OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [sel-sched-ir.c] - Blame information for rev 821

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 684 jeremybenn
/* Instruction scheduling pass.  Selective scheduler and pipeliner.
2
   Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3
   Free Software Foundation, Inc.
4
 
5
This file is part of GCC.
6
 
7
GCC is free software; you can redistribute it and/or modify it under
8
the terms of the GNU General Public License as published by the Free
9
Software Foundation; either version 3, or (at your option) any later
10
version.
11
 
12
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13
WARRANTY; without even the implied warranty of MERCHANTABILITY or
14
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15
for more details.
16
 
17
You should have received a copy of the GNU General Public License
18
along with GCC; see the file COPYING3.  If not see
19
<http://www.gnu.org/licenses/>.  */
20
 
21
#include "config.h"
22
#include "system.h"
23
#include "coretypes.h"
24
#include "tm.h"
25
#include "diagnostic-core.h"
26
#include "rtl.h"
27
#include "tm_p.h"
28
#include "hard-reg-set.h"
29
#include "regs.h"
30
#include "function.h"
31
#include "flags.h"
32
#include "insn-config.h"
33
#include "insn-attr.h"
34
#include "except.h"
35
#include "recog.h"
36
#include "params.h"
37
#include "target.h"
38
#include "timevar.h"
39
#include "tree-pass.h"
40
#include "sched-int.h"
41
#include "ggc.h"
42
#include "tree.h"
43
#include "vec.h"
44
#include "langhooks.h"
45
#include "rtlhooks-def.h"
46
#include "emit-rtl.h"  /* FIXME: Can go away once crtl is moved to rtl.h.  */
47
 
48
#ifdef INSN_SCHEDULING
49
#include "sel-sched-ir.h"
50
/* We don't have to use it except for sel_print_insn.  */
51
#include "sel-sched-dump.h"
52
 
53
/* A vector holding bb info for whole scheduling pass.  */
54
VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
55
 
56
/* A vector holding bb info.  */
57
VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
58
 
59
/* A pool for allocating all lists.  */
60
alloc_pool sched_lists_pool;
61
 
62
/* This contains information about successors for compute_av_set.  */
63
struct succs_info current_succs;
64
 
65
/* Data structure to describe interaction with the generic scheduler utils.  */
66
static struct common_sched_info_def sel_common_sched_info;
67
 
68
/* The loop nest being pipelined.  */
69
struct loop *current_loop_nest;
70
 
71
/* LOOP_NESTS is a vector containing the corresponding loop nest for
72
   each region.  */
73
static VEC(loop_p, heap) *loop_nests = NULL;
74
 
75
/* Saves blocks already in loop regions, indexed by bb->index.  */
76
static sbitmap bbs_in_loop_rgns = NULL;
77
 
78
/* CFG hooks that are saved before changing create_basic_block hook.  */
79
static struct cfg_hooks orig_cfg_hooks;
80
 
81
 
82
/* Array containing reverse topological index of function basic blocks,
83
   indexed by BB->INDEX.  */
84
static int *rev_top_order_index = NULL;
85
 
86
/* Length of the above array.  */
87
static int rev_top_order_index_len = -1;
88
 
89
/* A regset pool structure.  */
90
static struct
91
{
92
  /* The stack to which regsets are returned.  */
93
  regset *v;
94
 
95
  /* Its pointer.  */
96
  int n;
97
 
98
  /* Its size.  */
99
  int s;
100
 
101
  /* In VV we save all generated regsets so that, when destructing the
102
     pool, we can compare it with V and check that every regset was returned
103
     back to pool.  */
104
  regset *vv;
105
 
106
  /* The pointer of VV stack.  */
107
  int nn;
108
 
109
  /* Its size.  */
110
  int ss;
111
 
112
  /* The difference between allocated and returned regsets.  */
113
  int diff;
114
} regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
115
 
116
/* This represents the nop pool.  */
117
static struct
118
{
119
  /* The vector which holds previously emitted nops.  */
120
  insn_t *v;
121
 
122
  /* Its pointer.  */
123
  int n;
124
 
125
  /* Its size.  */
126
  int s;
127
} nop_pool = { NULL, 0, 0 };
128
 
129
/* The pool for basic block notes.  */
130
static rtx_vec_t bb_note_pool;
131
 
132
/* A NOP pattern used to emit placeholder insns.  */
133
rtx nop_pattern = NULL_RTX;
134
/* A special instruction that resides in EXIT_BLOCK.
135
   EXIT_INSN is successor of the insns that lead to EXIT_BLOCK.  */
136
rtx exit_insn = NULL_RTX;
137
 
138
/* TRUE if while scheduling current region, which is loop, its preheader
139
   was removed.  */
140
bool preheader_removed = false;
141
 
142
 
143
/* Forward static declarations.  */
144
static void fence_clear (fence_t);
145
 
146
static void deps_init_id (idata_t, insn_t, bool);
147
static void init_id_from_df (idata_t, insn_t, bool);
148
static expr_t set_insn_init (expr_t, vinsn_t, int);
149
 
150
static void cfg_preds (basic_block, insn_t **, int *);
151
static void prepare_insn_expr (insn_t, int);
152
static void free_history_vect (VEC (expr_history_def, heap) **);
153
 
154
static void move_bb_info (basic_block, basic_block);
155
static void remove_empty_bb (basic_block, bool);
156
static void sel_merge_blocks (basic_block, basic_block);
157
static void sel_remove_loop_preheader (void);
158
static bool bb_has_removable_jump_to_p (basic_block, basic_block);
159
 
160
static bool insn_is_the_only_one_in_bb_p (insn_t);
161
static void create_initial_data_sets (basic_block);
162
 
163
static void free_av_set (basic_block);
164
static void invalidate_av_set (basic_block);
165
static void extend_insn_data (void);
166
static void sel_init_new_insn (insn_t, int);
167
static void finish_insns (void);
168
 
169
/* Various list functions.  */
170
 
171
/* Copy an instruction list L.  */
172
ilist_t
173
ilist_copy (ilist_t l)
174
{
175
  ilist_t head = NULL, *tailp = &head;
176
 
177
  while (l)
178
    {
179
      ilist_add (tailp, ILIST_INSN (l));
180
      tailp = &ILIST_NEXT (*tailp);
181
      l = ILIST_NEXT (l);
182
    }
183
 
184
  return head;
185
}
186
 
187
/* Invert an instruction list L.  */
188
ilist_t
189
ilist_invert (ilist_t l)
190
{
191
  ilist_t res = NULL;
192
 
193
  while (l)
194
    {
195
      ilist_add (&res, ILIST_INSN (l));
196
      l = ILIST_NEXT (l);
197
    }
198
 
199
  return res;
200
}
201
 
202
/* Add a new boundary to the LP list with parameters TO, PTR, and DC.  */
203
void
204
blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
205
{
206
  bnd_t bnd;
207
 
208
  _list_add (lp);
209
  bnd = BLIST_BND (*lp);
210
 
211
  BND_TO (bnd) = to;
212
  BND_PTR (bnd) = ptr;
213
  BND_AV (bnd) = NULL;
214
  BND_AV1 (bnd) = NULL;
215
  BND_DC (bnd) = dc;
216
}
217
 
218
/* Remove the list note pointed to by LP.  */
219
void
220
blist_remove (blist_t *lp)
221
{
222
  bnd_t b = BLIST_BND (*lp);
223
 
224
  av_set_clear (&BND_AV (b));
225
  av_set_clear (&BND_AV1 (b));
226
  ilist_clear (&BND_PTR (b));
227
 
228
  _list_remove (lp);
229
}
230
 
231
/* Init a fence tail L.  */
232
void
233
flist_tail_init (flist_tail_t l)
234
{
235
  FLIST_TAIL_HEAD (l) = NULL;
236
  FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
237
}
238
 
239
/* Try to find fence corresponding to INSN in L.  */
240
fence_t
241
flist_lookup (flist_t l, insn_t insn)
242
{
243
  while (l)
244
    {
245
      if (FENCE_INSN (FLIST_FENCE (l)) == insn)
246
        return FLIST_FENCE (l);
247
 
248
      l = FLIST_NEXT (l);
249
    }
250
 
251
  return NULL;
252
}
253
 
254
/* Init the fields of F before running fill_insns.  */
255
static void
256
init_fence_for_scheduling (fence_t f)
257
{
258
  FENCE_BNDS (f) = NULL;
259
  FENCE_PROCESSED_P (f) = false;
260
  FENCE_SCHEDULED_P (f) = false;
261
}
262
 
263
/* Add new fence consisting of INSN and STATE to the list pointed to by LP.  */
264
static void
265
flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
266
           insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
267
           int *ready_ticks, int ready_ticks_size, insn_t sched_next,
268
           int cycle, int cycle_issued_insns, int issue_more,
269
           bool starts_cycle_p, bool after_stall_p)
270
{
271
  fence_t f;
272
 
273
  _list_add (lp);
274
  f = FLIST_FENCE (*lp);
275
 
276
  FENCE_INSN (f) = insn;
277
 
278
  gcc_assert (state != NULL);
279
  FENCE_STATE (f) = state;
280
 
281
  FENCE_CYCLE (f) = cycle;
282
  FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
283
  FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
284
  FENCE_AFTER_STALL_P (f) = after_stall_p;
285
 
286
  gcc_assert (dc != NULL);
287
  FENCE_DC (f) = dc;
288
 
289
  gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
290
  FENCE_TC (f) = tc;
291
 
292
  FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
293
  FENCE_ISSUE_MORE (f) = issue_more;
294
  FENCE_EXECUTING_INSNS (f) = executing_insns;
295
  FENCE_READY_TICKS (f) = ready_ticks;
296
  FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
297
  FENCE_SCHED_NEXT (f) = sched_next;
298
 
299
  init_fence_for_scheduling (f);
300
}
301
 
302
/* Remove the head node of the list pointed to by LP.  */
303
static void
304
flist_remove (flist_t *lp)
305
{
306
  if (FENCE_INSN (FLIST_FENCE (*lp)))
307
    fence_clear (FLIST_FENCE (*lp));
308
  _list_remove (lp);
309
}
310
 
311
/* Clear the fence list pointed to by LP.  */
312
void
313
flist_clear (flist_t *lp)
314
{
315
  while (*lp)
316
    flist_remove (lp);
317
}
318
 
319
/* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL.  */
320
void
321
def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
322
{
323
  def_t d;
324
 
325
  _list_add (dl);
326
  d = DEF_LIST_DEF (*dl);
327
 
328
  d->orig_insn = original_insn;
329
  d->crosses_call = crosses_call;
330
}
331
 
332
 
333
/* Functions to work with target contexts.  */
334
 
335
/* Bulk target context.  It is convenient for debugging purposes to ensure
336
   that there are no uninitialized (null) target contexts.  */
337
static tc_t bulk_tc = (tc_t) 1;
338
 
339
/* Target hooks wrappers.  In the future we can provide some default
340
   implementations for them.  */
341
 
342
/* Allocate a store for the target context.  */
343
static tc_t
344
alloc_target_context (void)
345
{
346
  return (targetm.sched.alloc_sched_context
347
          ? targetm.sched.alloc_sched_context () : bulk_tc);
348
}
349
 
350
/* Init target context TC.
351
   If CLEAN_P is true, then make TC as it is beginning of the scheduler.
352
   Overwise, copy current backend context to TC.  */
353
static void
354
init_target_context (tc_t tc, bool clean_p)
355
{
356
  if (targetm.sched.init_sched_context)
357
    targetm.sched.init_sched_context (tc, clean_p);
358
}
359
 
360
/* Allocate and initialize a target context.  Meaning of CLEAN_P is the same as
361
   int init_target_context ().  */
362
tc_t
363
create_target_context (bool clean_p)
364
{
365
  tc_t tc = alloc_target_context ();
366
 
367
  init_target_context (tc, clean_p);
368
  return tc;
369
}
370
 
371
/* Copy TC to the current backend context.  */
372
void
373
set_target_context (tc_t tc)
374
{
375
  if (targetm.sched.set_sched_context)
376
    targetm.sched.set_sched_context (tc);
377
}
378
 
379
/* TC is about to be destroyed.  Free any internal data.  */
380
static void
381
clear_target_context (tc_t tc)
382
{
383
  if (targetm.sched.clear_sched_context)
384
    targetm.sched.clear_sched_context (tc);
385
}
386
 
387
/*  Clear and free it.  */
388
static void
389
delete_target_context (tc_t tc)
390
{
391
  clear_target_context (tc);
392
 
393
  if (targetm.sched.free_sched_context)
394
    targetm.sched.free_sched_context (tc);
395
}
396
 
397
/* Make a copy of FROM in TO.
398
   NB: May be this should be a hook.  */
399
static void
400
copy_target_context (tc_t to, tc_t from)
401
{
402
  tc_t tmp = create_target_context (false);
403
 
404
  set_target_context (from);
405
  init_target_context (to, false);
406
 
407
  set_target_context (tmp);
408
  delete_target_context (tmp);
409
}
410
 
411
/* Create a copy of TC.  */
412
static tc_t
413
create_copy_of_target_context (tc_t tc)
414
{
415
  tc_t copy = alloc_target_context ();
416
 
417
  copy_target_context (copy, tc);
418
 
419
  return copy;
420
}
421
 
422
/* Clear TC and initialize it according to CLEAN_P.  The meaning of CLEAN_P
423
   is the same as in init_target_context ().  */
424
void
425
reset_target_context (tc_t tc, bool clean_p)
426
{
427
  clear_target_context (tc);
428
  init_target_context (tc, clean_p);
429
}
430
 
431
/* Functions to work with dependence contexts.
432
   Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
433
   context.  It accumulates information about processed insns to decide if
434
   current insn is dependent on the processed ones.  */
435
 
436
/* Make a copy of FROM in TO.  */
437
static void
438
copy_deps_context (deps_t to, deps_t from)
439
{
440
  init_deps (to, false);
441
  deps_join (to, from);
442
}
443
 
444
/* Allocate store for dep context.  */
445
static deps_t
446
alloc_deps_context (void)
447
{
448
  return XNEW (struct deps_desc);
449
}
450
 
451
/* Allocate and initialize dep context.  */
452
static deps_t
453
create_deps_context (void)
454
{
455
  deps_t dc = alloc_deps_context ();
456
 
457
  init_deps (dc, false);
458
  return dc;
459
}
460
 
461
/* Create a copy of FROM.  */
462
static deps_t
463
create_copy_of_deps_context (deps_t from)
464
{
465
  deps_t to = alloc_deps_context ();
466
 
467
  copy_deps_context (to, from);
468
  return to;
469
}
470
 
471
/* Clean up internal data of DC.  */
472
static void
473
clear_deps_context (deps_t dc)
474
{
475
  free_deps (dc);
476
}
477
 
478
/* Clear and free DC.  */
479
static void
480
delete_deps_context (deps_t dc)
481
{
482
  clear_deps_context (dc);
483
  free (dc);
484
}
485
 
486
/* Clear and init DC.  */
487
static void
488
reset_deps_context (deps_t dc)
489
{
490
  clear_deps_context (dc);
491
  init_deps (dc, false);
492
}
493
 
494
/* This structure describes the dependence analysis hooks for advancing
495
   dependence context.  */
496
static struct sched_deps_info_def advance_deps_context_sched_deps_info =
497
  {
498
    NULL,
499
 
500
    NULL, /* start_insn */
501
    NULL, /* finish_insn */
502
    NULL, /* start_lhs */
503
    NULL, /* finish_lhs */
504
    NULL, /* start_rhs */
505
    NULL, /* finish_rhs */
506
    haifa_note_reg_set,
507
    haifa_note_reg_clobber,
508
    haifa_note_reg_use,
509
    NULL, /* note_mem_dep */
510
    NULL, /* note_dep */
511
 
512
    0, 0, 0
513
  };
514
 
515
/* Process INSN and add its impact on DC.  */
516
void
517
advance_deps_context (deps_t dc, insn_t insn)
518
{
519
  sched_deps_info = &advance_deps_context_sched_deps_info;
520
  deps_analyze_insn (dc, insn);
521
}
522
 
523
 
524
/* Functions to work with DFA states.  */
525
 
526
/* Allocate store for a DFA state.  */
527
static state_t
528
state_alloc (void)
529
{
530
  return xmalloc (dfa_state_size);
531
}
532
 
533
/* Allocate and initialize DFA state.  */
534
static state_t
535
state_create (void)
536
{
537
  state_t state = state_alloc ();
538
 
539
  state_reset (state);
540
  advance_state (state);
541
  return state;
542
}
543
 
544
/* Free DFA state.  */
545
static void
546
state_free (state_t state)
547
{
548
  free (state);
549
}
550
 
551
/* Make a copy of FROM in TO.  */
552
static void
553
state_copy (state_t to, state_t from)
554
{
555
  memcpy (to, from, dfa_state_size);
556
}
557
 
558
/* Create a copy of FROM.  */
559
static state_t
560
state_create_copy (state_t from)
561
{
562
  state_t to = state_alloc ();
563
 
564
  state_copy (to, from);
565
  return to;
566
}
567
 
568
 
569
/* Functions to work with fences.  */
570
 
571
/* Clear the fence.  */
572
static void
573
fence_clear (fence_t f)
574
{
575
  state_t s = FENCE_STATE (f);
576
  deps_t dc = FENCE_DC (f);
577
  void *tc = FENCE_TC (f);
578
 
579
  ilist_clear (&FENCE_BNDS (f));
580
 
581
  gcc_assert ((s != NULL && dc != NULL && tc != NULL)
582
              || (s == NULL && dc == NULL && tc == NULL));
583
 
584
  free (s);
585
 
586
  if (dc != NULL)
587
    delete_deps_context (dc);
588
 
589
  if (tc != NULL)
590
    delete_target_context (tc);
591
  VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
592
  free (FENCE_READY_TICKS (f));
593
  FENCE_READY_TICKS (f) = NULL;
594
}
595
 
596
/* Init a list of fences with successors of OLD_FENCE.  */
597
void
598
init_fences (insn_t old_fence)
599
{
600
  insn_t succ;
601
  succ_iterator si;
602
  bool first = true;
603
  int ready_ticks_size = get_max_uid () + 1;
604
 
605
  FOR_EACH_SUCC_1 (succ, si, old_fence,
606
                   SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
607
    {
608
 
609
      if (first)
610
        first = false;
611
      else
612
        gcc_assert (flag_sel_sched_pipelining_outer_loops);
613
 
614
      flist_add (&fences, succ,
615
                 state_create (),
616
                 create_deps_context () /* dc */,
617
                 create_target_context (true) /* tc */,
618
                 NULL_RTX /* last_scheduled_insn */,
619
                 NULL, /* executing_insns */
620
                 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
621
                 ready_ticks_size,
622
                 NULL_RTX /* sched_next */,
623
                 1 /* cycle */, 0 /* cycle_issued_insns */,
624
                 issue_rate, /* issue_more */
625
                 1 /* starts_cycle_p */, 0 /* after_stall_p */);
626
    }
627
}
628
 
629
/* Merges two fences (filling fields of fence F with resulting values) by
630
   following rules: 1) state, target context and last scheduled insn are
631
   propagated from fallthrough edge if it is available;
632
   2) deps context and cycle is propagated from more probable edge;
633
   3) all other fields are set to corresponding constant values.
634
 
635
   INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
636
   READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
637
   and AFTER_STALL_P are the corresponding fields of the second fence.  */
638
static void
639
merge_fences (fence_t f, insn_t insn,
640
              state_t state, deps_t dc, void *tc,
641
              rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
642
              int *ready_ticks, int ready_ticks_size,
643
              rtx sched_next, int cycle, int issue_more, bool after_stall_p)
644
{
645
  insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
646
 
647
  gcc_assert (sel_bb_head_p (FENCE_INSN (f))
648
              && !sched_next && !FENCE_SCHED_NEXT (f));
649
 
650
  /* Check if we can decide which path fences came.
651
     If we can't (or don't want to) - reset all.  */
652
  if (last_scheduled_insn == NULL
653
      || last_scheduled_insn_old == NULL
654
      /* This is a case when INSN is reachable on several paths from
655
         one insn (this can happen when pipelining of outer loops is on and
656
         there are two edges: one going around of inner loop and the other -
657
         right through it; in such case just reset everything).  */
658
      || last_scheduled_insn == last_scheduled_insn_old)
659
    {
660
      state_reset (FENCE_STATE (f));
661
      state_free (state);
662
 
663
      reset_deps_context (FENCE_DC (f));
664
      delete_deps_context (dc);
665
 
666
      reset_target_context (FENCE_TC (f), true);
667
      delete_target_context (tc);
668
 
669
      if (cycle > FENCE_CYCLE (f))
670
        FENCE_CYCLE (f) = cycle;
671
 
672
      FENCE_LAST_SCHEDULED_INSN (f) = NULL;
673
      FENCE_ISSUE_MORE (f) = issue_rate;
674
      VEC_free (rtx, gc, executing_insns);
675
      free (ready_ticks);
676
      if (FENCE_EXECUTING_INSNS (f))
677
        VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
678
                          VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
679
      if (FENCE_READY_TICKS (f))
680
        memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
681
    }
682
  else
683
    {
684
      edge edge_old = NULL, edge_new = NULL;
685
      edge candidate;
686
      succ_iterator si;
687
      insn_t succ;
688
 
689
      /* Find fallthrough edge.  */
690
      gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
691
      candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
692
 
693
      if (!candidate
694
          || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
695
              && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
696
        {
697
          /* No fallthrough edge leading to basic block of INSN.  */
698
          state_reset (FENCE_STATE (f));
699
          state_free (state);
700
 
701
          reset_target_context (FENCE_TC (f), true);
702
          delete_target_context (tc);
703
 
704
          FENCE_LAST_SCHEDULED_INSN (f) = NULL;
705
          FENCE_ISSUE_MORE (f) = issue_rate;
706
        }
707
      else
708
        if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
709
          {
710
            /* Would be weird if same insn is successor of several fallthrough
711
               edges.  */
712
            gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
713
                        != BLOCK_FOR_INSN (last_scheduled_insn_old));
714
 
715
            state_free (FENCE_STATE (f));
716
            FENCE_STATE (f) = state;
717
 
718
            delete_target_context (FENCE_TC (f));
719
            FENCE_TC (f) = tc;
720
 
721
            FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
722
            FENCE_ISSUE_MORE (f) = issue_more;
723
          }
724
        else
725
          {
726
            /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched.  */
727
            state_free (state);
728
            delete_target_context (tc);
729
 
730
            gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
731
                        != BLOCK_FOR_INSN (last_scheduled_insn));
732
          }
733
 
734
        /* Find edge of first predecessor (last_scheduled_insn_old->insn).  */
735
        FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
736
                         SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
737
          {
738
            if (succ == insn)
739
              {
740
                /* No same successor allowed from several edges.  */
741
                gcc_assert (!edge_old);
742
                edge_old = si.e1;
743
              }
744
          }
745
        /* Find edge of second predecessor (last_scheduled_insn->insn).  */
746
        FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
747
                         SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
748
          {
749
            if (succ == insn)
750
              {
751
                /* No same successor allowed from several edges.  */
752
                gcc_assert (!edge_new);
753
                edge_new = si.e1;
754
              }
755
          }
756
 
757
        /* Check if we can choose most probable predecessor.  */
758
        if (edge_old == NULL || edge_new == NULL)
759
          {
760
            reset_deps_context (FENCE_DC (f));
761
            delete_deps_context (dc);
762
            VEC_free (rtx, gc, executing_insns);
763
            free (ready_ticks);
764
 
765
            FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
766
            if (FENCE_EXECUTING_INSNS (f))
767
              VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
768
                                VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
769
            if (FENCE_READY_TICKS (f))
770
              memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
771
          }
772
        else
773
          if (edge_new->probability > edge_old->probability)
774
            {
775
              delete_deps_context (FENCE_DC (f));
776
              FENCE_DC (f) = dc;
777
              VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
778
              FENCE_EXECUTING_INSNS (f) = executing_insns;
779
              free (FENCE_READY_TICKS (f));
780
              FENCE_READY_TICKS (f) = ready_ticks;
781
              FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
782
              FENCE_CYCLE (f) = cycle;
783
            }
784
          else
785
            {
786
              /* Leave DC and CYCLE untouched.  */
787
              delete_deps_context (dc);
788
              VEC_free (rtx, gc, executing_insns);
789
              free (ready_ticks);
790
            }
791
    }
792
 
793
  /* Fill remaining invariant fields.  */
794
  if (after_stall_p)
795
    FENCE_AFTER_STALL_P (f) = 1;
796
 
797
  FENCE_ISSUED_INSNS (f) = 0;
798
  FENCE_STARTS_CYCLE_P (f) = 1;
799
  FENCE_SCHED_NEXT (f) = NULL;
800
}
801
 
802
/* Add a new fence to NEW_FENCES list, initializing it from all
803
   other parameters.  */
804
static void
805
add_to_fences (flist_tail_t new_fences, insn_t insn,
806
               state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
807
               VEC(rtx, gc) *executing_insns, int *ready_ticks,
808
               int ready_ticks_size, rtx sched_next, int cycle,
809
               int cycle_issued_insns, int issue_rate,
810
               bool starts_cycle_p, bool after_stall_p)
811
{
812
  fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
813
 
814
  if (! f)
815
    {
816
      flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
817
                 last_scheduled_insn, executing_insns, ready_ticks,
818
                 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
819
                 issue_rate, starts_cycle_p, after_stall_p);
820
 
821
      FLIST_TAIL_TAILP (new_fences)
822
        = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
823
    }
824
  else
825
    {
826
      merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
827
                    executing_insns, ready_ticks, ready_ticks_size,
828
                    sched_next, cycle, issue_rate, after_stall_p);
829
    }
830
}
831
 
832
/* Move the first fence in the OLD_FENCES list to NEW_FENCES.  */
833
void
834
move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
835
{
836
  fence_t f, old;
837
  flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
838
 
839
  old = FLIST_FENCE (old_fences);
840
  f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
841
                    FENCE_INSN (FLIST_FENCE (old_fences)));
842
  if (f)
843
    {
844
      merge_fences (f, old->insn, old->state, old->dc, old->tc,
845
                    old->last_scheduled_insn, old->executing_insns,
846
                    old->ready_ticks, old->ready_ticks_size,
847
                    old->sched_next, old->cycle, old->issue_more,
848
                    old->after_stall_p);
849
    }
850
  else
851
    {
852
      _list_add (tailp);
853
      FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
854
      *FLIST_FENCE (*tailp) = *old;
855
      init_fence_for_scheduling (FLIST_FENCE (*tailp));
856
    }
857
  FENCE_INSN (old) = NULL;
858
}
859
 
860
/* Add a new fence to NEW_FENCES list and initialize most of its data
861
   as a clean one.  */
862
void
863
add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
864
{
865
  int ready_ticks_size = get_max_uid () + 1;
866
 
867
  add_to_fences (new_fences,
868
                 succ, state_create (), create_deps_context (),
869
                 create_target_context (true),
870
                 NULL_RTX, NULL,
871
                 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
872
                 NULL_RTX, FENCE_CYCLE (fence) + 1,
873
                 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
874
}
875
 
876
/* Add a new fence to NEW_FENCES list and initialize all of its data
877
   from FENCE and SUCC.  */
878
void
879
add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
880
{
881
  int * new_ready_ticks
882
    = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
883
 
884
  memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
885
          FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
886
  add_to_fences (new_fences,
887
                 succ, state_create_copy (FENCE_STATE (fence)),
888
                 create_copy_of_deps_context (FENCE_DC (fence)),
889
                 create_copy_of_target_context (FENCE_TC (fence)),
890
                 FENCE_LAST_SCHEDULED_INSN (fence),
891
                 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
892
                 new_ready_ticks,
893
                 FENCE_READY_TICKS_SIZE (fence),
894
                 FENCE_SCHED_NEXT (fence),
895
                 FENCE_CYCLE (fence),
896
                 FENCE_ISSUED_INSNS (fence),
897
                 FENCE_ISSUE_MORE (fence),
898
                 FENCE_STARTS_CYCLE_P (fence),
899
                 FENCE_AFTER_STALL_P (fence));
900
}
901
 
902
 
903
/* Functions to work with regset and nop pools.  */
904
 
905
/* Returns the new regset from pool.  It might have some of the bits set
906
   from the previous usage.  */
907
regset
908
get_regset_from_pool (void)
909
{
910
  regset rs;
911
 
912
  if (regset_pool.n != 0)
913
    rs = regset_pool.v[--regset_pool.n];
914
  else
915
    /* We need to create the regset.  */
916
    {
917
      rs = ALLOC_REG_SET (&reg_obstack);
918
 
919
      if (regset_pool.nn == regset_pool.ss)
920
        regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
921
                                     (regset_pool.ss = 2 * regset_pool.ss + 1));
922
      regset_pool.vv[regset_pool.nn++] = rs;
923
    }
924
 
925
  regset_pool.diff++;
926
 
927
  return rs;
928
}
929
 
930
/* Same as above, but returns the empty regset.  */
931
regset
932
get_clear_regset_from_pool (void)
933
{
934
  regset rs = get_regset_from_pool ();
935
 
936
  CLEAR_REG_SET (rs);
937
  return rs;
938
}
939
 
940
/* Return regset RS to the pool for future use.  */
941
void
942
return_regset_to_pool (regset rs)
943
{
944
  gcc_assert (rs);
945
  regset_pool.diff--;
946
 
947
  if (regset_pool.n == regset_pool.s)
948
    regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
949
                                (regset_pool.s = 2 * regset_pool.s + 1));
950
  regset_pool.v[regset_pool.n++] = rs;
951
}
952
 
953
#ifdef ENABLE_CHECKING
954
/* This is used as a qsort callback for sorting regset pool stacks.
955
   X and XX are addresses of two regsets.  They are never equal.  */
956
static int
957
cmp_v_in_regset_pool (const void *x, const void *xx)
958
{
959
  return *((const regset *) x) - *((const regset *) xx);
960
}
961
#endif
962
 
963
/*  Free the regset pool possibly checking for memory leaks.  */
964
void
965
free_regset_pool (void)
966
{
967
#ifdef ENABLE_CHECKING
968
  {
969
    regset *v = regset_pool.v;
970
    int i = 0;
971
    int n = regset_pool.n;
972
 
973
    regset *vv = regset_pool.vv;
974
    int ii = 0;
975
    int nn = regset_pool.nn;
976
 
977
    int diff = 0;
978
 
979
    gcc_assert (n <= nn);
980
 
981
    /* Sort both vectors so it will be possible to compare them.  */
982
    qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
983
    qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
984
 
985
    while (ii < nn)
986
      {
987
        if (v[i] == vv[ii])
988
          i++;
989
        else
990
          /* VV[II] was lost.  */
991
          diff++;
992
 
993
        ii++;
994
      }
995
 
996
    gcc_assert (diff == regset_pool.diff);
997
  }
998
#endif
999
 
1000
  /* If not true - we have a memory leak.  */
1001
  gcc_assert (regset_pool.diff == 0);
1002
 
1003
  while (regset_pool.n)
1004
    {
1005
      --regset_pool.n;
1006
      FREE_REG_SET (regset_pool.v[regset_pool.n]);
1007
    }
1008
 
1009
  free (regset_pool.v);
1010
  regset_pool.v = NULL;
1011
  regset_pool.s = 0;
1012
 
1013
  free (regset_pool.vv);
1014
  regset_pool.vv = NULL;
1015
  regset_pool.nn = 0;
1016
  regset_pool.ss = 0;
1017
 
1018
  regset_pool.diff = 0;
1019
}
1020
 
1021
 
1022
/* Functions to work with nop pools.  NOP insns are used as temporary
1023
   placeholders of the insns being scheduled to allow correct update of
1024
   the data sets.  When update is finished, NOPs are deleted.  */
1025
 
1026
/* A vinsn that is used to represent a nop.  This vinsn is shared among all
1027
   nops sel-sched generates.  */
1028
static vinsn_t nop_vinsn = NULL;
1029
 
1030
/* Emit a nop before INSN, taking it from pool.  */
1031
insn_t
1032
get_nop_from_pool (insn_t insn)
1033
{
1034
  insn_t nop;
1035
  bool old_p = nop_pool.n != 0;
1036
  int flags;
1037
 
1038
  if (old_p)
1039
    nop = nop_pool.v[--nop_pool.n];
1040
  else
1041
    nop = nop_pattern;
1042
 
1043
  nop = emit_insn_before (nop, insn);
1044
 
1045
  if (old_p)
1046
    flags = INSN_INIT_TODO_SSID;
1047
  else
1048
    flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1049
 
1050
  set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1051
  sel_init_new_insn (nop, flags);
1052
 
1053
  return nop;
1054
}
1055
 
1056
/* Remove NOP from the instruction stream and return it to the pool.  */
1057
void
1058
return_nop_to_pool (insn_t nop, bool full_tidying)
1059
{
1060
  gcc_assert (INSN_IN_STREAM_P (nop));
1061
  sel_remove_insn (nop, false, full_tidying);
1062
 
1063
  if (nop_pool.n == nop_pool.s)
1064
    nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1065
                             (nop_pool.s = 2 * nop_pool.s + 1));
1066
  nop_pool.v[nop_pool.n++] = nop;
1067
}
1068
 
1069
/* Free the nop pool.  */
1070
void
1071
free_nop_pool (void)
1072
{
1073
  nop_pool.n = 0;
1074
  nop_pool.s = 0;
1075
  free (nop_pool.v);
1076
  nop_pool.v = NULL;
1077
}
1078
 
1079
 
1080
/* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1081
   The callback is given two rtxes XX and YY and writes the new rtxes
1082
   to NX and NY in case some needs to be skipped.  */
1083
static int
1084
skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1085
{
1086
  const_rtx x = *xx;
1087
  const_rtx y = *yy;
1088
 
1089
  if (GET_CODE (x) == UNSPEC
1090
      && (targetm.sched.skip_rtx_p == NULL
1091
          || targetm.sched.skip_rtx_p (x)))
1092
    {
1093
      *nx = XVECEXP (x, 0, 0);
1094
      *ny = CONST_CAST_RTX (y);
1095
      return 1;
1096
    }
1097
 
1098
  if (GET_CODE (y) == UNSPEC
1099
      && (targetm.sched.skip_rtx_p == NULL
1100
          || targetm.sched.skip_rtx_p (y)))
1101
    {
1102
      *nx = CONST_CAST_RTX (x);
1103
      *ny = XVECEXP (y, 0, 0);
1104
      return 1;
1105
    }
1106
 
1107
  return 0;
1108
}
1109
 
1110
/* Callback, called from hash_rtx_cb.  Helps to hash UNSPEC rtx X in a correct way
1111
   to support ia64 speculation.  When changes are needed, new rtx X and new mode
1112
   NMODE are written, and the callback returns true.  */
1113
static int
1114
hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1115
                           rtx *nx, enum machine_mode* nmode)
1116
{
1117
  if (GET_CODE (x) == UNSPEC
1118
      && targetm.sched.skip_rtx_p
1119
      && targetm.sched.skip_rtx_p (x))
1120
    {
1121
      *nx = XVECEXP (x, 0 ,0);
1122
      *nmode = VOIDmode;
1123
      return 1;
1124
    }
1125
 
1126
  return 0;
1127
}
1128
 
1129
/* Returns LHS and RHS are ok to be scheduled separately.  */
1130
static bool
1131
lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1132
{
1133
  if (lhs == NULL || rhs == NULL)
1134
    return false;
1135
 
1136
  /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1137
     to use reg, if const can be used.  Moreover, scheduling const as rhs may
1138
     lead to mode mismatch cause consts don't have modes but they could be
1139
     merged from branches where the same const used in different modes.  */
1140
  if (CONSTANT_P (rhs))
1141
    return false;
1142
 
1143
  /* ??? Do not rename predicate registers to avoid ICEs in bundling.  */
1144
  if (COMPARISON_P (rhs))
1145
      return false;
1146
 
1147
  /* Do not allow single REG to be an rhs.  */
1148
  if (REG_P (rhs))
1149
    return false;
1150
 
1151
  /* See comment at find_used_regs_1 (*1) for explanation of this
1152
     restriction.  */
1153
  /* FIXME: remove this later.  */
1154
  if (MEM_P (lhs))
1155
    return false;
1156
 
1157
  /* This will filter all tricky things like ZERO_EXTRACT etc.
1158
     For now we don't handle it.  */
1159
  if (!REG_P (lhs) && !MEM_P (lhs))
1160
    return false;
1161
 
1162
  return true;
1163
}
1164
 
1165
/* Initialize vinsn VI for INSN.  Only for use from vinsn_create ().  When
1166
   FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable.  This is
1167
   used e.g. for insns from recovery blocks.  */
1168
static void
1169
vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1170
{
1171
  hash_rtx_callback_function hrcf;
1172
  int insn_class;
1173
 
1174
  VINSN_INSN_RTX (vi) = insn;
1175
  VINSN_COUNT (vi) = 0;
1176
  vi->cost = -1;
1177
 
1178
  if (INSN_NOP_P (insn))
1179
    return;
1180
 
1181
  if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1182
    init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1183
  else
1184
    deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1185
 
1186
  /* Hash vinsn depending on whether it is separable or not.  */
1187
  hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1188
  if (VINSN_SEPARABLE_P (vi))
1189
    {
1190
      rtx rhs = VINSN_RHS (vi);
1191
 
1192
      VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1193
                                     NULL, NULL, false, hrcf);
1194
      VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1195
                                         VOIDmode, NULL, NULL,
1196
                                         false, hrcf);
1197
    }
1198
  else
1199
    {
1200
      VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1201
                                     NULL, NULL, false, hrcf);
1202
      VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1203
    }
1204
 
1205
  insn_class = haifa_classify_insn (insn);
1206
  if (insn_class >= 2
1207
      && (!targetm.sched.get_insn_spec_ds
1208
          || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1209
              == 0)))
1210
    VINSN_MAY_TRAP_P (vi) = true;
1211
  else
1212
    VINSN_MAY_TRAP_P (vi) = false;
1213
}
1214
 
1215
/* Indicate that VI has become the part of an rtx object.  */
1216
void
1217
vinsn_attach (vinsn_t vi)
1218
{
1219
  /* Assert that VI is not pending for deletion.  */
1220
  gcc_assert (VINSN_INSN_RTX (vi));
1221
 
1222
  VINSN_COUNT (vi)++;
1223
}
1224
 
1225
/* Create and init VI from the INSN.  Use UNIQUE_P for determining the correct
1226
   VINSN_TYPE (VI).  */
1227
static vinsn_t
1228
vinsn_create (insn_t insn, bool force_unique_p)
1229
{
1230
  vinsn_t vi = XCNEW (struct vinsn_def);
1231
 
1232
  vinsn_init (vi, insn, force_unique_p);
1233
  return vi;
1234
}
1235
 
1236
/* Return a copy of VI.  When REATTACH_P is true, detach VI and attach
1237
   the copy.  */
1238
vinsn_t
1239
vinsn_copy (vinsn_t vi, bool reattach_p)
1240
{
1241
  rtx copy;
1242
  bool unique = VINSN_UNIQUE_P (vi);
1243
  vinsn_t new_vi;
1244
 
1245
  copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1246
  new_vi = create_vinsn_from_insn_rtx (copy, unique);
1247
  if (reattach_p)
1248
    {
1249
      vinsn_detach (vi);
1250
      vinsn_attach (new_vi);
1251
    }
1252
 
1253
  return new_vi;
1254
}
1255
 
1256
/* Delete the VI vinsn and free its data.  */
1257
static void
1258
vinsn_delete (vinsn_t vi)
1259
{
1260
  gcc_assert (VINSN_COUNT (vi) == 0);
1261
 
1262
  if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1263
    {
1264
      return_regset_to_pool (VINSN_REG_SETS (vi));
1265
      return_regset_to_pool (VINSN_REG_USES (vi));
1266
      return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1267
    }
1268
 
1269
  free (vi);
1270
}
1271
 
1272
/* Indicate that VI is no longer a part of some rtx object.
1273
   Remove VI if it is no longer needed.  */
1274
void
1275
vinsn_detach (vinsn_t vi)
1276
{
1277
  gcc_assert (VINSN_COUNT (vi) > 0);
1278
 
1279
  if (--VINSN_COUNT (vi) == 0)
1280
    vinsn_delete (vi);
1281
}
1282
 
1283
/* Returns TRUE if VI is a branch.  */
1284
bool
1285
vinsn_cond_branch_p (vinsn_t vi)
1286
{
1287
  insn_t insn;
1288
 
1289
  if (!VINSN_UNIQUE_P (vi))
1290
    return false;
1291
 
1292
  insn = VINSN_INSN_RTX (vi);
1293
  if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1294
    return false;
1295
 
1296
  return control_flow_insn_p (insn);
1297
}
1298
 
1299
/* Return latency of INSN.  */
1300
static int
1301
sel_insn_rtx_cost (rtx insn)
1302
{
1303
  int cost;
1304
 
1305
  /* A USE insn, or something else we don't need to
1306
     understand.  We can't pass these directly to
1307
     result_ready_cost or insn_default_latency because it will
1308
     trigger a fatal error for unrecognizable insns.  */
1309
  if (recog_memoized (insn) < 0)
1310
    cost = 0;
1311
  else
1312
    {
1313
      cost = insn_default_latency (insn);
1314
 
1315
      if (cost < 0)
1316
        cost = 0;
1317
    }
1318
 
1319
  return cost;
1320
}
1321
 
1322
/* Return the cost of the VI.
1323
   !!! FIXME: Unify with haifa-sched.c: insn_cost ().  */
1324
int
1325
sel_vinsn_cost (vinsn_t vi)
1326
{
1327
  int cost = vi->cost;
1328
 
1329
  if (cost < 0)
1330
    {
1331
      cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1332
      vi->cost = cost;
1333
    }
1334
 
1335
  return cost;
1336
}
1337
 
1338
 
1339
/* Functions for insn emitting.  */
1340
 
1341
/* Emit new insn after AFTER based on PATTERN and initialize its data from
1342
   EXPR and SEQNO.  */
1343
insn_t
1344
sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1345
{
1346
  insn_t new_insn;
1347
 
1348
  gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1349
 
1350
  new_insn = emit_insn_after (pattern, after);
1351
  set_insn_init (expr, NULL, seqno);
1352
  sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1353
 
1354
  return new_insn;
1355
}
1356
 
1357
/* Force newly generated vinsns to be unique.  */
1358
static bool init_insn_force_unique_p = false;
1359
 
1360
/* Emit new speculation recovery insn after AFTER based on PATTERN and
1361
   initialize its data from EXPR and SEQNO.  */
1362
insn_t
1363
sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1364
                                      insn_t after)
1365
{
1366
  insn_t insn;
1367
 
1368
  gcc_assert (!init_insn_force_unique_p);
1369
 
1370
  init_insn_force_unique_p = true;
1371
  insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1372
  CANT_MOVE (insn) = 1;
1373
  init_insn_force_unique_p = false;
1374
 
1375
  return insn;
1376
}
1377
 
1378
/* Emit new insn after AFTER based on EXPR and SEQNO.  If VINSN is not NULL,
1379
   take it as a new vinsn instead of EXPR's vinsn.
1380
   We simplify insns later, after scheduling region in
1381
   simplify_changed_insns.  */
1382
insn_t
1383
sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1384
                              insn_t after)
1385
{
1386
  expr_t emit_expr;
1387
  insn_t insn;
1388
  int flags;
1389
 
1390
  emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1391
                             seqno);
1392
  insn = EXPR_INSN_RTX (emit_expr);
1393
  add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1394
 
1395
  flags = INSN_INIT_TODO_SSID;
1396
  if (INSN_LUID (insn) == 0)
1397
    flags |= INSN_INIT_TODO_LUID;
1398
  sel_init_new_insn (insn, flags);
1399
 
1400
  return insn;
1401
}
1402
 
1403
/* Move insn from EXPR after AFTER.  */
1404
insn_t
1405
sel_move_insn (expr_t expr, int seqno, insn_t after)
1406
{
1407
  insn_t insn = EXPR_INSN_RTX (expr);
1408
  basic_block bb = BLOCK_FOR_INSN (after);
1409
  insn_t next = NEXT_INSN (after);
1410
 
1411
  /* Assert that in move_op we disconnected this insn properly.  */
1412
  gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1413
  PREV_INSN (insn) = after;
1414
  NEXT_INSN (insn) = next;
1415
 
1416
  NEXT_INSN (after) = insn;
1417
  PREV_INSN (next) = insn;
1418
 
1419
  /* Update links from insn to bb and vice versa.  */
1420
  df_insn_change_bb (insn, bb);
1421
  if (BB_END (bb) == after)
1422
    BB_END (bb) = insn;
1423
 
1424
  prepare_insn_expr (insn, seqno);
1425
  return insn;
1426
}
1427
 
1428
 
1429
/* Functions to work with right-hand sides.  */
1430
 
1431
/* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1432
   VECT and return true when found.  Use NEW_VINSN for comparison only when
1433
   COMPARE_VINSNS is true.  Write to INDP the index on which
1434
   the search has stopped, such that inserting the new element at INDP will
1435
   retain VECT's sort order.  */
1436
static bool
1437
find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1438
                        unsigned uid, vinsn_t new_vinsn,
1439
                        bool compare_vinsns, int *indp)
1440
{
1441
  expr_history_def *arr;
1442
  int i, j, len = VEC_length (expr_history_def, vect);
1443
 
1444
  if (len == 0)
1445
    {
1446
      *indp = 0;
1447
      return false;
1448
    }
1449
 
1450
  arr = VEC_address (expr_history_def, vect);
1451
  i = 0, j = len - 1;
1452
 
1453
  while (i <= j)
1454
    {
1455
      unsigned auid = arr[i].uid;
1456
      vinsn_t avinsn = arr[i].new_expr_vinsn;
1457
 
1458
      if (auid == uid
1459
          /* When undoing transformation on a bookkeeping copy, the new vinsn
1460
             may not be exactly equal to the one that is saved in the vector.
1461
             This is because the insn whose copy we're checking was possibly
1462
             substituted itself.  */
1463
          && (! compare_vinsns
1464
              || vinsn_equal_p (avinsn, new_vinsn)))
1465
        {
1466
          *indp = i;
1467
          return true;
1468
        }
1469
      else if (auid > uid)
1470
        break;
1471
      i++;
1472
    }
1473
 
1474
  *indp = i;
1475
  return false;
1476
}
1477
 
1478
/* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT.  Return
1479
   the position found or -1, if no such value is in vector.
1480
   Search also for UIDs of insn's originators, if ORIGINATORS_P is true.  */
1481
int
1482
find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
1483
                      vinsn_t new_vinsn, bool originators_p)
1484
{
1485
  int ind;
1486
 
1487
  if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1488
                              false, &ind))
1489
    return ind;
1490
 
1491
  if (INSN_ORIGINATORS (insn) && originators_p)
1492
    {
1493
      unsigned uid;
1494
      bitmap_iterator bi;
1495
 
1496
      EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1497
        if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1498
          return ind;
1499
    }
1500
 
1501
  return -1;
1502
}
1503
 
1504
/* Insert new element in a sorted history vector pointed to by PVECT,
1505
   if it is not there already.  The element is searched using
1506
   UID/NEW_EXPR_VINSN pair.  TYPE, OLD_EXPR_VINSN and SPEC_DS save
1507
   the history of a transformation.  */
1508
void
1509
insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1510
                        unsigned uid, enum local_trans_type type,
1511
                        vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1512
                        ds_t spec_ds)
1513
{
1514
  VEC(expr_history_def, heap) *vect = *pvect;
1515
  expr_history_def temp;
1516
  bool res;
1517
  int ind;
1518
 
1519
  res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1520
 
1521
  if (res)
1522
    {
1523
      expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1524
 
1525
      /* It is possible that speculation types of expressions that were
1526
         propagated through different paths will be different here.  In this
1527
         case, merge the status to get the correct check later.  */
1528
      if (phist->spec_ds != spec_ds)
1529
        phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1530
      return;
1531
    }
1532
 
1533
  temp.uid = uid;
1534
  temp.old_expr_vinsn = old_expr_vinsn;
1535
  temp.new_expr_vinsn = new_expr_vinsn;
1536
  temp.spec_ds = spec_ds;
1537
  temp.type = type;
1538
 
1539
  vinsn_attach (old_expr_vinsn);
1540
  vinsn_attach (new_expr_vinsn);
1541
  VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1542
  *pvect = vect;
1543
}
1544
 
1545
/* Free history vector PVECT.  */
1546
static void
1547
free_history_vect (VEC (expr_history_def, heap) **pvect)
1548
{
1549
  unsigned i;
1550
  expr_history_def *phist;
1551
 
1552
  if (! *pvect)
1553
    return;
1554
 
1555
  for (i = 0;
1556
       VEC_iterate (expr_history_def, *pvect, i, phist);
1557
       i++)
1558
    {
1559
      vinsn_detach (phist->old_expr_vinsn);
1560
      vinsn_detach (phist->new_expr_vinsn);
1561
    }
1562
 
1563
  VEC_free (expr_history_def, heap, *pvect);
1564
  *pvect = NULL;
1565
}
1566
 
1567
/* Merge vector FROM to PVECT.  */
1568
static void
1569
merge_history_vect (VEC (expr_history_def, heap) **pvect,
1570
                    VEC (expr_history_def, heap) *from)
1571
{
1572
  expr_history_def *phist;
1573
  int i;
1574
 
1575
  /* We keep this vector sorted.  */
1576
  for (i = 0; VEC_iterate (expr_history_def, from, i, phist); i++)
1577
    insert_in_history_vect (pvect, phist->uid, phist->type,
1578
                            phist->old_expr_vinsn, phist->new_expr_vinsn,
1579
                            phist->spec_ds);
1580
}
1581
 
1582
/* Compare two vinsns as rhses if possible and as vinsns otherwise.  */
1583
bool
1584
vinsn_equal_p (vinsn_t x, vinsn_t y)
1585
{
1586
  rtx_equal_p_callback_function repcf;
1587
 
1588
  if (x == y)
1589
    return true;
1590
 
1591
  if (VINSN_TYPE (x) != VINSN_TYPE (y))
1592
    return false;
1593
 
1594
  if (VINSN_HASH (x) != VINSN_HASH (y))
1595
    return false;
1596
 
1597
  repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1598
  if (VINSN_SEPARABLE_P (x))
1599
    {
1600
      /* Compare RHSes of VINSNs.  */
1601
      gcc_assert (VINSN_RHS (x));
1602
      gcc_assert (VINSN_RHS (y));
1603
 
1604
      return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1605
    }
1606
 
1607
  return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1608
}
1609
 
1610
 
1611
/* Functions for working with expressions.  */
1612
 
1613
/* Initialize EXPR.  */
1614
static void
1615
init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1616
           int sched_times, int orig_bb_index, ds_t spec_done_ds,
1617
           ds_t spec_to_check_ds, int orig_sched_cycle,
1618
           VEC(expr_history_def, heap) *history, signed char target_available,
1619
           bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1620
           bool cant_move)
1621
{
1622
  vinsn_attach (vi);
1623
 
1624
  EXPR_VINSN (expr) = vi;
1625
  EXPR_SPEC (expr) = spec;
1626
  EXPR_USEFULNESS (expr) = use;
1627
  EXPR_PRIORITY (expr) = priority;
1628
  EXPR_PRIORITY_ADJ (expr) = 0;
1629
  EXPR_SCHED_TIMES (expr) = sched_times;
1630
  EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1631
  EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1632
  EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1633
  EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1634
 
1635
  if (history)
1636
    EXPR_HISTORY_OF_CHANGES (expr) = history;
1637
  else
1638
    EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1639
 
1640
  EXPR_TARGET_AVAILABLE (expr) = target_available;
1641
  EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1642
  EXPR_WAS_RENAMED (expr) = was_renamed;
1643
  EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1644
  EXPR_CANT_MOVE (expr) = cant_move;
1645
}
1646
 
1647
/* Make a copy of the expr FROM into the expr TO.  */
1648
void
1649
copy_expr (expr_t to, expr_t from)
1650
{
1651
  VEC(expr_history_def, heap) *temp = NULL;
1652
 
1653
  if (EXPR_HISTORY_OF_CHANGES (from))
1654
    {
1655
      unsigned i;
1656
      expr_history_def *phist;
1657
 
1658
      temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
1659
      for (i = 0;
1660
           VEC_iterate (expr_history_def, temp, i, phist);
1661
           i++)
1662
        {
1663
          vinsn_attach (phist->old_expr_vinsn);
1664
          vinsn_attach (phist->new_expr_vinsn);
1665
        }
1666
    }
1667
 
1668
  init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1669
             EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1670
             EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1671
             EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1672
             EXPR_ORIG_SCHED_CYCLE (from), temp,
1673
             EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1674
             EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1675
             EXPR_CANT_MOVE (from));
1676
}
1677
 
1678
/* Same, but the final expr will not ever be in av sets, so don't copy
1679
   "uninteresting" data such as bitmap cache.  */
1680
void
1681
copy_expr_onside (expr_t to, expr_t from)
1682
{
1683
  init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1684
             EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1685
             EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1686
             EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1687
             EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1688
             EXPR_CANT_MOVE (from));
1689
}
1690
 
1691
/* Prepare the expr of INSN for scheduling.  Used when moving insn and when
1692
   initializing new insns.  */
1693
static void
1694
prepare_insn_expr (insn_t insn, int seqno)
1695
{
1696
  expr_t expr = INSN_EXPR (insn);
1697
  ds_t ds;
1698
 
1699
  INSN_SEQNO (insn) = seqno;
1700
  EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1701
  EXPR_SPEC (expr) = 0;
1702
  EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1703
  EXPR_WAS_SUBSTITUTED (expr) = 0;
1704
  EXPR_WAS_RENAMED (expr) = 0;
1705
  EXPR_TARGET_AVAILABLE (expr) = 1;
1706
  INSN_LIVE_VALID_P (insn) = false;
1707
 
1708
  /* ??? If this expression is speculative, make its dependence
1709
     as weak as possible.  We can filter this expression later
1710
     in process_spec_exprs, because we do not distinguish
1711
     between the status we got during compute_av_set and the
1712
     existing status.  To be fixed.  */
1713
  ds = EXPR_SPEC_DONE_DS (expr);
1714
  if (ds)
1715
    EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1716
 
1717
  free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1718
}
1719
 
1720
/* Update target_available bits when merging exprs TO and FROM.  SPLIT_POINT
1721
   is non-null when expressions are merged from different successors at
1722
   a split point.  */
1723
static void
1724
update_target_availability (expr_t to, expr_t from, insn_t split_point)
1725
{
1726
  if (EXPR_TARGET_AVAILABLE (to) < 0
1727
      || EXPR_TARGET_AVAILABLE (from) < 0)
1728
    EXPR_TARGET_AVAILABLE (to) = -1;
1729
  else
1730
    {
1731
      /* We try to detect the case when one of the expressions
1732
         can only be reached through another one.  In this case,
1733
         we can do better.  */
1734
      if (split_point == NULL)
1735
        {
1736
          int toind, fromind;
1737
 
1738
          toind = EXPR_ORIG_BB_INDEX (to);
1739
          fromind = EXPR_ORIG_BB_INDEX (from);
1740
 
1741
          if (toind && toind == fromind)
1742
            /* Do nothing -- everything is done in
1743
               merge_with_other_exprs.  */
1744
            ;
1745
          else
1746
            EXPR_TARGET_AVAILABLE (to) = -1;
1747
        }
1748
      else if (EXPR_TARGET_AVAILABLE (from) == 0
1749
               && EXPR_LHS (from)
1750
               && REG_P (EXPR_LHS (from))
1751
               && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1752
        EXPR_TARGET_AVAILABLE (to) = -1;
1753
      else
1754
        EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1755
    }
1756
}
1757
 
1758
/* Update speculation bits when merging exprs TO and FROM.  SPLIT_POINT
1759
   is non-null when expressions are merged from different successors at
1760
   a split point.  */
1761
static void
1762
update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1763
{
1764
  ds_t old_to_ds, old_from_ds;
1765
 
1766
  old_to_ds = EXPR_SPEC_DONE_DS (to);
1767
  old_from_ds = EXPR_SPEC_DONE_DS (from);
1768
 
1769
  EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1770
  EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1771
  EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1772
 
1773
  /* When merging e.g. control & data speculative exprs, or a control
1774
     speculative with a control&data speculative one, we really have
1775
     to change vinsn too.  Also, when speculative status is changed,
1776
     we also need to record this as a transformation in expr's history.  */
1777
  if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1778
    {
1779
      old_to_ds = ds_get_speculation_types (old_to_ds);
1780
      old_from_ds = ds_get_speculation_types (old_from_ds);
1781
 
1782
      if (old_to_ds != old_from_ds)
1783
        {
1784
          ds_t record_ds;
1785
 
1786
          /* When both expressions are speculative, we need to change
1787
             the vinsn first.  */
1788
          if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1789
            {
1790
              int res;
1791
 
1792
              res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1793
              gcc_assert (res >= 0);
1794
            }
1795
 
1796
          if (split_point != NULL)
1797
            {
1798
              /* Record the change with proper status.  */
1799
              record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1800
              record_ds &= ~(old_to_ds & SPECULATIVE);
1801
              record_ds &= ~(old_from_ds & SPECULATIVE);
1802
 
1803
              insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1804
                                      INSN_UID (split_point), TRANS_SPECULATION,
1805
                                      EXPR_VINSN (from), EXPR_VINSN (to),
1806
                                      record_ds);
1807
            }
1808
        }
1809
    }
1810
}
1811
 
1812
 
1813
/* Merge bits of FROM expr to TO expr.  When SPLIT_POINT is not NULL,
1814
   this is done along different paths.  */
1815
void
1816
merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1817
{
1818
  /* Choose the maximum of the specs of merged exprs.  This is required
1819
     for correctness of bookkeeping.  */
1820
  if (EXPR_SPEC (to) < EXPR_SPEC (from))
1821
    EXPR_SPEC (to) = EXPR_SPEC (from);
1822
 
1823
  if (split_point)
1824
    EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1825
  else
1826
    EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1827
                                EXPR_USEFULNESS (from));
1828
 
1829
  if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1830
    EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1831
 
1832
  if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1833
    EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1834
 
1835
  if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1836
    EXPR_ORIG_BB_INDEX (to) = 0;
1837
 
1838
  EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1839
                                    EXPR_ORIG_SCHED_CYCLE (from));
1840
 
1841
  EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1842
  EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1843
  EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1844
 
1845
  merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1846
                      EXPR_HISTORY_OF_CHANGES (from));
1847
  update_target_availability (to, from, split_point);
1848
  update_speculative_bits (to, from, split_point);
1849
}
1850
 
1851
/* Merge bits of FROM expr to TO expr.  Vinsns in the exprs should be equal
1852
   in terms of vinsn_equal_p.  SPLIT_POINT is non-null when expressions
1853
   are merged from different successors at a split point.  */
1854
void
1855
merge_expr (expr_t to, expr_t from, insn_t split_point)
1856
{
1857
  vinsn_t to_vi = EXPR_VINSN (to);
1858
  vinsn_t from_vi = EXPR_VINSN (from);
1859
 
1860
  gcc_assert (vinsn_equal_p (to_vi, from_vi));
1861
 
1862
  /* Make sure that speculative pattern is propagated into exprs that
1863
     have non-speculative one.  This will provide us with consistent
1864
     speculative bits and speculative patterns inside expr.  */
1865
  if (EXPR_SPEC_DONE_DS (to) == 0
1866
      && EXPR_SPEC_DONE_DS (from) != 0)
1867
    change_vinsn_in_expr (to, EXPR_VINSN (from));
1868
 
1869
  merge_expr_data (to, from, split_point);
1870
  gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1871
}
1872
 
1873
/* Clear the information of this EXPR.  */
1874
void
1875
clear_expr (expr_t expr)
1876
{
1877
 
1878
  vinsn_detach (EXPR_VINSN (expr));
1879
  EXPR_VINSN (expr) = NULL;
1880
 
1881
  free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1882
}
1883
 
1884
/* For a given LV_SET, mark EXPR having unavailable target register.  */
1885
static void
1886
set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1887
{
1888
  if (EXPR_SEPARABLE_P (expr))
1889
    {
1890
      if (REG_P (EXPR_LHS (expr))
1891
          && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1892
        {
1893
          /* If it's an insn like r1 = use (r1, ...), and it exists in
1894
             different forms in each of the av_sets being merged, we can't say
1895
             whether original destination register is available or not.
1896
             However, this still works if destination register is not used
1897
             in the original expression: if the branch at which LV_SET we're
1898
             looking here is not actually 'other branch' in sense that same
1899
             expression is available through it (but it can't be determined
1900
             at computation stage because of transformations on one of the
1901
             branches), it still won't affect the availability.
1902
             Liveness of a register somewhere on a code motion path means
1903
             it's either read somewhere on a codemotion path, live on
1904
             'other' branch, live at the point immediately following
1905
             the original operation, or is read by the original operation.
1906
             The latter case is filtered out in the condition below.
1907
             It still doesn't cover the case when register is defined and used
1908
             somewhere within the code motion path, and in this case we could
1909
             miss a unifying code motion along both branches using a renamed
1910
             register, but it won't affect a code correctness since upon
1911
             an actual code motion a bookkeeping code would be generated.  */
1912
          if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1913
                                      EXPR_LHS (expr)))
1914
            EXPR_TARGET_AVAILABLE (expr) = -1;
1915
          else
1916
            EXPR_TARGET_AVAILABLE (expr) = false;
1917
        }
1918
    }
1919
  else
1920
    {
1921
      unsigned regno;
1922
      reg_set_iterator rsi;
1923
 
1924
      EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1925
                                 0, regno, rsi)
1926
        if (bitmap_bit_p (lv_set, regno))
1927
          {
1928
            EXPR_TARGET_AVAILABLE (expr) = false;
1929
            break;
1930
          }
1931
 
1932
      EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1933
                                 0, regno, rsi)
1934
        if (bitmap_bit_p (lv_set, regno))
1935
          {
1936
            EXPR_TARGET_AVAILABLE (expr) = false;
1937
            break;
1938
          }
1939
    }
1940
}
1941
 
1942
/* Try to make EXPR speculative.  Return 1 when EXPR's pattern
1943
   or dependence status have changed, 2 when also the target register
1944
   became unavailable, 0 if nothing had to be changed.  */
1945
int
1946
speculate_expr (expr_t expr, ds_t ds)
1947
{
1948
  int res;
1949
  rtx orig_insn_rtx;
1950
  rtx spec_pat;
1951
  ds_t target_ds, current_ds;
1952
 
1953
  /* Obtain the status we need to put on EXPR.   */
1954
  target_ds = (ds & SPECULATIVE);
1955
  current_ds = EXPR_SPEC_DONE_DS (expr);
1956
  ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1957
 
1958
  orig_insn_rtx = EXPR_INSN_RTX (expr);
1959
 
1960
  res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1961
 
1962
  switch (res)
1963
    {
1964
    case 0:
1965
      EXPR_SPEC_DONE_DS (expr) = ds;
1966
      return current_ds != ds ? 1 : 0;
1967
 
1968
    case 1:
1969
      {
1970
        rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1971
        vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1972
 
1973
        change_vinsn_in_expr (expr, spec_vinsn);
1974
        EXPR_SPEC_DONE_DS (expr) = ds;
1975
        EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1976
 
1977
        /* Do not allow clobbering the address register of speculative
1978
           insns.  */
1979
        if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1980
                                    expr_dest_reg (expr)))
1981
          {
1982
            EXPR_TARGET_AVAILABLE (expr) = false;
1983
            return 2;
1984
          }
1985
 
1986
        return 1;
1987
      }
1988
 
1989
    case -1:
1990
      return -1;
1991
 
1992
    default:
1993
      gcc_unreachable ();
1994
      return -1;
1995
    }
1996
}
1997
 
1998
/* Return a destination register, if any, of EXPR.  */
1999
rtx
2000
expr_dest_reg (expr_t expr)
2001
{
2002
  rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2003
 
2004
  if (dest != NULL_RTX && REG_P (dest))
2005
    return dest;
2006
 
2007
  return NULL_RTX;
2008
}
2009
 
2010
/* Returns the REGNO of the R's destination.  */
2011
unsigned
2012
expr_dest_regno (expr_t expr)
2013
{
2014
  rtx dest = expr_dest_reg (expr);
2015
 
2016
  gcc_assert (dest != NULL_RTX);
2017
  return REGNO (dest);
2018
}
2019
 
2020
/* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2021
   AV_SET having unavailable target register.  */
2022
void
2023
mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2024
{
2025
  expr_t expr;
2026
  av_set_iterator avi;
2027
 
2028
  FOR_EACH_EXPR (expr, avi, join_set)
2029
    if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2030
      set_unavailable_target_for_expr (expr, lv_set);
2031
}
2032
 
2033
 
2034
/* Returns true if REG (at least partially) is present in REGS.  */
2035
bool
2036
register_unavailable_p (regset regs, rtx reg)
2037
{
2038
  unsigned regno, end_regno;
2039
 
2040
  regno = REGNO (reg);
2041
  if (bitmap_bit_p (regs, regno))
2042
    return true;
2043
 
2044
  end_regno = END_REGNO (reg);
2045
 
2046
  while (++regno < end_regno)
2047
    if (bitmap_bit_p (regs, regno))
2048
      return true;
2049
 
2050
  return false;
2051
}
2052
 
2053
/* Av set functions.  */
2054
 
2055
/* Add a new element to av set SETP.
2056
   Return the element added.  */
2057
static av_set_t
2058
av_set_add_element (av_set_t *setp)
2059
{
2060
  /* Insert at the beginning of the list.  */
2061
  _list_add (setp);
2062
  return *setp;
2063
}
2064
 
2065
/* Add EXPR to SETP.  */
2066
void
2067
av_set_add (av_set_t *setp, expr_t expr)
2068
{
2069
  av_set_t elem;
2070
 
2071
  gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2072
  elem = av_set_add_element (setp);
2073
  copy_expr (_AV_SET_EXPR (elem), expr);
2074
}
2075
 
2076
/* Same, but do not copy EXPR.  */
2077
static void
2078
av_set_add_nocopy (av_set_t *setp, expr_t expr)
2079
{
2080
  av_set_t elem;
2081
 
2082
  elem = av_set_add_element (setp);
2083
  *_AV_SET_EXPR (elem) = *expr;
2084
}
2085
 
2086
/* Remove expr pointed to by IP from the av_set.  */
2087
void
2088
av_set_iter_remove (av_set_iterator *ip)
2089
{
2090
  clear_expr (_AV_SET_EXPR (*ip->lp));
2091
  _list_iter_remove (ip);
2092
}
2093
 
2094
/* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2095
   sense of vinsn_equal_p function. Return NULL if no such expr is
2096
   in SET was found.  */
2097
expr_t
2098
av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2099
{
2100
  expr_t expr;
2101
  av_set_iterator i;
2102
 
2103
  FOR_EACH_EXPR (expr, i, set)
2104
    if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2105
      return expr;
2106
  return NULL;
2107
}
2108
 
2109
/* Same, but also remove the EXPR found.   */
2110
static expr_t
2111
av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2112
{
2113
  expr_t expr;
2114
  av_set_iterator i;
2115
 
2116
  FOR_EACH_EXPR_1 (expr, i, setp)
2117
    if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2118
      {
2119
        _list_iter_remove_nofree (&i);
2120
        return expr;
2121
      }
2122
  return NULL;
2123
}
2124
 
2125
/* Search for an expr in SET, such that it's equivalent to EXPR in the
2126
   sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2127
   Returns NULL if no such expr is in SET was found.  */
2128
static expr_t
2129
av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2130
{
2131
  expr_t cur_expr;
2132
  av_set_iterator i;
2133
 
2134
  FOR_EACH_EXPR (cur_expr, i, set)
2135
    {
2136
      if (cur_expr == expr)
2137
        continue;
2138
      if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2139
        return cur_expr;
2140
    }
2141
 
2142
  return NULL;
2143
}
2144
 
2145
/* If other expression is already in AVP, remove one of them.  */
2146
expr_t
2147
merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2148
{
2149
  expr_t expr2;
2150
 
2151
  expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2152
  if (expr2 != NULL)
2153
    {
2154
      /* Reset target availability on merge, since taking it only from one
2155
         of the exprs would be controversial for different code.  */
2156
      EXPR_TARGET_AVAILABLE (expr2) = -1;
2157
      EXPR_USEFULNESS (expr2) = 0;
2158
 
2159
      merge_expr (expr2, expr, NULL);
2160
 
2161
      /* Fix usefulness as it should be now REG_BR_PROB_BASE.  */
2162
      EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2163
 
2164
      av_set_iter_remove (ip);
2165
      return expr2;
2166
    }
2167
 
2168
  return expr;
2169
}
2170
 
2171
/* Return true if there is an expr that correlates to VI in SET.  */
2172
bool
2173
av_set_is_in_p (av_set_t set, vinsn_t vi)
2174
{
2175
  return av_set_lookup (set, vi) != NULL;
2176
}
2177
 
2178
/* Return a copy of SET.  */
2179
av_set_t
2180
av_set_copy (av_set_t set)
2181
{
2182
  expr_t expr;
2183
  av_set_iterator i;
2184
  av_set_t res = NULL;
2185
 
2186
  FOR_EACH_EXPR (expr, i, set)
2187
    av_set_add (&res, expr);
2188
 
2189
  return res;
2190
}
2191
 
2192
/* Join two av sets that do not have common elements by attaching second set
2193
   (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2194
   _AV_SET_NEXT of first set's last element).  */
2195
static void
2196
join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2197
{
2198
  gcc_assert (*to_tailp == NULL);
2199
  *to_tailp = *fromp;
2200
  *fromp = NULL;
2201
}
2202
 
2203
/* Makes set pointed to by TO to be the union of TO and FROM.  Clear av_set
2204
   pointed to by FROMP afterwards.  */
2205
void
2206
av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2207
{
2208
  expr_t expr1;
2209
  av_set_iterator i;
2210
 
2211
  /* Delete from TOP all exprs, that present in FROMP.  */
2212
  FOR_EACH_EXPR_1 (expr1, i, top)
2213
    {
2214
      expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2215
 
2216
      if (expr2)
2217
        {
2218
          merge_expr (expr2, expr1, insn);
2219
          av_set_iter_remove (&i);
2220
        }
2221
    }
2222
 
2223
  join_distinct_sets (i.lp, fromp);
2224
}
2225
 
2226
/* Same as above, but also update availability of target register in
2227
   TOP judging by TO_LV_SET and FROM_LV_SET.  */
2228
void
2229
av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2230
                       regset from_lv_set, insn_t insn)
2231
{
2232
  expr_t expr1;
2233
  av_set_iterator i;
2234
  av_set_t *to_tailp, in_both_set = NULL;
2235
 
2236
  /* Delete from TOP all expres, that present in FROMP.  */
2237
  FOR_EACH_EXPR_1 (expr1, i, top)
2238
    {
2239
      expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2240
 
2241
      if (expr2)
2242
        {
2243
          /* It may be that the expressions have different destination
2244
             registers, in which case we need to check liveness here.  */
2245
          if (EXPR_SEPARABLE_P (expr1))
2246
            {
2247
              int regno1 = (REG_P (EXPR_LHS (expr1))
2248
                            ? (int) expr_dest_regno (expr1) : -1);
2249
              int regno2 = (REG_P (EXPR_LHS (expr2))
2250
                            ? (int) expr_dest_regno (expr2) : -1);
2251
 
2252
              /* ??? We don't have a way to check restrictions for
2253
               *other* register on the current path, we did it only
2254
               for the current target register.  Give up.  */
2255
              if (regno1 != regno2)
2256
                EXPR_TARGET_AVAILABLE (expr2) = -1;
2257
            }
2258
          else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2259
            EXPR_TARGET_AVAILABLE (expr2) = -1;
2260
 
2261
          merge_expr (expr2, expr1, insn);
2262
          av_set_add_nocopy (&in_both_set, expr2);
2263
          av_set_iter_remove (&i);
2264
        }
2265
      else
2266
        /* EXPR1 is present in TOP, but not in FROMP.  Check it on
2267
           FROM_LV_SET.  */
2268
        set_unavailable_target_for_expr (expr1, from_lv_set);
2269
    }
2270
  to_tailp = i.lp;
2271
 
2272
  /* These expressions are not present in TOP.  Check liveness
2273
     restrictions on TO_LV_SET.  */
2274
  FOR_EACH_EXPR (expr1, i, *fromp)
2275
    set_unavailable_target_for_expr (expr1, to_lv_set);
2276
 
2277
  join_distinct_sets (i.lp, &in_both_set);
2278
  join_distinct_sets (to_tailp, fromp);
2279
}
2280
 
2281
/* Clear av_set pointed to by SETP.  */
2282
void
2283
av_set_clear (av_set_t *setp)
2284
{
2285
  expr_t expr;
2286
  av_set_iterator i;
2287
 
2288
  FOR_EACH_EXPR_1 (expr, i, setp)
2289
    av_set_iter_remove (&i);
2290
 
2291
  gcc_assert (*setp == NULL);
2292
}
2293
 
2294
/* Leave only one non-speculative element in the SETP.  */
2295
void
2296
av_set_leave_one_nonspec (av_set_t *setp)
2297
{
2298
  expr_t expr;
2299
  av_set_iterator i;
2300
  bool has_one_nonspec = false;
2301
 
2302
  /* Keep all speculative exprs, and leave one non-speculative
2303
     (the first one).  */
2304
  FOR_EACH_EXPR_1 (expr, i, setp)
2305
    {
2306
      if (!EXPR_SPEC_DONE_DS (expr))
2307
        {
2308
          if (has_one_nonspec)
2309
            av_set_iter_remove (&i);
2310
          else
2311
            has_one_nonspec = true;
2312
        }
2313
    }
2314
}
2315
 
2316
/* Return the N'th element of the SET.  */
2317
expr_t
2318
av_set_element (av_set_t set, int n)
2319
{
2320
  expr_t expr;
2321
  av_set_iterator i;
2322
 
2323
  FOR_EACH_EXPR (expr, i, set)
2324
    if (n-- == 0)
2325
      return expr;
2326
 
2327
  gcc_unreachable ();
2328
  return NULL;
2329
}
2330
 
2331
/* Deletes all expressions from AVP that are conditional branches (IFs).  */
2332
void
2333
av_set_substract_cond_branches (av_set_t *avp)
2334
{
2335
  av_set_iterator i;
2336
  expr_t expr;
2337
 
2338
  FOR_EACH_EXPR_1 (expr, i, avp)
2339
    if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2340
      av_set_iter_remove (&i);
2341
}
2342
 
2343
/* Multiplies usefulness attribute of each member of av-set *AVP by
2344
   value PROB / ALL_PROB.  */
2345
void
2346
av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2347
{
2348
  av_set_iterator i;
2349
  expr_t expr;
2350
 
2351
  FOR_EACH_EXPR (expr, i, av)
2352
    EXPR_USEFULNESS (expr) = (all_prob
2353
                              ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2354
                              : 0);
2355
}
2356
 
2357
/* Leave in AVP only those expressions, which are present in AV,
2358
   and return it, merging history expressions.  */
2359
void
2360
av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2361
{
2362
  av_set_iterator i;
2363
  expr_t expr, expr2;
2364
 
2365
  FOR_EACH_EXPR_1 (expr, i, avp)
2366
    if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2367
      av_set_iter_remove (&i);
2368
    else
2369
      /* When updating av sets in bookkeeping blocks, we can add more insns
2370
         there which will be transformed but the upper av sets will not
2371
         reflect those transformations.  We then fail to undo those
2372
         when searching for such insns.  So merge the history saved
2373
         in the av set of the block we are processing.  */
2374
      merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2375
                          EXPR_HISTORY_OF_CHANGES (expr2));
2376
}
2377
 
2378
 
2379
 
2380
/* Dependence hooks to initialize insn data.  */
2381
 
2382
/* This is used in hooks callable from dependence analysis when initializing
2383
   instruction's data.  */
2384
static struct
2385
{
2386
  /* Where the dependence was found (lhs/rhs).  */
2387
  deps_where_t where;
2388
 
2389
  /* The actual data object to initialize.  */
2390
  idata_t id;
2391
 
2392
  /* True when the insn should not be made clonable.  */
2393
  bool force_unique_p;
2394
 
2395
  /* True when insn should be treated as of type USE, i.e. never renamed.  */
2396
  bool force_use_p;
2397
} deps_init_id_data;
2398
 
2399
 
2400
/* Setup ID for INSN.  FORCE_UNIQUE_P is true when INSN should not be
2401
   clonable.  */
2402
static void
2403
setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2404
{
2405
  int type;
2406
 
2407
  /* Determine whether INSN could be cloned and return appropriate vinsn type.
2408
     That clonable insns which can be separated into lhs and rhs have type SET.
2409
     Other clonable insns have type USE.  */
2410
  type = GET_CODE (insn);
2411
 
2412
  /* Only regular insns could be cloned.  */
2413
  if (type == INSN && !force_unique_p)
2414
    type = SET;
2415
  else if (type == JUMP_INSN && simplejump_p (insn))
2416
    type = PC;
2417
  else if (type == DEBUG_INSN)
2418
    type = !force_unique_p ? USE : INSN;
2419
 
2420
  IDATA_TYPE (id) = type;
2421
  IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2422
  IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2423
  IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2424
}
2425
 
2426
/* Start initializing insn data.  */
2427
static void
2428
deps_init_id_start_insn (insn_t insn)
2429
{
2430
  gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2431
 
2432
  setup_id_for_insn (deps_init_id_data.id, insn,
2433
                     deps_init_id_data.force_unique_p);
2434
  deps_init_id_data.where = DEPS_IN_INSN;
2435
}
2436
 
2437
/* Start initializing lhs data.  */
2438
static void
2439
deps_init_id_start_lhs (rtx lhs)
2440
{
2441
  gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2442
  gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2443
 
2444
  if (IDATA_TYPE (deps_init_id_data.id) == SET)
2445
    {
2446
      IDATA_LHS (deps_init_id_data.id) = lhs;
2447
      deps_init_id_data.where = DEPS_IN_LHS;
2448
    }
2449
}
2450
 
2451
/* Finish initializing lhs data.  */
2452
static void
2453
deps_init_id_finish_lhs (void)
2454
{
2455
  deps_init_id_data.where = DEPS_IN_INSN;
2456
}
2457
 
2458
/* Note a set of REGNO.  */
2459
static void
2460
deps_init_id_note_reg_set (int regno)
2461
{
2462
  haifa_note_reg_set (regno);
2463
 
2464
  if (deps_init_id_data.where == DEPS_IN_RHS)
2465
    deps_init_id_data.force_use_p = true;
2466
 
2467
  if (IDATA_TYPE (deps_init_id_data.id) != PC)
2468
    SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2469
 
2470
#ifdef STACK_REGS
2471
  /* Make instructions that set stack registers to be ineligible for
2472
     renaming to avoid issues with find_used_regs.  */
2473
  if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2474
    deps_init_id_data.force_use_p = true;
2475
#endif
2476
}
2477
 
2478
/* Note a clobber of REGNO.  */
2479
static void
2480
deps_init_id_note_reg_clobber (int regno)
2481
{
2482
  haifa_note_reg_clobber (regno);
2483
 
2484
  if (deps_init_id_data.where == DEPS_IN_RHS)
2485
    deps_init_id_data.force_use_p = true;
2486
 
2487
  if (IDATA_TYPE (deps_init_id_data.id) != PC)
2488
    SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2489
}
2490
 
2491
/* Note a use of REGNO.  */
2492
static void
2493
deps_init_id_note_reg_use (int regno)
2494
{
2495
  haifa_note_reg_use (regno);
2496
 
2497
  if (IDATA_TYPE (deps_init_id_data.id) != PC)
2498
    SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2499
}
2500
 
2501
/* Start initializing rhs data.  */
2502
static void
2503
deps_init_id_start_rhs (rtx rhs)
2504
{
2505
  gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2506
 
2507
  /* And there was no sel_deps_reset_to_insn ().  */
2508
  if (IDATA_LHS (deps_init_id_data.id) != NULL)
2509
    {
2510
      IDATA_RHS (deps_init_id_data.id) = rhs;
2511
      deps_init_id_data.where = DEPS_IN_RHS;
2512
    }
2513
}
2514
 
2515
/* Finish initializing rhs data.  */
2516
static void
2517
deps_init_id_finish_rhs (void)
2518
{
2519
  gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2520
              || deps_init_id_data.where == DEPS_IN_INSN);
2521
  deps_init_id_data.where = DEPS_IN_INSN;
2522
}
2523
 
2524
/* Finish initializing insn data.  */
2525
static void
2526
deps_init_id_finish_insn (void)
2527
{
2528
  gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2529
 
2530
  if (IDATA_TYPE (deps_init_id_data.id) == SET)
2531
    {
2532
      rtx lhs = IDATA_LHS (deps_init_id_data.id);
2533
      rtx rhs = IDATA_RHS (deps_init_id_data.id);
2534
 
2535
      if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2536
          || deps_init_id_data.force_use_p)
2537
        {
2538
          /* This should be a USE, as we don't want to schedule its RHS
2539
             separately.  However, we still want to have them recorded
2540
             for the purposes of substitution.  That's why we don't
2541
             simply call downgrade_to_use () here.  */
2542
          gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2543
          gcc_assert (!lhs == !rhs);
2544
 
2545
          IDATA_TYPE (deps_init_id_data.id) = USE;
2546
        }
2547
    }
2548
 
2549
  deps_init_id_data.where = DEPS_IN_NOWHERE;
2550
}
2551
 
2552
/* This is dependence info used for initializing insn's data.  */
2553
static struct sched_deps_info_def deps_init_id_sched_deps_info;
2554
 
2555
/* This initializes most of the static part of the above structure.  */
2556
static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2557
  {
2558
    NULL,
2559
 
2560
    deps_init_id_start_insn,
2561
    deps_init_id_finish_insn,
2562
    deps_init_id_start_lhs,
2563
    deps_init_id_finish_lhs,
2564
    deps_init_id_start_rhs,
2565
    deps_init_id_finish_rhs,
2566
    deps_init_id_note_reg_set,
2567
    deps_init_id_note_reg_clobber,
2568
    deps_init_id_note_reg_use,
2569
    NULL, /* note_mem_dep */
2570
    NULL, /* note_dep */
2571
 
2572
    0, /* use_cselib */
2573
    0, /* use_deps_list */
2574
 
2575
  };
2576
 
2577
/* Initialize INSN's lhs and rhs in ID.  When FORCE_UNIQUE_P is true,
2578
   we don't actually need information about lhs and rhs.  */
2579
static void
2580
setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2581
{
2582
  rtx pat = PATTERN (insn);
2583
 
2584
  if (NONJUMP_INSN_P (insn)
2585
      && GET_CODE (pat) == SET
2586
      && !force_unique_p)
2587
    {
2588
      IDATA_RHS (id) = SET_SRC (pat);
2589
      IDATA_LHS (id) = SET_DEST (pat);
2590
    }
2591
  else
2592
    IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2593
}
2594
 
2595
/* Possibly downgrade INSN to USE.  */
2596
static void
2597
maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2598
{
2599
  bool must_be_use = false;
2600
  unsigned uid = INSN_UID (insn);
2601
  df_ref *rec;
2602
  rtx lhs = IDATA_LHS (id);
2603
  rtx rhs = IDATA_RHS (id);
2604
 
2605
  /* We downgrade only SETs.  */
2606
  if (IDATA_TYPE (id) != SET)
2607
    return;
2608
 
2609
  if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2610
    {
2611
      IDATA_TYPE (id) = USE;
2612
      return;
2613
    }
2614
 
2615
  for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2616
    {
2617
      df_ref def = *rec;
2618
 
2619
      if (DF_REF_INSN (def)
2620
          && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2621
          && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2622
        {
2623
          must_be_use = true;
2624
          break;
2625
        }
2626
 
2627
#ifdef STACK_REGS
2628
      /* Make instructions that set stack registers to be ineligible for
2629
         renaming to avoid issues with find_used_regs.  */
2630
      if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2631
        {
2632
          must_be_use = true;
2633
          break;
2634
        }
2635
#endif
2636
    }
2637
 
2638
  if (must_be_use)
2639
    IDATA_TYPE (id) = USE;
2640
}
2641
 
2642
/* Setup register sets describing INSN in ID.  */
2643
static void
2644
setup_id_reg_sets (idata_t id, insn_t insn)
2645
{
2646
  unsigned uid = INSN_UID (insn);
2647
  df_ref *rec;
2648
  regset tmp = get_clear_regset_from_pool ();
2649
 
2650
  for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2651
    {
2652
      df_ref def = *rec;
2653
      unsigned int regno = DF_REF_REGNO (def);
2654
 
2655
      /* Post modifies are treated like clobbers by sched-deps.c.  */
2656
      if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2657
                                     | DF_REF_PRE_POST_MODIFY)))
2658
        SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2659
      else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2660
        {
2661
          SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2662
 
2663
#ifdef STACK_REGS
2664
          /* For stack registers, treat writes to them as writes
2665
             to the first one to be consistent with sched-deps.c.  */
2666
          if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2667
            SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2668
#endif
2669
        }
2670
      /* Mark special refs that generate read/write def pair.  */
2671
      if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2672
          || regno == STACK_POINTER_REGNUM)
2673
        bitmap_set_bit (tmp, regno);
2674
    }
2675
 
2676
  for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2677
    {
2678
      df_ref use = *rec;
2679
      unsigned int regno = DF_REF_REGNO (use);
2680
 
2681
      /* When these refs are met for the first time, skip them, as
2682
         these uses are just counterparts of some defs.  */
2683
      if (bitmap_bit_p (tmp, regno))
2684
        bitmap_clear_bit (tmp, regno);
2685
      else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2686
        {
2687
          SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2688
 
2689
#ifdef STACK_REGS
2690
          /* For stack registers, treat reads from them as reads from
2691
             the first one to be consistent with sched-deps.c.  */
2692
          if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2693
            SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2694
#endif
2695
        }
2696
    }
2697
 
2698
  return_regset_to_pool (tmp);
2699
}
2700
 
2701
/* Initialize instruction data for INSN in ID using DF's data.  */
2702
static void
2703
init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2704
{
2705
  gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2706
 
2707
  setup_id_for_insn (id, insn, force_unique_p);
2708
  setup_id_lhs_rhs (id, insn, force_unique_p);
2709
 
2710
  if (INSN_NOP_P (insn))
2711
    return;
2712
 
2713
  maybe_downgrade_id_to_use (id, insn);
2714
  setup_id_reg_sets (id, insn);
2715
}
2716
 
2717
/* Initialize instruction data for INSN in ID.  */
2718
static void
2719
deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2720
{
2721
  struct deps_desc _dc, *dc = &_dc;
2722
 
2723
  deps_init_id_data.where = DEPS_IN_NOWHERE;
2724
  deps_init_id_data.id = id;
2725
  deps_init_id_data.force_unique_p = force_unique_p;
2726
  deps_init_id_data.force_use_p = false;
2727
 
2728
  init_deps (dc, false);
2729
 
2730
  memcpy (&deps_init_id_sched_deps_info,
2731
          &const_deps_init_id_sched_deps_info,
2732
          sizeof (deps_init_id_sched_deps_info));
2733
 
2734
  if (spec_info != NULL)
2735
    deps_init_id_sched_deps_info.generate_spec_deps = 1;
2736
 
2737
  sched_deps_info = &deps_init_id_sched_deps_info;
2738
 
2739
  deps_analyze_insn (dc, insn);
2740
 
2741
  free_deps (dc);
2742
 
2743
  deps_init_id_data.id = NULL;
2744
}
2745
 
2746
 
2747
struct sched_scan_info_def
2748
{
2749
  /* This hook notifies scheduler frontend to extend its internal per basic
2750
     block data structures.  This hook should be called once before a series of
2751
     calls to bb_init ().  */
2752
  void (*extend_bb) (void);
2753
 
2754
  /* This hook makes scheduler frontend to initialize its internal data
2755
     structures for the passed basic block.  */
2756
  void (*init_bb) (basic_block);
2757
 
2758
  /* This hook notifies scheduler frontend to extend its internal per insn data
2759
     structures.  This hook should be called once before a series of calls to
2760
     insn_init ().  */
2761
  void (*extend_insn) (void);
2762
 
2763
  /* This hook makes scheduler frontend to initialize its internal data
2764
     structures for the passed insn.  */
2765
  void (*init_insn) (rtx);
2766
};
2767
 
2768
/* A driver function to add a set of basic blocks (BBS) to the
2769
   scheduling region.  */
2770
static void
2771
sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2772
{
2773
  unsigned i;
2774
  basic_block bb;
2775
 
2776
  if (ssi->extend_bb)
2777
    ssi->extend_bb ();
2778
 
2779
  if (ssi->init_bb)
2780
    FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
2781
      ssi->init_bb (bb);
2782
 
2783
  if (ssi->extend_insn)
2784
    ssi->extend_insn ();
2785
 
2786
  if (ssi->init_insn)
2787
    FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
2788
      {
2789
        rtx insn;
2790
 
2791
        FOR_BB_INSNS (bb, insn)
2792
          ssi->init_insn (insn);
2793
      }
2794
}
2795
 
2796
/* Implement hooks for collecting fundamental insn properties like if insn is
2797
   an ASM or is within a SCHED_GROUP.  */
2798
 
2799
/* True when a "one-time init" data for INSN was already inited.  */
2800
static bool
2801
first_time_insn_init (insn_t insn)
2802
{
2803
  return INSN_LIVE (insn) == NULL;
2804
}
2805
 
2806
/* Hash an entry in a transformed_insns hashtable.  */
2807
static hashval_t
2808
hash_transformed_insns (const void *p)
2809
{
2810
  return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2811
}
2812
 
2813
/* Compare the entries in a transformed_insns hashtable.  */
2814
static int
2815
eq_transformed_insns (const void *p, const void *q)
2816
{
2817
  rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2818
  rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2819
 
2820
  if (INSN_UID (i1) == INSN_UID (i2))
2821
    return 1;
2822
  return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2823
}
2824
 
2825
/* Free an entry in a transformed_insns hashtable.  */
2826
static void
2827
free_transformed_insns (void *p)
2828
{
2829
  struct transformed_insns *pti = (struct transformed_insns *) p;
2830
 
2831
  vinsn_detach (pti->vinsn_old);
2832
  vinsn_detach (pti->vinsn_new);
2833
  free (pti);
2834
}
2835
 
2836
/* Init the s_i_d data for INSN which should be inited just once, when
2837
   we first see the insn.  */
2838
static void
2839
init_first_time_insn_data (insn_t insn)
2840
{
2841
  /* This should not be set if this is the first time we init data for
2842
     insn.  */
2843
  gcc_assert (first_time_insn_init (insn));
2844
 
2845
  /* These are needed for nops too.  */
2846
  INSN_LIVE (insn) = get_regset_from_pool ();
2847
  INSN_LIVE_VALID_P (insn) = false;
2848
 
2849
  if (!INSN_NOP_P (insn))
2850
    {
2851
      INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2852
      INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2853
      INSN_TRANSFORMED_INSNS (insn)
2854
        = htab_create (16, hash_transformed_insns,
2855
                       eq_transformed_insns, free_transformed_insns);
2856
      init_deps (&INSN_DEPS_CONTEXT (insn), true);
2857
    }
2858
}
2859
 
2860
/* Free almost all above data for INSN that is scheduled already.
2861
   Used for extra-large basic blocks.  */
2862
void
2863
free_data_for_scheduled_insn (insn_t insn)
2864
{
2865
  gcc_assert (! first_time_insn_init (insn));
2866
 
2867
  if (! INSN_ANALYZED_DEPS (insn))
2868
    return;
2869
 
2870
  BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2871
  BITMAP_FREE (INSN_FOUND_DEPS (insn));
2872
  htab_delete (INSN_TRANSFORMED_INSNS (insn));
2873
 
2874
  /* This is allocated only for bookkeeping insns.  */
2875
  if (INSN_ORIGINATORS (insn))
2876
    BITMAP_FREE (INSN_ORIGINATORS (insn));
2877
  free_deps (&INSN_DEPS_CONTEXT (insn));
2878
 
2879
  INSN_ANALYZED_DEPS (insn) = NULL;
2880
 
2881
  /* Clear the readonly flag so we would ICE when trying to recalculate
2882
     the deps context (as we believe that it should not happen).  */
2883
  (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2884
}
2885
 
2886
/* Free the same data as above for INSN.  */
2887
static void
2888
free_first_time_insn_data (insn_t insn)
2889
{
2890
  gcc_assert (! first_time_insn_init (insn));
2891
 
2892
  free_data_for_scheduled_insn (insn);
2893
  return_regset_to_pool (INSN_LIVE (insn));
2894
  INSN_LIVE (insn) = NULL;
2895
  INSN_LIVE_VALID_P (insn) = false;
2896
}
2897
 
2898
/* Initialize region-scope data structures for basic blocks.  */
2899
static void
2900
init_global_and_expr_for_bb (basic_block bb)
2901
{
2902
  if (sel_bb_empty_p (bb))
2903
    return;
2904
 
2905
  invalidate_av_set (bb);
2906
}
2907
 
2908
/* Data for global dependency analysis (to initialize CANT_MOVE and
2909
   SCHED_GROUP_P).  */
2910
static struct
2911
{
2912
  /* Previous insn.  */
2913
  insn_t prev_insn;
2914
} init_global_data;
2915
 
2916
/* Determine if INSN is in the sched_group, is an asm or should not be
2917
   cloned.  After that initialize its expr.  */
2918
static void
2919
init_global_and_expr_for_insn (insn_t insn)
2920
{
2921
  if (LABEL_P (insn))
2922
    return;
2923
 
2924
  if (NOTE_INSN_BASIC_BLOCK_P (insn))
2925
    {
2926
      init_global_data.prev_insn = NULL_RTX;
2927
      return;
2928
    }
2929
 
2930
  gcc_assert (INSN_P (insn));
2931
 
2932
  if (SCHED_GROUP_P (insn))
2933
    /* Setup a sched_group.  */
2934
    {
2935
      insn_t prev_insn = init_global_data.prev_insn;
2936
 
2937
      if (prev_insn)
2938
        INSN_SCHED_NEXT (prev_insn) = insn;
2939
 
2940
      init_global_data.prev_insn = insn;
2941
    }
2942
  else
2943
    init_global_data.prev_insn = NULL_RTX;
2944
 
2945
  if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2946
      || asm_noperands (PATTERN (insn)) >= 0)
2947
    /* Mark INSN as an asm.  */
2948
    INSN_ASM_P (insn) = true;
2949
 
2950
  {
2951
    bool force_unique_p;
2952
    ds_t spec_done_ds;
2953
 
2954
    /* Certain instructions cannot be cloned, and frame related insns and
2955
       the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2956
       their block.  */
2957
    if (prologue_epilogue_contains (insn))
2958
      {
2959
        if (RTX_FRAME_RELATED_P (insn))
2960
          CANT_MOVE (insn) = 1;
2961
        else
2962
          {
2963
            rtx note;
2964
            for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2965
              if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2966
                  && ((enum insn_note) INTVAL (XEXP (note, 0))
2967
                      == NOTE_INSN_EPILOGUE_BEG))
2968
                {
2969
                  CANT_MOVE (insn) = 1;
2970
                  break;
2971
                }
2972
          }
2973
        force_unique_p = true;
2974
      }
2975
    else
2976
      if (CANT_MOVE (insn)
2977
          || INSN_ASM_P (insn)
2978
          || SCHED_GROUP_P (insn)
2979
          || CALL_P (insn)
2980
          /* Exception handling insns are always unique.  */
2981
          || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2982
          /* TRAP_IF though have an INSN code is control_flow_insn_p ().  */
2983
          || control_flow_insn_p (insn)
2984
          || volatile_insn_p (PATTERN (insn))
2985
          || (targetm.cannot_copy_insn_p
2986
              && targetm.cannot_copy_insn_p (insn)))
2987
        force_unique_p = true;
2988
      else
2989
        force_unique_p = false;
2990
 
2991
    if (targetm.sched.get_insn_spec_ds)
2992
      {
2993
        spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2994
        spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2995
      }
2996
    else
2997
      spec_done_ds = 0;
2998
 
2999
    /* Initialize INSN's expr.  */
3000
    init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3001
               REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3002
               spec_done_ds, 0, 0, NULL, true, false, false, false,
3003
               CANT_MOVE (insn));
3004
  }
3005
 
3006
  init_first_time_insn_data (insn);
3007
}
3008
 
3009
/* Scan the region and initialize instruction data for basic blocks BBS.  */
3010
void
3011
sel_init_global_and_expr (bb_vec_t bbs)
3012
{
3013
  /* ??? It would be nice to implement push / pop scheme for sched_infos.  */
3014
  const struct sched_scan_info_def ssi =
3015
    {
3016
      NULL, /* extend_bb */
3017
      init_global_and_expr_for_bb, /* init_bb */
3018
      extend_insn_data, /* extend_insn */
3019
      init_global_and_expr_for_insn /* init_insn */
3020
    };
3021
 
3022
  sched_scan (&ssi, bbs);
3023
}
3024
 
3025
/* Finalize region-scope data structures for basic blocks.  */
3026
static void
3027
finish_global_and_expr_for_bb (basic_block bb)
3028
{
3029
  av_set_clear (&BB_AV_SET (bb));
3030
  BB_AV_LEVEL (bb) = 0;
3031
}
3032
 
3033
/* Finalize INSN's data.  */
3034
static void
3035
finish_global_and_expr_insn (insn_t insn)
3036
{
3037
  if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3038
    return;
3039
 
3040
  gcc_assert (INSN_P (insn));
3041
 
3042
  if (INSN_LUID (insn) > 0)
3043
    {
3044
      free_first_time_insn_data (insn);
3045
      INSN_WS_LEVEL (insn) = 0;
3046
      CANT_MOVE (insn) = 0;
3047
 
3048
      /* We can no longer assert this, as vinsns of this insn could be
3049
         easily live in other insn's caches.  This should be changed to
3050
         a counter-like approach among all vinsns.  */
3051
      gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3052
      clear_expr (INSN_EXPR (insn));
3053
    }
3054
}
3055
 
3056
/* Finalize per instruction data for the whole region.  */
3057
void
3058
sel_finish_global_and_expr (void)
3059
{
3060
  {
3061
    bb_vec_t bbs;
3062
    int i;
3063
 
3064
    bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
3065
 
3066
    for (i = 0; i < current_nr_blocks; i++)
3067
      VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
3068
 
3069
    /* Clear AV_SETs and INSN_EXPRs.  */
3070
    {
3071
      const struct sched_scan_info_def ssi =
3072
        {
3073
          NULL, /* extend_bb */
3074
          finish_global_and_expr_for_bb, /* init_bb */
3075
          NULL, /* extend_insn */
3076
          finish_global_and_expr_insn /* init_insn */
3077
        };
3078
 
3079
      sched_scan (&ssi, bbs);
3080
    }
3081
 
3082
    VEC_free (basic_block, heap, bbs);
3083
  }
3084
 
3085
  finish_insns ();
3086
}
3087
 
3088
 
3089
/* In the below hooks, we merely calculate whether or not a dependence
3090
   exists, and in what part of insn.  However, we will need more data
3091
   when we'll start caching dependence requests.  */
3092
 
3093
/* Container to hold information for dependency analysis.  */
3094
static struct
3095
{
3096
  deps_t dc;
3097
 
3098
  /* A variable to track which part of rtx we are scanning in
3099
     sched-deps.c: sched_analyze_insn ().  */
3100
  deps_where_t where;
3101
 
3102
  /* Current producer.  */
3103
  insn_t pro;
3104
 
3105
  /* Current consumer.  */
3106
  vinsn_t con;
3107
 
3108
  /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3109
     X is from { INSN, LHS, RHS }.  */
3110
  ds_t has_dep_p[DEPS_IN_NOWHERE];
3111
} has_dependence_data;
3112
 
3113
/* Start analyzing dependencies of INSN.  */
3114
static void
3115
has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3116
{
3117
  gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3118
 
3119
  has_dependence_data.where = DEPS_IN_INSN;
3120
}
3121
 
3122
/* Finish analyzing dependencies of an insn.  */
3123
static void
3124
has_dependence_finish_insn (void)
3125
{
3126
  gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3127
 
3128
  has_dependence_data.where = DEPS_IN_NOWHERE;
3129
}
3130
 
3131
/* Start analyzing dependencies of LHS.  */
3132
static void
3133
has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3134
{
3135
  gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3136
 
3137
  if (VINSN_LHS (has_dependence_data.con) != NULL)
3138
    has_dependence_data.where = DEPS_IN_LHS;
3139
}
3140
 
3141
/* Finish analyzing dependencies of an lhs.  */
3142
static void
3143
has_dependence_finish_lhs (void)
3144
{
3145
  has_dependence_data.where = DEPS_IN_INSN;
3146
}
3147
 
3148
/* Start analyzing dependencies of RHS.  */
3149
static void
3150
has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3151
{
3152
  gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3153
 
3154
  if (VINSN_RHS (has_dependence_data.con) != NULL)
3155
    has_dependence_data.where = DEPS_IN_RHS;
3156
}
3157
 
3158
/* Start analyzing dependencies of an rhs.  */
3159
static void
3160
has_dependence_finish_rhs (void)
3161
{
3162
  gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3163
              || has_dependence_data.where == DEPS_IN_INSN);
3164
 
3165
  has_dependence_data.where = DEPS_IN_INSN;
3166
}
3167
 
3168
/* Note a set of REGNO.  */
3169
static void
3170
has_dependence_note_reg_set (int regno)
3171
{
3172
  struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3173
 
3174
  if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3175
                                       VINSN_INSN_RTX
3176
                                       (has_dependence_data.con)))
3177
    {
3178
      ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3179
 
3180
      if (reg_last->sets != NULL
3181
          || reg_last->clobbers != NULL)
3182
        *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3183
 
3184
      if (reg_last->uses)
3185
        *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3186
    }
3187
}
3188
 
3189
/* Note a clobber of REGNO.  */
3190
static void
3191
has_dependence_note_reg_clobber (int regno)
3192
{
3193
  struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3194
 
3195
  if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3196
                                       VINSN_INSN_RTX
3197
                                       (has_dependence_data.con)))
3198
    {
3199
      ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3200
 
3201
      if (reg_last->sets)
3202
        *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3203
 
3204
      if (reg_last->uses)
3205
        *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3206
    }
3207
}
3208
 
3209
/* Note a use of REGNO.  */
3210
static void
3211
has_dependence_note_reg_use (int regno)
3212
{
3213
  struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3214
 
3215
  if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3216
                                       VINSN_INSN_RTX
3217
                                       (has_dependence_data.con)))
3218
    {
3219
      ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3220
 
3221
      if (reg_last->sets)
3222
        *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3223
 
3224
      if (reg_last->clobbers)
3225
        *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3226
 
3227
      /* Handle BE_IN_SPEC.  */
3228
      if (reg_last->uses)
3229
        {
3230
          ds_t pro_spec_checked_ds;
3231
 
3232
          pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3233
          pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3234
 
3235
          if (pro_spec_checked_ds != 0
3236
              && bitmap_bit_p (INSN_REG_SETS (has_dependence_data.pro), regno))
3237
            /* Merge BE_IN_SPEC bits into *DSP.  */
3238
            *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3239
                                  NULL_RTX, NULL_RTX);
3240
        }
3241
    }
3242
}
3243
 
3244
/* Note a memory dependence.  */
3245
static void
3246
has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3247
                             rtx pending_mem ATTRIBUTE_UNUSED,
3248
                             insn_t pending_insn ATTRIBUTE_UNUSED,
3249
                             ds_t ds ATTRIBUTE_UNUSED)
3250
{
3251
  if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3252
                                       VINSN_INSN_RTX (has_dependence_data.con)))
3253
    {
3254
      ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3255
 
3256
      *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3257
    }
3258
}
3259
 
3260
/* Note a dependence.  */
3261
static void
3262
has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3263
                         ds_t ds ATTRIBUTE_UNUSED)
3264
{
3265
  if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3266
                                       VINSN_INSN_RTX (has_dependence_data.con)))
3267
    {
3268
      ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3269
 
3270
      *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3271
    }
3272
}
3273
 
3274
/* Mark the insn as having a hard dependence that prevents speculation.  */
3275
void
3276
sel_mark_hard_insn (rtx insn)
3277
{
3278
  int i;
3279
 
3280
  /* Only work when we're in has_dependence_p mode.
3281
     ??? This is a hack, this should actually be a hook.  */
3282
  if (!has_dependence_data.dc || !has_dependence_data.pro)
3283
    return;
3284
 
3285
  gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3286
  gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3287
 
3288
  for (i = 0; i < DEPS_IN_NOWHERE; i++)
3289
    has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3290
}
3291
 
3292
/* This structure holds the hooks for the dependency analysis used when
3293
   actually processing dependencies in the scheduler.  */
3294
static struct sched_deps_info_def has_dependence_sched_deps_info;
3295
 
3296
/* This initializes most of the fields of the above structure.  */
3297
static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3298
  {
3299
    NULL,
3300
 
3301
    has_dependence_start_insn,
3302
    has_dependence_finish_insn,
3303
    has_dependence_start_lhs,
3304
    has_dependence_finish_lhs,
3305
    has_dependence_start_rhs,
3306
    has_dependence_finish_rhs,
3307
    has_dependence_note_reg_set,
3308
    has_dependence_note_reg_clobber,
3309
    has_dependence_note_reg_use,
3310
    has_dependence_note_mem_dep,
3311
    has_dependence_note_dep,
3312
 
3313
    0, /* use_cselib */
3314
    0, /* use_deps_list */
3315
 
3316
  };
3317
 
3318
/* Initialize has_dependence_sched_deps_info with extra spec field.  */
3319
static void
3320
setup_has_dependence_sched_deps_info (void)
3321
{
3322
  memcpy (&has_dependence_sched_deps_info,
3323
          &const_has_dependence_sched_deps_info,
3324
          sizeof (has_dependence_sched_deps_info));
3325
 
3326
  if (spec_info != NULL)
3327
    has_dependence_sched_deps_info.generate_spec_deps = 1;
3328
 
3329
  sched_deps_info = &has_dependence_sched_deps_info;
3330
}
3331
 
3332
/* Remove all dependences found and recorded in has_dependence_data array.  */
3333
void
3334
sel_clear_has_dependence (void)
3335
{
3336
  int i;
3337
 
3338
  for (i = 0; i < DEPS_IN_NOWHERE; i++)
3339
    has_dependence_data.has_dep_p[i] = 0;
3340
}
3341
 
3342
/* Return nonzero if EXPR has is dependent upon PRED.  Return the pointer
3343
   to the dependence information array in HAS_DEP_PP.  */
3344
ds_t
3345
has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3346
{
3347
  int i;
3348
  ds_t ds;
3349
  struct deps_desc *dc;
3350
 
3351
  if (INSN_SIMPLEJUMP_P (pred))
3352
    /* Unconditional jump is just a transfer of control flow.
3353
       Ignore it.  */
3354
    return false;
3355
 
3356
  dc = &INSN_DEPS_CONTEXT (pred);
3357
 
3358
  /* We init this field lazily.  */
3359
  if (dc->reg_last == NULL)
3360
    init_deps_reg_last (dc);
3361
 
3362
  if (!dc->readonly)
3363
    {
3364
      has_dependence_data.pro = NULL;
3365
      /* Initialize empty dep context with information about PRED.  */
3366
      advance_deps_context (dc, pred);
3367
      dc->readonly = 1;
3368
    }
3369
 
3370
  has_dependence_data.where = DEPS_IN_NOWHERE;
3371
  has_dependence_data.pro = pred;
3372
  has_dependence_data.con = EXPR_VINSN (expr);
3373
  has_dependence_data.dc = dc;
3374
 
3375
  sel_clear_has_dependence ();
3376
 
3377
  /* Now catch all dependencies that would be generated between PRED and
3378
     INSN.  */
3379
  setup_has_dependence_sched_deps_info ();
3380
  deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3381
  has_dependence_data.dc = NULL;
3382
 
3383
  /* When a barrier was found, set DEPS_IN_INSN bits.  */
3384
  if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3385
    has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3386
  else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3387
    has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3388
 
3389
  /* Do not allow stores to memory to move through checks.  Currently
3390
     we don't move this to sched-deps.c as the check doesn't have
3391
     obvious places to which this dependence can be attached.
3392
     FIMXE: this should go to a hook.  */
3393
  if (EXPR_LHS (expr)
3394
      && MEM_P (EXPR_LHS (expr))
3395
      && sel_insn_is_speculation_check (pred))
3396
    has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3397
 
3398
  *has_dep_pp = has_dependence_data.has_dep_p;
3399
  ds = 0;
3400
  for (i = 0; i < DEPS_IN_NOWHERE; i++)
3401
    ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3402
                        NULL_RTX, NULL_RTX);
3403
 
3404
  return ds;
3405
}
3406
 
3407
 
3408
/* Dependence hooks implementation that checks dependence latency constraints
3409
   on the insns being scheduled.  The entry point for these routines is
3410
   tick_check_p predicate.  */
3411
 
3412
static struct
3413
{
3414
  /* An expr we are currently checking.  */
3415
  expr_t expr;
3416
 
3417
  /* A minimal cycle for its scheduling.  */
3418
  int cycle;
3419
 
3420
  /* Whether we have seen a true dependence while checking.  */
3421
  bool seen_true_dep_p;
3422
} tick_check_data;
3423
 
3424
/* Update minimal scheduling cycle for tick_check_insn given that it depends
3425
   on PRO with status DS and weight DW.  */
3426
static void
3427
tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3428
{
3429
  expr_t con_expr = tick_check_data.expr;
3430
  insn_t con_insn = EXPR_INSN_RTX (con_expr);
3431
 
3432
  if (con_insn != pro_insn)
3433
    {
3434
      enum reg_note dt;
3435
      int tick;
3436
 
3437
      if (/* PROducer was removed from above due to pipelining.  */
3438
          !INSN_IN_STREAM_P (pro_insn)
3439
          /* Or PROducer was originally on the next iteration regarding the
3440
             CONsumer.  */
3441
          || (INSN_SCHED_TIMES (pro_insn)
3442
              - EXPR_SCHED_TIMES (con_expr)) > 1)
3443
        /* Don't count this dependence.  */
3444
        return;
3445
 
3446
      dt = ds_to_dt (ds);
3447
      if (dt == REG_DEP_TRUE)
3448
        tick_check_data.seen_true_dep_p = true;
3449
 
3450
      gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3451
 
3452
      {
3453
        dep_def _dep, *dep = &_dep;
3454
 
3455
        init_dep (dep, pro_insn, con_insn, dt);
3456
 
3457
        tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3458
      }
3459
 
3460
      /* When there are several kinds of dependencies between pro and con,
3461
         only REG_DEP_TRUE should be taken into account.  */
3462
      if (tick > tick_check_data.cycle
3463
          && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3464
        tick_check_data.cycle = tick;
3465
    }
3466
}
3467
 
3468
/* An implementation of note_dep hook.  */
3469
static void
3470
tick_check_note_dep (insn_t pro, ds_t ds)
3471
{
3472
  tick_check_dep_with_dw (pro, ds, 0);
3473
}
3474
 
3475
/* An implementation of note_mem_dep hook.  */
3476
static void
3477
tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3478
{
3479
  dw_t dw;
3480
 
3481
  dw = (ds_to_dt (ds) == REG_DEP_TRUE
3482
        ? estimate_dep_weak (mem1, mem2)
3483
        : 0);
3484
 
3485
  tick_check_dep_with_dw (pro, ds, dw);
3486
}
3487
 
3488
/* This structure contains hooks for dependence analysis used when determining
3489
   whether an insn is ready for scheduling.  */
3490
static struct sched_deps_info_def tick_check_sched_deps_info =
3491
  {
3492
    NULL,
3493
 
3494
    NULL,
3495
    NULL,
3496
    NULL,
3497
    NULL,
3498
    NULL,
3499
    NULL,
3500
    haifa_note_reg_set,
3501
    haifa_note_reg_clobber,
3502
    haifa_note_reg_use,
3503
    tick_check_note_mem_dep,
3504
    tick_check_note_dep,
3505
 
3506
    0, 0, 0
3507
  };
3508
 
3509
/* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3510
   scheduled.  Return 0 if all data from producers in DC is ready.  */
3511
int
3512
tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3513
{
3514
  int cycles_left;
3515
  /* Initialize variables.  */
3516
  tick_check_data.expr = expr;
3517
  tick_check_data.cycle = 0;
3518
  tick_check_data.seen_true_dep_p = false;
3519
  sched_deps_info = &tick_check_sched_deps_info;
3520
 
3521
  gcc_assert (!dc->readonly);
3522
  dc->readonly = 1;
3523
  deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3524
  dc->readonly = 0;
3525
 
3526
  cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3527
 
3528
  return cycles_left >= 0 ? cycles_left : 0;
3529
}
3530
 
3531
 
3532
/* Functions to work with insns.  */
3533
 
3534
/* Returns true if LHS of INSN is the same as DEST of an insn
3535
   being moved.  */
3536
bool
3537
lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3538
{
3539
  rtx lhs = INSN_LHS (insn);
3540
 
3541
  if (lhs == NULL || dest == NULL)
3542
    return false;
3543
 
3544
  return rtx_equal_p (lhs, dest);
3545
}
3546
 
3547
/* Return s_i_d entry of INSN.  Callable from debugger.  */
3548
sel_insn_data_def
3549
insn_sid (insn_t insn)
3550
{
3551
  return *SID (insn);
3552
}
3553
 
3554
/* True when INSN is a speculative check.  We can tell this by looking
3555
   at the data structures of the selective scheduler, not by examining
3556
   the pattern.  */
3557
bool
3558
sel_insn_is_speculation_check (rtx insn)
3559
{
3560
  return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3561
}
3562
 
3563
/* Extracts machine mode MODE and destination location DST_LOC
3564
   for given INSN.  */
3565
void
3566
get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3567
{
3568
  rtx pat = PATTERN (insn);
3569
 
3570
  gcc_assert (dst_loc);
3571
  gcc_assert (GET_CODE (pat) == SET);
3572
 
3573
  *dst_loc = SET_DEST (pat);
3574
 
3575
  gcc_assert (*dst_loc);
3576
  gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3577
 
3578
  if (mode)
3579
    *mode = GET_MODE (*dst_loc);
3580
}
3581
 
3582
/* Returns true when moving through JUMP will result in bookkeeping
3583
   creation.  */
3584
bool
3585
bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3586
{
3587
  insn_t succ;
3588
  succ_iterator si;
3589
 
3590
  FOR_EACH_SUCC (succ, si, jump)
3591
    if (sel_num_cfg_preds_gt_1 (succ))
3592
      return true;
3593
 
3594
  return false;
3595
}
3596
 
3597
/* Return 'true' if INSN is the only one in its basic block.  */
3598
static bool
3599
insn_is_the_only_one_in_bb_p (insn_t insn)
3600
{
3601
  return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3602
}
3603
 
3604
#ifdef ENABLE_CHECKING
3605
/* Check that the region we're scheduling still has at most one
3606
   backedge.  */
3607
static void
3608
verify_backedges (void)
3609
{
3610
  if (pipelining_p)
3611
    {
3612
      int i, n = 0;
3613
      edge e;
3614
      edge_iterator ei;
3615
 
3616
      for (i = 0; i < current_nr_blocks; i++)
3617
        FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3618
          if (in_current_region_p (e->dest)
3619
              && BLOCK_TO_BB (e->dest->index) < i)
3620
            n++;
3621
 
3622
      gcc_assert (n <= 1);
3623
    }
3624
}
3625
#endif
3626
 
3627
 
3628
/* Functions to work with control flow.  */
3629
 
3630
/* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3631
   are sorted in topological order (it might have been invalidated by
3632
   redirecting an edge).  */
3633
static void
3634
sel_recompute_toporder (void)
3635
{
3636
  int i, n, rgn;
3637
  int *postorder, n_blocks;
3638
 
3639
  postorder = XALLOCAVEC (int, n_basic_blocks);
3640
  n_blocks = post_order_compute (postorder, false, false);
3641
 
3642
  rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3643
  for (n = 0, i = n_blocks - 1; i >= 0; i--)
3644
    if (CONTAINING_RGN (postorder[i]) == rgn)
3645
      {
3646
        BLOCK_TO_BB (postorder[i]) = n;
3647
        BB_TO_BLOCK (n) = postorder[i];
3648
        n++;
3649
      }
3650
 
3651
  /* Assert that we updated info for all blocks.  We may miss some blocks if
3652
     this function is called when redirecting an edge made a block
3653
     unreachable, but that block is not deleted yet.  */
3654
  gcc_assert (n == RGN_NR_BLOCKS (rgn));
3655
}
3656
 
3657
/* Tidy the possibly empty block BB.  */
3658
static bool
3659
maybe_tidy_empty_bb (basic_block bb)
3660
{
3661
  basic_block succ_bb, pred_bb;
3662
  VEC (basic_block, heap) *dom_bbs;
3663
  edge e;
3664
  edge_iterator ei;
3665
  bool rescan_p;
3666
 
3667
  /* Keep empty bb only if this block immediately precedes EXIT and
3668
     has incoming non-fallthrough edge, or it has no predecessors or
3669
     successors.  Otherwise remove it.  */
3670
  if (!sel_bb_empty_p (bb)
3671
      || (single_succ_p (bb)
3672
          && single_succ (bb) == EXIT_BLOCK_PTR
3673
          && (!single_pred_p (bb)
3674
              || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3675
      || EDGE_COUNT (bb->preds) == 0
3676
      || EDGE_COUNT (bb->succs) == 0)
3677
    return false;
3678
 
3679
  /* Do not attempt to redirect complex edges.  */
3680
  FOR_EACH_EDGE (e, ei, bb->preds)
3681
    if (e->flags & EDGE_COMPLEX)
3682
      return false;
3683
 
3684
  free_data_sets (bb);
3685
 
3686
  /* Do not delete BB if it has more than one successor.
3687
     That can occur when we moving a jump.  */
3688
  if (!single_succ_p (bb))
3689
    {
3690
      gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3691
      sel_merge_blocks (bb->prev_bb, bb);
3692
      return true;
3693
    }
3694
 
3695
  succ_bb = single_succ (bb);
3696
  rescan_p = true;
3697
  pred_bb = NULL;
3698
  dom_bbs = NULL;
3699
 
3700
  /* Redirect all non-fallthru edges to the next bb.  */
3701
  while (rescan_p)
3702
    {
3703
      rescan_p = false;
3704
 
3705
      FOR_EACH_EDGE (e, ei, bb->preds)
3706
        {
3707
          pred_bb = e->src;
3708
 
3709
          if (!(e->flags & EDGE_FALLTHRU))
3710
            {
3711
              /* We can not invalidate computed topological order by moving
3712
                 the edge destination block (E->SUCC) along a fallthru edge.
3713
 
3714
                 We will update dominators here only when we'll get
3715
                 an unreachable block when redirecting, otherwise
3716
                 sel_redirect_edge_and_branch will take care of it.  */
3717
              if (e->dest != bb
3718
                  && single_pred_p (e->dest))
3719
                VEC_safe_push (basic_block, heap, dom_bbs, e->dest);
3720
              sel_redirect_edge_and_branch (e, succ_bb);
3721
              rescan_p = true;
3722
              break;
3723
            }
3724
          /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3725
             to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3726
             still have to adjust it.  */
3727
          else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3728
            {
3729
              /* If possible, try to remove the unneeded conditional jump.  */
3730
              if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3731
                  && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3732
                {
3733
                  if (!sel_remove_insn (BB_END (pred_bb), false, false))
3734
                    tidy_fallthru_edge (e);
3735
                }
3736
              else
3737
                sel_redirect_edge_and_branch (e, succ_bb);
3738
              rescan_p = true;
3739
              break;
3740
            }
3741
        }
3742
    }
3743
 
3744
  if (can_merge_blocks_p (bb->prev_bb, bb))
3745
    sel_merge_blocks (bb->prev_bb, bb);
3746
  else
3747
    {
3748
      /* This is a block without fallthru predecessor.  Just delete it.  */
3749
      gcc_assert (pred_bb != NULL);
3750
 
3751
      if (in_current_region_p (pred_bb))
3752
        move_bb_info (pred_bb, bb);
3753
      remove_empty_bb (bb, true);
3754
    }
3755
 
3756
  if (!VEC_empty (basic_block, dom_bbs))
3757
    {
3758
      VEC_safe_push (basic_block, heap, dom_bbs, succ_bb);
3759
      iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3760
      VEC_free (basic_block, heap, dom_bbs);
3761
    }
3762
 
3763
  return true;
3764
}
3765
 
3766
/* Tidy the control flow after we have removed original insn from
3767
   XBB.  Return true if we have removed some blocks.  When FULL_TIDYING
3768
   is true, also try to optimize control flow on non-empty blocks.  */
3769
bool
3770
tidy_control_flow (basic_block xbb, bool full_tidying)
3771
{
3772
  bool changed = true;
3773
  insn_t first, last;
3774
 
3775
  /* First check whether XBB is empty.  */
3776
  changed = maybe_tidy_empty_bb (xbb);
3777
  if (changed || !full_tidying)
3778
    return changed;
3779
 
3780
  /* Check if there is a unnecessary jump after insn left.  */
3781
  if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3782
      && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3783
      && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3784
    {
3785
      if (sel_remove_insn (BB_END (xbb), false, false))
3786
        return true;
3787
      tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3788
    }
3789
 
3790
  first = sel_bb_head (xbb);
3791
  last = sel_bb_end (xbb);
3792
  if (MAY_HAVE_DEBUG_INSNS)
3793
    {
3794
      if (first != last && DEBUG_INSN_P (first))
3795
        do
3796
          first = NEXT_INSN (first);
3797
        while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3798
 
3799
      if (first != last && DEBUG_INSN_P (last))
3800
        do
3801
          last = PREV_INSN (last);
3802
        while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3803
    }
3804
  /* Check if there is an unnecessary jump in previous basic block leading
3805
     to next basic block left after removing INSN from stream.
3806
     If it is so, remove that jump and redirect edge to current
3807
     basic block (where there was INSN before deletion).  This way
3808
     when NOP will be deleted several instructions later with its
3809
     basic block we will not get a jump to next instruction, which
3810
     can be harmful.  */
3811
  if (first == last
3812
      && !sel_bb_empty_p (xbb)
3813
      && INSN_NOP_P (last)
3814
      /* Flow goes fallthru from current block to the next.  */
3815
      && EDGE_COUNT (xbb->succs) == 1
3816
      && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3817
      /* When successor is an EXIT block, it may not be the next block.  */
3818
      && single_succ (xbb) != EXIT_BLOCK_PTR
3819
      /* And unconditional jump in previous basic block leads to
3820
         next basic block of XBB and this jump can be safely removed.  */
3821
      && in_current_region_p (xbb->prev_bb)
3822
      && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3823
      && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3824
      /* Also this jump is not at the scheduling boundary.  */
3825
      && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3826
    {
3827
      bool recompute_toporder_p;
3828
      /* Clear data structures of jump - jump itself will be removed
3829
         by sel_redirect_edge_and_branch.  */
3830
      clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3831
      recompute_toporder_p
3832
        = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3833
 
3834
      gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3835
 
3836
      /* It can turn out that after removing unused jump, basic block
3837
         that contained that jump, becomes empty too.  In such case
3838
         remove it too.  */
3839
      if (sel_bb_empty_p (xbb->prev_bb))
3840
        changed = maybe_tidy_empty_bb (xbb->prev_bb);
3841
      if (recompute_toporder_p)
3842
        sel_recompute_toporder ();
3843
    }
3844
 
3845
#ifdef ENABLE_CHECKING
3846
  verify_backedges ();
3847
  verify_dominators (CDI_DOMINATORS);
3848
#endif
3849
 
3850
  return changed;
3851
}
3852
 
3853
/* Purge meaningless empty blocks in the middle of a region.  */
3854
void
3855
purge_empty_blocks (void)
3856
{
3857
  int i;
3858
 
3859
  /* Do not attempt to delete the first basic block in the region.  */
3860
  for (i = 1; i < current_nr_blocks; )
3861
    {
3862
      basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3863
 
3864
      if (maybe_tidy_empty_bb (b))
3865
        continue;
3866
 
3867
      i++;
3868
    }
3869
}
3870
 
3871
/* Rip-off INSN from the insn stream.  When ONLY_DISCONNECT is true,
3872
   do not delete insn's data, because it will be later re-emitted.
3873
   Return true if we have removed some blocks afterwards.  */
3874
bool
3875
sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3876
{
3877
  basic_block bb = BLOCK_FOR_INSN (insn);
3878
 
3879
  gcc_assert (INSN_IN_STREAM_P (insn));
3880
 
3881
  if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3882
    {
3883
      expr_t expr;
3884
      av_set_iterator i;
3885
 
3886
      /* When we remove a debug insn that is head of a BB, it remains
3887
         in the AV_SET of the block, but it shouldn't.  */
3888
      FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3889
        if (EXPR_INSN_RTX (expr) == insn)
3890
          {
3891
            av_set_iter_remove (&i);
3892
            break;
3893
          }
3894
    }
3895
 
3896
  if (only_disconnect)
3897
    {
3898
      insn_t prev = PREV_INSN (insn);
3899
      insn_t next = NEXT_INSN (insn);
3900
      basic_block bb = BLOCK_FOR_INSN (insn);
3901
 
3902
      NEXT_INSN (prev) = next;
3903
      PREV_INSN (next) = prev;
3904
 
3905
      if (BB_HEAD (bb) == insn)
3906
        {
3907
          gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3908
          BB_HEAD (bb) = prev;
3909
        }
3910
      if (BB_END (bb) == insn)
3911
        BB_END (bb) = prev;
3912
    }
3913
  else
3914
    {
3915
      remove_insn (insn);
3916
      clear_expr (INSN_EXPR (insn));
3917
    }
3918
 
3919
  /* It is necessary to null this fields before calling add_insn ().  */
3920
  PREV_INSN (insn) = NULL_RTX;
3921
  NEXT_INSN (insn) = NULL_RTX;
3922
 
3923
  return tidy_control_flow (bb, full_tidying);
3924
}
3925
 
3926
/* Estimate number of the insns in BB.  */
3927
static int
3928
sel_estimate_number_of_insns (basic_block bb)
3929
{
3930
  int res = 0;
3931
  insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3932
 
3933
  for (; insn != next_tail; insn = NEXT_INSN (insn))
3934
    if (NONDEBUG_INSN_P (insn))
3935
      res++;
3936
 
3937
  return res;
3938
}
3939
 
3940
/* We don't need separate luids for notes or labels.  */
3941
static int
3942
sel_luid_for_non_insn (rtx x)
3943
{
3944
  gcc_assert (NOTE_P (x) || LABEL_P (x));
3945
 
3946
  return -1;
3947
}
3948
 
3949
/*  Find the proper seqno for inserting at INSN by successors.
3950
    Return -1 if no successors with positive seqno exist.  */
3951
static int
3952
get_seqno_by_succs (rtx insn)
3953
{
3954
  basic_block bb = BLOCK_FOR_INSN (insn);
3955
  rtx tmp = insn, end = BB_END (bb);
3956
  int seqno;
3957
  insn_t succ = NULL;
3958
  succ_iterator si;
3959
 
3960
  while (tmp != end)
3961
    {
3962
      tmp = NEXT_INSN (tmp);
3963
      if (INSN_P (tmp))
3964
        return INSN_SEQNO (tmp);
3965
    }
3966
 
3967
  seqno = INT_MAX;
3968
 
3969
  FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
3970
    if (INSN_SEQNO (succ) > 0)
3971
      seqno = MIN (seqno, INSN_SEQNO (succ));
3972
 
3973
  if (seqno == INT_MAX)
3974
    return -1;
3975
 
3976
  return seqno;
3977
}
3978
 
3979
/* Compute seqno for INSN by its preds or succs.  */
3980
static int
3981
get_seqno_for_a_jump (insn_t insn)
3982
{
3983
  int seqno;
3984
 
3985
  gcc_assert (INSN_SIMPLEJUMP_P (insn));
3986
 
3987
  if (!sel_bb_head_p (insn))
3988
    seqno = INSN_SEQNO (PREV_INSN (insn));
3989
  else
3990
    {
3991
      basic_block bb = BLOCK_FOR_INSN (insn);
3992
 
3993
      if (single_pred_p (bb)
3994
          && !in_current_region_p (single_pred (bb)))
3995
        {
3996
          /* We can have preds outside a region when splitting edges
3997
             for pipelining of an outer loop.  Use succ instead.
3998
             There should be only one of them.  */
3999
          insn_t succ = NULL;
4000
          succ_iterator si;
4001
          bool first = true;
4002
 
4003
          gcc_assert (flag_sel_sched_pipelining_outer_loops
4004
                      && current_loop_nest);
4005
          FOR_EACH_SUCC_1 (succ, si, insn,
4006
                           SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4007
            {
4008
              gcc_assert (first);
4009
              first = false;
4010
            }
4011
 
4012
          gcc_assert (succ != NULL);
4013
          seqno = INSN_SEQNO (succ);
4014
        }
4015
      else
4016
        {
4017
          insn_t *preds;
4018
          int n;
4019
 
4020
          cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4021
 
4022
          gcc_assert (n > 0);
4023
          /* For one predecessor, use simple method.  */
4024
          if (n == 1)
4025
            seqno = INSN_SEQNO (preds[0]);
4026
          else
4027
            seqno = get_seqno_by_preds (insn);
4028
 
4029
          free (preds);
4030
        }
4031
    }
4032
 
4033
  /* We were unable to find a good seqno among preds.  */
4034
  if (seqno < 0)
4035
    seqno = get_seqno_by_succs (insn);
4036
 
4037
  gcc_assert (seqno >= 0);
4038
 
4039
  return seqno;
4040
}
4041
 
4042
/*  Find the proper seqno for inserting at INSN.  Returns -1 if no predecessors
4043
    with positive seqno exist.  */
4044
int
4045
get_seqno_by_preds (rtx insn)
4046
{
4047
  basic_block bb = BLOCK_FOR_INSN (insn);
4048
  rtx tmp = insn, head = BB_HEAD (bb);
4049
  insn_t *preds;
4050
  int n, i, seqno;
4051
 
4052
  while (tmp != head)
4053
    {
4054
      tmp = PREV_INSN (tmp);
4055
      if (INSN_P (tmp))
4056
        return INSN_SEQNO (tmp);
4057
    }
4058
 
4059
  cfg_preds (bb, &preds, &n);
4060
  for (i = 0, seqno = -1; i < n; i++)
4061
    seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4062
 
4063
  return seqno;
4064
}
4065
 
4066
 
4067
 
4068
/* Extend pass-scope data structures for basic blocks.  */
4069
void
4070
sel_extend_global_bb_info (void)
4071
{
4072
  VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
4073
                         last_basic_block);
4074
}
4075
 
4076
/* Extend region-scope data structures for basic blocks.  */
4077
static void
4078
extend_region_bb_info (void)
4079
{
4080
  VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
4081
                         last_basic_block);
4082
}
4083
 
4084
/* Extend all data structures to fit for all basic blocks.  */
4085
static void
4086
extend_bb_info (void)
4087
{
4088
  sel_extend_global_bb_info ();
4089
  extend_region_bb_info ();
4090
}
4091
 
4092
/* Finalize pass-scope data structures for basic blocks.  */
4093
void
4094
sel_finish_global_bb_info (void)
4095
{
4096
  VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
4097
}
4098
 
4099
/* Finalize region-scope data structures for basic blocks.  */
4100
static void
4101
finish_region_bb_info (void)
4102
{
4103
  VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
4104
}
4105
 
4106
 
4107
/* Data for each insn in current region.  */
4108
VEC (sel_insn_data_def, heap) *s_i_d = NULL;
4109
 
4110
/* Extend data structures for insns from current region.  */
4111
static void
4112
extend_insn_data (void)
4113
{
4114
  int reserve;
4115
 
4116
  sched_extend_target ();
4117
  sched_deps_init (false);
4118
 
4119
  /* Extend data structures for insns from current region.  */
4120
  reserve = (sched_max_luid + 1
4121
             - VEC_length (sel_insn_data_def, s_i_d));
4122
  if (reserve > 0
4123
      && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
4124
    {
4125
      int size;
4126
 
4127
      if (sched_max_luid / 2 > 1024)
4128
        size = sched_max_luid + 1024;
4129
      else
4130
        size = 3 * sched_max_luid / 2;
4131
 
4132
 
4133
      VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
4134
    }
4135
}
4136
 
4137
/* Finalize data structures for insns from current region.  */
4138
static void
4139
finish_insns (void)
4140
{
4141
  unsigned i;
4142
 
4143
  /* Clear here all dependence contexts that may have left from insns that were
4144
     removed during the scheduling.  */
4145
  for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
4146
    {
4147
      sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
4148
 
4149
      if (sid_entry->live)
4150
        return_regset_to_pool (sid_entry->live);
4151
      if (sid_entry->analyzed_deps)
4152
        {
4153
          BITMAP_FREE (sid_entry->analyzed_deps);
4154
          BITMAP_FREE (sid_entry->found_deps);
4155
          htab_delete (sid_entry->transformed_insns);
4156
          free_deps (&sid_entry->deps_context);
4157
        }
4158
      if (EXPR_VINSN (&sid_entry->expr))
4159
        {
4160
          clear_expr (&sid_entry->expr);
4161
 
4162
          /* Also, clear CANT_MOVE bit here, because we really don't want it
4163
             to be passed to the next region.  */
4164
          CANT_MOVE_BY_LUID (i) = 0;
4165
        }
4166
    }
4167
 
4168
  VEC_free (sel_insn_data_def, heap, s_i_d);
4169
}
4170
 
4171
/* A proxy to pass initialization data to init_insn ().  */
4172
static sel_insn_data_def _insn_init_ssid;
4173
static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4174
 
4175
/* If true create a new vinsn.  Otherwise use the one from EXPR.  */
4176
static bool insn_init_create_new_vinsn_p;
4177
 
4178
/* Set all necessary data for initialization of the new insn[s].  */
4179
static expr_t
4180
set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4181
{
4182
  expr_t x = &insn_init_ssid->expr;
4183
 
4184
  copy_expr_onside (x, expr);
4185
  if (vi != NULL)
4186
    {
4187
      insn_init_create_new_vinsn_p = false;
4188
      change_vinsn_in_expr (x, vi);
4189
    }
4190
  else
4191
    insn_init_create_new_vinsn_p = true;
4192
 
4193
  insn_init_ssid->seqno = seqno;
4194
  return x;
4195
}
4196
 
4197
/* Init data for INSN.  */
4198
static void
4199
init_insn_data (insn_t insn)
4200
{
4201
  expr_t expr;
4202
  sel_insn_data_t ssid = insn_init_ssid;
4203
 
4204
  /* The fields mentioned below are special and hence are not being
4205
     propagated to the new insns.  */
4206
  gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4207
              && !ssid->after_stall_p && ssid->sched_cycle == 0);
4208
  gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4209
 
4210
  expr = INSN_EXPR (insn);
4211
  copy_expr (expr, &ssid->expr);
4212
  prepare_insn_expr (insn, ssid->seqno);
4213
 
4214
  if (insn_init_create_new_vinsn_p)
4215
    change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4216
 
4217
  if (first_time_insn_init (insn))
4218
    init_first_time_insn_data (insn);
4219
}
4220
 
4221
/* This is used to initialize spurious jumps generated by
4222
   sel_redirect_edge ().  */
4223
static void
4224
init_simplejump_data (insn_t insn)
4225
{
4226
  init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4227
             REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
4228
             false, true);
4229
  INSN_SEQNO (insn) = get_seqno_for_a_jump (insn);
4230
  init_first_time_insn_data (insn);
4231
}
4232
 
4233
/* Perform deferred initialization of insns.  This is used to process
4234
   a new jump that may be created by redirect_edge.  */
4235
void
4236
sel_init_new_insn (insn_t insn, int flags)
4237
{
4238
  /* We create data structures for bb when the first insn is emitted in it.  */
4239
  if (INSN_P (insn)
4240
      && INSN_IN_STREAM_P (insn)
4241
      && insn_is_the_only_one_in_bb_p (insn))
4242
    {
4243
      extend_bb_info ();
4244
      create_initial_data_sets (BLOCK_FOR_INSN (insn));
4245
    }
4246
 
4247
  if (flags & INSN_INIT_TODO_LUID)
4248
    {
4249
      sched_extend_luids ();
4250
      sched_init_insn_luid (insn);
4251
    }
4252
 
4253
  if (flags & INSN_INIT_TODO_SSID)
4254
    {
4255
      extend_insn_data ();
4256
      init_insn_data (insn);
4257
      clear_expr (&insn_init_ssid->expr);
4258
    }
4259
 
4260
  if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4261
    {
4262
      extend_insn_data ();
4263
      init_simplejump_data (insn);
4264
    }
4265
 
4266
  gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4267
              == CONTAINING_RGN (BB_TO_BLOCK (0)));
4268
}
4269
 
4270
 
4271
/* Functions to init/finish work with lv sets.  */
4272
 
4273
/* Init BB_LV_SET of BB from DF_LR_IN set of BB.  */
4274
static void
4275
init_lv_set (basic_block bb)
4276
{
4277
  gcc_assert (!BB_LV_SET_VALID_P (bb));
4278
 
4279
  BB_LV_SET (bb) = get_regset_from_pool ();
4280
  COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4281
  BB_LV_SET_VALID_P (bb) = true;
4282
}
4283
 
4284
/* Copy liveness information to BB from FROM_BB.  */
4285
static void
4286
copy_lv_set_from (basic_block bb, basic_block from_bb)
4287
{
4288
  gcc_assert (!BB_LV_SET_VALID_P (bb));
4289
 
4290
  COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4291
  BB_LV_SET_VALID_P (bb) = true;
4292
}
4293
 
4294
/* Initialize lv set of all bb headers.  */
4295
void
4296
init_lv_sets (void)
4297
{
4298
  basic_block bb;
4299
 
4300
  /* Initialize of LV sets.  */
4301
  FOR_EACH_BB (bb)
4302
    init_lv_set (bb);
4303
 
4304
  /* Don't forget EXIT_BLOCK.  */
4305
  init_lv_set (EXIT_BLOCK_PTR);
4306
}
4307
 
4308
/* Release lv set of HEAD.  */
4309
static void
4310
free_lv_set (basic_block bb)
4311
{
4312
  gcc_assert (BB_LV_SET (bb) != NULL);
4313
 
4314
  return_regset_to_pool (BB_LV_SET (bb));
4315
  BB_LV_SET (bb) = NULL;
4316
  BB_LV_SET_VALID_P (bb) = false;
4317
}
4318
 
4319
/* Finalize lv sets of all bb headers.  */
4320
void
4321
free_lv_sets (void)
4322
{
4323
  basic_block bb;
4324
 
4325
  /* Don't forget EXIT_BLOCK.  */
4326
  free_lv_set (EXIT_BLOCK_PTR);
4327
 
4328
  /* Free LV sets.  */
4329
  FOR_EACH_BB (bb)
4330
    if (BB_LV_SET (bb))
4331
      free_lv_set (bb);
4332
}
4333
 
4334
/* Mark AV_SET for BB as invalid, so this set will be updated the next time
4335
   compute_av() processes BB.  This function is called when creating new basic
4336
   blocks, as well as for blocks (either new or existing) where new jumps are
4337
   created when the control flow is being updated.  */
4338
static void
4339
invalidate_av_set (basic_block bb)
4340
{
4341
  BB_AV_LEVEL (bb) = -1;
4342
}
4343
 
4344
/* Create initial data sets for BB (they will be invalid).  */
4345
static void
4346
create_initial_data_sets (basic_block bb)
4347
{
4348
  if (BB_LV_SET (bb))
4349
    BB_LV_SET_VALID_P (bb) = false;
4350
  else
4351
    BB_LV_SET (bb) = get_regset_from_pool ();
4352
  invalidate_av_set (bb);
4353
}
4354
 
4355
/* Free av set of BB.  */
4356
static void
4357
free_av_set (basic_block bb)
4358
{
4359
  av_set_clear (&BB_AV_SET (bb));
4360
  BB_AV_LEVEL (bb) = 0;
4361
}
4362
 
4363
/* Free data sets of BB.  */
4364
void
4365
free_data_sets (basic_block bb)
4366
{
4367
  free_lv_set (bb);
4368
  free_av_set (bb);
4369
}
4370
 
4371
/* Exchange lv sets of TO and FROM.  */
4372
static void
4373
exchange_lv_sets (basic_block to, basic_block from)
4374
{
4375
  {
4376
    regset to_lv_set = BB_LV_SET (to);
4377
 
4378
    BB_LV_SET (to) = BB_LV_SET (from);
4379
    BB_LV_SET (from) = to_lv_set;
4380
  }
4381
 
4382
  {
4383
    bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4384
 
4385
    BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4386
    BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4387
  }
4388
}
4389
 
4390
 
4391
/* Exchange av sets of TO and FROM.  */
4392
static void
4393
exchange_av_sets (basic_block to, basic_block from)
4394
{
4395
  {
4396
    av_set_t to_av_set = BB_AV_SET (to);
4397
 
4398
    BB_AV_SET (to) = BB_AV_SET (from);
4399
    BB_AV_SET (from) = to_av_set;
4400
  }
4401
 
4402
  {
4403
    int to_av_level = BB_AV_LEVEL (to);
4404
 
4405
    BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4406
    BB_AV_LEVEL (from) = to_av_level;
4407
  }
4408
}
4409
 
4410
/* Exchange data sets of TO and FROM.  */
4411
void
4412
exchange_data_sets (basic_block to, basic_block from)
4413
{
4414
  exchange_lv_sets (to, from);
4415
  exchange_av_sets (to, from);
4416
}
4417
 
4418
/* Copy data sets of FROM to TO.  */
4419
void
4420
copy_data_sets (basic_block to, basic_block from)
4421
{
4422
  gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4423
  gcc_assert (BB_AV_SET (to) == NULL);
4424
 
4425
  BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4426
  BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4427
 
4428
  if (BB_AV_SET_VALID_P (from))
4429
    {
4430
      BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4431
    }
4432
  if (BB_LV_SET_VALID_P (from))
4433
    {
4434
      gcc_assert (BB_LV_SET (to) != NULL);
4435
      COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4436
    }
4437
}
4438
 
4439
/* Return an av set for INSN, if any.  */
4440
av_set_t
4441
get_av_set (insn_t insn)
4442
{
4443
  av_set_t av_set;
4444
 
4445
  gcc_assert (AV_SET_VALID_P (insn));
4446
 
4447
  if (sel_bb_head_p (insn))
4448
    av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4449
  else
4450
    av_set = NULL;
4451
 
4452
  return av_set;
4453
}
4454
 
4455
/* Implementation of AV_LEVEL () macro.  Return AV_LEVEL () of INSN.  */
4456
int
4457
get_av_level (insn_t insn)
4458
{
4459
  int av_level;
4460
 
4461
  gcc_assert (INSN_P (insn));
4462
 
4463
  if (sel_bb_head_p (insn))
4464
    av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4465
  else
4466
    av_level = INSN_WS_LEVEL (insn);
4467
 
4468
  return av_level;
4469
}
4470
 
4471
 
4472
 
4473
/* Variables to work with control-flow graph.  */
4474
 
4475
/* The basic block that already has been processed by the sched_data_update (),
4476
   but hasn't been in sel_add_bb () yet.  */
4477
static VEC (basic_block, heap) *last_added_blocks = NULL;
4478
 
4479
/* A pool for allocating successor infos.  */
4480
static struct
4481
{
4482
  /* A stack for saving succs_info structures.  */
4483
  struct succs_info *stack;
4484
 
4485
  /* Its size.  */
4486
  int size;
4487
 
4488
  /* Top of the stack.  */
4489
  int top;
4490
 
4491
  /* Maximal value of the top.  */
4492
  int max_top;
4493
}  succs_info_pool;
4494
 
4495
/* Functions to work with control-flow graph.  */
4496
 
4497
/* Return basic block note of BB.  */
4498
insn_t
4499
sel_bb_head (basic_block bb)
4500
{
4501
  insn_t head;
4502
 
4503
  if (bb == EXIT_BLOCK_PTR)
4504
    {
4505
      gcc_assert (exit_insn != NULL_RTX);
4506
      head = exit_insn;
4507
    }
4508
  else
4509
    {
4510
      insn_t note;
4511
 
4512
      note = bb_note (bb);
4513
      head = next_nonnote_insn (note);
4514
 
4515
      if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4516
        head = NULL_RTX;
4517
    }
4518
 
4519
  return head;
4520
}
4521
 
4522
/* Return true if INSN is a basic block header.  */
4523
bool
4524
sel_bb_head_p (insn_t insn)
4525
{
4526
  return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4527
}
4528
 
4529
/* Return last insn of BB.  */
4530
insn_t
4531
sel_bb_end (basic_block bb)
4532
{
4533
  if (sel_bb_empty_p (bb))
4534
    return NULL_RTX;
4535
 
4536
  gcc_assert (bb != EXIT_BLOCK_PTR);
4537
 
4538
  return BB_END (bb);
4539
}
4540
 
4541
/* Return true if INSN is the last insn in its basic block.  */
4542
bool
4543
sel_bb_end_p (insn_t insn)
4544
{
4545
  return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4546
}
4547
 
4548
/* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK.  */
4549
bool
4550
sel_bb_empty_p (basic_block bb)
4551
{
4552
  return sel_bb_head (bb) == NULL;
4553
}
4554
 
4555
/* True when BB belongs to the current scheduling region.  */
4556
bool
4557
in_current_region_p (basic_block bb)
4558
{
4559
  if (bb->index < NUM_FIXED_BLOCKS)
4560
    return false;
4561
 
4562
  return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4563
}
4564
 
4565
/* Return the block which is a fallthru bb of a conditional jump JUMP.  */
4566
basic_block
4567
fallthru_bb_of_jump (rtx jump)
4568
{
4569
  if (!JUMP_P (jump))
4570
    return NULL;
4571
 
4572
  if (!any_condjump_p (jump))
4573
    return NULL;
4574
 
4575
  /* A basic block that ends with a conditional jump may still have one successor
4576
     (and be followed by a barrier), we are not interested.  */
4577
  if (single_succ_p (BLOCK_FOR_INSN (jump)))
4578
    return NULL;
4579
 
4580
  return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4581
}
4582
 
4583
/* Remove all notes from BB.  */
4584
static void
4585
init_bb (basic_block bb)
4586
{
4587
  remove_notes (bb_note (bb), BB_END (bb));
4588
  BB_NOTE_LIST (bb) = note_list;
4589
}
4590
 
4591
void
4592
sel_init_bbs (bb_vec_t bbs)
4593
{
4594
  const struct sched_scan_info_def ssi =
4595
    {
4596
      extend_bb_info, /* extend_bb */
4597
      init_bb, /* init_bb */
4598
      NULL, /* extend_insn */
4599
      NULL /* init_insn */
4600
    };
4601
 
4602
  sched_scan (&ssi, bbs);
4603
}
4604
 
4605
/* Restore notes for the whole region.  */
4606
static void
4607
sel_restore_notes (void)
4608
{
4609
  int bb;
4610
  insn_t insn;
4611
 
4612
  for (bb = 0; bb < current_nr_blocks; bb++)
4613
    {
4614
      basic_block first, last;
4615
 
4616
      first = EBB_FIRST_BB (bb);
4617
      last = EBB_LAST_BB (bb)->next_bb;
4618
 
4619
      do
4620
        {
4621
          note_list = BB_NOTE_LIST (first);
4622
          restore_other_notes (NULL, first);
4623
          BB_NOTE_LIST (first) = NULL_RTX;
4624
 
4625
          FOR_BB_INSNS (first, insn)
4626
            if (NONDEBUG_INSN_P (insn))
4627
              reemit_notes (insn);
4628
 
4629
          first = first->next_bb;
4630
        }
4631
      while (first != last);
4632
    }
4633
}
4634
 
4635
/* Free per-bb data structures.  */
4636
void
4637
sel_finish_bbs (void)
4638
{
4639
  sel_restore_notes ();
4640
 
4641
  /* Remove current loop preheader from this loop.  */
4642
  if (current_loop_nest)
4643
    sel_remove_loop_preheader ();
4644
 
4645
  finish_region_bb_info ();
4646
}
4647
 
4648
/* Return true if INSN has a single successor of type FLAGS.  */
4649
bool
4650
sel_insn_has_single_succ_p (insn_t insn, int flags)
4651
{
4652
  insn_t succ;
4653
  succ_iterator si;
4654
  bool first_p = true;
4655
 
4656
  FOR_EACH_SUCC_1 (succ, si, insn, flags)
4657
    {
4658
      if (first_p)
4659
        first_p = false;
4660
      else
4661
        return false;
4662
    }
4663
 
4664
  return true;
4665
}
4666
 
4667
/* Allocate successor's info.  */
4668
static struct succs_info *
4669
alloc_succs_info (void)
4670
{
4671
  if (succs_info_pool.top == succs_info_pool.max_top)
4672
    {
4673
      int i;
4674
 
4675
      if (++succs_info_pool.max_top >= succs_info_pool.size)
4676
        gcc_unreachable ();
4677
 
4678
      i = ++succs_info_pool.top;
4679
      succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4680
      succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4681
      succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4682
    }
4683
  else
4684
    succs_info_pool.top++;
4685
 
4686
  return &succs_info_pool.stack[succs_info_pool.top];
4687
}
4688
 
4689
/* Free successor's info.  */
4690
void
4691
free_succs_info (struct succs_info * sinfo)
4692
{
4693
  gcc_assert (succs_info_pool.top >= 0
4694
              && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4695
  succs_info_pool.top--;
4696
 
4697
  /* Clear stale info.  */
4698
  VEC_block_remove (rtx, sinfo->succs_ok,
4699
                    0, VEC_length (rtx, sinfo->succs_ok));
4700
  VEC_block_remove (rtx, sinfo->succs_other,
4701
                    0, VEC_length (rtx, sinfo->succs_other));
4702
  VEC_block_remove (int, sinfo->probs_ok,
4703
                    0, VEC_length (int, sinfo->probs_ok));
4704
  sinfo->all_prob = 0;
4705
  sinfo->succs_ok_n = 0;
4706
  sinfo->all_succs_n = 0;
4707
}
4708
 
4709
/* Compute successor info for INSN.  FLAGS are the flags passed
4710
   to the FOR_EACH_SUCC_1 iterator.  */
4711
struct succs_info *
4712
compute_succs_info (insn_t insn, short flags)
4713
{
4714
  succ_iterator si;
4715
  insn_t succ;
4716
  struct succs_info *sinfo = alloc_succs_info ();
4717
 
4718
  /* Traverse *all* successors and decide what to do with each.  */
4719
  FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4720
    {
4721
      /* FIXME: this doesn't work for skipping to loop exits, as we don't
4722
         perform code motion through inner loops.  */
4723
      short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4724
 
4725
      if (current_flags & flags)
4726
        {
4727
          VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4728
          VEC_safe_push (int, heap, sinfo->probs_ok,
4729
                         /* FIXME: Improve calculation when skipping
4730
                            inner loop to exits.  */
4731
                         (si.bb_end
4732
                          ? si.e1->probability
4733
                          : REG_BR_PROB_BASE));
4734
          sinfo->succs_ok_n++;
4735
        }
4736
      else
4737
        VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4738
 
4739
      /* Compute all_prob.  */
4740
      if (!si.bb_end)
4741
        sinfo->all_prob = REG_BR_PROB_BASE;
4742
      else
4743
        sinfo->all_prob += si.e1->probability;
4744
 
4745
      sinfo->all_succs_n++;
4746
    }
4747
 
4748
  return sinfo;
4749
}
4750
 
4751
/* Return the predecessors of BB in PREDS and their number in N.
4752
   Empty blocks are skipped.  SIZE is used to allocate PREDS.  */
4753
static void
4754
cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4755
{
4756
  edge e;
4757
  edge_iterator ei;
4758
 
4759
  gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4760
 
4761
  FOR_EACH_EDGE (e, ei, bb->preds)
4762
    {
4763
      basic_block pred_bb = e->src;
4764
      insn_t bb_end = BB_END (pred_bb);
4765
 
4766
      if (!in_current_region_p (pred_bb))
4767
        {
4768
          gcc_assert (flag_sel_sched_pipelining_outer_loops
4769
                      && current_loop_nest);
4770
          continue;
4771
        }
4772
 
4773
      if (sel_bb_empty_p (pred_bb))
4774
        cfg_preds_1 (pred_bb, preds, n, size);
4775
      else
4776
        {
4777
          if (*n == *size)
4778
            *preds = XRESIZEVEC (insn_t, *preds,
4779
                                 (*size = 2 * *size + 1));
4780
          (*preds)[(*n)++] = bb_end;
4781
        }
4782
    }
4783
 
4784
  gcc_assert (*n != 0
4785
              || (flag_sel_sched_pipelining_outer_loops
4786
                  && current_loop_nest));
4787
}
4788
 
4789
/* Find all predecessors of BB and record them in PREDS and their number
4790
   in N.  Empty blocks are skipped, and only normal (forward in-region)
4791
   edges are processed.  */
4792
static void
4793
cfg_preds (basic_block bb, insn_t **preds, int *n)
4794
{
4795
  int size = 0;
4796
 
4797
  *preds = NULL;
4798
  *n = 0;
4799
  cfg_preds_1 (bb, preds, n, &size);
4800
}
4801
 
4802
/* Returns true if we are moving INSN through join point.  */
4803
bool
4804
sel_num_cfg_preds_gt_1 (insn_t insn)
4805
{
4806
  basic_block bb;
4807
 
4808
  if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4809
    return false;
4810
 
4811
  bb = BLOCK_FOR_INSN (insn);
4812
 
4813
  while (1)
4814
    {
4815
      if (EDGE_COUNT (bb->preds) > 1)
4816
        return true;
4817
 
4818
      gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4819
      bb = EDGE_PRED (bb, 0)->src;
4820
 
4821
      if (!sel_bb_empty_p (bb))
4822
        break;
4823
    }
4824
 
4825
  return false;
4826
}
4827
 
4828
/* Returns true when BB should be the end of an ebb.  Adapted from the
4829
   code in sched-ebb.c.  */
4830
bool
4831
bb_ends_ebb_p (basic_block bb)
4832
{
4833
  basic_block next_bb = bb_next_bb (bb);
4834
  edge e;
4835
 
4836
  if (next_bb == EXIT_BLOCK_PTR
4837
      || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4838
      || (LABEL_P (BB_HEAD (next_bb))
4839
          /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4840
             Work around that.  */
4841
          && !single_pred_p (next_bb)))
4842
    return true;
4843
 
4844
  if (!in_current_region_p (next_bb))
4845
    return true;
4846
 
4847
  e = find_fallthru_edge (bb->succs);
4848
  if (e)
4849
    {
4850
      gcc_assert (e->dest == next_bb);
4851
 
4852
      return false;
4853
    }
4854
 
4855
  return true;
4856
}
4857
 
4858
/* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4859
   successor of INSN.  */
4860
bool
4861
in_same_ebb_p (insn_t insn, insn_t succ)
4862
{
4863
  basic_block ptr = BLOCK_FOR_INSN (insn);
4864
 
4865
  for(;;)
4866
    {
4867
      if (ptr == BLOCK_FOR_INSN (succ))
4868
        return true;
4869
 
4870
      if (bb_ends_ebb_p (ptr))
4871
        return false;
4872
 
4873
      ptr = bb_next_bb (ptr);
4874
    }
4875
 
4876
  gcc_unreachable ();
4877
  return false;
4878
}
4879
 
4880
/* Recomputes the reverse topological order for the function and
4881
   saves it in REV_TOP_ORDER_INDEX.  REV_TOP_ORDER_INDEX_LEN is also
4882
   modified appropriately.  */
4883
static void
4884
recompute_rev_top_order (void)
4885
{
4886
  int *postorder;
4887
  int n_blocks, i;
4888
 
4889
  if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4890
    {
4891
      rev_top_order_index_len = last_basic_block;
4892
      rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4893
                                        rev_top_order_index_len);
4894
    }
4895
 
4896
  postorder = XNEWVEC (int, n_basic_blocks);
4897
 
4898
  n_blocks = post_order_compute (postorder, true, false);
4899
  gcc_assert (n_basic_blocks == n_blocks);
4900
 
4901
  /* Build reverse function: for each basic block with BB->INDEX == K
4902
     rev_top_order_index[K] is it's reverse topological sort number.  */
4903
  for (i = 0; i < n_blocks; i++)
4904
    {
4905
      gcc_assert (postorder[i] < rev_top_order_index_len);
4906
      rev_top_order_index[postorder[i]] = i;
4907
    }
4908
 
4909
  free (postorder);
4910
}
4911
 
4912
/* Clear all flags from insns in BB that could spoil its rescheduling.  */
4913
void
4914
clear_outdated_rtx_info (basic_block bb)
4915
{
4916
  rtx insn;
4917
 
4918
  FOR_BB_INSNS (bb, insn)
4919
    if (INSN_P (insn))
4920
      {
4921
        SCHED_GROUP_P (insn) = 0;
4922
        INSN_AFTER_STALL_P (insn) = 0;
4923
        INSN_SCHED_TIMES (insn) = 0;
4924
        EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4925
 
4926
        /* We cannot use the changed caches, as previously we could ignore
4927
           the LHS dependence due to enabled renaming and transform
4928
           the expression, and currently we'll be unable to do this.  */
4929
        htab_empty (INSN_TRANSFORMED_INSNS (insn));
4930
      }
4931
}
4932
 
4933
/* Add BB_NOTE to the pool of available basic block notes.  */
4934
static void
4935
return_bb_to_pool (basic_block bb)
4936
{
4937
  rtx note = bb_note (bb);
4938
 
4939
  gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4940
              && bb->aux == NULL);
4941
 
4942
  /* It turns out that current cfg infrastructure does not support
4943
     reuse of basic blocks.  Don't bother for now.  */
4944
  /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4945
}
4946
 
4947
/* Get a bb_note from pool or return NULL_RTX if pool is empty.  */
4948
static rtx
4949
get_bb_note_from_pool (void)
4950
{
4951
  if (VEC_empty (rtx, bb_note_pool))
4952
    return NULL_RTX;
4953
  else
4954
    {
4955
      rtx note = VEC_pop (rtx, bb_note_pool);
4956
 
4957
      PREV_INSN (note) = NULL_RTX;
4958
      NEXT_INSN (note) = NULL_RTX;
4959
 
4960
      return note;
4961
    }
4962
}
4963
 
4964
/* Free bb_note_pool.  */
4965
void
4966
free_bb_note_pool (void)
4967
{
4968
  VEC_free (rtx, heap, bb_note_pool);
4969
}
4970
 
4971
/* Setup scheduler pool and successor structure.  */
4972
void
4973
alloc_sched_pools (void)
4974
{
4975
  int succs_size;
4976
 
4977
  succs_size = MAX_WS + 1;
4978
  succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4979
  succs_info_pool.size = succs_size;
4980
  succs_info_pool.top = -1;
4981
  succs_info_pool.max_top = -1;
4982
 
4983
  sched_lists_pool = create_alloc_pool ("sel-sched-lists",
4984
                                        sizeof (struct _list_node), 500);
4985
}
4986
 
4987
/* Free the pools.  */
4988
void
4989
free_sched_pools (void)
4990
{
4991
  int i;
4992
 
4993
  free_alloc_pool (sched_lists_pool);
4994
  gcc_assert (succs_info_pool.top == -1);
4995
  for (i = 0; i < succs_info_pool.max_top; i++)
4996
    {
4997
      VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
4998
      VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
4999
      VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
5000
    }
5001
  free (succs_info_pool.stack);
5002
}
5003
 
5004
 
5005
/* Returns a position in RGN where BB can be inserted retaining
5006
   topological order.  */
5007
static int
5008
find_place_to_insert_bb (basic_block bb, int rgn)
5009
{
5010
  bool has_preds_outside_rgn = false;
5011
  edge e;
5012
  edge_iterator ei;
5013
 
5014
  /* Find whether we have preds outside the region.  */
5015
  FOR_EACH_EDGE (e, ei, bb->preds)
5016
    if (!in_current_region_p (e->src))
5017
      {
5018
        has_preds_outside_rgn = true;
5019
        break;
5020
      }
5021
 
5022
  /* Recompute the top order -- needed when we have > 1 pred
5023
     and in case we don't have preds outside.  */
5024
  if (flag_sel_sched_pipelining_outer_loops
5025
      && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5026
    {
5027
      int i, bbi = bb->index, cur_bbi;
5028
 
5029
      recompute_rev_top_order ();
5030
      for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5031
        {
5032
          cur_bbi = BB_TO_BLOCK (i);
5033
          if (rev_top_order_index[bbi]
5034
              < rev_top_order_index[cur_bbi])
5035
            break;
5036
        }
5037
 
5038
      /* We skipped the right block, so we increase i.  We accomodate
5039
         it for increasing by step later, so we decrease i.  */
5040
      return (i + 1) - 1;
5041
    }
5042
  else if (has_preds_outside_rgn)
5043
    {
5044
      /* This is the case when we generate an extra empty block
5045
         to serve as region head during pipelining.  */
5046
      e = EDGE_SUCC (bb, 0);
5047
      gcc_assert (EDGE_COUNT (bb->succs) == 1
5048
                  && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5049
                  && (BLOCK_TO_BB (e->dest->index) == 0));
5050
      return -1;
5051
    }
5052
 
5053
  /* We don't have preds outside the region.  We should have
5054
     the only pred, because the multiple preds case comes from
5055
     the pipelining of outer loops, and that is handled above.
5056
     Just take the bbi of this single pred.  */
5057
  if (EDGE_COUNT (bb->succs) > 0)
5058
    {
5059
      int pred_bbi;
5060
 
5061
      gcc_assert (EDGE_COUNT (bb->preds) == 1);
5062
 
5063
      pred_bbi = EDGE_PRED (bb, 0)->src->index;
5064
      return BLOCK_TO_BB (pred_bbi);
5065
    }
5066
  else
5067
    /* BB has no successors.  It is safe to put it in the end.  */
5068
    return current_nr_blocks - 1;
5069
}
5070
 
5071
/* Deletes an empty basic block freeing its data.  */
5072
static void
5073
delete_and_free_basic_block (basic_block bb)
5074
{
5075
  gcc_assert (sel_bb_empty_p (bb));
5076
 
5077
  if (BB_LV_SET (bb))
5078
    free_lv_set (bb);
5079
 
5080
  bitmap_clear_bit (blocks_to_reschedule, bb->index);
5081
 
5082
  /* Can't assert av_set properties because we use sel_aremove_bb
5083
     when removing loop preheader from the region.  At the point of
5084
     removing the preheader we already have deallocated sel_region_bb_info.  */
5085
  gcc_assert (BB_LV_SET (bb) == NULL
5086
              && !BB_LV_SET_VALID_P (bb)
5087
              && BB_AV_LEVEL (bb) == 0
5088
              && BB_AV_SET (bb) == NULL);
5089
 
5090
  delete_basic_block (bb);
5091
}
5092
 
5093
/* Add BB to the current region and update the region data.  */
5094
static void
5095
add_block_to_current_region (basic_block bb)
5096
{
5097
  int i, pos, bbi = -2, rgn;
5098
 
5099
  rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5100
  bbi = find_place_to_insert_bb (bb, rgn);
5101
  bbi += 1;
5102
  pos = RGN_BLOCKS (rgn) + bbi;
5103
 
5104
  gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5105
              && ebb_head[bbi] == pos);
5106
 
5107
  /* Make a place for the new block.  */
5108
  extend_regions ();
5109
 
5110
  for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5111
    BLOCK_TO_BB (rgn_bb_table[i])++;
5112
 
5113
  memmove (rgn_bb_table + pos + 1,
5114
           rgn_bb_table + pos,
5115
           (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5116
 
5117
  /* Initialize data for BB.  */
5118
  rgn_bb_table[pos] = bb->index;
5119
  BLOCK_TO_BB (bb->index) = bbi;
5120
  CONTAINING_RGN (bb->index) = rgn;
5121
 
5122
  RGN_NR_BLOCKS (rgn)++;
5123
 
5124
  for (i = rgn + 1; i <= nr_regions; i++)
5125
    RGN_BLOCKS (i)++;
5126
}
5127
 
5128
/* Remove BB from the current region and update the region data.  */
5129
static void
5130
remove_bb_from_region (basic_block bb)
5131
{
5132
  int i, pos, bbi = -2, rgn;
5133
 
5134
  rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5135
  bbi = BLOCK_TO_BB (bb->index);
5136
  pos = RGN_BLOCKS (rgn) + bbi;
5137
 
5138
  gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5139
              && ebb_head[bbi] == pos);
5140
 
5141
  for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5142
    BLOCK_TO_BB (rgn_bb_table[i])--;
5143
 
5144
  memmove (rgn_bb_table + pos,
5145
           rgn_bb_table + pos + 1,
5146
           (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5147
 
5148
  RGN_NR_BLOCKS (rgn)--;
5149
  for (i = rgn + 1; i <= nr_regions; i++)
5150
    RGN_BLOCKS (i)--;
5151
}
5152
 
5153
/* Add BB to the current region  and update all data.  If BB is NULL, add all
5154
   blocks from last_added_blocks vector.  */
5155
static void
5156
sel_add_bb (basic_block bb)
5157
{
5158
  /* Extend luids so that new notes will receive zero luids.  */
5159
  sched_extend_luids ();
5160
  sched_init_bbs ();
5161
  sel_init_bbs (last_added_blocks);
5162
 
5163
  /* When bb is passed explicitly, the vector should contain
5164
     the only element that equals to bb; otherwise, the vector
5165
     should not be NULL.  */
5166
  gcc_assert (last_added_blocks != NULL);
5167
 
5168
  if (bb != NULL)
5169
    {
5170
      gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5171
                  && VEC_index (basic_block,
5172
                                last_added_blocks, 0) == bb);
5173
      add_block_to_current_region (bb);
5174
 
5175
      /* We associate creating/deleting data sets with the first insn
5176
         appearing / disappearing in the bb.  */
5177
      if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5178
        create_initial_data_sets (bb);
5179
 
5180
      VEC_free (basic_block, heap, last_added_blocks);
5181
    }
5182
  else
5183
    /* BB is NULL - process LAST_ADDED_BLOCKS instead.  */
5184
    {
5185
      int i;
5186
      basic_block temp_bb = NULL;
5187
 
5188
      for (i = 0;
5189
           VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5190
        {
5191
          add_block_to_current_region (bb);
5192
          temp_bb = bb;
5193
        }
5194
 
5195
      /* We need to fetch at least one bb so we know the region
5196
         to update.  */
5197
      gcc_assert (temp_bb != NULL);
5198
      bb = temp_bb;
5199
 
5200
      VEC_free (basic_block, heap, last_added_blocks);
5201
    }
5202
 
5203
  rgn_setup_region (CONTAINING_RGN (bb->index));
5204
}
5205
 
5206
/* Remove BB from the current region and update all data.
5207
   If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg.  */
5208
static void
5209
sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5210
{
5211
  unsigned idx = bb->index;
5212
 
5213
  gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5214
 
5215
  remove_bb_from_region (bb);
5216
  return_bb_to_pool (bb);
5217
  bitmap_clear_bit (blocks_to_reschedule, idx);
5218
 
5219
  if (remove_from_cfg_p)
5220
    {
5221
      basic_block succ = single_succ (bb);
5222
      delete_and_free_basic_block (bb);
5223
      set_immediate_dominator (CDI_DOMINATORS, succ,
5224
                               recompute_dominator (CDI_DOMINATORS, succ));
5225
    }
5226
 
5227
  rgn_setup_region (CONTAINING_RGN (idx));
5228
}
5229
 
5230
/* Concatenate info of EMPTY_BB to info of MERGE_BB.  */
5231
static void
5232
move_bb_info (basic_block merge_bb, basic_block empty_bb)
5233
{
5234
  gcc_assert (in_current_region_p (merge_bb));
5235
 
5236
  concat_note_lists (BB_NOTE_LIST (empty_bb),
5237
                     &BB_NOTE_LIST (merge_bb));
5238
  BB_NOTE_LIST (empty_bb) = NULL_RTX;
5239
 
5240
}
5241
 
5242
/* Remove EMPTY_BB.  If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5243
   region, but keep it in CFG.  */
5244
static void
5245
remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5246
{
5247
  /* The block should contain just a note or a label.
5248
     We try to check whether it is unused below.  */
5249
  gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5250
              || LABEL_P (BB_HEAD (empty_bb)));
5251
 
5252
  /* If basic block has predecessors or successors, redirect them.  */
5253
  if (remove_from_cfg_p
5254
      && (EDGE_COUNT (empty_bb->preds) > 0
5255
          || EDGE_COUNT (empty_bb->succs) > 0))
5256
    {
5257
      basic_block pred;
5258
      basic_block succ;
5259
 
5260
      /* We need to init PRED and SUCC before redirecting edges.  */
5261
      if (EDGE_COUNT (empty_bb->preds) > 0)
5262
        {
5263
          edge e;
5264
 
5265
          gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5266
 
5267
          e = EDGE_PRED (empty_bb, 0);
5268
          gcc_assert (e->src == empty_bb->prev_bb
5269
                      && (e->flags & EDGE_FALLTHRU));
5270
 
5271
          pred = empty_bb->prev_bb;
5272
        }
5273
      else
5274
        pred = NULL;
5275
 
5276
      if (EDGE_COUNT (empty_bb->succs) > 0)
5277
        {
5278
          /* We do not check fallthruness here as above, because
5279
             after removing a jump the edge may actually be not fallthru.  */
5280
          gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5281
          succ = EDGE_SUCC (empty_bb, 0)->dest;
5282
        }
5283
      else
5284
        succ = NULL;
5285
 
5286
      if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5287
        {
5288
          edge e = EDGE_PRED (empty_bb, 0);
5289
 
5290
          if (e->flags & EDGE_FALLTHRU)
5291
            redirect_edge_succ_nodup (e, succ);
5292
          else
5293
            sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5294
        }
5295
 
5296
      if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5297
        {
5298
          edge e = EDGE_SUCC (empty_bb, 0);
5299
 
5300
          if (find_edge (pred, e->dest) == NULL)
5301
            redirect_edge_pred (e, pred);
5302
        }
5303
    }
5304
 
5305
  /* Finish removing.  */
5306
  sel_remove_bb (empty_bb, remove_from_cfg_p);
5307
}
5308
 
5309
/* An implementation of create_basic_block hook, which additionally updates
5310
   per-bb data structures.  */
5311
static basic_block
5312
sel_create_basic_block (void *headp, void *endp, basic_block after)
5313
{
5314
  basic_block new_bb;
5315
  insn_t new_bb_note;
5316
 
5317
  gcc_assert (flag_sel_sched_pipelining_outer_loops
5318
              || last_added_blocks == NULL);
5319
 
5320
  new_bb_note = get_bb_note_from_pool ();
5321
 
5322
  if (new_bb_note == NULL_RTX)
5323
    new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5324
  else
5325
    {
5326
      new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5327
                                             new_bb_note, after);
5328
      new_bb->aux = NULL;
5329
    }
5330
 
5331
  VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5332
 
5333
  return new_bb;
5334
}
5335
 
5336
/* Implement sched_init_only_bb ().  */
5337
static void
5338
sel_init_only_bb (basic_block bb, basic_block after)
5339
{
5340
  gcc_assert (after == NULL);
5341
 
5342
  extend_regions ();
5343
  rgn_make_new_region_out_of_new_block (bb);
5344
}
5345
 
5346
/* Update the latch when we've splitted or merged it from FROM block to TO.
5347
   This should be checked for all outer loops, too.  */
5348
static void
5349
change_loops_latches (basic_block from, basic_block to)
5350
{
5351
  gcc_assert (from != to);
5352
 
5353
  if (current_loop_nest)
5354
    {
5355
      struct loop *loop;
5356
 
5357
      for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5358
        if (considered_for_pipelining_p (loop) && loop->latch == from)
5359
          {
5360
            gcc_assert (loop == current_loop_nest);
5361
            loop->latch = to;
5362
            gcc_assert (loop_latch_edge (loop));
5363
          }
5364
    }
5365
}
5366
 
5367
/* Splits BB on two basic blocks, adding it to the region and extending
5368
   per-bb data structures.  Returns the newly created bb.  */
5369
static basic_block
5370
sel_split_block (basic_block bb, rtx after)
5371
{
5372
  basic_block new_bb;
5373
  insn_t insn;
5374
 
5375
  new_bb = sched_split_block_1 (bb, after);
5376
  sel_add_bb (new_bb);
5377
 
5378
  /* This should be called after sel_add_bb, because this uses
5379
     CONTAINING_RGN for the new block, which is not yet initialized.
5380
     FIXME: this function may be a no-op now.  */
5381
  change_loops_latches (bb, new_bb);
5382
 
5383
  /* Update ORIG_BB_INDEX for insns moved into the new block.  */
5384
  FOR_BB_INSNS (new_bb, insn)
5385
   if (INSN_P (insn))
5386
     EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5387
 
5388
  if (sel_bb_empty_p (bb))
5389
    {
5390
      gcc_assert (!sel_bb_empty_p (new_bb));
5391
 
5392
      /* NEW_BB has data sets that need to be updated and BB holds
5393
         data sets that should be removed.  Exchange these data sets
5394
         so that we won't lose BB's valid data sets.  */
5395
      exchange_data_sets (new_bb, bb);
5396
      free_data_sets (bb);
5397
    }
5398
 
5399
  if (!sel_bb_empty_p (new_bb)
5400
      && bitmap_bit_p (blocks_to_reschedule, bb->index))
5401
    bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5402
 
5403
  return new_bb;
5404
}
5405
 
5406
/* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5407
   Otherwise returns NULL.  */
5408
static rtx
5409
check_for_new_jump (basic_block bb, int prev_max_uid)
5410
{
5411
  rtx end;
5412
 
5413
  end = sel_bb_end (bb);
5414
  if (end && INSN_UID (end) >= prev_max_uid)
5415
    return end;
5416
  return NULL;
5417
}
5418
 
5419
/* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5420
   New means having UID at least equal to PREV_MAX_UID.  */
5421
static rtx
5422
find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5423
{
5424
  rtx jump;
5425
 
5426
  /* Return immediately if no new insns were emitted.  */
5427
  if (get_max_uid () == prev_max_uid)
5428
    return NULL;
5429
 
5430
  /* Now check both blocks for new jumps.  It will ever be only one.  */
5431
  if ((jump = check_for_new_jump (from, prev_max_uid)))
5432
    return jump;
5433
 
5434
  if (jump_bb != NULL
5435
      && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5436
    return jump;
5437
  return NULL;
5438
}
5439
 
5440
/* Splits E and adds the newly created basic block to the current region.
5441
   Returns this basic block.  */
5442
basic_block
5443
sel_split_edge (edge e)
5444
{
5445
  basic_block new_bb, src, other_bb = NULL;
5446
  int prev_max_uid;
5447
  rtx jump;
5448
 
5449
  src = e->src;
5450
  prev_max_uid = get_max_uid ();
5451
  new_bb = split_edge (e);
5452
 
5453
  if (flag_sel_sched_pipelining_outer_loops
5454
      && current_loop_nest)
5455
    {
5456
      int i;
5457
      basic_block bb;
5458
 
5459
      /* Some of the basic blocks might not have been added to the loop.
5460
         Add them here, until this is fixed in force_fallthru.  */
5461
      for (i = 0;
5462
           VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5463
        if (!bb->loop_father)
5464
          {
5465
            add_bb_to_loop (bb, e->dest->loop_father);
5466
 
5467
            gcc_assert (!other_bb && (new_bb->index != bb->index));
5468
            other_bb = bb;
5469
          }
5470
    }
5471
 
5472
  /* Add all last_added_blocks to the region.  */
5473
  sel_add_bb (NULL);
5474
 
5475
  jump = find_new_jump (src, new_bb, prev_max_uid);
5476
  if (jump)
5477
    sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5478
 
5479
  /* Put the correct lv set on this block.  */
5480
  if (other_bb && !sel_bb_empty_p (other_bb))
5481
    compute_live (sel_bb_head (other_bb));
5482
 
5483
  return new_bb;
5484
}
5485
 
5486
/* Implement sched_create_empty_bb ().  */
5487
static basic_block
5488
sel_create_empty_bb (basic_block after)
5489
{
5490
  basic_block new_bb;
5491
 
5492
  new_bb = sched_create_empty_bb_1 (after);
5493
 
5494
  /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5495
     later.  */
5496
  gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5497
              && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5498
 
5499
  VEC_free (basic_block, heap, last_added_blocks);
5500
  return new_bb;
5501
}
5502
 
5503
/* Implement sched_create_recovery_block.  ORIG_INSN is where block
5504
   will be splitted to insert a check.  */
5505
basic_block
5506
sel_create_recovery_block (insn_t orig_insn)
5507
{
5508
  basic_block first_bb, second_bb, recovery_block;
5509
  basic_block before_recovery = NULL;
5510
  rtx jump;
5511
 
5512
  first_bb = BLOCK_FOR_INSN (orig_insn);
5513
  if (sel_bb_end_p (orig_insn))
5514
    {
5515
      /* Avoid introducing an empty block while splitting.  */
5516
      gcc_assert (single_succ_p (first_bb));
5517
      second_bb = single_succ (first_bb);
5518
    }
5519
  else
5520
    second_bb = sched_split_block (first_bb, orig_insn);
5521
 
5522
  recovery_block = sched_create_recovery_block (&before_recovery);
5523
  if (before_recovery)
5524
    copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5525
 
5526
  gcc_assert (sel_bb_empty_p (recovery_block));
5527
  sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5528
  if (current_loops != NULL)
5529
    add_bb_to_loop (recovery_block, first_bb->loop_father);
5530
 
5531
  sel_add_bb (recovery_block);
5532
 
5533
  jump = BB_END (recovery_block);
5534
  gcc_assert (sel_bb_head (recovery_block) == jump);
5535
  sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5536
 
5537
  return recovery_block;
5538
}
5539
 
5540
/* Merge basic block B into basic block A.  */
5541
static void
5542
sel_merge_blocks (basic_block a, basic_block b)
5543
{
5544
  gcc_assert (sel_bb_empty_p (b)
5545
              && EDGE_COUNT (b->preds) == 1
5546
              && EDGE_PRED (b, 0)->src == b->prev_bb);
5547
 
5548
  move_bb_info (b->prev_bb, b);
5549
  remove_empty_bb (b, false);
5550
  merge_blocks (a, b);
5551
  change_loops_latches (b, a);
5552
}
5553
 
5554
/* A wrapper for redirect_edge_and_branch_force, which also initializes
5555
   data structures for possibly created bb and insns.  Returns the newly
5556
   added bb or NULL, when a bb was not needed.  */
5557
void
5558
sel_redirect_edge_and_branch_force (edge e, basic_block to)
5559
{
5560
  basic_block jump_bb, src, orig_dest = e->dest;
5561
  int prev_max_uid;
5562
  rtx jump;
5563
 
5564
  /* This function is now used only for bookkeeping code creation, where
5565
     we'll never get the single pred of orig_dest block and thus will not
5566
     hit unreachable blocks when updating dominator info.  */
5567
  gcc_assert (!sel_bb_empty_p (e->src)
5568
              && !single_pred_p (orig_dest));
5569
  src = e->src;
5570
  prev_max_uid = get_max_uid ();
5571
  jump_bb = redirect_edge_and_branch_force (e, to);
5572
 
5573
  if (jump_bb != NULL)
5574
    sel_add_bb (jump_bb);
5575
 
5576
  /* This function could not be used to spoil the loop structure by now,
5577
     thus we don't care to update anything.  But check it to be sure.  */
5578
  if (current_loop_nest
5579
      && pipelining_p)
5580
    gcc_assert (loop_latch_edge (current_loop_nest));
5581
 
5582
  jump = find_new_jump (src, jump_bb, prev_max_uid);
5583
  if (jump)
5584
    sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5585
  set_immediate_dominator (CDI_DOMINATORS, to,
5586
                           recompute_dominator (CDI_DOMINATORS, to));
5587
  set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5588
                           recompute_dominator (CDI_DOMINATORS, orig_dest));
5589
}
5590
 
5591
/* A wrapper for redirect_edge_and_branch.  Return TRUE if blocks connected by
5592
   redirected edge are in reverse topological order.  */
5593
bool
5594
sel_redirect_edge_and_branch (edge e, basic_block to)
5595
{
5596
  bool latch_edge_p;
5597
  basic_block src, orig_dest = e->dest;
5598
  int prev_max_uid;
5599
  rtx jump;
5600
  edge redirected;
5601
  bool recompute_toporder_p = false;
5602
  bool maybe_unreachable = single_pred_p (orig_dest);
5603
 
5604
  latch_edge_p = (pipelining_p
5605
                  && current_loop_nest
5606
                  && e == loop_latch_edge (current_loop_nest));
5607
 
5608
  src = e->src;
5609
  prev_max_uid = get_max_uid ();
5610
 
5611
  redirected = redirect_edge_and_branch (e, to);
5612
 
5613
  gcc_assert (redirected && last_added_blocks == NULL);
5614
 
5615
  /* When we've redirected a latch edge, update the header.  */
5616
  if (latch_edge_p)
5617
    {
5618
      current_loop_nest->header = to;
5619
      gcc_assert (loop_latch_edge (current_loop_nest));
5620
    }
5621
 
5622
  /* In rare situations, the topological relation between the blocks connected
5623
     by the redirected edge can change (see PR42245 for an example).  Update
5624
     block_to_bb/bb_to_block.  */
5625
  if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5626
      && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5627
    recompute_toporder_p = true;
5628
 
5629
  jump = find_new_jump (src, NULL, prev_max_uid);
5630
  if (jump)
5631
    sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5632
 
5633
  /* Only update dominator info when we don't have unreachable blocks.
5634
     Otherwise we'll update in maybe_tidy_empty_bb.  */
5635
  if (!maybe_unreachable)
5636
    {
5637
      set_immediate_dominator (CDI_DOMINATORS, to,
5638
                               recompute_dominator (CDI_DOMINATORS, to));
5639
      set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5640
                               recompute_dominator (CDI_DOMINATORS, orig_dest));
5641
    }
5642
  return recompute_toporder_p;
5643
}
5644
 
5645
/* This variable holds the cfg hooks used by the selective scheduler.  */
5646
static struct cfg_hooks sel_cfg_hooks;
5647
 
5648
/* Register sel-sched cfg hooks.  */
5649
void
5650
sel_register_cfg_hooks (void)
5651
{
5652
  sched_split_block = sel_split_block;
5653
 
5654
  orig_cfg_hooks = get_cfg_hooks ();
5655
  sel_cfg_hooks = orig_cfg_hooks;
5656
 
5657
  sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5658
 
5659
  set_cfg_hooks (sel_cfg_hooks);
5660
 
5661
  sched_init_only_bb = sel_init_only_bb;
5662
  sched_split_block = sel_split_block;
5663
  sched_create_empty_bb = sel_create_empty_bb;
5664
}
5665
 
5666
/* Unregister sel-sched cfg hooks.  */
5667
void
5668
sel_unregister_cfg_hooks (void)
5669
{
5670
  sched_create_empty_bb = NULL;
5671
  sched_split_block = NULL;
5672
  sched_init_only_bb = NULL;
5673
 
5674
  set_cfg_hooks (orig_cfg_hooks);
5675
}
5676
 
5677
 
5678
/* Emit an insn rtx based on PATTERN.  If a jump insn is wanted,
5679
   LABEL is where this jump should be directed.  */
5680
rtx
5681
create_insn_rtx_from_pattern (rtx pattern, rtx label)
5682
{
5683
  rtx insn_rtx;
5684
 
5685
  gcc_assert (!INSN_P (pattern));
5686
 
5687
  start_sequence ();
5688
 
5689
  if (label == NULL_RTX)
5690
    insn_rtx = emit_insn (pattern);
5691
  else if (DEBUG_INSN_P (label))
5692
    insn_rtx = emit_debug_insn (pattern);
5693
  else
5694
    {
5695
      insn_rtx = emit_jump_insn (pattern);
5696
      JUMP_LABEL (insn_rtx) = label;
5697
      ++LABEL_NUSES (label);
5698
    }
5699
 
5700
  end_sequence ();
5701
 
5702
  sched_extend_luids ();
5703
  sched_extend_target ();
5704
  sched_deps_init (false);
5705
 
5706
  /* Initialize INSN_CODE now.  */
5707
  recog_memoized (insn_rtx);
5708
  return insn_rtx;
5709
}
5710
 
5711
/* Create a new vinsn for INSN_RTX.  FORCE_UNIQUE_P is true when the vinsn
5712
   must not be clonable.  */
5713
vinsn_t
5714
create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5715
{
5716
  gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5717
 
5718
  /* If VINSN_TYPE is not USE, retain its uniqueness.  */
5719
  return vinsn_create (insn_rtx, force_unique_p);
5720
}
5721
 
5722
/* Create a copy of INSN_RTX.  */
5723
rtx
5724
create_copy_of_insn_rtx (rtx insn_rtx)
5725
{
5726
  rtx res, link;
5727
 
5728
  if (DEBUG_INSN_P (insn_rtx))
5729
    return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5730
                                         insn_rtx);
5731
 
5732
  gcc_assert (NONJUMP_INSN_P (insn_rtx));
5733
 
5734
  res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5735
                                      NULL_RTX);
5736
 
5737
  /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5738
     since mark_jump_label will make them.  REG_LABEL_TARGETs are created
5739
     there too, but are supposed to be sticky, so we copy them.  */
5740
  for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5741
    if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5742
        && REG_NOTE_KIND (link) != REG_EQUAL
5743
        && REG_NOTE_KIND (link) != REG_EQUIV)
5744
      {
5745
        if (GET_CODE (link) == EXPR_LIST)
5746
          add_reg_note (res, REG_NOTE_KIND (link),
5747
                        copy_insn_1 (XEXP (link, 0)));
5748
        else
5749
          add_reg_note (res, REG_NOTE_KIND (link), XEXP (link, 0));
5750
      }
5751
 
5752
  return res;
5753
}
5754
 
5755
/* Change vinsn field of EXPR to hold NEW_VINSN.  */
5756
void
5757
change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5758
{
5759
  vinsn_detach (EXPR_VINSN (expr));
5760
 
5761
  EXPR_VINSN (expr) = new_vinsn;
5762
  vinsn_attach (new_vinsn);
5763
}
5764
 
5765
/* Helpers for global init.  */
5766
/* This structure is used to be able to call existing bundling mechanism
5767
   and calculate insn priorities.  */
5768
static struct haifa_sched_info sched_sel_haifa_sched_info =
5769
{
5770
  NULL, /* init_ready_list */
5771
  NULL, /* can_schedule_ready_p */
5772
  NULL, /* schedule_more_p */
5773
  NULL, /* new_ready */
5774
  NULL, /* rgn_rank */
5775
  sel_print_insn, /* rgn_print_insn */
5776
  contributes_to_priority,
5777
  NULL, /* insn_finishes_block_p */
5778
 
5779
  NULL, NULL,
5780
  NULL, NULL,
5781
  0, 0,
5782
 
5783
  NULL, /* add_remove_insn */
5784
  NULL, /* begin_schedule_ready */
5785
  NULL, /* begin_move_insn */
5786
  NULL, /* advance_target_bb */
5787
 
5788
  NULL,
5789
  NULL,
5790
 
5791
  SEL_SCHED | NEW_BBS
5792
};
5793
 
5794
/* Setup special insns used in the scheduler.  */
5795
void
5796
setup_nop_and_exit_insns (void)
5797
{
5798
  gcc_assert (nop_pattern == NULL_RTX
5799
              && exit_insn == NULL_RTX);
5800
 
5801
  nop_pattern = constm1_rtx;
5802
 
5803
  start_sequence ();
5804
  emit_insn (nop_pattern);
5805
  exit_insn = get_insns ();
5806
  end_sequence ();
5807
  set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5808
}
5809
 
5810
/* Free special insns used in the scheduler.  */
5811
void
5812
free_nop_and_exit_insns (void)
5813
{
5814
  exit_insn = NULL_RTX;
5815
  nop_pattern = NULL_RTX;
5816
}
5817
 
5818
/* Setup a special vinsn used in new insns initialization.  */
5819
void
5820
setup_nop_vinsn (void)
5821
{
5822
  nop_vinsn = vinsn_create (exit_insn, false);
5823
  vinsn_attach (nop_vinsn);
5824
}
5825
 
5826
/* Free a special vinsn used in new insns initialization.  */
5827
void
5828
free_nop_vinsn (void)
5829
{
5830
  gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5831
  vinsn_detach (nop_vinsn);
5832
  nop_vinsn = NULL;
5833
}
5834
 
5835
/* Call a set_sched_flags hook.  */
5836
void
5837
sel_set_sched_flags (void)
5838
{
5839
  /* ??? This means that set_sched_flags were called, and we decided to
5840
     support speculation.  However, set_sched_flags also modifies flags
5841
     on current_sched_info, doing this only at global init.  And we
5842
     sometimes change c_s_i later.  So put the correct flags again.  */
5843
  if (spec_info && targetm.sched.set_sched_flags)
5844
    targetm.sched.set_sched_flags (spec_info);
5845
}
5846
 
5847
/* Setup pointers to global sched info structures.  */
5848
void
5849
sel_setup_sched_infos (void)
5850
{
5851
  rgn_setup_common_sched_info ();
5852
 
5853
  memcpy (&sel_common_sched_info, common_sched_info,
5854
          sizeof (sel_common_sched_info));
5855
 
5856
  sel_common_sched_info.fix_recovery_cfg = NULL;
5857
  sel_common_sched_info.add_block = NULL;
5858
  sel_common_sched_info.estimate_number_of_insns
5859
    = sel_estimate_number_of_insns;
5860
  sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5861
  sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5862
 
5863
  common_sched_info = &sel_common_sched_info;
5864
 
5865
  current_sched_info = &sched_sel_haifa_sched_info;
5866
  current_sched_info->sched_max_insns_priority =
5867
    get_rgn_sched_max_insns_priority ();
5868
 
5869
  sel_set_sched_flags ();
5870
}
5871
 
5872
 
5873
/* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5874
   *BB_ORD_INDEX after that is increased.  */
5875
static void
5876
sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5877
{
5878
  RGN_NR_BLOCKS (rgn) += 1;
5879
  RGN_DONT_CALC_DEPS (rgn) = 0;
5880
  RGN_HAS_REAL_EBB (rgn) = 0;
5881
  CONTAINING_RGN (bb->index) = rgn;
5882
  BLOCK_TO_BB (bb->index) = *bb_ord_index;
5883
  rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5884
  (*bb_ord_index)++;
5885
 
5886
  /* FIXME: it is true only when not scheduling ebbs.  */
5887
  RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5888
}
5889
 
5890
/* Functions to support pipelining of outer loops.  */
5891
 
5892
/* Creates a new empty region and returns it's number.  */
5893
static int
5894
sel_create_new_region (void)
5895
{
5896
  int new_rgn_number = nr_regions;
5897
 
5898
  RGN_NR_BLOCKS (new_rgn_number) = 0;
5899
 
5900
  /* FIXME: This will work only when EBBs are not created.  */
5901
  if (new_rgn_number != 0)
5902
    RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5903
      RGN_NR_BLOCKS (new_rgn_number - 1);
5904
  else
5905
    RGN_BLOCKS (new_rgn_number) = 0;
5906
 
5907
  /* Set the blocks of the next region so the other functions may
5908
     calculate the number of blocks in the region.  */
5909
  RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5910
    RGN_NR_BLOCKS (new_rgn_number);
5911
 
5912
  nr_regions++;
5913
 
5914
  return new_rgn_number;
5915
}
5916
 
5917
/* If X has a smaller topological sort number than Y, returns -1;
5918
   if greater, returns 1.  */
5919
static int
5920
bb_top_order_comparator (const void *x, const void *y)
5921
{
5922
  basic_block bb1 = *(const basic_block *) x;
5923
  basic_block bb2 = *(const basic_block *) y;
5924
 
5925
  gcc_assert (bb1 == bb2
5926
              || rev_top_order_index[bb1->index]
5927
                 != rev_top_order_index[bb2->index]);
5928
 
5929
  /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5930
     bbs with greater number should go earlier.  */
5931
  if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5932
    return -1;
5933
  else
5934
    return 1;
5935
}
5936
 
5937
/* Create a region for LOOP and return its number.  If we don't want
5938
   to pipeline LOOP, return -1.  */
5939
static int
5940
make_region_from_loop (struct loop *loop)
5941
{
5942
  unsigned int i;
5943
  int new_rgn_number = -1;
5944
  struct loop *inner;
5945
 
5946
  /* Basic block index, to be assigned to BLOCK_TO_BB.  */
5947
  int bb_ord_index = 0;
5948
  basic_block *loop_blocks;
5949
  basic_block preheader_block;
5950
 
5951
  if (loop->num_nodes
5952
      > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5953
    return -1;
5954
 
5955
  /* Don't pipeline loops whose latch belongs to some of its inner loops.  */
5956
  for (inner = loop->inner; inner; inner = inner->inner)
5957
    if (flow_bb_inside_loop_p (inner, loop->latch))
5958
      return -1;
5959
 
5960
  loop->ninsns = num_loop_insns (loop);
5961
  if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5962
    return -1;
5963
 
5964
  loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5965
 
5966
  for (i = 0; i < loop->num_nodes; i++)
5967
    if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5968
      {
5969
        free (loop_blocks);
5970
        return -1;
5971
      }
5972
 
5973
  preheader_block = loop_preheader_edge (loop)->src;
5974
  gcc_assert (preheader_block);
5975
  gcc_assert (loop_blocks[0] == loop->header);
5976
 
5977
  new_rgn_number = sel_create_new_region ();
5978
 
5979
  sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5980
  SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5981
 
5982
  for (i = 0; i < loop->num_nodes; i++)
5983
    {
5984
      /* Add only those blocks that haven't been scheduled in the inner loop.
5985
         The exception is the basic blocks with bookkeeping code - they should
5986
         be added to the region (and they actually don't belong to the loop
5987
         body, but to the region containing that loop body).  */
5988
 
5989
      gcc_assert (new_rgn_number >= 0);
5990
 
5991
      if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
5992
        {
5993
          sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
5994
                                   new_rgn_number);
5995
          SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
5996
        }
5997
    }
5998
 
5999
  free (loop_blocks);
6000
  MARK_LOOP_FOR_PIPELINING (loop);
6001
 
6002
  return new_rgn_number;
6003
}
6004
 
6005
/* Create a new region from preheader blocks LOOP_BLOCKS.  */
6006
void
6007
make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
6008
{
6009
  unsigned int i;
6010
  int new_rgn_number = -1;
6011
  basic_block bb;
6012
 
6013
  /* Basic block index, to be assigned to BLOCK_TO_BB.  */
6014
  int bb_ord_index = 0;
6015
 
6016
  new_rgn_number = sel_create_new_region ();
6017
 
6018
  FOR_EACH_VEC_ELT (basic_block, *loop_blocks, i, bb)
6019
    {
6020
      gcc_assert (new_rgn_number >= 0);
6021
 
6022
      sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6023
    }
6024
 
6025
  VEC_free (basic_block, heap, *loop_blocks);
6026
  gcc_assert (*loop_blocks == NULL);
6027
}
6028
 
6029
 
6030
/* Create region(s) from loop nest LOOP, such that inner loops will be
6031
   pipelined before outer loops.  Returns true when a region for LOOP
6032
   is created.  */
6033
static bool
6034
make_regions_from_loop_nest (struct loop *loop)
6035
{
6036
  struct loop *cur_loop;
6037
  int rgn_number;
6038
 
6039
  /* Traverse all inner nodes of the loop.  */
6040
  for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6041
    if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
6042
      return false;
6043
 
6044
  /* At this moment all regular inner loops should have been pipelined.
6045
     Try to create a region from this loop.  */
6046
  rgn_number = make_region_from_loop (loop);
6047
 
6048
  if (rgn_number < 0)
6049
    return false;
6050
 
6051
  VEC_safe_push (loop_p, heap, loop_nests, loop);
6052
  return true;
6053
}
6054
 
6055
/* Initalize data structures needed.  */
6056
void
6057
sel_init_pipelining (void)
6058
{
6059
  /* Collect loop information to be used in outer loops pipelining.  */
6060
  loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6061
                       | LOOPS_HAVE_FALLTHRU_PREHEADERS
6062
                       | LOOPS_HAVE_RECORDED_EXITS
6063
                       | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6064
  current_loop_nest = NULL;
6065
 
6066
  bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
6067
  sbitmap_zero (bbs_in_loop_rgns);
6068
 
6069
  recompute_rev_top_order ();
6070
}
6071
 
6072
/* Returns a struct loop for region RGN.  */
6073
loop_p
6074
get_loop_nest_for_rgn (unsigned int rgn)
6075
{
6076
  /* Regions created with extend_rgns don't have corresponding loop nests,
6077
     because they don't represent loops.  */
6078
  if (rgn < VEC_length (loop_p, loop_nests))
6079
    return VEC_index (loop_p, loop_nests, rgn);
6080
  else
6081
    return NULL;
6082
}
6083
 
6084
/* True when LOOP was included into pipelining regions.   */
6085
bool
6086
considered_for_pipelining_p (struct loop *loop)
6087
{
6088
  if (loop_depth (loop) == 0)
6089
    return false;
6090
 
6091
  /* Now, the loop could be too large or irreducible.  Check whether its
6092
     region is in LOOP_NESTS.
6093
     We determine the region number of LOOP as the region number of its
6094
     latch.  We can't use header here, because this header could be
6095
     just removed preheader and it will give us the wrong region number.
6096
     Latch can't be used because it could be in the inner loop too.  */
6097
  if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6098
    {
6099
      int rgn = CONTAINING_RGN (loop->latch->index);
6100
 
6101
      gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
6102
      return true;
6103
    }
6104
 
6105
  return false;
6106
}
6107
 
6108
/* Makes regions from the rest of the blocks, after loops are chosen
6109
   for pipelining.  */
6110
static void
6111
make_regions_from_the_rest (void)
6112
{
6113
  int cur_rgn_blocks;
6114
  int *loop_hdr;
6115
  int i;
6116
 
6117
  basic_block bb;
6118
  edge e;
6119
  edge_iterator ei;
6120
  int *degree;
6121
 
6122
  /* Index in rgn_bb_table where to start allocating new regions.  */
6123
  cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6124
 
6125
  /* Make regions from all the rest basic blocks - those that don't belong to
6126
     any loop or belong to irreducible loops.  Prepare the data structures
6127
     for extend_rgns.  */
6128
 
6129
  /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6130
     LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6131
     loop.  */
6132
  loop_hdr = XNEWVEC (int, last_basic_block);
6133
  degree = XCNEWVEC (int, last_basic_block);
6134
 
6135
 
6136
  /* For each basic block that belongs to some loop assign the number
6137
     of innermost loop it belongs to.  */
6138
  for (i = 0; i < last_basic_block; i++)
6139
    loop_hdr[i] = -1;
6140
 
6141
  FOR_EACH_BB (bb)
6142
    {
6143
      if (bb->loop_father && !bb->loop_father->num == 0
6144
          && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6145
        loop_hdr[bb->index] = bb->loop_father->num;
6146
    }
6147
 
6148
  /* For each basic block degree is calculated as the number of incoming
6149
     edges, that are going out of bbs that are not yet scheduled.
6150
     The basic blocks that are scheduled have degree value of zero.  */
6151
  FOR_EACH_BB (bb)
6152
    {
6153
      degree[bb->index] = 0;
6154
 
6155
      if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
6156
        {
6157
          FOR_EACH_EDGE (e, ei, bb->preds)
6158
            if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
6159
              degree[bb->index]++;
6160
        }
6161
      else
6162
        degree[bb->index] = -1;
6163
    }
6164
 
6165
  extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6166
 
6167
  /* Any block that did not end up in a region is placed into a region
6168
     by itself.  */
6169
  FOR_EACH_BB (bb)
6170
    if (degree[bb->index] >= 0)
6171
      {
6172
        rgn_bb_table[cur_rgn_blocks] = bb->index;
6173
        RGN_NR_BLOCKS (nr_regions) = 1;
6174
        RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6175
        RGN_DONT_CALC_DEPS (nr_regions) = 0;
6176
        RGN_HAS_REAL_EBB (nr_regions) = 0;
6177
        CONTAINING_RGN (bb->index) = nr_regions++;
6178
        BLOCK_TO_BB (bb->index) = 0;
6179
      }
6180
 
6181
  free (degree);
6182
  free (loop_hdr);
6183
}
6184
 
6185
/* Free data structures used in pipelining of loops.  */
6186
void sel_finish_pipelining (void)
6187
{
6188
  loop_iterator li;
6189
  struct loop *loop;
6190
 
6191
  /* Release aux fields so we don't free them later by mistake.  */
6192
  FOR_EACH_LOOP (li, loop, 0)
6193
    loop->aux = NULL;
6194
 
6195
  loop_optimizer_finalize ();
6196
 
6197
  VEC_free (loop_p, heap, loop_nests);
6198
 
6199
  free (rev_top_order_index);
6200
  rev_top_order_index = NULL;
6201
}
6202
 
6203
/* This function replaces the find_rgns when
6204
   FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set.  */
6205
void
6206
sel_find_rgns (void)
6207
{
6208
  sel_init_pipelining ();
6209
  extend_regions ();
6210
 
6211
  if (current_loops)
6212
    {
6213
      loop_p loop;
6214
      loop_iterator li;
6215
 
6216
      FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6217
                                ? LI_FROM_INNERMOST
6218
                                : LI_ONLY_INNERMOST))
6219
        make_regions_from_loop_nest (loop);
6220
    }
6221
 
6222
  /* Make regions from all the rest basic blocks and schedule them.
6223
     These blocks include blocks that don't belong to any loop or belong
6224
     to irreducible loops.  */
6225
  make_regions_from_the_rest ();
6226
 
6227
  /* We don't need bbs_in_loop_rgns anymore.  */
6228
  sbitmap_free (bbs_in_loop_rgns);
6229
  bbs_in_loop_rgns = NULL;
6230
}
6231
 
6232
/* Add the preheader blocks from previous loop to current region taking
6233
   it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6234
   This function is only used with -fsel-sched-pipelining-outer-loops.  */
6235
void
6236
sel_add_loop_preheaders (bb_vec_t *bbs)
6237
{
6238
  int i;
6239
  basic_block bb;
6240
  VEC(basic_block, heap) *preheader_blocks
6241
    = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6242
 
6243
  for (i = 0;
6244
       VEC_iterate (basic_block, preheader_blocks, i, bb);
6245
       i++)
6246
    {
6247
      VEC_safe_push (basic_block, heap, *bbs, bb);
6248
      VEC_safe_push (basic_block, heap, last_added_blocks, bb);
6249
      sel_add_bb (bb);
6250
    }
6251
 
6252
  VEC_free (basic_block, heap, preheader_blocks);
6253
}
6254
 
6255
/* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6256
   Please note that the function should also work when pipelining_p is
6257
   false, because it is used when deciding whether we should or should
6258
   not reschedule pipelined code.  */
6259
bool
6260
sel_is_loop_preheader_p (basic_block bb)
6261
{
6262
  if (current_loop_nest)
6263
    {
6264
      struct loop *outer;
6265
 
6266
      if (preheader_removed)
6267
        return false;
6268
 
6269
      /* Preheader is the first block in the region.  */
6270
      if (BLOCK_TO_BB (bb->index) == 0)
6271
        return true;
6272
 
6273
      /* We used to find a preheader with the topological information.
6274
         Check that the above code is equivalent to what we did before.  */
6275
 
6276
      if (in_current_region_p (current_loop_nest->header))
6277
        gcc_assert (!(BLOCK_TO_BB (bb->index)
6278
                      < BLOCK_TO_BB (current_loop_nest->header->index)));
6279
 
6280
      /* Support the situation when the latch block of outer loop
6281
         could be from here.  */
6282
      for (outer = loop_outer (current_loop_nest);
6283
           outer;
6284
           outer = loop_outer (outer))
6285
        if (considered_for_pipelining_p (outer) && outer->latch == bb)
6286
          gcc_unreachable ();
6287
    }
6288
 
6289
  return false;
6290
}
6291
 
6292
/* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6293
   can be removed, making the corresponding edge fallthrough (assuming that
6294
   all basic blocks between JUMP_BB and DEST_BB are empty).  */
6295
static bool
6296
bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6297
{
6298
  if (!onlyjump_p (BB_END (jump_bb))
6299
      || tablejump_p (BB_END (jump_bb), NULL, NULL))
6300
    return false;
6301
 
6302
  /* Several outgoing edges, abnormal edge or destination of jump is
6303
     not DEST_BB.  */
6304
  if (EDGE_COUNT (jump_bb->succs) != 1
6305
      || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6306
      || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6307
    return false;
6308
 
6309
  /* If not anything of the upper.  */
6310
  return true;
6311
}
6312
 
6313
/* Removes the loop preheader from the current region and saves it in
6314
   PREHEADER_BLOCKS of the father loop, so they will be added later to
6315
   region that represents an outer loop.  */
6316
static void
6317
sel_remove_loop_preheader (void)
6318
{
6319
  int i, old_len;
6320
  int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6321
  basic_block bb;
6322
  bool all_empty_p = true;
6323
  VEC(basic_block, heap) *preheader_blocks
6324
    = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6325
 
6326
  gcc_assert (current_loop_nest);
6327
  old_len = VEC_length (basic_block, preheader_blocks);
6328
 
6329
  /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS.  */
6330
  for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6331
    {
6332
      bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6333
 
6334
      /* If the basic block belongs to region, but doesn't belong to
6335
         corresponding loop, then it should be a preheader.  */
6336
      if (sel_is_loop_preheader_p (bb))
6337
        {
6338
          VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6339
          if (BB_END (bb) != bb_note (bb))
6340
            all_empty_p = false;
6341
        }
6342
    }
6343
 
6344
  /* Remove these blocks only after iterating over the whole region.  */
6345
  for (i = VEC_length (basic_block, preheader_blocks) - 1;
6346
       i >= old_len;
6347
       i--)
6348
    {
6349
      bb =  VEC_index (basic_block, preheader_blocks, i);
6350
      sel_remove_bb (bb, false);
6351
    }
6352
 
6353
  if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6354
    {
6355
      if (!all_empty_p)
6356
        /* Immediately create new region from preheader.  */
6357
        make_region_from_loop_preheader (&preheader_blocks);
6358
      else
6359
        {
6360
          /* If all preheader blocks are empty - dont create new empty region.
6361
             Instead, remove them completely.  */
6362
          FOR_EACH_VEC_ELT (basic_block, preheader_blocks, i, bb)
6363
            {
6364
              edge e;
6365
              edge_iterator ei;
6366
              basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6367
 
6368
              /* Redirect all incoming edges to next basic block.  */
6369
              for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6370
                {
6371
                  if (! (e->flags & EDGE_FALLTHRU))
6372
                    redirect_edge_and_branch (e, bb->next_bb);
6373
                  else
6374
                    redirect_edge_succ (e, bb->next_bb);
6375
                }
6376
              gcc_assert (BB_NOTE_LIST (bb) == NULL);
6377
              delete_and_free_basic_block (bb);
6378
 
6379
              /* Check if after deleting preheader there is a nonconditional
6380
                 jump in PREV_BB that leads to the next basic block NEXT_BB.
6381
                 If it is so - delete this jump and clear data sets of its
6382
                 basic block if it becomes empty.  */
6383
              if (next_bb->prev_bb == prev_bb
6384
                  && prev_bb != ENTRY_BLOCK_PTR
6385
                  && bb_has_removable_jump_to_p (prev_bb, next_bb))
6386
                {
6387
                  redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6388
                  if (BB_END (prev_bb) == bb_note (prev_bb))
6389
                    free_data_sets (prev_bb);
6390
                }
6391
 
6392
              set_immediate_dominator (CDI_DOMINATORS, next_bb,
6393
                                       recompute_dominator (CDI_DOMINATORS,
6394
                                                            next_bb));
6395
            }
6396
        }
6397
      VEC_free (basic_block, heap, preheader_blocks);
6398
    }
6399
  else
6400
    /* Store preheader within the father's loop structure.  */
6401
    SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6402
                               preheader_blocks);
6403
}
6404
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.