1 |
684 |
jeremybenn |
/* RTL simplification functions for GNU compiler.
|
2 |
|
|
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
3 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
|
4 |
|
|
2011 Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
|
23 |
|
|
#include "config.h"
|
24 |
|
|
#include "system.h"
|
25 |
|
|
#include "coretypes.h"
|
26 |
|
|
#include "tm.h"
|
27 |
|
|
#include "rtl.h"
|
28 |
|
|
#include "tree.h"
|
29 |
|
|
#include "tm_p.h"
|
30 |
|
|
#include "regs.h"
|
31 |
|
|
#include "hard-reg-set.h"
|
32 |
|
|
#include "flags.h"
|
33 |
|
|
#include "insn-config.h"
|
34 |
|
|
#include "recog.h"
|
35 |
|
|
#include "function.h"
|
36 |
|
|
#include "expr.h"
|
37 |
|
|
#include "diagnostic-core.h"
|
38 |
|
|
#include "output.h"
|
39 |
|
|
#include "ggc.h"
|
40 |
|
|
#include "target.h"
|
41 |
|
|
|
42 |
|
|
/* Simplification and canonicalization of RTL. */
|
43 |
|
|
|
44 |
|
|
/* Much code operates on (low, high) pairs; the low value is an
|
45 |
|
|
unsigned wide int, the high value a signed wide int. We
|
46 |
|
|
occasionally need to sign extend from low to high as if low were a
|
47 |
|
|
signed wide int. */
|
48 |
|
|
#define HWI_SIGN_EXTEND(low) \
|
49 |
|
|
((((HOST_WIDE_INT) low) < 0) ? ((HOST_WIDE_INT) -1) : ((HOST_WIDE_INT) 0))
|
50 |
|
|
|
51 |
|
|
static rtx neg_const_int (enum machine_mode, const_rtx);
|
52 |
|
|
static bool plus_minus_operand_p (const_rtx);
|
53 |
|
|
static bool simplify_plus_minus_op_data_cmp (rtx, rtx);
|
54 |
|
|
static rtx simplify_plus_minus (enum rtx_code, enum machine_mode, rtx, rtx);
|
55 |
|
|
static rtx simplify_immed_subreg (enum machine_mode, rtx, enum machine_mode,
|
56 |
|
|
unsigned int);
|
57 |
|
|
static rtx simplify_associative_operation (enum rtx_code, enum machine_mode,
|
58 |
|
|
rtx, rtx);
|
59 |
|
|
static rtx simplify_relational_operation_1 (enum rtx_code, enum machine_mode,
|
60 |
|
|
enum machine_mode, rtx, rtx);
|
61 |
|
|
static rtx simplify_unary_operation_1 (enum rtx_code, enum machine_mode, rtx);
|
62 |
|
|
static rtx simplify_binary_operation_1 (enum rtx_code, enum machine_mode,
|
63 |
|
|
rtx, rtx, rtx, rtx);
|
64 |
|
|
|
65 |
|
|
/* Negate a CONST_INT rtx, truncating (because a conversion from a
|
66 |
|
|
maximally negative number can overflow). */
|
67 |
|
|
static rtx
|
68 |
|
|
neg_const_int (enum machine_mode mode, const_rtx i)
|
69 |
|
|
{
|
70 |
|
|
return gen_int_mode (- INTVAL (i), mode);
|
71 |
|
|
}
|
72 |
|
|
|
73 |
|
|
/* Test whether expression, X, is an immediate constant that represents
|
74 |
|
|
the most significant bit of machine mode MODE. */
|
75 |
|
|
|
76 |
|
|
bool
|
77 |
|
|
mode_signbit_p (enum machine_mode mode, const_rtx x)
|
78 |
|
|
{
|
79 |
|
|
unsigned HOST_WIDE_INT val;
|
80 |
|
|
unsigned int width;
|
81 |
|
|
|
82 |
|
|
if (GET_MODE_CLASS (mode) != MODE_INT)
|
83 |
|
|
return false;
|
84 |
|
|
|
85 |
|
|
width = GET_MODE_PRECISION (mode);
|
86 |
|
|
if (width == 0)
|
87 |
|
|
return false;
|
88 |
|
|
|
89 |
|
|
if (width <= HOST_BITS_PER_WIDE_INT
|
90 |
|
|
&& CONST_INT_P (x))
|
91 |
|
|
val = INTVAL (x);
|
92 |
|
|
else if (width <= 2 * HOST_BITS_PER_WIDE_INT
|
93 |
|
|
&& GET_CODE (x) == CONST_DOUBLE
|
94 |
|
|
&& CONST_DOUBLE_LOW (x) == 0)
|
95 |
|
|
{
|
96 |
|
|
val = CONST_DOUBLE_HIGH (x);
|
97 |
|
|
width -= HOST_BITS_PER_WIDE_INT;
|
98 |
|
|
}
|
99 |
|
|
else
|
100 |
|
|
return false;
|
101 |
|
|
|
102 |
|
|
if (width < HOST_BITS_PER_WIDE_INT)
|
103 |
|
|
val &= ((unsigned HOST_WIDE_INT) 1 << width) - 1;
|
104 |
|
|
return val == ((unsigned HOST_WIDE_INT) 1 << (width - 1));
|
105 |
|
|
}
|
106 |
|
|
|
107 |
|
|
/* Test whether VAL is equal to the most significant bit of mode MODE
|
108 |
|
|
(after masking with the mode mask of MODE). Returns false if the
|
109 |
|
|
precision of MODE is too large to handle. */
|
110 |
|
|
|
111 |
|
|
bool
|
112 |
|
|
val_signbit_p (enum machine_mode mode, unsigned HOST_WIDE_INT val)
|
113 |
|
|
{
|
114 |
|
|
unsigned int width;
|
115 |
|
|
|
116 |
|
|
if (GET_MODE_CLASS (mode) != MODE_INT)
|
117 |
|
|
return false;
|
118 |
|
|
|
119 |
|
|
width = GET_MODE_PRECISION (mode);
|
120 |
|
|
if (width == 0 || width > HOST_BITS_PER_WIDE_INT)
|
121 |
|
|
return false;
|
122 |
|
|
|
123 |
|
|
val &= GET_MODE_MASK (mode);
|
124 |
|
|
return val == ((unsigned HOST_WIDE_INT) 1 << (width - 1));
|
125 |
|
|
}
|
126 |
|
|
|
127 |
|
|
/* Test whether the most significant bit of mode MODE is set in VAL.
|
128 |
|
|
Returns false if the precision of MODE is too large to handle. */
|
129 |
|
|
bool
|
130 |
|
|
val_signbit_known_set_p (enum machine_mode mode, unsigned HOST_WIDE_INT val)
|
131 |
|
|
{
|
132 |
|
|
unsigned int width;
|
133 |
|
|
|
134 |
|
|
if (GET_MODE_CLASS (mode) != MODE_INT)
|
135 |
|
|
return false;
|
136 |
|
|
|
137 |
|
|
width = GET_MODE_PRECISION (mode);
|
138 |
|
|
if (width == 0 || width > HOST_BITS_PER_WIDE_INT)
|
139 |
|
|
return false;
|
140 |
|
|
|
141 |
|
|
val &= (unsigned HOST_WIDE_INT) 1 << (width - 1);
|
142 |
|
|
return val != 0;
|
143 |
|
|
}
|
144 |
|
|
|
145 |
|
|
/* Test whether the most significant bit of mode MODE is clear in VAL.
|
146 |
|
|
Returns false if the precision of MODE is too large to handle. */
|
147 |
|
|
bool
|
148 |
|
|
val_signbit_known_clear_p (enum machine_mode mode, unsigned HOST_WIDE_INT val)
|
149 |
|
|
{
|
150 |
|
|
unsigned int width;
|
151 |
|
|
|
152 |
|
|
if (GET_MODE_CLASS (mode) != MODE_INT)
|
153 |
|
|
return false;
|
154 |
|
|
|
155 |
|
|
width = GET_MODE_PRECISION (mode);
|
156 |
|
|
if (width == 0 || width > HOST_BITS_PER_WIDE_INT)
|
157 |
|
|
return false;
|
158 |
|
|
|
159 |
|
|
val &= (unsigned HOST_WIDE_INT) 1 << (width - 1);
|
160 |
|
|
return val == 0;
|
161 |
|
|
}
|
162 |
|
|
|
163 |
|
|
/* Make a binary operation by properly ordering the operands and
|
164 |
|
|
seeing if the expression folds. */
|
165 |
|
|
|
166 |
|
|
rtx
|
167 |
|
|
simplify_gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0,
|
168 |
|
|
rtx op1)
|
169 |
|
|
{
|
170 |
|
|
rtx tem;
|
171 |
|
|
|
172 |
|
|
/* If this simplifies, do it. */
|
173 |
|
|
tem = simplify_binary_operation (code, mode, op0, op1);
|
174 |
|
|
if (tem)
|
175 |
|
|
return tem;
|
176 |
|
|
|
177 |
|
|
/* Put complex operands first and constants second if commutative. */
|
178 |
|
|
if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
|
179 |
|
|
&& swap_commutative_operands_p (op0, op1))
|
180 |
|
|
tem = op0, op0 = op1, op1 = tem;
|
181 |
|
|
|
182 |
|
|
return gen_rtx_fmt_ee (code, mode, op0, op1);
|
183 |
|
|
}
|
184 |
|
|
|
185 |
|
|
/* If X is a MEM referencing the constant pool, return the real value.
|
186 |
|
|
Otherwise return X. */
|
187 |
|
|
rtx
|
188 |
|
|
avoid_constant_pool_reference (rtx x)
|
189 |
|
|
{
|
190 |
|
|
rtx c, tmp, addr;
|
191 |
|
|
enum machine_mode cmode;
|
192 |
|
|
HOST_WIDE_INT offset = 0;
|
193 |
|
|
|
194 |
|
|
switch (GET_CODE (x))
|
195 |
|
|
{
|
196 |
|
|
case MEM:
|
197 |
|
|
break;
|
198 |
|
|
|
199 |
|
|
case FLOAT_EXTEND:
|
200 |
|
|
/* Handle float extensions of constant pool references. */
|
201 |
|
|
tmp = XEXP (x, 0);
|
202 |
|
|
c = avoid_constant_pool_reference (tmp);
|
203 |
|
|
if (c != tmp && GET_CODE (c) == CONST_DOUBLE)
|
204 |
|
|
{
|
205 |
|
|
REAL_VALUE_TYPE d;
|
206 |
|
|
|
207 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (d, c);
|
208 |
|
|
return CONST_DOUBLE_FROM_REAL_VALUE (d, GET_MODE (x));
|
209 |
|
|
}
|
210 |
|
|
return x;
|
211 |
|
|
|
212 |
|
|
default:
|
213 |
|
|
return x;
|
214 |
|
|
}
|
215 |
|
|
|
216 |
|
|
if (GET_MODE (x) == BLKmode)
|
217 |
|
|
return x;
|
218 |
|
|
|
219 |
|
|
addr = XEXP (x, 0);
|
220 |
|
|
|
221 |
|
|
/* Call target hook to avoid the effects of -fpic etc.... */
|
222 |
|
|
addr = targetm.delegitimize_address (addr);
|
223 |
|
|
|
224 |
|
|
/* Split the address into a base and integer offset. */
|
225 |
|
|
if (GET_CODE (addr) == CONST
|
226 |
|
|
&& GET_CODE (XEXP (addr, 0)) == PLUS
|
227 |
|
|
&& CONST_INT_P (XEXP (XEXP (addr, 0), 1)))
|
228 |
|
|
{
|
229 |
|
|
offset = INTVAL (XEXP (XEXP (addr, 0), 1));
|
230 |
|
|
addr = XEXP (XEXP (addr, 0), 0);
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
if (GET_CODE (addr) == LO_SUM)
|
234 |
|
|
addr = XEXP (addr, 1);
|
235 |
|
|
|
236 |
|
|
/* If this is a constant pool reference, we can turn it into its
|
237 |
|
|
constant and hope that simplifications happen. */
|
238 |
|
|
if (GET_CODE (addr) == SYMBOL_REF
|
239 |
|
|
&& CONSTANT_POOL_ADDRESS_P (addr))
|
240 |
|
|
{
|
241 |
|
|
c = get_pool_constant (addr);
|
242 |
|
|
cmode = get_pool_mode (addr);
|
243 |
|
|
|
244 |
|
|
/* If we're accessing the constant in a different mode than it was
|
245 |
|
|
originally stored, attempt to fix that up via subreg simplifications.
|
246 |
|
|
If that fails we have no choice but to return the original memory. */
|
247 |
|
|
if (offset != 0 || cmode != GET_MODE (x))
|
248 |
|
|
{
|
249 |
|
|
rtx tem = simplify_subreg (GET_MODE (x), c, cmode, offset);
|
250 |
|
|
if (tem && CONSTANT_P (tem))
|
251 |
|
|
return tem;
|
252 |
|
|
}
|
253 |
|
|
else
|
254 |
|
|
return c;
|
255 |
|
|
}
|
256 |
|
|
|
257 |
|
|
return x;
|
258 |
|
|
}
|
259 |
|
|
|
260 |
|
|
/* Simplify a MEM based on its attributes. This is the default
|
261 |
|
|
delegitimize_address target hook, and it's recommended that every
|
262 |
|
|
overrider call it. */
|
263 |
|
|
|
264 |
|
|
rtx
|
265 |
|
|
delegitimize_mem_from_attrs (rtx x)
|
266 |
|
|
{
|
267 |
|
|
/* MEMs without MEM_OFFSETs may have been offset, so we can't just
|
268 |
|
|
use their base addresses as equivalent. */
|
269 |
|
|
if (MEM_P (x)
|
270 |
|
|
&& MEM_EXPR (x)
|
271 |
|
|
&& MEM_OFFSET_KNOWN_P (x))
|
272 |
|
|
{
|
273 |
|
|
tree decl = MEM_EXPR (x);
|
274 |
|
|
enum machine_mode mode = GET_MODE (x);
|
275 |
|
|
HOST_WIDE_INT offset = 0;
|
276 |
|
|
|
277 |
|
|
switch (TREE_CODE (decl))
|
278 |
|
|
{
|
279 |
|
|
default:
|
280 |
|
|
decl = NULL;
|
281 |
|
|
break;
|
282 |
|
|
|
283 |
|
|
case VAR_DECL:
|
284 |
|
|
break;
|
285 |
|
|
|
286 |
|
|
case ARRAY_REF:
|
287 |
|
|
case ARRAY_RANGE_REF:
|
288 |
|
|
case COMPONENT_REF:
|
289 |
|
|
case BIT_FIELD_REF:
|
290 |
|
|
case REALPART_EXPR:
|
291 |
|
|
case IMAGPART_EXPR:
|
292 |
|
|
case VIEW_CONVERT_EXPR:
|
293 |
|
|
{
|
294 |
|
|
HOST_WIDE_INT bitsize, bitpos;
|
295 |
|
|
tree toffset;
|
296 |
|
|
int unsignedp = 0, volatilep = 0;
|
297 |
|
|
|
298 |
|
|
decl = get_inner_reference (decl, &bitsize, &bitpos, &toffset,
|
299 |
|
|
&mode, &unsignedp, &volatilep, false);
|
300 |
|
|
if (bitsize != GET_MODE_BITSIZE (mode)
|
301 |
|
|
|| (bitpos % BITS_PER_UNIT)
|
302 |
|
|
|| (toffset && !host_integerp (toffset, 0)))
|
303 |
|
|
decl = NULL;
|
304 |
|
|
else
|
305 |
|
|
{
|
306 |
|
|
offset += bitpos / BITS_PER_UNIT;
|
307 |
|
|
if (toffset)
|
308 |
|
|
offset += TREE_INT_CST_LOW (toffset);
|
309 |
|
|
}
|
310 |
|
|
break;
|
311 |
|
|
}
|
312 |
|
|
}
|
313 |
|
|
|
314 |
|
|
if (decl
|
315 |
|
|
&& mode == GET_MODE (x)
|
316 |
|
|
&& TREE_CODE (decl) == VAR_DECL
|
317 |
|
|
&& (TREE_STATIC (decl)
|
318 |
|
|
|| DECL_THREAD_LOCAL_P (decl))
|
319 |
|
|
&& DECL_RTL_SET_P (decl)
|
320 |
|
|
&& MEM_P (DECL_RTL (decl)))
|
321 |
|
|
{
|
322 |
|
|
rtx newx;
|
323 |
|
|
|
324 |
|
|
offset += MEM_OFFSET (x);
|
325 |
|
|
|
326 |
|
|
newx = DECL_RTL (decl);
|
327 |
|
|
|
328 |
|
|
if (MEM_P (newx))
|
329 |
|
|
{
|
330 |
|
|
rtx n = XEXP (newx, 0), o = XEXP (x, 0);
|
331 |
|
|
|
332 |
|
|
/* Avoid creating a new MEM needlessly if we already had
|
333 |
|
|
the same address. We do if there's no OFFSET and the
|
334 |
|
|
old address X is identical to NEWX, or if X is of the
|
335 |
|
|
form (plus NEWX OFFSET), or the NEWX is of the form
|
336 |
|
|
(plus Y (const_int Z)) and X is that with the offset
|
337 |
|
|
added: (plus Y (const_int Z+OFFSET)). */
|
338 |
|
|
if (!((offset == 0
|
339 |
|
|
|| (GET_CODE (o) == PLUS
|
340 |
|
|
&& GET_CODE (XEXP (o, 1)) == CONST_INT
|
341 |
|
|
&& (offset == INTVAL (XEXP (o, 1))
|
342 |
|
|
|| (GET_CODE (n) == PLUS
|
343 |
|
|
&& GET_CODE (XEXP (n, 1)) == CONST_INT
|
344 |
|
|
&& (INTVAL (XEXP (n, 1)) + offset
|
345 |
|
|
== INTVAL (XEXP (o, 1)))
|
346 |
|
|
&& (n = XEXP (n, 0))))
|
347 |
|
|
&& (o = XEXP (o, 0))))
|
348 |
|
|
&& rtx_equal_p (o, n)))
|
349 |
|
|
x = adjust_address_nv (newx, mode, offset);
|
350 |
|
|
}
|
351 |
|
|
else if (GET_MODE (x) == GET_MODE (newx)
|
352 |
|
|
&& offset == 0)
|
353 |
|
|
x = newx;
|
354 |
|
|
}
|
355 |
|
|
}
|
356 |
|
|
|
357 |
|
|
return x;
|
358 |
|
|
}
|
359 |
|
|
|
360 |
|
|
/* Make a unary operation by first seeing if it folds and otherwise making
|
361 |
|
|
the specified operation. */
|
362 |
|
|
|
363 |
|
|
rtx
|
364 |
|
|
simplify_gen_unary (enum rtx_code code, enum machine_mode mode, rtx op,
|
365 |
|
|
enum machine_mode op_mode)
|
366 |
|
|
{
|
367 |
|
|
rtx tem;
|
368 |
|
|
|
369 |
|
|
/* If this simplifies, use it. */
|
370 |
|
|
if ((tem = simplify_unary_operation (code, mode, op, op_mode)) != 0)
|
371 |
|
|
return tem;
|
372 |
|
|
|
373 |
|
|
return gen_rtx_fmt_e (code, mode, op);
|
374 |
|
|
}
|
375 |
|
|
|
376 |
|
|
/* Likewise for ternary operations. */
|
377 |
|
|
|
378 |
|
|
rtx
|
379 |
|
|
simplify_gen_ternary (enum rtx_code code, enum machine_mode mode,
|
380 |
|
|
enum machine_mode op0_mode, rtx op0, rtx op1, rtx op2)
|
381 |
|
|
{
|
382 |
|
|
rtx tem;
|
383 |
|
|
|
384 |
|
|
/* If this simplifies, use it. */
|
385 |
|
|
if (0 != (tem = simplify_ternary_operation (code, mode, op0_mode,
|
386 |
|
|
op0, op1, op2)))
|
387 |
|
|
return tem;
|
388 |
|
|
|
389 |
|
|
return gen_rtx_fmt_eee (code, mode, op0, op1, op2);
|
390 |
|
|
}
|
391 |
|
|
|
392 |
|
|
/* Likewise, for relational operations.
|
393 |
|
|
CMP_MODE specifies mode comparison is done in. */
|
394 |
|
|
|
395 |
|
|
rtx
|
396 |
|
|
simplify_gen_relational (enum rtx_code code, enum machine_mode mode,
|
397 |
|
|
enum machine_mode cmp_mode, rtx op0, rtx op1)
|
398 |
|
|
{
|
399 |
|
|
rtx tem;
|
400 |
|
|
|
401 |
|
|
if (0 != (tem = simplify_relational_operation (code, mode, cmp_mode,
|
402 |
|
|
op0, op1)))
|
403 |
|
|
return tem;
|
404 |
|
|
|
405 |
|
|
return gen_rtx_fmt_ee (code, mode, op0, op1);
|
406 |
|
|
}
|
407 |
|
|
|
408 |
|
|
/* If FN is NULL, replace all occurrences of OLD_RTX in X with copy_rtx (DATA)
|
409 |
|
|
and simplify the result. If FN is non-NULL, call this callback on each
|
410 |
|
|
X, if it returns non-NULL, replace X with its return value and simplify the
|
411 |
|
|
result. */
|
412 |
|
|
|
413 |
|
|
rtx
|
414 |
|
|
simplify_replace_fn_rtx (rtx x, const_rtx old_rtx,
|
415 |
|
|
rtx (*fn) (rtx, const_rtx, void *), void *data)
|
416 |
|
|
{
|
417 |
|
|
enum rtx_code code = GET_CODE (x);
|
418 |
|
|
enum machine_mode mode = GET_MODE (x);
|
419 |
|
|
enum machine_mode op_mode;
|
420 |
|
|
const char *fmt;
|
421 |
|
|
rtx op0, op1, op2, newx, op;
|
422 |
|
|
rtvec vec, newvec;
|
423 |
|
|
int i, j;
|
424 |
|
|
|
425 |
|
|
if (__builtin_expect (fn != NULL, 0))
|
426 |
|
|
{
|
427 |
|
|
newx = fn (x, old_rtx, data);
|
428 |
|
|
if (newx)
|
429 |
|
|
return newx;
|
430 |
|
|
}
|
431 |
|
|
else if (rtx_equal_p (x, old_rtx))
|
432 |
|
|
return copy_rtx ((rtx) data);
|
433 |
|
|
|
434 |
|
|
switch (GET_RTX_CLASS (code))
|
435 |
|
|
{
|
436 |
|
|
case RTX_UNARY:
|
437 |
|
|
op0 = XEXP (x, 0);
|
438 |
|
|
op_mode = GET_MODE (op0);
|
439 |
|
|
op0 = simplify_replace_fn_rtx (op0, old_rtx, fn, data);
|
440 |
|
|
if (op0 == XEXP (x, 0))
|
441 |
|
|
return x;
|
442 |
|
|
return simplify_gen_unary (code, mode, op0, op_mode);
|
443 |
|
|
|
444 |
|
|
case RTX_BIN_ARITH:
|
445 |
|
|
case RTX_COMM_ARITH:
|
446 |
|
|
op0 = simplify_replace_fn_rtx (XEXP (x, 0), old_rtx, fn, data);
|
447 |
|
|
op1 = simplify_replace_fn_rtx (XEXP (x, 1), old_rtx, fn, data);
|
448 |
|
|
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
|
449 |
|
|
return x;
|
450 |
|
|
return simplify_gen_binary (code, mode, op0, op1);
|
451 |
|
|
|
452 |
|
|
case RTX_COMPARE:
|
453 |
|
|
case RTX_COMM_COMPARE:
|
454 |
|
|
op0 = XEXP (x, 0);
|
455 |
|
|
op1 = XEXP (x, 1);
|
456 |
|
|
op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
|
457 |
|
|
op0 = simplify_replace_fn_rtx (op0, old_rtx, fn, data);
|
458 |
|
|
op1 = simplify_replace_fn_rtx (op1, old_rtx, fn, data);
|
459 |
|
|
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
|
460 |
|
|
return x;
|
461 |
|
|
return simplify_gen_relational (code, mode, op_mode, op0, op1);
|
462 |
|
|
|
463 |
|
|
case RTX_TERNARY:
|
464 |
|
|
case RTX_BITFIELD_OPS:
|
465 |
|
|
op0 = XEXP (x, 0);
|
466 |
|
|
op_mode = GET_MODE (op0);
|
467 |
|
|
op0 = simplify_replace_fn_rtx (op0, old_rtx, fn, data);
|
468 |
|
|
op1 = simplify_replace_fn_rtx (XEXP (x, 1), old_rtx, fn, data);
|
469 |
|
|
op2 = simplify_replace_fn_rtx (XEXP (x, 2), old_rtx, fn, data);
|
470 |
|
|
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
|
471 |
|
|
return x;
|
472 |
|
|
if (op_mode == VOIDmode)
|
473 |
|
|
op_mode = GET_MODE (op0);
|
474 |
|
|
return simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
|
475 |
|
|
|
476 |
|
|
case RTX_EXTRA:
|
477 |
|
|
if (code == SUBREG)
|
478 |
|
|
{
|
479 |
|
|
op0 = simplify_replace_fn_rtx (SUBREG_REG (x), old_rtx, fn, data);
|
480 |
|
|
if (op0 == SUBREG_REG (x))
|
481 |
|
|
return x;
|
482 |
|
|
op0 = simplify_gen_subreg (GET_MODE (x), op0,
|
483 |
|
|
GET_MODE (SUBREG_REG (x)),
|
484 |
|
|
SUBREG_BYTE (x));
|
485 |
|
|
return op0 ? op0 : x;
|
486 |
|
|
}
|
487 |
|
|
break;
|
488 |
|
|
|
489 |
|
|
case RTX_OBJ:
|
490 |
|
|
if (code == MEM)
|
491 |
|
|
{
|
492 |
|
|
op0 = simplify_replace_fn_rtx (XEXP (x, 0), old_rtx, fn, data);
|
493 |
|
|
if (op0 == XEXP (x, 0))
|
494 |
|
|
return x;
|
495 |
|
|
return replace_equiv_address_nv (x, op0);
|
496 |
|
|
}
|
497 |
|
|
else if (code == LO_SUM)
|
498 |
|
|
{
|
499 |
|
|
op0 = simplify_replace_fn_rtx (XEXP (x, 0), old_rtx, fn, data);
|
500 |
|
|
op1 = simplify_replace_fn_rtx (XEXP (x, 1), old_rtx, fn, data);
|
501 |
|
|
|
502 |
|
|
/* (lo_sum (high x) x) -> x */
|
503 |
|
|
if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
|
504 |
|
|
return op1;
|
505 |
|
|
|
506 |
|
|
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
|
507 |
|
|
return x;
|
508 |
|
|
return gen_rtx_LO_SUM (mode, op0, op1);
|
509 |
|
|
}
|
510 |
|
|
break;
|
511 |
|
|
|
512 |
|
|
default:
|
513 |
|
|
break;
|
514 |
|
|
}
|
515 |
|
|
|
516 |
|
|
newx = x;
|
517 |
|
|
fmt = GET_RTX_FORMAT (code);
|
518 |
|
|
for (i = 0; fmt[i]; i++)
|
519 |
|
|
switch (fmt[i])
|
520 |
|
|
{
|
521 |
|
|
case 'E':
|
522 |
|
|
vec = XVEC (x, i);
|
523 |
|
|
newvec = XVEC (newx, i);
|
524 |
|
|
for (j = 0; j < GET_NUM_ELEM (vec); j++)
|
525 |
|
|
{
|
526 |
|
|
op = simplify_replace_fn_rtx (RTVEC_ELT (vec, j),
|
527 |
|
|
old_rtx, fn, data);
|
528 |
|
|
if (op != RTVEC_ELT (vec, j))
|
529 |
|
|
{
|
530 |
|
|
if (newvec == vec)
|
531 |
|
|
{
|
532 |
|
|
newvec = shallow_copy_rtvec (vec);
|
533 |
|
|
if (x == newx)
|
534 |
|
|
newx = shallow_copy_rtx (x);
|
535 |
|
|
XVEC (newx, i) = newvec;
|
536 |
|
|
}
|
537 |
|
|
RTVEC_ELT (newvec, j) = op;
|
538 |
|
|
}
|
539 |
|
|
}
|
540 |
|
|
break;
|
541 |
|
|
|
542 |
|
|
case 'e':
|
543 |
|
|
if (XEXP (x, i))
|
544 |
|
|
{
|
545 |
|
|
op = simplify_replace_fn_rtx (XEXP (x, i), old_rtx, fn, data);
|
546 |
|
|
if (op != XEXP (x, i))
|
547 |
|
|
{
|
548 |
|
|
if (x == newx)
|
549 |
|
|
newx = shallow_copy_rtx (x);
|
550 |
|
|
XEXP (newx, i) = op;
|
551 |
|
|
}
|
552 |
|
|
}
|
553 |
|
|
break;
|
554 |
|
|
}
|
555 |
|
|
return newx;
|
556 |
|
|
}
|
557 |
|
|
|
558 |
|
|
/* Replace all occurrences of OLD_RTX in X with NEW_RTX and try to simplify the
|
559 |
|
|
resulting RTX. Return a new RTX which is as simplified as possible. */
|
560 |
|
|
|
561 |
|
|
rtx
|
562 |
|
|
simplify_replace_rtx (rtx x, const_rtx old_rtx, rtx new_rtx)
|
563 |
|
|
{
|
564 |
|
|
return simplify_replace_fn_rtx (x, old_rtx, 0, new_rtx);
|
565 |
|
|
}
|
566 |
|
|
|
567 |
|
|
/* Try to simplify a unary operation CODE whose output mode is to be
|
568 |
|
|
MODE with input operand OP whose mode was originally OP_MODE.
|
569 |
|
|
Return zero if no simplification can be made. */
|
570 |
|
|
rtx
|
571 |
|
|
simplify_unary_operation (enum rtx_code code, enum machine_mode mode,
|
572 |
|
|
rtx op, enum machine_mode op_mode)
|
573 |
|
|
{
|
574 |
|
|
rtx trueop, tem;
|
575 |
|
|
|
576 |
|
|
trueop = avoid_constant_pool_reference (op);
|
577 |
|
|
|
578 |
|
|
tem = simplify_const_unary_operation (code, mode, trueop, op_mode);
|
579 |
|
|
if (tem)
|
580 |
|
|
return tem;
|
581 |
|
|
|
582 |
|
|
return simplify_unary_operation_1 (code, mode, op);
|
583 |
|
|
}
|
584 |
|
|
|
585 |
|
|
/* Perform some simplifications we can do even if the operands
|
586 |
|
|
aren't constant. */
|
587 |
|
|
static rtx
|
588 |
|
|
simplify_unary_operation_1 (enum rtx_code code, enum machine_mode mode, rtx op)
|
589 |
|
|
{
|
590 |
|
|
enum rtx_code reversed;
|
591 |
|
|
rtx temp;
|
592 |
|
|
|
593 |
|
|
switch (code)
|
594 |
|
|
{
|
595 |
|
|
case NOT:
|
596 |
|
|
/* (not (not X)) == X. */
|
597 |
|
|
if (GET_CODE (op) == NOT)
|
598 |
|
|
return XEXP (op, 0);
|
599 |
|
|
|
600 |
|
|
/* (not (eq X Y)) == (ne X Y), etc. if BImode or the result of the
|
601 |
|
|
comparison is all ones. */
|
602 |
|
|
if (COMPARISON_P (op)
|
603 |
|
|
&& (mode == BImode || STORE_FLAG_VALUE == -1)
|
604 |
|
|
&& ((reversed = reversed_comparison_code (op, NULL_RTX)) != UNKNOWN))
|
605 |
|
|
return simplify_gen_relational (reversed, mode, VOIDmode,
|
606 |
|
|
XEXP (op, 0), XEXP (op, 1));
|
607 |
|
|
|
608 |
|
|
/* (not (plus X -1)) can become (neg X). */
|
609 |
|
|
if (GET_CODE (op) == PLUS
|
610 |
|
|
&& XEXP (op, 1) == constm1_rtx)
|
611 |
|
|
return simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
|
612 |
|
|
|
613 |
|
|
/* Similarly, (not (neg X)) is (plus X -1). */
|
614 |
|
|
if (GET_CODE (op) == NEG)
|
615 |
|
|
return plus_constant (XEXP (op, 0), -1);
|
616 |
|
|
|
617 |
|
|
/* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
|
618 |
|
|
if (GET_CODE (op) == XOR
|
619 |
|
|
&& CONST_INT_P (XEXP (op, 1))
|
620 |
|
|
&& (temp = simplify_unary_operation (NOT, mode,
|
621 |
|
|
XEXP (op, 1), mode)) != 0)
|
622 |
|
|
return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
|
623 |
|
|
|
624 |
|
|
/* (not (plus X C)) for signbit C is (xor X D) with D = ~C. */
|
625 |
|
|
if (GET_CODE (op) == PLUS
|
626 |
|
|
&& CONST_INT_P (XEXP (op, 1))
|
627 |
|
|
&& mode_signbit_p (mode, XEXP (op, 1))
|
628 |
|
|
&& (temp = simplify_unary_operation (NOT, mode,
|
629 |
|
|
XEXP (op, 1), mode)) != 0)
|
630 |
|
|
return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
|
631 |
|
|
|
632 |
|
|
|
633 |
|
|
/* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for
|
634 |
|
|
operands other than 1, but that is not valid. We could do a
|
635 |
|
|
similar simplification for (not (lshiftrt C X)) where C is
|
636 |
|
|
just the sign bit, but this doesn't seem common enough to
|
637 |
|
|
bother with. */
|
638 |
|
|
if (GET_CODE (op) == ASHIFT
|
639 |
|
|
&& XEXP (op, 0) == const1_rtx)
|
640 |
|
|
{
|
641 |
|
|
temp = simplify_gen_unary (NOT, mode, const1_rtx, mode);
|
642 |
|
|
return simplify_gen_binary (ROTATE, mode, temp, XEXP (op, 1));
|
643 |
|
|
}
|
644 |
|
|
|
645 |
|
|
/* (not (ashiftrt foo C)) where C is the number of bits in FOO
|
646 |
|
|
minus 1 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1,
|
647 |
|
|
so we can perform the above simplification. */
|
648 |
|
|
|
649 |
|
|
if (STORE_FLAG_VALUE == -1
|
650 |
|
|
&& GET_CODE (op) == ASHIFTRT
|
651 |
|
|
&& GET_CODE (XEXP (op, 1))
|
652 |
|
|
&& INTVAL (XEXP (op, 1)) == GET_MODE_PRECISION (mode) - 1)
|
653 |
|
|
return simplify_gen_relational (GE, mode, VOIDmode,
|
654 |
|
|
XEXP (op, 0), const0_rtx);
|
655 |
|
|
|
656 |
|
|
|
657 |
|
|
if (GET_CODE (op) == SUBREG
|
658 |
|
|
&& subreg_lowpart_p (op)
|
659 |
|
|
&& (GET_MODE_SIZE (GET_MODE (op))
|
660 |
|
|
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
|
661 |
|
|
&& GET_CODE (SUBREG_REG (op)) == ASHIFT
|
662 |
|
|
&& XEXP (SUBREG_REG (op), 0) == const1_rtx)
|
663 |
|
|
{
|
664 |
|
|
enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op));
|
665 |
|
|
rtx x;
|
666 |
|
|
|
667 |
|
|
x = gen_rtx_ROTATE (inner_mode,
|
668 |
|
|
simplify_gen_unary (NOT, inner_mode, const1_rtx,
|
669 |
|
|
inner_mode),
|
670 |
|
|
XEXP (SUBREG_REG (op), 1));
|
671 |
|
|
return rtl_hooks.gen_lowpart_no_emit (mode, x);
|
672 |
|
|
}
|
673 |
|
|
|
674 |
|
|
/* Apply De Morgan's laws to reduce number of patterns for machines
|
675 |
|
|
with negating logical insns (and-not, nand, etc.). If result has
|
676 |
|
|
only one NOT, put it first, since that is how the patterns are
|
677 |
|
|
coded. */
|
678 |
|
|
|
679 |
|
|
if (GET_CODE (op) == IOR || GET_CODE (op) == AND)
|
680 |
|
|
{
|
681 |
|
|
rtx in1 = XEXP (op, 0), in2 = XEXP (op, 1);
|
682 |
|
|
enum machine_mode op_mode;
|
683 |
|
|
|
684 |
|
|
op_mode = GET_MODE (in1);
|
685 |
|
|
in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
|
686 |
|
|
|
687 |
|
|
op_mode = GET_MODE (in2);
|
688 |
|
|
if (op_mode == VOIDmode)
|
689 |
|
|
op_mode = mode;
|
690 |
|
|
in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
|
691 |
|
|
|
692 |
|
|
if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
|
693 |
|
|
{
|
694 |
|
|
rtx tem = in2;
|
695 |
|
|
in2 = in1; in1 = tem;
|
696 |
|
|
}
|
697 |
|
|
|
698 |
|
|
return gen_rtx_fmt_ee (GET_CODE (op) == IOR ? AND : IOR,
|
699 |
|
|
mode, in1, in2);
|
700 |
|
|
}
|
701 |
|
|
break;
|
702 |
|
|
|
703 |
|
|
case NEG:
|
704 |
|
|
/* (neg (neg X)) == X. */
|
705 |
|
|
if (GET_CODE (op) == NEG)
|
706 |
|
|
return XEXP (op, 0);
|
707 |
|
|
|
708 |
|
|
/* (neg (plus X 1)) can become (not X). */
|
709 |
|
|
if (GET_CODE (op) == PLUS
|
710 |
|
|
&& XEXP (op, 1) == const1_rtx)
|
711 |
|
|
return simplify_gen_unary (NOT, mode, XEXP (op, 0), mode);
|
712 |
|
|
|
713 |
|
|
/* Similarly, (neg (not X)) is (plus X 1). */
|
714 |
|
|
if (GET_CODE (op) == NOT)
|
715 |
|
|
return plus_constant (XEXP (op, 0), 1);
|
716 |
|
|
|
717 |
|
|
/* (neg (minus X Y)) can become (minus Y X). This transformation
|
718 |
|
|
isn't safe for modes with signed zeros, since if X and Y are
|
719 |
|
|
both +0, (minus Y X) is the same as (minus X Y). If the
|
720 |
|
|
rounding mode is towards +infinity (or -infinity) then the two
|
721 |
|
|
expressions will be rounded differently. */
|
722 |
|
|
if (GET_CODE (op) == MINUS
|
723 |
|
|
&& !HONOR_SIGNED_ZEROS (mode)
|
724 |
|
|
&& !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
|
725 |
|
|
return simplify_gen_binary (MINUS, mode, XEXP (op, 1), XEXP (op, 0));
|
726 |
|
|
|
727 |
|
|
if (GET_CODE (op) == PLUS
|
728 |
|
|
&& !HONOR_SIGNED_ZEROS (mode)
|
729 |
|
|
&& !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
|
730 |
|
|
{
|
731 |
|
|
/* (neg (plus A C)) is simplified to (minus -C A). */
|
732 |
|
|
if (CONST_INT_P (XEXP (op, 1))
|
733 |
|
|
|| GET_CODE (XEXP (op, 1)) == CONST_DOUBLE)
|
734 |
|
|
{
|
735 |
|
|
temp = simplify_unary_operation (NEG, mode, XEXP (op, 1), mode);
|
736 |
|
|
if (temp)
|
737 |
|
|
return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 0));
|
738 |
|
|
}
|
739 |
|
|
|
740 |
|
|
/* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
|
741 |
|
|
temp = simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
|
742 |
|
|
return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 1));
|
743 |
|
|
}
|
744 |
|
|
|
745 |
|
|
/* (neg (mult A B)) becomes (mult A (neg B)).
|
746 |
|
|
This works even for floating-point values. */
|
747 |
|
|
if (GET_CODE (op) == MULT
|
748 |
|
|
&& !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
|
749 |
|
|
{
|
750 |
|
|
temp = simplify_gen_unary (NEG, mode, XEXP (op, 1), mode);
|
751 |
|
|
return simplify_gen_binary (MULT, mode, XEXP (op, 0), temp);
|
752 |
|
|
}
|
753 |
|
|
|
754 |
|
|
/* NEG commutes with ASHIFT since it is multiplication. Only do
|
755 |
|
|
this if we can then eliminate the NEG (e.g., if the operand
|
756 |
|
|
is a constant). */
|
757 |
|
|
if (GET_CODE (op) == ASHIFT)
|
758 |
|
|
{
|
759 |
|
|
temp = simplify_unary_operation (NEG, mode, XEXP (op, 0), mode);
|
760 |
|
|
if (temp)
|
761 |
|
|
return simplify_gen_binary (ASHIFT, mode, temp, XEXP (op, 1));
|
762 |
|
|
}
|
763 |
|
|
|
764 |
|
|
/* (neg (ashiftrt X C)) can be replaced by (lshiftrt X C) when
|
765 |
|
|
C is equal to the width of MODE minus 1. */
|
766 |
|
|
if (GET_CODE (op) == ASHIFTRT
|
767 |
|
|
&& CONST_INT_P (XEXP (op, 1))
|
768 |
|
|
&& INTVAL (XEXP (op, 1)) == GET_MODE_PRECISION (mode) - 1)
|
769 |
|
|
return simplify_gen_binary (LSHIFTRT, mode,
|
770 |
|
|
XEXP (op, 0), XEXP (op, 1));
|
771 |
|
|
|
772 |
|
|
/* (neg (lshiftrt X C)) can be replaced by (ashiftrt X C) when
|
773 |
|
|
C is equal to the width of MODE minus 1. */
|
774 |
|
|
if (GET_CODE (op) == LSHIFTRT
|
775 |
|
|
&& CONST_INT_P (XEXP (op, 1))
|
776 |
|
|
&& INTVAL (XEXP (op, 1)) == GET_MODE_PRECISION (mode) - 1)
|
777 |
|
|
return simplify_gen_binary (ASHIFTRT, mode,
|
778 |
|
|
XEXP (op, 0), XEXP (op, 1));
|
779 |
|
|
|
780 |
|
|
/* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
|
781 |
|
|
if (GET_CODE (op) == XOR
|
782 |
|
|
&& XEXP (op, 1) == const1_rtx
|
783 |
|
|
&& nonzero_bits (XEXP (op, 0), mode) == 1)
|
784 |
|
|
return plus_constant (XEXP (op, 0), -1);
|
785 |
|
|
|
786 |
|
|
/* (neg (lt x 0)) is (ashiftrt X C) if STORE_FLAG_VALUE is 1. */
|
787 |
|
|
/* (neg (lt x 0)) is (lshiftrt X C) if STORE_FLAG_VALUE is -1. */
|
788 |
|
|
if (GET_CODE (op) == LT
|
789 |
|
|
&& XEXP (op, 1) == const0_rtx
|
790 |
|
|
&& SCALAR_INT_MODE_P (GET_MODE (XEXP (op, 0))))
|
791 |
|
|
{
|
792 |
|
|
enum machine_mode inner = GET_MODE (XEXP (op, 0));
|
793 |
|
|
int isize = GET_MODE_PRECISION (inner);
|
794 |
|
|
if (STORE_FLAG_VALUE == 1)
|
795 |
|
|
{
|
796 |
|
|
temp = simplify_gen_binary (ASHIFTRT, inner, XEXP (op, 0),
|
797 |
|
|
GEN_INT (isize - 1));
|
798 |
|
|
if (mode == inner)
|
799 |
|
|
return temp;
|
800 |
|
|
if (GET_MODE_PRECISION (mode) > isize)
|
801 |
|
|
return simplify_gen_unary (SIGN_EXTEND, mode, temp, inner);
|
802 |
|
|
return simplify_gen_unary (TRUNCATE, mode, temp, inner);
|
803 |
|
|
}
|
804 |
|
|
else if (STORE_FLAG_VALUE == -1)
|
805 |
|
|
{
|
806 |
|
|
temp = simplify_gen_binary (LSHIFTRT, inner, XEXP (op, 0),
|
807 |
|
|
GEN_INT (isize - 1));
|
808 |
|
|
if (mode == inner)
|
809 |
|
|
return temp;
|
810 |
|
|
if (GET_MODE_PRECISION (mode) > isize)
|
811 |
|
|
return simplify_gen_unary (ZERO_EXTEND, mode, temp, inner);
|
812 |
|
|
return simplify_gen_unary (TRUNCATE, mode, temp, inner);
|
813 |
|
|
}
|
814 |
|
|
}
|
815 |
|
|
break;
|
816 |
|
|
|
817 |
|
|
case TRUNCATE:
|
818 |
|
|
/* We can't handle truncation to a partial integer mode here
|
819 |
|
|
because we don't know the real bitsize of the partial
|
820 |
|
|
integer mode. */
|
821 |
|
|
if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
|
822 |
|
|
break;
|
823 |
|
|
|
824 |
|
|
/* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
|
825 |
|
|
if ((GET_CODE (op) == SIGN_EXTEND
|
826 |
|
|
|| GET_CODE (op) == ZERO_EXTEND)
|
827 |
|
|
&& GET_MODE (XEXP (op, 0)) == mode)
|
828 |
|
|
return XEXP (op, 0);
|
829 |
|
|
|
830 |
|
|
/* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
|
831 |
|
|
(OP:SI foo:SI) if OP is NEG or ABS. */
|
832 |
|
|
if ((GET_CODE (op) == ABS
|
833 |
|
|
|| GET_CODE (op) == NEG)
|
834 |
|
|
&& (GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
|
835 |
|
|
|| GET_CODE (XEXP (op, 0)) == ZERO_EXTEND)
|
836 |
|
|
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
|
837 |
|
|
return simplify_gen_unary (GET_CODE (op), mode,
|
838 |
|
|
XEXP (XEXP (op, 0), 0), mode);
|
839 |
|
|
|
840 |
|
|
/* (truncate:A (subreg:B (truncate:C X) 0)) is
|
841 |
|
|
(truncate:A X). */
|
842 |
|
|
if (GET_CODE (op) == SUBREG
|
843 |
|
|
&& GET_CODE (SUBREG_REG (op)) == TRUNCATE
|
844 |
|
|
&& subreg_lowpart_p (op))
|
845 |
|
|
return simplify_gen_unary (TRUNCATE, mode, XEXP (SUBREG_REG (op), 0),
|
846 |
|
|
GET_MODE (XEXP (SUBREG_REG (op), 0)));
|
847 |
|
|
|
848 |
|
|
/* If we know that the value is already truncated, we can
|
849 |
|
|
replace the TRUNCATE with a SUBREG. Note that this is also
|
850 |
|
|
valid if TRULY_NOOP_TRUNCATION is false for the corresponding
|
851 |
|
|
modes we just have to apply a different definition for
|
852 |
|
|
truncation. But don't do this for an (LSHIFTRT (MULT ...))
|
853 |
|
|
since this will cause problems with the umulXi3_highpart
|
854 |
|
|
patterns. */
|
855 |
|
|
if ((TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (op))
|
856 |
|
|
? (num_sign_bit_copies (op, GET_MODE (op))
|
857 |
|
|
> (unsigned int) (GET_MODE_PRECISION (GET_MODE (op))
|
858 |
|
|
- GET_MODE_PRECISION (mode)))
|
859 |
|
|
: truncated_to_mode (mode, op))
|
860 |
|
|
&& ! (GET_CODE (op) == LSHIFTRT
|
861 |
|
|
&& GET_CODE (XEXP (op, 0)) == MULT))
|
862 |
|
|
return rtl_hooks.gen_lowpart_no_emit (mode, op);
|
863 |
|
|
|
864 |
|
|
/* A truncate of a comparison can be replaced with a subreg if
|
865 |
|
|
STORE_FLAG_VALUE permits. This is like the previous test,
|
866 |
|
|
but it works even if the comparison is done in a mode larger
|
867 |
|
|
than HOST_BITS_PER_WIDE_INT. */
|
868 |
|
|
if (HWI_COMPUTABLE_MODE_P (mode)
|
869 |
|
|
&& COMPARISON_P (op)
|
870 |
|
|
&& (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
|
871 |
|
|
return rtl_hooks.gen_lowpart_no_emit (mode, op);
|
872 |
|
|
break;
|
873 |
|
|
|
874 |
|
|
case FLOAT_TRUNCATE:
|
875 |
|
|
if (DECIMAL_FLOAT_MODE_P (mode))
|
876 |
|
|
break;
|
877 |
|
|
|
878 |
|
|
/* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
|
879 |
|
|
if (GET_CODE (op) == FLOAT_EXTEND
|
880 |
|
|
&& GET_MODE (XEXP (op, 0)) == mode)
|
881 |
|
|
return XEXP (op, 0);
|
882 |
|
|
|
883 |
|
|
/* (float_truncate:SF (float_truncate:DF foo:XF))
|
884 |
|
|
= (float_truncate:SF foo:XF).
|
885 |
|
|
This may eliminate double rounding, so it is unsafe.
|
886 |
|
|
|
887 |
|
|
(float_truncate:SF (float_extend:XF foo:DF))
|
888 |
|
|
= (float_truncate:SF foo:DF).
|
889 |
|
|
|
890 |
|
|
(float_truncate:DF (float_extend:XF foo:SF))
|
891 |
|
|
= (float_extend:SF foo:DF). */
|
892 |
|
|
if ((GET_CODE (op) == FLOAT_TRUNCATE
|
893 |
|
|
&& flag_unsafe_math_optimizations)
|
894 |
|
|
|| GET_CODE (op) == FLOAT_EXTEND)
|
895 |
|
|
return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (op,
|
896 |
|
|
0)))
|
897 |
|
|
> GET_MODE_SIZE (mode)
|
898 |
|
|
? FLOAT_TRUNCATE : FLOAT_EXTEND,
|
899 |
|
|
mode,
|
900 |
|
|
XEXP (op, 0), mode);
|
901 |
|
|
|
902 |
|
|
/* (float_truncate (float x)) is (float x) */
|
903 |
|
|
if (GET_CODE (op) == FLOAT
|
904 |
|
|
&& (flag_unsafe_math_optimizations
|
905 |
|
|
|| (SCALAR_FLOAT_MODE_P (GET_MODE (op))
|
906 |
|
|
&& ((unsigned)significand_size (GET_MODE (op))
|
907 |
|
|
>= (GET_MODE_PRECISION (GET_MODE (XEXP (op, 0)))
|
908 |
|
|
- num_sign_bit_copies (XEXP (op, 0),
|
909 |
|
|
GET_MODE (XEXP (op, 0))))))))
|
910 |
|
|
return simplify_gen_unary (FLOAT, mode,
|
911 |
|
|
XEXP (op, 0),
|
912 |
|
|
GET_MODE (XEXP (op, 0)));
|
913 |
|
|
|
914 |
|
|
/* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
|
915 |
|
|
(OP:SF foo:SF) if OP is NEG or ABS. */
|
916 |
|
|
if ((GET_CODE (op) == ABS
|
917 |
|
|
|| GET_CODE (op) == NEG)
|
918 |
|
|
&& GET_CODE (XEXP (op, 0)) == FLOAT_EXTEND
|
919 |
|
|
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
|
920 |
|
|
return simplify_gen_unary (GET_CODE (op), mode,
|
921 |
|
|
XEXP (XEXP (op, 0), 0), mode);
|
922 |
|
|
|
923 |
|
|
/* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
|
924 |
|
|
is (float_truncate:SF x). */
|
925 |
|
|
if (GET_CODE (op) == SUBREG
|
926 |
|
|
&& subreg_lowpart_p (op)
|
927 |
|
|
&& GET_CODE (SUBREG_REG (op)) == FLOAT_TRUNCATE)
|
928 |
|
|
return SUBREG_REG (op);
|
929 |
|
|
break;
|
930 |
|
|
|
931 |
|
|
case FLOAT_EXTEND:
|
932 |
|
|
if (DECIMAL_FLOAT_MODE_P (mode))
|
933 |
|
|
break;
|
934 |
|
|
|
935 |
|
|
/* (float_extend (float_extend x)) is (float_extend x)
|
936 |
|
|
|
937 |
|
|
(float_extend (float x)) is (float x) assuming that double
|
938 |
|
|
rounding can't happen.
|
939 |
|
|
*/
|
940 |
|
|
if (GET_CODE (op) == FLOAT_EXTEND
|
941 |
|
|
|| (GET_CODE (op) == FLOAT
|
942 |
|
|
&& SCALAR_FLOAT_MODE_P (GET_MODE (op))
|
943 |
|
|
&& ((unsigned)significand_size (GET_MODE (op))
|
944 |
|
|
>= (GET_MODE_PRECISION (GET_MODE (XEXP (op, 0)))
|
945 |
|
|
- num_sign_bit_copies (XEXP (op, 0),
|
946 |
|
|
GET_MODE (XEXP (op, 0)))))))
|
947 |
|
|
return simplify_gen_unary (GET_CODE (op), mode,
|
948 |
|
|
XEXP (op, 0),
|
949 |
|
|
GET_MODE (XEXP (op, 0)));
|
950 |
|
|
|
951 |
|
|
break;
|
952 |
|
|
|
953 |
|
|
case ABS:
|
954 |
|
|
/* (abs (neg <foo>)) -> (abs <foo>) */
|
955 |
|
|
if (GET_CODE (op) == NEG)
|
956 |
|
|
return simplify_gen_unary (ABS, mode, XEXP (op, 0),
|
957 |
|
|
GET_MODE (XEXP (op, 0)));
|
958 |
|
|
|
959 |
|
|
/* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
|
960 |
|
|
do nothing. */
|
961 |
|
|
if (GET_MODE (op) == VOIDmode)
|
962 |
|
|
break;
|
963 |
|
|
|
964 |
|
|
/* If operand is something known to be positive, ignore the ABS. */
|
965 |
|
|
if (GET_CODE (op) == FFS || GET_CODE (op) == ABS
|
966 |
|
|
|| val_signbit_known_clear_p (GET_MODE (op),
|
967 |
|
|
nonzero_bits (op, GET_MODE (op))))
|
968 |
|
|
return op;
|
969 |
|
|
|
970 |
|
|
/* If operand is known to be only -1 or 0, convert ABS to NEG. */
|
971 |
|
|
if (num_sign_bit_copies (op, mode) == GET_MODE_PRECISION (mode))
|
972 |
|
|
return gen_rtx_NEG (mode, op);
|
973 |
|
|
|
974 |
|
|
break;
|
975 |
|
|
|
976 |
|
|
case FFS:
|
977 |
|
|
/* (ffs (*_extend <X>)) = (ffs <X>) */
|
978 |
|
|
if (GET_CODE (op) == SIGN_EXTEND
|
979 |
|
|
|| GET_CODE (op) == ZERO_EXTEND)
|
980 |
|
|
return simplify_gen_unary (FFS, mode, XEXP (op, 0),
|
981 |
|
|
GET_MODE (XEXP (op, 0)));
|
982 |
|
|
break;
|
983 |
|
|
|
984 |
|
|
case POPCOUNT:
|
985 |
|
|
switch (GET_CODE (op))
|
986 |
|
|
{
|
987 |
|
|
case BSWAP:
|
988 |
|
|
case ZERO_EXTEND:
|
989 |
|
|
/* (popcount (zero_extend <X>)) = (popcount <X>) */
|
990 |
|
|
return simplify_gen_unary (POPCOUNT, mode, XEXP (op, 0),
|
991 |
|
|
GET_MODE (XEXP (op, 0)));
|
992 |
|
|
|
993 |
|
|
case ROTATE:
|
994 |
|
|
case ROTATERT:
|
995 |
|
|
/* Rotations don't affect popcount. */
|
996 |
|
|
if (!side_effects_p (XEXP (op, 1)))
|
997 |
|
|
return simplify_gen_unary (POPCOUNT, mode, XEXP (op, 0),
|
998 |
|
|
GET_MODE (XEXP (op, 0)));
|
999 |
|
|
break;
|
1000 |
|
|
|
1001 |
|
|
default:
|
1002 |
|
|
break;
|
1003 |
|
|
}
|
1004 |
|
|
break;
|
1005 |
|
|
|
1006 |
|
|
case PARITY:
|
1007 |
|
|
switch (GET_CODE (op))
|
1008 |
|
|
{
|
1009 |
|
|
case NOT:
|
1010 |
|
|
case BSWAP:
|
1011 |
|
|
case ZERO_EXTEND:
|
1012 |
|
|
case SIGN_EXTEND:
|
1013 |
|
|
return simplify_gen_unary (PARITY, mode, XEXP (op, 0),
|
1014 |
|
|
GET_MODE (XEXP (op, 0)));
|
1015 |
|
|
|
1016 |
|
|
case ROTATE:
|
1017 |
|
|
case ROTATERT:
|
1018 |
|
|
/* Rotations don't affect parity. */
|
1019 |
|
|
if (!side_effects_p (XEXP (op, 1)))
|
1020 |
|
|
return simplify_gen_unary (PARITY, mode, XEXP (op, 0),
|
1021 |
|
|
GET_MODE (XEXP (op, 0)));
|
1022 |
|
|
break;
|
1023 |
|
|
|
1024 |
|
|
default:
|
1025 |
|
|
break;
|
1026 |
|
|
}
|
1027 |
|
|
break;
|
1028 |
|
|
|
1029 |
|
|
case BSWAP:
|
1030 |
|
|
/* (bswap (bswap x)) -> x. */
|
1031 |
|
|
if (GET_CODE (op) == BSWAP)
|
1032 |
|
|
return XEXP (op, 0);
|
1033 |
|
|
break;
|
1034 |
|
|
|
1035 |
|
|
case FLOAT:
|
1036 |
|
|
/* (float (sign_extend <X>)) = (float <X>). */
|
1037 |
|
|
if (GET_CODE (op) == SIGN_EXTEND)
|
1038 |
|
|
return simplify_gen_unary (FLOAT, mode, XEXP (op, 0),
|
1039 |
|
|
GET_MODE (XEXP (op, 0)));
|
1040 |
|
|
break;
|
1041 |
|
|
|
1042 |
|
|
case SIGN_EXTEND:
|
1043 |
|
|
/* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
|
1044 |
|
|
becomes just the MINUS if its mode is MODE. This allows
|
1045 |
|
|
folding switch statements on machines using casesi (such as
|
1046 |
|
|
the VAX). */
|
1047 |
|
|
if (GET_CODE (op) == TRUNCATE
|
1048 |
|
|
&& GET_MODE (XEXP (op, 0)) == mode
|
1049 |
|
|
&& GET_CODE (XEXP (op, 0)) == MINUS
|
1050 |
|
|
&& GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
|
1051 |
|
|
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
|
1052 |
|
|
return XEXP (op, 0);
|
1053 |
|
|
|
1054 |
|
|
/* Extending a widening multiplication should be canonicalized to
|
1055 |
|
|
a wider widening multiplication. */
|
1056 |
|
|
if (GET_CODE (op) == MULT)
|
1057 |
|
|
{
|
1058 |
|
|
rtx lhs = XEXP (op, 0);
|
1059 |
|
|
rtx rhs = XEXP (op, 1);
|
1060 |
|
|
enum rtx_code lcode = GET_CODE (lhs);
|
1061 |
|
|
enum rtx_code rcode = GET_CODE (rhs);
|
1062 |
|
|
|
1063 |
|
|
/* Widening multiplies usually extend both operands, but sometimes
|
1064 |
|
|
they use a shift to extract a portion of a register. */
|
1065 |
|
|
if ((lcode == SIGN_EXTEND
|
1066 |
|
|
|| (lcode == ASHIFTRT && CONST_INT_P (XEXP (lhs, 1))))
|
1067 |
|
|
&& (rcode == SIGN_EXTEND
|
1068 |
|
|
|| (rcode == ASHIFTRT && CONST_INT_P (XEXP (rhs, 1)))))
|
1069 |
|
|
{
|
1070 |
|
|
enum machine_mode lmode = GET_MODE (lhs);
|
1071 |
|
|
enum machine_mode rmode = GET_MODE (rhs);
|
1072 |
|
|
int bits;
|
1073 |
|
|
|
1074 |
|
|
if (lcode == ASHIFTRT)
|
1075 |
|
|
/* Number of bits not shifted off the end. */
|
1076 |
|
|
bits = GET_MODE_PRECISION (lmode) - INTVAL (XEXP (lhs, 1));
|
1077 |
|
|
else /* lcode == SIGN_EXTEND */
|
1078 |
|
|
/* Size of inner mode. */
|
1079 |
|
|
bits = GET_MODE_PRECISION (GET_MODE (XEXP (lhs, 0)));
|
1080 |
|
|
|
1081 |
|
|
if (rcode == ASHIFTRT)
|
1082 |
|
|
bits += GET_MODE_PRECISION (rmode) - INTVAL (XEXP (rhs, 1));
|
1083 |
|
|
else /* rcode == SIGN_EXTEND */
|
1084 |
|
|
bits += GET_MODE_PRECISION (GET_MODE (XEXP (rhs, 0)));
|
1085 |
|
|
|
1086 |
|
|
/* We can only widen multiplies if the result is mathematiclly
|
1087 |
|
|
equivalent. I.e. if overflow was impossible. */
|
1088 |
|
|
if (bits <= GET_MODE_PRECISION (GET_MODE (op)))
|
1089 |
|
|
return simplify_gen_binary
|
1090 |
|
|
(MULT, mode,
|
1091 |
|
|
simplify_gen_unary (SIGN_EXTEND, mode, lhs, lmode),
|
1092 |
|
|
simplify_gen_unary (SIGN_EXTEND, mode, rhs, rmode));
|
1093 |
|
|
}
|
1094 |
|
|
}
|
1095 |
|
|
|
1096 |
|
|
/* Check for a sign extension of a subreg of a promoted
|
1097 |
|
|
variable, where the promotion is sign-extended, and the
|
1098 |
|
|
target mode is the same as the variable's promotion. */
|
1099 |
|
|
if (GET_CODE (op) == SUBREG
|
1100 |
|
|
&& SUBREG_PROMOTED_VAR_P (op)
|
1101 |
|
|
&& ! SUBREG_PROMOTED_UNSIGNED_P (op)
|
1102 |
|
|
&& GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (XEXP (op, 0))))
|
1103 |
|
|
return rtl_hooks.gen_lowpart_no_emit (mode, op);
|
1104 |
|
|
|
1105 |
|
|
/* (sign_extend:M (sign_extend:N <X>)) is (sign_extend:M <X>).
|
1106 |
|
|
(sign_extend:M (zero_extend:N <X>)) is (zero_extend:M <X>). */
|
1107 |
|
|
if (GET_CODE (op) == SIGN_EXTEND || GET_CODE (op) == ZERO_EXTEND)
|
1108 |
|
|
{
|
1109 |
|
|
gcc_assert (GET_MODE_BITSIZE (mode)
|
1110 |
|
|
> GET_MODE_BITSIZE (GET_MODE (op)));
|
1111 |
|
|
return simplify_gen_unary (GET_CODE (op), mode, XEXP (op, 0),
|
1112 |
|
|
GET_MODE (XEXP (op, 0)));
|
1113 |
|
|
}
|
1114 |
|
|
|
1115 |
|
|
/* (sign_extend:M (ashiftrt:N (ashift <X> (const_int I)) (const_int I)))
|
1116 |
|
|
is (sign_extend:M (subreg:O <X>)) if there is mode with
|
1117 |
|
|
GET_MODE_BITSIZE (N) - I bits.
|
1118 |
|
|
(sign_extend:M (lshiftrt:N (ashift <X> (const_int I)) (const_int I)))
|
1119 |
|
|
is similarly (zero_extend:M (subreg:O <X>)). */
|
1120 |
|
|
if ((GET_CODE (op) == ASHIFTRT || GET_CODE (op) == LSHIFTRT)
|
1121 |
|
|
&& GET_CODE (XEXP (op, 0)) == ASHIFT
|
1122 |
|
|
&& CONST_INT_P (XEXP (op, 1))
|
1123 |
|
|
&& XEXP (XEXP (op, 0), 1) == XEXP (op, 1)
|
1124 |
|
|
&& GET_MODE_BITSIZE (GET_MODE (op)) > INTVAL (XEXP (op, 1)))
|
1125 |
|
|
{
|
1126 |
|
|
enum machine_mode tmode
|
1127 |
|
|
= mode_for_size (GET_MODE_BITSIZE (GET_MODE (op))
|
1128 |
|
|
- INTVAL (XEXP (op, 1)), MODE_INT, 1);
|
1129 |
|
|
gcc_assert (GET_MODE_BITSIZE (mode)
|
1130 |
|
|
> GET_MODE_BITSIZE (GET_MODE (op)));
|
1131 |
|
|
if (tmode != BLKmode)
|
1132 |
|
|
{
|
1133 |
|
|
rtx inner =
|
1134 |
|
|
rtl_hooks.gen_lowpart_no_emit (tmode, XEXP (XEXP (op, 0), 0));
|
1135 |
|
|
return simplify_gen_unary (GET_CODE (op) == ASHIFTRT
|
1136 |
|
|
? SIGN_EXTEND : ZERO_EXTEND,
|
1137 |
|
|
mode, inner, tmode);
|
1138 |
|
|
}
|
1139 |
|
|
}
|
1140 |
|
|
|
1141 |
|
|
#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
|
1142 |
|
|
/* As we do not know which address space the pointer is refering to,
|
1143 |
|
|
we can do this only if the target does not support different pointer
|
1144 |
|
|
or address modes depending on the address space. */
|
1145 |
|
|
if (target_default_pointer_address_modes_p ()
|
1146 |
|
|
&& ! POINTERS_EXTEND_UNSIGNED
|
1147 |
|
|
&& mode == Pmode && GET_MODE (op) == ptr_mode
|
1148 |
|
|
&& (CONSTANT_P (op)
|
1149 |
|
|
|| (GET_CODE (op) == SUBREG
|
1150 |
|
|
&& REG_P (SUBREG_REG (op))
|
1151 |
|
|
&& REG_POINTER (SUBREG_REG (op))
|
1152 |
|
|
&& GET_MODE (SUBREG_REG (op)) == Pmode)))
|
1153 |
|
|
return convert_memory_address (Pmode, op);
|
1154 |
|
|
#endif
|
1155 |
|
|
break;
|
1156 |
|
|
|
1157 |
|
|
case ZERO_EXTEND:
|
1158 |
|
|
/* Check for a zero extension of a subreg of a promoted
|
1159 |
|
|
variable, where the promotion is zero-extended, and the
|
1160 |
|
|
target mode is the same as the variable's promotion. */
|
1161 |
|
|
if (GET_CODE (op) == SUBREG
|
1162 |
|
|
&& SUBREG_PROMOTED_VAR_P (op)
|
1163 |
|
|
&& SUBREG_PROMOTED_UNSIGNED_P (op) > 0
|
1164 |
|
|
&& GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (XEXP (op, 0))))
|
1165 |
|
|
return rtl_hooks.gen_lowpart_no_emit (mode, op);
|
1166 |
|
|
|
1167 |
|
|
/* Extending a widening multiplication should be canonicalized to
|
1168 |
|
|
a wider widening multiplication. */
|
1169 |
|
|
if (GET_CODE (op) == MULT)
|
1170 |
|
|
{
|
1171 |
|
|
rtx lhs = XEXP (op, 0);
|
1172 |
|
|
rtx rhs = XEXP (op, 1);
|
1173 |
|
|
enum rtx_code lcode = GET_CODE (lhs);
|
1174 |
|
|
enum rtx_code rcode = GET_CODE (rhs);
|
1175 |
|
|
|
1176 |
|
|
/* Widening multiplies usually extend both operands, but sometimes
|
1177 |
|
|
they use a shift to extract a portion of a register. */
|
1178 |
|
|
if ((lcode == ZERO_EXTEND
|
1179 |
|
|
|| (lcode == LSHIFTRT && CONST_INT_P (XEXP (lhs, 1))))
|
1180 |
|
|
&& (rcode == ZERO_EXTEND
|
1181 |
|
|
|| (rcode == LSHIFTRT && CONST_INT_P (XEXP (rhs, 1)))))
|
1182 |
|
|
{
|
1183 |
|
|
enum machine_mode lmode = GET_MODE (lhs);
|
1184 |
|
|
enum machine_mode rmode = GET_MODE (rhs);
|
1185 |
|
|
int bits;
|
1186 |
|
|
|
1187 |
|
|
if (lcode == LSHIFTRT)
|
1188 |
|
|
/* Number of bits not shifted off the end. */
|
1189 |
|
|
bits = GET_MODE_PRECISION (lmode) - INTVAL (XEXP (lhs, 1));
|
1190 |
|
|
else /* lcode == ZERO_EXTEND */
|
1191 |
|
|
/* Size of inner mode. */
|
1192 |
|
|
bits = GET_MODE_PRECISION (GET_MODE (XEXP (lhs, 0)));
|
1193 |
|
|
|
1194 |
|
|
if (rcode == LSHIFTRT)
|
1195 |
|
|
bits += GET_MODE_PRECISION (rmode) - INTVAL (XEXP (rhs, 1));
|
1196 |
|
|
else /* rcode == ZERO_EXTEND */
|
1197 |
|
|
bits += GET_MODE_PRECISION (GET_MODE (XEXP (rhs, 0)));
|
1198 |
|
|
|
1199 |
|
|
/* We can only widen multiplies if the result is mathematiclly
|
1200 |
|
|
equivalent. I.e. if overflow was impossible. */
|
1201 |
|
|
if (bits <= GET_MODE_PRECISION (GET_MODE (op)))
|
1202 |
|
|
return simplify_gen_binary
|
1203 |
|
|
(MULT, mode,
|
1204 |
|
|
simplify_gen_unary (ZERO_EXTEND, mode, lhs, lmode),
|
1205 |
|
|
simplify_gen_unary (ZERO_EXTEND, mode, rhs, rmode));
|
1206 |
|
|
}
|
1207 |
|
|
}
|
1208 |
|
|
|
1209 |
|
|
/* (zero_extend:M (zero_extend:N <X>)) is (zero_extend:M <X>). */
|
1210 |
|
|
if (GET_CODE (op) == ZERO_EXTEND)
|
1211 |
|
|
return simplify_gen_unary (ZERO_EXTEND, mode, XEXP (op, 0),
|
1212 |
|
|
GET_MODE (XEXP (op, 0)));
|
1213 |
|
|
|
1214 |
|
|
/* (zero_extend:M (lshiftrt:N (ashift <X> (const_int I)) (const_int I)))
|
1215 |
|
|
is (zero_extend:M (subreg:O <X>)) if there is mode with
|
1216 |
|
|
GET_MODE_BITSIZE (N) - I bits. */
|
1217 |
|
|
if (GET_CODE (op) == LSHIFTRT
|
1218 |
|
|
&& GET_CODE (XEXP (op, 0)) == ASHIFT
|
1219 |
|
|
&& CONST_INT_P (XEXP (op, 1))
|
1220 |
|
|
&& XEXP (XEXP (op, 0), 1) == XEXP (op, 1)
|
1221 |
|
|
&& GET_MODE_BITSIZE (GET_MODE (op)) > INTVAL (XEXP (op, 1)))
|
1222 |
|
|
{
|
1223 |
|
|
enum machine_mode tmode
|
1224 |
|
|
= mode_for_size (GET_MODE_BITSIZE (GET_MODE (op))
|
1225 |
|
|
- INTVAL (XEXP (op, 1)), MODE_INT, 1);
|
1226 |
|
|
if (tmode != BLKmode)
|
1227 |
|
|
{
|
1228 |
|
|
rtx inner =
|
1229 |
|
|
rtl_hooks.gen_lowpart_no_emit (tmode, XEXP (XEXP (op, 0), 0));
|
1230 |
|
|
return simplify_gen_unary (ZERO_EXTEND, mode, inner, tmode);
|
1231 |
|
|
}
|
1232 |
|
|
}
|
1233 |
|
|
|
1234 |
|
|
#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
|
1235 |
|
|
/* As we do not know which address space the pointer is refering to,
|
1236 |
|
|
we can do this only if the target does not support different pointer
|
1237 |
|
|
or address modes depending on the address space. */
|
1238 |
|
|
if (target_default_pointer_address_modes_p ()
|
1239 |
|
|
&& POINTERS_EXTEND_UNSIGNED > 0
|
1240 |
|
|
&& mode == Pmode && GET_MODE (op) == ptr_mode
|
1241 |
|
|
&& (CONSTANT_P (op)
|
1242 |
|
|
|| (GET_CODE (op) == SUBREG
|
1243 |
|
|
&& REG_P (SUBREG_REG (op))
|
1244 |
|
|
&& REG_POINTER (SUBREG_REG (op))
|
1245 |
|
|
&& GET_MODE (SUBREG_REG (op)) == Pmode)))
|
1246 |
|
|
return convert_memory_address (Pmode, op);
|
1247 |
|
|
#endif
|
1248 |
|
|
break;
|
1249 |
|
|
|
1250 |
|
|
default:
|
1251 |
|
|
break;
|
1252 |
|
|
}
|
1253 |
|
|
|
1254 |
|
|
return 0;
|
1255 |
|
|
}
|
1256 |
|
|
|
1257 |
|
|
/* Try to compute the value of a unary operation CODE whose output mode is to
|
1258 |
|
|
be MODE with input operand OP whose mode was originally OP_MODE.
|
1259 |
|
|
Return zero if the value cannot be computed. */
|
1260 |
|
|
rtx
|
1261 |
|
|
simplify_const_unary_operation (enum rtx_code code, enum machine_mode mode,
|
1262 |
|
|
rtx op, enum machine_mode op_mode)
|
1263 |
|
|
{
|
1264 |
|
|
unsigned int width = GET_MODE_PRECISION (mode);
|
1265 |
|
|
unsigned int op_width = GET_MODE_PRECISION (op_mode);
|
1266 |
|
|
|
1267 |
|
|
if (code == VEC_DUPLICATE)
|
1268 |
|
|
{
|
1269 |
|
|
gcc_assert (VECTOR_MODE_P (mode));
|
1270 |
|
|
if (GET_MODE (op) != VOIDmode)
|
1271 |
|
|
{
|
1272 |
|
|
if (!VECTOR_MODE_P (GET_MODE (op)))
|
1273 |
|
|
gcc_assert (GET_MODE_INNER (mode) == GET_MODE (op));
|
1274 |
|
|
else
|
1275 |
|
|
gcc_assert (GET_MODE_INNER (mode) == GET_MODE_INNER
|
1276 |
|
|
(GET_MODE (op)));
|
1277 |
|
|
}
|
1278 |
|
|
if (CONST_INT_P (op) || GET_CODE (op) == CONST_DOUBLE
|
1279 |
|
|
|| GET_CODE (op) == CONST_VECTOR)
|
1280 |
|
|
{
|
1281 |
|
|
int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
|
1282 |
|
|
unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
|
1283 |
|
|
rtvec v = rtvec_alloc (n_elts);
|
1284 |
|
|
unsigned int i;
|
1285 |
|
|
|
1286 |
|
|
if (GET_CODE (op) != CONST_VECTOR)
|
1287 |
|
|
for (i = 0; i < n_elts; i++)
|
1288 |
|
|
RTVEC_ELT (v, i) = op;
|
1289 |
|
|
else
|
1290 |
|
|
{
|
1291 |
|
|
enum machine_mode inmode = GET_MODE (op);
|
1292 |
|
|
int in_elt_size = GET_MODE_SIZE (GET_MODE_INNER (inmode));
|
1293 |
|
|
unsigned in_n_elts = (GET_MODE_SIZE (inmode) / in_elt_size);
|
1294 |
|
|
|
1295 |
|
|
gcc_assert (in_n_elts < n_elts);
|
1296 |
|
|
gcc_assert ((n_elts % in_n_elts) == 0);
|
1297 |
|
|
for (i = 0; i < n_elts; i++)
|
1298 |
|
|
RTVEC_ELT (v, i) = CONST_VECTOR_ELT (op, i % in_n_elts);
|
1299 |
|
|
}
|
1300 |
|
|
return gen_rtx_CONST_VECTOR (mode, v);
|
1301 |
|
|
}
|
1302 |
|
|
}
|
1303 |
|
|
|
1304 |
|
|
if (VECTOR_MODE_P (mode) && GET_CODE (op) == CONST_VECTOR)
|
1305 |
|
|
{
|
1306 |
|
|
int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
|
1307 |
|
|
unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
|
1308 |
|
|
enum machine_mode opmode = GET_MODE (op);
|
1309 |
|
|
int op_elt_size = GET_MODE_SIZE (GET_MODE_INNER (opmode));
|
1310 |
|
|
unsigned op_n_elts = (GET_MODE_SIZE (opmode) / op_elt_size);
|
1311 |
|
|
rtvec v = rtvec_alloc (n_elts);
|
1312 |
|
|
unsigned int i;
|
1313 |
|
|
|
1314 |
|
|
gcc_assert (op_n_elts == n_elts);
|
1315 |
|
|
for (i = 0; i < n_elts; i++)
|
1316 |
|
|
{
|
1317 |
|
|
rtx x = simplify_unary_operation (code, GET_MODE_INNER (mode),
|
1318 |
|
|
CONST_VECTOR_ELT (op, i),
|
1319 |
|
|
GET_MODE_INNER (opmode));
|
1320 |
|
|
if (!x)
|
1321 |
|
|
return 0;
|
1322 |
|
|
RTVEC_ELT (v, i) = x;
|
1323 |
|
|
}
|
1324 |
|
|
return gen_rtx_CONST_VECTOR (mode, v);
|
1325 |
|
|
}
|
1326 |
|
|
|
1327 |
|
|
/* The order of these tests is critical so that, for example, we don't
|
1328 |
|
|
check the wrong mode (input vs. output) for a conversion operation,
|
1329 |
|
|
such as FIX. At some point, this should be simplified. */
|
1330 |
|
|
|
1331 |
|
|
if (code == FLOAT && GET_MODE (op) == VOIDmode
|
1332 |
|
|
&& (GET_CODE (op) == CONST_DOUBLE || CONST_INT_P (op)))
|
1333 |
|
|
{
|
1334 |
|
|
HOST_WIDE_INT hv, lv;
|
1335 |
|
|
REAL_VALUE_TYPE d;
|
1336 |
|
|
|
1337 |
|
|
if (CONST_INT_P (op))
|
1338 |
|
|
lv = INTVAL (op), hv = HWI_SIGN_EXTEND (lv);
|
1339 |
|
|
else
|
1340 |
|
|
lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
|
1341 |
|
|
|
1342 |
|
|
REAL_VALUE_FROM_INT (d, lv, hv, mode);
|
1343 |
|
|
d = real_value_truncate (mode, d);
|
1344 |
|
|
return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
|
1345 |
|
|
}
|
1346 |
|
|
else if (code == UNSIGNED_FLOAT && GET_MODE (op) == VOIDmode
|
1347 |
|
|
&& (GET_CODE (op) == CONST_DOUBLE
|
1348 |
|
|
|| CONST_INT_P (op)))
|
1349 |
|
|
{
|
1350 |
|
|
HOST_WIDE_INT hv, lv;
|
1351 |
|
|
REAL_VALUE_TYPE d;
|
1352 |
|
|
|
1353 |
|
|
if (CONST_INT_P (op))
|
1354 |
|
|
lv = INTVAL (op), hv = HWI_SIGN_EXTEND (lv);
|
1355 |
|
|
else
|
1356 |
|
|
lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
|
1357 |
|
|
|
1358 |
|
|
if (op_mode == VOIDmode)
|
1359 |
|
|
{
|
1360 |
|
|
/* We don't know how to interpret negative-looking numbers in
|
1361 |
|
|
this case, so don't try to fold those. */
|
1362 |
|
|
if (hv < 0)
|
1363 |
|
|
return 0;
|
1364 |
|
|
}
|
1365 |
|
|
else if (GET_MODE_PRECISION (op_mode) >= HOST_BITS_PER_WIDE_INT * 2)
|
1366 |
|
|
;
|
1367 |
|
|
else
|
1368 |
|
|
hv = 0, lv &= GET_MODE_MASK (op_mode);
|
1369 |
|
|
|
1370 |
|
|
REAL_VALUE_FROM_UNSIGNED_INT (d, lv, hv, mode);
|
1371 |
|
|
d = real_value_truncate (mode, d);
|
1372 |
|
|
return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
|
1373 |
|
|
}
|
1374 |
|
|
|
1375 |
|
|
if (CONST_INT_P (op)
|
1376 |
|
|
&& width <= HOST_BITS_PER_WIDE_INT && width > 0)
|
1377 |
|
|
{
|
1378 |
|
|
HOST_WIDE_INT arg0 = INTVAL (op);
|
1379 |
|
|
HOST_WIDE_INT val;
|
1380 |
|
|
|
1381 |
|
|
switch (code)
|
1382 |
|
|
{
|
1383 |
|
|
case NOT:
|
1384 |
|
|
val = ~ arg0;
|
1385 |
|
|
break;
|
1386 |
|
|
|
1387 |
|
|
case NEG:
|
1388 |
|
|
val = - arg0;
|
1389 |
|
|
break;
|
1390 |
|
|
|
1391 |
|
|
case ABS:
|
1392 |
|
|
val = (arg0 >= 0 ? arg0 : - arg0);
|
1393 |
|
|
break;
|
1394 |
|
|
|
1395 |
|
|
case FFS:
|
1396 |
|
|
arg0 &= GET_MODE_MASK (mode);
|
1397 |
|
|
val = ffs_hwi (arg0);
|
1398 |
|
|
break;
|
1399 |
|
|
|
1400 |
|
|
case CLZ:
|
1401 |
|
|
arg0 &= GET_MODE_MASK (mode);
|
1402 |
|
|
if (arg0 == 0 && CLZ_DEFINED_VALUE_AT_ZERO (mode, val))
|
1403 |
|
|
;
|
1404 |
|
|
else
|
1405 |
|
|
val = GET_MODE_PRECISION (mode) - floor_log2 (arg0) - 1;
|
1406 |
|
|
break;
|
1407 |
|
|
|
1408 |
|
|
case CLRSB:
|
1409 |
|
|
arg0 &= GET_MODE_MASK (mode);
|
1410 |
|
|
if (arg0 == 0)
|
1411 |
|
|
val = GET_MODE_PRECISION (mode) - 1;
|
1412 |
|
|
else if (arg0 >= 0)
|
1413 |
|
|
val = GET_MODE_PRECISION (mode) - floor_log2 (arg0) - 2;
|
1414 |
|
|
else if (arg0 < 0)
|
1415 |
|
|
val = GET_MODE_PRECISION (mode) - floor_log2 (~arg0) - 2;
|
1416 |
|
|
break;
|
1417 |
|
|
|
1418 |
|
|
case CTZ:
|
1419 |
|
|
arg0 &= GET_MODE_MASK (mode);
|
1420 |
|
|
if (arg0 == 0)
|
1421 |
|
|
{
|
1422 |
|
|
/* Even if the value at zero is undefined, we have to come
|
1423 |
|
|
up with some replacement. Seems good enough. */
|
1424 |
|
|
if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, val))
|
1425 |
|
|
val = GET_MODE_PRECISION (mode);
|
1426 |
|
|
}
|
1427 |
|
|
else
|
1428 |
|
|
val = ctz_hwi (arg0);
|
1429 |
|
|
break;
|
1430 |
|
|
|
1431 |
|
|
case POPCOUNT:
|
1432 |
|
|
arg0 &= GET_MODE_MASK (mode);
|
1433 |
|
|
val = 0;
|
1434 |
|
|
while (arg0)
|
1435 |
|
|
val++, arg0 &= arg0 - 1;
|
1436 |
|
|
break;
|
1437 |
|
|
|
1438 |
|
|
case PARITY:
|
1439 |
|
|
arg0 &= GET_MODE_MASK (mode);
|
1440 |
|
|
val = 0;
|
1441 |
|
|
while (arg0)
|
1442 |
|
|
val++, arg0 &= arg0 - 1;
|
1443 |
|
|
val &= 1;
|
1444 |
|
|
break;
|
1445 |
|
|
|
1446 |
|
|
case BSWAP:
|
1447 |
|
|
{
|
1448 |
|
|
unsigned int s;
|
1449 |
|
|
|
1450 |
|
|
val = 0;
|
1451 |
|
|
for (s = 0; s < width; s += 8)
|
1452 |
|
|
{
|
1453 |
|
|
unsigned int d = width - s - 8;
|
1454 |
|
|
unsigned HOST_WIDE_INT byte;
|
1455 |
|
|
byte = (arg0 >> s) & 0xff;
|
1456 |
|
|
val |= byte << d;
|
1457 |
|
|
}
|
1458 |
|
|
}
|
1459 |
|
|
break;
|
1460 |
|
|
|
1461 |
|
|
case TRUNCATE:
|
1462 |
|
|
val = arg0;
|
1463 |
|
|
break;
|
1464 |
|
|
|
1465 |
|
|
case ZERO_EXTEND:
|
1466 |
|
|
/* When zero-extending a CONST_INT, we need to know its
|
1467 |
|
|
original mode. */
|
1468 |
|
|
gcc_assert (op_mode != VOIDmode);
|
1469 |
|
|
if (op_width == HOST_BITS_PER_WIDE_INT)
|
1470 |
|
|
{
|
1471 |
|
|
/* If we were really extending the mode,
|
1472 |
|
|
we would have to distinguish between zero-extension
|
1473 |
|
|
and sign-extension. */
|
1474 |
|
|
gcc_assert (width == op_width);
|
1475 |
|
|
val = arg0;
|
1476 |
|
|
}
|
1477 |
|
|
else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
|
1478 |
|
|
val = arg0 & GET_MODE_MASK (op_mode);
|
1479 |
|
|
else
|
1480 |
|
|
return 0;
|
1481 |
|
|
break;
|
1482 |
|
|
|
1483 |
|
|
case SIGN_EXTEND:
|
1484 |
|
|
if (op_mode == VOIDmode)
|
1485 |
|
|
op_mode = mode;
|
1486 |
|
|
op_width = GET_MODE_PRECISION (op_mode);
|
1487 |
|
|
if (op_width == HOST_BITS_PER_WIDE_INT)
|
1488 |
|
|
{
|
1489 |
|
|
/* If we were really extending the mode,
|
1490 |
|
|
we would have to distinguish between zero-extension
|
1491 |
|
|
and sign-extension. */
|
1492 |
|
|
gcc_assert (width == op_width);
|
1493 |
|
|
val = arg0;
|
1494 |
|
|
}
|
1495 |
|
|
else if (op_width < HOST_BITS_PER_WIDE_INT)
|
1496 |
|
|
{
|
1497 |
|
|
val = arg0 & GET_MODE_MASK (op_mode);
|
1498 |
|
|
if (val_signbit_known_set_p (op_mode, val))
|
1499 |
|
|
val |= ~GET_MODE_MASK (op_mode);
|
1500 |
|
|
}
|
1501 |
|
|
else
|
1502 |
|
|
return 0;
|
1503 |
|
|
break;
|
1504 |
|
|
|
1505 |
|
|
case SQRT:
|
1506 |
|
|
case FLOAT_EXTEND:
|
1507 |
|
|
case FLOAT_TRUNCATE:
|
1508 |
|
|
case SS_TRUNCATE:
|
1509 |
|
|
case US_TRUNCATE:
|
1510 |
|
|
case SS_NEG:
|
1511 |
|
|
case US_NEG:
|
1512 |
|
|
case SS_ABS:
|
1513 |
|
|
return 0;
|
1514 |
|
|
|
1515 |
|
|
default:
|
1516 |
|
|
gcc_unreachable ();
|
1517 |
|
|
}
|
1518 |
|
|
|
1519 |
|
|
return gen_int_mode (val, mode);
|
1520 |
|
|
}
|
1521 |
|
|
|
1522 |
|
|
/* We can do some operations on integer CONST_DOUBLEs. Also allow
|
1523 |
|
|
for a DImode operation on a CONST_INT. */
|
1524 |
|
|
else if (GET_MODE (op) == VOIDmode
|
1525 |
|
|
&& width <= HOST_BITS_PER_WIDE_INT * 2
|
1526 |
|
|
&& (GET_CODE (op) == CONST_DOUBLE
|
1527 |
|
|
|| CONST_INT_P (op)))
|
1528 |
|
|
{
|
1529 |
|
|
unsigned HOST_WIDE_INT l1, lv;
|
1530 |
|
|
HOST_WIDE_INT h1, hv;
|
1531 |
|
|
|
1532 |
|
|
if (GET_CODE (op) == CONST_DOUBLE)
|
1533 |
|
|
l1 = CONST_DOUBLE_LOW (op), h1 = CONST_DOUBLE_HIGH (op);
|
1534 |
|
|
else
|
1535 |
|
|
l1 = INTVAL (op), h1 = HWI_SIGN_EXTEND (l1);
|
1536 |
|
|
|
1537 |
|
|
switch (code)
|
1538 |
|
|
{
|
1539 |
|
|
case NOT:
|
1540 |
|
|
lv = ~ l1;
|
1541 |
|
|
hv = ~ h1;
|
1542 |
|
|
break;
|
1543 |
|
|
|
1544 |
|
|
case NEG:
|
1545 |
|
|
neg_double (l1, h1, &lv, &hv);
|
1546 |
|
|
break;
|
1547 |
|
|
|
1548 |
|
|
case ABS:
|
1549 |
|
|
if (h1 < 0)
|
1550 |
|
|
neg_double (l1, h1, &lv, &hv);
|
1551 |
|
|
else
|
1552 |
|
|
lv = l1, hv = h1;
|
1553 |
|
|
break;
|
1554 |
|
|
|
1555 |
|
|
case FFS:
|
1556 |
|
|
hv = 0;
|
1557 |
|
|
if (l1 != 0)
|
1558 |
|
|
lv = ffs_hwi (l1);
|
1559 |
|
|
else if (h1 != 0)
|
1560 |
|
|
lv = HOST_BITS_PER_WIDE_INT + ffs_hwi (h1);
|
1561 |
|
|
else
|
1562 |
|
|
lv = 0;
|
1563 |
|
|
break;
|
1564 |
|
|
|
1565 |
|
|
case CLZ:
|
1566 |
|
|
hv = 0;
|
1567 |
|
|
if (h1 != 0)
|
1568 |
|
|
lv = GET_MODE_PRECISION (mode) - floor_log2 (h1) - 1
|
1569 |
|
|
- HOST_BITS_PER_WIDE_INT;
|
1570 |
|
|
else if (l1 != 0)
|
1571 |
|
|
lv = GET_MODE_PRECISION (mode) - floor_log2 (l1) - 1;
|
1572 |
|
|
else if (! CLZ_DEFINED_VALUE_AT_ZERO (mode, lv))
|
1573 |
|
|
lv = GET_MODE_PRECISION (mode);
|
1574 |
|
|
break;
|
1575 |
|
|
|
1576 |
|
|
case CTZ:
|
1577 |
|
|
hv = 0;
|
1578 |
|
|
if (l1 != 0)
|
1579 |
|
|
lv = ctz_hwi (l1);
|
1580 |
|
|
else if (h1 != 0)
|
1581 |
|
|
lv = HOST_BITS_PER_WIDE_INT + ctz_hwi (h1);
|
1582 |
|
|
else if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, lv))
|
1583 |
|
|
lv = GET_MODE_PRECISION (mode);
|
1584 |
|
|
break;
|
1585 |
|
|
|
1586 |
|
|
case POPCOUNT:
|
1587 |
|
|
hv = 0;
|
1588 |
|
|
lv = 0;
|
1589 |
|
|
while (l1)
|
1590 |
|
|
lv++, l1 &= l1 - 1;
|
1591 |
|
|
while (h1)
|
1592 |
|
|
lv++, h1 &= h1 - 1;
|
1593 |
|
|
break;
|
1594 |
|
|
|
1595 |
|
|
case PARITY:
|
1596 |
|
|
hv = 0;
|
1597 |
|
|
lv = 0;
|
1598 |
|
|
while (l1)
|
1599 |
|
|
lv++, l1 &= l1 - 1;
|
1600 |
|
|
while (h1)
|
1601 |
|
|
lv++, h1 &= h1 - 1;
|
1602 |
|
|
lv &= 1;
|
1603 |
|
|
break;
|
1604 |
|
|
|
1605 |
|
|
case BSWAP:
|
1606 |
|
|
{
|
1607 |
|
|
unsigned int s;
|
1608 |
|
|
|
1609 |
|
|
hv = 0;
|
1610 |
|
|
lv = 0;
|
1611 |
|
|
for (s = 0; s < width; s += 8)
|
1612 |
|
|
{
|
1613 |
|
|
unsigned int d = width - s - 8;
|
1614 |
|
|
unsigned HOST_WIDE_INT byte;
|
1615 |
|
|
|
1616 |
|
|
if (s < HOST_BITS_PER_WIDE_INT)
|
1617 |
|
|
byte = (l1 >> s) & 0xff;
|
1618 |
|
|
else
|
1619 |
|
|
byte = (h1 >> (s - HOST_BITS_PER_WIDE_INT)) & 0xff;
|
1620 |
|
|
|
1621 |
|
|
if (d < HOST_BITS_PER_WIDE_INT)
|
1622 |
|
|
lv |= byte << d;
|
1623 |
|
|
else
|
1624 |
|
|
hv |= byte << (d - HOST_BITS_PER_WIDE_INT);
|
1625 |
|
|
}
|
1626 |
|
|
}
|
1627 |
|
|
break;
|
1628 |
|
|
|
1629 |
|
|
case TRUNCATE:
|
1630 |
|
|
/* This is just a change-of-mode, so do nothing. */
|
1631 |
|
|
lv = l1, hv = h1;
|
1632 |
|
|
break;
|
1633 |
|
|
|
1634 |
|
|
case ZERO_EXTEND:
|
1635 |
|
|
gcc_assert (op_mode != VOIDmode);
|
1636 |
|
|
|
1637 |
|
|
if (op_width > HOST_BITS_PER_WIDE_INT)
|
1638 |
|
|
return 0;
|
1639 |
|
|
|
1640 |
|
|
hv = 0;
|
1641 |
|
|
lv = l1 & GET_MODE_MASK (op_mode);
|
1642 |
|
|
break;
|
1643 |
|
|
|
1644 |
|
|
case SIGN_EXTEND:
|
1645 |
|
|
if (op_mode == VOIDmode
|
1646 |
|
|
|| op_width > HOST_BITS_PER_WIDE_INT)
|
1647 |
|
|
return 0;
|
1648 |
|
|
else
|
1649 |
|
|
{
|
1650 |
|
|
lv = l1 & GET_MODE_MASK (op_mode);
|
1651 |
|
|
if (val_signbit_known_set_p (op_mode, lv))
|
1652 |
|
|
lv |= ~GET_MODE_MASK (op_mode);
|
1653 |
|
|
|
1654 |
|
|
hv = HWI_SIGN_EXTEND (lv);
|
1655 |
|
|
}
|
1656 |
|
|
break;
|
1657 |
|
|
|
1658 |
|
|
case SQRT:
|
1659 |
|
|
return 0;
|
1660 |
|
|
|
1661 |
|
|
default:
|
1662 |
|
|
return 0;
|
1663 |
|
|
}
|
1664 |
|
|
|
1665 |
|
|
return immed_double_const (lv, hv, mode);
|
1666 |
|
|
}
|
1667 |
|
|
|
1668 |
|
|
else if (GET_CODE (op) == CONST_DOUBLE
|
1669 |
|
|
&& SCALAR_FLOAT_MODE_P (mode)
|
1670 |
|
|
&& SCALAR_FLOAT_MODE_P (GET_MODE (op)))
|
1671 |
|
|
{
|
1672 |
|
|
REAL_VALUE_TYPE d, t;
|
1673 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (d, op);
|
1674 |
|
|
|
1675 |
|
|
switch (code)
|
1676 |
|
|
{
|
1677 |
|
|
case SQRT:
|
1678 |
|
|
if (HONOR_SNANS (mode) && real_isnan (&d))
|
1679 |
|
|
return 0;
|
1680 |
|
|
real_sqrt (&t, mode, &d);
|
1681 |
|
|
d = t;
|
1682 |
|
|
break;
|
1683 |
|
|
case ABS:
|
1684 |
|
|
d = real_value_abs (&d);
|
1685 |
|
|
break;
|
1686 |
|
|
case NEG:
|
1687 |
|
|
d = real_value_negate (&d);
|
1688 |
|
|
break;
|
1689 |
|
|
case FLOAT_TRUNCATE:
|
1690 |
|
|
d = real_value_truncate (mode, d);
|
1691 |
|
|
break;
|
1692 |
|
|
case FLOAT_EXTEND:
|
1693 |
|
|
/* All this does is change the mode, unless changing
|
1694 |
|
|
mode class. */
|
1695 |
|
|
if (GET_MODE_CLASS (mode) != GET_MODE_CLASS (GET_MODE (op)))
|
1696 |
|
|
real_convert (&d, mode, &d);
|
1697 |
|
|
break;
|
1698 |
|
|
case FIX:
|
1699 |
|
|
real_arithmetic (&d, FIX_TRUNC_EXPR, &d, NULL);
|
1700 |
|
|
break;
|
1701 |
|
|
case NOT:
|
1702 |
|
|
{
|
1703 |
|
|
long tmp[4];
|
1704 |
|
|
int i;
|
1705 |
|
|
|
1706 |
|
|
real_to_target (tmp, &d, GET_MODE (op));
|
1707 |
|
|
for (i = 0; i < 4; i++)
|
1708 |
|
|
tmp[i] = ~tmp[i];
|
1709 |
|
|
real_from_target (&d, tmp, mode);
|
1710 |
|
|
break;
|
1711 |
|
|
}
|
1712 |
|
|
default:
|
1713 |
|
|
gcc_unreachable ();
|
1714 |
|
|
}
|
1715 |
|
|
return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
|
1716 |
|
|
}
|
1717 |
|
|
|
1718 |
|
|
else if (GET_CODE (op) == CONST_DOUBLE
|
1719 |
|
|
&& SCALAR_FLOAT_MODE_P (GET_MODE (op))
|
1720 |
|
|
&& GET_MODE_CLASS (mode) == MODE_INT
|
1721 |
|
|
&& width <= 2*HOST_BITS_PER_WIDE_INT && width > 0)
|
1722 |
|
|
{
|
1723 |
|
|
/* Although the overflow semantics of RTL's FIX and UNSIGNED_FIX
|
1724 |
|
|
operators are intentionally left unspecified (to ease implementation
|
1725 |
|
|
by target backends), for consistency, this routine implements the
|
1726 |
|
|
same semantics for constant folding as used by the middle-end. */
|
1727 |
|
|
|
1728 |
|
|
/* This was formerly used only for non-IEEE float.
|
1729 |
|
|
eggert@twinsun.com says it is safe for IEEE also. */
|
1730 |
|
|
HOST_WIDE_INT xh, xl, th, tl;
|
1731 |
|
|
REAL_VALUE_TYPE x, t;
|
1732 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (x, op);
|
1733 |
|
|
switch (code)
|
1734 |
|
|
{
|
1735 |
|
|
case FIX:
|
1736 |
|
|
if (REAL_VALUE_ISNAN (x))
|
1737 |
|
|
return const0_rtx;
|
1738 |
|
|
|
1739 |
|
|
/* Test against the signed upper bound. */
|
1740 |
|
|
if (width > HOST_BITS_PER_WIDE_INT)
|
1741 |
|
|
{
|
1742 |
|
|
th = ((unsigned HOST_WIDE_INT) 1
|
1743 |
|
|
<< (width - HOST_BITS_PER_WIDE_INT - 1)) - 1;
|
1744 |
|
|
tl = -1;
|
1745 |
|
|
}
|
1746 |
|
|
else
|
1747 |
|
|
{
|
1748 |
|
|
th = 0;
|
1749 |
|
|
tl = ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1;
|
1750 |
|
|
}
|
1751 |
|
|
real_from_integer (&t, VOIDmode, tl, th, 0);
|
1752 |
|
|
if (REAL_VALUES_LESS (t, x))
|
1753 |
|
|
{
|
1754 |
|
|
xh = th;
|
1755 |
|
|
xl = tl;
|
1756 |
|
|
break;
|
1757 |
|
|
}
|
1758 |
|
|
|
1759 |
|
|
/* Test against the signed lower bound. */
|
1760 |
|
|
if (width > HOST_BITS_PER_WIDE_INT)
|
1761 |
|
|
{
|
1762 |
|
|
th = (unsigned HOST_WIDE_INT) (-1)
|
1763 |
|
|
<< (width - HOST_BITS_PER_WIDE_INT - 1);
|
1764 |
|
|
tl = 0;
|
1765 |
|
|
}
|
1766 |
|
|
else
|
1767 |
|
|
{
|
1768 |
|
|
th = -1;
|
1769 |
|
|
tl = (unsigned HOST_WIDE_INT) (-1) << (width - 1);
|
1770 |
|
|
}
|
1771 |
|
|
real_from_integer (&t, VOIDmode, tl, th, 0);
|
1772 |
|
|
if (REAL_VALUES_LESS (x, t))
|
1773 |
|
|
{
|
1774 |
|
|
xh = th;
|
1775 |
|
|
xl = tl;
|
1776 |
|
|
break;
|
1777 |
|
|
}
|
1778 |
|
|
REAL_VALUE_TO_INT (&xl, &xh, x);
|
1779 |
|
|
break;
|
1780 |
|
|
|
1781 |
|
|
case UNSIGNED_FIX:
|
1782 |
|
|
if (REAL_VALUE_ISNAN (x) || REAL_VALUE_NEGATIVE (x))
|
1783 |
|
|
return const0_rtx;
|
1784 |
|
|
|
1785 |
|
|
/* Test against the unsigned upper bound. */
|
1786 |
|
|
if (width == 2*HOST_BITS_PER_WIDE_INT)
|
1787 |
|
|
{
|
1788 |
|
|
th = -1;
|
1789 |
|
|
tl = -1;
|
1790 |
|
|
}
|
1791 |
|
|
else if (width >= HOST_BITS_PER_WIDE_INT)
|
1792 |
|
|
{
|
1793 |
|
|
th = ((unsigned HOST_WIDE_INT) 1
|
1794 |
|
|
<< (width - HOST_BITS_PER_WIDE_INT)) - 1;
|
1795 |
|
|
tl = -1;
|
1796 |
|
|
}
|
1797 |
|
|
else
|
1798 |
|
|
{
|
1799 |
|
|
th = 0;
|
1800 |
|
|
tl = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
|
1801 |
|
|
}
|
1802 |
|
|
real_from_integer (&t, VOIDmode, tl, th, 1);
|
1803 |
|
|
if (REAL_VALUES_LESS (t, x))
|
1804 |
|
|
{
|
1805 |
|
|
xh = th;
|
1806 |
|
|
xl = tl;
|
1807 |
|
|
break;
|
1808 |
|
|
}
|
1809 |
|
|
|
1810 |
|
|
REAL_VALUE_TO_INT (&xl, &xh, x);
|
1811 |
|
|
break;
|
1812 |
|
|
|
1813 |
|
|
default:
|
1814 |
|
|
gcc_unreachable ();
|
1815 |
|
|
}
|
1816 |
|
|
return immed_double_const (xl, xh, mode);
|
1817 |
|
|
}
|
1818 |
|
|
|
1819 |
|
|
return NULL_RTX;
|
1820 |
|
|
}
|
1821 |
|
|
|
1822 |
|
|
/* Subroutine of simplify_binary_operation to simplify a commutative,
|
1823 |
|
|
associative binary operation CODE with result mode MODE, operating
|
1824 |
|
|
on OP0 and OP1. CODE is currently one of PLUS, MULT, AND, IOR, XOR,
|
1825 |
|
|
SMIN, SMAX, UMIN or UMAX. Return zero if no simplification or
|
1826 |
|
|
canonicalization is possible. */
|
1827 |
|
|
|
1828 |
|
|
static rtx
|
1829 |
|
|
simplify_associative_operation (enum rtx_code code, enum machine_mode mode,
|
1830 |
|
|
rtx op0, rtx op1)
|
1831 |
|
|
{
|
1832 |
|
|
rtx tem;
|
1833 |
|
|
|
1834 |
|
|
/* Linearize the operator to the left. */
|
1835 |
|
|
if (GET_CODE (op1) == code)
|
1836 |
|
|
{
|
1837 |
|
|
/* "(a op b) op (c op d)" becomes "((a op b) op c) op d)". */
|
1838 |
|
|
if (GET_CODE (op0) == code)
|
1839 |
|
|
{
|
1840 |
|
|
tem = simplify_gen_binary (code, mode, op0, XEXP (op1, 0));
|
1841 |
|
|
return simplify_gen_binary (code, mode, tem, XEXP (op1, 1));
|
1842 |
|
|
}
|
1843 |
|
|
|
1844 |
|
|
/* "a op (b op c)" becomes "(b op c) op a". */
|
1845 |
|
|
if (! swap_commutative_operands_p (op1, op0))
|
1846 |
|
|
return simplify_gen_binary (code, mode, op1, op0);
|
1847 |
|
|
|
1848 |
|
|
tem = op0;
|
1849 |
|
|
op0 = op1;
|
1850 |
|
|
op1 = tem;
|
1851 |
|
|
}
|
1852 |
|
|
|
1853 |
|
|
if (GET_CODE (op0) == code)
|
1854 |
|
|
{
|
1855 |
|
|
/* Canonicalize "(x op c) op y" as "(x op y) op c". */
|
1856 |
|
|
if (swap_commutative_operands_p (XEXP (op0, 1), op1))
|
1857 |
|
|
{
|
1858 |
|
|
tem = simplify_gen_binary (code, mode, XEXP (op0, 0), op1);
|
1859 |
|
|
return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
|
1860 |
|
|
}
|
1861 |
|
|
|
1862 |
|
|
/* Attempt to simplify "(a op b) op c" as "a op (b op c)". */
|
1863 |
|
|
tem = simplify_binary_operation (code, mode, XEXP (op0, 1), op1);
|
1864 |
|
|
if (tem != 0)
|
1865 |
|
|
return simplify_gen_binary (code, mode, XEXP (op0, 0), tem);
|
1866 |
|
|
|
1867 |
|
|
/* Attempt to simplify "(a op b) op c" as "(a op c) op b". */
|
1868 |
|
|
tem = simplify_binary_operation (code, mode, XEXP (op0, 0), op1);
|
1869 |
|
|
if (tem != 0)
|
1870 |
|
|
return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
|
1871 |
|
|
}
|
1872 |
|
|
|
1873 |
|
|
return 0;
|
1874 |
|
|
}
|
1875 |
|
|
|
1876 |
|
|
|
1877 |
|
|
/* Simplify a binary operation CODE with result mode MODE, operating on OP0
|
1878 |
|
|
and OP1. Return 0 if no simplification is possible.
|
1879 |
|
|
|
1880 |
|
|
Don't use this for relational operations such as EQ or LT.
|
1881 |
|
|
Use simplify_relational_operation instead. */
|
1882 |
|
|
rtx
|
1883 |
|
|
simplify_binary_operation (enum rtx_code code, enum machine_mode mode,
|
1884 |
|
|
rtx op0, rtx op1)
|
1885 |
|
|
{
|
1886 |
|
|
rtx trueop0, trueop1;
|
1887 |
|
|
rtx tem;
|
1888 |
|
|
|
1889 |
|
|
/* Relational operations don't work here. We must know the mode
|
1890 |
|
|
of the operands in order to do the comparison correctly.
|
1891 |
|
|
Assuming a full word can give incorrect results.
|
1892 |
|
|
Consider comparing 128 with -128 in QImode. */
|
1893 |
|
|
gcc_assert (GET_RTX_CLASS (code) != RTX_COMPARE);
|
1894 |
|
|
gcc_assert (GET_RTX_CLASS (code) != RTX_COMM_COMPARE);
|
1895 |
|
|
|
1896 |
|
|
/* Make sure the constant is second. */
|
1897 |
|
|
if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
|
1898 |
|
|
&& swap_commutative_operands_p (op0, op1))
|
1899 |
|
|
{
|
1900 |
|
|
tem = op0, op0 = op1, op1 = tem;
|
1901 |
|
|
}
|
1902 |
|
|
|
1903 |
|
|
trueop0 = avoid_constant_pool_reference (op0);
|
1904 |
|
|
trueop1 = avoid_constant_pool_reference (op1);
|
1905 |
|
|
|
1906 |
|
|
tem = simplify_const_binary_operation (code, mode, trueop0, trueop1);
|
1907 |
|
|
if (tem)
|
1908 |
|
|
return tem;
|
1909 |
|
|
return simplify_binary_operation_1 (code, mode, op0, op1, trueop0, trueop1);
|
1910 |
|
|
}
|
1911 |
|
|
|
1912 |
|
|
/* Subroutine of simplify_binary_operation. Simplify a binary operation
|
1913 |
|
|
CODE with result mode MODE, operating on OP0 and OP1. If OP0 and/or
|
1914 |
|
|
OP1 are constant pool references, TRUEOP0 and TRUEOP1 represent the
|
1915 |
|
|
actual constants. */
|
1916 |
|
|
|
1917 |
|
|
static rtx
|
1918 |
|
|
simplify_binary_operation_1 (enum rtx_code code, enum machine_mode mode,
|
1919 |
|
|
rtx op0, rtx op1, rtx trueop0, rtx trueop1)
|
1920 |
|
|
{
|
1921 |
|
|
rtx tem, reversed, opleft, opright;
|
1922 |
|
|
HOST_WIDE_INT val;
|
1923 |
|
|
unsigned int width = GET_MODE_PRECISION (mode);
|
1924 |
|
|
|
1925 |
|
|
/* Even if we can't compute a constant result,
|
1926 |
|
|
there are some cases worth simplifying. */
|
1927 |
|
|
|
1928 |
|
|
switch (code)
|
1929 |
|
|
{
|
1930 |
|
|
case PLUS:
|
1931 |
|
|
/* Maybe simplify x + 0 to x. The two expressions are equivalent
|
1932 |
|
|
when x is NaN, infinite, or finite and nonzero. They aren't
|
1933 |
|
|
when x is -0 and the rounding mode is not towards -infinity,
|
1934 |
|
|
since (-0) + 0 is then 0. */
|
1935 |
|
|
if (!HONOR_SIGNED_ZEROS (mode) && trueop1 == CONST0_RTX (mode))
|
1936 |
|
|
return op0;
|
1937 |
|
|
|
1938 |
|
|
/* ((-a) + b) -> (b - a) and similarly for (a + (-b)). These
|
1939 |
|
|
transformations are safe even for IEEE. */
|
1940 |
|
|
if (GET_CODE (op0) == NEG)
|
1941 |
|
|
return simplify_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
|
1942 |
|
|
else if (GET_CODE (op1) == NEG)
|
1943 |
|
|
return simplify_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
|
1944 |
|
|
|
1945 |
|
|
/* (~a) + 1 -> -a */
|
1946 |
|
|
if (INTEGRAL_MODE_P (mode)
|
1947 |
|
|
&& GET_CODE (op0) == NOT
|
1948 |
|
|
&& trueop1 == const1_rtx)
|
1949 |
|
|
return simplify_gen_unary (NEG, mode, XEXP (op0, 0), mode);
|
1950 |
|
|
|
1951 |
|
|
/* Handle both-operands-constant cases. We can only add
|
1952 |
|
|
CONST_INTs to constants since the sum of relocatable symbols
|
1953 |
|
|
can't be handled by most assemblers. Don't add CONST_INT
|
1954 |
|
|
to CONST_INT since overflow won't be computed properly if wider
|
1955 |
|
|
than HOST_BITS_PER_WIDE_INT. */
|
1956 |
|
|
|
1957 |
|
|
if ((GET_CODE (op0) == CONST
|
1958 |
|
|
|| GET_CODE (op0) == SYMBOL_REF
|
1959 |
|
|
|| GET_CODE (op0) == LABEL_REF)
|
1960 |
|
|
&& CONST_INT_P (op1))
|
1961 |
|
|
return plus_constant (op0, INTVAL (op1));
|
1962 |
|
|
else if ((GET_CODE (op1) == CONST
|
1963 |
|
|
|| GET_CODE (op1) == SYMBOL_REF
|
1964 |
|
|
|| GET_CODE (op1) == LABEL_REF)
|
1965 |
|
|
&& CONST_INT_P (op0))
|
1966 |
|
|
return plus_constant (op1, INTVAL (op0));
|
1967 |
|
|
|
1968 |
|
|
/* See if this is something like X * C - X or vice versa or
|
1969 |
|
|
if the multiplication is written as a shift. If so, we can
|
1970 |
|
|
distribute and make a new multiply, shift, or maybe just
|
1971 |
|
|
have X (if C is 2 in the example above). But don't make
|
1972 |
|
|
something more expensive than we had before. */
|
1973 |
|
|
|
1974 |
|
|
if (SCALAR_INT_MODE_P (mode))
|
1975 |
|
|
{
|
1976 |
|
|
double_int coeff0, coeff1;
|
1977 |
|
|
rtx lhs = op0, rhs = op1;
|
1978 |
|
|
|
1979 |
|
|
coeff0 = double_int_one;
|
1980 |
|
|
coeff1 = double_int_one;
|
1981 |
|
|
|
1982 |
|
|
if (GET_CODE (lhs) == NEG)
|
1983 |
|
|
{
|
1984 |
|
|
coeff0 = double_int_minus_one;
|
1985 |
|
|
lhs = XEXP (lhs, 0);
|
1986 |
|
|
}
|
1987 |
|
|
else if (GET_CODE (lhs) == MULT
|
1988 |
|
|
&& CONST_INT_P (XEXP (lhs, 1)))
|
1989 |
|
|
{
|
1990 |
|
|
coeff0 = shwi_to_double_int (INTVAL (XEXP (lhs, 1)));
|
1991 |
|
|
lhs = XEXP (lhs, 0);
|
1992 |
|
|
}
|
1993 |
|
|
else if (GET_CODE (lhs) == ASHIFT
|
1994 |
|
|
&& CONST_INT_P (XEXP (lhs, 1))
|
1995 |
|
|
&& INTVAL (XEXP (lhs, 1)) >= 0
|
1996 |
|
|
&& INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
|
1997 |
|
|
{
|
1998 |
|
|
coeff0 = double_int_setbit (double_int_zero,
|
1999 |
|
|
INTVAL (XEXP (lhs, 1)));
|
2000 |
|
|
lhs = XEXP (lhs, 0);
|
2001 |
|
|
}
|
2002 |
|
|
|
2003 |
|
|
if (GET_CODE (rhs) == NEG)
|
2004 |
|
|
{
|
2005 |
|
|
coeff1 = double_int_minus_one;
|
2006 |
|
|
rhs = XEXP (rhs, 0);
|
2007 |
|
|
}
|
2008 |
|
|
else if (GET_CODE (rhs) == MULT
|
2009 |
|
|
&& CONST_INT_P (XEXP (rhs, 1)))
|
2010 |
|
|
{
|
2011 |
|
|
coeff1 = shwi_to_double_int (INTVAL (XEXP (rhs, 1)));
|
2012 |
|
|
rhs = XEXP (rhs, 0);
|
2013 |
|
|
}
|
2014 |
|
|
else if (GET_CODE (rhs) == ASHIFT
|
2015 |
|
|
&& CONST_INT_P (XEXP (rhs, 1))
|
2016 |
|
|
&& INTVAL (XEXP (rhs, 1)) >= 0
|
2017 |
|
|
&& INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
|
2018 |
|
|
{
|
2019 |
|
|
coeff1 = double_int_setbit (double_int_zero,
|
2020 |
|
|
INTVAL (XEXP (rhs, 1)));
|
2021 |
|
|
rhs = XEXP (rhs, 0);
|
2022 |
|
|
}
|
2023 |
|
|
|
2024 |
|
|
if (rtx_equal_p (lhs, rhs))
|
2025 |
|
|
{
|
2026 |
|
|
rtx orig = gen_rtx_PLUS (mode, op0, op1);
|
2027 |
|
|
rtx coeff;
|
2028 |
|
|
double_int val;
|
2029 |
|
|
bool speed = optimize_function_for_speed_p (cfun);
|
2030 |
|
|
|
2031 |
|
|
val = double_int_add (coeff0, coeff1);
|
2032 |
|
|
coeff = immed_double_int_const (val, mode);
|
2033 |
|
|
|
2034 |
|
|
tem = simplify_gen_binary (MULT, mode, lhs, coeff);
|
2035 |
|
|
return set_src_cost (tem, speed) <= set_src_cost (orig, speed)
|
2036 |
|
|
? tem : 0;
|
2037 |
|
|
}
|
2038 |
|
|
}
|
2039 |
|
|
|
2040 |
|
|
/* (plus (xor X C1) C2) is (xor X (C1^C2)) if C2 is signbit. */
|
2041 |
|
|
if ((CONST_INT_P (op1)
|
2042 |
|
|
|| GET_CODE (op1) == CONST_DOUBLE)
|
2043 |
|
|
&& GET_CODE (op0) == XOR
|
2044 |
|
|
&& (CONST_INT_P (XEXP (op0, 1))
|
2045 |
|
|
|| GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE)
|
2046 |
|
|
&& mode_signbit_p (mode, op1))
|
2047 |
|
|
return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
|
2048 |
|
|
simplify_gen_binary (XOR, mode, op1,
|
2049 |
|
|
XEXP (op0, 1)));
|
2050 |
|
|
|
2051 |
|
|
/* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)). */
|
2052 |
|
|
if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
|
2053 |
|
|
&& GET_CODE (op0) == MULT
|
2054 |
|
|
&& GET_CODE (XEXP (op0, 0)) == NEG)
|
2055 |
|
|
{
|
2056 |
|
|
rtx in1, in2;
|
2057 |
|
|
|
2058 |
|
|
in1 = XEXP (XEXP (op0, 0), 0);
|
2059 |
|
|
in2 = XEXP (op0, 1);
|
2060 |
|
|
return simplify_gen_binary (MINUS, mode, op1,
|
2061 |
|
|
simplify_gen_binary (MULT, mode,
|
2062 |
|
|
in1, in2));
|
2063 |
|
|
}
|
2064 |
|
|
|
2065 |
|
|
/* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
|
2066 |
|
|
C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
|
2067 |
|
|
is 1. */
|
2068 |
|
|
if (COMPARISON_P (op0)
|
2069 |
|
|
&& ((STORE_FLAG_VALUE == -1 && trueop1 == const1_rtx)
|
2070 |
|
|
|| (STORE_FLAG_VALUE == 1 && trueop1 == constm1_rtx))
|
2071 |
|
|
&& (reversed = reversed_comparison (op0, mode)))
|
2072 |
|
|
return
|
2073 |
|
|
simplify_gen_unary (NEG, mode, reversed, mode);
|
2074 |
|
|
|
2075 |
|
|
/* If one of the operands is a PLUS or a MINUS, see if we can
|
2076 |
|
|
simplify this by the associative law.
|
2077 |
|
|
Don't use the associative law for floating point.
|
2078 |
|
|
The inaccuracy makes it nonassociative,
|
2079 |
|
|
and subtle programs can break if operations are associated. */
|
2080 |
|
|
|
2081 |
|
|
if (INTEGRAL_MODE_P (mode)
|
2082 |
|
|
&& (plus_minus_operand_p (op0)
|
2083 |
|
|
|| plus_minus_operand_p (op1))
|
2084 |
|
|
&& (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
|
2085 |
|
|
return tem;
|
2086 |
|
|
|
2087 |
|
|
/* Reassociate floating point addition only when the user
|
2088 |
|
|
specifies associative math operations. */
|
2089 |
|
|
if (FLOAT_MODE_P (mode)
|
2090 |
|
|
&& flag_associative_math)
|
2091 |
|
|
{
|
2092 |
|
|
tem = simplify_associative_operation (code, mode, op0, op1);
|
2093 |
|
|
if (tem)
|
2094 |
|
|
return tem;
|
2095 |
|
|
}
|
2096 |
|
|
break;
|
2097 |
|
|
|
2098 |
|
|
case COMPARE:
|
2099 |
|
|
/* Convert (compare (gt (flags) 0) (lt (flags) 0)) to (flags). */
|
2100 |
|
|
if (((GET_CODE (op0) == GT && GET_CODE (op1) == LT)
|
2101 |
|
|
|| (GET_CODE (op0) == GTU && GET_CODE (op1) == LTU))
|
2102 |
|
|
&& XEXP (op0, 1) == const0_rtx && XEXP (op1, 1) == const0_rtx)
|
2103 |
|
|
{
|
2104 |
|
|
rtx xop00 = XEXP (op0, 0);
|
2105 |
|
|
rtx xop10 = XEXP (op1, 0);
|
2106 |
|
|
|
2107 |
|
|
#ifdef HAVE_cc0
|
2108 |
|
|
if (GET_CODE (xop00) == CC0 && GET_CODE (xop10) == CC0)
|
2109 |
|
|
#else
|
2110 |
|
|
if (REG_P (xop00) && REG_P (xop10)
|
2111 |
|
|
&& GET_MODE (xop00) == GET_MODE (xop10)
|
2112 |
|
|
&& REGNO (xop00) == REGNO (xop10)
|
2113 |
|
|
&& GET_MODE_CLASS (GET_MODE (xop00)) == MODE_CC
|
2114 |
|
|
&& GET_MODE_CLASS (GET_MODE (xop10)) == MODE_CC)
|
2115 |
|
|
#endif
|
2116 |
|
|
return xop00;
|
2117 |
|
|
}
|
2118 |
|
|
break;
|
2119 |
|
|
|
2120 |
|
|
case MINUS:
|
2121 |
|
|
/* We can't assume x-x is 0 even with non-IEEE floating point,
|
2122 |
|
|
but since it is zero except in very strange circumstances, we
|
2123 |
|
|
will treat it as zero with -ffinite-math-only. */
|
2124 |
|
|
if (rtx_equal_p (trueop0, trueop1)
|
2125 |
|
|
&& ! side_effects_p (op0)
|
2126 |
|
|
&& (!FLOAT_MODE_P (mode) || !HONOR_NANS (mode)))
|
2127 |
|
|
return CONST0_RTX (mode);
|
2128 |
|
|
|
2129 |
|
|
/* Change subtraction from zero into negation. (0 - x) is the
|
2130 |
|
|
same as -x when x is NaN, infinite, or finite and nonzero.
|
2131 |
|
|
But if the mode has signed zeros, and does not round towards
|
2132 |
|
|
-infinity, then 0 - 0 is 0, not -0. */
|
2133 |
|
|
if (!HONOR_SIGNED_ZEROS (mode) && trueop0 == CONST0_RTX (mode))
|
2134 |
|
|
return simplify_gen_unary (NEG, mode, op1, mode);
|
2135 |
|
|
|
2136 |
|
|
/* (-1 - a) is ~a. */
|
2137 |
|
|
if (trueop0 == constm1_rtx)
|
2138 |
|
|
return simplify_gen_unary (NOT, mode, op1, mode);
|
2139 |
|
|
|
2140 |
|
|
/* Subtracting 0 has no effect unless the mode has signed zeros
|
2141 |
|
|
and supports rounding towards -infinity. In such a case,
|
2142 |
|
|
|
2143 |
|
|
if (!(HONOR_SIGNED_ZEROS (mode)
|
2144 |
|
|
&& HONOR_SIGN_DEPENDENT_ROUNDING (mode))
|
2145 |
|
|
&& trueop1 == CONST0_RTX (mode))
|
2146 |
|
|
return op0;
|
2147 |
|
|
|
2148 |
|
|
/* See if this is something like X * C - X or vice versa or
|
2149 |
|
|
if the multiplication is written as a shift. If so, we can
|
2150 |
|
|
distribute and make a new multiply, shift, or maybe just
|
2151 |
|
|
have X (if C is 2 in the example above). But don't make
|
2152 |
|
|
something more expensive than we had before. */
|
2153 |
|
|
|
2154 |
|
|
if (SCALAR_INT_MODE_P (mode))
|
2155 |
|
|
{
|
2156 |
|
|
double_int coeff0, negcoeff1;
|
2157 |
|
|
rtx lhs = op0, rhs = op1;
|
2158 |
|
|
|
2159 |
|
|
coeff0 = double_int_one;
|
2160 |
|
|
negcoeff1 = double_int_minus_one;
|
2161 |
|
|
|
2162 |
|
|
if (GET_CODE (lhs) == NEG)
|
2163 |
|
|
{
|
2164 |
|
|
coeff0 = double_int_minus_one;
|
2165 |
|
|
lhs = XEXP (lhs, 0);
|
2166 |
|
|
}
|
2167 |
|
|
else if (GET_CODE (lhs) == MULT
|
2168 |
|
|
&& CONST_INT_P (XEXP (lhs, 1)))
|
2169 |
|
|
{
|
2170 |
|
|
coeff0 = shwi_to_double_int (INTVAL (XEXP (lhs, 1)));
|
2171 |
|
|
lhs = XEXP (lhs, 0);
|
2172 |
|
|
}
|
2173 |
|
|
else if (GET_CODE (lhs) == ASHIFT
|
2174 |
|
|
&& CONST_INT_P (XEXP (lhs, 1))
|
2175 |
|
|
&& INTVAL (XEXP (lhs, 1)) >= 0
|
2176 |
|
|
&& INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
|
2177 |
|
|
{
|
2178 |
|
|
coeff0 = double_int_setbit (double_int_zero,
|
2179 |
|
|
INTVAL (XEXP (lhs, 1)));
|
2180 |
|
|
lhs = XEXP (lhs, 0);
|
2181 |
|
|
}
|
2182 |
|
|
|
2183 |
|
|
if (GET_CODE (rhs) == NEG)
|
2184 |
|
|
{
|
2185 |
|
|
negcoeff1 = double_int_one;
|
2186 |
|
|
rhs = XEXP (rhs, 0);
|
2187 |
|
|
}
|
2188 |
|
|
else if (GET_CODE (rhs) == MULT
|
2189 |
|
|
&& CONST_INT_P (XEXP (rhs, 1)))
|
2190 |
|
|
{
|
2191 |
|
|
negcoeff1 = shwi_to_double_int (-INTVAL (XEXP (rhs, 1)));
|
2192 |
|
|
rhs = XEXP (rhs, 0);
|
2193 |
|
|
}
|
2194 |
|
|
else if (GET_CODE (rhs) == ASHIFT
|
2195 |
|
|
&& CONST_INT_P (XEXP (rhs, 1))
|
2196 |
|
|
&& INTVAL (XEXP (rhs, 1)) >= 0
|
2197 |
|
|
&& INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
|
2198 |
|
|
{
|
2199 |
|
|
negcoeff1 = double_int_setbit (double_int_zero,
|
2200 |
|
|
INTVAL (XEXP (rhs, 1)));
|
2201 |
|
|
negcoeff1 = double_int_neg (negcoeff1);
|
2202 |
|
|
rhs = XEXP (rhs, 0);
|
2203 |
|
|
}
|
2204 |
|
|
|
2205 |
|
|
if (rtx_equal_p (lhs, rhs))
|
2206 |
|
|
{
|
2207 |
|
|
rtx orig = gen_rtx_MINUS (mode, op0, op1);
|
2208 |
|
|
rtx coeff;
|
2209 |
|
|
double_int val;
|
2210 |
|
|
bool speed = optimize_function_for_speed_p (cfun);
|
2211 |
|
|
|
2212 |
|
|
val = double_int_add (coeff0, negcoeff1);
|
2213 |
|
|
coeff = immed_double_int_const (val, mode);
|
2214 |
|
|
|
2215 |
|
|
tem = simplify_gen_binary (MULT, mode, lhs, coeff);
|
2216 |
|
|
return set_src_cost (tem, speed) <= set_src_cost (orig, speed)
|
2217 |
|
|
? tem : 0;
|
2218 |
|
|
}
|
2219 |
|
|
}
|
2220 |
|
|
|
2221 |
|
|
/* (a - (-b)) -> (a + b). True even for IEEE. */
|
2222 |
|
|
if (GET_CODE (op1) == NEG)
|
2223 |
|
|
return simplify_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
|
2224 |
|
|
|
2225 |
|
|
/* (-x - c) may be simplified as (-c - x). */
|
2226 |
|
|
if (GET_CODE (op0) == NEG
|
2227 |
|
|
&& (CONST_INT_P (op1)
|
2228 |
|
|
|| GET_CODE (op1) == CONST_DOUBLE))
|
2229 |
|
|
{
|
2230 |
|
|
tem = simplify_unary_operation (NEG, mode, op1, mode);
|
2231 |
|
|
if (tem)
|
2232 |
|
|
return simplify_gen_binary (MINUS, mode, tem, XEXP (op0, 0));
|
2233 |
|
|
}
|
2234 |
|
|
|
2235 |
|
|
/* Don't let a relocatable value get a negative coeff. */
|
2236 |
|
|
if (CONST_INT_P (op1) && GET_MODE (op0) != VOIDmode)
|
2237 |
|
|
return simplify_gen_binary (PLUS, mode,
|
2238 |
|
|
op0,
|
2239 |
|
|
neg_const_int (mode, op1));
|
2240 |
|
|
|
2241 |
|
|
/* (x - (x & y)) -> (x & ~y) */
|
2242 |
|
|
if (GET_CODE (op1) == AND)
|
2243 |
|
|
{
|
2244 |
|
|
if (rtx_equal_p (op0, XEXP (op1, 0)))
|
2245 |
|
|
{
|
2246 |
|
|
tem = simplify_gen_unary (NOT, mode, XEXP (op1, 1),
|
2247 |
|
|
GET_MODE (XEXP (op1, 1)));
|
2248 |
|
|
return simplify_gen_binary (AND, mode, op0, tem);
|
2249 |
|
|
}
|
2250 |
|
|
if (rtx_equal_p (op0, XEXP (op1, 1)))
|
2251 |
|
|
{
|
2252 |
|
|
tem = simplify_gen_unary (NOT, mode, XEXP (op1, 0),
|
2253 |
|
|
GET_MODE (XEXP (op1, 0)));
|
2254 |
|
|
return simplify_gen_binary (AND, mode, op0, tem);
|
2255 |
|
|
}
|
2256 |
|
|
}
|
2257 |
|
|
|
2258 |
|
|
/* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
|
2259 |
|
|
by reversing the comparison code if valid. */
|
2260 |
|
|
if (STORE_FLAG_VALUE == 1
|
2261 |
|
|
&& trueop0 == const1_rtx
|
2262 |
|
|
&& COMPARISON_P (op1)
|
2263 |
|
|
&& (reversed = reversed_comparison (op1, mode)))
|
2264 |
|
|
return reversed;
|
2265 |
|
|
|
2266 |
|
|
/* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A). */
|
2267 |
|
|
if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
|
2268 |
|
|
&& GET_CODE (op1) == MULT
|
2269 |
|
|
&& GET_CODE (XEXP (op1, 0)) == NEG)
|
2270 |
|
|
{
|
2271 |
|
|
rtx in1, in2;
|
2272 |
|
|
|
2273 |
|
|
in1 = XEXP (XEXP (op1, 0), 0);
|
2274 |
|
|
in2 = XEXP (op1, 1);
|
2275 |
|
|
return simplify_gen_binary (PLUS, mode,
|
2276 |
|
|
simplify_gen_binary (MULT, mode,
|
2277 |
|
|
in1, in2),
|
2278 |
|
|
op0);
|
2279 |
|
|
}
|
2280 |
|
|
|
2281 |
|
|
/* Canonicalize (minus (neg A) (mult B C)) to
|
2282 |
|
|
(minus (mult (neg B) C) A). */
|
2283 |
|
|
if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
|
2284 |
|
|
&& GET_CODE (op1) == MULT
|
2285 |
|
|
&& GET_CODE (op0) == NEG)
|
2286 |
|
|
{
|
2287 |
|
|
rtx in1, in2;
|
2288 |
|
|
|
2289 |
|
|
in1 = simplify_gen_unary (NEG, mode, XEXP (op1, 0), mode);
|
2290 |
|
|
in2 = XEXP (op1, 1);
|
2291 |
|
|
return simplify_gen_binary (MINUS, mode,
|
2292 |
|
|
simplify_gen_binary (MULT, mode,
|
2293 |
|
|
in1, in2),
|
2294 |
|
|
XEXP (op0, 0));
|
2295 |
|
|
}
|
2296 |
|
|
|
2297 |
|
|
/* If one of the operands is a PLUS or a MINUS, see if we can
|
2298 |
|
|
simplify this by the associative law. This will, for example,
|
2299 |
|
|
canonicalize (minus A (plus B C)) to (minus (minus A B) C).
|
2300 |
|
|
Don't use the associative law for floating point.
|
2301 |
|
|
The inaccuracy makes it nonassociative,
|
2302 |
|
|
and subtle programs can break if operations are associated. */
|
2303 |
|
|
|
2304 |
|
|
if (INTEGRAL_MODE_P (mode)
|
2305 |
|
|
&& (plus_minus_operand_p (op0)
|
2306 |
|
|
|| plus_minus_operand_p (op1))
|
2307 |
|
|
&& (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
|
2308 |
|
|
return tem;
|
2309 |
|
|
break;
|
2310 |
|
|
|
2311 |
|
|
case MULT:
|
2312 |
|
|
if (trueop1 == constm1_rtx)
|
2313 |
|
|
return simplify_gen_unary (NEG, mode, op0, mode);
|
2314 |
|
|
|
2315 |
|
|
if (GET_CODE (op0) == NEG)
|
2316 |
|
|
{
|
2317 |
|
|
rtx temp = simplify_unary_operation (NEG, mode, op1, mode);
|
2318 |
|
|
/* If op1 is a MULT as well and simplify_unary_operation
|
2319 |
|
|
just moved the NEG to the second operand, simplify_gen_binary
|
2320 |
|
|
below could through simplify_associative_operation move
|
2321 |
|
|
the NEG around again and recurse endlessly. */
|
2322 |
|
|
if (temp
|
2323 |
|
|
&& GET_CODE (op1) == MULT
|
2324 |
|
|
&& GET_CODE (temp) == MULT
|
2325 |
|
|
&& XEXP (op1, 0) == XEXP (temp, 0)
|
2326 |
|
|
&& GET_CODE (XEXP (temp, 1)) == NEG
|
2327 |
|
|
&& XEXP (op1, 1) == XEXP (XEXP (temp, 1), 0))
|
2328 |
|
|
temp = NULL_RTX;
|
2329 |
|
|
if (temp)
|
2330 |
|
|
return simplify_gen_binary (MULT, mode, XEXP (op0, 0), temp);
|
2331 |
|
|
}
|
2332 |
|
|
if (GET_CODE (op1) == NEG)
|
2333 |
|
|
{
|
2334 |
|
|
rtx temp = simplify_unary_operation (NEG, mode, op0, mode);
|
2335 |
|
|
/* If op0 is a MULT as well and simplify_unary_operation
|
2336 |
|
|
just moved the NEG to the second operand, simplify_gen_binary
|
2337 |
|
|
below could through simplify_associative_operation move
|
2338 |
|
|
the NEG around again and recurse endlessly. */
|
2339 |
|
|
if (temp
|
2340 |
|
|
&& GET_CODE (op0) == MULT
|
2341 |
|
|
&& GET_CODE (temp) == MULT
|
2342 |
|
|
&& XEXP (op0, 0) == XEXP (temp, 0)
|
2343 |
|
|
&& GET_CODE (XEXP (temp, 1)) == NEG
|
2344 |
|
|
&& XEXP (op0, 1) == XEXP (XEXP (temp, 1), 0))
|
2345 |
|
|
temp = NULL_RTX;
|
2346 |
|
|
if (temp)
|
2347 |
|
|
return simplify_gen_binary (MULT, mode, temp, XEXP (op1, 0));
|
2348 |
|
|
}
|
2349 |
|
|
|
2350 |
|
|
/* Maybe simplify x * 0 to 0. The reduction is not valid if
|
2351 |
|
|
x is NaN, since x * 0 is then also NaN. Nor is it valid
|
2352 |
|
|
when the mode has signed zeros, since multiplying a negative
|
2353 |
|
|
number by 0 will give -0, not 0. */
|
2354 |
|
|
if (!HONOR_NANS (mode)
|
2355 |
|
|
&& !HONOR_SIGNED_ZEROS (mode)
|
2356 |
|
|
&& trueop1 == CONST0_RTX (mode)
|
2357 |
|
|
&& ! side_effects_p (op0))
|
2358 |
|
|
return op1;
|
2359 |
|
|
|
2360 |
|
|
/* In IEEE floating point, x*1 is not equivalent to x for
|
2361 |
|
|
signalling NaNs. */
|
2362 |
|
|
if (!HONOR_SNANS (mode)
|
2363 |
|
|
&& trueop1 == CONST1_RTX (mode))
|
2364 |
|
|
return op0;
|
2365 |
|
|
|
2366 |
|
|
/* Convert multiply by constant power of two into shift unless
|
2367 |
|
|
we are still generating RTL. This test is a kludge. */
|
2368 |
|
|
if (CONST_INT_P (trueop1)
|
2369 |
|
|
&& (val = exact_log2 (UINTVAL (trueop1))) >= 0
|
2370 |
|
|
/* If the mode is larger than the host word size, and the
|
2371 |
|
|
uppermost bit is set, then this isn't a power of two due
|
2372 |
|
|
to implicit sign extension. */
|
2373 |
|
|
&& (width <= HOST_BITS_PER_WIDE_INT
|
2374 |
|
|
|| val != HOST_BITS_PER_WIDE_INT - 1))
|
2375 |
|
|
return simplify_gen_binary (ASHIFT, mode, op0, GEN_INT (val));
|
2376 |
|
|
|
2377 |
|
|
/* Likewise for multipliers wider than a word. */
|
2378 |
|
|
if (GET_CODE (trueop1) == CONST_DOUBLE
|
2379 |
|
|
&& (GET_MODE (trueop1) == VOIDmode
|
2380 |
|
|
|| GET_MODE_CLASS (GET_MODE (trueop1)) == MODE_INT)
|
2381 |
|
|
&& GET_MODE (op0) == mode
|
2382 |
|
|
&& CONST_DOUBLE_LOW (trueop1) == 0
|
2383 |
|
|
&& (val = exact_log2 (CONST_DOUBLE_HIGH (trueop1))) >= 0)
|
2384 |
|
|
return simplify_gen_binary (ASHIFT, mode, op0,
|
2385 |
|
|
GEN_INT (val + HOST_BITS_PER_WIDE_INT));
|
2386 |
|
|
|
2387 |
|
|
/* x*2 is x+x and x*(-1) is -x */
|
2388 |
|
|
if (GET_CODE (trueop1) == CONST_DOUBLE
|
2389 |
|
|
&& SCALAR_FLOAT_MODE_P (GET_MODE (trueop1))
|
2390 |
|
|
&& !DECIMAL_FLOAT_MODE_P (GET_MODE (trueop1))
|
2391 |
|
|
&& GET_MODE (op0) == mode)
|
2392 |
|
|
{
|
2393 |
|
|
REAL_VALUE_TYPE d;
|
2394 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
|
2395 |
|
|
|
2396 |
|
|
if (REAL_VALUES_EQUAL (d, dconst2))
|
2397 |
|
|
return simplify_gen_binary (PLUS, mode, op0, copy_rtx (op0));
|
2398 |
|
|
|
2399 |
|
|
if (!HONOR_SNANS (mode)
|
2400 |
|
|
&& REAL_VALUES_EQUAL (d, dconstm1))
|
2401 |
|
|
return simplify_gen_unary (NEG, mode, op0, mode);
|
2402 |
|
|
}
|
2403 |
|
|
|
2404 |
|
|
/* Optimize -x * -x as x * x. */
|
2405 |
|
|
if (FLOAT_MODE_P (mode)
|
2406 |
|
|
&& GET_CODE (op0) == NEG
|
2407 |
|
|
&& GET_CODE (op1) == NEG
|
2408 |
|
|
&& rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
|
2409 |
|
|
&& !side_effects_p (XEXP (op0, 0)))
|
2410 |
|
|
return simplify_gen_binary (MULT, mode, XEXP (op0, 0), XEXP (op1, 0));
|
2411 |
|
|
|
2412 |
|
|
/* Likewise, optimize abs(x) * abs(x) as x * x. */
|
2413 |
|
|
if (SCALAR_FLOAT_MODE_P (mode)
|
2414 |
|
|
&& GET_CODE (op0) == ABS
|
2415 |
|
|
&& GET_CODE (op1) == ABS
|
2416 |
|
|
&& rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
|
2417 |
|
|
&& !side_effects_p (XEXP (op0, 0)))
|
2418 |
|
|
return simplify_gen_binary (MULT, mode, XEXP (op0, 0), XEXP (op1, 0));
|
2419 |
|
|
|
2420 |
|
|
/* Reassociate multiplication, but for floating point MULTs
|
2421 |
|
|
only when the user specifies unsafe math optimizations. */
|
2422 |
|
|
if (! FLOAT_MODE_P (mode)
|
2423 |
|
|
|| flag_unsafe_math_optimizations)
|
2424 |
|
|
{
|
2425 |
|
|
tem = simplify_associative_operation (code, mode, op0, op1);
|
2426 |
|
|
if (tem)
|
2427 |
|
|
return tem;
|
2428 |
|
|
}
|
2429 |
|
|
break;
|
2430 |
|
|
|
2431 |
|
|
case IOR:
|
2432 |
|
|
if (trueop1 == CONST0_RTX (mode))
|
2433 |
|
|
return op0;
|
2434 |
|
|
if (INTEGRAL_MODE_P (mode) && trueop1 == CONSTM1_RTX (mode))
|
2435 |
|
|
return op1;
|
2436 |
|
|
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
|
2437 |
|
|
return op0;
|
2438 |
|
|
/* A | (~A) -> -1 */
|
2439 |
|
|
if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
|
2440 |
|
|
|| (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
|
2441 |
|
|
&& ! side_effects_p (op0)
|
2442 |
|
|
&& SCALAR_INT_MODE_P (mode))
|
2443 |
|
|
return constm1_rtx;
|
2444 |
|
|
|
2445 |
|
|
/* (ior A C) is C if all bits of A that might be nonzero are on in C. */
|
2446 |
|
|
if (CONST_INT_P (op1)
|
2447 |
|
|
&& HWI_COMPUTABLE_MODE_P (mode)
|
2448 |
|
|
&& (nonzero_bits (op0, mode) & ~UINTVAL (op1)) == 0)
|
2449 |
|
|
return op1;
|
2450 |
|
|
|
2451 |
|
|
/* Canonicalize (X & C1) | C2. */
|
2452 |
|
|
if (GET_CODE (op0) == AND
|
2453 |
|
|
&& CONST_INT_P (trueop1)
|
2454 |
|
|
&& CONST_INT_P (XEXP (op0, 1)))
|
2455 |
|
|
{
|
2456 |
|
|
HOST_WIDE_INT mask = GET_MODE_MASK (mode);
|
2457 |
|
|
HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
|
2458 |
|
|
HOST_WIDE_INT c2 = INTVAL (trueop1);
|
2459 |
|
|
|
2460 |
|
|
/* If (C1&C2) == C1, then (X&C1)|C2 becomes X. */
|
2461 |
|
|
if ((c1 & c2) == c1
|
2462 |
|
|
&& !side_effects_p (XEXP (op0, 0)))
|
2463 |
|
|
return trueop1;
|
2464 |
|
|
|
2465 |
|
|
/* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
|
2466 |
|
|
if (((c1|c2) & mask) == mask)
|
2467 |
|
|
return simplify_gen_binary (IOR, mode, XEXP (op0, 0), op1);
|
2468 |
|
|
|
2469 |
|
|
/* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2. */
|
2470 |
|
|
if (((c1 & ~c2) & mask) != (c1 & mask))
|
2471 |
|
|
{
|
2472 |
|
|
tem = simplify_gen_binary (AND, mode, XEXP (op0, 0),
|
2473 |
|
|
gen_int_mode (c1 & ~c2, mode));
|
2474 |
|
|
return simplify_gen_binary (IOR, mode, tem, op1);
|
2475 |
|
|
}
|
2476 |
|
|
}
|
2477 |
|
|
|
2478 |
|
|
/* Convert (A & B) | A to A. */
|
2479 |
|
|
if (GET_CODE (op0) == AND
|
2480 |
|
|
&& (rtx_equal_p (XEXP (op0, 0), op1)
|
2481 |
|
|
|| rtx_equal_p (XEXP (op0, 1), op1))
|
2482 |
|
|
&& ! side_effects_p (XEXP (op0, 0))
|
2483 |
|
|
&& ! side_effects_p (XEXP (op0, 1)))
|
2484 |
|
|
return op1;
|
2485 |
|
|
|
2486 |
|
|
/* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
|
2487 |
|
|
mode size to (rotate A CX). */
|
2488 |
|
|
|
2489 |
|
|
if (GET_CODE (op1) == ASHIFT
|
2490 |
|
|
|| GET_CODE (op1) == SUBREG)
|
2491 |
|
|
{
|
2492 |
|
|
opleft = op1;
|
2493 |
|
|
opright = op0;
|
2494 |
|
|
}
|
2495 |
|
|
else
|
2496 |
|
|
{
|
2497 |
|
|
opright = op1;
|
2498 |
|
|
opleft = op0;
|
2499 |
|
|
}
|
2500 |
|
|
|
2501 |
|
|
if (GET_CODE (opleft) == ASHIFT && GET_CODE (opright) == LSHIFTRT
|
2502 |
|
|
&& rtx_equal_p (XEXP (opleft, 0), XEXP (opright, 0))
|
2503 |
|
|
&& CONST_INT_P (XEXP (opleft, 1))
|
2504 |
|
|
&& CONST_INT_P (XEXP (opright, 1))
|
2505 |
|
|
&& (INTVAL (XEXP (opleft, 1)) + INTVAL (XEXP (opright, 1))
|
2506 |
|
|
== GET_MODE_PRECISION (mode)))
|
2507 |
|
|
return gen_rtx_ROTATE (mode, XEXP (opright, 0), XEXP (opleft, 1));
|
2508 |
|
|
|
2509 |
|
|
/* Same, but for ashift that has been "simplified" to a wider mode
|
2510 |
|
|
by simplify_shift_const. */
|
2511 |
|
|
|
2512 |
|
|
if (GET_CODE (opleft) == SUBREG
|
2513 |
|
|
&& GET_CODE (SUBREG_REG (opleft)) == ASHIFT
|
2514 |
|
|
&& GET_CODE (opright) == LSHIFTRT
|
2515 |
|
|
&& GET_CODE (XEXP (opright, 0)) == SUBREG
|
2516 |
|
|
&& GET_MODE (opleft) == GET_MODE (XEXP (opright, 0))
|
2517 |
|
|
&& SUBREG_BYTE (opleft) == SUBREG_BYTE (XEXP (opright, 0))
|
2518 |
|
|
&& (GET_MODE_SIZE (GET_MODE (opleft))
|
2519 |
|
|
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (opleft))))
|
2520 |
|
|
&& rtx_equal_p (XEXP (SUBREG_REG (opleft), 0),
|
2521 |
|
|
SUBREG_REG (XEXP (opright, 0)))
|
2522 |
|
|
&& CONST_INT_P (XEXP (SUBREG_REG (opleft), 1))
|
2523 |
|
|
&& CONST_INT_P (XEXP (opright, 1))
|
2524 |
|
|
&& (INTVAL (XEXP (SUBREG_REG (opleft), 1)) + INTVAL (XEXP (opright, 1))
|
2525 |
|
|
== GET_MODE_PRECISION (mode)))
|
2526 |
|
|
return gen_rtx_ROTATE (mode, XEXP (opright, 0),
|
2527 |
|
|
XEXP (SUBREG_REG (opleft), 1));
|
2528 |
|
|
|
2529 |
|
|
/* If we have (ior (and (X C1) C2)), simplify this by making
|
2530 |
|
|
C1 as small as possible if C1 actually changes. */
|
2531 |
|
|
if (CONST_INT_P (op1)
|
2532 |
|
|
&& (HWI_COMPUTABLE_MODE_P (mode)
|
2533 |
|
|
|| INTVAL (op1) > 0)
|
2534 |
|
|
&& GET_CODE (op0) == AND
|
2535 |
|
|
&& CONST_INT_P (XEXP (op0, 1))
|
2536 |
|
|
&& CONST_INT_P (op1)
|
2537 |
|
|
&& (UINTVAL (XEXP (op0, 1)) & UINTVAL (op1)) != 0)
|
2538 |
|
|
return simplify_gen_binary (IOR, mode,
|
2539 |
|
|
simplify_gen_binary
|
2540 |
|
|
(AND, mode, XEXP (op0, 0),
|
2541 |
|
|
GEN_INT (UINTVAL (XEXP (op0, 1))
|
2542 |
|
|
& ~UINTVAL (op1))),
|
2543 |
|
|
op1);
|
2544 |
|
|
|
2545 |
|
|
/* If OP0 is (ashiftrt (plus ...) C), it might actually be
|
2546 |
|
|
a (sign_extend (plus ...)). Then check if OP1 is a CONST_INT and
|
2547 |
|
|
the PLUS does not affect any of the bits in OP1: then we can do
|
2548 |
|
|
the IOR as a PLUS and we can associate. This is valid if OP1
|
2549 |
|
|
can be safely shifted left C bits. */
|
2550 |
|
|
if (CONST_INT_P (trueop1) && GET_CODE (op0) == ASHIFTRT
|
2551 |
|
|
&& GET_CODE (XEXP (op0, 0)) == PLUS
|
2552 |
|
|
&& CONST_INT_P (XEXP (XEXP (op0, 0), 1))
|
2553 |
|
|
&& CONST_INT_P (XEXP (op0, 1))
|
2554 |
|
|
&& INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
|
2555 |
|
|
{
|
2556 |
|
|
int count = INTVAL (XEXP (op0, 1));
|
2557 |
|
|
HOST_WIDE_INT mask = INTVAL (trueop1) << count;
|
2558 |
|
|
|
2559 |
|
|
if (mask >> count == INTVAL (trueop1)
|
2560 |
|
|
&& (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
|
2561 |
|
|
return simplify_gen_binary (ASHIFTRT, mode,
|
2562 |
|
|
plus_constant (XEXP (op0, 0), mask),
|
2563 |
|
|
XEXP (op0, 1));
|
2564 |
|
|
}
|
2565 |
|
|
|
2566 |
|
|
tem = simplify_associative_operation (code, mode, op0, op1);
|
2567 |
|
|
if (tem)
|
2568 |
|
|
return tem;
|
2569 |
|
|
break;
|
2570 |
|
|
|
2571 |
|
|
case XOR:
|
2572 |
|
|
if (trueop1 == CONST0_RTX (mode))
|
2573 |
|
|
return op0;
|
2574 |
|
|
if (INTEGRAL_MODE_P (mode) && trueop1 == CONSTM1_RTX (mode))
|
2575 |
|
|
return simplify_gen_unary (NOT, mode, op0, mode);
|
2576 |
|
|
if (rtx_equal_p (trueop0, trueop1)
|
2577 |
|
|
&& ! side_effects_p (op0)
|
2578 |
|
|
&& GET_MODE_CLASS (mode) != MODE_CC)
|
2579 |
|
|
return CONST0_RTX (mode);
|
2580 |
|
|
|
2581 |
|
|
/* Canonicalize XOR of the most significant bit to PLUS. */
|
2582 |
|
|
if ((CONST_INT_P (op1)
|
2583 |
|
|
|| GET_CODE (op1) == CONST_DOUBLE)
|
2584 |
|
|
&& mode_signbit_p (mode, op1))
|
2585 |
|
|
return simplify_gen_binary (PLUS, mode, op0, op1);
|
2586 |
|
|
/* (xor (plus X C1) C2) is (xor X (C1^C2)) if C1 is signbit. */
|
2587 |
|
|
if ((CONST_INT_P (op1)
|
2588 |
|
|
|| GET_CODE (op1) == CONST_DOUBLE)
|
2589 |
|
|
&& GET_CODE (op0) == PLUS
|
2590 |
|
|
&& (CONST_INT_P (XEXP (op0, 1))
|
2591 |
|
|
|| GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE)
|
2592 |
|
|
&& mode_signbit_p (mode, XEXP (op0, 1)))
|
2593 |
|
|
return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
|
2594 |
|
|
simplify_gen_binary (XOR, mode, op1,
|
2595 |
|
|
XEXP (op0, 1)));
|
2596 |
|
|
|
2597 |
|
|
/* If we are XORing two things that have no bits in common,
|
2598 |
|
|
convert them into an IOR. This helps to detect rotation encoded
|
2599 |
|
|
using those methods and possibly other simplifications. */
|
2600 |
|
|
|
2601 |
|
|
if (HWI_COMPUTABLE_MODE_P (mode)
|
2602 |
|
|
&& (nonzero_bits (op0, mode)
|
2603 |
|
|
& nonzero_bits (op1, mode)) == 0)
|
2604 |
|
|
return (simplify_gen_binary (IOR, mode, op0, op1));
|
2605 |
|
|
|
2606 |
|
|
/* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
|
2607 |
|
|
Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
|
2608 |
|
|
(NOT y). */
|
2609 |
|
|
{
|
2610 |
|
|
int num_negated = 0;
|
2611 |
|
|
|
2612 |
|
|
if (GET_CODE (op0) == NOT)
|
2613 |
|
|
num_negated++, op0 = XEXP (op0, 0);
|
2614 |
|
|
if (GET_CODE (op1) == NOT)
|
2615 |
|
|
num_negated++, op1 = XEXP (op1, 0);
|
2616 |
|
|
|
2617 |
|
|
if (num_negated == 2)
|
2618 |
|
|
return simplify_gen_binary (XOR, mode, op0, op1);
|
2619 |
|
|
else if (num_negated == 1)
|
2620 |
|
|
return simplify_gen_unary (NOT, mode,
|
2621 |
|
|
simplify_gen_binary (XOR, mode, op0, op1),
|
2622 |
|
|
mode);
|
2623 |
|
|
}
|
2624 |
|
|
|
2625 |
|
|
/* Convert (xor (and A B) B) to (and (not A) B). The latter may
|
2626 |
|
|
correspond to a machine insn or result in further simplifications
|
2627 |
|
|
if B is a constant. */
|
2628 |
|
|
|
2629 |
|
|
if (GET_CODE (op0) == AND
|
2630 |
|
|
&& rtx_equal_p (XEXP (op0, 1), op1)
|
2631 |
|
|
&& ! side_effects_p (op1))
|
2632 |
|
|
return simplify_gen_binary (AND, mode,
|
2633 |
|
|
simplify_gen_unary (NOT, mode,
|
2634 |
|
|
XEXP (op0, 0), mode),
|
2635 |
|
|
op1);
|
2636 |
|
|
|
2637 |
|
|
else if (GET_CODE (op0) == AND
|
2638 |
|
|
&& rtx_equal_p (XEXP (op0, 0), op1)
|
2639 |
|
|
&& ! side_effects_p (op1))
|
2640 |
|
|
return simplify_gen_binary (AND, mode,
|
2641 |
|
|
simplify_gen_unary (NOT, mode,
|
2642 |
|
|
XEXP (op0, 1), mode),
|
2643 |
|
|
op1);
|
2644 |
|
|
|
2645 |
|
|
/* Given (xor (and A B) C), using P^Q == (~P&Q) | (~Q&P),
|
2646 |
|
|
we can transform like this:
|
2647 |
|
|
(A&B)^C == ~(A&B)&C | ~C&(A&B)
|
2648 |
|
|
== (~A|~B)&C | ~C&(A&B) * DeMorgan's Law
|
2649 |
|
|
== ~A&C | ~B&C | A&(~C&B) * Distribute and re-order
|
2650 |
|
|
Attempt a few simplifications when B and C are both constants. */
|
2651 |
|
|
if (GET_CODE (op0) == AND
|
2652 |
|
|
&& CONST_INT_P (op1)
|
2653 |
|
|
&& CONST_INT_P (XEXP (op0, 1)))
|
2654 |
|
|
{
|
2655 |
|
|
rtx a = XEXP (op0, 0);
|
2656 |
|
|
rtx b = XEXP (op0, 1);
|
2657 |
|
|
rtx c = op1;
|
2658 |
|
|
HOST_WIDE_INT bval = INTVAL (b);
|
2659 |
|
|
HOST_WIDE_INT cval = INTVAL (c);
|
2660 |
|
|
|
2661 |
|
|
rtx na_c
|
2662 |
|
|
= simplify_binary_operation (AND, mode,
|
2663 |
|
|
simplify_gen_unary (NOT, mode, a, mode),
|
2664 |
|
|
c);
|
2665 |
|
|
if ((~cval & bval) == 0)
|
2666 |
|
|
{
|
2667 |
|
|
/* Try to simplify ~A&C | ~B&C. */
|
2668 |
|
|
if (na_c != NULL_RTX)
|
2669 |
|
|
return simplify_gen_binary (IOR, mode, na_c,
|
2670 |
|
|
GEN_INT (~bval & cval));
|
2671 |
|
|
}
|
2672 |
|
|
else
|
2673 |
|
|
{
|
2674 |
|
|
/* If ~A&C is zero, simplify A&(~C&B) | ~B&C. */
|
2675 |
|
|
if (na_c == const0_rtx)
|
2676 |
|
|
{
|
2677 |
|
|
rtx a_nc_b = simplify_gen_binary (AND, mode, a,
|
2678 |
|
|
GEN_INT (~cval & bval));
|
2679 |
|
|
return simplify_gen_binary (IOR, mode, a_nc_b,
|
2680 |
|
|
GEN_INT (~bval & cval));
|
2681 |
|
|
}
|
2682 |
|
|
}
|
2683 |
|
|
}
|
2684 |
|
|
|
2685 |
|
|
/* (xor (comparison foo bar) (const_int 1)) can become the reversed
|
2686 |
|
|
comparison if STORE_FLAG_VALUE is 1. */
|
2687 |
|
|
if (STORE_FLAG_VALUE == 1
|
2688 |
|
|
&& trueop1 == const1_rtx
|
2689 |
|
|
&& COMPARISON_P (op0)
|
2690 |
|
|
&& (reversed = reversed_comparison (op0, mode)))
|
2691 |
|
|
return reversed;
|
2692 |
|
|
|
2693 |
|
|
/* (lshiftrt foo C) where C is the number of bits in FOO minus 1
|
2694 |
|
|
is (lt foo (const_int 0)), so we can perform the above
|
2695 |
|
|
simplification if STORE_FLAG_VALUE is 1. */
|
2696 |
|
|
|
2697 |
|
|
if (STORE_FLAG_VALUE == 1
|
2698 |
|
|
&& trueop1 == const1_rtx
|
2699 |
|
|
&& GET_CODE (op0) == LSHIFTRT
|
2700 |
|
|
&& CONST_INT_P (XEXP (op0, 1))
|
2701 |
|
|
&& INTVAL (XEXP (op0, 1)) == GET_MODE_PRECISION (mode) - 1)
|
2702 |
|
|
return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
|
2703 |
|
|
|
2704 |
|
|
/* (xor (comparison foo bar) (const_int sign-bit))
|
2705 |
|
|
when STORE_FLAG_VALUE is the sign bit. */
|
2706 |
|
|
if (val_signbit_p (mode, STORE_FLAG_VALUE)
|
2707 |
|
|
&& trueop1 == const_true_rtx
|
2708 |
|
|
&& COMPARISON_P (op0)
|
2709 |
|
|
&& (reversed = reversed_comparison (op0, mode)))
|
2710 |
|
|
return reversed;
|
2711 |
|
|
|
2712 |
|
|
tem = simplify_associative_operation (code, mode, op0, op1);
|
2713 |
|
|
if (tem)
|
2714 |
|
|
return tem;
|
2715 |
|
|
break;
|
2716 |
|
|
|
2717 |
|
|
case AND:
|
2718 |
|
|
if (trueop1 == CONST0_RTX (mode) && ! side_effects_p (op0))
|
2719 |
|
|
return trueop1;
|
2720 |
|
|
if (INTEGRAL_MODE_P (mode) && trueop1 == CONSTM1_RTX (mode))
|
2721 |
|
|
return op0;
|
2722 |
|
|
if (HWI_COMPUTABLE_MODE_P (mode))
|
2723 |
|
|
{
|
2724 |
|
|
HOST_WIDE_INT nzop0 = nonzero_bits (trueop0, mode);
|
2725 |
|
|
HOST_WIDE_INT nzop1;
|
2726 |
|
|
if (CONST_INT_P (trueop1))
|
2727 |
|
|
{
|
2728 |
|
|
HOST_WIDE_INT val1 = INTVAL (trueop1);
|
2729 |
|
|
/* If we are turning off bits already known off in OP0, we need
|
2730 |
|
|
not do an AND. */
|
2731 |
|
|
if ((nzop0 & ~val1) == 0)
|
2732 |
|
|
return op0;
|
2733 |
|
|
}
|
2734 |
|
|
nzop1 = nonzero_bits (trueop1, mode);
|
2735 |
|
|
/* If we are clearing all the nonzero bits, the result is zero. */
|
2736 |
|
|
if ((nzop1 & nzop0) == 0
|
2737 |
|
|
&& !side_effects_p (op0) && !side_effects_p (op1))
|
2738 |
|
|
return CONST0_RTX (mode);
|
2739 |
|
|
}
|
2740 |
|
|
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0)
|
2741 |
|
|
&& GET_MODE_CLASS (mode) != MODE_CC)
|
2742 |
|
|
return op0;
|
2743 |
|
|
/* A & (~A) -> 0 */
|
2744 |
|
|
if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
|
2745 |
|
|
|| (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
|
2746 |
|
|
&& ! side_effects_p (op0)
|
2747 |
|
|
&& GET_MODE_CLASS (mode) != MODE_CC)
|
2748 |
|
|
return CONST0_RTX (mode);
|
2749 |
|
|
|
2750 |
|
|
/* Transform (and (extend X) C) into (zero_extend (and X C)) if
|
2751 |
|
|
there are no nonzero bits of C outside of X's mode. */
|
2752 |
|
|
if ((GET_CODE (op0) == SIGN_EXTEND
|
2753 |
|
|
|| GET_CODE (op0) == ZERO_EXTEND)
|
2754 |
|
|
&& CONST_INT_P (trueop1)
|
2755 |
|
|
&& HWI_COMPUTABLE_MODE_P (mode)
|
2756 |
|
|
&& (~GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))
|
2757 |
|
|
& UINTVAL (trueop1)) == 0)
|
2758 |
|
|
{
|
2759 |
|
|
enum machine_mode imode = GET_MODE (XEXP (op0, 0));
|
2760 |
|
|
tem = simplify_gen_binary (AND, imode, XEXP (op0, 0),
|
2761 |
|
|
gen_int_mode (INTVAL (trueop1),
|
2762 |
|
|
imode));
|
2763 |
|
|
return simplify_gen_unary (ZERO_EXTEND, mode, tem, imode);
|
2764 |
|
|
}
|
2765 |
|
|
|
2766 |
|
|
/* Transform (and (truncate X) C) into (truncate (and X C)). This way
|
2767 |
|
|
we might be able to further simplify the AND with X and potentially
|
2768 |
|
|
remove the truncation altogether. */
|
2769 |
|
|
if (GET_CODE (op0) == TRUNCATE && CONST_INT_P (trueop1))
|
2770 |
|
|
{
|
2771 |
|
|
rtx x = XEXP (op0, 0);
|
2772 |
|
|
enum machine_mode xmode = GET_MODE (x);
|
2773 |
|
|
tem = simplify_gen_binary (AND, xmode, x,
|
2774 |
|
|
gen_int_mode (INTVAL (trueop1), xmode));
|
2775 |
|
|
return simplify_gen_unary (TRUNCATE, mode, tem, xmode);
|
2776 |
|
|
}
|
2777 |
|
|
|
2778 |
|
|
/* Canonicalize (A | C1) & C2 as (A & C2) | (C1 & C2). */
|
2779 |
|
|
if (GET_CODE (op0) == IOR
|
2780 |
|
|
&& CONST_INT_P (trueop1)
|
2781 |
|
|
&& CONST_INT_P (XEXP (op0, 1)))
|
2782 |
|
|
{
|
2783 |
|
|
HOST_WIDE_INT tmp = INTVAL (trueop1) & INTVAL (XEXP (op0, 1));
|
2784 |
|
|
return simplify_gen_binary (IOR, mode,
|
2785 |
|
|
simplify_gen_binary (AND, mode,
|
2786 |
|
|
XEXP (op0, 0), op1),
|
2787 |
|
|
gen_int_mode (tmp, mode));
|
2788 |
|
|
}
|
2789 |
|
|
|
2790 |
|
|
/* Convert (A ^ B) & A to A & (~B) since the latter is often a single
|
2791 |
|
|
insn (and may simplify more). */
|
2792 |
|
|
if (GET_CODE (op0) == XOR
|
2793 |
|
|
&& rtx_equal_p (XEXP (op0, 0), op1)
|
2794 |
|
|
&& ! side_effects_p (op1))
|
2795 |
|
|
return simplify_gen_binary (AND, mode,
|
2796 |
|
|
simplify_gen_unary (NOT, mode,
|
2797 |
|
|
XEXP (op0, 1), mode),
|
2798 |
|
|
op1);
|
2799 |
|
|
|
2800 |
|
|
if (GET_CODE (op0) == XOR
|
2801 |
|
|
&& rtx_equal_p (XEXP (op0, 1), op1)
|
2802 |
|
|
&& ! side_effects_p (op1))
|
2803 |
|
|
return simplify_gen_binary (AND, mode,
|
2804 |
|
|
simplify_gen_unary (NOT, mode,
|
2805 |
|
|
XEXP (op0, 0), mode),
|
2806 |
|
|
op1);
|
2807 |
|
|
|
2808 |
|
|
/* Similarly for (~(A ^ B)) & A. */
|
2809 |
|
|
if (GET_CODE (op0) == NOT
|
2810 |
|
|
&& GET_CODE (XEXP (op0, 0)) == XOR
|
2811 |
|
|
&& rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
|
2812 |
|
|
&& ! side_effects_p (op1))
|
2813 |
|
|
return simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
|
2814 |
|
|
|
2815 |
|
|
if (GET_CODE (op0) == NOT
|
2816 |
|
|
&& GET_CODE (XEXP (op0, 0)) == XOR
|
2817 |
|
|
&& rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
|
2818 |
|
|
&& ! side_effects_p (op1))
|
2819 |
|
|
return simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
|
2820 |
|
|
|
2821 |
|
|
/* Convert (A | B) & A to A. */
|
2822 |
|
|
if (GET_CODE (op0) == IOR
|
2823 |
|
|
&& (rtx_equal_p (XEXP (op0, 0), op1)
|
2824 |
|
|
|| rtx_equal_p (XEXP (op0, 1), op1))
|
2825 |
|
|
&& ! side_effects_p (XEXP (op0, 0))
|
2826 |
|
|
&& ! side_effects_p (XEXP (op0, 1)))
|
2827 |
|
|
return op1;
|
2828 |
|
|
|
2829 |
|
|
/* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
|
2830 |
|
|
((A & N) + B) & M -> (A + B) & M
|
2831 |
|
|
Similarly if (N & M) == 0,
|
2832 |
|
|
((A | N) + B) & M -> (A + B) & M
|
2833 |
|
|
and for - instead of + and/or ^ instead of |.
|
2834 |
|
|
Also, if (N & M) == 0, then
|
2835 |
|
|
(A +- N) & M -> A & M. */
|
2836 |
|
|
if (CONST_INT_P (trueop1)
|
2837 |
|
|
&& HWI_COMPUTABLE_MODE_P (mode)
|
2838 |
|
|
&& ~UINTVAL (trueop1)
|
2839 |
|
|
&& (UINTVAL (trueop1) & (UINTVAL (trueop1) + 1)) == 0
|
2840 |
|
|
&& (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS))
|
2841 |
|
|
{
|
2842 |
|
|
rtx pmop[2];
|
2843 |
|
|
int which;
|
2844 |
|
|
|
2845 |
|
|
pmop[0] = XEXP (op0, 0);
|
2846 |
|
|
pmop[1] = XEXP (op0, 1);
|
2847 |
|
|
|
2848 |
|
|
if (CONST_INT_P (pmop[1])
|
2849 |
|
|
&& (UINTVAL (pmop[1]) & UINTVAL (trueop1)) == 0)
|
2850 |
|
|
return simplify_gen_binary (AND, mode, pmop[0], op1);
|
2851 |
|
|
|
2852 |
|
|
for (which = 0; which < 2; which++)
|
2853 |
|
|
{
|
2854 |
|
|
tem = pmop[which];
|
2855 |
|
|
switch (GET_CODE (tem))
|
2856 |
|
|
{
|
2857 |
|
|
case AND:
|
2858 |
|
|
if (CONST_INT_P (XEXP (tem, 1))
|
2859 |
|
|
&& (UINTVAL (XEXP (tem, 1)) & UINTVAL (trueop1))
|
2860 |
|
|
== UINTVAL (trueop1))
|
2861 |
|
|
pmop[which] = XEXP (tem, 0);
|
2862 |
|
|
break;
|
2863 |
|
|
case IOR:
|
2864 |
|
|
case XOR:
|
2865 |
|
|
if (CONST_INT_P (XEXP (tem, 1))
|
2866 |
|
|
&& (UINTVAL (XEXP (tem, 1)) & UINTVAL (trueop1)) == 0)
|
2867 |
|
|
pmop[which] = XEXP (tem, 0);
|
2868 |
|
|
break;
|
2869 |
|
|
default:
|
2870 |
|
|
break;
|
2871 |
|
|
}
|
2872 |
|
|
}
|
2873 |
|
|
|
2874 |
|
|
if (pmop[0] != XEXP (op0, 0) || pmop[1] != XEXP (op0, 1))
|
2875 |
|
|
{
|
2876 |
|
|
tem = simplify_gen_binary (GET_CODE (op0), mode,
|
2877 |
|
|
pmop[0], pmop[1]);
|
2878 |
|
|
return simplify_gen_binary (code, mode, tem, op1);
|
2879 |
|
|
}
|
2880 |
|
|
}
|
2881 |
|
|
|
2882 |
|
|
/* (and X (ior (not X) Y) -> (and X Y) */
|
2883 |
|
|
if (GET_CODE (op1) == IOR
|
2884 |
|
|
&& GET_CODE (XEXP (op1, 0)) == NOT
|
2885 |
|
|
&& op0 == XEXP (XEXP (op1, 0), 0))
|
2886 |
|
|
return simplify_gen_binary (AND, mode, op0, XEXP (op1, 1));
|
2887 |
|
|
|
2888 |
|
|
/* (and (ior (not X) Y) X) -> (and X Y) */
|
2889 |
|
|
if (GET_CODE (op0) == IOR
|
2890 |
|
|
&& GET_CODE (XEXP (op0, 0)) == NOT
|
2891 |
|
|
&& op1 == XEXP (XEXP (op0, 0), 0))
|
2892 |
|
|
return simplify_gen_binary (AND, mode, op1, XEXP (op0, 1));
|
2893 |
|
|
|
2894 |
|
|
tem = simplify_associative_operation (code, mode, op0, op1);
|
2895 |
|
|
if (tem)
|
2896 |
|
|
return tem;
|
2897 |
|
|
break;
|
2898 |
|
|
|
2899 |
|
|
case UDIV:
|
2900 |
|
|
/* 0/x is 0 (or x&0 if x has side-effects). */
|
2901 |
|
|
if (trueop0 == CONST0_RTX (mode))
|
2902 |
|
|
{
|
2903 |
|
|
if (side_effects_p (op1))
|
2904 |
|
|
return simplify_gen_binary (AND, mode, op1, trueop0);
|
2905 |
|
|
return trueop0;
|
2906 |
|
|
}
|
2907 |
|
|
/* x/1 is x. */
|
2908 |
|
|
if (trueop1 == CONST1_RTX (mode))
|
2909 |
|
|
return rtl_hooks.gen_lowpart_no_emit (mode, op0);
|
2910 |
|
|
/* Convert divide by power of two into shift. */
|
2911 |
|
|
if (CONST_INT_P (trueop1)
|
2912 |
|
|
&& (val = exact_log2 (UINTVAL (trueop1))) > 0)
|
2913 |
|
|
return simplify_gen_binary (LSHIFTRT, mode, op0, GEN_INT (val));
|
2914 |
|
|
break;
|
2915 |
|
|
|
2916 |
|
|
case DIV:
|
2917 |
|
|
/* Handle floating point and integers separately. */
|
2918 |
|
|
if (SCALAR_FLOAT_MODE_P (mode))
|
2919 |
|
|
{
|
2920 |
|
|
/* Maybe change 0.0 / x to 0.0. This transformation isn't
|
2921 |
|
|
safe for modes with NaNs, since 0.0 / 0.0 will then be
|
2922 |
|
|
NaN rather than 0.0. Nor is it safe for modes with signed
|
2923 |
|
|
zeros, since dividing 0 by a negative number gives -0.0 */
|
2924 |
|
|
if (trueop0 == CONST0_RTX (mode)
|
2925 |
|
|
&& !HONOR_NANS (mode)
|
2926 |
|
|
&& !HONOR_SIGNED_ZEROS (mode)
|
2927 |
|
|
&& ! side_effects_p (op1))
|
2928 |
|
|
return op0;
|
2929 |
|
|
/* x/1.0 is x. */
|
2930 |
|
|
if (trueop1 == CONST1_RTX (mode)
|
2931 |
|
|
&& !HONOR_SNANS (mode))
|
2932 |
|
|
return op0;
|
2933 |
|
|
|
2934 |
|
|
if (GET_CODE (trueop1) == CONST_DOUBLE
|
2935 |
|
|
&& trueop1 != CONST0_RTX (mode))
|
2936 |
|
|
{
|
2937 |
|
|
REAL_VALUE_TYPE d;
|
2938 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
|
2939 |
|
|
|
2940 |
|
|
/* x/-1.0 is -x. */
|
2941 |
|
|
if (REAL_VALUES_EQUAL (d, dconstm1)
|
2942 |
|
|
&& !HONOR_SNANS (mode))
|
2943 |
|
|
return simplify_gen_unary (NEG, mode, op0, mode);
|
2944 |
|
|
|
2945 |
|
|
/* Change FP division by a constant into multiplication.
|
2946 |
|
|
Only do this with -freciprocal-math. */
|
2947 |
|
|
if (flag_reciprocal_math
|
2948 |
|
|
&& !REAL_VALUES_EQUAL (d, dconst0))
|
2949 |
|
|
{
|
2950 |
|
|
REAL_ARITHMETIC (d, RDIV_EXPR, dconst1, d);
|
2951 |
|
|
tem = CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
|
2952 |
|
|
return simplify_gen_binary (MULT, mode, op0, tem);
|
2953 |
|
|
}
|
2954 |
|
|
}
|
2955 |
|
|
}
|
2956 |
|
|
else if (SCALAR_INT_MODE_P (mode))
|
2957 |
|
|
{
|
2958 |
|
|
/* 0/x is 0 (or x&0 if x has side-effects). */
|
2959 |
|
|
if (trueop0 == CONST0_RTX (mode)
|
2960 |
|
|
&& !cfun->can_throw_non_call_exceptions)
|
2961 |
|
|
{
|
2962 |
|
|
if (side_effects_p (op1))
|
2963 |
|
|
return simplify_gen_binary (AND, mode, op1, trueop0);
|
2964 |
|
|
return trueop0;
|
2965 |
|
|
}
|
2966 |
|
|
/* x/1 is x. */
|
2967 |
|
|
if (trueop1 == CONST1_RTX (mode))
|
2968 |
|
|
return rtl_hooks.gen_lowpart_no_emit (mode, op0);
|
2969 |
|
|
/* x/-1 is -x. */
|
2970 |
|
|
if (trueop1 == constm1_rtx)
|
2971 |
|
|
{
|
2972 |
|
|
rtx x = rtl_hooks.gen_lowpart_no_emit (mode, op0);
|
2973 |
|
|
return simplify_gen_unary (NEG, mode, x, mode);
|
2974 |
|
|
}
|
2975 |
|
|
}
|
2976 |
|
|
break;
|
2977 |
|
|
|
2978 |
|
|
case UMOD:
|
2979 |
|
|
/* 0%x is 0 (or x&0 if x has side-effects). */
|
2980 |
|
|
if (trueop0 == CONST0_RTX (mode))
|
2981 |
|
|
{
|
2982 |
|
|
if (side_effects_p (op1))
|
2983 |
|
|
return simplify_gen_binary (AND, mode, op1, trueop0);
|
2984 |
|
|
return trueop0;
|
2985 |
|
|
}
|
2986 |
|
|
/* x%1 is 0 (of x&0 if x has side-effects). */
|
2987 |
|
|
if (trueop1 == CONST1_RTX (mode))
|
2988 |
|
|
{
|
2989 |
|
|
if (side_effects_p (op0))
|
2990 |
|
|
return simplify_gen_binary (AND, mode, op0, CONST0_RTX (mode));
|
2991 |
|
|
return CONST0_RTX (mode);
|
2992 |
|
|
}
|
2993 |
|
|
/* Implement modulus by power of two as AND. */
|
2994 |
|
|
if (CONST_INT_P (trueop1)
|
2995 |
|
|
&& exact_log2 (UINTVAL (trueop1)) > 0)
|
2996 |
|
|
return simplify_gen_binary (AND, mode, op0,
|
2997 |
|
|
GEN_INT (INTVAL (op1) - 1));
|
2998 |
|
|
break;
|
2999 |
|
|
|
3000 |
|
|
case MOD:
|
3001 |
|
|
/* 0%x is 0 (or x&0 if x has side-effects). */
|
3002 |
|
|
if (trueop0 == CONST0_RTX (mode))
|
3003 |
|
|
{
|
3004 |
|
|
if (side_effects_p (op1))
|
3005 |
|
|
return simplify_gen_binary (AND, mode, op1, trueop0);
|
3006 |
|
|
return trueop0;
|
3007 |
|
|
}
|
3008 |
|
|
/* x%1 and x%-1 is 0 (or x&0 if x has side-effects). */
|
3009 |
|
|
if (trueop1 == CONST1_RTX (mode) || trueop1 == constm1_rtx)
|
3010 |
|
|
{
|
3011 |
|
|
if (side_effects_p (op0))
|
3012 |
|
|
return simplify_gen_binary (AND, mode, op0, CONST0_RTX (mode));
|
3013 |
|
|
return CONST0_RTX (mode);
|
3014 |
|
|
}
|
3015 |
|
|
break;
|
3016 |
|
|
|
3017 |
|
|
case ROTATERT:
|
3018 |
|
|
case ROTATE:
|
3019 |
|
|
case ASHIFTRT:
|
3020 |
|
|
if (trueop1 == CONST0_RTX (mode))
|
3021 |
|
|
return op0;
|
3022 |
|
|
if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
|
3023 |
|
|
return op0;
|
3024 |
|
|
/* Rotating ~0 always results in ~0. */
|
3025 |
|
|
if (CONST_INT_P (trueop0) && width <= HOST_BITS_PER_WIDE_INT
|
3026 |
|
|
&& UINTVAL (trueop0) == GET_MODE_MASK (mode)
|
3027 |
|
|
&& ! side_effects_p (op1))
|
3028 |
|
|
return op0;
|
3029 |
|
|
canonicalize_shift:
|
3030 |
|
|
if (SHIFT_COUNT_TRUNCATED && CONST_INT_P (op1))
|
3031 |
|
|
{
|
3032 |
|
|
val = INTVAL (op1) & (GET_MODE_BITSIZE (mode) - 1);
|
3033 |
|
|
if (val != INTVAL (op1))
|
3034 |
|
|
return simplify_gen_binary (code, mode, op0, GEN_INT (val));
|
3035 |
|
|
}
|
3036 |
|
|
break;
|
3037 |
|
|
|
3038 |
|
|
case ASHIFT:
|
3039 |
|
|
case SS_ASHIFT:
|
3040 |
|
|
case US_ASHIFT:
|
3041 |
|
|
if (trueop1 == CONST0_RTX (mode))
|
3042 |
|
|
return op0;
|
3043 |
|
|
if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
|
3044 |
|
|
return op0;
|
3045 |
|
|
goto canonicalize_shift;
|
3046 |
|
|
|
3047 |
|
|
case LSHIFTRT:
|
3048 |
|
|
if (trueop1 == CONST0_RTX (mode))
|
3049 |
|
|
return op0;
|
3050 |
|
|
if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
|
3051 |
|
|
return op0;
|
3052 |
|
|
/* Optimize (lshiftrt (clz X) C) as (eq X 0). */
|
3053 |
|
|
if (GET_CODE (op0) == CLZ
|
3054 |
|
|
&& CONST_INT_P (trueop1)
|
3055 |
|
|
&& STORE_FLAG_VALUE == 1
|
3056 |
|
|
&& INTVAL (trueop1) < (HOST_WIDE_INT)width)
|
3057 |
|
|
{
|
3058 |
|
|
enum machine_mode imode = GET_MODE (XEXP (op0, 0));
|
3059 |
|
|
unsigned HOST_WIDE_INT zero_val = 0;
|
3060 |
|
|
|
3061 |
|
|
if (CLZ_DEFINED_VALUE_AT_ZERO (imode, zero_val)
|
3062 |
|
|
&& zero_val == GET_MODE_PRECISION (imode)
|
3063 |
|
|
&& INTVAL (trueop1) == exact_log2 (zero_val))
|
3064 |
|
|
return simplify_gen_relational (EQ, mode, imode,
|
3065 |
|
|
XEXP (op0, 0), const0_rtx);
|
3066 |
|
|
}
|
3067 |
|
|
goto canonicalize_shift;
|
3068 |
|
|
|
3069 |
|
|
case SMIN:
|
3070 |
|
|
if (width <= HOST_BITS_PER_WIDE_INT
|
3071 |
|
|
&& mode_signbit_p (mode, trueop1)
|
3072 |
|
|
&& ! side_effects_p (op0))
|
3073 |
|
|
return op1;
|
3074 |
|
|
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
|
3075 |
|
|
return op0;
|
3076 |
|
|
tem = simplify_associative_operation (code, mode, op0, op1);
|
3077 |
|
|
if (tem)
|
3078 |
|
|
return tem;
|
3079 |
|
|
break;
|
3080 |
|
|
|
3081 |
|
|
case SMAX:
|
3082 |
|
|
if (width <= HOST_BITS_PER_WIDE_INT
|
3083 |
|
|
&& CONST_INT_P (trueop1)
|
3084 |
|
|
&& (UINTVAL (trueop1) == GET_MODE_MASK (mode) >> 1)
|
3085 |
|
|
&& ! side_effects_p (op0))
|
3086 |
|
|
return op1;
|
3087 |
|
|
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
|
3088 |
|
|
return op0;
|
3089 |
|
|
tem = simplify_associative_operation (code, mode, op0, op1);
|
3090 |
|
|
if (tem)
|
3091 |
|
|
return tem;
|
3092 |
|
|
break;
|
3093 |
|
|
|
3094 |
|
|
case UMIN:
|
3095 |
|
|
if (trueop1 == CONST0_RTX (mode) && ! side_effects_p (op0))
|
3096 |
|
|
return op1;
|
3097 |
|
|
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
|
3098 |
|
|
return op0;
|
3099 |
|
|
tem = simplify_associative_operation (code, mode, op0, op1);
|
3100 |
|
|
if (tem)
|
3101 |
|
|
return tem;
|
3102 |
|
|
break;
|
3103 |
|
|
|
3104 |
|
|
case UMAX:
|
3105 |
|
|
if (trueop1 == constm1_rtx && ! side_effects_p (op0))
|
3106 |
|
|
return op1;
|
3107 |
|
|
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
|
3108 |
|
|
return op0;
|
3109 |
|
|
tem = simplify_associative_operation (code, mode, op0, op1);
|
3110 |
|
|
if (tem)
|
3111 |
|
|
return tem;
|
3112 |
|
|
break;
|
3113 |
|
|
|
3114 |
|
|
case SS_PLUS:
|
3115 |
|
|
case US_PLUS:
|
3116 |
|
|
case SS_MINUS:
|
3117 |
|
|
case US_MINUS:
|
3118 |
|
|
case SS_MULT:
|
3119 |
|
|
case US_MULT:
|
3120 |
|
|
case SS_DIV:
|
3121 |
|
|
case US_DIV:
|
3122 |
|
|
/* ??? There are simplifications that can be done. */
|
3123 |
|
|
return 0;
|
3124 |
|
|
|
3125 |
|
|
case VEC_SELECT:
|
3126 |
|
|
if (!VECTOR_MODE_P (mode))
|
3127 |
|
|
{
|
3128 |
|
|
gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
|
3129 |
|
|
gcc_assert (mode == GET_MODE_INNER (GET_MODE (trueop0)));
|
3130 |
|
|
gcc_assert (GET_CODE (trueop1) == PARALLEL);
|
3131 |
|
|
gcc_assert (XVECLEN (trueop1, 0) == 1);
|
3132 |
|
|
gcc_assert (CONST_INT_P (XVECEXP (trueop1, 0, 0)));
|
3133 |
|
|
|
3134 |
|
|
if (GET_CODE (trueop0) == CONST_VECTOR)
|
3135 |
|
|
return CONST_VECTOR_ELT (trueop0, INTVAL (XVECEXP
|
3136 |
|
|
(trueop1, 0, 0)));
|
3137 |
|
|
|
3138 |
|
|
/* Extract a scalar element from a nested VEC_SELECT expression
|
3139 |
|
|
(with optional nested VEC_CONCAT expression). Some targets
|
3140 |
|
|
(i386) extract scalar element from a vector using chain of
|
3141 |
|
|
nested VEC_SELECT expressions. When input operand is a memory
|
3142 |
|
|
operand, this operation can be simplified to a simple scalar
|
3143 |
|
|
load from an offseted memory address. */
|
3144 |
|
|
if (GET_CODE (trueop0) == VEC_SELECT)
|
3145 |
|
|
{
|
3146 |
|
|
rtx op0 = XEXP (trueop0, 0);
|
3147 |
|
|
rtx op1 = XEXP (trueop0, 1);
|
3148 |
|
|
|
3149 |
|
|
enum machine_mode opmode = GET_MODE (op0);
|
3150 |
|
|
int elt_size = GET_MODE_SIZE (GET_MODE_INNER (opmode));
|
3151 |
|
|
int n_elts = GET_MODE_SIZE (opmode) / elt_size;
|
3152 |
|
|
|
3153 |
|
|
int i = INTVAL (XVECEXP (trueop1, 0, 0));
|
3154 |
|
|
int elem;
|
3155 |
|
|
|
3156 |
|
|
rtvec vec;
|
3157 |
|
|
rtx tmp_op, tmp;
|
3158 |
|
|
|
3159 |
|
|
gcc_assert (GET_CODE (op1) == PARALLEL);
|
3160 |
|
|
gcc_assert (i < n_elts);
|
3161 |
|
|
|
3162 |
|
|
/* Select element, pointed by nested selector. */
|
3163 |
|
|
elem = INTVAL (XVECEXP (op1, 0, i));
|
3164 |
|
|
|
3165 |
|
|
/* Handle the case when nested VEC_SELECT wraps VEC_CONCAT. */
|
3166 |
|
|
if (GET_CODE (op0) == VEC_CONCAT)
|
3167 |
|
|
{
|
3168 |
|
|
rtx op00 = XEXP (op0, 0);
|
3169 |
|
|
rtx op01 = XEXP (op0, 1);
|
3170 |
|
|
|
3171 |
|
|
enum machine_mode mode00, mode01;
|
3172 |
|
|
int n_elts00, n_elts01;
|
3173 |
|
|
|
3174 |
|
|
mode00 = GET_MODE (op00);
|
3175 |
|
|
mode01 = GET_MODE (op01);
|
3176 |
|
|
|
3177 |
|
|
/* Find out number of elements of each operand. */
|
3178 |
|
|
if (VECTOR_MODE_P (mode00))
|
3179 |
|
|
{
|
3180 |
|
|
elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode00));
|
3181 |
|
|
n_elts00 = GET_MODE_SIZE (mode00) / elt_size;
|
3182 |
|
|
}
|
3183 |
|
|
else
|
3184 |
|
|
n_elts00 = 1;
|
3185 |
|
|
|
3186 |
|
|
if (VECTOR_MODE_P (mode01))
|
3187 |
|
|
{
|
3188 |
|
|
elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode01));
|
3189 |
|
|
n_elts01 = GET_MODE_SIZE (mode01) / elt_size;
|
3190 |
|
|
}
|
3191 |
|
|
else
|
3192 |
|
|
n_elts01 = 1;
|
3193 |
|
|
|
3194 |
|
|
gcc_assert (n_elts == n_elts00 + n_elts01);
|
3195 |
|
|
|
3196 |
|
|
/* Select correct operand of VEC_CONCAT
|
3197 |
|
|
and adjust selector. */
|
3198 |
|
|
if (elem < n_elts01)
|
3199 |
|
|
tmp_op = op00;
|
3200 |
|
|
else
|
3201 |
|
|
{
|
3202 |
|
|
tmp_op = op01;
|
3203 |
|
|
elem -= n_elts00;
|
3204 |
|
|
}
|
3205 |
|
|
}
|
3206 |
|
|
else
|
3207 |
|
|
tmp_op = op0;
|
3208 |
|
|
|
3209 |
|
|
vec = rtvec_alloc (1);
|
3210 |
|
|
RTVEC_ELT (vec, 0) = GEN_INT (elem);
|
3211 |
|
|
|
3212 |
|
|
tmp = gen_rtx_fmt_ee (code, mode,
|
3213 |
|
|
tmp_op, gen_rtx_PARALLEL (VOIDmode, vec));
|
3214 |
|
|
return tmp;
|
3215 |
|
|
}
|
3216 |
|
|
if (GET_CODE (trueop0) == VEC_DUPLICATE
|
3217 |
|
|
&& GET_MODE (XEXP (trueop0, 0)) == mode)
|
3218 |
|
|
return XEXP (trueop0, 0);
|
3219 |
|
|
}
|
3220 |
|
|
else
|
3221 |
|
|
{
|
3222 |
|
|
gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
|
3223 |
|
|
gcc_assert (GET_MODE_INNER (mode)
|
3224 |
|
|
== GET_MODE_INNER (GET_MODE (trueop0)));
|
3225 |
|
|
gcc_assert (GET_CODE (trueop1) == PARALLEL);
|
3226 |
|
|
|
3227 |
|
|
if (GET_CODE (trueop0) == CONST_VECTOR)
|
3228 |
|
|
{
|
3229 |
|
|
int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
|
3230 |
|
|
unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
|
3231 |
|
|
rtvec v = rtvec_alloc (n_elts);
|
3232 |
|
|
unsigned int i;
|
3233 |
|
|
|
3234 |
|
|
gcc_assert (XVECLEN (trueop1, 0) == (int) n_elts);
|
3235 |
|
|
for (i = 0; i < n_elts; i++)
|
3236 |
|
|
{
|
3237 |
|
|
rtx x = XVECEXP (trueop1, 0, i);
|
3238 |
|
|
|
3239 |
|
|
gcc_assert (CONST_INT_P (x));
|
3240 |
|
|
RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0,
|
3241 |
|
|
INTVAL (x));
|
3242 |
|
|
}
|
3243 |
|
|
|
3244 |
|
|
return gen_rtx_CONST_VECTOR (mode, v);
|
3245 |
|
|
}
|
3246 |
|
|
}
|
3247 |
|
|
|
3248 |
|
|
if (XVECLEN (trueop1, 0) == 1
|
3249 |
|
|
&& CONST_INT_P (XVECEXP (trueop1, 0, 0))
|
3250 |
|
|
&& GET_CODE (trueop0) == VEC_CONCAT)
|
3251 |
|
|
{
|
3252 |
|
|
rtx vec = trueop0;
|
3253 |
|
|
int offset = INTVAL (XVECEXP (trueop1, 0, 0)) * GET_MODE_SIZE (mode);
|
3254 |
|
|
|
3255 |
|
|
/* Try to find the element in the VEC_CONCAT. */
|
3256 |
|
|
while (GET_MODE (vec) != mode
|
3257 |
|
|
&& GET_CODE (vec) == VEC_CONCAT)
|
3258 |
|
|
{
|
3259 |
|
|
HOST_WIDE_INT vec_size = GET_MODE_SIZE (GET_MODE (XEXP (vec, 0)));
|
3260 |
|
|
if (offset < vec_size)
|
3261 |
|
|
vec = XEXP (vec, 0);
|
3262 |
|
|
else
|
3263 |
|
|
{
|
3264 |
|
|
offset -= vec_size;
|
3265 |
|
|
vec = XEXP (vec, 1);
|
3266 |
|
|
}
|
3267 |
|
|
vec = avoid_constant_pool_reference (vec);
|
3268 |
|
|
}
|
3269 |
|
|
|
3270 |
|
|
if (GET_MODE (vec) == mode)
|
3271 |
|
|
return vec;
|
3272 |
|
|
}
|
3273 |
|
|
|
3274 |
|
|
return 0;
|
3275 |
|
|
case VEC_CONCAT:
|
3276 |
|
|
{
|
3277 |
|
|
enum machine_mode op0_mode = (GET_MODE (trueop0) != VOIDmode
|
3278 |
|
|
? GET_MODE (trueop0)
|
3279 |
|
|
: GET_MODE_INNER (mode));
|
3280 |
|
|
enum machine_mode op1_mode = (GET_MODE (trueop1) != VOIDmode
|
3281 |
|
|
? GET_MODE (trueop1)
|
3282 |
|
|
: GET_MODE_INNER (mode));
|
3283 |
|
|
|
3284 |
|
|
gcc_assert (VECTOR_MODE_P (mode));
|
3285 |
|
|
gcc_assert (GET_MODE_SIZE (op0_mode) + GET_MODE_SIZE (op1_mode)
|
3286 |
|
|
== GET_MODE_SIZE (mode));
|
3287 |
|
|
|
3288 |
|
|
if (VECTOR_MODE_P (op0_mode))
|
3289 |
|
|
gcc_assert (GET_MODE_INNER (mode)
|
3290 |
|
|
== GET_MODE_INNER (op0_mode));
|
3291 |
|
|
else
|
3292 |
|
|
gcc_assert (GET_MODE_INNER (mode) == op0_mode);
|
3293 |
|
|
|
3294 |
|
|
if (VECTOR_MODE_P (op1_mode))
|
3295 |
|
|
gcc_assert (GET_MODE_INNER (mode)
|
3296 |
|
|
== GET_MODE_INNER (op1_mode));
|
3297 |
|
|
else
|
3298 |
|
|
gcc_assert (GET_MODE_INNER (mode) == op1_mode);
|
3299 |
|
|
|
3300 |
|
|
if ((GET_CODE (trueop0) == CONST_VECTOR
|
3301 |
|
|
|| CONST_INT_P (trueop0)
|
3302 |
|
|
|| GET_CODE (trueop0) == CONST_DOUBLE)
|
3303 |
|
|
&& (GET_CODE (trueop1) == CONST_VECTOR
|
3304 |
|
|
|| CONST_INT_P (trueop1)
|
3305 |
|
|
|| GET_CODE (trueop1) == CONST_DOUBLE))
|
3306 |
|
|
{
|
3307 |
|
|
int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
|
3308 |
|
|
unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
|
3309 |
|
|
rtvec v = rtvec_alloc (n_elts);
|
3310 |
|
|
unsigned int i;
|
3311 |
|
|
unsigned in_n_elts = 1;
|
3312 |
|
|
|
3313 |
|
|
if (VECTOR_MODE_P (op0_mode))
|
3314 |
|
|
in_n_elts = (GET_MODE_SIZE (op0_mode) / elt_size);
|
3315 |
|
|
for (i = 0; i < n_elts; i++)
|
3316 |
|
|
{
|
3317 |
|
|
if (i < in_n_elts)
|
3318 |
|
|
{
|
3319 |
|
|
if (!VECTOR_MODE_P (op0_mode))
|
3320 |
|
|
RTVEC_ELT (v, i) = trueop0;
|
3321 |
|
|
else
|
3322 |
|
|
RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0, i);
|
3323 |
|
|
}
|
3324 |
|
|
else
|
3325 |
|
|
{
|
3326 |
|
|
if (!VECTOR_MODE_P (op1_mode))
|
3327 |
|
|
RTVEC_ELT (v, i) = trueop1;
|
3328 |
|
|
else
|
3329 |
|
|
RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop1,
|
3330 |
|
|
i - in_n_elts);
|
3331 |
|
|
}
|
3332 |
|
|
}
|
3333 |
|
|
|
3334 |
|
|
return gen_rtx_CONST_VECTOR (mode, v);
|
3335 |
|
|
}
|
3336 |
|
|
}
|
3337 |
|
|
return 0;
|
3338 |
|
|
|
3339 |
|
|
default:
|
3340 |
|
|
gcc_unreachable ();
|
3341 |
|
|
}
|
3342 |
|
|
|
3343 |
|
|
return 0;
|
3344 |
|
|
}
|
3345 |
|
|
|
3346 |
|
|
rtx
|
3347 |
|
|
simplify_const_binary_operation (enum rtx_code code, enum machine_mode mode,
|
3348 |
|
|
rtx op0, rtx op1)
|
3349 |
|
|
{
|
3350 |
|
|
HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
|
3351 |
|
|
HOST_WIDE_INT val;
|
3352 |
|
|
unsigned int width = GET_MODE_PRECISION (mode);
|
3353 |
|
|
|
3354 |
|
|
if (VECTOR_MODE_P (mode)
|
3355 |
|
|
&& code != VEC_CONCAT
|
3356 |
|
|
&& GET_CODE (op0) == CONST_VECTOR
|
3357 |
|
|
&& GET_CODE (op1) == CONST_VECTOR)
|
3358 |
|
|
{
|
3359 |
|
|
unsigned n_elts = GET_MODE_NUNITS (mode);
|
3360 |
|
|
enum machine_mode op0mode = GET_MODE (op0);
|
3361 |
|
|
unsigned op0_n_elts = GET_MODE_NUNITS (op0mode);
|
3362 |
|
|
enum machine_mode op1mode = GET_MODE (op1);
|
3363 |
|
|
unsigned op1_n_elts = GET_MODE_NUNITS (op1mode);
|
3364 |
|
|
rtvec v = rtvec_alloc (n_elts);
|
3365 |
|
|
unsigned int i;
|
3366 |
|
|
|
3367 |
|
|
gcc_assert (op0_n_elts == n_elts);
|
3368 |
|
|
gcc_assert (op1_n_elts == n_elts);
|
3369 |
|
|
for (i = 0; i < n_elts; i++)
|
3370 |
|
|
{
|
3371 |
|
|
rtx x = simplify_binary_operation (code, GET_MODE_INNER (mode),
|
3372 |
|
|
CONST_VECTOR_ELT (op0, i),
|
3373 |
|
|
CONST_VECTOR_ELT (op1, i));
|
3374 |
|
|
if (!x)
|
3375 |
|
|
return 0;
|
3376 |
|
|
RTVEC_ELT (v, i) = x;
|
3377 |
|
|
}
|
3378 |
|
|
|
3379 |
|
|
return gen_rtx_CONST_VECTOR (mode, v);
|
3380 |
|
|
}
|
3381 |
|
|
|
3382 |
|
|
if (VECTOR_MODE_P (mode)
|
3383 |
|
|
&& code == VEC_CONCAT
|
3384 |
|
|
&& (CONST_INT_P (op0)
|
3385 |
|
|
|| GET_CODE (op0) == CONST_DOUBLE
|
3386 |
|
|
|| GET_CODE (op0) == CONST_FIXED)
|
3387 |
|
|
&& (CONST_INT_P (op1)
|
3388 |
|
|
|| GET_CODE (op1) == CONST_DOUBLE
|
3389 |
|
|
|| GET_CODE (op1) == CONST_FIXED))
|
3390 |
|
|
{
|
3391 |
|
|
unsigned n_elts = GET_MODE_NUNITS (mode);
|
3392 |
|
|
rtvec v = rtvec_alloc (n_elts);
|
3393 |
|
|
|
3394 |
|
|
gcc_assert (n_elts >= 2);
|
3395 |
|
|
if (n_elts == 2)
|
3396 |
|
|
{
|
3397 |
|
|
gcc_assert (GET_CODE (op0) != CONST_VECTOR);
|
3398 |
|
|
gcc_assert (GET_CODE (op1) != CONST_VECTOR);
|
3399 |
|
|
|
3400 |
|
|
RTVEC_ELT (v, 0) = op0;
|
3401 |
|
|
RTVEC_ELT (v, 1) = op1;
|
3402 |
|
|
}
|
3403 |
|
|
else
|
3404 |
|
|
{
|
3405 |
|
|
unsigned op0_n_elts = GET_MODE_NUNITS (GET_MODE (op0));
|
3406 |
|
|
unsigned op1_n_elts = GET_MODE_NUNITS (GET_MODE (op1));
|
3407 |
|
|
unsigned i;
|
3408 |
|
|
|
3409 |
|
|
gcc_assert (GET_CODE (op0) == CONST_VECTOR);
|
3410 |
|
|
gcc_assert (GET_CODE (op1) == CONST_VECTOR);
|
3411 |
|
|
gcc_assert (op0_n_elts + op1_n_elts == n_elts);
|
3412 |
|
|
|
3413 |
|
|
for (i = 0; i < op0_n_elts; ++i)
|
3414 |
|
|
RTVEC_ELT (v, i) = XVECEXP (op0, 0, i);
|
3415 |
|
|
for (i = 0; i < op1_n_elts; ++i)
|
3416 |
|
|
RTVEC_ELT (v, op0_n_elts+i) = XVECEXP (op1, 0, i);
|
3417 |
|
|
}
|
3418 |
|
|
|
3419 |
|
|
return gen_rtx_CONST_VECTOR (mode, v);
|
3420 |
|
|
}
|
3421 |
|
|
|
3422 |
|
|
if (SCALAR_FLOAT_MODE_P (mode)
|
3423 |
|
|
&& GET_CODE (op0) == CONST_DOUBLE
|
3424 |
|
|
&& GET_CODE (op1) == CONST_DOUBLE
|
3425 |
|
|
&& mode == GET_MODE (op0) && mode == GET_MODE (op1))
|
3426 |
|
|
{
|
3427 |
|
|
if (code == AND
|
3428 |
|
|
|| code == IOR
|
3429 |
|
|
|| code == XOR)
|
3430 |
|
|
{
|
3431 |
|
|
long tmp0[4];
|
3432 |
|
|
long tmp1[4];
|
3433 |
|
|
REAL_VALUE_TYPE r;
|
3434 |
|
|
int i;
|
3435 |
|
|
|
3436 |
|
|
real_to_target (tmp0, CONST_DOUBLE_REAL_VALUE (op0),
|
3437 |
|
|
GET_MODE (op0));
|
3438 |
|
|
real_to_target (tmp1, CONST_DOUBLE_REAL_VALUE (op1),
|
3439 |
|
|
GET_MODE (op1));
|
3440 |
|
|
for (i = 0; i < 4; i++)
|
3441 |
|
|
{
|
3442 |
|
|
switch (code)
|
3443 |
|
|
{
|
3444 |
|
|
case AND:
|
3445 |
|
|
tmp0[i] &= tmp1[i];
|
3446 |
|
|
break;
|
3447 |
|
|
case IOR:
|
3448 |
|
|
tmp0[i] |= tmp1[i];
|
3449 |
|
|
break;
|
3450 |
|
|
case XOR:
|
3451 |
|
|
tmp0[i] ^= tmp1[i];
|
3452 |
|
|
break;
|
3453 |
|
|
default:
|
3454 |
|
|
gcc_unreachable ();
|
3455 |
|
|
}
|
3456 |
|
|
}
|
3457 |
|
|
real_from_target (&r, tmp0, mode);
|
3458 |
|
|
return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
|
3459 |
|
|
}
|
3460 |
|
|
else
|
3461 |
|
|
{
|
3462 |
|
|
REAL_VALUE_TYPE f0, f1, value, result;
|
3463 |
|
|
bool inexact;
|
3464 |
|
|
|
3465 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (f0, op0);
|
3466 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (f1, op1);
|
3467 |
|
|
real_convert (&f0, mode, &f0);
|
3468 |
|
|
real_convert (&f1, mode, &f1);
|
3469 |
|
|
|
3470 |
|
|
if (HONOR_SNANS (mode)
|
3471 |
|
|
&& (REAL_VALUE_ISNAN (f0) || REAL_VALUE_ISNAN (f1)))
|
3472 |
|
|
return 0;
|
3473 |
|
|
|
3474 |
|
|
if (code == DIV
|
3475 |
|
|
&& REAL_VALUES_EQUAL (f1, dconst0)
|
3476 |
|
|
&& (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
|
3477 |
|
|
return 0;
|
3478 |
|
|
|
3479 |
|
|
if (MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
|
3480 |
|
|
&& flag_trapping_math
|
3481 |
|
|
&& REAL_VALUE_ISINF (f0) && REAL_VALUE_ISINF (f1))
|
3482 |
|
|
{
|
3483 |
|
|
int s0 = REAL_VALUE_NEGATIVE (f0);
|
3484 |
|
|
int s1 = REAL_VALUE_NEGATIVE (f1);
|
3485 |
|
|
|
3486 |
|
|
switch (code)
|
3487 |
|
|
{
|
3488 |
|
|
case PLUS:
|
3489 |
|
|
/* Inf + -Inf = NaN plus exception. */
|
3490 |
|
|
if (s0 != s1)
|
3491 |
|
|
return 0;
|
3492 |
|
|
break;
|
3493 |
|
|
case MINUS:
|
3494 |
|
|
/* Inf - Inf = NaN plus exception. */
|
3495 |
|
|
if (s0 == s1)
|
3496 |
|
|
return 0;
|
3497 |
|
|
break;
|
3498 |
|
|
case DIV:
|
3499 |
|
|
/* Inf / Inf = NaN plus exception. */
|
3500 |
|
|
return 0;
|
3501 |
|
|
default:
|
3502 |
|
|
break;
|
3503 |
|
|
}
|
3504 |
|
|
}
|
3505 |
|
|
|
3506 |
|
|
if (code == MULT && MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
|
3507 |
|
|
&& flag_trapping_math
|
3508 |
|
|
&& ((REAL_VALUE_ISINF (f0) && REAL_VALUES_EQUAL (f1, dconst0))
|
3509 |
|
|
|| (REAL_VALUE_ISINF (f1)
|
3510 |
|
|
&& REAL_VALUES_EQUAL (f0, dconst0))))
|
3511 |
|
|
/* Inf * 0 = NaN plus exception. */
|
3512 |
|
|
return 0;
|
3513 |
|
|
|
3514 |
|
|
inexact = real_arithmetic (&value, rtx_to_tree_code (code),
|
3515 |
|
|
&f0, &f1);
|
3516 |
|
|
real_convert (&result, mode, &value);
|
3517 |
|
|
|
3518 |
|
|
/* Don't constant fold this floating point operation if
|
3519 |
|
|
the result has overflowed and flag_trapping_math. */
|
3520 |
|
|
|
3521 |
|
|
if (flag_trapping_math
|
3522 |
|
|
&& MODE_HAS_INFINITIES (mode)
|
3523 |
|
|
&& REAL_VALUE_ISINF (result)
|
3524 |
|
|
&& !REAL_VALUE_ISINF (f0)
|
3525 |
|
|
&& !REAL_VALUE_ISINF (f1))
|
3526 |
|
|
/* Overflow plus exception. */
|
3527 |
|
|
return 0;
|
3528 |
|
|
|
3529 |
|
|
/* Don't constant fold this floating point operation if the
|
3530 |
|
|
result may dependent upon the run-time rounding mode and
|
3531 |
|
|
flag_rounding_math is set, or if GCC's software emulation
|
3532 |
|
|
is unable to accurately represent the result. */
|
3533 |
|
|
|
3534 |
|
|
if ((flag_rounding_math
|
3535 |
|
|
|| (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
|
3536 |
|
|
&& (inexact || !real_identical (&result, &value)))
|
3537 |
|
|
return NULL_RTX;
|
3538 |
|
|
|
3539 |
|
|
return CONST_DOUBLE_FROM_REAL_VALUE (result, mode);
|
3540 |
|
|
}
|
3541 |
|
|
}
|
3542 |
|
|
|
3543 |
|
|
/* We can fold some multi-word operations. */
|
3544 |
|
|
if (GET_MODE_CLASS (mode) == MODE_INT
|
3545 |
|
|
&& width == HOST_BITS_PER_DOUBLE_INT
|
3546 |
|
|
&& (CONST_DOUBLE_P (op0) || CONST_INT_P (op0))
|
3547 |
|
|
&& (CONST_DOUBLE_P (op1) || CONST_INT_P (op1)))
|
3548 |
|
|
{
|
3549 |
|
|
double_int o0, o1, res, tmp;
|
3550 |
|
|
|
3551 |
|
|
o0 = rtx_to_double_int (op0);
|
3552 |
|
|
o1 = rtx_to_double_int (op1);
|
3553 |
|
|
|
3554 |
|
|
switch (code)
|
3555 |
|
|
{
|
3556 |
|
|
case MINUS:
|
3557 |
|
|
/* A - B == A + (-B). */
|
3558 |
|
|
o1 = double_int_neg (o1);
|
3559 |
|
|
|
3560 |
|
|
/* Fall through.... */
|
3561 |
|
|
|
3562 |
|
|
case PLUS:
|
3563 |
|
|
res = double_int_add (o0, o1);
|
3564 |
|
|
break;
|
3565 |
|
|
|
3566 |
|
|
case MULT:
|
3567 |
|
|
res = double_int_mul (o0, o1);
|
3568 |
|
|
break;
|
3569 |
|
|
|
3570 |
|
|
case DIV:
|
3571 |
|
|
if (div_and_round_double (TRUNC_DIV_EXPR, 0,
|
3572 |
|
|
o0.low, o0.high, o1.low, o1.high,
|
3573 |
|
|
&res.low, &res.high,
|
3574 |
|
|
&tmp.low, &tmp.high))
|
3575 |
|
|
return 0;
|
3576 |
|
|
break;
|
3577 |
|
|
|
3578 |
|
|
case MOD:
|
3579 |
|
|
if (div_and_round_double (TRUNC_DIV_EXPR, 0,
|
3580 |
|
|
o0.low, o0.high, o1.low, o1.high,
|
3581 |
|
|
&tmp.low, &tmp.high,
|
3582 |
|
|
&res.low, &res.high))
|
3583 |
|
|
return 0;
|
3584 |
|
|
break;
|
3585 |
|
|
|
3586 |
|
|
case UDIV:
|
3587 |
|
|
if (div_and_round_double (TRUNC_DIV_EXPR, 1,
|
3588 |
|
|
o0.low, o0.high, o1.low, o1.high,
|
3589 |
|
|
&res.low, &res.high,
|
3590 |
|
|
&tmp.low, &tmp.high))
|
3591 |
|
|
return 0;
|
3592 |
|
|
break;
|
3593 |
|
|
|
3594 |
|
|
case UMOD:
|
3595 |
|
|
if (div_and_round_double (TRUNC_DIV_EXPR, 1,
|
3596 |
|
|
o0.low, o0.high, o1.low, o1.high,
|
3597 |
|
|
&tmp.low, &tmp.high,
|
3598 |
|
|
&res.low, &res.high))
|
3599 |
|
|
return 0;
|
3600 |
|
|
break;
|
3601 |
|
|
|
3602 |
|
|
case AND:
|
3603 |
|
|
res = double_int_and (o0, o1);
|
3604 |
|
|
break;
|
3605 |
|
|
|
3606 |
|
|
case IOR:
|
3607 |
|
|
res = double_int_ior (o0, o1);
|
3608 |
|
|
break;
|
3609 |
|
|
|
3610 |
|
|
case XOR:
|
3611 |
|
|
res = double_int_xor (o0, o1);
|
3612 |
|
|
break;
|
3613 |
|
|
|
3614 |
|
|
case SMIN:
|
3615 |
|
|
res = double_int_smin (o0, o1);
|
3616 |
|
|
break;
|
3617 |
|
|
|
3618 |
|
|
case SMAX:
|
3619 |
|
|
res = double_int_smax (o0, o1);
|
3620 |
|
|
break;
|
3621 |
|
|
|
3622 |
|
|
case UMIN:
|
3623 |
|
|
res = double_int_umin (o0, o1);
|
3624 |
|
|
break;
|
3625 |
|
|
|
3626 |
|
|
case UMAX:
|
3627 |
|
|
res = double_int_umax (o0, o1);
|
3628 |
|
|
break;
|
3629 |
|
|
|
3630 |
|
|
case LSHIFTRT: case ASHIFTRT:
|
3631 |
|
|
case ASHIFT:
|
3632 |
|
|
case ROTATE: case ROTATERT:
|
3633 |
|
|
{
|
3634 |
|
|
unsigned HOST_WIDE_INT cnt;
|
3635 |
|
|
|
3636 |
|
|
if (SHIFT_COUNT_TRUNCATED)
|
3637 |
|
|
o1 = double_int_zext (o1, GET_MODE_PRECISION (mode));
|
3638 |
|
|
|
3639 |
|
|
if (!double_int_fits_in_uhwi_p (o1)
|
3640 |
|
|
|| double_int_to_uhwi (o1) >= GET_MODE_PRECISION (mode))
|
3641 |
|
|
return 0;
|
3642 |
|
|
|
3643 |
|
|
cnt = double_int_to_uhwi (o1);
|
3644 |
|
|
|
3645 |
|
|
if (code == LSHIFTRT || code == ASHIFTRT)
|
3646 |
|
|
res = double_int_rshift (o0, cnt, GET_MODE_PRECISION (mode),
|
3647 |
|
|
code == ASHIFTRT);
|
3648 |
|
|
else if (code == ASHIFT)
|
3649 |
|
|
res = double_int_lshift (o0, cnt, GET_MODE_PRECISION (mode),
|
3650 |
|
|
true);
|
3651 |
|
|
else if (code == ROTATE)
|
3652 |
|
|
res = double_int_lrotate (o0, cnt, GET_MODE_PRECISION (mode));
|
3653 |
|
|
else /* code == ROTATERT */
|
3654 |
|
|
res = double_int_rrotate (o0, cnt, GET_MODE_PRECISION (mode));
|
3655 |
|
|
}
|
3656 |
|
|
break;
|
3657 |
|
|
|
3658 |
|
|
default:
|
3659 |
|
|
return 0;
|
3660 |
|
|
}
|
3661 |
|
|
|
3662 |
|
|
return immed_double_int_const (res, mode);
|
3663 |
|
|
}
|
3664 |
|
|
|
3665 |
|
|
if (CONST_INT_P (op0) && CONST_INT_P (op1)
|
3666 |
|
|
&& width <= HOST_BITS_PER_WIDE_INT && width != 0)
|
3667 |
|
|
{
|
3668 |
|
|
/* Get the integer argument values in two forms:
|
3669 |
|
|
zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
|
3670 |
|
|
|
3671 |
|
|
arg0 = INTVAL (op0);
|
3672 |
|
|
arg1 = INTVAL (op1);
|
3673 |
|
|
|
3674 |
|
|
if (width < HOST_BITS_PER_WIDE_INT)
|
3675 |
|
|
{
|
3676 |
|
|
arg0 &= GET_MODE_MASK (mode);
|
3677 |
|
|
arg1 &= GET_MODE_MASK (mode);
|
3678 |
|
|
|
3679 |
|
|
arg0s = arg0;
|
3680 |
|
|
if (val_signbit_known_set_p (mode, arg0s))
|
3681 |
|
|
arg0s |= ~GET_MODE_MASK (mode);
|
3682 |
|
|
|
3683 |
|
|
arg1s = arg1;
|
3684 |
|
|
if (val_signbit_known_set_p (mode, arg1s))
|
3685 |
|
|
arg1s |= ~GET_MODE_MASK (mode);
|
3686 |
|
|
}
|
3687 |
|
|
else
|
3688 |
|
|
{
|
3689 |
|
|
arg0s = arg0;
|
3690 |
|
|
arg1s = arg1;
|
3691 |
|
|
}
|
3692 |
|
|
|
3693 |
|
|
/* Compute the value of the arithmetic. */
|
3694 |
|
|
|
3695 |
|
|
switch (code)
|
3696 |
|
|
{
|
3697 |
|
|
case PLUS:
|
3698 |
|
|
val = arg0s + arg1s;
|
3699 |
|
|
break;
|
3700 |
|
|
|
3701 |
|
|
case MINUS:
|
3702 |
|
|
val = arg0s - arg1s;
|
3703 |
|
|
break;
|
3704 |
|
|
|
3705 |
|
|
case MULT:
|
3706 |
|
|
val = arg0s * arg1s;
|
3707 |
|
|
break;
|
3708 |
|
|
|
3709 |
|
|
case DIV:
|
3710 |
|
|
if (arg1s == 0
|
3711 |
|
|
|| ((unsigned HOST_WIDE_INT) arg0s
|
3712 |
|
|
== (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
|
3713 |
|
|
&& arg1s == -1))
|
3714 |
|
|
return 0;
|
3715 |
|
|
val = arg0s / arg1s;
|
3716 |
|
|
break;
|
3717 |
|
|
|
3718 |
|
|
case MOD:
|
3719 |
|
|
if (arg1s == 0
|
3720 |
|
|
|| ((unsigned HOST_WIDE_INT) arg0s
|
3721 |
|
|
== (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
|
3722 |
|
|
&& arg1s == -1))
|
3723 |
|
|
return 0;
|
3724 |
|
|
val = arg0s % arg1s;
|
3725 |
|
|
break;
|
3726 |
|
|
|
3727 |
|
|
case UDIV:
|
3728 |
|
|
if (arg1 == 0
|
3729 |
|
|
|| ((unsigned HOST_WIDE_INT) arg0s
|
3730 |
|
|
== (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
|
3731 |
|
|
&& arg1s == -1))
|
3732 |
|
|
return 0;
|
3733 |
|
|
val = (unsigned HOST_WIDE_INT) arg0 / arg1;
|
3734 |
|
|
break;
|
3735 |
|
|
|
3736 |
|
|
case UMOD:
|
3737 |
|
|
if (arg1 == 0
|
3738 |
|
|
|| ((unsigned HOST_WIDE_INT) arg0s
|
3739 |
|
|
== (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
|
3740 |
|
|
&& arg1s == -1))
|
3741 |
|
|
return 0;
|
3742 |
|
|
val = (unsigned HOST_WIDE_INT) arg0 % arg1;
|
3743 |
|
|
break;
|
3744 |
|
|
|
3745 |
|
|
case AND:
|
3746 |
|
|
val = arg0 & arg1;
|
3747 |
|
|
break;
|
3748 |
|
|
|
3749 |
|
|
case IOR:
|
3750 |
|
|
val = arg0 | arg1;
|
3751 |
|
|
break;
|
3752 |
|
|
|
3753 |
|
|
case XOR:
|
3754 |
|
|
val = arg0 ^ arg1;
|
3755 |
|
|
break;
|
3756 |
|
|
|
3757 |
|
|
case LSHIFTRT:
|
3758 |
|
|
case ASHIFT:
|
3759 |
|
|
case ASHIFTRT:
|
3760 |
|
|
/* Truncate the shift if SHIFT_COUNT_TRUNCATED, otherwise make sure
|
3761 |
|
|
the value is in range. We can't return any old value for
|
3762 |
|
|
out-of-range arguments because either the middle-end (via
|
3763 |
|
|
shift_truncation_mask) or the back-end might be relying on
|
3764 |
|
|
target-specific knowledge. Nor can we rely on
|
3765 |
|
|
shift_truncation_mask, since the shift might not be part of an
|
3766 |
|
|
ashlM3, lshrM3 or ashrM3 instruction. */
|
3767 |
|
|
if (SHIFT_COUNT_TRUNCATED)
|
3768 |
|
|
arg1 = (unsigned HOST_WIDE_INT) arg1 % width;
|
3769 |
|
|
else if (arg1 < 0 || arg1 >= GET_MODE_BITSIZE (mode))
|
3770 |
|
|
return 0;
|
3771 |
|
|
|
3772 |
|
|
val = (code == ASHIFT
|
3773 |
|
|
? ((unsigned HOST_WIDE_INT) arg0) << arg1
|
3774 |
|
|
: ((unsigned HOST_WIDE_INT) arg0) >> arg1);
|
3775 |
|
|
|
3776 |
|
|
/* Sign-extend the result for arithmetic right shifts. */
|
3777 |
|
|
if (code == ASHIFTRT && arg0s < 0 && arg1 > 0)
|
3778 |
|
|
val |= ((unsigned HOST_WIDE_INT) (-1)) << (width - arg1);
|
3779 |
|
|
break;
|
3780 |
|
|
|
3781 |
|
|
case ROTATERT:
|
3782 |
|
|
if (arg1 < 0)
|
3783 |
|
|
return 0;
|
3784 |
|
|
|
3785 |
|
|
arg1 %= width;
|
3786 |
|
|
val = ((((unsigned HOST_WIDE_INT) arg0) << (width - arg1))
|
3787 |
|
|
| (((unsigned HOST_WIDE_INT) arg0) >> arg1));
|
3788 |
|
|
break;
|
3789 |
|
|
|
3790 |
|
|
case ROTATE:
|
3791 |
|
|
if (arg1 < 0)
|
3792 |
|
|
return 0;
|
3793 |
|
|
|
3794 |
|
|
arg1 %= width;
|
3795 |
|
|
val = ((((unsigned HOST_WIDE_INT) arg0) << arg1)
|
3796 |
|
|
| (((unsigned HOST_WIDE_INT) arg0) >> (width - arg1)));
|
3797 |
|
|
break;
|
3798 |
|
|
|
3799 |
|
|
case COMPARE:
|
3800 |
|
|
/* Do nothing here. */
|
3801 |
|
|
return 0;
|
3802 |
|
|
|
3803 |
|
|
case SMIN:
|
3804 |
|
|
val = arg0s <= arg1s ? arg0s : arg1s;
|
3805 |
|
|
break;
|
3806 |
|
|
|
3807 |
|
|
case UMIN:
|
3808 |
|
|
val = ((unsigned HOST_WIDE_INT) arg0
|
3809 |
|
|
<= (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
|
3810 |
|
|
break;
|
3811 |
|
|
|
3812 |
|
|
case SMAX:
|
3813 |
|
|
val = arg0s > arg1s ? arg0s : arg1s;
|
3814 |
|
|
break;
|
3815 |
|
|
|
3816 |
|
|
case UMAX:
|
3817 |
|
|
val = ((unsigned HOST_WIDE_INT) arg0
|
3818 |
|
|
> (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
|
3819 |
|
|
break;
|
3820 |
|
|
|
3821 |
|
|
case SS_PLUS:
|
3822 |
|
|
case US_PLUS:
|
3823 |
|
|
case SS_MINUS:
|
3824 |
|
|
case US_MINUS:
|
3825 |
|
|
case SS_MULT:
|
3826 |
|
|
case US_MULT:
|
3827 |
|
|
case SS_DIV:
|
3828 |
|
|
case US_DIV:
|
3829 |
|
|
case SS_ASHIFT:
|
3830 |
|
|
case US_ASHIFT:
|
3831 |
|
|
/* ??? There are simplifications that can be done. */
|
3832 |
|
|
return 0;
|
3833 |
|
|
|
3834 |
|
|
default:
|
3835 |
|
|
gcc_unreachable ();
|
3836 |
|
|
}
|
3837 |
|
|
|
3838 |
|
|
return gen_int_mode (val, mode);
|
3839 |
|
|
}
|
3840 |
|
|
|
3841 |
|
|
return NULL_RTX;
|
3842 |
|
|
}
|
3843 |
|
|
|
3844 |
|
|
|
3845 |
|
|
|
3846 |
|
|
/* Simplify a PLUS or MINUS, at least one of whose operands may be another
|
3847 |
|
|
PLUS or MINUS.
|
3848 |
|
|
|
3849 |
|
|
Rather than test for specific case, we do this by a brute-force method
|
3850 |
|
|
and do all possible simplifications until no more changes occur. Then
|
3851 |
|
|
we rebuild the operation. */
|
3852 |
|
|
|
3853 |
|
|
struct simplify_plus_minus_op_data
|
3854 |
|
|
{
|
3855 |
|
|
rtx op;
|
3856 |
|
|
short neg;
|
3857 |
|
|
};
|
3858 |
|
|
|
3859 |
|
|
static bool
|
3860 |
|
|
simplify_plus_minus_op_data_cmp (rtx x, rtx y)
|
3861 |
|
|
{
|
3862 |
|
|
int result;
|
3863 |
|
|
|
3864 |
|
|
result = (commutative_operand_precedence (y)
|
3865 |
|
|
- commutative_operand_precedence (x));
|
3866 |
|
|
if (result)
|
3867 |
|
|
return result > 0;
|
3868 |
|
|
|
3869 |
|
|
/* Group together equal REGs to do more simplification. */
|
3870 |
|
|
if (REG_P (x) && REG_P (y))
|
3871 |
|
|
return REGNO (x) > REGNO (y);
|
3872 |
|
|
else
|
3873 |
|
|
return false;
|
3874 |
|
|
}
|
3875 |
|
|
|
3876 |
|
|
static rtx
|
3877 |
|
|
simplify_plus_minus (enum rtx_code code, enum machine_mode mode, rtx op0,
|
3878 |
|
|
rtx op1)
|
3879 |
|
|
{
|
3880 |
|
|
struct simplify_plus_minus_op_data ops[8];
|
3881 |
|
|
rtx result, tem;
|
3882 |
|
|
int n_ops = 2, input_ops = 2;
|
3883 |
|
|
int changed, n_constants = 0, canonicalized = 0;
|
3884 |
|
|
int i, j;
|
3885 |
|
|
|
3886 |
|
|
memset (ops, 0, sizeof ops);
|
3887 |
|
|
|
3888 |
|
|
/* Set up the two operands and then expand them until nothing has been
|
3889 |
|
|
changed. If we run out of room in our array, give up; this should
|
3890 |
|
|
almost never happen. */
|
3891 |
|
|
|
3892 |
|
|
ops[0].op = op0;
|
3893 |
|
|
ops[0].neg = 0;
|
3894 |
|
|
ops[1].op = op1;
|
3895 |
|
|
ops[1].neg = (code == MINUS);
|
3896 |
|
|
|
3897 |
|
|
do
|
3898 |
|
|
{
|
3899 |
|
|
changed = 0;
|
3900 |
|
|
|
3901 |
|
|
for (i = 0; i < n_ops; i++)
|
3902 |
|
|
{
|
3903 |
|
|
rtx this_op = ops[i].op;
|
3904 |
|
|
int this_neg = ops[i].neg;
|
3905 |
|
|
enum rtx_code this_code = GET_CODE (this_op);
|
3906 |
|
|
|
3907 |
|
|
switch (this_code)
|
3908 |
|
|
{
|
3909 |
|
|
case PLUS:
|
3910 |
|
|
case MINUS:
|
3911 |
|
|
if (n_ops == 7)
|
3912 |
|
|
return NULL_RTX;
|
3913 |
|
|
|
3914 |
|
|
ops[n_ops].op = XEXP (this_op, 1);
|
3915 |
|
|
ops[n_ops].neg = (this_code == MINUS) ^ this_neg;
|
3916 |
|
|
n_ops++;
|
3917 |
|
|
|
3918 |
|
|
ops[i].op = XEXP (this_op, 0);
|
3919 |
|
|
input_ops++;
|
3920 |
|
|
changed = 1;
|
3921 |
|
|
canonicalized |= this_neg;
|
3922 |
|
|
break;
|
3923 |
|
|
|
3924 |
|
|
case NEG:
|
3925 |
|
|
ops[i].op = XEXP (this_op, 0);
|
3926 |
|
|
ops[i].neg = ! this_neg;
|
3927 |
|
|
changed = 1;
|
3928 |
|
|
canonicalized = 1;
|
3929 |
|
|
break;
|
3930 |
|
|
|
3931 |
|
|
case CONST:
|
3932 |
|
|
if (n_ops < 7
|
3933 |
|
|
&& GET_CODE (XEXP (this_op, 0)) == PLUS
|
3934 |
|
|
&& CONSTANT_P (XEXP (XEXP (this_op, 0), 0))
|
3935 |
|
|
&& CONSTANT_P (XEXP (XEXP (this_op, 0), 1)))
|
3936 |
|
|
{
|
3937 |
|
|
ops[i].op = XEXP (XEXP (this_op, 0), 0);
|
3938 |
|
|
ops[n_ops].op = XEXP (XEXP (this_op, 0), 1);
|
3939 |
|
|
ops[n_ops].neg = this_neg;
|
3940 |
|
|
n_ops++;
|
3941 |
|
|
changed = 1;
|
3942 |
|
|
canonicalized = 1;
|
3943 |
|
|
}
|
3944 |
|
|
break;
|
3945 |
|
|
|
3946 |
|
|
case NOT:
|
3947 |
|
|
/* ~a -> (-a - 1) */
|
3948 |
|
|
if (n_ops != 7)
|
3949 |
|
|
{
|
3950 |
|
|
ops[n_ops].op = CONSTM1_RTX (mode);
|
3951 |
|
|
ops[n_ops++].neg = this_neg;
|
3952 |
|
|
ops[i].op = XEXP (this_op, 0);
|
3953 |
|
|
ops[i].neg = !this_neg;
|
3954 |
|
|
changed = 1;
|
3955 |
|
|
canonicalized = 1;
|
3956 |
|
|
}
|
3957 |
|
|
break;
|
3958 |
|
|
|
3959 |
|
|
case CONST_INT:
|
3960 |
|
|
n_constants++;
|
3961 |
|
|
if (this_neg)
|
3962 |
|
|
{
|
3963 |
|
|
ops[i].op = neg_const_int (mode, this_op);
|
3964 |
|
|
ops[i].neg = 0;
|
3965 |
|
|
changed = 1;
|
3966 |
|
|
canonicalized = 1;
|
3967 |
|
|
}
|
3968 |
|
|
break;
|
3969 |
|
|
|
3970 |
|
|
default:
|
3971 |
|
|
break;
|
3972 |
|
|
}
|
3973 |
|
|
}
|
3974 |
|
|
}
|
3975 |
|
|
while (changed);
|
3976 |
|
|
|
3977 |
|
|
if (n_constants > 1)
|
3978 |
|
|
canonicalized = 1;
|
3979 |
|
|
|
3980 |
|
|
gcc_assert (n_ops >= 2);
|
3981 |
|
|
|
3982 |
|
|
/* If we only have two operands, we can avoid the loops. */
|
3983 |
|
|
if (n_ops == 2)
|
3984 |
|
|
{
|
3985 |
|
|
enum rtx_code code = ops[0].neg || ops[1].neg ? MINUS : PLUS;
|
3986 |
|
|
rtx lhs, rhs;
|
3987 |
|
|
|
3988 |
|
|
/* Get the two operands. Be careful with the order, especially for
|
3989 |
|
|
the cases where code == MINUS. */
|
3990 |
|
|
if (ops[0].neg && ops[1].neg)
|
3991 |
|
|
{
|
3992 |
|
|
lhs = gen_rtx_NEG (mode, ops[0].op);
|
3993 |
|
|
rhs = ops[1].op;
|
3994 |
|
|
}
|
3995 |
|
|
else if (ops[0].neg)
|
3996 |
|
|
{
|
3997 |
|
|
lhs = ops[1].op;
|
3998 |
|
|
rhs = ops[0].op;
|
3999 |
|
|
}
|
4000 |
|
|
else
|
4001 |
|
|
{
|
4002 |
|
|
lhs = ops[0].op;
|
4003 |
|
|
rhs = ops[1].op;
|
4004 |
|
|
}
|
4005 |
|
|
|
4006 |
|
|
return simplify_const_binary_operation (code, mode, lhs, rhs);
|
4007 |
|
|
}
|
4008 |
|
|
|
4009 |
|
|
/* Now simplify each pair of operands until nothing changes. */
|
4010 |
|
|
do
|
4011 |
|
|
{
|
4012 |
|
|
/* Insertion sort is good enough for an eight-element array. */
|
4013 |
|
|
for (i = 1; i < n_ops; i++)
|
4014 |
|
|
{
|
4015 |
|
|
struct simplify_plus_minus_op_data save;
|
4016 |
|
|
j = i - 1;
|
4017 |
|
|
if (!simplify_plus_minus_op_data_cmp (ops[j].op, ops[i].op))
|
4018 |
|
|
continue;
|
4019 |
|
|
|
4020 |
|
|
canonicalized = 1;
|
4021 |
|
|
save = ops[i];
|
4022 |
|
|
do
|
4023 |
|
|
ops[j + 1] = ops[j];
|
4024 |
|
|
while (j-- && simplify_plus_minus_op_data_cmp (ops[j].op, save.op));
|
4025 |
|
|
ops[j + 1] = save;
|
4026 |
|
|
}
|
4027 |
|
|
|
4028 |
|
|
changed = 0;
|
4029 |
|
|
for (i = n_ops - 1; i > 0; i--)
|
4030 |
|
|
for (j = i - 1; j >= 0; j--)
|
4031 |
|
|
{
|
4032 |
|
|
rtx lhs = ops[j].op, rhs = ops[i].op;
|
4033 |
|
|
int lneg = ops[j].neg, rneg = ops[i].neg;
|
4034 |
|
|
|
4035 |
|
|
if (lhs != 0 && rhs != 0)
|
4036 |
|
|
{
|
4037 |
|
|
enum rtx_code ncode = PLUS;
|
4038 |
|
|
|
4039 |
|
|
if (lneg != rneg)
|
4040 |
|
|
{
|
4041 |
|
|
ncode = MINUS;
|
4042 |
|
|
if (lneg)
|
4043 |
|
|
tem = lhs, lhs = rhs, rhs = tem;
|
4044 |
|
|
}
|
4045 |
|
|
else if (swap_commutative_operands_p (lhs, rhs))
|
4046 |
|
|
tem = lhs, lhs = rhs, rhs = tem;
|
4047 |
|
|
|
4048 |
|
|
if ((GET_CODE (lhs) == CONST || CONST_INT_P (lhs))
|
4049 |
|
|
&& (GET_CODE (rhs) == CONST || CONST_INT_P (rhs)))
|
4050 |
|
|
{
|
4051 |
|
|
rtx tem_lhs, tem_rhs;
|
4052 |
|
|
|
4053 |
|
|
tem_lhs = GET_CODE (lhs) == CONST ? XEXP (lhs, 0) : lhs;
|
4054 |
|
|
tem_rhs = GET_CODE (rhs) == CONST ? XEXP (rhs, 0) : rhs;
|
4055 |
|
|
tem = simplify_binary_operation (ncode, mode, tem_lhs, tem_rhs);
|
4056 |
|
|
|
4057 |
|
|
if (tem && !CONSTANT_P (tem))
|
4058 |
|
|
tem = gen_rtx_CONST (GET_MODE (tem), tem);
|
4059 |
|
|
}
|
4060 |
|
|
else
|
4061 |
|
|
tem = simplify_binary_operation (ncode, mode, lhs, rhs);
|
4062 |
|
|
|
4063 |
|
|
/* Reject "simplifications" that just wrap the two
|
4064 |
|
|
arguments in a CONST. Failure to do so can result
|
4065 |
|
|
in infinite recursion with simplify_binary_operation
|
4066 |
|
|
when it calls us to simplify CONST operations. */
|
4067 |
|
|
if (tem
|
4068 |
|
|
&& ! (GET_CODE (tem) == CONST
|
4069 |
|
|
&& GET_CODE (XEXP (tem, 0)) == ncode
|
4070 |
|
|
&& XEXP (XEXP (tem, 0), 0) == lhs
|
4071 |
|
|
&& XEXP (XEXP (tem, 0), 1) == rhs))
|
4072 |
|
|
{
|
4073 |
|
|
lneg &= rneg;
|
4074 |
|
|
if (GET_CODE (tem) == NEG)
|
4075 |
|
|
tem = XEXP (tem, 0), lneg = !lneg;
|
4076 |
|
|
if (CONST_INT_P (tem) && lneg)
|
4077 |
|
|
tem = neg_const_int (mode, tem), lneg = 0;
|
4078 |
|
|
|
4079 |
|
|
ops[i].op = tem;
|
4080 |
|
|
ops[i].neg = lneg;
|
4081 |
|
|
ops[j].op = NULL_RTX;
|
4082 |
|
|
changed = 1;
|
4083 |
|
|
canonicalized = 1;
|
4084 |
|
|
}
|
4085 |
|
|
}
|
4086 |
|
|
}
|
4087 |
|
|
|
4088 |
|
|
/* If nothing changed, fail. */
|
4089 |
|
|
if (!canonicalized)
|
4090 |
|
|
return NULL_RTX;
|
4091 |
|
|
|
4092 |
|
|
/* Pack all the operands to the lower-numbered entries. */
|
4093 |
|
|
for (i = 0, j = 0; j < n_ops; j++)
|
4094 |
|
|
if (ops[j].op)
|
4095 |
|
|
{
|
4096 |
|
|
ops[i] = ops[j];
|
4097 |
|
|
i++;
|
4098 |
|
|
}
|
4099 |
|
|
n_ops = i;
|
4100 |
|
|
}
|
4101 |
|
|
while (changed);
|
4102 |
|
|
|
4103 |
|
|
/* Create (minus -C X) instead of (neg (const (plus X C))). */
|
4104 |
|
|
if (n_ops == 2
|
4105 |
|
|
&& CONST_INT_P (ops[1].op)
|
4106 |
|
|
&& CONSTANT_P (ops[0].op)
|
4107 |
|
|
&& ops[0].neg)
|
4108 |
|
|
return gen_rtx_fmt_ee (MINUS, mode, ops[1].op, ops[0].op);
|
4109 |
|
|
|
4110 |
|
|
/* We suppressed creation of trivial CONST expressions in the
|
4111 |
|
|
combination loop to avoid recursion. Create one manually now.
|
4112 |
|
|
The combination loop should have ensured that there is exactly
|
4113 |
|
|
one CONST_INT, and the sort will have ensured that it is last
|
4114 |
|
|
in the array and that any other constant will be next-to-last. */
|
4115 |
|
|
|
4116 |
|
|
if (n_ops > 1
|
4117 |
|
|
&& CONST_INT_P (ops[n_ops - 1].op)
|
4118 |
|
|
&& CONSTANT_P (ops[n_ops - 2].op))
|
4119 |
|
|
{
|
4120 |
|
|
rtx value = ops[n_ops - 1].op;
|
4121 |
|
|
if (ops[n_ops - 1].neg ^ ops[n_ops - 2].neg)
|
4122 |
|
|
value = neg_const_int (mode, value);
|
4123 |
|
|
ops[n_ops - 2].op = plus_constant (ops[n_ops - 2].op, INTVAL (value));
|
4124 |
|
|
n_ops--;
|
4125 |
|
|
}
|
4126 |
|
|
|
4127 |
|
|
/* Put a non-negated operand first, if possible. */
|
4128 |
|
|
|
4129 |
|
|
for (i = 0; i < n_ops && ops[i].neg; i++)
|
4130 |
|
|
continue;
|
4131 |
|
|
if (i == n_ops)
|
4132 |
|
|
ops[0].op = gen_rtx_NEG (mode, ops[0].op);
|
4133 |
|
|
else if (i != 0)
|
4134 |
|
|
{
|
4135 |
|
|
tem = ops[0].op;
|
4136 |
|
|
ops[0] = ops[i];
|
4137 |
|
|
ops[i].op = tem;
|
4138 |
|
|
ops[i].neg = 1;
|
4139 |
|
|
}
|
4140 |
|
|
|
4141 |
|
|
/* Now make the result by performing the requested operations. */
|
4142 |
|
|
result = ops[0].op;
|
4143 |
|
|
for (i = 1; i < n_ops; i++)
|
4144 |
|
|
result = gen_rtx_fmt_ee (ops[i].neg ? MINUS : PLUS,
|
4145 |
|
|
mode, result, ops[i].op);
|
4146 |
|
|
|
4147 |
|
|
return result;
|
4148 |
|
|
}
|
4149 |
|
|
|
4150 |
|
|
/* Check whether an operand is suitable for calling simplify_plus_minus. */
|
4151 |
|
|
static bool
|
4152 |
|
|
plus_minus_operand_p (const_rtx x)
|
4153 |
|
|
{
|
4154 |
|
|
return GET_CODE (x) == PLUS
|
4155 |
|
|
|| GET_CODE (x) == MINUS
|
4156 |
|
|
|| (GET_CODE (x) == CONST
|
4157 |
|
|
&& GET_CODE (XEXP (x, 0)) == PLUS
|
4158 |
|
|
&& CONSTANT_P (XEXP (XEXP (x, 0), 0))
|
4159 |
|
|
&& CONSTANT_P (XEXP (XEXP (x, 0), 1)));
|
4160 |
|
|
}
|
4161 |
|
|
|
4162 |
|
|
/* Like simplify_binary_operation except used for relational operators.
|
4163 |
|
|
MODE is the mode of the result. If MODE is VOIDmode, both operands must
|
4164 |
|
|
not also be VOIDmode.
|
4165 |
|
|
|
4166 |
|
|
CMP_MODE specifies in which mode the comparison is done in, so it is
|
4167 |
|
|
the mode of the operands. If CMP_MODE is VOIDmode, it is taken from
|
4168 |
|
|
the operands or, if both are VOIDmode, the operands are compared in
|
4169 |
|
|
"infinite precision". */
|
4170 |
|
|
rtx
|
4171 |
|
|
simplify_relational_operation (enum rtx_code code, enum machine_mode mode,
|
4172 |
|
|
enum machine_mode cmp_mode, rtx op0, rtx op1)
|
4173 |
|
|
{
|
4174 |
|
|
rtx tem, trueop0, trueop1;
|
4175 |
|
|
|
4176 |
|
|
if (cmp_mode == VOIDmode)
|
4177 |
|
|
cmp_mode = GET_MODE (op0);
|
4178 |
|
|
if (cmp_mode == VOIDmode)
|
4179 |
|
|
cmp_mode = GET_MODE (op1);
|
4180 |
|
|
|
4181 |
|
|
tem = simplify_const_relational_operation (code, cmp_mode, op0, op1);
|
4182 |
|
|
if (tem)
|
4183 |
|
|
{
|
4184 |
|
|
if (SCALAR_FLOAT_MODE_P (mode))
|
4185 |
|
|
{
|
4186 |
|
|
if (tem == const0_rtx)
|
4187 |
|
|
return CONST0_RTX (mode);
|
4188 |
|
|
#ifdef FLOAT_STORE_FLAG_VALUE
|
4189 |
|
|
{
|
4190 |
|
|
REAL_VALUE_TYPE val;
|
4191 |
|
|
val = FLOAT_STORE_FLAG_VALUE (mode);
|
4192 |
|
|
return CONST_DOUBLE_FROM_REAL_VALUE (val, mode);
|
4193 |
|
|
}
|
4194 |
|
|
#else
|
4195 |
|
|
return NULL_RTX;
|
4196 |
|
|
#endif
|
4197 |
|
|
}
|
4198 |
|
|
if (VECTOR_MODE_P (mode))
|
4199 |
|
|
{
|
4200 |
|
|
if (tem == const0_rtx)
|
4201 |
|
|
return CONST0_RTX (mode);
|
4202 |
|
|
#ifdef VECTOR_STORE_FLAG_VALUE
|
4203 |
|
|
{
|
4204 |
|
|
int i, units;
|
4205 |
|
|
rtvec v;
|
4206 |
|
|
|
4207 |
|
|
rtx val = VECTOR_STORE_FLAG_VALUE (mode);
|
4208 |
|
|
if (val == NULL_RTX)
|
4209 |
|
|
return NULL_RTX;
|
4210 |
|
|
if (val == const1_rtx)
|
4211 |
|
|
return CONST1_RTX (mode);
|
4212 |
|
|
|
4213 |
|
|
units = GET_MODE_NUNITS (mode);
|
4214 |
|
|
v = rtvec_alloc (units);
|
4215 |
|
|
for (i = 0; i < units; i++)
|
4216 |
|
|
RTVEC_ELT (v, i) = val;
|
4217 |
|
|
return gen_rtx_raw_CONST_VECTOR (mode, v);
|
4218 |
|
|
}
|
4219 |
|
|
#else
|
4220 |
|
|
return NULL_RTX;
|
4221 |
|
|
#endif
|
4222 |
|
|
}
|
4223 |
|
|
|
4224 |
|
|
return tem;
|
4225 |
|
|
}
|
4226 |
|
|
|
4227 |
|
|
/* For the following tests, ensure const0_rtx is op1. */
|
4228 |
|
|
if (swap_commutative_operands_p (op0, op1)
|
4229 |
|
|
|| (op0 == const0_rtx && op1 != const0_rtx))
|
4230 |
|
|
tem = op0, op0 = op1, op1 = tem, code = swap_condition (code);
|
4231 |
|
|
|
4232 |
|
|
/* If op0 is a compare, extract the comparison arguments from it. */
|
4233 |
|
|
if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
|
4234 |
|
|
return simplify_gen_relational (code, mode, VOIDmode,
|
4235 |
|
|
XEXP (op0, 0), XEXP (op0, 1));
|
4236 |
|
|
|
4237 |
|
|
if (GET_MODE_CLASS (cmp_mode) == MODE_CC
|
4238 |
|
|
|| CC0_P (op0))
|
4239 |
|
|
return NULL_RTX;
|
4240 |
|
|
|
4241 |
|
|
trueop0 = avoid_constant_pool_reference (op0);
|
4242 |
|
|
trueop1 = avoid_constant_pool_reference (op1);
|
4243 |
|
|
return simplify_relational_operation_1 (code, mode, cmp_mode,
|
4244 |
|
|
trueop0, trueop1);
|
4245 |
|
|
}
|
4246 |
|
|
|
4247 |
|
|
/* This part of simplify_relational_operation is only used when CMP_MODE
|
4248 |
|
|
is not in class MODE_CC (i.e. it is a real comparison).
|
4249 |
|
|
|
4250 |
|
|
MODE is the mode of the result, while CMP_MODE specifies in which
|
4251 |
|
|
mode the comparison is done in, so it is the mode of the operands. */
|
4252 |
|
|
|
4253 |
|
|
static rtx
|
4254 |
|
|
simplify_relational_operation_1 (enum rtx_code code, enum machine_mode mode,
|
4255 |
|
|
enum machine_mode cmp_mode, rtx op0, rtx op1)
|
4256 |
|
|
{
|
4257 |
|
|
enum rtx_code op0code = GET_CODE (op0);
|
4258 |
|
|
|
4259 |
|
|
if (op1 == const0_rtx && COMPARISON_P (op0))
|
4260 |
|
|
{
|
4261 |
|
|
/* If op0 is a comparison, extract the comparison arguments
|
4262 |
|
|
from it. */
|
4263 |
|
|
if (code == NE)
|
4264 |
|
|
{
|
4265 |
|
|
if (GET_MODE (op0) == mode)
|
4266 |
|
|
return simplify_rtx (op0);
|
4267 |
|
|
else
|
4268 |
|
|
return simplify_gen_relational (GET_CODE (op0), mode, VOIDmode,
|
4269 |
|
|
XEXP (op0, 0), XEXP (op0, 1));
|
4270 |
|
|
}
|
4271 |
|
|
else if (code == EQ)
|
4272 |
|
|
{
|
4273 |
|
|
enum rtx_code new_code = reversed_comparison_code (op0, NULL_RTX);
|
4274 |
|
|
if (new_code != UNKNOWN)
|
4275 |
|
|
return simplify_gen_relational (new_code, mode, VOIDmode,
|
4276 |
|
|
XEXP (op0, 0), XEXP (op0, 1));
|
4277 |
|
|
}
|
4278 |
|
|
}
|
4279 |
|
|
|
4280 |
|
|
/* (LTU/GEU (PLUS a C) C), where C is constant, can be simplified to
|
4281 |
|
|
(GEU/LTU a -C). Likewise for (LTU/GEU (PLUS a C) a). */
|
4282 |
|
|
if ((code == LTU || code == GEU)
|
4283 |
|
|
&& GET_CODE (op0) == PLUS
|
4284 |
|
|
&& CONST_INT_P (XEXP (op0, 1))
|
4285 |
|
|
&& (rtx_equal_p (op1, XEXP (op0, 0))
|
4286 |
|
|
|| rtx_equal_p (op1, XEXP (op0, 1))))
|
4287 |
|
|
{
|
4288 |
|
|
rtx new_cmp
|
4289 |
|
|
= simplify_gen_unary (NEG, cmp_mode, XEXP (op0, 1), cmp_mode);
|
4290 |
|
|
return simplify_gen_relational ((code == LTU ? GEU : LTU), mode,
|
4291 |
|
|
cmp_mode, XEXP (op0, 0), new_cmp);
|
4292 |
|
|
}
|
4293 |
|
|
|
4294 |
|
|
/* Canonicalize (LTU/GEU (PLUS a b) b) as (LTU/GEU (PLUS a b) a). */
|
4295 |
|
|
if ((code == LTU || code == GEU)
|
4296 |
|
|
&& GET_CODE (op0) == PLUS
|
4297 |
|
|
&& rtx_equal_p (op1, XEXP (op0, 1))
|
4298 |
|
|
/* Don't recurse "infinitely" for (LTU/GEU (PLUS b b) b). */
|
4299 |
|
|
&& !rtx_equal_p (op1, XEXP (op0, 0)))
|
4300 |
|
|
return simplify_gen_relational (code, mode, cmp_mode, op0,
|
4301 |
|
|
copy_rtx (XEXP (op0, 0)));
|
4302 |
|
|
|
4303 |
|
|
if (op1 == const0_rtx)
|
4304 |
|
|
{
|
4305 |
|
|
/* Canonicalize (GTU x 0) as (NE x 0). */
|
4306 |
|
|
if (code == GTU)
|
4307 |
|
|
return simplify_gen_relational (NE, mode, cmp_mode, op0, op1);
|
4308 |
|
|
/* Canonicalize (LEU x 0) as (EQ x 0). */
|
4309 |
|
|
if (code == LEU)
|
4310 |
|
|
return simplify_gen_relational (EQ, mode, cmp_mode, op0, op1);
|
4311 |
|
|
}
|
4312 |
|
|
else if (op1 == const1_rtx)
|
4313 |
|
|
{
|
4314 |
|
|
switch (code)
|
4315 |
|
|
{
|
4316 |
|
|
case GE:
|
4317 |
|
|
/* Canonicalize (GE x 1) as (GT x 0). */
|
4318 |
|
|
return simplify_gen_relational (GT, mode, cmp_mode,
|
4319 |
|
|
op0, const0_rtx);
|
4320 |
|
|
case GEU:
|
4321 |
|
|
/* Canonicalize (GEU x 1) as (NE x 0). */
|
4322 |
|
|
return simplify_gen_relational (NE, mode, cmp_mode,
|
4323 |
|
|
op0, const0_rtx);
|
4324 |
|
|
case LT:
|
4325 |
|
|
/* Canonicalize (LT x 1) as (LE x 0). */
|
4326 |
|
|
return simplify_gen_relational (LE, mode, cmp_mode,
|
4327 |
|
|
op0, const0_rtx);
|
4328 |
|
|
case LTU:
|
4329 |
|
|
/* Canonicalize (LTU x 1) as (EQ x 0). */
|
4330 |
|
|
return simplify_gen_relational (EQ, mode, cmp_mode,
|
4331 |
|
|
op0, const0_rtx);
|
4332 |
|
|
default:
|
4333 |
|
|
break;
|
4334 |
|
|
}
|
4335 |
|
|
}
|
4336 |
|
|
else if (op1 == constm1_rtx)
|
4337 |
|
|
{
|
4338 |
|
|
/* Canonicalize (LE x -1) as (LT x 0). */
|
4339 |
|
|
if (code == LE)
|
4340 |
|
|
return simplify_gen_relational (LT, mode, cmp_mode, op0, const0_rtx);
|
4341 |
|
|
/* Canonicalize (GT x -1) as (GE x 0). */
|
4342 |
|
|
if (code == GT)
|
4343 |
|
|
return simplify_gen_relational (GE, mode, cmp_mode, op0, const0_rtx);
|
4344 |
|
|
}
|
4345 |
|
|
|
4346 |
|
|
/* (eq/ne (plus x cst1) cst2) simplifies to (eq/ne x (cst2 - cst1)) */
|
4347 |
|
|
if ((code == EQ || code == NE)
|
4348 |
|
|
&& (op0code == PLUS || op0code == MINUS)
|
4349 |
|
|
&& CONSTANT_P (op1)
|
4350 |
|
|
&& CONSTANT_P (XEXP (op0, 1))
|
4351 |
|
|
&& (INTEGRAL_MODE_P (cmp_mode) || flag_unsafe_math_optimizations))
|
4352 |
|
|
{
|
4353 |
|
|
rtx x = XEXP (op0, 0);
|
4354 |
|
|
rtx c = XEXP (op0, 1);
|
4355 |
|
|
enum rtx_code invcode = op0code == PLUS ? MINUS : PLUS;
|
4356 |
|
|
rtx tem = simplify_gen_binary (invcode, cmp_mode, op1, c);
|
4357 |
|
|
|
4358 |
|
|
/* Detect an infinite recursive condition, where we oscillate at this
|
4359 |
|
|
simplification case between:
|
4360 |
|
|
A + B == C <---> C - B == A,
|
4361 |
|
|
where A, B, and C are all constants with non-simplifiable expressions,
|
4362 |
|
|
usually SYMBOL_REFs. */
|
4363 |
|
|
if (GET_CODE (tem) == invcode
|
4364 |
|
|
&& CONSTANT_P (x)
|
4365 |
|
|
&& rtx_equal_p (c, XEXP (tem, 1)))
|
4366 |
|
|
return NULL_RTX;
|
4367 |
|
|
|
4368 |
|
|
return simplify_gen_relational (code, mode, cmp_mode, x, tem);
|
4369 |
|
|
}
|
4370 |
|
|
|
4371 |
|
|
/* (ne:SI (zero_extract:SI FOO (const_int 1) BAR) (const_int 0))) is
|
4372 |
|
|
the same as (zero_extract:SI FOO (const_int 1) BAR). */
|
4373 |
|
|
if (code == NE
|
4374 |
|
|
&& op1 == const0_rtx
|
4375 |
|
|
&& GET_MODE_CLASS (mode) == MODE_INT
|
4376 |
|
|
&& cmp_mode != VOIDmode
|
4377 |
|
|
/* ??? Work-around BImode bugs in the ia64 backend. */
|
4378 |
|
|
&& mode != BImode
|
4379 |
|
|
&& cmp_mode != BImode
|
4380 |
|
|
&& nonzero_bits (op0, cmp_mode) == 1
|
4381 |
|
|
&& STORE_FLAG_VALUE == 1)
|
4382 |
|
|
return GET_MODE_SIZE (mode) > GET_MODE_SIZE (cmp_mode)
|
4383 |
|
|
? simplify_gen_unary (ZERO_EXTEND, mode, op0, cmp_mode)
|
4384 |
|
|
: lowpart_subreg (mode, op0, cmp_mode);
|
4385 |
|
|
|
4386 |
|
|
/* (eq/ne (xor x y) 0) simplifies to (eq/ne x y). */
|
4387 |
|
|
if ((code == EQ || code == NE)
|
4388 |
|
|
&& op1 == const0_rtx
|
4389 |
|
|
&& op0code == XOR)
|
4390 |
|
|
return simplify_gen_relational (code, mode, cmp_mode,
|
4391 |
|
|
XEXP (op0, 0), XEXP (op0, 1));
|
4392 |
|
|
|
4393 |
|
|
/* (eq/ne (xor x y) x) simplifies to (eq/ne y 0). */
|
4394 |
|
|
if ((code == EQ || code == NE)
|
4395 |
|
|
&& op0code == XOR
|
4396 |
|
|
&& rtx_equal_p (XEXP (op0, 0), op1)
|
4397 |
|
|
&& !side_effects_p (XEXP (op0, 0)))
|
4398 |
|
|
return simplify_gen_relational (code, mode, cmp_mode,
|
4399 |
|
|
XEXP (op0, 1), const0_rtx);
|
4400 |
|
|
|
4401 |
|
|
/* Likewise (eq/ne (xor x y) y) simplifies to (eq/ne x 0). */
|
4402 |
|
|
if ((code == EQ || code == NE)
|
4403 |
|
|
&& op0code == XOR
|
4404 |
|
|
&& rtx_equal_p (XEXP (op0, 1), op1)
|
4405 |
|
|
&& !side_effects_p (XEXP (op0, 1)))
|
4406 |
|
|
return simplify_gen_relational (code, mode, cmp_mode,
|
4407 |
|
|
XEXP (op0, 0), const0_rtx);
|
4408 |
|
|
|
4409 |
|
|
/* (eq/ne (xor x C1) C2) simplifies to (eq/ne x (C1^C2)). */
|
4410 |
|
|
if ((code == EQ || code == NE)
|
4411 |
|
|
&& op0code == XOR
|
4412 |
|
|
&& (CONST_INT_P (op1)
|
4413 |
|
|
|| GET_CODE (op1) == CONST_DOUBLE)
|
4414 |
|
|
&& (CONST_INT_P (XEXP (op0, 1))
|
4415 |
|
|
|| GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE))
|
4416 |
|
|
return simplify_gen_relational (code, mode, cmp_mode, XEXP (op0, 0),
|
4417 |
|
|
simplify_gen_binary (XOR, cmp_mode,
|
4418 |
|
|
XEXP (op0, 1), op1));
|
4419 |
|
|
|
4420 |
|
|
if (op0code == POPCOUNT && op1 == const0_rtx)
|
4421 |
|
|
switch (code)
|
4422 |
|
|
{
|
4423 |
|
|
case EQ:
|
4424 |
|
|
case LE:
|
4425 |
|
|
case LEU:
|
4426 |
|
|
/* (eq (popcount x) (const_int 0)) -> (eq x (const_int 0)). */
|
4427 |
|
|
return simplify_gen_relational (EQ, mode, GET_MODE (XEXP (op0, 0)),
|
4428 |
|
|
XEXP (op0, 0), const0_rtx);
|
4429 |
|
|
|
4430 |
|
|
case NE:
|
4431 |
|
|
case GT:
|
4432 |
|
|
case GTU:
|
4433 |
|
|
/* (ne (popcount x) (const_int 0)) -> (ne x (const_int 0)). */
|
4434 |
|
|
return simplify_gen_relational (NE, mode, GET_MODE (XEXP (op0, 0)),
|
4435 |
|
|
XEXP (op0, 0), const0_rtx);
|
4436 |
|
|
|
4437 |
|
|
default:
|
4438 |
|
|
break;
|
4439 |
|
|
}
|
4440 |
|
|
|
4441 |
|
|
return NULL_RTX;
|
4442 |
|
|
}
|
4443 |
|
|
|
4444 |
|
|
enum
|
4445 |
|
|
{
|
4446 |
|
|
CMP_EQ = 1,
|
4447 |
|
|
CMP_LT = 2,
|
4448 |
|
|
CMP_GT = 4,
|
4449 |
|
|
CMP_LTU = 8,
|
4450 |
|
|
CMP_GTU = 16
|
4451 |
|
|
};
|
4452 |
|
|
|
4453 |
|
|
|
4454 |
|
|
/* Convert the known results for EQ, LT, GT, LTU, GTU contained in
|
4455 |
|
|
KNOWN_RESULT to a CONST_INT, based on the requested comparison CODE
|
4456 |
|
|
For KNOWN_RESULT to make sense it should be either CMP_EQ, or the
|
4457 |
|
|
logical OR of one of (CMP_LT, CMP_GT) and one of (CMP_LTU, CMP_GTU).
|
4458 |
|
|
For floating-point comparisons, assume that the operands were ordered. */
|
4459 |
|
|
|
4460 |
|
|
static rtx
|
4461 |
|
|
comparison_result (enum rtx_code code, int known_results)
|
4462 |
|
|
{
|
4463 |
|
|
switch (code)
|
4464 |
|
|
{
|
4465 |
|
|
case EQ:
|
4466 |
|
|
case UNEQ:
|
4467 |
|
|
return (known_results & CMP_EQ) ? const_true_rtx : const0_rtx;
|
4468 |
|
|
case NE:
|
4469 |
|
|
case LTGT:
|
4470 |
|
|
return (known_results & CMP_EQ) ? const0_rtx : const_true_rtx;
|
4471 |
|
|
|
4472 |
|
|
case LT:
|
4473 |
|
|
case UNLT:
|
4474 |
|
|
return (known_results & CMP_LT) ? const_true_rtx : const0_rtx;
|
4475 |
|
|
case GE:
|
4476 |
|
|
case UNGE:
|
4477 |
|
|
return (known_results & CMP_LT) ? const0_rtx : const_true_rtx;
|
4478 |
|
|
|
4479 |
|
|
case GT:
|
4480 |
|
|
case UNGT:
|
4481 |
|
|
return (known_results & CMP_GT) ? const_true_rtx : const0_rtx;
|
4482 |
|
|
case LE:
|
4483 |
|
|
case UNLE:
|
4484 |
|
|
return (known_results & CMP_GT) ? const0_rtx : const_true_rtx;
|
4485 |
|
|
|
4486 |
|
|
case LTU:
|
4487 |
|
|
return (known_results & CMP_LTU) ? const_true_rtx : const0_rtx;
|
4488 |
|
|
case GEU:
|
4489 |
|
|
return (known_results & CMP_LTU) ? const0_rtx : const_true_rtx;
|
4490 |
|
|
|
4491 |
|
|
case GTU:
|
4492 |
|
|
return (known_results & CMP_GTU) ? const_true_rtx : const0_rtx;
|
4493 |
|
|
case LEU:
|
4494 |
|
|
return (known_results & CMP_GTU) ? const0_rtx : const_true_rtx;
|
4495 |
|
|
|
4496 |
|
|
case ORDERED:
|
4497 |
|
|
return const_true_rtx;
|
4498 |
|
|
case UNORDERED:
|
4499 |
|
|
return const0_rtx;
|
4500 |
|
|
default:
|
4501 |
|
|
gcc_unreachable ();
|
4502 |
|
|
}
|
4503 |
|
|
}
|
4504 |
|
|
|
4505 |
|
|
/* Check if the given comparison (done in the given MODE) is actually a
|
4506 |
|
|
tautology or a contradiction.
|
4507 |
|
|
If no simplification is possible, this function returns zero.
|
4508 |
|
|
Otherwise, it returns either const_true_rtx or const0_rtx. */
|
4509 |
|
|
|
4510 |
|
|
rtx
|
4511 |
|
|
simplify_const_relational_operation (enum rtx_code code,
|
4512 |
|
|
enum machine_mode mode,
|
4513 |
|
|
rtx op0, rtx op1)
|
4514 |
|
|
{
|
4515 |
|
|
rtx tem;
|
4516 |
|
|
rtx trueop0;
|
4517 |
|
|
rtx trueop1;
|
4518 |
|
|
|
4519 |
|
|
gcc_assert (mode != VOIDmode
|
4520 |
|
|
|| (GET_MODE (op0) == VOIDmode
|
4521 |
|
|
&& GET_MODE (op1) == VOIDmode));
|
4522 |
|
|
|
4523 |
|
|
/* If op0 is a compare, extract the comparison arguments from it. */
|
4524 |
|
|
if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
|
4525 |
|
|
{
|
4526 |
|
|
op1 = XEXP (op0, 1);
|
4527 |
|
|
op0 = XEXP (op0, 0);
|
4528 |
|
|
|
4529 |
|
|
if (GET_MODE (op0) != VOIDmode)
|
4530 |
|
|
mode = GET_MODE (op0);
|
4531 |
|
|
else if (GET_MODE (op1) != VOIDmode)
|
4532 |
|
|
mode = GET_MODE (op1);
|
4533 |
|
|
else
|
4534 |
|
|
return 0;
|
4535 |
|
|
}
|
4536 |
|
|
|
4537 |
|
|
/* We can't simplify MODE_CC values since we don't know what the
|
4538 |
|
|
actual comparison is. */
|
4539 |
|
|
if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC || CC0_P (op0))
|
4540 |
|
|
return 0;
|
4541 |
|
|
|
4542 |
|
|
/* Make sure the constant is second. */
|
4543 |
|
|
if (swap_commutative_operands_p (op0, op1))
|
4544 |
|
|
{
|
4545 |
|
|
tem = op0, op0 = op1, op1 = tem;
|
4546 |
|
|
code = swap_condition (code);
|
4547 |
|
|
}
|
4548 |
|
|
|
4549 |
|
|
trueop0 = avoid_constant_pool_reference (op0);
|
4550 |
|
|
trueop1 = avoid_constant_pool_reference (op1);
|
4551 |
|
|
|
4552 |
|
|
/* For integer comparisons of A and B maybe we can simplify A - B and can
|
4553 |
|
|
then simplify a comparison of that with zero. If A and B are both either
|
4554 |
|
|
a register or a CONST_INT, this can't help; testing for these cases will
|
4555 |
|
|
prevent infinite recursion here and speed things up.
|
4556 |
|
|
|
4557 |
|
|
We can only do this for EQ and NE comparisons as otherwise we may
|
4558 |
|
|
lose or introduce overflow which we cannot disregard as undefined as
|
4559 |
|
|
we do not know the signedness of the operation on either the left or
|
4560 |
|
|
the right hand side of the comparison. */
|
4561 |
|
|
|
4562 |
|
|
if (INTEGRAL_MODE_P (mode) && trueop1 != const0_rtx
|
4563 |
|
|
&& (code == EQ || code == NE)
|
4564 |
|
|
&& ! ((REG_P (op0) || CONST_INT_P (trueop0))
|
4565 |
|
|
&& (REG_P (op1) || CONST_INT_P (trueop1)))
|
4566 |
|
|
&& 0 != (tem = simplify_binary_operation (MINUS, mode, op0, op1))
|
4567 |
|
|
/* We cannot do this if tem is a nonzero address. */
|
4568 |
|
|
&& ! nonzero_address_p (tem))
|
4569 |
|
|
return simplify_const_relational_operation (signed_condition (code),
|
4570 |
|
|
mode, tem, const0_rtx);
|
4571 |
|
|
|
4572 |
|
|
if (! HONOR_NANS (mode) && code == ORDERED)
|
4573 |
|
|
return const_true_rtx;
|
4574 |
|
|
|
4575 |
|
|
if (! HONOR_NANS (mode) && code == UNORDERED)
|
4576 |
|
|
return const0_rtx;
|
4577 |
|
|
|
4578 |
|
|
/* For modes without NaNs, if the two operands are equal, we know the
|
4579 |
|
|
result except if they have side-effects. Even with NaNs we know
|
4580 |
|
|
the result of unordered comparisons and, if signaling NaNs are
|
4581 |
|
|
irrelevant, also the result of LT/GT/LTGT. */
|
4582 |
|
|
if ((! HONOR_NANS (GET_MODE (trueop0))
|
4583 |
|
|
|| code == UNEQ || code == UNLE || code == UNGE
|
4584 |
|
|
|| ((code == LT || code == GT || code == LTGT)
|
4585 |
|
|
&& ! HONOR_SNANS (GET_MODE (trueop0))))
|
4586 |
|
|
&& rtx_equal_p (trueop0, trueop1)
|
4587 |
|
|
&& ! side_effects_p (trueop0))
|
4588 |
|
|
return comparison_result (code, CMP_EQ);
|
4589 |
|
|
|
4590 |
|
|
/* If the operands are floating-point constants, see if we can fold
|
4591 |
|
|
the result. */
|
4592 |
|
|
if (GET_CODE (trueop0) == CONST_DOUBLE
|
4593 |
|
|
&& GET_CODE (trueop1) == CONST_DOUBLE
|
4594 |
|
|
&& SCALAR_FLOAT_MODE_P (GET_MODE (trueop0)))
|
4595 |
|
|
{
|
4596 |
|
|
REAL_VALUE_TYPE d0, d1;
|
4597 |
|
|
|
4598 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (d0, trueop0);
|
4599 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (d1, trueop1);
|
4600 |
|
|
|
4601 |
|
|
/* Comparisons are unordered iff at least one of the values is NaN. */
|
4602 |
|
|
if (REAL_VALUE_ISNAN (d0) || REAL_VALUE_ISNAN (d1))
|
4603 |
|
|
switch (code)
|
4604 |
|
|
{
|
4605 |
|
|
case UNEQ:
|
4606 |
|
|
case UNLT:
|
4607 |
|
|
case UNGT:
|
4608 |
|
|
case UNLE:
|
4609 |
|
|
case UNGE:
|
4610 |
|
|
case NE:
|
4611 |
|
|
case UNORDERED:
|
4612 |
|
|
return const_true_rtx;
|
4613 |
|
|
case EQ:
|
4614 |
|
|
case LT:
|
4615 |
|
|
case GT:
|
4616 |
|
|
case LE:
|
4617 |
|
|
case GE:
|
4618 |
|
|
case LTGT:
|
4619 |
|
|
case ORDERED:
|
4620 |
|
|
return const0_rtx;
|
4621 |
|
|
default:
|
4622 |
|
|
return 0;
|
4623 |
|
|
}
|
4624 |
|
|
|
4625 |
|
|
return comparison_result (code,
|
4626 |
|
|
(REAL_VALUES_EQUAL (d0, d1) ? CMP_EQ :
|
4627 |
|
|
REAL_VALUES_LESS (d0, d1) ? CMP_LT : CMP_GT));
|
4628 |
|
|
}
|
4629 |
|
|
|
4630 |
|
|
/* Otherwise, see if the operands are both integers. */
|
4631 |
|
|
if ((GET_MODE_CLASS (mode) == MODE_INT || mode == VOIDmode)
|
4632 |
|
|
&& (GET_CODE (trueop0) == CONST_DOUBLE
|
4633 |
|
|
|| CONST_INT_P (trueop0))
|
4634 |
|
|
&& (GET_CODE (trueop1) == CONST_DOUBLE
|
4635 |
|
|
|| CONST_INT_P (trueop1)))
|
4636 |
|
|
{
|
4637 |
|
|
int width = GET_MODE_PRECISION (mode);
|
4638 |
|
|
HOST_WIDE_INT l0s, h0s, l1s, h1s;
|
4639 |
|
|
unsigned HOST_WIDE_INT l0u, h0u, l1u, h1u;
|
4640 |
|
|
|
4641 |
|
|
/* Get the two words comprising each integer constant. */
|
4642 |
|
|
if (GET_CODE (trueop0) == CONST_DOUBLE)
|
4643 |
|
|
{
|
4644 |
|
|
l0u = l0s = CONST_DOUBLE_LOW (trueop0);
|
4645 |
|
|
h0u = h0s = CONST_DOUBLE_HIGH (trueop0);
|
4646 |
|
|
}
|
4647 |
|
|
else
|
4648 |
|
|
{
|
4649 |
|
|
l0u = l0s = INTVAL (trueop0);
|
4650 |
|
|
h0u = h0s = HWI_SIGN_EXTEND (l0s);
|
4651 |
|
|
}
|
4652 |
|
|
|
4653 |
|
|
if (GET_CODE (trueop1) == CONST_DOUBLE)
|
4654 |
|
|
{
|
4655 |
|
|
l1u = l1s = CONST_DOUBLE_LOW (trueop1);
|
4656 |
|
|
h1u = h1s = CONST_DOUBLE_HIGH (trueop1);
|
4657 |
|
|
}
|
4658 |
|
|
else
|
4659 |
|
|
{
|
4660 |
|
|
l1u = l1s = INTVAL (trueop1);
|
4661 |
|
|
h1u = h1s = HWI_SIGN_EXTEND (l1s);
|
4662 |
|
|
}
|
4663 |
|
|
|
4664 |
|
|
/* If WIDTH is nonzero and smaller than HOST_BITS_PER_WIDE_INT,
|
4665 |
|
|
we have to sign or zero-extend the values. */
|
4666 |
|
|
if (width != 0 && width < HOST_BITS_PER_WIDE_INT)
|
4667 |
|
|
{
|
4668 |
|
|
l0u &= GET_MODE_MASK (mode);
|
4669 |
|
|
l1u &= GET_MODE_MASK (mode);
|
4670 |
|
|
|
4671 |
|
|
if (val_signbit_known_set_p (mode, l0s))
|
4672 |
|
|
l0s |= ~GET_MODE_MASK (mode);
|
4673 |
|
|
|
4674 |
|
|
if (val_signbit_known_set_p (mode, l1s))
|
4675 |
|
|
l1s |= ~GET_MODE_MASK (mode);
|
4676 |
|
|
}
|
4677 |
|
|
if (width != 0 && width <= HOST_BITS_PER_WIDE_INT)
|
4678 |
|
|
h0u = h1u = 0, h0s = HWI_SIGN_EXTEND (l0s), h1s = HWI_SIGN_EXTEND (l1s);
|
4679 |
|
|
|
4680 |
|
|
if (h0u == h1u && l0u == l1u)
|
4681 |
|
|
return comparison_result (code, CMP_EQ);
|
4682 |
|
|
else
|
4683 |
|
|
{
|
4684 |
|
|
int cr;
|
4685 |
|
|
cr = (h0s < h1s || (h0s == h1s && l0u < l1u)) ? CMP_LT : CMP_GT;
|
4686 |
|
|
cr |= (h0u < h1u || (h0u == h1u && l0u < l1u)) ? CMP_LTU : CMP_GTU;
|
4687 |
|
|
return comparison_result (code, cr);
|
4688 |
|
|
}
|
4689 |
|
|
}
|
4690 |
|
|
|
4691 |
|
|
/* Optimize comparisons with upper and lower bounds. */
|
4692 |
|
|
if (HWI_COMPUTABLE_MODE_P (mode)
|
4693 |
|
|
&& CONST_INT_P (trueop1))
|
4694 |
|
|
{
|
4695 |
|
|
int sign;
|
4696 |
|
|
unsigned HOST_WIDE_INT nonzero = nonzero_bits (trueop0, mode);
|
4697 |
|
|
HOST_WIDE_INT val = INTVAL (trueop1);
|
4698 |
|
|
HOST_WIDE_INT mmin, mmax;
|
4699 |
|
|
|
4700 |
|
|
if (code == GEU
|
4701 |
|
|
|| code == LEU
|
4702 |
|
|
|| code == GTU
|
4703 |
|
|
|| code == LTU)
|
4704 |
|
|
sign = 0;
|
4705 |
|
|
else
|
4706 |
|
|
sign = 1;
|
4707 |
|
|
|
4708 |
|
|
/* Get a reduced range if the sign bit is zero. */
|
4709 |
|
|
if (nonzero <= (GET_MODE_MASK (mode) >> 1))
|
4710 |
|
|
{
|
4711 |
|
|
mmin = 0;
|
4712 |
|
|
mmax = nonzero;
|
4713 |
|
|
}
|
4714 |
|
|
else
|
4715 |
|
|
{
|
4716 |
|
|
rtx mmin_rtx, mmax_rtx;
|
4717 |
|
|
get_mode_bounds (mode, sign, mode, &mmin_rtx, &mmax_rtx);
|
4718 |
|
|
|
4719 |
|
|
mmin = INTVAL (mmin_rtx);
|
4720 |
|
|
mmax = INTVAL (mmax_rtx);
|
4721 |
|
|
if (sign)
|
4722 |
|
|
{
|
4723 |
|
|
unsigned int sign_copies = num_sign_bit_copies (trueop0, mode);
|
4724 |
|
|
|
4725 |
|
|
mmin >>= (sign_copies - 1);
|
4726 |
|
|
mmax >>= (sign_copies - 1);
|
4727 |
|
|
}
|
4728 |
|
|
}
|
4729 |
|
|
|
4730 |
|
|
switch (code)
|
4731 |
|
|
{
|
4732 |
|
|
/* x >= y is always true for y <= mmin, always false for y > mmax. */
|
4733 |
|
|
case GEU:
|
4734 |
|
|
if ((unsigned HOST_WIDE_INT) val <= (unsigned HOST_WIDE_INT) mmin)
|
4735 |
|
|
return const_true_rtx;
|
4736 |
|
|
if ((unsigned HOST_WIDE_INT) val > (unsigned HOST_WIDE_INT) mmax)
|
4737 |
|
|
return const0_rtx;
|
4738 |
|
|
break;
|
4739 |
|
|
case GE:
|
4740 |
|
|
if (val <= mmin)
|
4741 |
|
|
return const_true_rtx;
|
4742 |
|
|
if (val > mmax)
|
4743 |
|
|
return const0_rtx;
|
4744 |
|
|
break;
|
4745 |
|
|
|
4746 |
|
|
/* x <= y is always true for y >= mmax, always false for y < mmin. */
|
4747 |
|
|
case LEU:
|
4748 |
|
|
if ((unsigned HOST_WIDE_INT) val >= (unsigned HOST_WIDE_INT) mmax)
|
4749 |
|
|
return const_true_rtx;
|
4750 |
|
|
if ((unsigned HOST_WIDE_INT) val < (unsigned HOST_WIDE_INT) mmin)
|
4751 |
|
|
return const0_rtx;
|
4752 |
|
|
break;
|
4753 |
|
|
case LE:
|
4754 |
|
|
if (val >= mmax)
|
4755 |
|
|
return const_true_rtx;
|
4756 |
|
|
if (val < mmin)
|
4757 |
|
|
return const0_rtx;
|
4758 |
|
|
break;
|
4759 |
|
|
|
4760 |
|
|
case EQ:
|
4761 |
|
|
/* x == y is always false for y out of range. */
|
4762 |
|
|
if (val < mmin || val > mmax)
|
4763 |
|
|
return const0_rtx;
|
4764 |
|
|
break;
|
4765 |
|
|
|
4766 |
|
|
/* x > y is always false for y >= mmax, always true for y < mmin. */
|
4767 |
|
|
case GTU:
|
4768 |
|
|
if ((unsigned HOST_WIDE_INT) val >= (unsigned HOST_WIDE_INT) mmax)
|
4769 |
|
|
return const0_rtx;
|
4770 |
|
|
if ((unsigned HOST_WIDE_INT) val < (unsigned HOST_WIDE_INT) mmin)
|
4771 |
|
|
return const_true_rtx;
|
4772 |
|
|
break;
|
4773 |
|
|
case GT:
|
4774 |
|
|
if (val >= mmax)
|
4775 |
|
|
return const0_rtx;
|
4776 |
|
|
if (val < mmin)
|
4777 |
|
|
return const_true_rtx;
|
4778 |
|
|
break;
|
4779 |
|
|
|
4780 |
|
|
/* x < y is always false for y <= mmin, always true for y > mmax. */
|
4781 |
|
|
case LTU:
|
4782 |
|
|
if ((unsigned HOST_WIDE_INT) val <= (unsigned HOST_WIDE_INT) mmin)
|
4783 |
|
|
return const0_rtx;
|
4784 |
|
|
if ((unsigned HOST_WIDE_INT) val > (unsigned HOST_WIDE_INT) mmax)
|
4785 |
|
|
return const_true_rtx;
|
4786 |
|
|
break;
|
4787 |
|
|
case LT:
|
4788 |
|
|
if (val <= mmin)
|
4789 |
|
|
return const0_rtx;
|
4790 |
|
|
if (val > mmax)
|
4791 |
|
|
return const_true_rtx;
|
4792 |
|
|
break;
|
4793 |
|
|
|
4794 |
|
|
case NE:
|
4795 |
|
|
/* x != y is always true for y out of range. */
|
4796 |
|
|
if (val < mmin || val > mmax)
|
4797 |
|
|
return const_true_rtx;
|
4798 |
|
|
break;
|
4799 |
|
|
|
4800 |
|
|
default:
|
4801 |
|
|
break;
|
4802 |
|
|
}
|
4803 |
|
|
}
|
4804 |
|
|
|
4805 |
|
|
/* Optimize integer comparisons with zero. */
|
4806 |
|
|
if (trueop1 == const0_rtx)
|
4807 |
|
|
{
|
4808 |
|
|
/* Some addresses are known to be nonzero. We don't know
|
4809 |
|
|
their sign, but equality comparisons are known. */
|
4810 |
|
|
if (nonzero_address_p (trueop0))
|
4811 |
|
|
{
|
4812 |
|
|
if (code == EQ || code == LEU)
|
4813 |
|
|
return const0_rtx;
|
4814 |
|
|
if (code == NE || code == GTU)
|
4815 |
|
|
return const_true_rtx;
|
4816 |
|
|
}
|
4817 |
|
|
|
4818 |
|
|
/* See if the first operand is an IOR with a constant. If so, we
|
4819 |
|
|
may be able to determine the result of this comparison. */
|
4820 |
|
|
if (GET_CODE (op0) == IOR)
|
4821 |
|
|
{
|
4822 |
|
|
rtx inner_const = avoid_constant_pool_reference (XEXP (op0, 1));
|
4823 |
|
|
if (CONST_INT_P (inner_const) && inner_const != const0_rtx)
|
4824 |
|
|
{
|
4825 |
|
|
int sign_bitnum = GET_MODE_PRECISION (mode) - 1;
|
4826 |
|
|
int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
|
4827 |
|
|
&& (UINTVAL (inner_const)
|
4828 |
|
|
& ((unsigned HOST_WIDE_INT) 1
|
4829 |
|
|
<< sign_bitnum)));
|
4830 |
|
|
|
4831 |
|
|
switch (code)
|
4832 |
|
|
{
|
4833 |
|
|
case EQ:
|
4834 |
|
|
case LEU:
|
4835 |
|
|
return const0_rtx;
|
4836 |
|
|
case NE:
|
4837 |
|
|
case GTU:
|
4838 |
|
|
return const_true_rtx;
|
4839 |
|
|
case LT:
|
4840 |
|
|
case LE:
|
4841 |
|
|
if (has_sign)
|
4842 |
|
|
return const_true_rtx;
|
4843 |
|
|
break;
|
4844 |
|
|
case GT:
|
4845 |
|
|
case GE:
|
4846 |
|
|
if (has_sign)
|
4847 |
|
|
return const0_rtx;
|
4848 |
|
|
break;
|
4849 |
|
|
default:
|
4850 |
|
|
break;
|
4851 |
|
|
}
|
4852 |
|
|
}
|
4853 |
|
|
}
|
4854 |
|
|
}
|
4855 |
|
|
|
4856 |
|
|
/* Optimize comparison of ABS with zero. */
|
4857 |
|
|
if (trueop1 == CONST0_RTX (mode)
|
4858 |
|
|
&& (GET_CODE (trueop0) == ABS
|
4859 |
|
|
|| (GET_CODE (trueop0) == FLOAT_EXTEND
|
4860 |
|
|
&& GET_CODE (XEXP (trueop0, 0)) == ABS)))
|
4861 |
|
|
{
|
4862 |
|
|
switch (code)
|
4863 |
|
|
{
|
4864 |
|
|
case LT:
|
4865 |
|
|
/* Optimize abs(x) < 0.0. */
|
4866 |
|
|
if (!HONOR_SNANS (mode)
|
4867 |
|
|
&& (!INTEGRAL_MODE_P (mode)
|
4868 |
|
|
|| (!flag_wrapv && !flag_trapv && flag_strict_overflow)))
|
4869 |
|
|
{
|
4870 |
|
|
if (INTEGRAL_MODE_P (mode)
|
4871 |
|
|
&& (issue_strict_overflow_warning
|
4872 |
|
|
(WARN_STRICT_OVERFLOW_CONDITIONAL)))
|
4873 |
|
|
warning (OPT_Wstrict_overflow,
|
4874 |
|
|
("assuming signed overflow does not occur when "
|
4875 |
|
|
"assuming abs (x) < 0 is false"));
|
4876 |
|
|
return const0_rtx;
|
4877 |
|
|
}
|
4878 |
|
|
break;
|
4879 |
|
|
|
4880 |
|
|
case GE:
|
4881 |
|
|
/* Optimize abs(x) >= 0.0. */
|
4882 |
|
|
if (!HONOR_NANS (mode)
|
4883 |
|
|
&& (!INTEGRAL_MODE_P (mode)
|
4884 |
|
|
|| (!flag_wrapv && !flag_trapv && flag_strict_overflow)))
|
4885 |
|
|
{
|
4886 |
|
|
if (INTEGRAL_MODE_P (mode)
|
4887 |
|
|
&& (issue_strict_overflow_warning
|
4888 |
|
|
(WARN_STRICT_OVERFLOW_CONDITIONAL)))
|
4889 |
|
|
warning (OPT_Wstrict_overflow,
|
4890 |
|
|
("assuming signed overflow does not occur when "
|
4891 |
|
|
"assuming abs (x) >= 0 is true"));
|
4892 |
|
|
return const_true_rtx;
|
4893 |
|
|
}
|
4894 |
|
|
break;
|
4895 |
|
|
|
4896 |
|
|
case UNGE:
|
4897 |
|
|
/* Optimize ! (abs(x) < 0.0). */
|
4898 |
|
|
return const_true_rtx;
|
4899 |
|
|
|
4900 |
|
|
default:
|
4901 |
|
|
break;
|
4902 |
|
|
}
|
4903 |
|
|
}
|
4904 |
|
|
|
4905 |
|
|
return 0;
|
4906 |
|
|
}
|
4907 |
|
|
|
4908 |
|
|
/* Simplify CODE, an operation with result mode MODE and three operands,
|
4909 |
|
|
OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
|
4910 |
|
|
a constant. Return 0 if no simplifications is possible. */
|
4911 |
|
|
|
4912 |
|
|
rtx
|
4913 |
|
|
simplify_ternary_operation (enum rtx_code code, enum machine_mode mode,
|
4914 |
|
|
enum machine_mode op0_mode, rtx op0, rtx op1,
|
4915 |
|
|
rtx op2)
|
4916 |
|
|
{
|
4917 |
|
|
unsigned int width = GET_MODE_PRECISION (mode);
|
4918 |
|
|
bool any_change = false;
|
4919 |
|
|
rtx tem;
|
4920 |
|
|
|
4921 |
|
|
/* VOIDmode means "infinite" precision. */
|
4922 |
|
|
if (width == 0)
|
4923 |
|
|
width = HOST_BITS_PER_WIDE_INT;
|
4924 |
|
|
|
4925 |
|
|
switch (code)
|
4926 |
|
|
{
|
4927 |
|
|
case FMA:
|
4928 |
|
|
/* Simplify negations around the multiplication. */
|
4929 |
|
|
/* -a * -b + c => a * b + c. */
|
4930 |
|
|
if (GET_CODE (op0) == NEG)
|
4931 |
|
|
{
|
4932 |
|
|
tem = simplify_unary_operation (NEG, mode, op1, mode);
|
4933 |
|
|
if (tem)
|
4934 |
|
|
op1 = tem, op0 = XEXP (op0, 0), any_change = true;
|
4935 |
|
|
}
|
4936 |
|
|
else if (GET_CODE (op1) == NEG)
|
4937 |
|
|
{
|
4938 |
|
|
tem = simplify_unary_operation (NEG, mode, op0, mode);
|
4939 |
|
|
if (tem)
|
4940 |
|
|
op0 = tem, op1 = XEXP (op1, 0), any_change = true;
|
4941 |
|
|
}
|
4942 |
|
|
|
4943 |
|
|
/* Canonicalize the two multiplication operands. */
|
4944 |
|
|
/* a * -b + c => -b * a + c. */
|
4945 |
|
|
if (swap_commutative_operands_p (op0, op1))
|
4946 |
|
|
tem = op0, op0 = op1, op1 = tem, any_change = true;
|
4947 |
|
|
|
4948 |
|
|
if (any_change)
|
4949 |
|
|
return gen_rtx_FMA (mode, op0, op1, op2);
|
4950 |
|
|
return NULL_RTX;
|
4951 |
|
|
|
4952 |
|
|
case SIGN_EXTRACT:
|
4953 |
|
|
case ZERO_EXTRACT:
|
4954 |
|
|
if (CONST_INT_P (op0)
|
4955 |
|
|
&& CONST_INT_P (op1)
|
4956 |
|
|
&& CONST_INT_P (op2)
|
4957 |
|
|
&& ((unsigned) INTVAL (op1) + (unsigned) INTVAL (op2) <= width)
|
4958 |
|
|
&& width <= (unsigned) HOST_BITS_PER_WIDE_INT)
|
4959 |
|
|
{
|
4960 |
|
|
/* Extracting a bit-field from a constant */
|
4961 |
|
|
unsigned HOST_WIDE_INT val = UINTVAL (op0);
|
4962 |
|
|
HOST_WIDE_INT op1val = INTVAL (op1);
|
4963 |
|
|
HOST_WIDE_INT op2val = INTVAL (op2);
|
4964 |
|
|
if (BITS_BIG_ENDIAN)
|
4965 |
|
|
val >>= GET_MODE_PRECISION (op0_mode) - op2val - op1val;
|
4966 |
|
|
else
|
4967 |
|
|
val >>= op2val;
|
4968 |
|
|
|
4969 |
|
|
if (HOST_BITS_PER_WIDE_INT != op1val)
|
4970 |
|
|
{
|
4971 |
|
|
/* First zero-extend. */
|
4972 |
|
|
val &= ((unsigned HOST_WIDE_INT) 1 << op1val) - 1;
|
4973 |
|
|
/* If desired, propagate sign bit. */
|
4974 |
|
|
if (code == SIGN_EXTRACT
|
4975 |
|
|
&& (val & ((unsigned HOST_WIDE_INT) 1 << (op1val - 1)))
|
4976 |
|
|
!= 0)
|
4977 |
|
|
val |= ~ (((unsigned HOST_WIDE_INT) 1 << op1val) - 1);
|
4978 |
|
|
}
|
4979 |
|
|
|
4980 |
|
|
return gen_int_mode (val, mode);
|
4981 |
|
|
}
|
4982 |
|
|
break;
|
4983 |
|
|
|
4984 |
|
|
case IF_THEN_ELSE:
|
4985 |
|
|
if (CONST_INT_P (op0))
|
4986 |
|
|
return op0 != const0_rtx ? op1 : op2;
|
4987 |
|
|
|
4988 |
|
|
/* Convert c ? a : a into "a". */
|
4989 |
|
|
if (rtx_equal_p (op1, op2) && ! side_effects_p (op0))
|
4990 |
|
|
return op1;
|
4991 |
|
|
|
4992 |
|
|
/* Convert a != b ? a : b into "a". */
|
4993 |
|
|
if (GET_CODE (op0) == NE
|
4994 |
|
|
&& ! side_effects_p (op0)
|
4995 |
|
|
&& ! HONOR_NANS (mode)
|
4996 |
|
|
&& ! HONOR_SIGNED_ZEROS (mode)
|
4997 |
|
|
&& ((rtx_equal_p (XEXP (op0, 0), op1)
|
4998 |
|
|
&& rtx_equal_p (XEXP (op0, 1), op2))
|
4999 |
|
|
|| (rtx_equal_p (XEXP (op0, 0), op2)
|
5000 |
|
|
&& rtx_equal_p (XEXP (op0, 1), op1))))
|
5001 |
|
|
return op1;
|
5002 |
|
|
|
5003 |
|
|
/* Convert a == b ? a : b into "b". */
|
5004 |
|
|
if (GET_CODE (op0) == EQ
|
5005 |
|
|
&& ! side_effects_p (op0)
|
5006 |
|
|
&& ! HONOR_NANS (mode)
|
5007 |
|
|
&& ! HONOR_SIGNED_ZEROS (mode)
|
5008 |
|
|
&& ((rtx_equal_p (XEXP (op0, 0), op1)
|
5009 |
|
|
&& rtx_equal_p (XEXP (op0, 1), op2))
|
5010 |
|
|
|| (rtx_equal_p (XEXP (op0, 0), op2)
|
5011 |
|
|
&& rtx_equal_p (XEXP (op0, 1), op1))))
|
5012 |
|
|
return op2;
|
5013 |
|
|
|
5014 |
|
|
if (COMPARISON_P (op0) && ! side_effects_p (op0))
|
5015 |
|
|
{
|
5016 |
|
|
enum machine_mode cmp_mode = (GET_MODE (XEXP (op0, 0)) == VOIDmode
|
5017 |
|
|
? GET_MODE (XEXP (op0, 1))
|
5018 |
|
|
: GET_MODE (XEXP (op0, 0)));
|
5019 |
|
|
rtx temp;
|
5020 |
|
|
|
5021 |
|
|
/* Look for happy constants in op1 and op2. */
|
5022 |
|
|
if (CONST_INT_P (op1) && CONST_INT_P (op2))
|
5023 |
|
|
{
|
5024 |
|
|
HOST_WIDE_INT t = INTVAL (op1);
|
5025 |
|
|
HOST_WIDE_INT f = INTVAL (op2);
|
5026 |
|
|
|
5027 |
|
|
if (t == STORE_FLAG_VALUE && f == 0)
|
5028 |
|
|
code = GET_CODE (op0);
|
5029 |
|
|
else if (t == 0 && f == STORE_FLAG_VALUE)
|
5030 |
|
|
{
|
5031 |
|
|
enum rtx_code tmp;
|
5032 |
|
|
tmp = reversed_comparison_code (op0, NULL_RTX);
|
5033 |
|
|
if (tmp == UNKNOWN)
|
5034 |
|
|
break;
|
5035 |
|
|
code = tmp;
|
5036 |
|
|
}
|
5037 |
|
|
else
|
5038 |
|
|
break;
|
5039 |
|
|
|
5040 |
|
|
return simplify_gen_relational (code, mode, cmp_mode,
|
5041 |
|
|
XEXP (op0, 0), XEXP (op0, 1));
|
5042 |
|
|
}
|
5043 |
|
|
|
5044 |
|
|
if (cmp_mode == VOIDmode)
|
5045 |
|
|
cmp_mode = op0_mode;
|
5046 |
|
|
temp = simplify_relational_operation (GET_CODE (op0), op0_mode,
|
5047 |
|
|
cmp_mode, XEXP (op0, 0),
|
5048 |
|
|
XEXP (op0, 1));
|
5049 |
|
|
|
5050 |
|
|
/* See if any simplifications were possible. */
|
5051 |
|
|
if (temp)
|
5052 |
|
|
{
|
5053 |
|
|
if (CONST_INT_P (temp))
|
5054 |
|
|
return temp == const0_rtx ? op2 : op1;
|
5055 |
|
|
else if (temp)
|
5056 |
|
|
return gen_rtx_IF_THEN_ELSE (mode, temp, op1, op2);
|
5057 |
|
|
}
|
5058 |
|
|
}
|
5059 |
|
|
break;
|
5060 |
|
|
|
5061 |
|
|
case VEC_MERGE:
|
5062 |
|
|
gcc_assert (GET_MODE (op0) == mode);
|
5063 |
|
|
gcc_assert (GET_MODE (op1) == mode);
|
5064 |
|
|
gcc_assert (VECTOR_MODE_P (mode));
|
5065 |
|
|
op2 = avoid_constant_pool_reference (op2);
|
5066 |
|
|
if (CONST_INT_P (op2))
|
5067 |
|
|
{
|
5068 |
|
|
int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
|
5069 |
|
|
unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
|
5070 |
|
|
int mask = (1 << n_elts) - 1;
|
5071 |
|
|
|
5072 |
|
|
if (!(INTVAL (op2) & mask))
|
5073 |
|
|
return op1;
|
5074 |
|
|
if ((INTVAL (op2) & mask) == mask)
|
5075 |
|
|
return op0;
|
5076 |
|
|
|
5077 |
|
|
op0 = avoid_constant_pool_reference (op0);
|
5078 |
|
|
op1 = avoid_constant_pool_reference (op1);
|
5079 |
|
|
if (GET_CODE (op0) == CONST_VECTOR
|
5080 |
|
|
&& GET_CODE (op1) == CONST_VECTOR)
|
5081 |
|
|
{
|
5082 |
|
|
rtvec v = rtvec_alloc (n_elts);
|
5083 |
|
|
unsigned int i;
|
5084 |
|
|
|
5085 |
|
|
for (i = 0; i < n_elts; i++)
|
5086 |
|
|
RTVEC_ELT (v, i) = (INTVAL (op2) & (1 << i)
|
5087 |
|
|
? CONST_VECTOR_ELT (op0, i)
|
5088 |
|
|
: CONST_VECTOR_ELT (op1, i));
|
5089 |
|
|
return gen_rtx_CONST_VECTOR (mode, v);
|
5090 |
|
|
}
|
5091 |
|
|
}
|
5092 |
|
|
break;
|
5093 |
|
|
|
5094 |
|
|
default:
|
5095 |
|
|
gcc_unreachable ();
|
5096 |
|
|
}
|
5097 |
|
|
|
5098 |
|
|
return 0;
|
5099 |
|
|
}
|
5100 |
|
|
|
5101 |
|
|
/* Evaluate a SUBREG of a CONST_INT or CONST_DOUBLE or CONST_FIXED
|
5102 |
|
|
or CONST_VECTOR,
|
5103 |
|
|
returning another CONST_INT or CONST_DOUBLE or CONST_FIXED or CONST_VECTOR.
|
5104 |
|
|
|
5105 |
|
|
Works by unpacking OP into a collection of 8-bit values
|
5106 |
|
|
represented as a little-endian array of 'unsigned char', selecting by BYTE,
|
5107 |
|
|
and then repacking them again for OUTERMODE. */
|
5108 |
|
|
|
5109 |
|
|
static rtx
|
5110 |
|
|
simplify_immed_subreg (enum machine_mode outermode, rtx op,
|
5111 |
|
|
enum machine_mode innermode, unsigned int byte)
|
5112 |
|
|
{
|
5113 |
|
|
/* We support up to 512-bit values (for V8DFmode). */
|
5114 |
|
|
enum {
|
5115 |
|
|
max_bitsize = 512,
|
5116 |
|
|
value_bit = 8,
|
5117 |
|
|
value_mask = (1 << value_bit) - 1
|
5118 |
|
|
};
|
5119 |
|
|
unsigned char value[max_bitsize / value_bit];
|
5120 |
|
|
int value_start;
|
5121 |
|
|
int i;
|
5122 |
|
|
int elem;
|
5123 |
|
|
|
5124 |
|
|
int num_elem;
|
5125 |
|
|
rtx * elems;
|
5126 |
|
|
int elem_bitsize;
|
5127 |
|
|
rtx result_s;
|
5128 |
|
|
rtvec result_v = NULL;
|
5129 |
|
|
enum mode_class outer_class;
|
5130 |
|
|
enum machine_mode outer_submode;
|
5131 |
|
|
|
5132 |
|
|
/* Some ports misuse CCmode. */
|
5133 |
|
|
if (GET_MODE_CLASS (outermode) == MODE_CC && CONST_INT_P (op))
|
5134 |
|
|
return op;
|
5135 |
|
|
|
5136 |
|
|
/* We have no way to represent a complex constant at the rtl level. */
|
5137 |
|
|
if (COMPLEX_MODE_P (outermode))
|
5138 |
|
|
return NULL_RTX;
|
5139 |
|
|
|
5140 |
|
|
/* Unpack the value. */
|
5141 |
|
|
|
5142 |
|
|
if (GET_CODE (op) == CONST_VECTOR)
|
5143 |
|
|
{
|
5144 |
|
|
num_elem = CONST_VECTOR_NUNITS (op);
|
5145 |
|
|
elems = &CONST_VECTOR_ELT (op, 0);
|
5146 |
|
|
elem_bitsize = GET_MODE_BITSIZE (GET_MODE_INNER (innermode));
|
5147 |
|
|
}
|
5148 |
|
|
else
|
5149 |
|
|
{
|
5150 |
|
|
num_elem = 1;
|
5151 |
|
|
elems = &op;
|
5152 |
|
|
elem_bitsize = max_bitsize;
|
5153 |
|
|
}
|
5154 |
|
|
/* If this asserts, it is too complicated; reducing value_bit may help. */
|
5155 |
|
|
gcc_assert (BITS_PER_UNIT % value_bit == 0);
|
5156 |
|
|
/* I don't know how to handle endianness of sub-units. */
|
5157 |
|
|
gcc_assert (elem_bitsize % BITS_PER_UNIT == 0);
|
5158 |
|
|
|
5159 |
|
|
for (elem = 0; elem < num_elem; elem++)
|
5160 |
|
|
{
|
5161 |
|
|
unsigned char * vp;
|
5162 |
|
|
rtx el = elems[elem];
|
5163 |
|
|
|
5164 |
|
|
/* Vectors are kept in target memory order. (This is probably
|
5165 |
|
|
a mistake.) */
|
5166 |
|
|
{
|
5167 |
|
|
unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
|
5168 |
|
|
unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
|
5169 |
|
|
/ BITS_PER_UNIT);
|
5170 |
|
|
unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
|
5171 |
|
|
unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
|
5172 |
|
|
unsigned bytele = (subword_byte % UNITS_PER_WORD
|
5173 |
|
|
+ (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
|
5174 |
|
|
vp = value + (bytele * BITS_PER_UNIT) / value_bit;
|
5175 |
|
|
}
|
5176 |
|
|
|
5177 |
|
|
switch (GET_CODE (el))
|
5178 |
|
|
{
|
5179 |
|
|
case CONST_INT:
|
5180 |
|
|
for (i = 0;
|
5181 |
|
|
i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
|
5182 |
|
|
i += value_bit)
|
5183 |
|
|
*vp++ = INTVAL (el) >> i;
|
5184 |
|
|
/* CONST_INTs are always logically sign-extended. */
|
5185 |
|
|
for (; i < elem_bitsize; i += value_bit)
|
5186 |
|
|
*vp++ = INTVAL (el) < 0 ? -1 : 0;
|
5187 |
|
|
break;
|
5188 |
|
|
|
5189 |
|
|
case CONST_DOUBLE:
|
5190 |
|
|
if (GET_MODE (el) == VOIDmode)
|
5191 |
|
|
{
|
5192 |
|
|
/* If this triggers, someone should have generated a
|
5193 |
|
|
CONST_INT instead. */
|
5194 |
|
|
gcc_assert (elem_bitsize > HOST_BITS_PER_WIDE_INT);
|
5195 |
|
|
|
5196 |
|
|
for (i = 0; i < HOST_BITS_PER_WIDE_INT; i += value_bit)
|
5197 |
|
|
*vp++ = CONST_DOUBLE_LOW (el) >> i;
|
5198 |
|
|
while (i < HOST_BITS_PER_WIDE_INT * 2 && i < elem_bitsize)
|
5199 |
|
|
{
|
5200 |
|
|
*vp++
|
5201 |
|
|
= CONST_DOUBLE_HIGH (el) >> (i - HOST_BITS_PER_WIDE_INT);
|
5202 |
|
|
i += value_bit;
|
5203 |
|
|
}
|
5204 |
|
|
/* It shouldn't matter what's done here, so fill it with
|
5205 |
|
|
zero. */
|
5206 |
|
|
for (; i < elem_bitsize; i += value_bit)
|
5207 |
|
|
*vp++ = 0;
|
5208 |
|
|
}
|
5209 |
|
|
else
|
5210 |
|
|
{
|
5211 |
|
|
long tmp[max_bitsize / 32];
|
5212 |
|
|
int bitsize = GET_MODE_BITSIZE (GET_MODE (el));
|
5213 |
|
|
|
5214 |
|
|
gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (el)));
|
5215 |
|
|
gcc_assert (bitsize <= elem_bitsize);
|
5216 |
|
|
gcc_assert (bitsize % value_bit == 0);
|
5217 |
|
|
|
5218 |
|
|
real_to_target (tmp, CONST_DOUBLE_REAL_VALUE (el),
|
5219 |
|
|
GET_MODE (el));
|
5220 |
|
|
|
5221 |
|
|
/* real_to_target produces its result in words affected by
|
5222 |
|
|
FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
|
5223 |
|
|
and use WORDS_BIG_ENDIAN instead; see the documentation
|
5224 |
|
|
of SUBREG in rtl.texi. */
|
5225 |
|
|
for (i = 0; i < bitsize; i += value_bit)
|
5226 |
|
|
{
|
5227 |
|
|
int ibase;
|
5228 |
|
|
if (WORDS_BIG_ENDIAN)
|
5229 |
|
|
ibase = bitsize - 1 - i;
|
5230 |
|
|
else
|
5231 |
|
|
ibase = i;
|
5232 |
|
|
*vp++ = tmp[ibase / 32] >> i % 32;
|
5233 |
|
|
}
|
5234 |
|
|
|
5235 |
|
|
/* It shouldn't matter what's done here, so fill it with
|
5236 |
|
|
zero. */
|
5237 |
|
|
for (; i < elem_bitsize; i += value_bit)
|
5238 |
|
|
*vp++ = 0;
|
5239 |
|
|
}
|
5240 |
|
|
break;
|
5241 |
|
|
|
5242 |
|
|
case CONST_FIXED:
|
5243 |
|
|
if (elem_bitsize <= HOST_BITS_PER_WIDE_INT)
|
5244 |
|
|
{
|
5245 |
|
|
for (i = 0; i < elem_bitsize; i += value_bit)
|
5246 |
|
|
*vp++ = CONST_FIXED_VALUE_LOW (el) >> i;
|
5247 |
|
|
}
|
5248 |
|
|
else
|
5249 |
|
|
{
|
5250 |
|
|
for (i = 0; i < HOST_BITS_PER_WIDE_INT; i += value_bit)
|
5251 |
|
|
*vp++ = CONST_FIXED_VALUE_LOW (el) >> i;
|
5252 |
|
|
for (; i < 2 * HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
|
5253 |
|
|
i += value_bit)
|
5254 |
|
|
*vp++ = CONST_FIXED_VALUE_HIGH (el)
|
5255 |
|
|
>> (i - HOST_BITS_PER_WIDE_INT);
|
5256 |
|
|
for (; i < elem_bitsize; i += value_bit)
|
5257 |
|
|
*vp++ = 0;
|
5258 |
|
|
}
|
5259 |
|
|
break;
|
5260 |
|
|
|
5261 |
|
|
default:
|
5262 |
|
|
gcc_unreachable ();
|
5263 |
|
|
}
|
5264 |
|
|
}
|
5265 |
|
|
|
5266 |
|
|
/* Now, pick the right byte to start with. */
|
5267 |
|
|
/* Renumber BYTE so that the least-significant byte is byte 0. A special
|
5268 |
|
|
case is paradoxical SUBREGs, which shouldn't be adjusted since they
|
5269 |
|
|
will already have offset 0. */
|
5270 |
|
|
if (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode))
|
5271 |
|
|
{
|
5272 |
|
|
unsigned ibyte = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode)
|
5273 |
|
|
- byte);
|
5274 |
|
|
unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
|
5275 |
|
|
unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
|
5276 |
|
|
byte = (subword_byte % UNITS_PER_WORD
|
5277 |
|
|
+ (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
|
5278 |
|
|
}
|
5279 |
|
|
|
5280 |
|
|
/* BYTE should still be inside OP. (Note that BYTE is unsigned,
|
5281 |
|
|
so if it's become negative it will instead be very large.) */
|
5282 |
|
|
gcc_assert (byte < GET_MODE_SIZE (innermode));
|
5283 |
|
|
|
5284 |
|
|
/* Convert from bytes to chunks of size value_bit. */
|
5285 |
|
|
value_start = byte * (BITS_PER_UNIT / value_bit);
|
5286 |
|
|
|
5287 |
|
|
/* Re-pack the value. */
|
5288 |
|
|
|
5289 |
|
|
if (VECTOR_MODE_P (outermode))
|
5290 |
|
|
{
|
5291 |
|
|
num_elem = GET_MODE_NUNITS (outermode);
|
5292 |
|
|
result_v = rtvec_alloc (num_elem);
|
5293 |
|
|
elems = &RTVEC_ELT (result_v, 0);
|
5294 |
|
|
outer_submode = GET_MODE_INNER (outermode);
|
5295 |
|
|
}
|
5296 |
|
|
else
|
5297 |
|
|
{
|
5298 |
|
|
num_elem = 1;
|
5299 |
|
|
elems = &result_s;
|
5300 |
|
|
outer_submode = outermode;
|
5301 |
|
|
}
|
5302 |
|
|
|
5303 |
|
|
outer_class = GET_MODE_CLASS (outer_submode);
|
5304 |
|
|
elem_bitsize = GET_MODE_BITSIZE (outer_submode);
|
5305 |
|
|
|
5306 |
|
|
gcc_assert (elem_bitsize % value_bit == 0);
|
5307 |
|
|
gcc_assert (elem_bitsize + value_start * value_bit <= max_bitsize);
|
5308 |
|
|
|
5309 |
|
|
for (elem = 0; elem < num_elem; elem++)
|
5310 |
|
|
{
|
5311 |
|
|
unsigned char *vp;
|
5312 |
|
|
|
5313 |
|
|
/* Vectors are stored in target memory order. (This is probably
|
5314 |
|
|
a mistake.) */
|
5315 |
|
|
{
|
5316 |
|
|
unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
|
5317 |
|
|
unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
|
5318 |
|
|
/ BITS_PER_UNIT);
|
5319 |
|
|
unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
|
5320 |
|
|
unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
|
5321 |
|
|
unsigned bytele = (subword_byte % UNITS_PER_WORD
|
5322 |
|
|
+ (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
|
5323 |
|
|
vp = value + value_start + (bytele * BITS_PER_UNIT) / value_bit;
|
5324 |
|
|
}
|
5325 |
|
|
|
5326 |
|
|
switch (outer_class)
|
5327 |
|
|
{
|
5328 |
|
|
case MODE_INT:
|
5329 |
|
|
case MODE_PARTIAL_INT:
|
5330 |
|
|
{
|
5331 |
|
|
unsigned HOST_WIDE_INT hi = 0, lo = 0;
|
5332 |
|
|
|
5333 |
|
|
for (i = 0;
|
5334 |
|
|
i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
|
5335 |
|
|
i += value_bit)
|
5336 |
|
|
lo |= (unsigned HOST_WIDE_INT)(*vp++ & value_mask) << i;
|
5337 |
|
|
for (; i < elem_bitsize; i += value_bit)
|
5338 |
|
|
hi |= (unsigned HOST_WIDE_INT)(*vp++ & value_mask)
|
5339 |
|
|
<< (i - HOST_BITS_PER_WIDE_INT);
|
5340 |
|
|
|
5341 |
|
|
/* immed_double_const doesn't call trunc_int_for_mode. I don't
|
5342 |
|
|
know why. */
|
5343 |
|
|
if (elem_bitsize <= HOST_BITS_PER_WIDE_INT)
|
5344 |
|
|
elems[elem] = gen_int_mode (lo, outer_submode);
|
5345 |
|
|
else if (elem_bitsize <= 2 * HOST_BITS_PER_WIDE_INT)
|
5346 |
|
|
elems[elem] = immed_double_const (lo, hi, outer_submode);
|
5347 |
|
|
else
|
5348 |
|
|
return NULL_RTX;
|
5349 |
|
|
}
|
5350 |
|
|
break;
|
5351 |
|
|
|
5352 |
|
|
case MODE_FLOAT:
|
5353 |
|
|
case MODE_DECIMAL_FLOAT:
|
5354 |
|
|
{
|
5355 |
|
|
REAL_VALUE_TYPE r;
|
5356 |
|
|
long tmp[max_bitsize / 32];
|
5357 |
|
|
|
5358 |
|
|
/* real_from_target wants its input in words affected by
|
5359 |
|
|
FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
|
5360 |
|
|
and use WORDS_BIG_ENDIAN instead; see the documentation
|
5361 |
|
|
of SUBREG in rtl.texi. */
|
5362 |
|
|
for (i = 0; i < max_bitsize / 32; i++)
|
5363 |
|
|
tmp[i] = 0;
|
5364 |
|
|
for (i = 0; i < elem_bitsize; i += value_bit)
|
5365 |
|
|
{
|
5366 |
|
|
int ibase;
|
5367 |
|
|
if (WORDS_BIG_ENDIAN)
|
5368 |
|
|
ibase = elem_bitsize - 1 - i;
|
5369 |
|
|
else
|
5370 |
|
|
ibase = i;
|
5371 |
|
|
tmp[ibase / 32] |= (*vp++ & value_mask) << i % 32;
|
5372 |
|
|
}
|
5373 |
|
|
|
5374 |
|
|
real_from_target (&r, tmp, outer_submode);
|
5375 |
|
|
elems[elem] = CONST_DOUBLE_FROM_REAL_VALUE (r, outer_submode);
|
5376 |
|
|
}
|
5377 |
|
|
break;
|
5378 |
|
|
|
5379 |
|
|
case MODE_FRACT:
|
5380 |
|
|
case MODE_UFRACT:
|
5381 |
|
|
case MODE_ACCUM:
|
5382 |
|
|
case MODE_UACCUM:
|
5383 |
|
|
{
|
5384 |
|
|
FIXED_VALUE_TYPE f;
|
5385 |
|
|
f.data.low = 0;
|
5386 |
|
|
f.data.high = 0;
|
5387 |
|
|
f.mode = outer_submode;
|
5388 |
|
|
|
5389 |
|
|
for (i = 0;
|
5390 |
|
|
i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
|
5391 |
|
|
i += value_bit)
|
5392 |
|
|
f.data.low |= (unsigned HOST_WIDE_INT)(*vp++ & value_mask) << i;
|
5393 |
|
|
for (; i < elem_bitsize; i += value_bit)
|
5394 |
|
|
f.data.high |= ((unsigned HOST_WIDE_INT)(*vp++ & value_mask)
|
5395 |
|
|
<< (i - HOST_BITS_PER_WIDE_INT));
|
5396 |
|
|
|
5397 |
|
|
elems[elem] = CONST_FIXED_FROM_FIXED_VALUE (f, outer_submode);
|
5398 |
|
|
}
|
5399 |
|
|
break;
|
5400 |
|
|
|
5401 |
|
|
default:
|
5402 |
|
|
gcc_unreachable ();
|
5403 |
|
|
}
|
5404 |
|
|
}
|
5405 |
|
|
if (VECTOR_MODE_P (outermode))
|
5406 |
|
|
return gen_rtx_CONST_VECTOR (outermode, result_v);
|
5407 |
|
|
else
|
5408 |
|
|
return result_s;
|
5409 |
|
|
}
|
5410 |
|
|
|
5411 |
|
|
/* Simplify SUBREG:OUTERMODE(OP:INNERMODE, BYTE)
|
5412 |
|
|
Return 0 if no simplifications are possible. */
|
5413 |
|
|
rtx
|
5414 |
|
|
simplify_subreg (enum machine_mode outermode, rtx op,
|
5415 |
|
|
enum machine_mode innermode, unsigned int byte)
|
5416 |
|
|
{
|
5417 |
|
|
/* Little bit of sanity checking. */
|
5418 |
|
|
gcc_assert (innermode != VOIDmode);
|
5419 |
|
|
gcc_assert (outermode != VOIDmode);
|
5420 |
|
|
gcc_assert (innermode != BLKmode);
|
5421 |
|
|
gcc_assert (outermode != BLKmode);
|
5422 |
|
|
|
5423 |
|
|
gcc_assert (GET_MODE (op) == innermode
|
5424 |
|
|
|| GET_MODE (op) == VOIDmode);
|
5425 |
|
|
|
5426 |
|
|
gcc_assert ((byte % GET_MODE_SIZE (outermode)) == 0);
|
5427 |
|
|
gcc_assert (byte < GET_MODE_SIZE (innermode));
|
5428 |
|
|
|
5429 |
|
|
if (outermode == innermode && !byte)
|
5430 |
|
|
return op;
|
5431 |
|
|
|
5432 |
|
|
if (CONST_INT_P (op)
|
5433 |
|
|
|| GET_CODE (op) == CONST_DOUBLE
|
5434 |
|
|
|| GET_CODE (op) == CONST_FIXED
|
5435 |
|
|
|| GET_CODE (op) == CONST_VECTOR)
|
5436 |
|
|
return simplify_immed_subreg (outermode, op, innermode, byte);
|
5437 |
|
|
|
5438 |
|
|
/* Changing mode twice with SUBREG => just change it once,
|
5439 |
|
|
or not at all if changing back op starting mode. */
|
5440 |
|
|
if (GET_CODE (op) == SUBREG)
|
5441 |
|
|
{
|
5442 |
|
|
enum machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
|
5443 |
|
|
int final_offset = byte + SUBREG_BYTE (op);
|
5444 |
|
|
rtx newx;
|
5445 |
|
|
|
5446 |
|
|
if (outermode == innermostmode
|
5447 |
|
|
&& byte == 0 && SUBREG_BYTE (op) == 0)
|
5448 |
|
|
return SUBREG_REG (op);
|
5449 |
|
|
|
5450 |
|
|
/* The SUBREG_BYTE represents offset, as if the value were stored
|
5451 |
|
|
in memory. Irritating exception is paradoxical subreg, where
|
5452 |
|
|
we define SUBREG_BYTE to be 0. On big endian machines, this
|
5453 |
|
|
value should be negative. For a moment, undo this exception. */
|
5454 |
|
|
if (byte == 0 && GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
|
5455 |
|
|
{
|
5456 |
|
|
int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
|
5457 |
|
|
if (WORDS_BIG_ENDIAN)
|
5458 |
|
|
final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
|
5459 |
|
|
if (BYTES_BIG_ENDIAN)
|
5460 |
|
|
final_offset += difference % UNITS_PER_WORD;
|
5461 |
|
|
}
|
5462 |
|
|
if (SUBREG_BYTE (op) == 0
|
5463 |
|
|
&& GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
|
5464 |
|
|
{
|
5465 |
|
|
int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
|
5466 |
|
|
if (WORDS_BIG_ENDIAN)
|
5467 |
|
|
final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
|
5468 |
|
|
if (BYTES_BIG_ENDIAN)
|
5469 |
|
|
final_offset += difference % UNITS_PER_WORD;
|
5470 |
|
|
}
|
5471 |
|
|
|
5472 |
|
|
/* See whether resulting subreg will be paradoxical. */
|
5473 |
|
|
if (GET_MODE_SIZE (innermostmode) > GET_MODE_SIZE (outermode))
|
5474 |
|
|
{
|
5475 |
|
|
/* In nonparadoxical subregs we can't handle negative offsets. */
|
5476 |
|
|
if (final_offset < 0)
|
5477 |
|
|
return NULL_RTX;
|
5478 |
|
|
/* Bail out in case resulting subreg would be incorrect. */
|
5479 |
|
|
if (final_offset % GET_MODE_SIZE (outermode)
|
5480 |
|
|
|| (unsigned) final_offset >= GET_MODE_SIZE (innermostmode))
|
5481 |
|
|
return NULL_RTX;
|
5482 |
|
|
}
|
5483 |
|
|
else
|
5484 |
|
|
{
|
5485 |
|
|
int offset = 0;
|
5486 |
|
|
int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (outermode));
|
5487 |
|
|
|
5488 |
|
|
/* In paradoxical subreg, see if we are still looking on lower part.
|
5489 |
|
|
If so, our SUBREG_BYTE will be 0. */
|
5490 |
|
|
if (WORDS_BIG_ENDIAN)
|
5491 |
|
|
offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
|
5492 |
|
|
if (BYTES_BIG_ENDIAN)
|
5493 |
|
|
offset += difference % UNITS_PER_WORD;
|
5494 |
|
|
if (offset == final_offset)
|
5495 |
|
|
final_offset = 0;
|
5496 |
|
|
else
|
5497 |
|
|
return NULL_RTX;
|
5498 |
|
|
}
|
5499 |
|
|
|
5500 |
|
|
/* Recurse for further possible simplifications. */
|
5501 |
|
|
newx = simplify_subreg (outermode, SUBREG_REG (op), innermostmode,
|
5502 |
|
|
final_offset);
|
5503 |
|
|
if (newx)
|
5504 |
|
|
return newx;
|
5505 |
|
|
if (validate_subreg (outermode, innermostmode,
|
5506 |
|
|
SUBREG_REG (op), final_offset))
|
5507 |
|
|
{
|
5508 |
|
|
newx = gen_rtx_SUBREG (outermode, SUBREG_REG (op), final_offset);
|
5509 |
|
|
if (SUBREG_PROMOTED_VAR_P (op)
|
5510 |
|
|
&& SUBREG_PROMOTED_UNSIGNED_P (op) >= 0
|
5511 |
|
|
&& GET_MODE_CLASS (outermode) == MODE_INT
|
5512 |
|
|
&& IN_RANGE (GET_MODE_SIZE (outermode),
|
5513 |
|
|
GET_MODE_SIZE (innermode),
|
5514 |
|
|
GET_MODE_SIZE (innermostmode))
|
5515 |
|
|
&& subreg_lowpart_p (newx))
|
5516 |
|
|
{
|
5517 |
|
|
SUBREG_PROMOTED_VAR_P (newx) = 1;
|
5518 |
|
|
SUBREG_PROMOTED_UNSIGNED_SET
|
5519 |
|
|
(newx, SUBREG_PROMOTED_UNSIGNED_P (op));
|
5520 |
|
|
}
|
5521 |
|
|
return newx;
|
5522 |
|
|
}
|
5523 |
|
|
return NULL_RTX;
|
5524 |
|
|
}
|
5525 |
|
|
|
5526 |
|
|
/* Merge implicit and explicit truncations. */
|
5527 |
|
|
|
5528 |
|
|
if (GET_CODE (op) == TRUNCATE
|
5529 |
|
|
&& GET_MODE_SIZE (outermode) < GET_MODE_SIZE (innermode)
|
5530 |
|
|
&& subreg_lowpart_offset (outermode, innermode) == byte)
|
5531 |
|
|
return simplify_gen_unary (TRUNCATE, outermode, XEXP (op, 0),
|
5532 |
|
|
GET_MODE (XEXP (op, 0)));
|
5533 |
|
|
|
5534 |
|
|
/* SUBREG of a hard register => just change the register number
|
5535 |
|
|
and/or mode. If the hard register is not valid in that mode,
|
5536 |
|
|
suppress this simplification. If the hard register is the stack,
|
5537 |
|
|
frame, or argument pointer, leave this as a SUBREG. */
|
5538 |
|
|
|
5539 |
|
|
if (REG_P (op) && HARD_REGISTER_P (op))
|
5540 |
|
|
{
|
5541 |
|
|
unsigned int regno, final_regno;
|
5542 |
|
|
|
5543 |
|
|
regno = REGNO (op);
|
5544 |
|
|
final_regno = simplify_subreg_regno (regno, innermode, byte, outermode);
|
5545 |
|
|
if (HARD_REGISTER_NUM_P (final_regno))
|
5546 |
|
|
{
|
5547 |
|
|
rtx x;
|
5548 |
|
|
int final_offset = byte;
|
5549 |
|
|
|
5550 |
|
|
/* Adjust offset for paradoxical subregs. */
|
5551 |
|
|
if (byte == 0
|
5552 |
|
|
&& GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
|
5553 |
|
|
{
|
5554 |
|
|
int difference = (GET_MODE_SIZE (innermode)
|
5555 |
|
|
- GET_MODE_SIZE (outermode));
|
5556 |
|
|
if (WORDS_BIG_ENDIAN)
|
5557 |
|
|
final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
|
5558 |
|
|
if (BYTES_BIG_ENDIAN)
|
5559 |
|
|
final_offset += difference % UNITS_PER_WORD;
|
5560 |
|
|
}
|
5561 |
|
|
|
5562 |
|
|
x = gen_rtx_REG_offset (op, outermode, final_regno, final_offset);
|
5563 |
|
|
|
5564 |
|
|
/* Propagate original regno. We don't have any way to specify
|
5565 |
|
|
the offset inside original regno, so do so only for lowpart.
|
5566 |
|
|
The information is used only by alias analysis that can not
|
5567 |
|
|
grog partial register anyway. */
|
5568 |
|
|
|
5569 |
|
|
if (subreg_lowpart_offset (outermode, innermode) == byte)
|
5570 |
|
|
ORIGINAL_REGNO (x) = ORIGINAL_REGNO (op);
|
5571 |
|
|
return x;
|
5572 |
|
|
}
|
5573 |
|
|
}
|
5574 |
|
|
|
5575 |
|
|
/* If we have a SUBREG of a register that we are replacing and we are
|
5576 |
|
|
replacing it with a MEM, make a new MEM and try replacing the
|
5577 |
|
|
SUBREG with it. Don't do this if the MEM has a mode-dependent address
|
5578 |
|
|
or if we would be widening it. */
|
5579 |
|
|
|
5580 |
|
|
if (MEM_P (op)
|
5581 |
|
|
&& ! mode_dependent_address_p (XEXP (op, 0))
|
5582 |
|
|
/* Allow splitting of volatile memory references in case we don't
|
5583 |
|
|
have instruction to move the whole thing. */
|
5584 |
|
|
&& (! MEM_VOLATILE_P (op)
|
5585 |
|
|
|| ! have_insn_for (SET, innermode))
|
5586 |
|
|
&& GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (GET_MODE (op)))
|
5587 |
|
|
return adjust_address_nv (op, outermode, byte);
|
5588 |
|
|
|
5589 |
|
|
/* Handle complex values represented as CONCAT
|
5590 |
|
|
of real and imaginary part. */
|
5591 |
|
|
if (GET_CODE (op) == CONCAT)
|
5592 |
|
|
{
|
5593 |
|
|
unsigned int part_size, final_offset;
|
5594 |
|
|
rtx part, res;
|
5595 |
|
|
|
5596 |
|
|
part_size = GET_MODE_UNIT_SIZE (GET_MODE (XEXP (op, 0)));
|
5597 |
|
|
if (byte < part_size)
|
5598 |
|
|
{
|
5599 |
|
|
part = XEXP (op, 0);
|
5600 |
|
|
final_offset = byte;
|
5601 |
|
|
}
|
5602 |
|
|
else
|
5603 |
|
|
{
|
5604 |
|
|
part = XEXP (op, 1);
|
5605 |
|
|
final_offset = byte - part_size;
|
5606 |
|
|
}
|
5607 |
|
|
|
5608 |
|
|
if (final_offset + GET_MODE_SIZE (outermode) > part_size)
|
5609 |
|
|
return NULL_RTX;
|
5610 |
|
|
|
5611 |
|
|
res = simplify_subreg (outermode, part, GET_MODE (part), final_offset);
|
5612 |
|
|
if (res)
|
5613 |
|
|
return res;
|
5614 |
|
|
if (validate_subreg (outermode, GET_MODE (part), part, final_offset))
|
5615 |
|
|
return gen_rtx_SUBREG (outermode, part, final_offset);
|
5616 |
|
|
return NULL_RTX;
|
5617 |
|
|
}
|
5618 |
|
|
|
5619 |
|
|
/* Optimize SUBREG truncations of zero and sign extended values. */
|
5620 |
|
|
if ((GET_CODE (op) == ZERO_EXTEND
|
5621 |
|
|
|| GET_CODE (op) == SIGN_EXTEND)
|
5622 |
|
|
&& SCALAR_INT_MODE_P (innermode)
|
5623 |
|
|
&& GET_MODE_PRECISION (outermode) < GET_MODE_PRECISION (innermode))
|
5624 |
|
|
{
|
5625 |
|
|
unsigned int bitpos = subreg_lsb_1 (outermode, innermode, byte);
|
5626 |
|
|
|
5627 |
|
|
/* If we're requesting the lowpart of a zero or sign extension,
|
5628 |
|
|
there are three possibilities. If the outermode is the same
|
5629 |
|
|
as the origmode, we can omit both the extension and the subreg.
|
5630 |
|
|
If the outermode is not larger than the origmode, we can apply
|
5631 |
|
|
the truncation without the extension. Finally, if the outermode
|
5632 |
|
|
is larger than the origmode, but both are integer modes, we
|
5633 |
|
|
can just extend to the appropriate mode. */
|
5634 |
|
|
if (bitpos == 0)
|
5635 |
|
|
{
|
5636 |
|
|
enum machine_mode origmode = GET_MODE (XEXP (op, 0));
|
5637 |
|
|
if (outermode == origmode)
|
5638 |
|
|
return XEXP (op, 0);
|
5639 |
|
|
if (GET_MODE_PRECISION (outermode) <= GET_MODE_PRECISION (origmode))
|
5640 |
|
|
return simplify_gen_subreg (outermode, XEXP (op, 0), origmode,
|
5641 |
|
|
subreg_lowpart_offset (outermode,
|
5642 |
|
|
origmode));
|
5643 |
|
|
if (SCALAR_INT_MODE_P (outermode))
|
5644 |
|
|
return simplify_gen_unary (GET_CODE (op), outermode,
|
5645 |
|
|
XEXP (op, 0), origmode);
|
5646 |
|
|
}
|
5647 |
|
|
|
5648 |
|
|
/* A SUBREG resulting from a zero extension may fold to zero if
|
5649 |
|
|
it extracts higher bits that the ZERO_EXTEND's source bits. */
|
5650 |
|
|
if (GET_CODE (op) == ZERO_EXTEND
|
5651 |
|
|
&& bitpos >= GET_MODE_PRECISION (GET_MODE (XEXP (op, 0))))
|
5652 |
|
|
return CONST0_RTX (outermode);
|
5653 |
|
|
}
|
5654 |
|
|
|
5655 |
|
|
/* Simplify (subreg:QI (lshiftrt:SI (sign_extend:SI (x:QI)) C), 0) into
|
5656 |
|
|
to (ashiftrt:QI (x:QI) C), where C is a suitable small constant and
|
5657 |
|
|
the outer subreg is effectively a truncation to the original mode. */
|
5658 |
|
|
if ((GET_CODE (op) == LSHIFTRT
|
5659 |
|
|
|| GET_CODE (op) == ASHIFTRT)
|
5660 |
|
|
&& SCALAR_INT_MODE_P (outermode)
|
5661 |
|
|
&& SCALAR_INT_MODE_P (innermode)
|
5662 |
|
|
/* Ensure that OUTERMODE is at least twice as wide as the INNERMODE
|
5663 |
|
|
to avoid the possibility that an outer LSHIFTRT shifts by more
|
5664 |
|
|
than the sign extension's sign_bit_copies and introduces zeros
|
5665 |
|
|
into the high bits of the result. */
|
5666 |
|
|
&& (2 * GET_MODE_PRECISION (outermode)) <= GET_MODE_PRECISION (innermode)
|
5667 |
|
|
&& CONST_INT_P (XEXP (op, 1))
|
5668 |
|
|
&& GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
|
5669 |
|
|
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
|
5670 |
|
|
&& INTVAL (XEXP (op, 1)) < GET_MODE_PRECISION (outermode)
|
5671 |
|
|
&& subreg_lsb_1 (outermode, innermode, byte) == 0)
|
5672 |
|
|
return simplify_gen_binary (ASHIFTRT, outermode,
|
5673 |
|
|
XEXP (XEXP (op, 0), 0), XEXP (op, 1));
|
5674 |
|
|
|
5675 |
|
|
/* Likewise (subreg:QI (lshiftrt:SI (zero_extend:SI (x:QI)) C), 0) into
|
5676 |
|
|
to (lshiftrt:QI (x:QI) C), where C is a suitable small constant and
|
5677 |
|
|
the outer subreg is effectively a truncation to the original mode. */
|
5678 |
|
|
if ((GET_CODE (op) == LSHIFTRT
|
5679 |
|
|
|| GET_CODE (op) == ASHIFTRT)
|
5680 |
|
|
&& SCALAR_INT_MODE_P (outermode)
|
5681 |
|
|
&& SCALAR_INT_MODE_P (innermode)
|
5682 |
|
|
&& GET_MODE_PRECISION (outermode) < GET_MODE_PRECISION (innermode)
|
5683 |
|
|
&& CONST_INT_P (XEXP (op, 1))
|
5684 |
|
|
&& GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
|
5685 |
|
|
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
|
5686 |
|
|
&& INTVAL (XEXP (op, 1)) < GET_MODE_PRECISION (outermode)
|
5687 |
|
|
&& subreg_lsb_1 (outermode, innermode, byte) == 0)
|
5688 |
|
|
return simplify_gen_binary (LSHIFTRT, outermode,
|
5689 |
|
|
XEXP (XEXP (op, 0), 0), XEXP (op, 1));
|
5690 |
|
|
|
5691 |
|
|
/* Likewise (subreg:QI (ashift:SI (zero_extend:SI (x:QI)) C), 0) into
|
5692 |
|
|
to (ashift:QI (x:QI) C), where C is a suitable small constant and
|
5693 |
|
|
the outer subreg is effectively a truncation to the original mode. */
|
5694 |
|
|
if (GET_CODE (op) == ASHIFT
|
5695 |
|
|
&& SCALAR_INT_MODE_P (outermode)
|
5696 |
|
|
&& SCALAR_INT_MODE_P (innermode)
|
5697 |
|
|
&& GET_MODE_PRECISION (outermode) < GET_MODE_PRECISION (innermode)
|
5698 |
|
|
&& CONST_INT_P (XEXP (op, 1))
|
5699 |
|
|
&& (GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
|
5700 |
|
|
|| GET_CODE (XEXP (op, 0)) == SIGN_EXTEND)
|
5701 |
|
|
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
|
5702 |
|
|
&& INTVAL (XEXP (op, 1)) < GET_MODE_PRECISION (outermode)
|
5703 |
|
|
&& subreg_lsb_1 (outermode, innermode, byte) == 0)
|
5704 |
|
|
return simplify_gen_binary (ASHIFT, outermode,
|
5705 |
|
|
XEXP (XEXP (op, 0), 0), XEXP (op, 1));
|
5706 |
|
|
|
5707 |
|
|
/* Recognize a word extraction from a multi-word subreg. */
|
5708 |
|
|
if ((GET_CODE (op) == LSHIFTRT
|
5709 |
|
|
|| GET_CODE (op) == ASHIFTRT)
|
5710 |
|
|
&& SCALAR_INT_MODE_P (innermode)
|
5711 |
|
|
&& GET_MODE_PRECISION (outermode) >= BITS_PER_WORD
|
5712 |
|
|
&& GET_MODE_PRECISION (innermode) >= (2 * GET_MODE_PRECISION (outermode))
|
5713 |
|
|
&& CONST_INT_P (XEXP (op, 1))
|
5714 |
|
|
&& (INTVAL (XEXP (op, 1)) & (GET_MODE_PRECISION (outermode) - 1)) == 0
|
5715 |
|
|
&& INTVAL (XEXP (op, 1)) >= 0
|
5716 |
|
|
&& INTVAL (XEXP (op, 1)) < GET_MODE_PRECISION (innermode)
|
5717 |
|
|
&& byte == subreg_lowpart_offset (outermode, innermode))
|
5718 |
|
|
{
|
5719 |
|
|
int shifted_bytes = INTVAL (XEXP (op, 1)) / BITS_PER_UNIT;
|
5720 |
|
|
return simplify_gen_subreg (outermode, XEXP (op, 0), innermode,
|
5721 |
|
|
(WORDS_BIG_ENDIAN
|
5722 |
|
|
? byte - shifted_bytes
|
5723 |
|
|
: byte + shifted_bytes));
|
5724 |
|
|
}
|
5725 |
|
|
|
5726 |
|
|
/* If we have a lowpart SUBREG of a right shift of MEM, make a new MEM
|
5727 |
|
|
and try replacing the SUBREG and shift with it. Don't do this if
|
5728 |
|
|
the MEM has a mode-dependent address or if we would be widening it. */
|
5729 |
|
|
|
5730 |
|
|
if ((GET_CODE (op) == LSHIFTRT
|
5731 |
|
|
|| GET_CODE (op) == ASHIFTRT)
|
5732 |
|
|
&& SCALAR_INT_MODE_P (innermode)
|
5733 |
|
|
&& MEM_P (XEXP (op, 0))
|
5734 |
|
|
&& CONST_INT_P (XEXP (op, 1))
|
5735 |
|
|
&& GET_MODE_SIZE (outermode) < GET_MODE_SIZE (GET_MODE (op))
|
5736 |
|
|
&& (INTVAL (XEXP (op, 1)) % GET_MODE_BITSIZE (outermode)) == 0
|
5737 |
|
|
&& INTVAL (XEXP (op, 1)) > 0
|
5738 |
|
|
&& INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (innermode)
|
5739 |
|
|
&& ! mode_dependent_address_p (XEXP (XEXP (op, 0), 0))
|
5740 |
|
|
&& ! MEM_VOLATILE_P (XEXP (op, 0))
|
5741 |
|
|
&& byte == subreg_lowpart_offset (outermode, innermode)
|
5742 |
|
|
&& (GET_MODE_SIZE (outermode) >= UNITS_PER_WORD
|
5743 |
|
|
|| WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN))
|
5744 |
|
|
{
|
5745 |
|
|
int shifted_bytes = INTVAL (XEXP (op, 1)) / BITS_PER_UNIT;
|
5746 |
|
|
return adjust_address_nv (XEXP (op, 0), outermode,
|
5747 |
|
|
(WORDS_BIG_ENDIAN
|
5748 |
|
|
? byte - shifted_bytes
|
5749 |
|
|
: byte + shifted_bytes));
|
5750 |
|
|
}
|
5751 |
|
|
|
5752 |
|
|
return NULL_RTX;
|
5753 |
|
|
}
|
5754 |
|
|
|
5755 |
|
|
/* Make a SUBREG operation or equivalent if it folds. */
|
5756 |
|
|
|
5757 |
|
|
rtx
|
5758 |
|
|
simplify_gen_subreg (enum machine_mode outermode, rtx op,
|
5759 |
|
|
enum machine_mode innermode, unsigned int byte)
|
5760 |
|
|
{
|
5761 |
|
|
rtx newx;
|
5762 |
|
|
|
5763 |
|
|
newx = simplify_subreg (outermode, op, innermode, byte);
|
5764 |
|
|
if (newx)
|
5765 |
|
|
return newx;
|
5766 |
|
|
|
5767 |
|
|
if (GET_CODE (op) == SUBREG
|
5768 |
|
|
|| GET_CODE (op) == CONCAT
|
5769 |
|
|
|| GET_MODE (op) == VOIDmode)
|
5770 |
|
|
return NULL_RTX;
|
5771 |
|
|
|
5772 |
|
|
if (validate_subreg (outermode, innermode, op, byte))
|
5773 |
|
|
return gen_rtx_SUBREG (outermode, op, byte);
|
5774 |
|
|
|
5775 |
|
|
return NULL_RTX;
|
5776 |
|
|
}
|
5777 |
|
|
|
5778 |
|
|
/* Simplify X, an rtx expression.
|
5779 |
|
|
|
5780 |
|
|
Return the simplified expression or NULL if no simplifications
|
5781 |
|
|
were possible.
|
5782 |
|
|
|
5783 |
|
|
This is the preferred entry point into the simplification routines;
|
5784 |
|
|
however, we still allow passes to call the more specific routines.
|
5785 |
|
|
|
5786 |
|
|
Right now GCC has three (yes, three) major bodies of RTL simplification
|
5787 |
|
|
code that need to be unified.
|
5788 |
|
|
|
5789 |
|
|
1. fold_rtx in cse.c. This code uses various CSE specific
|
5790 |
|
|
information to aid in RTL simplification.
|
5791 |
|
|
|
5792 |
|
|
2. simplify_rtx in combine.c. Similar to fold_rtx, except that
|
5793 |
|
|
it uses combine specific information to aid in RTL
|
5794 |
|
|
simplification.
|
5795 |
|
|
|
5796 |
|
|
3. The routines in this file.
|
5797 |
|
|
|
5798 |
|
|
|
5799 |
|
|
Long term we want to only have one body of simplification code; to
|
5800 |
|
|
get to that state I recommend the following steps:
|
5801 |
|
|
|
5802 |
|
|
1. Pour over fold_rtx & simplify_rtx and move any simplifications
|
5803 |
|
|
which are not pass dependent state into these routines.
|
5804 |
|
|
|
5805 |
|
|
2. As code is moved by #1, change fold_rtx & simplify_rtx to
|
5806 |
|
|
use this routine whenever possible.
|
5807 |
|
|
|
5808 |
|
|
3. Allow for pass dependent state to be provided to these
|
5809 |
|
|
routines and add simplifications based on the pass dependent
|
5810 |
|
|
state. Remove code from cse.c & combine.c that becomes
|
5811 |
|
|
redundant/dead.
|
5812 |
|
|
|
5813 |
|
|
It will take time, but ultimately the compiler will be easier to
|
5814 |
|
|
maintain and improve. It's totally silly that when we add a
|
5815 |
|
|
simplification that it needs to be added to 4 places (3 for RTL
|
5816 |
|
|
simplification and 1 for tree simplification. */
|
5817 |
|
|
|
5818 |
|
|
rtx
|
5819 |
|
|
simplify_rtx (const_rtx x)
|
5820 |
|
|
{
|
5821 |
|
|
const enum rtx_code code = GET_CODE (x);
|
5822 |
|
|
const enum machine_mode mode = GET_MODE (x);
|
5823 |
|
|
|
5824 |
|
|
switch (GET_RTX_CLASS (code))
|
5825 |
|
|
{
|
5826 |
|
|
case RTX_UNARY:
|
5827 |
|
|
return simplify_unary_operation (code, mode,
|
5828 |
|
|
XEXP (x, 0), GET_MODE (XEXP (x, 0)));
|
5829 |
|
|
case RTX_COMM_ARITH:
|
5830 |
|
|
if (swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
|
5831 |
|
|
return simplify_gen_binary (code, mode, XEXP (x, 1), XEXP (x, 0));
|
5832 |
|
|
|
5833 |
|
|
/* Fall through.... */
|
5834 |
|
|
|
5835 |
|
|
case RTX_BIN_ARITH:
|
5836 |
|
|
return simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
|
5837 |
|
|
|
5838 |
|
|
case RTX_TERNARY:
|
5839 |
|
|
case RTX_BITFIELD_OPS:
|
5840 |
|
|
return simplify_ternary_operation (code, mode, GET_MODE (XEXP (x, 0)),
|
5841 |
|
|
XEXP (x, 0), XEXP (x, 1),
|
5842 |
|
|
XEXP (x, 2));
|
5843 |
|
|
|
5844 |
|
|
case RTX_COMPARE:
|
5845 |
|
|
case RTX_COMM_COMPARE:
|
5846 |
|
|
return simplify_relational_operation (code, mode,
|
5847 |
|
|
((GET_MODE (XEXP (x, 0))
|
5848 |
|
|
!= VOIDmode)
|
5849 |
|
|
? GET_MODE (XEXP (x, 0))
|
5850 |
|
|
: GET_MODE (XEXP (x, 1))),
|
5851 |
|
|
XEXP (x, 0),
|
5852 |
|
|
XEXP (x, 1));
|
5853 |
|
|
|
5854 |
|
|
case RTX_EXTRA:
|
5855 |
|
|
if (code == SUBREG)
|
5856 |
|
|
return simplify_subreg (mode, SUBREG_REG (x),
|
5857 |
|
|
GET_MODE (SUBREG_REG (x)),
|
5858 |
|
|
SUBREG_BYTE (x));
|
5859 |
|
|
break;
|
5860 |
|
|
|
5861 |
|
|
case RTX_OBJ:
|
5862 |
|
|
if (code == LO_SUM)
|
5863 |
|
|
{
|
5864 |
|
|
/* Convert (lo_sum (high FOO) FOO) to FOO. */
|
5865 |
|
|
if (GET_CODE (XEXP (x, 0)) == HIGH
|
5866 |
|
|
&& rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
|
5867 |
|
|
return XEXP (x, 1);
|
5868 |
|
|
}
|
5869 |
|
|
break;
|
5870 |
|
|
|
5871 |
|
|
default:
|
5872 |
|
|
break;
|
5873 |
|
|
}
|
5874 |
|
|
return NULL;
|
5875 |
|
|
}
|