| 1 |
684 |
jeremybenn |
/* Instruction scheduling pass. Selective scheduler and pipeliner.
|
| 2 |
|
|
Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GCC.
|
| 6 |
|
|
|
| 7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 8 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 9 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 10 |
|
|
version.
|
| 11 |
|
|
|
| 12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 15 |
|
|
for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
#include "config.h"
|
| 22 |
|
|
#include "system.h"
|
| 23 |
|
|
#include "coretypes.h"
|
| 24 |
|
|
#include "tm.h"
|
| 25 |
|
|
#include "rtl-error.h"
|
| 26 |
|
|
#include "tm_p.h"
|
| 27 |
|
|
#include "hard-reg-set.h"
|
| 28 |
|
|
#include "regs.h"
|
| 29 |
|
|
#include "function.h"
|
| 30 |
|
|
#include "flags.h"
|
| 31 |
|
|
#include "insn-config.h"
|
| 32 |
|
|
#include "insn-attr.h"
|
| 33 |
|
|
#include "except.h"
|
| 34 |
|
|
#include "recog.h"
|
| 35 |
|
|
#include "params.h"
|
| 36 |
|
|
#include "target.h"
|
| 37 |
|
|
#include "output.h"
|
| 38 |
|
|
#include "timevar.h"
|
| 39 |
|
|
#include "tree-pass.h"
|
| 40 |
|
|
#include "sched-int.h"
|
| 41 |
|
|
#include "ggc.h"
|
| 42 |
|
|
#include "tree.h"
|
| 43 |
|
|
#include "vec.h"
|
| 44 |
|
|
#include "langhooks.h"
|
| 45 |
|
|
#include "rtlhooks-def.h"
|
| 46 |
|
|
#include "output.h"
|
| 47 |
|
|
#include "emit-rtl.h"
|
| 48 |
|
|
|
| 49 |
|
|
#ifdef INSN_SCHEDULING
|
| 50 |
|
|
#include "sel-sched-ir.h"
|
| 51 |
|
|
#include "sel-sched-dump.h"
|
| 52 |
|
|
#include "sel-sched.h"
|
| 53 |
|
|
#include "dbgcnt.h"
|
| 54 |
|
|
|
| 55 |
|
|
/* Implementation of selective scheduling approach.
|
| 56 |
|
|
The below implementation follows the original approach with the following
|
| 57 |
|
|
changes:
|
| 58 |
|
|
|
| 59 |
|
|
o the scheduler works after register allocation (but can be also tuned
|
| 60 |
|
|
to work before RA);
|
| 61 |
|
|
o some instructions are not copied or register renamed;
|
| 62 |
|
|
o conditional jumps are not moved with code duplication;
|
| 63 |
|
|
o several jumps in one parallel group are not supported;
|
| 64 |
|
|
o when pipelining outer loops, code motion through inner loops
|
| 65 |
|
|
is not supported;
|
| 66 |
|
|
o control and data speculation are supported;
|
| 67 |
|
|
o some improvements for better compile time/performance were made.
|
| 68 |
|
|
|
| 69 |
|
|
Terminology
|
| 70 |
|
|
===========
|
| 71 |
|
|
|
| 72 |
|
|
A vinsn, or virtual insn, is an insn with additional data characterizing
|
| 73 |
|
|
insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
|
| 74 |
|
|
Vinsns also act as smart pointers to save memory by reusing them in
|
| 75 |
|
|
different expressions. A vinsn is described by vinsn_t type.
|
| 76 |
|
|
|
| 77 |
|
|
An expression is a vinsn with additional data characterizing its properties
|
| 78 |
|
|
at some point in the control flow graph. The data may be its usefulness,
|
| 79 |
|
|
priority, speculative status, whether it was renamed/subsituted, etc.
|
| 80 |
|
|
An expression is described by expr_t type.
|
| 81 |
|
|
|
| 82 |
|
|
Availability set (av_set) is a set of expressions at a given control flow
|
| 83 |
|
|
point. It is represented as av_set_t. The expressions in av sets are kept
|
| 84 |
|
|
sorted in the terms of expr_greater_p function. It allows to truncate
|
| 85 |
|
|
the set while leaving the best expressions.
|
| 86 |
|
|
|
| 87 |
|
|
A fence is a point through which code motion is prohibited. On each step,
|
| 88 |
|
|
we gather a parallel group of insns at a fence. It is possible to have
|
| 89 |
|
|
multiple fences. A fence is represented via fence_t.
|
| 90 |
|
|
|
| 91 |
|
|
A boundary is the border between the fence group and the rest of the code.
|
| 92 |
|
|
Currently, we never have more than one boundary per fence, as we finalize
|
| 93 |
|
|
the fence group when a jump is scheduled. A boundary is represented
|
| 94 |
|
|
via bnd_t.
|
| 95 |
|
|
|
| 96 |
|
|
High-level overview
|
| 97 |
|
|
===================
|
| 98 |
|
|
|
| 99 |
|
|
The scheduler finds regions to schedule, schedules each one, and finalizes.
|
| 100 |
|
|
The regions are formed starting from innermost loops, so that when the inner
|
| 101 |
|
|
loop is pipelined, its prologue can be scheduled together with yet unprocessed
|
| 102 |
|
|
outer loop. The rest of acyclic regions are found using extend_rgns:
|
| 103 |
|
|
the blocks that are not yet allocated to any regions are traversed in top-down
|
| 104 |
|
|
order, and a block is added to a region to which all its predecessors belong;
|
| 105 |
|
|
otherwise, the block starts its own region.
|
| 106 |
|
|
|
| 107 |
|
|
The main scheduling loop (sel_sched_region_2) consists of just
|
| 108 |
|
|
scheduling on each fence and updating fences. For each fence,
|
| 109 |
|
|
we fill a parallel group of insns (fill_insns) until some insns can be added.
|
| 110 |
|
|
First, we compute available exprs (av-set) at the boundary of the current
|
| 111 |
|
|
group. Second, we choose the best expression from it. If the stall is
|
| 112 |
|
|
required to schedule any of the expressions, we advance the current cycle
|
| 113 |
|
|
appropriately. So, the final group does not exactly correspond to a VLIW
|
| 114 |
|
|
word. Third, we move the chosen expression to the boundary (move_op)
|
| 115 |
|
|
and update the intermediate av sets and liveness sets. We quit fill_insns
|
| 116 |
|
|
when either no insns left for scheduling or we have scheduled enough insns
|
| 117 |
|
|
so we feel like advancing a scheduling point.
|
| 118 |
|
|
|
| 119 |
|
|
Computing available expressions
|
| 120 |
|
|
===============================
|
| 121 |
|
|
|
| 122 |
|
|
The computation (compute_av_set) is a bottom-up traversal. At each insn,
|
| 123 |
|
|
we're moving the union of its successors' sets through it via
|
| 124 |
|
|
moveup_expr_set. The dependent expressions are removed. Local
|
| 125 |
|
|
transformations (substitution, speculation) are applied to move more
|
| 126 |
|
|
exprs. Then the expr corresponding to the current insn is added.
|
| 127 |
|
|
The result is saved on each basic block header.
|
| 128 |
|
|
|
| 129 |
|
|
When traversing the CFG, we're moving down for no more than max_ws insns.
|
| 130 |
|
|
Also, we do not move down to ineligible successors (is_ineligible_successor),
|
| 131 |
|
|
which include moving along a back-edge, moving to already scheduled code,
|
| 132 |
|
|
and moving to another fence. The first two restrictions are lifted during
|
| 133 |
|
|
pipelining, which allows us to move insns along a back-edge. We always have
|
| 134 |
|
|
an acyclic region for scheduling because we forbid motion through fences.
|
| 135 |
|
|
|
| 136 |
|
|
Choosing the best expression
|
| 137 |
|
|
============================
|
| 138 |
|
|
|
| 139 |
|
|
We sort the final availability set via sel_rank_for_schedule, then we remove
|
| 140 |
|
|
expressions which are not yet ready (tick_check_p) or which dest registers
|
| 141 |
|
|
cannot be used. For some of them, we choose another register via
|
| 142 |
|
|
find_best_reg. To do this, we run find_used_regs to calculate the set of
|
| 143 |
|
|
registers which cannot be used. The find_used_regs function performs
|
| 144 |
|
|
a traversal of code motion paths for an expr. We consider for renaming
|
| 145 |
|
|
only registers which are from the same regclass as the original one and
|
| 146 |
|
|
using which does not interfere with any live ranges. Finally, we convert
|
| 147 |
|
|
the resulting set to the ready list format and use max_issue and reorder*
|
| 148 |
|
|
hooks similarly to the Haifa scheduler.
|
| 149 |
|
|
|
| 150 |
|
|
Scheduling the best expression
|
| 151 |
|
|
==============================
|
| 152 |
|
|
|
| 153 |
|
|
We run the move_op routine to perform the same type of code motion paths
|
| 154 |
|
|
traversal as in find_used_regs. (These are working via the same driver,
|
| 155 |
|
|
code_motion_path_driver.) When moving down the CFG, we look for original
|
| 156 |
|
|
instruction that gave birth to a chosen expression. We undo
|
| 157 |
|
|
the transformations performed on an expression via the history saved in it.
|
| 158 |
|
|
When found, we remove the instruction or leave a reg-reg copy/speculation
|
| 159 |
|
|
check if needed. On a way up, we insert bookkeeping copies at each join
|
| 160 |
|
|
point. If a copy is not needed, it will be removed later during this
|
| 161 |
|
|
traversal. We update the saved av sets and liveness sets on the way up, too.
|
| 162 |
|
|
|
| 163 |
|
|
Finalizing the schedule
|
| 164 |
|
|
=======================
|
| 165 |
|
|
|
| 166 |
|
|
When pipelining, we reschedule the blocks from which insns were pipelined
|
| 167 |
|
|
to get a tighter schedule. On Itanium, we also perform bundling via
|
| 168 |
|
|
the same routine from ia64.c.
|
| 169 |
|
|
|
| 170 |
|
|
Dependence analysis changes
|
| 171 |
|
|
===========================
|
| 172 |
|
|
|
| 173 |
|
|
We augmented the sched-deps.c with hooks that get called when a particular
|
| 174 |
|
|
dependence is found in a particular part of an insn. Using these hooks, we
|
| 175 |
|
|
can do several actions such as: determine whether an insn can be moved through
|
| 176 |
|
|
another (has_dependence_p, moveup_expr); find out whether an insn can be
|
| 177 |
|
|
scheduled on the current cycle (tick_check_p); find out registers that
|
| 178 |
|
|
are set/used/clobbered by an insn and find out all the strange stuff that
|
| 179 |
|
|
restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
|
| 180 |
|
|
init_global_and_expr_for_insn).
|
| 181 |
|
|
|
| 182 |
|
|
Initialization changes
|
| 183 |
|
|
======================
|
| 184 |
|
|
|
| 185 |
|
|
There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
|
| 186 |
|
|
reused in all of the schedulers. We have split up the initialization of data
|
| 187 |
|
|
of such parts into different functions prefixed with scheduler type and
|
| 188 |
|
|
postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
|
| 189 |
|
|
sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
|
| 190 |
|
|
The same splitting is done with current_sched_info structure:
|
| 191 |
|
|
dependence-related parts are in sched_deps_info, common part is in
|
| 192 |
|
|
common_sched_info, and haifa/sel/etc part is in current_sched_info.
|
| 193 |
|
|
|
| 194 |
|
|
Target contexts
|
| 195 |
|
|
===============
|
| 196 |
|
|
|
| 197 |
|
|
As we now have multiple-point scheduling, this would not work with backends
|
| 198 |
|
|
which save some of the scheduler state to use it in the target hooks.
|
| 199 |
|
|
For this purpose, we introduce a concept of target contexts, which
|
| 200 |
|
|
encapsulate such information. The backend should implement simple routines
|
| 201 |
|
|
of allocating/freeing/setting such a context. The scheduler calls these
|
| 202 |
|
|
as target hooks and handles the target context as an opaque pointer (similar
|
| 203 |
|
|
to the DFA state type, state_t).
|
| 204 |
|
|
|
| 205 |
|
|
Various speedups
|
| 206 |
|
|
================
|
| 207 |
|
|
|
| 208 |
|
|
As the correct data dependence graph is not supported during scheduling (which
|
| 209 |
|
|
is to be changed in mid-term), we cache as much of the dependence analysis
|
| 210 |
|
|
results as possible to avoid reanalyzing. This includes: bitmap caches on
|
| 211 |
|
|
each insn in stream of the region saying yes/no for a query with a pair of
|
| 212 |
|
|
UIDs; hashtables with the previously done transformations on each insn in
|
| 213 |
|
|
stream; a vector keeping a history of transformations on each expr.
|
| 214 |
|
|
|
| 215 |
|
|
Also, we try to minimize the dependence context used on each fence to check
|
| 216 |
|
|
whether the given expression is ready for scheduling by removing from it
|
| 217 |
|
|
insns that are definitely completed the execution. The results of
|
| 218 |
|
|
tick_check_p checks are also cached in a vector on each fence.
|
| 219 |
|
|
|
| 220 |
|
|
We keep a valid liveness set on each insn in a region to avoid the high
|
| 221 |
|
|
cost of recomputation on large basic blocks.
|
| 222 |
|
|
|
| 223 |
|
|
Finally, we try to minimize the number of needed updates to the availability
|
| 224 |
|
|
sets. The updates happen in two cases: when fill_insns terminates,
|
| 225 |
|
|
we advance all fences and increase the stage number to show that the region
|
| 226 |
|
|
has changed and the sets are to be recomputed; and when the next iteration
|
| 227 |
|
|
of a loop in fill_insns happens (but this one reuses the saved av sets
|
| 228 |
|
|
on bb headers.) Thus, we try to break the fill_insns loop only when
|
| 229 |
|
|
"significant" number of insns from the current scheduling window was
|
| 230 |
|
|
scheduled. This should be made a target param.
|
| 231 |
|
|
|
| 232 |
|
|
|
| 233 |
|
|
TODO: correctly support the data dependence graph at all stages and get rid
|
| 234 |
|
|
of all caches. This should speed up the scheduler.
|
| 235 |
|
|
TODO: implement moving cond jumps with bookkeeping copies on both targets.
|
| 236 |
|
|
TODO: tune the scheduler before RA so it does not create too much pseudos.
|
| 237 |
|
|
|
| 238 |
|
|
|
| 239 |
|
|
References:
|
| 240 |
|
|
S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
|
| 241 |
|
|
selective scheduling and software pipelining.
|
| 242 |
|
|
ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
|
| 243 |
|
|
|
| 244 |
|
|
Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
|
| 245 |
|
|
and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
|
| 246 |
|
|
for GCC. In Proceedings of GCC Developers' Summit 2006.
|
| 247 |
|
|
|
| 248 |
|
|
Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
|
| 249 |
|
|
Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
|
| 250 |
|
|
http://rogue.colorado.edu/EPIC7/.
|
| 251 |
|
|
|
| 252 |
|
|
*/
|
| 253 |
|
|
|
| 254 |
|
|
/* True when pipelining is enabled. */
|
| 255 |
|
|
bool pipelining_p;
|
| 256 |
|
|
|
| 257 |
|
|
/* True if bookkeeping is enabled. */
|
| 258 |
|
|
bool bookkeeping_p;
|
| 259 |
|
|
|
| 260 |
|
|
/* Maximum number of insns that are eligible for renaming. */
|
| 261 |
|
|
int max_insns_to_rename;
|
| 262 |
|
|
|
| 263 |
|
|
|
| 264 |
|
|
/* Definitions of local types and macros. */
|
| 265 |
|
|
|
| 266 |
|
|
/* Represents possible outcomes of moving an expression through an insn. */
|
| 267 |
|
|
enum MOVEUP_EXPR_CODE
|
| 268 |
|
|
{
|
| 269 |
|
|
/* The expression is not changed. */
|
| 270 |
|
|
MOVEUP_EXPR_SAME,
|
| 271 |
|
|
|
| 272 |
|
|
/* Not changed, but requires a new destination register. */
|
| 273 |
|
|
MOVEUP_EXPR_AS_RHS,
|
| 274 |
|
|
|
| 275 |
|
|
/* Cannot be moved. */
|
| 276 |
|
|
MOVEUP_EXPR_NULL,
|
| 277 |
|
|
|
| 278 |
|
|
/* Changed (substituted or speculated). */
|
| 279 |
|
|
MOVEUP_EXPR_CHANGED
|
| 280 |
|
|
};
|
| 281 |
|
|
|
| 282 |
|
|
/* The container to be passed into rtx search & replace functions. */
|
| 283 |
|
|
struct rtx_search_arg
|
| 284 |
|
|
{
|
| 285 |
|
|
/* What we are searching for. */
|
| 286 |
|
|
rtx x;
|
| 287 |
|
|
|
| 288 |
|
|
/* The occurence counter. */
|
| 289 |
|
|
int n;
|
| 290 |
|
|
};
|
| 291 |
|
|
|
| 292 |
|
|
typedef struct rtx_search_arg *rtx_search_arg_p;
|
| 293 |
|
|
|
| 294 |
|
|
/* This struct contains precomputed hard reg sets that are needed when
|
| 295 |
|
|
computing registers available for renaming. */
|
| 296 |
|
|
struct hard_regs_data
|
| 297 |
|
|
{
|
| 298 |
|
|
/* For every mode, this stores registers available for use with
|
| 299 |
|
|
that mode. */
|
| 300 |
|
|
HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
|
| 301 |
|
|
|
| 302 |
|
|
/* True when regs_for_mode[mode] is initialized. */
|
| 303 |
|
|
bool regs_for_mode_ok[NUM_MACHINE_MODES];
|
| 304 |
|
|
|
| 305 |
|
|
/* For every register, it has regs that are ok to rename into it.
|
| 306 |
|
|
The register in question is always set. If not, this means
|
| 307 |
|
|
that the whole set is not computed yet. */
|
| 308 |
|
|
HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
|
| 309 |
|
|
|
| 310 |
|
|
/* For every mode, this stores registers not available due to
|
| 311 |
|
|
call clobbering. */
|
| 312 |
|
|
HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
|
| 313 |
|
|
|
| 314 |
|
|
/* All registers that are used or call used. */
|
| 315 |
|
|
HARD_REG_SET regs_ever_used;
|
| 316 |
|
|
|
| 317 |
|
|
#ifdef STACK_REGS
|
| 318 |
|
|
/* Stack registers. */
|
| 319 |
|
|
HARD_REG_SET stack_regs;
|
| 320 |
|
|
#endif
|
| 321 |
|
|
};
|
| 322 |
|
|
|
| 323 |
|
|
/* Holds the results of computation of available for renaming and
|
| 324 |
|
|
unavailable hard registers. */
|
| 325 |
|
|
struct reg_rename
|
| 326 |
|
|
{
|
| 327 |
|
|
/* These are unavailable due to calls crossing, globalness, etc. */
|
| 328 |
|
|
HARD_REG_SET unavailable_hard_regs;
|
| 329 |
|
|
|
| 330 |
|
|
/* These are *available* for renaming. */
|
| 331 |
|
|
HARD_REG_SET available_for_renaming;
|
| 332 |
|
|
|
| 333 |
|
|
/* Whether this code motion path crosses a call. */
|
| 334 |
|
|
bool crosses_call;
|
| 335 |
|
|
};
|
| 336 |
|
|
|
| 337 |
|
|
/* A global structure that contains the needed information about harg
|
| 338 |
|
|
regs. */
|
| 339 |
|
|
static struct hard_regs_data sel_hrd;
|
| 340 |
|
|
|
| 341 |
|
|
|
| 342 |
|
|
/* This structure holds local data used in code_motion_path_driver hooks on
|
| 343 |
|
|
the same or adjacent levels of recursion. Here we keep those parameters
|
| 344 |
|
|
that are not used in code_motion_path_driver routine itself, but only in
|
| 345 |
|
|
its hooks. Moreover, all parameters that can be modified in hooks are
|
| 346 |
|
|
in this structure, so all other parameters passed explicitly to hooks are
|
| 347 |
|
|
read-only. */
|
| 348 |
|
|
struct cmpd_local_params
|
| 349 |
|
|
{
|
| 350 |
|
|
/* Local params used in move_op_* functions. */
|
| 351 |
|
|
|
| 352 |
|
|
/* Edges for bookkeeping generation. */
|
| 353 |
|
|
edge e1, e2;
|
| 354 |
|
|
|
| 355 |
|
|
/* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
|
| 356 |
|
|
expr_t c_expr_merged, c_expr_local;
|
| 357 |
|
|
|
| 358 |
|
|
/* Local params used in fur_* functions. */
|
| 359 |
|
|
/* Copy of the ORIGINAL_INSN list, stores the original insns already
|
| 360 |
|
|
found before entering the current level of code_motion_path_driver. */
|
| 361 |
|
|
def_list_t old_original_insns;
|
| 362 |
|
|
|
| 363 |
|
|
/* Local params used in move_op_* functions. */
|
| 364 |
|
|
/* True when we have removed last insn in the block which was
|
| 365 |
|
|
also a boundary. Do not update anything or create bookkeeping copies. */
|
| 366 |
|
|
BOOL_BITFIELD removed_last_insn : 1;
|
| 367 |
|
|
};
|
| 368 |
|
|
|
| 369 |
|
|
/* Stores the static parameters for move_op_* calls. */
|
| 370 |
|
|
struct moveop_static_params
|
| 371 |
|
|
{
|
| 372 |
|
|
/* Destination register. */
|
| 373 |
|
|
rtx dest;
|
| 374 |
|
|
|
| 375 |
|
|
/* Current C_EXPR. */
|
| 376 |
|
|
expr_t c_expr;
|
| 377 |
|
|
|
| 378 |
|
|
/* An UID of expr_vliw which is to be moved up. If we find other exprs,
|
| 379 |
|
|
they are to be removed. */
|
| 380 |
|
|
int uid;
|
| 381 |
|
|
|
| 382 |
|
|
#ifdef ENABLE_CHECKING
|
| 383 |
|
|
/* This is initialized to the insn on which the driver stopped its traversal. */
|
| 384 |
|
|
insn_t failed_insn;
|
| 385 |
|
|
#endif
|
| 386 |
|
|
|
| 387 |
|
|
/* True if we scheduled an insn with different register. */
|
| 388 |
|
|
bool was_renamed;
|
| 389 |
|
|
};
|
| 390 |
|
|
|
| 391 |
|
|
/* Stores the static parameters for fur_* calls. */
|
| 392 |
|
|
struct fur_static_params
|
| 393 |
|
|
{
|
| 394 |
|
|
/* Set of registers unavailable on the code motion path. */
|
| 395 |
|
|
regset used_regs;
|
| 396 |
|
|
|
| 397 |
|
|
/* Pointer to the list of original insns definitions. */
|
| 398 |
|
|
def_list_t *original_insns;
|
| 399 |
|
|
|
| 400 |
|
|
/* True if a code motion path contains a CALL insn. */
|
| 401 |
|
|
bool crosses_call;
|
| 402 |
|
|
};
|
| 403 |
|
|
|
| 404 |
|
|
typedef struct fur_static_params *fur_static_params_p;
|
| 405 |
|
|
typedef struct cmpd_local_params *cmpd_local_params_p;
|
| 406 |
|
|
typedef struct moveop_static_params *moveop_static_params_p;
|
| 407 |
|
|
|
| 408 |
|
|
/* Set of hooks and parameters that determine behaviour specific to
|
| 409 |
|
|
move_op or find_used_regs functions. */
|
| 410 |
|
|
struct code_motion_path_driver_info_def
|
| 411 |
|
|
{
|
| 412 |
|
|
/* Called on enter to the basic block. */
|
| 413 |
|
|
int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
|
| 414 |
|
|
|
| 415 |
|
|
/* Called when original expr is found. */
|
| 416 |
|
|
void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
|
| 417 |
|
|
|
| 418 |
|
|
/* Called while descending current basic block if current insn is not
|
| 419 |
|
|
the original EXPR we're searching for. */
|
| 420 |
|
|
bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
|
| 421 |
|
|
|
| 422 |
|
|
/* Function to merge C_EXPRes from different successors. */
|
| 423 |
|
|
void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
|
| 424 |
|
|
|
| 425 |
|
|
/* Function to finalize merge from different successors and possibly
|
| 426 |
|
|
deallocate temporary data structures used for merging. */
|
| 427 |
|
|
void (*after_merge_succs) (cmpd_local_params_p, void *);
|
| 428 |
|
|
|
| 429 |
|
|
/* Called on the backward stage of recursion to do moveup_expr.
|
| 430 |
|
|
Used only with move_op_*. */
|
| 431 |
|
|
void (*ascend) (insn_t, void *);
|
| 432 |
|
|
|
| 433 |
|
|
/* Called on the ascending pass, before returning from the current basic
|
| 434 |
|
|
block or from the whole traversal. */
|
| 435 |
|
|
void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
|
| 436 |
|
|
|
| 437 |
|
|
/* When processing successors in move_op we need only descend into
|
| 438 |
|
|
SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
|
| 439 |
|
|
int succ_flags;
|
| 440 |
|
|
|
| 441 |
|
|
/* The routine name to print in dumps ("move_op" of "find_used_regs"). */
|
| 442 |
|
|
const char *routine_name;
|
| 443 |
|
|
};
|
| 444 |
|
|
|
| 445 |
|
|
/* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
|
| 446 |
|
|
FUR_HOOKS. */
|
| 447 |
|
|
struct code_motion_path_driver_info_def *code_motion_path_driver_info;
|
| 448 |
|
|
|
| 449 |
|
|
/* Set of hooks for performing move_op and find_used_regs routines with
|
| 450 |
|
|
code_motion_path_driver. */
|
| 451 |
|
|
extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
|
| 452 |
|
|
|
| 453 |
|
|
/* True if/when we want to emulate Haifa scheduler in the common code.
|
| 454 |
|
|
This is used in sched_rgn_local_init and in various places in
|
| 455 |
|
|
sched-deps.c. */
|
| 456 |
|
|
int sched_emulate_haifa_p;
|
| 457 |
|
|
|
| 458 |
|
|
/* GLOBAL_LEVEL is used to discard information stored in basic block headers
|
| 459 |
|
|
av_sets. Av_set of bb header is valid if its (bb header's) level is equal
|
| 460 |
|
|
to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
|
| 461 |
|
|
scheduling window. */
|
| 462 |
|
|
int global_level;
|
| 463 |
|
|
|
| 464 |
|
|
/* Current fences. */
|
| 465 |
|
|
flist_t fences;
|
| 466 |
|
|
|
| 467 |
|
|
/* True when separable insns should be scheduled as RHSes. */
|
| 468 |
|
|
static bool enable_schedule_as_rhs_p;
|
| 469 |
|
|
|
| 470 |
|
|
/* Used in verify_target_availability to assert that target reg is reported
|
| 471 |
|
|
unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
|
| 472 |
|
|
we haven't scheduled anything on the previous fence.
|
| 473 |
|
|
if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
|
| 474 |
|
|
have more conservative value than the one returned by the
|
| 475 |
|
|
find_used_regs, thus we shouldn't assert that these values are equal. */
|
| 476 |
|
|
static bool scheduled_something_on_previous_fence;
|
| 477 |
|
|
|
| 478 |
|
|
/* All newly emitted insns will have their uids greater than this value. */
|
| 479 |
|
|
static int first_emitted_uid;
|
| 480 |
|
|
|
| 481 |
|
|
/* Set of basic blocks that are forced to start new ebbs. This is a subset
|
| 482 |
|
|
of all the ebb heads. */
|
| 483 |
|
|
static bitmap_head _forced_ebb_heads;
|
| 484 |
|
|
bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
|
| 485 |
|
|
|
| 486 |
|
|
/* Blocks that need to be rescheduled after pipelining. */
|
| 487 |
|
|
bitmap blocks_to_reschedule = NULL;
|
| 488 |
|
|
|
| 489 |
|
|
/* True when the first lv set should be ignored when updating liveness. */
|
| 490 |
|
|
static bool ignore_first = false;
|
| 491 |
|
|
|
| 492 |
|
|
/* Number of insns max_issue has initialized data structures for. */
|
| 493 |
|
|
static int max_issue_size = 0;
|
| 494 |
|
|
|
| 495 |
|
|
/* Whether we can issue more instructions. */
|
| 496 |
|
|
static int can_issue_more;
|
| 497 |
|
|
|
| 498 |
|
|
/* Maximum software lookahead window size, reduced when rescheduling after
|
| 499 |
|
|
pipelining. */
|
| 500 |
|
|
static int max_ws;
|
| 501 |
|
|
|
| 502 |
|
|
/* Number of insns scheduled in current region. */
|
| 503 |
|
|
static int num_insns_scheduled;
|
| 504 |
|
|
|
| 505 |
|
|
/* A vector of expressions is used to be able to sort them. */
|
| 506 |
|
|
DEF_VEC_P(expr_t);
|
| 507 |
|
|
DEF_VEC_ALLOC_P(expr_t,heap);
|
| 508 |
|
|
static VEC(expr_t, heap) *vec_av_set = NULL;
|
| 509 |
|
|
|
| 510 |
|
|
/* A vector of vinsns is used to hold temporary lists of vinsns. */
|
| 511 |
|
|
DEF_VEC_P(vinsn_t);
|
| 512 |
|
|
DEF_VEC_ALLOC_P(vinsn_t,heap);
|
| 513 |
|
|
typedef VEC(vinsn_t, heap) *vinsn_vec_t;
|
| 514 |
|
|
|
| 515 |
|
|
/* This vector has the exprs which may still present in av_sets, but actually
|
| 516 |
|
|
can't be moved up due to bookkeeping created during code motion to another
|
| 517 |
|
|
fence. See comment near the call to update_and_record_unavailable_insns
|
| 518 |
|
|
for the detailed explanations. */
|
| 519 |
|
|
static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
|
| 520 |
|
|
|
| 521 |
|
|
/* This vector has vinsns which are scheduled with renaming on the first fence
|
| 522 |
|
|
and then seen on the second. For expressions with such vinsns, target
|
| 523 |
|
|
availability information may be wrong. */
|
| 524 |
|
|
static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
|
| 525 |
|
|
|
| 526 |
|
|
/* Vector to store temporary nops inserted in move_op to prevent removal
|
| 527 |
|
|
of empty bbs. */
|
| 528 |
|
|
DEF_VEC_P(insn_t);
|
| 529 |
|
|
DEF_VEC_ALLOC_P(insn_t,heap);
|
| 530 |
|
|
static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
|
| 531 |
|
|
|
| 532 |
|
|
/* These bitmaps record original instructions scheduled on the current
|
| 533 |
|
|
iteration and bookkeeping copies created by them. */
|
| 534 |
|
|
static bitmap current_originators = NULL;
|
| 535 |
|
|
static bitmap current_copies = NULL;
|
| 536 |
|
|
|
| 537 |
|
|
/* This bitmap marks the blocks visited by code_motion_path_driver so we don't
|
| 538 |
|
|
visit them afterwards. */
|
| 539 |
|
|
static bitmap code_motion_visited_blocks = NULL;
|
| 540 |
|
|
|
| 541 |
|
|
/* Variables to accumulate different statistics. */
|
| 542 |
|
|
|
| 543 |
|
|
/* The number of bookkeeping copies created. */
|
| 544 |
|
|
static int stat_bookkeeping_copies;
|
| 545 |
|
|
|
| 546 |
|
|
/* The number of insns that required bookkeeiping for their scheduling. */
|
| 547 |
|
|
static int stat_insns_needed_bookkeeping;
|
| 548 |
|
|
|
| 549 |
|
|
/* The number of insns that got renamed. */
|
| 550 |
|
|
static int stat_renamed_scheduled;
|
| 551 |
|
|
|
| 552 |
|
|
/* The number of substitutions made during scheduling. */
|
| 553 |
|
|
static int stat_substitutions_total;
|
| 554 |
|
|
|
| 555 |
|
|
|
| 556 |
|
|
/* Forward declarations of static functions. */
|
| 557 |
|
|
static bool rtx_ok_for_substitution_p (rtx, rtx);
|
| 558 |
|
|
static int sel_rank_for_schedule (const void *, const void *);
|
| 559 |
|
|
static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
|
| 560 |
|
|
static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
|
| 561 |
|
|
|
| 562 |
|
|
static rtx get_dest_from_orig_ops (av_set_t);
|
| 563 |
|
|
static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
|
| 564 |
|
|
static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
|
| 565 |
|
|
def_list_t *);
|
| 566 |
|
|
static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
|
| 567 |
|
|
static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
|
| 568 |
|
|
cmpd_local_params_p, void *);
|
| 569 |
|
|
static void sel_sched_region_1 (void);
|
| 570 |
|
|
static void sel_sched_region_2 (int);
|
| 571 |
|
|
static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
|
| 572 |
|
|
|
| 573 |
|
|
static void debug_state (state_t);
|
| 574 |
|
|
|
| 575 |
|
|
|
| 576 |
|
|
/* Functions that work with fences. */
|
| 577 |
|
|
|
| 578 |
|
|
/* Advance one cycle on FENCE. */
|
| 579 |
|
|
static void
|
| 580 |
|
|
advance_one_cycle (fence_t fence)
|
| 581 |
|
|
{
|
| 582 |
|
|
unsigned i;
|
| 583 |
|
|
int cycle;
|
| 584 |
|
|
rtx insn;
|
| 585 |
|
|
|
| 586 |
|
|
advance_state (FENCE_STATE (fence));
|
| 587 |
|
|
cycle = ++FENCE_CYCLE (fence);
|
| 588 |
|
|
FENCE_ISSUED_INSNS (fence) = 0;
|
| 589 |
|
|
FENCE_STARTS_CYCLE_P (fence) = 1;
|
| 590 |
|
|
can_issue_more = issue_rate;
|
| 591 |
|
|
FENCE_ISSUE_MORE (fence) = can_issue_more;
|
| 592 |
|
|
|
| 593 |
|
|
for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
|
| 594 |
|
|
{
|
| 595 |
|
|
if (INSN_READY_CYCLE (insn) < cycle)
|
| 596 |
|
|
{
|
| 597 |
|
|
remove_from_deps (FENCE_DC (fence), insn);
|
| 598 |
|
|
VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
|
| 599 |
|
|
continue;
|
| 600 |
|
|
}
|
| 601 |
|
|
i++;
|
| 602 |
|
|
}
|
| 603 |
|
|
if (sched_verbose >= 2)
|
| 604 |
|
|
{
|
| 605 |
|
|
sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
|
| 606 |
|
|
debug_state (FENCE_STATE (fence));
|
| 607 |
|
|
}
|
| 608 |
|
|
}
|
| 609 |
|
|
|
| 610 |
|
|
/* Returns true when SUCC in a fallthru bb of INSN, possibly
|
| 611 |
|
|
skipping empty basic blocks. */
|
| 612 |
|
|
static bool
|
| 613 |
|
|
in_fallthru_bb_p (rtx insn, rtx succ)
|
| 614 |
|
|
{
|
| 615 |
|
|
basic_block bb = BLOCK_FOR_INSN (insn);
|
| 616 |
|
|
edge e;
|
| 617 |
|
|
|
| 618 |
|
|
if (bb == BLOCK_FOR_INSN (succ))
|
| 619 |
|
|
return true;
|
| 620 |
|
|
|
| 621 |
|
|
e = find_fallthru_edge_from (bb);
|
| 622 |
|
|
if (e)
|
| 623 |
|
|
bb = e->dest;
|
| 624 |
|
|
else
|
| 625 |
|
|
return false;
|
| 626 |
|
|
|
| 627 |
|
|
while (sel_bb_empty_p (bb))
|
| 628 |
|
|
bb = bb->next_bb;
|
| 629 |
|
|
|
| 630 |
|
|
return bb == BLOCK_FOR_INSN (succ);
|
| 631 |
|
|
}
|
| 632 |
|
|
|
| 633 |
|
|
/* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
|
| 634 |
|
|
When a successor will continue a ebb, transfer all parameters of a fence
|
| 635 |
|
|
to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
|
| 636 |
|
|
of scheduling helping to distinguish between the old and the new code. */
|
| 637 |
|
|
static void
|
| 638 |
|
|
extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
|
| 639 |
|
|
int orig_max_seqno)
|
| 640 |
|
|
{
|
| 641 |
|
|
bool was_here_p = false;
|
| 642 |
|
|
insn_t insn = NULL_RTX;
|
| 643 |
|
|
insn_t succ;
|
| 644 |
|
|
succ_iterator si;
|
| 645 |
|
|
ilist_iterator ii;
|
| 646 |
|
|
fence_t fence = FLIST_FENCE (old_fences);
|
| 647 |
|
|
basic_block bb;
|
| 648 |
|
|
|
| 649 |
|
|
/* Get the only element of FENCE_BNDS (fence). */
|
| 650 |
|
|
FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
|
| 651 |
|
|
{
|
| 652 |
|
|
gcc_assert (!was_here_p);
|
| 653 |
|
|
was_here_p = true;
|
| 654 |
|
|
}
|
| 655 |
|
|
gcc_assert (was_here_p && insn != NULL_RTX);
|
| 656 |
|
|
|
| 657 |
|
|
/* When in the "middle" of the block, just move this fence
|
| 658 |
|
|
to the new list. */
|
| 659 |
|
|
bb = BLOCK_FOR_INSN (insn);
|
| 660 |
|
|
if (! sel_bb_end_p (insn)
|
| 661 |
|
|
|| (single_succ_p (bb)
|
| 662 |
|
|
&& single_pred_p (single_succ (bb))))
|
| 663 |
|
|
{
|
| 664 |
|
|
insn_t succ;
|
| 665 |
|
|
|
| 666 |
|
|
succ = (sel_bb_end_p (insn)
|
| 667 |
|
|
? sel_bb_head (single_succ (bb))
|
| 668 |
|
|
: NEXT_INSN (insn));
|
| 669 |
|
|
|
| 670 |
|
|
if (INSN_SEQNO (succ) > 0
|
| 671 |
|
|
&& INSN_SEQNO (succ) <= orig_max_seqno
|
| 672 |
|
|
&& INSN_SCHED_TIMES (succ) <= 0)
|
| 673 |
|
|
{
|
| 674 |
|
|
FENCE_INSN (fence) = succ;
|
| 675 |
|
|
move_fence_to_fences (old_fences, new_fences);
|
| 676 |
|
|
|
| 677 |
|
|
if (sched_verbose >= 1)
|
| 678 |
|
|
sel_print ("Fence %d continues as %d[%d] (state continue)\n",
|
| 679 |
|
|
INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
|
| 680 |
|
|
}
|
| 681 |
|
|
return;
|
| 682 |
|
|
}
|
| 683 |
|
|
|
| 684 |
|
|
/* Otherwise copy fence's structures to (possibly) multiple successors. */
|
| 685 |
|
|
FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
|
| 686 |
|
|
{
|
| 687 |
|
|
int seqno = INSN_SEQNO (succ);
|
| 688 |
|
|
|
| 689 |
|
|
if (0 < seqno && seqno <= orig_max_seqno
|
| 690 |
|
|
&& (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
|
| 691 |
|
|
{
|
| 692 |
|
|
bool b = (in_same_ebb_p (insn, succ)
|
| 693 |
|
|
|| in_fallthru_bb_p (insn, succ));
|
| 694 |
|
|
|
| 695 |
|
|
if (sched_verbose >= 1)
|
| 696 |
|
|
sel_print ("Fence %d continues as %d[%d] (state %s)\n",
|
| 697 |
|
|
INSN_UID (insn), INSN_UID (succ),
|
| 698 |
|
|
BLOCK_NUM (succ), b ? "continue" : "reset");
|
| 699 |
|
|
|
| 700 |
|
|
if (b)
|
| 701 |
|
|
add_dirty_fence_to_fences (new_fences, succ, fence);
|
| 702 |
|
|
else
|
| 703 |
|
|
{
|
| 704 |
|
|
/* Mark block of the SUCC as head of the new ebb. */
|
| 705 |
|
|
bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
|
| 706 |
|
|
add_clean_fence_to_fences (new_fences, succ, fence);
|
| 707 |
|
|
}
|
| 708 |
|
|
}
|
| 709 |
|
|
}
|
| 710 |
|
|
}
|
| 711 |
|
|
|
| 712 |
|
|
|
| 713 |
|
|
/* Functions to support substitution. */
|
| 714 |
|
|
|
| 715 |
|
|
/* Returns whether INSN with dependence status DS is eligible for
|
| 716 |
|
|
substitution, i.e. it's a copy operation x := y, and RHS that is
|
| 717 |
|
|
moved up through this insn should be substituted. */
|
| 718 |
|
|
static bool
|
| 719 |
|
|
can_substitute_through_p (insn_t insn, ds_t ds)
|
| 720 |
|
|
{
|
| 721 |
|
|
/* We can substitute only true dependencies. */
|
| 722 |
|
|
if ((ds & DEP_OUTPUT)
|
| 723 |
|
|
|| (ds & DEP_ANTI)
|
| 724 |
|
|
|| ! INSN_RHS (insn)
|
| 725 |
|
|
|| ! INSN_LHS (insn))
|
| 726 |
|
|
return false;
|
| 727 |
|
|
|
| 728 |
|
|
/* Now we just need to make sure the INSN_RHS consists of only one
|
| 729 |
|
|
simple REG rtx. */
|
| 730 |
|
|
if (REG_P (INSN_LHS (insn))
|
| 731 |
|
|
&& REG_P (INSN_RHS (insn)))
|
| 732 |
|
|
return true;
|
| 733 |
|
|
return false;
|
| 734 |
|
|
}
|
| 735 |
|
|
|
| 736 |
|
|
/* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
|
| 737 |
|
|
source (if INSN is eligible for substitution). Returns TRUE if
|
| 738 |
|
|
substitution was actually performed, FALSE otherwise. Substitution might
|
| 739 |
|
|
be not performed because it's either EXPR' vinsn doesn't contain INSN's
|
| 740 |
|
|
destination or the resulting insn is invalid for the target machine.
|
| 741 |
|
|
When UNDO is true, perform unsubstitution instead (the difference is in
|
| 742 |
|
|
the part of rtx on which validate_replace_rtx is called). */
|
| 743 |
|
|
static bool
|
| 744 |
|
|
substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
|
| 745 |
|
|
{
|
| 746 |
|
|
rtx *where;
|
| 747 |
|
|
bool new_insn_valid;
|
| 748 |
|
|
vinsn_t *vi = &EXPR_VINSN (expr);
|
| 749 |
|
|
bool has_rhs = VINSN_RHS (*vi) != NULL;
|
| 750 |
|
|
rtx old, new_rtx;
|
| 751 |
|
|
|
| 752 |
|
|
/* Do not try to replace in SET_DEST. Although we'll choose new
|
| 753 |
|
|
register for the RHS, we don't want to change RHS' original reg.
|
| 754 |
|
|
If the insn is not SET, we may still be able to substitute something
|
| 755 |
|
|
in it, and if we're here (don't have deps), it doesn't write INSN's
|
| 756 |
|
|
dest. */
|
| 757 |
|
|
where = (has_rhs
|
| 758 |
|
|
? &VINSN_RHS (*vi)
|
| 759 |
|
|
: &PATTERN (VINSN_INSN_RTX (*vi)));
|
| 760 |
|
|
old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
|
| 761 |
|
|
|
| 762 |
|
|
/* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
|
| 763 |
|
|
if (rtx_ok_for_substitution_p (old, *where))
|
| 764 |
|
|
{
|
| 765 |
|
|
rtx new_insn;
|
| 766 |
|
|
rtx *where_replace;
|
| 767 |
|
|
|
| 768 |
|
|
/* We should copy these rtxes before substitution. */
|
| 769 |
|
|
new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
|
| 770 |
|
|
new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
|
| 771 |
|
|
|
| 772 |
|
|
/* Where we'll replace.
|
| 773 |
|
|
WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
|
| 774 |
|
|
used instead of SET_SRC. */
|
| 775 |
|
|
where_replace = (has_rhs
|
| 776 |
|
|
? &SET_SRC (PATTERN (new_insn))
|
| 777 |
|
|
: &PATTERN (new_insn));
|
| 778 |
|
|
|
| 779 |
|
|
new_insn_valid
|
| 780 |
|
|
= validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
|
| 781 |
|
|
new_insn);
|
| 782 |
|
|
|
| 783 |
|
|
/* ??? Actually, constrain_operands result depends upon choice of
|
| 784 |
|
|
destination register. E.g. if we allow single register to be an rhs,
|
| 785 |
|
|
and if we try to move dx=ax(as rhs) through ax=dx, we'll result
|
| 786 |
|
|
in invalid insn dx=dx, so we'll loose this rhs here.
|
| 787 |
|
|
Just can't come up with significant testcase for this, so just
|
| 788 |
|
|
leaving it for now. */
|
| 789 |
|
|
if (new_insn_valid)
|
| 790 |
|
|
{
|
| 791 |
|
|
change_vinsn_in_expr (expr,
|
| 792 |
|
|
create_vinsn_from_insn_rtx (new_insn, false));
|
| 793 |
|
|
|
| 794 |
|
|
/* Do not allow clobbering the address register of speculative
|
| 795 |
|
|
insns. */
|
| 796 |
|
|
if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
|
| 797 |
|
|
&& register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
|
| 798 |
|
|
expr_dest_reg (expr)))
|
| 799 |
|
|
EXPR_TARGET_AVAILABLE (expr) = false;
|
| 800 |
|
|
|
| 801 |
|
|
return true;
|
| 802 |
|
|
}
|
| 803 |
|
|
else
|
| 804 |
|
|
return false;
|
| 805 |
|
|
}
|
| 806 |
|
|
else
|
| 807 |
|
|
return false;
|
| 808 |
|
|
}
|
| 809 |
|
|
|
| 810 |
|
|
/* Helper function for count_occurences_equiv. */
|
| 811 |
|
|
static int
|
| 812 |
|
|
count_occurrences_1 (rtx *cur_rtx, void *arg)
|
| 813 |
|
|
{
|
| 814 |
|
|
rtx_search_arg_p p = (rtx_search_arg_p) arg;
|
| 815 |
|
|
|
| 816 |
|
|
if (REG_P (*cur_rtx) && REGNO (*cur_rtx) == REGNO (p->x))
|
| 817 |
|
|
{
|
| 818 |
|
|
/* Bail out if mode is different or more than one register is used. */
|
| 819 |
|
|
if (GET_MODE (*cur_rtx) != GET_MODE (p->x)
|
| 820 |
|
|
|| (HARD_REGISTER_P (*cur_rtx)
|
| 821 |
|
|
&& hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1))
|
| 822 |
|
|
{
|
| 823 |
|
|
p->n = 0;
|
| 824 |
|
|
return 1;
|
| 825 |
|
|
}
|
| 826 |
|
|
|
| 827 |
|
|
p->n++;
|
| 828 |
|
|
|
| 829 |
|
|
/* Do not traverse subexprs. */
|
| 830 |
|
|
return -1;
|
| 831 |
|
|
}
|
| 832 |
|
|
|
| 833 |
|
|
if (GET_CODE (*cur_rtx) == SUBREG
|
| 834 |
|
|
&& (!REG_P (SUBREG_REG (*cur_rtx))
|
| 835 |
|
|
|| REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
|
| 836 |
|
|
{
|
| 837 |
|
|
/* ??? Do not support substituting regs inside subregs. In that case,
|
| 838 |
|
|
simplify_subreg will be called by validate_replace_rtx, and
|
| 839 |
|
|
unsubstitution will fail later. */
|
| 840 |
|
|
p->n = 0;
|
| 841 |
|
|
return 1;
|
| 842 |
|
|
}
|
| 843 |
|
|
|
| 844 |
|
|
/* Continue search. */
|
| 845 |
|
|
return 0;
|
| 846 |
|
|
}
|
| 847 |
|
|
|
| 848 |
|
|
/* Return the number of places WHAT appears within WHERE.
|
| 849 |
|
|
Bail out when we found a reference occupying several hard registers. */
|
| 850 |
|
|
static int
|
| 851 |
|
|
count_occurrences_equiv (rtx what, rtx where)
|
| 852 |
|
|
{
|
| 853 |
|
|
struct rtx_search_arg arg;
|
| 854 |
|
|
|
| 855 |
|
|
gcc_assert (REG_P (what));
|
| 856 |
|
|
arg.x = what;
|
| 857 |
|
|
arg.n = 0;
|
| 858 |
|
|
|
| 859 |
|
|
for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
|
| 860 |
|
|
|
| 861 |
|
|
return arg.n;
|
| 862 |
|
|
}
|
| 863 |
|
|
|
| 864 |
|
|
/* Returns TRUE if WHAT is found in WHERE rtx tree. */
|
| 865 |
|
|
static bool
|
| 866 |
|
|
rtx_ok_for_substitution_p (rtx what, rtx where)
|
| 867 |
|
|
{
|
| 868 |
|
|
return (count_occurrences_equiv (what, where) > 0);
|
| 869 |
|
|
}
|
| 870 |
|
|
|
| 871 |
|
|
|
| 872 |
|
|
/* Functions to support register renaming. */
|
| 873 |
|
|
|
| 874 |
|
|
/* Substitute VI's set source with REGNO. Returns newly created pattern
|
| 875 |
|
|
that has REGNO as its source. */
|
| 876 |
|
|
static rtx
|
| 877 |
|
|
create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
|
| 878 |
|
|
{
|
| 879 |
|
|
rtx lhs_rtx;
|
| 880 |
|
|
rtx pattern;
|
| 881 |
|
|
rtx insn_rtx;
|
| 882 |
|
|
|
| 883 |
|
|
lhs_rtx = copy_rtx (VINSN_LHS (vi));
|
| 884 |
|
|
|
| 885 |
|
|
pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
|
| 886 |
|
|
insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
|
| 887 |
|
|
|
| 888 |
|
|
return insn_rtx;
|
| 889 |
|
|
}
|
| 890 |
|
|
|
| 891 |
|
|
/* Returns whether INSN's src can be replaced with register number
|
| 892 |
|
|
NEW_SRC_REG. E.g. the following insn is valid for i386:
|
| 893 |
|
|
|
| 894 |
|
|
(insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
|
| 895 |
|
|
(set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
|
| 896 |
|
|
(reg:SI 0 ax [orig:770 c1 ] [770]))
|
| 897 |
|
|
(const_int 288 [0x120])) [0 str S1 A8])
|
| 898 |
|
|
(const_int 0 [0x0])) 43 {*movqi_1} (nil)
|
| 899 |
|
|
(nil))
|
| 900 |
|
|
|
| 901 |
|
|
But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
|
| 902 |
|
|
because of operand constraints:
|
| 903 |
|
|
|
| 904 |
|
|
(define_insn "*movqi_1"
|
| 905 |
|
|
[(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
|
| 906 |
|
|
(match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
|
| 907 |
|
|
)]
|
| 908 |
|
|
|
| 909 |
|
|
So do constrain_operands here, before choosing NEW_SRC_REG as best
|
| 910 |
|
|
reg for rhs. */
|
| 911 |
|
|
|
| 912 |
|
|
static bool
|
| 913 |
|
|
replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
|
| 914 |
|
|
{
|
| 915 |
|
|
vinsn_t vi = INSN_VINSN (insn);
|
| 916 |
|
|
enum machine_mode mode;
|
| 917 |
|
|
rtx dst_loc;
|
| 918 |
|
|
bool res;
|
| 919 |
|
|
|
| 920 |
|
|
gcc_assert (VINSN_SEPARABLE_P (vi));
|
| 921 |
|
|
|
| 922 |
|
|
get_dest_and_mode (insn, &dst_loc, &mode);
|
| 923 |
|
|
gcc_assert (mode == GET_MODE (new_src_reg));
|
| 924 |
|
|
|
| 925 |
|
|
if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
|
| 926 |
|
|
return true;
|
| 927 |
|
|
|
| 928 |
|
|
/* See whether SET_SRC can be replaced with this register. */
|
| 929 |
|
|
validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
|
| 930 |
|
|
res = verify_changes (0);
|
| 931 |
|
|
cancel_changes (0);
|
| 932 |
|
|
|
| 933 |
|
|
return res;
|
| 934 |
|
|
}
|
| 935 |
|
|
|
| 936 |
|
|
/* Returns whether INSN still be valid after replacing it's DEST with
|
| 937 |
|
|
register NEW_REG. */
|
| 938 |
|
|
static bool
|
| 939 |
|
|
replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
|
| 940 |
|
|
{
|
| 941 |
|
|
vinsn_t vi = INSN_VINSN (insn);
|
| 942 |
|
|
bool res;
|
| 943 |
|
|
|
| 944 |
|
|
/* We should deal here only with separable insns. */
|
| 945 |
|
|
gcc_assert (VINSN_SEPARABLE_P (vi));
|
| 946 |
|
|
gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
|
| 947 |
|
|
|
| 948 |
|
|
/* See whether SET_DEST can be replaced with this register. */
|
| 949 |
|
|
validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
|
| 950 |
|
|
res = verify_changes (0);
|
| 951 |
|
|
cancel_changes (0);
|
| 952 |
|
|
|
| 953 |
|
|
return res;
|
| 954 |
|
|
}
|
| 955 |
|
|
|
| 956 |
|
|
/* Create a pattern with rhs of VI and lhs of LHS_RTX. */
|
| 957 |
|
|
static rtx
|
| 958 |
|
|
create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
|
| 959 |
|
|
{
|
| 960 |
|
|
rtx rhs_rtx;
|
| 961 |
|
|
rtx pattern;
|
| 962 |
|
|
rtx insn_rtx;
|
| 963 |
|
|
|
| 964 |
|
|
rhs_rtx = copy_rtx (VINSN_RHS (vi));
|
| 965 |
|
|
|
| 966 |
|
|
pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
|
| 967 |
|
|
insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
|
| 968 |
|
|
|
| 969 |
|
|
return insn_rtx;
|
| 970 |
|
|
}
|
| 971 |
|
|
|
| 972 |
|
|
/* Substitute lhs in the given expression EXPR for the register with number
|
| 973 |
|
|
NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
|
| 974 |
|
|
static void
|
| 975 |
|
|
replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
|
| 976 |
|
|
{
|
| 977 |
|
|
rtx insn_rtx;
|
| 978 |
|
|
vinsn_t vinsn;
|
| 979 |
|
|
|
| 980 |
|
|
insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
|
| 981 |
|
|
vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
|
| 982 |
|
|
|
| 983 |
|
|
change_vinsn_in_expr (expr, vinsn);
|
| 984 |
|
|
EXPR_WAS_RENAMED (expr) = 1;
|
| 985 |
|
|
EXPR_TARGET_AVAILABLE (expr) = 1;
|
| 986 |
|
|
}
|
| 987 |
|
|
|
| 988 |
|
|
/* Returns whether VI writes either one of the USED_REGS registers or,
|
| 989 |
|
|
if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
|
| 990 |
|
|
static bool
|
| 991 |
|
|
vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
|
| 992 |
|
|
HARD_REG_SET unavailable_hard_regs)
|
| 993 |
|
|
{
|
| 994 |
|
|
unsigned regno;
|
| 995 |
|
|
reg_set_iterator rsi;
|
| 996 |
|
|
|
| 997 |
|
|
EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
|
| 998 |
|
|
{
|
| 999 |
|
|
if (REGNO_REG_SET_P (used_regs, regno))
|
| 1000 |
|
|
return true;
|
| 1001 |
|
|
if (HARD_REGISTER_NUM_P (regno)
|
| 1002 |
|
|
&& TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
|
| 1003 |
|
|
return true;
|
| 1004 |
|
|
}
|
| 1005 |
|
|
|
| 1006 |
|
|
EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
|
| 1007 |
|
|
{
|
| 1008 |
|
|
if (REGNO_REG_SET_P (used_regs, regno))
|
| 1009 |
|
|
return true;
|
| 1010 |
|
|
if (HARD_REGISTER_NUM_P (regno)
|
| 1011 |
|
|
&& TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
|
| 1012 |
|
|
return true;
|
| 1013 |
|
|
}
|
| 1014 |
|
|
|
| 1015 |
|
|
return false;
|
| 1016 |
|
|
}
|
| 1017 |
|
|
|
| 1018 |
|
|
/* Returns register class of the output register in INSN.
|
| 1019 |
|
|
Returns NO_REGS for call insns because some targets have constraints on
|
| 1020 |
|
|
destination register of a call insn.
|
| 1021 |
|
|
|
| 1022 |
|
|
Code adopted from regrename.c::build_def_use. */
|
| 1023 |
|
|
static enum reg_class
|
| 1024 |
|
|
get_reg_class (rtx insn)
|
| 1025 |
|
|
{
|
| 1026 |
|
|
int alt, i, n_ops;
|
| 1027 |
|
|
|
| 1028 |
|
|
extract_insn (insn);
|
| 1029 |
|
|
if (! constrain_operands (1))
|
| 1030 |
|
|
fatal_insn_not_found (insn);
|
| 1031 |
|
|
preprocess_constraints ();
|
| 1032 |
|
|
alt = which_alternative;
|
| 1033 |
|
|
n_ops = recog_data.n_operands;
|
| 1034 |
|
|
|
| 1035 |
|
|
for (i = 0; i < n_ops; ++i)
|
| 1036 |
|
|
{
|
| 1037 |
|
|
int matches = recog_op_alt[i][alt].matches;
|
| 1038 |
|
|
if (matches >= 0)
|
| 1039 |
|
|
recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
|
| 1040 |
|
|
}
|
| 1041 |
|
|
|
| 1042 |
|
|
if (asm_noperands (PATTERN (insn)) > 0)
|
| 1043 |
|
|
{
|
| 1044 |
|
|
for (i = 0; i < n_ops; i++)
|
| 1045 |
|
|
if (recog_data.operand_type[i] == OP_OUT)
|
| 1046 |
|
|
{
|
| 1047 |
|
|
rtx *loc = recog_data.operand_loc[i];
|
| 1048 |
|
|
rtx op = *loc;
|
| 1049 |
|
|
enum reg_class cl = recog_op_alt[i][alt].cl;
|
| 1050 |
|
|
|
| 1051 |
|
|
if (REG_P (op)
|
| 1052 |
|
|
&& REGNO (op) == ORIGINAL_REGNO (op))
|
| 1053 |
|
|
continue;
|
| 1054 |
|
|
|
| 1055 |
|
|
return cl;
|
| 1056 |
|
|
}
|
| 1057 |
|
|
}
|
| 1058 |
|
|
else if (!CALL_P (insn))
|
| 1059 |
|
|
{
|
| 1060 |
|
|
for (i = 0; i < n_ops + recog_data.n_dups; i++)
|
| 1061 |
|
|
{
|
| 1062 |
|
|
int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
|
| 1063 |
|
|
enum reg_class cl = recog_op_alt[opn][alt].cl;
|
| 1064 |
|
|
|
| 1065 |
|
|
if (recog_data.operand_type[opn] == OP_OUT ||
|
| 1066 |
|
|
recog_data.operand_type[opn] == OP_INOUT)
|
| 1067 |
|
|
return cl;
|
| 1068 |
|
|
}
|
| 1069 |
|
|
}
|
| 1070 |
|
|
|
| 1071 |
|
|
/* Insns like
|
| 1072 |
|
|
(insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
|
| 1073 |
|
|
may result in returning NO_REGS, cause flags is written implicitly through
|
| 1074 |
|
|
CMP insn, which has no OP_OUT | OP_INOUT operands. */
|
| 1075 |
|
|
return NO_REGS;
|
| 1076 |
|
|
}
|
| 1077 |
|
|
|
| 1078 |
|
|
#ifdef HARD_REGNO_RENAME_OK
|
| 1079 |
|
|
/* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
|
| 1080 |
|
|
static void
|
| 1081 |
|
|
init_hard_regno_rename (int regno)
|
| 1082 |
|
|
{
|
| 1083 |
|
|
int cur_reg;
|
| 1084 |
|
|
|
| 1085 |
|
|
SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
|
| 1086 |
|
|
|
| 1087 |
|
|
for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
|
| 1088 |
|
|
{
|
| 1089 |
|
|
/* We are not interested in renaming in other regs. */
|
| 1090 |
|
|
if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
|
| 1091 |
|
|
continue;
|
| 1092 |
|
|
|
| 1093 |
|
|
if (HARD_REGNO_RENAME_OK (regno, cur_reg))
|
| 1094 |
|
|
SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
|
| 1095 |
|
|
}
|
| 1096 |
|
|
}
|
| 1097 |
|
|
#endif
|
| 1098 |
|
|
|
| 1099 |
|
|
/* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
|
| 1100 |
|
|
data first. */
|
| 1101 |
|
|
static inline bool
|
| 1102 |
|
|
sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
|
| 1103 |
|
|
{
|
| 1104 |
|
|
#ifdef HARD_REGNO_RENAME_OK
|
| 1105 |
|
|
/* Check whether this is all calculated. */
|
| 1106 |
|
|
if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
|
| 1107 |
|
|
return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
|
| 1108 |
|
|
|
| 1109 |
|
|
init_hard_regno_rename (from);
|
| 1110 |
|
|
|
| 1111 |
|
|
return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
|
| 1112 |
|
|
#else
|
| 1113 |
|
|
return true;
|
| 1114 |
|
|
#endif
|
| 1115 |
|
|
}
|
| 1116 |
|
|
|
| 1117 |
|
|
/* Calculate set of registers that are capable of holding MODE. */
|
| 1118 |
|
|
static void
|
| 1119 |
|
|
init_regs_for_mode (enum machine_mode mode)
|
| 1120 |
|
|
{
|
| 1121 |
|
|
int cur_reg;
|
| 1122 |
|
|
|
| 1123 |
|
|
CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
|
| 1124 |
|
|
CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
|
| 1125 |
|
|
|
| 1126 |
|
|
for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
|
| 1127 |
|
|
{
|
| 1128 |
|
|
int nregs = hard_regno_nregs[cur_reg][mode];
|
| 1129 |
|
|
int i;
|
| 1130 |
|
|
|
| 1131 |
|
|
for (i = nregs - 1; i >= 0; --i)
|
| 1132 |
|
|
if (fixed_regs[cur_reg + i]
|
| 1133 |
|
|
|| global_regs[cur_reg + i]
|
| 1134 |
|
|
/* Can't use regs which aren't saved by
|
| 1135 |
|
|
the prologue. */
|
| 1136 |
|
|
|| !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
|
| 1137 |
|
|
/* Can't use regs with non-null REG_BASE_VALUE, because adjusting
|
| 1138 |
|
|
it affects aliasing globally and invalidates all AV sets. */
|
| 1139 |
|
|
|| get_reg_base_value (cur_reg + i)
|
| 1140 |
|
|
#ifdef LEAF_REGISTERS
|
| 1141 |
|
|
/* We can't use a non-leaf register if we're in a
|
| 1142 |
|
|
leaf function. */
|
| 1143 |
|
|
|| (current_function_is_leaf
|
| 1144 |
|
|
&& !LEAF_REGISTERS[cur_reg + i])
|
| 1145 |
|
|
#endif
|
| 1146 |
|
|
)
|
| 1147 |
|
|
break;
|
| 1148 |
|
|
|
| 1149 |
|
|
if (i >= 0)
|
| 1150 |
|
|
continue;
|
| 1151 |
|
|
|
| 1152 |
|
|
/* See whether it accepts all modes that occur in
|
| 1153 |
|
|
original insns. */
|
| 1154 |
|
|
if (! HARD_REGNO_MODE_OK (cur_reg, mode))
|
| 1155 |
|
|
continue;
|
| 1156 |
|
|
|
| 1157 |
|
|
if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
|
| 1158 |
|
|
SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
|
| 1159 |
|
|
cur_reg);
|
| 1160 |
|
|
|
| 1161 |
|
|
/* If the CUR_REG passed all the checks above,
|
| 1162 |
|
|
then it's ok. */
|
| 1163 |
|
|
SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
|
| 1164 |
|
|
}
|
| 1165 |
|
|
|
| 1166 |
|
|
sel_hrd.regs_for_mode_ok[mode] = true;
|
| 1167 |
|
|
}
|
| 1168 |
|
|
|
| 1169 |
|
|
/* Init all register sets gathered in HRD. */
|
| 1170 |
|
|
static void
|
| 1171 |
|
|
init_hard_regs_data (void)
|
| 1172 |
|
|
{
|
| 1173 |
|
|
int cur_reg = 0;
|
| 1174 |
|
|
int cur_mode = 0;
|
| 1175 |
|
|
|
| 1176 |
|
|
CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
|
| 1177 |
|
|
for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
|
| 1178 |
|
|
if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
|
| 1179 |
|
|
SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
|
| 1180 |
|
|
|
| 1181 |
|
|
/* Initialize registers that are valid based on mode when this is
|
| 1182 |
|
|
really needed. */
|
| 1183 |
|
|
for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
|
| 1184 |
|
|
sel_hrd.regs_for_mode_ok[cur_mode] = false;
|
| 1185 |
|
|
|
| 1186 |
|
|
/* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
|
| 1187 |
|
|
for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
|
| 1188 |
|
|
CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
|
| 1189 |
|
|
|
| 1190 |
|
|
#ifdef STACK_REGS
|
| 1191 |
|
|
CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
|
| 1192 |
|
|
|
| 1193 |
|
|
for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
|
| 1194 |
|
|
SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
|
| 1195 |
|
|
#endif
|
| 1196 |
|
|
}
|
| 1197 |
|
|
|
| 1198 |
|
|
/* Mark hardware regs in REG_RENAME_P that are not suitable
|
| 1199 |
|
|
for renaming rhs in INSN due to hardware restrictions (register class,
|
| 1200 |
|
|
modes compatibility etc). This doesn't affect original insn's dest reg,
|
| 1201 |
|
|
if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
|
| 1202 |
|
|
destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
|
| 1203 |
|
|
Registers that are in used_regs are always marked in
|
| 1204 |
|
|
unavailable_hard_regs as well. */
|
| 1205 |
|
|
|
| 1206 |
|
|
static void
|
| 1207 |
|
|
mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
|
| 1208 |
|
|
regset used_regs ATTRIBUTE_UNUSED)
|
| 1209 |
|
|
{
|
| 1210 |
|
|
enum machine_mode mode;
|
| 1211 |
|
|
enum reg_class cl = NO_REGS;
|
| 1212 |
|
|
rtx orig_dest;
|
| 1213 |
|
|
unsigned cur_reg, regno;
|
| 1214 |
|
|
hard_reg_set_iterator hrsi;
|
| 1215 |
|
|
|
| 1216 |
|
|
gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
|
| 1217 |
|
|
gcc_assert (reg_rename_p);
|
| 1218 |
|
|
|
| 1219 |
|
|
orig_dest = SET_DEST (PATTERN (def->orig_insn));
|
| 1220 |
|
|
|
| 1221 |
|
|
/* We have decided not to rename 'mem = something;' insns, as 'something'
|
| 1222 |
|
|
is usually a register. */
|
| 1223 |
|
|
if (!REG_P (orig_dest))
|
| 1224 |
|
|
return;
|
| 1225 |
|
|
|
| 1226 |
|
|
regno = REGNO (orig_dest);
|
| 1227 |
|
|
|
| 1228 |
|
|
/* If before reload, don't try to work with pseudos. */
|
| 1229 |
|
|
if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
|
| 1230 |
|
|
return;
|
| 1231 |
|
|
|
| 1232 |
|
|
if (reload_completed)
|
| 1233 |
|
|
cl = get_reg_class (def->orig_insn);
|
| 1234 |
|
|
|
| 1235 |
|
|
/* Stop if the original register is one of the fixed_regs, global_regs or
|
| 1236 |
|
|
frame pointer, or we could not discover its class. */
|
| 1237 |
|
|
if (fixed_regs[regno]
|
| 1238 |
|
|
|| global_regs[regno]
|
| 1239 |
|
|
#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
|
| 1240 |
|
|
|| (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
|
| 1241 |
|
|
#else
|
| 1242 |
|
|
|| (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
|
| 1243 |
|
|
#endif
|
| 1244 |
|
|
|| (reload_completed && cl == NO_REGS))
|
| 1245 |
|
|
{
|
| 1246 |
|
|
SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
|
| 1247 |
|
|
|
| 1248 |
|
|
/* Give a chance for original register, if it isn't in used_regs. */
|
| 1249 |
|
|
if (!def->crosses_call)
|
| 1250 |
|
|
CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
|
| 1251 |
|
|
|
| 1252 |
|
|
return;
|
| 1253 |
|
|
}
|
| 1254 |
|
|
|
| 1255 |
|
|
/* If something allocated on stack in this function, mark frame pointer
|
| 1256 |
|
|
register unavailable, considering also modes.
|
| 1257 |
|
|
FIXME: it is enough to do this once per all original defs. */
|
| 1258 |
|
|
if (frame_pointer_needed)
|
| 1259 |
|
|
{
|
| 1260 |
|
|
add_to_hard_reg_set (®_rename_p->unavailable_hard_regs,
|
| 1261 |
|
|
Pmode, FRAME_POINTER_REGNUM);
|
| 1262 |
|
|
|
| 1263 |
|
|
if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
|
| 1264 |
|
|
add_to_hard_reg_set (®_rename_p->unavailable_hard_regs,
|
| 1265 |
|
|
Pmode, HARD_FRAME_POINTER_IS_FRAME_POINTER);
|
| 1266 |
|
|
}
|
| 1267 |
|
|
|
| 1268 |
|
|
#ifdef STACK_REGS
|
| 1269 |
|
|
/* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
|
| 1270 |
|
|
is equivalent to as if all stack regs were in this set.
|
| 1271 |
|
|
I.e. no stack register can be renamed, and even if it's an original
|
| 1272 |
|
|
register here we make sure it won't be lifted over it's previous def
|
| 1273 |
|
|
(it's previous def will appear as if it's a FIRST_STACK_REG def.
|
| 1274 |
|
|
The HARD_REGNO_RENAME_OK covers other cases in condition below. */
|
| 1275 |
|
|
if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
|
| 1276 |
|
|
&& REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
|
| 1277 |
|
|
IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
|
| 1278 |
|
|
sel_hrd.stack_regs);
|
| 1279 |
|
|
#endif
|
| 1280 |
|
|
|
| 1281 |
|
|
/* If there's a call on this path, make regs from call_used_reg_set
|
| 1282 |
|
|
unavailable. */
|
| 1283 |
|
|
if (def->crosses_call)
|
| 1284 |
|
|
IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
|
| 1285 |
|
|
call_used_reg_set);
|
| 1286 |
|
|
|
| 1287 |
|
|
/* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
|
| 1288 |
|
|
but not register classes. */
|
| 1289 |
|
|
if (!reload_completed)
|
| 1290 |
|
|
return;
|
| 1291 |
|
|
|
| 1292 |
|
|
/* Leave regs as 'available' only from the current
|
| 1293 |
|
|
register class. */
|
| 1294 |
|
|
COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
|
| 1295 |
|
|
reg_class_contents[cl]);
|
| 1296 |
|
|
|
| 1297 |
|
|
mode = GET_MODE (orig_dest);
|
| 1298 |
|
|
|
| 1299 |
|
|
/* Leave only registers available for this mode. */
|
| 1300 |
|
|
if (!sel_hrd.regs_for_mode_ok[mode])
|
| 1301 |
|
|
init_regs_for_mode (mode);
|
| 1302 |
|
|
AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
|
| 1303 |
|
|
sel_hrd.regs_for_mode[mode]);
|
| 1304 |
|
|
|
| 1305 |
|
|
/* Exclude registers that are partially call clobbered. */
|
| 1306 |
|
|
if (def->crosses_call
|
| 1307 |
|
|
&& ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
|
| 1308 |
|
|
AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
|
| 1309 |
|
|
sel_hrd.regs_for_call_clobbered[mode]);
|
| 1310 |
|
|
|
| 1311 |
|
|
/* Leave only those that are ok to rename. */
|
| 1312 |
|
|
EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
|
| 1313 |
|
|
0, cur_reg, hrsi)
|
| 1314 |
|
|
{
|
| 1315 |
|
|
int nregs;
|
| 1316 |
|
|
int i;
|
| 1317 |
|
|
|
| 1318 |
|
|
nregs = hard_regno_nregs[cur_reg][mode];
|
| 1319 |
|
|
gcc_assert (nregs > 0);
|
| 1320 |
|
|
|
| 1321 |
|
|
for (i = nregs - 1; i >= 0; --i)
|
| 1322 |
|
|
if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
|
| 1323 |
|
|
break;
|
| 1324 |
|
|
|
| 1325 |
|
|
if (i >= 0)
|
| 1326 |
|
|
CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
|
| 1327 |
|
|
cur_reg);
|
| 1328 |
|
|
}
|
| 1329 |
|
|
|
| 1330 |
|
|
AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
|
| 1331 |
|
|
reg_rename_p->unavailable_hard_regs);
|
| 1332 |
|
|
|
| 1333 |
|
|
/* Regno is always ok from the renaming part of view, but it really
|
| 1334 |
|
|
could be in *unavailable_hard_regs already, so set it here instead
|
| 1335 |
|
|
of there. */
|
| 1336 |
|
|
SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
|
| 1337 |
|
|
}
|
| 1338 |
|
|
|
| 1339 |
|
|
/* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
|
| 1340 |
|
|
best register more recently than REG2. */
|
| 1341 |
|
|
static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
|
| 1342 |
|
|
|
| 1343 |
|
|
/* Indicates the number of times renaming happened before the current one. */
|
| 1344 |
|
|
static int reg_rename_this_tick;
|
| 1345 |
|
|
|
| 1346 |
|
|
/* Choose the register among free, that is suitable for storing
|
| 1347 |
|
|
the rhs value.
|
| 1348 |
|
|
|
| 1349 |
|
|
ORIGINAL_INSNS is the list of insns where the operation (rhs)
|
| 1350 |
|
|
originally appears. There could be multiple original operations
|
| 1351 |
|
|
for single rhs since we moving it up and merging along different
|
| 1352 |
|
|
paths.
|
| 1353 |
|
|
|
| 1354 |
|
|
Some code is adapted from regrename.c (regrename_optimize).
|
| 1355 |
|
|
If original register is available, function returns it.
|
| 1356 |
|
|
Otherwise it performs the checks, so the new register should
|
| 1357 |
|
|
comply with the following:
|
| 1358 |
|
|
- it should not violate any live ranges (such registers are in
|
| 1359 |
|
|
REG_RENAME_P->available_for_renaming set);
|
| 1360 |
|
|
- it should not be in the HARD_REGS_USED regset;
|
| 1361 |
|
|
- it should be in the class compatible with original uses;
|
| 1362 |
|
|
- it should not be clobbered through reference with different mode;
|
| 1363 |
|
|
- if we're in the leaf function, then the new register should
|
| 1364 |
|
|
not be in the LEAF_REGISTERS;
|
| 1365 |
|
|
- etc.
|
| 1366 |
|
|
|
| 1367 |
|
|
If several registers meet the conditions, the register with smallest
|
| 1368 |
|
|
tick is returned to achieve more even register allocation.
|
| 1369 |
|
|
|
| 1370 |
|
|
If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
|
| 1371 |
|
|
|
| 1372 |
|
|
If no register satisfies the above conditions, NULL_RTX is returned. */
|
| 1373 |
|
|
static rtx
|
| 1374 |
|
|
choose_best_reg_1 (HARD_REG_SET hard_regs_used,
|
| 1375 |
|
|
struct reg_rename *reg_rename_p,
|
| 1376 |
|
|
def_list_t original_insns, bool *is_orig_reg_p_ptr)
|
| 1377 |
|
|
{
|
| 1378 |
|
|
int best_new_reg;
|
| 1379 |
|
|
unsigned cur_reg;
|
| 1380 |
|
|
enum machine_mode mode = VOIDmode;
|
| 1381 |
|
|
unsigned regno, i, n;
|
| 1382 |
|
|
hard_reg_set_iterator hrsi;
|
| 1383 |
|
|
def_list_iterator di;
|
| 1384 |
|
|
def_t def;
|
| 1385 |
|
|
|
| 1386 |
|
|
/* If original register is available, return it. */
|
| 1387 |
|
|
*is_orig_reg_p_ptr = true;
|
| 1388 |
|
|
|
| 1389 |
|
|
FOR_EACH_DEF (def, di, original_insns)
|
| 1390 |
|
|
{
|
| 1391 |
|
|
rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
|
| 1392 |
|
|
|
| 1393 |
|
|
gcc_assert (REG_P (orig_dest));
|
| 1394 |
|
|
|
| 1395 |
|
|
/* Check that all original operations have the same mode.
|
| 1396 |
|
|
This is done for the next loop; if we'd return from this
|
| 1397 |
|
|
loop, we'd check only part of them, but in this case
|
| 1398 |
|
|
it doesn't matter. */
|
| 1399 |
|
|
if (mode == VOIDmode)
|
| 1400 |
|
|
mode = GET_MODE (orig_dest);
|
| 1401 |
|
|
gcc_assert (mode == GET_MODE (orig_dest));
|
| 1402 |
|
|
|
| 1403 |
|
|
regno = REGNO (orig_dest);
|
| 1404 |
|
|
for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
|
| 1405 |
|
|
if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
|
| 1406 |
|
|
break;
|
| 1407 |
|
|
|
| 1408 |
|
|
/* All hard registers are available. */
|
| 1409 |
|
|
if (i == n)
|
| 1410 |
|
|
{
|
| 1411 |
|
|
gcc_assert (mode != VOIDmode);
|
| 1412 |
|
|
|
| 1413 |
|
|
/* Hard registers should not be shared. */
|
| 1414 |
|
|
return gen_rtx_REG (mode, regno);
|
| 1415 |
|
|
}
|
| 1416 |
|
|
}
|
| 1417 |
|
|
|
| 1418 |
|
|
*is_orig_reg_p_ptr = false;
|
| 1419 |
|
|
best_new_reg = -1;
|
| 1420 |
|
|
|
| 1421 |
|
|
/* Among all available regs choose the register that was
|
| 1422 |
|
|
allocated earliest. */
|
| 1423 |
|
|
EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
|
| 1424 |
|
|
0, cur_reg, hrsi)
|
| 1425 |
|
|
if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
|
| 1426 |
|
|
{
|
| 1427 |
|
|
/* Check that all hard regs for mode are available. */
|
| 1428 |
|
|
for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
|
| 1429 |
|
|
if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
|
| 1430 |
|
|
|| !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
|
| 1431 |
|
|
cur_reg + i))
|
| 1432 |
|
|
break;
|
| 1433 |
|
|
|
| 1434 |
|
|
if (i < n)
|
| 1435 |
|
|
continue;
|
| 1436 |
|
|
|
| 1437 |
|
|
/* All hard registers are available. */
|
| 1438 |
|
|
if (best_new_reg < 0
|
| 1439 |
|
|
|| reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
|
| 1440 |
|
|
{
|
| 1441 |
|
|
best_new_reg = cur_reg;
|
| 1442 |
|
|
|
| 1443 |
|
|
/* Return immediately when we know there's no better reg. */
|
| 1444 |
|
|
if (! reg_rename_tick[best_new_reg])
|
| 1445 |
|
|
break;
|
| 1446 |
|
|
}
|
| 1447 |
|
|
}
|
| 1448 |
|
|
|
| 1449 |
|
|
if (best_new_reg >= 0)
|
| 1450 |
|
|
{
|
| 1451 |
|
|
/* Use the check from the above loop. */
|
| 1452 |
|
|
gcc_assert (mode != VOIDmode);
|
| 1453 |
|
|
return gen_rtx_REG (mode, best_new_reg);
|
| 1454 |
|
|
}
|
| 1455 |
|
|
|
| 1456 |
|
|
return NULL_RTX;
|
| 1457 |
|
|
}
|
| 1458 |
|
|
|
| 1459 |
|
|
/* A wrapper around choose_best_reg_1 () to verify that we make correct
|
| 1460 |
|
|
assumptions about available registers in the function. */
|
| 1461 |
|
|
static rtx
|
| 1462 |
|
|
choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
|
| 1463 |
|
|
def_list_t original_insns, bool *is_orig_reg_p_ptr)
|
| 1464 |
|
|
{
|
| 1465 |
|
|
rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
|
| 1466 |
|
|
original_insns, is_orig_reg_p_ptr);
|
| 1467 |
|
|
|
| 1468 |
|
|
/* FIXME loop over hard_regno_nregs here. */
|
| 1469 |
|
|
gcc_assert (best_reg == NULL_RTX
|
| 1470 |
|
|
|| TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
|
| 1471 |
|
|
|
| 1472 |
|
|
return best_reg;
|
| 1473 |
|
|
}
|
| 1474 |
|
|
|
| 1475 |
|
|
/* Choose the pseudo register for storing rhs value. As this is supposed
|
| 1476 |
|
|
to work before reload, we return either the original register or make
|
| 1477 |
|
|
the new one. The parameters are the same that in choose_nest_reg_1
|
| 1478 |
|
|
functions, except that USED_REGS may contain pseudos.
|
| 1479 |
|
|
If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
|
| 1480 |
|
|
|
| 1481 |
|
|
TODO: take into account register pressure while doing this. Up to this
|
| 1482 |
|
|
moment, this function would never return NULL for pseudos, but we should
|
| 1483 |
|
|
not rely on this. */
|
| 1484 |
|
|
static rtx
|
| 1485 |
|
|
choose_best_pseudo_reg (regset used_regs,
|
| 1486 |
|
|
struct reg_rename *reg_rename_p,
|
| 1487 |
|
|
def_list_t original_insns, bool *is_orig_reg_p_ptr)
|
| 1488 |
|
|
{
|
| 1489 |
|
|
def_list_iterator i;
|
| 1490 |
|
|
def_t def;
|
| 1491 |
|
|
enum machine_mode mode = VOIDmode;
|
| 1492 |
|
|
bool bad_hard_regs = false;
|
| 1493 |
|
|
|
| 1494 |
|
|
/* We should not use this after reload. */
|
| 1495 |
|
|
gcc_assert (!reload_completed);
|
| 1496 |
|
|
|
| 1497 |
|
|
/* If original register is available, return it. */
|
| 1498 |
|
|
*is_orig_reg_p_ptr = true;
|
| 1499 |
|
|
|
| 1500 |
|
|
FOR_EACH_DEF (def, i, original_insns)
|
| 1501 |
|
|
{
|
| 1502 |
|
|
rtx dest = SET_DEST (PATTERN (def->orig_insn));
|
| 1503 |
|
|
int orig_regno;
|
| 1504 |
|
|
|
| 1505 |
|
|
gcc_assert (REG_P (dest));
|
| 1506 |
|
|
|
| 1507 |
|
|
/* Check that all original operations have the same mode. */
|
| 1508 |
|
|
if (mode == VOIDmode)
|
| 1509 |
|
|
mode = GET_MODE (dest);
|
| 1510 |
|
|
else
|
| 1511 |
|
|
gcc_assert (mode == GET_MODE (dest));
|
| 1512 |
|
|
orig_regno = REGNO (dest);
|
| 1513 |
|
|
|
| 1514 |
|
|
if (!REGNO_REG_SET_P (used_regs, orig_regno))
|
| 1515 |
|
|
{
|
| 1516 |
|
|
if (orig_regno < FIRST_PSEUDO_REGISTER)
|
| 1517 |
|
|
{
|
| 1518 |
|
|
gcc_assert (df_regs_ever_live_p (orig_regno));
|
| 1519 |
|
|
|
| 1520 |
|
|
/* For hard registers, we have to check hardware imposed
|
| 1521 |
|
|
limitations (frame/stack registers, calls crossed). */
|
| 1522 |
|
|
if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
|
| 1523 |
|
|
orig_regno))
|
| 1524 |
|
|
{
|
| 1525 |
|
|
/* Don't let register cross a call if it doesn't already
|
| 1526 |
|
|
cross one. This condition is written in accordance with
|
| 1527 |
|
|
that in sched-deps.c sched_analyze_reg(). */
|
| 1528 |
|
|
if (!reg_rename_p->crosses_call
|
| 1529 |
|
|
|| REG_N_CALLS_CROSSED (orig_regno) > 0)
|
| 1530 |
|
|
return gen_rtx_REG (mode, orig_regno);
|
| 1531 |
|
|
}
|
| 1532 |
|
|
|
| 1533 |
|
|
bad_hard_regs = true;
|
| 1534 |
|
|
}
|
| 1535 |
|
|
else
|
| 1536 |
|
|
return dest;
|
| 1537 |
|
|
}
|
| 1538 |
|
|
}
|
| 1539 |
|
|
|
| 1540 |
|
|
*is_orig_reg_p_ptr = false;
|
| 1541 |
|
|
|
| 1542 |
|
|
/* We had some original hard registers that couldn't be used.
|
| 1543 |
|
|
Those were likely special. Don't try to create a pseudo. */
|
| 1544 |
|
|
if (bad_hard_regs)
|
| 1545 |
|
|
return NULL_RTX;
|
| 1546 |
|
|
|
| 1547 |
|
|
/* We haven't found a register from original operations. Get a new one.
|
| 1548 |
|
|
FIXME: control register pressure somehow. */
|
| 1549 |
|
|
{
|
| 1550 |
|
|
rtx new_reg = gen_reg_rtx (mode);
|
| 1551 |
|
|
|
| 1552 |
|
|
gcc_assert (mode != VOIDmode);
|
| 1553 |
|
|
|
| 1554 |
|
|
max_regno = max_reg_num ();
|
| 1555 |
|
|
maybe_extend_reg_info_p ();
|
| 1556 |
|
|
REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
|
| 1557 |
|
|
|
| 1558 |
|
|
return new_reg;
|
| 1559 |
|
|
}
|
| 1560 |
|
|
}
|
| 1561 |
|
|
|
| 1562 |
|
|
/* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
|
| 1563 |
|
|
USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
|
| 1564 |
|
|
static void
|
| 1565 |
|
|
verify_target_availability (expr_t expr, regset used_regs,
|
| 1566 |
|
|
struct reg_rename *reg_rename_p)
|
| 1567 |
|
|
{
|
| 1568 |
|
|
unsigned n, i, regno;
|
| 1569 |
|
|
enum machine_mode mode;
|
| 1570 |
|
|
bool target_available, live_available, hard_available;
|
| 1571 |
|
|
|
| 1572 |
|
|
if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
|
| 1573 |
|
|
return;
|
| 1574 |
|
|
|
| 1575 |
|
|
regno = expr_dest_regno (expr);
|
| 1576 |
|
|
mode = GET_MODE (EXPR_LHS (expr));
|
| 1577 |
|
|
target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
|
| 1578 |
|
|
n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
|
| 1579 |
|
|
|
| 1580 |
|
|
live_available = hard_available = true;
|
| 1581 |
|
|
for (i = 0; i < n; i++)
|
| 1582 |
|
|
{
|
| 1583 |
|
|
if (bitmap_bit_p (used_regs, regno + i))
|
| 1584 |
|
|
live_available = false;
|
| 1585 |
|
|
if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
|
| 1586 |
|
|
hard_available = false;
|
| 1587 |
|
|
}
|
| 1588 |
|
|
|
| 1589 |
|
|
/* When target is not available, it may be due to hard register
|
| 1590 |
|
|
restrictions, e.g. crosses calls, so we check hard_available too. */
|
| 1591 |
|
|
if (target_available)
|
| 1592 |
|
|
gcc_assert (live_available);
|
| 1593 |
|
|
else
|
| 1594 |
|
|
/* Check only if we haven't scheduled something on the previous fence,
|
| 1595 |
|
|
cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
|
| 1596 |
|
|
and having more than one fence, we may end having targ_un in a block
|
| 1597 |
|
|
in which successors target register is actually available.
|
| 1598 |
|
|
|
| 1599 |
|
|
The last condition handles the case when a dependence from a call insn
|
| 1600 |
|
|
was created in sched-deps.c for insns with destination registers that
|
| 1601 |
|
|
never crossed a call before, but do cross one after our code motion.
|
| 1602 |
|
|
|
| 1603 |
|
|
FIXME: in the latter case, we just uselessly called find_used_regs,
|
| 1604 |
|
|
because we can't move this expression with any other register
|
| 1605 |
|
|
as well. */
|
| 1606 |
|
|
gcc_assert (scheduled_something_on_previous_fence || !live_available
|
| 1607 |
|
|
|| !hard_available
|
| 1608 |
|
|
|| (!reload_completed && reg_rename_p->crosses_call
|
| 1609 |
|
|
&& REG_N_CALLS_CROSSED (regno) == 0));
|
| 1610 |
|
|
}
|
| 1611 |
|
|
|
| 1612 |
|
|
/* Collect unavailable registers due to liveness for EXPR from BNDS
|
| 1613 |
|
|
into USED_REGS. Save additional information about available
|
| 1614 |
|
|
registers and unavailable due to hardware restriction registers
|
| 1615 |
|
|
into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
|
| 1616 |
|
|
list. */
|
| 1617 |
|
|
static void
|
| 1618 |
|
|
collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
|
| 1619 |
|
|
struct reg_rename *reg_rename_p,
|
| 1620 |
|
|
def_list_t *original_insns)
|
| 1621 |
|
|
{
|
| 1622 |
|
|
for (; bnds; bnds = BLIST_NEXT (bnds))
|
| 1623 |
|
|
{
|
| 1624 |
|
|
bool res;
|
| 1625 |
|
|
av_set_t orig_ops = NULL;
|
| 1626 |
|
|
bnd_t bnd = BLIST_BND (bnds);
|
| 1627 |
|
|
|
| 1628 |
|
|
/* If the chosen best expr doesn't belong to current boundary,
|
| 1629 |
|
|
skip it. */
|
| 1630 |
|
|
if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
|
| 1631 |
|
|
continue;
|
| 1632 |
|
|
|
| 1633 |
|
|
/* Put in ORIG_OPS all exprs from this boundary that became
|
| 1634 |
|
|
RES on top. */
|
| 1635 |
|
|
orig_ops = find_sequential_best_exprs (bnd, expr, false);
|
| 1636 |
|
|
|
| 1637 |
|
|
/* Compute used regs and OR it into the USED_REGS. */
|
| 1638 |
|
|
res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
|
| 1639 |
|
|
reg_rename_p, original_insns);
|
| 1640 |
|
|
|
| 1641 |
|
|
/* FIXME: the assert is true until we'd have several boundaries. */
|
| 1642 |
|
|
gcc_assert (res);
|
| 1643 |
|
|
av_set_clear (&orig_ops);
|
| 1644 |
|
|
}
|
| 1645 |
|
|
}
|
| 1646 |
|
|
|
| 1647 |
|
|
/* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
|
| 1648 |
|
|
If BEST_REG is valid, replace LHS of EXPR with it. */
|
| 1649 |
|
|
static bool
|
| 1650 |
|
|
try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
|
| 1651 |
|
|
{
|
| 1652 |
|
|
/* Try whether we'll be able to generate the insn
|
| 1653 |
|
|
'dest := best_reg' at the place of the original operation. */
|
| 1654 |
|
|
for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
|
| 1655 |
|
|
{
|
| 1656 |
|
|
insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
|
| 1657 |
|
|
|
| 1658 |
|
|
gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
|
| 1659 |
|
|
|
| 1660 |
|
|
if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
|
| 1661 |
|
|
&& (! replace_src_with_reg_ok_p (orig_insn, best_reg)
|
| 1662 |
|
|
|| ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
|
| 1663 |
|
|
return false;
|
| 1664 |
|
|
}
|
| 1665 |
|
|
|
| 1666 |
|
|
/* Make sure that EXPR has the right destination
|
| 1667 |
|
|
register. */
|
| 1668 |
|
|
if (expr_dest_regno (expr) != REGNO (best_reg))
|
| 1669 |
|
|
replace_dest_with_reg_in_expr (expr, best_reg);
|
| 1670 |
|
|
else
|
| 1671 |
|
|
EXPR_TARGET_AVAILABLE (expr) = 1;
|
| 1672 |
|
|
|
| 1673 |
|
|
return true;
|
| 1674 |
|
|
}
|
| 1675 |
|
|
|
| 1676 |
|
|
/* Select and assign best register to EXPR searching from BNDS.
|
| 1677 |
|
|
Set *IS_ORIG_REG_P to TRUE if original register was selected.
|
| 1678 |
|
|
Return FALSE if no register can be chosen, which could happen when:
|
| 1679 |
|
|
* EXPR_SEPARABLE_P is true but we were unable to find suitable register;
|
| 1680 |
|
|
* EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
|
| 1681 |
|
|
that are used on the moving path. */
|
| 1682 |
|
|
static bool
|
| 1683 |
|
|
find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
|
| 1684 |
|
|
{
|
| 1685 |
|
|
static struct reg_rename reg_rename_data;
|
| 1686 |
|
|
|
| 1687 |
|
|
regset used_regs;
|
| 1688 |
|
|
def_list_t original_insns = NULL;
|
| 1689 |
|
|
bool reg_ok;
|
| 1690 |
|
|
|
| 1691 |
|
|
*is_orig_reg_p = false;
|
| 1692 |
|
|
|
| 1693 |
|
|
/* Don't bother to do anything if this insn doesn't set any registers. */
|
| 1694 |
|
|
if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
|
| 1695 |
|
|
&& bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
|
| 1696 |
|
|
return true;
|
| 1697 |
|
|
|
| 1698 |
|
|
used_regs = get_clear_regset_from_pool ();
|
| 1699 |
|
|
CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
|
| 1700 |
|
|
|
| 1701 |
|
|
collect_unavailable_regs_from_bnds (expr, bnds, used_regs, ®_rename_data,
|
| 1702 |
|
|
&original_insns);
|
| 1703 |
|
|
|
| 1704 |
|
|
#ifdef ENABLE_CHECKING
|
| 1705 |
|
|
/* If after reload, make sure we're working with hard regs here. */
|
| 1706 |
|
|
if (reload_completed)
|
| 1707 |
|
|
{
|
| 1708 |
|
|
reg_set_iterator rsi;
|
| 1709 |
|
|
unsigned i;
|
| 1710 |
|
|
|
| 1711 |
|
|
EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
|
| 1712 |
|
|
gcc_unreachable ();
|
| 1713 |
|
|
}
|
| 1714 |
|
|
#endif
|
| 1715 |
|
|
|
| 1716 |
|
|
if (EXPR_SEPARABLE_P (expr))
|
| 1717 |
|
|
{
|
| 1718 |
|
|
rtx best_reg = NULL_RTX;
|
| 1719 |
|
|
/* Check that we have computed availability of a target register
|
| 1720 |
|
|
correctly. */
|
| 1721 |
|
|
verify_target_availability (expr, used_regs, ®_rename_data);
|
| 1722 |
|
|
|
| 1723 |
|
|
/* Turn everything in hard regs after reload. */
|
| 1724 |
|
|
if (reload_completed)
|
| 1725 |
|
|
{
|
| 1726 |
|
|
HARD_REG_SET hard_regs_used;
|
| 1727 |
|
|
REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
|
| 1728 |
|
|
|
| 1729 |
|
|
/* Join hard registers unavailable due to register class
|
| 1730 |
|
|
restrictions and live range intersection. */
|
| 1731 |
|
|
IOR_HARD_REG_SET (hard_regs_used,
|
| 1732 |
|
|
reg_rename_data.unavailable_hard_regs);
|
| 1733 |
|
|
|
| 1734 |
|
|
best_reg = choose_best_reg (hard_regs_used, ®_rename_data,
|
| 1735 |
|
|
original_insns, is_orig_reg_p);
|
| 1736 |
|
|
}
|
| 1737 |
|
|
else
|
| 1738 |
|
|
best_reg = choose_best_pseudo_reg (used_regs, ®_rename_data,
|
| 1739 |
|
|
original_insns, is_orig_reg_p);
|
| 1740 |
|
|
|
| 1741 |
|
|
if (!best_reg)
|
| 1742 |
|
|
reg_ok = false;
|
| 1743 |
|
|
else if (*is_orig_reg_p)
|
| 1744 |
|
|
{
|
| 1745 |
|
|
/* In case of unification BEST_REG may be different from EXPR's LHS
|
| 1746 |
|
|
when EXPR's LHS is unavailable, and there is another LHS among
|
| 1747 |
|
|
ORIGINAL_INSNS. */
|
| 1748 |
|
|
reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
|
| 1749 |
|
|
}
|
| 1750 |
|
|
else
|
| 1751 |
|
|
{
|
| 1752 |
|
|
/* Forbid renaming of low-cost insns. */
|
| 1753 |
|
|
if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
|
| 1754 |
|
|
reg_ok = false;
|
| 1755 |
|
|
else
|
| 1756 |
|
|
reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
|
| 1757 |
|
|
}
|
| 1758 |
|
|
}
|
| 1759 |
|
|
else
|
| 1760 |
|
|
{
|
| 1761 |
|
|
/* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
|
| 1762 |
|
|
any of the HARD_REGS_USED set. */
|
| 1763 |
|
|
if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
|
| 1764 |
|
|
reg_rename_data.unavailable_hard_regs))
|
| 1765 |
|
|
{
|
| 1766 |
|
|
reg_ok = false;
|
| 1767 |
|
|
gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
|
| 1768 |
|
|
}
|
| 1769 |
|
|
else
|
| 1770 |
|
|
{
|
| 1771 |
|
|
reg_ok = true;
|
| 1772 |
|
|
gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
|
| 1773 |
|
|
}
|
| 1774 |
|
|
}
|
| 1775 |
|
|
|
| 1776 |
|
|
ilist_clear (&original_insns);
|
| 1777 |
|
|
return_regset_to_pool (used_regs);
|
| 1778 |
|
|
|
| 1779 |
|
|
return reg_ok;
|
| 1780 |
|
|
}
|
| 1781 |
|
|
|
| 1782 |
|
|
|
| 1783 |
|
|
/* Return true if dependence described by DS can be overcomed. */
|
| 1784 |
|
|
static bool
|
| 1785 |
|
|
can_speculate_dep_p (ds_t ds)
|
| 1786 |
|
|
{
|
| 1787 |
|
|
if (spec_info == NULL)
|
| 1788 |
|
|
return false;
|
| 1789 |
|
|
|
| 1790 |
|
|
/* Leave only speculative data. */
|
| 1791 |
|
|
ds &= SPECULATIVE;
|
| 1792 |
|
|
|
| 1793 |
|
|
if (ds == 0)
|
| 1794 |
|
|
return false;
|
| 1795 |
|
|
|
| 1796 |
|
|
{
|
| 1797 |
|
|
/* FIXME: make sched-deps.c produce only those non-hard dependencies,
|
| 1798 |
|
|
that we can overcome. */
|
| 1799 |
|
|
ds_t spec_mask = spec_info->mask;
|
| 1800 |
|
|
|
| 1801 |
|
|
if ((ds & spec_mask) != ds)
|
| 1802 |
|
|
return false;
|
| 1803 |
|
|
}
|
| 1804 |
|
|
|
| 1805 |
|
|
if (ds_weak (ds) < spec_info->data_weakness_cutoff)
|
| 1806 |
|
|
return false;
|
| 1807 |
|
|
|
| 1808 |
|
|
return true;
|
| 1809 |
|
|
}
|
| 1810 |
|
|
|
| 1811 |
|
|
/* Get a speculation check instruction.
|
| 1812 |
|
|
C_EXPR is a speculative expression,
|
| 1813 |
|
|
CHECK_DS describes speculations that should be checked,
|
| 1814 |
|
|
ORIG_INSN is the original non-speculative insn in the stream. */
|
| 1815 |
|
|
static insn_t
|
| 1816 |
|
|
create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
|
| 1817 |
|
|
{
|
| 1818 |
|
|
rtx check_pattern;
|
| 1819 |
|
|
rtx insn_rtx;
|
| 1820 |
|
|
insn_t insn;
|
| 1821 |
|
|
basic_block recovery_block;
|
| 1822 |
|
|
rtx label;
|
| 1823 |
|
|
|
| 1824 |
|
|
/* Create a recovery block if target is going to emit branchy check, or if
|
| 1825 |
|
|
ORIG_INSN was speculative already. */
|
| 1826 |
|
|
if (targetm.sched.needs_block_p (check_ds)
|
| 1827 |
|
|
|| EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
|
| 1828 |
|
|
{
|
| 1829 |
|
|
recovery_block = sel_create_recovery_block (orig_insn);
|
| 1830 |
|
|
label = BB_HEAD (recovery_block);
|
| 1831 |
|
|
}
|
| 1832 |
|
|
else
|
| 1833 |
|
|
{
|
| 1834 |
|
|
recovery_block = NULL;
|
| 1835 |
|
|
label = NULL_RTX;
|
| 1836 |
|
|
}
|
| 1837 |
|
|
|
| 1838 |
|
|
/* Get pattern of the check. */
|
| 1839 |
|
|
check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
|
| 1840 |
|
|
check_ds);
|
| 1841 |
|
|
|
| 1842 |
|
|
gcc_assert (check_pattern != NULL);
|
| 1843 |
|
|
|
| 1844 |
|
|
/* Emit check. */
|
| 1845 |
|
|
insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
|
| 1846 |
|
|
|
| 1847 |
|
|
insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
|
| 1848 |
|
|
INSN_SEQNO (orig_insn), orig_insn);
|
| 1849 |
|
|
|
| 1850 |
|
|
/* Make check to be non-speculative. */
|
| 1851 |
|
|
EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
|
| 1852 |
|
|
INSN_SPEC_CHECKED_DS (insn) = check_ds;
|
| 1853 |
|
|
|
| 1854 |
|
|
/* Decrease priority of check by difference of load/check instruction
|
| 1855 |
|
|
latencies. */
|
| 1856 |
|
|
EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
|
| 1857 |
|
|
- sel_vinsn_cost (INSN_VINSN (insn)));
|
| 1858 |
|
|
|
| 1859 |
|
|
/* Emit copy of original insn (though with replaced target register,
|
| 1860 |
|
|
if needed) to the recovery block. */
|
| 1861 |
|
|
if (recovery_block != NULL)
|
| 1862 |
|
|
{
|
| 1863 |
|
|
rtx twin_rtx;
|
| 1864 |
|
|
|
| 1865 |
|
|
twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
|
| 1866 |
|
|
twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
|
| 1867 |
|
|
sel_gen_recovery_insn_from_rtx_after (twin_rtx,
|
| 1868 |
|
|
INSN_EXPR (orig_insn),
|
| 1869 |
|
|
INSN_SEQNO (insn),
|
| 1870 |
|
|
bb_note (recovery_block));
|
| 1871 |
|
|
}
|
| 1872 |
|
|
|
| 1873 |
|
|
/* If we've generated a data speculation check, make sure
|
| 1874 |
|
|
that all the bookkeeping instruction we'll create during
|
| 1875 |
|
|
this move_op () will allocate an ALAT entry so that the
|
| 1876 |
|
|
check won't fail.
|
| 1877 |
|
|
In case of control speculation we must convert C_EXPR to control
|
| 1878 |
|
|
speculative mode, because failing to do so will bring us an exception
|
| 1879 |
|
|
thrown by the non-control-speculative load. */
|
| 1880 |
|
|
check_ds = ds_get_max_dep_weak (check_ds);
|
| 1881 |
|
|
speculate_expr (c_expr, check_ds);
|
| 1882 |
|
|
|
| 1883 |
|
|
return insn;
|
| 1884 |
|
|
}
|
| 1885 |
|
|
|
| 1886 |
|
|
/* True when INSN is a "regN = regN" copy. */
|
| 1887 |
|
|
static bool
|
| 1888 |
|
|
identical_copy_p (rtx insn)
|
| 1889 |
|
|
{
|
| 1890 |
|
|
rtx lhs, rhs, pat;
|
| 1891 |
|
|
|
| 1892 |
|
|
pat = PATTERN (insn);
|
| 1893 |
|
|
|
| 1894 |
|
|
if (GET_CODE (pat) != SET)
|
| 1895 |
|
|
return false;
|
| 1896 |
|
|
|
| 1897 |
|
|
lhs = SET_DEST (pat);
|
| 1898 |
|
|
if (!REG_P (lhs))
|
| 1899 |
|
|
return false;
|
| 1900 |
|
|
|
| 1901 |
|
|
rhs = SET_SRC (pat);
|
| 1902 |
|
|
if (!REG_P (rhs))
|
| 1903 |
|
|
return false;
|
| 1904 |
|
|
|
| 1905 |
|
|
return REGNO (lhs) == REGNO (rhs);
|
| 1906 |
|
|
}
|
| 1907 |
|
|
|
| 1908 |
|
|
/* Undo all transformations on *AV_PTR that were done when
|
| 1909 |
|
|
moving through INSN. */
|
| 1910 |
|
|
static void
|
| 1911 |
|
|
undo_transformations (av_set_t *av_ptr, rtx insn)
|
| 1912 |
|
|
{
|
| 1913 |
|
|
av_set_iterator av_iter;
|
| 1914 |
|
|
expr_t expr;
|
| 1915 |
|
|
av_set_t new_set = NULL;
|
| 1916 |
|
|
|
| 1917 |
|
|
/* First, kill any EXPR that uses registers set by an insn. This is
|
| 1918 |
|
|
required for correctness. */
|
| 1919 |
|
|
FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
|
| 1920 |
|
|
if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
|
| 1921 |
|
|
&& bitmap_intersect_p (INSN_REG_SETS (insn),
|
| 1922 |
|
|
VINSN_REG_USES (EXPR_VINSN (expr)))
|
| 1923 |
|
|
/* When an insn looks like 'r1 = r1', we could substitute through
|
| 1924 |
|
|
it, but the above condition will still hold. This happened with
|
| 1925 |
|
|
gcc.c-torture/execute/961125-1.c. */
|
| 1926 |
|
|
&& !identical_copy_p (insn))
|
| 1927 |
|
|
{
|
| 1928 |
|
|
if (sched_verbose >= 6)
|
| 1929 |
|
|
sel_print ("Expr %d removed due to use/set conflict\n",
|
| 1930 |
|
|
INSN_UID (EXPR_INSN_RTX (expr)));
|
| 1931 |
|
|
av_set_iter_remove (&av_iter);
|
| 1932 |
|
|
}
|
| 1933 |
|
|
|
| 1934 |
|
|
/* Undo transformations looking at the history vector. */
|
| 1935 |
|
|
FOR_EACH_EXPR (expr, av_iter, *av_ptr)
|
| 1936 |
|
|
{
|
| 1937 |
|
|
int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
|
| 1938 |
|
|
insn, EXPR_VINSN (expr), true);
|
| 1939 |
|
|
|
| 1940 |
|
|
if (index >= 0)
|
| 1941 |
|
|
{
|
| 1942 |
|
|
expr_history_def *phist;
|
| 1943 |
|
|
|
| 1944 |
|
|
phist = VEC_index (expr_history_def,
|
| 1945 |
|
|
EXPR_HISTORY_OF_CHANGES (expr),
|
| 1946 |
|
|
index);
|
| 1947 |
|
|
|
| 1948 |
|
|
switch (phist->type)
|
| 1949 |
|
|
{
|
| 1950 |
|
|
case TRANS_SPECULATION:
|
| 1951 |
|
|
{
|
| 1952 |
|
|
ds_t old_ds, new_ds;
|
| 1953 |
|
|
|
| 1954 |
|
|
/* Compute the difference between old and new speculative
|
| 1955 |
|
|
statuses: that's what we need to check.
|
| 1956 |
|
|
Earlier we used to assert that the status will really
|
| 1957 |
|
|
change. This no longer works because only the probability
|
| 1958 |
|
|
bits in the status may have changed during compute_av_set,
|
| 1959 |
|
|
and in the case of merging different probabilities of the
|
| 1960 |
|
|
same speculative status along different paths we do not
|
| 1961 |
|
|
record this in the history vector. */
|
| 1962 |
|
|
old_ds = phist->spec_ds;
|
| 1963 |
|
|
new_ds = EXPR_SPEC_DONE_DS (expr);
|
| 1964 |
|
|
|
| 1965 |
|
|
old_ds &= SPECULATIVE;
|
| 1966 |
|
|
new_ds &= SPECULATIVE;
|
| 1967 |
|
|
new_ds &= ~old_ds;
|
| 1968 |
|
|
|
| 1969 |
|
|
EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
|
| 1970 |
|
|
break;
|
| 1971 |
|
|
}
|
| 1972 |
|
|
case TRANS_SUBSTITUTION:
|
| 1973 |
|
|
{
|
| 1974 |
|
|
expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
|
| 1975 |
|
|
vinsn_t new_vi;
|
| 1976 |
|
|
bool add = true;
|
| 1977 |
|
|
|
| 1978 |
|
|
new_vi = phist->old_expr_vinsn;
|
| 1979 |
|
|
|
| 1980 |
|
|
gcc_assert (VINSN_SEPARABLE_P (new_vi)
|
| 1981 |
|
|
== EXPR_SEPARABLE_P (expr));
|
| 1982 |
|
|
copy_expr (tmp_expr, expr);
|
| 1983 |
|
|
|
| 1984 |
|
|
if (vinsn_equal_p (phist->new_expr_vinsn,
|
| 1985 |
|
|
EXPR_VINSN (tmp_expr)))
|
| 1986 |
|
|
change_vinsn_in_expr (tmp_expr, new_vi);
|
| 1987 |
|
|
else
|
| 1988 |
|
|
/* This happens when we're unsubstituting on a bookkeeping
|
| 1989 |
|
|
copy, which was in turn substituted. The history is wrong
|
| 1990 |
|
|
in this case. Do it the hard way. */
|
| 1991 |
|
|
add = substitute_reg_in_expr (tmp_expr, insn, true);
|
| 1992 |
|
|
if (add)
|
| 1993 |
|
|
av_set_add (&new_set, tmp_expr);
|
| 1994 |
|
|
clear_expr (tmp_expr);
|
| 1995 |
|
|
break;
|
| 1996 |
|
|
}
|
| 1997 |
|
|
default:
|
| 1998 |
|
|
gcc_unreachable ();
|
| 1999 |
|
|
}
|
| 2000 |
|
|
}
|
| 2001 |
|
|
|
| 2002 |
|
|
}
|
| 2003 |
|
|
|
| 2004 |
|
|
av_set_union_and_clear (av_ptr, &new_set, NULL);
|
| 2005 |
|
|
}
|
| 2006 |
|
|
|
| 2007 |
|
|
|
| 2008 |
|
|
/* Moveup_* helpers for code motion and computing av sets. */
|
| 2009 |
|
|
|
| 2010 |
|
|
/* Propagates EXPR inside an insn group through THROUGH_INSN.
|
| 2011 |
|
|
The difference from the below function is that only substitution is
|
| 2012 |
|
|
performed. */
|
| 2013 |
|
|
static enum MOVEUP_EXPR_CODE
|
| 2014 |
|
|
moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
|
| 2015 |
|
|
{
|
| 2016 |
|
|
vinsn_t vi = EXPR_VINSN (expr);
|
| 2017 |
|
|
ds_t *has_dep_p;
|
| 2018 |
|
|
ds_t full_ds;
|
| 2019 |
|
|
|
| 2020 |
|
|
/* Do this only inside insn group. */
|
| 2021 |
|
|
gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
|
| 2022 |
|
|
|
| 2023 |
|
|
full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
|
| 2024 |
|
|
if (full_ds == 0)
|
| 2025 |
|
|
return MOVEUP_EXPR_SAME;
|
| 2026 |
|
|
|
| 2027 |
|
|
/* Substitution is the possible choice in this case. */
|
| 2028 |
|
|
if (has_dep_p[DEPS_IN_RHS])
|
| 2029 |
|
|
{
|
| 2030 |
|
|
/* Can't substitute UNIQUE VINSNs. */
|
| 2031 |
|
|
gcc_assert (!VINSN_UNIQUE_P (vi));
|
| 2032 |
|
|
|
| 2033 |
|
|
if (can_substitute_through_p (through_insn,
|
| 2034 |
|
|
has_dep_p[DEPS_IN_RHS])
|
| 2035 |
|
|
&& substitute_reg_in_expr (expr, through_insn, false))
|
| 2036 |
|
|
{
|
| 2037 |
|
|
EXPR_WAS_SUBSTITUTED (expr) = true;
|
| 2038 |
|
|
return MOVEUP_EXPR_CHANGED;
|
| 2039 |
|
|
}
|
| 2040 |
|
|
|
| 2041 |
|
|
/* Don't care about this, as even true dependencies may be allowed
|
| 2042 |
|
|
in an insn group. */
|
| 2043 |
|
|
return MOVEUP_EXPR_SAME;
|
| 2044 |
|
|
}
|
| 2045 |
|
|
|
| 2046 |
|
|
/* This can catch output dependencies in COND_EXECs. */
|
| 2047 |
|
|
if (has_dep_p[DEPS_IN_INSN])
|
| 2048 |
|
|
return MOVEUP_EXPR_NULL;
|
| 2049 |
|
|
|
| 2050 |
|
|
/* This is either an output or an anti dependence, which usually have
|
| 2051 |
|
|
a zero latency. Allow this here, if we'd be wrong, tick_check_p
|
| 2052 |
|
|
will fix this. */
|
| 2053 |
|
|
gcc_assert (has_dep_p[DEPS_IN_LHS]);
|
| 2054 |
|
|
return MOVEUP_EXPR_AS_RHS;
|
| 2055 |
|
|
}
|
| 2056 |
|
|
|
| 2057 |
|
|
/* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
|
| 2058 |
|
|
#define CANT_MOVE_TRAPPING(expr, through_insn) \
|
| 2059 |
|
|
(VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
|
| 2060 |
|
|
&& !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
|
| 2061 |
|
|
&& !sel_insn_is_speculation_check (through_insn))
|
| 2062 |
|
|
|
| 2063 |
|
|
/* True when a conflict on a target register was found during moveup_expr. */
|
| 2064 |
|
|
static bool was_target_conflict = false;
|
| 2065 |
|
|
|
| 2066 |
|
|
/* Return true when moving a debug INSN across THROUGH_INSN will
|
| 2067 |
|
|
create a bookkeeping block. We don't want to create such blocks,
|
| 2068 |
|
|
for they would cause codegen differences between compilations with
|
| 2069 |
|
|
and without debug info. */
|
| 2070 |
|
|
|
| 2071 |
|
|
static bool
|
| 2072 |
|
|
moving_insn_creates_bookkeeping_block_p (insn_t insn,
|
| 2073 |
|
|
insn_t through_insn)
|
| 2074 |
|
|
{
|
| 2075 |
|
|
basic_block bbi, bbt;
|
| 2076 |
|
|
edge e1, e2;
|
| 2077 |
|
|
edge_iterator ei1, ei2;
|
| 2078 |
|
|
|
| 2079 |
|
|
if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
|
| 2080 |
|
|
{
|
| 2081 |
|
|
if (sched_verbose >= 9)
|
| 2082 |
|
|
sel_print ("no bookkeeping required: ");
|
| 2083 |
|
|
return FALSE;
|
| 2084 |
|
|
}
|
| 2085 |
|
|
|
| 2086 |
|
|
bbi = BLOCK_FOR_INSN (insn);
|
| 2087 |
|
|
|
| 2088 |
|
|
if (EDGE_COUNT (bbi->preds) == 1)
|
| 2089 |
|
|
{
|
| 2090 |
|
|
if (sched_verbose >= 9)
|
| 2091 |
|
|
sel_print ("only one pred edge: ");
|
| 2092 |
|
|
return TRUE;
|
| 2093 |
|
|
}
|
| 2094 |
|
|
|
| 2095 |
|
|
bbt = BLOCK_FOR_INSN (through_insn);
|
| 2096 |
|
|
|
| 2097 |
|
|
FOR_EACH_EDGE (e1, ei1, bbt->succs)
|
| 2098 |
|
|
{
|
| 2099 |
|
|
FOR_EACH_EDGE (e2, ei2, bbi->preds)
|
| 2100 |
|
|
{
|
| 2101 |
|
|
if (find_block_for_bookkeeping (e1, e2, TRUE))
|
| 2102 |
|
|
{
|
| 2103 |
|
|
if (sched_verbose >= 9)
|
| 2104 |
|
|
sel_print ("found existing block: ");
|
| 2105 |
|
|
return FALSE;
|
| 2106 |
|
|
}
|
| 2107 |
|
|
}
|
| 2108 |
|
|
}
|
| 2109 |
|
|
|
| 2110 |
|
|
if (sched_verbose >= 9)
|
| 2111 |
|
|
sel_print ("would create bookkeeping block: ");
|
| 2112 |
|
|
|
| 2113 |
|
|
return TRUE;
|
| 2114 |
|
|
}
|
| 2115 |
|
|
|
| 2116 |
|
|
/* Modifies EXPR so it can be moved through the THROUGH_INSN,
|
| 2117 |
|
|
performing necessary transformations. Record the type of transformation
|
| 2118 |
|
|
made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
|
| 2119 |
|
|
permit all dependencies except true ones, and try to remove those
|
| 2120 |
|
|
too via forward substitution. All cases when a non-eliminable
|
| 2121 |
|
|
non-zero cost dependency exists inside an insn group will be fixed
|
| 2122 |
|
|
in tick_check_p instead. */
|
| 2123 |
|
|
static enum MOVEUP_EXPR_CODE
|
| 2124 |
|
|
moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
|
| 2125 |
|
|
enum local_trans_type *ptrans_type)
|
| 2126 |
|
|
{
|
| 2127 |
|
|
vinsn_t vi = EXPR_VINSN (expr);
|
| 2128 |
|
|
insn_t insn = VINSN_INSN_RTX (vi);
|
| 2129 |
|
|
bool was_changed = false;
|
| 2130 |
|
|
bool as_rhs = false;
|
| 2131 |
|
|
ds_t *has_dep_p;
|
| 2132 |
|
|
ds_t full_ds;
|
| 2133 |
|
|
|
| 2134 |
|
|
/* ??? We use dependencies of non-debug insns on debug insns to
|
| 2135 |
|
|
indicate that the debug insns need to be reset if the non-debug
|
| 2136 |
|
|
insn is pulled ahead of it. It's hard to figure out how to
|
| 2137 |
|
|
introduce such a notion in sel-sched, but it already fails to
|
| 2138 |
|
|
support debug insns in other ways, so we just go ahead and
|
| 2139 |
|
|
let the deug insns go corrupt for now. */
|
| 2140 |
|
|
if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
|
| 2141 |
|
|
return MOVEUP_EXPR_SAME;
|
| 2142 |
|
|
|
| 2143 |
|
|
/* When inside_insn_group, delegate to the helper. */
|
| 2144 |
|
|
if (inside_insn_group)
|
| 2145 |
|
|
return moveup_expr_inside_insn_group (expr, through_insn);
|
| 2146 |
|
|
|
| 2147 |
|
|
/* Deal with unique insns and control dependencies. */
|
| 2148 |
|
|
if (VINSN_UNIQUE_P (vi))
|
| 2149 |
|
|
{
|
| 2150 |
|
|
/* We can move jumps without side-effects or jumps that are
|
| 2151 |
|
|
mutually exclusive with instruction THROUGH_INSN (all in cases
|
| 2152 |
|
|
dependencies allow to do so and jump is not speculative). */
|
| 2153 |
|
|
if (control_flow_insn_p (insn))
|
| 2154 |
|
|
{
|
| 2155 |
|
|
basic_block fallthru_bb;
|
| 2156 |
|
|
|
| 2157 |
|
|
/* Do not move checks and do not move jumps through other
|
| 2158 |
|
|
jumps. */
|
| 2159 |
|
|
if (control_flow_insn_p (through_insn)
|
| 2160 |
|
|
|| sel_insn_is_speculation_check (insn))
|
| 2161 |
|
|
return MOVEUP_EXPR_NULL;
|
| 2162 |
|
|
|
| 2163 |
|
|
/* Don't move jumps through CFG joins. */
|
| 2164 |
|
|
if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
|
| 2165 |
|
|
return MOVEUP_EXPR_NULL;
|
| 2166 |
|
|
|
| 2167 |
|
|
/* The jump should have a clear fallthru block, and
|
| 2168 |
|
|
this block should be in the current region. */
|
| 2169 |
|
|
if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
|
| 2170 |
|
|
|| ! in_current_region_p (fallthru_bb))
|
| 2171 |
|
|
return MOVEUP_EXPR_NULL;
|
| 2172 |
|
|
|
| 2173 |
|
|
/* And it should be mutually exclusive with through_insn. */
|
| 2174 |
|
|
if (! sched_insns_conditions_mutex_p (insn, through_insn)
|
| 2175 |
|
|
&& ! DEBUG_INSN_P (through_insn))
|
| 2176 |
|
|
return MOVEUP_EXPR_NULL;
|
| 2177 |
|
|
}
|
| 2178 |
|
|
|
| 2179 |
|
|
/* Don't move what we can't move. */
|
| 2180 |
|
|
if (EXPR_CANT_MOVE (expr)
|
| 2181 |
|
|
&& BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
|
| 2182 |
|
|
return MOVEUP_EXPR_NULL;
|
| 2183 |
|
|
|
| 2184 |
|
|
/* Don't move SCHED_GROUP instruction through anything.
|
| 2185 |
|
|
If we don't force this, then it will be possible to start
|
| 2186 |
|
|
scheduling a sched_group before all its dependencies are
|
| 2187 |
|
|
resolved.
|
| 2188 |
|
|
??? Haifa deals with this issue by delaying the SCHED_GROUP
|
| 2189 |
|
|
as late as possible through rank_for_schedule. */
|
| 2190 |
|
|
if (SCHED_GROUP_P (insn))
|
| 2191 |
|
|
return MOVEUP_EXPR_NULL;
|
| 2192 |
|
|
}
|
| 2193 |
|
|
else
|
| 2194 |
|
|
gcc_assert (!control_flow_insn_p (insn));
|
| 2195 |
|
|
|
| 2196 |
|
|
/* Don't move debug insns if this would require bookkeeping. */
|
| 2197 |
|
|
if (DEBUG_INSN_P (insn)
|
| 2198 |
|
|
&& BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
|
| 2199 |
|
|
&& moving_insn_creates_bookkeeping_block_p (insn, through_insn))
|
| 2200 |
|
|
return MOVEUP_EXPR_NULL;
|
| 2201 |
|
|
|
| 2202 |
|
|
/* Deal with data dependencies. */
|
| 2203 |
|
|
was_target_conflict = false;
|
| 2204 |
|
|
full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
|
| 2205 |
|
|
if (full_ds == 0)
|
| 2206 |
|
|
{
|
| 2207 |
|
|
if (!CANT_MOVE_TRAPPING (expr, through_insn))
|
| 2208 |
|
|
return MOVEUP_EXPR_SAME;
|
| 2209 |
|
|
}
|
| 2210 |
|
|
else
|
| 2211 |
|
|
{
|
| 2212 |
|
|
/* We can move UNIQUE insn up only as a whole and unchanged,
|
| 2213 |
|
|
so it shouldn't have any dependencies. */
|
| 2214 |
|
|
if (VINSN_UNIQUE_P (vi))
|
| 2215 |
|
|
return MOVEUP_EXPR_NULL;
|
| 2216 |
|
|
}
|
| 2217 |
|
|
|
| 2218 |
|
|
if (full_ds != 0 && can_speculate_dep_p (full_ds))
|
| 2219 |
|
|
{
|
| 2220 |
|
|
int res;
|
| 2221 |
|
|
|
| 2222 |
|
|
res = speculate_expr (expr, full_ds);
|
| 2223 |
|
|
if (res >= 0)
|
| 2224 |
|
|
{
|
| 2225 |
|
|
/* Speculation was successful. */
|
| 2226 |
|
|
full_ds = 0;
|
| 2227 |
|
|
was_changed = (res > 0);
|
| 2228 |
|
|
if (res == 2)
|
| 2229 |
|
|
was_target_conflict = true;
|
| 2230 |
|
|
if (ptrans_type)
|
| 2231 |
|
|
*ptrans_type = TRANS_SPECULATION;
|
| 2232 |
|
|
sel_clear_has_dependence ();
|
| 2233 |
|
|
}
|
| 2234 |
|
|
}
|
| 2235 |
|
|
|
| 2236 |
|
|
if (has_dep_p[DEPS_IN_INSN])
|
| 2237 |
|
|
/* We have some dependency that cannot be discarded. */
|
| 2238 |
|
|
return MOVEUP_EXPR_NULL;
|
| 2239 |
|
|
|
| 2240 |
|
|
if (has_dep_p[DEPS_IN_LHS])
|
| 2241 |
|
|
{
|
| 2242 |
|
|
/* Only separable insns can be moved up with the new register.
|
| 2243 |
|
|
Anyways, we should mark that the original register is
|
| 2244 |
|
|
unavailable. */
|
| 2245 |
|
|
if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
|
| 2246 |
|
|
return MOVEUP_EXPR_NULL;
|
| 2247 |
|
|
|
| 2248 |
|
|
EXPR_TARGET_AVAILABLE (expr) = false;
|
| 2249 |
|
|
was_target_conflict = true;
|
| 2250 |
|
|
as_rhs = true;
|
| 2251 |
|
|
}
|
| 2252 |
|
|
|
| 2253 |
|
|
/* At this point we have either separable insns, that will be lifted
|
| 2254 |
|
|
up only as RHSes, or non-separable insns with no dependency in lhs.
|
| 2255 |
|
|
If dependency is in RHS, then try to perform substitution and move up
|
| 2256 |
|
|
substituted RHS:
|
| 2257 |
|
|
|
| 2258 |
|
|
Ex. 1: Ex.2
|
| 2259 |
|
|
y = x; y = x;
|
| 2260 |
|
|
z = y*2; y = y*2;
|
| 2261 |
|
|
|
| 2262 |
|
|
In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
|
| 2263 |
|
|
moved above y=x assignment as z=x*2.
|
| 2264 |
|
|
|
| 2265 |
|
|
In Ex.2 y*2 also can be substituted for x*2, but only the right hand
|
| 2266 |
|
|
side can be moved because of the output dependency. The operation was
|
| 2267 |
|
|
cropped to its rhs above. */
|
| 2268 |
|
|
if (has_dep_p[DEPS_IN_RHS])
|
| 2269 |
|
|
{
|
| 2270 |
|
|
ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
|
| 2271 |
|
|
|
| 2272 |
|
|
/* Can't substitute UNIQUE VINSNs. */
|
| 2273 |
|
|
gcc_assert (!VINSN_UNIQUE_P (vi));
|
| 2274 |
|
|
|
| 2275 |
|
|
if (can_speculate_dep_p (*rhs_dsp))
|
| 2276 |
|
|
{
|
| 2277 |
|
|
int res;
|
| 2278 |
|
|
|
| 2279 |
|
|
res = speculate_expr (expr, *rhs_dsp);
|
| 2280 |
|
|
if (res >= 0)
|
| 2281 |
|
|
{
|
| 2282 |
|
|
/* Speculation was successful. */
|
| 2283 |
|
|
*rhs_dsp = 0;
|
| 2284 |
|
|
was_changed = (res > 0);
|
| 2285 |
|
|
if (res == 2)
|
| 2286 |
|
|
was_target_conflict = true;
|
| 2287 |
|
|
if (ptrans_type)
|
| 2288 |
|
|
*ptrans_type = TRANS_SPECULATION;
|
| 2289 |
|
|
}
|
| 2290 |
|
|
else
|
| 2291 |
|
|
return MOVEUP_EXPR_NULL;
|
| 2292 |
|
|
}
|
| 2293 |
|
|
else if (can_substitute_through_p (through_insn,
|
| 2294 |
|
|
*rhs_dsp)
|
| 2295 |
|
|
&& substitute_reg_in_expr (expr, through_insn, false))
|
| 2296 |
|
|
{
|
| 2297 |
|
|
/* ??? We cannot perform substitution AND speculation on the same
|
| 2298 |
|
|
insn. */
|
| 2299 |
|
|
gcc_assert (!was_changed);
|
| 2300 |
|
|
was_changed = true;
|
| 2301 |
|
|
if (ptrans_type)
|
| 2302 |
|
|
*ptrans_type = TRANS_SUBSTITUTION;
|
| 2303 |
|
|
EXPR_WAS_SUBSTITUTED (expr) = true;
|
| 2304 |
|
|
}
|
| 2305 |
|
|
else
|
| 2306 |
|
|
return MOVEUP_EXPR_NULL;
|
| 2307 |
|
|
}
|
| 2308 |
|
|
|
| 2309 |
|
|
/* Don't move trapping insns through jumps.
|
| 2310 |
|
|
This check should be at the end to give a chance to control speculation
|
| 2311 |
|
|
to perform its duties. */
|
| 2312 |
|
|
if (CANT_MOVE_TRAPPING (expr, through_insn))
|
| 2313 |
|
|
return MOVEUP_EXPR_NULL;
|
| 2314 |
|
|
|
| 2315 |
|
|
return (was_changed
|
| 2316 |
|
|
? MOVEUP_EXPR_CHANGED
|
| 2317 |
|
|
: (as_rhs
|
| 2318 |
|
|
? MOVEUP_EXPR_AS_RHS
|
| 2319 |
|
|
: MOVEUP_EXPR_SAME));
|
| 2320 |
|
|
}
|
| 2321 |
|
|
|
| 2322 |
|
|
/* Try to look at bitmap caches for EXPR and INSN pair, return true
|
| 2323 |
|
|
if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
|
| 2324 |
|
|
that can exist within a parallel group. Write to RES the resulting
|
| 2325 |
|
|
code for moveup_expr. */
|
| 2326 |
|
|
static bool
|
| 2327 |
|
|
try_bitmap_cache (expr_t expr, insn_t insn,
|
| 2328 |
|
|
bool inside_insn_group,
|
| 2329 |
|
|
enum MOVEUP_EXPR_CODE *res)
|
| 2330 |
|
|
{
|
| 2331 |
|
|
int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
|
| 2332 |
|
|
|
| 2333 |
|
|
/* First check whether we've analyzed this situation already. */
|
| 2334 |
|
|
if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
|
| 2335 |
|
|
{
|
| 2336 |
|
|
if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
|
| 2337 |
|
|
{
|
| 2338 |
|
|
if (sched_verbose >= 6)
|
| 2339 |
|
|
sel_print ("removed (cached)\n");
|
| 2340 |
|
|
*res = MOVEUP_EXPR_NULL;
|
| 2341 |
|
|
return true;
|
| 2342 |
|
|
}
|
| 2343 |
|
|
else
|
| 2344 |
|
|
{
|
| 2345 |
|
|
if (sched_verbose >= 6)
|
| 2346 |
|
|
sel_print ("unchanged (cached)\n");
|
| 2347 |
|
|
*res = MOVEUP_EXPR_SAME;
|
| 2348 |
|
|
return true;
|
| 2349 |
|
|
}
|
| 2350 |
|
|
}
|
| 2351 |
|
|
else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
|
| 2352 |
|
|
{
|
| 2353 |
|
|
if (inside_insn_group)
|
| 2354 |
|
|
{
|
| 2355 |
|
|
if (sched_verbose >= 6)
|
| 2356 |
|
|
sel_print ("unchanged (as RHS, cached, inside insn group)\n");
|
| 2357 |
|
|
*res = MOVEUP_EXPR_SAME;
|
| 2358 |
|
|
return true;
|
| 2359 |
|
|
|
| 2360 |
|
|
}
|
| 2361 |
|
|
else
|
| 2362 |
|
|
EXPR_TARGET_AVAILABLE (expr) = false;
|
| 2363 |
|
|
|
| 2364 |
|
|
/* This is the only case when propagation result can change over time,
|
| 2365 |
|
|
as we can dynamically switch off scheduling as RHS. In this case,
|
| 2366 |
|
|
just check the flag to reach the correct decision. */
|
| 2367 |
|
|
if (enable_schedule_as_rhs_p)
|
| 2368 |
|
|
{
|
| 2369 |
|
|
if (sched_verbose >= 6)
|
| 2370 |
|
|
sel_print ("unchanged (as RHS, cached)\n");
|
| 2371 |
|
|
*res = MOVEUP_EXPR_AS_RHS;
|
| 2372 |
|
|
return true;
|
| 2373 |
|
|
}
|
| 2374 |
|
|
else
|
| 2375 |
|
|
{
|
| 2376 |
|
|
if (sched_verbose >= 6)
|
| 2377 |
|
|
sel_print ("removed (cached as RHS, but renaming"
|
| 2378 |
|
|
" is now disabled)\n");
|
| 2379 |
|
|
*res = MOVEUP_EXPR_NULL;
|
| 2380 |
|
|
return true;
|
| 2381 |
|
|
}
|
| 2382 |
|
|
}
|
| 2383 |
|
|
|
| 2384 |
|
|
return false;
|
| 2385 |
|
|
}
|
| 2386 |
|
|
|
| 2387 |
|
|
/* Try to look at bitmap caches for EXPR and INSN pair, return true
|
| 2388 |
|
|
if successful. Write to RES the resulting code for moveup_expr. */
|
| 2389 |
|
|
static bool
|
| 2390 |
|
|
try_transformation_cache (expr_t expr, insn_t insn,
|
| 2391 |
|
|
enum MOVEUP_EXPR_CODE *res)
|
| 2392 |
|
|
{
|
| 2393 |
|
|
struct transformed_insns *pti
|
| 2394 |
|
|
= (struct transformed_insns *)
|
| 2395 |
|
|
htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
|
| 2396 |
|
|
&EXPR_VINSN (expr),
|
| 2397 |
|
|
VINSN_HASH_RTX (EXPR_VINSN (expr)));
|
| 2398 |
|
|
if (pti)
|
| 2399 |
|
|
{
|
| 2400 |
|
|
/* This EXPR was already moved through this insn and was
|
| 2401 |
|
|
changed as a result. Fetch the proper data from
|
| 2402 |
|
|
the hashtable. */
|
| 2403 |
|
|
insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
|
| 2404 |
|
|
INSN_UID (insn), pti->type,
|
| 2405 |
|
|
pti->vinsn_old, pti->vinsn_new,
|
| 2406 |
|
|
EXPR_SPEC_DONE_DS (expr));
|
| 2407 |
|
|
|
| 2408 |
|
|
if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
|
| 2409 |
|
|
pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
|
| 2410 |
|
|
change_vinsn_in_expr (expr, pti->vinsn_new);
|
| 2411 |
|
|
if (pti->was_target_conflict)
|
| 2412 |
|
|
EXPR_TARGET_AVAILABLE (expr) = false;
|
| 2413 |
|
|
if (pti->type == TRANS_SPECULATION)
|
| 2414 |
|
|
{
|
| 2415 |
|
|
EXPR_SPEC_DONE_DS (expr) = pti->ds;
|
| 2416 |
|
|
EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
|
| 2417 |
|
|
}
|
| 2418 |
|
|
|
| 2419 |
|
|
if (sched_verbose >= 6)
|
| 2420 |
|
|
{
|
| 2421 |
|
|
sel_print ("changed (cached): ");
|
| 2422 |
|
|
dump_expr (expr);
|
| 2423 |
|
|
sel_print ("\n");
|
| 2424 |
|
|
}
|
| 2425 |
|
|
|
| 2426 |
|
|
*res = MOVEUP_EXPR_CHANGED;
|
| 2427 |
|
|
return true;
|
| 2428 |
|
|
}
|
| 2429 |
|
|
|
| 2430 |
|
|
return false;
|
| 2431 |
|
|
}
|
| 2432 |
|
|
|
| 2433 |
|
|
/* Update bitmap caches on INSN with result RES of propagating EXPR. */
|
| 2434 |
|
|
static void
|
| 2435 |
|
|
update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
|
| 2436 |
|
|
enum MOVEUP_EXPR_CODE res)
|
| 2437 |
|
|
{
|
| 2438 |
|
|
int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
|
| 2439 |
|
|
|
| 2440 |
|
|
/* Do not cache result of propagating jumps through an insn group,
|
| 2441 |
|
|
as it is always true, which is not useful outside the group. */
|
| 2442 |
|
|
if (inside_insn_group)
|
| 2443 |
|
|
return;
|
| 2444 |
|
|
|
| 2445 |
|
|
if (res == MOVEUP_EXPR_NULL)
|
| 2446 |
|
|
{
|
| 2447 |
|
|
bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
|
| 2448 |
|
|
bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
|
| 2449 |
|
|
}
|
| 2450 |
|
|
else if (res == MOVEUP_EXPR_SAME)
|
| 2451 |
|
|
{
|
| 2452 |
|
|
bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
|
| 2453 |
|
|
bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
|
| 2454 |
|
|
}
|
| 2455 |
|
|
else if (res == MOVEUP_EXPR_AS_RHS)
|
| 2456 |
|
|
{
|
| 2457 |
|
|
bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
|
| 2458 |
|
|
bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
|
| 2459 |
|
|
}
|
| 2460 |
|
|
else
|
| 2461 |
|
|
gcc_unreachable ();
|
| 2462 |
|
|
}
|
| 2463 |
|
|
|
| 2464 |
|
|
/* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
|
| 2465 |
|
|
and transformation type TRANS_TYPE. */
|
| 2466 |
|
|
static void
|
| 2467 |
|
|
update_transformation_cache (expr_t expr, insn_t insn,
|
| 2468 |
|
|
bool inside_insn_group,
|
| 2469 |
|
|
enum local_trans_type trans_type,
|
| 2470 |
|
|
vinsn_t expr_old_vinsn)
|
| 2471 |
|
|
{
|
| 2472 |
|
|
struct transformed_insns *pti;
|
| 2473 |
|
|
|
| 2474 |
|
|
if (inside_insn_group)
|
| 2475 |
|
|
return;
|
| 2476 |
|
|
|
| 2477 |
|
|
pti = XNEW (struct transformed_insns);
|
| 2478 |
|
|
pti->vinsn_old = expr_old_vinsn;
|
| 2479 |
|
|
pti->vinsn_new = EXPR_VINSN (expr);
|
| 2480 |
|
|
pti->type = trans_type;
|
| 2481 |
|
|
pti->was_target_conflict = was_target_conflict;
|
| 2482 |
|
|
pti->ds = EXPR_SPEC_DONE_DS (expr);
|
| 2483 |
|
|
pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
|
| 2484 |
|
|
vinsn_attach (pti->vinsn_old);
|
| 2485 |
|
|
vinsn_attach (pti->vinsn_new);
|
| 2486 |
|
|
*((struct transformed_insns **)
|
| 2487 |
|
|
htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
|
| 2488 |
|
|
pti, VINSN_HASH_RTX (expr_old_vinsn),
|
| 2489 |
|
|
INSERT)) = pti;
|
| 2490 |
|
|
}
|
| 2491 |
|
|
|
| 2492 |
|
|
/* Same as moveup_expr, but first looks up the result of
|
| 2493 |
|
|
transformation in caches. */
|
| 2494 |
|
|
static enum MOVEUP_EXPR_CODE
|
| 2495 |
|
|
moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
|
| 2496 |
|
|
{
|
| 2497 |
|
|
enum MOVEUP_EXPR_CODE res;
|
| 2498 |
|
|
bool got_answer = false;
|
| 2499 |
|
|
|
| 2500 |
|
|
if (sched_verbose >= 6)
|
| 2501 |
|
|
{
|
| 2502 |
|
|
sel_print ("Moving ");
|
| 2503 |
|
|
dump_expr (expr);
|
| 2504 |
|
|
sel_print (" through %d: ", INSN_UID (insn));
|
| 2505 |
|
|
}
|
| 2506 |
|
|
|
| 2507 |
|
|
if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
|
| 2508 |
|
|
&& (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
|
| 2509 |
|
|
== EXPR_INSN_RTX (expr)))
|
| 2510 |
|
|
/* Don't use cached information for debug insns that are heads of
|
| 2511 |
|
|
basic blocks. */;
|
| 2512 |
|
|
else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
|
| 2513 |
|
|
/* When inside insn group, we do not want remove stores conflicting
|
| 2514 |
|
|
with previosly issued loads. */
|
| 2515 |
|
|
got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
|
| 2516 |
|
|
else if (try_transformation_cache (expr, insn, &res))
|
| 2517 |
|
|
got_answer = true;
|
| 2518 |
|
|
|
| 2519 |
|
|
if (! got_answer)
|
| 2520 |
|
|
{
|
| 2521 |
|
|
/* Invoke moveup_expr and record the results. */
|
| 2522 |
|
|
vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
|
| 2523 |
|
|
ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
|
| 2524 |
|
|
int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
|
| 2525 |
|
|
bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
|
| 2526 |
|
|
enum local_trans_type trans_type = TRANS_SUBSTITUTION;
|
| 2527 |
|
|
|
| 2528 |
|
|
/* ??? Invent something better than this. We can't allow old_vinsn
|
| 2529 |
|
|
to go, we need it for the history vector. */
|
| 2530 |
|
|
vinsn_attach (expr_old_vinsn);
|
| 2531 |
|
|
|
| 2532 |
|
|
res = moveup_expr (expr, insn, inside_insn_group,
|
| 2533 |
|
|
&trans_type);
|
| 2534 |
|
|
switch (res)
|
| 2535 |
|
|
{
|
| 2536 |
|
|
case MOVEUP_EXPR_NULL:
|
| 2537 |
|
|
update_bitmap_cache (expr, insn, inside_insn_group, res);
|
| 2538 |
|
|
if (sched_verbose >= 6)
|
| 2539 |
|
|
sel_print ("removed\n");
|
| 2540 |
|
|
break;
|
| 2541 |
|
|
|
| 2542 |
|
|
case MOVEUP_EXPR_SAME:
|
| 2543 |
|
|
update_bitmap_cache (expr, insn, inside_insn_group, res);
|
| 2544 |
|
|
if (sched_verbose >= 6)
|
| 2545 |
|
|
sel_print ("unchanged\n");
|
| 2546 |
|
|
break;
|
| 2547 |
|
|
|
| 2548 |
|
|
case MOVEUP_EXPR_AS_RHS:
|
| 2549 |
|
|
gcc_assert (!unique_p || inside_insn_group);
|
| 2550 |
|
|
update_bitmap_cache (expr, insn, inside_insn_group, res);
|
| 2551 |
|
|
if (sched_verbose >= 6)
|
| 2552 |
|
|
sel_print ("unchanged (as RHS)\n");
|
| 2553 |
|
|
break;
|
| 2554 |
|
|
|
| 2555 |
|
|
case MOVEUP_EXPR_CHANGED:
|
| 2556 |
|
|
gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
|
| 2557 |
|
|
|| EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
|
| 2558 |
|
|
insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
|
| 2559 |
|
|
INSN_UID (insn), trans_type,
|
| 2560 |
|
|
expr_old_vinsn, EXPR_VINSN (expr),
|
| 2561 |
|
|
expr_old_spec_ds);
|
| 2562 |
|
|
update_transformation_cache (expr, insn, inside_insn_group,
|
| 2563 |
|
|
trans_type, expr_old_vinsn);
|
| 2564 |
|
|
if (sched_verbose >= 6)
|
| 2565 |
|
|
{
|
| 2566 |
|
|
sel_print ("changed: ");
|
| 2567 |
|
|
dump_expr (expr);
|
| 2568 |
|
|
sel_print ("\n");
|
| 2569 |
|
|
}
|
| 2570 |
|
|
break;
|
| 2571 |
|
|
default:
|
| 2572 |
|
|
gcc_unreachable ();
|
| 2573 |
|
|
}
|
| 2574 |
|
|
|
| 2575 |
|
|
vinsn_detach (expr_old_vinsn);
|
| 2576 |
|
|
}
|
| 2577 |
|
|
|
| 2578 |
|
|
return res;
|
| 2579 |
|
|
}
|
| 2580 |
|
|
|
| 2581 |
|
|
/* Moves an av set AVP up through INSN, performing necessary
|
| 2582 |
|
|
transformations. */
|
| 2583 |
|
|
static void
|
| 2584 |
|
|
moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
|
| 2585 |
|
|
{
|
| 2586 |
|
|
av_set_iterator i;
|
| 2587 |
|
|
expr_t expr;
|
| 2588 |
|
|
|
| 2589 |
|
|
FOR_EACH_EXPR_1 (expr, i, avp)
|
| 2590 |
|
|
{
|
| 2591 |
|
|
|
| 2592 |
|
|
switch (moveup_expr_cached (expr, insn, inside_insn_group))
|
| 2593 |
|
|
{
|
| 2594 |
|
|
case MOVEUP_EXPR_SAME:
|
| 2595 |
|
|
case MOVEUP_EXPR_AS_RHS:
|
| 2596 |
|
|
break;
|
| 2597 |
|
|
|
| 2598 |
|
|
case MOVEUP_EXPR_NULL:
|
| 2599 |
|
|
av_set_iter_remove (&i);
|
| 2600 |
|
|
break;
|
| 2601 |
|
|
|
| 2602 |
|
|
case MOVEUP_EXPR_CHANGED:
|
| 2603 |
|
|
expr = merge_with_other_exprs (avp, &i, expr);
|
| 2604 |
|
|
break;
|
| 2605 |
|
|
|
| 2606 |
|
|
default:
|
| 2607 |
|
|
gcc_unreachable ();
|
| 2608 |
|
|
}
|
| 2609 |
|
|
}
|
| 2610 |
|
|
}
|
| 2611 |
|
|
|
| 2612 |
|
|
/* Moves AVP set along PATH. */
|
| 2613 |
|
|
static void
|
| 2614 |
|
|
moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
|
| 2615 |
|
|
{
|
| 2616 |
|
|
int last_cycle;
|
| 2617 |
|
|
|
| 2618 |
|
|
if (sched_verbose >= 6)
|
| 2619 |
|
|
sel_print ("Moving expressions up in the insn group...\n");
|
| 2620 |
|
|
if (! path)
|
| 2621 |
|
|
return;
|
| 2622 |
|
|
last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
|
| 2623 |
|
|
while (path
|
| 2624 |
|
|
&& INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
|
| 2625 |
|
|
{
|
| 2626 |
|
|
moveup_set_expr (avp, ILIST_INSN (path), true);
|
| 2627 |
|
|
path = ILIST_NEXT (path);
|
| 2628 |
|
|
}
|
| 2629 |
|
|
}
|
| 2630 |
|
|
|
| 2631 |
|
|
/* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
|
| 2632 |
|
|
static bool
|
| 2633 |
|
|
equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
|
| 2634 |
|
|
{
|
| 2635 |
|
|
expr_def _tmp, *tmp = &_tmp;
|
| 2636 |
|
|
int last_cycle;
|
| 2637 |
|
|
bool res = true;
|
| 2638 |
|
|
|
| 2639 |
|
|
copy_expr_onside (tmp, expr);
|
| 2640 |
|
|
last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
|
| 2641 |
|
|
while (path
|
| 2642 |
|
|
&& res
|
| 2643 |
|
|
&& INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
|
| 2644 |
|
|
{
|
| 2645 |
|
|
res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
|
| 2646 |
|
|
!= MOVEUP_EXPR_NULL);
|
| 2647 |
|
|
path = ILIST_NEXT (path);
|
| 2648 |
|
|
}
|
| 2649 |
|
|
|
| 2650 |
|
|
if (res)
|
| 2651 |
|
|
{
|
| 2652 |
|
|
vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
|
| 2653 |
|
|
vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
|
| 2654 |
|
|
|
| 2655 |
|
|
if (tmp_vinsn != expr_vliw_vinsn)
|
| 2656 |
|
|
res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
|
| 2657 |
|
|
}
|
| 2658 |
|
|
|
| 2659 |
|
|
clear_expr (tmp);
|
| 2660 |
|
|
return res;
|
| 2661 |
|
|
}
|
| 2662 |
|
|
|
| 2663 |
|
|
|
| 2664 |
|
|
/* Functions that compute av and lv sets. */
|
| 2665 |
|
|
|
| 2666 |
|
|
/* Returns true if INSN is not a downward continuation of the given path P in
|
| 2667 |
|
|
the current stage. */
|
| 2668 |
|
|
static bool
|
| 2669 |
|
|
is_ineligible_successor (insn_t insn, ilist_t p)
|
| 2670 |
|
|
{
|
| 2671 |
|
|
insn_t prev_insn;
|
| 2672 |
|
|
|
| 2673 |
|
|
/* Check if insn is not deleted. */
|
| 2674 |
|
|
if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
|
| 2675 |
|
|
gcc_unreachable ();
|
| 2676 |
|
|
else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
|
| 2677 |
|
|
gcc_unreachable ();
|
| 2678 |
|
|
|
| 2679 |
|
|
/* If it's the first insn visited, then the successor is ok. */
|
| 2680 |
|
|
if (!p)
|
| 2681 |
|
|
return false;
|
| 2682 |
|
|
|
| 2683 |
|
|
prev_insn = ILIST_INSN (p);
|
| 2684 |
|
|
|
| 2685 |
|
|
if (/* a backward edge. */
|
| 2686 |
|
|
INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
|
| 2687 |
|
|
/* is already visited. */
|
| 2688 |
|
|
|| (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
|
| 2689 |
|
|
&& (ilist_is_in_p (p, insn)
|
| 2690 |
|
|
/* We can reach another fence here and still seqno of insn
|
| 2691 |
|
|
would be equal to seqno of prev_insn. This is possible
|
| 2692 |
|
|
when prev_insn is a previously created bookkeeping copy.
|
| 2693 |
|
|
In that case it'd get a seqno of insn. Thus, check here
|
| 2694 |
|
|
whether insn is in current fence too. */
|
| 2695 |
|
|
|| IN_CURRENT_FENCE_P (insn)))
|
| 2696 |
|
|
/* Was already scheduled on this round. */
|
| 2697 |
|
|
|| (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
|
| 2698 |
|
|
&& IN_CURRENT_FENCE_P (insn))
|
| 2699 |
|
|
/* An insn from another fence could also be
|
| 2700 |
|
|
scheduled earlier even if this insn is not in
|
| 2701 |
|
|
a fence list right now. Check INSN_SCHED_CYCLE instead. */
|
| 2702 |
|
|
|| (!pipelining_p
|
| 2703 |
|
|
&& INSN_SCHED_TIMES (insn) > 0))
|
| 2704 |
|
|
return true;
|
| 2705 |
|
|
else
|
| 2706 |
|
|
return false;
|
| 2707 |
|
|
}
|
| 2708 |
|
|
|
| 2709 |
|
|
/* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
|
| 2710 |
|
|
of handling multiple successors and properly merging its av_sets. P is
|
| 2711 |
|
|
the current path traversed. WS is the size of lookahead window.
|
| 2712 |
|
|
Return the av set computed. */
|
| 2713 |
|
|
static av_set_t
|
| 2714 |
|
|
compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
|
| 2715 |
|
|
{
|
| 2716 |
|
|
struct succs_info *sinfo;
|
| 2717 |
|
|
av_set_t expr_in_all_succ_branches = NULL;
|
| 2718 |
|
|
int is;
|
| 2719 |
|
|
insn_t succ, zero_succ = NULL;
|
| 2720 |
|
|
av_set_t av1 = NULL;
|
| 2721 |
|
|
|
| 2722 |
|
|
gcc_assert (sel_bb_end_p (insn));
|
| 2723 |
|
|
|
| 2724 |
|
|
/* Find different kind of successors needed for correct computing of
|
| 2725 |
|
|
SPEC and TARGET_AVAILABLE attributes. */
|
| 2726 |
|
|
sinfo = compute_succs_info (insn, SUCCS_NORMAL);
|
| 2727 |
|
|
|
| 2728 |
|
|
/* Debug output. */
|
| 2729 |
|
|
if (sched_verbose >= 6)
|
| 2730 |
|
|
{
|
| 2731 |
|
|
sel_print ("successors of bb end (%d): ", INSN_UID (insn));
|
| 2732 |
|
|
dump_insn_vector (sinfo->succs_ok);
|
| 2733 |
|
|
sel_print ("\n");
|
| 2734 |
|
|
if (sinfo->succs_ok_n != sinfo->all_succs_n)
|
| 2735 |
|
|
sel_print ("real successors num: %d\n", sinfo->all_succs_n);
|
| 2736 |
|
|
}
|
| 2737 |
|
|
|
| 2738 |
|
|
/* Add insn to the tail of current path. */
|
| 2739 |
|
|
ilist_add (&p, insn);
|
| 2740 |
|
|
|
| 2741 |
|
|
FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
|
| 2742 |
|
|
{
|
| 2743 |
|
|
av_set_t succ_set;
|
| 2744 |
|
|
|
| 2745 |
|
|
/* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
|
| 2746 |
|
|
succ_set = compute_av_set_inside_bb (succ, p, ws, true);
|
| 2747 |
|
|
|
| 2748 |
|
|
av_set_split_usefulness (succ_set,
|
| 2749 |
|
|
VEC_index (int, sinfo->probs_ok, is),
|
| 2750 |
|
|
sinfo->all_prob);
|
| 2751 |
|
|
|
| 2752 |
|
|
if (sinfo->all_succs_n > 1)
|
| 2753 |
|
|
{
|
| 2754 |
|
|
/* Find EXPR'es that came from *all* successors and save them
|
| 2755 |
|
|
into expr_in_all_succ_branches. This set will be used later
|
| 2756 |
|
|
for calculating speculation attributes of EXPR'es. */
|
| 2757 |
|
|
if (is == 0)
|
| 2758 |
|
|
{
|
| 2759 |
|
|
expr_in_all_succ_branches = av_set_copy (succ_set);
|
| 2760 |
|
|
|
| 2761 |
|
|
/* Remember the first successor for later. */
|
| 2762 |
|
|
zero_succ = succ;
|
| 2763 |
|
|
}
|
| 2764 |
|
|
else
|
| 2765 |
|
|
{
|
| 2766 |
|
|
av_set_iterator i;
|
| 2767 |
|
|
expr_t expr;
|
| 2768 |
|
|
|
| 2769 |
|
|
FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
|
| 2770 |
|
|
if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
|
| 2771 |
|
|
av_set_iter_remove (&i);
|
| 2772 |
|
|
}
|
| 2773 |
|
|
}
|
| 2774 |
|
|
|
| 2775 |
|
|
/* Union the av_sets. Check liveness restrictions on target registers
|
| 2776 |
|
|
in special case of two successors. */
|
| 2777 |
|
|
if (sinfo->succs_ok_n == 2 && is == 1)
|
| 2778 |
|
|
{
|
| 2779 |
|
|
basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
|
| 2780 |
|
|
basic_block bb1 = BLOCK_FOR_INSN (succ);
|
| 2781 |
|
|
|
| 2782 |
|
|
gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
|
| 2783 |
|
|
av_set_union_and_live (&av1, &succ_set,
|
| 2784 |
|
|
BB_LV_SET (bb0),
|
| 2785 |
|
|
BB_LV_SET (bb1),
|
| 2786 |
|
|
insn);
|
| 2787 |
|
|
}
|
| 2788 |
|
|
else
|
| 2789 |
|
|
av_set_union_and_clear (&av1, &succ_set, insn);
|
| 2790 |
|
|
}
|
| 2791 |
|
|
|
| 2792 |
|
|
/* Check liveness restrictions via hard way when there are more than
|
| 2793 |
|
|
two successors. */
|
| 2794 |
|
|
if (sinfo->succs_ok_n > 2)
|
| 2795 |
|
|
FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
|
| 2796 |
|
|
{
|
| 2797 |
|
|
basic_block succ_bb = BLOCK_FOR_INSN (succ);
|
| 2798 |
|
|
|
| 2799 |
|
|
gcc_assert (BB_LV_SET_VALID_P (succ_bb));
|
| 2800 |
|
|
mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
|
| 2801 |
|
|
BB_LV_SET (succ_bb));
|
| 2802 |
|
|
}
|
| 2803 |
|
|
|
| 2804 |
|
|
/* Finally, check liveness restrictions on paths leaving the region. */
|
| 2805 |
|
|
if (sinfo->all_succs_n > sinfo->succs_ok_n)
|
| 2806 |
|
|
FOR_EACH_VEC_ELT (rtx, sinfo->succs_other, is, succ)
|
| 2807 |
|
|
mark_unavailable_targets
|
| 2808 |
|
|
(av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
|
| 2809 |
|
|
|
| 2810 |
|
|
if (sinfo->all_succs_n > 1)
|
| 2811 |
|
|
{
|
| 2812 |
|
|
av_set_iterator i;
|
| 2813 |
|
|
expr_t expr;
|
| 2814 |
|
|
|
| 2815 |
|
|
/* Increase the spec attribute of all EXPR'es that didn't come
|
| 2816 |
|
|
from all successors. */
|
| 2817 |
|
|
FOR_EACH_EXPR (expr, i, av1)
|
| 2818 |
|
|
if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
|
| 2819 |
|
|
EXPR_SPEC (expr)++;
|
| 2820 |
|
|
|
| 2821 |
|
|
av_set_clear (&expr_in_all_succ_branches);
|
| 2822 |
|
|
|
| 2823 |
|
|
/* Do not move conditional branches through other
|
| 2824 |
|
|
conditional branches. So, remove all conditional
|
| 2825 |
|
|
branches from av_set if current operator is a conditional
|
| 2826 |
|
|
branch. */
|
| 2827 |
|
|
av_set_substract_cond_branches (&av1);
|
| 2828 |
|
|
}
|
| 2829 |
|
|
|
| 2830 |
|
|
ilist_remove (&p);
|
| 2831 |
|
|
free_succs_info (sinfo);
|
| 2832 |
|
|
|
| 2833 |
|
|
if (sched_verbose >= 6)
|
| 2834 |
|
|
{
|
| 2835 |
|
|
sel_print ("av_succs (%d): ", INSN_UID (insn));
|
| 2836 |
|
|
dump_av_set (av1);
|
| 2837 |
|
|
sel_print ("\n");
|
| 2838 |
|
|
}
|
| 2839 |
|
|
|
| 2840 |
|
|
return av1;
|
| 2841 |
|
|
}
|
| 2842 |
|
|
|
| 2843 |
|
|
/* This function computes av_set for the FIRST_INSN by dragging valid
|
| 2844 |
|
|
av_set through all basic block insns either from the end of basic block
|
| 2845 |
|
|
(computed using compute_av_set_at_bb_end) or from the insn on which
|
| 2846 |
|
|
MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
|
| 2847 |
|
|
below the basic block and handling conditional branches.
|
| 2848 |
|
|
FIRST_INSN - the basic block head, P - path consisting of the insns
|
| 2849 |
|
|
traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
|
| 2850 |
|
|
and bb ends are added to the path), WS - current window size,
|
| 2851 |
|
|
NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
|
| 2852 |
|
|
static av_set_t
|
| 2853 |
|
|
compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
|
| 2854 |
|
|
bool need_copy_p)
|
| 2855 |
|
|
{
|
| 2856 |
|
|
insn_t cur_insn;
|
| 2857 |
|
|
int end_ws = ws;
|
| 2858 |
|
|
insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
|
| 2859 |
|
|
insn_t after_bb_end = NEXT_INSN (bb_end);
|
| 2860 |
|
|
insn_t last_insn;
|
| 2861 |
|
|
av_set_t av = NULL;
|
| 2862 |
|
|
basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
|
| 2863 |
|
|
|
| 2864 |
|
|
/* Return NULL if insn is not on the legitimate downward path. */
|
| 2865 |
|
|
if (is_ineligible_successor (first_insn, p))
|
| 2866 |
|
|
{
|
| 2867 |
|
|
if (sched_verbose >= 6)
|
| 2868 |
|
|
sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
|
| 2869 |
|
|
|
| 2870 |
|
|
return NULL;
|
| 2871 |
|
|
}
|
| 2872 |
|
|
|
| 2873 |
|
|
/* If insn already has valid av(insn) computed, just return it. */
|
| 2874 |
|
|
if (AV_SET_VALID_P (first_insn))
|
| 2875 |
|
|
{
|
| 2876 |
|
|
av_set_t av_set;
|
| 2877 |
|
|
|
| 2878 |
|
|
if (sel_bb_head_p (first_insn))
|
| 2879 |
|
|
av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
|
| 2880 |
|
|
else
|
| 2881 |
|
|
av_set = NULL;
|
| 2882 |
|
|
|
| 2883 |
|
|
if (sched_verbose >= 6)
|
| 2884 |
|
|
{
|
| 2885 |
|
|
sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
|
| 2886 |
|
|
dump_av_set (av_set);
|
| 2887 |
|
|
sel_print ("\n");
|
| 2888 |
|
|
}
|
| 2889 |
|
|
|
| 2890 |
|
|
return need_copy_p ? av_set_copy (av_set) : av_set;
|
| 2891 |
|
|
}
|
| 2892 |
|
|
|
| 2893 |
|
|
ilist_add (&p, first_insn);
|
| 2894 |
|
|
|
| 2895 |
|
|
/* As the result after this loop have completed, in LAST_INSN we'll
|
| 2896 |
|
|
have the insn which has valid av_set to start backward computation
|
| 2897 |
|
|
from: it either will be NULL because on it the window size was exceeded
|
| 2898 |
|
|
or other valid av_set as returned by compute_av_set for the last insn
|
| 2899 |
|
|
of the basic block. */
|
| 2900 |
|
|
for (last_insn = first_insn; last_insn != after_bb_end;
|
| 2901 |
|
|
last_insn = NEXT_INSN (last_insn))
|
| 2902 |
|
|
{
|
| 2903 |
|
|
/* We may encounter valid av_set not only on bb_head, but also on
|
| 2904 |
|
|
those insns on which previously MAX_WS was exceeded. */
|
| 2905 |
|
|
if (AV_SET_VALID_P (last_insn))
|
| 2906 |
|
|
{
|
| 2907 |
|
|
if (sched_verbose >= 6)
|
| 2908 |
|
|
sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
|
| 2909 |
|
|
break;
|
| 2910 |
|
|
}
|
| 2911 |
|
|
|
| 2912 |
|
|
/* The special case: the last insn of the BB may be an
|
| 2913 |
|
|
ineligible_successor due to its SEQ_NO that was set on
|
| 2914 |
|
|
it as a bookkeeping. */
|
| 2915 |
|
|
if (last_insn != first_insn
|
| 2916 |
|
|
&& is_ineligible_successor (last_insn, p))
|
| 2917 |
|
|
{
|
| 2918 |
|
|
if (sched_verbose >= 6)
|
| 2919 |
|
|
sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
|
| 2920 |
|
|
break;
|
| 2921 |
|
|
}
|
| 2922 |
|
|
|
| 2923 |
|
|
if (DEBUG_INSN_P (last_insn))
|
| 2924 |
|
|
continue;
|
| 2925 |
|
|
|
| 2926 |
|
|
if (end_ws > max_ws)
|
| 2927 |
|
|
{
|
| 2928 |
|
|
/* We can reach max lookahead size at bb_header, so clean av_set
|
| 2929 |
|
|
first. */
|
| 2930 |
|
|
INSN_WS_LEVEL (last_insn) = global_level;
|
| 2931 |
|
|
|
| 2932 |
|
|
if (sched_verbose >= 6)
|
| 2933 |
|
|
sel_print ("Insn %d is beyond the software lookahead window size\n",
|
| 2934 |
|
|
INSN_UID (last_insn));
|
| 2935 |
|
|
break;
|
| 2936 |
|
|
}
|
| 2937 |
|
|
|
| 2938 |
|
|
end_ws++;
|
| 2939 |
|
|
}
|
| 2940 |
|
|
|
| 2941 |
|
|
/* Get the valid av_set into AV above the LAST_INSN to start backward
|
| 2942 |
|
|
computation from. It either will be empty av_set or av_set computed from
|
| 2943 |
|
|
the successors on the last insn of the current bb. */
|
| 2944 |
|
|
if (last_insn != after_bb_end)
|
| 2945 |
|
|
{
|
| 2946 |
|
|
av = NULL;
|
| 2947 |
|
|
|
| 2948 |
|
|
/* This is needed only to obtain av_sets that are identical to
|
| 2949 |
|
|
those computed by the old compute_av_set version. */
|
| 2950 |
|
|
if (last_insn == first_insn && !INSN_NOP_P (last_insn))
|
| 2951 |
|
|
av_set_add (&av, INSN_EXPR (last_insn));
|
| 2952 |
|
|
}
|
| 2953 |
|
|
else
|
| 2954 |
|
|
/* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
|
| 2955 |
|
|
av = compute_av_set_at_bb_end (bb_end, p, end_ws);
|
| 2956 |
|
|
|
| 2957 |
|
|
/* Compute av_set in AV starting from below the LAST_INSN up to
|
| 2958 |
|
|
location above the FIRST_INSN. */
|
| 2959 |
|
|
for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
|
| 2960 |
|
|
cur_insn = PREV_INSN (cur_insn))
|
| 2961 |
|
|
if (!INSN_NOP_P (cur_insn))
|
| 2962 |
|
|
{
|
| 2963 |
|
|
expr_t expr;
|
| 2964 |
|
|
|
| 2965 |
|
|
moveup_set_expr (&av, cur_insn, false);
|
| 2966 |
|
|
|
| 2967 |
|
|
/* If the expression for CUR_INSN is already in the set,
|
| 2968 |
|
|
replace it by the new one. */
|
| 2969 |
|
|
expr = av_set_lookup (av, INSN_VINSN (cur_insn));
|
| 2970 |
|
|
if (expr != NULL)
|
| 2971 |
|
|
{
|
| 2972 |
|
|
clear_expr (expr);
|
| 2973 |
|
|
copy_expr (expr, INSN_EXPR (cur_insn));
|
| 2974 |
|
|
}
|
| 2975 |
|
|
else
|
| 2976 |
|
|
av_set_add (&av, INSN_EXPR (cur_insn));
|
| 2977 |
|
|
}
|
| 2978 |
|
|
|
| 2979 |
|
|
/* Clear stale bb_av_set. */
|
| 2980 |
|
|
if (sel_bb_head_p (first_insn))
|
| 2981 |
|
|
{
|
| 2982 |
|
|
av_set_clear (&BB_AV_SET (cur_bb));
|
| 2983 |
|
|
BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
|
| 2984 |
|
|
BB_AV_LEVEL (cur_bb) = global_level;
|
| 2985 |
|
|
}
|
| 2986 |
|
|
|
| 2987 |
|
|
if (sched_verbose >= 6)
|
| 2988 |
|
|
{
|
| 2989 |
|
|
sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
|
| 2990 |
|
|
dump_av_set (av);
|
| 2991 |
|
|
sel_print ("\n");
|
| 2992 |
|
|
}
|
| 2993 |
|
|
|
| 2994 |
|
|
ilist_remove (&p);
|
| 2995 |
|
|
return av;
|
| 2996 |
|
|
}
|
| 2997 |
|
|
|
| 2998 |
|
|
/* Compute av set before INSN.
|
| 2999 |
|
|
INSN - the current operation (actual rtx INSN)
|
| 3000 |
|
|
P - the current path, which is list of insns visited so far
|
| 3001 |
|
|
WS - software lookahead window size.
|
| 3002 |
|
|
UNIQUE_P - TRUE, if returned av_set will be changed, hence
|
| 3003 |
|
|
if we want to save computed av_set in s_i_d, we should make a copy of it.
|
| 3004 |
|
|
|
| 3005 |
|
|
In the resulting set we will have only expressions that don't have delay
|
| 3006 |
|
|
stalls and nonsubstitutable dependences. */
|
| 3007 |
|
|
static av_set_t
|
| 3008 |
|
|
compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
|
| 3009 |
|
|
{
|
| 3010 |
|
|
return compute_av_set_inside_bb (insn, p, ws, unique_p);
|
| 3011 |
|
|
}
|
| 3012 |
|
|
|
| 3013 |
|
|
/* Propagate a liveness set LV through INSN. */
|
| 3014 |
|
|
static void
|
| 3015 |
|
|
propagate_lv_set (regset lv, insn_t insn)
|
| 3016 |
|
|
{
|
| 3017 |
|
|
gcc_assert (INSN_P (insn));
|
| 3018 |
|
|
|
| 3019 |
|
|
if (INSN_NOP_P (insn))
|
| 3020 |
|
|
return;
|
| 3021 |
|
|
|
| 3022 |
|
|
df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
|
| 3023 |
|
|
}
|
| 3024 |
|
|
|
| 3025 |
|
|
/* Return livness set at the end of BB. */
|
| 3026 |
|
|
static regset
|
| 3027 |
|
|
compute_live_after_bb (basic_block bb)
|
| 3028 |
|
|
{
|
| 3029 |
|
|
edge e;
|
| 3030 |
|
|
edge_iterator ei;
|
| 3031 |
|
|
regset lv = get_clear_regset_from_pool ();
|
| 3032 |
|
|
|
| 3033 |
|
|
gcc_assert (!ignore_first);
|
| 3034 |
|
|
|
| 3035 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 3036 |
|
|
if (sel_bb_empty_p (e->dest))
|
| 3037 |
|
|
{
|
| 3038 |
|
|
if (! BB_LV_SET_VALID_P (e->dest))
|
| 3039 |
|
|
{
|
| 3040 |
|
|
gcc_unreachable ();
|
| 3041 |
|
|
gcc_assert (BB_LV_SET (e->dest) == NULL);
|
| 3042 |
|
|
BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
|
| 3043 |
|
|
BB_LV_SET_VALID_P (e->dest) = true;
|
| 3044 |
|
|
}
|
| 3045 |
|
|
IOR_REG_SET (lv, BB_LV_SET (e->dest));
|
| 3046 |
|
|
}
|
| 3047 |
|
|
else
|
| 3048 |
|
|
IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
|
| 3049 |
|
|
|
| 3050 |
|
|
return lv;
|
| 3051 |
|
|
}
|
| 3052 |
|
|
|
| 3053 |
|
|
/* Compute the set of all live registers at the point before INSN and save
|
| 3054 |
|
|
it at INSN if INSN is bb header. */
|
| 3055 |
|
|
regset
|
| 3056 |
|
|
compute_live (insn_t insn)
|
| 3057 |
|
|
{
|
| 3058 |
|
|
basic_block bb = BLOCK_FOR_INSN (insn);
|
| 3059 |
|
|
insn_t final, temp;
|
| 3060 |
|
|
regset lv;
|
| 3061 |
|
|
|
| 3062 |
|
|
/* Return the valid set if we're already on it. */
|
| 3063 |
|
|
if (!ignore_first)
|
| 3064 |
|
|
{
|
| 3065 |
|
|
regset src = NULL;
|
| 3066 |
|
|
|
| 3067 |
|
|
if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
|
| 3068 |
|
|
src = BB_LV_SET (bb);
|
| 3069 |
|
|
else
|
| 3070 |
|
|
{
|
| 3071 |
|
|
gcc_assert (in_current_region_p (bb));
|
| 3072 |
|
|
if (INSN_LIVE_VALID_P (insn))
|
| 3073 |
|
|
src = INSN_LIVE (insn);
|
| 3074 |
|
|
}
|
| 3075 |
|
|
|
| 3076 |
|
|
if (src)
|
| 3077 |
|
|
{
|
| 3078 |
|
|
lv = get_regset_from_pool ();
|
| 3079 |
|
|
COPY_REG_SET (lv, src);
|
| 3080 |
|
|
|
| 3081 |
|
|
if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
|
| 3082 |
|
|
{
|
| 3083 |
|
|
COPY_REG_SET (BB_LV_SET (bb), lv);
|
| 3084 |
|
|
BB_LV_SET_VALID_P (bb) = true;
|
| 3085 |
|
|
}
|
| 3086 |
|
|
|
| 3087 |
|
|
return_regset_to_pool (lv);
|
| 3088 |
|
|
return lv;
|
| 3089 |
|
|
}
|
| 3090 |
|
|
}
|
| 3091 |
|
|
|
| 3092 |
|
|
/* We've skipped the wrong lv_set. Don't skip the right one. */
|
| 3093 |
|
|
ignore_first = false;
|
| 3094 |
|
|
gcc_assert (in_current_region_p (bb));
|
| 3095 |
|
|
|
| 3096 |
|
|
/* Find a valid LV set in this block or below, if needed.
|
| 3097 |
|
|
Start searching from the next insn: either ignore_first is true, or
|
| 3098 |
|
|
INSN doesn't have a correct live set. */
|
| 3099 |
|
|
temp = NEXT_INSN (insn);
|
| 3100 |
|
|
final = NEXT_INSN (BB_END (bb));
|
| 3101 |
|
|
while (temp != final && ! INSN_LIVE_VALID_P (temp))
|
| 3102 |
|
|
temp = NEXT_INSN (temp);
|
| 3103 |
|
|
if (temp == final)
|
| 3104 |
|
|
{
|
| 3105 |
|
|
lv = compute_live_after_bb (bb);
|
| 3106 |
|
|
temp = PREV_INSN (temp);
|
| 3107 |
|
|
}
|
| 3108 |
|
|
else
|
| 3109 |
|
|
{
|
| 3110 |
|
|
lv = get_regset_from_pool ();
|
| 3111 |
|
|
COPY_REG_SET (lv, INSN_LIVE (temp));
|
| 3112 |
|
|
}
|
| 3113 |
|
|
|
| 3114 |
|
|
/* Put correct lv sets on the insns which have bad sets. */
|
| 3115 |
|
|
final = PREV_INSN (insn);
|
| 3116 |
|
|
while (temp != final)
|
| 3117 |
|
|
{
|
| 3118 |
|
|
propagate_lv_set (lv, temp);
|
| 3119 |
|
|
COPY_REG_SET (INSN_LIVE (temp), lv);
|
| 3120 |
|
|
INSN_LIVE_VALID_P (temp) = true;
|
| 3121 |
|
|
temp = PREV_INSN (temp);
|
| 3122 |
|
|
}
|
| 3123 |
|
|
|
| 3124 |
|
|
/* Also put it in a BB. */
|
| 3125 |
|
|
if (sel_bb_head_p (insn))
|
| 3126 |
|
|
{
|
| 3127 |
|
|
basic_block bb = BLOCK_FOR_INSN (insn);
|
| 3128 |
|
|
|
| 3129 |
|
|
COPY_REG_SET (BB_LV_SET (bb), lv);
|
| 3130 |
|
|
BB_LV_SET_VALID_P (bb) = true;
|
| 3131 |
|
|
}
|
| 3132 |
|
|
|
| 3133 |
|
|
/* We return LV to the pool, but will not clear it there. Thus we can
|
| 3134 |
|
|
legimatelly use LV till the next use of regset_pool_get (). */
|
| 3135 |
|
|
return_regset_to_pool (lv);
|
| 3136 |
|
|
return lv;
|
| 3137 |
|
|
}
|
| 3138 |
|
|
|
| 3139 |
|
|
/* Update liveness sets for INSN. */
|
| 3140 |
|
|
static inline void
|
| 3141 |
|
|
update_liveness_on_insn (rtx insn)
|
| 3142 |
|
|
{
|
| 3143 |
|
|
ignore_first = true;
|
| 3144 |
|
|
compute_live (insn);
|
| 3145 |
|
|
}
|
| 3146 |
|
|
|
| 3147 |
|
|
/* Compute liveness below INSN and write it into REGS. */
|
| 3148 |
|
|
static inline void
|
| 3149 |
|
|
compute_live_below_insn (rtx insn, regset regs)
|
| 3150 |
|
|
{
|
| 3151 |
|
|
rtx succ;
|
| 3152 |
|
|
succ_iterator si;
|
| 3153 |
|
|
|
| 3154 |
|
|
FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
|
| 3155 |
|
|
IOR_REG_SET (regs, compute_live (succ));
|
| 3156 |
|
|
}
|
| 3157 |
|
|
|
| 3158 |
|
|
/* Update the data gathered in av and lv sets starting from INSN. */
|
| 3159 |
|
|
static void
|
| 3160 |
|
|
update_data_sets (rtx insn)
|
| 3161 |
|
|
{
|
| 3162 |
|
|
update_liveness_on_insn (insn);
|
| 3163 |
|
|
if (sel_bb_head_p (insn))
|
| 3164 |
|
|
{
|
| 3165 |
|
|
gcc_assert (AV_LEVEL (insn) != 0);
|
| 3166 |
|
|
BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
|
| 3167 |
|
|
compute_av_set (insn, NULL, 0, 0);
|
| 3168 |
|
|
}
|
| 3169 |
|
|
}
|
| 3170 |
|
|
|
| 3171 |
|
|
|
| 3172 |
|
|
/* Helper for move_op () and find_used_regs ().
|
| 3173 |
|
|
Return speculation type for which a check should be created on the place
|
| 3174 |
|
|
of INSN. EXPR is one of the original ops we are searching for. */
|
| 3175 |
|
|
static ds_t
|
| 3176 |
|
|
get_spec_check_type_for_insn (insn_t insn, expr_t expr)
|
| 3177 |
|
|
{
|
| 3178 |
|
|
ds_t to_check_ds;
|
| 3179 |
|
|
ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
|
| 3180 |
|
|
|
| 3181 |
|
|
to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
|
| 3182 |
|
|
|
| 3183 |
|
|
if (targetm.sched.get_insn_checked_ds)
|
| 3184 |
|
|
already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
|
| 3185 |
|
|
|
| 3186 |
|
|
if (spec_info != NULL
|
| 3187 |
|
|
&& (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
|
| 3188 |
|
|
already_checked_ds |= BEGIN_CONTROL;
|
| 3189 |
|
|
|
| 3190 |
|
|
already_checked_ds = ds_get_speculation_types (already_checked_ds);
|
| 3191 |
|
|
|
| 3192 |
|
|
to_check_ds &= ~already_checked_ds;
|
| 3193 |
|
|
|
| 3194 |
|
|
return to_check_ds;
|
| 3195 |
|
|
}
|
| 3196 |
|
|
|
| 3197 |
|
|
/* Find the set of registers that are unavailable for storing expres
|
| 3198 |
|
|
while moving ORIG_OPS up on the path starting from INSN due to
|
| 3199 |
|
|
liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
|
| 3200 |
|
|
|
| 3201 |
|
|
All the original operations found during the traversal are saved in the
|
| 3202 |
|
|
ORIGINAL_INSNS list.
|
| 3203 |
|
|
|
| 3204 |
|
|
REG_RENAME_P denotes the set of hardware registers that
|
| 3205 |
|
|
can not be used with renaming due to the register class restrictions,
|
| 3206 |
|
|
mode restrictions and other (the register we'll choose should be
|
| 3207 |
|
|
compatible class with the original uses, shouldn't be in call_used_regs,
|
| 3208 |
|
|
should be HARD_REGNO_RENAME_OK etc).
|
| 3209 |
|
|
|
| 3210 |
|
|
Returns TRUE if we've found all original insns, FALSE otherwise.
|
| 3211 |
|
|
|
| 3212 |
|
|
This function utilizes code_motion_path_driver (formerly find_used_regs_1)
|
| 3213 |
|
|
to traverse the code motion paths. This helper function finds registers
|
| 3214 |
|
|
that are not available for storing expres while moving ORIG_OPS up on the
|
| 3215 |
|
|
path starting from INSN. A register considered as used on the moving path,
|
| 3216 |
|
|
if one of the following conditions is not satisfied:
|
| 3217 |
|
|
|
| 3218 |
|
|
(1) a register not set or read on any path from xi to an instance of
|
| 3219 |
|
|
the original operation,
|
| 3220 |
|
|
(2) not among the live registers of the point immediately following the
|
| 3221 |
|
|
first original operation on a given downward path, except for the
|
| 3222 |
|
|
original target register of the operation,
|
| 3223 |
|
|
(3) not live on the other path of any conditional branch that is passed
|
| 3224 |
|
|
by the operation, in case original operations are not present on
|
| 3225 |
|
|
both paths of the conditional branch.
|
| 3226 |
|
|
|
| 3227 |
|
|
All the original operations found during the traversal are saved in the
|
| 3228 |
|
|
ORIGINAL_INSNS list.
|
| 3229 |
|
|
|
| 3230 |
|
|
REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
|
| 3231 |
|
|
from INSN to original insn. In this case CALL_USED_REG_SET will be added
|
| 3232 |
|
|
to unavailable hard regs at the point original operation is found. */
|
| 3233 |
|
|
|
| 3234 |
|
|
static bool
|
| 3235 |
|
|
find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
|
| 3236 |
|
|
struct reg_rename *reg_rename_p, def_list_t *original_insns)
|
| 3237 |
|
|
{
|
| 3238 |
|
|
def_list_iterator i;
|
| 3239 |
|
|
def_t def;
|
| 3240 |
|
|
int res;
|
| 3241 |
|
|
bool needs_spec_check_p = false;
|
| 3242 |
|
|
expr_t expr;
|
| 3243 |
|
|
av_set_iterator expr_iter;
|
| 3244 |
|
|
struct fur_static_params sparams;
|
| 3245 |
|
|
struct cmpd_local_params lparams;
|
| 3246 |
|
|
|
| 3247 |
|
|
/* We haven't visited any blocks yet. */
|
| 3248 |
|
|
bitmap_clear (code_motion_visited_blocks);
|
| 3249 |
|
|
|
| 3250 |
|
|
/* Init parameters for code_motion_path_driver. */
|
| 3251 |
|
|
sparams.crosses_call = false;
|
| 3252 |
|
|
sparams.original_insns = original_insns;
|
| 3253 |
|
|
sparams.used_regs = used_regs;
|
| 3254 |
|
|
|
| 3255 |
|
|
/* Set the appropriate hooks and data. */
|
| 3256 |
|
|
code_motion_path_driver_info = &fur_hooks;
|
| 3257 |
|
|
|
| 3258 |
|
|
res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
|
| 3259 |
|
|
|
| 3260 |
|
|
reg_rename_p->crosses_call |= sparams.crosses_call;
|
| 3261 |
|
|
|
| 3262 |
|
|
gcc_assert (res == 1);
|
| 3263 |
|
|
gcc_assert (original_insns && *original_insns);
|
| 3264 |
|
|
|
| 3265 |
|
|
/* ??? We calculate whether an expression needs a check when computing
|
| 3266 |
|
|
av sets. This information is not as precise as it could be due to
|
| 3267 |
|
|
merging this bit in merge_expr. We can do better in find_used_regs,
|
| 3268 |
|
|
but we want to avoid multiple traversals of the same code motion
|
| 3269 |
|
|
paths. */
|
| 3270 |
|
|
FOR_EACH_EXPR (expr, expr_iter, orig_ops)
|
| 3271 |
|
|
needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
|
| 3272 |
|
|
|
| 3273 |
|
|
/* Mark hardware regs in REG_RENAME_P that are not suitable
|
| 3274 |
|
|
for renaming expr in INSN due to hardware restrictions (register class,
|
| 3275 |
|
|
modes compatibility etc). */
|
| 3276 |
|
|
FOR_EACH_DEF (def, i, *original_insns)
|
| 3277 |
|
|
{
|
| 3278 |
|
|
vinsn_t vinsn = INSN_VINSN (def->orig_insn);
|
| 3279 |
|
|
|
| 3280 |
|
|
if (VINSN_SEPARABLE_P (vinsn))
|
| 3281 |
|
|
mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
|
| 3282 |
|
|
|
| 3283 |
|
|
/* Do not allow clobbering of ld.[sa] address in case some of the
|
| 3284 |
|
|
original operations need a check. */
|
| 3285 |
|
|
if (needs_spec_check_p)
|
| 3286 |
|
|
IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
|
| 3287 |
|
|
}
|
| 3288 |
|
|
|
| 3289 |
|
|
return true;
|
| 3290 |
|
|
}
|
| 3291 |
|
|
|
| 3292 |
|
|
|
| 3293 |
|
|
/* Functions to choose the best insn from available ones. */
|
| 3294 |
|
|
|
| 3295 |
|
|
/* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
|
| 3296 |
|
|
static int
|
| 3297 |
|
|
sel_target_adjust_priority (expr_t expr)
|
| 3298 |
|
|
{
|
| 3299 |
|
|
int priority = EXPR_PRIORITY (expr);
|
| 3300 |
|
|
int new_priority;
|
| 3301 |
|
|
|
| 3302 |
|
|
if (targetm.sched.adjust_priority)
|
| 3303 |
|
|
new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
|
| 3304 |
|
|
else
|
| 3305 |
|
|
new_priority = priority;
|
| 3306 |
|
|
|
| 3307 |
|
|
/* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
|
| 3308 |
|
|
EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
|
| 3309 |
|
|
|
| 3310 |
|
|
gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
|
| 3311 |
|
|
|
| 3312 |
|
|
if (sched_verbose >= 4)
|
| 3313 |
|
|
sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
|
| 3314 |
|
|
INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
|
| 3315 |
|
|
EXPR_PRIORITY_ADJ (expr), new_priority);
|
| 3316 |
|
|
|
| 3317 |
|
|
return new_priority;
|
| 3318 |
|
|
}
|
| 3319 |
|
|
|
| 3320 |
|
|
/* Rank two available exprs for schedule. Never return 0 here. */
|
| 3321 |
|
|
static int
|
| 3322 |
|
|
sel_rank_for_schedule (const void *x, const void *y)
|
| 3323 |
|
|
{
|
| 3324 |
|
|
expr_t tmp = *(const expr_t *) y;
|
| 3325 |
|
|
expr_t tmp2 = *(const expr_t *) x;
|
| 3326 |
|
|
insn_t tmp_insn, tmp2_insn;
|
| 3327 |
|
|
vinsn_t tmp_vinsn, tmp2_vinsn;
|
| 3328 |
|
|
int val;
|
| 3329 |
|
|
|
| 3330 |
|
|
tmp_vinsn = EXPR_VINSN (tmp);
|
| 3331 |
|
|
tmp2_vinsn = EXPR_VINSN (tmp2);
|
| 3332 |
|
|
tmp_insn = EXPR_INSN_RTX (tmp);
|
| 3333 |
|
|
tmp2_insn = EXPR_INSN_RTX (tmp2);
|
| 3334 |
|
|
|
| 3335 |
|
|
/* Schedule debug insns as early as possible. */
|
| 3336 |
|
|
if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
|
| 3337 |
|
|
return -1;
|
| 3338 |
|
|
else if (DEBUG_INSN_P (tmp2_insn))
|
| 3339 |
|
|
return 1;
|
| 3340 |
|
|
|
| 3341 |
|
|
/* Prefer SCHED_GROUP_P insns to any others. */
|
| 3342 |
|
|
if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
|
| 3343 |
|
|
{
|
| 3344 |
|
|
if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
|
| 3345 |
|
|
return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
|
| 3346 |
|
|
|
| 3347 |
|
|
/* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
|
| 3348 |
|
|
cannot be cloned. */
|
| 3349 |
|
|
if (VINSN_UNIQUE_P (tmp2_vinsn))
|
| 3350 |
|
|
return 1;
|
| 3351 |
|
|
return -1;
|
| 3352 |
|
|
}
|
| 3353 |
|
|
|
| 3354 |
|
|
/* Discourage scheduling of speculative checks. */
|
| 3355 |
|
|
val = (sel_insn_is_speculation_check (tmp_insn)
|
| 3356 |
|
|
- sel_insn_is_speculation_check (tmp2_insn));
|
| 3357 |
|
|
if (val)
|
| 3358 |
|
|
return val;
|
| 3359 |
|
|
|
| 3360 |
|
|
/* Prefer not scheduled insn over scheduled one. */
|
| 3361 |
|
|
if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
|
| 3362 |
|
|
{
|
| 3363 |
|
|
val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
|
| 3364 |
|
|
if (val)
|
| 3365 |
|
|
return val;
|
| 3366 |
|
|
}
|
| 3367 |
|
|
|
| 3368 |
|
|
/* Prefer jump over non-jump instruction. */
|
| 3369 |
|
|
if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
|
| 3370 |
|
|
return -1;
|
| 3371 |
|
|
else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
|
| 3372 |
|
|
return 1;
|
| 3373 |
|
|
|
| 3374 |
|
|
/* Prefer an expr with greater priority. */
|
| 3375 |
|
|
if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
|
| 3376 |
|
|
{
|
| 3377 |
|
|
int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
|
| 3378 |
|
|
p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
|
| 3379 |
|
|
|
| 3380 |
|
|
val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
|
| 3381 |
|
|
}
|
| 3382 |
|
|
else
|
| 3383 |
|
|
val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
|
| 3384 |
|
|
+ EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
|
| 3385 |
|
|
if (val)
|
| 3386 |
|
|
return val;
|
| 3387 |
|
|
|
| 3388 |
|
|
if (spec_info != NULL && spec_info->mask != 0)
|
| 3389 |
|
|
/* This code was taken from haifa-sched.c: rank_for_schedule (). */
|
| 3390 |
|
|
{
|
| 3391 |
|
|
ds_t ds1, ds2;
|
| 3392 |
|
|
dw_t dw1, dw2;
|
| 3393 |
|
|
int dw;
|
| 3394 |
|
|
|
| 3395 |
|
|
ds1 = EXPR_SPEC_DONE_DS (tmp);
|
| 3396 |
|
|
if (ds1)
|
| 3397 |
|
|
dw1 = ds_weak (ds1);
|
| 3398 |
|
|
else
|
| 3399 |
|
|
dw1 = NO_DEP_WEAK;
|
| 3400 |
|
|
|
| 3401 |
|
|
ds2 = EXPR_SPEC_DONE_DS (tmp2);
|
| 3402 |
|
|
if (ds2)
|
| 3403 |
|
|
dw2 = ds_weak (ds2);
|
| 3404 |
|
|
else
|
| 3405 |
|
|
dw2 = NO_DEP_WEAK;
|
| 3406 |
|
|
|
| 3407 |
|
|
dw = dw2 - dw1;
|
| 3408 |
|
|
if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
|
| 3409 |
|
|
return dw;
|
| 3410 |
|
|
}
|
| 3411 |
|
|
|
| 3412 |
|
|
/* Prefer an old insn to a bookkeeping insn. */
|
| 3413 |
|
|
if (INSN_UID (tmp_insn) < first_emitted_uid
|
| 3414 |
|
|
&& INSN_UID (tmp2_insn) >= first_emitted_uid)
|
| 3415 |
|
|
return -1;
|
| 3416 |
|
|
if (INSN_UID (tmp_insn) >= first_emitted_uid
|
| 3417 |
|
|
&& INSN_UID (tmp2_insn) < first_emitted_uid)
|
| 3418 |
|
|
return 1;
|
| 3419 |
|
|
|
| 3420 |
|
|
/* Prefer an insn with smaller UID, as a last resort.
|
| 3421 |
|
|
We can't safely use INSN_LUID as it is defined only for those insns
|
| 3422 |
|
|
that are in the stream. */
|
| 3423 |
|
|
return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
|
| 3424 |
|
|
}
|
| 3425 |
|
|
|
| 3426 |
|
|
/* Filter out expressions from av set pointed to by AV_PTR
|
| 3427 |
|
|
that are pipelined too many times. */
|
| 3428 |
|
|
static void
|
| 3429 |
|
|
process_pipelined_exprs (av_set_t *av_ptr)
|
| 3430 |
|
|
{
|
| 3431 |
|
|
expr_t expr;
|
| 3432 |
|
|
av_set_iterator si;
|
| 3433 |
|
|
|
| 3434 |
|
|
/* Don't pipeline already pipelined code as that would increase
|
| 3435 |
|
|
number of unnecessary register moves. */
|
| 3436 |
|
|
FOR_EACH_EXPR_1 (expr, si, av_ptr)
|
| 3437 |
|
|
{
|
| 3438 |
|
|
if (EXPR_SCHED_TIMES (expr)
|
| 3439 |
|
|
>= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
|
| 3440 |
|
|
av_set_iter_remove (&si);
|
| 3441 |
|
|
}
|
| 3442 |
|
|
}
|
| 3443 |
|
|
|
| 3444 |
|
|
/* Filter speculative insns from AV_PTR if we don't want them. */
|
| 3445 |
|
|
static void
|
| 3446 |
|
|
process_spec_exprs (av_set_t *av_ptr)
|
| 3447 |
|
|
{
|
| 3448 |
|
|
bool try_data_p = true;
|
| 3449 |
|
|
bool try_control_p = true;
|
| 3450 |
|
|
expr_t expr;
|
| 3451 |
|
|
av_set_iterator si;
|
| 3452 |
|
|
|
| 3453 |
|
|
if (spec_info == NULL)
|
| 3454 |
|
|
return;
|
| 3455 |
|
|
|
| 3456 |
|
|
/* Scan *AV_PTR to find out if we want to consider speculative
|
| 3457 |
|
|
instructions for scheduling. */
|
| 3458 |
|
|
FOR_EACH_EXPR_1 (expr, si, av_ptr)
|
| 3459 |
|
|
{
|
| 3460 |
|
|
ds_t ds;
|
| 3461 |
|
|
|
| 3462 |
|
|
ds = EXPR_SPEC_DONE_DS (expr);
|
| 3463 |
|
|
|
| 3464 |
|
|
/* The probability of a success is too low - don't speculate. */
|
| 3465 |
|
|
if ((ds & SPECULATIVE)
|
| 3466 |
|
|
&& (ds_weak (ds) < spec_info->data_weakness_cutoff
|
| 3467 |
|
|
|| EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
|
| 3468 |
|
|
|| (pipelining_p && false
|
| 3469 |
|
|
&& (ds & DATA_SPEC)
|
| 3470 |
|
|
&& (ds & CONTROL_SPEC))))
|
| 3471 |
|
|
{
|
| 3472 |
|
|
av_set_iter_remove (&si);
|
| 3473 |
|
|
continue;
|
| 3474 |
|
|
}
|
| 3475 |
|
|
|
| 3476 |
|
|
if ((spec_info->flags & PREFER_NON_DATA_SPEC)
|
| 3477 |
|
|
&& !(ds & BEGIN_DATA))
|
| 3478 |
|
|
try_data_p = false;
|
| 3479 |
|
|
|
| 3480 |
|
|
if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
|
| 3481 |
|
|
&& !(ds & BEGIN_CONTROL))
|
| 3482 |
|
|
try_control_p = false;
|
| 3483 |
|
|
}
|
| 3484 |
|
|
|
| 3485 |
|
|
FOR_EACH_EXPR_1 (expr, si, av_ptr)
|
| 3486 |
|
|
{
|
| 3487 |
|
|
ds_t ds;
|
| 3488 |
|
|
|
| 3489 |
|
|
ds = EXPR_SPEC_DONE_DS (expr);
|
| 3490 |
|
|
|
| 3491 |
|
|
if (ds & SPECULATIVE)
|
| 3492 |
|
|
{
|
| 3493 |
|
|
if ((ds & BEGIN_DATA) && !try_data_p)
|
| 3494 |
|
|
/* We don't want any data speculative instructions right
|
| 3495 |
|
|
now. */
|
| 3496 |
|
|
av_set_iter_remove (&si);
|
| 3497 |
|
|
|
| 3498 |
|
|
if ((ds & BEGIN_CONTROL) && !try_control_p)
|
| 3499 |
|
|
/* We don't want any control speculative instructions right
|
| 3500 |
|
|
now. */
|
| 3501 |
|
|
av_set_iter_remove (&si);
|
| 3502 |
|
|
}
|
| 3503 |
|
|
}
|
| 3504 |
|
|
}
|
| 3505 |
|
|
|
| 3506 |
|
|
/* Search for any use-like insns in AV_PTR and decide on scheduling
|
| 3507 |
|
|
them. Return one when found, and NULL otherwise.
|
| 3508 |
|
|
Note that we check here whether a USE could be scheduled to avoid
|
| 3509 |
|
|
an infinite loop later. */
|
| 3510 |
|
|
static expr_t
|
| 3511 |
|
|
process_use_exprs (av_set_t *av_ptr)
|
| 3512 |
|
|
{
|
| 3513 |
|
|
expr_t expr;
|
| 3514 |
|
|
av_set_iterator si;
|
| 3515 |
|
|
bool uses_present_p = false;
|
| 3516 |
|
|
bool try_uses_p = true;
|
| 3517 |
|
|
|
| 3518 |
|
|
FOR_EACH_EXPR_1 (expr, si, av_ptr)
|
| 3519 |
|
|
{
|
| 3520 |
|
|
/* This will also initialize INSN_CODE for later use. */
|
| 3521 |
|
|
if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
|
| 3522 |
|
|
{
|
| 3523 |
|
|
/* If we have a USE in *AV_PTR that was not scheduled yet,
|
| 3524 |
|
|
do so because it will do good only. */
|
| 3525 |
|
|
if (EXPR_SCHED_TIMES (expr) <= 0)
|
| 3526 |
|
|
{
|
| 3527 |
|
|
if (EXPR_TARGET_AVAILABLE (expr) == 1)
|
| 3528 |
|
|
return expr;
|
| 3529 |
|
|
|
| 3530 |
|
|
av_set_iter_remove (&si);
|
| 3531 |
|
|
}
|
| 3532 |
|
|
else
|
| 3533 |
|
|
{
|
| 3534 |
|
|
gcc_assert (pipelining_p);
|
| 3535 |
|
|
|
| 3536 |
|
|
uses_present_p = true;
|
| 3537 |
|
|
}
|
| 3538 |
|
|
}
|
| 3539 |
|
|
else
|
| 3540 |
|
|
try_uses_p = false;
|
| 3541 |
|
|
}
|
| 3542 |
|
|
|
| 3543 |
|
|
if (uses_present_p)
|
| 3544 |
|
|
{
|
| 3545 |
|
|
/* If we don't want to schedule any USEs right now and we have some
|
| 3546 |
|
|
in *AV_PTR, remove them, else just return the first one found. */
|
| 3547 |
|
|
if (!try_uses_p)
|
| 3548 |
|
|
{
|
| 3549 |
|
|
FOR_EACH_EXPR_1 (expr, si, av_ptr)
|
| 3550 |
|
|
if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
|
| 3551 |
|
|
av_set_iter_remove (&si);
|
| 3552 |
|
|
}
|
| 3553 |
|
|
else
|
| 3554 |
|
|
{
|
| 3555 |
|
|
FOR_EACH_EXPR_1 (expr, si, av_ptr)
|
| 3556 |
|
|
{
|
| 3557 |
|
|
gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
|
| 3558 |
|
|
|
| 3559 |
|
|
if (EXPR_TARGET_AVAILABLE (expr) == 1)
|
| 3560 |
|
|
return expr;
|
| 3561 |
|
|
|
| 3562 |
|
|
av_set_iter_remove (&si);
|
| 3563 |
|
|
}
|
| 3564 |
|
|
}
|
| 3565 |
|
|
}
|
| 3566 |
|
|
|
| 3567 |
|
|
return NULL;
|
| 3568 |
|
|
}
|
| 3569 |
|
|
|
| 3570 |
|
|
/* Lookup EXPR in VINSN_VEC and return TRUE if found. */
|
| 3571 |
|
|
static bool
|
| 3572 |
|
|
vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
|
| 3573 |
|
|
{
|
| 3574 |
|
|
vinsn_t vinsn;
|
| 3575 |
|
|
int n;
|
| 3576 |
|
|
|
| 3577 |
|
|
FOR_EACH_VEC_ELT (vinsn_t, vinsn_vec, n, vinsn)
|
| 3578 |
|
|
if (VINSN_SEPARABLE_P (vinsn))
|
| 3579 |
|
|
{
|
| 3580 |
|
|
if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
|
| 3581 |
|
|
return true;
|
| 3582 |
|
|
}
|
| 3583 |
|
|
else
|
| 3584 |
|
|
{
|
| 3585 |
|
|
/* For non-separable instructions, the blocking insn can have
|
| 3586 |
|
|
another pattern due to substitution, and we can't choose
|
| 3587 |
|
|
different register as in the above case. Check all registers
|
| 3588 |
|
|
being written instead. */
|
| 3589 |
|
|
if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
|
| 3590 |
|
|
VINSN_REG_SETS (EXPR_VINSN (expr))))
|
| 3591 |
|
|
return true;
|
| 3592 |
|
|
}
|
| 3593 |
|
|
|
| 3594 |
|
|
return false;
|
| 3595 |
|
|
}
|
| 3596 |
|
|
|
| 3597 |
|
|
#ifdef ENABLE_CHECKING
|
| 3598 |
|
|
/* Return true if either of expressions from ORIG_OPS can be blocked
|
| 3599 |
|
|
by previously created bookkeeping code. STATIC_PARAMS points to static
|
| 3600 |
|
|
parameters of move_op. */
|
| 3601 |
|
|
static bool
|
| 3602 |
|
|
av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
|
| 3603 |
|
|
{
|
| 3604 |
|
|
expr_t expr;
|
| 3605 |
|
|
av_set_iterator iter;
|
| 3606 |
|
|
moveop_static_params_p sparams;
|
| 3607 |
|
|
|
| 3608 |
|
|
/* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
|
| 3609 |
|
|
created while scheduling on another fence. */
|
| 3610 |
|
|
FOR_EACH_EXPR (expr, iter, orig_ops)
|
| 3611 |
|
|
if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
|
| 3612 |
|
|
return true;
|
| 3613 |
|
|
|
| 3614 |
|
|
gcc_assert (code_motion_path_driver_info == &move_op_hooks);
|
| 3615 |
|
|
sparams = (moveop_static_params_p) static_params;
|
| 3616 |
|
|
|
| 3617 |
|
|
/* Expressions can be also blocked by bookkeeping created during current
|
| 3618 |
|
|
move_op. */
|
| 3619 |
|
|
if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
|
| 3620 |
|
|
FOR_EACH_EXPR (expr, iter, orig_ops)
|
| 3621 |
|
|
if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
|
| 3622 |
|
|
return true;
|
| 3623 |
|
|
|
| 3624 |
|
|
/* Expressions in ORIG_OPS may have wrong destination register due to
|
| 3625 |
|
|
renaming. Check with the right register instead. */
|
| 3626 |
|
|
if (sparams->dest && REG_P (sparams->dest))
|
| 3627 |
|
|
{
|
| 3628 |
|
|
rtx reg = sparams->dest;
|
| 3629 |
|
|
vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
|
| 3630 |
|
|
|
| 3631 |
|
|
if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
|
| 3632 |
|
|
|| register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
|
| 3633 |
|
|
|| register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
|
| 3634 |
|
|
return true;
|
| 3635 |
|
|
}
|
| 3636 |
|
|
|
| 3637 |
|
|
return false;
|
| 3638 |
|
|
}
|
| 3639 |
|
|
#endif
|
| 3640 |
|
|
|
| 3641 |
|
|
/* Clear VINSN_VEC and detach vinsns. */
|
| 3642 |
|
|
static void
|
| 3643 |
|
|
vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
|
| 3644 |
|
|
{
|
| 3645 |
|
|
unsigned len = VEC_length (vinsn_t, *vinsn_vec);
|
| 3646 |
|
|
if (len > 0)
|
| 3647 |
|
|
{
|
| 3648 |
|
|
vinsn_t vinsn;
|
| 3649 |
|
|
int n;
|
| 3650 |
|
|
|
| 3651 |
|
|
FOR_EACH_VEC_ELT (vinsn_t, *vinsn_vec, n, vinsn)
|
| 3652 |
|
|
vinsn_detach (vinsn);
|
| 3653 |
|
|
VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
|
| 3654 |
|
|
}
|
| 3655 |
|
|
}
|
| 3656 |
|
|
|
| 3657 |
|
|
/* Add the vinsn of EXPR to the VINSN_VEC. */
|
| 3658 |
|
|
static void
|
| 3659 |
|
|
vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
|
| 3660 |
|
|
{
|
| 3661 |
|
|
vinsn_attach (EXPR_VINSN (expr));
|
| 3662 |
|
|
VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
|
| 3663 |
|
|
}
|
| 3664 |
|
|
|
| 3665 |
|
|
/* Free the vector representing blocked expressions. */
|
| 3666 |
|
|
static void
|
| 3667 |
|
|
vinsn_vec_free (vinsn_vec_t *vinsn_vec)
|
| 3668 |
|
|
{
|
| 3669 |
|
|
if (*vinsn_vec)
|
| 3670 |
|
|
VEC_free (vinsn_t, heap, *vinsn_vec);
|
| 3671 |
|
|
}
|
| 3672 |
|
|
|
| 3673 |
|
|
/* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
|
| 3674 |
|
|
|
| 3675 |
|
|
void sel_add_to_insn_priority (rtx insn, int amount)
|
| 3676 |
|
|
{
|
| 3677 |
|
|
EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
|
| 3678 |
|
|
|
| 3679 |
|
|
if (sched_verbose >= 2)
|
| 3680 |
|
|
sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
|
| 3681 |
|
|
INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
|
| 3682 |
|
|
EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
|
| 3683 |
|
|
}
|
| 3684 |
|
|
|
| 3685 |
|
|
/* Turn AV into a vector, filter inappropriate insns and sort it. Return
|
| 3686 |
|
|
true if there is something to schedule. BNDS and FENCE are current
|
| 3687 |
|
|
boundaries and fence, respectively. If we need to stall for some cycles
|
| 3688 |
|
|
before an expr from AV would become available, write this number to
|
| 3689 |
|
|
*PNEED_STALL. */
|
| 3690 |
|
|
static bool
|
| 3691 |
|
|
fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
|
| 3692 |
|
|
int *pneed_stall)
|
| 3693 |
|
|
{
|
| 3694 |
|
|
av_set_iterator si;
|
| 3695 |
|
|
expr_t expr;
|
| 3696 |
|
|
int sched_next_worked = 0, stalled, n;
|
| 3697 |
|
|
static int av_max_prio, est_ticks_till_branch;
|
| 3698 |
|
|
int min_need_stall = -1;
|
| 3699 |
|
|
deps_t dc = BND_DC (BLIST_BND (bnds));
|
| 3700 |
|
|
|
| 3701 |
|
|
/* Bail out early when the ready list contained only USEs/CLOBBERs that are
|
| 3702 |
|
|
already scheduled. */
|
| 3703 |
|
|
if (av == NULL)
|
| 3704 |
|
|
return false;
|
| 3705 |
|
|
|
| 3706 |
|
|
/* Empty vector from the previous stuff. */
|
| 3707 |
|
|
if (VEC_length (expr_t, vec_av_set) > 0)
|
| 3708 |
|
|
VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
|
| 3709 |
|
|
|
| 3710 |
|
|
/* Turn the set into a vector for sorting and call sel_target_adjust_priority
|
| 3711 |
|
|
for each insn. */
|
| 3712 |
|
|
gcc_assert (VEC_empty (expr_t, vec_av_set));
|
| 3713 |
|
|
FOR_EACH_EXPR (expr, si, av)
|
| 3714 |
|
|
{
|
| 3715 |
|
|
VEC_safe_push (expr_t, heap, vec_av_set, expr);
|
| 3716 |
|
|
|
| 3717 |
|
|
gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
|
| 3718 |
|
|
|
| 3719 |
|
|
/* Adjust priority using target backend hook. */
|
| 3720 |
|
|
sel_target_adjust_priority (expr);
|
| 3721 |
|
|
}
|
| 3722 |
|
|
|
| 3723 |
|
|
/* Sort the vector. */
|
| 3724 |
|
|
VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
|
| 3725 |
|
|
|
| 3726 |
|
|
/* We record maximal priority of insns in av set for current instruction
|
| 3727 |
|
|
group. */
|
| 3728 |
|
|
if (FENCE_STARTS_CYCLE_P (fence))
|
| 3729 |
|
|
av_max_prio = est_ticks_till_branch = INT_MIN;
|
| 3730 |
|
|
|
| 3731 |
|
|
/* Filter out inappropriate expressions. Loop's direction is reversed to
|
| 3732 |
|
|
visit "best" instructions first. We assume that VEC_unordered_remove
|
| 3733 |
|
|
moves last element in place of one being deleted. */
|
| 3734 |
|
|
for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
|
| 3735 |
|
|
{
|
| 3736 |
|
|
expr_t expr = VEC_index (expr_t, vec_av_set, n);
|
| 3737 |
|
|
insn_t insn = EXPR_INSN_RTX (expr);
|
| 3738 |
|
|
signed char target_available;
|
| 3739 |
|
|
bool is_orig_reg_p = true;
|
| 3740 |
|
|
int need_cycles, new_prio;
|
| 3741 |
|
|
|
| 3742 |
|
|
/* Don't allow any insns other than from SCHED_GROUP if we have one. */
|
| 3743 |
|
|
if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
|
| 3744 |
|
|
{
|
| 3745 |
|
|
VEC_unordered_remove (expr_t, vec_av_set, n);
|
| 3746 |
|
|
continue;
|
| 3747 |
|
|
}
|
| 3748 |
|
|
|
| 3749 |
|
|
/* Set number of sched_next insns (just in case there
|
| 3750 |
|
|
could be several). */
|
| 3751 |
|
|
if (FENCE_SCHED_NEXT (fence))
|
| 3752 |
|
|
sched_next_worked++;
|
| 3753 |
|
|
|
| 3754 |
|
|
/* Check all liveness requirements and try renaming.
|
| 3755 |
|
|
FIXME: try to minimize calls to this. */
|
| 3756 |
|
|
target_available = EXPR_TARGET_AVAILABLE (expr);
|
| 3757 |
|
|
|
| 3758 |
|
|
/* If insn was already scheduled on the current fence,
|
| 3759 |
|
|
set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
|
| 3760 |
|
|
if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
|
| 3761 |
|
|
target_available = -1;
|
| 3762 |
|
|
|
| 3763 |
|
|
/* If the availability of the EXPR is invalidated by the insertion of
|
| 3764 |
|
|
bookkeeping earlier, make sure that we won't choose this expr for
|
| 3765 |
|
|
scheduling if it's not separable, and if it is separable, then
|
| 3766 |
|
|
we have to recompute the set of available registers for it. */
|
| 3767 |
|
|
if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
|
| 3768 |
|
|
{
|
| 3769 |
|
|
VEC_unordered_remove (expr_t, vec_av_set, n);
|
| 3770 |
|
|
if (sched_verbose >= 4)
|
| 3771 |
|
|
sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
|
| 3772 |
|
|
INSN_UID (insn));
|
| 3773 |
|
|
continue;
|
| 3774 |
|
|
}
|
| 3775 |
|
|
|
| 3776 |
|
|
if (target_available == true)
|
| 3777 |
|
|
{
|
| 3778 |
|
|
/* Do nothing -- we can use an existing register. */
|
| 3779 |
|
|
is_orig_reg_p = EXPR_SEPARABLE_P (expr);
|
| 3780 |
|
|
}
|
| 3781 |
|
|
else if (/* Non-separable instruction will never
|
| 3782 |
|
|
get another register. */
|
| 3783 |
|
|
(target_available == false
|
| 3784 |
|
|
&& !EXPR_SEPARABLE_P (expr))
|
| 3785 |
|
|
/* Don't try to find a register for low-priority expression. */
|
| 3786 |
|
|
|| (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
|
| 3787 |
|
|
/* ??? FIXME: Don't try to rename data speculation. */
|
| 3788 |
|
|
|| (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
|
| 3789 |
|
|
|| ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
|
| 3790 |
|
|
{
|
| 3791 |
|
|
VEC_unordered_remove (expr_t, vec_av_set, n);
|
| 3792 |
|
|
if (sched_verbose >= 4)
|
| 3793 |
|
|
sel_print ("Expr %d has no suitable target register\n",
|
| 3794 |
|
|
INSN_UID (insn));
|
| 3795 |
|
|
continue;
|
| 3796 |
|
|
}
|
| 3797 |
|
|
|
| 3798 |
|
|
/* Filter expressions that need to be renamed or speculated when
|
| 3799 |
|
|
pipelining, because compensating register copies or speculation
|
| 3800 |
|
|
checks are likely to be placed near the beginning of the loop,
|
| 3801 |
|
|
causing a stall. */
|
| 3802 |
|
|
if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
|
| 3803 |
|
|
&& (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
|
| 3804 |
|
|
{
|
| 3805 |
|
|
/* Estimation of number of cycles until loop branch for
|
| 3806 |
|
|
renaming/speculation to be successful. */
|
| 3807 |
|
|
int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
|
| 3808 |
|
|
|
| 3809 |
|
|
if ((int) current_loop_nest->ninsns < 9)
|
| 3810 |
|
|
{
|
| 3811 |
|
|
VEC_unordered_remove (expr_t, vec_av_set, n);
|
| 3812 |
|
|
if (sched_verbose >= 4)
|
| 3813 |
|
|
sel_print ("Pipelining expr %d will likely cause stall\n",
|
| 3814 |
|
|
INSN_UID (insn));
|
| 3815 |
|
|
continue;
|
| 3816 |
|
|
}
|
| 3817 |
|
|
|
| 3818 |
|
|
if ((int) current_loop_nest->ninsns - num_insns_scheduled
|
| 3819 |
|
|
< need_n_ticks_till_branch * issue_rate / 2
|
| 3820 |
|
|
&& est_ticks_till_branch < need_n_ticks_till_branch)
|
| 3821 |
|
|
{
|
| 3822 |
|
|
VEC_unordered_remove (expr_t, vec_av_set, n);
|
| 3823 |
|
|
if (sched_verbose >= 4)
|
| 3824 |
|
|
sel_print ("Pipelining expr %d will likely cause stall\n",
|
| 3825 |
|
|
INSN_UID (insn));
|
| 3826 |
|
|
continue;
|
| 3827 |
|
|
}
|
| 3828 |
|
|
}
|
| 3829 |
|
|
|
| 3830 |
|
|
/* We want to schedule speculation checks as late as possible. Discard
|
| 3831 |
|
|
them from av set if there are instructions with higher priority. */
|
| 3832 |
|
|
if (sel_insn_is_speculation_check (insn)
|
| 3833 |
|
|
&& EXPR_PRIORITY (expr) < av_max_prio)
|
| 3834 |
|
|
{
|
| 3835 |
|
|
stalled++;
|
| 3836 |
|
|
min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
|
| 3837 |
|
|
VEC_unordered_remove (expr_t, vec_av_set, n);
|
| 3838 |
|
|
if (sched_verbose >= 4)
|
| 3839 |
|
|
sel_print ("Delaying speculation check %d until its first use\n",
|
| 3840 |
|
|
INSN_UID (insn));
|
| 3841 |
|
|
continue;
|
| 3842 |
|
|
}
|
| 3843 |
|
|
|
| 3844 |
|
|
/* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
|
| 3845 |
|
|
if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
|
| 3846 |
|
|
av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
|
| 3847 |
|
|
|
| 3848 |
|
|
/* Don't allow any insns whose data is not yet ready.
|
| 3849 |
|
|
Check first whether we've already tried them and failed. */
|
| 3850 |
|
|
if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
|
| 3851 |
|
|
{
|
| 3852 |
|
|
need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
|
| 3853 |
|
|
- FENCE_CYCLE (fence));
|
| 3854 |
|
|
if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
|
| 3855 |
|
|
est_ticks_till_branch = MAX (est_ticks_till_branch,
|
| 3856 |
|
|
EXPR_PRIORITY (expr) + need_cycles);
|
| 3857 |
|
|
|
| 3858 |
|
|
if (need_cycles > 0)
|
| 3859 |
|
|
{
|
| 3860 |
|
|
stalled++;
|
| 3861 |
|
|
min_need_stall = (min_need_stall < 0
|
| 3862 |
|
|
? need_cycles
|
| 3863 |
|
|
: MIN (min_need_stall, need_cycles));
|
| 3864 |
|
|
VEC_unordered_remove (expr_t, vec_av_set, n);
|
| 3865 |
|
|
|
| 3866 |
|
|
if (sched_verbose >= 4)
|
| 3867 |
|
|
sel_print ("Expr %d is not ready until cycle %d (cached)\n",
|
| 3868 |
|
|
INSN_UID (insn),
|
| 3869 |
|
|
FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
|
| 3870 |
|
|
continue;
|
| 3871 |
|
|
}
|
| 3872 |
|
|
}
|
| 3873 |
|
|
|
| 3874 |
|
|
/* Now resort to dependence analysis to find whether EXPR might be
|
| 3875 |
|
|
stalled due to dependencies from FENCE's context. */
|
| 3876 |
|
|
need_cycles = tick_check_p (expr, dc, fence);
|
| 3877 |
|
|
new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
|
| 3878 |
|
|
|
| 3879 |
|
|
if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
|
| 3880 |
|
|
est_ticks_till_branch = MAX (est_ticks_till_branch,
|
| 3881 |
|
|
new_prio);
|
| 3882 |
|
|
|
| 3883 |
|
|
if (need_cycles > 0)
|
| 3884 |
|
|
{
|
| 3885 |
|
|
if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
|
| 3886 |
|
|
{
|
| 3887 |
|
|
int new_size = INSN_UID (insn) * 3 / 2;
|
| 3888 |
|
|
|
| 3889 |
|
|
FENCE_READY_TICKS (fence)
|
| 3890 |
|
|
= (int *) xrecalloc (FENCE_READY_TICKS (fence),
|
| 3891 |
|
|
new_size, FENCE_READY_TICKS_SIZE (fence),
|
| 3892 |
|
|
sizeof (int));
|
| 3893 |
|
|
}
|
| 3894 |
|
|
FENCE_READY_TICKS (fence)[INSN_UID (insn)]
|
| 3895 |
|
|
= FENCE_CYCLE (fence) + need_cycles;
|
| 3896 |
|
|
|
| 3897 |
|
|
stalled++;
|
| 3898 |
|
|
min_need_stall = (min_need_stall < 0
|
| 3899 |
|
|
? need_cycles
|
| 3900 |
|
|
: MIN (min_need_stall, need_cycles));
|
| 3901 |
|
|
|
| 3902 |
|
|
VEC_unordered_remove (expr_t, vec_av_set, n);
|
| 3903 |
|
|
|
| 3904 |
|
|
if (sched_verbose >= 4)
|
| 3905 |
|
|
sel_print ("Expr %d is not ready yet until cycle %d\n",
|
| 3906 |
|
|
INSN_UID (insn),
|
| 3907 |
|
|
FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
|
| 3908 |
|
|
continue;
|
| 3909 |
|
|
}
|
| 3910 |
|
|
|
| 3911 |
|
|
if (sched_verbose >= 4)
|
| 3912 |
|
|
sel_print ("Expr %d is ok\n", INSN_UID (insn));
|
| 3913 |
|
|
min_need_stall = 0;
|
| 3914 |
|
|
}
|
| 3915 |
|
|
|
| 3916 |
|
|
/* Clear SCHED_NEXT. */
|
| 3917 |
|
|
if (FENCE_SCHED_NEXT (fence))
|
| 3918 |
|
|
{
|
| 3919 |
|
|
gcc_assert (sched_next_worked == 1);
|
| 3920 |
|
|
FENCE_SCHED_NEXT (fence) = NULL_RTX;
|
| 3921 |
|
|
}
|
| 3922 |
|
|
|
| 3923 |
|
|
/* No need to stall if this variable was not initialized. */
|
| 3924 |
|
|
if (min_need_stall < 0)
|
| 3925 |
|
|
min_need_stall = 0;
|
| 3926 |
|
|
|
| 3927 |
|
|
if (VEC_empty (expr_t, vec_av_set))
|
| 3928 |
|
|
{
|
| 3929 |
|
|
/* We need to set *pneed_stall here, because later we skip this code
|
| 3930 |
|
|
when ready list is empty. */
|
| 3931 |
|
|
*pneed_stall = min_need_stall;
|
| 3932 |
|
|
return false;
|
| 3933 |
|
|
}
|
| 3934 |
|
|
else
|
| 3935 |
|
|
gcc_assert (min_need_stall == 0);
|
| 3936 |
|
|
|
| 3937 |
|
|
/* Sort the vector. */
|
| 3938 |
|
|
VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
|
| 3939 |
|
|
|
| 3940 |
|
|
if (sched_verbose >= 4)
|
| 3941 |
|
|
{
|
| 3942 |
|
|
sel_print ("Total ready exprs: %d, stalled: %d\n",
|
| 3943 |
|
|
VEC_length (expr_t, vec_av_set), stalled);
|
| 3944 |
|
|
sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
|
| 3945 |
|
|
FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
|
| 3946 |
|
|
dump_expr (expr);
|
| 3947 |
|
|
sel_print ("\n");
|
| 3948 |
|
|
}
|
| 3949 |
|
|
|
| 3950 |
|
|
*pneed_stall = 0;
|
| 3951 |
|
|
return true;
|
| 3952 |
|
|
}
|
| 3953 |
|
|
|
| 3954 |
|
|
/* Convert a vectored and sorted av set to the ready list that
|
| 3955 |
|
|
the rest of the backend wants to see. */
|
| 3956 |
|
|
static void
|
| 3957 |
|
|
convert_vec_av_set_to_ready (void)
|
| 3958 |
|
|
{
|
| 3959 |
|
|
int n;
|
| 3960 |
|
|
expr_t expr;
|
| 3961 |
|
|
|
| 3962 |
|
|
/* Allocate and fill the ready list from the sorted vector. */
|
| 3963 |
|
|
ready.n_ready = VEC_length (expr_t, vec_av_set);
|
| 3964 |
|
|
ready.first = ready.n_ready - 1;
|
| 3965 |
|
|
|
| 3966 |
|
|
gcc_assert (ready.n_ready > 0);
|
| 3967 |
|
|
|
| 3968 |
|
|
if (ready.n_ready > max_issue_size)
|
| 3969 |
|
|
{
|
| 3970 |
|
|
max_issue_size = ready.n_ready;
|
| 3971 |
|
|
sched_extend_ready_list (ready.n_ready);
|
| 3972 |
|
|
}
|
| 3973 |
|
|
|
| 3974 |
|
|
FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
|
| 3975 |
|
|
{
|
| 3976 |
|
|
vinsn_t vi = EXPR_VINSN (expr);
|
| 3977 |
|
|
insn_t insn = VINSN_INSN_RTX (vi);
|
| 3978 |
|
|
|
| 3979 |
|
|
ready_try[n] = 0;
|
| 3980 |
|
|
ready.vec[n] = insn;
|
| 3981 |
|
|
}
|
| 3982 |
|
|
}
|
| 3983 |
|
|
|
| 3984 |
|
|
/* Initialize ready list from *AV_PTR for the max_issue () call.
|
| 3985 |
|
|
If any unrecognizable insn found in *AV_PTR, return it (and skip
|
| 3986 |
|
|
max_issue). BND and FENCE are current boundary and fence,
|
| 3987 |
|
|
respectively. If we need to stall for some cycles before an expr
|
| 3988 |
|
|
from *AV_PTR would become available, write this number to *PNEED_STALL. */
|
| 3989 |
|
|
static expr_t
|
| 3990 |
|
|
fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
|
| 3991 |
|
|
int *pneed_stall)
|
| 3992 |
|
|
{
|
| 3993 |
|
|
expr_t expr;
|
| 3994 |
|
|
|
| 3995 |
|
|
/* We do not support multiple boundaries per fence. */
|
| 3996 |
|
|
gcc_assert (BLIST_NEXT (bnds) == NULL);
|
| 3997 |
|
|
|
| 3998 |
|
|
/* Process expressions required special handling, i.e. pipelined,
|
| 3999 |
|
|
speculative and recog() < 0 expressions first. */
|
| 4000 |
|
|
process_pipelined_exprs (av_ptr);
|
| 4001 |
|
|
process_spec_exprs (av_ptr);
|
| 4002 |
|
|
|
| 4003 |
|
|
/* A USE could be scheduled immediately. */
|
| 4004 |
|
|
expr = process_use_exprs (av_ptr);
|
| 4005 |
|
|
if (expr)
|
| 4006 |
|
|
{
|
| 4007 |
|
|
*pneed_stall = 0;
|
| 4008 |
|
|
return expr;
|
| 4009 |
|
|
}
|
| 4010 |
|
|
|
| 4011 |
|
|
/* Turn the av set to a vector for sorting. */
|
| 4012 |
|
|
if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
|
| 4013 |
|
|
{
|
| 4014 |
|
|
ready.n_ready = 0;
|
| 4015 |
|
|
return NULL;
|
| 4016 |
|
|
}
|
| 4017 |
|
|
|
| 4018 |
|
|
/* Build the final ready list. */
|
| 4019 |
|
|
convert_vec_av_set_to_ready ();
|
| 4020 |
|
|
return NULL;
|
| 4021 |
|
|
}
|
| 4022 |
|
|
|
| 4023 |
|
|
/* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
|
| 4024 |
|
|
static bool
|
| 4025 |
|
|
sel_dfa_new_cycle (insn_t insn, fence_t fence)
|
| 4026 |
|
|
{
|
| 4027 |
|
|
int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
|
| 4028 |
|
|
? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
|
| 4029 |
|
|
: FENCE_CYCLE (fence) - 1;
|
| 4030 |
|
|
bool res = false;
|
| 4031 |
|
|
int sort_p = 0;
|
| 4032 |
|
|
|
| 4033 |
|
|
if (!targetm.sched.dfa_new_cycle)
|
| 4034 |
|
|
return false;
|
| 4035 |
|
|
|
| 4036 |
|
|
memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
|
| 4037 |
|
|
|
| 4038 |
|
|
while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
|
| 4039 |
|
|
insn, last_scheduled_cycle,
|
| 4040 |
|
|
FENCE_CYCLE (fence), &sort_p))
|
| 4041 |
|
|
{
|
| 4042 |
|
|
memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
|
| 4043 |
|
|
advance_one_cycle (fence);
|
| 4044 |
|
|
memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
|
| 4045 |
|
|
res = true;
|
| 4046 |
|
|
}
|
| 4047 |
|
|
|
| 4048 |
|
|
return res;
|
| 4049 |
|
|
}
|
| 4050 |
|
|
|
| 4051 |
|
|
/* Invoke reorder* target hooks on the ready list. Return the number of insns
|
| 4052 |
|
|
we can issue. FENCE is the current fence. */
|
| 4053 |
|
|
static int
|
| 4054 |
|
|
invoke_reorder_hooks (fence_t fence)
|
| 4055 |
|
|
{
|
| 4056 |
|
|
int issue_more;
|
| 4057 |
|
|
bool ran_hook = false;
|
| 4058 |
|
|
|
| 4059 |
|
|
/* Call the reorder hook at the beginning of the cycle, and call
|
| 4060 |
|
|
the reorder2 hook in the middle of the cycle. */
|
| 4061 |
|
|
if (FENCE_ISSUED_INSNS (fence) == 0)
|
| 4062 |
|
|
{
|
| 4063 |
|
|
if (targetm.sched.reorder
|
| 4064 |
|
|
&& !SCHED_GROUP_P (ready_element (&ready, 0))
|
| 4065 |
|
|
&& ready.n_ready > 1)
|
| 4066 |
|
|
{
|
| 4067 |
|
|
/* Don't give reorder the most prioritized insn as it can break
|
| 4068 |
|
|
pipelining. */
|
| 4069 |
|
|
if (pipelining_p)
|
| 4070 |
|
|
--ready.n_ready;
|
| 4071 |
|
|
|
| 4072 |
|
|
issue_more
|
| 4073 |
|
|
= targetm.sched.reorder (sched_dump, sched_verbose,
|
| 4074 |
|
|
ready_lastpos (&ready),
|
| 4075 |
|
|
&ready.n_ready, FENCE_CYCLE (fence));
|
| 4076 |
|
|
|
| 4077 |
|
|
if (pipelining_p)
|
| 4078 |
|
|
++ready.n_ready;
|
| 4079 |
|
|
|
| 4080 |
|
|
ran_hook = true;
|
| 4081 |
|
|
}
|
| 4082 |
|
|
else
|
| 4083 |
|
|
/* Initialize can_issue_more for variable_issue. */
|
| 4084 |
|
|
issue_more = issue_rate;
|
| 4085 |
|
|
}
|
| 4086 |
|
|
else if (targetm.sched.reorder2
|
| 4087 |
|
|
&& !SCHED_GROUP_P (ready_element (&ready, 0)))
|
| 4088 |
|
|
{
|
| 4089 |
|
|
if (ready.n_ready == 1)
|
| 4090 |
|
|
issue_more =
|
| 4091 |
|
|
targetm.sched.reorder2 (sched_dump, sched_verbose,
|
| 4092 |
|
|
ready_lastpos (&ready),
|
| 4093 |
|
|
&ready.n_ready, FENCE_CYCLE (fence));
|
| 4094 |
|
|
else
|
| 4095 |
|
|
{
|
| 4096 |
|
|
if (pipelining_p)
|
| 4097 |
|
|
--ready.n_ready;
|
| 4098 |
|
|
|
| 4099 |
|
|
issue_more =
|
| 4100 |
|
|
targetm.sched.reorder2 (sched_dump, sched_verbose,
|
| 4101 |
|
|
ready.n_ready
|
| 4102 |
|
|
? ready_lastpos (&ready) : NULL,
|
| 4103 |
|
|
&ready.n_ready, FENCE_CYCLE (fence));
|
| 4104 |
|
|
|
| 4105 |
|
|
if (pipelining_p)
|
| 4106 |
|
|
++ready.n_ready;
|
| 4107 |
|
|
}
|
| 4108 |
|
|
|
| 4109 |
|
|
ran_hook = true;
|
| 4110 |
|
|
}
|
| 4111 |
|
|
else
|
| 4112 |
|
|
issue_more = FENCE_ISSUE_MORE (fence);
|
| 4113 |
|
|
|
| 4114 |
|
|
/* Ensure that ready list and vec_av_set are in line with each other,
|
| 4115 |
|
|
i.e. vec_av_set[i] == ready_element (&ready, i). */
|
| 4116 |
|
|
if (issue_more && ran_hook)
|
| 4117 |
|
|
{
|
| 4118 |
|
|
int i, j, n;
|
| 4119 |
|
|
rtx *arr = ready.vec;
|
| 4120 |
|
|
expr_t *vec = VEC_address (expr_t, vec_av_set);
|
| 4121 |
|
|
|
| 4122 |
|
|
for (i = 0, n = ready.n_ready; i < n; i++)
|
| 4123 |
|
|
if (EXPR_INSN_RTX (vec[i]) != arr[i])
|
| 4124 |
|
|
{
|
| 4125 |
|
|
expr_t tmp;
|
| 4126 |
|
|
|
| 4127 |
|
|
for (j = i; j < n; j++)
|
| 4128 |
|
|
if (EXPR_INSN_RTX (vec[j]) == arr[i])
|
| 4129 |
|
|
break;
|
| 4130 |
|
|
gcc_assert (j < n);
|
| 4131 |
|
|
|
| 4132 |
|
|
tmp = vec[i];
|
| 4133 |
|
|
vec[i] = vec[j];
|
| 4134 |
|
|
vec[j] = tmp;
|
| 4135 |
|
|
}
|
| 4136 |
|
|
}
|
| 4137 |
|
|
|
| 4138 |
|
|
return issue_more;
|
| 4139 |
|
|
}
|
| 4140 |
|
|
|
| 4141 |
|
|
/* Return an EXPR correponding to INDEX element of ready list, if
|
| 4142 |
|
|
FOLLOW_READY_ELEMENT is true (i.e., an expr of
|
| 4143 |
|
|
ready_element (&ready, INDEX) will be returned), and to INDEX element of
|
| 4144 |
|
|
ready.vec otherwise. */
|
| 4145 |
|
|
static inline expr_t
|
| 4146 |
|
|
find_expr_for_ready (int index, bool follow_ready_element)
|
| 4147 |
|
|
{
|
| 4148 |
|
|
expr_t expr;
|
| 4149 |
|
|
int real_index;
|
| 4150 |
|
|
|
| 4151 |
|
|
real_index = follow_ready_element ? ready.first - index : index;
|
| 4152 |
|
|
|
| 4153 |
|
|
expr = VEC_index (expr_t, vec_av_set, real_index);
|
| 4154 |
|
|
gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
|
| 4155 |
|
|
|
| 4156 |
|
|
return expr;
|
| 4157 |
|
|
}
|
| 4158 |
|
|
|
| 4159 |
|
|
/* Calculate insns worth trying via lookahead_guard hook. Return a number
|
| 4160 |
|
|
of such insns found. */
|
| 4161 |
|
|
static int
|
| 4162 |
|
|
invoke_dfa_lookahead_guard (void)
|
| 4163 |
|
|
{
|
| 4164 |
|
|
int i, n;
|
| 4165 |
|
|
bool have_hook
|
| 4166 |
|
|
= targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
|
| 4167 |
|
|
|
| 4168 |
|
|
if (sched_verbose >= 2)
|
| 4169 |
|
|
sel_print ("ready after reorder: ");
|
| 4170 |
|
|
|
| 4171 |
|
|
for (i = 0, n = 0; i < ready.n_ready; i++)
|
| 4172 |
|
|
{
|
| 4173 |
|
|
expr_t expr;
|
| 4174 |
|
|
insn_t insn;
|
| 4175 |
|
|
int r;
|
| 4176 |
|
|
|
| 4177 |
|
|
/* In this loop insn is Ith element of the ready list given by
|
| 4178 |
|
|
ready_element, not Ith element of ready.vec. */
|
| 4179 |
|
|
insn = ready_element (&ready, i);
|
| 4180 |
|
|
|
| 4181 |
|
|
if (! have_hook || i == 0)
|
| 4182 |
|
|
r = 0;
|
| 4183 |
|
|
else
|
| 4184 |
|
|
r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
|
| 4185 |
|
|
|
| 4186 |
|
|
gcc_assert (INSN_CODE (insn) >= 0);
|
| 4187 |
|
|
|
| 4188 |
|
|
/* Only insns with ready_try = 0 can get here
|
| 4189 |
|
|
from fill_ready_list. */
|
| 4190 |
|
|
gcc_assert (ready_try [i] == 0);
|
| 4191 |
|
|
ready_try[i] = r;
|
| 4192 |
|
|
if (!r)
|
| 4193 |
|
|
n++;
|
| 4194 |
|
|
|
| 4195 |
|
|
expr = find_expr_for_ready (i, true);
|
| 4196 |
|
|
|
| 4197 |
|
|
if (sched_verbose >= 2)
|
| 4198 |
|
|
{
|
| 4199 |
|
|
dump_vinsn (EXPR_VINSN (expr));
|
| 4200 |
|
|
sel_print (":%d; ", ready_try[i]);
|
| 4201 |
|
|
}
|
| 4202 |
|
|
}
|
| 4203 |
|
|
|
| 4204 |
|
|
if (sched_verbose >= 2)
|
| 4205 |
|
|
sel_print ("\n");
|
| 4206 |
|
|
return n;
|
| 4207 |
|
|
}
|
| 4208 |
|
|
|
| 4209 |
|
|
/* Calculate the number of privileged insns and return it. */
|
| 4210 |
|
|
static int
|
| 4211 |
|
|
calculate_privileged_insns (void)
|
| 4212 |
|
|
{
|
| 4213 |
|
|
expr_t cur_expr, min_spec_expr = NULL;
|
| 4214 |
|
|
int privileged_n = 0, i;
|
| 4215 |
|
|
|
| 4216 |
|
|
for (i = 0; i < ready.n_ready; i++)
|
| 4217 |
|
|
{
|
| 4218 |
|
|
if (ready_try[i])
|
| 4219 |
|
|
continue;
|
| 4220 |
|
|
|
| 4221 |
|
|
if (! min_spec_expr)
|
| 4222 |
|
|
min_spec_expr = find_expr_for_ready (i, true);
|
| 4223 |
|
|
|
| 4224 |
|
|
cur_expr = find_expr_for_ready (i, true);
|
| 4225 |
|
|
|
| 4226 |
|
|
if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
|
| 4227 |
|
|
break;
|
| 4228 |
|
|
|
| 4229 |
|
|
++privileged_n;
|
| 4230 |
|
|
}
|
| 4231 |
|
|
|
| 4232 |
|
|
if (i == ready.n_ready)
|
| 4233 |
|
|
privileged_n = 0;
|
| 4234 |
|
|
|
| 4235 |
|
|
if (sched_verbose >= 2)
|
| 4236 |
|
|
sel_print ("privileged_n: %d insns with SPEC %d\n",
|
| 4237 |
|
|
privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
|
| 4238 |
|
|
return privileged_n;
|
| 4239 |
|
|
}
|
| 4240 |
|
|
|
| 4241 |
|
|
/* Call the rest of the hooks after the choice was made. Return
|
| 4242 |
|
|
the number of insns that still can be issued given that the current
|
| 4243 |
|
|
number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
|
| 4244 |
|
|
and the insn chosen for scheduling, respectively. */
|
| 4245 |
|
|
static int
|
| 4246 |
|
|
invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
|
| 4247 |
|
|
{
|
| 4248 |
|
|
gcc_assert (INSN_P (best_insn));
|
| 4249 |
|
|
|
| 4250 |
|
|
/* First, call dfa_new_cycle, and then variable_issue, if available. */
|
| 4251 |
|
|
sel_dfa_new_cycle (best_insn, fence);
|
| 4252 |
|
|
|
| 4253 |
|
|
if (targetm.sched.variable_issue)
|
| 4254 |
|
|
{
|
| 4255 |
|
|
memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
|
| 4256 |
|
|
issue_more =
|
| 4257 |
|
|
targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
|
| 4258 |
|
|
issue_more);
|
| 4259 |
|
|
memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
|
| 4260 |
|
|
}
|
| 4261 |
|
|
else if (GET_CODE (PATTERN (best_insn)) != USE
|
| 4262 |
|
|
&& GET_CODE (PATTERN (best_insn)) != CLOBBER)
|
| 4263 |
|
|
issue_more--;
|
| 4264 |
|
|
|
| 4265 |
|
|
return issue_more;
|
| 4266 |
|
|
}
|
| 4267 |
|
|
|
| 4268 |
|
|
/* Estimate the cost of issuing INSN on DFA state STATE. */
|
| 4269 |
|
|
static int
|
| 4270 |
|
|
estimate_insn_cost (rtx insn, state_t state)
|
| 4271 |
|
|
{
|
| 4272 |
|
|
static state_t temp = NULL;
|
| 4273 |
|
|
int cost;
|
| 4274 |
|
|
|
| 4275 |
|
|
if (!temp)
|
| 4276 |
|
|
temp = xmalloc (dfa_state_size);
|
| 4277 |
|
|
|
| 4278 |
|
|
memcpy (temp, state, dfa_state_size);
|
| 4279 |
|
|
cost = state_transition (temp, insn);
|
| 4280 |
|
|
|
| 4281 |
|
|
if (cost < 0)
|
| 4282 |
|
|
return 0;
|
| 4283 |
|
|
else if (cost == 0)
|
| 4284 |
|
|
return 1;
|
| 4285 |
|
|
return cost;
|
| 4286 |
|
|
}
|
| 4287 |
|
|
|
| 4288 |
|
|
/* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
|
| 4289 |
|
|
This function properly handles ASMs, USEs etc. */
|
| 4290 |
|
|
static int
|
| 4291 |
|
|
get_expr_cost (expr_t expr, fence_t fence)
|
| 4292 |
|
|
{
|
| 4293 |
|
|
rtx insn = EXPR_INSN_RTX (expr);
|
| 4294 |
|
|
|
| 4295 |
|
|
if (recog_memoized (insn) < 0)
|
| 4296 |
|
|
{
|
| 4297 |
|
|
if (!FENCE_STARTS_CYCLE_P (fence)
|
| 4298 |
|
|
&& INSN_ASM_P (insn))
|
| 4299 |
|
|
/* This is asm insn which is tryed to be issued on the
|
| 4300 |
|
|
cycle not first. Issue it on the next cycle. */
|
| 4301 |
|
|
return 1;
|
| 4302 |
|
|
else
|
| 4303 |
|
|
/* A USE insn, or something else we don't need to
|
| 4304 |
|
|
understand. We can't pass these directly to
|
| 4305 |
|
|
state_transition because it will trigger a
|
| 4306 |
|
|
fatal error for unrecognizable insns. */
|
| 4307 |
|
|
return 0;
|
| 4308 |
|
|
}
|
| 4309 |
|
|
else
|
| 4310 |
|
|
return estimate_insn_cost (insn, FENCE_STATE (fence));
|
| 4311 |
|
|
}
|
| 4312 |
|
|
|
| 4313 |
|
|
/* Find the best insn for scheduling, either via max_issue or just take
|
| 4314 |
|
|
the most prioritized available. */
|
| 4315 |
|
|
static int
|
| 4316 |
|
|
choose_best_insn (fence_t fence, int privileged_n, int *index)
|
| 4317 |
|
|
{
|
| 4318 |
|
|
int can_issue = 0;
|
| 4319 |
|
|
|
| 4320 |
|
|
if (dfa_lookahead > 0)
|
| 4321 |
|
|
{
|
| 4322 |
|
|
cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
|
| 4323 |
|
|
/* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
|
| 4324 |
|
|
can_issue = max_issue (&ready, privileged_n,
|
| 4325 |
|
|
FENCE_STATE (fence), true, index);
|
| 4326 |
|
|
if (sched_verbose >= 2)
|
| 4327 |
|
|
sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
|
| 4328 |
|
|
can_issue, FENCE_ISSUED_INSNS (fence));
|
| 4329 |
|
|
}
|
| 4330 |
|
|
else
|
| 4331 |
|
|
{
|
| 4332 |
|
|
/* We can't use max_issue; just return the first available element. */
|
| 4333 |
|
|
int i;
|
| 4334 |
|
|
|
| 4335 |
|
|
for (i = 0; i < ready.n_ready; i++)
|
| 4336 |
|
|
{
|
| 4337 |
|
|
expr_t expr = find_expr_for_ready (i, true);
|
| 4338 |
|
|
|
| 4339 |
|
|
if (get_expr_cost (expr, fence) < 1)
|
| 4340 |
|
|
{
|
| 4341 |
|
|
can_issue = can_issue_more;
|
| 4342 |
|
|
*index = i;
|
| 4343 |
|
|
|
| 4344 |
|
|
if (sched_verbose >= 2)
|
| 4345 |
|
|
sel_print ("using %dth insn from the ready list\n", i + 1);
|
| 4346 |
|
|
|
| 4347 |
|
|
break;
|
| 4348 |
|
|
}
|
| 4349 |
|
|
}
|
| 4350 |
|
|
|
| 4351 |
|
|
if (i == ready.n_ready)
|
| 4352 |
|
|
{
|
| 4353 |
|
|
can_issue = 0;
|
| 4354 |
|
|
*index = -1;
|
| 4355 |
|
|
}
|
| 4356 |
|
|
}
|
| 4357 |
|
|
|
| 4358 |
|
|
return can_issue;
|
| 4359 |
|
|
}
|
| 4360 |
|
|
|
| 4361 |
|
|
/* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
|
| 4362 |
|
|
BNDS and FENCE are current boundaries and scheduling fence respectively.
|
| 4363 |
|
|
Return the expr found and NULL if nothing can be issued atm.
|
| 4364 |
|
|
Write to PNEED_STALL the number of cycles to stall if no expr was found. */
|
| 4365 |
|
|
static expr_t
|
| 4366 |
|
|
find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
|
| 4367 |
|
|
int *pneed_stall)
|
| 4368 |
|
|
{
|
| 4369 |
|
|
expr_t best;
|
| 4370 |
|
|
|
| 4371 |
|
|
/* Choose the best insn for scheduling via:
|
| 4372 |
|
|
1) sorting the ready list based on priority;
|
| 4373 |
|
|
2) calling the reorder hook;
|
| 4374 |
|
|
3) calling max_issue. */
|
| 4375 |
|
|
best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
|
| 4376 |
|
|
if (best == NULL && ready.n_ready > 0)
|
| 4377 |
|
|
{
|
| 4378 |
|
|
int privileged_n, index;
|
| 4379 |
|
|
|
| 4380 |
|
|
can_issue_more = invoke_reorder_hooks (fence);
|
| 4381 |
|
|
if (can_issue_more > 0)
|
| 4382 |
|
|
{
|
| 4383 |
|
|
/* Try choosing the best insn until we find one that is could be
|
| 4384 |
|
|
scheduled due to liveness restrictions on its destination register.
|
| 4385 |
|
|
In the future, we'd like to choose once and then just probe insns
|
| 4386 |
|
|
in the order of their priority. */
|
| 4387 |
|
|
invoke_dfa_lookahead_guard ();
|
| 4388 |
|
|
privileged_n = calculate_privileged_insns ();
|
| 4389 |
|
|
can_issue_more = choose_best_insn (fence, privileged_n, &index);
|
| 4390 |
|
|
if (can_issue_more)
|
| 4391 |
|
|
best = find_expr_for_ready (index, true);
|
| 4392 |
|
|
}
|
| 4393 |
|
|
/* We had some available insns, so if we can't issue them,
|
| 4394 |
|
|
we have a stall. */
|
| 4395 |
|
|
if (can_issue_more == 0)
|
| 4396 |
|
|
{
|
| 4397 |
|
|
best = NULL;
|
| 4398 |
|
|
*pneed_stall = 1;
|
| 4399 |
|
|
}
|
| 4400 |
|
|
}
|
| 4401 |
|
|
|
| 4402 |
|
|
if (best != NULL)
|
| 4403 |
|
|
{
|
| 4404 |
|
|
can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
|
| 4405 |
|
|
can_issue_more);
|
| 4406 |
|
|
if (targetm.sched.variable_issue
|
| 4407 |
|
|
&& can_issue_more == 0)
|
| 4408 |
|
|
*pneed_stall = 1;
|
| 4409 |
|
|
}
|
| 4410 |
|
|
|
| 4411 |
|
|
if (sched_verbose >= 2)
|
| 4412 |
|
|
{
|
| 4413 |
|
|
if (best != NULL)
|
| 4414 |
|
|
{
|
| 4415 |
|
|
sel_print ("Best expression (vliw form): ");
|
| 4416 |
|
|
dump_expr (best);
|
| 4417 |
|
|
sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
|
| 4418 |
|
|
}
|
| 4419 |
|
|
else
|
| 4420 |
|
|
sel_print ("No best expr found!\n");
|
| 4421 |
|
|
}
|
| 4422 |
|
|
|
| 4423 |
|
|
return best;
|
| 4424 |
|
|
}
|
| 4425 |
|
|
|
| 4426 |
|
|
|
| 4427 |
|
|
/* Functions that implement the core of the scheduler. */
|
| 4428 |
|
|
|
| 4429 |
|
|
|
| 4430 |
|
|
/* Emit an instruction from EXPR with SEQNO and VINSN after
|
| 4431 |
|
|
PLACE_TO_INSERT. */
|
| 4432 |
|
|
static insn_t
|
| 4433 |
|
|
emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
|
| 4434 |
|
|
insn_t place_to_insert)
|
| 4435 |
|
|
{
|
| 4436 |
|
|
/* This assert fails when we have identical instructions
|
| 4437 |
|
|
one of which dominates the other. In this case move_op ()
|
| 4438 |
|
|
finds the first instruction and doesn't search for second one.
|
| 4439 |
|
|
The solution would be to compute av_set after the first found
|
| 4440 |
|
|
insn and, if insn present in that set, continue searching.
|
| 4441 |
|
|
For now we workaround this issue in move_op. */
|
| 4442 |
|
|
gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
|
| 4443 |
|
|
|
| 4444 |
|
|
if (EXPR_WAS_RENAMED (expr))
|
| 4445 |
|
|
{
|
| 4446 |
|
|
unsigned regno = expr_dest_regno (expr);
|
| 4447 |
|
|
|
| 4448 |
|
|
if (HARD_REGISTER_NUM_P (regno))
|
| 4449 |
|
|
{
|
| 4450 |
|
|
df_set_regs_ever_live (regno, true);
|
| 4451 |
|
|
reg_rename_tick[regno] = ++reg_rename_this_tick;
|
| 4452 |
|
|
}
|
| 4453 |
|
|
}
|
| 4454 |
|
|
|
| 4455 |
|
|
return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
|
| 4456 |
|
|
place_to_insert);
|
| 4457 |
|
|
}
|
| 4458 |
|
|
|
| 4459 |
|
|
/* Return TRUE if BB can hold bookkeeping code. */
|
| 4460 |
|
|
static bool
|
| 4461 |
|
|
block_valid_for_bookkeeping_p (basic_block bb)
|
| 4462 |
|
|
{
|
| 4463 |
|
|
insn_t bb_end = BB_END (bb);
|
| 4464 |
|
|
|
| 4465 |
|
|
if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
|
| 4466 |
|
|
return false;
|
| 4467 |
|
|
|
| 4468 |
|
|
if (INSN_P (bb_end))
|
| 4469 |
|
|
{
|
| 4470 |
|
|
if (INSN_SCHED_TIMES (bb_end) > 0)
|
| 4471 |
|
|
return false;
|
| 4472 |
|
|
}
|
| 4473 |
|
|
else
|
| 4474 |
|
|
gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
|
| 4475 |
|
|
|
| 4476 |
|
|
return true;
|
| 4477 |
|
|
}
|
| 4478 |
|
|
|
| 4479 |
|
|
/* Attempt to find a block that can hold bookkeeping code for path(s) incoming
|
| 4480 |
|
|
into E2->dest, except from E1->src (there may be a sequence of empty basic
|
| 4481 |
|
|
blocks between E1->src and E2->dest). Return found block, or NULL if new
|
| 4482 |
|
|
one must be created. If LAX holds, don't assume there is a simple path
|
| 4483 |
|
|
from E1->src to E2->dest. */
|
| 4484 |
|
|
static basic_block
|
| 4485 |
|
|
find_block_for_bookkeeping (edge e1, edge e2, bool lax)
|
| 4486 |
|
|
{
|
| 4487 |
|
|
basic_block candidate_block = NULL;
|
| 4488 |
|
|
edge e;
|
| 4489 |
|
|
|
| 4490 |
|
|
/* Loop over edges from E1 to E2, inclusive. */
|
| 4491 |
|
|
for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
|
| 4492 |
|
|
{
|
| 4493 |
|
|
if (EDGE_COUNT (e->dest->preds) == 2)
|
| 4494 |
|
|
{
|
| 4495 |
|
|
if (candidate_block == NULL)
|
| 4496 |
|
|
candidate_block = (EDGE_PRED (e->dest, 0) == e
|
| 4497 |
|
|
? EDGE_PRED (e->dest, 1)->src
|
| 4498 |
|
|
: EDGE_PRED (e->dest, 0)->src);
|
| 4499 |
|
|
else
|
| 4500 |
|
|
/* Found additional edge leading to path from e1 to e2
|
| 4501 |
|
|
from aside. */
|
| 4502 |
|
|
return NULL;
|
| 4503 |
|
|
}
|
| 4504 |
|
|
else if (EDGE_COUNT (e->dest->preds) > 2)
|
| 4505 |
|
|
/* Several edges leading to path from e1 to e2 from aside. */
|
| 4506 |
|
|
return NULL;
|
| 4507 |
|
|
|
| 4508 |
|
|
if (e == e2)
|
| 4509 |
|
|
return ((!lax || candidate_block)
|
| 4510 |
|
|
&& block_valid_for_bookkeeping_p (candidate_block)
|
| 4511 |
|
|
? candidate_block
|
| 4512 |
|
|
: NULL);
|
| 4513 |
|
|
|
| 4514 |
|
|
if (lax && EDGE_COUNT (e->dest->succs) != 1)
|
| 4515 |
|
|
return NULL;
|
| 4516 |
|
|
}
|
| 4517 |
|
|
|
| 4518 |
|
|
if (lax)
|
| 4519 |
|
|
return NULL;
|
| 4520 |
|
|
|
| 4521 |
|
|
gcc_unreachable ();
|
| 4522 |
|
|
}
|
| 4523 |
|
|
|
| 4524 |
|
|
/* Create new basic block for bookkeeping code for path(s) incoming into
|
| 4525 |
|
|
E2->dest, except from E1->src. Return created block. */
|
| 4526 |
|
|
static basic_block
|
| 4527 |
|
|
create_block_for_bookkeeping (edge e1, edge e2)
|
| 4528 |
|
|
{
|
| 4529 |
|
|
basic_block new_bb, bb = e2->dest;
|
| 4530 |
|
|
|
| 4531 |
|
|
/* Check that we don't spoil the loop structure. */
|
| 4532 |
|
|
if (current_loop_nest)
|
| 4533 |
|
|
{
|
| 4534 |
|
|
basic_block latch = current_loop_nest->latch;
|
| 4535 |
|
|
|
| 4536 |
|
|
/* We do not split header. */
|
| 4537 |
|
|
gcc_assert (e2->dest != current_loop_nest->header);
|
| 4538 |
|
|
|
| 4539 |
|
|
/* We do not redirect the only edge to the latch block. */
|
| 4540 |
|
|
gcc_assert (e1->dest != latch
|
| 4541 |
|
|
|| !single_pred_p (latch)
|
| 4542 |
|
|
|| e1 != single_pred_edge (latch));
|
| 4543 |
|
|
}
|
| 4544 |
|
|
|
| 4545 |
|
|
/* Split BB to insert BOOK_INSN there. */
|
| 4546 |
|
|
new_bb = sched_split_block (bb, NULL);
|
| 4547 |
|
|
|
| 4548 |
|
|
/* Move note_list from the upper bb. */
|
| 4549 |
|
|
gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
|
| 4550 |
|
|
BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
|
| 4551 |
|
|
BB_NOTE_LIST (bb) = NULL_RTX;
|
| 4552 |
|
|
|
| 4553 |
|
|
gcc_assert (e2->dest == bb);
|
| 4554 |
|
|
|
| 4555 |
|
|
/* Skip block for bookkeeping copy when leaving E1->src. */
|
| 4556 |
|
|
if (e1->flags & EDGE_FALLTHRU)
|
| 4557 |
|
|
sel_redirect_edge_and_branch_force (e1, new_bb);
|
| 4558 |
|
|
else
|
| 4559 |
|
|
sel_redirect_edge_and_branch (e1, new_bb);
|
| 4560 |
|
|
|
| 4561 |
|
|
gcc_assert (e1->dest == new_bb);
|
| 4562 |
|
|
gcc_assert (sel_bb_empty_p (bb));
|
| 4563 |
|
|
|
| 4564 |
|
|
/* To keep basic block numbers in sync between debug and non-debug
|
| 4565 |
|
|
compilations, we have to rotate blocks here. Consider that we
|
| 4566 |
|
|
started from (a,b)->d, (c,d)->e, and d contained only debug
|
| 4567 |
|
|
insns. It would have been removed before if the debug insns
|
| 4568 |
|
|
weren't there, so we'd have split e rather than d. So what we do
|
| 4569 |
|
|
now is to swap the block numbers of new_bb and
|
| 4570 |
|
|
single_succ(new_bb) == e, so that the insns that were in e before
|
| 4571 |
|
|
get the new block number. */
|
| 4572 |
|
|
|
| 4573 |
|
|
if (MAY_HAVE_DEBUG_INSNS)
|
| 4574 |
|
|
{
|
| 4575 |
|
|
basic_block succ;
|
| 4576 |
|
|
insn_t insn = sel_bb_head (new_bb);
|
| 4577 |
|
|
insn_t last;
|
| 4578 |
|
|
|
| 4579 |
|
|
if (DEBUG_INSN_P (insn)
|
| 4580 |
|
|
&& single_succ_p (new_bb)
|
| 4581 |
|
|
&& (succ = single_succ (new_bb))
|
| 4582 |
|
|
&& succ != EXIT_BLOCK_PTR
|
| 4583 |
|
|
&& DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
|
| 4584 |
|
|
{
|
| 4585 |
|
|
while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
|
| 4586 |
|
|
insn = NEXT_INSN (insn);
|
| 4587 |
|
|
|
| 4588 |
|
|
if (insn == last)
|
| 4589 |
|
|
{
|
| 4590 |
|
|
sel_global_bb_info_def gbi;
|
| 4591 |
|
|
sel_region_bb_info_def rbi;
|
| 4592 |
|
|
int i;
|
| 4593 |
|
|
|
| 4594 |
|
|
if (sched_verbose >= 2)
|
| 4595 |
|
|
sel_print ("Swapping block ids %i and %i\n",
|
| 4596 |
|
|
new_bb->index, succ->index);
|
| 4597 |
|
|
|
| 4598 |
|
|
i = new_bb->index;
|
| 4599 |
|
|
new_bb->index = succ->index;
|
| 4600 |
|
|
succ->index = i;
|
| 4601 |
|
|
|
| 4602 |
|
|
SET_BASIC_BLOCK (new_bb->index, new_bb);
|
| 4603 |
|
|
SET_BASIC_BLOCK (succ->index, succ);
|
| 4604 |
|
|
|
| 4605 |
|
|
memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
|
| 4606 |
|
|
memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
|
| 4607 |
|
|
sizeof (gbi));
|
| 4608 |
|
|
memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
|
| 4609 |
|
|
|
| 4610 |
|
|
memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
|
| 4611 |
|
|
memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
|
| 4612 |
|
|
sizeof (rbi));
|
| 4613 |
|
|
memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
|
| 4614 |
|
|
|
| 4615 |
|
|
i = BLOCK_TO_BB (new_bb->index);
|
| 4616 |
|
|
BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
|
| 4617 |
|
|
BLOCK_TO_BB (succ->index) = i;
|
| 4618 |
|
|
|
| 4619 |
|
|
i = CONTAINING_RGN (new_bb->index);
|
| 4620 |
|
|
CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
|
| 4621 |
|
|
CONTAINING_RGN (succ->index) = i;
|
| 4622 |
|
|
|
| 4623 |
|
|
for (i = 0; i < current_nr_blocks; i++)
|
| 4624 |
|
|
if (BB_TO_BLOCK (i) == succ->index)
|
| 4625 |
|
|
BB_TO_BLOCK (i) = new_bb->index;
|
| 4626 |
|
|
else if (BB_TO_BLOCK (i) == new_bb->index)
|
| 4627 |
|
|
BB_TO_BLOCK (i) = succ->index;
|
| 4628 |
|
|
|
| 4629 |
|
|
FOR_BB_INSNS (new_bb, insn)
|
| 4630 |
|
|
if (INSN_P (insn))
|
| 4631 |
|
|
EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
|
| 4632 |
|
|
|
| 4633 |
|
|
FOR_BB_INSNS (succ, insn)
|
| 4634 |
|
|
if (INSN_P (insn))
|
| 4635 |
|
|
EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
|
| 4636 |
|
|
|
| 4637 |
|
|
if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
|
| 4638 |
|
|
bitmap_set_bit (code_motion_visited_blocks, succ->index);
|
| 4639 |
|
|
|
| 4640 |
|
|
gcc_assert (LABEL_P (BB_HEAD (new_bb))
|
| 4641 |
|
|
&& LABEL_P (BB_HEAD (succ)));
|
| 4642 |
|
|
|
| 4643 |
|
|
if (sched_verbose >= 4)
|
| 4644 |
|
|
sel_print ("Swapping code labels %i and %i\n",
|
| 4645 |
|
|
CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
|
| 4646 |
|
|
CODE_LABEL_NUMBER (BB_HEAD (succ)));
|
| 4647 |
|
|
|
| 4648 |
|
|
i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
|
| 4649 |
|
|
CODE_LABEL_NUMBER (BB_HEAD (new_bb))
|
| 4650 |
|
|
= CODE_LABEL_NUMBER (BB_HEAD (succ));
|
| 4651 |
|
|
CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
|
| 4652 |
|
|
}
|
| 4653 |
|
|
}
|
| 4654 |
|
|
}
|
| 4655 |
|
|
|
| 4656 |
|
|
return bb;
|
| 4657 |
|
|
}
|
| 4658 |
|
|
|
| 4659 |
|
|
/* Return insn after which we must insert bookkeeping code for path(s) incoming
|
| 4660 |
|
|
into E2->dest, except from E1->src. If the returned insn immediately
|
| 4661 |
|
|
precedes a fence, assign that fence to *FENCE_TO_REWIND. */
|
| 4662 |
|
|
static insn_t
|
| 4663 |
|
|
find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
|
| 4664 |
|
|
{
|
| 4665 |
|
|
insn_t place_to_insert;
|
| 4666 |
|
|
/* Find a basic block that can hold bookkeeping. If it can be found, do not
|
| 4667 |
|
|
create new basic block, but insert bookkeeping there. */
|
| 4668 |
|
|
basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
|
| 4669 |
|
|
|
| 4670 |
|
|
if (book_block)
|
| 4671 |
|
|
{
|
| 4672 |
|
|
place_to_insert = BB_END (book_block);
|
| 4673 |
|
|
|
| 4674 |
|
|
/* Don't use a block containing only debug insns for
|
| 4675 |
|
|
bookkeeping, this causes scheduling differences between debug
|
| 4676 |
|
|
and non-debug compilations, for the block would have been
|
| 4677 |
|
|
removed already. */
|
| 4678 |
|
|
if (DEBUG_INSN_P (place_to_insert))
|
| 4679 |
|
|
{
|
| 4680 |
|
|
rtx insn = sel_bb_head (book_block);
|
| 4681 |
|
|
|
| 4682 |
|
|
while (insn != place_to_insert &&
|
| 4683 |
|
|
(DEBUG_INSN_P (insn) || NOTE_P (insn)))
|
| 4684 |
|
|
insn = NEXT_INSN (insn);
|
| 4685 |
|
|
|
| 4686 |
|
|
if (insn == place_to_insert)
|
| 4687 |
|
|
book_block = NULL;
|
| 4688 |
|
|
}
|
| 4689 |
|
|
}
|
| 4690 |
|
|
|
| 4691 |
|
|
if (!book_block)
|
| 4692 |
|
|
{
|
| 4693 |
|
|
book_block = create_block_for_bookkeeping (e1, e2);
|
| 4694 |
|
|
place_to_insert = BB_END (book_block);
|
| 4695 |
|
|
if (sched_verbose >= 9)
|
| 4696 |
|
|
sel_print ("New block is %i, split from bookkeeping block %i\n",
|
| 4697 |
|
|
EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
|
| 4698 |
|
|
}
|
| 4699 |
|
|
else
|
| 4700 |
|
|
{
|
| 4701 |
|
|
if (sched_verbose >= 9)
|
| 4702 |
|
|
sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
|
| 4703 |
|
|
}
|
| 4704 |
|
|
|
| 4705 |
|
|
*fence_to_rewind = NULL;
|
| 4706 |
|
|
/* If basic block ends with a jump, insert bookkeeping code right before it.
|
| 4707 |
|
|
Notice if we are crossing a fence when taking PREV_INSN. */
|
| 4708 |
|
|
if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
|
| 4709 |
|
|
{
|
| 4710 |
|
|
*fence_to_rewind = flist_lookup (fences, place_to_insert);
|
| 4711 |
|
|
place_to_insert = PREV_INSN (place_to_insert);
|
| 4712 |
|
|
}
|
| 4713 |
|
|
|
| 4714 |
|
|
return place_to_insert;
|
| 4715 |
|
|
}
|
| 4716 |
|
|
|
| 4717 |
|
|
/* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
|
| 4718 |
|
|
for JOIN_POINT. */
|
| 4719 |
|
|
static int
|
| 4720 |
|
|
find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
|
| 4721 |
|
|
{
|
| 4722 |
|
|
int seqno;
|
| 4723 |
|
|
rtx next;
|
| 4724 |
|
|
|
| 4725 |
|
|
/* Check if we are about to insert bookkeeping copy before a jump, and use
|
| 4726 |
|
|
jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
|
| 4727 |
|
|
next = NEXT_INSN (place_to_insert);
|
| 4728 |
|
|
if (INSN_P (next)
|
| 4729 |
|
|
&& JUMP_P (next)
|
| 4730 |
|
|
&& BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
|
| 4731 |
|
|
{
|
| 4732 |
|
|
gcc_assert (INSN_SCHED_TIMES (next) == 0);
|
| 4733 |
|
|
seqno = INSN_SEQNO (next);
|
| 4734 |
|
|
}
|
| 4735 |
|
|
else if (INSN_SEQNO (join_point) > 0)
|
| 4736 |
|
|
seqno = INSN_SEQNO (join_point);
|
| 4737 |
|
|
else
|
| 4738 |
|
|
{
|
| 4739 |
|
|
seqno = get_seqno_by_preds (place_to_insert);
|
| 4740 |
|
|
|
| 4741 |
|
|
/* Sometimes the fences can move in such a way that there will be
|
| 4742 |
|
|
no instructions with positive seqno around this bookkeeping.
|
| 4743 |
|
|
This means that there will be no way to get to it by a regular
|
| 4744 |
|
|
fence movement. Never mind because we pick up such pieces for
|
| 4745 |
|
|
rescheduling anyways, so any positive value will do for now. */
|
| 4746 |
|
|
if (seqno < 0)
|
| 4747 |
|
|
{
|
| 4748 |
|
|
gcc_assert (pipelining_p);
|
| 4749 |
|
|
seqno = 1;
|
| 4750 |
|
|
}
|
| 4751 |
|
|
}
|
| 4752 |
|
|
|
| 4753 |
|
|
gcc_assert (seqno > 0);
|
| 4754 |
|
|
return seqno;
|
| 4755 |
|
|
}
|
| 4756 |
|
|
|
| 4757 |
|
|
/* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
|
| 4758 |
|
|
NEW_SEQNO to it. Return created insn. */
|
| 4759 |
|
|
static insn_t
|
| 4760 |
|
|
emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
|
| 4761 |
|
|
{
|
| 4762 |
|
|
rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
|
| 4763 |
|
|
|
| 4764 |
|
|
vinsn_t new_vinsn
|
| 4765 |
|
|
= create_vinsn_from_insn_rtx (new_insn_rtx,
|
| 4766 |
|
|
VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
|
| 4767 |
|
|
|
| 4768 |
|
|
insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
|
| 4769 |
|
|
place_to_insert);
|
| 4770 |
|
|
|
| 4771 |
|
|
INSN_SCHED_TIMES (new_insn) = 0;
|
| 4772 |
|
|
bitmap_set_bit (current_copies, INSN_UID (new_insn));
|
| 4773 |
|
|
|
| 4774 |
|
|
return new_insn;
|
| 4775 |
|
|
}
|
| 4776 |
|
|
|
| 4777 |
|
|
/* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
|
| 4778 |
|
|
E2->dest, except from E1->src (there may be a sequence of empty blocks
|
| 4779 |
|
|
between E1->src and E2->dest). Return block containing the copy.
|
| 4780 |
|
|
All scheduler data is initialized for the newly created insn. */
|
| 4781 |
|
|
static basic_block
|
| 4782 |
|
|
generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
|
| 4783 |
|
|
{
|
| 4784 |
|
|
insn_t join_point, place_to_insert, new_insn;
|
| 4785 |
|
|
int new_seqno;
|
| 4786 |
|
|
bool need_to_exchange_data_sets;
|
| 4787 |
|
|
fence_t fence_to_rewind;
|
| 4788 |
|
|
|
| 4789 |
|
|
if (sched_verbose >= 4)
|
| 4790 |
|
|
sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
|
| 4791 |
|
|
e2->dest->index);
|
| 4792 |
|
|
|
| 4793 |
|
|
join_point = sel_bb_head (e2->dest);
|
| 4794 |
|
|
place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
|
| 4795 |
|
|
new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
|
| 4796 |
|
|
need_to_exchange_data_sets
|
| 4797 |
|
|
= sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
|
| 4798 |
|
|
|
| 4799 |
|
|
new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
|
| 4800 |
|
|
|
| 4801 |
|
|
if (fence_to_rewind)
|
| 4802 |
|
|
FENCE_INSN (fence_to_rewind) = new_insn;
|
| 4803 |
|
|
|
| 4804 |
|
|
/* When inserting bookkeeping insn in new block, av sets should be
|
| 4805 |
|
|
following: old basic block (that now holds bookkeeping) data sets are
|
| 4806 |
|
|
the same as was before generation of bookkeeping, and new basic block
|
| 4807 |
|
|
(that now hold all other insns of old basic block) data sets are
|
| 4808 |
|
|
invalid. So exchange data sets for these basic blocks as sel_split_block
|
| 4809 |
|
|
mistakenly exchanges them in this case. Cannot do it earlier because
|
| 4810 |
|
|
when single instruction is added to new basic block it should hold NULL
|
| 4811 |
|
|
lv_set. */
|
| 4812 |
|
|
if (need_to_exchange_data_sets)
|
| 4813 |
|
|
exchange_data_sets (BLOCK_FOR_INSN (new_insn),
|
| 4814 |
|
|
BLOCK_FOR_INSN (join_point));
|
| 4815 |
|
|
|
| 4816 |
|
|
stat_bookkeeping_copies++;
|
| 4817 |
|
|
return BLOCK_FOR_INSN (new_insn);
|
| 4818 |
|
|
}
|
| 4819 |
|
|
|
| 4820 |
|
|
/* Remove from AV_PTR all insns that may need bookkeeping when scheduling
|
| 4821 |
|
|
on FENCE, but we are unable to copy them. */
|
| 4822 |
|
|
static void
|
| 4823 |
|
|
remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
|
| 4824 |
|
|
{
|
| 4825 |
|
|
expr_t expr;
|
| 4826 |
|
|
av_set_iterator i;
|
| 4827 |
|
|
|
| 4828 |
|
|
/* An expression does not need bookkeeping if it is available on all paths
|
| 4829 |
|
|
from current block to original block and current block dominates
|
| 4830 |
|
|
original block. We check availability on all paths by examining
|
| 4831 |
|
|
EXPR_SPEC; this is not equivalent, because it may be positive even
|
| 4832 |
|
|
if expr is available on all paths (but if expr is not available on
|
| 4833 |
|
|
any path, EXPR_SPEC will be positive). */
|
| 4834 |
|
|
|
| 4835 |
|
|
FOR_EACH_EXPR_1 (expr, i, av_ptr)
|
| 4836 |
|
|
{
|
| 4837 |
|
|
if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
|
| 4838 |
|
|
&& (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
|
| 4839 |
|
|
&& (EXPR_SPEC (expr)
|
| 4840 |
|
|
|| !EXPR_ORIG_BB_INDEX (expr)
|
| 4841 |
|
|
|| !dominated_by_p (CDI_DOMINATORS,
|
| 4842 |
|
|
BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
|
| 4843 |
|
|
BLOCK_FOR_INSN (FENCE_INSN (fence)))))
|
| 4844 |
|
|
{
|
| 4845 |
|
|
if (sched_verbose >= 4)
|
| 4846 |
|
|
sel_print ("Expr %d removed because it would need bookkeeping, which "
|
| 4847 |
|
|
"cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
|
| 4848 |
|
|
av_set_iter_remove (&i);
|
| 4849 |
|
|
}
|
| 4850 |
|
|
}
|
| 4851 |
|
|
}
|
| 4852 |
|
|
|
| 4853 |
|
|
/* Moving conditional jump through some instructions.
|
| 4854 |
|
|
|
| 4855 |
|
|
Consider example:
|
| 4856 |
|
|
|
| 4857 |
|
|
... <- current scheduling point
|
| 4858 |
|
|
NOTE BASIC BLOCK: <- bb header
|
| 4859 |
|
|
(p8) add r14=r14+0x9;;
|
| 4860 |
|
|
(p8) mov [r14]=r23
|
| 4861 |
|
|
(!p8) jump L1;;
|
| 4862 |
|
|
NOTE BASIC BLOCK:
|
| 4863 |
|
|
...
|
| 4864 |
|
|
|
| 4865 |
|
|
We can schedule jump one cycle earlier, than mov, because they cannot be
|
| 4866 |
|
|
executed together as their predicates are mutually exclusive.
|
| 4867 |
|
|
|
| 4868 |
|
|
This is done in this way: first, new fallthrough basic block is created
|
| 4869 |
|
|
after jump (it is always can be done, because there already should be a
|
| 4870 |
|
|
fallthrough block, where control flow goes in case of predicate being true -
|
| 4871 |
|
|
in our example; otherwise there should be a dependence between those
|
| 4872 |
|
|
instructions and jump and we cannot schedule jump right now);
|
| 4873 |
|
|
next, all instructions between jump and current scheduling point are moved
|
| 4874 |
|
|
to this new block. And the result is this:
|
| 4875 |
|
|
|
| 4876 |
|
|
NOTE BASIC BLOCK:
|
| 4877 |
|
|
(!p8) jump L1 <- current scheduling point
|
| 4878 |
|
|
NOTE BASIC BLOCK: <- bb header
|
| 4879 |
|
|
(p8) add r14=r14+0x9;;
|
| 4880 |
|
|
(p8) mov [r14]=r23
|
| 4881 |
|
|
NOTE BASIC BLOCK:
|
| 4882 |
|
|
...
|
| 4883 |
|
|
*/
|
| 4884 |
|
|
static void
|
| 4885 |
|
|
move_cond_jump (rtx insn, bnd_t bnd)
|
| 4886 |
|
|
{
|
| 4887 |
|
|
edge ft_edge;
|
| 4888 |
|
|
basic_block block_from, block_next, block_new, block_bnd, bb;
|
| 4889 |
|
|
rtx next, prev, link, head;
|
| 4890 |
|
|
|
| 4891 |
|
|
block_from = BLOCK_FOR_INSN (insn);
|
| 4892 |
|
|
block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
|
| 4893 |
|
|
prev = BND_TO (bnd);
|
| 4894 |
|
|
|
| 4895 |
|
|
#ifdef ENABLE_CHECKING
|
| 4896 |
|
|
/* Moving of jump should not cross any other jumps or beginnings of new
|
| 4897 |
|
|
basic blocks. The only exception is when we move a jump through
|
| 4898 |
|
|
mutually exclusive insns along fallthru edges. */
|
| 4899 |
|
|
if (block_from != block_bnd)
|
| 4900 |
|
|
{
|
| 4901 |
|
|
bb = block_from;
|
| 4902 |
|
|
for (link = PREV_INSN (insn); link != PREV_INSN (prev);
|
| 4903 |
|
|
link = PREV_INSN (link))
|
| 4904 |
|
|
{
|
| 4905 |
|
|
if (INSN_P (link))
|
| 4906 |
|
|
gcc_assert (sched_insns_conditions_mutex_p (insn, link));
|
| 4907 |
|
|
if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
|
| 4908 |
|
|
{
|
| 4909 |
|
|
gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
|
| 4910 |
|
|
bb = BLOCK_FOR_INSN (link);
|
| 4911 |
|
|
}
|
| 4912 |
|
|
}
|
| 4913 |
|
|
}
|
| 4914 |
|
|
#endif
|
| 4915 |
|
|
|
| 4916 |
|
|
/* Jump is moved to the boundary. */
|
| 4917 |
|
|
next = PREV_INSN (insn);
|
| 4918 |
|
|
BND_TO (bnd) = insn;
|
| 4919 |
|
|
|
| 4920 |
|
|
ft_edge = find_fallthru_edge_from (block_from);
|
| 4921 |
|
|
block_next = ft_edge->dest;
|
| 4922 |
|
|
/* There must be a fallthrough block (or where should go
|
| 4923 |
|
|
control flow in case of false jump predicate otherwise?). */
|
| 4924 |
|
|
gcc_assert (block_next);
|
| 4925 |
|
|
|
| 4926 |
|
|
/* Create new empty basic block after source block. */
|
| 4927 |
|
|
block_new = sel_split_edge (ft_edge);
|
| 4928 |
|
|
gcc_assert (block_new->next_bb == block_next
|
| 4929 |
|
|
&& block_from->next_bb == block_new);
|
| 4930 |
|
|
|
| 4931 |
|
|
/* Move all instructions except INSN to BLOCK_NEW. */
|
| 4932 |
|
|
bb = block_bnd;
|
| 4933 |
|
|
head = BB_HEAD (block_new);
|
| 4934 |
|
|
while (bb != block_from->next_bb)
|
| 4935 |
|
|
{
|
| 4936 |
|
|
rtx from, to;
|
| 4937 |
|
|
from = bb == block_bnd ? prev : sel_bb_head (bb);
|
| 4938 |
|
|
to = bb == block_from ? next : sel_bb_end (bb);
|
| 4939 |
|
|
|
| 4940 |
|
|
/* The jump being moved can be the first insn in the block.
|
| 4941 |
|
|
In this case we don't have to move anything in this block. */
|
| 4942 |
|
|
if (NEXT_INSN (to) != from)
|
| 4943 |
|
|
{
|
| 4944 |
|
|
reorder_insns (from, to, head);
|
| 4945 |
|
|
|
| 4946 |
|
|
for (link = to; link != head; link = PREV_INSN (link))
|
| 4947 |
|
|
EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
|
| 4948 |
|
|
head = to;
|
| 4949 |
|
|
}
|
| 4950 |
|
|
|
| 4951 |
|
|
/* Cleanup possibly empty blocks left. */
|
| 4952 |
|
|
block_next = bb->next_bb;
|
| 4953 |
|
|
if (bb != block_from)
|
| 4954 |
|
|
tidy_control_flow (bb, false);
|
| 4955 |
|
|
bb = block_next;
|
| 4956 |
|
|
}
|
| 4957 |
|
|
|
| 4958 |
|
|
/* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
|
| 4959 |
|
|
gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
|
| 4960 |
|
|
|
| 4961 |
|
|
gcc_assert (!sel_bb_empty_p (block_from)
|
| 4962 |
|
|
&& !sel_bb_empty_p (block_new));
|
| 4963 |
|
|
|
| 4964 |
|
|
/* Update data sets for BLOCK_NEW to represent that INSN and
|
| 4965 |
|
|
instructions from the other branch of INSN is no longer
|
| 4966 |
|
|
available at BLOCK_NEW. */
|
| 4967 |
|
|
BB_AV_LEVEL (block_new) = global_level;
|
| 4968 |
|
|
gcc_assert (BB_LV_SET (block_new) == NULL);
|
| 4969 |
|
|
BB_LV_SET (block_new) = get_clear_regset_from_pool ();
|
| 4970 |
|
|
update_data_sets (sel_bb_head (block_new));
|
| 4971 |
|
|
|
| 4972 |
|
|
/* INSN is a new basic block header - so prepare its data
|
| 4973 |
|
|
structures and update availability and liveness sets. */
|
| 4974 |
|
|
update_data_sets (insn);
|
| 4975 |
|
|
|
| 4976 |
|
|
if (sched_verbose >= 4)
|
| 4977 |
|
|
sel_print ("Moving jump %d\n", INSN_UID (insn));
|
| 4978 |
|
|
}
|
| 4979 |
|
|
|
| 4980 |
|
|
/* Remove nops generated during move_op for preventing removal of empty
|
| 4981 |
|
|
basic blocks. */
|
| 4982 |
|
|
static void
|
| 4983 |
|
|
remove_temp_moveop_nops (bool full_tidying)
|
| 4984 |
|
|
{
|
| 4985 |
|
|
int i;
|
| 4986 |
|
|
insn_t insn;
|
| 4987 |
|
|
|
| 4988 |
|
|
FOR_EACH_VEC_ELT (insn_t, vec_temp_moveop_nops, i, insn)
|
| 4989 |
|
|
{
|
| 4990 |
|
|
gcc_assert (INSN_NOP_P (insn));
|
| 4991 |
|
|
return_nop_to_pool (insn, full_tidying);
|
| 4992 |
|
|
}
|
| 4993 |
|
|
|
| 4994 |
|
|
/* Empty the vector. */
|
| 4995 |
|
|
if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
|
| 4996 |
|
|
VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
|
| 4997 |
|
|
VEC_length (insn_t, vec_temp_moveop_nops));
|
| 4998 |
|
|
}
|
| 4999 |
|
|
|
| 5000 |
|
|
/* Records the maximal UID before moving up an instruction. Used for
|
| 5001 |
|
|
distinguishing between bookkeeping copies and original insns. */
|
| 5002 |
|
|
static int max_uid_before_move_op = 0;
|
| 5003 |
|
|
|
| 5004 |
|
|
/* Remove from AV_VLIW_P all instructions but next when debug counter
|
| 5005 |
|
|
tells us so. Next instruction is fetched from BNDS. */
|
| 5006 |
|
|
static void
|
| 5007 |
|
|
remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
|
| 5008 |
|
|
{
|
| 5009 |
|
|
if (! dbg_cnt (sel_sched_insn_cnt))
|
| 5010 |
|
|
/* Leave only the next insn in av_vliw. */
|
| 5011 |
|
|
{
|
| 5012 |
|
|
av_set_iterator av_it;
|
| 5013 |
|
|
expr_t expr;
|
| 5014 |
|
|
bnd_t bnd = BLIST_BND (bnds);
|
| 5015 |
|
|
insn_t next = BND_TO (bnd);
|
| 5016 |
|
|
|
| 5017 |
|
|
gcc_assert (BLIST_NEXT (bnds) == NULL);
|
| 5018 |
|
|
|
| 5019 |
|
|
FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
|
| 5020 |
|
|
if (EXPR_INSN_RTX (expr) != next)
|
| 5021 |
|
|
av_set_iter_remove (&av_it);
|
| 5022 |
|
|
}
|
| 5023 |
|
|
}
|
| 5024 |
|
|
|
| 5025 |
|
|
/* Compute available instructions on BNDS. FENCE is the current fence. Write
|
| 5026 |
|
|
the computed set to *AV_VLIW_P. */
|
| 5027 |
|
|
static void
|
| 5028 |
|
|
compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
|
| 5029 |
|
|
{
|
| 5030 |
|
|
if (sched_verbose >= 2)
|
| 5031 |
|
|
{
|
| 5032 |
|
|
sel_print ("Boundaries: ");
|
| 5033 |
|
|
dump_blist (bnds);
|
| 5034 |
|
|
sel_print ("\n");
|
| 5035 |
|
|
}
|
| 5036 |
|
|
|
| 5037 |
|
|
for (; bnds; bnds = BLIST_NEXT (bnds))
|
| 5038 |
|
|
{
|
| 5039 |
|
|
bnd_t bnd = BLIST_BND (bnds);
|
| 5040 |
|
|
av_set_t av1_copy;
|
| 5041 |
|
|
insn_t bnd_to = BND_TO (bnd);
|
| 5042 |
|
|
|
| 5043 |
|
|
/* Rewind BND->TO to the basic block header in case some bookkeeping
|
| 5044 |
|
|
instructions were inserted before BND->TO and it needs to be
|
| 5045 |
|
|
adjusted. */
|
| 5046 |
|
|
if (sel_bb_head_p (bnd_to))
|
| 5047 |
|
|
gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
|
| 5048 |
|
|
else
|
| 5049 |
|
|
while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
|
| 5050 |
|
|
{
|
| 5051 |
|
|
bnd_to = PREV_INSN (bnd_to);
|
| 5052 |
|
|
if (sel_bb_head_p (bnd_to))
|
| 5053 |
|
|
break;
|
| 5054 |
|
|
}
|
| 5055 |
|
|
|
| 5056 |
|
|
if (BND_TO (bnd) != bnd_to)
|
| 5057 |
|
|
{
|
| 5058 |
|
|
gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
|
| 5059 |
|
|
FENCE_INSN (fence) = bnd_to;
|
| 5060 |
|
|
BND_TO (bnd) = bnd_to;
|
| 5061 |
|
|
}
|
| 5062 |
|
|
|
| 5063 |
|
|
av_set_clear (&BND_AV (bnd));
|
| 5064 |
|
|
BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
|
| 5065 |
|
|
|
| 5066 |
|
|
av_set_clear (&BND_AV1 (bnd));
|
| 5067 |
|
|
BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
|
| 5068 |
|
|
|
| 5069 |
|
|
moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
|
| 5070 |
|
|
|
| 5071 |
|
|
av1_copy = av_set_copy (BND_AV1 (bnd));
|
| 5072 |
|
|
av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
|
| 5073 |
|
|
}
|
| 5074 |
|
|
|
| 5075 |
|
|
if (sched_verbose >= 2)
|
| 5076 |
|
|
{
|
| 5077 |
|
|
sel_print ("Available exprs (vliw form): ");
|
| 5078 |
|
|
dump_av_set (*av_vliw_p);
|
| 5079 |
|
|
sel_print ("\n");
|
| 5080 |
|
|
}
|
| 5081 |
|
|
}
|
| 5082 |
|
|
|
| 5083 |
|
|
/* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
|
| 5084 |
|
|
expression. When FOR_MOVEOP is true, also replace the register of
|
| 5085 |
|
|
expressions found with the register from EXPR_VLIW. */
|
| 5086 |
|
|
static av_set_t
|
| 5087 |
|
|
find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
|
| 5088 |
|
|
{
|
| 5089 |
|
|
av_set_t expr_seq = NULL;
|
| 5090 |
|
|
expr_t expr;
|
| 5091 |
|
|
av_set_iterator i;
|
| 5092 |
|
|
|
| 5093 |
|
|
FOR_EACH_EXPR (expr, i, BND_AV (bnd))
|
| 5094 |
|
|
{
|
| 5095 |
|
|
if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
|
| 5096 |
|
|
{
|
| 5097 |
|
|
if (for_moveop)
|
| 5098 |
|
|
{
|
| 5099 |
|
|
/* The sequential expression has the right form to pass
|
| 5100 |
|
|
to move_op except when renaming happened. Put the
|
| 5101 |
|
|
correct register in EXPR then. */
|
| 5102 |
|
|
if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
|
| 5103 |
|
|
{
|
| 5104 |
|
|
if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
|
| 5105 |
|
|
{
|
| 5106 |
|
|
replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
|
| 5107 |
|
|
stat_renamed_scheduled++;
|
| 5108 |
|
|
}
|
| 5109 |
|
|
/* Also put the correct TARGET_AVAILABLE bit on the expr.
|
| 5110 |
|
|
This is needed when renaming came up with original
|
| 5111 |
|
|
register. */
|
| 5112 |
|
|
else if (EXPR_TARGET_AVAILABLE (expr)
|
| 5113 |
|
|
!= EXPR_TARGET_AVAILABLE (expr_vliw))
|
| 5114 |
|
|
{
|
| 5115 |
|
|
gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
|
| 5116 |
|
|
EXPR_TARGET_AVAILABLE (expr) = 1;
|
| 5117 |
|
|
}
|
| 5118 |
|
|
}
|
| 5119 |
|
|
if (EXPR_WAS_SUBSTITUTED (expr))
|
| 5120 |
|
|
stat_substitutions_total++;
|
| 5121 |
|
|
}
|
| 5122 |
|
|
|
| 5123 |
|
|
av_set_add (&expr_seq, expr);
|
| 5124 |
|
|
|
| 5125 |
|
|
/* With substitution inside insn group, it is possible
|
| 5126 |
|
|
that more than one expression in expr_seq will correspond
|
| 5127 |
|
|
to expr_vliw. In this case, choose one as the attempt to
|
| 5128 |
|
|
move both leads to miscompiles. */
|
| 5129 |
|
|
break;
|
| 5130 |
|
|
}
|
| 5131 |
|
|
}
|
| 5132 |
|
|
|
| 5133 |
|
|
if (for_moveop && sched_verbose >= 2)
|
| 5134 |
|
|
{
|
| 5135 |
|
|
sel_print ("Best expression(s) (sequential form): ");
|
| 5136 |
|
|
dump_av_set (expr_seq);
|
| 5137 |
|
|
sel_print ("\n");
|
| 5138 |
|
|
}
|
| 5139 |
|
|
|
| 5140 |
|
|
return expr_seq;
|
| 5141 |
|
|
}
|
| 5142 |
|
|
|
| 5143 |
|
|
|
| 5144 |
|
|
/* Move nop to previous block. */
|
| 5145 |
|
|
static void ATTRIBUTE_UNUSED
|
| 5146 |
|
|
move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
|
| 5147 |
|
|
{
|
| 5148 |
|
|
insn_t prev_insn, next_insn, note;
|
| 5149 |
|
|
|
| 5150 |
|
|
gcc_assert (sel_bb_head_p (nop)
|
| 5151 |
|
|
&& prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
|
| 5152 |
|
|
note = bb_note (BLOCK_FOR_INSN (nop));
|
| 5153 |
|
|
prev_insn = sel_bb_end (prev_bb);
|
| 5154 |
|
|
next_insn = NEXT_INSN (nop);
|
| 5155 |
|
|
gcc_assert (prev_insn != NULL_RTX
|
| 5156 |
|
|
&& PREV_INSN (note) == prev_insn);
|
| 5157 |
|
|
|
| 5158 |
|
|
NEXT_INSN (prev_insn) = nop;
|
| 5159 |
|
|
PREV_INSN (nop) = prev_insn;
|
| 5160 |
|
|
|
| 5161 |
|
|
PREV_INSN (note) = nop;
|
| 5162 |
|
|
NEXT_INSN (note) = next_insn;
|
| 5163 |
|
|
|
| 5164 |
|
|
NEXT_INSN (nop) = note;
|
| 5165 |
|
|
PREV_INSN (next_insn) = note;
|
| 5166 |
|
|
|
| 5167 |
|
|
BB_END (prev_bb) = nop;
|
| 5168 |
|
|
BLOCK_FOR_INSN (nop) = prev_bb;
|
| 5169 |
|
|
}
|
| 5170 |
|
|
|
| 5171 |
|
|
/* Prepare a place to insert the chosen expression on BND. */
|
| 5172 |
|
|
static insn_t
|
| 5173 |
|
|
prepare_place_to_insert (bnd_t bnd)
|
| 5174 |
|
|
{
|
| 5175 |
|
|
insn_t place_to_insert;
|
| 5176 |
|
|
|
| 5177 |
|
|
/* Init place_to_insert before calling move_op, as the later
|
| 5178 |
|
|
can possibly remove BND_TO (bnd). */
|
| 5179 |
|
|
if (/* If this is not the first insn scheduled. */
|
| 5180 |
|
|
BND_PTR (bnd))
|
| 5181 |
|
|
{
|
| 5182 |
|
|
/* Add it after last scheduled. */
|
| 5183 |
|
|
place_to_insert = ILIST_INSN (BND_PTR (bnd));
|
| 5184 |
|
|
if (DEBUG_INSN_P (place_to_insert))
|
| 5185 |
|
|
{
|
| 5186 |
|
|
ilist_t l = BND_PTR (bnd);
|
| 5187 |
|
|
while ((l = ILIST_NEXT (l)) &&
|
| 5188 |
|
|
DEBUG_INSN_P (ILIST_INSN (l)))
|
| 5189 |
|
|
;
|
| 5190 |
|
|
if (!l)
|
| 5191 |
|
|
place_to_insert = NULL;
|
| 5192 |
|
|
}
|
| 5193 |
|
|
}
|
| 5194 |
|
|
else
|
| 5195 |
|
|
place_to_insert = NULL;
|
| 5196 |
|
|
|
| 5197 |
|
|
if (!place_to_insert)
|
| 5198 |
|
|
{
|
| 5199 |
|
|
/* Add it before BND_TO. The difference is in the
|
| 5200 |
|
|
basic block, where INSN will be added. */
|
| 5201 |
|
|
place_to_insert = get_nop_from_pool (BND_TO (bnd));
|
| 5202 |
|
|
gcc_assert (BLOCK_FOR_INSN (place_to_insert)
|
| 5203 |
|
|
== BLOCK_FOR_INSN (BND_TO (bnd)));
|
| 5204 |
|
|
}
|
| 5205 |
|
|
|
| 5206 |
|
|
return place_to_insert;
|
| 5207 |
|
|
}
|
| 5208 |
|
|
|
| 5209 |
|
|
/* Find original instructions for EXPR_SEQ and move it to BND boundary.
|
| 5210 |
|
|
Return the expression to emit in C_EXPR. */
|
| 5211 |
|
|
static bool
|
| 5212 |
|
|
move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
|
| 5213 |
|
|
av_set_t expr_seq, expr_t c_expr)
|
| 5214 |
|
|
{
|
| 5215 |
|
|
bool b, should_move;
|
| 5216 |
|
|
unsigned book_uid;
|
| 5217 |
|
|
bitmap_iterator bi;
|
| 5218 |
|
|
int n_bookkeeping_copies_before_moveop;
|
| 5219 |
|
|
|
| 5220 |
|
|
/* Make a move. This call will remove the original operation,
|
| 5221 |
|
|
insert all necessary bookkeeping instructions and update the
|
| 5222 |
|
|
data sets. After that all we have to do is add the operation
|
| 5223 |
|
|
at before BND_TO (BND). */
|
| 5224 |
|
|
n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
|
| 5225 |
|
|
max_uid_before_move_op = get_max_uid ();
|
| 5226 |
|
|
bitmap_clear (current_copies);
|
| 5227 |
|
|
bitmap_clear (current_originators);
|
| 5228 |
|
|
|
| 5229 |
|
|
b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
|
| 5230 |
|
|
get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
|
| 5231 |
|
|
|
| 5232 |
|
|
/* We should be able to find the expression we've chosen for
|
| 5233 |
|
|
scheduling. */
|
| 5234 |
|
|
gcc_assert (b);
|
| 5235 |
|
|
|
| 5236 |
|
|
if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
|
| 5237 |
|
|
stat_insns_needed_bookkeeping++;
|
| 5238 |
|
|
|
| 5239 |
|
|
EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
|
| 5240 |
|
|
{
|
| 5241 |
|
|
unsigned uid;
|
| 5242 |
|
|
bitmap_iterator bi;
|
| 5243 |
|
|
|
| 5244 |
|
|
/* We allocate these bitmaps lazily. */
|
| 5245 |
|
|
if (! INSN_ORIGINATORS_BY_UID (book_uid))
|
| 5246 |
|
|
INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
|
| 5247 |
|
|
|
| 5248 |
|
|
bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
|
| 5249 |
|
|
current_originators);
|
| 5250 |
|
|
|
| 5251 |
|
|
/* Transitively add all originators' originators. */
|
| 5252 |
|
|
EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
|
| 5253 |
|
|
if (INSN_ORIGINATORS_BY_UID (uid))
|
| 5254 |
|
|
bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
|
| 5255 |
|
|
INSN_ORIGINATORS_BY_UID (uid));
|
| 5256 |
|
|
}
|
| 5257 |
|
|
|
| 5258 |
|
|
return should_move;
|
| 5259 |
|
|
}
|
| 5260 |
|
|
|
| 5261 |
|
|
|
| 5262 |
|
|
/* Debug a DFA state as an array of bytes. */
|
| 5263 |
|
|
static void
|
| 5264 |
|
|
debug_state (state_t state)
|
| 5265 |
|
|
{
|
| 5266 |
|
|
unsigned char *p;
|
| 5267 |
|
|
unsigned int i, size = dfa_state_size;
|
| 5268 |
|
|
|
| 5269 |
|
|
sel_print ("state (%u):", size);
|
| 5270 |
|
|
for (i = 0, p = (unsigned char *) state; i < size; i++)
|
| 5271 |
|
|
sel_print (" %d", p[i]);
|
| 5272 |
|
|
sel_print ("\n");
|
| 5273 |
|
|
}
|
| 5274 |
|
|
|
| 5275 |
|
|
/* Advance state on FENCE with INSN. Return true if INSN is
|
| 5276 |
|
|
an ASM, and we should advance state once more. */
|
| 5277 |
|
|
static bool
|
| 5278 |
|
|
advance_state_on_fence (fence_t fence, insn_t insn)
|
| 5279 |
|
|
{
|
| 5280 |
|
|
bool asm_p;
|
| 5281 |
|
|
|
| 5282 |
|
|
if (recog_memoized (insn) >= 0)
|
| 5283 |
|
|
{
|
| 5284 |
|
|
int res;
|
| 5285 |
|
|
state_t temp_state = alloca (dfa_state_size);
|
| 5286 |
|
|
|
| 5287 |
|
|
gcc_assert (!INSN_ASM_P (insn));
|
| 5288 |
|
|
asm_p = false;
|
| 5289 |
|
|
|
| 5290 |
|
|
memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
|
| 5291 |
|
|
res = state_transition (FENCE_STATE (fence), insn);
|
| 5292 |
|
|
gcc_assert (res < 0);
|
| 5293 |
|
|
|
| 5294 |
|
|
if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
|
| 5295 |
|
|
{
|
| 5296 |
|
|
FENCE_ISSUED_INSNS (fence)++;
|
| 5297 |
|
|
|
| 5298 |
|
|
/* We should never issue more than issue_rate insns. */
|
| 5299 |
|
|
if (FENCE_ISSUED_INSNS (fence) > issue_rate)
|
| 5300 |
|
|
gcc_unreachable ();
|
| 5301 |
|
|
}
|
| 5302 |
|
|
}
|
| 5303 |
|
|
else
|
| 5304 |
|
|
{
|
| 5305 |
|
|
/* This could be an ASM insn which we'd like to schedule
|
| 5306 |
|
|
on the next cycle. */
|
| 5307 |
|
|
asm_p = INSN_ASM_P (insn);
|
| 5308 |
|
|
if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
|
| 5309 |
|
|
advance_one_cycle (fence);
|
| 5310 |
|
|
}
|
| 5311 |
|
|
|
| 5312 |
|
|
if (sched_verbose >= 2)
|
| 5313 |
|
|
debug_state (FENCE_STATE (fence));
|
| 5314 |
|
|
if (!DEBUG_INSN_P (insn))
|
| 5315 |
|
|
FENCE_STARTS_CYCLE_P (fence) = 0;
|
| 5316 |
|
|
FENCE_ISSUE_MORE (fence) = can_issue_more;
|
| 5317 |
|
|
return asm_p;
|
| 5318 |
|
|
}
|
| 5319 |
|
|
|
| 5320 |
|
|
/* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
|
| 5321 |
|
|
is nonzero if we need to stall after issuing INSN. */
|
| 5322 |
|
|
static void
|
| 5323 |
|
|
update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
|
| 5324 |
|
|
{
|
| 5325 |
|
|
bool asm_p;
|
| 5326 |
|
|
|
| 5327 |
|
|
/* First, reflect that something is scheduled on this fence. */
|
| 5328 |
|
|
asm_p = advance_state_on_fence (fence, insn);
|
| 5329 |
|
|
FENCE_LAST_SCHEDULED_INSN (fence) = insn;
|
| 5330 |
|
|
VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
|
| 5331 |
|
|
if (SCHED_GROUP_P (insn))
|
| 5332 |
|
|
{
|
| 5333 |
|
|
FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
|
| 5334 |
|
|
SCHED_GROUP_P (insn) = 0;
|
| 5335 |
|
|
}
|
| 5336 |
|
|
else
|
| 5337 |
|
|
FENCE_SCHED_NEXT (fence) = NULL_RTX;
|
| 5338 |
|
|
if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
|
| 5339 |
|
|
FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
|
| 5340 |
|
|
|
| 5341 |
|
|
/* Set instruction scheduling info. This will be used in bundling,
|
| 5342 |
|
|
pipelining, tick computations etc. */
|
| 5343 |
|
|
++INSN_SCHED_TIMES (insn);
|
| 5344 |
|
|
EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
|
| 5345 |
|
|
EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
|
| 5346 |
|
|
INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
|
| 5347 |
|
|
INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
|
| 5348 |
|
|
|
| 5349 |
|
|
/* This does not account for adjust_cost hooks, just add the biggest
|
| 5350 |
|
|
constant the hook may add to the latency. TODO: make this
|
| 5351 |
|
|
a target dependent constant. */
|
| 5352 |
|
|
INSN_READY_CYCLE (insn)
|
| 5353 |
|
|
= INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
|
| 5354 |
|
|
? 1
|
| 5355 |
|
|
: maximal_insn_latency (insn) + 1);
|
| 5356 |
|
|
|
| 5357 |
|
|
/* Change these fields last, as they're used above. */
|
| 5358 |
|
|
FENCE_AFTER_STALL_P (fence) = 0;
|
| 5359 |
|
|
if (asm_p || need_stall)
|
| 5360 |
|
|
advance_one_cycle (fence);
|
| 5361 |
|
|
|
| 5362 |
|
|
/* Indicate that we've scheduled something on this fence. */
|
| 5363 |
|
|
FENCE_SCHEDULED_P (fence) = true;
|
| 5364 |
|
|
scheduled_something_on_previous_fence = true;
|
| 5365 |
|
|
|
| 5366 |
|
|
/* Print debug information when insn's fields are updated. */
|
| 5367 |
|
|
if (sched_verbose >= 2)
|
| 5368 |
|
|
{
|
| 5369 |
|
|
sel_print ("Scheduling insn: ");
|
| 5370 |
|
|
dump_insn_1 (insn, 1);
|
| 5371 |
|
|
sel_print ("\n");
|
| 5372 |
|
|
}
|
| 5373 |
|
|
}
|
| 5374 |
|
|
|
| 5375 |
|
|
/* Update boundary BND (and, if needed, FENCE) with INSN, remove the
|
| 5376 |
|
|
old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
|
| 5377 |
|
|
return it. */
|
| 5378 |
|
|
static blist_t *
|
| 5379 |
|
|
update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
|
| 5380 |
|
|
blist_t *bnds_tailp)
|
| 5381 |
|
|
{
|
| 5382 |
|
|
succ_iterator si;
|
| 5383 |
|
|
insn_t succ;
|
| 5384 |
|
|
|
| 5385 |
|
|
advance_deps_context (BND_DC (bnd), insn);
|
| 5386 |
|
|
FOR_EACH_SUCC_1 (succ, si, insn,
|
| 5387 |
|
|
SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
|
| 5388 |
|
|
{
|
| 5389 |
|
|
ilist_t ptr = ilist_copy (BND_PTR (bnd));
|
| 5390 |
|
|
|
| 5391 |
|
|
ilist_add (&ptr, insn);
|
| 5392 |
|
|
|
| 5393 |
|
|
if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
|
| 5394 |
|
|
&& is_ineligible_successor (succ, ptr))
|
| 5395 |
|
|
{
|
| 5396 |
|
|
ilist_clear (&ptr);
|
| 5397 |
|
|
continue;
|
| 5398 |
|
|
}
|
| 5399 |
|
|
|
| 5400 |
|
|
if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
|
| 5401 |
|
|
{
|
| 5402 |
|
|
if (sched_verbose >= 9)
|
| 5403 |
|
|
sel_print ("Updating fence insn from %i to %i\n",
|
| 5404 |
|
|
INSN_UID (insn), INSN_UID (succ));
|
| 5405 |
|
|
FENCE_INSN (fence) = succ;
|
| 5406 |
|
|
}
|
| 5407 |
|
|
blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
|
| 5408 |
|
|
bnds_tailp = &BLIST_NEXT (*bnds_tailp);
|
| 5409 |
|
|
}
|
| 5410 |
|
|
|
| 5411 |
|
|
blist_remove (bndsp);
|
| 5412 |
|
|
return bnds_tailp;
|
| 5413 |
|
|
}
|
| 5414 |
|
|
|
| 5415 |
|
|
/* Schedule EXPR_VLIW on BND. Return the insn emitted. */
|
| 5416 |
|
|
static insn_t
|
| 5417 |
|
|
schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
|
| 5418 |
|
|
{
|
| 5419 |
|
|
av_set_t expr_seq;
|
| 5420 |
|
|
expr_t c_expr = XALLOCA (expr_def);
|
| 5421 |
|
|
insn_t place_to_insert;
|
| 5422 |
|
|
insn_t insn;
|
| 5423 |
|
|
bool should_move;
|
| 5424 |
|
|
|
| 5425 |
|
|
expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
|
| 5426 |
|
|
|
| 5427 |
|
|
/* In case of scheduling a jump skipping some other instructions,
|
| 5428 |
|
|
prepare CFG. After this, jump is at the boundary and can be
|
| 5429 |
|
|
scheduled as usual insn by MOVE_OP. */
|
| 5430 |
|
|
if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
|
| 5431 |
|
|
{
|
| 5432 |
|
|
insn = EXPR_INSN_RTX (expr_vliw);
|
| 5433 |
|
|
|
| 5434 |
|
|
/* Speculative jumps are not handled. */
|
| 5435 |
|
|
if (insn != BND_TO (bnd)
|
| 5436 |
|
|
&& !sel_insn_is_speculation_check (insn))
|
| 5437 |
|
|
move_cond_jump (insn, bnd);
|
| 5438 |
|
|
}
|
| 5439 |
|
|
|
| 5440 |
|
|
/* Find a place for C_EXPR to schedule. */
|
| 5441 |
|
|
place_to_insert = prepare_place_to_insert (bnd);
|
| 5442 |
|
|
should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
|
| 5443 |
|
|
clear_expr (c_expr);
|
| 5444 |
|
|
|
| 5445 |
|
|
/* Add the instruction. The corner case to care about is when
|
| 5446 |
|
|
the expr_seq set has more than one expr, and we chose the one that
|
| 5447 |
|
|
is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
|
| 5448 |
|
|
we can't use it. Generate the new vinsn. */
|
| 5449 |
|
|
if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
|
| 5450 |
|
|
{
|
| 5451 |
|
|
vinsn_t vinsn_new;
|
| 5452 |
|
|
|
| 5453 |
|
|
vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
|
| 5454 |
|
|
change_vinsn_in_expr (expr_vliw, vinsn_new);
|
| 5455 |
|
|
should_move = false;
|
| 5456 |
|
|
}
|
| 5457 |
|
|
if (should_move)
|
| 5458 |
|
|
insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
|
| 5459 |
|
|
else
|
| 5460 |
|
|
insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
|
| 5461 |
|
|
place_to_insert);
|
| 5462 |
|
|
|
| 5463 |
|
|
/* Return the nops generated for preserving of data sets back
|
| 5464 |
|
|
into pool. */
|
| 5465 |
|
|
if (INSN_NOP_P (place_to_insert))
|
| 5466 |
|
|
return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
|
| 5467 |
|
|
remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
|
| 5468 |
|
|
|
| 5469 |
|
|
av_set_clear (&expr_seq);
|
| 5470 |
|
|
|
| 5471 |
|
|
/* Save the expression scheduled so to reset target availability if we'll
|
| 5472 |
|
|
meet it later on the same fence. */
|
| 5473 |
|
|
if (EXPR_WAS_RENAMED (expr_vliw))
|
| 5474 |
|
|
vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
|
| 5475 |
|
|
|
| 5476 |
|
|
/* Check that the recent movement didn't destroyed loop
|
| 5477 |
|
|
structure. */
|
| 5478 |
|
|
gcc_assert (!pipelining_p
|
| 5479 |
|
|
|| current_loop_nest == NULL
|
| 5480 |
|
|
|| loop_latch_edge (current_loop_nest));
|
| 5481 |
|
|
return insn;
|
| 5482 |
|
|
}
|
| 5483 |
|
|
|
| 5484 |
|
|
/* Stall for N cycles on FENCE. */
|
| 5485 |
|
|
static void
|
| 5486 |
|
|
stall_for_cycles (fence_t fence, int n)
|
| 5487 |
|
|
{
|
| 5488 |
|
|
int could_more;
|
| 5489 |
|
|
|
| 5490 |
|
|
could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
|
| 5491 |
|
|
while (n--)
|
| 5492 |
|
|
advance_one_cycle (fence);
|
| 5493 |
|
|
if (could_more)
|
| 5494 |
|
|
FENCE_AFTER_STALL_P (fence) = 1;
|
| 5495 |
|
|
}
|
| 5496 |
|
|
|
| 5497 |
|
|
/* Gather a parallel group of insns at FENCE and assign their seqno
|
| 5498 |
|
|
to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
|
| 5499 |
|
|
list for later recalculation of seqnos. */
|
| 5500 |
|
|
static void
|
| 5501 |
|
|
fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
|
| 5502 |
|
|
{
|
| 5503 |
|
|
blist_t bnds = NULL, *bnds_tailp;
|
| 5504 |
|
|
av_set_t av_vliw = NULL;
|
| 5505 |
|
|
insn_t insn = FENCE_INSN (fence);
|
| 5506 |
|
|
|
| 5507 |
|
|
if (sched_verbose >= 2)
|
| 5508 |
|
|
sel_print ("Starting fill_insns for insn %d, cycle %d\n",
|
| 5509 |
|
|
INSN_UID (insn), FENCE_CYCLE (fence));
|
| 5510 |
|
|
|
| 5511 |
|
|
blist_add (&bnds, insn, NULL, FENCE_DC (fence));
|
| 5512 |
|
|
bnds_tailp = &BLIST_NEXT (bnds);
|
| 5513 |
|
|
set_target_context (FENCE_TC (fence));
|
| 5514 |
|
|
can_issue_more = FENCE_ISSUE_MORE (fence);
|
| 5515 |
|
|
target_bb = INSN_BB (insn);
|
| 5516 |
|
|
|
| 5517 |
|
|
/* Do while we can add any operation to the current group. */
|
| 5518 |
|
|
do
|
| 5519 |
|
|
{
|
| 5520 |
|
|
blist_t *bnds_tailp1, *bndsp;
|
| 5521 |
|
|
expr_t expr_vliw;
|
| 5522 |
|
|
int need_stall = false;
|
| 5523 |
|
|
int was_stall = 0, scheduled_insns = 0;
|
| 5524 |
|
|
int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
|
| 5525 |
|
|
int max_stall = pipelining_p ? 1 : 3;
|
| 5526 |
|
|
bool last_insn_was_debug = false;
|
| 5527 |
|
|
bool was_debug_bb_end_p = false;
|
| 5528 |
|
|
|
| 5529 |
|
|
compute_av_set_on_boundaries (fence, bnds, &av_vliw);
|
| 5530 |
|
|
remove_insns_that_need_bookkeeping (fence, &av_vliw);
|
| 5531 |
|
|
remove_insns_for_debug (bnds, &av_vliw);
|
| 5532 |
|
|
|
| 5533 |
|
|
/* Return early if we have nothing to schedule. */
|
| 5534 |
|
|
if (av_vliw == NULL)
|
| 5535 |
|
|
break;
|
| 5536 |
|
|
|
| 5537 |
|
|
/* Choose the best expression and, if needed, destination register
|
| 5538 |
|
|
for it. */
|
| 5539 |
|
|
do
|
| 5540 |
|
|
{
|
| 5541 |
|
|
expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
|
| 5542 |
|
|
if (! expr_vliw && need_stall)
|
| 5543 |
|
|
{
|
| 5544 |
|
|
/* All expressions required a stall. Do not recompute av sets
|
| 5545 |
|
|
as we'll get the same answer (modulo the insns between
|
| 5546 |
|
|
the fence and its boundary, which will not be available for
|
| 5547 |
|
|
pipelining).
|
| 5548 |
|
|
If we are going to stall for too long, break to recompute av
|
| 5549 |
|
|
sets and bring more insns for pipelining. */
|
| 5550 |
|
|
was_stall++;
|
| 5551 |
|
|
if (need_stall <= 3)
|
| 5552 |
|
|
stall_for_cycles (fence, need_stall);
|
| 5553 |
|
|
else
|
| 5554 |
|
|
{
|
| 5555 |
|
|
stall_for_cycles (fence, 1);
|
| 5556 |
|
|
break;
|
| 5557 |
|
|
}
|
| 5558 |
|
|
}
|
| 5559 |
|
|
}
|
| 5560 |
|
|
while (! expr_vliw && need_stall);
|
| 5561 |
|
|
|
| 5562 |
|
|
/* Now either we've selected expr_vliw or we have nothing to schedule. */
|
| 5563 |
|
|
if (!expr_vliw)
|
| 5564 |
|
|
{
|
| 5565 |
|
|
av_set_clear (&av_vliw);
|
| 5566 |
|
|
break;
|
| 5567 |
|
|
}
|
| 5568 |
|
|
|
| 5569 |
|
|
bndsp = &bnds;
|
| 5570 |
|
|
bnds_tailp1 = bnds_tailp;
|
| 5571 |
|
|
|
| 5572 |
|
|
do
|
| 5573 |
|
|
/* This code will be executed only once until we'd have several
|
| 5574 |
|
|
boundaries per fence. */
|
| 5575 |
|
|
{
|
| 5576 |
|
|
bnd_t bnd = BLIST_BND (*bndsp);
|
| 5577 |
|
|
|
| 5578 |
|
|
if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
|
| 5579 |
|
|
{
|
| 5580 |
|
|
bndsp = &BLIST_NEXT (*bndsp);
|
| 5581 |
|
|
continue;
|
| 5582 |
|
|
}
|
| 5583 |
|
|
|
| 5584 |
|
|
insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
|
| 5585 |
|
|
last_insn_was_debug = DEBUG_INSN_P (insn);
|
| 5586 |
|
|
if (last_insn_was_debug)
|
| 5587 |
|
|
was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
|
| 5588 |
|
|
update_fence_and_insn (fence, insn, need_stall);
|
| 5589 |
|
|
bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
|
| 5590 |
|
|
|
| 5591 |
|
|
/* Add insn to the list of scheduled on this cycle instructions. */
|
| 5592 |
|
|
ilist_add (*scheduled_insns_tailpp, insn);
|
| 5593 |
|
|
*scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
|
| 5594 |
|
|
}
|
| 5595 |
|
|
while (*bndsp != *bnds_tailp1);
|
| 5596 |
|
|
|
| 5597 |
|
|
av_set_clear (&av_vliw);
|
| 5598 |
|
|
if (!last_insn_was_debug)
|
| 5599 |
|
|
scheduled_insns++;
|
| 5600 |
|
|
|
| 5601 |
|
|
/* We currently support information about candidate blocks only for
|
| 5602 |
|
|
one 'target_bb' block. Hence we can't schedule after jump insn,
|
| 5603 |
|
|
as this will bring two boundaries and, hence, necessity to handle
|
| 5604 |
|
|
information for two or more blocks concurrently. */
|
| 5605 |
|
|
if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
|
| 5606 |
|
|
|| (was_stall
|
| 5607 |
|
|
&& (was_stall >= max_stall
|
| 5608 |
|
|
|| scheduled_insns >= max_insns)))
|
| 5609 |
|
|
break;
|
| 5610 |
|
|
}
|
| 5611 |
|
|
while (bnds);
|
| 5612 |
|
|
|
| 5613 |
|
|
gcc_assert (!FENCE_BNDS (fence));
|
| 5614 |
|
|
|
| 5615 |
|
|
/* Update boundaries of the FENCE. */
|
| 5616 |
|
|
while (bnds)
|
| 5617 |
|
|
{
|
| 5618 |
|
|
ilist_t ptr = BND_PTR (BLIST_BND (bnds));
|
| 5619 |
|
|
|
| 5620 |
|
|
if (ptr)
|
| 5621 |
|
|
{
|
| 5622 |
|
|
insn = ILIST_INSN (ptr);
|
| 5623 |
|
|
|
| 5624 |
|
|
if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
|
| 5625 |
|
|
ilist_add (&FENCE_BNDS (fence), insn);
|
| 5626 |
|
|
}
|
| 5627 |
|
|
|
| 5628 |
|
|
blist_remove (&bnds);
|
| 5629 |
|
|
}
|
| 5630 |
|
|
|
| 5631 |
|
|
/* Update target context on the fence. */
|
| 5632 |
|
|
reset_target_context (FENCE_TC (fence), false);
|
| 5633 |
|
|
}
|
| 5634 |
|
|
|
| 5635 |
|
|
/* All exprs in ORIG_OPS must have the same destination register or memory.
|
| 5636 |
|
|
Return that destination. */
|
| 5637 |
|
|
static rtx
|
| 5638 |
|
|
get_dest_from_orig_ops (av_set_t orig_ops)
|
| 5639 |
|
|
{
|
| 5640 |
|
|
rtx dest = NULL_RTX;
|
| 5641 |
|
|
av_set_iterator av_it;
|
| 5642 |
|
|
expr_t expr;
|
| 5643 |
|
|
bool first_p = true;
|
| 5644 |
|
|
|
| 5645 |
|
|
FOR_EACH_EXPR (expr, av_it, orig_ops)
|
| 5646 |
|
|
{
|
| 5647 |
|
|
rtx x = EXPR_LHS (expr);
|
| 5648 |
|
|
|
| 5649 |
|
|
if (first_p)
|
| 5650 |
|
|
{
|
| 5651 |
|
|
first_p = false;
|
| 5652 |
|
|
dest = x;
|
| 5653 |
|
|
}
|
| 5654 |
|
|
else
|
| 5655 |
|
|
gcc_assert (dest == x
|
| 5656 |
|
|
|| (dest != NULL_RTX && x != NULL_RTX
|
| 5657 |
|
|
&& rtx_equal_p (dest, x)));
|
| 5658 |
|
|
}
|
| 5659 |
|
|
|
| 5660 |
|
|
return dest;
|
| 5661 |
|
|
}
|
| 5662 |
|
|
|
| 5663 |
|
|
/* Update data sets for the bookkeeping block and record those expressions
|
| 5664 |
|
|
which become no longer available after inserting this bookkeeping. */
|
| 5665 |
|
|
static void
|
| 5666 |
|
|
update_and_record_unavailable_insns (basic_block book_block)
|
| 5667 |
|
|
{
|
| 5668 |
|
|
av_set_iterator i;
|
| 5669 |
|
|
av_set_t old_av_set = NULL;
|
| 5670 |
|
|
expr_t cur_expr;
|
| 5671 |
|
|
rtx bb_end = sel_bb_end (book_block);
|
| 5672 |
|
|
|
| 5673 |
|
|
/* First, get correct liveness in the bookkeeping block. The problem is
|
| 5674 |
|
|
the range between the bookeeping insn and the end of block. */
|
| 5675 |
|
|
update_liveness_on_insn (bb_end);
|
| 5676 |
|
|
if (control_flow_insn_p (bb_end))
|
| 5677 |
|
|
update_liveness_on_insn (PREV_INSN (bb_end));
|
| 5678 |
|
|
|
| 5679 |
|
|
/* If there's valid av_set on BOOK_BLOCK, then there might exist another
|
| 5680 |
|
|
fence above, where we may choose to schedule an insn which is
|
| 5681 |
|
|
actually blocked from moving up with the bookkeeping we create here. */
|
| 5682 |
|
|
if (AV_SET_VALID_P (sel_bb_head (book_block)))
|
| 5683 |
|
|
{
|
| 5684 |
|
|
old_av_set = av_set_copy (BB_AV_SET (book_block));
|
| 5685 |
|
|
update_data_sets (sel_bb_head (book_block));
|
| 5686 |
|
|
|
| 5687 |
|
|
/* Traverse all the expressions in the old av_set and check whether
|
| 5688 |
|
|
CUR_EXPR is in new AV_SET. */
|
| 5689 |
|
|
FOR_EACH_EXPR (cur_expr, i, old_av_set)
|
| 5690 |
|
|
{
|
| 5691 |
|
|
expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
|
| 5692 |
|
|
EXPR_VINSN (cur_expr));
|
| 5693 |
|
|
|
| 5694 |
|
|
if (! new_expr
|
| 5695 |
|
|
/* In this case, we can just turn off the E_T_A bit, but we can't
|
| 5696 |
|
|
represent this information with the current vector. */
|
| 5697 |
|
|
|| EXPR_TARGET_AVAILABLE (new_expr)
|
| 5698 |
|
|
!= EXPR_TARGET_AVAILABLE (cur_expr))
|
| 5699 |
|
|
/* Unfortunately, the below code could be also fired up on
|
| 5700 |
|
|
separable insns.
|
| 5701 |
|
|
FIXME: add an example of how this could happen. */
|
| 5702 |
|
|
vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
|
| 5703 |
|
|
}
|
| 5704 |
|
|
|
| 5705 |
|
|
av_set_clear (&old_av_set);
|
| 5706 |
|
|
}
|
| 5707 |
|
|
}
|
| 5708 |
|
|
|
| 5709 |
|
|
/* The main effect of this function is that sparams->c_expr is merged
|
| 5710 |
|
|
with (or copied to) lparams->c_expr_merged. If there's only one successor,
|
| 5711 |
|
|
we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
|
| 5712 |
|
|
lparams->c_expr_merged is copied back to sparams->c_expr after all
|
| 5713 |
|
|
successors has been traversed. lparams->c_expr_local is an expr allocated
|
| 5714 |
|
|
on stack in the caller function, and is used if there is more than one
|
| 5715 |
|
|
successor.
|
| 5716 |
|
|
|
| 5717 |
|
|
SUCC is one of the SUCCS_NORMAL successors of INSN,
|
| 5718 |
|
|
MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
|
| 5719 |
|
|
LPARAMS and STATIC_PARAMS contain the parameters described above. */
|
| 5720 |
|
|
static void
|
| 5721 |
|
|
move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
|
| 5722 |
|
|
insn_t succ ATTRIBUTE_UNUSED,
|
| 5723 |
|
|
int moveop_drv_call_res,
|
| 5724 |
|
|
cmpd_local_params_p lparams, void *static_params)
|
| 5725 |
|
|
{
|
| 5726 |
|
|
moveop_static_params_p sparams = (moveop_static_params_p) static_params;
|
| 5727 |
|
|
|
| 5728 |
|
|
/* Nothing to do, if original expr wasn't found below. */
|
| 5729 |
|
|
if (moveop_drv_call_res != 1)
|
| 5730 |
|
|
return;
|
| 5731 |
|
|
|
| 5732 |
|
|
/* If this is a first successor. */
|
| 5733 |
|
|
if (!lparams->c_expr_merged)
|
| 5734 |
|
|
{
|
| 5735 |
|
|
lparams->c_expr_merged = sparams->c_expr;
|
| 5736 |
|
|
sparams->c_expr = lparams->c_expr_local;
|
| 5737 |
|
|
}
|
| 5738 |
|
|
else
|
| 5739 |
|
|
{
|
| 5740 |
|
|
/* We must merge all found expressions to get reasonable
|
| 5741 |
|
|
EXPR_SPEC_DONE_DS for the resulting insn. If we don't
|
| 5742 |
|
|
do so then we can first find the expr with epsilon
|
| 5743 |
|
|
speculation success probability and only then with the
|
| 5744 |
|
|
good probability. As a result the insn will get epsilon
|
| 5745 |
|
|
probability and will never be scheduled because of
|
| 5746 |
|
|
weakness_cutoff in find_best_expr.
|
| 5747 |
|
|
|
| 5748 |
|
|
We call merge_expr_data here instead of merge_expr
|
| 5749 |
|
|
because due to speculation C_EXPR and X may have the
|
| 5750 |
|
|
same insns with different speculation types. And as of
|
| 5751 |
|
|
now such insns are considered non-equal.
|
| 5752 |
|
|
|
| 5753 |
|
|
However, EXPR_SCHED_TIMES is different -- we must get
|
| 5754 |
|
|
SCHED_TIMES from a real insn, not a bookkeeping copy.
|
| 5755 |
|
|
We force this here. Instead, we may consider merging
|
| 5756 |
|
|
SCHED_TIMES to the maximum instead of minimum in the
|
| 5757 |
|
|
below function. */
|
| 5758 |
|
|
int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
|
| 5759 |
|
|
|
| 5760 |
|
|
merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
|
| 5761 |
|
|
if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
|
| 5762 |
|
|
EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
|
| 5763 |
|
|
|
| 5764 |
|
|
clear_expr (sparams->c_expr);
|
| 5765 |
|
|
}
|
| 5766 |
|
|
}
|
| 5767 |
|
|
|
| 5768 |
|
|
/* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
|
| 5769 |
|
|
|
| 5770 |
|
|
SUCC is one of the SUCCS_NORMAL successors of INSN,
|
| 5771 |
|
|
MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
|
| 5772 |
|
|
if SUCC is one of SUCCS_BACK or SUCCS_OUT.
|
| 5773 |
|
|
STATIC_PARAMS contain USED_REGS set. */
|
| 5774 |
|
|
static void
|
| 5775 |
|
|
fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
|
| 5776 |
|
|
int moveop_drv_call_res,
|
| 5777 |
|
|
cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
|
| 5778 |
|
|
void *static_params)
|
| 5779 |
|
|
{
|
| 5780 |
|
|
regset succ_live;
|
| 5781 |
|
|
fur_static_params_p sparams = (fur_static_params_p) static_params;
|
| 5782 |
|
|
|
| 5783 |
|
|
/* Here we compute live regsets only for branches that do not lie
|
| 5784 |
|
|
on the code motion paths. These branches correspond to value
|
| 5785 |
|
|
MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
|
| 5786 |
|
|
for such branches code_motion_path_driver is not called. */
|
| 5787 |
|
|
if (moveop_drv_call_res != 0)
|
| 5788 |
|
|
return;
|
| 5789 |
|
|
|
| 5790 |
|
|
/* Mark all registers that do not meet the following condition:
|
| 5791 |
|
|
(3) not live on the other path of any conditional branch
|
| 5792 |
|
|
that is passed by the operation, in case original
|
| 5793 |
|
|
operations are not present on both paths of the
|
| 5794 |
|
|
conditional branch. */
|
| 5795 |
|
|
succ_live = compute_live (succ);
|
| 5796 |
|
|
IOR_REG_SET (sparams->used_regs, succ_live);
|
| 5797 |
|
|
}
|
| 5798 |
|
|
|
| 5799 |
|
|
/* This function is called after the last successor. Copies LP->C_EXPR_MERGED
|
| 5800 |
|
|
into SP->CEXPR. */
|
| 5801 |
|
|
static void
|
| 5802 |
|
|
move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
|
| 5803 |
|
|
{
|
| 5804 |
|
|
moveop_static_params_p sp = (moveop_static_params_p) sparams;
|
| 5805 |
|
|
|
| 5806 |
|
|
sp->c_expr = lp->c_expr_merged;
|
| 5807 |
|
|
}
|
| 5808 |
|
|
|
| 5809 |
|
|
/* Track bookkeeping copies created, insns scheduled, and blocks for
|
| 5810 |
|
|
rescheduling when INSN is found by move_op. */
|
| 5811 |
|
|
static void
|
| 5812 |
|
|
track_scheduled_insns_and_blocks (rtx insn)
|
| 5813 |
|
|
{
|
| 5814 |
|
|
/* Even if this insn can be a copy that will be removed during current move_op,
|
| 5815 |
|
|
we still need to count it as an originator. */
|
| 5816 |
|
|
bitmap_set_bit (current_originators, INSN_UID (insn));
|
| 5817 |
|
|
|
| 5818 |
|
|
if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
|
| 5819 |
|
|
{
|
| 5820 |
|
|
/* Note that original block needs to be rescheduled, as we pulled an
|
| 5821 |
|
|
instruction out of it. */
|
| 5822 |
|
|
if (INSN_SCHED_TIMES (insn) > 0)
|
| 5823 |
|
|
bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
|
| 5824 |
|
|
else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
|
| 5825 |
|
|
num_insns_scheduled++;
|
| 5826 |
|
|
}
|
| 5827 |
|
|
|
| 5828 |
|
|
/* For instructions we must immediately remove insn from the
|
| 5829 |
|
|
stream, so subsequent update_data_sets () won't include this
|
| 5830 |
|
|
insn into av_set.
|
| 5831 |
|
|
For expr we must make insn look like "INSN_REG (insn) := c_expr". */
|
| 5832 |
|
|
if (INSN_UID (insn) > max_uid_before_move_op)
|
| 5833 |
|
|
stat_bookkeeping_copies--;
|
| 5834 |
|
|
}
|
| 5835 |
|
|
|
| 5836 |
|
|
/* Emit a register-register copy for INSN if needed. Return true if
|
| 5837 |
|
|
emitted one. PARAMS is the move_op static parameters. */
|
| 5838 |
|
|
static bool
|
| 5839 |
|
|
maybe_emit_renaming_copy (rtx insn,
|
| 5840 |
|
|
moveop_static_params_p params)
|
| 5841 |
|
|
{
|
| 5842 |
|
|
bool insn_emitted = false;
|
| 5843 |
|
|
rtx cur_reg;
|
| 5844 |
|
|
|
| 5845 |
|
|
/* Bail out early when expression can not be renamed at all. */
|
| 5846 |
|
|
if (!EXPR_SEPARABLE_P (params->c_expr))
|
| 5847 |
|
|
return false;
|
| 5848 |
|
|
|
| 5849 |
|
|
cur_reg = expr_dest_reg (params->c_expr);
|
| 5850 |
|
|
gcc_assert (cur_reg && params->dest && REG_P (params->dest));
|
| 5851 |
|
|
|
| 5852 |
|
|
/* If original operation has expr and the register chosen for
|
| 5853 |
|
|
that expr is not original operation's dest reg, substitute
|
| 5854 |
|
|
operation's right hand side with the register chosen. */
|
| 5855 |
|
|
if (REGNO (params->dest) != REGNO (cur_reg))
|
| 5856 |
|
|
{
|
| 5857 |
|
|
insn_t reg_move_insn, reg_move_insn_rtx;
|
| 5858 |
|
|
|
| 5859 |
|
|
reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
|
| 5860 |
|
|
params->dest);
|
| 5861 |
|
|
reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
|
| 5862 |
|
|
INSN_EXPR (insn),
|
| 5863 |
|
|
INSN_SEQNO (insn),
|
| 5864 |
|
|
insn);
|
| 5865 |
|
|
EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
|
| 5866 |
|
|
replace_dest_with_reg_in_expr (params->c_expr, params->dest);
|
| 5867 |
|
|
|
| 5868 |
|
|
insn_emitted = true;
|
| 5869 |
|
|
params->was_renamed = true;
|
| 5870 |
|
|
}
|
| 5871 |
|
|
|
| 5872 |
|
|
return insn_emitted;
|
| 5873 |
|
|
}
|
| 5874 |
|
|
|
| 5875 |
|
|
/* Emit a speculative check for INSN speculated as EXPR if needed.
|
| 5876 |
|
|
Return true if we've emitted one. PARAMS is the move_op static
|
| 5877 |
|
|
parameters. */
|
| 5878 |
|
|
static bool
|
| 5879 |
|
|
maybe_emit_speculative_check (rtx insn, expr_t expr,
|
| 5880 |
|
|
moveop_static_params_p params)
|
| 5881 |
|
|
{
|
| 5882 |
|
|
bool insn_emitted = false;
|
| 5883 |
|
|
insn_t x;
|
| 5884 |
|
|
ds_t check_ds;
|
| 5885 |
|
|
|
| 5886 |
|
|
check_ds = get_spec_check_type_for_insn (insn, expr);
|
| 5887 |
|
|
if (check_ds != 0)
|
| 5888 |
|
|
{
|
| 5889 |
|
|
/* A speculation check should be inserted. */
|
| 5890 |
|
|
x = create_speculation_check (params->c_expr, check_ds, insn);
|
| 5891 |
|
|
insn_emitted = true;
|
| 5892 |
|
|
}
|
| 5893 |
|
|
else
|
| 5894 |
|
|
{
|
| 5895 |
|
|
EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
|
| 5896 |
|
|
x = insn;
|
| 5897 |
|
|
}
|
| 5898 |
|
|
|
| 5899 |
|
|
gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
|
| 5900 |
|
|
&& EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
|
| 5901 |
|
|
return insn_emitted;
|
| 5902 |
|
|
}
|
| 5903 |
|
|
|
| 5904 |
|
|
/* Handle transformations that leave an insn in place of original
|
| 5905 |
|
|
insn such as renaming/speculation. Return true if one of such
|
| 5906 |
|
|
transformations actually happened, and we have emitted this insn. */
|
| 5907 |
|
|
static bool
|
| 5908 |
|
|
handle_emitting_transformations (rtx insn, expr_t expr,
|
| 5909 |
|
|
moveop_static_params_p params)
|
| 5910 |
|
|
{
|
| 5911 |
|
|
bool insn_emitted = false;
|
| 5912 |
|
|
|
| 5913 |
|
|
insn_emitted = maybe_emit_renaming_copy (insn, params);
|
| 5914 |
|
|
insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
|
| 5915 |
|
|
|
| 5916 |
|
|
return insn_emitted;
|
| 5917 |
|
|
}
|
| 5918 |
|
|
|
| 5919 |
|
|
/* If INSN is the only insn in the basic block (not counting JUMP,
|
| 5920 |
|
|
which may be a jump to next insn, and DEBUG_INSNs), we want to
|
| 5921 |
|
|
leave a NOP there till the return to fill_insns. */
|
| 5922 |
|
|
|
| 5923 |
|
|
static bool
|
| 5924 |
|
|
need_nop_to_preserve_insn_bb (rtx insn)
|
| 5925 |
|
|
{
|
| 5926 |
|
|
insn_t bb_head, bb_end, bb_next, in_next;
|
| 5927 |
|
|
basic_block bb = BLOCK_FOR_INSN (insn);
|
| 5928 |
|
|
|
| 5929 |
|
|
bb_head = sel_bb_head (bb);
|
| 5930 |
|
|
bb_end = sel_bb_end (bb);
|
| 5931 |
|
|
|
| 5932 |
|
|
if (bb_head == bb_end)
|
| 5933 |
|
|
return true;
|
| 5934 |
|
|
|
| 5935 |
|
|
while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
|
| 5936 |
|
|
bb_head = NEXT_INSN (bb_head);
|
| 5937 |
|
|
|
| 5938 |
|
|
if (bb_head == bb_end)
|
| 5939 |
|
|
return true;
|
| 5940 |
|
|
|
| 5941 |
|
|
while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
|
| 5942 |
|
|
bb_end = PREV_INSN (bb_end);
|
| 5943 |
|
|
|
| 5944 |
|
|
if (bb_head == bb_end)
|
| 5945 |
|
|
return true;
|
| 5946 |
|
|
|
| 5947 |
|
|
bb_next = NEXT_INSN (bb_head);
|
| 5948 |
|
|
while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
|
| 5949 |
|
|
bb_next = NEXT_INSN (bb_next);
|
| 5950 |
|
|
|
| 5951 |
|
|
if (bb_next == bb_end && JUMP_P (bb_end))
|
| 5952 |
|
|
return true;
|
| 5953 |
|
|
|
| 5954 |
|
|
in_next = NEXT_INSN (insn);
|
| 5955 |
|
|
while (DEBUG_INSN_P (in_next))
|
| 5956 |
|
|
in_next = NEXT_INSN (in_next);
|
| 5957 |
|
|
|
| 5958 |
|
|
if (IN_CURRENT_FENCE_P (in_next))
|
| 5959 |
|
|
return true;
|
| 5960 |
|
|
|
| 5961 |
|
|
return false;
|
| 5962 |
|
|
}
|
| 5963 |
|
|
|
| 5964 |
|
|
/* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
|
| 5965 |
|
|
is not removed but reused when INSN is re-emitted. */
|
| 5966 |
|
|
static void
|
| 5967 |
|
|
remove_insn_from_stream (rtx insn, bool only_disconnect)
|
| 5968 |
|
|
{
|
| 5969 |
|
|
/* If there's only one insn in the BB, make sure that a nop is
|
| 5970 |
|
|
inserted into it, so the basic block won't disappear when we'll
|
| 5971 |
|
|
delete INSN below with sel_remove_insn. It should also survive
|
| 5972 |
|
|
till the return to fill_insns. */
|
| 5973 |
|
|
if (need_nop_to_preserve_insn_bb (insn))
|
| 5974 |
|
|
{
|
| 5975 |
|
|
insn_t nop = get_nop_from_pool (insn);
|
| 5976 |
|
|
gcc_assert (INSN_NOP_P (nop));
|
| 5977 |
|
|
VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
|
| 5978 |
|
|
}
|
| 5979 |
|
|
|
| 5980 |
|
|
sel_remove_insn (insn, only_disconnect, false);
|
| 5981 |
|
|
}
|
| 5982 |
|
|
|
| 5983 |
|
|
/* This function is called when original expr is found.
|
| 5984 |
|
|
INSN - current insn traversed, EXPR - the corresponding expr found.
|
| 5985 |
|
|
LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
|
| 5986 |
|
|
is static parameters of move_op. */
|
| 5987 |
|
|
static void
|
| 5988 |
|
|
move_op_orig_expr_found (insn_t insn, expr_t expr,
|
| 5989 |
|
|
cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
|
| 5990 |
|
|
void *static_params)
|
| 5991 |
|
|
{
|
| 5992 |
|
|
bool only_disconnect, insn_emitted;
|
| 5993 |
|
|
moveop_static_params_p params = (moveop_static_params_p) static_params;
|
| 5994 |
|
|
|
| 5995 |
|
|
copy_expr_onside (params->c_expr, INSN_EXPR (insn));
|
| 5996 |
|
|
track_scheduled_insns_and_blocks (insn);
|
| 5997 |
|
|
insn_emitted = handle_emitting_transformations (insn, expr, params);
|
| 5998 |
|
|
only_disconnect = (params->uid == INSN_UID (insn)
|
| 5999 |
|
|
&& ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
|
| 6000 |
|
|
|
| 6001 |
|
|
/* Mark that we've disconnected an insn. */
|
| 6002 |
|
|
if (only_disconnect)
|
| 6003 |
|
|
params->uid = -1;
|
| 6004 |
|
|
remove_insn_from_stream (insn, only_disconnect);
|
| 6005 |
|
|
}
|
| 6006 |
|
|
|
| 6007 |
|
|
/* The function is called when original expr is found.
|
| 6008 |
|
|
INSN - current insn traversed, EXPR - the corresponding expr found,
|
| 6009 |
|
|
crosses_call and original_insns in STATIC_PARAMS are updated. */
|
| 6010 |
|
|
static void
|
| 6011 |
|
|
fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
|
| 6012 |
|
|
cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
|
| 6013 |
|
|
void *static_params)
|
| 6014 |
|
|
{
|
| 6015 |
|
|
fur_static_params_p params = (fur_static_params_p) static_params;
|
| 6016 |
|
|
regset tmp;
|
| 6017 |
|
|
|
| 6018 |
|
|
if (CALL_P (insn))
|
| 6019 |
|
|
params->crosses_call = true;
|
| 6020 |
|
|
|
| 6021 |
|
|
def_list_add (params->original_insns, insn, params->crosses_call);
|
| 6022 |
|
|
|
| 6023 |
|
|
/* Mark the registers that do not meet the following condition:
|
| 6024 |
|
|
(2) not among the live registers of the point
|
| 6025 |
|
|
immediately following the first original operation on
|
| 6026 |
|
|
a given downward path, except for the original target
|
| 6027 |
|
|
register of the operation. */
|
| 6028 |
|
|
tmp = get_clear_regset_from_pool ();
|
| 6029 |
|
|
compute_live_below_insn (insn, tmp);
|
| 6030 |
|
|
AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
|
| 6031 |
|
|
AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
|
| 6032 |
|
|
IOR_REG_SET (params->used_regs, tmp);
|
| 6033 |
|
|
return_regset_to_pool (tmp);
|
| 6034 |
|
|
|
| 6035 |
|
|
/* (*1) We need to add to USED_REGS registers that are read by
|
| 6036 |
|
|
INSN's lhs. This may lead to choosing wrong src register.
|
| 6037 |
|
|
E.g. (scheduling const expr enabled):
|
| 6038 |
|
|
|
| 6039 |
|
|
429: ax=0x0 <- Can't use AX for this expr (0x0)
|
| 6040 |
|
|
433: dx=[bp-0x18]
|
| 6041 |
|
|
427: [ax+dx+0x1]=ax
|
| 6042 |
|
|
REG_DEAD: ax
|
| 6043 |
|
|
168: di=dx
|
| 6044 |
|
|
REG_DEAD: dx
|
| 6045 |
|
|
*/
|
| 6046 |
|
|
/* FIXME: see comment above and enable MEM_P
|
| 6047 |
|
|
in vinsn_separable_p. */
|
| 6048 |
|
|
gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
|
| 6049 |
|
|
|| !MEM_P (INSN_LHS (insn)));
|
| 6050 |
|
|
}
|
| 6051 |
|
|
|
| 6052 |
|
|
/* This function is called on the ascending pass, before returning from
|
| 6053 |
|
|
current basic block. */
|
| 6054 |
|
|
static void
|
| 6055 |
|
|
move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
|
| 6056 |
|
|
void *static_params)
|
| 6057 |
|
|
{
|
| 6058 |
|
|
moveop_static_params_p sparams = (moveop_static_params_p) static_params;
|
| 6059 |
|
|
basic_block book_block = NULL;
|
| 6060 |
|
|
|
| 6061 |
|
|
/* When we have removed the boundary insn for scheduling, which also
|
| 6062 |
|
|
happened to be the end insn in its bb, we don't need to update sets. */
|
| 6063 |
|
|
if (!lparams->removed_last_insn
|
| 6064 |
|
|
&& lparams->e1
|
| 6065 |
|
|
&& sel_bb_head_p (insn))
|
| 6066 |
|
|
{
|
| 6067 |
|
|
/* We should generate bookkeeping code only if we are not at the
|
| 6068 |
|
|
top level of the move_op. */
|
| 6069 |
|
|
if (sel_num_cfg_preds_gt_1 (insn))
|
| 6070 |
|
|
book_block = generate_bookkeeping_insn (sparams->c_expr,
|
| 6071 |
|
|
lparams->e1, lparams->e2);
|
| 6072 |
|
|
/* Update data sets for the current insn. */
|
| 6073 |
|
|
update_data_sets (insn);
|
| 6074 |
|
|
}
|
| 6075 |
|
|
|
| 6076 |
|
|
/* If bookkeeping code was inserted, we need to update av sets of basic
|
| 6077 |
|
|
block that received bookkeeping. After generation of bookkeeping insn,
|
| 6078 |
|
|
bookkeeping block does not contain valid av set because we are not following
|
| 6079 |
|
|
the original algorithm in every detail with regards to e.g. renaming
|
| 6080 |
|
|
simple reg-reg copies. Consider example:
|
| 6081 |
|
|
|
| 6082 |
|
|
bookkeeping block scheduling fence
|
| 6083 |
|
|
\ /
|
| 6084 |
|
|
\ join /
|
| 6085 |
|
|
----------
|
| 6086 |
|
|
| |
|
| 6087 |
|
|
----------
|
| 6088 |
|
|
/ \
|
| 6089 |
|
|
/ \
|
| 6090 |
|
|
r1 := r2 r1 := r3
|
| 6091 |
|
|
|
| 6092 |
|
|
We try to schedule insn "r1 := r3" on the current
|
| 6093 |
|
|
scheduling fence. Also, note that av set of bookkeeping block
|
| 6094 |
|
|
contain both insns "r1 := r2" and "r1 := r3". When the insn has
|
| 6095 |
|
|
been scheduled, the CFG is as follows:
|
| 6096 |
|
|
|
| 6097 |
|
|
r1 := r3 r1 := r3
|
| 6098 |
|
|
bookkeeping block scheduling fence
|
| 6099 |
|
|
\ /
|
| 6100 |
|
|
\ join /
|
| 6101 |
|
|
----------
|
| 6102 |
|
|
| |
|
| 6103 |
|
|
----------
|
| 6104 |
|
|
/ \
|
| 6105 |
|
|
/ \
|
| 6106 |
|
|
r1 := r2
|
| 6107 |
|
|
|
| 6108 |
|
|
Here, insn "r1 := r3" was scheduled at the current scheduling point
|
| 6109 |
|
|
and bookkeeping code was generated at the bookeeping block. This
|
| 6110 |
|
|
way insn "r1 := r2" is no longer available as a whole instruction
|
| 6111 |
|
|
(but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
|
| 6112 |
|
|
This situation is handled by calling update_data_sets.
|
| 6113 |
|
|
|
| 6114 |
|
|
Since update_data_sets is called only on the bookkeeping block, and
|
| 6115 |
|
|
it also may have predecessors with av_sets, containing instructions that
|
| 6116 |
|
|
are no longer available, we save all such expressions that become
|
| 6117 |
|
|
unavailable during data sets update on the bookkeeping block in
|
| 6118 |
|
|
VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
|
| 6119 |
|
|
expressions for scheduling. This allows us to avoid recomputation of
|
| 6120 |
|
|
av_sets outside the code motion path. */
|
| 6121 |
|
|
|
| 6122 |
|
|
if (book_block)
|
| 6123 |
|
|
update_and_record_unavailable_insns (book_block);
|
| 6124 |
|
|
|
| 6125 |
|
|
/* If INSN was previously marked for deletion, it's time to do it. */
|
| 6126 |
|
|
if (lparams->removed_last_insn)
|
| 6127 |
|
|
insn = PREV_INSN (insn);
|
| 6128 |
|
|
|
| 6129 |
|
|
/* Do not tidy control flow at the topmost moveop, as we can erroneously
|
| 6130 |
|
|
kill a block with a single nop in which the insn should be emitted. */
|
| 6131 |
|
|
if (lparams->e1)
|
| 6132 |
|
|
tidy_control_flow (BLOCK_FOR_INSN (insn), true);
|
| 6133 |
|
|
}
|
| 6134 |
|
|
|
| 6135 |
|
|
/* This function is called on the ascending pass, before returning from the
|
| 6136 |
|
|
current basic block. */
|
| 6137 |
|
|
static void
|
| 6138 |
|
|
fur_at_first_insn (insn_t insn,
|
| 6139 |
|
|
cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
|
| 6140 |
|
|
void *static_params ATTRIBUTE_UNUSED)
|
| 6141 |
|
|
{
|
| 6142 |
|
|
gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
|
| 6143 |
|
|
|| AV_LEVEL (insn) == -1);
|
| 6144 |
|
|
}
|
| 6145 |
|
|
|
| 6146 |
|
|
/* Called on the backward stage of recursion to call moveup_expr for insn
|
| 6147 |
|
|
and sparams->c_expr. */
|
| 6148 |
|
|
static void
|
| 6149 |
|
|
move_op_ascend (insn_t insn, void *static_params)
|
| 6150 |
|
|
{
|
| 6151 |
|
|
enum MOVEUP_EXPR_CODE res;
|
| 6152 |
|
|
moveop_static_params_p sparams = (moveop_static_params_p) static_params;
|
| 6153 |
|
|
|
| 6154 |
|
|
if (! INSN_NOP_P (insn))
|
| 6155 |
|
|
{
|
| 6156 |
|
|
res = moveup_expr_cached (sparams->c_expr, insn, false);
|
| 6157 |
|
|
gcc_assert (res != MOVEUP_EXPR_NULL);
|
| 6158 |
|
|
}
|
| 6159 |
|
|
|
| 6160 |
|
|
/* Update liveness for this insn as it was invalidated. */
|
| 6161 |
|
|
update_liveness_on_insn (insn);
|
| 6162 |
|
|
}
|
| 6163 |
|
|
|
| 6164 |
|
|
/* This function is called on enter to the basic block.
|
| 6165 |
|
|
Returns TRUE if this block already have been visited and
|
| 6166 |
|
|
code_motion_path_driver should return 1, FALSE otherwise. */
|
| 6167 |
|
|
static int
|
| 6168 |
|
|
fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
|
| 6169 |
|
|
void *static_params, bool visited_p)
|
| 6170 |
|
|
{
|
| 6171 |
|
|
fur_static_params_p sparams = (fur_static_params_p) static_params;
|
| 6172 |
|
|
|
| 6173 |
|
|
if (visited_p)
|
| 6174 |
|
|
{
|
| 6175 |
|
|
/* If we have found something below this block, there should be at
|
| 6176 |
|
|
least one insn in ORIGINAL_INSNS. */
|
| 6177 |
|
|
gcc_assert (*sparams->original_insns);
|
| 6178 |
|
|
|
| 6179 |
|
|
/* Adjust CROSSES_CALL, since we may have come to this block along
|
| 6180 |
|
|
different path. */
|
| 6181 |
|
|
DEF_LIST_DEF (*sparams->original_insns)->crosses_call
|
| 6182 |
|
|
|= sparams->crosses_call;
|
| 6183 |
|
|
}
|
| 6184 |
|
|
else
|
| 6185 |
|
|
local_params->old_original_insns = *sparams->original_insns;
|
| 6186 |
|
|
|
| 6187 |
|
|
return 1;
|
| 6188 |
|
|
}
|
| 6189 |
|
|
|
| 6190 |
|
|
/* Same as above but for move_op. */
|
| 6191 |
|
|
static int
|
| 6192 |
|
|
move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
|
| 6193 |
|
|
cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
|
| 6194 |
|
|
void *static_params ATTRIBUTE_UNUSED, bool visited_p)
|
| 6195 |
|
|
{
|
| 6196 |
|
|
if (visited_p)
|
| 6197 |
|
|
return -1;
|
| 6198 |
|
|
return 1;
|
| 6199 |
|
|
}
|
| 6200 |
|
|
|
| 6201 |
|
|
/* This function is called while descending current basic block if current
|
| 6202 |
|
|
insn is not the original EXPR we're searching for.
|
| 6203 |
|
|
|
| 6204 |
|
|
Return value: FALSE, if code_motion_path_driver should perform a local
|
| 6205 |
|
|
cleanup and return 0 itself;
|
| 6206 |
|
|
TRUE, if code_motion_path_driver should continue. */
|
| 6207 |
|
|
static bool
|
| 6208 |
|
|
move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
|
| 6209 |
|
|
void *static_params)
|
| 6210 |
|
|
{
|
| 6211 |
|
|
moveop_static_params_p sparams = (moveop_static_params_p) static_params;
|
| 6212 |
|
|
|
| 6213 |
|
|
#ifdef ENABLE_CHECKING
|
| 6214 |
|
|
sparams->failed_insn = insn;
|
| 6215 |
|
|
#endif
|
| 6216 |
|
|
|
| 6217 |
|
|
/* If we're scheduling separate expr, in order to generate correct code
|
| 6218 |
|
|
we need to stop the search at bookkeeping code generated with the
|
| 6219 |
|
|
same destination register or memory. */
|
| 6220 |
|
|
if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
|
| 6221 |
|
|
return false;
|
| 6222 |
|
|
return true;
|
| 6223 |
|
|
}
|
| 6224 |
|
|
|
| 6225 |
|
|
/* This function is called while descending current basic block if current
|
| 6226 |
|
|
insn is not the original EXPR we're searching for.
|
| 6227 |
|
|
|
| 6228 |
|
|
Return value: TRUE (code_motion_path_driver should continue). */
|
| 6229 |
|
|
static bool
|
| 6230 |
|
|
fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
|
| 6231 |
|
|
{
|
| 6232 |
|
|
bool mutexed;
|
| 6233 |
|
|
expr_t r;
|
| 6234 |
|
|
av_set_iterator avi;
|
| 6235 |
|
|
fur_static_params_p sparams = (fur_static_params_p) static_params;
|
| 6236 |
|
|
|
| 6237 |
|
|
if (CALL_P (insn))
|
| 6238 |
|
|
sparams->crosses_call = true;
|
| 6239 |
|
|
else if (DEBUG_INSN_P (insn))
|
| 6240 |
|
|
return true;
|
| 6241 |
|
|
|
| 6242 |
|
|
/* If current insn we are looking at cannot be executed together
|
| 6243 |
|
|
with original insn, then we can skip it safely.
|
| 6244 |
|
|
|
| 6245 |
|
|
Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
|
| 6246 |
|
|
INSN = (!p6) r14 = r14 + 1;
|
| 6247 |
|
|
|
| 6248 |
|
|
Here we can schedule ORIG_OP with lhs = r14, though only
|
| 6249 |
|
|
looking at the set of used and set registers of INSN we must
|
| 6250 |
|
|
forbid it. So, add set/used in INSN registers to the
|
| 6251 |
|
|
untouchable set only if there is an insn in ORIG_OPS that can
|
| 6252 |
|
|
affect INSN. */
|
| 6253 |
|
|
mutexed = true;
|
| 6254 |
|
|
FOR_EACH_EXPR (r, avi, orig_ops)
|
| 6255 |
|
|
if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
|
| 6256 |
|
|
{
|
| 6257 |
|
|
mutexed = false;
|
| 6258 |
|
|
break;
|
| 6259 |
|
|
}
|
| 6260 |
|
|
|
| 6261 |
|
|
/* Mark all registers that do not meet the following condition:
|
| 6262 |
|
|
(1) Not set or read on any path from xi to an instance of the
|
| 6263 |
|
|
original operation. */
|
| 6264 |
|
|
if (!mutexed)
|
| 6265 |
|
|
{
|
| 6266 |
|
|
IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
|
| 6267 |
|
|
IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
|
| 6268 |
|
|
IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
|
| 6269 |
|
|
}
|
| 6270 |
|
|
|
| 6271 |
|
|
return true;
|
| 6272 |
|
|
}
|
| 6273 |
|
|
|
| 6274 |
|
|
/* Hooks and data to perform move_op operations with code_motion_path_driver. */
|
| 6275 |
|
|
struct code_motion_path_driver_info_def move_op_hooks = {
|
| 6276 |
|
|
move_op_on_enter,
|
| 6277 |
|
|
move_op_orig_expr_found,
|
| 6278 |
|
|
move_op_orig_expr_not_found,
|
| 6279 |
|
|
move_op_merge_succs,
|
| 6280 |
|
|
move_op_after_merge_succs,
|
| 6281 |
|
|
move_op_ascend,
|
| 6282 |
|
|
move_op_at_first_insn,
|
| 6283 |
|
|
SUCCS_NORMAL,
|
| 6284 |
|
|
"move_op"
|
| 6285 |
|
|
};
|
| 6286 |
|
|
|
| 6287 |
|
|
/* Hooks and data to perform find_used_regs operations
|
| 6288 |
|
|
with code_motion_path_driver. */
|
| 6289 |
|
|
struct code_motion_path_driver_info_def fur_hooks = {
|
| 6290 |
|
|
fur_on_enter,
|
| 6291 |
|
|
fur_orig_expr_found,
|
| 6292 |
|
|
fur_orig_expr_not_found,
|
| 6293 |
|
|
fur_merge_succs,
|
| 6294 |
|
|
NULL, /* fur_after_merge_succs */
|
| 6295 |
|
|
NULL, /* fur_ascend */
|
| 6296 |
|
|
fur_at_first_insn,
|
| 6297 |
|
|
SUCCS_ALL,
|
| 6298 |
|
|
"find_used_regs"
|
| 6299 |
|
|
};
|
| 6300 |
|
|
|
| 6301 |
|
|
/* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
|
| 6302 |
|
|
code_motion_path_driver is called recursively. Original operation
|
| 6303 |
|
|
was found at least on one path that is starting with one of INSN's
|
| 6304 |
|
|
successors (this fact is asserted). ORIG_OPS is expressions we're looking
|
| 6305 |
|
|
for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
|
| 6306 |
|
|
of either move_op or find_used_regs depending on the caller.
|
| 6307 |
|
|
|
| 6308 |
|
|
Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
|
| 6309 |
|
|
know for sure at this point. */
|
| 6310 |
|
|
static int
|
| 6311 |
|
|
code_motion_process_successors (insn_t insn, av_set_t orig_ops,
|
| 6312 |
|
|
ilist_t path, void *static_params)
|
| 6313 |
|
|
{
|
| 6314 |
|
|
int res = 0;
|
| 6315 |
|
|
succ_iterator succ_i;
|
| 6316 |
|
|
rtx succ;
|
| 6317 |
|
|
basic_block bb;
|
| 6318 |
|
|
int old_index;
|
| 6319 |
|
|
unsigned old_succs;
|
| 6320 |
|
|
|
| 6321 |
|
|
struct cmpd_local_params lparams;
|
| 6322 |
|
|
expr_def _x;
|
| 6323 |
|
|
|
| 6324 |
|
|
lparams.c_expr_local = &_x;
|
| 6325 |
|
|
lparams.c_expr_merged = NULL;
|
| 6326 |
|
|
|
| 6327 |
|
|
/* We need to process only NORMAL succs for move_op, and collect live
|
| 6328 |
|
|
registers from ALL branches (including those leading out of the
|
| 6329 |
|
|
region) for find_used_regs.
|
| 6330 |
|
|
|
| 6331 |
|
|
In move_op, there can be a case when insn's bb number has changed
|
| 6332 |
|
|
due to created bookkeeping. This happens very rare, as we need to
|
| 6333 |
|
|
move expression from the beginning to the end of the same block.
|
| 6334 |
|
|
Rescan successors in this case. */
|
| 6335 |
|
|
|
| 6336 |
|
|
rescan:
|
| 6337 |
|
|
bb = BLOCK_FOR_INSN (insn);
|
| 6338 |
|
|
old_index = bb->index;
|
| 6339 |
|
|
old_succs = EDGE_COUNT (bb->succs);
|
| 6340 |
|
|
|
| 6341 |
|
|
FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
|
| 6342 |
|
|
{
|
| 6343 |
|
|
int b;
|
| 6344 |
|
|
|
| 6345 |
|
|
lparams.e1 = succ_i.e1;
|
| 6346 |
|
|
lparams.e2 = succ_i.e2;
|
| 6347 |
|
|
|
| 6348 |
|
|
/* Go deep into recursion only for NORMAL edges (non-backedges within the
|
| 6349 |
|
|
current region). */
|
| 6350 |
|
|
if (succ_i.current_flags == SUCCS_NORMAL)
|
| 6351 |
|
|
b = code_motion_path_driver (succ, orig_ops, path, &lparams,
|
| 6352 |
|
|
static_params);
|
| 6353 |
|
|
else
|
| 6354 |
|
|
b = 0;
|
| 6355 |
|
|
|
| 6356 |
|
|
/* Merge c_expres found or unify live register sets from different
|
| 6357 |
|
|
successors. */
|
| 6358 |
|
|
code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
|
| 6359 |
|
|
static_params);
|
| 6360 |
|
|
if (b == 1)
|
| 6361 |
|
|
res = b;
|
| 6362 |
|
|
else if (b == -1 && res != 1)
|
| 6363 |
|
|
res = b;
|
| 6364 |
|
|
|
| 6365 |
|
|
/* We have simplified the control flow below this point. In this case,
|
| 6366 |
|
|
the iterator becomes invalid. We need to try again. */
|
| 6367 |
|
|
if (BLOCK_FOR_INSN (insn)->index != old_index
|
| 6368 |
|
|
|| EDGE_COUNT (bb->succs) != old_succs)
|
| 6369 |
|
|
{
|
| 6370 |
|
|
insn = sel_bb_end (BLOCK_FOR_INSN (insn));
|
| 6371 |
|
|
goto rescan;
|
| 6372 |
|
|
}
|
| 6373 |
|
|
}
|
| 6374 |
|
|
|
| 6375 |
|
|
#ifdef ENABLE_CHECKING
|
| 6376 |
|
|
/* Here, RES==1 if original expr was found at least for one of the
|
| 6377 |
|
|
successors. After the loop, RES may happen to have zero value
|
| 6378 |
|
|
only if at some point the expr searched is present in av_set, but is
|
| 6379 |
|
|
not found below. In most cases, this situation is an error.
|
| 6380 |
|
|
The exception is when the original operation is blocked by
|
| 6381 |
|
|
bookkeeping generated for another fence or for another path in current
|
| 6382 |
|
|
move_op. */
|
| 6383 |
|
|
gcc_assert (res == 1
|
| 6384 |
|
|
|| (res == 0
|
| 6385 |
|
|
&& av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
|
| 6386 |
|
|
static_params))
|
| 6387 |
|
|
|| res == -1);
|
| 6388 |
|
|
#endif
|
| 6389 |
|
|
|
| 6390 |
|
|
/* Merge data, clean up, etc. */
|
| 6391 |
|
|
if (res != -1 && code_motion_path_driver_info->after_merge_succs)
|
| 6392 |
|
|
code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
|
| 6393 |
|
|
|
| 6394 |
|
|
return res;
|
| 6395 |
|
|
}
|
| 6396 |
|
|
|
| 6397 |
|
|
|
| 6398 |
|
|
/* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
|
| 6399 |
|
|
is the pointer to the av set with expressions we were looking for,
|
| 6400 |
|
|
PATH_P is the pointer to the traversed path. */
|
| 6401 |
|
|
static inline void
|
| 6402 |
|
|
code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
|
| 6403 |
|
|
{
|
| 6404 |
|
|
ilist_remove (path_p);
|
| 6405 |
|
|
av_set_clear (orig_ops_p);
|
| 6406 |
|
|
}
|
| 6407 |
|
|
|
| 6408 |
|
|
/* The driver function that implements move_op or find_used_regs
|
| 6409 |
|
|
functionality dependent whether code_motion_path_driver_INFO is set to
|
| 6410 |
|
|
&MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
|
| 6411 |
|
|
of code (CFG traversal etc) that are shared among both functions. INSN
|
| 6412 |
|
|
is the insn we're starting the search from, ORIG_OPS are the expressions
|
| 6413 |
|
|
we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
|
| 6414 |
|
|
parameters of the driver, and STATIC_PARAMS are static parameters of
|
| 6415 |
|
|
the caller.
|
| 6416 |
|
|
|
| 6417 |
|
|
Returns whether original instructions were found. Note that top-level
|
| 6418 |
|
|
code_motion_path_driver always returns true. */
|
| 6419 |
|
|
static int
|
| 6420 |
|
|
code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
|
| 6421 |
|
|
cmpd_local_params_p local_params_in,
|
| 6422 |
|
|
void *static_params)
|
| 6423 |
|
|
{
|
| 6424 |
|
|
expr_t expr = NULL;
|
| 6425 |
|
|
basic_block bb = BLOCK_FOR_INSN (insn);
|
| 6426 |
|
|
insn_t first_insn, bb_tail, before_first;
|
| 6427 |
|
|
bool removed_last_insn = false;
|
| 6428 |
|
|
|
| 6429 |
|
|
if (sched_verbose >= 6)
|
| 6430 |
|
|
{
|
| 6431 |
|
|
sel_print ("%s (", code_motion_path_driver_info->routine_name);
|
| 6432 |
|
|
dump_insn (insn);
|
| 6433 |
|
|
sel_print (",");
|
| 6434 |
|
|
dump_av_set (orig_ops);
|
| 6435 |
|
|
sel_print (")\n");
|
| 6436 |
|
|
}
|
| 6437 |
|
|
|
| 6438 |
|
|
gcc_assert (orig_ops);
|
| 6439 |
|
|
|
| 6440 |
|
|
/* If no original operations exist below this insn, return immediately. */
|
| 6441 |
|
|
if (is_ineligible_successor (insn, path))
|
| 6442 |
|
|
{
|
| 6443 |
|
|
if (sched_verbose >= 6)
|
| 6444 |
|
|
sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
|
| 6445 |
|
|
return false;
|
| 6446 |
|
|
}
|
| 6447 |
|
|
|
| 6448 |
|
|
/* The block can have invalid av set, in which case it was created earlier
|
| 6449 |
|
|
during move_op. Return immediately. */
|
| 6450 |
|
|
if (sel_bb_head_p (insn))
|
| 6451 |
|
|
{
|
| 6452 |
|
|
if (! AV_SET_VALID_P (insn))
|
| 6453 |
|
|
{
|
| 6454 |
|
|
if (sched_verbose >= 6)
|
| 6455 |
|
|
sel_print ("Returned from block %d as it had invalid av set\n",
|
| 6456 |
|
|
bb->index);
|
| 6457 |
|
|
return false;
|
| 6458 |
|
|
}
|
| 6459 |
|
|
|
| 6460 |
|
|
if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
|
| 6461 |
|
|
{
|
| 6462 |
|
|
/* We have already found an original operation on this branch, do not
|
| 6463 |
|
|
go any further and just return TRUE here. If we don't stop here,
|
| 6464 |
|
|
function can have exponential behaviour even on the small code
|
| 6465 |
|
|
with many different paths (e.g. with data speculation and
|
| 6466 |
|
|
recovery blocks). */
|
| 6467 |
|
|
if (sched_verbose >= 6)
|
| 6468 |
|
|
sel_print ("Block %d already visited in this traversal\n", bb->index);
|
| 6469 |
|
|
if (code_motion_path_driver_info->on_enter)
|
| 6470 |
|
|
return code_motion_path_driver_info->on_enter (insn,
|
| 6471 |
|
|
local_params_in,
|
| 6472 |
|
|
static_params,
|
| 6473 |
|
|
true);
|
| 6474 |
|
|
}
|
| 6475 |
|
|
}
|
| 6476 |
|
|
|
| 6477 |
|
|
if (code_motion_path_driver_info->on_enter)
|
| 6478 |
|
|
code_motion_path_driver_info->on_enter (insn, local_params_in,
|
| 6479 |
|
|
static_params, false);
|
| 6480 |
|
|
orig_ops = av_set_copy (orig_ops);
|
| 6481 |
|
|
|
| 6482 |
|
|
/* Filter the orig_ops set. */
|
| 6483 |
|
|
if (AV_SET_VALID_P (insn))
|
| 6484 |
|
|
av_set_code_motion_filter (&orig_ops, AV_SET (insn));
|
| 6485 |
|
|
|
| 6486 |
|
|
/* If no more original ops, return immediately. */
|
| 6487 |
|
|
if (!orig_ops)
|
| 6488 |
|
|
{
|
| 6489 |
|
|
if (sched_verbose >= 6)
|
| 6490 |
|
|
sel_print ("No intersection with av set of block %d\n", bb->index);
|
| 6491 |
|
|
return false;
|
| 6492 |
|
|
}
|
| 6493 |
|
|
|
| 6494 |
|
|
/* For non-speculative insns we have to leave only one form of the
|
| 6495 |
|
|
original operation, because if we don't, we may end up with
|
| 6496 |
|
|
different C_EXPRes and, consequently, with bookkeepings for different
|
| 6497 |
|
|
expression forms along the same code motion path. That may lead to
|
| 6498 |
|
|
generation of incorrect code. So for each code motion we stick to
|
| 6499 |
|
|
the single form of the instruction, except for speculative insns
|
| 6500 |
|
|
which we need to keep in different forms with all speculation
|
| 6501 |
|
|
types. */
|
| 6502 |
|
|
av_set_leave_one_nonspec (&orig_ops);
|
| 6503 |
|
|
|
| 6504 |
|
|
/* It is not possible that all ORIG_OPS are filtered out. */
|
| 6505 |
|
|
gcc_assert (orig_ops);
|
| 6506 |
|
|
|
| 6507 |
|
|
/* It is enough to place only heads and tails of visited basic blocks into
|
| 6508 |
|
|
the PATH. */
|
| 6509 |
|
|
ilist_add (&path, insn);
|
| 6510 |
|
|
first_insn = insn;
|
| 6511 |
|
|
bb_tail = sel_bb_end (bb);
|
| 6512 |
|
|
|
| 6513 |
|
|
/* Descend the basic block in search of the original expr; this part
|
| 6514 |
|
|
corresponds to the part of the original move_op procedure executed
|
| 6515 |
|
|
before the recursive call. */
|
| 6516 |
|
|
for (;;)
|
| 6517 |
|
|
{
|
| 6518 |
|
|
/* Look at the insn and decide if it could be an ancestor of currently
|
| 6519 |
|
|
scheduling operation. If it is so, then the insn "dest = op" could
|
| 6520 |
|
|
either be replaced with "dest = reg", because REG now holds the result
|
| 6521 |
|
|
of OP, or just removed, if we've scheduled the insn as a whole.
|
| 6522 |
|
|
|
| 6523 |
|
|
If this insn doesn't contain currently scheduling OP, then proceed
|
| 6524 |
|
|
with searching and look at its successors. Operations we're searching
|
| 6525 |
|
|
for could have changed when moving up through this insn via
|
| 6526 |
|
|
substituting. In this case, perform unsubstitution on them first.
|
| 6527 |
|
|
|
| 6528 |
|
|
When traversing the DAG below this insn is finished, insert
|
| 6529 |
|
|
bookkeeping code, if the insn is a joint point, and remove
|
| 6530 |
|
|
leftovers. */
|
| 6531 |
|
|
|
| 6532 |
|
|
expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
|
| 6533 |
|
|
if (expr)
|
| 6534 |
|
|
{
|
| 6535 |
|
|
insn_t last_insn = PREV_INSN (insn);
|
| 6536 |
|
|
|
| 6537 |
|
|
/* We have found the original operation. */
|
| 6538 |
|
|
if (sched_verbose >= 6)
|
| 6539 |
|
|
sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
|
| 6540 |
|
|
|
| 6541 |
|
|
code_motion_path_driver_info->orig_expr_found
|
| 6542 |
|
|
(insn, expr, local_params_in, static_params);
|
| 6543 |
|
|
|
| 6544 |
|
|
/* Step back, so on the way back we'll start traversing from the
|
| 6545 |
|
|
previous insn (or we'll see that it's bb_note and skip that
|
| 6546 |
|
|
loop). */
|
| 6547 |
|
|
if (insn == first_insn)
|
| 6548 |
|
|
{
|
| 6549 |
|
|
first_insn = NEXT_INSN (last_insn);
|
| 6550 |
|
|
removed_last_insn = sel_bb_end_p (last_insn);
|
| 6551 |
|
|
}
|
| 6552 |
|
|
insn = last_insn;
|
| 6553 |
|
|
break;
|
| 6554 |
|
|
}
|
| 6555 |
|
|
else
|
| 6556 |
|
|
{
|
| 6557 |
|
|
/* We haven't found the original expr, continue descending the basic
|
| 6558 |
|
|
block. */
|
| 6559 |
|
|
if (code_motion_path_driver_info->orig_expr_not_found
|
| 6560 |
|
|
(insn, orig_ops, static_params))
|
| 6561 |
|
|
{
|
| 6562 |
|
|
/* Av set ops could have been changed when moving through this
|
| 6563 |
|
|
insn. To find them below it, we have to un-substitute them. */
|
| 6564 |
|
|
undo_transformations (&orig_ops, insn);
|
| 6565 |
|
|
}
|
| 6566 |
|
|
else
|
| 6567 |
|
|
{
|
| 6568 |
|
|
/* Clean up and return, if the hook tells us to do so. It may
|
| 6569 |
|
|
happen if we've encountered the previously created
|
| 6570 |
|
|
bookkeeping. */
|
| 6571 |
|
|
code_motion_path_driver_cleanup (&orig_ops, &path);
|
| 6572 |
|
|
return -1;
|
| 6573 |
|
|
}
|
| 6574 |
|
|
|
| 6575 |
|
|
gcc_assert (orig_ops);
|
| 6576 |
|
|
}
|
| 6577 |
|
|
|
| 6578 |
|
|
/* Stop at insn if we got to the end of BB. */
|
| 6579 |
|
|
if (insn == bb_tail)
|
| 6580 |
|
|
break;
|
| 6581 |
|
|
|
| 6582 |
|
|
insn = NEXT_INSN (insn);
|
| 6583 |
|
|
}
|
| 6584 |
|
|
|
| 6585 |
|
|
/* Here INSN either points to the insn before the original insn (may be
|
| 6586 |
|
|
bb_note, if original insn was a bb_head) or to the bb_end. */
|
| 6587 |
|
|
if (!expr)
|
| 6588 |
|
|
{
|
| 6589 |
|
|
int res;
|
| 6590 |
|
|
rtx last_insn = PREV_INSN (insn);
|
| 6591 |
|
|
bool added_to_path;
|
| 6592 |
|
|
|
| 6593 |
|
|
gcc_assert (insn == sel_bb_end (bb));
|
| 6594 |
|
|
|
| 6595 |
|
|
/* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
|
| 6596 |
|
|
it's already in PATH then). */
|
| 6597 |
|
|
if (insn != first_insn)
|
| 6598 |
|
|
{
|
| 6599 |
|
|
ilist_add (&path, insn);
|
| 6600 |
|
|
added_to_path = true;
|
| 6601 |
|
|
}
|
| 6602 |
|
|
else
|
| 6603 |
|
|
added_to_path = false;
|
| 6604 |
|
|
|
| 6605 |
|
|
/* Process_successors should be able to find at least one
|
| 6606 |
|
|
successor for which code_motion_path_driver returns TRUE. */
|
| 6607 |
|
|
res = code_motion_process_successors (insn, orig_ops,
|
| 6608 |
|
|
path, static_params);
|
| 6609 |
|
|
|
| 6610 |
|
|
/* Jump in the end of basic block could have been removed or replaced
|
| 6611 |
|
|
during code_motion_process_successors, so recompute insn as the
|
| 6612 |
|
|
last insn in bb. */
|
| 6613 |
|
|
if (NEXT_INSN (last_insn) != insn)
|
| 6614 |
|
|
{
|
| 6615 |
|
|
insn = sel_bb_end (bb);
|
| 6616 |
|
|
first_insn = sel_bb_head (bb);
|
| 6617 |
|
|
}
|
| 6618 |
|
|
|
| 6619 |
|
|
/* Remove bb tail from path. */
|
| 6620 |
|
|
if (added_to_path)
|
| 6621 |
|
|
ilist_remove (&path);
|
| 6622 |
|
|
|
| 6623 |
|
|
if (res != 1)
|
| 6624 |
|
|
{
|
| 6625 |
|
|
/* This is the case when one of the original expr is no longer available
|
| 6626 |
|
|
due to bookkeeping created on this branch with the same register.
|
| 6627 |
|
|
In the original algorithm, which doesn't have update_data_sets call
|
| 6628 |
|
|
on a bookkeeping block, it would simply result in returning
|
| 6629 |
|
|
FALSE when we've encountered a previously generated bookkeeping
|
| 6630 |
|
|
insn in moveop_orig_expr_not_found. */
|
| 6631 |
|
|
code_motion_path_driver_cleanup (&orig_ops, &path);
|
| 6632 |
|
|
return res;
|
| 6633 |
|
|
}
|
| 6634 |
|
|
}
|
| 6635 |
|
|
|
| 6636 |
|
|
/* Don't need it any more. */
|
| 6637 |
|
|
av_set_clear (&orig_ops);
|
| 6638 |
|
|
|
| 6639 |
|
|
/* Backward pass: now, when we have C_EXPR computed, we'll drag it to
|
| 6640 |
|
|
the beginning of the basic block. */
|
| 6641 |
|
|
before_first = PREV_INSN (first_insn);
|
| 6642 |
|
|
while (insn != before_first)
|
| 6643 |
|
|
{
|
| 6644 |
|
|
if (code_motion_path_driver_info->ascend)
|
| 6645 |
|
|
code_motion_path_driver_info->ascend (insn, static_params);
|
| 6646 |
|
|
|
| 6647 |
|
|
insn = PREV_INSN (insn);
|
| 6648 |
|
|
}
|
| 6649 |
|
|
|
| 6650 |
|
|
/* Now we're at the bb head. */
|
| 6651 |
|
|
insn = first_insn;
|
| 6652 |
|
|
ilist_remove (&path);
|
| 6653 |
|
|
local_params_in->removed_last_insn = removed_last_insn;
|
| 6654 |
|
|
code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
|
| 6655 |
|
|
|
| 6656 |
|
|
/* This should be the very last operation as at bb head we could change
|
| 6657 |
|
|
the numbering by creating bookkeeping blocks. */
|
| 6658 |
|
|
if (removed_last_insn)
|
| 6659 |
|
|
insn = PREV_INSN (insn);
|
| 6660 |
|
|
bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
|
| 6661 |
|
|
return true;
|
| 6662 |
|
|
}
|
| 6663 |
|
|
|
| 6664 |
|
|
/* Move up the operations from ORIG_OPS set traversing the dag starting
|
| 6665 |
|
|
from INSN. PATH represents the edges traversed so far.
|
| 6666 |
|
|
DEST is the register chosen for scheduling the current expr. Insert
|
| 6667 |
|
|
bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
|
| 6668 |
|
|
C_EXPR is how it looks like at the given cfg point.
|
| 6669 |
|
|
Set *SHOULD_MOVE to indicate whether we have only disconnected
|
| 6670 |
|
|
one of the insns found.
|
| 6671 |
|
|
|
| 6672 |
|
|
Returns whether original instructions were found, which is asserted
|
| 6673 |
|
|
to be true in the caller. */
|
| 6674 |
|
|
static bool
|
| 6675 |
|
|
move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
|
| 6676 |
|
|
rtx dest, expr_t c_expr, bool *should_move)
|
| 6677 |
|
|
{
|
| 6678 |
|
|
struct moveop_static_params sparams;
|
| 6679 |
|
|
struct cmpd_local_params lparams;
|
| 6680 |
|
|
int res;
|
| 6681 |
|
|
|
| 6682 |
|
|
/* Init params for code_motion_path_driver. */
|
| 6683 |
|
|
sparams.dest = dest;
|
| 6684 |
|
|
sparams.c_expr = c_expr;
|
| 6685 |
|
|
sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
|
| 6686 |
|
|
#ifdef ENABLE_CHECKING
|
| 6687 |
|
|
sparams.failed_insn = NULL;
|
| 6688 |
|
|
#endif
|
| 6689 |
|
|
sparams.was_renamed = false;
|
| 6690 |
|
|
lparams.e1 = NULL;
|
| 6691 |
|
|
|
| 6692 |
|
|
/* We haven't visited any blocks yet. */
|
| 6693 |
|
|
bitmap_clear (code_motion_visited_blocks);
|
| 6694 |
|
|
|
| 6695 |
|
|
/* Set appropriate hooks and data. */
|
| 6696 |
|
|
code_motion_path_driver_info = &move_op_hooks;
|
| 6697 |
|
|
res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
|
| 6698 |
|
|
|
| 6699 |
|
|
gcc_assert (res != -1);
|
| 6700 |
|
|
|
| 6701 |
|
|
if (sparams.was_renamed)
|
| 6702 |
|
|
EXPR_WAS_RENAMED (expr_vliw) = true;
|
| 6703 |
|
|
|
| 6704 |
|
|
*should_move = (sparams.uid == -1);
|
| 6705 |
|
|
|
| 6706 |
|
|
return res;
|
| 6707 |
|
|
}
|
| 6708 |
|
|
|
| 6709 |
|
|
|
| 6710 |
|
|
/* Functions that work with regions. */
|
| 6711 |
|
|
|
| 6712 |
|
|
/* Current number of seqno used in init_seqno and init_seqno_1. */
|
| 6713 |
|
|
static int cur_seqno;
|
| 6714 |
|
|
|
| 6715 |
|
|
/* A helper for init_seqno. Traverse the region starting from BB and
|
| 6716 |
|
|
compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
|
| 6717 |
|
|
Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
|
| 6718 |
|
|
static void
|
| 6719 |
|
|
init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
|
| 6720 |
|
|
{
|
| 6721 |
|
|
int bbi = BLOCK_TO_BB (bb->index);
|
| 6722 |
|
|
insn_t insn, note = bb_note (bb);
|
| 6723 |
|
|
insn_t succ_insn;
|
| 6724 |
|
|
succ_iterator si;
|
| 6725 |
|
|
|
| 6726 |
|
|
SET_BIT (visited_bbs, bbi);
|
| 6727 |
|
|
if (blocks_to_reschedule)
|
| 6728 |
|
|
bitmap_clear_bit (blocks_to_reschedule, bb->index);
|
| 6729 |
|
|
|
| 6730 |
|
|
FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
|
| 6731 |
|
|
SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
|
| 6732 |
|
|
{
|
| 6733 |
|
|
basic_block succ = BLOCK_FOR_INSN (succ_insn);
|
| 6734 |
|
|
int succ_bbi = BLOCK_TO_BB (succ->index);
|
| 6735 |
|
|
|
| 6736 |
|
|
gcc_assert (in_current_region_p (succ));
|
| 6737 |
|
|
|
| 6738 |
|
|
if (!TEST_BIT (visited_bbs, succ_bbi))
|
| 6739 |
|
|
{
|
| 6740 |
|
|
gcc_assert (succ_bbi > bbi);
|
| 6741 |
|
|
|
| 6742 |
|
|
init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
|
| 6743 |
|
|
}
|
| 6744 |
|
|
else if (blocks_to_reschedule)
|
| 6745 |
|
|
bitmap_set_bit (forced_ebb_heads, succ->index);
|
| 6746 |
|
|
}
|
| 6747 |
|
|
|
| 6748 |
|
|
for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
|
| 6749 |
|
|
INSN_SEQNO (insn) = cur_seqno--;
|
| 6750 |
|
|
}
|
| 6751 |
|
|
|
| 6752 |
|
|
/* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
|
| 6753 |
|
|
blocks on which we're rescheduling when pipelining, FROM is the block where
|
| 6754 |
|
|
traversing region begins (it may not be the head of the region when
|
| 6755 |
|
|
pipelining, but the head of the loop instead).
|
| 6756 |
|
|
|
| 6757 |
|
|
Returns the maximal seqno found. */
|
| 6758 |
|
|
static int
|
| 6759 |
|
|
init_seqno (bitmap blocks_to_reschedule, basic_block from)
|
| 6760 |
|
|
{
|
| 6761 |
|
|
sbitmap visited_bbs;
|
| 6762 |
|
|
bitmap_iterator bi;
|
| 6763 |
|
|
unsigned bbi;
|
| 6764 |
|
|
|
| 6765 |
|
|
visited_bbs = sbitmap_alloc (current_nr_blocks);
|
| 6766 |
|
|
|
| 6767 |
|
|
if (blocks_to_reschedule)
|
| 6768 |
|
|
{
|
| 6769 |
|
|
sbitmap_ones (visited_bbs);
|
| 6770 |
|
|
EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
|
| 6771 |
|
|
{
|
| 6772 |
|
|
gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
|
| 6773 |
|
|
RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
|
| 6774 |
|
|
}
|
| 6775 |
|
|
}
|
| 6776 |
|
|
else
|
| 6777 |
|
|
{
|
| 6778 |
|
|
sbitmap_zero (visited_bbs);
|
| 6779 |
|
|
from = EBB_FIRST_BB (0);
|
| 6780 |
|
|
}
|
| 6781 |
|
|
|
| 6782 |
|
|
cur_seqno = sched_max_luid - 1;
|
| 6783 |
|
|
init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
|
| 6784 |
|
|
|
| 6785 |
|
|
/* cur_seqno may be positive if the number of instructions is less than
|
| 6786 |
|
|
sched_max_luid - 1 (when rescheduling or if some instructions have been
|
| 6787 |
|
|
removed by the call to purge_empty_blocks in sel_sched_region_1). */
|
| 6788 |
|
|
gcc_assert (cur_seqno >= 0);
|
| 6789 |
|
|
|
| 6790 |
|
|
sbitmap_free (visited_bbs);
|
| 6791 |
|
|
return sched_max_luid - 1;
|
| 6792 |
|
|
}
|
| 6793 |
|
|
|
| 6794 |
|
|
/* Initialize scheduling parameters for current region. */
|
| 6795 |
|
|
static void
|
| 6796 |
|
|
sel_setup_region_sched_flags (void)
|
| 6797 |
|
|
{
|
| 6798 |
|
|
enable_schedule_as_rhs_p = 1;
|
| 6799 |
|
|
bookkeeping_p = 1;
|
| 6800 |
|
|
pipelining_p = (bookkeeping_p
|
| 6801 |
|
|
&& (flag_sel_sched_pipelining != 0)
|
| 6802 |
|
|
&& current_loop_nest != NULL
|
| 6803 |
|
|
&& loop_has_exit_edges (current_loop_nest));
|
| 6804 |
|
|
max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
|
| 6805 |
|
|
max_ws = MAX_WS;
|
| 6806 |
|
|
}
|
| 6807 |
|
|
|
| 6808 |
|
|
/* Return true if all basic blocks of current region are empty. */
|
| 6809 |
|
|
static bool
|
| 6810 |
|
|
current_region_empty_p (void)
|
| 6811 |
|
|
{
|
| 6812 |
|
|
int i;
|
| 6813 |
|
|
for (i = 0; i < current_nr_blocks; i++)
|
| 6814 |
|
|
if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
|
| 6815 |
|
|
return false;
|
| 6816 |
|
|
|
| 6817 |
|
|
return true;
|
| 6818 |
|
|
}
|
| 6819 |
|
|
|
| 6820 |
|
|
/* Prepare and verify loop nest for pipelining. */
|
| 6821 |
|
|
static void
|
| 6822 |
|
|
setup_current_loop_nest (int rgn, bb_vec_t *bbs)
|
| 6823 |
|
|
{
|
| 6824 |
|
|
current_loop_nest = get_loop_nest_for_rgn (rgn);
|
| 6825 |
|
|
|
| 6826 |
|
|
if (!current_loop_nest)
|
| 6827 |
|
|
return;
|
| 6828 |
|
|
|
| 6829 |
|
|
/* If this loop has any saved loop preheaders from nested loops,
|
| 6830 |
|
|
add these basic blocks to the current region. */
|
| 6831 |
|
|
sel_add_loop_preheaders (bbs);
|
| 6832 |
|
|
|
| 6833 |
|
|
/* Check that we're starting with a valid information. */
|
| 6834 |
|
|
gcc_assert (loop_latch_edge (current_loop_nest));
|
| 6835 |
|
|
gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
|
| 6836 |
|
|
}
|
| 6837 |
|
|
|
| 6838 |
|
|
/* Compute instruction priorities for current region. */
|
| 6839 |
|
|
static void
|
| 6840 |
|
|
sel_compute_priorities (int rgn)
|
| 6841 |
|
|
{
|
| 6842 |
|
|
sched_rgn_compute_dependencies (rgn);
|
| 6843 |
|
|
|
| 6844 |
|
|
/* Compute insn priorities in haifa style. Then free haifa style
|
| 6845 |
|
|
dependencies that we've calculated for this. */
|
| 6846 |
|
|
compute_priorities ();
|
| 6847 |
|
|
|
| 6848 |
|
|
if (sched_verbose >= 5)
|
| 6849 |
|
|
debug_rgn_dependencies (0);
|
| 6850 |
|
|
|
| 6851 |
|
|
free_rgn_deps ();
|
| 6852 |
|
|
}
|
| 6853 |
|
|
|
| 6854 |
|
|
/* Init scheduling data for RGN. Returns true when this region should not
|
| 6855 |
|
|
be scheduled. */
|
| 6856 |
|
|
static bool
|
| 6857 |
|
|
sel_region_init (int rgn)
|
| 6858 |
|
|
{
|
| 6859 |
|
|
int i;
|
| 6860 |
|
|
bb_vec_t bbs;
|
| 6861 |
|
|
|
| 6862 |
|
|
rgn_setup_region (rgn);
|
| 6863 |
|
|
|
| 6864 |
|
|
/* Even if sched_is_disabled_for_current_region_p() is true, we still
|
| 6865 |
|
|
do region initialization here so the region can be bundled correctly,
|
| 6866 |
|
|
but we'll skip the scheduling in sel_sched_region (). */
|
| 6867 |
|
|
if (current_region_empty_p ())
|
| 6868 |
|
|
return true;
|
| 6869 |
|
|
|
| 6870 |
|
|
bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
|
| 6871 |
|
|
|
| 6872 |
|
|
for (i = 0; i < current_nr_blocks; i++)
|
| 6873 |
|
|
VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
|
| 6874 |
|
|
|
| 6875 |
|
|
sel_init_bbs (bbs);
|
| 6876 |
|
|
|
| 6877 |
|
|
if (flag_sel_sched_pipelining)
|
| 6878 |
|
|
setup_current_loop_nest (rgn, &bbs);
|
| 6879 |
|
|
|
| 6880 |
|
|
sel_setup_region_sched_flags ();
|
| 6881 |
|
|
|
| 6882 |
|
|
/* Initialize luids and dependence analysis which both sel-sched and haifa
|
| 6883 |
|
|
need. */
|
| 6884 |
|
|
sched_init_luids (bbs);
|
| 6885 |
|
|
sched_deps_init (false);
|
| 6886 |
|
|
|
| 6887 |
|
|
/* Initialize haifa data. */
|
| 6888 |
|
|
rgn_setup_sched_infos ();
|
| 6889 |
|
|
sel_set_sched_flags ();
|
| 6890 |
|
|
haifa_init_h_i_d (bbs);
|
| 6891 |
|
|
|
| 6892 |
|
|
sel_compute_priorities (rgn);
|
| 6893 |
|
|
init_deps_global ();
|
| 6894 |
|
|
|
| 6895 |
|
|
/* Main initialization. */
|
| 6896 |
|
|
sel_setup_sched_infos ();
|
| 6897 |
|
|
sel_init_global_and_expr (bbs);
|
| 6898 |
|
|
|
| 6899 |
|
|
VEC_free (basic_block, heap, bbs);
|
| 6900 |
|
|
|
| 6901 |
|
|
blocks_to_reschedule = BITMAP_ALLOC (NULL);
|
| 6902 |
|
|
|
| 6903 |
|
|
/* Init correct liveness sets on each instruction of a single-block loop.
|
| 6904 |
|
|
This is the only situation when we can't update liveness when calling
|
| 6905 |
|
|
compute_live for the first insn of the loop. */
|
| 6906 |
|
|
if (current_loop_nest)
|
| 6907 |
|
|
{
|
| 6908 |
|
|
int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
|
| 6909 |
|
|
? 1
|
| 6910 |
|
|
: 0);
|
| 6911 |
|
|
|
| 6912 |
|
|
if (current_nr_blocks == header + 1)
|
| 6913 |
|
|
update_liveness_on_insn
|
| 6914 |
|
|
(sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
|
| 6915 |
|
|
}
|
| 6916 |
|
|
|
| 6917 |
|
|
/* Set hooks so that no newly generated insn will go out unnoticed. */
|
| 6918 |
|
|
sel_register_cfg_hooks ();
|
| 6919 |
|
|
|
| 6920 |
|
|
/* !!! We call target.sched.init () for the whole region, but we invoke
|
| 6921 |
|
|
targetm.sched.finish () for every ebb. */
|
| 6922 |
|
|
if (targetm.sched.init)
|
| 6923 |
|
|
/* None of the arguments are actually used in any target. */
|
| 6924 |
|
|
targetm.sched.init (sched_dump, sched_verbose, -1);
|
| 6925 |
|
|
|
| 6926 |
|
|
first_emitted_uid = get_max_uid () + 1;
|
| 6927 |
|
|
preheader_removed = false;
|
| 6928 |
|
|
|
| 6929 |
|
|
/* Reset register allocation ticks array. */
|
| 6930 |
|
|
memset (reg_rename_tick, 0, sizeof reg_rename_tick);
|
| 6931 |
|
|
reg_rename_this_tick = 0;
|
| 6932 |
|
|
|
| 6933 |
|
|
bitmap_initialize (forced_ebb_heads, 0);
|
| 6934 |
|
|
bitmap_clear (forced_ebb_heads);
|
| 6935 |
|
|
|
| 6936 |
|
|
setup_nop_vinsn ();
|
| 6937 |
|
|
current_copies = BITMAP_ALLOC (NULL);
|
| 6938 |
|
|
current_originators = BITMAP_ALLOC (NULL);
|
| 6939 |
|
|
code_motion_visited_blocks = BITMAP_ALLOC (NULL);
|
| 6940 |
|
|
|
| 6941 |
|
|
return false;
|
| 6942 |
|
|
}
|
| 6943 |
|
|
|
| 6944 |
|
|
/* Simplify insns after the scheduling. */
|
| 6945 |
|
|
static void
|
| 6946 |
|
|
simplify_changed_insns (void)
|
| 6947 |
|
|
{
|
| 6948 |
|
|
int i;
|
| 6949 |
|
|
|
| 6950 |
|
|
for (i = 0; i < current_nr_blocks; i++)
|
| 6951 |
|
|
{
|
| 6952 |
|
|
basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
|
| 6953 |
|
|
rtx insn;
|
| 6954 |
|
|
|
| 6955 |
|
|
FOR_BB_INSNS (bb, insn)
|
| 6956 |
|
|
if (INSN_P (insn))
|
| 6957 |
|
|
{
|
| 6958 |
|
|
expr_t expr = INSN_EXPR (insn);
|
| 6959 |
|
|
|
| 6960 |
|
|
if (EXPR_WAS_SUBSTITUTED (expr))
|
| 6961 |
|
|
validate_simplify_insn (insn);
|
| 6962 |
|
|
}
|
| 6963 |
|
|
}
|
| 6964 |
|
|
}
|
| 6965 |
|
|
|
| 6966 |
|
|
/* Find boundaries of the EBB starting from basic block BB, marking blocks of
|
| 6967 |
|
|
this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
|
| 6968 |
|
|
PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
|
| 6969 |
|
|
static void
|
| 6970 |
|
|
find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
|
| 6971 |
|
|
{
|
| 6972 |
|
|
insn_t head, tail;
|
| 6973 |
|
|
basic_block bb1 = bb;
|
| 6974 |
|
|
if (sched_verbose >= 2)
|
| 6975 |
|
|
sel_print ("Finishing schedule in bbs: ");
|
| 6976 |
|
|
|
| 6977 |
|
|
do
|
| 6978 |
|
|
{
|
| 6979 |
|
|
bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
|
| 6980 |
|
|
|
| 6981 |
|
|
if (sched_verbose >= 2)
|
| 6982 |
|
|
sel_print ("%d; ", bb1->index);
|
| 6983 |
|
|
}
|
| 6984 |
|
|
while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
|
| 6985 |
|
|
|
| 6986 |
|
|
if (sched_verbose >= 2)
|
| 6987 |
|
|
sel_print ("\n");
|
| 6988 |
|
|
|
| 6989 |
|
|
get_ebb_head_tail (bb, bb1, &head, &tail);
|
| 6990 |
|
|
|
| 6991 |
|
|
current_sched_info->head = head;
|
| 6992 |
|
|
current_sched_info->tail = tail;
|
| 6993 |
|
|
current_sched_info->prev_head = PREV_INSN (head);
|
| 6994 |
|
|
current_sched_info->next_tail = NEXT_INSN (tail);
|
| 6995 |
|
|
}
|
| 6996 |
|
|
|
| 6997 |
|
|
/* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
|
| 6998 |
|
|
static void
|
| 6999 |
|
|
reset_sched_cycles_in_current_ebb (void)
|
| 7000 |
|
|
{
|
| 7001 |
|
|
int last_clock = 0;
|
| 7002 |
|
|
int haifa_last_clock = -1;
|
| 7003 |
|
|
int haifa_clock = 0;
|
| 7004 |
|
|
int issued_insns = 0;
|
| 7005 |
|
|
insn_t insn;
|
| 7006 |
|
|
|
| 7007 |
|
|
if (targetm.sched.init)
|
| 7008 |
|
|
{
|
| 7009 |
|
|
/* None of the arguments are actually used in any target.
|
| 7010 |
|
|
NB: We should have md_reset () hook for cases like this. */
|
| 7011 |
|
|
targetm.sched.init (sched_dump, sched_verbose, -1);
|
| 7012 |
|
|
}
|
| 7013 |
|
|
|
| 7014 |
|
|
state_reset (curr_state);
|
| 7015 |
|
|
advance_state (curr_state);
|
| 7016 |
|
|
|
| 7017 |
|
|
for (insn = current_sched_info->head;
|
| 7018 |
|
|
insn != current_sched_info->next_tail;
|
| 7019 |
|
|
insn = NEXT_INSN (insn))
|
| 7020 |
|
|
{
|
| 7021 |
|
|
int cost, haifa_cost;
|
| 7022 |
|
|
int sort_p;
|
| 7023 |
|
|
bool asm_p, real_insn, after_stall, all_issued;
|
| 7024 |
|
|
int clock;
|
| 7025 |
|
|
|
| 7026 |
|
|
if (!INSN_P (insn))
|
| 7027 |
|
|
continue;
|
| 7028 |
|
|
|
| 7029 |
|
|
asm_p = false;
|
| 7030 |
|
|
real_insn = recog_memoized (insn) >= 0;
|
| 7031 |
|
|
clock = INSN_SCHED_CYCLE (insn);
|
| 7032 |
|
|
|
| 7033 |
|
|
cost = clock - last_clock;
|
| 7034 |
|
|
|
| 7035 |
|
|
/* Initialize HAIFA_COST. */
|
| 7036 |
|
|
if (! real_insn)
|
| 7037 |
|
|
{
|
| 7038 |
|
|
asm_p = INSN_ASM_P (insn);
|
| 7039 |
|
|
|
| 7040 |
|
|
if (asm_p)
|
| 7041 |
|
|
/* This is asm insn which *had* to be scheduled first
|
| 7042 |
|
|
on the cycle. */
|
| 7043 |
|
|
haifa_cost = 1;
|
| 7044 |
|
|
else
|
| 7045 |
|
|
/* This is a use/clobber insn. It should not change
|
| 7046 |
|
|
cost. */
|
| 7047 |
|
|
haifa_cost = 0;
|
| 7048 |
|
|
}
|
| 7049 |
|
|
else
|
| 7050 |
|
|
haifa_cost = estimate_insn_cost (insn, curr_state);
|
| 7051 |
|
|
|
| 7052 |
|
|
/* Stall for whatever cycles we've stalled before. */
|
| 7053 |
|
|
after_stall = 0;
|
| 7054 |
|
|
if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
|
| 7055 |
|
|
{
|
| 7056 |
|
|
haifa_cost = cost;
|
| 7057 |
|
|
after_stall = 1;
|
| 7058 |
|
|
}
|
| 7059 |
|
|
all_issued = issued_insns == issue_rate;
|
| 7060 |
|
|
if (haifa_cost == 0 && all_issued)
|
| 7061 |
|
|
haifa_cost = 1;
|
| 7062 |
|
|
if (haifa_cost > 0)
|
| 7063 |
|
|
{
|
| 7064 |
|
|
int i = 0;
|
| 7065 |
|
|
|
| 7066 |
|
|
while (haifa_cost--)
|
| 7067 |
|
|
{
|
| 7068 |
|
|
advance_state (curr_state);
|
| 7069 |
|
|
issued_insns = 0;
|
| 7070 |
|
|
i++;
|
| 7071 |
|
|
|
| 7072 |
|
|
if (sched_verbose >= 2)
|
| 7073 |
|
|
{
|
| 7074 |
|
|
sel_print ("advance_state (state_transition)\n");
|
| 7075 |
|
|
debug_state (curr_state);
|
| 7076 |
|
|
}
|
| 7077 |
|
|
|
| 7078 |
|
|
/* The DFA may report that e.g. insn requires 2 cycles to be
|
| 7079 |
|
|
issued, but on the next cycle it says that insn is ready
|
| 7080 |
|
|
to go. Check this here. */
|
| 7081 |
|
|
if (!after_stall
|
| 7082 |
|
|
&& real_insn
|
| 7083 |
|
|
&& haifa_cost > 0
|
| 7084 |
|
|
&& estimate_insn_cost (insn, curr_state) == 0)
|
| 7085 |
|
|
break;
|
| 7086 |
|
|
|
| 7087 |
|
|
/* When the data dependency stall is longer than the DFA stall,
|
| 7088 |
|
|
and when we have issued exactly issue_rate insns and stalled,
|
| 7089 |
|
|
it could be that after this longer stall the insn will again
|
| 7090 |
|
|
become unavailable to the DFA restrictions. Looks strange
|
| 7091 |
|
|
but happens e.g. on x86-64. So recheck DFA on the last
|
| 7092 |
|
|
iteration. */
|
| 7093 |
|
|
if ((after_stall || all_issued)
|
| 7094 |
|
|
&& real_insn
|
| 7095 |
|
|
&& haifa_cost == 0)
|
| 7096 |
|
|
haifa_cost = estimate_insn_cost (insn, curr_state);
|
| 7097 |
|
|
}
|
| 7098 |
|
|
|
| 7099 |
|
|
haifa_clock += i;
|
| 7100 |
|
|
if (sched_verbose >= 2)
|
| 7101 |
|
|
sel_print ("haifa clock: %d\n", haifa_clock);
|
| 7102 |
|
|
}
|
| 7103 |
|
|
else
|
| 7104 |
|
|
gcc_assert (haifa_cost == 0);
|
| 7105 |
|
|
|
| 7106 |
|
|
if (sched_verbose >= 2)
|
| 7107 |
|
|
sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
|
| 7108 |
|
|
|
| 7109 |
|
|
if (targetm.sched.dfa_new_cycle)
|
| 7110 |
|
|
while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
|
| 7111 |
|
|
haifa_last_clock, haifa_clock,
|
| 7112 |
|
|
&sort_p))
|
| 7113 |
|
|
{
|
| 7114 |
|
|
advance_state (curr_state);
|
| 7115 |
|
|
issued_insns = 0;
|
| 7116 |
|
|
haifa_clock++;
|
| 7117 |
|
|
if (sched_verbose >= 2)
|
| 7118 |
|
|
{
|
| 7119 |
|
|
sel_print ("advance_state (dfa_new_cycle)\n");
|
| 7120 |
|
|
debug_state (curr_state);
|
| 7121 |
|
|
sel_print ("haifa clock: %d\n", haifa_clock + 1);
|
| 7122 |
|
|
}
|
| 7123 |
|
|
}
|
| 7124 |
|
|
|
| 7125 |
|
|
if (real_insn)
|
| 7126 |
|
|
{
|
| 7127 |
|
|
cost = state_transition (curr_state, insn);
|
| 7128 |
|
|
issued_insns++;
|
| 7129 |
|
|
|
| 7130 |
|
|
if (sched_verbose >= 2)
|
| 7131 |
|
|
{
|
| 7132 |
|
|
sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
|
| 7133 |
|
|
haifa_clock + 1);
|
| 7134 |
|
|
debug_state (curr_state);
|
| 7135 |
|
|
}
|
| 7136 |
|
|
gcc_assert (cost < 0);
|
| 7137 |
|
|
}
|
| 7138 |
|
|
|
| 7139 |
|
|
if (targetm.sched.variable_issue)
|
| 7140 |
|
|
targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
|
| 7141 |
|
|
|
| 7142 |
|
|
INSN_SCHED_CYCLE (insn) = haifa_clock;
|
| 7143 |
|
|
|
| 7144 |
|
|
last_clock = clock;
|
| 7145 |
|
|
haifa_last_clock = haifa_clock;
|
| 7146 |
|
|
}
|
| 7147 |
|
|
}
|
| 7148 |
|
|
|
| 7149 |
|
|
/* Put TImode markers on insns starting a new issue group. */
|
| 7150 |
|
|
static void
|
| 7151 |
|
|
put_TImodes (void)
|
| 7152 |
|
|
{
|
| 7153 |
|
|
int last_clock = -1;
|
| 7154 |
|
|
insn_t insn;
|
| 7155 |
|
|
|
| 7156 |
|
|
for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
|
| 7157 |
|
|
insn = NEXT_INSN (insn))
|
| 7158 |
|
|
{
|
| 7159 |
|
|
int cost, clock;
|
| 7160 |
|
|
|
| 7161 |
|
|
if (!INSN_P (insn))
|
| 7162 |
|
|
continue;
|
| 7163 |
|
|
|
| 7164 |
|
|
clock = INSN_SCHED_CYCLE (insn);
|
| 7165 |
|
|
cost = (last_clock == -1) ? 1 : clock - last_clock;
|
| 7166 |
|
|
|
| 7167 |
|
|
gcc_assert (cost >= 0);
|
| 7168 |
|
|
|
| 7169 |
|
|
if (issue_rate > 1
|
| 7170 |
|
|
&& GET_CODE (PATTERN (insn)) != USE
|
| 7171 |
|
|
&& GET_CODE (PATTERN (insn)) != CLOBBER)
|
| 7172 |
|
|
{
|
| 7173 |
|
|
if (reload_completed && cost > 0)
|
| 7174 |
|
|
PUT_MODE (insn, TImode);
|
| 7175 |
|
|
|
| 7176 |
|
|
last_clock = clock;
|
| 7177 |
|
|
}
|
| 7178 |
|
|
|
| 7179 |
|
|
if (sched_verbose >= 2)
|
| 7180 |
|
|
sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
|
| 7181 |
|
|
}
|
| 7182 |
|
|
}
|
| 7183 |
|
|
|
| 7184 |
|
|
/* Perform MD_FINISH on EBBs comprising current region. When
|
| 7185 |
|
|
RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
|
| 7186 |
|
|
to produce correct sched cycles on insns. */
|
| 7187 |
|
|
static void
|
| 7188 |
|
|
sel_region_target_finish (bool reset_sched_cycles_p)
|
| 7189 |
|
|
{
|
| 7190 |
|
|
int i;
|
| 7191 |
|
|
bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
|
| 7192 |
|
|
|
| 7193 |
|
|
for (i = 0; i < current_nr_blocks; i++)
|
| 7194 |
|
|
{
|
| 7195 |
|
|
if (bitmap_bit_p (scheduled_blocks, i))
|
| 7196 |
|
|
continue;
|
| 7197 |
|
|
|
| 7198 |
|
|
/* While pipelining outer loops, skip bundling for loop
|
| 7199 |
|
|
preheaders. Those will be rescheduled in the outer loop. */
|
| 7200 |
|
|
if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
|
| 7201 |
|
|
continue;
|
| 7202 |
|
|
|
| 7203 |
|
|
find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
|
| 7204 |
|
|
|
| 7205 |
|
|
if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
|
| 7206 |
|
|
continue;
|
| 7207 |
|
|
|
| 7208 |
|
|
if (reset_sched_cycles_p)
|
| 7209 |
|
|
reset_sched_cycles_in_current_ebb ();
|
| 7210 |
|
|
|
| 7211 |
|
|
if (targetm.sched.init)
|
| 7212 |
|
|
targetm.sched.init (sched_dump, sched_verbose, -1);
|
| 7213 |
|
|
|
| 7214 |
|
|
put_TImodes ();
|
| 7215 |
|
|
|
| 7216 |
|
|
if (targetm.sched.finish)
|
| 7217 |
|
|
{
|
| 7218 |
|
|
targetm.sched.finish (sched_dump, sched_verbose);
|
| 7219 |
|
|
|
| 7220 |
|
|
/* Extend luids so that insns generated by the target will
|
| 7221 |
|
|
get zero luid. */
|
| 7222 |
|
|
sched_extend_luids ();
|
| 7223 |
|
|
}
|
| 7224 |
|
|
}
|
| 7225 |
|
|
|
| 7226 |
|
|
BITMAP_FREE (scheduled_blocks);
|
| 7227 |
|
|
}
|
| 7228 |
|
|
|
| 7229 |
|
|
/* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
|
| 7230 |
|
|
is true, make an additional pass emulating scheduler to get correct insn
|
| 7231 |
|
|
cycles for md_finish calls. */
|
| 7232 |
|
|
static void
|
| 7233 |
|
|
sel_region_finish (bool reset_sched_cycles_p)
|
| 7234 |
|
|
{
|
| 7235 |
|
|
simplify_changed_insns ();
|
| 7236 |
|
|
sched_finish_ready_list ();
|
| 7237 |
|
|
free_nop_pool ();
|
| 7238 |
|
|
|
| 7239 |
|
|
/* Free the vectors. */
|
| 7240 |
|
|
if (vec_av_set)
|
| 7241 |
|
|
VEC_free (expr_t, heap, vec_av_set);
|
| 7242 |
|
|
BITMAP_FREE (current_copies);
|
| 7243 |
|
|
BITMAP_FREE (current_originators);
|
| 7244 |
|
|
BITMAP_FREE (code_motion_visited_blocks);
|
| 7245 |
|
|
vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
|
| 7246 |
|
|
vinsn_vec_free (&vec_target_unavailable_vinsns);
|
| 7247 |
|
|
|
| 7248 |
|
|
/* If LV_SET of the region head should be updated, do it now because
|
| 7249 |
|
|
there will be no other chance. */
|
| 7250 |
|
|
{
|
| 7251 |
|
|
succ_iterator si;
|
| 7252 |
|
|
insn_t insn;
|
| 7253 |
|
|
|
| 7254 |
|
|
FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
|
| 7255 |
|
|
SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
|
| 7256 |
|
|
{
|
| 7257 |
|
|
basic_block bb = BLOCK_FOR_INSN (insn);
|
| 7258 |
|
|
|
| 7259 |
|
|
if (!BB_LV_SET_VALID_P (bb))
|
| 7260 |
|
|
compute_live (insn);
|
| 7261 |
|
|
}
|
| 7262 |
|
|
}
|
| 7263 |
|
|
|
| 7264 |
|
|
/* Emulate the Haifa scheduler for bundling. */
|
| 7265 |
|
|
if (reload_completed)
|
| 7266 |
|
|
sel_region_target_finish (reset_sched_cycles_p);
|
| 7267 |
|
|
|
| 7268 |
|
|
sel_finish_global_and_expr ();
|
| 7269 |
|
|
|
| 7270 |
|
|
bitmap_clear (forced_ebb_heads);
|
| 7271 |
|
|
|
| 7272 |
|
|
free_nop_vinsn ();
|
| 7273 |
|
|
|
| 7274 |
|
|
finish_deps_global ();
|
| 7275 |
|
|
sched_finish_luids ();
|
| 7276 |
|
|
VEC_free (haifa_deps_insn_data_def, heap, h_d_i_d);
|
| 7277 |
|
|
|
| 7278 |
|
|
sel_finish_bbs ();
|
| 7279 |
|
|
BITMAP_FREE (blocks_to_reschedule);
|
| 7280 |
|
|
|
| 7281 |
|
|
sel_unregister_cfg_hooks ();
|
| 7282 |
|
|
|
| 7283 |
|
|
max_issue_size = 0;
|
| 7284 |
|
|
}
|
| 7285 |
|
|
|
| 7286 |
|
|
|
| 7287 |
|
|
/* Functions that implement the scheduler driver. */
|
| 7288 |
|
|
|
| 7289 |
|
|
/* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
|
| 7290 |
|
|
is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
|
| 7291 |
|
|
of insns scheduled -- these would be postprocessed later. */
|
| 7292 |
|
|
static void
|
| 7293 |
|
|
schedule_on_fences (flist_t fences, int max_seqno,
|
| 7294 |
|
|
ilist_t **scheduled_insns_tailpp)
|
| 7295 |
|
|
{
|
| 7296 |
|
|
flist_t old_fences = fences;
|
| 7297 |
|
|
|
| 7298 |
|
|
if (sched_verbose >= 1)
|
| 7299 |
|
|
{
|
| 7300 |
|
|
sel_print ("\nScheduling on fences: ");
|
| 7301 |
|
|
dump_flist (fences);
|
| 7302 |
|
|
sel_print ("\n");
|
| 7303 |
|
|
}
|
| 7304 |
|
|
|
| 7305 |
|
|
scheduled_something_on_previous_fence = false;
|
| 7306 |
|
|
for (; fences; fences = FLIST_NEXT (fences))
|
| 7307 |
|
|
{
|
| 7308 |
|
|
fence_t fence = NULL;
|
| 7309 |
|
|
int seqno = 0;
|
| 7310 |
|
|
flist_t fences2;
|
| 7311 |
|
|
bool first_p = true;
|
| 7312 |
|
|
|
| 7313 |
|
|
/* Choose the next fence group to schedule.
|
| 7314 |
|
|
The fact that insn can be scheduled only once
|
| 7315 |
|
|
on the cycle is guaranteed by two properties:
|
| 7316 |
|
|
1. seqnos of parallel groups decrease with each iteration.
|
| 7317 |
|
|
2. If is_ineligible_successor () sees the larger seqno, it
|
| 7318 |
|
|
checks if candidate insn is_in_current_fence_p (). */
|
| 7319 |
|
|
for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
|
| 7320 |
|
|
{
|
| 7321 |
|
|
fence_t f = FLIST_FENCE (fences2);
|
| 7322 |
|
|
|
| 7323 |
|
|
if (!FENCE_PROCESSED_P (f))
|
| 7324 |
|
|
{
|
| 7325 |
|
|
int i = INSN_SEQNO (FENCE_INSN (f));
|
| 7326 |
|
|
|
| 7327 |
|
|
if (first_p || i > seqno)
|
| 7328 |
|
|
{
|
| 7329 |
|
|
seqno = i;
|
| 7330 |
|
|
fence = f;
|
| 7331 |
|
|
first_p = false;
|
| 7332 |
|
|
}
|
| 7333 |
|
|
else
|
| 7334 |
|
|
/* ??? Seqnos of different groups should be different. */
|
| 7335 |
|
|
gcc_assert (1 || i != seqno);
|
| 7336 |
|
|
}
|
| 7337 |
|
|
}
|
| 7338 |
|
|
|
| 7339 |
|
|
gcc_assert (fence);
|
| 7340 |
|
|
|
| 7341 |
|
|
/* As FENCE is nonnull, SEQNO is initialized. */
|
| 7342 |
|
|
seqno -= max_seqno + 1;
|
| 7343 |
|
|
fill_insns (fence, seqno, scheduled_insns_tailpp);
|
| 7344 |
|
|
FENCE_PROCESSED_P (fence) = true;
|
| 7345 |
|
|
}
|
| 7346 |
|
|
|
| 7347 |
|
|
/* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
|
| 7348 |
|
|
don't need to keep bookkeeping-invalidated and target-unavailable
|
| 7349 |
|
|
vinsns any more. */
|
| 7350 |
|
|
vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
|
| 7351 |
|
|
vinsn_vec_clear (&vec_target_unavailable_vinsns);
|
| 7352 |
|
|
}
|
| 7353 |
|
|
|
| 7354 |
|
|
/* Calculate MIN_SEQNO and MAX_SEQNO. */
|
| 7355 |
|
|
static void
|
| 7356 |
|
|
find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
|
| 7357 |
|
|
{
|
| 7358 |
|
|
*min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
|
| 7359 |
|
|
|
| 7360 |
|
|
/* The first element is already processed. */
|
| 7361 |
|
|
while ((fences = FLIST_NEXT (fences)))
|
| 7362 |
|
|
{
|
| 7363 |
|
|
int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
|
| 7364 |
|
|
|
| 7365 |
|
|
if (*min_seqno > seqno)
|
| 7366 |
|
|
*min_seqno = seqno;
|
| 7367 |
|
|
else if (*max_seqno < seqno)
|
| 7368 |
|
|
*max_seqno = seqno;
|
| 7369 |
|
|
}
|
| 7370 |
|
|
}
|
| 7371 |
|
|
|
| 7372 |
|
|
/* Calculate new fences from FENCES. */
|
| 7373 |
|
|
static flist_t
|
| 7374 |
|
|
calculate_new_fences (flist_t fences, int orig_max_seqno)
|
| 7375 |
|
|
{
|
| 7376 |
|
|
flist_t old_fences = fences;
|
| 7377 |
|
|
struct flist_tail_def _new_fences, *new_fences = &_new_fences;
|
| 7378 |
|
|
|
| 7379 |
|
|
flist_tail_init (new_fences);
|
| 7380 |
|
|
for (; fences; fences = FLIST_NEXT (fences))
|
| 7381 |
|
|
{
|
| 7382 |
|
|
fence_t fence = FLIST_FENCE (fences);
|
| 7383 |
|
|
insn_t insn;
|
| 7384 |
|
|
|
| 7385 |
|
|
if (!FENCE_BNDS (fence))
|
| 7386 |
|
|
{
|
| 7387 |
|
|
/* This fence doesn't have any successors. */
|
| 7388 |
|
|
if (!FENCE_SCHEDULED_P (fence))
|
| 7389 |
|
|
{
|
| 7390 |
|
|
/* Nothing was scheduled on this fence. */
|
| 7391 |
|
|
int seqno;
|
| 7392 |
|
|
|
| 7393 |
|
|
insn = FENCE_INSN (fence);
|
| 7394 |
|
|
seqno = INSN_SEQNO (insn);
|
| 7395 |
|
|
gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
|
| 7396 |
|
|
|
| 7397 |
|
|
if (sched_verbose >= 1)
|
| 7398 |
|
|
sel_print ("Fence %d[%d] has not changed\n",
|
| 7399 |
|
|
INSN_UID (insn),
|
| 7400 |
|
|
BLOCK_NUM (insn));
|
| 7401 |
|
|
move_fence_to_fences (fences, new_fences);
|
| 7402 |
|
|
}
|
| 7403 |
|
|
}
|
| 7404 |
|
|
else
|
| 7405 |
|
|
extract_new_fences_from (fences, new_fences, orig_max_seqno);
|
| 7406 |
|
|
}
|
| 7407 |
|
|
|
| 7408 |
|
|
flist_clear (&old_fences);
|
| 7409 |
|
|
return FLIST_TAIL_HEAD (new_fences);
|
| 7410 |
|
|
}
|
| 7411 |
|
|
|
| 7412 |
|
|
/* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
|
| 7413 |
|
|
are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
|
| 7414 |
|
|
the highest seqno used in a region. Return the updated highest seqno. */
|
| 7415 |
|
|
static int
|
| 7416 |
|
|
update_seqnos_and_stage (int min_seqno, int max_seqno,
|
| 7417 |
|
|
int highest_seqno_in_use,
|
| 7418 |
|
|
ilist_t *pscheduled_insns)
|
| 7419 |
|
|
{
|
| 7420 |
|
|
int new_hs;
|
| 7421 |
|
|
ilist_iterator ii;
|
| 7422 |
|
|
insn_t insn;
|
| 7423 |
|
|
|
| 7424 |
|
|
/* Actually, new_hs is the seqno of the instruction, that was
|
| 7425 |
|
|
scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
|
| 7426 |
|
|
if (*pscheduled_insns)
|
| 7427 |
|
|
{
|
| 7428 |
|
|
new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
|
| 7429 |
|
|
+ highest_seqno_in_use + max_seqno - min_seqno + 2);
|
| 7430 |
|
|
gcc_assert (new_hs > highest_seqno_in_use);
|
| 7431 |
|
|
}
|
| 7432 |
|
|
else
|
| 7433 |
|
|
new_hs = highest_seqno_in_use;
|
| 7434 |
|
|
|
| 7435 |
|
|
FOR_EACH_INSN (insn, ii, *pscheduled_insns)
|
| 7436 |
|
|
{
|
| 7437 |
|
|
gcc_assert (INSN_SEQNO (insn) < 0);
|
| 7438 |
|
|
INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
|
| 7439 |
|
|
gcc_assert (INSN_SEQNO (insn) <= new_hs);
|
| 7440 |
|
|
|
| 7441 |
|
|
/* When not pipelining, purge unneeded insn info on the scheduled insns.
|
| 7442 |
|
|
For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
|
| 7443 |
|
|
require > 1GB of memory e.g. on limit-fnargs.c. */
|
| 7444 |
|
|
if (! pipelining_p)
|
| 7445 |
|
|
free_data_for_scheduled_insn (insn);
|
| 7446 |
|
|
}
|
| 7447 |
|
|
|
| 7448 |
|
|
ilist_clear (pscheduled_insns);
|
| 7449 |
|
|
global_level++;
|
| 7450 |
|
|
|
| 7451 |
|
|
return new_hs;
|
| 7452 |
|
|
}
|
| 7453 |
|
|
|
| 7454 |
|
|
/* The main driver for scheduling a region. This function is responsible
|
| 7455 |
|
|
for correct propagation of fences (i.e. scheduling points) and creating
|
| 7456 |
|
|
a group of parallel insns at each of them. It also supports
|
| 7457 |
|
|
pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
|
| 7458 |
|
|
of scheduling. */
|
| 7459 |
|
|
static void
|
| 7460 |
|
|
sel_sched_region_2 (int orig_max_seqno)
|
| 7461 |
|
|
{
|
| 7462 |
|
|
int highest_seqno_in_use = orig_max_seqno;
|
| 7463 |
|
|
|
| 7464 |
|
|
stat_bookkeeping_copies = 0;
|
| 7465 |
|
|
stat_insns_needed_bookkeeping = 0;
|
| 7466 |
|
|
stat_renamed_scheduled = 0;
|
| 7467 |
|
|
stat_substitutions_total = 0;
|
| 7468 |
|
|
num_insns_scheduled = 0;
|
| 7469 |
|
|
|
| 7470 |
|
|
while (fences)
|
| 7471 |
|
|
{
|
| 7472 |
|
|
int min_seqno, max_seqno;
|
| 7473 |
|
|
ilist_t scheduled_insns = NULL;
|
| 7474 |
|
|
ilist_t *scheduled_insns_tailp = &scheduled_insns;
|
| 7475 |
|
|
|
| 7476 |
|
|
find_min_max_seqno (fences, &min_seqno, &max_seqno);
|
| 7477 |
|
|
schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
|
| 7478 |
|
|
fences = calculate_new_fences (fences, orig_max_seqno);
|
| 7479 |
|
|
highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
|
| 7480 |
|
|
highest_seqno_in_use,
|
| 7481 |
|
|
&scheduled_insns);
|
| 7482 |
|
|
}
|
| 7483 |
|
|
|
| 7484 |
|
|
if (sched_verbose >= 1)
|
| 7485 |
|
|
sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
|
| 7486 |
|
|
"bookkeeping, %d insns renamed, %d insns substituted\n",
|
| 7487 |
|
|
stat_bookkeeping_copies,
|
| 7488 |
|
|
stat_insns_needed_bookkeeping,
|
| 7489 |
|
|
stat_renamed_scheduled,
|
| 7490 |
|
|
stat_substitutions_total);
|
| 7491 |
|
|
}
|
| 7492 |
|
|
|
| 7493 |
|
|
/* Schedule a region. When pipelining, search for possibly never scheduled
|
| 7494 |
|
|
bookkeeping code and schedule it. Reschedule pipelined code without
|
| 7495 |
|
|
pipelining after. */
|
| 7496 |
|
|
static void
|
| 7497 |
|
|
sel_sched_region_1 (void)
|
| 7498 |
|
|
{
|
| 7499 |
|
|
int orig_max_seqno;
|
| 7500 |
|
|
|
| 7501 |
|
|
/* Remove empty blocks that might be in the region from the beginning. */
|
| 7502 |
|
|
purge_empty_blocks ();
|
| 7503 |
|
|
|
| 7504 |
|
|
orig_max_seqno = init_seqno (NULL, NULL);
|
| 7505 |
|
|
gcc_assert (orig_max_seqno >= 1);
|
| 7506 |
|
|
|
| 7507 |
|
|
/* When pipelining outer loops, create fences on the loop header,
|
| 7508 |
|
|
not preheader. */
|
| 7509 |
|
|
fences = NULL;
|
| 7510 |
|
|
if (current_loop_nest)
|
| 7511 |
|
|
init_fences (BB_END (EBB_FIRST_BB (0)));
|
| 7512 |
|
|
else
|
| 7513 |
|
|
init_fences (bb_note (EBB_FIRST_BB (0)));
|
| 7514 |
|
|
global_level = 1;
|
| 7515 |
|
|
|
| 7516 |
|
|
sel_sched_region_2 (orig_max_seqno);
|
| 7517 |
|
|
|
| 7518 |
|
|
gcc_assert (fences == NULL);
|
| 7519 |
|
|
|
| 7520 |
|
|
if (pipelining_p)
|
| 7521 |
|
|
{
|
| 7522 |
|
|
int i;
|
| 7523 |
|
|
basic_block bb;
|
| 7524 |
|
|
struct flist_tail_def _new_fences;
|
| 7525 |
|
|
flist_tail_t new_fences = &_new_fences;
|
| 7526 |
|
|
bool do_p = true;
|
| 7527 |
|
|
|
| 7528 |
|
|
pipelining_p = false;
|
| 7529 |
|
|
max_ws = MIN (max_ws, issue_rate * 3 / 2);
|
| 7530 |
|
|
bookkeeping_p = false;
|
| 7531 |
|
|
enable_schedule_as_rhs_p = false;
|
| 7532 |
|
|
|
| 7533 |
|
|
/* Schedule newly created code, that has not been scheduled yet. */
|
| 7534 |
|
|
do_p = true;
|
| 7535 |
|
|
|
| 7536 |
|
|
while (do_p)
|
| 7537 |
|
|
{
|
| 7538 |
|
|
do_p = false;
|
| 7539 |
|
|
|
| 7540 |
|
|
for (i = 0; i < current_nr_blocks; i++)
|
| 7541 |
|
|
{
|
| 7542 |
|
|
basic_block bb = EBB_FIRST_BB (i);
|
| 7543 |
|
|
|
| 7544 |
|
|
if (bitmap_bit_p (blocks_to_reschedule, bb->index))
|
| 7545 |
|
|
{
|
| 7546 |
|
|
if (! bb_ends_ebb_p (bb))
|
| 7547 |
|
|
bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
|
| 7548 |
|
|
if (sel_bb_empty_p (bb))
|
| 7549 |
|
|
{
|
| 7550 |
|
|
bitmap_clear_bit (blocks_to_reschedule, bb->index);
|
| 7551 |
|
|
continue;
|
| 7552 |
|
|
}
|
| 7553 |
|
|
clear_outdated_rtx_info (bb);
|
| 7554 |
|
|
if (sel_insn_is_speculation_check (BB_END (bb))
|
| 7555 |
|
|
&& JUMP_P (BB_END (bb)))
|
| 7556 |
|
|
bitmap_set_bit (blocks_to_reschedule,
|
| 7557 |
|
|
BRANCH_EDGE (bb)->dest->index);
|
| 7558 |
|
|
}
|
| 7559 |
|
|
else if (! sel_bb_empty_p (bb)
|
| 7560 |
|
|
&& INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
|
| 7561 |
|
|
bitmap_set_bit (blocks_to_reschedule, bb->index);
|
| 7562 |
|
|
}
|
| 7563 |
|
|
|
| 7564 |
|
|
for (i = 0; i < current_nr_blocks; i++)
|
| 7565 |
|
|
{
|
| 7566 |
|
|
bb = EBB_FIRST_BB (i);
|
| 7567 |
|
|
|
| 7568 |
|
|
/* While pipelining outer loops, skip bundling for loop
|
| 7569 |
|
|
preheaders. Those will be rescheduled in the outer
|
| 7570 |
|
|
loop. */
|
| 7571 |
|
|
if (sel_is_loop_preheader_p (bb))
|
| 7572 |
|
|
{
|
| 7573 |
|
|
clear_outdated_rtx_info (bb);
|
| 7574 |
|
|
continue;
|
| 7575 |
|
|
}
|
| 7576 |
|
|
|
| 7577 |
|
|
if (bitmap_bit_p (blocks_to_reschedule, bb->index))
|
| 7578 |
|
|
{
|
| 7579 |
|
|
flist_tail_init (new_fences);
|
| 7580 |
|
|
|
| 7581 |
|
|
orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
|
| 7582 |
|
|
|
| 7583 |
|
|
/* Mark BB as head of the new ebb. */
|
| 7584 |
|
|
bitmap_set_bit (forced_ebb_heads, bb->index);
|
| 7585 |
|
|
|
| 7586 |
|
|
gcc_assert (fences == NULL);
|
| 7587 |
|
|
|
| 7588 |
|
|
init_fences (bb_note (bb));
|
| 7589 |
|
|
|
| 7590 |
|
|
sel_sched_region_2 (orig_max_seqno);
|
| 7591 |
|
|
|
| 7592 |
|
|
do_p = true;
|
| 7593 |
|
|
break;
|
| 7594 |
|
|
}
|
| 7595 |
|
|
}
|
| 7596 |
|
|
}
|
| 7597 |
|
|
}
|
| 7598 |
|
|
}
|
| 7599 |
|
|
|
| 7600 |
|
|
/* Schedule the RGN region. */
|
| 7601 |
|
|
void
|
| 7602 |
|
|
sel_sched_region (int rgn)
|
| 7603 |
|
|
{
|
| 7604 |
|
|
bool schedule_p;
|
| 7605 |
|
|
bool reset_sched_cycles_p;
|
| 7606 |
|
|
|
| 7607 |
|
|
if (sel_region_init (rgn))
|
| 7608 |
|
|
return;
|
| 7609 |
|
|
|
| 7610 |
|
|
if (sched_verbose >= 1)
|
| 7611 |
|
|
sel_print ("Scheduling region %d\n", rgn);
|
| 7612 |
|
|
|
| 7613 |
|
|
schedule_p = (!sched_is_disabled_for_current_region_p ()
|
| 7614 |
|
|
&& dbg_cnt (sel_sched_region_cnt));
|
| 7615 |
|
|
reset_sched_cycles_p = pipelining_p;
|
| 7616 |
|
|
if (schedule_p)
|
| 7617 |
|
|
sel_sched_region_1 ();
|
| 7618 |
|
|
else
|
| 7619 |
|
|
/* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
|
| 7620 |
|
|
reset_sched_cycles_p = true;
|
| 7621 |
|
|
|
| 7622 |
|
|
sel_region_finish (reset_sched_cycles_p);
|
| 7623 |
|
|
}
|
| 7624 |
|
|
|
| 7625 |
|
|
/* Perform global init for the scheduler. */
|
| 7626 |
|
|
static void
|
| 7627 |
|
|
sel_global_init (void)
|
| 7628 |
|
|
{
|
| 7629 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
| 7630 |
|
|
alloc_sched_pools ();
|
| 7631 |
|
|
|
| 7632 |
|
|
/* Setup the infos for sched_init. */
|
| 7633 |
|
|
sel_setup_sched_infos ();
|
| 7634 |
|
|
setup_sched_dump ();
|
| 7635 |
|
|
|
| 7636 |
|
|
sched_rgn_init (false);
|
| 7637 |
|
|
sched_init ();
|
| 7638 |
|
|
|
| 7639 |
|
|
sched_init_bbs ();
|
| 7640 |
|
|
/* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
|
| 7641 |
|
|
after_recovery = 0;
|
| 7642 |
|
|
can_issue_more = issue_rate;
|
| 7643 |
|
|
|
| 7644 |
|
|
sched_extend_target ();
|
| 7645 |
|
|
sched_deps_init (true);
|
| 7646 |
|
|
setup_nop_and_exit_insns ();
|
| 7647 |
|
|
sel_extend_global_bb_info ();
|
| 7648 |
|
|
init_lv_sets ();
|
| 7649 |
|
|
init_hard_regs_data ();
|
| 7650 |
|
|
}
|
| 7651 |
|
|
|
| 7652 |
|
|
/* Free the global data of the scheduler. */
|
| 7653 |
|
|
static void
|
| 7654 |
|
|
sel_global_finish (void)
|
| 7655 |
|
|
{
|
| 7656 |
|
|
free_bb_note_pool ();
|
| 7657 |
|
|
free_lv_sets ();
|
| 7658 |
|
|
sel_finish_global_bb_info ();
|
| 7659 |
|
|
|
| 7660 |
|
|
free_regset_pool ();
|
| 7661 |
|
|
free_nop_and_exit_insns ();
|
| 7662 |
|
|
|
| 7663 |
|
|
sched_rgn_finish ();
|
| 7664 |
|
|
sched_deps_finish ();
|
| 7665 |
|
|
sched_finish ();
|
| 7666 |
|
|
|
| 7667 |
|
|
if (current_loops)
|
| 7668 |
|
|
sel_finish_pipelining ();
|
| 7669 |
|
|
|
| 7670 |
|
|
free_sched_pools ();
|
| 7671 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
| 7672 |
|
|
}
|
| 7673 |
|
|
|
| 7674 |
|
|
/* Return true when we need to skip selective scheduling. Used for debugging. */
|
| 7675 |
|
|
bool
|
| 7676 |
|
|
maybe_skip_selective_scheduling (void)
|
| 7677 |
|
|
{
|
| 7678 |
|
|
return ! dbg_cnt (sel_sched_cnt);
|
| 7679 |
|
|
}
|
| 7680 |
|
|
|
| 7681 |
|
|
/* The entry point. */
|
| 7682 |
|
|
void
|
| 7683 |
|
|
run_selective_scheduling (void)
|
| 7684 |
|
|
{
|
| 7685 |
|
|
int rgn;
|
| 7686 |
|
|
|
| 7687 |
|
|
if (n_basic_blocks == NUM_FIXED_BLOCKS)
|
| 7688 |
|
|
return;
|
| 7689 |
|
|
|
| 7690 |
|
|
sel_global_init ();
|
| 7691 |
|
|
|
| 7692 |
|
|
for (rgn = 0; rgn < nr_regions; rgn++)
|
| 7693 |
|
|
sel_sched_region (rgn);
|
| 7694 |
|
|
|
| 7695 |
|
|
sel_global_finish ();
|
| 7696 |
|
|
}
|
| 7697 |
|
|
|
| 7698 |
|
|
#endif
|