1 |
694 |
jeremybenn |
! { dg-do compile }
|
2 |
|
|
! { dg-options "-O -fbounds-check -w" }
|
3 |
|
|
MODULE kinds
|
4 |
|
|
INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND ( 14, 200 )
|
5 |
|
|
INTEGER, DIMENSION(:), ALLOCATABLE :: nco,ncoset,nso,nsoset
|
6 |
|
|
INTEGER, DIMENSION(:,:,:), ALLOCATABLE :: co,coset
|
7 |
|
|
END MODULE kinds
|
8 |
|
|
MODULE ai_moments
|
9 |
|
|
USE kinds
|
10 |
|
|
CONTAINS
|
11 |
|
|
SUBROUTINE cossin(la_max,npgfa,zeta,rpgfa,la_min,&
|
12 |
|
|
lb_max,npgfb,zetb,rpgfb,lb_min,&
|
13 |
|
|
rac,rbc,kvec,cosab,sinab)
|
14 |
|
|
REAL(KIND=dp), DIMENSION(ncoset(la_max),&
|
15 |
|
|
ncoset(lb_max)) :: sc, ss
|
16 |
|
|
DO ipgf=1,npgfa
|
17 |
|
|
DO jpgf=1,npgfb
|
18 |
|
|
IF (la_max > 0) THEN
|
19 |
|
|
DO la=2,la_max
|
20 |
|
|
DO ax=2,la
|
21 |
|
|
DO ay=0,la-ax
|
22 |
|
|
sc(coset(ax,ay,az),1) = rap(1)*sc(coset(ax-1,ay,az),1) +&
|
23 |
|
|
f2 * kvec(1)*ss(coset(ax-1,ay,az),1)
|
24 |
|
|
ss(coset(ax,ay,az),1) = rap(1)*ss(coset(ax-1,ay,az),1) +&
|
25 |
|
|
f2 * kvec(1)*sc(coset(ax-1,ay,az),1)
|
26 |
|
|
END DO
|
27 |
|
|
END DO
|
28 |
|
|
END DO
|
29 |
|
|
IF (lb_max > 0) THEN
|
30 |
|
|
DO lb=2,lb_max
|
31 |
|
|
ss(1,coset(0,0,lb)) = rbp(3)*ss(1,coset(0,0,lb-1)) +&
|
32 |
|
|
f2 * kvec(3)*sc(1,coset(0,0,lb-1))
|
33 |
|
|
DO bx=2,lb
|
34 |
|
|
DO by=0,lb-bx
|
35 |
|
|
ss(1,coset(bx,by,bz)) = rbp(1)*ss(1,coset(bx-1,by,bz)) +&
|
36 |
|
|
f2 * kvec(1)*sc(1,coset(bx-1,by,bz))
|
37 |
|
|
END DO
|
38 |
|
|
END DO
|
39 |
|
|
END DO
|
40 |
|
|
END IF
|
41 |
|
|
END IF
|
42 |
|
|
DO j=ncoset(lb_min-1)+1,ncoset(lb_max)
|
43 |
|
|
END DO
|
44 |
|
|
END DO
|
45 |
|
|
END DO
|
46 |
|
|
END SUBROUTINE cossin
|
47 |
|
|
SUBROUTINE moment(la_max,npgfa,zeta,rpgfa,la_min,&
|
48 |
|
|
lb_max,npgfb,zetb,rpgfb,&
|
49 |
|
|
lc_max,rac,rbc,mab)
|
50 |
|
|
REAL(KIND=dp), DIMENSION(:), INTENT(IN) :: zeta, rpgfa
|
51 |
|
|
REAL(KIND=dp), DIMENSION(:), INTENT(IN) :: zetb, rpgfb
|
52 |
|
|
REAL(KIND=dp), DIMENSION(:, :, :), &
|
53 |
|
|
INTENT(INOUT) :: mab
|
54 |
|
|
REAL(KIND=dp), DIMENSION(3) :: rab, rap, rbp, rpc
|
55 |
|
|
REAL(KIND=dp), DIMENSION(ncoset(la_max),&
|
56 |
|
|
ncoset(lb_max), ncoset(lc_max)) :: s
|
57 |
|
|
DO ipgf=1,npgfa
|
58 |
|
|
DO jpgf=1,npgfb
|
59 |
|
|
IF (rpgfa(ipgf) + rpgfb(jpgf) < dab) THEN
|
60 |
|
|
DO k=1, ncoset(lc_max)-1
|
61 |
|
|
DO j=nb+1,nb+ncoset(lb_max)
|
62 |
|
|
DO i=na+1,na+ncoset(la_max)
|
63 |
|
|
mab(i,j,k) = 0.0_dp
|
64 |
|
|
END DO
|
65 |
|
|
END DO
|
66 |
|
|
END DO
|
67 |
|
|
END IF
|
68 |
|
|
rpc = zetp*(zeta(ipgf)*rac+zetb(jpgf)*rbc)
|
69 |
|
|
DO l=2, ncoset(lc_max)
|
70 |
|
|
lx = indco(1,l)
|
71 |
|
|
l2 = 0
|
72 |
|
|
IF ( lz > 0 ) THEN
|
73 |
|
|
IF ( lz > 1 ) l2 = coset(lx,ly,lz-2)
|
74 |
|
|
ELSE IF ( ly > 0 ) THEN
|
75 |
|
|
IF ( ly > 1 ) l2 = coset(lx,ly-2,lz)
|
76 |
|
|
IF ( lx > 1 ) l2 = coset(lx-2,ly,lz)
|
77 |
|
|
END IF
|
78 |
|
|
s(1,1,l) = rpc(i)*s(1,1,l1)
|
79 |
|
|
IF ( l2 > 0 ) s(1,1,l) = s(1,1,l) + f2*REAL(ni,dp)*s(1,1,l2)
|
80 |
|
|
END DO
|
81 |
|
|
DO l = 1, ncoset(lc_max)
|
82 |
|
|
IF ( lx > 0 ) THEN
|
83 |
|
|
lx1 = coset(lx-1,ly,lz)
|
84 |
|
|
END IF
|
85 |
|
|
IF ( ly > 0 ) THEN
|
86 |
|
|
ly1 = coset(lx,ly-1,lz)
|
87 |
|
|
END IF
|
88 |
|
|
IF (la_max > 0) THEN
|
89 |
|
|
DO la=2,la_max
|
90 |
|
|
IF ( lz1 > 0 ) s(coset(0,0,la),1,l) = s(coset(0,0,la),1,l) + &
|
91 |
|
|
f2z*s(coset(0,0,la-1),1,lz1)
|
92 |
|
|
IF ( ly1 > 0 ) s(coset(0,1,az),1,l) = s(coset(0,1,az),1,l) + &
|
93 |
|
|
f2y*s(coset(0,0,az),1,ly1)
|
94 |
|
|
DO ay=2,la
|
95 |
|
|
s(coset(0,ay,az),1,l) = rap(2)*s(coset(0,ay-1,az),1,l) +&
|
96 |
|
|
f2*REAL(ay-1,dp)*s(coset(0,ay-2,az),1,l)
|
97 |
|
|
IF ( ly1 > 0 ) s(coset(0,ay,az),1,l) = s(coset(0,ay,az),1,l) + &
|
98 |
|
|
f2y*s(coset(0,ay-1,az),1,ly1)
|
99 |
|
|
END DO
|
100 |
|
|
DO ay=0,la-1
|
101 |
|
|
IF ( lx1 > 0 ) s(coset(1,ay,az),1,l) = s(coset(1,ay,az),1,l) + &
|
102 |
|
|
f2x*s(coset(0,ay,az),1,lx1)
|
103 |
|
|
END DO
|
104 |
|
|
DO ax=2,la
|
105 |
|
|
DO ay=0,la-ax
|
106 |
|
|
s(coset(ax,ay,az),1,l) = rap(1)*s(coset(ax-1,ay,az),1,l) +&
|
107 |
|
|
f3*s(coset(ax-2,ay,az),1,l)
|
108 |
|
|
IF ( lx1 > 0 ) s(coset(ax,ay,az),1,l) = s(coset(ax,ay,az),1,l) + &
|
109 |
|
|
f2x*s(coset(ax-1,ay,az),1,lx1)
|
110 |
|
|
END DO
|
111 |
|
|
END DO
|
112 |
|
|
END DO
|
113 |
|
|
IF (lb_max > 0) THEN
|
114 |
|
|
DO j=2,ncoset(lb_max)
|
115 |
|
|
DO i=1,ncoset(la_max)
|
116 |
|
|
s(i,j,l) = 0.0_dp
|
117 |
|
|
END DO
|
118 |
|
|
END DO
|
119 |
|
|
DO la=la_start,la_max-1
|
120 |
|
|
DO ax=0,la
|
121 |
|
|
DO ay=0,la-ax
|
122 |
|
|
s(coset(ax,ay,az),2,l) = s(coset(ax+1,ay,az),1,l) -&
|
123 |
|
|
rab(1)*s(coset(ax,ay,az),1,l)
|
124 |
|
|
s(coset(ax,ay,az),4,l) = s(coset(ax,ay,az+1),1,l) -&
|
125 |
|
|
rab(3)*s(coset(ax,ay,az),1,l)
|
126 |
|
|
END DO
|
127 |
|
|
END DO
|
128 |
|
|
END DO
|
129 |
|
|
DO ax=0,la_max
|
130 |
|
|
DO ay=0,la_max-ax
|
131 |
|
|
IF (ax == 0) THEN
|
132 |
|
|
s(coset(ax,ay,az),2,l) = rbp(1)*s(coset(ax,ay,az),1,l)
|
133 |
|
|
ELSE
|
134 |
|
|
s(coset(ax,ay,az),2,l) = rbp(1)*s(coset(ax,ay,az),1,l) +&
|
135 |
|
|
fx*s(coset(ax-1,ay,az),1,l)
|
136 |
|
|
END IF
|
137 |
|
|
IF (lx1 > 0) s(coset(ax,ay,az),2,l) = s(coset(ax,ay,az),2,l) +&
|
138 |
|
|
f2x*s(coset(ax,ay,az),1,lx1)
|
139 |
|
|
IF (ay == 0) THEN
|
140 |
|
|
s(coset(ax,ay,az),3,l) = rbp(2)*s(coset(ax,ay,az),1,l)
|
141 |
|
|
ELSE
|
142 |
|
|
s(coset(ax,ay,az),3,l) = rbp(2)*s(coset(ax,ay,az),1,l) +&
|
143 |
|
|
fy*s(coset(ax,ay-1,az),1,l)
|
144 |
|
|
END IF
|
145 |
|
|
IF (ly1 > 0) s(coset(ax,ay,az),3,l) = s(coset(ax,ay,az),3,l) +&
|
146 |
|
|
f2y*s(coset(ax,ay,az),1,ly1)
|
147 |
|
|
IF (az == 0) THEN
|
148 |
|
|
s(coset(ax,ay,az),4,l) = rbp(3)*s(coset(ax,ay,az),1,l)
|
149 |
|
|
ELSE
|
150 |
|
|
s(coset(ax,ay,az),4,l) = rbp(3)*s(coset(ax,ay,az),1,l) +&
|
151 |
|
|
fz*s(coset(ax,ay,az-1),1,l)
|
152 |
|
|
END IF
|
153 |
|
|
IF (lz1 > 0) s(coset(ax,ay,az),4,l) = s(coset(ax,ay,az),4,l) +&
|
154 |
|
|
f2z*s(coset(ax,ay,az),1,lz1)
|
155 |
|
|
END DO
|
156 |
|
|
END DO
|
157 |
|
|
DO lb=2,lb_max
|
158 |
|
|
DO la=la_start,la_max-1
|
159 |
|
|
DO ax=0,la
|
160 |
|
|
DO ay=0,la-ax
|
161 |
|
|
s(coset(ax,ay,az),coset(0,0,lb),l) =&
|
162 |
|
|
rab(3)*s(coset(ax,ay,az),coset(0,0,lb-1),l)
|
163 |
|
|
DO bx=1,lb
|
164 |
|
|
DO by=0,lb-bx
|
165 |
|
|
s(coset(ax,ay,az),coset(bx,by,bz),l) =&
|
166 |
|
|
rab(1)*s(coset(ax,ay,az),coset(bx-1,by,bz),l)
|
167 |
|
|
END DO
|
168 |
|
|
END DO
|
169 |
|
|
END DO
|
170 |
|
|
END DO
|
171 |
|
|
END DO
|
172 |
|
|
DO ax=0,la_max
|
173 |
|
|
DO ay=0,la_max-ax
|
174 |
|
|
IF (az == 0) THEN
|
175 |
|
|
s(coset(ax,ay,az),coset(0,0,lb),l) =&
|
176 |
|
|
rbp(3)*s(coset(ax,ay,az),coset(0,0,lb-1),l) +&
|
177 |
|
|
f3*s(coset(ax,ay,az),coset(0,0,lb-2),l)
|
178 |
|
|
END IF
|
179 |
|
|
IF (lz1 > 0) s(coset(ax,ay,az),coset(0,0,lb),l) =&
|
180 |
|
|
f2z*s(coset(ax,ay,az),coset(0,0,lb-1),lz1)
|
181 |
|
|
IF (ay == 0) THEN
|
182 |
|
|
IF (ly1 > 0) s(coset(ax,ay,az),coset(0,1,bz),l) =&
|
183 |
|
|
f2y*s(coset(ax,ay,az),coset(0,0,bz),ly1)
|
184 |
|
|
DO by=2,lb
|
185 |
|
|
s(coset(ax,ay,az),coset(0,by,bz),l) =&
|
186 |
|
|
f3*s(coset(ax,ay,az),coset(0,by-2,bz),l)
|
187 |
|
|
IF (ly1 > 0) s(coset(ax,ay,az),coset(0,by,bz),l) =&
|
188 |
|
|
f2y*s(coset(ax,ay,az),coset(0,by-1,bz),ly1)
|
189 |
|
|
END DO
|
190 |
|
|
s(coset(ax,ay,az),coset(0,1,bz),l) =&
|
191 |
|
|
fy*s(coset(ax,ay-1,az),coset(0,0,bz),l)
|
192 |
|
|
END IF
|
193 |
|
|
IF (ax == 0) THEN
|
194 |
|
|
DO by=0,lb-1
|
195 |
|
|
IF (lx1 > 0) s(coset(ax,ay,az),coset(1,by,bz),l) =&
|
196 |
|
|
f2x*s(coset(ax,ay,az),coset(0,by,bz),lx1)
|
197 |
|
|
END DO
|
198 |
|
|
DO bx=2,lb
|
199 |
|
|
DO by=0,lb-bx
|
200 |
|
|
s(coset(ax,ay,az),coset(bx,by,bz),l) =&
|
201 |
|
|
f3*s(coset(ax,ay,az),coset(bx-2,by,bz),l)
|
202 |
|
|
IF (lx1 > 0) s(coset(ax,ay,az),coset(bx,by,bz),l) =&
|
203 |
|
|
f2x*s(coset(ax,ay,az),coset(bx-1,by,bz),lx1)
|
204 |
|
|
END DO
|
205 |
|
|
END DO
|
206 |
|
|
DO by=0,lb-1
|
207 |
|
|
IF (lx1 > 0) s(coset(ax,ay,az),coset(1,by,bz),l) =&
|
208 |
|
|
f2x*s(coset(ax,ay,az),coset(0,by,bz),lx1)
|
209 |
|
|
END DO
|
210 |
|
|
DO bx=2,lb
|
211 |
|
|
DO by=0,lb-bx
|
212 |
|
|
s(coset(ax,ay,az),coset(bx,by,bz),l) =&
|
213 |
|
|
f3*s(coset(ax,ay,az),coset(bx-2,by,bz),l)
|
214 |
|
|
IF (lx1 > 0) s(coset(ax,ay,az),coset(bx,by,bz),l) =&
|
215 |
|
|
f2x*s(coset(ax,ay,az),coset(bx-1,by,bz),lx1)
|
216 |
|
|
END DO
|
217 |
|
|
END DO
|
218 |
|
|
END IF
|
219 |
|
|
END DO
|
220 |
|
|
END DO
|
221 |
|
|
END DO
|
222 |
|
|
END IF
|
223 |
|
|
IF (lb_max > 0) THEN
|
224 |
|
|
DO lb=2,lb_max
|
225 |
|
|
IF (lz1 > 0) s(1,coset(0,0,lb),l) = s(1,coset(0,0,lb),l) +&
|
226 |
|
|
f2z*s(1,coset(0,0,lb-1),lz1)
|
227 |
|
|
IF (ly1 > 0) s(1,coset(0,1,bz),l) = s(1,coset(0,1,bz),l) +&
|
228 |
|
|
f2y*s(1,coset(0,0,bz),ly1)
|
229 |
|
|
DO by=2,lb
|
230 |
|
|
s(1,coset(0,by,bz),l) = rbp(2)*s(1,coset(0,by-1,bz),l) +&
|
231 |
|
|
f2*REAL(by-1,dp)*s(1,coset(0,by-2,bz),l)
|
232 |
|
|
IF (lx1 > 0) s(1,coset(1,by,bz),l) = s(1,coset(1,by,bz),l) +&
|
233 |
|
|
f2x*s(1,coset(0,by,bz),lx1)
|
234 |
|
|
END DO
|
235 |
|
|
DO bx=2,lb
|
236 |
|
|
DO by=0,lb-bx
|
237 |
|
|
IF (lx1 > 0) s(1,coset(bx,by,bz),l) = s(1,coset(bx,by,bz),l) +&
|
238 |
|
|
f2x*s(1,coset(bx-1,by,bz),lx1)
|
239 |
|
|
END DO
|
240 |
|
|
END DO
|
241 |
|
|
END DO
|
242 |
|
|
END IF
|
243 |
|
|
END IF
|
244 |
|
|
END DO
|
245 |
|
|
DO k=2,ncoset(lc_max)
|
246 |
|
|
DO j=1,ncoset(lb_max)
|
247 |
|
|
END DO
|
248 |
|
|
END DO
|
249 |
|
|
END DO
|
250 |
|
|
END DO
|
251 |
|
|
END SUBROUTINE moment
|
252 |
|
|
SUBROUTINE diff_momop(la_max,npgfa,zeta,rpgfa,la_min,&
|
253 |
|
|
order,rac,rbc,difmab,mab_ext)
|
254 |
|
|
REAL(KIND=dp), DIMENSION(:, :, :), &
|
255 |
|
|
OPTIONAL, POINTER :: mab_ext
|
256 |
|
|
REAL(KIND=dp), ALLOCATABLE, &
|
257 |
|
|
DIMENSION(:, :, :) :: difmab_tmp
|
258 |
|
|
DO imom = 1,ncoset(order)-1
|
259 |
|
|
CALL adbdr(la_max,npgfa,rpgfa,la_min,&
|
260 |
|
|
difmab_tmp(:,:,2), difmab_tmp(:,:,3))
|
261 |
|
|
END DO
|
262 |
|
|
END SUBROUTINE diff_momop
|
263 |
|
|
END MODULE ai_moments
|
264 |
|
|
! { dg-final { cleanup-modules "kinds ai_moments" } }
|