OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [testsuite/] [ada/] [acats/] [tests/] [cxg/] [cxg2021.a] - Blame information for rev 750

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 720 jeremybenn
-- CXG2021.A
2
--
3
--                             Grant of Unlimited Rights
4
--
5
--     Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
6
--     F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
7
--     unlimited rights in the software and documentation contained herein.
8
--     Unlimited rights are defined in DFAR 252.227-7013(a)(19).  By making
9
--     this public release, the Government intends to confer upon all
10
--     recipients unlimited rights  equal to those held by the Government.
11
--     These rights include rights to use, duplicate, release or disclose the
12
--     released technical data and computer software in whole or in part, in
13
--     any manner and for any purpose whatsoever, and to have or permit others
14
--     to do so.
15
--
16
--                                    DISCLAIMER
17
--
18
--     ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
19
--     DISCLOSED ARE AS IS.  THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
20
--     WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
21
--     SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
22
--     OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
23
--     PARTICULAR PURPOSE OF SAID MATERIAL.
24
--*
25
--
26
-- OBJECTIVE:
27
--      Check that the complex SIN and COS functions return
28
--      a result that is within the error bound allowed.
29
--
30
-- TEST DESCRIPTION:
31
--      This test consists of a generic package that is
32
--      instantiated to check complex numbers based upon
33
--      both Float and a long float type.
34
--      The test for each floating point type is divided into
35
--      several parts:
36
--         Special value checks where the result is a known constant.
37
--         Checks that use an identity for determining the result.
38
--
39
-- SPECIAL REQUIREMENTS
40
--      The Strict Mode for the numerical accuracy must be
41
--      selected.  The method by which this mode is selected
42
--      is implementation dependent.
43
--
44
-- APPLICABILITY CRITERIA:
45
--      This test applies only to implementations supporting the
46
--      Numerics Annex.
47
--      This test only applies to the Strict Mode for numerical
48
--      accuracy.
49
--
50
--
51
-- CHANGE HISTORY:
52
--      27 Mar 96   SAIC    Initial release for 2.1
53
--      22 Aug 96   SAIC    No longer skips test for systems with
54
--                          more than 20 digits of precision.
55
--
56
--!
57
 
58
--
59
-- References:
60
--
61
-- W. J. Cody
62
-- CELEFUNT: A Portable Test Package for Complex Elementary Functions
63
-- Algorithm 714, Collected Algorithms from ACM.
64
-- Published in Transactions On Mathematical Software,
65
-- Vol. 19, No. 1, March, 1993, pp. 1-21.
66
--
67
-- CRC Standard Mathematical Tables
68
-- 23rd Edition
69
--
70
 
71
with System;
72
with Report;
73
with Ada.Numerics.Generic_Complex_Types;
74
with Ada.Numerics.Generic_Complex_Elementary_Functions;
75
procedure CXG2021 is
76
   Verbose : constant Boolean := False;
77
   -- Note that Max_Samples is the number of samples taken in
78
   -- both the real and imaginary directions.  Thus, for Max_Samples
79
   -- of 100 the number of values checked is 10000.
80
   Max_Samples : constant := 100;
81
 
82
   E  : constant := Ada.Numerics.E;
83
   Pi : constant := Ada.Numerics.Pi;
84
 
85
   generic
86
      type Real is digits <>;
87
   package Generic_Check is
88
      procedure Do_Test;
89
   end Generic_Check;
90
 
91
   package body Generic_Check is
92
      package Complex_Type is new
93
           Ada.Numerics.Generic_Complex_Types (Real);
94
      use Complex_Type;
95
 
96
      package CEF is new
97
           Ada.Numerics.Generic_Complex_Elementary_Functions (Complex_Type);
98
 
99
      function Sin (X : Complex) return Complex renames CEF.Sin;
100
      function Cos (X : Complex) return Complex renames CEF.Cos;
101
 
102
      -- flag used to terminate some tests early
103
      Accuracy_Error_Reported : Boolean := False;
104
 
105
      -- The following value is a lower bound on the accuracy
106
      -- required.  It is normally 0.0 so that the lower bound
107
      -- is computed from Model_Epsilon.  However, for tests
108
      -- where the expected result is only known to a certain
109
      -- amount of precision this bound takes on a non-zero
110
      -- value to account for that level of precision.
111
      Error_Low_Bound : Real := 0.0;
112
 
113
      -- the E_Factor is an additional amount added to the Expected
114
      -- value prior to computing the maximum relative error.
115
      -- This is needed because the error analysis (Cody pg 17-20)
116
      -- requires this additional allowance.
117
      procedure Check (Actual, Expected : Real;
118
                       Test_Name : String;
119
                       MRE : Real;
120
                       E_Factor : Real := 0.0) is
121
         Max_Error : Real;
122
         Rel_Error : Real;
123
         Abs_Error : Real;
124
      begin
125
         -- In the case where the expected result is very small or 0
126
         -- we compute the maximum error as a multiple of Model_Epsilon instead
127
         -- of Model_Epsilon and Expected.
128
         Rel_Error := MRE * Real'Model_Epsilon * (abs Expected + E_Factor);
129
         Abs_Error := MRE * Real'Model_Epsilon;
130
         if Rel_Error > Abs_Error then
131
            Max_Error := Rel_Error;
132
         else
133
            Max_Error := Abs_Error;
134
         end if;
135
 
136
         -- take into account the low bound on the error
137
         if Max_Error < Error_Low_Bound then
138
            Max_Error := Error_Low_Bound;
139
         end if;
140
 
141
         if abs (Actual - Expected) > Max_Error then
142
            Accuracy_Error_Reported := True;
143
            Report.Failed (Test_Name &
144
                           " actual: " & Real'Image (Actual) &
145
                           " expected: " & Real'Image (Expected) &
146
                           " difference: " & Real'Image (Actual - Expected) &
147
                           " max err:" & Real'Image (Max_Error) &
148
                           " efactor:" & Real'Image (E_Factor) );
149
         elsif Verbose then
150
            if Actual = Expected then
151
               Report.Comment (Test_Name & "  exact result");
152
            else
153
               Report.Comment (Test_Name & "  passed" &
154
                           " actual: " & Real'Image (Actual) &
155
                           " expected: " & Real'Image (Expected) &
156
                           " difference: " & Real'Image (Actual - Expected) &
157
                           " max err:" & Real'Image (Max_Error) &
158
                           " efactor:" & Real'Image (E_Factor) );
159
            end if;
160
         end if;
161
      end Check;
162
 
163
 
164
      procedure Check (Actual, Expected : Complex;
165
                       Test_Name : String;
166
                       MRE : Real;
167
                       R_Factor, I_Factor : Real := 0.0) is
168
      begin
169
         Check (Actual.Re, Expected.Re, Test_Name & " real part",
170
                MRE, R_Factor);
171
         Check (Actual.Im, Expected.Im, Test_Name & " imaginary part",
172
                MRE, I_Factor);
173
      end Check;
174
 
175
 
176
      procedure Special_Value_Test is
177
         -- In the following tests the expected result is accurate
178
         -- to the machine precision so the minimum guaranteed error
179
         -- bound can be used if the argument is exact.
180
         -- Since the argument involves Pi, we must allow for this
181
         -- inexact argument.
182
         Minimum_Error : constant := 11.0;
183
      begin
184
         Check (Sin (Pi/2.0 + 0.0*i),
185
                1.0 + 0.0*i,
186
                "sin(pi/2+0i)",
187
                Minimum_Error + 1.0);
188
         Check (Cos (Pi/2.0 + 0.0*i),
189
                0.0 + 0.0*i,
190
                "cos(pi/2+0i)",
191
                Minimum_Error + 1.0);
192
      exception
193
         when Constraint_Error =>
194
            Report.Failed ("Constraint_Error raised in special value test");
195
         when others =>
196
            Report.Failed ("exception in special value test");
197
      end Special_Value_Test;
198
 
199
 
200
 
201
      procedure Exact_Result_Test is
202
         No_Error : constant := 0.0;
203
      begin
204
         -- G.1.2(36);6.0
205
         Check (Sin(0.0 + 0.0*i),  0.0 + 0.0 * i, "sin(0+0i)", No_Error);
206
         Check (Cos(0.0 + 0.0*i),  1.0 + 0.0 * i, "cos(0+0i)", No_Error);
207
      exception
208
         when Constraint_Error =>
209
            Report.Failed ("Constraint_Error raised in Exact_Result Test");
210
         when others =>
211
            Report.Failed ("exception in Exact_Result Test");
212
      end Exact_Result_Test;
213
 
214
 
215
      procedure Identity_Test (RA, RB, IA, IB : Real) is
216
      -- Tests an identity over a range of values specified
217
      -- by the 4 parameters.  RA and RB denote the range for the
218
      -- real part while IA and IB denote the range for the
219
      -- imaginary part.
220
      --
221
      -- For this test we use the identity
222
      --    Sin(Z) = Sin(Z-W) * Cos(W) + Cos(Z-W) * Sin(W)
223
      -- and
224
      --    Cos(Z) = Cos(Z-W) * Cos(W) - Sin(Z-W) * Sin(W)
225
      --
226
 
227
         X, Y : Real;
228
         Z   : Complex;
229
         W : constant Complex := Compose_From_Cartesian(0.0625, 0.0625);
230
         ZmW : Complex;  -- Z - W
231
         Sin_ZmW,
232
         Cos_ZmW : Complex;
233
         Actual1, Actual2 : Complex;
234
         R_Factor : Real;  -- additional real error factor
235
         I_Factor : Real;  -- additional imaginary error factor
236
         Sin_W : constant Complex := (6.2581348413276935585E-2,
237
                                      6.2418588008436587236E-2);
238
         -- numeric stability is enhanced by using Cos(W) - 1.0 instead of
239
         -- Cos(W) in the computation.
240
         Cos_W_m_1 : constant Complex := (-2.5431314180235545803E-6,
241
                                            -3.9062493377261771826E-3);
242
 
243
 
244
      begin
245
         if Real'Digits > 20 then
246
            -- constants used here accurate to 20 digits.  Allow 1
247
            -- additional digit of error for computation.
248
            Error_Low_Bound := 0.00000_00000_00000_0001;
249
            Report.Comment ("accuracy checked to 19 digits");
250
         end if;
251
 
252
         Accuracy_Error_Reported := False;  -- reset
253
         for II in 0..Max_Samples loop
254
            X :=  (RB - RA) * Real (II) / Real (Max_Samples) + RA;
255
            for J in 0..Max_Samples loop
256
               Y :=  (IB - IA) * Real (J) / Real (Max_Samples) + IA;
257
 
258
               Z := Compose_From_Cartesian(X,Y);
259
               ZmW := Z - W;
260
               Sin_ZmW := Sin (ZmW);
261
               Cos_ZmW := Cos (ZmW);
262
 
263
               -- now for the first identity
264
               --    Sin(Z) = Sin(Z-W) * Cos(W) + Cos(Z-W) * Sin(W)
265
               --           = Sin(Z-W) * (1+(Cos(W)-1)) + Cos(Z-W) * Sin(W)
266
               --           = Sin(Z-W) + Sin(Z-W)*(Cos(W)-1) + Cos(Z-W)*Sin(W)
267
 
268
 
269
               Actual1 := Sin (Z);
270
               Actual2 := Sin_ZmW + (Sin_ZmW * Cos_W_m_1 + Cos_ZmW * Sin_W);
271
 
272
               -- The computation of the additional error factors are taken
273
               -- from Cody pages 17-20.
274
 
275
               R_Factor := abs (Re (Sin_ZmW) * Re (1.0 - Cos_W_m_1)) +
276
                           abs (Im (Sin_ZmW) * Im (1.0 - Cos_W_m_1)) +
277
                           abs (Re (Cos_ZmW) * Re (Sin_W)) +
278
                           abs (Re (Cos_ZmW) * Re (1.0 - Cos_W_m_1));
279
 
280
               I_Factor := abs (Re (Sin_ZmW) * Im (1.0 - Cos_W_m_1)) +
281
                           abs (Im (Sin_ZmW) * Re (1.0 - Cos_W_m_1)) +
282
                           abs (Re (Cos_ZmW) * Im (Sin_W)) +
283
                           abs (Im (Cos_ZmW) * Re (1.0 - Cos_W_m_1));
284
 
285
               Check (Actual1, Actual2,
286
                      "Identity_1_Test " & Integer'Image (II) &
287
                         Integer'Image (J) & ": Sin((" &
288
                         Real'Image (Z.Re) & ", " &
289
                         Real'Image (Z.Im) & ")) ",
290
                      11.0, R_Factor, I_Factor);
291
 
292
               -- now for the second identity
293
               --    Cos(Z) = Cos(Z-W) * Cos(W) - Sin(Z-W) * Sin(W)
294
               --           = Cos(Z-W) * (1+(Cos(W)-1) - Sin(Z-W) * Sin(W)
295
               Actual1 := Cos (Z);
296
               Actual2 := Cos_ZmW + (Cos_ZmW * Cos_W_m_1 - Sin_ZmW * Sin_W);
297
 
298
               -- The computation of the additional error factors are taken
299
               -- from Cody pages 17-20.
300
 
301
               R_Factor := abs (Re (Sin_ZmW) * Re (Sin_W)) +
302
                           abs (Im (Sin_ZmW) * Im (Sin_W)) +
303
                           abs (Re (Cos_ZmW) * Re (1.0 - Cos_W_m_1)) +
304
                           abs (Im (Cos_ZmW) * Im (1.0 - Cos_W_m_1));
305
 
306
               I_Factor := abs (Re (Sin_ZmW) * Im (Sin_W)) +
307
                           abs (Im (Sin_ZmW) * Re (Sin_W)) +
308
                           abs (Re (Cos_ZmW) * Im (1.0 - Cos_W_m_1)) +
309
                           abs (Im (Cos_ZmW) * Re (1.0 - Cos_W_m_1));
310
 
311
               Check (Actual1, Actual2,
312
                      "Identity_2_Test " & Integer'Image (II) &
313
                         Integer'Image (J) & ": Cos((" &
314
                         Real'Image (Z.Re) & ", " &
315
                         Real'Image (Z.Im) & ")) ",
316
                      11.0, R_Factor, I_Factor);
317
 
318
               if Accuracy_Error_Reported then
319
                 -- only report the first error in this test in order to keep
320
                 -- lots of failures from producing a huge error log
321
                 Error_Low_Bound := 0.0;  -- reset
322
                 return;
323
               end if;
324
            end loop;
325
         end loop;
326
 
327
         Error_Low_Bound := 0.0;  -- reset
328
      exception
329
         when Constraint_Error =>
330
            Report.Failed
331
               ("Constraint_Error raised in Identity_Test" &
332
                " for Z=(" & Real'Image (X) &
333
                ", " & Real'Image (Y) & ")");
334
         when others =>
335
            Report.Failed ("exception in Identity_Test" &
336
                " for Z=(" & Real'Image (X) &
337
                ", " & Real'Image (Y) & ")");
338
      end Identity_Test;
339
 
340
 
341
      procedure Do_Test is
342
      begin
343
         Special_Value_Test;
344
         Exact_Result_Test;
345
            -- test regions where sin and cos have the same sign and
346
            -- about the same magnitude.  This will minimize subtraction
347
            -- errors in the identities.
348
            -- See Cody page 17.
349
         Identity_Test (0.0625,   10.0,    0.0625,    10.0);
350
         Identity_Test (  16.0,   17.0,      16.0,    17.0);
351
      end Do_Test;
352
   end Generic_Check;
353
 
354
   -----------------------------------------------------------------------
355
   -----------------------------------------------------------------------
356
   package Float_Check is new Generic_Check (Float);
357
 
358
   -- check the floating point type with the most digits
359
   type A_Long_Float is digits System.Max_Digits;
360
   package A_Long_Float_Check is new Generic_Check (A_Long_Float);
361
 
362
   -----------------------------------------------------------------------
363
   -----------------------------------------------------------------------
364
 
365
 
366
begin
367
   Report.Test ("CXG2021",
368
                "Check the accuracy of the complex SIN and COS functions");
369
 
370
   if Verbose then
371
      Report.Comment ("checking Standard.Float");
372
   end if;
373
 
374
   Float_Check.Do_Test;
375
 
376
   if Verbose then
377
      Report.Comment ("checking a digits" &
378
                      Integer'Image (System.Max_Digits) &
379
                      " floating point type");
380
   end if;
381
 
382
   A_Long_Float_Check.Do_Test;
383
 
384
 
385
   Report.Result;
386
end CXG2021;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.