OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [testsuite/] [ada/] [acats/] [tests/] [c4/] [c450001.a] - Blame information for rev 720

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 720 jeremybenn
-- C450001.A
2
--
3
--                             Grant of Unlimited Rights
4
--
5
--     Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
6
--     F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
7
--     unlimited rights in the software and documentation contained herein.
8
--     Unlimited rights are defined in DFAR 252.227-7013(a)(19).  By making
9
--     this public release, the Government intends to confer upon all
10
--     recipients unlimited rights  equal to those held by the Government.
11
--     These rights include rights to use, duplicate, release or disclose the
12
--     released technical data and computer software in whole or in part, in
13
--     any manner and for any purpose whatsoever, and to have or permit others
14
--     to do so.
15
--
16
--                                    DISCLAIMER
17
--
18
--     ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
19
--     DISCLOSED ARE AS IS.  THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
20
--     WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
21
--     SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
22
--     OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
23
--     PARTICULAR PURPOSE OF SAID MATERIAL.
24
--*
25
--
26
-- OBJECTIVE:
27
--     Check that operations on modular types perform correctly.
28
--
29
--     Check that loops over the range of a modular type do not over or
30
--     under run the loop.
31
--
32
-- TEST DESCRIPTION:
33
--     Check logical and arithmetic operations.
34
--     (Attributes are tested elsewhere)
35
--     Checks to make sure that:
36
--        for X in Mod_Type loop
37
--     doesn't do something silly like infinite loop.
38
--
39
--
40
-- CHANGE HISTORY:
41
--      20 SEP 95   SAIC   Initial version
42
--      20 FEB 96   SAIC   Added underrun cases for 2.1
43
--
44
--!
45
 
46
----------------------------------------------------------------- C450001_0
47
 
48
package C450001_0 is
49
 
50
  type Unsigned_8_Bit is mod 2**8;
51
 
52
  Shy_By_One : constant := 2**8-1;
53
 
54
  Heavy_By_Two : constant := 2**8+2;
55
 
56
  type Unsigned_Edge_8 is mod Shy_By_One;
57
 
58
  type Unsigned_Over_8 is mod Heavy_By_Two;
59
 
60
  procedure Loop_Check;
61
 
62
 -- embed some calls to Report.Ident_Int:
63
 
64
  function ID( U8B: Unsigned_8_Bit )  return Unsigned_8_Bit;
65
  function ID( UEB: Unsigned_Edge_8 ) return Unsigned_Edge_8;
66
  function ID( UOB: Unsigned_Over_8 ) return Unsigned_Over_8;
67
 
68
end C450001_0;
69
 
70
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
71
 
72
with Report;
73
package body C450001_0 is
74
 
75
  procedure Loop_Check is
76
    Counter_Check : Natural := 0;
77
  begin
78
    for Ever in Unsigned_8_Bit loop
79
      Counter_Check := Report.Ident_Int(Counter_Check) + 1;
80
      if Counter_Check > 2**8 then
81
        Report.Failed("Unsigned_8_Bit loop overrun");
82
        exit;
83
      end if;
84
    end loop;
85
 
86
    if Counter_Check < 2**8 then
87
      Report.Failed("Unsigned_8_Bit loop underrun");
88
    end if;
89
 
90
    Counter_Check := 0;
91
 
92
    for Never in Unsigned_Edge_8 loop
93
      Counter_Check := Report.Ident_Int(Counter_Check) + 1;
94
      if Counter_Check > Shy_By_One then
95
        Report.Failed("Unsigned_Edge_8 loop overrun");
96
        exit;
97
      end if;
98
    end loop;
99
 
100
    if Counter_Check < Shy_By_One then
101
      Report.Failed("Unsigned_Edge_8 loop underrun");
102
    end if;
103
 
104
    Counter_Check := 0;
105
 
106
    for Getful in reverse Unsigned_Over_8 loop
107
      Counter_Check := Report.Ident_Int(Counter_Check) + 1;
108
      if Counter_Check > Heavy_By_Two then
109
        Report.Failed("Unsigned_Over_8 loop overrun");
110
        exit;
111
      end if;
112
    end loop;
113
 
114
    if Counter_Check < Heavy_By_Two then
115
      Report.Failed("Unsigned_Over_8 loop underrun");
116
    end if;
117
 
118
  end Loop_Check;
119
 
120
  function ID( U8B: Unsigned_8_Bit )  return Unsigned_8_Bit is
121
  begin
122
    return Unsigned_8_Bit(Report.Ident_Int(Integer(U8B)));
123
  end ID;
124
 
125
  function ID( UEB: Unsigned_Edge_8 ) return Unsigned_Edge_8 is
126
  begin
127
    return Unsigned_Edge_8(Report.Ident_Int(Integer(UEB)));
128
  end ID;
129
 
130
  function ID( UOB: Unsigned_Over_8 ) return Unsigned_Over_8 is
131
  begin
132
    return Unsigned_Over_8(Report.Ident_Int(Integer(UOB)));
133
  end ID;
134
 
135
end C450001_0;
136
 
137
------------------------------------------------------------------- C450001
138
 
139
with Report;
140
with C450001_0;
141
with TCTouch;
142
procedure C450001 is
143
  use C450001_0;
144
 
145
  BR : constant String := " produced the wrong result";
146
 
147
  procedure Is_T(B:Boolean;S:String) renames TCTouch.Assert;
148
  procedure Is_F(B:Boolean;S:String) renames TCTouch.Assert_Not;
149
 
150
  Whole_8_A, Whole_8_B, Whole_8_C : C450001_0.Unsigned_8_Bit;
151
 
152
  Short_8_A, Short_8_B, Short_8_C : C450001_0.Unsigned_Edge_8;
153
 
154
  Over_8_A, Over_8_B, Over_8_C : C450001_0.Unsigned_Over_8;
155
 
156
begin  -- Main test procedure. C450001
157
 
158
  Report.Test ("C450001", "Check that operations on modular types " &
159
                          "perform correctly." );
160
 
161
 
162
  -- the cases for the whole 8 bit type are pretty simple
163
 
164
  Whole_8_A :=                             2#00000000#;
165
  Whole_8_B :=                             2#11111111#;
166
 
167
  Is_T((ID(Whole_8_A) and ID(Whole_8_B)) = 2#00000000#,"8 bit and" & BR);
168
  Is_T((ID(Whole_8_A)  or ID(Whole_8_B)) = 2#11111111#,"8 bit  or" & BR);
169
  Is_T((ID(Whole_8_A) xor ID(Whole_8_B)) = 2#11111111#,"8 bit xor" & BR);
170
 
171
  Whole_8_A :=                             2#00001111#;
172
  Whole_8_B :=                             2#11111111#;
173
 
174
  Is_T((ID(Whole_8_A) and ID(Whole_8_B)) = 2#00001111#,"8 bit and" & BR);
175
  Is_T((ID(Whole_8_A)  or ID(Whole_8_B)) = 2#11111111#,"8 bit  or" & BR);
176
  Is_T((ID(Whole_8_A) xor ID(Whole_8_B)) = 2#11110000#,"8 bit xor" & BR);
177
 
178
  Whole_8_A :=                             2#10101010#;
179
  Whole_8_B :=                             2#11110000#;
180
 
181
  Is_T((ID(Whole_8_A) and ID(Whole_8_B)) = 2#10100000#,"8 bit and" & BR);
182
  Is_T((ID(Whole_8_A)  or ID(Whole_8_B)) = 2#11111010#,"8 bit  or" & BR);
183
  Is_T((ID(Whole_8_A) xor ID(Whole_8_B)) = 2#01011010#,"8 bit xor" & BR);
184
 
185
  -- the cases for the partial 8 bit type involve subtracting the modulus
186
  -- from results that exceed the modulus.
187
  -- hence, any of the following operations that exceed 2#11111110# must
188
  -- have 2#11111111# subtracted from the result; i.e. where you would
189
  -- expect to see 2#11111111# as in the above operations, the correct
190
  -- result will be 2#00000000#.  Note that 2#11111111# is not a legal
191
  -- value of type C450001_0.Unsigned_Edge_8.
192
 
193
  Short_8_A :=                             2#11100101#;
194
  Short_8_B :=                             2#00011111#;
195
 
196
  Is_T((ID(Short_8_A) and ID(Short_8_B)) = 2#00000101#,"8 short and 1" & BR);
197
  Is_T((ID(Short_8_A)  or ID(Short_8_B)) = 2#00000000#,"8 short  or 1" & BR);
198
  Is_T((ID(Short_8_A) xor ID(Short_8_B)) = 2#11111010#,"8 short xor 1" & BR);
199
 
200
  Short_8_A :=                             2#11110000#;
201
  Short_8_B :=                             2#11111110#;
202
 
203
  Is_T((ID(Short_8_A) and ID(Short_8_B)) = 2#11110000#,"8 short and 2" & BR);
204
  Is_T((ID(Short_8_A)  or ID(Short_8_B)) = 2#11111110#,"8 short  or 2" & BR);
205
  Is_T((ID(Short_8_A) xor ID(Short_8_B)) = 2#00001110#,"8 short xor 2" & BR);
206
 
207
  Short_8_A :=                             2#10101010#;
208
  Short_8_B :=                             2#01010101#;
209
 
210
  Is_T((ID(Short_8_A) and ID(Short_8_B)) = 2#00000000#,"8 short and 3" & BR);
211
  Is_T((ID(Short_8_A)  or ID(Short_8_B)) = 2#00000000#,"8 short  or 3" & BR);
212
  Is_T((ID(Short_8_A) xor ID(Short_8_B)) = 2#00000000#,"8 short xor 3" & BR);
213
 
214
  Short_8_A :=                             2#10101010#;
215
  Short_8_B :=                             2#11111110#;
216
 
217
  Is_T((ID(Short_8_A) and ID(Short_8_B)) = 2#10101010#,"8 short and 4" & BR);
218
  Is_T((ID(Short_8_A)  or ID(Short_8_B)) = 2#11111110#,"8 short  or 4" & BR);
219
  Is_T((ID(Short_8_A) xor ID(Short_8_B)) = 2#01010100#,"8 short xor 4" & BR);
220
 
221
  -- the cases for the over 8 bit type have similar issues to the short type
222
  -- however the bit patterns are a little different.  The rule is to subtract
223
  -- the modulus (258) from any resulting value equal or greater than the
224
  -- modulus       -- note that 258 =    2#100000010#
225
 
226
  Over_8_A :=                            2#100000000#;
227
  Over_8_B :=                            2#011111111#;
228
 
229
  Is_T((ID(Over_8_A) and ID(Over_8_B)) = 2#000000000#,"8 over and" & BR);
230
  Is_T((ID(Over_8_A)  or ID(Over_8_B)) = 2#011111101#,"8 over  or" & BR);
231
  Is_T((ID(Over_8_A) xor ID(Over_8_B)) = 2#011111101#,"8 over xor" & BR);
232
 
233
  Over_8_A :=                            2#100000001#;
234
  Over_8_B :=                            2#011111111#;
235
 
236
  Is_T((ID(Over_8_A) and ID(Over_8_B)) = 2#000000001#,"8 over and" & BR);
237
  Is_T((ID(Over_8_A)  or ID(Over_8_B)) = 2#011111101#,"8 over  or" & BR);
238
  Is_T((ID(Over_8_A) xor ID(Over_8_B)) = 2#011111100#,"8 over xor" & BR);
239
 
240
 
241
 
242
  Whole_8_A := 128;
243
  Whole_8_B := 255;
244
 
245
  Is_T(ID(Whole_8_A) /= ID(Whole_8_B), "8 /=" & BR);
246
  Is_F(ID(Whole_8_A)  = ID(Whole_8_B), "8  =" & BR);
247
 
248
  Is_T(ID(Whole_8_A) <= ID(Whole_8_B), "8 <=" & BR);
249
  Is_T(ID(Whole_8_A) <  ID(Whole_8_B), "8 < " & BR);
250
 
251
  Is_F(ID(Whole_8_A) >= ID(Whole_8_B), "8 >=" & BR);
252
  Is_T(ID(Whole_8_A) >  ID(Whole_8_B + 7), "8 > " & BR);
253
 
254
  Is_T(ID(Whole_8_A)     in ID(100)..ID(200), "8 in" & BR);
255
  Is_F(ID(Whole_8_A) not in ID(100)..ID(200), "8 not in" & BR);
256
 
257
  Is_F(ID(Whole_8_A)     in ID(200)..ID(250), "8 in" & BR);
258
  Is_T(ID(Whole_8_A) not in ID(200)..ID(250), "8 not in" & BR);
259
 
260
  Short_8_A := 127;
261
  Short_8_B := 254;
262
 
263
  Is_T(ID(Short_8_A) /= ID(Short_8_B), "short 8 /=" & BR);
264
  Is_F(ID(Short_8_A)  = ID(Short_8_B), "short 8  =" & BR);
265
 
266
  Is_T(ID(Short_8_A) <= ID(Short_8_B), "short 8 <=" & BR);
267
  Is_T(ID(Short_8_A) <  ID(Short_8_B), "short 8 < " & BR);
268
 
269
  Is_F(ID(Short_8_A) >= ID(Short_8_B), "short 8 >=" & BR);
270
  Is_F(ID(Short_8_A) >  ID(Short_8_B), "short 8 > " & BR);
271
 
272
  Is_T(ID(Short_8_A)     in ID(100)..ID(200), "8 in" & BR);
273
  Is_F(ID(Short_8_A) not in ID(100)..ID(200), "8 not in" & BR);
274
 
275
  Is_F(ID(Short_8_A)     in ID(200)..ID(250), "8 in" & BR);
276
  Is_T(ID(Short_8_A) not in ID(200)..ID(250), "8 not in" & BR);
277
 
278
 
279
  Whole_8_A := 1;
280
  Whole_8_B := 254;
281
  Short_8_A := 1;
282
  Short_8_B := 2;
283
 
284
  Whole_8_C := ID(Whole_8_A) + ID(Whole_8_B);
285
  Is_T(Whole_8_C = C450001_0.Unsigned_8_Bit'Last, "8 binary + 1" & BR);
286
 
287
  Whole_8_C := Whole_8_C + ID(Whole_8_A);
288
  Is_T(Whole_8_C = C450001_0.Unsigned_8_Bit'First, "8 binary + 2" & BR);
289
 
290
  Whole_8_C := ID(Whole_8_A) - ID(Whole_8_A);
291
  Is_T(Whole_8_C = 0, "8 binary -" & BR);
292
 
293
  Whole_8_C := Whole_8_C - ID(Whole_8_A);
294
  Is_T(Whole_8_C = C450001_0.Unsigned_8_Bit'Last, "8 binary + 3" & BR);
295
 
296
  Short_8_C := ID(Short_8_A) + ID(C450001_0.Unsigned_Edge_8'Last);
297
  Is_T(Short_8_C = C450001_0.Unsigned_Edge_8'First, "Short binary + 1" & BR);
298
 
299
  Short_8_C := Short_8_A + ID(Short_8_A);
300
  Is_T(Short_8_C = ID(Short_8_B), "Short binary + 2" & BR);
301
 
302
  Short_8_C := ID(Short_8_A) - ID(Short_8_A);
303
  Is_T(Short_8_C = 0, "Short 8 binary -" & BR);
304
 
305
  Short_8_C := Short_8_C - ID(Short_8_A);
306
  Is_T(Short_8_C = C450001_0.Unsigned_Edge_8'Last, "Short binary + 3" & BR);
307
 
308
 
309
  Whole_8_C := ( + ID(Whole_8_B) );
310
  Is_T(Whole_8_C = 254, "8 unary +" & BR);
311
 
312
  Whole_8_C := ( - ID(Whole_8_A) );
313
  Is_T(Whole_8_C = C450001_0.Unsigned_8_Bit'Last, "8 unary -" & BR);
314
 
315
  Whole_8_C := ( - ID(0) );
316
  Is_T(Whole_8_C = 0, "8 unary -0" & BR);
317
 
318
  Short_8_C := ( + ID(C450001_0.Unsigned_Edge_8'Last) );
319
  Is_T(Short_8_C = 254, "Short 8 unary +" & BR);
320
 
321
  Short_8_C := ( - ID(Short_8_A) );
322
  Is_T(Short_8_C = C450001_0.Unsigned_Edge_8'Last, "Short 8 unary -" & BR);
323
 
324
 
325
  Whole_8_A := 20;
326
  Whole_8_B := 255;
327
 
328
  Whole_8_C := ID(Whole_8_A) * ID(Whole_8_B); -- 5100 = 19*256 + 236 (256-20)
329
  Is_T(Whole_8_C = 236, "8 *" & BR);
330
 
331
  Short_8_A := 9;
332
  Short_8_B := 254;
333
 
334
  Short_8_C := ID(Short_8_A) * ID(Short_8_B); -- 2286 = 8*255 + 246 (255-9)
335
  Is_T(Short_8_C = 246, "short 8 *" & BR);
336
 
337
  Over_8_A := 12;
338
  Over_8_B := 86;
339
 
340
  Over_8_C := ID(Over_8_A) * ID(Over_8_B); -- 1032 = 4*258 + 0
341
  Is_T(Over_8_C = 0, "over 8 *" & BR);
342
 
343
 
344
  Whole_8_A := 255;
345
  Whole_8_B := 4;
346
 
347
  Whole_8_C := ID(Whole_8_A) / ID(Whole_8_B);
348
  Is_T(Whole_8_C = 63, "8 /" & BR);
349
 
350
  Short_8_A := 253;
351
  Short_8_B := 127;
352
 
353
  Short_8_C := ID(Short_8_A) / ID(Short_8_B);
354
  Is_T(Short_8_C = 1, "short 8 / 1" & BR);
355
 
356
  Short_8_C := ID(Short_8_A) / ID(126);
357
  Is_T(Short_8_C = 2, "short 8 / 2" & BR);
358
 
359
 
360
  Whole_8_A := 255;
361
  Whole_8_B := 254;
362
 
363
  Whole_8_C := ID(Whole_8_A) rem ID(Whole_8_B);
364
  Is_T(Whole_8_C = 1, "8 rem" & BR);
365
 
366
  Short_8_A := 222;
367
  Short_8_B := 111;
368
 
369
  Short_8_C := ID(Short_8_A) rem ID(Short_8_B);
370
  Is_T(Short_8_C = 0, "short 8 rem" & BR);
371
 
372
 
373
  Whole_8_A := 99;
374
  Whole_8_B := 9;
375
 
376
  Whole_8_C := ID(Whole_8_A) mod ID(Whole_8_B);
377
  Is_T(Whole_8_C = 0, "8 mod" & BR);
378
 
379
  Short_8_A := 254;
380
  Short_8_B := 250;
381
 
382
  Short_8_C := ID(Short_8_A) mod ID(Short_8_B);
383
  Is_T(Short_8_C = 4, "short 8 mod" & BR);
384
 
385
 
386
  Whole_8_A := 99;
387
 
388
  Whole_8_C := abs Whole_8_A;
389
  Is_T(Whole_8_C = ID(99), "8 abs" & BR);
390
 
391
  Short_8_A := 254;
392
 
393
  Short_8_C := ID( abs Short_8_A );
394
  Is_T(Short_8_C = 254, "short 8 abs" & BR);
395
 
396
 
397
  Whole_8_B :=        2#00001111#;
398
 
399
  Whole_8_C := not Whole_8_B;
400
  Is_T(Whole_8_C = ID(2#11110000#), "8 not" & BR);
401
 
402
  Short_8_B :=     2#00001111#;                      -- 15
403
 
404
  Short_8_C := ID( not Short_8_B );                  -- 254 - 15
405
  Is_T(Short_8_C = 2#11101111#, "short 8 not" & BR); -- 239
406
 
407
 
408
  Whole_8_A := 2;
409
 
410
  Whole_8_C := Whole_8_A ** 7;
411
  Is_T(Whole_8_C = ID(128), "2 ** 7, whole 8" & BR);
412
 
413
  Whole_8_C := Whole_8_A ** 9;
414
  Is_T(Whole_8_C = ID(0), "2 ** 9, whole 8" & BR);
415
 
416
  Short_8_A := 4;
417
 
418
  Short_8_C := ID( Short_8_A ) ** 4;
419
  Is_T(Short_8_C = 1, "4 ** 4, short" & BR);
420
 
421
  Over_8_A := 4;
422
 
423
  Over_8_C := ID( Over_8_A ) ** 4;
424
  Is_T(Over_8_C = 256, "4 ** 4, over" & BR);
425
 
426
  Over_8_C := ID( Over_8_A ) ** 5; -- 1024 = 3*258 + 250
427
  Is_T(Over_8_C = 250, "4 ** 5, over" & BR);
428
 
429
 
430
  C450001_0.Loop_Check;
431
 
432
  Report.Result;
433
 
434
end C450001;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.