1 |
684 |
jeremybenn |
/* Instruction scheduling pass. Selective scheduler and pipeliner.
|
2 |
|
|
Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
8 |
|
|
the terms of the GNU General Public License as published by the Free
|
9 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
10 |
|
|
version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
15 |
|
|
for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "config.h"
|
22 |
|
|
#include "system.h"
|
23 |
|
|
#include "coretypes.h"
|
24 |
|
|
#include "tm.h"
|
25 |
|
|
#include "rtl-error.h"
|
26 |
|
|
#include "tm_p.h"
|
27 |
|
|
#include "hard-reg-set.h"
|
28 |
|
|
#include "regs.h"
|
29 |
|
|
#include "function.h"
|
30 |
|
|
#include "flags.h"
|
31 |
|
|
#include "insn-config.h"
|
32 |
|
|
#include "insn-attr.h"
|
33 |
|
|
#include "except.h"
|
34 |
|
|
#include "recog.h"
|
35 |
|
|
#include "params.h"
|
36 |
|
|
#include "target.h"
|
37 |
|
|
#include "output.h"
|
38 |
|
|
#include "timevar.h"
|
39 |
|
|
#include "tree-pass.h"
|
40 |
|
|
#include "sched-int.h"
|
41 |
|
|
#include "ggc.h"
|
42 |
|
|
#include "tree.h"
|
43 |
|
|
#include "vec.h"
|
44 |
|
|
#include "langhooks.h"
|
45 |
|
|
#include "rtlhooks-def.h"
|
46 |
|
|
#include "output.h"
|
47 |
|
|
#include "emit-rtl.h"
|
48 |
|
|
|
49 |
|
|
#ifdef INSN_SCHEDULING
|
50 |
|
|
#include "sel-sched-ir.h"
|
51 |
|
|
#include "sel-sched-dump.h"
|
52 |
|
|
#include "sel-sched.h"
|
53 |
|
|
#include "dbgcnt.h"
|
54 |
|
|
|
55 |
|
|
/* Implementation of selective scheduling approach.
|
56 |
|
|
The below implementation follows the original approach with the following
|
57 |
|
|
changes:
|
58 |
|
|
|
59 |
|
|
o the scheduler works after register allocation (but can be also tuned
|
60 |
|
|
to work before RA);
|
61 |
|
|
o some instructions are not copied or register renamed;
|
62 |
|
|
o conditional jumps are not moved with code duplication;
|
63 |
|
|
o several jumps in one parallel group are not supported;
|
64 |
|
|
o when pipelining outer loops, code motion through inner loops
|
65 |
|
|
is not supported;
|
66 |
|
|
o control and data speculation are supported;
|
67 |
|
|
o some improvements for better compile time/performance were made.
|
68 |
|
|
|
69 |
|
|
Terminology
|
70 |
|
|
===========
|
71 |
|
|
|
72 |
|
|
A vinsn, or virtual insn, is an insn with additional data characterizing
|
73 |
|
|
insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
|
74 |
|
|
Vinsns also act as smart pointers to save memory by reusing them in
|
75 |
|
|
different expressions. A vinsn is described by vinsn_t type.
|
76 |
|
|
|
77 |
|
|
An expression is a vinsn with additional data characterizing its properties
|
78 |
|
|
at some point in the control flow graph. The data may be its usefulness,
|
79 |
|
|
priority, speculative status, whether it was renamed/subsituted, etc.
|
80 |
|
|
An expression is described by expr_t type.
|
81 |
|
|
|
82 |
|
|
Availability set (av_set) is a set of expressions at a given control flow
|
83 |
|
|
point. It is represented as av_set_t. The expressions in av sets are kept
|
84 |
|
|
sorted in the terms of expr_greater_p function. It allows to truncate
|
85 |
|
|
the set while leaving the best expressions.
|
86 |
|
|
|
87 |
|
|
A fence is a point through which code motion is prohibited. On each step,
|
88 |
|
|
we gather a parallel group of insns at a fence. It is possible to have
|
89 |
|
|
multiple fences. A fence is represented via fence_t.
|
90 |
|
|
|
91 |
|
|
A boundary is the border between the fence group and the rest of the code.
|
92 |
|
|
Currently, we never have more than one boundary per fence, as we finalize
|
93 |
|
|
the fence group when a jump is scheduled. A boundary is represented
|
94 |
|
|
via bnd_t.
|
95 |
|
|
|
96 |
|
|
High-level overview
|
97 |
|
|
===================
|
98 |
|
|
|
99 |
|
|
The scheduler finds regions to schedule, schedules each one, and finalizes.
|
100 |
|
|
The regions are formed starting from innermost loops, so that when the inner
|
101 |
|
|
loop is pipelined, its prologue can be scheduled together with yet unprocessed
|
102 |
|
|
outer loop. The rest of acyclic regions are found using extend_rgns:
|
103 |
|
|
the blocks that are not yet allocated to any regions are traversed in top-down
|
104 |
|
|
order, and a block is added to a region to which all its predecessors belong;
|
105 |
|
|
otherwise, the block starts its own region.
|
106 |
|
|
|
107 |
|
|
The main scheduling loop (sel_sched_region_2) consists of just
|
108 |
|
|
scheduling on each fence and updating fences. For each fence,
|
109 |
|
|
we fill a parallel group of insns (fill_insns) until some insns can be added.
|
110 |
|
|
First, we compute available exprs (av-set) at the boundary of the current
|
111 |
|
|
group. Second, we choose the best expression from it. If the stall is
|
112 |
|
|
required to schedule any of the expressions, we advance the current cycle
|
113 |
|
|
appropriately. So, the final group does not exactly correspond to a VLIW
|
114 |
|
|
word. Third, we move the chosen expression to the boundary (move_op)
|
115 |
|
|
and update the intermediate av sets and liveness sets. We quit fill_insns
|
116 |
|
|
when either no insns left for scheduling or we have scheduled enough insns
|
117 |
|
|
so we feel like advancing a scheduling point.
|
118 |
|
|
|
119 |
|
|
Computing available expressions
|
120 |
|
|
===============================
|
121 |
|
|
|
122 |
|
|
The computation (compute_av_set) is a bottom-up traversal. At each insn,
|
123 |
|
|
we're moving the union of its successors' sets through it via
|
124 |
|
|
moveup_expr_set. The dependent expressions are removed. Local
|
125 |
|
|
transformations (substitution, speculation) are applied to move more
|
126 |
|
|
exprs. Then the expr corresponding to the current insn is added.
|
127 |
|
|
The result is saved on each basic block header.
|
128 |
|
|
|
129 |
|
|
When traversing the CFG, we're moving down for no more than max_ws insns.
|
130 |
|
|
Also, we do not move down to ineligible successors (is_ineligible_successor),
|
131 |
|
|
which include moving along a back-edge, moving to already scheduled code,
|
132 |
|
|
and moving to another fence. The first two restrictions are lifted during
|
133 |
|
|
pipelining, which allows us to move insns along a back-edge. We always have
|
134 |
|
|
an acyclic region for scheduling because we forbid motion through fences.
|
135 |
|
|
|
136 |
|
|
Choosing the best expression
|
137 |
|
|
============================
|
138 |
|
|
|
139 |
|
|
We sort the final availability set via sel_rank_for_schedule, then we remove
|
140 |
|
|
expressions which are not yet ready (tick_check_p) or which dest registers
|
141 |
|
|
cannot be used. For some of them, we choose another register via
|
142 |
|
|
find_best_reg. To do this, we run find_used_regs to calculate the set of
|
143 |
|
|
registers which cannot be used. The find_used_regs function performs
|
144 |
|
|
a traversal of code motion paths for an expr. We consider for renaming
|
145 |
|
|
only registers which are from the same regclass as the original one and
|
146 |
|
|
using which does not interfere with any live ranges. Finally, we convert
|
147 |
|
|
the resulting set to the ready list format and use max_issue and reorder*
|
148 |
|
|
hooks similarly to the Haifa scheduler.
|
149 |
|
|
|
150 |
|
|
Scheduling the best expression
|
151 |
|
|
==============================
|
152 |
|
|
|
153 |
|
|
We run the move_op routine to perform the same type of code motion paths
|
154 |
|
|
traversal as in find_used_regs. (These are working via the same driver,
|
155 |
|
|
code_motion_path_driver.) When moving down the CFG, we look for original
|
156 |
|
|
instruction that gave birth to a chosen expression. We undo
|
157 |
|
|
the transformations performed on an expression via the history saved in it.
|
158 |
|
|
When found, we remove the instruction or leave a reg-reg copy/speculation
|
159 |
|
|
check if needed. On a way up, we insert bookkeeping copies at each join
|
160 |
|
|
point. If a copy is not needed, it will be removed later during this
|
161 |
|
|
traversal. We update the saved av sets and liveness sets on the way up, too.
|
162 |
|
|
|
163 |
|
|
Finalizing the schedule
|
164 |
|
|
=======================
|
165 |
|
|
|
166 |
|
|
When pipelining, we reschedule the blocks from which insns were pipelined
|
167 |
|
|
to get a tighter schedule. On Itanium, we also perform bundling via
|
168 |
|
|
the same routine from ia64.c.
|
169 |
|
|
|
170 |
|
|
Dependence analysis changes
|
171 |
|
|
===========================
|
172 |
|
|
|
173 |
|
|
We augmented the sched-deps.c with hooks that get called when a particular
|
174 |
|
|
dependence is found in a particular part of an insn. Using these hooks, we
|
175 |
|
|
can do several actions such as: determine whether an insn can be moved through
|
176 |
|
|
another (has_dependence_p, moveup_expr); find out whether an insn can be
|
177 |
|
|
scheduled on the current cycle (tick_check_p); find out registers that
|
178 |
|
|
are set/used/clobbered by an insn and find out all the strange stuff that
|
179 |
|
|
restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
|
180 |
|
|
init_global_and_expr_for_insn).
|
181 |
|
|
|
182 |
|
|
Initialization changes
|
183 |
|
|
======================
|
184 |
|
|
|
185 |
|
|
There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
|
186 |
|
|
reused in all of the schedulers. We have split up the initialization of data
|
187 |
|
|
of such parts into different functions prefixed with scheduler type and
|
188 |
|
|
postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
|
189 |
|
|
sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
|
190 |
|
|
The same splitting is done with current_sched_info structure:
|
191 |
|
|
dependence-related parts are in sched_deps_info, common part is in
|
192 |
|
|
common_sched_info, and haifa/sel/etc part is in current_sched_info.
|
193 |
|
|
|
194 |
|
|
Target contexts
|
195 |
|
|
===============
|
196 |
|
|
|
197 |
|
|
As we now have multiple-point scheduling, this would not work with backends
|
198 |
|
|
which save some of the scheduler state to use it in the target hooks.
|
199 |
|
|
For this purpose, we introduce a concept of target contexts, which
|
200 |
|
|
encapsulate such information. The backend should implement simple routines
|
201 |
|
|
of allocating/freeing/setting such a context. The scheduler calls these
|
202 |
|
|
as target hooks and handles the target context as an opaque pointer (similar
|
203 |
|
|
to the DFA state type, state_t).
|
204 |
|
|
|
205 |
|
|
Various speedups
|
206 |
|
|
================
|
207 |
|
|
|
208 |
|
|
As the correct data dependence graph is not supported during scheduling (which
|
209 |
|
|
is to be changed in mid-term), we cache as much of the dependence analysis
|
210 |
|
|
results as possible to avoid reanalyzing. This includes: bitmap caches on
|
211 |
|
|
each insn in stream of the region saying yes/no for a query with a pair of
|
212 |
|
|
UIDs; hashtables with the previously done transformations on each insn in
|
213 |
|
|
stream; a vector keeping a history of transformations on each expr.
|
214 |
|
|
|
215 |
|
|
Also, we try to minimize the dependence context used on each fence to check
|
216 |
|
|
whether the given expression is ready for scheduling by removing from it
|
217 |
|
|
insns that are definitely completed the execution. The results of
|
218 |
|
|
tick_check_p checks are also cached in a vector on each fence.
|
219 |
|
|
|
220 |
|
|
We keep a valid liveness set on each insn in a region to avoid the high
|
221 |
|
|
cost of recomputation on large basic blocks.
|
222 |
|
|
|
223 |
|
|
Finally, we try to minimize the number of needed updates to the availability
|
224 |
|
|
sets. The updates happen in two cases: when fill_insns terminates,
|
225 |
|
|
we advance all fences and increase the stage number to show that the region
|
226 |
|
|
has changed and the sets are to be recomputed; and when the next iteration
|
227 |
|
|
of a loop in fill_insns happens (but this one reuses the saved av sets
|
228 |
|
|
on bb headers.) Thus, we try to break the fill_insns loop only when
|
229 |
|
|
"significant" number of insns from the current scheduling window was
|
230 |
|
|
scheduled. This should be made a target param.
|
231 |
|
|
|
232 |
|
|
|
233 |
|
|
TODO: correctly support the data dependence graph at all stages and get rid
|
234 |
|
|
of all caches. This should speed up the scheduler.
|
235 |
|
|
TODO: implement moving cond jumps with bookkeeping copies on both targets.
|
236 |
|
|
TODO: tune the scheduler before RA so it does not create too much pseudos.
|
237 |
|
|
|
238 |
|
|
|
239 |
|
|
References:
|
240 |
|
|
S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
|
241 |
|
|
selective scheduling and software pipelining.
|
242 |
|
|
ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
|
243 |
|
|
|
244 |
|
|
Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
|
245 |
|
|
and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
|
246 |
|
|
for GCC. In Proceedings of GCC Developers' Summit 2006.
|
247 |
|
|
|
248 |
|
|
Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
|
249 |
|
|
Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
|
250 |
|
|
http://rogue.colorado.edu/EPIC7/.
|
251 |
|
|
|
252 |
|
|
*/
|
253 |
|
|
|
254 |
|
|
/* True when pipelining is enabled. */
|
255 |
|
|
bool pipelining_p;
|
256 |
|
|
|
257 |
|
|
/* True if bookkeeping is enabled. */
|
258 |
|
|
bool bookkeeping_p;
|
259 |
|
|
|
260 |
|
|
/* Maximum number of insns that are eligible for renaming. */
|
261 |
|
|
int max_insns_to_rename;
|
262 |
|
|
|
263 |
|
|
|
264 |
|
|
/* Definitions of local types and macros. */
|
265 |
|
|
|
266 |
|
|
/* Represents possible outcomes of moving an expression through an insn. */
|
267 |
|
|
enum MOVEUP_EXPR_CODE
|
268 |
|
|
{
|
269 |
|
|
/* The expression is not changed. */
|
270 |
|
|
MOVEUP_EXPR_SAME,
|
271 |
|
|
|
272 |
|
|
/* Not changed, but requires a new destination register. */
|
273 |
|
|
MOVEUP_EXPR_AS_RHS,
|
274 |
|
|
|
275 |
|
|
/* Cannot be moved. */
|
276 |
|
|
MOVEUP_EXPR_NULL,
|
277 |
|
|
|
278 |
|
|
/* Changed (substituted or speculated). */
|
279 |
|
|
MOVEUP_EXPR_CHANGED
|
280 |
|
|
};
|
281 |
|
|
|
282 |
|
|
/* The container to be passed into rtx search & replace functions. */
|
283 |
|
|
struct rtx_search_arg
|
284 |
|
|
{
|
285 |
|
|
/* What we are searching for. */
|
286 |
|
|
rtx x;
|
287 |
|
|
|
288 |
|
|
/* The occurence counter. */
|
289 |
|
|
int n;
|
290 |
|
|
};
|
291 |
|
|
|
292 |
|
|
typedef struct rtx_search_arg *rtx_search_arg_p;
|
293 |
|
|
|
294 |
|
|
/* This struct contains precomputed hard reg sets that are needed when
|
295 |
|
|
computing registers available for renaming. */
|
296 |
|
|
struct hard_regs_data
|
297 |
|
|
{
|
298 |
|
|
/* For every mode, this stores registers available for use with
|
299 |
|
|
that mode. */
|
300 |
|
|
HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
|
301 |
|
|
|
302 |
|
|
/* True when regs_for_mode[mode] is initialized. */
|
303 |
|
|
bool regs_for_mode_ok[NUM_MACHINE_MODES];
|
304 |
|
|
|
305 |
|
|
/* For every register, it has regs that are ok to rename into it.
|
306 |
|
|
The register in question is always set. If not, this means
|
307 |
|
|
that the whole set is not computed yet. */
|
308 |
|
|
HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
|
309 |
|
|
|
310 |
|
|
/* For every mode, this stores registers not available due to
|
311 |
|
|
call clobbering. */
|
312 |
|
|
HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
|
313 |
|
|
|
314 |
|
|
/* All registers that are used or call used. */
|
315 |
|
|
HARD_REG_SET regs_ever_used;
|
316 |
|
|
|
317 |
|
|
#ifdef STACK_REGS
|
318 |
|
|
/* Stack registers. */
|
319 |
|
|
HARD_REG_SET stack_regs;
|
320 |
|
|
#endif
|
321 |
|
|
};
|
322 |
|
|
|
323 |
|
|
/* Holds the results of computation of available for renaming and
|
324 |
|
|
unavailable hard registers. */
|
325 |
|
|
struct reg_rename
|
326 |
|
|
{
|
327 |
|
|
/* These are unavailable due to calls crossing, globalness, etc. */
|
328 |
|
|
HARD_REG_SET unavailable_hard_regs;
|
329 |
|
|
|
330 |
|
|
/* These are *available* for renaming. */
|
331 |
|
|
HARD_REG_SET available_for_renaming;
|
332 |
|
|
|
333 |
|
|
/* Whether this code motion path crosses a call. */
|
334 |
|
|
bool crosses_call;
|
335 |
|
|
};
|
336 |
|
|
|
337 |
|
|
/* A global structure that contains the needed information about harg
|
338 |
|
|
regs. */
|
339 |
|
|
static struct hard_regs_data sel_hrd;
|
340 |
|
|
|
341 |
|
|
|
342 |
|
|
/* This structure holds local data used in code_motion_path_driver hooks on
|
343 |
|
|
the same or adjacent levels of recursion. Here we keep those parameters
|
344 |
|
|
that are not used in code_motion_path_driver routine itself, but only in
|
345 |
|
|
its hooks. Moreover, all parameters that can be modified in hooks are
|
346 |
|
|
in this structure, so all other parameters passed explicitly to hooks are
|
347 |
|
|
read-only. */
|
348 |
|
|
struct cmpd_local_params
|
349 |
|
|
{
|
350 |
|
|
/* Local params used in move_op_* functions. */
|
351 |
|
|
|
352 |
|
|
/* Edges for bookkeeping generation. */
|
353 |
|
|
edge e1, e2;
|
354 |
|
|
|
355 |
|
|
/* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
|
356 |
|
|
expr_t c_expr_merged, c_expr_local;
|
357 |
|
|
|
358 |
|
|
/* Local params used in fur_* functions. */
|
359 |
|
|
/* Copy of the ORIGINAL_INSN list, stores the original insns already
|
360 |
|
|
found before entering the current level of code_motion_path_driver. */
|
361 |
|
|
def_list_t old_original_insns;
|
362 |
|
|
|
363 |
|
|
/* Local params used in move_op_* functions. */
|
364 |
|
|
/* True when we have removed last insn in the block which was
|
365 |
|
|
also a boundary. Do not update anything or create bookkeeping copies. */
|
366 |
|
|
BOOL_BITFIELD removed_last_insn : 1;
|
367 |
|
|
};
|
368 |
|
|
|
369 |
|
|
/* Stores the static parameters for move_op_* calls. */
|
370 |
|
|
struct moveop_static_params
|
371 |
|
|
{
|
372 |
|
|
/* Destination register. */
|
373 |
|
|
rtx dest;
|
374 |
|
|
|
375 |
|
|
/* Current C_EXPR. */
|
376 |
|
|
expr_t c_expr;
|
377 |
|
|
|
378 |
|
|
/* An UID of expr_vliw which is to be moved up. If we find other exprs,
|
379 |
|
|
they are to be removed. */
|
380 |
|
|
int uid;
|
381 |
|
|
|
382 |
|
|
#ifdef ENABLE_CHECKING
|
383 |
|
|
/* This is initialized to the insn on which the driver stopped its traversal. */
|
384 |
|
|
insn_t failed_insn;
|
385 |
|
|
#endif
|
386 |
|
|
|
387 |
|
|
/* True if we scheduled an insn with different register. */
|
388 |
|
|
bool was_renamed;
|
389 |
|
|
};
|
390 |
|
|
|
391 |
|
|
/* Stores the static parameters for fur_* calls. */
|
392 |
|
|
struct fur_static_params
|
393 |
|
|
{
|
394 |
|
|
/* Set of registers unavailable on the code motion path. */
|
395 |
|
|
regset used_regs;
|
396 |
|
|
|
397 |
|
|
/* Pointer to the list of original insns definitions. */
|
398 |
|
|
def_list_t *original_insns;
|
399 |
|
|
|
400 |
|
|
/* True if a code motion path contains a CALL insn. */
|
401 |
|
|
bool crosses_call;
|
402 |
|
|
};
|
403 |
|
|
|
404 |
|
|
typedef struct fur_static_params *fur_static_params_p;
|
405 |
|
|
typedef struct cmpd_local_params *cmpd_local_params_p;
|
406 |
|
|
typedef struct moveop_static_params *moveop_static_params_p;
|
407 |
|
|
|
408 |
|
|
/* Set of hooks and parameters that determine behaviour specific to
|
409 |
|
|
move_op or find_used_regs functions. */
|
410 |
|
|
struct code_motion_path_driver_info_def
|
411 |
|
|
{
|
412 |
|
|
/* Called on enter to the basic block. */
|
413 |
|
|
int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
|
414 |
|
|
|
415 |
|
|
/* Called when original expr is found. */
|
416 |
|
|
void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
|
417 |
|
|
|
418 |
|
|
/* Called while descending current basic block if current insn is not
|
419 |
|
|
the original EXPR we're searching for. */
|
420 |
|
|
bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
|
421 |
|
|
|
422 |
|
|
/* Function to merge C_EXPRes from different successors. */
|
423 |
|
|
void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
|
424 |
|
|
|
425 |
|
|
/* Function to finalize merge from different successors and possibly
|
426 |
|
|
deallocate temporary data structures used for merging. */
|
427 |
|
|
void (*after_merge_succs) (cmpd_local_params_p, void *);
|
428 |
|
|
|
429 |
|
|
/* Called on the backward stage of recursion to do moveup_expr.
|
430 |
|
|
Used only with move_op_*. */
|
431 |
|
|
void (*ascend) (insn_t, void *);
|
432 |
|
|
|
433 |
|
|
/* Called on the ascending pass, before returning from the current basic
|
434 |
|
|
block or from the whole traversal. */
|
435 |
|
|
void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
|
436 |
|
|
|
437 |
|
|
/* When processing successors in move_op we need only descend into
|
438 |
|
|
SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
|
439 |
|
|
int succ_flags;
|
440 |
|
|
|
441 |
|
|
/* The routine name to print in dumps ("move_op" of "find_used_regs"). */
|
442 |
|
|
const char *routine_name;
|
443 |
|
|
};
|
444 |
|
|
|
445 |
|
|
/* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
|
446 |
|
|
FUR_HOOKS. */
|
447 |
|
|
struct code_motion_path_driver_info_def *code_motion_path_driver_info;
|
448 |
|
|
|
449 |
|
|
/* Set of hooks for performing move_op and find_used_regs routines with
|
450 |
|
|
code_motion_path_driver. */
|
451 |
|
|
extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
|
452 |
|
|
|
453 |
|
|
/* True if/when we want to emulate Haifa scheduler in the common code.
|
454 |
|
|
This is used in sched_rgn_local_init and in various places in
|
455 |
|
|
sched-deps.c. */
|
456 |
|
|
int sched_emulate_haifa_p;
|
457 |
|
|
|
458 |
|
|
/* GLOBAL_LEVEL is used to discard information stored in basic block headers
|
459 |
|
|
av_sets. Av_set of bb header is valid if its (bb header's) level is equal
|
460 |
|
|
to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
|
461 |
|
|
scheduling window. */
|
462 |
|
|
int global_level;
|
463 |
|
|
|
464 |
|
|
/* Current fences. */
|
465 |
|
|
flist_t fences;
|
466 |
|
|
|
467 |
|
|
/* True when separable insns should be scheduled as RHSes. */
|
468 |
|
|
static bool enable_schedule_as_rhs_p;
|
469 |
|
|
|
470 |
|
|
/* Used in verify_target_availability to assert that target reg is reported
|
471 |
|
|
unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
|
472 |
|
|
we haven't scheduled anything on the previous fence.
|
473 |
|
|
if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
|
474 |
|
|
have more conservative value than the one returned by the
|
475 |
|
|
find_used_regs, thus we shouldn't assert that these values are equal. */
|
476 |
|
|
static bool scheduled_something_on_previous_fence;
|
477 |
|
|
|
478 |
|
|
/* All newly emitted insns will have their uids greater than this value. */
|
479 |
|
|
static int first_emitted_uid;
|
480 |
|
|
|
481 |
|
|
/* Set of basic blocks that are forced to start new ebbs. This is a subset
|
482 |
|
|
of all the ebb heads. */
|
483 |
|
|
static bitmap_head _forced_ebb_heads;
|
484 |
|
|
bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
|
485 |
|
|
|
486 |
|
|
/* Blocks that need to be rescheduled after pipelining. */
|
487 |
|
|
bitmap blocks_to_reschedule = NULL;
|
488 |
|
|
|
489 |
|
|
/* True when the first lv set should be ignored when updating liveness. */
|
490 |
|
|
static bool ignore_first = false;
|
491 |
|
|
|
492 |
|
|
/* Number of insns max_issue has initialized data structures for. */
|
493 |
|
|
static int max_issue_size = 0;
|
494 |
|
|
|
495 |
|
|
/* Whether we can issue more instructions. */
|
496 |
|
|
static int can_issue_more;
|
497 |
|
|
|
498 |
|
|
/* Maximum software lookahead window size, reduced when rescheduling after
|
499 |
|
|
pipelining. */
|
500 |
|
|
static int max_ws;
|
501 |
|
|
|
502 |
|
|
/* Number of insns scheduled in current region. */
|
503 |
|
|
static int num_insns_scheduled;
|
504 |
|
|
|
505 |
|
|
/* A vector of expressions is used to be able to sort them. */
|
506 |
|
|
DEF_VEC_P(expr_t);
|
507 |
|
|
DEF_VEC_ALLOC_P(expr_t,heap);
|
508 |
|
|
static VEC(expr_t, heap) *vec_av_set = NULL;
|
509 |
|
|
|
510 |
|
|
/* A vector of vinsns is used to hold temporary lists of vinsns. */
|
511 |
|
|
DEF_VEC_P(vinsn_t);
|
512 |
|
|
DEF_VEC_ALLOC_P(vinsn_t,heap);
|
513 |
|
|
typedef VEC(vinsn_t, heap) *vinsn_vec_t;
|
514 |
|
|
|
515 |
|
|
/* This vector has the exprs which may still present in av_sets, but actually
|
516 |
|
|
can't be moved up due to bookkeeping created during code motion to another
|
517 |
|
|
fence. See comment near the call to update_and_record_unavailable_insns
|
518 |
|
|
for the detailed explanations. */
|
519 |
|
|
static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
|
520 |
|
|
|
521 |
|
|
/* This vector has vinsns which are scheduled with renaming on the first fence
|
522 |
|
|
and then seen on the second. For expressions with such vinsns, target
|
523 |
|
|
availability information may be wrong. */
|
524 |
|
|
static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
|
525 |
|
|
|
526 |
|
|
/* Vector to store temporary nops inserted in move_op to prevent removal
|
527 |
|
|
of empty bbs. */
|
528 |
|
|
DEF_VEC_P(insn_t);
|
529 |
|
|
DEF_VEC_ALLOC_P(insn_t,heap);
|
530 |
|
|
static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
|
531 |
|
|
|
532 |
|
|
/* These bitmaps record original instructions scheduled on the current
|
533 |
|
|
iteration and bookkeeping copies created by them. */
|
534 |
|
|
static bitmap current_originators = NULL;
|
535 |
|
|
static bitmap current_copies = NULL;
|
536 |
|
|
|
537 |
|
|
/* This bitmap marks the blocks visited by code_motion_path_driver so we don't
|
538 |
|
|
visit them afterwards. */
|
539 |
|
|
static bitmap code_motion_visited_blocks = NULL;
|
540 |
|
|
|
541 |
|
|
/* Variables to accumulate different statistics. */
|
542 |
|
|
|
543 |
|
|
/* The number of bookkeeping copies created. */
|
544 |
|
|
static int stat_bookkeeping_copies;
|
545 |
|
|
|
546 |
|
|
/* The number of insns that required bookkeeiping for their scheduling. */
|
547 |
|
|
static int stat_insns_needed_bookkeeping;
|
548 |
|
|
|
549 |
|
|
/* The number of insns that got renamed. */
|
550 |
|
|
static int stat_renamed_scheduled;
|
551 |
|
|
|
552 |
|
|
/* The number of substitutions made during scheduling. */
|
553 |
|
|
static int stat_substitutions_total;
|
554 |
|
|
|
555 |
|
|
|
556 |
|
|
/* Forward declarations of static functions. */
|
557 |
|
|
static bool rtx_ok_for_substitution_p (rtx, rtx);
|
558 |
|
|
static int sel_rank_for_schedule (const void *, const void *);
|
559 |
|
|
static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
|
560 |
|
|
static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
|
561 |
|
|
|
562 |
|
|
static rtx get_dest_from_orig_ops (av_set_t);
|
563 |
|
|
static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
|
564 |
|
|
static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
|
565 |
|
|
def_list_t *);
|
566 |
|
|
static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
|
567 |
|
|
static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
|
568 |
|
|
cmpd_local_params_p, void *);
|
569 |
|
|
static void sel_sched_region_1 (void);
|
570 |
|
|
static void sel_sched_region_2 (int);
|
571 |
|
|
static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
|
572 |
|
|
|
573 |
|
|
static void debug_state (state_t);
|
574 |
|
|
|
575 |
|
|
|
576 |
|
|
/* Functions that work with fences. */
|
577 |
|
|
|
578 |
|
|
/* Advance one cycle on FENCE. */
|
579 |
|
|
static void
|
580 |
|
|
advance_one_cycle (fence_t fence)
|
581 |
|
|
{
|
582 |
|
|
unsigned i;
|
583 |
|
|
int cycle;
|
584 |
|
|
rtx insn;
|
585 |
|
|
|
586 |
|
|
advance_state (FENCE_STATE (fence));
|
587 |
|
|
cycle = ++FENCE_CYCLE (fence);
|
588 |
|
|
FENCE_ISSUED_INSNS (fence) = 0;
|
589 |
|
|
FENCE_STARTS_CYCLE_P (fence) = 1;
|
590 |
|
|
can_issue_more = issue_rate;
|
591 |
|
|
FENCE_ISSUE_MORE (fence) = can_issue_more;
|
592 |
|
|
|
593 |
|
|
for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
|
594 |
|
|
{
|
595 |
|
|
if (INSN_READY_CYCLE (insn) < cycle)
|
596 |
|
|
{
|
597 |
|
|
remove_from_deps (FENCE_DC (fence), insn);
|
598 |
|
|
VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
|
599 |
|
|
continue;
|
600 |
|
|
}
|
601 |
|
|
i++;
|
602 |
|
|
}
|
603 |
|
|
if (sched_verbose >= 2)
|
604 |
|
|
{
|
605 |
|
|
sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
|
606 |
|
|
debug_state (FENCE_STATE (fence));
|
607 |
|
|
}
|
608 |
|
|
}
|
609 |
|
|
|
610 |
|
|
/* Returns true when SUCC in a fallthru bb of INSN, possibly
|
611 |
|
|
skipping empty basic blocks. */
|
612 |
|
|
static bool
|
613 |
|
|
in_fallthru_bb_p (rtx insn, rtx succ)
|
614 |
|
|
{
|
615 |
|
|
basic_block bb = BLOCK_FOR_INSN (insn);
|
616 |
|
|
edge e;
|
617 |
|
|
|
618 |
|
|
if (bb == BLOCK_FOR_INSN (succ))
|
619 |
|
|
return true;
|
620 |
|
|
|
621 |
|
|
e = find_fallthru_edge_from (bb);
|
622 |
|
|
if (e)
|
623 |
|
|
bb = e->dest;
|
624 |
|
|
else
|
625 |
|
|
return false;
|
626 |
|
|
|
627 |
|
|
while (sel_bb_empty_p (bb))
|
628 |
|
|
bb = bb->next_bb;
|
629 |
|
|
|
630 |
|
|
return bb == BLOCK_FOR_INSN (succ);
|
631 |
|
|
}
|
632 |
|
|
|
633 |
|
|
/* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
|
634 |
|
|
When a successor will continue a ebb, transfer all parameters of a fence
|
635 |
|
|
to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
|
636 |
|
|
of scheduling helping to distinguish between the old and the new code. */
|
637 |
|
|
static void
|
638 |
|
|
extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
|
639 |
|
|
int orig_max_seqno)
|
640 |
|
|
{
|
641 |
|
|
bool was_here_p = false;
|
642 |
|
|
insn_t insn = NULL_RTX;
|
643 |
|
|
insn_t succ;
|
644 |
|
|
succ_iterator si;
|
645 |
|
|
ilist_iterator ii;
|
646 |
|
|
fence_t fence = FLIST_FENCE (old_fences);
|
647 |
|
|
basic_block bb;
|
648 |
|
|
|
649 |
|
|
/* Get the only element of FENCE_BNDS (fence). */
|
650 |
|
|
FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
|
651 |
|
|
{
|
652 |
|
|
gcc_assert (!was_here_p);
|
653 |
|
|
was_here_p = true;
|
654 |
|
|
}
|
655 |
|
|
gcc_assert (was_here_p && insn != NULL_RTX);
|
656 |
|
|
|
657 |
|
|
/* When in the "middle" of the block, just move this fence
|
658 |
|
|
to the new list. */
|
659 |
|
|
bb = BLOCK_FOR_INSN (insn);
|
660 |
|
|
if (! sel_bb_end_p (insn)
|
661 |
|
|
|| (single_succ_p (bb)
|
662 |
|
|
&& single_pred_p (single_succ (bb))))
|
663 |
|
|
{
|
664 |
|
|
insn_t succ;
|
665 |
|
|
|
666 |
|
|
succ = (sel_bb_end_p (insn)
|
667 |
|
|
? sel_bb_head (single_succ (bb))
|
668 |
|
|
: NEXT_INSN (insn));
|
669 |
|
|
|
670 |
|
|
if (INSN_SEQNO (succ) > 0
|
671 |
|
|
&& INSN_SEQNO (succ) <= orig_max_seqno
|
672 |
|
|
&& INSN_SCHED_TIMES (succ) <= 0)
|
673 |
|
|
{
|
674 |
|
|
FENCE_INSN (fence) = succ;
|
675 |
|
|
move_fence_to_fences (old_fences, new_fences);
|
676 |
|
|
|
677 |
|
|
if (sched_verbose >= 1)
|
678 |
|
|
sel_print ("Fence %d continues as %d[%d] (state continue)\n",
|
679 |
|
|
INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
|
680 |
|
|
}
|
681 |
|
|
return;
|
682 |
|
|
}
|
683 |
|
|
|
684 |
|
|
/* Otherwise copy fence's structures to (possibly) multiple successors. */
|
685 |
|
|
FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
|
686 |
|
|
{
|
687 |
|
|
int seqno = INSN_SEQNO (succ);
|
688 |
|
|
|
689 |
|
|
if (0 < seqno && seqno <= orig_max_seqno
|
690 |
|
|
&& (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
|
691 |
|
|
{
|
692 |
|
|
bool b = (in_same_ebb_p (insn, succ)
|
693 |
|
|
|| in_fallthru_bb_p (insn, succ));
|
694 |
|
|
|
695 |
|
|
if (sched_verbose >= 1)
|
696 |
|
|
sel_print ("Fence %d continues as %d[%d] (state %s)\n",
|
697 |
|
|
INSN_UID (insn), INSN_UID (succ),
|
698 |
|
|
BLOCK_NUM (succ), b ? "continue" : "reset");
|
699 |
|
|
|
700 |
|
|
if (b)
|
701 |
|
|
add_dirty_fence_to_fences (new_fences, succ, fence);
|
702 |
|
|
else
|
703 |
|
|
{
|
704 |
|
|
/* Mark block of the SUCC as head of the new ebb. */
|
705 |
|
|
bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
|
706 |
|
|
add_clean_fence_to_fences (new_fences, succ, fence);
|
707 |
|
|
}
|
708 |
|
|
}
|
709 |
|
|
}
|
710 |
|
|
}
|
711 |
|
|
|
712 |
|
|
|
713 |
|
|
/* Functions to support substitution. */
|
714 |
|
|
|
715 |
|
|
/* Returns whether INSN with dependence status DS is eligible for
|
716 |
|
|
substitution, i.e. it's a copy operation x := y, and RHS that is
|
717 |
|
|
moved up through this insn should be substituted. */
|
718 |
|
|
static bool
|
719 |
|
|
can_substitute_through_p (insn_t insn, ds_t ds)
|
720 |
|
|
{
|
721 |
|
|
/* We can substitute only true dependencies. */
|
722 |
|
|
if ((ds & DEP_OUTPUT)
|
723 |
|
|
|| (ds & DEP_ANTI)
|
724 |
|
|
|| ! INSN_RHS (insn)
|
725 |
|
|
|| ! INSN_LHS (insn))
|
726 |
|
|
return false;
|
727 |
|
|
|
728 |
|
|
/* Now we just need to make sure the INSN_RHS consists of only one
|
729 |
|
|
simple REG rtx. */
|
730 |
|
|
if (REG_P (INSN_LHS (insn))
|
731 |
|
|
&& REG_P (INSN_RHS (insn)))
|
732 |
|
|
return true;
|
733 |
|
|
return false;
|
734 |
|
|
}
|
735 |
|
|
|
736 |
|
|
/* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
|
737 |
|
|
source (if INSN is eligible for substitution). Returns TRUE if
|
738 |
|
|
substitution was actually performed, FALSE otherwise. Substitution might
|
739 |
|
|
be not performed because it's either EXPR' vinsn doesn't contain INSN's
|
740 |
|
|
destination or the resulting insn is invalid for the target machine.
|
741 |
|
|
When UNDO is true, perform unsubstitution instead (the difference is in
|
742 |
|
|
the part of rtx on which validate_replace_rtx is called). */
|
743 |
|
|
static bool
|
744 |
|
|
substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
|
745 |
|
|
{
|
746 |
|
|
rtx *where;
|
747 |
|
|
bool new_insn_valid;
|
748 |
|
|
vinsn_t *vi = &EXPR_VINSN (expr);
|
749 |
|
|
bool has_rhs = VINSN_RHS (*vi) != NULL;
|
750 |
|
|
rtx old, new_rtx;
|
751 |
|
|
|
752 |
|
|
/* Do not try to replace in SET_DEST. Although we'll choose new
|
753 |
|
|
register for the RHS, we don't want to change RHS' original reg.
|
754 |
|
|
If the insn is not SET, we may still be able to substitute something
|
755 |
|
|
in it, and if we're here (don't have deps), it doesn't write INSN's
|
756 |
|
|
dest. */
|
757 |
|
|
where = (has_rhs
|
758 |
|
|
? &VINSN_RHS (*vi)
|
759 |
|
|
: &PATTERN (VINSN_INSN_RTX (*vi)));
|
760 |
|
|
old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
|
761 |
|
|
|
762 |
|
|
/* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
|
763 |
|
|
if (rtx_ok_for_substitution_p (old, *where))
|
764 |
|
|
{
|
765 |
|
|
rtx new_insn;
|
766 |
|
|
rtx *where_replace;
|
767 |
|
|
|
768 |
|
|
/* We should copy these rtxes before substitution. */
|
769 |
|
|
new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
|
770 |
|
|
new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
|
771 |
|
|
|
772 |
|
|
/* Where we'll replace.
|
773 |
|
|
WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
|
774 |
|
|
used instead of SET_SRC. */
|
775 |
|
|
where_replace = (has_rhs
|
776 |
|
|
? &SET_SRC (PATTERN (new_insn))
|
777 |
|
|
: &PATTERN (new_insn));
|
778 |
|
|
|
779 |
|
|
new_insn_valid
|
780 |
|
|
= validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
|
781 |
|
|
new_insn);
|
782 |
|
|
|
783 |
|
|
/* ??? Actually, constrain_operands result depends upon choice of
|
784 |
|
|
destination register. E.g. if we allow single register to be an rhs,
|
785 |
|
|
and if we try to move dx=ax(as rhs) through ax=dx, we'll result
|
786 |
|
|
in invalid insn dx=dx, so we'll loose this rhs here.
|
787 |
|
|
Just can't come up with significant testcase for this, so just
|
788 |
|
|
leaving it for now. */
|
789 |
|
|
if (new_insn_valid)
|
790 |
|
|
{
|
791 |
|
|
change_vinsn_in_expr (expr,
|
792 |
|
|
create_vinsn_from_insn_rtx (new_insn, false));
|
793 |
|
|
|
794 |
|
|
/* Do not allow clobbering the address register of speculative
|
795 |
|
|
insns. */
|
796 |
|
|
if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
|
797 |
|
|
&& register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
|
798 |
|
|
expr_dest_reg (expr)))
|
799 |
|
|
EXPR_TARGET_AVAILABLE (expr) = false;
|
800 |
|
|
|
801 |
|
|
return true;
|
802 |
|
|
}
|
803 |
|
|
else
|
804 |
|
|
return false;
|
805 |
|
|
}
|
806 |
|
|
else
|
807 |
|
|
return false;
|
808 |
|
|
}
|
809 |
|
|
|
810 |
|
|
/* Helper function for count_occurences_equiv. */
|
811 |
|
|
static int
|
812 |
|
|
count_occurrences_1 (rtx *cur_rtx, void *arg)
|
813 |
|
|
{
|
814 |
|
|
rtx_search_arg_p p = (rtx_search_arg_p) arg;
|
815 |
|
|
|
816 |
|
|
if (REG_P (*cur_rtx) && REGNO (*cur_rtx) == REGNO (p->x))
|
817 |
|
|
{
|
818 |
|
|
/* Bail out if mode is different or more than one register is used. */
|
819 |
|
|
if (GET_MODE (*cur_rtx) != GET_MODE (p->x)
|
820 |
|
|
|| (HARD_REGISTER_P (*cur_rtx)
|
821 |
|
|
&& hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1))
|
822 |
|
|
{
|
823 |
|
|
p->n = 0;
|
824 |
|
|
return 1;
|
825 |
|
|
}
|
826 |
|
|
|
827 |
|
|
p->n++;
|
828 |
|
|
|
829 |
|
|
/* Do not traverse subexprs. */
|
830 |
|
|
return -1;
|
831 |
|
|
}
|
832 |
|
|
|
833 |
|
|
if (GET_CODE (*cur_rtx) == SUBREG
|
834 |
|
|
&& (!REG_P (SUBREG_REG (*cur_rtx))
|
835 |
|
|
|| REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
|
836 |
|
|
{
|
837 |
|
|
/* ??? Do not support substituting regs inside subregs. In that case,
|
838 |
|
|
simplify_subreg will be called by validate_replace_rtx, and
|
839 |
|
|
unsubstitution will fail later. */
|
840 |
|
|
p->n = 0;
|
841 |
|
|
return 1;
|
842 |
|
|
}
|
843 |
|
|
|
844 |
|
|
/* Continue search. */
|
845 |
|
|
return 0;
|
846 |
|
|
}
|
847 |
|
|
|
848 |
|
|
/* Return the number of places WHAT appears within WHERE.
|
849 |
|
|
Bail out when we found a reference occupying several hard registers. */
|
850 |
|
|
static int
|
851 |
|
|
count_occurrences_equiv (rtx what, rtx where)
|
852 |
|
|
{
|
853 |
|
|
struct rtx_search_arg arg;
|
854 |
|
|
|
855 |
|
|
gcc_assert (REG_P (what));
|
856 |
|
|
arg.x = what;
|
857 |
|
|
arg.n = 0;
|
858 |
|
|
|
859 |
|
|
for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
|
860 |
|
|
|
861 |
|
|
return arg.n;
|
862 |
|
|
}
|
863 |
|
|
|
864 |
|
|
/* Returns TRUE if WHAT is found in WHERE rtx tree. */
|
865 |
|
|
static bool
|
866 |
|
|
rtx_ok_for_substitution_p (rtx what, rtx where)
|
867 |
|
|
{
|
868 |
|
|
return (count_occurrences_equiv (what, where) > 0);
|
869 |
|
|
}
|
870 |
|
|
|
871 |
|
|
|
872 |
|
|
/* Functions to support register renaming. */
|
873 |
|
|
|
874 |
|
|
/* Substitute VI's set source with REGNO. Returns newly created pattern
|
875 |
|
|
that has REGNO as its source. */
|
876 |
|
|
static rtx
|
877 |
|
|
create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
|
878 |
|
|
{
|
879 |
|
|
rtx lhs_rtx;
|
880 |
|
|
rtx pattern;
|
881 |
|
|
rtx insn_rtx;
|
882 |
|
|
|
883 |
|
|
lhs_rtx = copy_rtx (VINSN_LHS (vi));
|
884 |
|
|
|
885 |
|
|
pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
|
886 |
|
|
insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
|
887 |
|
|
|
888 |
|
|
return insn_rtx;
|
889 |
|
|
}
|
890 |
|
|
|
891 |
|
|
/* Returns whether INSN's src can be replaced with register number
|
892 |
|
|
NEW_SRC_REG. E.g. the following insn is valid for i386:
|
893 |
|
|
|
894 |
|
|
(insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
|
895 |
|
|
(set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
|
896 |
|
|
(reg:SI 0 ax [orig:770 c1 ] [770]))
|
897 |
|
|
(const_int 288 [0x120])) [0 str S1 A8])
|
898 |
|
|
(const_int 0 [0x0])) 43 {*movqi_1} (nil)
|
899 |
|
|
(nil))
|
900 |
|
|
|
901 |
|
|
But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
|
902 |
|
|
because of operand constraints:
|
903 |
|
|
|
904 |
|
|
(define_insn "*movqi_1"
|
905 |
|
|
[(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
|
906 |
|
|
(match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
|
907 |
|
|
)]
|
908 |
|
|
|
909 |
|
|
So do constrain_operands here, before choosing NEW_SRC_REG as best
|
910 |
|
|
reg for rhs. */
|
911 |
|
|
|
912 |
|
|
static bool
|
913 |
|
|
replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
|
914 |
|
|
{
|
915 |
|
|
vinsn_t vi = INSN_VINSN (insn);
|
916 |
|
|
enum machine_mode mode;
|
917 |
|
|
rtx dst_loc;
|
918 |
|
|
bool res;
|
919 |
|
|
|
920 |
|
|
gcc_assert (VINSN_SEPARABLE_P (vi));
|
921 |
|
|
|
922 |
|
|
get_dest_and_mode (insn, &dst_loc, &mode);
|
923 |
|
|
gcc_assert (mode == GET_MODE (new_src_reg));
|
924 |
|
|
|
925 |
|
|
if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
|
926 |
|
|
return true;
|
927 |
|
|
|
928 |
|
|
/* See whether SET_SRC can be replaced with this register. */
|
929 |
|
|
validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
|
930 |
|
|
res = verify_changes (0);
|
931 |
|
|
cancel_changes (0);
|
932 |
|
|
|
933 |
|
|
return res;
|
934 |
|
|
}
|
935 |
|
|
|
936 |
|
|
/* Returns whether INSN still be valid after replacing it's DEST with
|
937 |
|
|
register NEW_REG. */
|
938 |
|
|
static bool
|
939 |
|
|
replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
|
940 |
|
|
{
|
941 |
|
|
vinsn_t vi = INSN_VINSN (insn);
|
942 |
|
|
bool res;
|
943 |
|
|
|
944 |
|
|
/* We should deal here only with separable insns. */
|
945 |
|
|
gcc_assert (VINSN_SEPARABLE_P (vi));
|
946 |
|
|
gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
|
947 |
|
|
|
948 |
|
|
/* See whether SET_DEST can be replaced with this register. */
|
949 |
|
|
validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
|
950 |
|
|
res = verify_changes (0);
|
951 |
|
|
cancel_changes (0);
|
952 |
|
|
|
953 |
|
|
return res;
|
954 |
|
|
}
|
955 |
|
|
|
956 |
|
|
/* Create a pattern with rhs of VI and lhs of LHS_RTX. */
|
957 |
|
|
static rtx
|
958 |
|
|
create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
|
959 |
|
|
{
|
960 |
|
|
rtx rhs_rtx;
|
961 |
|
|
rtx pattern;
|
962 |
|
|
rtx insn_rtx;
|
963 |
|
|
|
964 |
|
|
rhs_rtx = copy_rtx (VINSN_RHS (vi));
|
965 |
|
|
|
966 |
|
|
pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
|
967 |
|
|
insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
|
968 |
|
|
|
969 |
|
|
return insn_rtx;
|
970 |
|
|
}
|
971 |
|
|
|
972 |
|
|
/* Substitute lhs in the given expression EXPR for the register with number
|
973 |
|
|
NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
|
974 |
|
|
static void
|
975 |
|
|
replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
|
976 |
|
|
{
|
977 |
|
|
rtx insn_rtx;
|
978 |
|
|
vinsn_t vinsn;
|
979 |
|
|
|
980 |
|
|
insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
|
981 |
|
|
vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
|
982 |
|
|
|
983 |
|
|
change_vinsn_in_expr (expr, vinsn);
|
984 |
|
|
EXPR_WAS_RENAMED (expr) = 1;
|
985 |
|
|
EXPR_TARGET_AVAILABLE (expr) = 1;
|
986 |
|
|
}
|
987 |
|
|
|
988 |
|
|
/* Returns whether VI writes either one of the USED_REGS registers or,
|
989 |
|
|
if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
|
990 |
|
|
static bool
|
991 |
|
|
vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
|
992 |
|
|
HARD_REG_SET unavailable_hard_regs)
|
993 |
|
|
{
|
994 |
|
|
unsigned regno;
|
995 |
|
|
reg_set_iterator rsi;
|
996 |
|
|
|
997 |
|
|
EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
|
998 |
|
|
{
|
999 |
|
|
if (REGNO_REG_SET_P (used_regs, regno))
|
1000 |
|
|
return true;
|
1001 |
|
|
if (HARD_REGISTER_NUM_P (regno)
|
1002 |
|
|
&& TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
|
1003 |
|
|
return true;
|
1004 |
|
|
}
|
1005 |
|
|
|
1006 |
|
|
EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
|
1007 |
|
|
{
|
1008 |
|
|
if (REGNO_REG_SET_P (used_regs, regno))
|
1009 |
|
|
return true;
|
1010 |
|
|
if (HARD_REGISTER_NUM_P (regno)
|
1011 |
|
|
&& TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
|
1012 |
|
|
return true;
|
1013 |
|
|
}
|
1014 |
|
|
|
1015 |
|
|
return false;
|
1016 |
|
|
}
|
1017 |
|
|
|
1018 |
|
|
/* Returns register class of the output register in INSN.
|
1019 |
|
|
Returns NO_REGS for call insns because some targets have constraints on
|
1020 |
|
|
destination register of a call insn.
|
1021 |
|
|
|
1022 |
|
|
Code adopted from regrename.c::build_def_use. */
|
1023 |
|
|
static enum reg_class
|
1024 |
|
|
get_reg_class (rtx insn)
|
1025 |
|
|
{
|
1026 |
|
|
int alt, i, n_ops;
|
1027 |
|
|
|
1028 |
|
|
extract_insn (insn);
|
1029 |
|
|
if (! constrain_operands (1))
|
1030 |
|
|
fatal_insn_not_found (insn);
|
1031 |
|
|
preprocess_constraints ();
|
1032 |
|
|
alt = which_alternative;
|
1033 |
|
|
n_ops = recog_data.n_operands;
|
1034 |
|
|
|
1035 |
|
|
for (i = 0; i < n_ops; ++i)
|
1036 |
|
|
{
|
1037 |
|
|
int matches = recog_op_alt[i][alt].matches;
|
1038 |
|
|
if (matches >= 0)
|
1039 |
|
|
recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
|
1040 |
|
|
}
|
1041 |
|
|
|
1042 |
|
|
if (asm_noperands (PATTERN (insn)) > 0)
|
1043 |
|
|
{
|
1044 |
|
|
for (i = 0; i < n_ops; i++)
|
1045 |
|
|
if (recog_data.operand_type[i] == OP_OUT)
|
1046 |
|
|
{
|
1047 |
|
|
rtx *loc = recog_data.operand_loc[i];
|
1048 |
|
|
rtx op = *loc;
|
1049 |
|
|
enum reg_class cl = recog_op_alt[i][alt].cl;
|
1050 |
|
|
|
1051 |
|
|
if (REG_P (op)
|
1052 |
|
|
&& REGNO (op) == ORIGINAL_REGNO (op))
|
1053 |
|
|
continue;
|
1054 |
|
|
|
1055 |
|
|
return cl;
|
1056 |
|
|
}
|
1057 |
|
|
}
|
1058 |
|
|
else if (!CALL_P (insn))
|
1059 |
|
|
{
|
1060 |
|
|
for (i = 0; i < n_ops + recog_data.n_dups; i++)
|
1061 |
|
|
{
|
1062 |
|
|
int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
|
1063 |
|
|
enum reg_class cl = recog_op_alt[opn][alt].cl;
|
1064 |
|
|
|
1065 |
|
|
if (recog_data.operand_type[opn] == OP_OUT ||
|
1066 |
|
|
recog_data.operand_type[opn] == OP_INOUT)
|
1067 |
|
|
return cl;
|
1068 |
|
|
}
|
1069 |
|
|
}
|
1070 |
|
|
|
1071 |
|
|
/* Insns like
|
1072 |
|
|
(insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
|
1073 |
|
|
may result in returning NO_REGS, cause flags is written implicitly through
|
1074 |
|
|
CMP insn, which has no OP_OUT | OP_INOUT operands. */
|
1075 |
|
|
return NO_REGS;
|
1076 |
|
|
}
|
1077 |
|
|
|
1078 |
|
|
#ifdef HARD_REGNO_RENAME_OK
|
1079 |
|
|
/* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
|
1080 |
|
|
static void
|
1081 |
|
|
init_hard_regno_rename (int regno)
|
1082 |
|
|
{
|
1083 |
|
|
int cur_reg;
|
1084 |
|
|
|
1085 |
|
|
SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
|
1086 |
|
|
|
1087 |
|
|
for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
|
1088 |
|
|
{
|
1089 |
|
|
/* We are not interested in renaming in other regs. */
|
1090 |
|
|
if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
|
1091 |
|
|
continue;
|
1092 |
|
|
|
1093 |
|
|
if (HARD_REGNO_RENAME_OK (regno, cur_reg))
|
1094 |
|
|
SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
|
1095 |
|
|
}
|
1096 |
|
|
}
|
1097 |
|
|
#endif
|
1098 |
|
|
|
1099 |
|
|
/* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
|
1100 |
|
|
data first. */
|
1101 |
|
|
static inline bool
|
1102 |
|
|
sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
|
1103 |
|
|
{
|
1104 |
|
|
#ifdef HARD_REGNO_RENAME_OK
|
1105 |
|
|
/* Check whether this is all calculated. */
|
1106 |
|
|
if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
|
1107 |
|
|
return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
|
1108 |
|
|
|
1109 |
|
|
init_hard_regno_rename (from);
|
1110 |
|
|
|
1111 |
|
|
return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
|
1112 |
|
|
#else
|
1113 |
|
|
return true;
|
1114 |
|
|
#endif
|
1115 |
|
|
}
|
1116 |
|
|
|
1117 |
|
|
/* Calculate set of registers that are capable of holding MODE. */
|
1118 |
|
|
static void
|
1119 |
|
|
init_regs_for_mode (enum machine_mode mode)
|
1120 |
|
|
{
|
1121 |
|
|
int cur_reg;
|
1122 |
|
|
|
1123 |
|
|
CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
|
1124 |
|
|
CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
|
1125 |
|
|
|
1126 |
|
|
for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
|
1127 |
|
|
{
|
1128 |
|
|
int nregs = hard_regno_nregs[cur_reg][mode];
|
1129 |
|
|
int i;
|
1130 |
|
|
|
1131 |
|
|
for (i = nregs - 1; i >= 0; --i)
|
1132 |
|
|
if (fixed_regs[cur_reg + i]
|
1133 |
|
|
|| global_regs[cur_reg + i]
|
1134 |
|
|
/* Can't use regs which aren't saved by
|
1135 |
|
|
the prologue. */
|
1136 |
|
|
|| !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
|
1137 |
|
|
/* Can't use regs with non-null REG_BASE_VALUE, because adjusting
|
1138 |
|
|
it affects aliasing globally and invalidates all AV sets. */
|
1139 |
|
|
|| get_reg_base_value (cur_reg + i)
|
1140 |
|
|
#ifdef LEAF_REGISTERS
|
1141 |
|
|
/* We can't use a non-leaf register if we're in a
|
1142 |
|
|
leaf function. */
|
1143 |
|
|
|| (current_function_is_leaf
|
1144 |
|
|
&& !LEAF_REGISTERS[cur_reg + i])
|
1145 |
|
|
#endif
|
1146 |
|
|
)
|
1147 |
|
|
break;
|
1148 |
|
|
|
1149 |
|
|
if (i >= 0)
|
1150 |
|
|
continue;
|
1151 |
|
|
|
1152 |
|
|
/* See whether it accepts all modes that occur in
|
1153 |
|
|
original insns. */
|
1154 |
|
|
if (! HARD_REGNO_MODE_OK (cur_reg, mode))
|
1155 |
|
|
continue;
|
1156 |
|
|
|
1157 |
|
|
if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
|
1158 |
|
|
SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
|
1159 |
|
|
cur_reg);
|
1160 |
|
|
|
1161 |
|
|
/* If the CUR_REG passed all the checks above,
|
1162 |
|
|
then it's ok. */
|
1163 |
|
|
SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
|
1164 |
|
|
}
|
1165 |
|
|
|
1166 |
|
|
sel_hrd.regs_for_mode_ok[mode] = true;
|
1167 |
|
|
}
|
1168 |
|
|
|
1169 |
|
|
/* Init all register sets gathered in HRD. */
|
1170 |
|
|
static void
|
1171 |
|
|
init_hard_regs_data (void)
|
1172 |
|
|
{
|
1173 |
|
|
int cur_reg = 0;
|
1174 |
|
|
int cur_mode = 0;
|
1175 |
|
|
|
1176 |
|
|
CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
|
1177 |
|
|
for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
|
1178 |
|
|
if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
|
1179 |
|
|
SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
|
1180 |
|
|
|
1181 |
|
|
/* Initialize registers that are valid based on mode when this is
|
1182 |
|
|
really needed. */
|
1183 |
|
|
for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
|
1184 |
|
|
sel_hrd.regs_for_mode_ok[cur_mode] = false;
|
1185 |
|
|
|
1186 |
|
|
/* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
|
1187 |
|
|
for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
|
1188 |
|
|
CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
|
1189 |
|
|
|
1190 |
|
|
#ifdef STACK_REGS
|
1191 |
|
|
CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
|
1192 |
|
|
|
1193 |
|
|
for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
|
1194 |
|
|
SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
|
1195 |
|
|
#endif
|
1196 |
|
|
}
|
1197 |
|
|
|
1198 |
|
|
/* Mark hardware regs in REG_RENAME_P that are not suitable
|
1199 |
|
|
for renaming rhs in INSN due to hardware restrictions (register class,
|
1200 |
|
|
modes compatibility etc). This doesn't affect original insn's dest reg,
|
1201 |
|
|
if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
|
1202 |
|
|
destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
|
1203 |
|
|
Registers that are in used_regs are always marked in
|
1204 |
|
|
unavailable_hard_regs as well. */
|
1205 |
|
|
|
1206 |
|
|
static void
|
1207 |
|
|
mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
|
1208 |
|
|
regset used_regs ATTRIBUTE_UNUSED)
|
1209 |
|
|
{
|
1210 |
|
|
enum machine_mode mode;
|
1211 |
|
|
enum reg_class cl = NO_REGS;
|
1212 |
|
|
rtx orig_dest;
|
1213 |
|
|
unsigned cur_reg, regno;
|
1214 |
|
|
hard_reg_set_iterator hrsi;
|
1215 |
|
|
|
1216 |
|
|
gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
|
1217 |
|
|
gcc_assert (reg_rename_p);
|
1218 |
|
|
|
1219 |
|
|
orig_dest = SET_DEST (PATTERN (def->orig_insn));
|
1220 |
|
|
|
1221 |
|
|
/* We have decided not to rename 'mem = something;' insns, as 'something'
|
1222 |
|
|
is usually a register. */
|
1223 |
|
|
if (!REG_P (orig_dest))
|
1224 |
|
|
return;
|
1225 |
|
|
|
1226 |
|
|
regno = REGNO (orig_dest);
|
1227 |
|
|
|
1228 |
|
|
/* If before reload, don't try to work with pseudos. */
|
1229 |
|
|
if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
|
1230 |
|
|
return;
|
1231 |
|
|
|
1232 |
|
|
if (reload_completed)
|
1233 |
|
|
cl = get_reg_class (def->orig_insn);
|
1234 |
|
|
|
1235 |
|
|
/* Stop if the original register is one of the fixed_regs, global_regs or
|
1236 |
|
|
frame pointer, or we could not discover its class. */
|
1237 |
|
|
if (fixed_regs[regno]
|
1238 |
|
|
|| global_regs[regno]
|
1239 |
|
|
#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
|
1240 |
|
|
|| (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
|
1241 |
|
|
#else
|
1242 |
|
|
|| (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
|
1243 |
|
|
#endif
|
1244 |
|
|
|| (reload_completed && cl == NO_REGS))
|
1245 |
|
|
{
|
1246 |
|
|
SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
|
1247 |
|
|
|
1248 |
|
|
/* Give a chance for original register, if it isn't in used_regs. */
|
1249 |
|
|
if (!def->crosses_call)
|
1250 |
|
|
CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
|
1251 |
|
|
|
1252 |
|
|
return;
|
1253 |
|
|
}
|
1254 |
|
|
|
1255 |
|
|
/* If something allocated on stack in this function, mark frame pointer
|
1256 |
|
|
register unavailable, considering also modes.
|
1257 |
|
|
FIXME: it is enough to do this once per all original defs. */
|
1258 |
|
|
if (frame_pointer_needed)
|
1259 |
|
|
{
|
1260 |
|
|
add_to_hard_reg_set (®_rename_p->unavailable_hard_regs,
|
1261 |
|
|
Pmode, FRAME_POINTER_REGNUM);
|
1262 |
|
|
|
1263 |
|
|
if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
|
1264 |
|
|
add_to_hard_reg_set (®_rename_p->unavailable_hard_regs,
|
1265 |
|
|
Pmode, HARD_FRAME_POINTER_IS_FRAME_POINTER);
|
1266 |
|
|
}
|
1267 |
|
|
|
1268 |
|
|
#ifdef STACK_REGS
|
1269 |
|
|
/* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
|
1270 |
|
|
is equivalent to as if all stack regs were in this set.
|
1271 |
|
|
I.e. no stack register can be renamed, and even if it's an original
|
1272 |
|
|
register here we make sure it won't be lifted over it's previous def
|
1273 |
|
|
(it's previous def will appear as if it's a FIRST_STACK_REG def.
|
1274 |
|
|
The HARD_REGNO_RENAME_OK covers other cases in condition below. */
|
1275 |
|
|
if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
|
1276 |
|
|
&& REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
|
1277 |
|
|
IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
|
1278 |
|
|
sel_hrd.stack_regs);
|
1279 |
|
|
#endif
|
1280 |
|
|
|
1281 |
|
|
/* If there's a call on this path, make regs from call_used_reg_set
|
1282 |
|
|
unavailable. */
|
1283 |
|
|
if (def->crosses_call)
|
1284 |
|
|
IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
|
1285 |
|
|
call_used_reg_set);
|
1286 |
|
|
|
1287 |
|
|
/* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
|
1288 |
|
|
but not register classes. */
|
1289 |
|
|
if (!reload_completed)
|
1290 |
|
|
return;
|
1291 |
|
|
|
1292 |
|
|
/* Leave regs as 'available' only from the current
|
1293 |
|
|
register class. */
|
1294 |
|
|
COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
|
1295 |
|
|
reg_class_contents[cl]);
|
1296 |
|
|
|
1297 |
|
|
mode = GET_MODE (orig_dest);
|
1298 |
|
|
|
1299 |
|
|
/* Leave only registers available for this mode. */
|
1300 |
|
|
if (!sel_hrd.regs_for_mode_ok[mode])
|
1301 |
|
|
init_regs_for_mode (mode);
|
1302 |
|
|
AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
|
1303 |
|
|
sel_hrd.regs_for_mode[mode]);
|
1304 |
|
|
|
1305 |
|
|
/* Exclude registers that are partially call clobbered. */
|
1306 |
|
|
if (def->crosses_call
|
1307 |
|
|
&& ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
|
1308 |
|
|
AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
|
1309 |
|
|
sel_hrd.regs_for_call_clobbered[mode]);
|
1310 |
|
|
|
1311 |
|
|
/* Leave only those that are ok to rename. */
|
1312 |
|
|
EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
|
1313 |
|
|
0, cur_reg, hrsi)
|
1314 |
|
|
{
|
1315 |
|
|
int nregs;
|
1316 |
|
|
int i;
|
1317 |
|
|
|
1318 |
|
|
nregs = hard_regno_nregs[cur_reg][mode];
|
1319 |
|
|
gcc_assert (nregs > 0);
|
1320 |
|
|
|
1321 |
|
|
for (i = nregs - 1; i >= 0; --i)
|
1322 |
|
|
if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
|
1323 |
|
|
break;
|
1324 |
|
|
|
1325 |
|
|
if (i >= 0)
|
1326 |
|
|
CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
|
1327 |
|
|
cur_reg);
|
1328 |
|
|
}
|
1329 |
|
|
|
1330 |
|
|
AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
|
1331 |
|
|
reg_rename_p->unavailable_hard_regs);
|
1332 |
|
|
|
1333 |
|
|
/* Regno is always ok from the renaming part of view, but it really
|
1334 |
|
|
could be in *unavailable_hard_regs already, so set it here instead
|
1335 |
|
|
of there. */
|
1336 |
|
|
SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
|
1337 |
|
|
}
|
1338 |
|
|
|
1339 |
|
|
/* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
|
1340 |
|
|
best register more recently than REG2. */
|
1341 |
|
|
static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
|
1342 |
|
|
|
1343 |
|
|
/* Indicates the number of times renaming happened before the current one. */
|
1344 |
|
|
static int reg_rename_this_tick;
|
1345 |
|
|
|
1346 |
|
|
/* Choose the register among free, that is suitable for storing
|
1347 |
|
|
the rhs value.
|
1348 |
|
|
|
1349 |
|
|
ORIGINAL_INSNS is the list of insns where the operation (rhs)
|
1350 |
|
|
originally appears. There could be multiple original operations
|
1351 |
|
|
for single rhs since we moving it up and merging along different
|
1352 |
|
|
paths.
|
1353 |
|
|
|
1354 |
|
|
Some code is adapted from regrename.c (regrename_optimize).
|
1355 |
|
|
If original register is available, function returns it.
|
1356 |
|
|
Otherwise it performs the checks, so the new register should
|
1357 |
|
|
comply with the following:
|
1358 |
|
|
- it should not violate any live ranges (such registers are in
|
1359 |
|
|
REG_RENAME_P->available_for_renaming set);
|
1360 |
|
|
- it should not be in the HARD_REGS_USED regset;
|
1361 |
|
|
- it should be in the class compatible with original uses;
|
1362 |
|
|
- it should not be clobbered through reference with different mode;
|
1363 |
|
|
- if we're in the leaf function, then the new register should
|
1364 |
|
|
not be in the LEAF_REGISTERS;
|
1365 |
|
|
- etc.
|
1366 |
|
|
|
1367 |
|
|
If several registers meet the conditions, the register with smallest
|
1368 |
|
|
tick is returned to achieve more even register allocation.
|
1369 |
|
|
|
1370 |
|
|
If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
|
1371 |
|
|
|
1372 |
|
|
If no register satisfies the above conditions, NULL_RTX is returned. */
|
1373 |
|
|
static rtx
|
1374 |
|
|
choose_best_reg_1 (HARD_REG_SET hard_regs_used,
|
1375 |
|
|
struct reg_rename *reg_rename_p,
|
1376 |
|
|
def_list_t original_insns, bool *is_orig_reg_p_ptr)
|
1377 |
|
|
{
|
1378 |
|
|
int best_new_reg;
|
1379 |
|
|
unsigned cur_reg;
|
1380 |
|
|
enum machine_mode mode = VOIDmode;
|
1381 |
|
|
unsigned regno, i, n;
|
1382 |
|
|
hard_reg_set_iterator hrsi;
|
1383 |
|
|
def_list_iterator di;
|
1384 |
|
|
def_t def;
|
1385 |
|
|
|
1386 |
|
|
/* If original register is available, return it. */
|
1387 |
|
|
*is_orig_reg_p_ptr = true;
|
1388 |
|
|
|
1389 |
|
|
FOR_EACH_DEF (def, di, original_insns)
|
1390 |
|
|
{
|
1391 |
|
|
rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
|
1392 |
|
|
|
1393 |
|
|
gcc_assert (REG_P (orig_dest));
|
1394 |
|
|
|
1395 |
|
|
/* Check that all original operations have the same mode.
|
1396 |
|
|
This is done for the next loop; if we'd return from this
|
1397 |
|
|
loop, we'd check only part of them, but in this case
|
1398 |
|
|
it doesn't matter. */
|
1399 |
|
|
if (mode == VOIDmode)
|
1400 |
|
|
mode = GET_MODE (orig_dest);
|
1401 |
|
|
gcc_assert (mode == GET_MODE (orig_dest));
|
1402 |
|
|
|
1403 |
|
|
regno = REGNO (orig_dest);
|
1404 |
|
|
for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
|
1405 |
|
|
if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
|
1406 |
|
|
break;
|
1407 |
|
|
|
1408 |
|
|
/* All hard registers are available. */
|
1409 |
|
|
if (i == n)
|
1410 |
|
|
{
|
1411 |
|
|
gcc_assert (mode != VOIDmode);
|
1412 |
|
|
|
1413 |
|
|
/* Hard registers should not be shared. */
|
1414 |
|
|
return gen_rtx_REG (mode, regno);
|
1415 |
|
|
}
|
1416 |
|
|
}
|
1417 |
|
|
|
1418 |
|
|
*is_orig_reg_p_ptr = false;
|
1419 |
|
|
best_new_reg = -1;
|
1420 |
|
|
|
1421 |
|
|
/* Among all available regs choose the register that was
|
1422 |
|
|
allocated earliest. */
|
1423 |
|
|
EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
|
1424 |
|
|
0, cur_reg, hrsi)
|
1425 |
|
|
if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
|
1426 |
|
|
{
|
1427 |
|
|
/* Check that all hard regs for mode are available. */
|
1428 |
|
|
for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
|
1429 |
|
|
if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
|
1430 |
|
|
|| !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
|
1431 |
|
|
cur_reg + i))
|
1432 |
|
|
break;
|
1433 |
|
|
|
1434 |
|
|
if (i < n)
|
1435 |
|
|
continue;
|
1436 |
|
|
|
1437 |
|
|
/* All hard registers are available. */
|
1438 |
|
|
if (best_new_reg < 0
|
1439 |
|
|
|| reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
|
1440 |
|
|
{
|
1441 |
|
|
best_new_reg = cur_reg;
|
1442 |
|
|
|
1443 |
|
|
/* Return immediately when we know there's no better reg. */
|
1444 |
|
|
if (! reg_rename_tick[best_new_reg])
|
1445 |
|
|
break;
|
1446 |
|
|
}
|
1447 |
|
|
}
|
1448 |
|
|
|
1449 |
|
|
if (best_new_reg >= 0)
|
1450 |
|
|
{
|
1451 |
|
|
/* Use the check from the above loop. */
|
1452 |
|
|
gcc_assert (mode != VOIDmode);
|
1453 |
|
|
return gen_rtx_REG (mode, best_new_reg);
|
1454 |
|
|
}
|
1455 |
|
|
|
1456 |
|
|
return NULL_RTX;
|
1457 |
|
|
}
|
1458 |
|
|
|
1459 |
|
|
/* A wrapper around choose_best_reg_1 () to verify that we make correct
|
1460 |
|
|
assumptions about available registers in the function. */
|
1461 |
|
|
static rtx
|
1462 |
|
|
choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
|
1463 |
|
|
def_list_t original_insns, bool *is_orig_reg_p_ptr)
|
1464 |
|
|
{
|
1465 |
|
|
rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
|
1466 |
|
|
original_insns, is_orig_reg_p_ptr);
|
1467 |
|
|
|
1468 |
|
|
/* FIXME loop over hard_regno_nregs here. */
|
1469 |
|
|
gcc_assert (best_reg == NULL_RTX
|
1470 |
|
|
|| TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
|
1471 |
|
|
|
1472 |
|
|
return best_reg;
|
1473 |
|
|
}
|
1474 |
|
|
|
1475 |
|
|
/* Choose the pseudo register for storing rhs value. As this is supposed
|
1476 |
|
|
to work before reload, we return either the original register or make
|
1477 |
|
|
the new one. The parameters are the same that in choose_nest_reg_1
|
1478 |
|
|
functions, except that USED_REGS may contain pseudos.
|
1479 |
|
|
If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
|
1480 |
|
|
|
1481 |
|
|
TODO: take into account register pressure while doing this. Up to this
|
1482 |
|
|
moment, this function would never return NULL for pseudos, but we should
|
1483 |
|
|
not rely on this. */
|
1484 |
|
|
static rtx
|
1485 |
|
|
choose_best_pseudo_reg (regset used_regs,
|
1486 |
|
|
struct reg_rename *reg_rename_p,
|
1487 |
|
|
def_list_t original_insns, bool *is_orig_reg_p_ptr)
|
1488 |
|
|
{
|
1489 |
|
|
def_list_iterator i;
|
1490 |
|
|
def_t def;
|
1491 |
|
|
enum machine_mode mode = VOIDmode;
|
1492 |
|
|
bool bad_hard_regs = false;
|
1493 |
|
|
|
1494 |
|
|
/* We should not use this after reload. */
|
1495 |
|
|
gcc_assert (!reload_completed);
|
1496 |
|
|
|
1497 |
|
|
/* If original register is available, return it. */
|
1498 |
|
|
*is_orig_reg_p_ptr = true;
|
1499 |
|
|
|
1500 |
|
|
FOR_EACH_DEF (def, i, original_insns)
|
1501 |
|
|
{
|
1502 |
|
|
rtx dest = SET_DEST (PATTERN (def->orig_insn));
|
1503 |
|
|
int orig_regno;
|
1504 |
|
|
|
1505 |
|
|
gcc_assert (REG_P (dest));
|
1506 |
|
|
|
1507 |
|
|
/* Check that all original operations have the same mode. */
|
1508 |
|
|
if (mode == VOIDmode)
|
1509 |
|
|
mode = GET_MODE (dest);
|
1510 |
|
|
else
|
1511 |
|
|
gcc_assert (mode == GET_MODE (dest));
|
1512 |
|
|
orig_regno = REGNO (dest);
|
1513 |
|
|
|
1514 |
|
|
if (!REGNO_REG_SET_P (used_regs, orig_regno))
|
1515 |
|
|
{
|
1516 |
|
|
if (orig_regno < FIRST_PSEUDO_REGISTER)
|
1517 |
|
|
{
|
1518 |
|
|
gcc_assert (df_regs_ever_live_p (orig_regno));
|
1519 |
|
|
|
1520 |
|
|
/* For hard registers, we have to check hardware imposed
|
1521 |
|
|
limitations (frame/stack registers, calls crossed). */
|
1522 |
|
|
if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
|
1523 |
|
|
orig_regno))
|
1524 |
|
|
{
|
1525 |
|
|
/* Don't let register cross a call if it doesn't already
|
1526 |
|
|
cross one. This condition is written in accordance with
|
1527 |
|
|
that in sched-deps.c sched_analyze_reg(). */
|
1528 |
|
|
if (!reg_rename_p->crosses_call
|
1529 |
|
|
|| REG_N_CALLS_CROSSED (orig_regno) > 0)
|
1530 |
|
|
return gen_rtx_REG (mode, orig_regno);
|
1531 |
|
|
}
|
1532 |
|
|
|
1533 |
|
|
bad_hard_regs = true;
|
1534 |
|
|
}
|
1535 |
|
|
else
|
1536 |
|
|
return dest;
|
1537 |
|
|
}
|
1538 |
|
|
}
|
1539 |
|
|
|
1540 |
|
|
*is_orig_reg_p_ptr = false;
|
1541 |
|
|
|
1542 |
|
|
/* We had some original hard registers that couldn't be used.
|
1543 |
|
|
Those were likely special. Don't try to create a pseudo. */
|
1544 |
|
|
if (bad_hard_regs)
|
1545 |
|
|
return NULL_RTX;
|
1546 |
|
|
|
1547 |
|
|
/* We haven't found a register from original operations. Get a new one.
|
1548 |
|
|
FIXME: control register pressure somehow. */
|
1549 |
|
|
{
|
1550 |
|
|
rtx new_reg = gen_reg_rtx (mode);
|
1551 |
|
|
|
1552 |
|
|
gcc_assert (mode != VOIDmode);
|
1553 |
|
|
|
1554 |
|
|
max_regno = max_reg_num ();
|
1555 |
|
|
maybe_extend_reg_info_p ();
|
1556 |
|
|
REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
|
1557 |
|
|
|
1558 |
|
|
return new_reg;
|
1559 |
|
|
}
|
1560 |
|
|
}
|
1561 |
|
|
|
1562 |
|
|
/* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
|
1563 |
|
|
USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
|
1564 |
|
|
static void
|
1565 |
|
|
verify_target_availability (expr_t expr, regset used_regs,
|
1566 |
|
|
struct reg_rename *reg_rename_p)
|
1567 |
|
|
{
|
1568 |
|
|
unsigned n, i, regno;
|
1569 |
|
|
enum machine_mode mode;
|
1570 |
|
|
bool target_available, live_available, hard_available;
|
1571 |
|
|
|
1572 |
|
|
if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
|
1573 |
|
|
return;
|
1574 |
|
|
|
1575 |
|
|
regno = expr_dest_regno (expr);
|
1576 |
|
|
mode = GET_MODE (EXPR_LHS (expr));
|
1577 |
|
|
target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
|
1578 |
|
|
n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
|
1579 |
|
|
|
1580 |
|
|
live_available = hard_available = true;
|
1581 |
|
|
for (i = 0; i < n; i++)
|
1582 |
|
|
{
|
1583 |
|
|
if (bitmap_bit_p (used_regs, regno + i))
|
1584 |
|
|
live_available = false;
|
1585 |
|
|
if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
|
1586 |
|
|
hard_available = false;
|
1587 |
|
|
}
|
1588 |
|
|
|
1589 |
|
|
/* When target is not available, it may be due to hard register
|
1590 |
|
|
restrictions, e.g. crosses calls, so we check hard_available too. */
|
1591 |
|
|
if (target_available)
|
1592 |
|
|
gcc_assert (live_available);
|
1593 |
|
|
else
|
1594 |
|
|
/* Check only if we haven't scheduled something on the previous fence,
|
1595 |
|
|
cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
|
1596 |
|
|
and having more than one fence, we may end having targ_un in a block
|
1597 |
|
|
in which successors target register is actually available.
|
1598 |
|
|
|
1599 |
|
|
The last condition handles the case when a dependence from a call insn
|
1600 |
|
|
was created in sched-deps.c for insns with destination registers that
|
1601 |
|
|
never crossed a call before, but do cross one after our code motion.
|
1602 |
|
|
|
1603 |
|
|
FIXME: in the latter case, we just uselessly called find_used_regs,
|
1604 |
|
|
because we can't move this expression with any other register
|
1605 |
|
|
as well. */
|
1606 |
|
|
gcc_assert (scheduled_something_on_previous_fence || !live_available
|
1607 |
|
|
|| !hard_available
|
1608 |
|
|
|| (!reload_completed && reg_rename_p->crosses_call
|
1609 |
|
|
&& REG_N_CALLS_CROSSED (regno) == 0));
|
1610 |
|
|
}
|
1611 |
|
|
|
1612 |
|
|
/* Collect unavailable registers due to liveness for EXPR from BNDS
|
1613 |
|
|
into USED_REGS. Save additional information about available
|
1614 |
|
|
registers and unavailable due to hardware restriction registers
|
1615 |
|
|
into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
|
1616 |
|
|
list. */
|
1617 |
|
|
static void
|
1618 |
|
|
collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
|
1619 |
|
|
struct reg_rename *reg_rename_p,
|
1620 |
|
|
def_list_t *original_insns)
|
1621 |
|
|
{
|
1622 |
|
|
for (; bnds; bnds = BLIST_NEXT (bnds))
|
1623 |
|
|
{
|
1624 |
|
|
bool res;
|
1625 |
|
|
av_set_t orig_ops = NULL;
|
1626 |
|
|
bnd_t bnd = BLIST_BND (bnds);
|
1627 |
|
|
|
1628 |
|
|
/* If the chosen best expr doesn't belong to current boundary,
|
1629 |
|
|
skip it. */
|
1630 |
|
|
if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
|
1631 |
|
|
continue;
|
1632 |
|
|
|
1633 |
|
|
/* Put in ORIG_OPS all exprs from this boundary that became
|
1634 |
|
|
RES on top. */
|
1635 |
|
|
orig_ops = find_sequential_best_exprs (bnd, expr, false);
|
1636 |
|
|
|
1637 |
|
|
/* Compute used regs and OR it into the USED_REGS. */
|
1638 |
|
|
res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
|
1639 |
|
|
reg_rename_p, original_insns);
|
1640 |
|
|
|
1641 |
|
|
/* FIXME: the assert is true until we'd have several boundaries. */
|
1642 |
|
|
gcc_assert (res);
|
1643 |
|
|
av_set_clear (&orig_ops);
|
1644 |
|
|
}
|
1645 |
|
|
}
|
1646 |
|
|
|
1647 |
|
|
/* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
|
1648 |
|
|
If BEST_REG is valid, replace LHS of EXPR with it. */
|
1649 |
|
|
static bool
|
1650 |
|
|
try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
|
1651 |
|
|
{
|
1652 |
|
|
/* Try whether we'll be able to generate the insn
|
1653 |
|
|
'dest := best_reg' at the place of the original operation. */
|
1654 |
|
|
for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
|
1655 |
|
|
{
|
1656 |
|
|
insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
|
1657 |
|
|
|
1658 |
|
|
gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
|
1659 |
|
|
|
1660 |
|
|
if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
|
1661 |
|
|
&& (! replace_src_with_reg_ok_p (orig_insn, best_reg)
|
1662 |
|
|
|| ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
|
1663 |
|
|
return false;
|
1664 |
|
|
}
|
1665 |
|
|
|
1666 |
|
|
/* Make sure that EXPR has the right destination
|
1667 |
|
|
register. */
|
1668 |
|
|
if (expr_dest_regno (expr) != REGNO (best_reg))
|
1669 |
|
|
replace_dest_with_reg_in_expr (expr, best_reg);
|
1670 |
|
|
else
|
1671 |
|
|
EXPR_TARGET_AVAILABLE (expr) = 1;
|
1672 |
|
|
|
1673 |
|
|
return true;
|
1674 |
|
|
}
|
1675 |
|
|
|
1676 |
|
|
/* Select and assign best register to EXPR searching from BNDS.
|
1677 |
|
|
Set *IS_ORIG_REG_P to TRUE if original register was selected.
|
1678 |
|
|
Return FALSE if no register can be chosen, which could happen when:
|
1679 |
|
|
* EXPR_SEPARABLE_P is true but we were unable to find suitable register;
|
1680 |
|
|
* EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
|
1681 |
|
|
that are used on the moving path. */
|
1682 |
|
|
static bool
|
1683 |
|
|
find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
|
1684 |
|
|
{
|
1685 |
|
|
static struct reg_rename reg_rename_data;
|
1686 |
|
|
|
1687 |
|
|
regset used_regs;
|
1688 |
|
|
def_list_t original_insns = NULL;
|
1689 |
|
|
bool reg_ok;
|
1690 |
|
|
|
1691 |
|
|
*is_orig_reg_p = false;
|
1692 |
|
|
|
1693 |
|
|
/* Don't bother to do anything if this insn doesn't set any registers. */
|
1694 |
|
|
if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
|
1695 |
|
|
&& bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
|
1696 |
|
|
return true;
|
1697 |
|
|
|
1698 |
|
|
used_regs = get_clear_regset_from_pool ();
|
1699 |
|
|
CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
|
1700 |
|
|
|
1701 |
|
|
collect_unavailable_regs_from_bnds (expr, bnds, used_regs, ®_rename_data,
|
1702 |
|
|
&original_insns);
|
1703 |
|
|
|
1704 |
|
|
#ifdef ENABLE_CHECKING
|
1705 |
|
|
/* If after reload, make sure we're working with hard regs here. */
|
1706 |
|
|
if (reload_completed)
|
1707 |
|
|
{
|
1708 |
|
|
reg_set_iterator rsi;
|
1709 |
|
|
unsigned i;
|
1710 |
|
|
|
1711 |
|
|
EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
|
1712 |
|
|
gcc_unreachable ();
|
1713 |
|
|
}
|
1714 |
|
|
#endif
|
1715 |
|
|
|
1716 |
|
|
if (EXPR_SEPARABLE_P (expr))
|
1717 |
|
|
{
|
1718 |
|
|
rtx best_reg = NULL_RTX;
|
1719 |
|
|
/* Check that we have computed availability of a target register
|
1720 |
|
|
correctly. */
|
1721 |
|
|
verify_target_availability (expr, used_regs, ®_rename_data);
|
1722 |
|
|
|
1723 |
|
|
/* Turn everything in hard regs after reload. */
|
1724 |
|
|
if (reload_completed)
|
1725 |
|
|
{
|
1726 |
|
|
HARD_REG_SET hard_regs_used;
|
1727 |
|
|
REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
|
1728 |
|
|
|
1729 |
|
|
/* Join hard registers unavailable due to register class
|
1730 |
|
|
restrictions and live range intersection. */
|
1731 |
|
|
IOR_HARD_REG_SET (hard_regs_used,
|
1732 |
|
|
reg_rename_data.unavailable_hard_regs);
|
1733 |
|
|
|
1734 |
|
|
best_reg = choose_best_reg (hard_regs_used, ®_rename_data,
|
1735 |
|
|
original_insns, is_orig_reg_p);
|
1736 |
|
|
}
|
1737 |
|
|
else
|
1738 |
|
|
best_reg = choose_best_pseudo_reg (used_regs, ®_rename_data,
|
1739 |
|
|
original_insns, is_orig_reg_p);
|
1740 |
|
|
|
1741 |
|
|
if (!best_reg)
|
1742 |
|
|
reg_ok = false;
|
1743 |
|
|
else if (*is_orig_reg_p)
|
1744 |
|
|
{
|
1745 |
|
|
/* In case of unification BEST_REG may be different from EXPR's LHS
|
1746 |
|
|
when EXPR's LHS is unavailable, and there is another LHS among
|
1747 |
|
|
ORIGINAL_INSNS. */
|
1748 |
|
|
reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
|
1749 |
|
|
}
|
1750 |
|
|
else
|
1751 |
|
|
{
|
1752 |
|
|
/* Forbid renaming of low-cost insns. */
|
1753 |
|
|
if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
|
1754 |
|
|
reg_ok = false;
|
1755 |
|
|
else
|
1756 |
|
|
reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
|
1757 |
|
|
}
|
1758 |
|
|
}
|
1759 |
|
|
else
|
1760 |
|
|
{
|
1761 |
|
|
/* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
|
1762 |
|
|
any of the HARD_REGS_USED set. */
|
1763 |
|
|
if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
|
1764 |
|
|
reg_rename_data.unavailable_hard_regs))
|
1765 |
|
|
{
|
1766 |
|
|
reg_ok = false;
|
1767 |
|
|
gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
|
1768 |
|
|
}
|
1769 |
|
|
else
|
1770 |
|
|
{
|
1771 |
|
|
reg_ok = true;
|
1772 |
|
|
gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
|
1773 |
|
|
}
|
1774 |
|
|
}
|
1775 |
|
|
|
1776 |
|
|
ilist_clear (&original_insns);
|
1777 |
|
|
return_regset_to_pool (used_regs);
|
1778 |
|
|
|
1779 |
|
|
return reg_ok;
|
1780 |
|
|
}
|
1781 |
|
|
|
1782 |
|
|
|
1783 |
|
|
/* Return true if dependence described by DS can be overcomed. */
|
1784 |
|
|
static bool
|
1785 |
|
|
can_speculate_dep_p (ds_t ds)
|
1786 |
|
|
{
|
1787 |
|
|
if (spec_info == NULL)
|
1788 |
|
|
return false;
|
1789 |
|
|
|
1790 |
|
|
/* Leave only speculative data. */
|
1791 |
|
|
ds &= SPECULATIVE;
|
1792 |
|
|
|
1793 |
|
|
if (ds == 0)
|
1794 |
|
|
return false;
|
1795 |
|
|
|
1796 |
|
|
{
|
1797 |
|
|
/* FIXME: make sched-deps.c produce only those non-hard dependencies,
|
1798 |
|
|
that we can overcome. */
|
1799 |
|
|
ds_t spec_mask = spec_info->mask;
|
1800 |
|
|
|
1801 |
|
|
if ((ds & spec_mask) != ds)
|
1802 |
|
|
return false;
|
1803 |
|
|
}
|
1804 |
|
|
|
1805 |
|
|
if (ds_weak (ds) < spec_info->data_weakness_cutoff)
|
1806 |
|
|
return false;
|
1807 |
|
|
|
1808 |
|
|
return true;
|
1809 |
|
|
}
|
1810 |
|
|
|
1811 |
|
|
/* Get a speculation check instruction.
|
1812 |
|
|
C_EXPR is a speculative expression,
|
1813 |
|
|
CHECK_DS describes speculations that should be checked,
|
1814 |
|
|
ORIG_INSN is the original non-speculative insn in the stream. */
|
1815 |
|
|
static insn_t
|
1816 |
|
|
create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
|
1817 |
|
|
{
|
1818 |
|
|
rtx check_pattern;
|
1819 |
|
|
rtx insn_rtx;
|
1820 |
|
|
insn_t insn;
|
1821 |
|
|
basic_block recovery_block;
|
1822 |
|
|
rtx label;
|
1823 |
|
|
|
1824 |
|
|
/* Create a recovery block if target is going to emit branchy check, or if
|
1825 |
|
|
ORIG_INSN was speculative already. */
|
1826 |
|
|
if (targetm.sched.needs_block_p (check_ds)
|
1827 |
|
|
|| EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
|
1828 |
|
|
{
|
1829 |
|
|
recovery_block = sel_create_recovery_block (orig_insn);
|
1830 |
|
|
label = BB_HEAD (recovery_block);
|
1831 |
|
|
}
|
1832 |
|
|
else
|
1833 |
|
|
{
|
1834 |
|
|
recovery_block = NULL;
|
1835 |
|
|
label = NULL_RTX;
|
1836 |
|
|
}
|
1837 |
|
|
|
1838 |
|
|
/* Get pattern of the check. */
|
1839 |
|
|
check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
|
1840 |
|
|
check_ds);
|
1841 |
|
|
|
1842 |
|
|
gcc_assert (check_pattern != NULL);
|
1843 |
|
|
|
1844 |
|
|
/* Emit check. */
|
1845 |
|
|
insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
|
1846 |
|
|
|
1847 |
|
|
insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
|
1848 |
|
|
INSN_SEQNO (orig_insn), orig_insn);
|
1849 |
|
|
|
1850 |
|
|
/* Make check to be non-speculative. */
|
1851 |
|
|
EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
|
1852 |
|
|
INSN_SPEC_CHECKED_DS (insn) = check_ds;
|
1853 |
|
|
|
1854 |
|
|
/* Decrease priority of check by difference of load/check instruction
|
1855 |
|
|
latencies. */
|
1856 |
|
|
EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
|
1857 |
|
|
- sel_vinsn_cost (INSN_VINSN (insn)));
|
1858 |
|
|
|
1859 |
|
|
/* Emit copy of original insn (though with replaced target register,
|
1860 |
|
|
if needed) to the recovery block. */
|
1861 |
|
|
if (recovery_block != NULL)
|
1862 |
|
|
{
|
1863 |
|
|
rtx twin_rtx;
|
1864 |
|
|
|
1865 |
|
|
twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
|
1866 |
|
|
twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
|
1867 |
|
|
sel_gen_recovery_insn_from_rtx_after (twin_rtx,
|
1868 |
|
|
INSN_EXPR (orig_insn),
|
1869 |
|
|
INSN_SEQNO (insn),
|
1870 |
|
|
bb_note (recovery_block));
|
1871 |
|
|
}
|
1872 |
|
|
|
1873 |
|
|
/* If we've generated a data speculation check, make sure
|
1874 |
|
|
that all the bookkeeping instruction we'll create during
|
1875 |
|
|
this move_op () will allocate an ALAT entry so that the
|
1876 |
|
|
check won't fail.
|
1877 |
|
|
In case of control speculation we must convert C_EXPR to control
|
1878 |
|
|
speculative mode, because failing to do so will bring us an exception
|
1879 |
|
|
thrown by the non-control-speculative load. */
|
1880 |
|
|
check_ds = ds_get_max_dep_weak (check_ds);
|
1881 |
|
|
speculate_expr (c_expr, check_ds);
|
1882 |
|
|
|
1883 |
|
|
return insn;
|
1884 |
|
|
}
|
1885 |
|
|
|
1886 |
|
|
/* True when INSN is a "regN = regN" copy. */
|
1887 |
|
|
static bool
|
1888 |
|
|
identical_copy_p (rtx insn)
|
1889 |
|
|
{
|
1890 |
|
|
rtx lhs, rhs, pat;
|
1891 |
|
|
|
1892 |
|
|
pat = PATTERN (insn);
|
1893 |
|
|
|
1894 |
|
|
if (GET_CODE (pat) != SET)
|
1895 |
|
|
return false;
|
1896 |
|
|
|
1897 |
|
|
lhs = SET_DEST (pat);
|
1898 |
|
|
if (!REG_P (lhs))
|
1899 |
|
|
return false;
|
1900 |
|
|
|
1901 |
|
|
rhs = SET_SRC (pat);
|
1902 |
|
|
if (!REG_P (rhs))
|
1903 |
|
|
return false;
|
1904 |
|
|
|
1905 |
|
|
return REGNO (lhs) == REGNO (rhs);
|
1906 |
|
|
}
|
1907 |
|
|
|
1908 |
|
|
/* Undo all transformations on *AV_PTR that were done when
|
1909 |
|
|
moving through INSN. */
|
1910 |
|
|
static void
|
1911 |
|
|
undo_transformations (av_set_t *av_ptr, rtx insn)
|
1912 |
|
|
{
|
1913 |
|
|
av_set_iterator av_iter;
|
1914 |
|
|
expr_t expr;
|
1915 |
|
|
av_set_t new_set = NULL;
|
1916 |
|
|
|
1917 |
|
|
/* First, kill any EXPR that uses registers set by an insn. This is
|
1918 |
|
|
required for correctness. */
|
1919 |
|
|
FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
|
1920 |
|
|
if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
|
1921 |
|
|
&& bitmap_intersect_p (INSN_REG_SETS (insn),
|
1922 |
|
|
VINSN_REG_USES (EXPR_VINSN (expr)))
|
1923 |
|
|
/* When an insn looks like 'r1 = r1', we could substitute through
|
1924 |
|
|
it, but the above condition will still hold. This happened with
|
1925 |
|
|
gcc.c-torture/execute/961125-1.c. */
|
1926 |
|
|
&& !identical_copy_p (insn))
|
1927 |
|
|
{
|
1928 |
|
|
if (sched_verbose >= 6)
|
1929 |
|
|
sel_print ("Expr %d removed due to use/set conflict\n",
|
1930 |
|
|
INSN_UID (EXPR_INSN_RTX (expr)));
|
1931 |
|
|
av_set_iter_remove (&av_iter);
|
1932 |
|
|
}
|
1933 |
|
|
|
1934 |
|
|
/* Undo transformations looking at the history vector. */
|
1935 |
|
|
FOR_EACH_EXPR (expr, av_iter, *av_ptr)
|
1936 |
|
|
{
|
1937 |
|
|
int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
|
1938 |
|
|
insn, EXPR_VINSN (expr), true);
|
1939 |
|
|
|
1940 |
|
|
if (index >= 0)
|
1941 |
|
|
{
|
1942 |
|
|
expr_history_def *phist;
|
1943 |
|
|
|
1944 |
|
|
phist = VEC_index (expr_history_def,
|
1945 |
|
|
EXPR_HISTORY_OF_CHANGES (expr),
|
1946 |
|
|
index);
|
1947 |
|
|
|
1948 |
|
|
switch (phist->type)
|
1949 |
|
|
{
|
1950 |
|
|
case TRANS_SPECULATION:
|
1951 |
|
|
{
|
1952 |
|
|
ds_t old_ds, new_ds;
|
1953 |
|
|
|
1954 |
|
|
/* Compute the difference between old and new speculative
|
1955 |
|
|
statuses: that's what we need to check.
|
1956 |
|
|
Earlier we used to assert that the status will really
|
1957 |
|
|
change. This no longer works because only the probability
|
1958 |
|
|
bits in the status may have changed during compute_av_set,
|
1959 |
|
|
and in the case of merging different probabilities of the
|
1960 |
|
|
same speculative status along different paths we do not
|
1961 |
|
|
record this in the history vector. */
|
1962 |
|
|
old_ds = phist->spec_ds;
|
1963 |
|
|
new_ds = EXPR_SPEC_DONE_DS (expr);
|
1964 |
|
|
|
1965 |
|
|
old_ds &= SPECULATIVE;
|
1966 |
|
|
new_ds &= SPECULATIVE;
|
1967 |
|
|
new_ds &= ~old_ds;
|
1968 |
|
|
|
1969 |
|
|
EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
|
1970 |
|
|
break;
|
1971 |
|
|
}
|
1972 |
|
|
case TRANS_SUBSTITUTION:
|
1973 |
|
|
{
|
1974 |
|
|
expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
|
1975 |
|
|
vinsn_t new_vi;
|
1976 |
|
|
bool add = true;
|
1977 |
|
|
|
1978 |
|
|
new_vi = phist->old_expr_vinsn;
|
1979 |
|
|
|
1980 |
|
|
gcc_assert (VINSN_SEPARABLE_P (new_vi)
|
1981 |
|
|
== EXPR_SEPARABLE_P (expr));
|
1982 |
|
|
copy_expr (tmp_expr, expr);
|
1983 |
|
|
|
1984 |
|
|
if (vinsn_equal_p (phist->new_expr_vinsn,
|
1985 |
|
|
EXPR_VINSN (tmp_expr)))
|
1986 |
|
|
change_vinsn_in_expr (tmp_expr, new_vi);
|
1987 |
|
|
else
|
1988 |
|
|
/* This happens when we're unsubstituting on a bookkeeping
|
1989 |
|
|
copy, which was in turn substituted. The history is wrong
|
1990 |
|
|
in this case. Do it the hard way. */
|
1991 |
|
|
add = substitute_reg_in_expr (tmp_expr, insn, true);
|
1992 |
|
|
if (add)
|
1993 |
|
|
av_set_add (&new_set, tmp_expr);
|
1994 |
|
|
clear_expr (tmp_expr);
|
1995 |
|
|
break;
|
1996 |
|
|
}
|
1997 |
|
|
default:
|
1998 |
|
|
gcc_unreachable ();
|
1999 |
|
|
}
|
2000 |
|
|
}
|
2001 |
|
|
|
2002 |
|
|
}
|
2003 |
|
|
|
2004 |
|
|
av_set_union_and_clear (av_ptr, &new_set, NULL);
|
2005 |
|
|
}
|
2006 |
|
|
|
2007 |
|
|
|
2008 |
|
|
/* Moveup_* helpers for code motion and computing av sets. */
|
2009 |
|
|
|
2010 |
|
|
/* Propagates EXPR inside an insn group through THROUGH_INSN.
|
2011 |
|
|
The difference from the below function is that only substitution is
|
2012 |
|
|
performed. */
|
2013 |
|
|
static enum MOVEUP_EXPR_CODE
|
2014 |
|
|
moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
|
2015 |
|
|
{
|
2016 |
|
|
vinsn_t vi = EXPR_VINSN (expr);
|
2017 |
|
|
ds_t *has_dep_p;
|
2018 |
|
|
ds_t full_ds;
|
2019 |
|
|
|
2020 |
|
|
/* Do this only inside insn group. */
|
2021 |
|
|
gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
|
2022 |
|
|
|
2023 |
|
|
full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
|
2024 |
|
|
if (full_ds == 0)
|
2025 |
|
|
return MOVEUP_EXPR_SAME;
|
2026 |
|
|
|
2027 |
|
|
/* Substitution is the possible choice in this case. */
|
2028 |
|
|
if (has_dep_p[DEPS_IN_RHS])
|
2029 |
|
|
{
|
2030 |
|
|
/* Can't substitute UNIQUE VINSNs. */
|
2031 |
|
|
gcc_assert (!VINSN_UNIQUE_P (vi));
|
2032 |
|
|
|
2033 |
|
|
if (can_substitute_through_p (through_insn,
|
2034 |
|
|
has_dep_p[DEPS_IN_RHS])
|
2035 |
|
|
&& substitute_reg_in_expr (expr, through_insn, false))
|
2036 |
|
|
{
|
2037 |
|
|
EXPR_WAS_SUBSTITUTED (expr) = true;
|
2038 |
|
|
return MOVEUP_EXPR_CHANGED;
|
2039 |
|
|
}
|
2040 |
|
|
|
2041 |
|
|
/* Don't care about this, as even true dependencies may be allowed
|
2042 |
|
|
in an insn group. */
|
2043 |
|
|
return MOVEUP_EXPR_SAME;
|
2044 |
|
|
}
|
2045 |
|
|
|
2046 |
|
|
/* This can catch output dependencies in COND_EXECs. */
|
2047 |
|
|
if (has_dep_p[DEPS_IN_INSN])
|
2048 |
|
|
return MOVEUP_EXPR_NULL;
|
2049 |
|
|
|
2050 |
|
|
/* This is either an output or an anti dependence, which usually have
|
2051 |
|
|
a zero latency. Allow this here, if we'd be wrong, tick_check_p
|
2052 |
|
|
will fix this. */
|
2053 |
|
|
gcc_assert (has_dep_p[DEPS_IN_LHS]);
|
2054 |
|
|
return MOVEUP_EXPR_AS_RHS;
|
2055 |
|
|
}
|
2056 |
|
|
|
2057 |
|
|
/* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
|
2058 |
|
|
#define CANT_MOVE_TRAPPING(expr, through_insn) \
|
2059 |
|
|
(VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
|
2060 |
|
|
&& !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
|
2061 |
|
|
&& !sel_insn_is_speculation_check (through_insn))
|
2062 |
|
|
|
2063 |
|
|
/* True when a conflict on a target register was found during moveup_expr. */
|
2064 |
|
|
static bool was_target_conflict = false;
|
2065 |
|
|
|
2066 |
|
|
/* Return true when moving a debug INSN across THROUGH_INSN will
|
2067 |
|
|
create a bookkeeping block. We don't want to create such blocks,
|
2068 |
|
|
for they would cause codegen differences between compilations with
|
2069 |
|
|
and without debug info. */
|
2070 |
|
|
|
2071 |
|
|
static bool
|
2072 |
|
|
moving_insn_creates_bookkeeping_block_p (insn_t insn,
|
2073 |
|
|
insn_t through_insn)
|
2074 |
|
|
{
|
2075 |
|
|
basic_block bbi, bbt;
|
2076 |
|
|
edge e1, e2;
|
2077 |
|
|
edge_iterator ei1, ei2;
|
2078 |
|
|
|
2079 |
|
|
if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
|
2080 |
|
|
{
|
2081 |
|
|
if (sched_verbose >= 9)
|
2082 |
|
|
sel_print ("no bookkeeping required: ");
|
2083 |
|
|
return FALSE;
|
2084 |
|
|
}
|
2085 |
|
|
|
2086 |
|
|
bbi = BLOCK_FOR_INSN (insn);
|
2087 |
|
|
|
2088 |
|
|
if (EDGE_COUNT (bbi->preds) == 1)
|
2089 |
|
|
{
|
2090 |
|
|
if (sched_verbose >= 9)
|
2091 |
|
|
sel_print ("only one pred edge: ");
|
2092 |
|
|
return TRUE;
|
2093 |
|
|
}
|
2094 |
|
|
|
2095 |
|
|
bbt = BLOCK_FOR_INSN (through_insn);
|
2096 |
|
|
|
2097 |
|
|
FOR_EACH_EDGE (e1, ei1, bbt->succs)
|
2098 |
|
|
{
|
2099 |
|
|
FOR_EACH_EDGE (e2, ei2, bbi->preds)
|
2100 |
|
|
{
|
2101 |
|
|
if (find_block_for_bookkeeping (e1, e2, TRUE))
|
2102 |
|
|
{
|
2103 |
|
|
if (sched_verbose >= 9)
|
2104 |
|
|
sel_print ("found existing block: ");
|
2105 |
|
|
return FALSE;
|
2106 |
|
|
}
|
2107 |
|
|
}
|
2108 |
|
|
}
|
2109 |
|
|
|
2110 |
|
|
if (sched_verbose >= 9)
|
2111 |
|
|
sel_print ("would create bookkeeping block: ");
|
2112 |
|
|
|
2113 |
|
|
return TRUE;
|
2114 |
|
|
}
|
2115 |
|
|
|
2116 |
|
|
/* Modifies EXPR so it can be moved through the THROUGH_INSN,
|
2117 |
|
|
performing necessary transformations. Record the type of transformation
|
2118 |
|
|
made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
|
2119 |
|
|
permit all dependencies except true ones, and try to remove those
|
2120 |
|
|
too via forward substitution. All cases when a non-eliminable
|
2121 |
|
|
non-zero cost dependency exists inside an insn group will be fixed
|
2122 |
|
|
in tick_check_p instead. */
|
2123 |
|
|
static enum MOVEUP_EXPR_CODE
|
2124 |
|
|
moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
|
2125 |
|
|
enum local_trans_type *ptrans_type)
|
2126 |
|
|
{
|
2127 |
|
|
vinsn_t vi = EXPR_VINSN (expr);
|
2128 |
|
|
insn_t insn = VINSN_INSN_RTX (vi);
|
2129 |
|
|
bool was_changed = false;
|
2130 |
|
|
bool as_rhs = false;
|
2131 |
|
|
ds_t *has_dep_p;
|
2132 |
|
|
ds_t full_ds;
|
2133 |
|
|
|
2134 |
|
|
/* ??? We use dependencies of non-debug insns on debug insns to
|
2135 |
|
|
indicate that the debug insns need to be reset if the non-debug
|
2136 |
|
|
insn is pulled ahead of it. It's hard to figure out how to
|
2137 |
|
|
introduce such a notion in sel-sched, but it already fails to
|
2138 |
|
|
support debug insns in other ways, so we just go ahead and
|
2139 |
|
|
let the deug insns go corrupt for now. */
|
2140 |
|
|
if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
|
2141 |
|
|
return MOVEUP_EXPR_SAME;
|
2142 |
|
|
|
2143 |
|
|
/* When inside_insn_group, delegate to the helper. */
|
2144 |
|
|
if (inside_insn_group)
|
2145 |
|
|
return moveup_expr_inside_insn_group (expr, through_insn);
|
2146 |
|
|
|
2147 |
|
|
/* Deal with unique insns and control dependencies. */
|
2148 |
|
|
if (VINSN_UNIQUE_P (vi))
|
2149 |
|
|
{
|
2150 |
|
|
/* We can move jumps without side-effects or jumps that are
|
2151 |
|
|
mutually exclusive with instruction THROUGH_INSN (all in cases
|
2152 |
|
|
dependencies allow to do so and jump is not speculative). */
|
2153 |
|
|
if (control_flow_insn_p (insn))
|
2154 |
|
|
{
|
2155 |
|
|
basic_block fallthru_bb;
|
2156 |
|
|
|
2157 |
|
|
/* Do not move checks and do not move jumps through other
|
2158 |
|
|
jumps. */
|
2159 |
|
|
if (control_flow_insn_p (through_insn)
|
2160 |
|
|
|| sel_insn_is_speculation_check (insn))
|
2161 |
|
|
return MOVEUP_EXPR_NULL;
|
2162 |
|
|
|
2163 |
|
|
/* Don't move jumps through CFG joins. */
|
2164 |
|
|
if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
|
2165 |
|
|
return MOVEUP_EXPR_NULL;
|
2166 |
|
|
|
2167 |
|
|
/* The jump should have a clear fallthru block, and
|
2168 |
|
|
this block should be in the current region. */
|
2169 |
|
|
if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
|
2170 |
|
|
|| ! in_current_region_p (fallthru_bb))
|
2171 |
|
|
return MOVEUP_EXPR_NULL;
|
2172 |
|
|
|
2173 |
|
|
/* And it should be mutually exclusive with through_insn. */
|
2174 |
|
|
if (! sched_insns_conditions_mutex_p (insn, through_insn)
|
2175 |
|
|
&& ! DEBUG_INSN_P (through_insn))
|
2176 |
|
|
return MOVEUP_EXPR_NULL;
|
2177 |
|
|
}
|
2178 |
|
|
|
2179 |
|
|
/* Don't move what we can't move. */
|
2180 |
|
|
if (EXPR_CANT_MOVE (expr)
|
2181 |
|
|
&& BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
|
2182 |
|
|
return MOVEUP_EXPR_NULL;
|
2183 |
|
|
|
2184 |
|
|
/* Don't move SCHED_GROUP instruction through anything.
|
2185 |
|
|
If we don't force this, then it will be possible to start
|
2186 |
|
|
scheduling a sched_group before all its dependencies are
|
2187 |
|
|
resolved.
|
2188 |
|
|
??? Haifa deals with this issue by delaying the SCHED_GROUP
|
2189 |
|
|
as late as possible through rank_for_schedule. */
|
2190 |
|
|
if (SCHED_GROUP_P (insn))
|
2191 |
|
|
return MOVEUP_EXPR_NULL;
|
2192 |
|
|
}
|
2193 |
|
|
else
|
2194 |
|
|
gcc_assert (!control_flow_insn_p (insn));
|
2195 |
|
|
|
2196 |
|
|
/* Don't move debug insns if this would require bookkeeping. */
|
2197 |
|
|
if (DEBUG_INSN_P (insn)
|
2198 |
|
|
&& BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
|
2199 |
|
|
&& moving_insn_creates_bookkeeping_block_p (insn, through_insn))
|
2200 |
|
|
return MOVEUP_EXPR_NULL;
|
2201 |
|
|
|
2202 |
|
|
/* Deal with data dependencies. */
|
2203 |
|
|
was_target_conflict = false;
|
2204 |
|
|
full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
|
2205 |
|
|
if (full_ds == 0)
|
2206 |
|
|
{
|
2207 |
|
|
if (!CANT_MOVE_TRAPPING (expr, through_insn))
|
2208 |
|
|
return MOVEUP_EXPR_SAME;
|
2209 |
|
|
}
|
2210 |
|
|
else
|
2211 |
|
|
{
|
2212 |
|
|
/* We can move UNIQUE insn up only as a whole and unchanged,
|
2213 |
|
|
so it shouldn't have any dependencies. */
|
2214 |
|
|
if (VINSN_UNIQUE_P (vi))
|
2215 |
|
|
return MOVEUP_EXPR_NULL;
|
2216 |
|
|
}
|
2217 |
|
|
|
2218 |
|
|
if (full_ds != 0 && can_speculate_dep_p (full_ds))
|
2219 |
|
|
{
|
2220 |
|
|
int res;
|
2221 |
|
|
|
2222 |
|
|
res = speculate_expr (expr, full_ds);
|
2223 |
|
|
if (res >= 0)
|
2224 |
|
|
{
|
2225 |
|
|
/* Speculation was successful. */
|
2226 |
|
|
full_ds = 0;
|
2227 |
|
|
was_changed = (res > 0);
|
2228 |
|
|
if (res == 2)
|
2229 |
|
|
was_target_conflict = true;
|
2230 |
|
|
if (ptrans_type)
|
2231 |
|
|
*ptrans_type = TRANS_SPECULATION;
|
2232 |
|
|
sel_clear_has_dependence ();
|
2233 |
|
|
}
|
2234 |
|
|
}
|
2235 |
|
|
|
2236 |
|
|
if (has_dep_p[DEPS_IN_INSN])
|
2237 |
|
|
/* We have some dependency that cannot be discarded. */
|
2238 |
|
|
return MOVEUP_EXPR_NULL;
|
2239 |
|
|
|
2240 |
|
|
if (has_dep_p[DEPS_IN_LHS])
|
2241 |
|
|
{
|
2242 |
|
|
/* Only separable insns can be moved up with the new register.
|
2243 |
|
|
Anyways, we should mark that the original register is
|
2244 |
|
|
unavailable. */
|
2245 |
|
|
if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
|
2246 |
|
|
return MOVEUP_EXPR_NULL;
|
2247 |
|
|
|
2248 |
|
|
EXPR_TARGET_AVAILABLE (expr) = false;
|
2249 |
|
|
was_target_conflict = true;
|
2250 |
|
|
as_rhs = true;
|
2251 |
|
|
}
|
2252 |
|
|
|
2253 |
|
|
/* At this point we have either separable insns, that will be lifted
|
2254 |
|
|
up only as RHSes, or non-separable insns with no dependency in lhs.
|
2255 |
|
|
If dependency is in RHS, then try to perform substitution and move up
|
2256 |
|
|
substituted RHS:
|
2257 |
|
|
|
2258 |
|
|
Ex. 1: Ex.2
|
2259 |
|
|
y = x; y = x;
|
2260 |
|
|
z = y*2; y = y*2;
|
2261 |
|
|
|
2262 |
|
|
In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
|
2263 |
|
|
moved above y=x assignment as z=x*2.
|
2264 |
|
|
|
2265 |
|
|
In Ex.2 y*2 also can be substituted for x*2, but only the right hand
|
2266 |
|
|
side can be moved because of the output dependency. The operation was
|
2267 |
|
|
cropped to its rhs above. */
|
2268 |
|
|
if (has_dep_p[DEPS_IN_RHS])
|
2269 |
|
|
{
|
2270 |
|
|
ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
|
2271 |
|
|
|
2272 |
|
|
/* Can't substitute UNIQUE VINSNs. */
|
2273 |
|
|
gcc_assert (!VINSN_UNIQUE_P (vi));
|
2274 |
|
|
|
2275 |
|
|
if (can_speculate_dep_p (*rhs_dsp))
|
2276 |
|
|
{
|
2277 |
|
|
int res;
|
2278 |
|
|
|
2279 |
|
|
res = speculate_expr (expr, *rhs_dsp);
|
2280 |
|
|
if (res >= 0)
|
2281 |
|
|
{
|
2282 |
|
|
/* Speculation was successful. */
|
2283 |
|
|
*rhs_dsp = 0;
|
2284 |
|
|
was_changed = (res > 0);
|
2285 |
|
|
if (res == 2)
|
2286 |
|
|
was_target_conflict = true;
|
2287 |
|
|
if (ptrans_type)
|
2288 |
|
|
*ptrans_type = TRANS_SPECULATION;
|
2289 |
|
|
}
|
2290 |
|
|
else
|
2291 |
|
|
return MOVEUP_EXPR_NULL;
|
2292 |
|
|
}
|
2293 |
|
|
else if (can_substitute_through_p (through_insn,
|
2294 |
|
|
*rhs_dsp)
|
2295 |
|
|
&& substitute_reg_in_expr (expr, through_insn, false))
|
2296 |
|
|
{
|
2297 |
|
|
/* ??? We cannot perform substitution AND speculation on the same
|
2298 |
|
|
insn. */
|
2299 |
|
|
gcc_assert (!was_changed);
|
2300 |
|
|
was_changed = true;
|
2301 |
|
|
if (ptrans_type)
|
2302 |
|
|
*ptrans_type = TRANS_SUBSTITUTION;
|
2303 |
|
|
EXPR_WAS_SUBSTITUTED (expr) = true;
|
2304 |
|
|
}
|
2305 |
|
|
else
|
2306 |
|
|
return MOVEUP_EXPR_NULL;
|
2307 |
|
|
}
|
2308 |
|
|
|
2309 |
|
|
/* Don't move trapping insns through jumps.
|
2310 |
|
|
This check should be at the end to give a chance to control speculation
|
2311 |
|
|
to perform its duties. */
|
2312 |
|
|
if (CANT_MOVE_TRAPPING (expr, through_insn))
|
2313 |
|
|
return MOVEUP_EXPR_NULL;
|
2314 |
|
|
|
2315 |
|
|
return (was_changed
|
2316 |
|
|
? MOVEUP_EXPR_CHANGED
|
2317 |
|
|
: (as_rhs
|
2318 |
|
|
? MOVEUP_EXPR_AS_RHS
|
2319 |
|
|
: MOVEUP_EXPR_SAME));
|
2320 |
|
|
}
|
2321 |
|
|
|
2322 |
|
|
/* Try to look at bitmap caches for EXPR and INSN pair, return true
|
2323 |
|
|
if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
|
2324 |
|
|
that can exist within a parallel group. Write to RES the resulting
|
2325 |
|
|
code for moveup_expr. */
|
2326 |
|
|
static bool
|
2327 |
|
|
try_bitmap_cache (expr_t expr, insn_t insn,
|
2328 |
|
|
bool inside_insn_group,
|
2329 |
|
|
enum MOVEUP_EXPR_CODE *res)
|
2330 |
|
|
{
|
2331 |
|
|
int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
|
2332 |
|
|
|
2333 |
|
|
/* First check whether we've analyzed this situation already. */
|
2334 |
|
|
if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
|
2335 |
|
|
{
|
2336 |
|
|
if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
|
2337 |
|
|
{
|
2338 |
|
|
if (sched_verbose >= 6)
|
2339 |
|
|
sel_print ("removed (cached)\n");
|
2340 |
|
|
*res = MOVEUP_EXPR_NULL;
|
2341 |
|
|
return true;
|
2342 |
|
|
}
|
2343 |
|
|
else
|
2344 |
|
|
{
|
2345 |
|
|
if (sched_verbose >= 6)
|
2346 |
|
|
sel_print ("unchanged (cached)\n");
|
2347 |
|
|
*res = MOVEUP_EXPR_SAME;
|
2348 |
|
|
return true;
|
2349 |
|
|
}
|
2350 |
|
|
}
|
2351 |
|
|
else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
|
2352 |
|
|
{
|
2353 |
|
|
if (inside_insn_group)
|
2354 |
|
|
{
|
2355 |
|
|
if (sched_verbose >= 6)
|
2356 |
|
|
sel_print ("unchanged (as RHS, cached, inside insn group)\n");
|
2357 |
|
|
*res = MOVEUP_EXPR_SAME;
|
2358 |
|
|
return true;
|
2359 |
|
|
|
2360 |
|
|
}
|
2361 |
|
|
else
|
2362 |
|
|
EXPR_TARGET_AVAILABLE (expr) = false;
|
2363 |
|
|
|
2364 |
|
|
/* This is the only case when propagation result can change over time,
|
2365 |
|
|
as we can dynamically switch off scheduling as RHS. In this case,
|
2366 |
|
|
just check the flag to reach the correct decision. */
|
2367 |
|
|
if (enable_schedule_as_rhs_p)
|
2368 |
|
|
{
|
2369 |
|
|
if (sched_verbose >= 6)
|
2370 |
|
|
sel_print ("unchanged (as RHS, cached)\n");
|
2371 |
|
|
*res = MOVEUP_EXPR_AS_RHS;
|
2372 |
|
|
return true;
|
2373 |
|
|
}
|
2374 |
|
|
else
|
2375 |
|
|
{
|
2376 |
|
|
if (sched_verbose >= 6)
|
2377 |
|
|
sel_print ("removed (cached as RHS, but renaming"
|
2378 |
|
|
" is now disabled)\n");
|
2379 |
|
|
*res = MOVEUP_EXPR_NULL;
|
2380 |
|
|
return true;
|
2381 |
|
|
}
|
2382 |
|
|
}
|
2383 |
|
|
|
2384 |
|
|
return false;
|
2385 |
|
|
}
|
2386 |
|
|
|
2387 |
|
|
/* Try to look at bitmap caches for EXPR and INSN pair, return true
|
2388 |
|
|
if successful. Write to RES the resulting code for moveup_expr. */
|
2389 |
|
|
static bool
|
2390 |
|
|
try_transformation_cache (expr_t expr, insn_t insn,
|
2391 |
|
|
enum MOVEUP_EXPR_CODE *res)
|
2392 |
|
|
{
|
2393 |
|
|
struct transformed_insns *pti
|
2394 |
|
|
= (struct transformed_insns *)
|
2395 |
|
|
htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
|
2396 |
|
|
&EXPR_VINSN (expr),
|
2397 |
|
|
VINSN_HASH_RTX (EXPR_VINSN (expr)));
|
2398 |
|
|
if (pti)
|
2399 |
|
|
{
|
2400 |
|
|
/* This EXPR was already moved through this insn and was
|
2401 |
|
|
changed as a result. Fetch the proper data from
|
2402 |
|
|
the hashtable. */
|
2403 |
|
|
insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
|
2404 |
|
|
INSN_UID (insn), pti->type,
|
2405 |
|
|
pti->vinsn_old, pti->vinsn_new,
|
2406 |
|
|
EXPR_SPEC_DONE_DS (expr));
|
2407 |
|
|
|
2408 |
|
|
if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
|
2409 |
|
|
pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
|
2410 |
|
|
change_vinsn_in_expr (expr, pti->vinsn_new);
|
2411 |
|
|
if (pti->was_target_conflict)
|
2412 |
|
|
EXPR_TARGET_AVAILABLE (expr) = false;
|
2413 |
|
|
if (pti->type == TRANS_SPECULATION)
|
2414 |
|
|
{
|
2415 |
|
|
EXPR_SPEC_DONE_DS (expr) = pti->ds;
|
2416 |
|
|
EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
|
2417 |
|
|
}
|
2418 |
|
|
|
2419 |
|
|
if (sched_verbose >= 6)
|
2420 |
|
|
{
|
2421 |
|
|
sel_print ("changed (cached): ");
|
2422 |
|
|
dump_expr (expr);
|
2423 |
|
|
sel_print ("\n");
|
2424 |
|
|
}
|
2425 |
|
|
|
2426 |
|
|
*res = MOVEUP_EXPR_CHANGED;
|
2427 |
|
|
return true;
|
2428 |
|
|
}
|
2429 |
|
|
|
2430 |
|
|
return false;
|
2431 |
|
|
}
|
2432 |
|
|
|
2433 |
|
|
/* Update bitmap caches on INSN with result RES of propagating EXPR. */
|
2434 |
|
|
static void
|
2435 |
|
|
update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
|
2436 |
|
|
enum MOVEUP_EXPR_CODE res)
|
2437 |
|
|
{
|
2438 |
|
|
int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
|
2439 |
|
|
|
2440 |
|
|
/* Do not cache result of propagating jumps through an insn group,
|
2441 |
|
|
as it is always true, which is not useful outside the group. */
|
2442 |
|
|
if (inside_insn_group)
|
2443 |
|
|
return;
|
2444 |
|
|
|
2445 |
|
|
if (res == MOVEUP_EXPR_NULL)
|
2446 |
|
|
{
|
2447 |
|
|
bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
|
2448 |
|
|
bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
|
2449 |
|
|
}
|
2450 |
|
|
else if (res == MOVEUP_EXPR_SAME)
|
2451 |
|
|
{
|
2452 |
|
|
bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
|
2453 |
|
|
bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
|
2454 |
|
|
}
|
2455 |
|
|
else if (res == MOVEUP_EXPR_AS_RHS)
|
2456 |
|
|
{
|
2457 |
|
|
bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
|
2458 |
|
|
bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
|
2459 |
|
|
}
|
2460 |
|
|
else
|
2461 |
|
|
gcc_unreachable ();
|
2462 |
|
|
}
|
2463 |
|
|
|
2464 |
|
|
/* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
|
2465 |
|
|
and transformation type TRANS_TYPE. */
|
2466 |
|
|
static void
|
2467 |
|
|
update_transformation_cache (expr_t expr, insn_t insn,
|
2468 |
|
|
bool inside_insn_group,
|
2469 |
|
|
enum local_trans_type trans_type,
|
2470 |
|
|
vinsn_t expr_old_vinsn)
|
2471 |
|
|
{
|
2472 |
|
|
struct transformed_insns *pti;
|
2473 |
|
|
|
2474 |
|
|
if (inside_insn_group)
|
2475 |
|
|
return;
|
2476 |
|
|
|
2477 |
|
|
pti = XNEW (struct transformed_insns);
|
2478 |
|
|
pti->vinsn_old = expr_old_vinsn;
|
2479 |
|
|
pti->vinsn_new = EXPR_VINSN (expr);
|
2480 |
|
|
pti->type = trans_type;
|
2481 |
|
|
pti->was_target_conflict = was_target_conflict;
|
2482 |
|
|
pti->ds = EXPR_SPEC_DONE_DS (expr);
|
2483 |
|
|
pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
|
2484 |
|
|
vinsn_attach (pti->vinsn_old);
|
2485 |
|
|
vinsn_attach (pti->vinsn_new);
|
2486 |
|
|
*((struct transformed_insns **)
|
2487 |
|
|
htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
|
2488 |
|
|
pti, VINSN_HASH_RTX (expr_old_vinsn),
|
2489 |
|
|
INSERT)) = pti;
|
2490 |
|
|
}
|
2491 |
|
|
|
2492 |
|
|
/* Same as moveup_expr, but first looks up the result of
|
2493 |
|
|
transformation in caches. */
|
2494 |
|
|
static enum MOVEUP_EXPR_CODE
|
2495 |
|
|
moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
|
2496 |
|
|
{
|
2497 |
|
|
enum MOVEUP_EXPR_CODE res;
|
2498 |
|
|
bool got_answer = false;
|
2499 |
|
|
|
2500 |
|
|
if (sched_verbose >= 6)
|
2501 |
|
|
{
|
2502 |
|
|
sel_print ("Moving ");
|
2503 |
|
|
dump_expr (expr);
|
2504 |
|
|
sel_print (" through %d: ", INSN_UID (insn));
|
2505 |
|
|
}
|
2506 |
|
|
|
2507 |
|
|
if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
|
2508 |
|
|
&& (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
|
2509 |
|
|
== EXPR_INSN_RTX (expr)))
|
2510 |
|
|
/* Don't use cached information for debug insns that are heads of
|
2511 |
|
|
basic blocks. */;
|
2512 |
|
|
else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
|
2513 |
|
|
/* When inside insn group, we do not want remove stores conflicting
|
2514 |
|
|
with previosly issued loads. */
|
2515 |
|
|
got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
|
2516 |
|
|
else if (try_transformation_cache (expr, insn, &res))
|
2517 |
|
|
got_answer = true;
|
2518 |
|
|
|
2519 |
|
|
if (! got_answer)
|
2520 |
|
|
{
|
2521 |
|
|
/* Invoke moveup_expr and record the results. */
|
2522 |
|
|
vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
|
2523 |
|
|
ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
|
2524 |
|
|
int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
|
2525 |
|
|
bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
|
2526 |
|
|
enum local_trans_type trans_type = TRANS_SUBSTITUTION;
|
2527 |
|
|
|
2528 |
|
|
/* ??? Invent something better than this. We can't allow old_vinsn
|
2529 |
|
|
to go, we need it for the history vector. */
|
2530 |
|
|
vinsn_attach (expr_old_vinsn);
|
2531 |
|
|
|
2532 |
|
|
res = moveup_expr (expr, insn, inside_insn_group,
|
2533 |
|
|
&trans_type);
|
2534 |
|
|
switch (res)
|
2535 |
|
|
{
|
2536 |
|
|
case MOVEUP_EXPR_NULL:
|
2537 |
|
|
update_bitmap_cache (expr, insn, inside_insn_group, res);
|
2538 |
|
|
if (sched_verbose >= 6)
|
2539 |
|
|
sel_print ("removed\n");
|
2540 |
|
|
break;
|
2541 |
|
|
|
2542 |
|
|
case MOVEUP_EXPR_SAME:
|
2543 |
|
|
update_bitmap_cache (expr, insn, inside_insn_group, res);
|
2544 |
|
|
if (sched_verbose >= 6)
|
2545 |
|
|
sel_print ("unchanged\n");
|
2546 |
|
|
break;
|
2547 |
|
|
|
2548 |
|
|
case MOVEUP_EXPR_AS_RHS:
|
2549 |
|
|
gcc_assert (!unique_p || inside_insn_group);
|
2550 |
|
|
update_bitmap_cache (expr, insn, inside_insn_group, res);
|
2551 |
|
|
if (sched_verbose >= 6)
|
2552 |
|
|
sel_print ("unchanged (as RHS)\n");
|
2553 |
|
|
break;
|
2554 |
|
|
|
2555 |
|
|
case MOVEUP_EXPR_CHANGED:
|
2556 |
|
|
gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
|
2557 |
|
|
|| EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
|
2558 |
|
|
insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
|
2559 |
|
|
INSN_UID (insn), trans_type,
|
2560 |
|
|
expr_old_vinsn, EXPR_VINSN (expr),
|
2561 |
|
|
expr_old_spec_ds);
|
2562 |
|
|
update_transformation_cache (expr, insn, inside_insn_group,
|
2563 |
|
|
trans_type, expr_old_vinsn);
|
2564 |
|
|
if (sched_verbose >= 6)
|
2565 |
|
|
{
|
2566 |
|
|
sel_print ("changed: ");
|
2567 |
|
|
dump_expr (expr);
|
2568 |
|
|
sel_print ("\n");
|
2569 |
|
|
}
|
2570 |
|
|
break;
|
2571 |
|
|
default:
|
2572 |
|
|
gcc_unreachable ();
|
2573 |
|
|
}
|
2574 |
|
|
|
2575 |
|
|
vinsn_detach (expr_old_vinsn);
|
2576 |
|
|
}
|
2577 |
|
|
|
2578 |
|
|
return res;
|
2579 |
|
|
}
|
2580 |
|
|
|
2581 |
|
|
/* Moves an av set AVP up through INSN, performing necessary
|
2582 |
|
|
transformations. */
|
2583 |
|
|
static void
|
2584 |
|
|
moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
|
2585 |
|
|
{
|
2586 |
|
|
av_set_iterator i;
|
2587 |
|
|
expr_t expr;
|
2588 |
|
|
|
2589 |
|
|
FOR_EACH_EXPR_1 (expr, i, avp)
|
2590 |
|
|
{
|
2591 |
|
|
|
2592 |
|
|
switch (moveup_expr_cached (expr, insn, inside_insn_group))
|
2593 |
|
|
{
|
2594 |
|
|
case MOVEUP_EXPR_SAME:
|
2595 |
|
|
case MOVEUP_EXPR_AS_RHS:
|
2596 |
|
|
break;
|
2597 |
|
|
|
2598 |
|
|
case MOVEUP_EXPR_NULL:
|
2599 |
|
|
av_set_iter_remove (&i);
|
2600 |
|
|
break;
|
2601 |
|
|
|
2602 |
|
|
case MOVEUP_EXPR_CHANGED:
|
2603 |
|
|
expr = merge_with_other_exprs (avp, &i, expr);
|
2604 |
|
|
break;
|
2605 |
|
|
|
2606 |
|
|
default:
|
2607 |
|
|
gcc_unreachable ();
|
2608 |
|
|
}
|
2609 |
|
|
}
|
2610 |
|
|
}
|
2611 |
|
|
|
2612 |
|
|
/* Moves AVP set along PATH. */
|
2613 |
|
|
static void
|
2614 |
|
|
moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
|
2615 |
|
|
{
|
2616 |
|
|
int last_cycle;
|
2617 |
|
|
|
2618 |
|
|
if (sched_verbose >= 6)
|
2619 |
|
|
sel_print ("Moving expressions up in the insn group...\n");
|
2620 |
|
|
if (! path)
|
2621 |
|
|
return;
|
2622 |
|
|
last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
|
2623 |
|
|
while (path
|
2624 |
|
|
&& INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
|
2625 |
|
|
{
|
2626 |
|
|
moveup_set_expr (avp, ILIST_INSN (path), true);
|
2627 |
|
|
path = ILIST_NEXT (path);
|
2628 |
|
|
}
|
2629 |
|
|
}
|
2630 |
|
|
|
2631 |
|
|
/* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
|
2632 |
|
|
static bool
|
2633 |
|
|
equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
|
2634 |
|
|
{
|
2635 |
|
|
expr_def _tmp, *tmp = &_tmp;
|
2636 |
|
|
int last_cycle;
|
2637 |
|
|
bool res = true;
|
2638 |
|
|
|
2639 |
|
|
copy_expr_onside (tmp, expr);
|
2640 |
|
|
last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
|
2641 |
|
|
while (path
|
2642 |
|
|
&& res
|
2643 |
|
|
&& INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
|
2644 |
|
|
{
|
2645 |
|
|
res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
|
2646 |
|
|
!= MOVEUP_EXPR_NULL);
|
2647 |
|
|
path = ILIST_NEXT (path);
|
2648 |
|
|
}
|
2649 |
|
|
|
2650 |
|
|
if (res)
|
2651 |
|
|
{
|
2652 |
|
|
vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
|
2653 |
|
|
vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
|
2654 |
|
|
|
2655 |
|
|
if (tmp_vinsn != expr_vliw_vinsn)
|
2656 |
|
|
res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
|
2657 |
|
|
}
|
2658 |
|
|
|
2659 |
|
|
clear_expr (tmp);
|
2660 |
|
|
return res;
|
2661 |
|
|
}
|
2662 |
|
|
|
2663 |
|
|
|
2664 |
|
|
/* Functions that compute av and lv sets. */
|
2665 |
|
|
|
2666 |
|
|
/* Returns true if INSN is not a downward continuation of the given path P in
|
2667 |
|
|
the current stage. */
|
2668 |
|
|
static bool
|
2669 |
|
|
is_ineligible_successor (insn_t insn, ilist_t p)
|
2670 |
|
|
{
|
2671 |
|
|
insn_t prev_insn;
|
2672 |
|
|
|
2673 |
|
|
/* Check if insn is not deleted. */
|
2674 |
|
|
if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
|
2675 |
|
|
gcc_unreachable ();
|
2676 |
|
|
else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
|
2677 |
|
|
gcc_unreachable ();
|
2678 |
|
|
|
2679 |
|
|
/* If it's the first insn visited, then the successor is ok. */
|
2680 |
|
|
if (!p)
|
2681 |
|
|
return false;
|
2682 |
|
|
|
2683 |
|
|
prev_insn = ILIST_INSN (p);
|
2684 |
|
|
|
2685 |
|
|
if (/* a backward edge. */
|
2686 |
|
|
INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
|
2687 |
|
|
/* is already visited. */
|
2688 |
|
|
|| (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
|
2689 |
|
|
&& (ilist_is_in_p (p, insn)
|
2690 |
|
|
/* We can reach another fence here and still seqno of insn
|
2691 |
|
|
would be equal to seqno of prev_insn. This is possible
|
2692 |
|
|
when prev_insn is a previously created bookkeeping copy.
|
2693 |
|
|
In that case it'd get a seqno of insn. Thus, check here
|
2694 |
|
|
whether insn is in current fence too. */
|
2695 |
|
|
|| IN_CURRENT_FENCE_P (insn)))
|
2696 |
|
|
/* Was already scheduled on this round. */
|
2697 |
|
|
|| (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
|
2698 |
|
|
&& IN_CURRENT_FENCE_P (insn))
|
2699 |
|
|
/* An insn from another fence could also be
|
2700 |
|
|
scheduled earlier even if this insn is not in
|
2701 |
|
|
a fence list right now. Check INSN_SCHED_CYCLE instead. */
|
2702 |
|
|
|| (!pipelining_p
|
2703 |
|
|
&& INSN_SCHED_TIMES (insn) > 0))
|
2704 |
|
|
return true;
|
2705 |
|
|
else
|
2706 |
|
|
return false;
|
2707 |
|
|
}
|
2708 |
|
|
|
2709 |
|
|
/* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
|
2710 |
|
|
of handling multiple successors and properly merging its av_sets. P is
|
2711 |
|
|
the current path traversed. WS is the size of lookahead window.
|
2712 |
|
|
Return the av set computed. */
|
2713 |
|
|
static av_set_t
|
2714 |
|
|
compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
|
2715 |
|
|
{
|
2716 |
|
|
struct succs_info *sinfo;
|
2717 |
|
|
av_set_t expr_in_all_succ_branches = NULL;
|
2718 |
|
|
int is;
|
2719 |
|
|
insn_t succ, zero_succ = NULL;
|
2720 |
|
|
av_set_t av1 = NULL;
|
2721 |
|
|
|
2722 |
|
|
gcc_assert (sel_bb_end_p (insn));
|
2723 |
|
|
|
2724 |
|
|
/* Find different kind of successors needed for correct computing of
|
2725 |
|
|
SPEC and TARGET_AVAILABLE attributes. */
|
2726 |
|
|
sinfo = compute_succs_info (insn, SUCCS_NORMAL);
|
2727 |
|
|
|
2728 |
|
|
/* Debug output. */
|
2729 |
|
|
if (sched_verbose >= 6)
|
2730 |
|
|
{
|
2731 |
|
|
sel_print ("successors of bb end (%d): ", INSN_UID (insn));
|
2732 |
|
|
dump_insn_vector (sinfo->succs_ok);
|
2733 |
|
|
sel_print ("\n");
|
2734 |
|
|
if (sinfo->succs_ok_n != sinfo->all_succs_n)
|
2735 |
|
|
sel_print ("real successors num: %d\n", sinfo->all_succs_n);
|
2736 |
|
|
}
|
2737 |
|
|
|
2738 |
|
|
/* Add insn to the tail of current path. */
|
2739 |
|
|
ilist_add (&p, insn);
|
2740 |
|
|
|
2741 |
|
|
FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
|
2742 |
|
|
{
|
2743 |
|
|
av_set_t succ_set;
|
2744 |
|
|
|
2745 |
|
|
/* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
|
2746 |
|
|
succ_set = compute_av_set_inside_bb (succ, p, ws, true);
|
2747 |
|
|
|
2748 |
|
|
av_set_split_usefulness (succ_set,
|
2749 |
|
|
VEC_index (int, sinfo->probs_ok, is),
|
2750 |
|
|
sinfo->all_prob);
|
2751 |
|
|
|
2752 |
|
|
if (sinfo->all_succs_n > 1)
|
2753 |
|
|
{
|
2754 |
|
|
/* Find EXPR'es that came from *all* successors and save them
|
2755 |
|
|
into expr_in_all_succ_branches. This set will be used later
|
2756 |
|
|
for calculating speculation attributes of EXPR'es. */
|
2757 |
|
|
if (is == 0)
|
2758 |
|
|
{
|
2759 |
|
|
expr_in_all_succ_branches = av_set_copy (succ_set);
|
2760 |
|
|
|
2761 |
|
|
/* Remember the first successor for later. */
|
2762 |
|
|
zero_succ = succ;
|
2763 |
|
|
}
|
2764 |
|
|
else
|
2765 |
|
|
{
|
2766 |
|
|
av_set_iterator i;
|
2767 |
|
|
expr_t expr;
|
2768 |
|
|
|
2769 |
|
|
FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
|
2770 |
|
|
if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
|
2771 |
|
|
av_set_iter_remove (&i);
|
2772 |
|
|
}
|
2773 |
|
|
}
|
2774 |
|
|
|
2775 |
|
|
/* Union the av_sets. Check liveness restrictions on target registers
|
2776 |
|
|
in special case of two successors. */
|
2777 |
|
|
if (sinfo->succs_ok_n == 2 && is == 1)
|
2778 |
|
|
{
|
2779 |
|
|
basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
|
2780 |
|
|
basic_block bb1 = BLOCK_FOR_INSN (succ);
|
2781 |
|
|
|
2782 |
|
|
gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
|
2783 |
|
|
av_set_union_and_live (&av1, &succ_set,
|
2784 |
|
|
BB_LV_SET (bb0),
|
2785 |
|
|
BB_LV_SET (bb1),
|
2786 |
|
|
insn);
|
2787 |
|
|
}
|
2788 |
|
|
else
|
2789 |
|
|
av_set_union_and_clear (&av1, &succ_set, insn);
|
2790 |
|
|
}
|
2791 |
|
|
|
2792 |
|
|
/* Check liveness restrictions via hard way when there are more than
|
2793 |
|
|
two successors. */
|
2794 |
|
|
if (sinfo->succs_ok_n > 2)
|
2795 |
|
|
FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
|
2796 |
|
|
{
|
2797 |
|
|
basic_block succ_bb = BLOCK_FOR_INSN (succ);
|
2798 |
|
|
|
2799 |
|
|
gcc_assert (BB_LV_SET_VALID_P (succ_bb));
|
2800 |
|
|
mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
|
2801 |
|
|
BB_LV_SET (succ_bb));
|
2802 |
|
|
}
|
2803 |
|
|
|
2804 |
|
|
/* Finally, check liveness restrictions on paths leaving the region. */
|
2805 |
|
|
if (sinfo->all_succs_n > sinfo->succs_ok_n)
|
2806 |
|
|
FOR_EACH_VEC_ELT (rtx, sinfo->succs_other, is, succ)
|
2807 |
|
|
mark_unavailable_targets
|
2808 |
|
|
(av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
|
2809 |
|
|
|
2810 |
|
|
if (sinfo->all_succs_n > 1)
|
2811 |
|
|
{
|
2812 |
|
|
av_set_iterator i;
|
2813 |
|
|
expr_t expr;
|
2814 |
|
|
|
2815 |
|
|
/* Increase the spec attribute of all EXPR'es that didn't come
|
2816 |
|
|
from all successors. */
|
2817 |
|
|
FOR_EACH_EXPR (expr, i, av1)
|
2818 |
|
|
if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
|
2819 |
|
|
EXPR_SPEC (expr)++;
|
2820 |
|
|
|
2821 |
|
|
av_set_clear (&expr_in_all_succ_branches);
|
2822 |
|
|
|
2823 |
|
|
/* Do not move conditional branches through other
|
2824 |
|
|
conditional branches. So, remove all conditional
|
2825 |
|
|
branches from av_set if current operator is a conditional
|
2826 |
|
|
branch. */
|
2827 |
|
|
av_set_substract_cond_branches (&av1);
|
2828 |
|
|
}
|
2829 |
|
|
|
2830 |
|
|
ilist_remove (&p);
|
2831 |
|
|
free_succs_info (sinfo);
|
2832 |
|
|
|
2833 |
|
|
if (sched_verbose >= 6)
|
2834 |
|
|
{
|
2835 |
|
|
sel_print ("av_succs (%d): ", INSN_UID (insn));
|
2836 |
|
|
dump_av_set (av1);
|
2837 |
|
|
sel_print ("\n");
|
2838 |
|
|
}
|
2839 |
|
|
|
2840 |
|
|
return av1;
|
2841 |
|
|
}
|
2842 |
|
|
|
2843 |
|
|
/* This function computes av_set for the FIRST_INSN by dragging valid
|
2844 |
|
|
av_set through all basic block insns either from the end of basic block
|
2845 |
|
|
(computed using compute_av_set_at_bb_end) or from the insn on which
|
2846 |
|
|
MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
|
2847 |
|
|
below the basic block and handling conditional branches.
|
2848 |
|
|
FIRST_INSN - the basic block head, P - path consisting of the insns
|
2849 |
|
|
traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
|
2850 |
|
|
and bb ends are added to the path), WS - current window size,
|
2851 |
|
|
NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
|
2852 |
|
|
static av_set_t
|
2853 |
|
|
compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
|
2854 |
|
|
bool need_copy_p)
|
2855 |
|
|
{
|
2856 |
|
|
insn_t cur_insn;
|
2857 |
|
|
int end_ws = ws;
|
2858 |
|
|
insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
|
2859 |
|
|
insn_t after_bb_end = NEXT_INSN (bb_end);
|
2860 |
|
|
insn_t last_insn;
|
2861 |
|
|
av_set_t av = NULL;
|
2862 |
|
|
basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
|
2863 |
|
|
|
2864 |
|
|
/* Return NULL if insn is not on the legitimate downward path. */
|
2865 |
|
|
if (is_ineligible_successor (first_insn, p))
|
2866 |
|
|
{
|
2867 |
|
|
if (sched_verbose >= 6)
|
2868 |
|
|
sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
|
2869 |
|
|
|
2870 |
|
|
return NULL;
|
2871 |
|
|
}
|
2872 |
|
|
|
2873 |
|
|
/* If insn already has valid av(insn) computed, just return it. */
|
2874 |
|
|
if (AV_SET_VALID_P (first_insn))
|
2875 |
|
|
{
|
2876 |
|
|
av_set_t av_set;
|
2877 |
|
|
|
2878 |
|
|
if (sel_bb_head_p (first_insn))
|
2879 |
|
|
av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
|
2880 |
|
|
else
|
2881 |
|
|
av_set = NULL;
|
2882 |
|
|
|
2883 |
|
|
if (sched_verbose >= 6)
|
2884 |
|
|
{
|
2885 |
|
|
sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
|
2886 |
|
|
dump_av_set (av_set);
|
2887 |
|
|
sel_print ("\n");
|
2888 |
|
|
}
|
2889 |
|
|
|
2890 |
|
|
return need_copy_p ? av_set_copy (av_set) : av_set;
|
2891 |
|
|
}
|
2892 |
|
|
|
2893 |
|
|
ilist_add (&p, first_insn);
|
2894 |
|
|
|
2895 |
|
|
/* As the result after this loop have completed, in LAST_INSN we'll
|
2896 |
|
|
have the insn which has valid av_set to start backward computation
|
2897 |
|
|
from: it either will be NULL because on it the window size was exceeded
|
2898 |
|
|
or other valid av_set as returned by compute_av_set for the last insn
|
2899 |
|
|
of the basic block. */
|
2900 |
|
|
for (last_insn = first_insn; last_insn != after_bb_end;
|
2901 |
|
|
last_insn = NEXT_INSN (last_insn))
|
2902 |
|
|
{
|
2903 |
|
|
/* We may encounter valid av_set not only on bb_head, but also on
|
2904 |
|
|
those insns on which previously MAX_WS was exceeded. */
|
2905 |
|
|
if (AV_SET_VALID_P (last_insn))
|
2906 |
|
|
{
|
2907 |
|
|
if (sched_verbose >= 6)
|
2908 |
|
|
sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
|
2909 |
|
|
break;
|
2910 |
|
|
}
|
2911 |
|
|
|
2912 |
|
|
/* The special case: the last insn of the BB may be an
|
2913 |
|
|
ineligible_successor due to its SEQ_NO that was set on
|
2914 |
|
|
it as a bookkeeping. */
|
2915 |
|
|
if (last_insn != first_insn
|
2916 |
|
|
&& is_ineligible_successor (last_insn, p))
|
2917 |
|
|
{
|
2918 |
|
|
if (sched_verbose >= 6)
|
2919 |
|
|
sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
|
2920 |
|
|
break;
|
2921 |
|
|
}
|
2922 |
|
|
|
2923 |
|
|
if (DEBUG_INSN_P (last_insn))
|
2924 |
|
|
continue;
|
2925 |
|
|
|
2926 |
|
|
if (end_ws > max_ws)
|
2927 |
|
|
{
|
2928 |
|
|
/* We can reach max lookahead size at bb_header, so clean av_set
|
2929 |
|
|
first. */
|
2930 |
|
|
INSN_WS_LEVEL (last_insn) = global_level;
|
2931 |
|
|
|
2932 |
|
|
if (sched_verbose >= 6)
|
2933 |
|
|
sel_print ("Insn %d is beyond the software lookahead window size\n",
|
2934 |
|
|
INSN_UID (last_insn));
|
2935 |
|
|
break;
|
2936 |
|
|
}
|
2937 |
|
|
|
2938 |
|
|
end_ws++;
|
2939 |
|
|
}
|
2940 |
|
|
|
2941 |
|
|
/* Get the valid av_set into AV above the LAST_INSN to start backward
|
2942 |
|
|
computation from. It either will be empty av_set or av_set computed from
|
2943 |
|
|
the successors on the last insn of the current bb. */
|
2944 |
|
|
if (last_insn != after_bb_end)
|
2945 |
|
|
{
|
2946 |
|
|
av = NULL;
|
2947 |
|
|
|
2948 |
|
|
/* This is needed only to obtain av_sets that are identical to
|
2949 |
|
|
those computed by the old compute_av_set version. */
|
2950 |
|
|
if (last_insn == first_insn && !INSN_NOP_P (last_insn))
|
2951 |
|
|
av_set_add (&av, INSN_EXPR (last_insn));
|
2952 |
|
|
}
|
2953 |
|
|
else
|
2954 |
|
|
/* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
|
2955 |
|
|
av = compute_av_set_at_bb_end (bb_end, p, end_ws);
|
2956 |
|
|
|
2957 |
|
|
/* Compute av_set in AV starting from below the LAST_INSN up to
|
2958 |
|
|
location above the FIRST_INSN. */
|
2959 |
|
|
for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
|
2960 |
|
|
cur_insn = PREV_INSN (cur_insn))
|
2961 |
|
|
if (!INSN_NOP_P (cur_insn))
|
2962 |
|
|
{
|
2963 |
|
|
expr_t expr;
|
2964 |
|
|
|
2965 |
|
|
moveup_set_expr (&av, cur_insn, false);
|
2966 |
|
|
|
2967 |
|
|
/* If the expression for CUR_INSN is already in the set,
|
2968 |
|
|
replace it by the new one. */
|
2969 |
|
|
expr = av_set_lookup (av, INSN_VINSN (cur_insn));
|
2970 |
|
|
if (expr != NULL)
|
2971 |
|
|
{
|
2972 |
|
|
clear_expr (expr);
|
2973 |
|
|
copy_expr (expr, INSN_EXPR (cur_insn));
|
2974 |
|
|
}
|
2975 |
|
|
else
|
2976 |
|
|
av_set_add (&av, INSN_EXPR (cur_insn));
|
2977 |
|
|
}
|
2978 |
|
|
|
2979 |
|
|
/* Clear stale bb_av_set. */
|
2980 |
|
|
if (sel_bb_head_p (first_insn))
|
2981 |
|
|
{
|
2982 |
|
|
av_set_clear (&BB_AV_SET (cur_bb));
|
2983 |
|
|
BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
|
2984 |
|
|
BB_AV_LEVEL (cur_bb) = global_level;
|
2985 |
|
|
}
|
2986 |
|
|
|
2987 |
|
|
if (sched_verbose >= 6)
|
2988 |
|
|
{
|
2989 |
|
|
sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
|
2990 |
|
|
dump_av_set (av);
|
2991 |
|
|
sel_print ("\n");
|
2992 |
|
|
}
|
2993 |
|
|
|
2994 |
|
|
ilist_remove (&p);
|
2995 |
|
|
return av;
|
2996 |
|
|
}
|
2997 |
|
|
|
2998 |
|
|
/* Compute av set before INSN.
|
2999 |
|
|
INSN - the current operation (actual rtx INSN)
|
3000 |
|
|
P - the current path, which is list of insns visited so far
|
3001 |
|
|
WS - software lookahead window size.
|
3002 |
|
|
UNIQUE_P - TRUE, if returned av_set will be changed, hence
|
3003 |
|
|
if we want to save computed av_set in s_i_d, we should make a copy of it.
|
3004 |
|
|
|
3005 |
|
|
In the resulting set we will have only expressions that don't have delay
|
3006 |
|
|
stalls and nonsubstitutable dependences. */
|
3007 |
|
|
static av_set_t
|
3008 |
|
|
compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
|
3009 |
|
|
{
|
3010 |
|
|
return compute_av_set_inside_bb (insn, p, ws, unique_p);
|
3011 |
|
|
}
|
3012 |
|
|
|
3013 |
|
|
/* Propagate a liveness set LV through INSN. */
|
3014 |
|
|
static void
|
3015 |
|
|
propagate_lv_set (regset lv, insn_t insn)
|
3016 |
|
|
{
|
3017 |
|
|
gcc_assert (INSN_P (insn));
|
3018 |
|
|
|
3019 |
|
|
if (INSN_NOP_P (insn))
|
3020 |
|
|
return;
|
3021 |
|
|
|
3022 |
|
|
df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
|
3023 |
|
|
}
|
3024 |
|
|
|
3025 |
|
|
/* Return livness set at the end of BB. */
|
3026 |
|
|
static regset
|
3027 |
|
|
compute_live_after_bb (basic_block bb)
|
3028 |
|
|
{
|
3029 |
|
|
edge e;
|
3030 |
|
|
edge_iterator ei;
|
3031 |
|
|
regset lv = get_clear_regset_from_pool ();
|
3032 |
|
|
|
3033 |
|
|
gcc_assert (!ignore_first);
|
3034 |
|
|
|
3035 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
3036 |
|
|
if (sel_bb_empty_p (e->dest))
|
3037 |
|
|
{
|
3038 |
|
|
if (! BB_LV_SET_VALID_P (e->dest))
|
3039 |
|
|
{
|
3040 |
|
|
gcc_unreachable ();
|
3041 |
|
|
gcc_assert (BB_LV_SET (e->dest) == NULL);
|
3042 |
|
|
BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
|
3043 |
|
|
BB_LV_SET_VALID_P (e->dest) = true;
|
3044 |
|
|
}
|
3045 |
|
|
IOR_REG_SET (lv, BB_LV_SET (e->dest));
|
3046 |
|
|
}
|
3047 |
|
|
else
|
3048 |
|
|
IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
|
3049 |
|
|
|
3050 |
|
|
return lv;
|
3051 |
|
|
}
|
3052 |
|
|
|
3053 |
|
|
/* Compute the set of all live registers at the point before INSN and save
|
3054 |
|
|
it at INSN if INSN is bb header. */
|
3055 |
|
|
regset
|
3056 |
|
|
compute_live (insn_t insn)
|
3057 |
|
|
{
|
3058 |
|
|
basic_block bb = BLOCK_FOR_INSN (insn);
|
3059 |
|
|
insn_t final, temp;
|
3060 |
|
|
regset lv;
|
3061 |
|
|
|
3062 |
|
|
/* Return the valid set if we're already on it. */
|
3063 |
|
|
if (!ignore_first)
|
3064 |
|
|
{
|
3065 |
|
|
regset src = NULL;
|
3066 |
|
|
|
3067 |
|
|
if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
|
3068 |
|
|
src = BB_LV_SET (bb);
|
3069 |
|
|
else
|
3070 |
|
|
{
|
3071 |
|
|
gcc_assert (in_current_region_p (bb));
|
3072 |
|
|
if (INSN_LIVE_VALID_P (insn))
|
3073 |
|
|
src = INSN_LIVE (insn);
|
3074 |
|
|
}
|
3075 |
|
|
|
3076 |
|
|
if (src)
|
3077 |
|
|
{
|
3078 |
|
|
lv = get_regset_from_pool ();
|
3079 |
|
|
COPY_REG_SET (lv, src);
|
3080 |
|
|
|
3081 |
|
|
if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
|
3082 |
|
|
{
|
3083 |
|
|
COPY_REG_SET (BB_LV_SET (bb), lv);
|
3084 |
|
|
BB_LV_SET_VALID_P (bb) = true;
|
3085 |
|
|
}
|
3086 |
|
|
|
3087 |
|
|
return_regset_to_pool (lv);
|
3088 |
|
|
return lv;
|
3089 |
|
|
}
|
3090 |
|
|
}
|
3091 |
|
|
|
3092 |
|
|
/* We've skipped the wrong lv_set. Don't skip the right one. */
|
3093 |
|
|
ignore_first = false;
|
3094 |
|
|
gcc_assert (in_current_region_p (bb));
|
3095 |
|
|
|
3096 |
|
|
/* Find a valid LV set in this block or below, if needed.
|
3097 |
|
|
Start searching from the next insn: either ignore_first is true, or
|
3098 |
|
|
INSN doesn't have a correct live set. */
|
3099 |
|
|
temp = NEXT_INSN (insn);
|
3100 |
|
|
final = NEXT_INSN (BB_END (bb));
|
3101 |
|
|
while (temp != final && ! INSN_LIVE_VALID_P (temp))
|
3102 |
|
|
temp = NEXT_INSN (temp);
|
3103 |
|
|
if (temp == final)
|
3104 |
|
|
{
|
3105 |
|
|
lv = compute_live_after_bb (bb);
|
3106 |
|
|
temp = PREV_INSN (temp);
|
3107 |
|
|
}
|
3108 |
|
|
else
|
3109 |
|
|
{
|
3110 |
|
|
lv = get_regset_from_pool ();
|
3111 |
|
|
COPY_REG_SET (lv, INSN_LIVE (temp));
|
3112 |
|
|
}
|
3113 |
|
|
|
3114 |
|
|
/* Put correct lv sets on the insns which have bad sets. */
|
3115 |
|
|
final = PREV_INSN (insn);
|
3116 |
|
|
while (temp != final)
|
3117 |
|
|
{
|
3118 |
|
|
propagate_lv_set (lv, temp);
|
3119 |
|
|
COPY_REG_SET (INSN_LIVE (temp), lv);
|
3120 |
|
|
INSN_LIVE_VALID_P (temp) = true;
|
3121 |
|
|
temp = PREV_INSN (temp);
|
3122 |
|
|
}
|
3123 |
|
|
|
3124 |
|
|
/* Also put it in a BB. */
|
3125 |
|
|
if (sel_bb_head_p (insn))
|
3126 |
|
|
{
|
3127 |
|
|
basic_block bb = BLOCK_FOR_INSN (insn);
|
3128 |
|
|
|
3129 |
|
|
COPY_REG_SET (BB_LV_SET (bb), lv);
|
3130 |
|
|
BB_LV_SET_VALID_P (bb) = true;
|
3131 |
|
|
}
|
3132 |
|
|
|
3133 |
|
|
/* We return LV to the pool, but will not clear it there. Thus we can
|
3134 |
|
|
legimatelly use LV till the next use of regset_pool_get (). */
|
3135 |
|
|
return_regset_to_pool (lv);
|
3136 |
|
|
return lv;
|
3137 |
|
|
}
|
3138 |
|
|
|
3139 |
|
|
/* Update liveness sets for INSN. */
|
3140 |
|
|
static inline void
|
3141 |
|
|
update_liveness_on_insn (rtx insn)
|
3142 |
|
|
{
|
3143 |
|
|
ignore_first = true;
|
3144 |
|
|
compute_live (insn);
|
3145 |
|
|
}
|
3146 |
|
|
|
3147 |
|
|
/* Compute liveness below INSN and write it into REGS. */
|
3148 |
|
|
static inline void
|
3149 |
|
|
compute_live_below_insn (rtx insn, regset regs)
|
3150 |
|
|
{
|
3151 |
|
|
rtx succ;
|
3152 |
|
|
succ_iterator si;
|
3153 |
|
|
|
3154 |
|
|
FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
|
3155 |
|
|
IOR_REG_SET (regs, compute_live (succ));
|
3156 |
|
|
}
|
3157 |
|
|
|
3158 |
|
|
/* Update the data gathered in av and lv sets starting from INSN. */
|
3159 |
|
|
static void
|
3160 |
|
|
update_data_sets (rtx insn)
|
3161 |
|
|
{
|
3162 |
|
|
update_liveness_on_insn (insn);
|
3163 |
|
|
if (sel_bb_head_p (insn))
|
3164 |
|
|
{
|
3165 |
|
|
gcc_assert (AV_LEVEL (insn) != 0);
|
3166 |
|
|
BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
|
3167 |
|
|
compute_av_set (insn, NULL, 0, 0);
|
3168 |
|
|
}
|
3169 |
|
|
}
|
3170 |
|
|
|
3171 |
|
|
|
3172 |
|
|
/* Helper for move_op () and find_used_regs ().
|
3173 |
|
|
Return speculation type for which a check should be created on the place
|
3174 |
|
|
of INSN. EXPR is one of the original ops we are searching for. */
|
3175 |
|
|
static ds_t
|
3176 |
|
|
get_spec_check_type_for_insn (insn_t insn, expr_t expr)
|
3177 |
|
|
{
|
3178 |
|
|
ds_t to_check_ds;
|
3179 |
|
|
ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
|
3180 |
|
|
|
3181 |
|
|
to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
|
3182 |
|
|
|
3183 |
|
|
if (targetm.sched.get_insn_checked_ds)
|
3184 |
|
|
already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
|
3185 |
|
|
|
3186 |
|
|
if (spec_info != NULL
|
3187 |
|
|
&& (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
|
3188 |
|
|
already_checked_ds |= BEGIN_CONTROL;
|
3189 |
|
|
|
3190 |
|
|
already_checked_ds = ds_get_speculation_types (already_checked_ds);
|
3191 |
|
|
|
3192 |
|
|
to_check_ds &= ~already_checked_ds;
|
3193 |
|
|
|
3194 |
|
|
return to_check_ds;
|
3195 |
|
|
}
|
3196 |
|
|
|
3197 |
|
|
/* Find the set of registers that are unavailable for storing expres
|
3198 |
|
|
while moving ORIG_OPS up on the path starting from INSN due to
|
3199 |
|
|
liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
|
3200 |
|
|
|
3201 |
|
|
All the original operations found during the traversal are saved in the
|
3202 |
|
|
ORIGINAL_INSNS list.
|
3203 |
|
|
|
3204 |
|
|
REG_RENAME_P denotes the set of hardware registers that
|
3205 |
|
|
can not be used with renaming due to the register class restrictions,
|
3206 |
|
|
mode restrictions and other (the register we'll choose should be
|
3207 |
|
|
compatible class with the original uses, shouldn't be in call_used_regs,
|
3208 |
|
|
should be HARD_REGNO_RENAME_OK etc).
|
3209 |
|
|
|
3210 |
|
|
Returns TRUE if we've found all original insns, FALSE otherwise.
|
3211 |
|
|
|
3212 |
|
|
This function utilizes code_motion_path_driver (formerly find_used_regs_1)
|
3213 |
|
|
to traverse the code motion paths. This helper function finds registers
|
3214 |
|
|
that are not available for storing expres while moving ORIG_OPS up on the
|
3215 |
|
|
path starting from INSN. A register considered as used on the moving path,
|
3216 |
|
|
if one of the following conditions is not satisfied:
|
3217 |
|
|
|
3218 |
|
|
(1) a register not set or read on any path from xi to an instance of
|
3219 |
|
|
the original operation,
|
3220 |
|
|
(2) not among the live registers of the point immediately following the
|
3221 |
|
|
first original operation on a given downward path, except for the
|
3222 |
|
|
original target register of the operation,
|
3223 |
|
|
(3) not live on the other path of any conditional branch that is passed
|
3224 |
|
|
by the operation, in case original operations are not present on
|
3225 |
|
|
both paths of the conditional branch.
|
3226 |
|
|
|
3227 |
|
|
All the original operations found during the traversal are saved in the
|
3228 |
|
|
ORIGINAL_INSNS list.
|
3229 |
|
|
|
3230 |
|
|
REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
|
3231 |
|
|
from INSN to original insn. In this case CALL_USED_REG_SET will be added
|
3232 |
|
|
to unavailable hard regs at the point original operation is found. */
|
3233 |
|
|
|
3234 |
|
|
static bool
|
3235 |
|
|
find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
|
3236 |
|
|
struct reg_rename *reg_rename_p, def_list_t *original_insns)
|
3237 |
|
|
{
|
3238 |
|
|
def_list_iterator i;
|
3239 |
|
|
def_t def;
|
3240 |
|
|
int res;
|
3241 |
|
|
bool needs_spec_check_p = false;
|
3242 |
|
|
expr_t expr;
|
3243 |
|
|
av_set_iterator expr_iter;
|
3244 |
|
|
struct fur_static_params sparams;
|
3245 |
|
|
struct cmpd_local_params lparams;
|
3246 |
|
|
|
3247 |
|
|
/* We haven't visited any blocks yet. */
|
3248 |
|
|
bitmap_clear (code_motion_visited_blocks);
|
3249 |
|
|
|
3250 |
|
|
/* Init parameters for code_motion_path_driver. */
|
3251 |
|
|
sparams.crosses_call = false;
|
3252 |
|
|
sparams.original_insns = original_insns;
|
3253 |
|
|
sparams.used_regs = used_regs;
|
3254 |
|
|
|
3255 |
|
|
/* Set the appropriate hooks and data. */
|
3256 |
|
|
code_motion_path_driver_info = &fur_hooks;
|
3257 |
|
|
|
3258 |
|
|
res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
|
3259 |
|
|
|
3260 |
|
|
reg_rename_p->crosses_call |= sparams.crosses_call;
|
3261 |
|
|
|
3262 |
|
|
gcc_assert (res == 1);
|
3263 |
|
|
gcc_assert (original_insns && *original_insns);
|
3264 |
|
|
|
3265 |
|
|
/* ??? We calculate whether an expression needs a check when computing
|
3266 |
|
|
av sets. This information is not as precise as it could be due to
|
3267 |
|
|
merging this bit in merge_expr. We can do better in find_used_regs,
|
3268 |
|
|
but we want to avoid multiple traversals of the same code motion
|
3269 |
|
|
paths. */
|
3270 |
|
|
FOR_EACH_EXPR (expr, expr_iter, orig_ops)
|
3271 |
|
|
needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
|
3272 |
|
|
|
3273 |
|
|
/* Mark hardware regs in REG_RENAME_P that are not suitable
|
3274 |
|
|
for renaming expr in INSN due to hardware restrictions (register class,
|
3275 |
|
|
modes compatibility etc). */
|
3276 |
|
|
FOR_EACH_DEF (def, i, *original_insns)
|
3277 |
|
|
{
|
3278 |
|
|
vinsn_t vinsn = INSN_VINSN (def->orig_insn);
|
3279 |
|
|
|
3280 |
|
|
if (VINSN_SEPARABLE_P (vinsn))
|
3281 |
|
|
mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
|
3282 |
|
|
|
3283 |
|
|
/* Do not allow clobbering of ld.[sa] address in case some of the
|
3284 |
|
|
original operations need a check. */
|
3285 |
|
|
if (needs_spec_check_p)
|
3286 |
|
|
IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
|
3287 |
|
|
}
|
3288 |
|
|
|
3289 |
|
|
return true;
|
3290 |
|
|
}
|
3291 |
|
|
|
3292 |
|
|
|
3293 |
|
|
/* Functions to choose the best insn from available ones. */
|
3294 |
|
|
|
3295 |
|
|
/* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
|
3296 |
|
|
static int
|
3297 |
|
|
sel_target_adjust_priority (expr_t expr)
|
3298 |
|
|
{
|
3299 |
|
|
int priority = EXPR_PRIORITY (expr);
|
3300 |
|
|
int new_priority;
|
3301 |
|
|
|
3302 |
|
|
if (targetm.sched.adjust_priority)
|
3303 |
|
|
new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
|
3304 |
|
|
else
|
3305 |
|
|
new_priority = priority;
|
3306 |
|
|
|
3307 |
|
|
/* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
|
3308 |
|
|
EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
|
3309 |
|
|
|
3310 |
|
|
gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
|
3311 |
|
|
|
3312 |
|
|
if (sched_verbose >= 4)
|
3313 |
|
|
sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
|
3314 |
|
|
INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
|
3315 |
|
|
EXPR_PRIORITY_ADJ (expr), new_priority);
|
3316 |
|
|
|
3317 |
|
|
return new_priority;
|
3318 |
|
|
}
|
3319 |
|
|
|
3320 |
|
|
/* Rank two available exprs for schedule. Never return 0 here. */
|
3321 |
|
|
static int
|
3322 |
|
|
sel_rank_for_schedule (const void *x, const void *y)
|
3323 |
|
|
{
|
3324 |
|
|
expr_t tmp = *(const expr_t *) y;
|
3325 |
|
|
expr_t tmp2 = *(const expr_t *) x;
|
3326 |
|
|
insn_t tmp_insn, tmp2_insn;
|
3327 |
|
|
vinsn_t tmp_vinsn, tmp2_vinsn;
|
3328 |
|
|
int val;
|
3329 |
|
|
|
3330 |
|
|
tmp_vinsn = EXPR_VINSN (tmp);
|
3331 |
|
|
tmp2_vinsn = EXPR_VINSN (tmp2);
|
3332 |
|
|
tmp_insn = EXPR_INSN_RTX (tmp);
|
3333 |
|
|
tmp2_insn = EXPR_INSN_RTX (tmp2);
|
3334 |
|
|
|
3335 |
|
|
/* Schedule debug insns as early as possible. */
|
3336 |
|
|
if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
|
3337 |
|
|
return -1;
|
3338 |
|
|
else if (DEBUG_INSN_P (tmp2_insn))
|
3339 |
|
|
return 1;
|
3340 |
|
|
|
3341 |
|
|
/* Prefer SCHED_GROUP_P insns to any others. */
|
3342 |
|
|
if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
|
3343 |
|
|
{
|
3344 |
|
|
if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
|
3345 |
|
|
return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
|
3346 |
|
|
|
3347 |
|
|
/* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
|
3348 |
|
|
cannot be cloned. */
|
3349 |
|
|
if (VINSN_UNIQUE_P (tmp2_vinsn))
|
3350 |
|
|
return 1;
|
3351 |
|
|
return -1;
|
3352 |
|
|
}
|
3353 |
|
|
|
3354 |
|
|
/* Discourage scheduling of speculative checks. */
|
3355 |
|
|
val = (sel_insn_is_speculation_check (tmp_insn)
|
3356 |
|
|
- sel_insn_is_speculation_check (tmp2_insn));
|
3357 |
|
|
if (val)
|
3358 |
|
|
return val;
|
3359 |
|
|
|
3360 |
|
|
/* Prefer not scheduled insn over scheduled one. */
|
3361 |
|
|
if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
|
3362 |
|
|
{
|
3363 |
|
|
val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
|
3364 |
|
|
if (val)
|
3365 |
|
|
return val;
|
3366 |
|
|
}
|
3367 |
|
|
|
3368 |
|
|
/* Prefer jump over non-jump instruction. */
|
3369 |
|
|
if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
|
3370 |
|
|
return -1;
|
3371 |
|
|
else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
|
3372 |
|
|
return 1;
|
3373 |
|
|
|
3374 |
|
|
/* Prefer an expr with greater priority. */
|
3375 |
|
|
if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
|
3376 |
|
|
{
|
3377 |
|
|
int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
|
3378 |
|
|
p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
|
3379 |
|
|
|
3380 |
|
|
val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
|
3381 |
|
|
}
|
3382 |
|
|
else
|
3383 |
|
|
val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
|
3384 |
|
|
+ EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
|
3385 |
|
|
if (val)
|
3386 |
|
|
return val;
|
3387 |
|
|
|
3388 |
|
|
if (spec_info != NULL && spec_info->mask != 0)
|
3389 |
|
|
/* This code was taken from haifa-sched.c: rank_for_schedule (). */
|
3390 |
|
|
{
|
3391 |
|
|
ds_t ds1, ds2;
|
3392 |
|
|
dw_t dw1, dw2;
|
3393 |
|
|
int dw;
|
3394 |
|
|
|
3395 |
|
|
ds1 = EXPR_SPEC_DONE_DS (tmp);
|
3396 |
|
|
if (ds1)
|
3397 |
|
|
dw1 = ds_weak (ds1);
|
3398 |
|
|
else
|
3399 |
|
|
dw1 = NO_DEP_WEAK;
|
3400 |
|
|
|
3401 |
|
|
ds2 = EXPR_SPEC_DONE_DS (tmp2);
|
3402 |
|
|
if (ds2)
|
3403 |
|
|
dw2 = ds_weak (ds2);
|
3404 |
|
|
else
|
3405 |
|
|
dw2 = NO_DEP_WEAK;
|
3406 |
|
|
|
3407 |
|
|
dw = dw2 - dw1;
|
3408 |
|
|
if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
|
3409 |
|
|
return dw;
|
3410 |
|
|
}
|
3411 |
|
|
|
3412 |
|
|
/* Prefer an old insn to a bookkeeping insn. */
|
3413 |
|
|
if (INSN_UID (tmp_insn) < first_emitted_uid
|
3414 |
|
|
&& INSN_UID (tmp2_insn) >= first_emitted_uid)
|
3415 |
|
|
return -1;
|
3416 |
|
|
if (INSN_UID (tmp_insn) >= first_emitted_uid
|
3417 |
|
|
&& INSN_UID (tmp2_insn) < first_emitted_uid)
|
3418 |
|
|
return 1;
|
3419 |
|
|
|
3420 |
|
|
/* Prefer an insn with smaller UID, as a last resort.
|
3421 |
|
|
We can't safely use INSN_LUID as it is defined only for those insns
|
3422 |
|
|
that are in the stream. */
|
3423 |
|
|
return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
|
3424 |
|
|
}
|
3425 |
|
|
|
3426 |
|
|
/* Filter out expressions from av set pointed to by AV_PTR
|
3427 |
|
|
that are pipelined too many times. */
|
3428 |
|
|
static void
|
3429 |
|
|
process_pipelined_exprs (av_set_t *av_ptr)
|
3430 |
|
|
{
|
3431 |
|
|
expr_t expr;
|
3432 |
|
|
av_set_iterator si;
|
3433 |
|
|
|
3434 |
|
|
/* Don't pipeline already pipelined code as that would increase
|
3435 |
|
|
number of unnecessary register moves. */
|
3436 |
|
|
FOR_EACH_EXPR_1 (expr, si, av_ptr)
|
3437 |
|
|
{
|
3438 |
|
|
if (EXPR_SCHED_TIMES (expr)
|
3439 |
|
|
>= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
|
3440 |
|
|
av_set_iter_remove (&si);
|
3441 |
|
|
}
|
3442 |
|
|
}
|
3443 |
|
|
|
3444 |
|
|
/* Filter speculative insns from AV_PTR if we don't want them. */
|
3445 |
|
|
static void
|
3446 |
|
|
process_spec_exprs (av_set_t *av_ptr)
|
3447 |
|
|
{
|
3448 |
|
|
bool try_data_p = true;
|
3449 |
|
|
bool try_control_p = true;
|
3450 |
|
|
expr_t expr;
|
3451 |
|
|
av_set_iterator si;
|
3452 |
|
|
|
3453 |
|
|
if (spec_info == NULL)
|
3454 |
|
|
return;
|
3455 |
|
|
|
3456 |
|
|
/* Scan *AV_PTR to find out if we want to consider speculative
|
3457 |
|
|
instructions for scheduling. */
|
3458 |
|
|
FOR_EACH_EXPR_1 (expr, si, av_ptr)
|
3459 |
|
|
{
|
3460 |
|
|
ds_t ds;
|
3461 |
|
|
|
3462 |
|
|
ds = EXPR_SPEC_DONE_DS (expr);
|
3463 |
|
|
|
3464 |
|
|
/* The probability of a success is too low - don't speculate. */
|
3465 |
|
|
if ((ds & SPECULATIVE)
|
3466 |
|
|
&& (ds_weak (ds) < spec_info->data_weakness_cutoff
|
3467 |
|
|
|| EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
|
3468 |
|
|
|| (pipelining_p && false
|
3469 |
|
|
&& (ds & DATA_SPEC)
|
3470 |
|
|
&& (ds & CONTROL_SPEC))))
|
3471 |
|
|
{
|
3472 |
|
|
av_set_iter_remove (&si);
|
3473 |
|
|
continue;
|
3474 |
|
|
}
|
3475 |
|
|
|
3476 |
|
|
if ((spec_info->flags & PREFER_NON_DATA_SPEC)
|
3477 |
|
|
&& !(ds & BEGIN_DATA))
|
3478 |
|
|
try_data_p = false;
|
3479 |
|
|
|
3480 |
|
|
if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
|
3481 |
|
|
&& !(ds & BEGIN_CONTROL))
|
3482 |
|
|
try_control_p = false;
|
3483 |
|
|
}
|
3484 |
|
|
|
3485 |
|
|
FOR_EACH_EXPR_1 (expr, si, av_ptr)
|
3486 |
|
|
{
|
3487 |
|
|
ds_t ds;
|
3488 |
|
|
|
3489 |
|
|
ds = EXPR_SPEC_DONE_DS (expr);
|
3490 |
|
|
|
3491 |
|
|
if (ds & SPECULATIVE)
|
3492 |
|
|
{
|
3493 |
|
|
if ((ds & BEGIN_DATA) && !try_data_p)
|
3494 |
|
|
/* We don't want any data speculative instructions right
|
3495 |
|
|
now. */
|
3496 |
|
|
av_set_iter_remove (&si);
|
3497 |
|
|
|
3498 |
|
|
if ((ds & BEGIN_CONTROL) && !try_control_p)
|
3499 |
|
|
/* We don't want any control speculative instructions right
|
3500 |
|
|
now. */
|
3501 |
|
|
av_set_iter_remove (&si);
|
3502 |
|
|
}
|
3503 |
|
|
}
|
3504 |
|
|
}
|
3505 |
|
|
|
3506 |
|
|
/* Search for any use-like insns in AV_PTR and decide on scheduling
|
3507 |
|
|
them. Return one when found, and NULL otherwise.
|
3508 |
|
|
Note that we check here whether a USE could be scheduled to avoid
|
3509 |
|
|
an infinite loop later. */
|
3510 |
|
|
static expr_t
|
3511 |
|
|
process_use_exprs (av_set_t *av_ptr)
|
3512 |
|
|
{
|
3513 |
|
|
expr_t expr;
|
3514 |
|
|
av_set_iterator si;
|
3515 |
|
|
bool uses_present_p = false;
|
3516 |
|
|
bool try_uses_p = true;
|
3517 |
|
|
|
3518 |
|
|
FOR_EACH_EXPR_1 (expr, si, av_ptr)
|
3519 |
|
|
{
|
3520 |
|
|
/* This will also initialize INSN_CODE for later use. */
|
3521 |
|
|
if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
|
3522 |
|
|
{
|
3523 |
|
|
/* If we have a USE in *AV_PTR that was not scheduled yet,
|
3524 |
|
|
do so because it will do good only. */
|
3525 |
|
|
if (EXPR_SCHED_TIMES (expr) <= 0)
|
3526 |
|
|
{
|
3527 |
|
|
if (EXPR_TARGET_AVAILABLE (expr) == 1)
|
3528 |
|
|
return expr;
|
3529 |
|
|
|
3530 |
|
|
av_set_iter_remove (&si);
|
3531 |
|
|
}
|
3532 |
|
|
else
|
3533 |
|
|
{
|
3534 |
|
|
gcc_assert (pipelining_p);
|
3535 |
|
|
|
3536 |
|
|
uses_present_p = true;
|
3537 |
|
|
}
|
3538 |
|
|
}
|
3539 |
|
|
else
|
3540 |
|
|
try_uses_p = false;
|
3541 |
|
|
}
|
3542 |
|
|
|
3543 |
|
|
if (uses_present_p)
|
3544 |
|
|
{
|
3545 |
|
|
/* If we don't want to schedule any USEs right now and we have some
|
3546 |
|
|
in *AV_PTR, remove them, else just return the first one found. */
|
3547 |
|
|
if (!try_uses_p)
|
3548 |
|
|
{
|
3549 |
|
|
FOR_EACH_EXPR_1 (expr, si, av_ptr)
|
3550 |
|
|
if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
|
3551 |
|
|
av_set_iter_remove (&si);
|
3552 |
|
|
}
|
3553 |
|
|
else
|
3554 |
|
|
{
|
3555 |
|
|
FOR_EACH_EXPR_1 (expr, si, av_ptr)
|
3556 |
|
|
{
|
3557 |
|
|
gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
|
3558 |
|
|
|
3559 |
|
|
if (EXPR_TARGET_AVAILABLE (expr) == 1)
|
3560 |
|
|
return expr;
|
3561 |
|
|
|
3562 |
|
|
av_set_iter_remove (&si);
|
3563 |
|
|
}
|
3564 |
|
|
}
|
3565 |
|
|
}
|
3566 |
|
|
|
3567 |
|
|
return NULL;
|
3568 |
|
|
}
|
3569 |
|
|
|
3570 |
|
|
/* Lookup EXPR in VINSN_VEC and return TRUE if found. */
|
3571 |
|
|
static bool
|
3572 |
|
|
vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
|
3573 |
|
|
{
|
3574 |
|
|
vinsn_t vinsn;
|
3575 |
|
|
int n;
|
3576 |
|
|
|
3577 |
|
|
FOR_EACH_VEC_ELT (vinsn_t, vinsn_vec, n, vinsn)
|
3578 |
|
|
if (VINSN_SEPARABLE_P (vinsn))
|
3579 |
|
|
{
|
3580 |
|
|
if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
|
3581 |
|
|
return true;
|
3582 |
|
|
}
|
3583 |
|
|
else
|
3584 |
|
|
{
|
3585 |
|
|
/* For non-separable instructions, the blocking insn can have
|
3586 |
|
|
another pattern due to substitution, and we can't choose
|
3587 |
|
|
different register as in the above case. Check all registers
|
3588 |
|
|
being written instead. */
|
3589 |
|
|
if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
|
3590 |
|
|
VINSN_REG_SETS (EXPR_VINSN (expr))))
|
3591 |
|
|
return true;
|
3592 |
|
|
}
|
3593 |
|
|
|
3594 |
|
|
return false;
|
3595 |
|
|
}
|
3596 |
|
|
|
3597 |
|
|
#ifdef ENABLE_CHECKING
|
3598 |
|
|
/* Return true if either of expressions from ORIG_OPS can be blocked
|
3599 |
|
|
by previously created bookkeeping code. STATIC_PARAMS points to static
|
3600 |
|
|
parameters of move_op. */
|
3601 |
|
|
static bool
|
3602 |
|
|
av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
|
3603 |
|
|
{
|
3604 |
|
|
expr_t expr;
|
3605 |
|
|
av_set_iterator iter;
|
3606 |
|
|
moveop_static_params_p sparams;
|
3607 |
|
|
|
3608 |
|
|
/* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
|
3609 |
|
|
created while scheduling on another fence. */
|
3610 |
|
|
FOR_EACH_EXPR (expr, iter, orig_ops)
|
3611 |
|
|
if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
|
3612 |
|
|
return true;
|
3613 |
|
|
|
3614 |
|
|
gcc_assert (code_motion_path_driver_info == &move_op_hooks);
|
3615 |
|
|
sparams = (moveop_static_params_p) static_params;
|
3616 |
|
|
|
3617 |
|
|
/* Expressions can be also blocked by bookkeeping created during current
|
3618 |
|
|
move_op. */
|
3619 |
|
|
if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
|
3620 |
|
|
FOR_EACH_EXPR (expr, iter, orig_ops)
|
3621 |
|
|
if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
|
3622 |
|
|
return true;
|
3623 |
|
|
|
3624 |
|
|
/* Expressions in ORIG_OPS may have wrong destination register due to
|
3625 |
|
|
renaming. Check with the right register instead. */
|
3626 |
|
|
if (sparams->dest && REG_P (sparams->dest))
|
3627 |
|
|
{
|
3628 |
|
|
rtx reg = sparams->dest;
|
3629 |
|
|
vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
|
3630 |
|
|
|
3631 |
|
|
if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
|
3632 |
|
|
|| register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
|
3633 |
|
|
|| register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
|
3634 |
|
|
return true;
|
3635 |
|
|
}
|
3636 |
|
|
|
3637 |
|
|
return false;
|
3638 |
|
|
}
|
3639 |
|
|
#endif
|
3640 |
|
|
|
3641 |
|
|
/* Clear VINSN_VEC and detach vinsns. */
|
3642 |
|
|
static void
|
3643 |
|
|
vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
|
3644 |
|
|
{
|
3645 |
|
|
unsigned len = VEC_length (vinsn_t, *vinsn_vec);
|
3646 |
|
|
if (len > 0)
|
3647 |
|
|
{
|
3648 |
|
|
vinsn_t vinsn;
|
3649 |
|
|
int n;
|
3650 |
|
|
|
3651 |
|
|
FOR_EACH_VEC_ELT (vinsn_t, *vinsn_vec, n, vinsn)
|
3652 |
|
|
vinsn_detach (vinsn);
|
3653 |
|
|
VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
|
3654 |
|
|
}
|
3655 |
|
|
}
|
3656 |
|
|
|
3657 |
|
|
/* Add the vinsn of EXPR to the VINSN_VEC. */
|
3658 |
|
|
static void
|
3659 |
|
|
vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
|
3660 |
|
|
{
|
3661 |
|
|
vinsn_attach (EXPR_VINSN (expr));
|
3662 |
|
|
VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
|
3663 |
|
|
}
|
3664 |
|
|
|
3665 |
|
|
/* Free the vector representing blocked expressions. */
|
3666 |
|
|
static void
|
3667 |
|
|
vinsn_vec_free (vinsn_vec_t *vinsn_vec)
|
3668 |
|
|
{
|
3669 |
|
|
if (*vinsn_vec)
|
3670 |
|
|
VEC_free (vinsn_t, heap, *vinsn_vec);
|
3671 |
|
|
}
|
3672 |
|
|
|
3673 |
|
|
/* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
|
3674 |
|
|
|
3675 |
|
|
void sel_add_to_insn_priority (rtx insn, int amount)
|
3676 |
|
|
{
|
3677 |
|
|
EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
|
3678 |
|
|
|
3679 |
|
|
if (sched_verbose >= 2)
|
3680 |
|
|
sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
|
3681 |
|
|
INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
|
3682 |
|
|
EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
|
3683 |
|
|
}
|
3684 |
|
|
|
3685 |
|
|
/* Turn AV into a vector, filter inappropriate insns and sort it. Return
|
3686 |
|
|
true if there is something to schedule. BNDS and FENCE are current
|
3687 |
|
|
boundaries and fence, respectively. If we need to stall for some cycles
|
3688 |
|
|
before an expr from AV would become available, write this number to
|
3689 |
|
|
*PNEED_STALL. */
|
3690 |
|
|
static bool
|
3691 |
|
|
fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
|
3692 |
|
|
int *pneed_stall)
|
3693 |
|
|
{
|
3694 |
|
|
av_set_iterator si;
|
3695 |
|
|
expr_t expr;
|
3696 |
|
|
int sched_next_worked = 0, stalled, n;
|
3697 |
|
|
static int av_max_prio, est_ticks_till_branch;
|
3698 |
|
|
int min_need_stall = -1;
|
3699 |
|
|
deps_t dc = BND_DC (BLIST_BND (bnds));
|
3700 |
|
|
|
3701 |
|
|
/* Bail out early when the ready list contained only USEs/CLOBBERs that are
|
3702 |
|
|
already scheduled. */
|
3703 |
|
|
if (av == NULL)
|
3704 |
|
|
return false;
|
3705 |
|
|
|
3706 |
|
|
/* Empty vector from the previous stuff. */
|
3707 |
|
|
if (VEC_length (expr_t, vec_av_set) > 0)
|
3708 |
|
|
VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
|
3709 |
|
|
|
3710 |
|
|
/* Turn the set into a vector for sorting and call sel_target_adjust_priority
|
3711 |
|
|
for each insn. */
|
3712 |
|
|
gcc_assert (VEC_empty (expr_t, vec_av_set));
|
3713 |
|
|
FOR_EACH_EXPR (expr, si, av)
|
3714 |
|
|
{
|
3715 |
|
|
VEC_safe_push (expr_t, heap, vec_av_set, expr);
|
3716 |
|
|
|
3717 |
|
|
gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
|
3718 |
|
|
|
3719 |
|
|
/* Adjust priority using target backend hook. */
|
3720 |
|
|
sel_target_adjust_priority (expr);
|
3721 |
|
|
}
|
3722 |
|
|
|
3723 |
|
|
/* Sort the vector. */
|
3724 |
|
|
VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
|
3725 |
|
|
|
3726 |
|
|
/* We record maximal priority of insns in av set for current instruction
|
3727 |
|
|
group. */
|
3728 |
|
|
if (FENCE_STARTS_CYCLE_P (fence))
|
3729 |
|
|
av_max_prio = est_ticks_till_branch = INT_MIN;
|
3730 |
|
|
|
3731 |
|
|
/* Filter out inappropriate expressions. Loop's direction is reversed to
|
3732 |
|
|
visit "best" instructions first. We assume that VEC_unordered_remove
|
3733 |
|
|
moves last element in place of one being deleted. */
|
3734 |
|
|
for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
|
3735 |
|
|
{
|
3736 |
|
|
expr_t expr = VEC_index (expr_t, vec_av_set, n);
|
3737 |
|
|
insn_t insn = EXPR_INSN_RTX (expr);
|
3738 |
|
|
signed char target_available;
|
3739 |
|
|
bool is_orig_reg_p = true;
|
3740 |
|
|
int need_cycles, new_prio;
|
3741 |
|
|
|
3742 |
|
|
/* Don't allow any insns other than from SCHED_GROUP if we have one. */
|
3743 |
|
|
if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
|
3744 |
|
|
{
|
3745 |
|
|
VEC_unordered_remove (expr_t, vec_av_set, n);
|
3746 |
|
|
continue;
|
3747 |
|
|
}
|
3748 |
|
|
|
3749 |
|
|
/* Set number of sched_next insns (just in case there
|
3750 |
|
|
could be several). */
|
3751 |
|
|
if (FENCE_SCHED_NEXT (fence))
|
3752 |
|
|
sched_next_worked++;
|
3753 |
|
|
|
3754 |
|
|
/* Check all liveness requirements and try renaming.
|
3755 |
|
|
FIXME: try to minimize calls to this. */
|
3756 |
|
|
target_available = EXPR_TARGET_AVAILABLE (expr);
|
3757 |
|
|
|
3758 |
|
|
/* If insn was already scheduled on the current fence,
|
3759 |
|
|
set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
|
3760 |
|
|
if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
|
3761 |
|
|
target_available = -1;
|
3762 |
|
|
|
3763 |
|
|
/* If the availability of the EXPR is invalidated by the insertion of
|
3764 |
|
|
bookkeeping earlier, make sure that we won't choose this expr for
|
3765 |
|
|
scheduling if it's not separable, and if it is separable, then
|
3766 |
|
|
we have to recompute the set of available registers for it. */
|
3767 |
|
|
if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
|
3768 |
|
|
{
|
3769 |
|
|
VEC_unordered_remove (expr_t, vec_av_set, n);
|
3770 |
|
|
if (sched_verbose >= 4)
|
3771 |
|
|
sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
|
3772 |
|
|
INSN_UID (insn));
|
3773 |
|
|
continue;
|
3774 |
|
|
}
|
3775 |
|
|
|
3776 |
|
|
if (target_available == true)
|
3777 |
|
|
{
|
3778 |
|
|
/* Do nothing -- we can use an existing register. */
|
3779 |
|
|
is_orig_reg_p = EXPR_SEPARABLE_P (expr);
|
3780 |
|
|
}
|
3781 |
|
|
else if (/* Non-separable instruction will never
|
3782 |
|
|
get another register. */
|
3783 |
|
|
(target_available == false
|
3784 |
|
|
&& !EXPR_SEPARABLE_P (expr))
|
3785 |
|
|
/* Don't try to find a register for low-priority expression. */
|
3786 |
|
|
|| (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
|
3787 |
|
|
/* ??? FIXME: Don't try to rename data speculation. */
|
3788 |
|
|
|| (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
|
3789 |
|
|
|| ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
|
3790 |
|
|
{
|
3791 |
|
|
VEC_unordered_remove (expr_t, vec_av_set, n);
|
3792 |
|
|
if (sched_verbose >= 4)
|
3793 |
|
|
sel_print ("Expr %d has no suitable target register\n",
|
3794 |
|
|
INSN_UID (insn));
|
3795 |
|
|
continue;
|
3796 |
|
|
}
|
3797 |
|
|
|
3798 |
|
|
/* Filter expressions that need to be renamed or speculated when
|
3799 |
|
|
pipelining, because compensating register copies or speculation
|
3800 |
|
|
checks are likely to be placed near the beginning of the loop,
|
3801 |
|
|
causing a stall. */
|
3802 |
|
|
if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
|
3803 |
|
|
&& (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
|
3804 |
|
|
{
|
3805 |
|
|
/* Estimation of number of cycles until loop branch for
|
3806 |
|
|
renaming/speculation to be successful. */
|
3807 |
|
|
int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
|
3808 |
|
|
|
3809 |
|
|
if ((int) current_loop_nest->ninsns < 9)
|
3810 |
|
|
{
|
3811 |
|
|
VEC_unordered_remove (expr_t, vec_av_set, n);
|
3812 |
|
|
if (sched_verbose >= 4)
|
3813 |
|
|
sel_print ("Pipelining expr %d will likely cause stall\n",
|
3814 |
|
|
INSN_UID (insn));
|
3815 |
|
|
continue;
|
3816 |
|
|
}
|
3817 |
|
|
|
3818 |
|
|
if ((int) current_loop_nest->ninsns - num_insns_scheduled
|
3819 |
|
|
< need_n_ticks_till_branch * issue_rate / 2
|
3820 |
|
|
&& est_ticks_till_branch < need_n_ticks_till_branch)
|
3821 |
|
|
{
|
3822 |
|
|
VEC_unordered_remove (expr_t, vec_av_set, n);
|
3823 |
|
|
if (sched_verbose >= 4)
|
3824 |
|
|
sel_print ("Pipelining expr %d will likely cause stall\n",
|
3825 |
|
|
INSN_UID (insn));
|
3826 |
|
|
continue;
|
3827 |
|
|
}
|
3828 |
|
|
}
|
3829 |
|
|
|
3830 |
|
|
/* We want to schedule speculation checks as late as possible. Discard
|
3831 |
|
|
them from av set if there are instructions with higher priority. */
|
3832 |
|
|
if (sel_insn_is_speculation_check (insn)
|
3833 |
|
|
&& EXPR_PRIORITY (expr) < av_max_prio)
|
3834 |
|
|
{
|
3835 |
|
|
stalled++;
|
3836 |
|
|
min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
|
3837 |
|
|
VEC_unordered_remove (expr_t, vec_av_set, n);
|
3838 |
|
|
if (sched_verbose >= 4)
|
3839 |
|
|
sel_print ("Delaying speculation check %d until its first use\n",
|
3840 |
|
|
INSN_UID (insn));
|
3841 |
|
|
continue;
|
3842 |
|
|
}
|
3843 |
|
|
|
3844 |
|
|
/* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
|
3845 |
|
|
if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
|
3846 |
|
|
av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
|
3847 |
|
|
|
3848 |
|
|
/* Don't allow any insns whose data is not yet ready.
|
3849 |
|
|
Check first whether we've already tried them and failed. */
|
3850 |
|
|
if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
|
3851 |
|
|
{
|
3852 |
|
|
need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
|
3853 |
|
|
- FENCE_CYCLE (fence));
|
3854 |
|
|
if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
|
3855 |
|
|
est_ticks_till_branch = MAX (est_ticks_till_branch,
|
3856 |
|
|
EXPR_PRIORITY (expr) + need_cycles);
|
3857 |
|
|
|
3858 |
|
|
if (need_cycles > 0)
|
3859 |
|
|
{
|
3860 |
|
|
stalled++;
|
3861 |
|
|
min_need_stall = (min_need_stall < 0
|
3862 |
|
|
? need_cycles
|
3863 |
|
|
: MIN (min_need_stall, need_cycles));
|
3864 |
|
|
VEC_unordered_remove (expr_t, vec_av_set, n);
|
3865 |
|
|
|
3866 |
|
|
if (sched_verbose >= 4)
|
3867 |
|
|
sel_print ("Expr %d is not ready until cycle %d (cached)\n",
|
3868 |
|
|
INSN_UID (insn),
|
3869 |
|
|
FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
|
3870 |
|
|
continue;
|
3871 |
|
|
}
|
3872 |
|
|
}
|
3873 |
|
|
|
3874 |
|
|
/* Now resort to dependence analysis to find whether EXPR might be
|
3875 |
|
|
stalled due to dependencies from FENCE's context. */
|
3876 |
|
|
need_cycles = tick_check_p (expr, dc, fence);
|
3877 |
|
|
new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
|
3878 |
|
|
|
3879 |
|
|
if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
|
3880 |
|
|
est_ticks_till_branch = MAX (est_ticks_till_branch,
|
3881 |
|
|
new_prio);
|
3882 |
|
|
|
3883 |
|
|
if (need_cycles > 0)
|
3884 |
|
|
{
|
3885 |
|
|
if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
|
3886 |
|
|
{
|
3887 |
|
|
int new_size = INSN_UID (insn) * 3 / 2;
|
3888 |
|
|
|
3889 |
|
|
FENCE_READY_TICKS (fence)
|
3890 |
|
|
= (int *) xrecalloc (FENCE_READY_TICKS (fence),
|
3891 |
|
|
new_size, FENCE_READY_TICKS_SIZE (fence),
|
3892 |
|
|
sizeof (int));
|
3893 |
|
|
}
|
3894 |
|
|
FENCE_READY_TICKS (fence)[INSN_UID (insn)]
|
3895 |
|
|
= FENCE_CYCLE (fence) + need_cycles;
|
3896 |
|
|
|
3897 |
|
|
stalled++;
|
3898 |
|
|
min_need_stall = (min_need_stall < 0
|
3899 |
|
|
? need_cycles
|
3900 |
|
|
: MIN (min_need_stall, need_cycles));
|
3901 |
|
|
|
3902 |
|
|
VEC_unordered_remove (expr_t, vec_av_set, n);
|
3903 |
|
|
|
3904 |
|
|
if (sched_verbose >= 4)
|
3905 |
|
|
sel_print ("Expr %d is not ready yet until cycle %d\n",
|
3906 |
|
|
INSN_UID (insn),
|
3907 |
|
|
FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
|
3908 |
|
|
continue;
|
3909 |
|
|
}
|
3910 |
|
|
|
3911 |
|
|
if (sched_verbose >= 4)
|
3912 |
|
|
sel_print ("Expr %d is ok\n", INSN_UID (insn));
|
3913 |
|
|
min_need_stall = 0;
|
3914 |
|
|
}
|
3915 |
|
|
|
3916 |
|
|
/* Clear SCHED_NEXT. */
|
3917 |
|
|
if (FENCE_SCHED_NEXT (fence))
|
3918 |
|
|
{
|
3919 |
|
|
gcc_assert (sched_next_worked == 1);
|
3920 |
|
|
FENCE_SCHED_NEXT (fence) = NULL_RTX;
|
3921 |
|
|
}
|
3922 |
|
|
|
3923 |
|
|
/* No need to stall if this variable was not initialized. */
|
3924 |
|
|
if (min_need_stall < 0)
|
3925 |
|
|
min_need_stall = 0;
|
3926 |
|
|
|
3927 |
|
|
if (VEC_empty (expr_t, vec_av_set))
|
3928 |
|
|
{
|
3929 |
|
|
/* We need to set *pneed_stall here, because later we skip this code
|
3930 |
|
|
when ready list is empty. */
|
3931 |
|
|
*pneed_stall = min_need_stall;
|
3932 |
|
|
return false;
|
3933 |
|
|
}
|
3934 |
|
|
else
|
3935 |
|
|
gcc_assert (min_need_stall == 0);
|
3936 |
|
|
|
3937 |
|
|
/* Sort the vector. */
|
3938 |
|
|
VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
|
3939 |
|
|
|
3940 |
|
|
if (sched_verbose >= 4)
|
3941 |
|
|
{
|
3942 |
|
|
sel_print ("Total ready exprs: %d, stalled: %d\n",
|
3943 |
|
|
VEC_length (expr_t, vec_av_set), stalled);
|
3944 |
|
|
sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
|
3945 |
|
|
FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
|
3946 |
|
|
dump_expr (expr);
|
3947 |
|
|
sel_print ("\n");
|
3948 |
|
|
}
|
3949 |
|
|
|
3950 |
|
|
*pneed_stall = 0;
|
3951 |
|
|
return true;
|
3952 |
|
|
}
|
3953 |
|
|
|
3954 |
|
|
/* Convert a vectored and sorted av set to the ready list that
|
3955 |
|
|
the rest of the backend wants to see. */
|
3956 |
|
|
static void
|
3957 |
|
|
convert_vec_av_set_to_ready (void)
|
3958 |
|
|
{
|
3959 |
|
|
int n;
|
3960 |
|
|
expr_t expr;
|
3961 |
|
|
|
3962 |
|
|
/* Allocate and fill the ready list from the sorted vector. */
|
3963 |
|
|
ready.n_ready = VEC_length (expr_t, vec_av_set);
|
3964 |
|
|
ready.first = ready.n_ready - 1;
|
3965 |
|
|
|
3966 |
|
|
gcc_assert (ready.n_ready > 0);
|
3967 |
|
|
|
3968 |
|
|
if (ready.n_ready > max_issue_size)
|
3969 |
|
|
{
|
3970 |
|
|
max_issue_size = ready.n_ready;
|
3971 |
|
|
sched_extend_ready_list (ready.n_ready);
|
3972 |
|
|
}
|
3973 |
|
|
|
3974 |
|
|
FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
|
3975 |
|
|
{
|
3976 |
|
|
vinsn_t vi = EXPR_VINSN (expr);
|
3977 |
|
|
insn_t insn = VINSN_INSN_RTX (vi);
|
3978 |
|
|
|
3979 |
|
|
ready_try[n] = 0;
|
3980 |
|
|
ready.vec[n] = insn;
|
3981 |
|
|
}
|
3982 |
|
|
}
|
3983 |
|
|
|
3984 |
|
|
/* Initialize ready list from *AV_PTR for the max_issue () call.
|
3985 |
|
|
If any unrecognizable insn found in *AV_PTR, return it (and skip
|
3986 |
|
|
max_issue). BND and FENCE are current boundary and fence,
|
3987 |
|
|
respectively. If we need to stall for some cycles before an expr
|
3988 |
|
|
from *AV_PTR would become available, write this number to *PNEED_STALL. */
|
3989 |
|
|
static expr_t
|
3990 |
|
|
fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
|
3991 |
|
|
int *pneed_stall)
|
3992 |
|
|
{
|
3993 |
|
|
expr_t expr;
|
3994 |
|
|
|
3995 |
|
|
/* We do not support multiple boundaries per fence. */
|
3996 |
|
|
gcc_assert (BLIST_NEXT (bnds) == NULL);
|
3997 |
|
|
|
3998 |
|
|
/* Process expressions required special handling, i.e. pipelined,
|
3999 |
|
|
speculative and recog() < 0 expressions first. */
|
4000 |
|
|
process_pipelined_exprs (av_ptr);
|
4001 |
|
|
process_spec_exprs (av_ptr);
|
4002 |
|
|
|
4003 |
|
|
/* A USE could be scheduled immediately. */
|
4004 |
|
|
expr = process_use_exprs (av_ptr);
|
4005 |
|
|
if (expr)
|
4006 |
|
|
{
|
4007 |
|
|
*pneed_stall = 0;
|
4008 |
|
|
return expr;
|
4009 |
|
|
}
|
4010 |
|
|
|
4011 |
|
|
/* Turn the av set to a vector for sorting. */
|
4012 |
|
|
if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
|
4013 |
|
|
{
|
4014 |
|
|
ready.n_ready = 0;
|
4015 |
|
|
return NULL;
|
4016 |
|
|
}
|
4017 |
|
|
|
4018 |
|
|
/* Build the final ready list. */
|
4019 |
|
|
convert_vec_av_set_to_ready ();
|
4020 |
|
|
return NULL;
|
4021 |
|
|
}
|
4022 |
|
|
|
4023 |
|
|
/* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
|
4024 |
|
|
static bool
|
4025 |
|
|
sel_dfa_new_cycle (insn_t insn, fence_t fence)
|
4026 |
|
|
{
|
4027 |
|
|
int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
|
4028 |
|
|
? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
|
4029 |
|
|
: FENCE_CYCLE (fence) - 1;
|
4030 |
|
|
bool res = false;
|
4031 |
|
|
int sort_p = 0;
|
4032 |
|
|
|
4033 |
|
|
if (!targetm.sched.dfa_new_cycle)
|
4034 |
|
|
return false;
|
4035 |
|
|
|
4036 |
|
|
memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
|
4037 |
|
|
|
4038 |
|
|
while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
|
4039 |
|
|
insn, last_scheduled_cycle,
|
4040 |
|
|
FENCE_CYCLE (fence), &sort_p))
|
4041 |
|
|
{
|
4042 |
|
|
memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
|
4043 |
|
|
advance_one_cycle (fence);
|
4044 |
|
|
memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
|
4045 |
|
|
res = true;
|
4046 |
|
|
}
|
4047 |
|
|
|
4048 |
|
|
return res;
|
4049 |
|
|
}
|
4050 |
|
|
|
4051 |
|
|
/* Invoke reorder* target hooks on the ready list. Return the number of insns
|
4052 |
|
|
we can issue. FENCE is the current fence. */
|
4053 |
|
|
static int
|
4054 |
|
|
invoke_reorder_hooks (fence_t fence)
|
4055 |
|
|
{
|
4056 |
|
|
int issue_more;
|
4057 |
|
|
bool ran_hook = false;
|
4058 |
|
|
|
4059 |
|
|
/* Call the reorder hook at the beginning of the cycle, and call
|
4060 |
|
|
the reorder2 hook in the middle of the cycle. */
|
4061 |
|
|
if (FENCE_ISSUED_INSNS (fence) == 0)
|
4062 |
|
|
{
|
4063 |
|
|
if (targetm.sched.reorder
|
4064 |
|
|
&& !SCHED_GROUP_P (ready_element (&ready, 0))
|
4065 |
|
|
&& ready.n_ready > 1)
|
4066 |
|
|
{
|
4067 |
|
|
/* Don't give reorder the most prioritized insn as it can break
|
4068 |
|
|
pipelining. */
|
4069 |
|
|
if (pipelining_p)
|
4070 |
|
|
--ready.n_ready;
|
4071 |
|
|
|
4072 |
|
|
issue_more
|
4073 |
|
|
= targetm.sched.reorder (sched_dump, sched_verbose,
|
4074 |
|
|
ready_lastpos (&ready),
|
4075 |
|
|
&ready.n_ready, FENCE_CYCLE (fence));
|
4076 |
|
|
|
4077 |
|
|
if (pipelining_p)
|
4078 |
|
|
++ready.n_ready;
|
4079 |
|
|
|
4080 |
|
|
ran_hook = true;
|
4081 |
|
|
}
|
4082 |
|
|
else
|
4083 |
|
|
/* Initialize can_issue_more for variable_issue. */
|
4084 |
|
|
issue_more = issue_rate;
|
4085 |
|
|
}
|
4086 |
|
|
else if (targetm.sched.reorder2
|
4087 |
|
|
&& !SCHED_GROUP_P (ready_element (&ready, 0)))
|
4088 |
|
|
{
|
4089 |
|
|
if (ready.n_ready == 1)
|
4090 |
|
|
issue_more =
|
4091 |
|
|
targetm.sched.reorder2 (sched_dump, sched_verbose,
|
4092 |
|
|
ready_lastpos (&ready),
|
4093 |
|
|
&ready.n_ready, FENCE_CYCLE (fence));
|
4094 |
|
|
else
|
4095 |
|
|
{
|
4096 |
|
|
if (pipelining_p)
|
4097 |
|
|
--ready.n_ready;
|
4098 |
|
|
|
4099 |
|
|
issue_more =
|
4100 |
|
|
targetm.sched.reorder2 (sched_dump, sched_verbose,
|
4101 |
|
|
ready.n_ready
|
4102 |
|
|
? ready_lastpos (&ready) : NULL,
|
4103 |
|
|
&ready.n_ready, FENCE_CYCLE (fence));
|
4104 |
|
|
|
4105 |
|
|
if (pipelining_p)
|
4106 |
|
|
++ready.n_ready;
|
4107 |
|
|
}
|
4108 |
|
|
|
4109 |
|
|
ran_hook = true;
|
4110 |
|
|
}
|
4111 |
|
|
else
|
4112 |
|
|
issue_more = FENCE_ISSUE_MORE (fence);
|
4113 |
|
|
|
4114 |
|
|
/* Ensure that ready list and vec_av_set are in line with each other,
|
4115 |
|
|
i.e. vec_av_set[i] == ready_element (&ready, i). */
|
4116 |
|
|
if (issue_more && ran_hook)
|
4117 |
|
|
{
|
4118 |
|
|
int i, j, n;
|
4119 |
|
|
rtx *arr = ready.vec;
|
4120 |
|
|
expr_t *vec = VEC_address (expr_t, vec_av_set);
|
4121 |
|
|
|
4122 |
|
|
for (i = 0, n = ready.n_ready; i < n; i++)
|
4123 |
|
|
if (EXPR_INSN_RTX (vec[i]) != arr[i])
|
4124 |
|
|
{
|
4125 |
|
|
expr_t tmp;
|
4126 |
|
|
|
4127 |
|
|
for (j = i; j < n; j++)
|
4128 |
|
|
if (EXPR_INSN_RTX (vec[j]) == arr[i])
|
4129 |
|
|
break;
|
4130 |
|
|
gcc_assert (j < n);
|
4131 |
|
|
|
4132 |
|
|
tmp = vec[i];
|
4133 |
|
|
vec[i] = vec[j];
|
4134 |
|
|
vec[j] = tmp;
|
4135 |
|
|
}
|
4136 |
|
|
}
|
4137 |
|
|
|
4138 |
|
|
return issue_more;
|
4139 |
|
|
}
|
4140 |
|
|
|
4141 |
|
|
/* Return an EXPR correponding to INDEX element of ready list, if
|
4142 |
|
|
FOLLOW_READY_ELEMENT is true (i.e., an expr of
|
4143 |
|
|
ready_element (&ready, INDEX) will be returned), and to INDEX element of
|
4144 |
|
|
ready.vec otherwise. */
|
4145 |
|
|
static inline expr_t
|
4146 |
|
|
find_expr_for_ready (int index, bool follow_ready_element)
|
4147 |
|
|
{
|
4148 |
|
|
expr_t expr;
|
4149 |
|
|
int real_index;
|
4150 |
|
|
|
4151 |
|
|
real_index = follow_ready_element ? ready.first - index : index;
|
4152 |
|
|
|
4153 |
|
|
expr = VEC_index (expr_t, vec_av_set, real_index);
|
4154 |
|
|
gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
|
4155 |
|
|
|
4156 |
|
|
return expr;
|
4157 |
|
|
}
|
4158 |
|
|
|
4159 |
|
|
/* Calculate insns worth trying via lookahead_guard hook. Return a number
|
4160 |
|
|
of such insns found. */
|
4161 |
|
|
static int
|
4162 |
|
|
invoke_dfa_lookahead_guard (void)
|
4163 |
|
|
{
|
4164 |
|
|
int i, n;
|
4165 |
|
|
bool have_hook
|
4166 |
|
|
= targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
|
4167 |
|
|
|
4168 |
|
|
if (sched_verbose >= 2)
|
4169 |
|
|
sel_print ("ready after reorder: ");
|
4170 |
|
|
|
4171 |
|
|
for (i = 0, n = 0; i < ready.n_ready; i++)
|
4172 |
|
|
{
|
4173 |
|
|
expr_t expr;
|
4174 |
|
|
insn_t insn;
|
4175 |
|
|
int r;
|
4176 |
|
|
|
4177 |
|
|
/* In this loop insn is Ith element of the ready list given by
|
4178 |
|
|
ready_element, not Ith element of ready.vec. */
|
4179 |
|
|
insn = ready_element (&ready, i);
|
4180 |
|
|
|
4181 |
|
|
if (! have_hook || i == 0)
|
4182 |
|
|
r = 0;
|
4183 |
|
|
else
|
4184 |
|
|
r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
|
4185 |
|
|
|
4186 |
|
|
gcc_assert (INSN_CODE (insn) >= 0);
|
4187 |
|
|
|
4188 |
|
|
/* Only insns with ready_try = 0 can get here
|
4189 |
|
|
from fill_ready_list. */
|
4190 |
|
|
gcc_assert (ready_try [i] == 0);
|
4191 |
|
|
ready_try[i] = r;
|
4192 |
|
|
if (!r)
|
4193 |
|
|
n++;
|
4194 |
|
|
|
4195 |
|
|
expr = find_expr_for_ready (i, true);
|
4196 |
|
|
|
4197 |
|
|
if (sched_verbose >= 2)
|
4198 |
|
|
{
|
4199 |
|
|
dump_vinsn (EXPR_VINSN (expr));
|
4200 |
|
|
sel_print (":%d; ", ready_try[i]);
|
4201 |
|
|
}
|
4202 |
|
|
}
|
4203 |
|
|
|
4204 |
|
|
if (sched_verbose >= 2)
|
4205 |
|
|
sel_print ("\n");
|
4206 |
|
|
return n;
|
4207 |
|
|
}
|
4208 |
|
|
|
4209 |
|
|
/* Calculate the number of privileged insns and return it. */
|
4210 |
|
|
static int
|
4211 |
|
|
calculate_privileged_insns (void)
|
4212 |
|
|
{
|
4213 |
|
|
expr_t cur_expr, min_spec_expr = NULL;
|
4214 |
|
|
int privileged_n = 0, i;
|
4215 |
|
|
|
4216 |
|
|
for (i = 0; i < ready.n_ready; i++)
|
4217 |
|
|
{
|
4218 |
|
|
if (ready_try[i])
|
4219 |
|
|
continue;
|
4220 |
|
|
|
4221 |
|
|
if (! min_spec_expr)
|
4222 |
|
|
min_spec_expr = find_expr_for_ready (i, true);
|
4223 |
|
|
|
4224 |
|
|
cur_expr = find_expr_for_ready (i, true);
|
4225 |
|
|
|
4226 |
|
|
if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
|
4227 |
|
|
break;
|
4228 |
|
|
|
4229 |
|
|
++privileged_n;
|
4230 |
|
|
}
|
4231 |
|
|
|
4232 |
|
|
if (i == ready.n_ready)
|
4233 |
|
|
privileged_n = 0;
|
4234 |
|
|
|
4235 |
|
|
if (sched_verbose >= 2)
|
4236 |
|
|
sel_print ("privileged_n: %d insns with SPEC %d\n",
|
4237 |
|
|
privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
|
4238 |
|
|
return privileged_n;
|
4239 |
|
|
}
|
4240 |
|
|
|
4241 |
|
|
/* Call the rest of the hooks after the choice was made. Return
|
4242 |
|
|
the number of insns that still can be issued given that the current
|
4243 |
|
|
number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
|
4244 |
|
|
and the insn chosen for scheduling, respectively. */
|
4245 |
|
|
static int
|
4246 |
|
|
invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
|
4247 |
|
|
{
|
4248 |
|
|
gcc_assert (INSN_P (best_insn));
|
4249 |
|
|
|
4250 |
|
|
/* First, call dfa_new_cycle, and then variable_issue, if available. */
|
4251 |
|
|
sel_dfa_new_cycle (best_insn, fence);
|
4252 |
|
|
|
4253 |
|
|
if (targetm.sched.variable_issue)
|
4254 |
|
|
{
|
4255 |
|
|
memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
|
4256 |
|
|
issue_more =
|
4257 |
|
|
targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
|
4258 |
|
|
issue_more);
|
4259 |
|
|
memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
|
4260 |
|
|
}
|
4261 |
|
|
else if (GET_CODE (PATTERN (best_insn)) != USE
|
4262 |
|
|
&& GET_CODE (PATTERN (best_insn)) != CLOBBER)
|
4263 |
|
|
issue_more--;
|
4264 |
|
|
|
4265 |
|
|
return issue_more;
|
4266 |
|
|
}
|
4267 |
|
|
|
4268 |
|
|
/* Estimate the cost of issuing INSN on DFA state STATE. */
|
4269 |
|
|
static int
|
4270 |
|
|
estimate_insn_cost (rtx insn, state_t state)
|
4271 |
|
|
{
|
4272 |
|
|
static state_t temp = NULL;
|
4273 |
|
|
int cost;
|
4274 |
|
|
|
4275 |
|
|
if (!temp)
|
4276 |
|
|
temp = xmalloc (dfa_state_size);
|
4277 |
|
|
|
4278 |
|
|
memcpy (temp, state, dfa_state_size);
|
4279 |
|
|
cost = state_transition (temp, insn);
|
4280 |
|
|
|
4281 |
|
|
if (cost < 0)
|
4282 |
|
|
return 0;
|
4283 |
|
|
else if (cost == 0)
|
4284 |
|
|
return 1;
|
4285 |
|
|
return cost;
|
4286 |
|
|
}
|
4287 |
|
|
|
4288 |
|
|
/* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
|
4289 |
|
|
This function properly handles ASMs, USEs etc. */
|
4290 |
|
|
static int
|
4291 |
|
|
get_expr_cost (expr_t expr, fence_t fence)
|
4292 |
|
|
{
|
4293 |
|
|
rtx insn = EXPR_INSN_RTX (expr);
|
4294 |
|
|
|
4295 |
|
|
if (recog_memoized (insn) < 0)
|
4296 |
|
|
{
|
4297 |
|
|
if (!FENCE_STARTS_CYCLE_P (fence)
|
4298 |
|
|
&& INSN_ASM_P (insn))
|
4299 |
|
|
/* This is asm insn which is tryed to be issued on the
|
4300 |
|
|
cycle not first. Issue it on the next cycle. */
|
4301 |
|
|
return 1;
|
4302 |
|
|
else
|
4303 |
|
|
/* A USE insn, or something else we don't need to
|
4304 |
|
|
understand. We can't pass these directly to
|
4305 |
|
|
state_transition because it will trigger a
|
4306 |
|
|
fatal error for unrecognizable insns. */
|
4307 |
|
|
return 0;
|
4308 |
|
|
}
|
4309 |
|
|
else
|
4310 |
|
|
return estimate_insn_cost (insn, FENCE_STATE (fence));
|
4311 |
|
|
}
|
4312 |
|
|
|
4313 |
|
|
/* Find the best insn for scheduling, either via max_issue or just take
|
4314 |
|
|
the most prioritized available. */
|
4315 |
|
|
static int
|
4316 |
|
|
choose_best_insn (fence_t fence, int privileged_n, int *index)
|
4317 |
|
|
{
|
4318 |
|
|
int can_issue = 0;
|
4319 |
|
|
|
4320 |
|
|
if (dfa_lookahead > 0)
|
4321 |
|
|
{
|
4322 |
|
|
cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
|
4323 |
|
|
/* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
|
4324 |
|
|
can_issue = max_issue (&ready, privileged_n,
|
4325 |
|
|
FENCE_STATE (fence), true, index);
|
4326 |
|
|
if (sched_verbose >= 2)
|
4327 |
|
|
sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
|
4328 |
|
|
can_issue, FENCE_ISSUED_INSNS (fence));
|
4329 |
|
|
}
|
4330 |
|
|
else
|
4331 |
|
|
{
|
4332 |
|
|
/* We can't use max_issue; just return the first available element. */
|
4333 |
|
|
int i;
|
4334 |
|
|
|
4335 |
|
|
for (i = 0; i < ready.n_ready; i++)
|
4336 |
|
|
{
|
4337 |
|
|
expr_t expr = find_expr_for_ready (i, true);
|
4338 |
|
|
|
4339 |
|
|
if (get_expr_cost (expr, fence) < 1)
|
4340 |
|
|
{
|
4341 |
|
|
can_issue = can_issue_more;
|
4342 |
|
|
*index = i;
|
4343 |
|
|
|
4344 |
|
|
if (sched_verbose >= 2)
|
4345 |
|
|
sel_print ("using %dth insn from the ready list\n", i + 1);
|
4346 |
|
|
|
4347 |
|
|
break;
|
4348 |
|
|
}
|
4349 |
|
|
}
|
4350 |
|
|
|
4351 |
|
|
if (i == ready.n_ready)
|
4352 |
|
|
{
|
4353 |
|
|
can_issue = 0;
|
4354 |
|
|
*index = -1;
|
4355 |
|
|
}
|
4356 |
|
|
}
|
4357 |
|
|
|
4358 |
|
|
return can_issue;
|
4359 |
|
|
}
|
4360 |
|
|
|
4361 |
|
|
/* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
|
4362 |
|
|
BNDS and FENCE are current boundaries and scheduling fence respectively.
|
4363 |
|
|
Return the expr found and NULL if nothing can be issued atm.
|
4364 |
|
|
Write to PNEED_STALL the number of cycles to stall if no expr was found. */
|
4365 |
|
|
static expr_t
|
4366 |
|
|
find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
|
4367 |
|
|
int *pneed_stall)
|
4368 |
|
|
{
|
4369 |
|
|
expr_t best;
|
4370 |
|
|
|
4371 |
|
|
/* Choose the best insn for scheduling via:
|
4372 |
|
|
1) sorting the ready list based on priority;
|
4373 |
|
|
2) calling the reorder hook;
|
4374 |
|
|
3) calling max_issue. */
|
4375 |
|
|
best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
|
4376 |
|
|
if (best == NULL && ready.n_ready > 0)
|
4377 |
|
|
{
|
4378 |
|
|
int privileged_n, index;
|
4379 |
|
|
|
4380 |
|
|
can_issue_more = invoke_reorder_hooks (fence);
|
4381 |
|
|
if (can_issue_more > 0)
|
4382 |
|
|
{
|
4383 |
|
|
/* Try choosing the best insn until we find one that is could be
|
4384 |
|
|
scheduled due to liveness restrictions on its destination register.
|
4385 |
|
|
In the future, we'd like to choose once and then just probe insns
|
4386 |
|
|
in the order of their priority. */
|
4387 |
|
|
invoke_dfa_lookahead_guard ();
|
4388 |
|
|
privileged_n = calculate_privileged_insns ();
|
4389 |
|
|
can_issue_more = choose_best_insn (fence, privileged_n, &index);
|
4390 |
|
|
if (can_issue_more)
|
4391 |
|
|
best = find_expr_for_ready (index, true);
|
4392 |
|
|
}
|
4393 |
|
|
/* We had some available insns, so if we can't issue them,
|
4394 |
|
|
we have a stall. */
|
4395 |
|
|
if (can_issue_more == 0)
|
4396 |
|
|
{
|
4397 |
|
|
best = NULL;
|
4398 |
|
|
*pneed_stall = 1;
|
4399 |
|
|
}
|
4400 |
|
|
}
|
4401 |
|
|
|
4402 |
|
|
if (best != NULL)
|
4403 |
|
|
{
|
4404 |
|
|
can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
|
4405 |
|
|
can_issue_more);
|
4406 |
|
|
if (targetm.sched.variable_issue
|
4407 |
|
|
&& can_issue_more == 0)
|
4408 |
|
|
*pneed_stall = 1;
|
4409 |
|
|
}
|
4410 |
|
|
|
4411 |
|
|
if (sched_verbose >= 2)
|
4412 |
|
|
{
|
4413 |
|
|
if (best != NULL)
|
4414 |
|
|
{
|
4415 |
|
|
sel_print ("Best expression (vliw form): ");
|
4416 |
|
|
dump_expr (best);
|
4417 |
|
|
sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
|
4418 |
|
|
}
|
4419 |
|
|
else
|
4420 |
|
|
sel_print ("No best expr found!\n");
|
4421 |
|
|
}
|
4422 |
|
|
|
4423 |
|
|
return best;
|
4424 |
|
|
}
|
4425 |
|
|
|
4426 |
|
|
|
4427 |
|
|
/* Functions that implement the core of the scheduler. */
|
4428 |
|
|
|
4429 |
|
|
|
4430 |
|
|
/* Emit an instruction from EXPR with SEQNO and VINSN after
|
4431 |
|
|
PLACE_TO_INSERT. */
|
4432 |
|
|
static insn_t
|
4433 |
|
|
emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
|
4434 |
|
|
insn_t place_to_insert)
|
4435 |
|
|
{
|
4436 |
|
|
/* This assert fails when we have identical instructions
|
4437 |
|
|
one of which dominates the other. In this case move_op ()
|
4438 |
|
|
finds the first instruction and doesn't search for second one.
|
4439 |
|
|
The solution would be to compute av_set after the first found
|
4440 |
|
|
insn and, if insn present in that set, continue searching.
|
4441 |
|
|
For now we workaround this issue in move_op. */
|
4442 |
|
|
gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
|
4443 |
|
|
|
4444 |
|
|
if (EXPR_WAS_RENAMED (expr))
|
4445 |
|
|
{
|
4446 |
|
|
unsigned regno = expr_dest_regno (expr);
|
4447 |
|
|
|
4448 |
|
|
if (HARD_REGISTER_NUM_P (regno))
|
4449 |
|
|
{
|
4450 |
|
|
df_set_regs_ever_live (regno, true);
|
4451 |
|
|
reg_rename_tick[regno] = ++reg_rename_this_tick;
|
4452 |
|
|
}
|
4453 |
|
|
}
|
4454 |
|
|
|
4455 |
|
|
return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
|
4456 |
|
|
place_to_insert);
|
4457 |
|
|
}
|
4458 |
|
|
|
4459 |
|
|
/* Return TRUE if BB can hold bookkeeping code. */
|
4460 |
|
|
static bool
|
4461 |
|
|
block_valid_for_bookkeeping_p (basic_block bb)
|
4462 |
|
|
{
|
4463 |
|
|
insn_t bb_end = BB_END (bb);
|
4464 |
|
|
|
4465 |
|
|
if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
|
4466 |
|
|
return false;
|
4467 |
|
|
|
4468 |
|
|
if (INSN_P (bb_end))
|
4469 |
|
|
{
|
4470 |
|
|
if (INSN_SCHED_TIMES (bb_end) > 0)
|
4471 |
|
|
return false;
|
4472 |
|
|
}
|
4473 |
|
|
else
|
4474 |
|
|
gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
|
4475 |
|
|
|
4476 |
|
|
return true;
|
4477 |
|
|
}
|
4478 |
|
|
|
4479 |
|
|
/* Attempt to find a block that can hold bookkeeping code for path(s) incoming
|
4480 |
|
|
into E2->dest, except from E1->src (there may be a sequence of empty basic
|
4481 |
|
|
blocks between E1->src and E2->dest). Return found block, or NULL if new
|
4482 |
|
|
one must be created. If LAX holds, don't assume there is a simple path
|
4483 |
|
|
from E1->src to E2->dest. */
|
4484 |
|
|
static basic_block
|
4485 |
|
|
find_block_for_bookkeeping (edge e1, edge e2, bool lax)
|
4486 |
|
|
{
|
4487 |
|
|
basic_block candidate_block = NULL;
|
4488 |
|
|
edge e;
|
4489 |
|
|
|
4490 |
|
|
/* Loop over edges from E1 to E2, inclusive. */
|
4491 |
|
|
for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
|
4492 |
|
|
{
|
4493 |
|
|
if (EDGE_COUNT (e->dest->preds) == 2)
|
4494 |
|
|
{
|
4495 |
|
|
if (candidate_block == NULL)
|
4496 |
|
|
candidate_block = (EDGE_PRED (e->dest, 0) == e
|
4497 |
|
|
? EDGE_PRED (e->dest, 1)->src
|
4498 |
|
|
: EDGE_PRED (e->dest, 0)->src);
|
4499 |
|
|
else
|
4500 |
|
|
/* Found additional edge leading to path from e1 to e2
|
4501 |
|
|
from aside. */
|
4502 |
|
|
return NULL;
|
4503 |
|
|
}
|
4504 |
|
|
else if (EDGE_COUNT (e->dest->preds) > 2)
|
4505 |
|
|
/* Several edges leading to path from e1 to e2 from aside. */
|
4506 |
|
|
return NULL;
|
4507 |
|
|
|
4508 |
|
|
if (e == e2)
|
4509 |
|
|
return ((!lax || candidate_block)
|
4510 |
|
|
&& block_valid_for_bookkeeping_p (candidate_block)
|
4511 |
|
|
? candidate_block
|
4512 |
|
|
: NULL);
|
4513 |
|
|
|
4514 |
|
|
if (lax && EDGE_COUNT (e->dest->succs) != 1)
|
4515 |
|
|
return NULL;
|
4516 |
|
|
}
|
4517 |
|
|
|
4518 |
|
|
if (lax)
|
4519 |
|
|
return NULL;
|
4520 |
|
|
|
4521 |
|
|
gcc_unreachable ();
|
4522 |
|
|
}
|
4523 |
|
|
|
4524 |
|
|
/* Create new basic block for bookkeeping code for path(s) incoming into
|
4525 |
|
|
E2->dest, except from E1->src. Return created block. */
|
4526 |
|
|
static basic_block
|
4527 |
|
|
create_block_for_bookkeeping (edge e1, edge e2)
|
4528 |
|
|
{
|
4529 |
|
|
basic_block new_bb, bb = e2->dest;
|
4530 |
|
|
|
4531 |
|
|
/* Check that we don't spoil the loop structure. */
|
4532 |
|
|
if (current_loop_nest)
|
4533 |
|
|
{
|
4534 |
|
|
basic_block latch = current_loop_nest->latch;
|
4535 |
|
|
|
4536 |
|
|
/* We do not split header. */
|
4537 |
|
|
gcc_assert (e2->dest != current_loop_nest->header);
|
4538 |
|
|
|
4539 |
|
|
/* We do not redirect the only edge to the latch block. */
|
4540 |
|
|
gcc_assert (e1->dest != latch
|
4541 |
|
|
|| !single_pred_p (latch)
|
4542 |
|
|
|| e1 != single_pred_edge (latch));
|
4543 |
|
|
}
|
4544 |
|
|
|
4545 |
|
|
/* Split BB to insert BOOK_INSN there. */
|
4546 |
|
|
new_bb = sched_split_block (bb, NULL);
|
4547 |
|
|
|
4548 |
|
|
/* Move note_list from the upper bb. */
|
4549 |
|
|
gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
|
4550 |
|
|
BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
|
4551 |
|
|
BB_NOTE_LIST (bb) = NULL_RTX;
|
4552 |
|
|
|
4553 |
|
|
gcc_assert (e2->dest == bb);
|
4554 |
|
|
|
4555 |
|
|
/* Skip block for bookkeeping copy when leaving E1->src. */
|
4556 |
|
|
if (e1->flags & EDGE_FALLTHRU)
|
4557 |
|
|
sel_redirect_edge_and_branch_force (e1, new_bb);
|
4558 |
|
|
else
|
4559 |
|
|
sel_redirect_edge_and_branch (e1, new_bb);
|
4560 |
|
|
|
4561 |
|
|
gcc_assert (e1->dest == new_bb);
|
4562 |
|
|
gcc_assert (sel_bb_empty_p (bb));
|
4563 |
|
|
|
4564 |
|
|
/* To keep basic block numbers in sync between debug and non-debug
|
4565 |
|
|
compilations, we have to rotate blocks here. Consider that we
|
4566 |
|
|
started from (a,b)->d, (c,d)->e, and d contained only debug
|
4567 |
|
|
insns. It would have been removed before if the debug insns
|
4568 |
|
|
weren't there, so we'd have split e rather than d. So what we do
|
4569 |
|
|
now is to swap the block numbers of new_bb and
|
4570 |
|
|
single_succ(new_bb) == e, so that the insns that were in e before
|
4571 |
|
|
get the new block number. */
|
4572 |
|
|
|
4573 |
|
|
if (MAY_HAVE_DEBUG_INSNS)
|
4574 |
|
|
{
|
4575 |
|
|
basic_block succ;
|
4576 |
|
|
insn_t insn = sel_bb_head (new_bb);
|
4577 |
|
|
insn_t last;
|
4578 |
|
|
|
4579 |
|
|
if (DEBUG_INSN_P (insn)
|
4580 |
|
|
&& single_succ_p (new_bb)
|
4581 |
|
|
&& (succ = single_succ (new_bb))
|
4582 |
|
|
&& succ != EXIT_BLOCK_PTR
|
4583 |
|
|
&& DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
|
4584 |
|
|
{
|
4585 |
|
|
while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
|
4586 |
|
|
insn = NEXT_INSN (insn);
|
4587 |
|
|
|
4588 |
|
|
if (insn == last)
|
4589 |
|
|
{
|
4590 |
|
|
sel_global_bb_info_def gbi;
|
4591 |
|
|
sel_region_bb_info_def rbi;
|
4592 |
|
|
int i;
|
4593 |
|
|
|
4594 |
|
|
if (sched_verbose >= 2)
|
4595 |
|
|
sel_print ("Swapping block ids %i and %i\n",
|
4596 |
|
|
new_bb->index, succ->index);
|
4597 |
|
|
|
4598 |
|
|
i = new_bb->index;
|
4599 |
|
|
new_bb->index = succ->index;
|
4600 |
|
|
succ->index = i;
|
4601 |
|
|
|
4602 |
|
|
SET_BASIC_BLOCK (new_bb->index, new_bb);
|
4603 |
|
|
SET_BASIC_BLOCK (succ->index, succ);
|
4604 |
|
|
|
4605 |
|
|
memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
|
4606 |
|
|
memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
|
4607 |
|
|
sizeof (gbi));
|
4608 |
|
|
memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
|
4609 |
|
|
|
4610 |
|
|
memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
|
4611 |
|
|
memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
|
4612 |
|
|
sizeof (rbi));
|
4613 |
|
|
memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
|
4614 |
|
|
|
4615 |
|
|
i = BLOCK_TO_BB (new_bb->index);
|
4616 |
|
|
BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
|
4617 |
|
|
BLOCK_TO_BB (succ->index) = i;
|
4618 |
|
|
|
4619 |
|
|
i = CONTAINING_RGN (new_bb->index);
|
4620 |
|
|
CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
|
4621 |
|
|
CONTAINING_RGN (succ->index) = i;
|
4622 |
|
|
|
4623 |
|
|
for (i = 0; i < current_nr_blocks; i++)
|
4624 |
|
|
if (BB_TO_BLOCK (i) == succ->index)
|
4625 |
|
|
BB_TO_BLOCK (i) = new_bb->index;
|
4626 |
|
|
else if (BB_TO_BLOCK (i) == new_bb->index)
|
4627 |
|
|
BB_TO_BLOCK (i) = succ->index;
|
4628 |
|
|
|
4629 |
|
|
FOR_BB_INSNS (new_bb, insn)
|
4630 |
|
|
if (INSN_P (insn))
|
4631 |
|
|
EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
|
4632 |
|
|
|
4633 |
|
|
FOR_BB_INSNS (succ, insn)
|
4634 |
|
|
if (INSN_P (insn))
|
4635 |
|
|
EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
|
4636 |
|
|
|
4637 |
|
|
if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
|
4638 |
|
|
bitmap_set_bit (code_motion_visited_blocks, succ->index);
|
4639 |
|
|
|
4640 |
|
|
gcc_assert (LABEL_P (BB_HEAD (new_bb))
|
4641 |
|
|
&& LABEL_P (BB_HEAD (succ)));
|
4642 |
|
|
|
4643 |
|
|
if (sched_verbose >= 4)
|
4644 |
|
|
sel_print ("Swapping code labels %i and %i\n",
|
4645 |
|
|
CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
|
4646 |
|
|
CODE_LABEL_NUMBER (BB_HEAD (succ)));
|
4647 |
|
|
|
4648 |
|
|
i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
|
4649 |
|
|
CODE_LABEL_NUMBER (BB_HEAD (new_bb))
|
4650 |
|
|
= CODE_LABEL_NUMBER (BB_HEAD (succ));
|
4651 |
|
|
CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
|
4652 |
|
|
}
|
4653 |
|
|
}
|
4654 |
|
|
}
|
4655 |
|
|
|
4656 |
|
|
return bb;
|
4657 |
|
|
}
|
4658 |
|
|
|
4659 |
|
|
/* Return insn after which we must insert bookkeeping code for path(s) incoming
|
4660 |
|
|
into E2->dest, except from E1->src. If the returned insn immediately
|
4661 |
|
|
precedes a fence, assign that fence to *FENCE_TO_REWIND. */
|
4662 |
|
|
static insn_t
|
4663 |
|
|
find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
|
4664 |
|
|
{
|
4665 |
|
|
insn_t place_to_insert;
|
4666 |
|
|
/* Find a basic block that can hold bookkeeping. If it can be found, do not
|
4667 |
|
|
create new basic block, but insert bookkeeping there. */
|
4668 |
|
|
basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
|
4669 |
|
|
|
4670 |
|
|
if (book_block)
|
4671 |
|
|
{
|
4672 |
|
|
place_to_insert = BB_END (book_block);
|
4673 |
|
|
|
4674 |
|
|
/* Don't use a block containing only debug insns for
|
4675 |
|
|
bookkeeping, this causes scheduling differences between debug
|
4676 |
|
|
and non-debug compilations, for the block would have been
|
4677 |
|
|
removed already. */
|
4678 |
|
|
if (DEBUG_INSN_P (place_to_insert))
|
4679 |
|
|
{
|
4680 |
|
|
rtx insn = sel_bb_head (book_block);
|
4681 |
|
|
|
4682 |
|
|
while (insn != place_to_insert &&
|
4683 |
|
|
(DEBUG_INSN_P (insn) || NOTE_P (insn)))
|
4684 |
|
|
insn = NEXT_INSN (insn);
|
4685 |
|
|
|
4686 |
|
|
if (insn == place_to_insert)
|
4687 |
|
|
book_block = NULL;
|
4688 |
|
|
}
|
4689 |
|
|
}
|
4690 |
|
|
|
4691 |
|
|
if (!book_block)
|
4692 |
|
|
{
|
4693 |
|
|
book_block = create_block_for_bookkeeping (e1, e2);
|
4694 |
|
|
place_to_insert = BB_END (book_block);
|
4695 |
|
|
if (sched_verbose >= 9)
|
4696 |
|
|
sel_print ("New block is %i, split from bookkeeping block %i\n",
|
4697 |
|
|
EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
|
4698 |
|
|
}
|
4699 |
|
|
else
|
4700 |
|
|
{
|
4701 |
|
|
if (sched_verbose >= 9)
|
4702 |
|
|
sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
|
4703 |
|
|
}
|
4704 |
|
|
|
4705 |
|
|
*fence_to_rewind = NULL;
|
4706 |
|
|
/* If basic block ends with a jump, insert bookkeeping code right before it.
|
4707 |
|
|
Notice if we are crossing a fence when taking PREV_INSN. */
|
4708 |
|
|
if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
|
4709 |
|
|
{
|
4710 |
|
|
*fence_to_rewind = flist_lookup (fences, place_to_insert);
|
4711 |
|
|
place_to_insert = PREV_INSN (place_to_insert);
|
4712 |
|
|
}
|
4713 |
|
|
|
4714 |
|
|
return place_to_insert;
|
4715 |
|
|
}
|
4716 |
|
|
|
4717 |
|
|
/* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
|
4718 |
|
|
for JOIN_POINT. */
|
4719 |
|
|
static int
|
4720 |
|
|
find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
|
4721 |
|
|
{
|
4722 |
|
|
int seqno;
|
4723 |
|
|
rtx next;
|
4724 |
|
|
|
4725 |
|
|
/* Check if we are about to insert bookkeeping copy before a jump, and use
|
4726 |
|
|
jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
|
4727 |
|
|
next = NEXT_INSN (place_to_insert);
|
4728 |
|
|
if (INSN_P (next)
|
4729 |
|
|
&& JUMP_P (next)
|
4730 |
|
|
&& BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
|
4731 |
|
|
{
|
4732 |
|
|
gcc_assert (INSN_SCHED_TIMES (next) == 0);
|
4733 |
|
|
seqno = INSN_SEQNO (next);
|
4734 |
|
|
}
|
4735 |
|
|
else if (INSN_SEQNO (join_point) > 0)
|
4736 |
|
|
seqno = INSN_SEQNO (join_point);
|
4737 |
|
|
else
|
4738 |
|
|
{
|
4739 |
|
|
seqno = get_seqno_by_preds (place_to_insert);
|
4740 |
|
|
|
4741 |
|
|
/* Sometimes the fences can move in such a way that there will be
|
4742 |
|
|
no instructions with positive seqno around this bookkeeping.
|
4743 |
|
|
This means that there will be no way to get to it by a regular
|
4744 |
|
|
fence movement. Never mind because we pick up such pieces for
|
4745 |
|
|
rescheduling anyways, so any positive value will do for now. */
|
4746 |
|
|
if (seqno < 0)
|
4747 |
|
|
{
|
4748 |
|
|
gcc_assert (pipelining_p);
|
4749 |
|
|
seqno = 1;
|
4750 |
|
|
}
|
4751 |
|
|
}
|
4752 |
|
|
|
4753 |
|
|
gcc_assert (seqno > 0);
|
4754 |
|
|
return seqno;
|
4755 |
|
|
}
|
4756 |
|
|
|
4757 |
|
|
/* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
|
4758 |
|
|
NEW_SEQNO to it. Return created insn. */
|
4759 |
|
|
static insn_t
|
4760 |
|
|
emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
|
4761 |
|
|
{
|
4762 |
|
|
rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
|
4763 |
|
|
|
4764 |
|
|
vinsn_t new_vinsn
|
4765 |
|
|
= create_vinsn_from_insn_rtx (new_insn_rtx,
|
4766 |
|
|
VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
|
4767 |
|
|
|
4768 |
|
|
insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
|
4769 |
|
|
place_to_insert);
|
4770 |
|
|
|
4771 |
|
|
INSN_SCHED_TIMES (new_insn) = 0;
|
4772 |
|
|
bitmap_set_bit (current_copies, INSN_UID (new_insn));
|
4773 |
|
|
|
4774 |
|
|
return new_insn;
|
4775 |
|
|
}
|
4776 |
|
|
|
4777 |
|
|
/* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
|
4778 |
|
|
E2->dest, except from E1->src (there may be a sequence of empty blocks
|
4779 |
|
|
between E1->src and E2->dest). Return block containing the copy.
|
4780 |
|
|
All scheduler data is initialized for the newly created insn. */
|
4781 |
|
|
static basic_block
|
4782 |
|
|
generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
|
4783 |
|
|
{
|
4784 |
|
|
insn_t join_point, place_to_insert, new_insn;
|
4785 |
|
|
int new_seqno;
|
4786 |
|
|
bool need_to_exchange_data_sets;
|
4787 |
|
|
fence_t fence_to_rewind;
|
4788 |
|
|
|
4789 |
|
|
if (sched_verbose >= 4)
|
4790 |
|
|
sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
|
4791 |
|
|
e2->dest->index);
|
4792 |
|
|
|
4793 |
|
|
join_point = sel_bb_head (e2->dest);
|
4794 |
|
|
place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
|
4795 |
|
|
new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
|
4796 |
|
|
need_to_exchange_data_sets
|
4797 |
|
|
= sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
|
4798 |
|
|
|
4799 |
|
|
new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
|
4800 |
|
|
|
4801 |
|
|
if (fence_to_rewind)
|
4802 |
|
|
FENCE_INSN (fence_to_rewind) = new_insn;
|
4803 |
|
|
|
4804 |
|
|
/* When inserting bookkeeping insn in new block, av sets should be
|
4805 |
|
|
following: old basic block (that now holds bookkeeping) data sets are
|
4806 |
|
|
the same as was before generation of bookkeeping, and new basic block
|
4807 |
|
|
(that now hold all other insns of old basic block) data sets are
|
4808 |
|
|
invalid. So exchange data sets for these basic blocks as sel_split_block
|
4809 |
|
|
mistakenly exchanges them in this case. Cannot do it earlier because
|
4810 |
|
|
when single instruction is added to new basic block it should hold NULL
|
4811 |
|
|
lv_set. */
|
4812 |
|
|
if (need_to_exchange_data_sets)
|
4813 |
|
|
exchange_data_sets (BLOCK_FOR_INSN (new_insn),
|
4814 |
|
|
BLOCK_FOR_INSN (join_point));
|
4815 |
|
|
|
4816 |
|
|
stat_bookkeeping_copies++;
|
4817 |
|
|
return BLOCK_FOR_INSN (new_insn);
|
4818 |
|
|
}
|
4819 |
|
|
|
4820 |
|
|
/* Remove from AV_PTR all insns that may need bookkeeping when scheduling
|
4821 |
|
|
on FENCE, but we are unable to copy them. */
|
4822 |
|
|
static void
|
4823 |
|
|
remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
|
4824 |
|
|
{
|
4825 |
|
|
expr_t expr;
|
4826 |
|
|
av_set_iterator i;
|
4827 |
|
|
|
4828 |
|
|
/* An expression does not need bookkeeping if it is available on all paths
|
4829 |
|
|
from current block to original block and current block dominates
|
4830 |
|
|
original block. We check availability on all paths by examining
|
4831 |
|
|
EXPR_SPEC; this is not equivalent, because it may be positive even
|
4832 |
|
|
if expr is available on all paths (but if expr is not available on
|
4833 |
|
|
any path, EXPR_SPEC will be positive). */
|
4834 |
|
|
|
4835 |
|
|
FOR_EACH_EXPR_1 (expr, i, av_ptr)
|
4836 |
|
|
{
|
4837 |
|
|
if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
|
4838 |
|
|
&& (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
|
4839 |
|
|
&& (EXPR_SPEC (expr)
|
4840 |
|
|
|| !EXPR_ORIG_BB_INDEX (expr)
|
4841 |
|
|
|| !dominated_by_p (CDI_DOMINATORS,
|
4842 |
|
|
BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
|
4843 |
|
|
BLOCK_FOR_INSN (FENCE_INSN (fence)))))
|
4844 |
|
|
{
|
4845 |
|
|
if (sched_verbose >= 4)
|
4846 |
|
|
sel_print ("Expr %d removed because it would need bookkeeping, which "
|
4847 |
|
|
"cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
|
4848 |
|
|
av_set_iter_remove (&i);
|
4849 |
|
|
}
|
4850 |
|
|
}
|
4851 |
|
|
}
|
4852 |
|
|
|
4853 |
|
|
/* Moving conditional jump through some instructions.
|
4854 |
|
|
|
4855 |
|
|
Consider example:
|
4856 |
|
|
|
4857 |
|
|
... <- current scheduling point
|
4858 |
|
|
NOTE BASIC BLOCK: <- bb header
|
4859 |
|
|
(p8) add r14=r14+0x9;;
|
4860 |
|
|
(p8) mov [r14]=r23
|
4861 |
|
|
(!p8) jump L1;;
|
4862 |
|
|
NOTE BASIC BLOCK:
|
4863 |
|
|
...
|
4864 |
|
|
|
4865 |
|
|
We can schedule jump one cycle earlier, than mov, because they cannot be
|
4866 |
|
|
executed together as their predicates are mutually exclusive.
|
4867 |
|
|
|
4868 |
|
|
This is done in this way: first, new fallthrough basic block is created
|
4869 |
|
|
after jump (it is always can be done, because there already should be a
|
4870 |
|
|
fallthrough block, where control flow goes in case of predicate being true -
|
4871 |
|
|
in our example; otherwise there should be a dependence between those
|
4872 |
|
|
instructions and jump and we cannot schedule jump right now);
|
4873 |
|
|
next, all instructions between jump and current scheduling point are moved
|
4874 |
|
|
to this new block. And the result is this:
|
4875 |
|
|
|
4876 |
|
|
NOTE BASIC BLOCK:
|
4877 |
|
|
(!p8) jump L1 <- current scheduling point
|
4878 |
|
|
NOTE BASIC BLOCK: <- bb header
|
4879 |
|
|
(p8) add r14=r14+0x9;;
|
4880 |
|
|
(p8) mov [r14]=r23
|
4881 |
|
|
NOTE BASIC BLOCK:
|
4882 |
|
|
...
|
4883 |
|
|
*/
|
4884 |
|
|
static void
|
4885 |
|
|
move_cond_jump (rtx insn, bnd_t bnd)
|
4886 |
|
|
{
|
4887 |
|
|
edge ft_edge;
|
4888 |
|
|
basic_block block_from, block_next, block_new, block_bnd, bb;
|
4889 |
|
|
rtx next, prev, link, head;
|
4890 |
|
|
|
4891 |
|
|
block_from = BLOCK_FOR_INSN (insn);
|
4892 |
|
|
block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
|
4893 |
|
|
prev = BND_TO (bnd);
|
4894 |
|
|
|
4895 |
|
|
#ifdef ENABLE_CHECKING
|
4896 |
|
|
/* Moving of jump should not cross any other jumps or beginnings of new
|
4897 |
|
|
basic blocks. The only exception is when we move a jump through
|
4898 |
|
|
mutually exclusive insns along fallthru edges. */
|
4899 |
|
|
if (block_from != block_bnd)
|
4900 |
|
|
{
|
4901 |
|
|
bb = block_from;
|
4902 |
|
|
for (link = PREV_INSN (insn); link != PREV_INSN (prev);
|
4903 |
|
|
link = PREV_INSN (link))
|
4904 |
|
|
{
|
4905 |
|
|
if (INSN_P (link))
|
4906 |
|
|
gcc_assert (sched_insns_conditions_mutex_p (insn, link));
|
4907 |
|
|
if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
|
4908 |
|
|
{
|
4909 |
|
|
gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
|
4910 |
|
|
bb = BLOCK_FOR_INSN (link);
|
4911 |
|
|
}
|
4912 |
|
|
}
|
4913 |
|
|
}
|
4914 |
|
|
#endif
|
4915 |
|
|
|
4916 |
|
|
/* Jump is moved to the boundary. */
|
4917 |
|
|
next = PREV_INSN (insn);
|
4918 |
|
|
BND_TO (bnd) = insn;
|
4919 |
|
|
|
4920 |
|
|
ft_edge = find_fallthru_edge_from (block_from);
|
4921 |
|
|
block_next = ft_edge->dest;
|
4922 |
|
|
/* There must be a fallthrough block (or where should go
|
4923 |
|
|
control flow in case of false jump predicate otherwise?). */
|
4924 |
|
|
gcc_assert (block_next);
|
4925 |
|
|
|
4926 |
|
|
/* Create new empty basic block after source block. */
|
4927 |
|
|
block_new = sel_split_edge (ft_edge);
|
4928 |
|
|
gcc_assert (block_new->next_bb == block_next
|
4929 |
|
|
&& block_from->next_bb == block_new);
|
4930 |
|
|
|
4931 |
|
|
/* Move all instructions except INSN to BLOCK_NEW. */
|
4932 |
|
|
bb = block_bnd;
|
4933 |
|
|
head = BB_HEAD (block_new);
|
4934 |
|
|
while (bb != block_from->next_bb)
|
4935 |
|
|
{
|
4936 |
|
|
rtx from, to;
|
4937 |
|
|
from = bb == block_bnd ? prev : sel_bb_head (bb);
|
4938 |
|
|
to = bb == block_from ? next : sel_bb_end (bb);
|
4939 |
|
|
|
4940 |
|
|
/* The jump being moved can be the first insn in the block.
|
4941 |
|
|
In this case we don't have to move anything in this block. */
|
4942 |
|
|
if (NEXT_INSN (to) != from)
|
4943 |
|
|
{
|
4944 |
|
|
reorder_insns (from, to, head);
|
4945 |
|
|
|
4946 |
|
|
for (link = to; link != head; link = PREV_INSN (link))
|
4947 |
|
|
EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
|
4948 |
|
|
head = to;
|
4949 |
|
|
}
|
4950 |
|
|
|
4951 |
|
|
/* Cleanup possibly empty blocks left. */
|
4952 |
|
|
block_next = bb->next_bb;
|
4953 |
|
|
if (bb != block_from)
|
4954 |
|
|
tidy_control_flow (bb, false);
|
4955 |
|
|
bb = block_next;
|
4956 |
|
|
}
|
4957 |
|
|
|
4958 |
|
|
/* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
|
4959 |
|
|
gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
|
4960 |
|
|
|
4961 |
|
|
gcc_assert (!sel_bb_empty_p (block_from)
|
4962 |
|
|
&& !sel_bb_empty_p (block_new));
|
4963 |
|
|
|
4964 |
|
|
/* Update data sets for BLOCK_NEW to represent that INSN and
|
4965 |
|
|
instructions from the other branch of INSN is no longer
|
4966 |
|
|
available at BLOCK_NEW. */
|
4967 |
|
|
BB_AV_LEVEL (block_new) = global_level;
|
4968 |
|
|
gcc_assert (BB_LV_SET (block_new) == NULL);
|
4969 |
|
|
BB_LV_SET (block_new) = get_clear_regset_from_pool ();
|
4970 |
|
|
update_data_sets (sel_bb_head (block_new));
|
4971 |
|
|
|
4972 |
|
|
/* INSN is a new basic block header - so prepare its data
|
4973 |
|
|
structures and update availability and liveness sets. */
|
4974 |
|
|
update_data_sets (insn);
|
4975 |
|
|
|
4976 |
|
|
if (sched_verbose >= 4)
|
4977 |
|
|
sel_print ("Moving jump %d\n", INSN_UID (insn));
|
4978 |
|
|
}
|
4979 |
|
|
|
4980 |
|
|
/* Remove nops generated during move_op for preventing removal of empty
|
4981 |
|
|
basic blocks. */
|
4982 |
|
|
static void
|
4983 |
|
|
remove_temp_moveop_nops (bool full_tidying)
|
4984 |
|
|
{
|
4985 |
|
|
int i;
|
4986 |
|
|
insn_t insn;
|
4987 |
|
|
|
4988 |
|
|
FOR_EACH_VEC_ELT (insn_t, vec_temp_moveop_nops, i, insn)
|
4989 |
|
|
{
|
4990 |
|
|
gcc_assert (INSN_NOP_P (insn));
|
4991 |
|
|
return_nop_to_pool (insn, full_tidying);
|
4992 |
|
|
}
|
4993 |
|
|
|
4994 |
|
|
/* Empty the vector. */
|
4995 |
|
|
if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
|
4996 |
|
|
VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
|
4997 |
|
|
VEC_length (insn_t, vec_temp_moveop_nops));
|
4998 |
|
|
}
|
4999 |
|
|
|
5000 |
|
|
/* Records the maximal UID before moving up an instruction. Used for
|
5001 |
|
|
distinguishing between bookkeeping copies and original insns. */
|
5002 |
|
|
static int max_uid_before_move_op = 0;
|
5003 |
|
|
|
5004 |
|
|
/* Remove from AV_VLIW_P all instructions but next when debug counter
|
5005 |
|
|
tells us so. Next instruction is fetched from BNDS. */
|
5006 |
|
|
static void
|
5007 |
|
|
remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
|
5008 |
|
|
{
|
5009 |
|
|
if (! dbg_cnt (sel_sched_insn_cnt))
|
5010 |
|
|
/* Leave only the next insn in av_vliw. */
|
5011 |
|
|
{
|
5012 |
|
|
av_set_iterator av_it;
|
5013 |
|
|
expr_t expr;
|
5014 |
|
|
bnd_t bnd = BLIST_BND (bnds);
|
5015 |
|
|
insn_t next = BND_TO (bnd);
|
5016 |
|
|
|
5017 |
|
|
gcc_assert (BLIST_NEXT (bnds) == NULL);
|
5018 |
|
|
|
5019 |
|
|
FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
|
5020 |
|
|
if (EXPR_INSN_RTX (expr) != next)
|
5021 |
|
|
av_set_iter_remove (&av_it);
|
5022 |
|
|
}
|
5023 |
|
|
}
|
5024 |
|
|
|
5025 |
|
|
/* Compute available instructions on BNDS. FENCE is the current fence. Write
|
5026 |
|
|
the computed set to *AV_VLIW_P. */
|
5027 |
|
|
static void
|
5028 |
|
|
compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
|
5029 |
|
|
{
|
5030 |
|
|
if (sched_verbose >= 2)
|
5031 |
|
|
{
|
5032 |
|
|
sel_print ("Boundaries: ");
|
5033 |
|
|
dump_blist (bnds);
|
5034 |
|
|
sel_print ("\n");
|
5035 |
|
|
}
|
5036 |
|
|
|
5037 |
|
|
for (; bnds; bnds = BLIST_NEXT (bnds))
|
5038 |
|
|
{
|
5039 |
|
|
bnd_t bnd = BLIST_BND (bnds);
|
5040 |
|
|
av_set_t av1_copy;
|
5041 |
|
|
insn_t bnd_to = BND_TO (bnd);
|
5042 |
|
|
|
5043 |
|
|
/* Rewind BND->TO to the basic block header in case some bookkeeping
|
5044 |
|
|
instructions were inserted before BND->TO and it needs to be
|
5045 |
|
|
adjusted. */
|
5046 |
|
|
if (sel_bb_head_p (bnd_to))
|
5047 |
|
|
gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
|
5048 |
|
|
else
|
5049 |
|
|
while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
|
5050 |
|
|
{
|
5051 |
|
|
bnd_to = PREV_INSN (bnd_to);
|
5052 |
|
|
if (sel_bb_head_p (bnd_to))
|
5053 |
|
|
break;
|
5054 |
|
|
}
|
5055 |
|
|
|
5056 |
|
|
if (BND_TO (bnd) != bnd_to)
|
5057 |
|
|
{
|
5058 |
|
|
gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
|
5059 |
|
|
FENCE_INSN (fence) = bnd_to;
|
5060 |
|
|
BND_TO (bnd) = bnd_to;
|
5061 |
|
|
}
|
5062 |
|
|
|
5063 |
|
|
av_set_clear (&BND_AV (bnd));
|
5064 |
|
|
BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
|
5065 |
|
|
|
5066 |
|
|
av_set_clear (&BND_AV1 (bnd));
|
5067 |
|
|
BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
|
5068 |
|
|
|
5069 |
|
|
moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
|
5070 |
|
|
|
5071 |
|
|
av1_copy = av_set_copy (BND_AV1 (bnd));
|
5072 |
|
|
av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
|
5073 |
|
|
}
|
5074 |
|
|
|
5075 |
|
|
if (sched_verbose >= 2)
|
5076 |
|
|
{
|
5077 |
|
|
sel_print ("Available exprs (vliw form): ");
|
5078 |
|
|
dump_av_set (*av_vliw_p);
|
5079 |
|
|
sel_print ("\n");
|
5080 |
|
|
}
|
5081 |
|
|
}
|
5082 |
|
|
|
5083 |
|
|
/* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
|
5084 |
|
|
expression. When FOR_MOVEOP is true, also replace the register of
|
5085 |
|
|
expressions found with the register from EXPR_VLIW. */
|
5086 |
|
|
static av_set_t
|
5087 |
|
|
find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
|
5088 |
|
|
{
|
5089 |
|
|
av_set_t expr_seq = NULL;
|
5090 |
|
|
expr_t expr;
|
5091 |
|
|
av_set_iterator i;
|
5092 |
|
|
|
5093 |
|
|
FOR_EACH_EXPR (expr, i, BND_AV (bnd))
|
5094 |
|
|
{
|
5095 |
|
|
if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
|
5096 |
|
|
{
|
5097 |
|
|
if (for_moveop)
|
5098 |
|
|
{
|
5099 |
|
|
/* The sequential expression has the right form to pass
|
5100 |
|
|
to move_op except when renaming happened. Put the
|
5101 |
|
|
correct register in EXPR then. */
|
5102 |
|
|
if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
|
5103 |
|
|
{
|
5104 |
|
|
if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
|
5105 |
|
|
{
|
5106 |
|
|
replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
|
5107 |
|
|
stat_renamed_scheduled++;
|
5108 |
|
|
}
|
5109 |
|
|
/* Also put the correct TARGET_AVAILABLE bit on the expr.
|
5110 |
|
|
This is needed when renaming came up with original
|
5111 |
|
|
register. */
|
5112 |
|
|
else if (EXPR_TARGET_AVAILABLE (expr)
|
5113 |
|
|
!= EXPR_TARGET_AVAILABLE (expr_vliw))
|
5114 |
|
|
{
|
5115 |
|
|
gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
|
5116 |
|
|
EXPR_TARGET_AVAILABLE (expr) = 1;
|
5117 |
|
|
}
|
5118 |
|
|
}
|
5119 |
|
|
if (EXPR_WAS_SUBSTITUTED (expr))
|
5120 |
|
|
stat_substitutions_total++;
|
5121 |
|
|
}
|
5122 |
|
|
|
5123 |
|
|
av_set_add (&expr_seq, expr);
|
5124 |
|
|
|
5125 |
|
|
/* With substitution inside insn group, it is possible
|
5126 |
|
|
that more than one expression in expr_seq will correspond
|
5127 |
|
|
to expr_vliw. In this case, choose one as the attempt to
|
5128 |
|
|
move both leads to miscompiles. */
|
5129 |
|
|
break;
|
5130 |
|
|
}
|
5131 |
|
|
}
|
5132 |
|
|
|
5133 |
|
|
if (for_moveop && sched_verbose >= 2)
|
5134 |
|
|
{
|
5135 |
|
|
sel_print ("Best expression(s) (sequential form): ");
|
5136 |
|
|
dump_av_set (expr_seq);
|
5137 |
|
|
sel_print ("\n");
|
5138 |
|
|
}
|
5139 |
|
|
|
5140 |
|
|
return expr_seq;
|
5141 |
|
|
}
|
5142 |
|
|
|
5143 |
|
|
|
5144 |
|
|
/* Move nop to previous block. */
|
5145 |
|
|
static void ATTRIBUTE_UNUSED
|
5146 |
|
|
move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
|
5147 |
|
|
{
|
5148 |
|
|
insn_t prev_insn, next_insn, note;
|
5149 |
|
|
|
5150 |
|
|
gcc_assert (sel_bb_head_p (nop)
|
5151 |
|
|
&& prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
|
5152 |
|
|
note = bb_note (BLOCK_FOR_INSN (nop));
|
5153 |
|
|
prev_insn = sel_bb_end (prev_bb);
|
5154 |
|
|
next_insn = NEXT_INSN (nop);
|
5155 |
|
|
gcc_assert (prev_insn != NULL_RTX
|
5156 |
|
|
&& PREV_INSN (note) == prev_insn);
|
5157 |
|
|
|
5158 |
|
|
NEXT_INSN (prev_insn) = nop;
|
5159 |
|
|
PREV_INSN (nop) = prev_insn;
|
5160 |
|
|
|
5161 |
|
|
PREV_INSN (note) = nop;
|
5162 |
|
|
NEXT_INSN (note) = next_insn;
|
5163 |
|
|
|
5164 |
|
|
NEXT_INSN (nop) = note;
|
5165 |
|
|
PREV_INSN (next_insn) = note;
|
5166 |
|
|
|
5167 |
|
|
BB_END (prev_bb) = nop;
|
5168 |
|
|
BLOCK_FOR_INSN (nop) = prev_bb;
|
5169 |
|
|
}
|
5170 |
|
|
|
5171 |
|
|
/* Prepare a place to insert the chosen expression on BND. */
|
5172 |
|
|
static insn_t
|
5173 |
|
|
prepare_place_to_insert (bnd_t bnd)
|
5174 |
|
|
{
|
5175 |
|
|
insn_t place_to_insert;
|
5176 |
|
|
|
5177 |
|
|
/* Init place_to_insert before calling move_op, as the later
|
5178 |
|
|
can possibly remove BND_TO (bnd). */
|
5179 |
|
|
if (/* If this is not the first insn scheduled. */
|
5180 |
|
|
BND_PTR (bnd))
|
5181 |
|
|
{
|
5182 |
|
|
/* Add it after last scheduled. */
|
5183 |
|
|
place_to_insert = ILIST_INSN (BND_PTR (bnd));
|
5184 |
|
|
if (DEBUG_INSN_P (place_to_insert))
|
5185 |
|
|
{
|
5186 |
|
|
ilist_t l = BND_PTR (bnd);
|
5187 |
|
|
while ((l = ILIST_NEXT (l)) &&
|
5188 |
|
|
DEBUG_INSN_P (ILIST_INSN (l)))
|
5189 |
|
|
;
|
5190 |
|
|
if (!l)
|
5191 |
|
|
place_to_insert = NULL;
|
5192 |
|
|
}
|
5193 |
|
|
}
|
5194 |
|
|
else
|
5195 |
|
|
place_to_insert = NULL;
|
5196 |
|
|
|
5197 |
|
|
if (!place_to_insert)
|
5198 |
|
|
{
|
5199 |
|
|
/* Add it before BND_TO. The difference is in the
|
5200 |
|
|
basic block, where INSN will be added. */
|
5201 |
|
|
place_to_insert = get_nop_from_pool (BND_TO (bnd));
|
5202 |
|
|
gcc_assert (BLOCK_FOR_INSN (place_to_insert)
|
5203 |
|
|
== BLOCK_FOR_INSN (BND_TO (bnd)));
|
5204 |
|
|
}
|
5205 |
|
|
|
5206 |
|
|
return place_to_insert;
|
5207 |
|
|
}
|
5208 |
|
|
|
5209 |
|
|
/* Find original instructions for EXPR_SEQ and move it to BND boundary.
|
5210 |
|
|
Return the expression to emit in C_EXPR. */
|
5211 |
|
|
static bool
|
5212 |
|
|
move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
|
5213 |
|
|
av_set_t expr_seq, expr_t c_expr)
|
5214 |
|
|
{
|
5215 |
|
|
bool b, should_move;
|
5216 |
|
|
unsigned book_uid;
|
5217 |
|
|
bitmap_iterator bi;
|
5218 |
|
|
int n_bookkeeping_copies_before_moveop;
|
5219 |
|
|
|
5220 |
|
|
/* Make a move. This call will remove the original operation,
|
5221 |
|
|
insert all necessary bookkeeping instructions and update the
|
5222 |
|
|
data sets. After that all we have to do is add the operation
|
5223 |
|
|
at before BND_TO (BND). */
|
5224 |
|
|
n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
|
5225 |
|
|
max_uid_before_move_op = get_max_uid ();
|
5226 |
|
|
bitmap_clear (current_copies);
|
5227 |
|
|
bitmap_clear (current_originators);
|
5228 |
|
|
|
5229 |
|
|
b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
|
5230 |
|
|
get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
|
5231 |
|
|
|
5232 |
|
|
/* We should be able to find the expression we've chosen for
|
5233 |
|
|
scheduling. */
|
5234 |
|
|
gcc_assert (b);
|
5235 |
|
|
|
5236 |
|
|
if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
|
5237 |
|
|
stat_insns_needed_bookkeeping++;
|
5238 |
|
|
|
5239 |
|
|
EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
|
5240 |
|
|
{
|
5241 |
|
|
unsigned uid;
|
5242 |
|
|
bitmap_iterator bi;
|
5243 |
|
|
|
5244 |
|
|
/* We allocate these bitmaps lazily. */
|
5245 |
|
|
if (! INSN_ORIGINATORS_BY_UID (book_uid))
|
5246 |
|
|
INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
|
5247 |
|
|
|
5248 |
|
|
bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
|
5249 |
|
|
current_originators);
|
5250 |
|
|
|
5251 |
|
|
/* Transitively add all originators' originators. */
|
5252 |
|
|
EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
|
5253 |
|
|
if (INSN_ORIGINATORS_BY_UID (uid))
|
5254 |
|
|
bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
|
5255 |
|
|
INSN_ORIGINATORS_BY_UID (uid));
|
5256 |
|
|
}
|
5257 |
|
|
|
5258 |
|
|
return should_move;
|
5259 |
|
|
}
|
5260 |
|
|
|
5261 |
|
|
|
5262 |
|
|
/* Debug a DFA state as an array of bytes. */
|
5263 |
|
|
static void
|
5264 |
|
|
debug_state (state_t state)
|
5265 |
|
|
{
|
5266 |
|
|
unsigned char *p;
|
5267 |
|
|
unsigned int i, size = dfa_state_size;
|
5268 |
|
|
|
5269 |
|
|
sel_print ("state (%u):", size);
|
5270 |
|
|
for (i = 0, p = (unsigned char *) state; i < size; i++)
|
5271 |
|
|
sel_print (" %d", p[i]);
|
5272 |
|
|
sel_print ("\n");
|
5273 |
|
|
}
|
5274 |
|
|
|
5275 |
|
|
/* Advance state on FENCE with INSN. Return true if INSN is
|
5276 |
|
|
an ASM, and we should advance state once more. */
|
5277 |
|
|
static bool
|
5278 |
|
|
advance_state_on_fence (fence_t fence, insn_t insn)
|
5279 |
|
|
{
|
5280 |
|
|
bool asm_p;
|
5281 |
|
|
|
5282 |
|
|
if (recog_memoized (insn) >= 0)
|
5283 |
|
|
{
|
5284 |
|
|
int res;
|
5285 |
|
|
state_t temp_state = alloca (dfa_state_size);
|
5286 |
|
|
|
5287 |
|
|
gcc_assert (!INSN_ASM_P (insn));
|
5288 |
|
|
asm_p = false;
|
5289 |
|
|
|
5290 |
|
|
memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
|
5291 |
|
|
res = state_transition (FENCE_STATE (fence), insn);
|
5292 |
|
|
gcc_assert (res < 0);
|
5293 |
|
|
|
5294 |
|
|
if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
|
5295 |
|
|
{
|
5296 |
|
|
FENCE_ISSUED_INSNS (fence)++;
|
5297 |
|
|
|
5298 |
|
|
/* We should never issue more than issue_rate insns. */
|
5299 |
|
|
if (FENCE_ISSUED_INSNS (fence) > issue_rate)
|
5300 |
|
|
gcc_unreachable ();
|
5301 |
|
|
}
|
5302 |
|
|
}
|
5303 |
|
|
else
|
5304 |
|
|
{
|
5305 |
|
|
/* This could be an ASM insn which we'd like to schedule
|
5306 |
|
|
on the next cycle. */
|
5307 |
|
|
asm_p = INSN_ASM_P (insn);
|
5308 |
|
|
if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
|
5309 |
|
|
advance_one_cycle (fence);
|
5310 |
|
|
}
|
5311 |
|
|
|
5312 |
|
|
if (sched_verbose >= 2)
|
5313 |
|
|
debug_state (FENCE_STATE (fence));
|
5314 |
|
|
if (!DEBUG_INSN_P (insn))
|
5315 |
|
|
FENCE_STARTS_CYCLE_P (fence) = 0;
|
5316 |
|
|
FENCE_ISSUE_MORE (fence) = can_issue_more;
|
5317 |
|
|
return asm_p;
|
5318 |
|
|
}
|
5319 |
|
|
|
5320 |
|
|
/* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
|
5321 |
|
|
is nonzero if we need to stall after issuing INSN. */
|
5322 |
|
|
static void
|
5323 |
|
|
update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
|
5324 |
|
|
{
|
5325 |
|
|
bool asm_p;
|
5326 |
|
|
|
5327 |
|
|
/* First, reflect that something is scheduled on this fence. */
|
5328 |
|
|
asm_p = advance_state_on_fence (fence, insn);
|
5329 |
|
|
FENCE_LAST_SCHEDULED_INSN (fence) = insn;
|
5330 |
|
|
VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
|
5331 |
|
|
if (SCHED_GROUP_P (insn))
|
5332 |
|
|
{
|
5333 |
|
|
FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
|
5334 |
|
|
SCHED_GROUP_P (insn) = 0;
|
5335 |
|
|
}
|
5336 |
|
|
else
|
5337 |
|
|
FENCE_SCHED_NEXT (fence) = NULL_RTX;
|
5338 |
|
|
if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
|
5339 |
|
|
FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
|
5340 |
|
|
|
5341 |
|
|
/* Set instruction scheduling info. This will be used in bundling,
|
5342 |
|
|
pipelining, tick computations etc. */
|
5343 |
|
|
++INSN_SCHED_TIMES (insn);
|
5344 |
|
|
EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
|
5345 |
|
|
EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
|
5346 |
|
|
INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
|
5347 |
|
|
INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
|
5348 |
|
|
|
5349 |
|
|
/* This does not account for adjust_cost hooks, just add the biggest
|
5350 |
|
|
constant the hook may add to the latency. TODO: make this
|
5351 |
|
|
a target dependent constant. */
|
5352 |
|
|
INSN_READY_CYCLE (insn)
|
5353 |
|
|
= INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
|
5354 |
|
|
? 1
|
5355 |
|
|
: maximal_insn_latency (insn) + 1);
|
5356 |
|
|
|
5357 |
|
|
/* Change these fields last, as they're used above. */
|
5358 |
|
|
FENCE_AFTER_STALL_P (fence) = 0;
|
5359 |
|
|
if (asm_p || need_stall)
|
5360 |
|
|
advance_one_cycle (fence);
|
5361 |
|
|
|
5362 |
|
|
/* Indicate that we've scheduled something on this fence. */
|
5363 |
|
|
FENCE_SCHEDULED_P (fence) = true;
|
5364 |
|
|
scheduled_something_on_previous_fence = true;
|
5365 |
|
|
|
5366 |
|
|
/* Print debug information when insn's fields are updated. */
|
5367 |
|
|
if (sched_verbose >= 2)
|
5368 |
|
|
{
|
5369 |
|
|
sel_print ("Scheduling insn: ");
|
5370 |
|
|
dump_insn_1 (insn, 1);
|
5371 |
|
|
sel_print ("\n");
|
5372 |
|
|
}
|
5373 |
|
|
}
|
5374 |
|
|
|
5375 |
|
|
/* Update boundary BND (and, if needed, FENCE) with INSN, remove the
|
5376 |
|
|
old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
|
5377 |
|
|
return it. */
|
5378 |
|
|
static blist_t *
|
5379 |
|
|
update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
|
5380 |
|
|
blist_t *bnds_tailp)
|
5381 |
|
|
{
|
5382 |
|
|
succ_iterator si;
|
5383 |
|
|
insn_t succ;
|
5384 |
|
|
|
5385 |
|
|
advance_deps_context (BND_DC (bnd), insn);
|
5386 |
|
|
FOR_EACH_SUCC_1 (succ, si, insn,
|
5387 |
|
|
SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
|
5388 |
|
|
{
|
5389 |
|
|
ilist_t ptr = ilist_copy (BND_PTR (bnd));
|
5390 |
|
|
|
5391 |
|
|
ilist_add (&ptr, insn);
|
5392 |
|
|
|
5393 |
|
|
if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
|
5394 |
|
|
&& is_ineligible_successor (succ, ptr))
|
5395 |
|
|
{
|
5396 |
|
|
ilist_clear (&ptr);
|
5397 |
|
|
continue;
|
5398 |
|
|
}
|
5399 |
|
|
|
5400 |
|
|
if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
|
5401 |
|
|
{
|
5402 |
|
|
if (sched_verbose >= 9)
|
5403 |
|
|
sel_print ("Updating fence insn from %i to %i\n",
|
5404 |
|
|
INSN_UID (insn), INSN_UID (succ));
|
5405 |
|
|
FENCE_INSN (fence) = succ;
|
5406 |
|
|
}
|
5407 |
|
|
blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
|
5408 |
|
|
bnds_tailp = &BLIST_NEXT (*bnds_tailp);
|
5409 |
|
|
}
|
5410 |
|
|
|
5411 |
|
|
blist_remove (bndsp);
|
5412 |
|
|
return bnds_tailp;
|
5413 |
|
|
}
|
5414 |
|
|
|
5415 |
|
|
/* Schedule EXPR_VLIW on BND. Return the insn emitted. */
|
5416 |
|
|
static insn_t
|
5417 |
|
|
schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
|
5418 |
|
|
{
|
5419 |
|
|
av_set_t expr_seq;
|
5420 |
|
|
expr_t c_expr = XALLOCA (expr_def);
|
5421 |
|
|
insn_t place_to_insert;
|
5422 |
|
|
insn_t insn;
|
5423 |
|
|
bool should_move;
|
5424 |
|
|
|
5425 |
|
|
expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
|
5426 |
|
|
|
5427 |
|
|
/* In case of scheduling a jump skipping some other instructions,
|
5428 |
|
|
prepare CFG. After this, jump is at the boundary and can be
|
5429 |
|
|
scheduled as usual insn by MOVE_OP. */
|
5430 |
|
|
if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
|
5431 |
|
|
{
|
5432 |
|
|
insn = EXPR_INSN_RTX (expr_vliw);
|
5433 |
|
|
|
5434 |
|
|
/* Speculative jumps are not handled. */
|
5435 |
|
|
if (insn != BND_TO (bnd)
|
5436 |
|
|
&& !sel_insn_is_speculation_check (insn))
|
5437 |
|
|
move_cond_jump (insn, bnd);
|
5438 |
|
|
}
|
5439 |
|
|
|
5440 |
|
|
/* Find a place for C_EXPR to schedule. */
|
5441 |
|
|
place_to_insert = prepare_place_to_insert (bnd);
|
5442 |
|
|
should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
|
5443 |
|
|
clear_expr (c_expr);
|
5444 |
|
|
|
5445 |
|
|
/* Add the instruction. The corner case to care about is when
|
5446 |
|
|
the expr_seq set has more than one expr, and we chose the one that
|
5447 |
|
|
is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
|
5448 |
|
|
we can't use it. Generate the new vinsn. */
|
5449 |
|
|
if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
|
5450 |
|
|
{
|
5451 |
|
|
vinsn_t vinsn_new;
|
5452 |
|
|
|
5453 |
|
|
vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
|
5454 |
|
|
change_vinsn_in_expr (expr_vliw, vinsn_new);
|
5455 |
|
|
should_move = false;
|
5456 |
|
|
}
|
5457 |
|
|
if (should_move)
|
5458 |
|
|
insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
|
5459 |
|
|
else
|
5460 |
|
|
insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
|
5461 |
|
|
place_to_insert);
|
5462 |
|
|
|
5463 |
|
|
/* Return the nops generated for preserving of data sets back
|
5464 |
|
|
into pool. */
|
5465 |
|
|
if (INSN_NOP_P (place_to_insert))
|
5466 |
|
|
return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
|
5467 |
|
|
remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
|
5468 |
|
|
|
5469 |
|
|
av_set_clear (&expr_seq);
|
5470 |
|
|
|
5471 |
|
|
/* Save the expression scheduled so to reset target availability if we'll
|
5472 |
|
|
meet it later on the same fence. */
|
5473 |
|
|
if (EXPR_WAS_RENAMED (expr_vliw))
|
5474 |
|
|
vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
|
5475 |
|
|
|
5476 |
|
|
/* Check that the recent movement didn't destroyed loop
|
5477 |
|
|
structure. */
|
5478 |
|
|
gcc_assert (!pipelining_p
|
5479 |
|
|
|| current_loop_nest == NULL
|
5480 |
|
|
|| loop_latch_edge (current_loop_nest));
|
5481 |
|
|
return insn;
|
5482 |
|
|
}
|
5483 |
|
|
|
5484 |
|
|
/* Stall for N cycles on FENCE. */
|
5485 |
|
|
static void
|
5486 |
|
|
stall_for_cycles (fence_t fence, int n)
|
5487 |
|
|
{
|
5488 |
|
|
int could_more;
|
5489 |
|
|
|
5490 |
|
|
could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
|
5491 |
|
|
while (n--)
|
5492 |
|
|
advance_one_cycle (fence);
|
5493 |
|
|
if (could_more)
|
5494 |
|
|
FENCE_AFTER_STALL_P (fence) = 1;
|
5495 |
|
|
}
|
5496 |
|
|
|
5497 |
|
|
/* Gather a parallel group of insns at FENCE and assign their seqno
|
5498 |
|
|
to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
|
5499 |
|
|
list for later recalculation of seqnos. */
|
5500 |
|
|
static void
|
5501 |
|
|
fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
|
5502 |
|
|
{
|
5503 |
|
|
blist_t bnds = NULL, *bnds_tailp;
|
5504 |
|
|
av_set_t av_vliw = NULL;
|
5505 |
|
|
insn_t insn = FENCE_INSN (fence);
|
5506 |
|
|
|
5507 |
|
|
if (sched_verbose >= 2)
|
5508 |
|
|
sel_print ("Starting fill_insns for insn %d, cycle %d\n",
|
5509 |
|
|
INSN_UID (insn), FENCE_CYCLE (fence));
|
5510 |
|
|
|
5511 |
|
|
blist_add (&bnds, insn, NULL, FENCE_DC (fence));
|
5512 |
|
|
bnds_tailp = &BLIST_NEXT (bnds);
|
5513 |
|
|
set_target_context (FENCE_TC (fence));
|
5514 |
|
|
can_issue_more = FENCE_ISSUE_MORE (fence);
|
5515 |
|
|
target_bb = INSN_BB (insn);
|
5516 |
|
|
|
5517 |
|
|
/* Do while we can add any operation to the current group. */
|
5518 |
|
|
do
|
5519 |
|
|
{
|
5520 |
|
|
blist_t *bnds_tailp1, *bndsp;
|
5521 |
|
|
expr_t expr_vliw;
|
5522 |
|
|
int need_stall = false;
|
5523 |
|
|
int was_stall = 0, scheduled_insns = 0;
|
5524 |
|
|
int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
|
5525 |
|
|
int max_stall = pipelining_p ? 1 : 3;
|
5526 |
|
|
bool last_insn_was_debug = false;
|
5527 |
|
|
bool was_debug_bb_end_p = false;
|
5528 |
|
|
|
5529 |
|
|
compute_av_set_on_boundaries (fence, bnds, &av_vliw);
|
5530 |
|
|
remove_insns_that_need_bookkeeping (fence, &av_vliw);
|
5531 |
|
|
remove_insns_for_debug (bnds, &av_vliw);
|
5532 |
|
|
|
5533 |
|
|
/* Return early if we have nothing to schedule. */
|
5534 |
|
|
if (av_vliw == NULL)
|
5535 |
|
|
break;
|
5536 |
|
|
|
5537 |
|
|
/* Choose the best expression and, if needed, destination register
|
5538 |
|
|
for it. */
|
5539 |
|
|
do
|
5540 |
|
|
{
|
5541 |
|
|
expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
|
5542 |
|
|
if (! expr_vliw && need_stall)
|
5543 |
|
|
{
|
5544 |
|
|
/* All expressions required a stall. Do not recompute av sets
|
5545 |
|
|
as we'll get the same answer (modulo the insns between
|
5546 |
|
|
the fence and its boundary, which will not be available for
|
5547 |
|
|
pipelining).
|
5548 |
|
|
If we are going to stall for too long, break to recompute av
|
5549 |
|
|
sets and bring more insns for pipelining. */
|
5550 |
|
|
was_stall++;
|
5551 |
|
|
if (need_stall <= 3)
|
5552 |
|
|
stall_for_cycles (fence, need_stall);
|
5553 |
|
|
else
|
5554 |
|
|
{
|
5555 |
|
|
stall_for_cycles (fence, 1);
|
5556 |
|
|
break;
|
5557 |
|
|
}
|
5558 |
|
|
}
|
5559 |
|
|
}
|
5560 |
|
|
while (! expr_vliw && need_stall);
|
5561 |
|
|
|
5562 |
|
|
/* Now either we've selected expr_vliw or we have nothing to schedule. */
|
5563 |
|
|
if (!expr_vliw)
|
5564 |
|
|
{
|
5565 |
|
|
av_set_clear (&av_vliw);
|
5566 |
|
|
break;
|
5567 |
|
|
}
|
5568 |
|
|
|
5569 |
|
|
bndsp = &bnds;
|
5570 |
|
|
bnds_tailp1 = bnds_tailp;
|
5571 |
|
|
|
5572 |
|
|
do
|
5573 |
|
|
/* This code will be executed only once until we'd have several
|
5574 |
|
|
boundaries per fence. */
|
5575 |
|
|
{
|
5576 |
|
|
bnd_t bnd = BLIST_BND (*bndsp);
|
5577 |
|
|
|
5578 |
|
|
if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
|
5579 |
|
|
{
|
5580 |
|
|
bndsp = &BLIST_NEXT (*bndsp);
|
5581 |
|
|
continue;
|
5582 |
|
|
}
|
5583 |
|
|
|
5584 |
|
|
insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
|
5585 |
|
|
last_insn_was_debug = DEBUG_INSN_P (insn);
|
5586 |
|
|
if (last_insn_was_debug)
|
5587 |
|
|
was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
|
5588 |
|
|
update_fence_and_insn (fence, insn, need_stall);
|
5589 |
|
|
bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
|
5590 |
|
|
|
5591 |
|
|
/* Add insn to the list of scheduled on this cycle instructions. */
|
5592 |
|
|
ilist_add (*scheduled_insns_tailpp, insn);
|
5593 |
|
|
*scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
|
5594 |
|
|
}
|
5595 |
|
|
while (*bndsp != *bnds_tailp1);
|
5596 |
|
|
|
5597 |
|
|
av_set_clear (&av_vliw);
|
5598 |
|
|
if (!last_insn_was_debug)
|
5599 |
|
|
scheduled_insns++;
|
5600 |
|
|
|
5601 |
|
|
/* We currently support information about candidate blocks only for
|
5602 |
|
|
one 'target_bb' block. Hence we can't schedule after jump insn,
|
5603 |
|
|
as this will bring two boundaries and, hence, necessity to handle
|
5604 |
|
|
information for two or more blocks concurrently. */
|
5605 |
|
|
if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
|
5606 |
|
|
|| (was_stall
|
5607 |
|
|
&& (was_stall >= max_stall
|
5608 |
|
|
|| scheduled_insns >= max_insns)))
|
5609 |
|
|
break;
|
5610 |
|
|
}
|
5611 |
|
|
while (bnds);
|
5612 |
|
|
|
5613 |
|
|
gcc_assert (!FENCE_BNDS (fence));
|
5614 |
|
|
|
5615 |
|
|
/* Update boundaries of the FENCE. */
|
5616 |
|
|
while (bnds)
|
5617 |
|
|
{
|
5618 |
|
|
ilist_t ptr = BND_PTR (BLIST_BND (bnds));
|
5619 |
|
|
|
5620 |
|
|
if (ptr)
|
5621 |
|
|
{
|
5622 |
|
|
insn = ILIST_INSN (ptr);
|
5623 |
|
|
|
5624 |
|
|
if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
|
5625 |
|
|
ilist_add (&FENCE_BNDS (fence), insn);
|
5626 |
|
|
}
|
5627 |
|
|
|
5628 |
|
|
blist_remove (&bnds);
|
5629 |
|
|
}
|
5630 |
|
|
|
5631 |
|
|
/* Update target context on the fence. */
|
5632 |
|
|
reset_target_context (FENCE_TC (fence), false);
|
5633 |
|
|
}
|
5634 |
|
|
|
5635 |
|
|
/* All exprs in ORIG_OPS must have the same destination register or memory.
|
5636 |
|
|
Return that destination. */
|
5637 |
|
|
static rtx
|
5638 |
|
|
get_dest_from_orig_ops (av_set_t orig_ops)
|
5639 |
|
|
{
|
5640 |
|
|
rtx dest = NULL_RTX;
|
5641 |
|
|
av_set_iterator av_it;
|
5642 |
|
|
expr_t expr;
|
5643 |
|
|
bool first_p = true;
|
5644 |
|
|
|
5645 |
|
|
FOR_EACH_EXPR (expr, av_it, orig_ops)
|
5646 |
|
|
{
|
5647 |
|
|
rtx x = EXPR_LHS (expr);
|
5648 |
|
|
|
5649 |
|
|
if (first_p)
|
5650 |
|
|
{
|
5651 |
|
|
first_p = false;
|
5652 |
|
|
dest = x;
|
5653 |
|
|
}
|
5654 |
|
|
else
|
5655 |
|
|
gcc_assert (dest == x
|
5656 |
|
|
|| (dest != NULL_RTX && x != NULL_RTX
|
5657 |
|
|
&& rtx_equal_p (dest, x)));
|
5658 |
|
|
}
|
5659 |
|
|
|
5660 |
|
|
return dest;
|
5661 |
|
|
}
|
5662 |
|
|
|
5663 |
|
|
/* Update data sets for the bookkeeping block and record those expressions
|
5664 |
|
|
which become no longer available after inserting this bookkeeping. */
|
5665 |
|
|
static void
|
5666 |
|
|
update_and_record_unavailable_insns (basic_block book_block)
|
5667 |
|
|
{
|
5668 |
|
|
av_set_iterator i;
|
5669 |
|
|
av_set_t old_av_set = NULL;
|
5670 |
|
|
expr_t cur_expr;
|
5671 |
|
|
rtx bb_end = sel_bb_end (book_block);
|
5672 |
|
|
|
5673 |
|
|
/* First, get correct liveness in the bookkeeping block. The problem is
|
5674 |
|
|
the range between the bookeeping insn and the end of block. */
|
5675 |
|
|
update_liveness_on_insn (bb_end);
|
5676 |
|
|
if (control_flow_insn_p (bb_end))
|
5677 |
|
|
update_liveness_on_insn (PREV_INSN (bb_end));
|
5678 |
|
|
|
5679 |
|
|
/* If there's valid av_set on BOOK_BLOCK, then there might exist another
|
5680 |
|
|
fence above, where we may choose to schedule an insn which is
|
5681 |
|
|
actually blocked from moving up with the bookkeeping we create here. */
|
5682 |
|
|
if (AV_SET_VALID_P (sel_bb_head (book_block)))
|
5683 |
|
|
{
|
5684 |
|
|
old_av_set = av_set_copy (BB_AV_SET (book_block));
|
5685 |
|
|
update_data_sets (sel_bb_head (book_block));
|
5686 |
|
|
|
5687 |
|
|
/* Traverse all the expressions in the old av_set and check whether
|
5688 |
|
|
CUR_EXPR is in new AV_SET. */
|
5689 |
|
|
FOR_EACH_EXPR (cur_expr, i, old_av_set)
|
5690 |
|
|
{
|
5691 |
|
|
expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
|
5692 |
|
|
EXPR_VINSN (cur_expr));
|
5693 |
|
|
|
5694 |
|
|
if (! new_expr
|
5695 |
|
|
/* In this case, we can just turn off the E_T_A bit, but we can't
|
5696 |
|
|
represent this information with the current vector. */
|
5697 |
|
|
|| EXPR_TARGET_AVAILABLE (new_expr)
|
5698 |
|
|
!= EXPR_TARGET_AVAILABLE (cur_expr))
|
5699 |
|
|
/* Unfortunately, the below code could be also fired up on
|
5700 |
|
|
separable insns.
|
5701 |
|
|
FIXME: add an example of how this could happen. */
|
5702 |
|
|
vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
|
5703 |
|
|
}
|
5704 |
|
|
|
5705 |
|
|
av_set_clear (&old_av_set);
|
5706 |
|
|
}
|
5707 |
|
|
}
|
5708 |
|
|
|
5709 |
|
|
/* The main effect of this function is that sparams->c_expr is merged
|
5710 |
|
|
with (or copied to) lparams->c_expr_merged. If there's only one successor,
|
5711 |
|
|
we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
|
5712 |
|
|
lparams->c_expr_merged is copied back to sparams->c_expr after all
|
5713 |
|
|
successors has been traversed. lparams->c_expr_local is an expr allocated
|
5714 |
|
|
on stack in the caller function, and is used if there is more than one
|
5715 |
|
|
successor.
|
5716 |
|
|
|
5717 |
|
|
SUCC is one of the SUCCS_NORMAL successors of INSN,
|
5718 |
|
|
MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
|
5719 |
|
|
LPARAMS and STATIC_PARAMS contain the parameters described above. */
|
5720 |
|
|
static void
|
5721 |
|
|
move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
|
5722 |
|
|
insn_t succ ATTRIBUTE_UNUSED,
|
5723 |
|
|
int moveop_drv_call_res,
|
5724 |
|
|
cmpd_local_params_p lparams, void *static_params)
|
5725 |
|
|
{
|
5726 |
|
|
moveop_static_params_p sparams = (moveop_static_params_p) static_params;
|
5727 |
|
|
|
5728 |
|
|
/* Nothing to do, if original expr wasn't found below. */
|
5729 |
|
|
if (moveop_drv_call_res != 1)
|
5730 |
|
|
return;
|
5731 |
|
|
|
5732 |
|
|
/* If this is a first successor. */
|
5733 |
|
|
if (!lparams->c_expr_merged)
|
5734 |
|
|
{
|
5735 |
|
|
lparams->c_expr_merged = sparams->c_expr;
|
5736 |
|
|
sparams->c_expr = lparams->c_expr_local;
|
5737 |
|
|
}
|
5738 |
|
|
else
|
5739 |
|
|
{
|
5740 |
|
|
/* We must merge all found expressions to get reasonable
|
5741 |
|
|
EXPR_SPEC_DONE_DS for the resulting insn. If we don't
|
5742 |
|
|
do so then we can first find the expr with epsilon
|
5743 |
|
|
speculation success probability and only then with the
|
5744 |
|
|
good probability. As a result the insn will get epsilon
|
5745 |
|
|
probability and will never be scheduled because of
|
5746 |
|
|
weakness_cutoff in find_best_expr.
|
5747 |
|
|
|
5748 |
|
|
We call merge_expr_data here instead of merge_expr
|
5749 |
|
|
because due to speculation C_EXPR and X may have the
|
5750 |
|
|
same insns with different speculation types. And as of
|
5751 |
|
|
now such insns are considered non-equal.
|
5752 |
|
|
|
5753 |
|
|
However, EXPR_SCHED_TIMES is different -- we must get
|
5754 |
|
|
SCHED_TIMES from a real insn, not a bookkeeping copy.
|
5755 |
|
|
We force this here. Instead, we may consider merging
|
5756 |
|
|
SCHED_TIMES to the maximum instead of minimum in the
|
5757 |
|
|
below function. */
|
5758 |
|
|
int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
|
5759 |
|
|
|
5760 |
|
|
merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
|
5761 |
|
|
if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
|
5762 |
|
|
EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
|
5763 |
|
|
|
5764 |
|
|
clear_expr (sparams->c_expr);
|
5765 |
|
|
}
|
5766 |
|
|
}
|
5767 |
|
|
|
5768 |
|
|
/* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
|
5769 |
|
|
|
5770 |
|
|
SUCC is one of the SUCCS_NORMAL successors of INSN,
|
5771 |
|
|
MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
|
5772 |
|
|
if SUCC is one of SUCCS_BACK or SUCCS_OUT.
|
5773 |
|
|
STATIC_PARAMS contain USED_REGS set. */
|
5774 |
|
|
static void
|
5775 |
|
|
fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
|
5776 |
|
|
int moveop_drv_call_res,
|
5777 |
|
|
cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
|
5778 |
|
|
void *static_params)
|
5779 |
|
|
{
|
5780 |
|
|
regset succ_live;
|
5781 |
|
|
fur_static_params_p sparams = (fur_static_params_p) static_params;
|
5782 |
|
|
|
5783 |
|
|
/* Here we compute live regsets only for branches that do not lie
|
5784 |
|
|
on the code motion paths. These branches correspond to value
|
5785 |
|
|
MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
|
5786 |
|
|
for such branches code_motion_path_driver is not called. */
|
5787 |
|
|
if (moveop_drv_call_res != 0)
|
5788 |
|
|
return;
|
5789 |
|
|
|
5790 |
|
|
/* Mark all registers that do not meet the following condition:
|
5791 |
|
|
(3) not live on the other path of any conditional branch
|
5792 |
|
|
that is passed by the operation, in case original
|
5793 |
|
|
operations are not present on both paths of the
|
5794 |
|
|
conditional branch. */
|
5795 |
|
|
succ_live = compute_live (succ);
|
5796 |
|
|
IOR_REG_SET (sparams->used_regs, succ_live);
|
5797 |
|
|
}
|
5798 |
|
|
|
5799 |
|
|
/* This function is called after the last successor. Copies LP->C_EXPR_MERGED
|
5800 |
|
|
into SP->CEXPR. */
|
5801 |
|
|
static void
|
5802 |
|
|
move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
|
5803 |
|
|
{
|
5804 |
|
|
moveop_static_params_p sp = (moveop_static_params_p) sparams;
|
5805 |
|
|
|
5806 |
|
|
sp->c_expr = lp->c_expr_merged;
|
5807 |
|
|
}
|
5808 |
|
|
|
5809 |
|
|
/* Track bookkeeping copies created, insns scheduled, and blocks for
|
5810 |
|
|
rescheduling when INSN is found by move_op. */
|
5811 |
|
|
static void
|
5812 |
|
|
track_scheduled_insns_and_blocks (rtx insn)
|
5813 |
|
|
{
|
5814 |
|
|
/* Even if this insn can be a copy that will be removed during current move_op,
|
5815 |
|
|
we still need to count it as an originator. */
|
5816 |
|
|
bitmap_set_bit (current_originators, INSN_UID (insn));
|
5817 |
|
|
|
5818 |
|
|
if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
|
5819 |
|
|
{
|
5820 |
|
|
/* Note that original block needs to be rescheduled, as we pulled an
|
5821 |
|
|
instruction out of it. */
|
5822 |
|
|
if (INSN_SCHED_TIMES (insn) > 0)
|
5823 |
|
|
bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
|
5824 |
|
|
else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
|
5825 |
|
|
num_insns_scheduled++;
|
5826 |
|
|
}
|
5827 |
|
|
|
5828 |
|
|
/* For instructions we must immediately remove insn from the
|
5829 |
|
|
stream, so subsequent update_data_sets () won't include this
|
5830 |
|
|
insn into av_set.
|
5831 |
|
|
For expr we must make insn look like "INSN_REG (insn) := c_expr". */
|
5832 |
|
|
if (INSN_UID (insn) > max_uid_before_move_op)
|
5833 |
|
|
stat_bookkeeping_copies--;
|
5834 |
|
|
}
|
5835 |
|
|
|
5836 |
|
|
/* Emit a register-register copy for INSN if needed. Return true if
|
5837 |
|
|
emitted one. PARAMS is the move_op static parameters. */
|
5838 |
|
|
static bool
|
5839 |
|
|
maybe_emit_renaming_copy (rtx insn,
|
5840 |
|
|
moveop_static_params_p params)
|
5841 |
|
|
{
|
5842 |
|
|
bool insn_emitted = false;
|
5843 |
|
|
rtx cur_reg;
|
5844 |
|
|
|
5845 |
|
|
/* Bail out early when expression can not be renamed at all. */
|
5846 |
|
|
if (!EXPR_SEPARABLE_P (params->c_expr))
|
5847 |
|
|
return false;
|
5848 |
|
|
|
5849 |
|
|
cur_reg = expr_dest_reg (params->c_expr);
|
5850 |
|
|
gcc_assert (cur_reg && params->dest && REG_P (params->dest));
|
5851 |
|
|
|
5852 |
|
|
/* If original operation has expr and the register chosen for
|
5853 |
|
|
that expr is not original operation's dest reg, substitute
|
5854 |
|
|
operation's right hand side with the register chosen. */
|
5855 |
|
|
if (REGNO (params->dest) != REGNO (cur_reg))
|
5856 |
|
|
{
|
5857 |
|
|
insn_t reg_move_insn, reg_move_insn_rtx;
|
5858 |
|
|
|
5859 |
|
|
reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
|
5860 |
|
|
params->dest);
|
5861 |
|
|
reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
|
5862 |
|
|
INSN_EXPR (insn),
|
5863 |
|
|
INSN_SEQNO (insn),
|
5864 |
|
|
insn);
|
5865 |
|
|
EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
|
5866 |
|
|
replace_dest_with_reg_in_expr (params->c_expr, params->dest);
|
5867 |
|
|
|
5868 |
|
|
insn_emitted = true;
|
5869 |
|
|
params->was_renamed = true;
|
5870 |
|
|
}
|
5871 |
|
|
|
5872 |
|
|
return insn_emitted;
|
5873 |
|
|
}
|
5874 |
|
|
|
5875 |
|
|
/* Emit a speculative check for INSN speculated as EXPR if needed.
|
5876 |
|
|
Return true if we've emitted one. PARAMS is the move_op static
|
5877 |
|
|
parameters. */
|
5878 |
|
|
static bool
|
5879 |
|
|
maybe_emit_speculative_check (rtx insn, expr_t expr,
|
5880 |
|
|
moveop_static_params_p params)
|
5881 |
|
|
{
|
5882 |
|
|
bool insn_emitted = false;
|
5883 |
|
|
insn_t x;
|
5884 |
|
|
ds_t check_ds;
|
5885 |
|
|
|
5886 |
|
|
check_ds = get_spec_check_type_for_insn (insn, expr);
|
5887 |
|
|
if (check_ds != 0)
|
5888 |
|
|
{
|
5889 |
|
|
/* A speculation check should be inserted. */
|
5890 |
|
|
x = create_speculation_check (params->c_expr, check_ds, insn);
|
5891 |
|
|
insn_emitted = true;
|
5892 |
|
|
}
|
5893 |
|
|
else
|
5894 |
|
|
{
|
5895 |
|
|
EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
|
5896 |
|
|
x = insn;
|
5897 |
|
|
}
|
5898 |
|
|
|
5899 |
|
|
gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
|
5900 |
|
|
&& EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
|
5901 |
|
|
return insn_emitted;
|
5902 |
|
|
}
|
5903 |
|
|
|
5904 |
|
|
/* Handle transformations that leave an insn in place of original
|
5905 |
|
|
insn such as renaming/speculation. Return true if one of such
|
5906 |
|
|
transformations actually happened, and we have emitted this insn. */
|
5907 |
|
|
static bool
|
5908 |
|
|
handle_emitting_transformations (rtx insn, expr_t expr,
|
5909 |
|
|
moveop_static_params_p params)
|
5910 |
|
|
{
|
5911 |
|
|
bool insn_emitted = false;
|
5912 |
|
|
|
5913 |
|
|
insn_emitted = maybe_emit_renaming_copy (insn, params);
|
5914 |
|
|
insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
|
5915 |
|
|
|
5916 |
|
|
return insn_emitted;
|
5917 |
|
|
}
|
5918 |
|
|
|
5919 |
|
|
/* If INSN is the only insn in the basic block (not counting JUMP,
|
5920 |
|
|
which may be a jump to next insn, and DEBUG_INSNs), we want to
|
5921 |
|
|
leave a NOP there till the return to fill_insns. */
|
5922 |
|
|
|
5923 |
|
|
static bool
|
5924 |
|
|
need_nop_to_preserve_insn_bb (rtx insn)
|
5925 |
|
|
{
|
5926 |
|
|
insn_t bb_head, bb_end, bb_next, in_next;
|
5927 |
|
|
basic_block bb = BLOCK_FOR_INSN (insn);
|
5928 |
|
|
|
5929 |
|
|
bb_head = sel_bb_head (bb);
|
5930 |
|
|
bb_end = sel_bb_end (bb);
|
5931 |
|
|
|
5932 |
|
|
if (bb_head == bb_end)
|
5933 |
|
|
return true;
|
5934 |
|
|
|
5935 |
|
|
while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
|
5936 |
|
|
bb_head = NEXT_INSN (bb_head);
|
5937 |
|
|
|
5938 |
|
|
if (bb_head == bb_end)
|
5939 |
|
|
return true;
|
5940 |
|
|
|
5941 |
|
|
while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
|
5942 |
|
|
bb_end = PREV_INSN (bb_end);
|
5943 |
|
|
|
5944 |
|
|
if (bb_head == bb_end)
|
5945 |
|
|
return true;
|
5946 |
|
|
|
5947 |
|
|
bb_next = NEXT_INSN (bb_head);
|
5948 |
|
|
while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
|
5949 |
|
|
bb_next = NEXT_INSN (bb_next);
|
5950 |
|
|
|
5951 |
|
|
if (bb_next == bb_end && JUMP_P (bb_end))
|
5952 |
|
|
return true;
|
5953 |
|
|
|
5954 |
|
|
in_next = NEXT_INSN (insn);
|
5955 |
|
|
while (DEBUG_INSN_P (in_next))
|
5956 |
|
|
in_next = NEXT_INSN (in_next);
|
5957 |
|
|
|
5958 |
|
|
if (IN_CURRENT_FENCE_P (in_next))
|
5959 |
|
|
return true;
|
5960 |
|
|
|
5961 |
|
|
return false;
|
5962 |
|
|
}
|
5963 |
|
|
|
5964 |
|
|
/* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
|
5965 |
|
|
is not removed but reused when INSN is re-emitted. */
|
5966 |
|
|
static void
|
5967 |
|
|
remove_insn_from_stream (rtx insn, bool only_disconnect)
|
5968 |
|
|
{
|
5969 |
|
|
/* If there's only one insn in the BB, make sure that a nop is
|
5970 |
|
|
inserted into it, so the basic block won't disappear when we'll
|
5971 |
|
|
delete INSN below with sel_remove_insn. It should also survive
|
5972 |
|
|
till the return to fill_insns. */
|
5973 |
|
|
if (need_nop_to_preserve_insn_bb (insn))
|
5974 |
|
|
{
|
5975 |
|
|
insn_t nop = get_nop_from_pool (insn);
|
5976 |
|
|
gcc_assert (INSN_NOP_P (nop));
|
5977 |
|
|
VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
|
5978 |
|
|
}
|
5979 |
|
|
|
5980 |
|
|
sel_remove_insn (insn, only_disconnect, false);
|
5981 |
|
|
}
|
5982 |
|
|
|
5983 |
|
|
/* This function is called when original expr is found.
|
5984 |
|
|
INSN - current insn traversed, EXPR - the corresponding expr found.
|
5985 |
|
|
LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
|
5986 |
|
|
is static parameters of move_op. */
|
5987 |
|
|
static void
|
5988 |
|
|
move_op_orig_expr_found (insn_t insn, expr_t expr,
|
5989 |
|
|
cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
|
5990 |
|
|
void *static_params)
|
5991 |
|
|
{
|
5992 |
|
|
bool only_disconnect, insn_emitted;
|
5993 |
|
|
moveop_static_params_p params = (moveop_static_params_p) static_params;
|
5994 |
|
|
|
5995 |
|
|
copy_expr_onside (params->c_expr, INSN_EXPR (insn));
|
5996 |
|
|
track_scheduled_insns_and_blocks (insn);
|
5997 |
|
|
insn_emitted = handle_emitting_transformations (insn, expr, params);
|
5998 |
|
|
only_disconnect = (params->uid == INSN_UID (insn)
|
5999 |
|
|
&& ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
|
6000 |
|
|
|
6001 |
|
|
/* Mark that we've disconnected an insn. */
|
6002 |
|
|
if (only_disconnect)
|
6003 |
|
|
params->uid = -1;
|
6004 |
|
|
remove_insn_from_stream (insn, only_disconnect);
|
6005 |
|
|
}
|
6006 |
|
|
|
6007 |
|
|
/* The function is called when original expr is found.
|
6008 |
|
|
INSN - current insn traversed, EXPR - the corresponding expr found,
|
6009 |
|
|
crosses_call and original_insns in STATIC_PARAMS are updated. */
|
6010 |
|
|
static void
|
6011 |
|
|
fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
|
6012 |
|
|
cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
|
6013 |
|
|
void *static_params)
|
6014 |
|
|
{
|
6015 |
|
|
fur_static_params_p params = (fur_static_params_p) static_params;
|
6016 |
|
|
regset tmp;
|
6017 |
|
|
|
6018 |
|
|
if (CALL_P (insn))
|
6019 |
|
|
params->crosses_call = true;
|
6020 |
|
|
|
6021 |
|
|
def_list_add (params->original_insns, insn, params->crosses_call);
|
6022 |
|
|
|
6023 |
|
|
/* Mark the registers that do not meet the following condition:
|
6024 |
|
|
(2) not among the live registers of the point
|
6025 |
|
|
immediately following the first original operation on
|
6026 |
|
|
a given downward path, except for the original target
|
6027 |
|
|
register of the operation. */
|
6028 |
|
|
tmp = get_clear_regset_from_pool ();
|
6029 |
|
|
compute_live_below_insn (insn, tmp);
|
6030 |
|
|
AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
|
6031 |
|
|
AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
|
6032 |
|
|
IOR_REG_SET (params->used_regs, tmp);
|
6033 |
|
|
return_regset_to_pool (tmp);
|
6034 |
|
|
|
6035 |
|
|
/* (*1) We need to add to USED_REGS registers that are read by
|
6036 |
|
|
INSN's lhs. This may lead to choosing wrong src register.
|
6037 |
|
|
E.g. (scheduling const expr enabled):
|
6038 |
|
|
|
6039 |
|
|
429: ax=0x0 <- Can't use AX for this expr (0x0)
|
6040 |
|
|
433: dx=[bp-0x18]
|
6041 |
|
|
427: [ax+dx+0x1]=ax
|
6042 |
|
|
REG_DEAD: ax
|
6043 |
|
|
168: di=dx
|
6044 |
|
|
REG_DEAD: dx
|
6045 |
|
|
*/
|
6046 |
|
|
/* FIXME: see comment above and enable MEM_P
|
6047 |
|
|
in vinsn_separable_p. */
|
6048 |
|
|
gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
|
6049 |
|
|
|| !MEM_P (INSN_LHS (insn)));
|
6050 |
|
|
}
|
6051 |
|
|
|
6052 |
|
|
/* This function is called on the ascending pass, before returning from
|
6053 |
|
|
current basic block. */
|
6054 |
|
|
static void
|
6055 |
|
|
move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
|
6056 |
|
|
void *static_params)
|
6057 |
|
|
{
|
6058 |
|
|
moveop_static_params_p sparams = (moveop_static_params_p) static_params;
|
6059 |
|
|
basic_block book_block = NULL;
|
6060 |
|
|
|
6061 |
|
|
/* When we have removed the boundary insn for scheduling, which also
|
6062 |
|
|
happened to be the end insn in its bb, we don't need to update sets. */
|
6063 |
|
|
if (!lparams->removed_last_insn
|
6064 |
|
|
&& lparams->e1
|
6065 |
|
|
&& sel_bb_head_p (insn))
|
6066 |
|
|
{
|
6067 |
|
|
/* We should generate bookkeeping code only if we are not at the
|
6068 |
|
|
top level of the move_op. */
|
6069 |
|
|
if (sel_num_cfg_preds_gt_1 (insn))
|
6070 |
|
|
book_block = generate_bookkeeping_insn (sparams->c_expr,
|
6071 |
|
|
lparams->e1, lparams->e2);
|
6072 |
|
|
/* Update data sets for the current insn. */
|
6073 |
|
|
update_data_sets (insn);
|
6074 |
|
|
}
|
6075 |
|
|
|
6076 |
|
|
/* If bookkeeping code was inserted, we need to update av sets of basic
|
6077 |
|
|
block that received bookkeeping. After generation of bookkeeping insn,
|
6078 |
|
|
bookkeeping block does not contain valid av set because we are not following
|
6079 |
|
|
the original algorithm in every detail with regards to e.g. renaming
|
6080 |
|
|
simple reg-reg copies. Consider example:
|
6081 |
|
|
|
6082 |
|
|
bookkeeping block scheduling fence
|
6083 |
|
|
\ /
|
6084 |
|
|
\ join /
|
6085 |
|
|
----------
|
6086 |
|
|
| |
|
6087 |
|
|
----------
|
6088 |
|
|
/ \
|
6089 |
|
|
/ \
|
6090 |
|
|
r1 := r2 r1 := r3
|
6091 |
|
|
|
6092 |
|
|
We try to schedule insn "r1 := r3" on the current
|
6093 |
|
|
scheduling fence. Also, note that av set of bookkeeping block
|
6094 |
|
|
contain both insns "r1 := r2" and "r1 := r3". When the insn has
|
6095 |
|
|
been scheduled, the CFG is as follows:
|
6096 |
|
|
|
6097 |
|
|
r1 := r3 r1 := r3
|
6098 |
|
|
bookkeeping block scheduling fence
|
6099 |
|
|
\ /
|
6100 |
|
|
\ join /
|
6101 |
|
|
----------
|
6102 |
|
|
| |
|
6103 |
|
|
----------
|
6104 |
|
|
/ \
|
6105 |
|
|
/ \
|
6106 |
|
|
r1 := r2
|
6107 |
|
|
|
6108 |
|
|
Here, insn "r1 := r3" was scheduled at the current scheduling point
|
6109 |
|
|
and bookkeeping code was generated at the bookeeping block. This
|
6110 |
|
|
way insn "r1 := r2" is no longer available as a whole instruction
|
6111 |
|
|
(but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
|
6112 |
|
|
This situation is handled by calling update_data_sets.
|
6113 |
|
|
|
6114 |
|
|
Since update_data_sets is called only on the bookkeeping block, and
|
6115 |
|
|
it also may have predecessors with av_sets, containing instructions that
|
6116 |
|
|
are no longer available, we save all such expressions that become
|
6117 |
|
|
unavailable during data sets update on the bookkeeping block in
|
6118 |
|
|
VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
|
6119 |
|
|
expressions for scheduling. This allows us to avoid recomputation of
|
6120 |
|
|
av_sets outside the code motion path. */
|
6121 |
|
|
|
6122 |
|
|
if (book_block)
|
6123 |
|
|
update_and_record_unavailable_insns (book_block);
|
6124 |
|
|
|
6125 |
|
|
/* If INSN was previously marked for deletion, it's time to do it. */
|
6126 |
|
|
if (lparams->removed_last_insn)
|
6127 |
|
|
insn = PREV_INSN (insn);
|
6128 |
|
|
|
6129 |
|
|
/* Do not tidy control flow at the topmost moveop, as we can erroneously
|
6130 |
|
|
kill a block with a single nop in which the insn should be emitted. */
|
6131 |
|
|
if (lparams->e1)
|
6132 |
|
|
tidy_control_flow (BLOCK_FOR_INSN (insn), true);
|
6133 |
|
|
}
|
6134 |
|
|
|
6135 |
|
|
/* This function is called on the ascending pass, before returning from the
|
6136 |
|
|
current basic block. */
|
6137 |
|
|
static void
|
6138 |
|
|
fur_at_first_insn (insn_t insn,
|
6139 |
|
|
cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
|
6140 |
|
|
void *static_params ATTRIBUTE_UNUSED)
|
6141 |
|
|
{
|
6142 |
|
|
gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
|
6143 |
|
|
|| AV_LEVEL (insn) == -1);
|
6144 |
|
|
}
|
6145 |
|
|
|
6146 |
|
|
/* Called on the backward stage of recursion to call moveup_expr for insn
|
6147 |
|
|
and sparams->c_expr. */
|
6148 |
|
|
static void
|
6149 |
|
|
move_op_ascend (insn_t insn, void *static_params)
|
6150 |
|
|
{
|
6151 |
|
|
enum MOVEUP_EXPR_CODE res;
|
6152 |
|
|
moveop_static_params_p sparams = (moveop_static_params_p) static_params;
|
6153 |
|
|
|
6154 |
|
|
if (! INSN_NOP_P (insn))
|
6155 |
|
|
{
|
6156 |
|
|
res = moveup_expr_cached (sparams->c_expr, insn, false);
|
6157 |
|
|
gcc_assert (res != MOVEUP_EXPR_NULL);
|
6158 |
|
|
}
|
6159 |
|
|
|
6160 |
|
|
/* Update liveness for this insn as it was invalidated. */
|
6161 |
|
|
update_liveness_on_insn (insn);
|
6162 |
|
|
}
|
6163 |
|
|
|
6164 |
|
|
/* This function is called on enter to the basic block.
|
6165 |
|
|
Returns TRUE if this block already have been visited and
|
6166 |
|
|
code_motion_path_driver should return 1, FALSE otherwise. */
|
6167 |
|
|
static int
|
6168 |
|
|
fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
|
6169 |
|
|
void *static_params, bool visited_p)
|
6170 |
|
|
{
|
6171 |
|
|
fur_static_params_p sparams = (fur_static_params_p) static_params;
|
6172 |
|
|
|
6173 |
|
|
if (visited_p)
|
6174 |
|
|
{
|
6175 |
|
|
/* If we have found something below this block, there should be at
|
6176 |
|
|
least one insn in ORIGINAL_INSNS. */
|
6177 |
|
|
gcc_assert (*sparams->original_insns);
|
6178 |
|
|
|
6179 |
|
|
/* Adjust CROSSES_CALL, since we may have come to this block along
|
6180 |
|
|
different path. */
|
6181 |
|
|
DEF_LIST_DEF (*sparams->original_insns)->crosses_call
|
6182 |
|
|
|= sparams->crosses_call;
|
6183 |
|
|
}
|
6184 |
|
|
else
|
6185 |
|
|
local_params->old_original_insns = *sparams->original_insns;
|
6186 |
|
|
|
6187 |
|
|
return 1;
|
6188 |
|
|
}
|
6189 |
|
|
|
6190 |
|
|
/* Same as above but for move_op. */
|
6191 |
|
|
static int
|
6192 |
|
|
move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
|
6193 |
|
|
cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
|
6194 |
|
|
void *static_params ATTRIBUTE_UNUSED, bool visited_p)
|
6195 |
|
|
{
|
6196 |
|
|
if (visited_p)
|
6197 |
|
|
return -1;
|
6198 |
|
|
return 1;
|
6199 |
|
|
}
|
6200 |
|
|
|
6201 |
|
|
/* This function is called while descending current basic block if current
|
6202 |
|
|
insn is not the original EXPR we're searching for.
|
6203 |
|
|
|
6204 |
|
|
Return value: FALSE, if code_motion_path_driver should perform a local
|
6205 |
|
|
cleanup and return 0 itself;
|
6206 |
|
|
TRUE, if code_motion_path_driver should continue. */
|
6207 |
|
|
static bool
|
6208 |
|
|
move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
|
6209 |
|
|
void *static_params)
|
6210 |
|
|
{
|
6211 |
|
|
moveop_static_params_p sparams = (moveop_static_params_p) static_params;
|
6212 |
|
|
|
6213 |
|
|
#ifdef ENABLE_CHECKING
|
6214 |
|
|
sparams->failed_insn = insn;
|
6215 |
|
|
#endif
|
6216 |
|
|
|
6217 |
|
|
/* If we're scheduling separate expr, in order to generate correct code
|
6218 |
|
|
we need to stop the search at bookkeeping code generated with the
|
6219 |
|
|
same destination register or memory. */
|
6220 |
|
|
if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
|
6221 |
|
|
return false;
|
6222 |
|
|
return true;
|
6223 |
|
|
}
|
6224 |
|
|
|
6225 |
|
|
/* This function is called while descending current basic block if current
|
6226 |
|
|
insn is not the original EXPR we're searching for.
|
6227 |
|
|
|
6228 |
|
|
Return value: TRUE (code_motion_path_driver should continue). */
|
6229 |
|
|
static bool
|
6230 |
|
|
fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
|
6231 |
|
|
{
|
6232 |
|
|
bool mutexed;
|
6233 |
|
|
expr_t r;
|
6234 |
|
|
av_set_iterator avi;
|
6235 |
|
|
fur_static_params_p sparams = (fur_static_params_p) static_params;
|
6236 |
|
|
|
6237 |
|
|
if (CALL_P (insn))
|
6238 |
|
|
sparams->crosses_call = true;
|
6239 |
|
|
else if (DEBUG_INSN_P (insn))
|
6240 |
|
|
return true;
|
6241 |
|
|
|
6242 |
|
|
/* If current insn we are looking at cannot be executed together
|
6243 |
|
|
with original insn, then we can skip it safely.
|
6244 |
|
|
|
6245 |
|
|
Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
|
6246 |
|
|
INSN = (!p6) r14 = r14 + 1;
|
6247 |
|
|
|
6248 |
|
|
Here we can schedule ORIG_OP with lhs = r14, though only
|
6249 |
|
|
looking at the set of used and set registers of INSN we must
|
6250 |
|
|
forbid it. So, add set/used in INSN registers to the
|
6251 |
|
|
untouchable set only if there is an insn in ORIG_OPS that can
|
6252 |
|
|
affect INSN. */
|
6253 |
|
|
mutexed = true;
|
6254 |
|
|
FOR_EACH_EXPR (r, avi, orig_ops)
|
6255 |
|
|
if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
|
6256 |
|
|
{
|
6257 |
|
|
mutexed = false;
|
6258 |
|
|
break;
|
6259 |
|
|
}
|
6260 |
|
|
|
6261 |
|
|
/* Mark all registers that do not meet the following condition:
|
6262 |
|
|
(1) Not set or read on any path from xi to an instance of the
|
6263 |
|
|
original operation. */
|
6264 |
|
|
if (!mutexed)
|
6265 |
|
|
{
|
6266 |
|
|
IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
|
6267 |
|
|
IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
|
6268 |
|
|
IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
|
6269 |
|
|
}
|
6270 |
|
|
|
6271 |
|
|
return true;
|
6272 |
|
|
}
|
6273 |
|
|
|
6274 |
|
|
/* Hooks and data to perform move_op operations with code_motion_path_driver. */
|
6275 |
|
|
struct code_motion_path_driver_info_def move_op_hooks = {
|
6276 |
|
|
move_op_on_enter,
|
6277 |
|
|
move_op_orig_expr_found,
|
6278 |
|
|
move_op_orig_expr_not_found,
|
6279 |
|
|
move_op_merge_succs,
|
6280 |
|
|
move_op_after_merge_succs,
|
6281 |
|
|
move_op_ascend,
|
6282 |
|
|
move_op_at_first_insn,
|
6283 |
|
|
SUCCS_NORMAL,
|
6284 |
|
|
"move_op"
|
6285 |
|
|
};
|
6286 |
|
|
|
6287 |
|
|
/* Hooks and data to perform find_used_regs operations
|
6288 |
|
|
with code_motion_path_driver. */
|
6289 |
|
|
struct code_motion_path_driver_info_def fur_hooks = {
|
6290 |
|
|
fur_on_enter,
|
6291 |
|
|
fur_orig_expr_found,
|
6292 |
|
|
fur_orig_expr_not_found,
|
6293 |
|
|
fur_merge_succs,
|
6294 |
|
|
NULL, /* fur_after_merge_succs */
|
6295 |
|
|
NULL, /* fur_ascend */
|
6296 |
|
|
fur_at_first_insn,
|
6297 |
|
|
SUCCS_ALL,
|
6298 |
|
|
"find_used_regs"
|
6299 |
|
|
};
|
6300 |
|
|
|
6301 |
|
|
/* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
|
6302 |
|
|
code_motion_path_driver is called recursively. Original operation
|
6303 |
|
|
was found at least on one path that is starting with one of INSN's
|
6304 |
|
|
successors (this fact is asserted). ORIG_OPS is expressions we're looking
|
6305 |
|
|
for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
|
6306 |
|
|
of either move_op or find_used_regs depending on the caller.
|
6307 |
|
|
|
6308 |
|
|
Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
|
6309 |
|
|
know for sure at this point. */
|
6310 |
|
|
static int
|
6311 |
|
|
code_motion_process_successors (insn_t insn, av_set_t orig_ops,
|
6312 |
|
|
ilist_t path, void *static_params)
|
6313 |
|
|
{
|
6314 |
|
|
int res = 0;
|
6315 |
|
|
succ_iterator succ_i;
|
6316 |
|
|
rtx succ;
|
6317 |
|
|
basic_block bb;
|
6318 |
|
|
int old_index;
|
6319 |
|
|
unsigned old_succs;
|
6320 |
|
|
|
6321 |
|
|
struct cmpd_local_params lparams;
|
6322 |
|
|
expr_def _x;
|
6323 |
|
|
|
6324 |
|
|
lparams.c_expr_local = &_x;
|
6325 |
|
|
lparams.c_expr_merged = NULL;
|
6326 |
|
|
|
6327 |
|
|
/* We need to process only NORMAL succs for move_op, and collect live
|
6328 |
|
|
registers from ALL branches (including those leading out of the
|
6329 |
|
|
region) for find_used_regs.
|
6330 |
|
|
|
6331 |
|
|
In move_op, there can be a case when insn's bb number has changed
|
6332 |
|
|
due to created bookkeeping. This happens very rare, as we need to
|
6333 |
|
|
move expression from the beginning to the end of the same block.
|
6334 |
|
|
Rescan successors in this case. */
|
6335 |
|
|
|
6336 |
|
|
rescan:
|
6337 |
|
|
bb = BLOCK_FOR_INSN (insn);
|
6338 |
|
|
old_index = bb->index;
|
6339 |
|
|
old_succs = EDGE_COUNT (bb->succs);
|
6340 |
|
|
|
6341 |
|
|
FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
|
6342 |
|
|
{
|
6343 |
|
|
int b;
|
6344 |
|
|
|
6345 |
|
|
lparams.e1 = succ_i.e1;
|
6346 |
|
|
lparams.e2 = succ_i.e2;
|
6347 |
|
|
|
6348 |
|
|
/* Go deep into recursion only for NORMAL edges (non-backedges within the
|
6349 |
|
|
current region). */
|
6350 |
|
|
if (succ_i.current_flags == SUCCS_NORMAL)
|
6351 |
|
|
b = code_motion_path_driver (succ, orig_ops, path, &lparams,
|
6352 |
|
|
static_params);
|
6353 |
|
|
else
|
6354 |
|
|
b = 0;
|
6355 |
|
|
|
6356 |
|
|
/* Merge c_expres found or unify live register sets from different
|
6357 |
|
|
successors. */
|
6358 |
|
|
code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
|
6359 |
|
|
static_params);
|
6360 |
|
|
if (b == 1)
|
6361 |
|
|
res = b;
|
6362 |
|
|
else if (b == -1 && res != 1)
|
6363 |
|
|
res = b;
|
6364 |
|
|
|
6365 |
|
|
/* We have simplified the control flow below this point. In this case,
|
6366 |
|
|
the iterator becomes invalid. We need to try again. */
|
6367 |
|
|
if (BLOCK_FOR_INSN (insn)->index != old_index
|
6368 |
|
|
|| EDGE_COUNT (bb->succs) != old_succs)
|
6369 |
|
|
{
|
6370 |
|
|
insn = sel_bb_end (BLOCK_FOR_INSN (insn));
|
6371 |
|
|
goto rescan;
|
6372 |
|
|
}
|
6373 |
|
|
}
|
6374 |
|
|
|
6375 |
|
|
#ifdef ENABLE_CHECKING
|
6376 |
|
|
/* Here, RES==1 if original expr was found at least for one of the
|
6377 |
|
|
successors. After the loop, RES may happen to have zero value
|
6378 |
|
|
only if at some point the expr searched is present in av_set, but is
|
6379 |
|
|
not found below. In most cases, this situation is an error.
|
6380 |
|
|
The exception is when the original operation is blocked by
|
6381 |
|
|
bookkeeping generated for another fence or for another path in current
|
6382 |
|
|
move_op. */
|
6383 |
|
|
gcc_assert (res == 1
|
6384 |
|
|
|| (res == 0
|
6385 |
|
|
&& av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
|
6386 |
|
|
static_params))
|
6387 |
|
|
|| res == -1);
|
6388 |
|
|
#endif
|
6389 |
|
|
|
6390 |
|
|
/* Merge data, clean up, etc. */
|
6391 |
|
|
if (res != -1 && code_motion_path_driver_info->after_merge_succs)
|
6392 |
|
|
code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
|
6393 |
|
|
|
6394 |
|
|
return res;
|
6395 |
|
|
}
|
6396 |
|
|
|
6397 |
|
|
|
6398 |
|
|
/* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
|
6399 |
|
|
is the pointer to the av set with expressions we were looking for,
|
6400 |
|
|
PATH_P is the pointer to the traversed path. */
|
6401 |
|
|
static inline void
|
6402 |
|
|
code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
|
6403 |
|
|
{
|
6404 |
|
|
ilist_remove (path_p);
|
6405 |
|
|
av_set_clear (orig_ops_p);
|
6406 |
|
|
}
|
6407 |
|
|
|
6408 |
|
|
/* The driver function that implements move_op or find_used_regs
|
6409 |
|
|
functionality dependent whether code_motion_path_driver_INFO is set to
|
6410 |
|
|
&MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
|
6411 |
|
|
of code (CFG traversal etc) that are shared among both functions. INSN
|
6412 |
|
|
is the insn we're starting the search from, ORIG_OPS are the expressions
|
6413 |
|
|
we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
|
6414 |
|
|
parameters of the driver, and STATIC_PARAMS are static parameters of
|
6415 |
|
|
the caller.
|
6416 |
|
|
|
6417 |
|
|
Returns whether original instructions were found. Note that top-level
|
6418 |
|
|
code_motion_path_driver always returns true. */
|
6419 |
|
|
static int
|
6420 |
|
|
code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
|
6421 |
|
|
cmpd_local_params_p local_params_in,
|
6422 |
|
|
void *static_params)
|
6423 |
|
|
{
|
6424 |
|
|
expr_t expr = NULL;
|
6425 |
|
|
basic_block bb = BLOCK_FOR_INSN (insn);
|
6426 |
|
|
insn_t first_insn, bb_tail, before_first;
|
6427 |
|
|
bool removed_last_insn = false;
|
6428 |
|
|
|
6429 |
|
|
if (sched_verbose >= 6)
|
6430 |
|
|
{
|
6431 |
|
|
sel_print ("%s (", code_motion_path_driver_info->routine_name);
|
6432 |
|
|
dump_insn (insn);
|
6433 |
|
|
sel_print (",");
|
6434 |
|
|
dump_av_set (orig_ops);
|
6435 |
|
|
sel_print (")\n");
|
6436 |
|
|
}
|
6437 |
|
|
|
6438 |
|
|
gcc_assert (orig_ops);
|
6439 |
|
|
|
6440 |
|
|
/* If no original operations exist below this insn, return immediately. */
|
6441 |
|
|
if (is_ineligible_successor (insn, path))
|
6442 |
|
|
{
|
6443 |
|
|
if (sched_verbose >= 6)
|
6444 |
|
|
sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
|
6445 |
|
|
return false;
|
6446 |
|
|
}
|
6447 |
|
|
|
6448 |
|
|
/* The block can have invalid av set, in which case it was created earlier
|
6449 |
|
|
during move_op. Return immediately. */
|
6450 |
|
|
if (sel_bb_head_p (insn))
|
6451 |
|
|
{
|
6452 |
|
|
if (! AV_SET_VALID_P (insn))
|
6453 |
|
|
{
|
6454 |
|
|
if (sched_verbose >= 6)
|
6455 |
|
|
sel_print ("Returned from block %d as it had invalid av set\n",
|
6456 |
|
|
bb->index);
|
6457 |
|
|
return false;
|
6458 |
|
|
}
|
6459 |
|
|
|
6460 |
|
|
if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
|
6461 |
|
|
{
|
6462 |
|
|
/* We have already found an original operation on this branch, do not
|
6463 |
|
|
go any further and just return TRUE here. If we don't stop here,
|
6464 |
|
|
function can have exponential behaviour even on the small code
|
6465 |
|
|
with many different paths (e.g. with data speculation and
|
6466 |
|
|
recovery blocks). */
|
6467 |
|
|
if (sched_verbose >= 6)
|
6468 |
|
|
sel_print ("Block %d already visited in this traversal\n", bb->index);
|
6469 |
|
|
if (code_motion_path_driver_info->on_enter)
|
6470 |
|
|
return code_motion_path_driver_info->on_enter (insn,
|
6471 |
|
|
local_params_in,
|
6472 |
|
|
static_params,
|
6473 |
|
|
true);
|
6474 |
|
|
}
|
6475 |
|
|
}
|
6476 |
|
|
|
6477 |
|
|
if (code_motion_path_driver_info->on_enter)
|
6478 |
|
|
code_motion_path_driver_info->on_enter (insn, local_params_in,
|
6479 |
|
|
static_params, false);
|
6480 |
|
|
orig_ops = av_set_copy (orig_ops);
|
6481 |
|
|
|
6482 |
|
|
/* Filter the orig_ops set. */
|
6483 |
|
|
if (AV_SET_VALID_P (insn))
|
6484 |
|
|
av_set_code_motion_filter (&orig_ops, AV_SET (insn));
|
6485 |
|
|
|
6486 |
|
|
/* If no more original ops, return immediately. */
|
6487 |
|
|
if (!orig_ops)
|
6488 |
|
|
{
|
6489 |
|
|
if (sched_verbose >= 6)
|
6490 |
|
|
sel_print ("No intersection with av set of block %d\n", bb->index);
|
6491 |
|
|
return false;
|
6492 |
|
|
}
|
6493 |
|
|
|
6494 |
|
|
/* For non-speculative insns we have to leave only one form of the
|
6495 |
|
|
original operation, because if we don't, we may end up with
|
6496 |
|
|
different C_EXPRes and, consequently, with bookkeepings for different
|
6497 |
|
|
expression forms along the same code motion path. That may lead to
|
6498 |
|
|
generation of incorrect code. So for each code motion we stick to
|
6499 |
|
|
the single form of the instruction, except for speculative insns
|
6500 |
|
|
which we need to keep in different forms with all speculation
|
6501 |
|
|
types. */
|
6502 |
|
|
av_set_leave_one_nonspec (&orig_ops);
|
6503 |
|
|
|
6504 |
|
|
/* It is not possible that all ORIG_OPS are filtered out. */
|
6505 |
|
|
gcc_assert (orig_ops);
|
6506 |
|
|
|
6507 |
|
|
/* It is enough to place only heads and tails of visited basic blocks into
|
6508 |
|
|
the PATH. */
|
6509 |
|
|
ilist_add (&path, insn);
|
6510 |
|
|
first_insn = insn;
|
6511 |
|
|
bb_tail = sel_bb_end (bb);
|
6512 |
|
|
|
6513 |
|
|
/* Descend the basic block in search of the original expr; this part
|
6514 |
|
|
corresponds to the part of the original move_op procedure executed
|
6515 |
|
|
before the recursive call. */
|
6516 |
|
|
for (;;)
|
6517 |
|
|
{
|
6518 |
|
|
/* Look at the insn and decide if it could be an ancestor of currently
|
6519 |
|
|
scheduling operation. If it is so, then the insn "dest = op" could
|
6520 |
|
|
either be replaced with "dest = reg", because REG now holds the result
|
6521 |
|
|
of OP, or just removed, if we've scheduled the insn as a whole.
|
6522 |
|
|
|
6523 |
|
|
If this insn doesn't contain currently scheduling OP, then proceed
|
6524 |
|
|
with searching and look at its successors. Operations we're searching
|
6525 |
|
|
for could have changed when moving up through this insn via
|
6526 |
|
|
substituting. In this case, perform unsubstitution on them first.
|
6527 |
|
|
|
6528 |
|
|
When traversing the DAG below this insn is finished, insert
|
6529 |
|
|
bookkeeping code, if the insn is a joint point, and remove
|
6530 |
|
|
leftovers. */
|
6531 |
|
|
|
6532 |
|
|
expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
|
6533 |
|
|
if (expr)
|
6534 |
|
|
{
|
6535 |
|
|
insn_t last_insn = PREV_INSN (insn);
|
6536 |
|
|
|
6537 |
|
|
/* We have found the original operation. */
|
6538 |
|
|
if (sched_verbose >= 6)
|
6539 |
|
|
sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
|
6540 |
|
|
|
6541 |
|
|
code_motion_path_driver_info->orig_expr_found
|
6542 |
|
|
(insn, expr, local_params_in, static_params);
|
6543 |
|
|
|
6544 |
|
|
/* Step back, so on the way back we'll start traversing from the
|
6545 |
|
|
previous insn (or we'll see that it's bb_note and skip that
|
6546 |
|
|
loop). */
|
6547 |
|
|
if (insn == first_insn)
|
6548 |
|
|
{
|
6549 |
|
|
first_insn = NEXT_INSN (last_insn);
|
6550 |
|
|
removed_last_insn = sel_bb_end_p (last_insn);
|
6551 |
|
|
}
|
6552 |
|
|
insn = last_insn;
|
6553 |
|
|
break;
|
6554 |
|
|
}
|
6555 |
|
|
else
|
6556 |
|
|
{
|
6557 |
|
|
/* We haven't found the original expr, continue descending the basic
|
6558 |
|
|
block. */
|
6559 |
|
|
if (code_motion_path_driver_info->orig_expr_not_found
|
6560 |
|
|
(insn, orig_ops, static_params))
|
6561 |
|
|
{
|
6562 |
|
|
/* Av set ops could have been changed when moving through this
|
6563 |
|
|
insn. To find them below it, we have to un-substitute them. */
|
6564 |
|
|
undo_transformations (&orig_ops, insn);
|
6565 |
|
|
}
|
6566 |
|
|
else
|
6567 |
|
|
{
|
6568 |
|
|
/* Clean up and return, if the hook tells us to do so. It may
|
6569 |
|
|
happen if we've encountered the previously created
|
6570 |
|
|
bookkeeping. */
|
6571 |
|
|
code_motion_path_driver_cleanup (&orig_ops, &path);
|
6572 |
|
|
return -1;
|
6573 |
|
|
}
|
6574 |
|
|
|
6575 |
|
|
gcc_assert (orig_ops);
|
6576 |
|
|
}
|
6577 |
|
|
|
6578 |
|
|
/* Stop at insn if we got to the end of BB. */
|
6579 |
|
|
if (insn == bb_tail)
|
6580 |
|
|
break;
|
6581 |
|
|
|
6582 |
|
|
insn = NEXT_INSN (insn);
|
6583 |
|
|
}
|
6584 |
|
|
|
6585 |
|
|
/* Here INSN either points to the insn before the original insn (may be
|
6586 |
|
|
bb_note, if original insn was a bb_head) or to the bb_end. */
|
6587 |
|
|
if (!expr)
|
6588 |
|
|
{
|
6589 |
|
|
int res;
|
6590 |
|
|
rtx last_insn = PREV_INSN (insn);
|
6591 |
|
|
bool added_to_path;
|
6592 |
|
|
|
6593 |
|
|
gcc_assert (insn == sel_bb_end (bb));
|
6594 |
|
|
|
6595 |
|
|
/* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
|
6596 |
|
|
it's already in PATH then). */
|
6597 |
|
|
if (insn != first_insn)
|
6598 |
|
|
{
|
6599 |
|
|
ilist_add (&path, insn);
|
6600 |
|
|
added_to_path = true;
|
6601 |
|
|
}
|
6602 |
|
|
else
|
6603 |
|
|
added_to_path = false;
|
6604 |
|
|
|
6605 |
|
|
/* Process_successors should be able to find at least one
|
6606 |
|
|
successor for which code_motion_path_driver returns TRUE. */
|
6607 |
|
|
res = code_motion_process_successors (insn, orig_ops,
|
6608 |
|
|
path, static_params);
|
6609 |
|
|
|
6610 |
|
|
/* Jump in the end of basic block could have been removed or replaced
|
6611 |
|
|
during code_motion_process_successors, so recompute insn as the
|
6612 |
|
|
last insn in bb. */
|
6613 |
|
|
if (NEXT_INSN (last_insn) != insn)
|
6614 |
|
|
{
|
6615 |
|
|
insn = sel_bb_end (bb);
|
6616 |
|
|
first_insn = sel_bb_head (bb);
|
6617 |
|
|
}
|
6618 |
|
|
|
6619 |
|
|
/* Remove bb tail from path. */
|
6620 |
|
|
if (added_to_path)
|
6621 |
|
|
ilist_remove (&path);
|
6622 |
|
|
|
6623 |
|
|
if (res != 1)
|
6624 |
|
|
{
|
6625 |
|
|
/* This is the case when one of the original expr is no longer available
|
6626 |
|
|
due to bookkeeping created on this branch with the same register.
|
6627 |
|
|
In the original algorithm, which doesn't have update_data_sets call
|
6628 |
|
|
on a bookkeeping block, it would simply result in returning
|
6629 |
|
|
FALSE when we've encountered a previously generated bookkeeping
|
6630 |
|
|
insn in moveop_orig_expr_not_found. */
|
6631 |
|
|
code_motion_path_driver_cleanup (&orig_ops, &path);
|
6632 |
|
|
return res;
|
6633 |
|
|
}
|
6634 |
|
|
}
|
6635 |
|
|
|
6636 |
|
|
/* Don't need it any more. */
|
6637 |
|
|
av_set_clear (&orig_ops);
|
6638 |
|
|
|
6639 |
|
|
/* Backward pass: now, when we have C_EXPR computed, we'll drag it to
|
6640 |
|
|
the beginning of the basic block. */
|
6641 |
|
|
before_first = PREV_INSN (first_insn);
|
6642 |
|
|
while (insn != before_first)
|
6643 |
|
|
{
|
6644 |
|
|
if (code_motion_path_driver_info->ascend)
|
6645 |
|
|
code_motion_path_driver_info->ascend (insn, static_params);
|
6646 |
|
|
|
6647 |
|
|
insn = PREV_INSN (insn);
|
6648 |
|
|
}
|
6649 |
|
|
|
6650 |
|
|
/* Now we're at the bb head. */
|
6651 |
|
|
insn = first_insn;
|
6652 |
|
|
ilist_remove (&path);
|
6653 |
|
|
local_params_in->removed_last_insn = removed_last_insn;
|
6654 |
|
|
code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
|
6655 |
|
|
|
6656 |
|
|
/* This should be the very last operation as at bb head we could change
|
6657 |
|
|
the numbering by creating bookkeeping blocks. */
|
6658 |
|
|
if (removed_last_insn)
|
6659 |
|
|
insn = PREV_INSN (insn);
|
6660 |
|
|
bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
|
6661 |
|
|
return true;
|
6662 |
|
|
}
|
6663 |
|
|
|
6664 |
|
|
/* Move up the operations from ORIG_OPS set traversing the dag starting
|
6665 |
|
|
from INSN. PATH represents the edges traversed so far.
|
6666 |
|
|
DEST is the register chosen for scheduling the current expr. Insert
|
6667 |
|
|
bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
|
6668 |
|
|
C_EXPR is how it looks like at the given cfg point.
|
6669 |
|
|
Set *SHOULD_MOVE to indicate whether we have only disconnected
|
6670 |
|
|
one of the insns found.
|
6671 |
|
|
|
6672 |
|
|
Returns whether original instructions were found, which is asserted
|
6673 |
|
|
to be true in the caller. */
|
6674 |
|
|
static bool
|
6675 |
|
|
move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
|
6676 |
|
|
rtx dest, expr_t c_expr, bool *should_move)
|
6677 |
|
|
{
|
6678 |
|
|
struct moveop_static_params sparams;
|
6679 |
|
|
struct cmpd_local_params lparams;
|
6680 |
|
|
int res;
|
6681 |
|
|
|
6682 |
|
|
/* Init params for code_motion_path_driver. */
|
6683 |
|
|
sparams.dest = dest;
|
6684 |
|
|
sparams.c_expr = c_expr;
|
6685 |
|
|
sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
|
6686 |
|
|
#ifdef ENABLE_CHECKING
|
6687 |
|
|
sparams.failed_insn = NULL;
|
6688 |
|
|
#endif
|
6689 |
|
|
sparams.was_renamed = false;
|
6690 |
|
|
lparams.e1 = NULL;
|
6691 |
|
|
|
6692 |
|
|
/* We haven't visited any blocks yet. */
|
6693 |
|
|
bitmap_clear (code_motion_visited_blocks);
|
6694 |
|
|
|
6695 |
|
|
/* Set appropriate hooks and data. */
|
6696 |
|
|
code_motion_path_driver_info = &move_op_hooks;
|
6697 |
|
|
res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
|
6698 |
|
|
|
6699 |
|
|
gcc_assert (res != -1);
|
6700 |
|
|
|
6701 |
|
|
if (sparams.was_renamed)
|
6702 |
|
|
EXPR_WAS_RENAMED (expr_vliw) = true;
|
6703 |
|
|
|
6704 |
|
|
*should_move = (sparams.uid == -1);
|
6705 |
|
|
|
6706 |
|
|
return res;
|
6707 |
|
|
}
|
6708 |
|
|
|
6709 |
|
|
|
6710 |
|
|
/* Functions that work with regions. */
|
6711 |
|
|
|
6712 |
|
|
/* Current number of seqno used in init_seqno and init_seqno_1. */
|
6713 |
|
|
static int cur_seqno;
|
6714 |
|
|
|
6715 |
|
|
/* A helper for init_seqno. Traverse the region starting from BB and
|
6716 |
|
|
compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
|
6717 |
|
|
Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
|
6718 |
|
|
static void
|
6719 |
|
|
init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
|
6720 |
|
|
{
|
6721 |
|
|
int bbi = BLOCK_TO_BB (bb->index);
|
6722 |
|
|
insn_t insn, note = bb_note (bb);
|
6723 |
|
|
insn_t succ_insn;
|
6724 |
|
|
succ_iterator si;
|
6725 |
|
|
|
6726 |
|
|
SET_BIT (visited_bbs, bbi);
|
6727 |
|
|
if (blocks_to_reschedule)
|
6728 |
|
|
bitmap_clear_bit (blocks_to_reschedule, bb->index);
|
6729 |
|
|
|
6730 |
|
|
FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
|
6731 |
|
|
SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
|
6732 |
|
|
{
|
6733 |
|
|
basic_block succ = BLOCK_FOR_INSN (succ_insn);
|
6734 |
|
|
int succ_bbi = BLOCK_TO_BB (succ->index);
|
6735 |
|
|
|
6736 |
|
|
gcc_assert (in_current_region_p (succ));
|
6737 |
|
|
|
6738 |
|
|
if (!TEST_BIT (visited_bbs, succ_bbi))
|
6739 |
|
|
{
|
6740 |
|
|
gcc_assert (succ_bbi > bbi);
|
6741 |
|
|
|
6742 |
|
|
init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
|
6743 |
|
|
}
|
6744 |
|
|
else if (blocks_to_reschedule)
|
6745 |
|
|
bitmap_set_bit (forced_ebb_heads, succ->index);
|
6746 |
|
|
}
|
6747 |
|
|
|
6748 |
|
|
for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
|
6749 |
|
|
INSN_SEQNO (insn) = cur_seqno--;
|
6750 |
|
|
}
|
6751 |
|
|
|
6752 |
|
|
/* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
|
6753 |
|
|
blocks on which we're rescheduling when pipelining, FROM is the block where
|
6754 |
|
|
traversing region begins (it may not be the head of the region when
|
6755 |
|
|
pipelining, but the head of the loop instead).
|
6756 |
|
|
|
6757 |
|
|
Returns the maximal seqno found. */
|
6758 |
|
|
static int
|
6759 |
|
|
init_seqno (bitmap blocks_to_reschedule, basic_block from)
|
6760 |
|
|
{
|
6761 |
|
|
sbitmap visited_bbs;
|
6762 |
|
|
bitmap_iterator bi;
|
6763 |
|
|
unsigned bbi;
|
6764 |
|
|
|
6765 |
|
|
visited_bbs = sbitmap_alloc (current_nr_blocks);
|
6766 |
|
|
|
6767 |
|
|
if (blocks_to_reschedule)
|
6768 |
|
|
{
|
6769 |
|
|
sbitmap_ones (visited_bbs);
|
6770 |
|
|
EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
|
6771 |
|
|
{
|
6772 |
|
|
gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
|
6773 |
|
|
RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
|
6774 |
|
|
}
|
6775 |
|
|
}
|
6776 |
|
|
else
|
6777 |
|
|
{
|
6778 |
|
|
sbitmap_zero (visited_bbs);
|
6779 |
|
|
from = EBB_FIRST_BB (0);
|
6780 |
|
|
}
|
6781 |
|
|
|
6782 |
|
|
cur_seqno = sched_max_luid - 1;
|
6783 |
|
|
init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
|
6784 |
|
|
|
6785 |
|
|
/* cur_seqno may be positive if the number of instructions is less than
|
6786 |
|
|
sched_max_luid - 1 (when rescheduling or if some instructions have been
|
6787 |
|
|
removed by the call to purge_empty_blocks in sel_sched_region_1). */
|
6788 |
|
|
gcc_assert (cur_seqno >= 0);
|
6789 |
|
|
|
6790 |
|
|
sbitmap_free (visited_bbs);
|
6791 |
|
|
return sched_max_luid - 1;
|
6792 |
|
|
}
|
6793 |
|
|
|
6794 |
|
|
/* Initialize scheduling parameters for current region. */
|
6795 |
|
|
static void
|
6796 |
|
|
sel_setup_region_sched_flags (void)
|
6797 |
|
|
{
|
6798 |
|
|
enable_schedule_as_rhs_p = 1;
|
6799 |
|
|
bookkeeping_p = 1;
|
6800 |
|
|
pipelining_p = (bookkeeping_p
|
6801 |
|
|
&& (flag_sel_sched_pipelining != 0)
|
6802 |
|
|
&& current_loop_nest != NULL
|
6803 |
|
|
&& loop_has_exit_edges (current_loop_nest));
|
6804 |
|
|
max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
|
6805 |
|
|
max_ws = MAX_WS;
|
6806 |
|
|
}
|
6807 |
|
|
|
6808 |
|
|
/* Return true if all basic blocks of current region are empty. */
|
6809 |
|
|
static bool
|
6810 |
|
|
current_region_empty_p (void)
|
6811 |
|
|
{
|
6812 |
|
|
int i;
|
6813 |
|
|
for (i = 0; i < current_nr_blocks; i++)
|
6814 |
|
|
if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
|
6815 |
|
|
return false;
|
6816 |
|
|
|
6817 |
|
|
return true;
|
6818 |
|
|
}
|
6819 |
|
|
|
6820 |
|
|
/* Prepare and verify loop nest for pipelining. */
|
6821 |
|
|
static void
|
6822 |
|
|
setup_current_loop_nest (int rgn, bb_vec_t *bbs)
|
6823 |
|
|
{
|
6824 |
|
|
current_loop_nest = get_loop_nest_for_rgn (rgn);
|
6825 |
|
|
|
6826 |
|
|
if (!current_loop_nest)
|
6827 |
|
|
return;
|
6828 |
|
|
|
6829 |
|
|
/* If this loop has any saved loop preheaders from nested loops,
|
6830 |
|
|
add these basic blocks to the current region. */
|
6831 |
|
|
sel_add_loop_preheaders (bbs);
|
6832 |
|
|
|
6833 |
|
|
/* Check that we're starting with a valid information. */
|
6834 |
|
|
gcc_assert (loop_latch_edge (current_loop_nest));
|
6835 |
|
|
gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
|
6836 |
|
|
}
|
6837 |
|
|
|
6838 |
|
|
/* Compute instruction priorities for current region. */
|
6839 |
|
|
static void
|
6840 |
|
|
sel_compute_priorities (int rgn)
|
6841 |
|
|
{
|
6842 |
|
|
sched_rgn_compute_dependencies (rgn);
|
6843 |
|
|
|
6844 |
|
|
/* Compute insn priorities in haifa style. Then free haifa style
|
6845 |
|
|
dependencies that we've calculated for this. */
|
6846 |
|
|
compute_priorities ();
|
6847 |
|
|
|
6848 |
|
|
if (sched_verbose >= 5)
|
6849 |
|
|
debug_rgn_dependencies (0);
|
6850 |
|
|
|
6851 |
|
|
free_rgn_deps ();
|
6852 |
|
|
}
|
6853 |
|
|
|
6854 |
|
|
/* Init scheduling data for RGN. Returns true when this region should not
|
6855 |
|
|
be scheduled. */
|
6856 |
|
|
static bool
|
6857 |
|
|
sel_region_init (int rgn)
|
6858 |
|
|
{
|
6859 |
|
|
int i;
|
6860 |
|
|
bb_vec_t bbs;
|
6861 |
|
|
|
6862 |
|
|
rgn_setup_region (rgn);
|
6863 |
|
|
|
6864 |
|
|
/* Even if sched_is_disabled_for_current_region_p() is true, we still
|
6865 |
|
|
do region initialization here so the region can be bundled correctly,
|
6866 |
|
|
but we'll skip the scheduling in sel_sched_region (). */
|
6867 |
|
|
if (current_region_empty_p ())
|
6868 |
|
|
return true;
|
6869 |
|
|
|
6870 |
|
|
bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
|
6871 |
|
|
|
6872 |
|
|
for (i = 0; i < current_nr_blocks; i++)
|
6873 |
|
|
VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
|
6874 |
|
|
|
6875 |
|
|
sel_init_bbs (bbs);
|
6876 |
|
|
|
6877 |
|
|
if (flag_sel_sched_pipelining)
|
6878 |
|
|
setup_current_loop_nest (rgn, &bbs);
|
6879 |
|
|
|
6880 |
|
|
sel_setup_region_sched_flags ();
|
6881 |
|
|
|
6882 |
|
|
/* Initialize luids and dependence analysis which both sel-sched and haifa
|
6883 |
|
|
need. */
|
6884 |
|
|
sched_init_luids (bbs);
|
6885 |
|
|
sched_deps_init (false);
|
6886 |
|
|
|
6887 |
|
|
/* Initialize haifa data. */
|
6888 |
|
|
rgn_setup_sched_infos ();
|
6889 |
|
|
sel_set_sched_flags ();
|
6890 |
|
|
haifa_init_h_i_d (bbs);
|
6891 |
|
|
|
6892 |
|
|
sel_compute_priorities (rgn);
|
6893 |
|
|
init_deps_global ();
|
6894 |
|
|
|
6895 |
|
|
/* Main initialization. */
|
6896 |
|
|
sel_setup_sched_infos ();
|
6897 |
|
|
sel_init_global_and_expr (bbs);
|
6898 |
|
|
|
6899 |
|
|
VEC_free (basic_block, heap, bbs);
|
6900 |
|
|
|
6901 |
|
|
blocks_to_reschedule = BITMAP_ALLOC (NULL);
|
6902 |
|
|
|
6903 |
|
|
/* Init correct liveness sets on each instruction of a single-block loop.
|
6904 |
|
|
This is the only situation when we can't update liveness when calling
|
6905 |
|
|
compute_live for the first insn of the loop. */
|
6906 |
|
|
if (current_loop_nest)
|
6907 |
|
|
{
|
6908 |
|
|
int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
|
6909 |
|
|
? 1
|
6910 |
|
|
: 0);
|
6911 |
|
|
|
6912 |
|
|
if (current_nr_blocks == header + 1)
|
6913 |
|
|
update_liveness_on_insn
|
6914 |
|
|
(sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
|
6915 |
|
|
}
|
6916 |
|
|
|
6917 |
|
|
/* Set hooks so that no newly generated insn will go out unnoticed. */
|
6918 |
|
|
sel_register_cfg_hooks ();
|
6919 |
|
|
|
6920 |
|
|
/* !!! We call target.sched.init () for the whole region, but we invoke
|
6921 |
|
|
targetm.sched.finish () for every ebb. */
|
6922 |
|
|
if (targetm.sched.init)
|
6923 |
|
|
/* None of the arguments are actually used in any target. */
|
6924 |
|
|
targetm.sched.init (sched_dump, sched_verbose, -1);
|
6925 |
|
|
|
6926 |
|
|
first_emitted_uid = get_max_uid () + 1;
|
6927 |
|
|
preheader_removed = false;
|
6928 |
|
|
|
6929 |
|
|
/* Reset register allocation ticks array. */
|
6930 |
|
|
memset (reg_rename_tick, 0, sizeof reg_rename_tick);
|
6931 |
|
|
reg_rename_this_tick = 0;
|
6932 |
|
|
|
6933 |
|
|
bitmap_initialize (forced_ebb_heads, 0);
|
6934 |
|
|
bitmap_clear (forced_ebb_heads);
|
6935 |
|
|
|
6936 |
|
|
setup_nop_vinsn ();
|
6937 |
|
|
current_copies = BITMAP_ALLOC (NULL);
|
6938 |
|
|
current_originators = BITMAP_ALLOC (NULL);
|
6939 |
|
|
code_motion_visited_blocks = BITMAP_ALLOC (NULL);
|
6940 |
|
|
|
6941 |
|
|
return false;
|
6942 |
|
|
}
|
6943 |
|
|
|
6944 |
|
|
/* Simplify insns after the scheduling. */
|
6945 |
|
|
static void
|
6946 |
|
|
simplify_changed_insns (void)
|
6947 |
|
|
{
|
6948 |
|
|
int i;
|
6949 |
|
|
|
6950 |
|
|
for (i = 0; i < current_nr_blocks; i++)
|
6951 |
|
|
{
|
6952 |
|
|
basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
|
6953 |
|
|
rtx insn;
|
6954 |
|
|
|
6955 |
|
|
FOR_BB_INSNS (bb, insn)
|
6956 |
|
|
if (INSN_P (insn))
|
6957 |
|
|
{
|
6958 |
|
|
expr_t expr = INSN_EXPR (insn);
|
6959 |
|
|
|
6960 |
|
|
if (EXPR_WAS_SUBSTITUTED (expr))
|
6961 |
|
|
validate_simplify_insn (insn);
|
6962 |
|
|
}
|
6963 |
|
|
}
|
6964 |
|
|
}
|
6965 |
|
|
|
6966 |
|
|
/* Find boundaries of the EBB starting from basic block BB, marking blocks of
|
6967 |
|
|
this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
|
6968 |
|
|
PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
|
6969 |
|
|
static void
|
6970 |
|
|
find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
|
6971 |
|
|
{
|
6972 |
|
|
insn_t head, tail;
|
6973 |
|
|
basic_block bb1 = bb;
|
6974 |
|
|
if (sched_verbose >= 2)
|
6975 |
|
|
sel_print ("Finishing schedule in bbs: ");
|
6976 |
|
|
|
6977 |
|
|
do
|
6978 |
|
|
{
|
6979 |
|
|
bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
|
6980 |
|
|
|
6981 |
|
|
if (sched_verbose >= 2)
|
6982 |
|
|
sel_print ("%d; ", bb1->index);
|
6983 |
|
|
}
|
6984 |
|
|
while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
|
6985 |
|
|
|
6986 |
|
|
if (sched_verbose >= 2)
|
6987 |
|
|
sel_print ("\n");
|
6988 |
|
|
|
6989 |
|
|
get_ebb_head_tail (bb, bb1, &head, &tail);
|
6990 |
|
|
|
6991 |
|
|
current_sched_info->head = head;
|
6992 |
|
|
current_sched_info->tail = tail;
|
6993 |
|
|
current_sched_info->prev_head = PREV_INSN (head);
|
6994 |
|
|
current_sched_info->next_tail = NEXT_INSN (tail);
|
6995 |
|
|
}
|
6996 |
|
|
|
6997 |
|
|
/* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
|
6998 |
|
|
static void
|
6999 |
|
|
reset_sched_cycles_in_current_ebb (void)
|
7000 |
|
|
{
|
7001 |
|
|
int last_clock = 0;
|
7002 |
|
|
int haifa_last_clock = -1;
|
7003 |
|
|
int haifa_clock = 0;
|
7004 |
|
|
int issued_insns = 0;
|
7005 |
|
|
insn_t insn;
|
7006 |
|
|
|
7007 |
|
|
if (targetm.sched.init)
|
7008 |
|
|
{
|
7009 |
|
|
/* None of the arguments are actually used in any target.
|
7010 |
|
|
NB: We should have md_reset () hook for cases like this. */
|
7011 |
|
|
targetm.sched.init (sched_dump, sched_verbose, -1);
|
7012 |
|
|
}
|
7013 |
|
|
|
7014 |
|
|
state_reset (curr_state);
|
7015 |
|
|
advance_state (curr_state);
|
7016 |
|
|
|
7017 |
|
|
for (insn = current_sched_info->head;
|
7018 |
|
|
insn != current_sched_info->next_tail;
|
7019 |
|
|
insn = NEXT_INSN (insn))
|
7020 |
|
|
{
|
7021 |
|
|
int cost, haifa_cost;
|
7022 |
|
|
int sort_p;
|
7023 |
|
|
bool asm_p, real_insn, after_stall, all_issued;
|
7024 |
|
|
int clock;
|
7025 |
|
|
|
7026 |
|
|
if (!INSN_P (insn))
|
7027 |
|
|
continue;
|
7028 |
|
|
|
7029 |
|
|
asm_p = false;
|
7030 |
|
|
real_insn = recog_memoized (insn) >= 0;
|
7031 |
|
|
clock = INSN_SCHED_CYCLE (insn);
|
7032 |
|
|
|
7033 |
|
|
cost = clock - last_clock;
|
7034 |
|
|
|
7035 |
|
|
/* Initialize HAIFA_COST. */
|
7036 |
|
|
if (! real_insn)
|
7037 |
|
|
{
|
7038 |
|
|
asm_p = INSN_ASM_P (insn);
|
7039 |
|
|
|
7040 |
|
|
if (asm_p)
|
7041 |
|
|
/* This is asm insn which *had* to be scheduled first
|
7042 |
|
|
on the cycle. */
|
7043 |
|
|
haifa_cost = 1;
|
7044 |
|
|
else
|
7045 |
|
|
/* This is a use/clobber insn. It should not change
|
7046 |
|
|
cost. */
|
7047 |
|
|
haifa_cost = 0;
|
7048 |
|
|
}
|
7049 |
|
|
else
|
7050 |
|
|
haifa_cost = estimate_insn_cost (insn, curr_state);
|
7051 |
|
|
|
7052 |
|
|
/* Stall for whatever cycles we've stalled before. */
|
7053 |
|
|
after_stall = 0;
|
7054 |
|
|
if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
|
7055 |
|
|
{
|
7056 |
|
|
haifa_cost = cost;
|
7057 |
|
|
after_stall = 1;
|
7058 |
|
|
}
|
7059 |
|
|
all_issued = issued_insns == issue_rate;
|
7060 |
|
|
if (haifa_cost == 0 && all_issued)
|
7061 |
|
|
haifa_cost = 1;
|
7062 |
|
|
if (haifa_cost > 0)
|
7063 |
|
|
{
|
7064 |
|
|
int i = 0;
|
7065 |
|
|
|
7066 |
|
|
while (haifa_cost--)
|
7067 |
|
|
{
|
7068 |
|
|
advance_state (curr_state);
|
7069 |
|
|
issued_insns = 0;
|
7070 |
|
|
i++;
|
7071 |
|
|
|
7072 |
|
|
if (sched_verbose >= 2)
|
7073 |
|
|
{
|
7074 |
|
|
sel_print ("advance_state (state_transition)\n");
|
7075 |
|
|
debug_state (curr_state);
|
7076 |
|
|
}
|
7077 |
|
|
|
7078 |
|
|
/* The DFA may report that e.g. insn requires 2 cycles to be
|
7079 |
|
|
issued, but on the next cycle it says that insn is ready
|
7080 |
|
|
to go. Check this here. */
|
7081 |
|
|
if (!after_stall
|
7082 |
|
|
&& real_insn
|
7083 |
|
|
&& haifa_cost > 0
|
7084 |
|
|
&& estimate_insn_cost (insn, curr_state) == 0)
|
7085 |
|
|
break;
|
7086 |
|
|
|
7087 |
|
|
/* When the data dependency stall is longer than the DFA stall,
|
7088 |
|
|
and when we have issued exactly issue_rate insns and stalled,
|
7089 |
|
|
it could be that after this longer stall the insn will again
|
7090 |
|
|
become unavailable to the DFA restrictions. Looks strange
|
7091 |
|
|
but happens e.g. on x86-64. So recheck DFA on the last
|
7092 |
|
|
iteration. */
|
7093 |
|
|
if ((after_stall || all_issued)
|
7094 |
|
|
&& real_insn
|
7095 |
|
|
&& haifa_cost == 0)
|
7096 |
|
|
haifa_cost = estimate_insn_cost (insn, curr_state);
|
7097 |
|
|
}
|
7098 |
|
|
|
7099 |
|
|
haifa_clock += i;
|
7100 |
|
|
if (sched_verbose >= 2)
|
7101 |
|
|
sel_print ("haifa clock: %d\n", haifa_clock);
|
7102 |
|
|
}
|
7103 |
|
|
else
|
7104 |
|
|
gcc_assert (haifa_cost == 0);
|
7105 |
|
|
|
7106 |
|
|
if (sched_verbose >= 2)
|
7107 |
|
|
sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
|
7108 |
|
|
|
7109 |
|
|
if (targetm.sched.dfa_new_cycle)
|
7110 |
|
|
while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
|
7111 |
|
|
haifa_last_clock, haifa_clock,
|
7112 |
|
|
&sort_p))
|
7113 |
|
|
{
|
7114 |
|
|
advance_state (curr_state);
|
7115 |
|
|
issued_insns = 0;
|
7116 |
|
|
haifa_clock++;
|
7117 |
|
|
if (sched_verbose >= 2)
|
7118 |
|
|
{
|
7119 |
|
|
sel_print ("advance_state (dfa_new_cycle)\n");
|
7120 |
|
|
debug_state (curr_state);
|
7121 |
|
|
sel_print ("haifa clock: %d\n", haifa_clock + 1);
|
7122 |
|
|
}
|
7123 |
|
|
}
|
7124 |
|
|
|
7125 |
|
|
if (real_insn)
|
7126 |
|
|
{
|
7127 |
|
|
cost = state_transition (curr_state, insn);
|
7128 |
|
|
issued_insns++;
|
7129 |
|
|
|
7130 |
|
|
if (sched_verbose >= 2)
|
7131 |
|
|
{
|
7132 |
|
|
sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
|
7133 |
|
|
haifa_clock + 1);
|
7134 |
|
|
debug_state (curr_state);
|
7135 |
|
|
}
|
7136 |
|
|
gcc_assert (cost < 0);
|
7137 |
|
|
}
|
7138 |
|
|
|
7139 |
|
|
if (targetm.sched.variable_issue)
|
7140 |
|
|
targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
|
7141 |
|
|
|
7142 |
|
|
INSN_SCHED_CYCLE (insn) = haifa_clock;
|
7143 |
|
|
|
7144 |
|
|
last_clock = clock;
|
7145 |
|
|
haifa_last_clock = haifa_clock;
|
7146 |
|
|
}
|
7147 |
|
|
}
|
7148 |
|
|
|
7149 |
|
|
/* Put TImode markers on insns starting a new issue group. */
|
7150 |
|
|
static void
|
7151 |
|
|
put_TImodes (void)
|
7152 |
|
|
{
|
7153 |
|
|
int last_clock = -1;
|
7154 |
|
|
insn_t insn;
|
7155 |
|
|
|
7156 |
|
|
for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
|
7157 |
|
|
insn = NEXT_INSN (insn))
|
7158 |
|
|
{
|
7159 |
|
|
int cost, clock;
|
7160 |
|
|
|
7161 |
|
|
if (!INSN_P (insn))
|
7162 |
|
|
continue;
|
7163 |
|
|
|
7164 |
|
|
clock = INSN_SCHED_CYCLE (insn);
|
7165 |
|
|
cost = (last_clock == -1) ? 1 : clock - last_clock;
|
7166 |
|
|
|
7167 |
|
|
gcc_assert (cost >= 0);
|
7168 |
|
|
|
7169 |
|
|
if (issue_rate > 1
|
7170 |
|
|
&& GET_CODE (PATTERN (insn)) != USE
|
7171 |
|
|
&& GET_CODE (PATTERN (insn)) != CLOBBER)
|
7172 |
|
|
{
|
7173 |
|
|
if (reload_completed && cost > 0)
|
7174 |
|
|
PUT_MODE (insn, TImode);
|
7175 |
|
|
|
7176 |
|
|
last_clock = clock;
|
7177 |
|
|
}
|
7178 |
|
|
|
7179 |
|
|
if (sched_verbose >= 2)
|
7180 |
|
|
sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
|
7181 |
|
|
}
|
7182 |
|
|
}
|
7183 |
|
|
|
7184 |
|
|
/* Perform MD_FINISH on EBBs comprising current region. When
|
7185 |
|
|
RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
|
7186 |
|
|
to produce correct sched cycles on insns. */
|
7187 |
|
|
static void
|
7188 |
|
|
sel_region_target_finish (bool reset_sched_cycles_p)
|
7189 |
|
|
{
|
7190 |
|
|
int i;
|
7191 |
|
|
bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
|
7192 |
|
|
|
7193 |
|
|
for (i = 0; i < current_nr_blocks; i++)
|
7194 |
|
|
{
|
7195 |
|
|
if (bitmap_bit_p (scheduled_blocks, i))
|
7196 |
|
|
continue;
|
7197 |
|
|
|
7198 |
|
|
/* While pipelining outer loops, skip bundling for loop
|
7199 |
|
|
preheaders. Those will be rescheduled in the outer loop. */
|
7200 |
|
|
if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
|
7201 |
|
|
continue;
|
7202 |
|
|
|
7203 |
|
|
find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
|
7204 |
|
|
|
7205 |
|
|
if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
|
7206 |
|
|
continue;
|
7207 |
|
|
|
7208 |
|
|
if (reset_sched_cycles_p)
|
7209 |
|
|
reset_sched_cycles_in_current_ebb ();
|
7210 |
|
|
|
7211 |
|
|
if (targetm.sched.init)
|
7212 |
|
|
targetm.sched.init (sched_dump, sched_verbose, -1);
|
7213 |
|
|
|
7214 |
|
|
put_TImodes ();
|
7215 |
|
|
|
7216 |
|
|
if (targetm.sched.finish)
|
7217 |
|
|
{
|
7218 |
|
|
targetm.sched.finish (sched_dump, sched_verbose);
|
7219 |
|
|
|
7220 |
|
|
/* Extend luids so that insns generated by the target will
|
7221 |
|
|
get zero luid. */
|
7222 |
|
|
sched_extend_luids ();
|
7223 |
|
|
}
|
7224 |
|
|
}
|
7225 |
|
|
|
7226 |
|
|
BITMAP_FREE (scheduled_blocks);
|
7227 |
|
|
}
|
7228 |
|
|
|
7229 |
|
|
/* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
|
7230 |
|
|
is true, make an additional pass emulating scheduler to get correct insn
|
7231 |
|
|
cycles for md_finish calls. */
|
7232 |
|
|
static void
|
7233 |
|
|
sel_region_finish (bool reset_sched_cycles_p)
|
7234 |
|
|
{
|
7235 |
|
|
simplify_changed_insns ();
|
7236 |
|
|
sched_finish_ready_list ();
|
7237 |
|
|
free_nop_pool ();
|
7238 |
|
|
|
7239 |
|
|
/* Free the vectors. */
|
7240 |
|
|
if (vec_av_set)
|
7241 |
|
|
VEC_free (expr_t, heap, vec_av_set);
|
7242 |
|
|
BITMAP_FREE (current_copies);
|
7243 |
|
|
BITMAP_FREE (current_originators);
|
7244 |
|
|
BITMAP_FREE (code_motion_visited_blocks);
|
7245 |
|
|
vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
|
7246 |
|
|
vinsn_vec_free (&vec_target_unavailable_vinsns);
|
7247 |
|
|
|
7248 |
|
|
/* If LV_SET of the region head should be updated, do it now because
|
7249 |
|
|
there will be no other chance. */
|
7250 |
|
|
{
|
7251 |
|
|
succ_iterator si;
|
7252 |
|
|
insn_t insn;
|
7253 |
|
|
|
7254 |
|
|
FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
|
7255 |
|
|
SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
|
7256 |
|
|
{
|
7257 |
|
|
basic_block bb = BLOCK_FOR_INSN (insn);
|
7258 |
|
|
|
7259 |
|
|
if (!BB_LV_SET_VALID_P (bb))
|
7260 |
|
|
compute_live (insn);
|
7261 |
|
|
}
|
7262 |
|
|
}
|
7263 |
|
|
|
7264 |
|
|
/* Emulate the Haifa scheduler for bundling. */
|
7265 |
|
|
if (reload_completed)
|
7266 |
|
|
sel_region_target_finish (reset_sched_cycles_p);
|
7267 |
|
|
|
7268 |
|
|
sel_finish_global_and_expr ();
|
7269 |
|
|
|
7270 |
|
|
bitmap_clear (forced_ebb_heads);
|
7271 |
|
|
|
7272 |
|
|
free_nop_vinsn ();
|
7273 |
|
|
|
7274 |
|
|
finish_deps_global ();
|
7275 |
|
|
sched_finish_luids ();
|
7276 |
|
|
VEC_free (haifa_deps_insn_data_def, heap, h_d_i_d);
|
7277 |
|
|
|
7278 |
|
|
sel_finish_bbs ();
|
7279 |
|
|
BITMAP_FREE (blocks_to_reschedule);
|
7280 |
|
|
|
7281 |
|
|
sel_unregister_cfg_hooks ();
|
7282 |
|
|
|
7283 |
|
|
max_issue_size = 0;
|
7284 |
|
|
}
|
7285 |
|
|
|
7286 |
|
|
|
7287 |
|
|
/* Functions that implement the scheduler driver. */
|
7288 |
|
|
|
7289 |
|
|
/* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
|
7290 |
|
|
is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
|
7291 |
|
|
of insns scheduled -- these would be postprocessed later. */
|
7292 |
|
|
static void
|
7293 |
|
|
schedule_on_fences (flist_t fences, int max_seqno,
|
7294 |
|
|
ilist_t **scheduled_insns_tailpp)
|
7295 |
|
|
{
|
7296 |
|
|
flist_t old_fences = fences;
|
7297 |
|
|
|
7298 |
|
|
if (sched_verbose >= 1)
|
7299 |
|
|
{
|
7300 |
|
|
sel_print ("\nScheduling on fences: ");
|
7301 |
|
|
dump_flist (fences);
|
7302 |
|
|
sel_print ("\n");
|
7303 |
|
|
}
|
7304 |
|
|
|
7305 |
|
|
scheduled_something_on_previous_fence = false;
|
7306 |
|
|
for (; fences; fences = FLIST_NEXT (fences))
|
7307 |
|
|
{
|
7308 |
|
|
fence_t fence = NULL;
|
7309 |
|
|
int seqno = 0;
|
7310 |
|
|
flist_t fences2;
|
7311 |
|
|
bool first_p = true;
|
7312 |
|
|
|
7313 |
|
|
/* Choose the next fence group to schedule.
|
7314 |
|
|
The fact that insn can be scheduled only once
|
7315 |
|
|
on the cycle is guaranteed by two properties:
|
7316 |
|
|
1. seqnos of parallel groups decrease with each iteration.
|
7317 |
|
|
2. If is_ineligible_successor () sees the larger seqno, it
|
7318 |
|
|
checks if candidate insn is_in_current_fence_p (). */
|
7319 |
|
|
for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
|
7320 |
|
|
{
|
7321 |
|
|
fence_t f = FLIST_FENCE (fences2);
|
7322 |
|
|
|
7323 |
|
|
if (!FENCE_PROCESSED_P (f))
|
7324 |
|
|
{
|
7325 |
|
|
int i = INSN_SEQNO (FENCE_INSN (f));
|
7326 |
|
|
|
7327 |
|
|
if (first_p || i > seqno)
|
7328 |
|
|
{
|
7329 |
|
|
seqno = i;
|
7330 |
|
|
fence = f;
|
7331 |
|
|
first_p = false;
|
7332 |
|
|
}
|
7333 |
|
|
else
|
7334 |
|
|
/* ??? Seqnos of different groups should be different. */
|
7335 |
|
|
gcc_assert (1 || i != seqno);
|
7336 |
|
|
}
|
7337 |
|
|
}
|
7338 |
|
|
|
7339 |
|
|
gcc_assert (fence);
|
7340 |
|
|
|
7341 |
|
|
/* As FENCE is nonnull, SEQNO is initialized. */
|
7342 |
|
|
seqno -= max_seqno + 1;
|
7343 |
|
|
fill_insns (fence, seqno, scheduled_insns_tailpp);
|
7344 |
|
|
FENCE_PROCESSED_P (fence) = true;
|
7345 |
|
|
}
|
7346 |
|
|
|
7347 |
|
|
/* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
|
7348 |
|
|
don't need to keep bookkeeping-invalidated and target-unavailable
|
7349 |
|
|
vinsns any more. */
|
7350 |
|
|
vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
|
7351 |
|
|
vinsn_vec_clear (&vec_target_unavailable_vinsns);
|
7352 |
|
|
}
|
7353 |
|
|
|
7354 |
|
|
/* Calculate MIN_SEQNO and MAX_SEQNO. */
|
7355 |
|
|
static void
|
7356 |
|
|
find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
|
7357 |
|
|
{
|
7358 |
|
|
*min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
|
7359 |
|
|
|
7360 |
|
|
/* The first element is already processed. */
|
7361 |
|
|
while ((fences = FLIST_NEXT (fences)))
|
7362 |
|
|
{
|
7363 |
|
|
int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
|
7364 |
|
|
|
7365 |
|
|
if (*min_seqno > seqno)
|
7366 |
|
|
*min_seqno = seqno;
|
7367 |
|
|
else if (*max_seqno < seqno)
|
7368 |
|
|
*max_seqno = seqno;
|
7369 |
|
|
}
|
7370 |
|
|
}
|
7371 |
|
|
|
7372 |
|
|
/* Calculate new fences from FENCES. */
|
7373 |
|
|
static flist_t
|
7374 |
|
|
calculate_new_fences (flist_t fences, int orig_max_seqno)
|
7375 |
|
|
{
|
7376 |
|
|
flist_t old_fences = fences;
|
7377 |
|
|
struct flist_tail_def _new_fences, *new_fences = &_new_fences;
|
7378 |
|
|
|
7379 |
|
|
flist_tail_init (new_fences);
|
7380 |
|
|
for (; fences; fences = FLIST_NEXT (fences))
|
7381 |
|
|
{
|
7382 |
|
|
fence_t fence = FLIST_FENCE (fences);
|
7383 |
|
|
insn_t insn;
|
7384 |
|
|
|
7385 |
|
|
if (!FENCE_BNDS (fence))
|
7386 |
|
|
{
|
7387 |
|
|
/* This fence doesn't have any successors. */
|
7388 |
|
|
if (!FENCE_SCHEDULED_P (fence))
|
7389 |
|
|
{
|
7390 |
|
|
/* Nothing was scheduled on this fence. */
|
7391 |
|
|
int seqno;
|
7392 |
|
|
|
7393 |
|
|
insn = FENCE_INSN (fence);
|
7394 |
|
|
seqno = INSN_SEQNO (insn);
|
7395 |
|
|
gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
|
7396 |
|
|
|
7397 |
|
|
if (sched_verbose >= 1)
|
7398 |
|
|
sel_print ("Fence %d[%d] has not changed\n",
|
7399 |
|
|
INSN_UID (insn),
|
7400 |
|
|
BLOCK_NUM (insn));
|
7401 |
|
|
move_fence_to_fences (fences, new_fences);
|
7402 |
|
|
}
|
7403 |
|
|
}
|
7404 |
|
|
else
|
7405 |
|
|
extract_new_fences_from (fences, new_fences, orig_max_seqno);
|
7406 |
|
|
}
|
7407 |
|
|
|
7408 |
|
|
flist_clear (&old_fences);
|
7409 |
|
|
return FLIST_TAIL_HEAD (new_fences);
|
7410 |
|
|
}
|
7411 |
|
|
|
7412 |
|
|
/* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
|
7413 |
|
|
are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
|
7414 |
|
|
the highest seqno used in a region. Return the updated highest seqno. */
|
7415 |
|
|
static int
|
7416 |
|
|
update_seqnos_and_stage (int min_seqno, int max_seqno,
|
7417 |
|
|
int highest_seqno_in_use,
|
7418 |
|
|
ilist_t *pscheduled_insns)
|
7419 |
|
|
{
|
7420 |
|
|
int new_hs;
|
7421 |
|
|
ilist_iterator ii;
|
7422 |
|
|
insn_t insn;
|
7423 |
|
|
|
7424 |
|
|
/* Actually, new_hs is the seqno of the instruction, that was
|
7425 |
|
|
scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
|
7426 |
|
|
if (*pscheduled_insns)
|
7427 |
|
|
{
|
7428 |
|
|
new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
|
7429 |
|
|
+ highest_seqno_in_use + max_seqno - min_seqno + 2);
|
7430 |
|
|
gcc_assert (new_hs > highest_seqno_in_use);
|
7431 |
|
|
}
|
7432 |
|
|
else
|
7433 |
|
|
new_hs = highest_seqno_in_use;
|
7434 |
|
|
|
7435 |
|
|
FOR_EACH_INSN (insn, ii, *pscheduled_insns)
|
7436 |
|
|
{
|
7437 |
|
|
gcc_assert (INSN_SEQNO (insn) < 0);
|
7438 |
|
|
INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
|
7439 |
|
|
gcc_assert (INSN_SEQNO (insn) <= new_hs);
|
7440 |
|
|
|
7441 |
|
|
/* When not pipelining, purge unneeded insn info on the scheduled insns.
|
7442 |
|
|
For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
|
7443 |
|
|
require > 1GB of memory e.g. on limit-fnargs.c. */
|
7444 |
|
|
if (! pipelining_p)
|
7445 |
|
|
free_data_for_scheduled_insn (insn);
|
7446 |
|
|
}
|
7447 |
|
|
|
7448 |
|
|
ilist_clear (pscheduled_insns);
|
7449 |
|
|
global_level++;
|
7450 |
|
|
|
7451 |
|
|
return new_hs;
|
7452 |
|
|
}
|
7453 |
|
|
|
7454 |
|
|
/* The main driver for scheduling a region. This function is responsible
|
7455 |
|
|
for correct propagation of fences (i.e. scheduling points) and creating
|
7456 |
|
|
a group of parallel insns at each of them. It also supports
|
7457 |
|
|
pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
|
7458 |
|
|
of scheduling. */
|
7459 |
|
|
static void
|
7460 |
|
|
sel_sched_region_2 (int orig_max_seqno)
|
7461 |
|
|
{
|
7462 |
|
|
int highest_seqno_in_use = orig_max_seqno;
|
7463 |
|
|
|
7464 |
|
|
stat_bookkeeping_copies = 0;
|
7465 |
|
|
stat_insns_needed_bookkeeping = 0;
|
7466 |
|
|
stat_renamed_scheduled = 0;
|
7467 |
|
|
stat_substitutions_total = 0;
|
7468 |
|
|
num_insns_scheduled = 0;
|
7469 |
|
|
|
7470 |
|
|
while (fences)
|
7471 |
|
|
{
|
7472 |
|
|
int min_seqno, max_seqno;
|
7473 |
|
|
ilist_t scheduled_insns = NULL;
|
7474 |
|
|
ilist_t *scheduled_insns_tailp = &scheduled_insns;
|
7475 |
|
|
|
7476 |
|
|
find_min_max_seqno (fences, &min_seqno, &max_seqno);
|
7477 |
|
|
schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
|
7478 |
|
|
fences = calculate_new_fences (fences, orig_max_seqno);
|
7479 |
|
|
highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
|
7480 |
|
|
highest_seqno_in_use,
|
7481 |
|
|
&scheduled_insns);
|
7482 |
|
|
}
|
7483 |
|
|
|
7484 |
|
|
if (sched_verbose >= 1)
|
7485 |
|
|
sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
|
7486 |
|
|
"bookkeeping, %d insns renamed, %d insns substituted\n",
|
7487 |
|
|
stat_bookkeeping_copies,
|
7488 |
|
|
stat_insns_needed_bookkeeping,
|
7489 |
|
|
stat_renamed_scheduled,
|
7490 |
|
|
stat_substitutions_total);
|
7491 |
|
|
}
|
7492 |
|
|
|
7493 |
|
|
/* Schedule a region. When pipelining, search for possibly never scheduled
|
7494 |
|
|
bookkeeping code and schedule it. Reschedule pipelined code without
|
7495 |
|
|
pipelining after. */
|
7496 |
|
|
static void
|
7497 |
|
|
sel_sched_region_1 (void)
|
7498 |
|
|
{
|
7499 |
|
|
int orig_max_seqno;
|
7500 |
|
|
|
7501 |
|
|
/* Remove empty blocks that might be in the region from the beginning. */
|
7502 |
|
|
purge_empty_blocks ();
|
7503 |
|
|
|
7504 |
|
|
orig_max_seqno = init_seqno (NULL, NULL);
|
7505 |
|
|
gcc_assert (orig_max_seqno >= 1);
|
7506 |
|
|
|
7507 |
|
|
/* When pipelining outer loops, create fences on the loop header,
|
7508 |
|
|
not preheader. */
|
7509 |
|
|
fences = NULL;
|
7510 |
|
|
if (current_loop_nest)
|
7511 |
|
|
init_fences (BB_END (EBB_FIRST_BB (0)));
|
7512 |
|
|
else
|
7513 |
|
|
init_fences (bb_note (EBB_FIRST_BB (0)));
|
7514 |
|
|
global_level = 1;
|
7515 |
|
|
|
7516 |
|
|
sel_sched_region_2 (orig_max_seqno);
|
7517 |
|
|
|
7518 |
|
|
gcc_assert (fences == NULL);
|
7519 |
|
|
|
7520 |
|
|
if (pipelining_p)
|
7521 |
|
|
{
|
7522 |
|
|
int i;
|
7523 |
|
|
basic_block bb;
|
7524 |
|
|
struct flist_tail_def _new_fences;
|
7525 |
|
|
flist_tail_t new_fences = &_new_fences;
|
7526 |
|
|
bool do_p = true;
|
7527 |
|
|
|
7528 |
|
|
pipelining_p = false;
|
7529 |
|
|
max_ws = MIN (max_ws, issue_rate * 3 / 2);
|
7530 |
|
|
bookkeeping_p = false;
|
7531 |
|
|
enable_schedule_as_rhs_p = false;
|
7532 |
|
|
|
7533 |
|
|
/* Schedule newly created code, that has not been scheduled yet. */
|
7534 |
|
|
do_p = true;
|
7535 |
|
|
|
7536 |
|
|
while (do_p)
|
7537 |
|
|
{
|
7538 |
|
|
do_p = false;
|
7539 |
|
|
|
7540 |
|
|
for (i = 0; i < current_nr_blocks; i++)
|
7541 |
|
|
{
|
7542 |
|
|
basic_block bb = EBB_FIRST_BB (i);
|
7543 |
|
|
|
7544 |
|
|
if (bitmap_bit_p (blocks_to_reschedule, bb->index))
|
7545 |
|
|
{
|
7546 |
|
|
if (! bb_ends_ebb_p (bb))
|
7547 |
|
|
bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
|
7548 |
|
|
if (sel_bb_empty_p (bb))
|
7549 |
|
|
{
|
7550 |
|
|
bitmap_clear_bit (blocks_to_reschedule, bb->index);
|
7551 |
|
|
continue;
|
7552 |
|
|
}
|
7553 |
|
|
clear_outdated_rtx_info (bb);
|
7554 |
|
|
if (sel_insn_is_speculation_check (BB_END (bb))
|
7555 |
|
|
&& JUMP_P (BB_END (bb)))
|
7556 |
|
|
bitmap_set_bit (blocks_to_reschedule,
|
7557 |
|
|
BRANCH_EDGE (bb)->dest->index);
|
7558 |
|
|
}
|
7559 |
|
|
else if (! sel_bb_empty_p (bb)
|
7560 |
|
|
&& INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
|
7561 |
|
|
bitmap_set_bit (blocks_to_reschedule, bb->index);
|
7562 |
|
|
}
|
7563 |
|
|
|
7564 |
|
|
for (i = 0; i < current_nr_blocks; i++)
|
7565 |
|
|
{
|
7566 |
|
|
bb = EBB_FIRST_BB (i);
|
7567 |
|
|
|
7568 |
|
|
/* While pipelining outer loops, skip bundling for loop
|
7569 |
|
|
preheaders. Those will be rescheduled in the outer
|
7570 |
|
|
loop. */
|
7571 |
|
|
if (sel_is_loop_preheader_p (bb))
|
7572 |
|
|
{
|
7573 |
|
|
clear_outdated_rtx_info (bb);
|
7574 |
|
|
continue;
|
7575 |
|
|
}
|
7576 |
|
|
|
7577 |
|
|
if (bitmap_bit_p (blocks_to_reschedule, bb->index))
|
7578 |
|
|
{
|
7579 |
|
|
flist_tail_init (new_fences);
|
7580 |
|
|
|
7581 |
|
|
orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
|
7582 |
|
|
|
7583 |
|
|
/* Mark BB as head of the new ebb. */
|
7584 |
|
|
bitmap_set_bit (forced_ebb_heads, bb->index);
|
7585 |
|
|
|
7586 |
|
|
gcc_assert (fences == NULL);
|
7587 |
|
|
|
7588 |
|
|
init_fences (bb_note (bb));
|
7589 |
|
|
|
7590 |
|
|
sel_sched_region_2 (orig_max_seqno);
|
7591 |
|
|
|
7592 |
|
|
do_p = true;
|
7593 |
|
|
break;
|
7594 |
|
|
}
|
7595 |
|
|
}
|
7596 |
|
|
}
|
7597 |
|
|
}
|
7598 |
|
|
}
|
7599 |
|
|
|
7600 |
|
|
/* Schedule the RGN region. */
|
7601 |
|
|
void
|
7602 |
|
|
sel_sched_region (int rgn)
|
7603 |
|
|
{
|
7604 |
|
|
bool schedule_p;
|
7605 |
|
|
bool reset_sched_cycles_p;
|
7606 |
|
|
|
7607 |
|
|
if (sel_region_init (rgn))
|
7608 |
|
|
return;
|
7609 |
|
|
|
7610 |
|
|
if (sched_verbose >= 1)
|
7611 |
|
|
sel_print ("Scheduling region %d\n", rgn);
|
7612 |
|
|
|
7613 |
|
|
schedule_p = (!sched_is_disabled_for_current_region_p ()
|
7614 |
|
|
&& dbg_cnt (sel_sched_region_cnt));
|
7615 |
|
|
reset_sched_cycles_p = pipelining_p;
|
7616 |
|
|
if (schedule_p)
|
7617 |
|
|
sel_sched_region_1 ();
|
7618 |
|
|
else
|
7619 |
|
|
/* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
|
7620 |
|
|
reset_sched_cycles_p = true;
|
7621 |
|
|
|
7622 |
|
|
sel_region_finish (reset_sched_cycles_p);
|
7623 |
|
|
}
|
7624 |
|
|
|
7625 |
|
|
/* Perform global init for the scheduler. */
|
7626 |
|
|
static void
|
7627 |
|
|
sel_global_init (void)
|
7628 |
|
|
{
|
7629 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
7630 |
|
|
alloc_sched_pools ();
|
7631 |
|
|
|
7632 |
|
|
/* Setup the infos for sched_init. */
|
7633 |
|
|
sel_setup_sched_infos ();
|
7634 |
|
|
setup_sched_dump ();
|
7635 |
|
|
|
7636 |
|
|
sched_rgn_init (false);
|
7637 |
|
|
sched_init ();
|
7638 |
|
|
|
7639 |
|
|
sched_init_bbs ();
|
7640 |
|
|
/* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
|
7641 |
|
|
after_recovery = 0;
|
7642 |
|
|
can_issue_more = issue_rate;
|
7643 |
|
|
|
7644 |
|
|
sched_extend_target ();
|
7645 |
|
|
sched_deps_init (true);
|
7646 |
|
|
setup_nop_and_exit_insns ();
|
7647 |
|
|
sel_extend_global_bb_info ();
|
7648 |
|
|
init_lv_sets ();
|
7649 |
|
|
init_hard_regs_data ();
|
7650 |
|
|
}
|
7651 |
|
|
|
7652 |
|
|
/* Free the global data of the scheduler. */
|
7653 |
|
|
static void
|
7654 |
|
|
sel_global_finish (void)
|
7655 |
|
|
{
|
7656 |
|
|
free_bb_note_pool ();
|
7657 |
|
|
free_lv_sets ();
|
7658 |
|
|
sel_finish_global_bb_info ();
|
7659 |
|
|
|
7660 |
|
|
free_regset_pool ();
|
7661 |
|
|
free_nop_and_exit_insns ();
|
7662 |
|
|
|
7663 |
|
|
sched_rgn_finish ();
|
7664 |
|
|
sched_deps_finish ();
|
7665 |
|
|
sched_finish ();
|
7666 |
|
|
|
7667 |
|
|
if (current_loops)
|
7668 |
|
|
sel_finish_pipelining ();
|
7669 |
|
|
|
7670 |
|
|
free_sched_pools ();
|
7671 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
7672 |
|
|
}
|
7673 |
|
|
|
7674 |
|
|
/* Return true when we need to skip selective scheduling. Used for debugging. */
|
7675 |
|
|
bool
|
7676 |
|
|
maybe_skip_selective_scheduling (void)
|
7677 |
|
|
{
|
7678 |
|
|
return ! dbg_cnt (sel_sched_cnt);
|
7679 |
|
|
}
|
7680 |
|
|
|
7681 |
|
|
/* The entry point. */
|
7682 |
|
|
void
|
7683 |
|
|
run_selective_scheduling (void)
|
7684 |
|
|
{
|
7685 |
|
|
int rgn;
|
7686 |
|
|
|
7687 |
|
|
if (n_basic_blocks == NUM_FIXED_BLOCKS)
|
7688 |
|
|
return;
|
7689 |
|
|
|
7690 |
|
|
sel_global_init ();
|
7691 |
|
|
|
7692 |
|
|
for (rgn = 0; rgn < nr_regions; rgn++)
|
7693 |
|
|
sel_sched_region (rgn);
|
7694 |
|
|
|
7695 |
|
|
sel_global_finish ();
|
7696 |
|
|
}
|
7697 |
|
|
|
7698 |
|
|
#endif
|