846 |
|
|
i = 0;
|
3847 |
|
|
|
3848 |
|
|
if (i == XVECLEN (pat, 0))
|
3849 |
|
|
continue;
|
3850 |
|
|
|
3851 |
|
|
/* We have to do something with this insn. If it is an unconditional
|
3852 |
|
|
RETURN, delete the SEQUENCE and output the individual insns,
|
3853 |
|
|
followed by the RETURN. Then set things up so we try to find
|
3854 |
|
|
insns for its delay slots, if it needs some. */
|
3855 |
|
|
if (ANY_RETURN_P (PATTERN (jump_insn)))
|
3856 |
|
|
{
|
3857 |
|
|
rtx prev = PREV_INSN (insn);
|
3858 |
|
|
|
3859 |
|
|
delete_related_insns (insn);
|
3860 |
|
|
for (i = 1; i < XVECLEN (pat, 0); i++)
|
3861 |
|
|
prev = emit_insn_after (PATTERN (XVECEXP (pat, 0, i)), prev);
|
3862 |
|
|
|
3863 |
|
|
insn = emit_jump_insn_after (PATTERN (jump_insn), prev);
|
3864 |
|
|
emit_barrier_after (insn);
|
3865 |
|
|
|
3866 |
|
|
if (slots)
|
3867 |
|
|
obstack_ptr_grow (&unfilled_slots_obstack, insn);
|
3868 |
|
|
}
|
3869 |
|
|
else
|
3870 |
|
|
/* It is probably more efficient to keep this with its current
|
3871 |
|
|
delay slot as a branch to a RETURN. */
|
3872 |
|
|
reorg_redirect_jump (jump_insn, real_label);
|
3873 |
|
|
}
|
3874 |
|
|
|
3875 |
|
|
/* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
|
3876 |
|
|
new delay slots we have created. */
|
3877 |
|
|
if (real_return_label != NULL_RTX && --LABEL_NUSES (real_return_label) == 0)
|
3878 |
|
|
delete_related_insns (real_return_label);
|
3879 |
|
|
if (real_simple_return_label != NULL_RTX
|
3880 |
|
|
&& --LABEL_NUSES (real_simple_return_label) == 0)
|
3881 |
|
|
delete_related_insns (real_simple_return_label);
|
3882 |
|
|
|
3883 |
|
|
fill_simple_delay_slots (1);
|
3884 |
|
|
fill_simple_delay_slots (0);
|
3885 |
|
|
}
|
3886 |
|
|
|
3887 |
|
|
/* Try to find insns to place in delay slots. */
|
3888 |
|
|
|
3889 |
|
|
void
|
3890 |
|
|
dbr_schedule (rtx first)
|
3891 |
|
|
{
|
3892 |
|
|
rtx insn, next, epilogue_insn = 0;
|
3893 |
|
|
int i;
|
3894 |
|
|
bool need_return_insns;
|
3895 |
|
|
|
3896 |
|
|
/* If the current function has no insns other than the prologue and
|
3897 |
|
|
epilogue, then do not try to fill any delay slots. */
|
3898 |
|
|
if (n_basic_blocks == NUM_FIXED_BLOCKS)
|
3899 |
|
|
return;
|
3900 |
|
|
|
3901 |
|
|
/* Find the highest INSN_UID and allocate and initialize our map from
|
3902 |
|
|
INSN_UID's to position in code. */
|
3903 |
|
|
for (max_uid = 0, insn = first; insn; insn = NEXT_INSN (insn))
|
3904 |
|
|
{
|
3905 |
|
|
if (INSN_UID (insn) > max_uid)
|
3906 |
|
|
max_uid = INSN_UID (insn);
|
3907 |
|
|
if (NOTE_P (insn)
|
3908 |
|
|
&& NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
|
3909 |
|
|
epilogue_insn = insn;
|
3910 |
|
|
}
|
3911 |
|
|
|
3912 |
|
|
uid_to_ruid = XNEWVEC (int, max_uid + 1);
|
3913 |
|
|
for (i = 0, insn = first; insn; i++, insn = NEXT_INSN (insn))
|
3914 |
|
|
uid_to_ruid[INSN_UID (insn)] = i;
|
3915 |
|
|
|
3916 |
|
|
/* Initialize the list of insns that need filling. */
|
3917 |
|
|
if (unfilled_firstobj == 0)
|
3918 |
|
|
{
|
3919 |
|
|
gcc_obstack_init (&unfilled_slots_obstack);
|
3920 |
|
|
unfilled_firstobj = XOBNEWVAR (&unfilled_slots_obstack, rtx, 0);
|
3921 |
|
|
}
|
3922 |
|
|
|
3923 |
|
|
for (insn = next_active_insn (first); insn; insn = next_active_insn (insn))
|
3924 |
|
|
{
|
3925 |
|
|
rtx target;
|
3926 |
|
|
|
3927 |
|
|
if (JUMP_P (insn))
|
3928 |
|
|
INSN_ANNULLED_BRANCH_P (insn) = 0;
|
3929 |
|
|
INSN_FROM_TARGET_P (insn) = 0;
|
3930 |
|
|
|
3931 |
|
|
/* Skip vector tables. We can't get attributes for them. */
|
3932 |
|
|
if (JUMP_TABLE_DATA_P (insn))
|
3933 |
|
|
continue;
|
3934 |
|
|
|
3935 |
|
|
if (num_delay_slots (insn) > 0)
|
3936 |
|
|
obstack_ptr_grow (&unfilled_slots_obstack, insn);
|
3937 |
|
|
|
3938 |
|
|
/* Ensure all jumps go to the last of a set of consecutive labels. */
|
3939 |
|
|
if (JUMP_P (insn)
|
3940 |
|
|
&& (condjump_p (insn) || condjump_in_parallel_p (insn))
|
3941 |
|
|
&& !ANY_RETURN_P (JUMP_LABEL (insn))
|
3942 |
|
|
&& ((target = skip_consecutive_labels (JUMP_LABEL (insn)))
|
3943 |
|
|
!= JUMP_LABEL (insn)))
|
3944 |
|
|
redirect_jump (insn, target, 1);
|
3945 |
|
|
}
|
3946 |
|
|
|
3947 |
|
|
init_resource_info (epilogue_insn);
|
3948 |
|
|
|
3949 |
|
|
/* Show we haven't computed an end-of-function label yet. */
|
3950 |
|
|
function_return_label = function_simple_return_label = NULL_RTX;
|
3951 |
|
|
|
3952 |
|
|
/* Initialize the statistics for this function. */
|
3953 |
|
|
memset (num_insns_needing_delays, 0, sizeof num_insns_needing_delays);
|
3954 |
|
|
memset (num_filled_delays, 0, sizeof num_filled_delays);
|
3955 |
|
|
|
3956 |
|
|
/* Now do the delay slot filling. Try everything twice in case earlier
|
3957 |
|
|
changes make more slots fillable. */
|
3958 |
|
|
|
3959 |
|
|
for (reorg_pass_number = 0;
|
3960 |
|
|
reorg_pass_number < MAX_REORG_PASSES;
|
3961 |
|
|
reorg_pass_number++)
|
3962 |
|
|
{
|
3963 |
|
|
fill_simple_delay_slots (1);
|
3964 |
|
|
fill_simple_delay_slots (0);
|
3965 |
|
|
fill_eager_delay_slots ();
|
3966 |
|
|
relax_delay_slots (first);
|
3967 |
|
|
}
|
3968 |
|
|
|
3969 |
|
|
/* If we made an end of function label, indicate that it is now
|
3970 |
|
|
safe to delete it by undoing our prior adjustment to LABEL_NUSES.
|
3971 |
|
|
If it is now unused, delete it. */
|
3972 |
|
|
if (function_return_label && --LABEL_NUSES (function_return_label) == 0)
|
3973 |
|
|
delete_related_insns (function_return_label);
|
3974 |
|
|
if (function_simple_return_label
|
3975 |
|
|
&& --LABEL_NUSES (function_simple_return_label) == 0)
|
3976 |
|
|
delete_related_insns (function_simple_return_label);
|
3977 |
|
|
|
3978 |
|
|
need_return_insns = false;
|
3979 |
|
|
#ifdef HAVE_return
|
3980 |
|
|
need_return_insns |= HAVE_return && function_return_label != 0;
|
3981 |
|
|
#endif
|
3982 |
|
|
#ifdef HAVE_simple_return
|
3983 |
|
|
need_return_insns |= HAVE_simple_return && function_simple_return_label != 0;
|
3984 |
|
|
#endif
|
3985 |
|
|
if (need_return_insns)
|
3986 |
|
|
make_return_insns (first);
|
3987 |
|
|
|
3988 |
|
|
/* Delete any USE insns made by update_block; subsequent passes don't need
|
3989 |
|
|
them or know how to deal with them. */
|
3990 |
|
|
for (insn = first; insn; insn = next)
|
3991 |
|
|
{
|
3992 |
|
|
next = NEXT_INSN (insn);
|
3993 |
|
|
|
3994 |
|
|
if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
|
3995 |
|
|
&& INSN_P (XEXP (PATTERN (insn), 0)))
|
3996 |
|
|
next = delete_related_insns (insn);
|
3997 |
|
|
}
|
3998 |
|
|
|
3999 |
|
|
obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
|
4000 |
|
|
|
4001 |
|
|
/* It is not clear why the line below is needed, but it does seem to be. */
|
4002 |
|
|
unfilled_firstobj = XOBNEWVAR (&unfilled_slots_obstack, rtx, 0);
|
4003 |
|
|
|
4004 |
|
|
if (dump_file)
|
4005 |
|
|
{
|
4006 |
|
|
int i, j, need_comma;
|
4007 |
|
|
int total_delay_slots[MAX_DELAY_HISTOGRAM + 1];
|
4008 |
|
|
int total_annul_slots[MAX_DELAY_HISTOGRAM + 1];
|
4009 |
|
|
|
4010 |
|
|
for (reorg_pass_number = 0;
|
4011 |
|
|
reorg_pass_number < MAX_REORG_PASSES;
|
4012 |
|
|
reorg_pass_number++)
|
4013 |
|
|
{
|
4014 |
|
|
fprintf (dump_file, ";; Reorg pass #%d:\n", reorg_pass_number + 1);
|
4015 |
|
|
for (i = 0; i < NUM_REORG_FUNCTIONS; i++)
|
4016 |
|
|
{
|
4017 |
|
|
need_comma = 0;
|
4018 |
|
|
fprintf (dump_file, ";; Reorg function #%d\n", i);
|
4019 |
|
|
|
4020 |
|
|
fprintf (dump_file, ";; %d insns needing delay slots\n;; ",
|
4021 |
|
|
num_insns_needing_delays[i][reorg_pass_number]);
|
4022 |
|
|
|
4023 |
|
|
for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
|
4024 |
|
|
if (num_filled_delays[i][j][reorg_pass_number])
|
4025 |
|
|
{
|
4026 |
|
|
if (need_comma)
|
4027 |
|
|
fprintf (dump_file, ", ");
|
4028 |
|
|
need_comma = 1;
|
4029 |
|
|
fprintf (dump_file, "%d got %d delays",
|
4030 |
|
|
num_filled_delays[i][j][reorg_pass_number], j);
|
4031 |
|
|
}
|
4032 |
|
|
fprintf (dump_file, "\n");
|
4033 |
|
|
}
|
4034 |
|
|
}
|
4035 |
|
|
memset (total_delay_slots, 0, sizeof total_delay_slots);
|
4036 |
|
|
memset (total_annul_slots, 0, sizeof total_annul_slots);
|
4037 |
|
|
for (insn = first; insn; insn = NEXT_INSN (insn))
|
4038 |
|
|
{
|
4039 |
|
|
if (! INSN_DELETED_P (insn)
|
4040 |
|
|
&& NONJUMP_INSN_P (insn)
|
4041 |
|
|
&& GET_CODE (PATTERN (insn)) != USE
|
4042 |
|
|
&& GET_CODE (PATTERN (insn)) != CLOBBER)
|
4043 |
|
|
{
|
4044 |
|
|
if (GET_CODE (PATTERN (insn)) == SEQUENCE)
|
4045 |
|
|
{
|
4046 |
|
|
rtx control;
|
4047 |
|
|
j = XVECLEN (PATTERN (insn), 0) - 1;
|
4048 |
|
|
if (j > MAX_DELAY_HISTOGRAM)
|
4049 |
|
|
j = MAX_DELAY_HISTOGRAM;
|
4050 |
|
|
control = XVECEXP (PATTERN (insn), 0, 0);
|
4051 |
|
|
if (JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control))
|
4052 |
|
|
total_annul_slots[j]++;
|
4053 |
|
|
else
|
4054 |
|
|
total_delay_slots[j]++;
|
4055 |
|
|
}
|
4056 |
|
|
else if (num_delay_slots (insn) > 0)
|
4057 |
|
|
total_delay_slots[0]++;
|
4058 |
|
|
}
|
4059 |
|
|
}
|
4060 |
|
|
fprintf (dump_file, ";; Reorg totals: ");
|
4061 |
|
|
need_comma = 0;
|
4062 |
|
|
for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
|
4063 |
|
|
{
|
4064 |
|
|
if (total_delay_slots[j])
|
4065 |
|
|
{
|
4066 |
|
|
if (need_comma)
|
4067 |
|
|
fprintf (dump_file, ", ");
|
4068 |
|
|
need_comma = 1;
|
4069 |
|
|
fprintf (dump_file, "%d got %d delays", total_delay_slots[j], j);
|
4070 |
|
|
}
|
4071 |
|
|
}
|
4072 |
|
|
fprintf (dump_file, "\n");
|
4073 |
|
|
#if defined (ANNUL_IFTRUE_SLOTS) || defined (ANNUL_IFFALSE_SLOTS)
|
4074 |
|
|
fprintf (dump_file, ";; Reorg annuls: ");
|
4075 |
|
|
need_comma = 0;
|
4076 |
|
|
for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
|
4077 |
|
|
{
|
4078 |
|
|
if (total_annul_slots[j])
|
4079 |
|
|
{
|
4080 |
|
|
if (need_comma)
|
4081 |
|
|
fprintf (dump_file, ", ");
|
4082 |
|
|
need_comma = 1;
|
4083 |
|
|
fprintf (dump_file, "%d got %d delays", total_annul_slots[j], j);
|
4084 |
|
|
}
|
4085 |
|
|
}
|
4086 |
|
|
fprintf (dump_file, "\n");
|
4087 |
|
|
#endif
|
4088 |
|
|
fprintf (dump_file, "\n");
|
4089 |
|
|
}
|
4090 |
|
|
|
4091 |
|
|
/* For all JUMP insns, fill in branch prediction notes, so that during
|
4092 |
|
|
assembler output a target can set branch prediction bits in the code.
|
4093 |
|
|
We have to do this now, as up until this point the destinations of
|
4094 |
|
|
JUMPS can be moved around and changed, but past right here that cannot
|
4095 |
|
|
happen. */
|
4096 |
|
|
for (insn = first; insn; insn = NEXT_INSN (insn))
|
4097 |
|
|
{
|
4098 |
|
|
int pred_flags;
|
4099 |
|
|
|
4100 |
|
|
if (NONJUMP_INSN_P (insn))
|
4101 |
|
|
{
|
4102 |
|
|
rtx pat = PATTERN (insn);
|
4103 |
|
|
|
4104 |
|
|
if (GET_CODE (pat) == SEQUENCE)
|
4105 |
|
|
insn = XVECEXP (pat, 0, 0);
|
4106 |
|
|
}
|
4107 |
|
|
if (!JUMP_P (insn))
|
4108 |
|
|
continue;
|
4109 |
|
|
|
4110 |
|
|
pred_flags = get_jump_flags (insn, JUMP_LABEL (insn));
|
4111 |
|
|
add_reg_note (insn, REG_BR_PRED, GEN_INT (pred_flags));
|
4112 |
|
|
}
|
4113 |
|
|
free_resource_info ();
|
4114 |
|
|
free (uid_to_ruid);
|
4115 |
|
|
#ifdef DELAY_SLOTS_FOR_EPILOGUE
|
4116 |
|
|
/* SPARC assembler, for instance, emit warning when debug info is output
|
4117 |
|
|
into the delay slot. */
|
4118 |
|
|
{
|
4119 |
|
|
rtx link;
|
4120 |
|
|
|
4121 |
|
|
for (link = crtl->epilogue_delay_list;
|
4122 |
|
|
link;
|
4123 |
|
|
link = XEXP (link, 1))
|
4124 |
|
|
INSN_LOCATOR (XEXP (link, 0)) = 0;
|
4125 |
|
|
}
|
4126 |
|
|
|
4127 |
|
|
#endif
|
4128 |
|
|
crtl->dbr_scheduled_p = true;
|
4129 |
|
|
}
|
4130 |
|
|
#endif /* DELAY_SLOTS */
|
4131 |
|
|
|
4132 |
|
|
static bool
|
4133 |
|
|
gate_handle_delay_slots (void)
|
4134 |
|
|
{
|
4135 |
|
|
#ifdef DELAY_SLOTS
|
4136 |
|
|
/* At -O0 dataflow info isn't updated after RA. */
|
4137 |
|
|
return optimize > 0 && flag_delayed_branch && !crtl->dbr_scheduled_p;
|
4138 |
|
|
#else
|
4139 |
|
|
return 0;
|
4140 |
|
|
#endif
|
4141 |
|
|
}
|
4142 |
|
|
|
4143 |
|
|
/* Run delay slot optimization. */
|
4144 |
|
|
static unsigned int
|
4145 |
|
|
rest_of_handle_delay_slots (void)
|
4146 |
|
|
{
|
4147 |
|
|
#ifdef DELAY_SLOTS
|
4148 |
|
|
dbr_schedule (get_insns ());
|
4149 |
|
|
#endif
|
4150 |
|
|
return 0;
|
4151 |
|
|
}
|
4152 |
|
|
|
4153 |
|
|
struct rtl_opt_pass pass_delay_slots =
|
4154 |
|
|
{
|
4155 |
|
|
{
|
4156 |
|
|
RTL_PASS,
|
4157 |
|
|
"dbr", /* name */
|
4158 |
|
|
gate_handle_delay_slots, /* gate */
|
4159 |
|
|
rest_of_handle_delay_slots, /* execute */
|
4160 |
|
|
NULL, /* sub */
|
4161 |
|
|
NULL, /* next */
|
4162 |
|
|
0, /* static_pass_number */
|
4163 |
|
|
TV_DBR_SCHED, /* tv_id */
|
4164 |
|
|
0, /* properties_required */
|
4165 |
|
|
0, /* properties_provided */
|
4166 |
|
|
0, /* properties_destroyed */
|
4167 |
|
|
0, /* todo_flags_start */
|
4168 |
|
|
TODO_ggc_collect /* todo_flags_finish */
|
4169 |
|
|
}
|
4170 |
|
|
};
|
4171 |
|
|
|
4172 |
|
|
/* Machine dependent reorg pass. */
|
4173 |
|
|
static bool
|
4174 |
|
|
gate_handle_machine_reorg (void)
|
4175 |
|
|
{
|
4176 |
|
|
return targetm.machine_dependent_reorg != 0;
|
4177 |
|
|
}
|
4178 |
|
|
|
4179 |
|
|
|
4180 |
|
|
static unsigned int
|
4181 |
|
|
rest_of_handle_machine_reorg (void)
|
4182 |
|
|
{
|
4183 |
|
|
targetm.machine_dependent_reorg ();
|
4184 |
|
|
return 0;
|
4185 |
|
|
}
|
4186 |
|
|
|
4187 |
|
|
struct rtl_opt_pass pass_machine_reorg =
|
4188 |
|
|
{
|
4189 |
|
|
{
|
4190 |
|
|
RTL_PASS,
|
4191 |
|
|
"mach", /* name */
|
4192 |
|
|
gate_handle_machine_reorg, /* gate */
|
4193 |
|
|
rest_of_handle_machine_reorg, /* execute */
|
4194 |
|
|
NULL, /* sub */
|
4195 |
|
|
NULL, /* next */
|
4196 |
|
|
0, /* static_pass_number */
|
4197 |
|
|
TV_MACH_DEP, /* tv_id */
|
4198 |
|
|
0, /* properties_required */
|
4199 |
|
|
0, /* properties_provided */
|
4200 |
|
|
0, /* properties_destroyed */
|
4201 |
|
|
0, /* todo_flags_start */
|
4202 |
|
|
TODO_ggc_collect /* todo_flags_finish */
|
4203 |
|
|
}
|
4204 |
|
|
};
|