1 |
693 |
jeremybenn |
// { dg-do compile { target powerpc*-*-* ia64-*-* x86_64-*-* } }
|
2 |
|
|
// { dg-options "-O3 -fselective-scheduling2" }
|
3 |
|
|
|
4 |
|
|
namespace std {
|
5 |
|
|
|
6 |
|
|
typedef long unsigned int size_t;
|
7 |
|
|
|
8 |
|
|
template class new_allocator { public: typedef size_t size_type; typedef _Tp* pointer; };
|
9 |
|
|
template class allocator: public new_allocator<_Tp> { public: typedef size_t size_type; template struct rebind { typedef allocator<_Tp1> other; }; };
|
10 |
|
|
|
11 |
|
|
class back_insert_iterator { };
|
12 |
|
|
template back_insert_iterator back_inserter(_Container& __x) { };
|
13 |
|
|
|
14 |
|
|
class vector { };
|
15 |
|
|
|
16 |
|
|
struct _List_node_base { };
|
17 |
|
|
struct _List_node : public _List_node_base { };
|
18 |
|
|
template struct _List_iterator { typedef _List_iterator<_Tp> _Self; typedef _Tp& reference; explicit _List_iterator(_List_node_base* __x) : _M_node(__x) { } reference operator*() const { } _Self& operator++() { } bool operator!=(const _Self& __x) const { return _M_node != __x._M_node; } _List_node_base* _M_node; };
|
19 |
|
|
template class _List_base { protected: typedef typename _Alloc::template rebind<_List_node >::other _Node_alloc_type; struct _List_impl : public _Node_alloc_type { _List_node_base _M_node; }; _List_impl _M_impl; };
|
20 |
|
|
template > class list : protected _List_base<_Tp, _Alloc> { public: typedef _Tp value_type; typedef _List_iterator<_Tp> iterator; iterator begin() { } iterator end() { return iterator(&this->_M_impl._M_node); } };
|
21 |
|
|
|
22 |
|
|
namespace tr1 { template struct array { typedef _Tp value_type; typedef const value_type& const_reference; typedef const value_type* const_iterator; typedef size_t size_type; value_type _M_instance[_Nm ? _Nm : 1]; const_iterator begin() const { return const_iterator(&_M_instance[0]); } const_reference operator[](size_type __n) const { return _M_instance[__n]; } }; }
|
23 |
|
|
}
|
24 |
|
|
|
25 |
|
|
namespace X {
|
26 |
|
|
|
27 |
|
|
class Object { };
|
28 |
|
|
struct Has_qrt { };
|
29 |
|
|
template struct qrt_or_not { typedef const typename F::result_type & type; };
|
30 |
|
|
template struct Qualified_result_of : qrt_or_not { };
|
31 |
|
|
|
32 |
|
|
using std::tr1::array;
|
33 |
|
|
|
34 |
|
|
template class Point_2 : public R_::Kernel_base::Point_2 {
|
35 |
|
|
public:
|
36 |
|
|
typedef typename R_::Kernel_base::Point_2 RPoint_2;
|
37 |
|
|
typedef RPoint_2 Rep;
|
38 |
|
|
const Rep& rep() const { }
|
39 |
|
|
};
|
40 |
|
|
|
41 |
|
|
template class Vector_2 : public R_::Kernel_base::Vector_2 {
|
42 |
|
|
public:
|
43 |
|
|
typedef typename R_::Kernel_base::Vector_2 RVector_2;
|
44 |
|
|
typedef RVector_2 Rep;
|
45 |
|
|
const Rep& rep() const { return *this; }
|
46 |
|
|
typedef R_ R;
|
47 |
|
|
typename Qualified_result_of::type x() const { return R().compute_x_2_object()(*this); }
|
48 |
|
|
typename Qualified_result_of::type y() const { return R().compute_y_2_object()(*this); }
|
49 |
|
|
typename Qualified_result_of::type cartesian(int i) const { return (i==0) ? x() : y(); }
|
50 |
|
|
typename Qualified_result_of::type hx() const { return R().compute_hx_2_object()(*this); }
|
51 |
|
|
typename Qualified_result_of::type hy() const { return R().compute_hy_2_object()(*this); }
|
52 |
|
|
typename Qualified_result_of::type hw() const { return R().compute_hw_2_object()(*this); }
|
53 |
|
|
typename Qualified_result_of::type homogeneous(int i) const { return (i==0) ? hx() : (i==1)? hy() : hw(); }
|
54 |
|
|
};
|
55 |
|
|
|
56 |
|
|
template class Segment_2 : public R_::Kernel_base::Segment_2 { };
|
57 |
|
|
template class Iso_rectangle_2 : public R_::Kernel_base::Iso_rectangle_2 { };
|
58 |
|
|
|
59 |
|
|
template const T& constant() { static const T t(i); return t; }
|
60 |
|
|
template > class Handle_for { struct RefCounted { T t; }; typedef typename Alloc::template rebind::other Allocator; typedef typename Allocator::pointer pointer; pointer ptr_; public: typedef T element_type; const T * Ptr() const { return &(ptr_->t); } };
|
61 |
|
|
template const T& get(const Handle_for &h) { return *(h.Ptr()); }
|
62 |
|
|
|
63 |
|
|
template class PointC2 {
|
64 |
|
|
public:
|
65 |
|
|
typedef typename R_::Vector_2 Vector_2; Vector_2 base;
|
66 |
|
|
typedef typename Vector_2::Cartesian_const_iterator Cartesian_const_iterator; Cartesian_const_iterator cartesian_begin() const { return base.cartesian_begin(); }
|
67 |
|
|
};
|
68 |
|
|
|
69 |
|
|
template class VectorC2 {
|
70 |
|
|
public:
|
71 |
|
|
typedef typename R_::FT FT;
|
72 |
|
|
typedef array Rep;
|
73 |
|
|
typedef typename R_::template Handle::type Base;
|
74 |
|
|
Base base;
|
75 |
|
|
typedef typename Rep::const_iterator Cartesian_const_iterator;
|
76 |
|
|
const FT & x() const { return X::get(base)[0]; }
|
77 |
|
|
const FT & y() const { return X::get(base)[1]; }
|
78 |
|
|
const FT & hx() const { return x(); }
|
79 |
|
|
const FT & hy() const { return y(); }
|
80 |
|
|
const FT & hw() const { return constant(); }
|
81 |
|
|
Cartesian_const_iterator cartesian_begin() const { return X::get(base).begin(); }
|
82 |
|
|
};
|
83 |
|
|
|
84 |
|
|
template class SegmentC2 { };
|
85 |
|
|
template class Iso_rectangleC2 { };
|
86 |
|
|
|
87 |
|
|
namespace internal {
|
88 |
|
|
template class Segment_2_Iso_rectangle_2_pair {
|
89 |
|
|
public:
|
90 |
|
|
enum Intersection_results { NO_INTERSECTION };
|
91 |
|
|
Segment_2_Iso_rectangle_2_pair(typename K::Segment_2 const *seg, typename K::Iso_rectangle_2 const *rect) ;
|
92 |
|
|
Intersection_results intersection_type() const;
|
93 |
|
|
mutable Intersection_results _result;
|
94 |
|
|
typename K::Point_2 _ref_point;
|
95 |
|
|
typename K::Vector_2 _dir;
|
96 |
|
|
typename K::Point_2 _isomin;
|
97 |
|
|
typename K::Point_2 _isomax;
|
98 |
|
|
mutable typename K::FT _min, _max;
|
99 |
|
|
};
|
100 |
|
|
template Object intersection( const typename K::Segment_2 &seg, const typename K::Iso_rectangle_2 &iso, const K&) {
|
101 |
|
|
typedef Segment_2_Iso_rectangle_2_pair is_t; is_t ispair(&seg, &iso); switch (ispair.intersection_type()) { }
|
102 |
|
|
}
|
103 |
|
|
template typename Segment_2_Iso_rectangle_2_pair::Intersection_results Segment_2_Iso_rectangle_2_pair::intersection_type() const {
|
104 |
|
|
typedef typename K::RT RT;
|
105 |
|
|
typedef typename K::FT FT;
|
106 |
|
|
typename K::Construct_cartesian_const_iterator_2 construct_cccit;
|
107 |
|
|
typename K::Cartesian_const_iterator_2 ref_point_it = construct_cccit(_ref_point);
|
108 |
|
|
typename K::Cartesian_const_iterator_2 end = construct_cccit(_ref_point, 0);
|
109 |
|
|
typename K::Cartesian_const_iterator_2 isomin_it = construct_cccit(_isomin);
|
110 |
|
|
typename K::Cartesian_const_iterator_2 isomax_it = construct_cccit(_isomax);
|
111 |
|
|
for (unsigned int i=0; ref_point_it != end; ++i, ++ref_point_it, ++isomin_it, ++isomax_it) {
|
112 |
|
|
if (_dir.homogeneous(i) == RT(0)) {
|
113 |
|
|
if ( *(ref_point_it) <*(isomin_it) ) {
|
114 |
|
|
_result = NO_INTERSECTION;
|
115 |
|
|
}
|
116 |
|
|
if ( *(ref_point_it) > *(isomax_it)) {
|
117 |
|
|
_result = NO_INTERSECTION;
|
118 |
|
|
}
|
119 |
|
|
} else {
|
120 |
|
|
FT newmin, newmax;
|
121 |
|
|
if (_dir.homogeneous(i) > RT(0)) {
|
122 |
|
|
newmin = ( *(isomin_it) - (*ref_point_it)) / _dir.cartesian(i);
|
123 |
|
|
newmax = ( *(isomax_it) - (*ref_point_it)) / _dir.cartesian(i);
|
124 |
|
|
} else {
|
125 |
|
|
newmin = ( (*isomax_it) - (*ref_point_it)) / _dir.cartesian(i);
|
126 |
|
|
newmax = ( (*isomin_it) - (*ref_point_it)) / _dir.cartesian(i);
|
127 |
|
|
}
|
128 |
|
|
if (newmin > _min) _min = newmin;
|
129 |
|
|
if (newmax <_max) _max = newmax;
|
130 |
|
|
if (_max <_min) { return _result; }
|
131 |
|
|
}
|
132 |
|
|
}
|
133 |
|
|
}
|
134 |
|
|
}
|
135 |
|
|
|
136 |
|
|
template Object intersection(const Segment_2 &seg, const Iso_rectangle_2 &iso) { typedef typename K::Intersect_2 Intersect; return Intersect()(seg, iso); }
|
137 |
|
|
|
138 |
|
|
namespace CommonKernelFunctors {
|
139 |
|
|
template class Construct_cartesian_const_iterator_2 {
|
140 |
|
|
typedef typename K::Point_2 Point_2;
|
141 |
|
|
typedef typename K::Cartesian_const_iterator_2 Cartesian_const_iterator_2;
|
142 |
|
|
public:
|
143 |
|
|
typedef Cartesian_const_iterator_2 result_type;
|
144 |
|
|
Cartesian_const_iterator_2 operator()( const Point_2& p) const { return p.rep().cartesian_begin(); }
|
145 |
|
|
Cartesian_const_iterator_2 operator()( const Point_2& p, int) const { }
|
146 |
|
|
};
|
147 |
|
|
template class Intersect_2 {
|
148 |
|
|
typedef typename K::Object_2 Object_2;
|
149 |
|
|
public:
|
150 |
|
|
typedef Object_2 result_type;
|
151 |
|
|
template Object_2 operator()(const T1& t1, const T2& t2) const { return internal::intersection(t1, t2, K()); }
|
152 |
|
|
};
|
153 |
|
|
}
|
154 |
|
|
|
155 |
|
|
namespace CartesianKernelFunctors {
|
156 |
|
|
using namespace CommonKernelFunctors;
|
157 |
|
|
template class Compute_x_2 : Has_qrt {
|
158 |
|
|
typedef typename K::FT FT;
|
159 |
|
|
typedef typename K::Vector_2 Vector_2;
|
160 |
|
|
public:
|
161 |
|
|
typedef FT result_type;
|
162 |
|
|
const result_type & operator()(const Vector_2& v) const { return v.rep().x(); }
|
163 |
|
|
};
|
164 |
|
|
template class Compute_y_2 : Has_qrt {
|
165 |
|
|
typedef typename K::FT FT;
|
166 |
|
|
typedef typename K::Vector_2 Vector_2;
|
167 |
|
|
public:
|
168 |
|
|
typedef FT result_type;
|
169 |
|
|
const result_type & operator()(const Vector_2& v) const { return v.rep().y(); }
|
170 |
|
|
};
|
171 |
|
|
template class Compute_hx_2 : public Has_qrt {
|
172 |
|
|
typedef typename K::FT FT;
|
173 |
|
|
typedef typename K::Vector_2 Vector_2;
|
174 |
|
|
public:
|
175 |
|
|
typedef FT result_type;
|
176 |
|
|
const result_type & operator()(const Vector_2& v) const { return v.rep().hx(); }
|
177 |
|
|
};
|
178 |
|
|
template class Compute_hy_2 : public Has_qrt {
|
179 |
|
|
typedef typename K::FT FT;
|
180 |
|
|
typedef typename K::Vector_2 Vector_2;
|
181 |
|
|
public:
|
182 |
|
|
typedef FT result_type;
|
183 |
|
|
const result_type & operator()(const Vector_2& v) const { return v.rep().hy(); }
|
184 |
|
|
};
|
185 |
|
|
template class Compute_hw_2 : public Has_qrt {
|
186 |
|
|
typedef typename K::FT FT;
|
187 |
|
|
typedef typename K::Vector_2 Vector_2;
|
188 |
|
|
public:
|
189 |
|
|
typedef FT result_type;
|
190 |
|
|
const result_type & operator()(const Vector_2& v) const { return v.rep().hw(); }
|
191 |
|
|
};
|
192 |
|
|
}
|
193 |
|
|
|
194 |
|
|
template struct Cartesian_base {
|
195 |
|
|
typedef K_ Kernel;
|
196 |
|
|
typedef X::Object Object_2;
|
197 |
|
|
typedef PointC2 Point_2;
|
198 |
|
|
typedef VectorC2 Vector_2;
|
199 |
|
|
typedef SegmentC2 Segment_2;
|
200 |
|
|
typedef Iso_rectangleC2 Iso_rectangle_2;
|
201 |
|
|
typedef typename array::const_iterator Cartesian_const_iterator_2;
|
202 |
|
|
};
|
203 |
|
|
|
204 |
|
|
template struct Type_equality_wrapper : public K_base {
|
205 |
|
|
typedef K_base Kernel_base;
|
206 |
|
|
typedef X::Point_2 Point_2;
|
207 |
|
|
typedef X::Vector_2 Vector_2;
|
208 |
|
|
typedef X::Segment_2 Segment_2;
|
209 |
|
|
typedef X::Iso_rectangle_2 Iso_rectangle_2;
|
210 |
|
|
};
|
211 |
|
|
|
212 |
|
|
template struct Cartesian_base_ref_count : public Cartesian_base {
|
213 |
|
|
typedef FT_ RT;
|
214 |
|
|
typedef FT_ FT;
|
215 |
|
|
template struct Handle { typedef Handle_for type; };
|
216 |
|
|
typedef Kernel_ K;
|
217 |
|
|
typedef CartesianKernelFunctors::Compute_x_2 Compute_x_2;
|
218 |
|
|
Compute_x_2 compute_x_2_object() const { }
|
219 |
|
|
typedef CartesianKernelFunctors::Compute_y_2 Compute_y_2;
|
220 |
|
|
Compute_y_2 compute_y_2_object() const { }
|
221 |
|
|
typedef CartesianKernelFunctors::Compute_hx_2 Compute_hx_2;
|
222 |
|
|
Compute_hx_2 compute_hx_2_object() const { }
|
223 |
|
|
typedef CartesianKernelFunctors::Compute_hy_2 Compute_hy_2;
|
224 |
|
|
Compute_hy_2 compute_hy_2_object() const { }
|
225 |
|
|
typedef CartesianKernelFunctors::Compute_hw_2 Compute_hw_2;
|
226 |
|
|
Compute_hw_2 compute_hw_2_object() const { }
|
227 |
|
|
typedef CartesianKernelFunctors::Construct_cartesian_const_iterator_2 Construct_cartesian_const_iterator_2;
|
228 |
|
|
typedef CartesianKernelFunctors::Intersect_2 Intersect_2;
|
229 |
|
|
};
|
230 |
|
|
|
231 |
|
|
template struct Cartesian : public Type_equality_wrapper >, Cartesian > { };
|
232 |
|
|
|
233 |
|
|
template class Ipelet_base {
|
234 |
|
|
public:
|
235 |
|
|
typedef typename X::Point_2 Point_2;
|
236 |
|
|
typedef typename Kernel::Segment_2 Segment_2;
|
237 |
|
|
typedef typename Kernel::Iso_rectangle_2 Iso_rectangle_2;
|
238 |
|
|
|
239 |
|
|
Iso_rectangle_2 read_active_objects () const { }
|
240 |
|
|
struct Voronoi_from_tri{ std::list seg_list; };
|
241 |
|
|
|
242 |
|
|
template bool cast_into_seg(const T& obj,const Iso_rectangle_2& bbox,output_iterator out_it) const{ X::intersection(obj,bbox); }
|
243 |
|
|
template void cast_into_seg(const iterator first,const iterator end, const Iso_rectangle_2& bbox, output_iterator out_it) const { for (iterator it=first; it!=end; ++it) cast_into_seg(*it,bbox,out_it); }
|
244 |
|
|
void draw_dual_(Voronoi_from_tri& v_recup,const Iso_rectangle_2& bbox) const { std::vector seg_cont; cast_into_seg(v_recup.seg_list.begin(),v_recup.seg_list.end(),bbox,std::back_inserter(seg_cont)); }
|
245 |
|
|
void draw_dual_in_ipe(const Iso_rectangle_2& bbox) const { Voronoi_from_tri v_recup; draw_dual_(v_recup,bbox); }
|
246 |
|
|
};
|
247 |
|
|
|
248 |
|
|
typedef X::Cartesian Kernel;
|
249 |
|
|
|
250 |
|
|
class diagrammeIpelet : public X::Ipelet_base { void protected_run(); };
|
251 |
|
|
void diagrammeIpelet::protected_run() { Iso_rectangle_2 bbox = read_active_objects( ); draw_dual_in_ipe(bbox); }
|
252 |
|
|
|
253 |
|
|
}
|