OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [testsuite/] [lib/] [target-supports.exp] - Blame information for rev 701

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 701 jeremybenn
#   Copyright (C) 1999, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
2
#   2011, 2012 Free Software Foundation, Inc.
3
 
4
# This program is free software; you can redistribute it and/or modify
5
# it under the terms of the GNU General Public License as published by
6
# the Free Software Foundation; either version 3 of the License, or
7
# (at your option) any later version.
8
#
9
# This program is distributed in the hope that it will be useful,
10
# but WITHOUT ANY WARRANTY; without even the implied warranty of
11
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12
# GNU General Public License for more details.
13
#
14
# You should have received a copy of the GNU General Public License
15
# along with GCC; see the file COPYING3.  If not see
16
# .
17
 
18
# Please email any bugs, comments, and/or additions to this file to:
19
# gcc-patches@gcc.gnu.org
20
 
21
# This file defines procs for determining features supported by the target.
22
 
23
# Try to compile the code given by CONTENTS into an output file of
24
# type TYPE, where TYPE is as for target_compile.  Return a list
25
# whose first element contains the compiler messages and whose
26
# second element is the name of the output file.
27
#
28
# BASENAME is a prefix to use for source and output files.
29
# If ARGS is not empty, its first element is a string that
30
# should be added to the command line.
31
#
32
# Assume by default that CONTENTS is C code.
33
# Otherwise, code should contain:
34
# "// C++" for c++,
35
# "! Fortran" for Fortran code,
36
# "/* ObjC", for ObjC
37
# "// ObjC++" for ObjC++
38
# and "// Go" for Go
39
# If the tool is ObjC/ObjC++ then we overide the extension to .m/.mm to
40
# allow for ObjC/ObjC++ specific flags.
41
proc check_compile {basename type contents args} {
42
    global tool
43
    verbose "check_compile tool: $tool for $basename"
44
 
45
    if { [llength $args] > 0 } {
46
        set options [list "additional_flags=[lindex $args 0]"]
47
    } else {
48
        set options ""
49
    }
50
    switch -glob -- $contents {
51
        "*! Fortran*" { set src ${basename}[pid].f90 }
52
        "*// C++*" { set src ${basename}[pid].cc }
53
        "*// ObjC++*" { set src ${basename}[pid].mm }
54
        "*/* ObjC*" { set src ${basename}[pid].m }
55
        "*// Go*" { set src ${basename}[pid].go }
56
        default {
57
            switch -- $tool {
58
                "objc" { set src ${basename}[pid].m }
59
                "obj-c++" { set src ${basename}[pid].mm }
60
                default { set src ${basename}[pid].c }
61
            }
62
        }
63
    }
64
 
65
    set compile_type $type
66
    switch -glob $type {
67
        assembly { set output ${basename}[pid].s }
68
        object { set output ${basename}[pid].o }
69
        executable { set output ${basename}[pid].exe }
70
        "rtl-*" {
71
            set output ${basename}[pid].s
72
            lappend options "additional_flags=-fdump-$type"
73
            set compile_type assembly
74
        }
75
    }
76
    set f [open $src "w"]
77
    puts $f $contents
78
    close $f
79
    set lines [${tool}_target_compile $src $output $compile_type "$options"]
80
    file delete $src
81
 
82
    set scan_output $output
83
    # Don't try folding this into the switch above; calling "glob" before the
84
    # file is created won't work.
85
    if [regexp "rtl-(.*)" $type dummy rtl_type] {
86
        set scan_output "[glob $src.\[0-9\]\[0-9\]\[0-9\]r.$rtl_type]"
87
        file delete $output
88
    }
89
 
90
    return [list $lines $scan_output]
91
}
92
 
93
proc current_target_name { } {
94
    global target_info
95
    if [info exists target_info(target,name)] {
96
        set answer $target_info(target,name)
97
    } else {
98
        set answer ""
99
    }
100
    return $answer
101
}
102
 
103
# Implement an effective-target check for property PROP by invoking
104
# the Tcl command ARGS and seeing if it returns true.
105
 
106
proc check_cached_effective_target { prop args } {
107
    global et_cache
108
 
109
    set target [current_target_name]
110
    if {![info exists et_cache($prop,target)]
111
        || $et_cache($prop,target) != $target} {
112
        verbose "check_cached_effective_target $prop: checking $target" 2
113
        set et_cache($prop,target) $target
114
        set et_cache($prop,value) [uplevel eval $args]
115
    }
116
    set value $et_cache($prop,value)
117
    verbose "check_cached_effective_target $prop: returning $value for $target" 2
118
    return $value
119
}
120
 
121
# Like check_compile, but delete the output file and return true if the
122
# compiler printed no messages.
123
proc check_no_compiler_messages_nocache {args} {
124
    set result [eval check_compile $args]
125
    set lines [lindex $result 0]
126
    set output [lindex $result 1]
127
    remote_file build delete $output
128
    return [string match "" $lines]
129
}
130
 
131
# Like check_no_compiler_messages_nocache, but cache the result.
132
# PROP is the property we're checking, and doubles as a prefix for
133
# temporary filenames.
134
proc check_no_compiler_messages {prop args} {
135
    return [check_cached_effective_target $prop {
136
        eval [list check_no_compiler_messages_nocache $prop] $args
137
    }]
138
}
139
 
140
# Like check_compile, but return true if the compiler printed no
141
# messages and if the contents of the output file satisfy PATTERN.
142
# If PATTERN has the form "!REGEXP", the contents satisfy it if they
143
# don't match regular expression REGEXP, otherwise they satisfy it
144
# if they do match regular expression PATTERN.  (PATTERN can start
145
# with something like "[!]" if the regular expression needs to match
146
# "!" as the first character.)
147
#
148
# Delete the output file before returning.  The other arguments are
149
# as for check_compile.
150
proc check_no_messages_and_pattern_nocache {basename pattern args} {
151
    global tool
152
 
153
    set result [eval [list check_compile $basename] $args]
154
    set lines [lindex $result 0]
155
    set output [lindex $result 1]
156
 
157
    set ok 0
158
    if { [string match "" $lines] } {
159
        set chan [open "$output"]
160
        set invert [regexp {^!(.*)} $pattern dummy pattern]
161
        set ok [expr { [regexp $pattern [read $chan]] != $invert }]
162
        close $chan
163
    }
164
 
165
    remote_file build delete $output
166
    return $ok
167
}
168
 
169
# Like check_no_messages_and_pattern_nocache, but cache the result.
170
# PROP is the property we're checking, and doubles as a prefix for
171
# temporary filenames.
172
proc check_no_messages_and_pattern {prop pattern args} {
173
    return [check_cached_effective_target $prop {
174
        eval [list check_no_messages_and_pattern_nocache $prop $pattern] $args
175
    }]
176
}
177
 
178
# Try to compile and run an executable from code CONTENTS.  Return true
179
# if the compiler reports no messages and if execution "passes" in the
180
# usual DejaGNU sense.  The arguments are as for check_compile, with
181
# TYPE implicitly being "executable".
182
proc check_runtime_nocache {basename contents args} {
183
    global tool
184
 
185
    set result [eval [list check_compile $basename executable $contents] $args]
186
    set lines [lindex $result 0]
187
    set output [lindex $result 1]
188
 
189
    set ok 0
190
    if { [string match "" $lines] } {
191
        # No error messages, everything is OK.
192
        set result [remote_load target "./$output" "" ""]
193
        set status [lindex $result 0]
194
        verbose "check_runtime_nocache $basename: status is <$status>" 2
195
        if { $status == "pass" } {
196
            set ok 1
197
        }
198
    }
199
    remote_file build delete $output
200
    return $ok
201
}
202
 
203
# Like check_runtime_nocache, but cache the result.  PROP is the
204
# property we're checking, and doubles as a prefix for temporary
205
# filenames.
206
proc check_runtime {prop args} {
207
    global tool
208
 
209
    return [check_cached_effective_target $prop {
210
        eval [list check_runtime_nocache $prop] $args
211
    }]
212
}
213
 
214
###############################
215
# proc check_weak_available { }
216
###############################
217
 
218
# weak symbols are only supported in some configs/object formats
219
# this proc returns 1 if they're supported, 0 if they're not, or -1 if unsure
220
 
221
proc check_weak_available { } {
222
    global target_cpu
223
 
224
    # All mips targets should support it
225
 
226
    if { [ string first "mips" $target_cpu ] >= 0 } {
227
        return 1
228
    }
229
 
230
    # All solaris2 targets should support it
231
 
232
    if { [istarget *-*-solaris2*] } {
233
        return 1
234
    }
235
 
236
    # DEC OSF/1/Digital UNIX/Tru64 UNIX supports it
237
 
238
    if { [istarget alpha*-dec-osf*] } {
239
        return 1
240
    }
241
 
242
    # Windows targets Cygwin and MingW32 support it
243
 
244
    if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } {
245
        return 1
246
    }
247
 
248
    # HP-UX 10.X doesn't support it
249
 
250
    if { [istarget hppa*-*-hpux10*] } {
251
        return 0
252
    }
253
 
254
    # ELF and ECOFF support it. a.out does with gas/gld but may also with
255
    # other linkers, so we should try it
256
 
257
    set objformat [gcc_target_object_format]
258
 
259
    switch $objformat {
260
        elf      { return 1 }
261
        ecoff    { return 1 }
262
        a.out    { return 1 }
263
        mach-o   { return 1 }
264
        som      { return 1 }
265
        unknown  { return -1 }
266
        default  { return 0 }
267
    }
268
}
269
 
270
###############################
271
# proc check_weak_override_available { }
272
###############################
273
 
274
# Like check_weak_available, but return 0 if weak symbol definitions
275
# cannot be overridden.
276
 
277
proc check_weak_override_available { } {
278
    if { [istarget *-*-mingw*] } {
279
        return 0
280
    }
281
    return [check_weak_available]
282
}
283
 
284
###############################
285
# proc check_visibility_available { what_kind }
286
###############################
287
 
288
# The visibility attribute is only support in some object formats
289
# This proc returns 1 if it is supported, 0 if not.
290
# The argument is the kind of visibility, default/protected/hidden/internal.
291
 
292
proc check_visibility_available { what_kind } {
293
    if [string match "" $what_kind] { set what_kind "hidden" }
294
 
295
    return [check_no_compiler_messages visibility_available_$what_kind object "
296
        void f() __attribute__((visibility(\"$what_kind\")));
297
        void f() {}
298
    "]
299
}
300
 
301
###############################
302
# proc check_alias_available { }
303
###############################
304
 
305
# Determine if the target toolchain supports the alias attribute.
306
 
307
# Returns 2 if the target supports aliases.  Returns 1 if the target
308
# only supports weak aliased.  Returns 0 if the target does not
309
# support aliases at all.  Returns -1 if support for aliases could not
310
# be determined.
311
 
312
proc check_alias_available { } {
313
    global alias_available_saved
314
    global tool
315
 
316
    if [info exists alias_available_saved] {
317
        verbose "check_alias_available  returning saved $alias_available_saved" 2
318
    } else {
319
        set src alias[pid].c
320
        set obj alias[pid].o
321
        verbose "check_alias_available  compiling testfile $src" 2
322
        set f [open $src "w"]
323
        # Compile a small test program.  The definition of "g" is
324
        # necessary to keep the Solaris assembler from complaining
325
        # about the program.
326
        puts $f "#ifdef __cplusplus\nextern \"C\"\n#endif\n"
327
        puts $f "void g() {} void f() __attribute__((alias(\"g\")));"
328
        close $f
329
        set lines [${tool}_target_compile $src $obj object ""]
330
        file delete $src
331
        remote_file build delete $obj
332
 
333
        if [string match "" $lines] then {
334
            # No error messages, everything is OK.
335
            set alias_available_saved 2
336
        } else {
337
            if [regexp "alias definitions not supported" $lines] {
338
                verbose "check_alias_available  target does not support aliases" 2
339
 
340
                set objformat [gcc_target_object_format]
341
 
342
                if { $objformat == "elf" } {
343
                    verbose "check_alias_available  but target uses ELF format, so it ought to" 2
344
                    set alias_available_saved -1
345
                } else {
346
                    set alias_available_saved 0
347
                }
348
            } else {
349
                if [regexp "only weak aliases are supported" $lines] {
350
                verbose "check_alias_available  target supports only weak aliases" 2
351
                set alias_available_saved 1
352
                } else {
353
                    set alias_available_saved -1
354
                }
355
            }
356
        }
357
 
358
        verbose "check_alias_available  returning $alias_available_saved" 2
359
    }
360
 
361
    return $alias_available_saved
362
}
363
 
364
# Returns 1 if the target toolchain supports ifunc, 0 otherwise.
365
 
366
proc check_ifunc_available { } {
367
    return [check_no_compiler_messages ifunc_available object {
368
        #ifdef __cplusplus
369
        extern "C"
370
        #endif
371
        void g() {}
372
        void f() __attribute__((ifunc("g")));
373
    }]
374
}
375
 
376
# Returns true if --gc-sections is supported on the target.
377
 
378
proc check_gc_sections_available { } {
379
    global gc_sections_available_saved
380
    global tool
381
 
382
    if {![info exists gc_sections_available_saved]} {
383
        # Some targets don't support gc-sections despite whatever's
384
        # advertised by ld's options.
385
        if { [istarget alpha*-*-*]
386
             || [istarget ia64-*-*] } {
387
            set gc_sections_available_saved 0
388
            return 0
389
        }
390
 
391
        # elf2flt uses -q (--emit-relocs), which is incompatible with
392
        # --gc-sections.
393
        if { [board_info target exists ldflags]
394
             && [regexp " -elf2flt\[ =\]" " [board_info target ldflags] "] } {
395
            set gc_sections_available_saved 0
396
            return 0
397
        }
398
 
399
        # VxWorks kernel modules are relocatable objects linked with -r,
400
        # while RTP executables are linked with -q (--emit-relocs).
401
        # Both of these options are incompatible with --gc-sections.
402
        if { [istarget *-*-vxworks*] } {
403
            set gc_sections_available_saved 0
404
            return 0
405
        }
406
 
407
        # Check if the ld used by gcc supports --gc-sections.
408
        set gcc_spec [${tool}_target_compile "-dumpspecs" "" "none" ""]
409
        regsub ".*\n\\*linker:\[ \t\]*\n(\[^ \t\n\]*).*" "$gcc_spec" {\1} linker
410
        set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=$linker" "" "none" ""] 0]
411
        set ld_output [remote_exec host "$gcc_ld" "--help"]
412
        if { [ string first "--gc-sections" $ld_output ] >= 0 } {
413
            set gc_sections_available_saved 1
414
        } else {
415
            set gc_sections_available_saved 0
416
        }
417
    }
418
    return $gc_sections_available_saved
419
}
420
 
421
# Return 1 if according to target_info struct and explicit target list
422
# target is supposed to support trampolines.
423
 
424
proc check_effective_target_trampolines { } {
425
    if [target_info exists no_trampolines] {
426
      return 0
427
    }
428
    if { [istarget avr-*-*]
429
         || [istarget hppa2.0w-hp-hpux11.23]
430
        || [istarget hppa64-hp-hpux11.23] } {
431
        return 0;
432
    }
433
    return 1
434
}
435
 
436
# Return 1 if according to target_info struct and explicit target list
437
# target is supposed to keep null pointer checks. This could be due to
438
# use of option fno-delete-null-pointer-checks or hardwired in target.
439
 
440
proc check_effective_target_keeps_null_pointer_checks { } {
441
    if [target_info exists keeps_null_pointer_checks] {
442
      return 1
443
    }
444
    if { [istarget avr-*-*] } {
445
        return 1;
446
    }
447
    return 0
448
}
449
 
450
# Return true if profiling is supported on the target.
451
 
452
proc check_profiling_available { test_what } {
453
    global profiling_available_saved
454
 
455
    verbose "Profiling argument is <$test_what>" 1
456
 
457
    # These conditions depend on the argument so examine them before
458
    # looking at the cache variable.
459
 
460
    # Tree profiling requires TLS runtime support.
461
    if { $test_what == "-fprofile-generate" } {
462
        if { ![check_effective_target_tls_runtime] } {
463
            return 0
464
        }
465
    }
466
 
467
    # Support for -p on solaris2 relies on mcrt1.o which comes with the
468
    # vendor compiler.  We cannot reliably predict the directory where the
469
    # vendor compiler (and thus mcrt1.o) is installed so we can't
470
    # necessarily find mcrt1.o even if we have it.
471
    if { [istarget *-*-solaris2*] && $test_what == "-p" } {
472
        return 0
473
    }
474
 
475
    # Support for -p on irix relies on libprof1.a which doesn't appear to
476
    # exist on any irix6 system currently posting testsuite results.
477
    # Support for -pg on irix relies on gcrt1.o which doesn't exist yet.
478
    # See: http://gcc.gnu.org/ml/gcc/2002-10/msg00169.html
479
    if { [istarget mips*-*-irix*]
480
         && ($test_what == "-p" || $test_what == "-pg") } {
481
        return 0
482
    }
483
 
484
    # We don't yet support profiling for MIPS16.
485
    if { [istarget mips*-*-*]
486
         && ![check_effective_target_nomips16]
487
         && ($test_what == "-p" || $test_what == "-pg") } {
488
        return 0
489
    }
490
 
491
    # MinGW does not support -p.
492
    if { [istarget *-*-mingw*] && $test_what == "-p" } {
493
        return 0
494
    }
495
 
496
    # cygwin does not support -p.
497
    if { [istarget *-*-cygwin*] && $test_what == "-p" } {
498
        return 0
499
    }
500
 
501
    # uClibc does not have gcrt1.o.
502
    if { [check_effective_target_uclibc]
503
         && ($test_what == "-p" || $test_what == "-pg") } {
504
        return 0
505
    }
506
 
507
    # Now examine the cache variable.
508
    if {![info exists profiling_available_saved]} {
509
        # Some targets don't have any implementation of __bb_init_func or are
510
        # missing other needed machinery.
511
        if {    [istarget am3*-*-linux*]
512
             || [istarget arm*-*-eabi*]
513
             || [istarget arm*-*-elf]
514
             || [istarget arm*-*-symbianelf*]
515
             || [istarget avr-*-*]
516
             || [istarget bfin-*-*]
517
             || [istarget cris-*-*]
518
             || [istarget crisv32-*-*]
519
             || [istarget fido-*-elf]
520
             || [istarget h8300-*-*]
521
             || [istarget lm32-*-*]
522
             || [istarget m32c-*-elf]
523
             || [istarget m68k-*-elf]
524
             || [istarget m68k-*-uclinux*]
525
             || [istarget mep-*-elf]
526
             || [istarget mips*-*-elf*]
527
             || [istarget mmix-*-*]
528
             || [istarget mn10300-*-elf*]
529
             || [istarget moxie-*-elf*]
530
             || [istarget picochip-*-*]
531
             || [istarget powerpc-*-eabi*]
532
             || [istarget powerpc-*-elf]
533
             || [istarget rx-*-*]
534
             || [istarget tic6x-*-elf]
535
             || [istarget xstormy16-*]
536
             || [istarget xtensa*-*-elf]
537
             || [istarget *-*-rtems*]
538
             || [istarget *-*-vxworks*] } {
539
            set profiling_available_saved 0
540
        } else {
541
            set profiling_available_saved 1
542
        }
543
    }
544
 
545
    return $profiling_available_saved
546
}
547
 
548
# Check to see if a target is "freestanding". This is as per the definition
549
# in Section 4 of C99 standard. Effectively, it is a target which supports no
550
# extra headers or libraries other than what is considered essential.
551
proc check_effective_target_freestanding { } {
552
    if { [istarget picochip-*-*] } then {
553
        return 1
554
    } else {
555
        return 0
556
    }
557
}
558
 
559
# Return 1 if target has packed layout of structure members by
560
# default, 0 otherwise.  Note that this is slightly different than
561
# whether the target has "natural alignment": both attributes may be
562
# false.
563
 
564
proc check_effective_target_default_packed { } {
565
    return [check_no_compiler_messages default_packed assembly {
566
        struct x { char a; long b; } c;
567
        int s[sizeof (c) == sizeof (char) + sizeof (long) ? 1 : -1];
568
    }]
569
}
570
 
571
# Return 1 if target has PCC_BITFIELD_TYPE_MATTERS defined.  See
572
# documentation, where the test also comes from.
573
 
574
proc check_effective_target_pcc_bitfield_type_matters { } {
575
    # PCC_BITFIELD_TYPE_MATTERS isn't just about unnamed or empty
576
    # bitfields, but let's stick to the example code from the docs.
577
    return [check_no_compiler_messages pcc_bitfield_type_matters assembly {
578
        struct foo1 { char x; char :0; char y; };
579
        struct foo2 { char x; int :0; char y; };
580
        int s[sizeof (struct foo1) != sizeof (struct foo2) ? 1 : -1];
581
    }]
582
}
583
 
584
# Add to FLAGS all the target-specific flags needed to use thread-local storage.
585
 
586
proc add_options_for_tls { flags } {
587
    # Tru64 UNIX uses emutls, which relies on a couple of pthread functions
588
    # which only live in libpthread, so always pass -pthread for TLS.
589
    if { [istarget alpha*-dec-osf*] } {
590
        return "$flags -pthread"
591
    }
592
    # On Solaris 8 and 9, __tls_get_addr/___tls_get_addr only lives in
593
    # libthread, so always pass -pthread for native TLS.
594
    # Need to duplicate native TLS check from
595
    # check_effective_target_tls_native to avoid recursion.
596
    if { [istarget *-*-solaris2.\[89\]*] &&
597
         [check_no_messages_and_pattern tls_native "!emutls" assembly {
598
             __thread int i;
599
             int f (void) { return i; }
600
             void g (int j) { i = j; }
601
         }] } {
602
        return "$flags -pthread"
603
    }
604
    return $flags
605
}
606
 
607
# Return 1 if thread local storage (TLS) is supported, 0 otherwise.
608
 
609
proc check_effective_target_tls {} {
610
    return [check_no_compiler_messages tls assembly {
611
        __thread int i;
612
        int f (void) { return i; }
613
        void g (int j) { i = j; }
614
    }]
615
}
616
 
617
# Return 1 if *native* thread local storage (TLS) is supported, 0 otherwise.
618
 
619
proc check_effective_target_tls_native {} {
620
    # VxWorks uses emulated TLS machinery, but with non-standard helper
621
    # functions, so we fail to automatically detect it.
622
    if { [istarget *-*-vxworks*] } {
623
        return 0
624
    }
625
 
626
    return [check_no_messages_and_pattern tls_native "!emutls" assembly {
627
        __thread int i;
628
        int f (void) { return i; }
629
        void g (int j) { i = j; }
630
    }]
631
}
632
 
633
# Return 1 if *emulated* thread local storage (TLS) is supported, 0 otherwise.
634
 
635
proc check_effective_target_tls_emulated {} {
636
    # VxWorks uses emulated TLS machinery, but with non-standard helper
637
    # functions, so we fail to automatically detect it.
638
    if { [istarget *-*-vxworks*] } {
639
        return 1
640
    }
641
 
642
    return [check_no_messages_and_pattern tls_emulated "emutls" assembly {
643
        __thread int i;
644
        int f (void) { return i; }
645
        void g (int j) { i = j; }
646
    }]
647
}
648
 
649
# Return 1 if TLS executables can run correctly, 0 otherwise.
650
 
651
proc check_effective_target_tls_runtime {} {
652
    return [check_runtime tls_runtime {
653
        __thread int thr = 0;
654
        int main (void) { return thr; }
655
    } [add_options_for_tls ""]]
656
}
657
 
658
# Return 1 if atomic compare-and-swap is supported on 'int'
659
 
660
proc check_effective_target_cas_char {} {
661
    return [check_no_compiler_messages cas_char assembly {
662
        #ifndef __GCC_HAVE_SYNC_COMPARE_AND_SWAP_1
663
        #error unsupported
664
        #endif
665
    } ""]
666
}
667
 
668
proc check_effective_target_cas_int {} {
669
    return [check_no_compiler_messages cas_int assembly {
670
        #if __INT_MAX__ == 0x7fff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2
671
        /* ok */
672
        #elif __INT_MAX__ == 0x7fffffff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4
673
        /* ok */
674
        #else
675
        #error unsupported
676
        #endif
677
    } ""]
678
}
679
 
680
# Return 1 if -ffunction-sections is supported, 0 otherwise.
681
 
682
proc check_effective_target_function_sections {} {
683
    # Darwin has its own scheme and silently accepts -ffunction-sections.
684
    if { [istarget *-*-darwin*] } {
685
        return 0
686
    }
687
 
688
    return [check_no_compiler_messages functionsections assembly {
689
        void foo (void) { }
690
    } "-ffunction-sections"]
691
}
692
 
693
# Return 1 if instruction scheduling is available, 0 otherwise.
694
 
695
proc check_effective_target_scheduling {} {
696
    return [check_no_compiler_messages scheduling object {
697
        void foo (void) { }
698
    } "-fschedule-insns"]
699
}
700
 
701
# Return 1 if compilation with -fgraphite is error-free for trivial
702
# code, 0 otherwise.
703
 
704
proc check_effective_target_fgraphite {} {
705
    return [check_no_compiler_messages fgraphite object {
706
        void foo (void) { }
707
    } "-O1 -fgraphite"]
708
}
709
 
710
# Return 1 if compilation with -fopenmp is error-free for trivial
711
# code, 0 otherwise.
712
 
713
proc check_effective_target_fopenmp {} {
714
    return [check_no_compiler_messages fopenmp object {
715
        void foo (void) { }
716
    } "-fopenmp"]
717
}
718
 
719
# Return 1 if compilation with -fgnu-tm is error-free for trivial
720
# code, 0 otherwise.
721
 
722
proc check_effective_target_fgnu_tm {} {
723
    return [check_no_compiler_messages fgnu_tm object {
724
        void foo (void) { }
725
    } "-fgnu-tm"]
726
}
727
 
728
# Return 1 if the target supports mmap, 0 otherwise.
729
 
730
proc check_effective_target_mmap {} {
731
    return [check_function_available "mmap"]
732
}
733
 
734
# Return 1 if compilation with -pthread is error-free for trivial
735
# code, 0 otherwise.
736
 
737
proc check_effective_target_pthread {} {
738
    return [check_no_compiler_messages pthread object {
739
        void foo (void) { }
740
    } "-pthread"]
741
}
742
 
743
# Return 1 if compilation with -mpe-aligned-commons is error-free
744
# for trivial code, 0 otherwise.
745
 
746
proc check_effective_target_pe_aligned_commons {} {
747
    if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } {
748
        return [check_no_compiler_messages pe_aligned_commons object {
749
            int foo;
750
        } "-mpe-aligned-commons"]
751
    }
752
    return 0
753
}
754
 
755
# Return 1 if the target supports -static
756
proc check_effective_target_static {} {
757
    return [check_no_compiler_messages static executable {
758
        int main (void) { return 0; }
759
    } "-static"]
760
}
761
 
762
# Return 1 if the target supports -fstack-protector
763
proc check_effective_target_fstack_protector {} {
764
    return [check_runtime fstack_protector {
765
        int main (void) { return 0; }
766
    } "-fstack-protector"]
767
}
768
 
769
# Return 1 if compilation with -freorder-blocks-and-partition is error-free
770
# for trivial code, 0 otherwise.
771
 
772
proc check_effective_target_freorder {} {
773
    return [check_no_compiler_messages freorder object {
774
        void foo (void) { }
775
    } "-freorder-blocks-and-partition"]
776
}
777
 
778
# Return 1 if -fpic and -fPIC are supported, as in no warnings or errors
779
# emitted, 0 otherwise.  Whether a shared library can actually be built is
780
# out of scope for this test.
781
 
782
proc check_effective_target_fpic { } {
783
    # Note that M68K has a multilib that supports -fpic but not
784
    # -fPIC, so we need to check both.  We test with a program that
785
    # requires GOT references.
786
    foreach arg {fpic fPIC} {
787
        if [check_no_compiler_messages $arg object {
788
            extern int foo (void); extern int bar;
789
            int baz (void) { return foo () + bar; }
790
        } "-$arg"] {
791
            return 1
792
        }
793
    }
794
    return 0
795
}
796
 
797
# Return 1 if -pie, -fpie and -fPIE are supported, 0 otherwise.
798
 
799
proc check_effective_target_pie { } {
800
    if { [istarget *-*-darwin\[912\]*]
801
         || [istarget *-*-linux*] } {
802
        return 1;
803
    }
804
    return 0
805
}
806
 
807
# Return true if the target supports -mpaired-single (as used on MIPS).
808
 
809
proc check_effective_target_mpaired_single { } {
810
    return [check_no_compiler_messages mpaired_single object {
811
        void foo (void) { }
812
    } "-mpaired-single"]
813
}
814
 
815
# Return true if the target has access to FPU instructions.
816
 
817
proc check_effective_target_hard_float { } {
818
    if { [istarget mips*-*-*] } {
819
        return [check_no_compiler_messages hard_float assembly {
820
                #if (defined __mips_soft_float || defined __mips16)
821
                #error FOO
822
                #endif
823
        }]
824
    }
825
 
826
    # This proc is actually checking the availabilty of FPU
827
    # support for doubles, so on the RX we must fail if the
828
    # 64-bit double multilib has been selected.
829
    if { [istarget rx-*-*] } {
830
        return 0
831
        # return [check_no_compiler_messages hard_float assembly {
832
                #if defined __RX_64_BIT_DOUBLES__
833
                #error FOO
834
                #endif
835
        # }]
836
    }
837
 
838
    # The generic test equates hard_float with "no call for adding doubles".
839
    return [check_no_messages_and_pattern hard_float "!\\(call" rtl-expand {
840
        double a (double b, double c) { return b + c; }
841
    }]
842
}
843
 
844
# Return true if the target is a 64-bit MIPS target.
845
 
846
proc check_effective_target_mips64 { } {
847
    return [check_no_compiler_messages mips64 assembly {
848
        #ifndef __mips64
849
        #error FOO
850
        #endif
851
    }]
852
}
853
 
854
# Return true if the target is a MIPS target that does not produce
855
# MIPS16 code.
856
 
857
proc check_effective_target_nomips16 { } {
858
    return [check_no_compiler_messages nomips16 object {
859
        #ifndef __mips
860
        #error FOO
861
        #else
862
        /* A cheap way of testing for -mflip-mips16.  */
863
        void foo (void) { asm ("addiu $20,$20,1"); }
864
        void bar (void) { asm ("addiu $20,$20,1"); }
865
        #endif
866
    }]
867
}
868
 
869
# Add the options needed for MIPS16 function attributes.  At the moment,
870
# we don't support MIPS16 PIC.
871
 
872
proc add_options_for_mips16_attribute { flags } {
873
    return "$flags -mno-abicalls -fno-pic -DMIPS16=__attribute__((mips16))"
874
}
875
 
876
# Return true if we can force a mode that allows MIPS16 code generation.
877
# We don't support MIPS16 PIC, and only support MIPS16 -mhard-float
878
# for o32 and o64.
879
 
880
proc check_effective_target_mips16_attribute { } {
881
    return [check_no_compiler_messages mips16_attribute assembly {
882
        #ifdef PIC
883
        #error FOO
884
        #endif
885
        #if defined __mips_hard_float \
886
            && (!defined _ABIO32 || _MIPS_SIM != _ABIO32) \
887
            && (!defined _ABIO64 || _MIPS_SIM != _ABIO64)
888
        #error FOO
889
        #endif
890
    } [add_options_for_mips16_attribute ""]]
891
}
892
 
893
# Return 1 if the target supports long double larger than double when
894
# using the new ABI, 0 otherwise.
895
 
896
proc check_effective_target_mips_newabi_large_long_double { } {
897
    return [check_no_compiler_messages mips_newabi_large_long_double object {
898
        int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
899
    } "-mabi=64"]
900
}
901
 
902
# Return true if the target is a MIPS target that has access
903
# to the LL and SC instructions.
904
 
905
proc check_effective_target_mips_llsc { } {
906
    if { ![istarget mips*-*-*] } {
907
        return 0
908
    }
909
    # Assume that these instructions are always implemented for
910
    # non-elf* targets, via emulation if necessary.
911
    if { ![istarget *-*-elf*] } {
912
        return 1
913
    }
914
    # Otherwise assume LL/SC support for everything but MIPS I.
915
    return [check_no_compiler_messages mips_llsc assembly {
916
        #if __mips == 1
917
        #error FOO
918
        #endif
919
    }]
920
}
921
 
922
# Return true if the target is a MIPS target that uses in-place relocations.
923
 
924
proc check_effective_target_mips_rel { } {
925
    if { ![istarget mips*-*-*] } {
926
        return 0
927
    }
928
    return [check_no_compiler_messages mips_rel object {
929
        #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
930
            || (defined _ABI64 && _MIPS_SIM == _ABI64)
931
        #error FOO
932
        #endif
933
    }]
934
}
935
 
936
# Return true if the target is a MIPS target that uses the EABI.
937
 
938
proc check_effective_target_mips_eabi { } {
939
    if { ![istarget mips*-*-*] } {
940
        return 0
941
    }
942
    return [check_no_compiler_messages mips_eabi object {
943
        #ifndef __mips_eabi
944
        #error FOO
945
        #endif
946
    }]
947
}
948
 
949
# Return 1 if the current multilib does not generate PIC by default.
950
 
951
proc check_effective_target_nonpic { } {
952
    return [check_no_compiler_messages nonpic assembly {
953
        #if __PIC__
954
        #error FOO
955
        #endif
956
    }]
957
}
958
 
959
# Return 1 if the target does not use a status wrapper.
960
 
961
proc check_effective_target_unwrapped { } {
962
    if { [target_info needs_status_wrapper] != "" \
963
             && [target_info needs_status_wrapper] != "0" } {
964
        return 0
965
    }
966
    return 1
967
}
968
 
969
# Return true if iconv is supported on the target. In particular IBM1047.
970
 
971
proc check_iconv_available { test_what } {
972
    global libiconv
973
 
974
    # If the tool configuration file has not set libiconv, try "-liconv"
975
    if { ![info exists libiconv] } {
976
        set libiconv "-liconv"
977
    }
978
    set test_what [lindex $test_what 1]
979
    return [check_runtime_nocache $test_what [subst {
980
        #include 
981
        int main (void)
982
        {
983
          iconv_t cd;
984
 
985
          cd = iconv_open ("$test_what", "UTF-8");
986
          if (cd == (iconv_t) -1)
987
            return 1;
988
          return 0;
989
        }
990
    }] $libiconv]
991
}
992
 
993
# Return 1 if an ASCII locale is supported on this host, 0 otherwise.
994
 
995
proc check_ascii_locale_available { } {
996
    if { ([ishost alpha*-dec-osf*] || [ishost mips-sgi-irix*]) } {
997
        # Neither Tru64 UNIX nor IRIX support an ASCII locale.
998
        return 0
999
    } else {
1000
        return 1
1001
    }
1002
}
1003
 
1004
# Return true if named sections are supported on this target.
1005
 
1006
proc check_named_sections_available { } {
1007
    return [check_no_compiler_messages named_sections assembly {
1008
        int __attribute__ ((section("whatever"))) foo;
1009
    }]
1010
}
1011
 
1012
# Return 1 if the target supports Fortran real kinds larger than real(8),
1013
# 0 otherwise.
1014
#
1015
# When the target name changes, replace the cached result.
1016
 
1017
proc check_effective_target_fortran_large_real { } {
1018
    return [check_no_compiler_messages fortran_large_real executable {
1019
        ! Fortran
1020
        integer,parameter :: k = selected_real_kind (precision (0.0_8) + 1)
1021
        real(kind=k) :: x
1022
        x = cos (x)
1023
        end
1024
    }]
1025
}
1026
 
1027
# Return 1 if the target supports Fortran real kind real(16),
1028
# 0 otherwise. Contrary to check_effective_target_fortran_large_real
1029
# this checks for Real(16) only; the other returned real(10) if
1030
# both real(10) and real(16) are available.
1031
#
1032
# When the target name changes, replace the cached result.
1033
 
1034
proc check_effective_target_fortran_real_16 { } {
1035
    return [check_no_compiler_messages fortran_real_16 executable {
1036
        ! Fortran
1037
        real(kind=16) :: x
1038
        x = cos (x)
1039
        end
1040
    }]
1041
}
1042
 
1043
 
1044
# Return 1 if the target supports SQRT for the largest floating-point
1045
# type. (Some targets lack the libm support for this FP type.)
1046
# On most targets, this check effectively checks either whether sqrtl is
1047
# available or on __float128 systems whether libquadmath is installed,
1048
# which provides sqrtq.
1049
#
1050
# When the target name changes, replace the cached result.
1051
 
1052
proc check_effective_target_fortran_largest_fp_has_sqrt { } {
1053
    return [check_no_compiler_messages fortran_largest_fp_has_sqrt executable {
1054
        ! Fortran
1055
        use iso_fortran_env, only: real_kinds
1056
        integer,parameter:: maxFP = real_kinds(ubound(real_kinds,dim=1))
1057
        real(kind=maxFP), volatile :: x
1058
        x = 2.0_maxFP
1059
        x = sqrt (x)
1060
        end
1061
    }]
1062
}
1063
 
1064
 
1065
# Return 1 if the target supports Fortran integer kinds larger than
1066
# integer(8), 0 otherwise.
1067
#
1068
# When the target name changes, replace the cached result.
1069
 
1070
proc check_effective_target_fortran_large_int { } {
1071
    return [check_no_compiler_messages fortran_large_int executable {
1072
        ! Fortran
1073
        integer,parameter :: k = selected_int_kind (range (0_8) + 1)
1074
        integer(kind=k) :: i
1075
        end
1076
    }]
1077
}
1078
 
1079
# Return 1 if the target supports Fortran integer(16), 0 otherwise.
1080
#
1081
# When the target name changes, replace the cached result.
1082
 
1083
proc check_effective_target_fortran_integer_16 { } {
1084
    return [check_no_compiler_messages fortran_integer_16 executable {
1085
        ! Fortran
1086
        integer(16) :: i
1087
        end
1088
    }]
1089
}
1090
 
1091
# Return 1 if we can statically link libgfortran, 0 otherwise.
1092
#
1093
# When the target name changes, replace the cached result.
1094
 
1095
proc check_effective_target_static_libgfortran { } {
1096
    return [check_no_compiler_messages static_libgfortran executable {
1097
        ! Fortran
1098
        print *, 'test'
1099
        end
1100
    } "-static"]
1101
}
1102
 
1103
proc check_linker_plugin_available { } {
1104
  return [check_no_compiler_messages_nocache linker_plugin executable {
1105
     int main() { return 0; }
1106
  } "-flto -fuse-linker-plugin"]
1107
}
1108
 
1109
# Return 1 if the target supports executing 750CL paired-single instructions, 0
1110
# otherwise.  Cache the result.
1111
 
1112
proc check_750cl_hw_available { } {
1113
    return [check_cached_effective_target 750cl_hw_available {
1114
        # If this is not the right target then we can skip the test.
1115
        if { ![istarget powerpc-*paired*] } {
1116
            expr 0
1117
        } else {
1118
            check_runtime_nocache 750cl_hw_available {
1119
                 int main()
1120
                 {
1121
                 #ifdef __MACH__
1122
                   asm volatile ("ps_mul v0,v0,v0");
1123
                 #else
1124
                   asm volatile ("ps_mul 0,0,0");
1125
                 #endif
1126
                   return 0;
1127
                 }
1128
            } "-mpaired"
1129
        }
1130
    }]
1131
}
1132
 
1133
# Return 1 if the target OS supports running SSE executables, 0
1134
# otherwise.  Cache the result.
1135
 
1136
proc check_sse_os_support_available { } {
1137
    return [check_cached_effective_target sse_os_support_available {
1138
        # If this is not the right target then we can skip the test.
1139
        if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1140
            expr 0
1141
        } elseif { [istarget i?86-*-solaris2*] } {
1142
            # The Solaris 2 kernel doesn't save and restore SSE registers
1143
            # before Solaris 9 4/04.  Before that, executables die with SIGILL.
1144
            check_runtime_nocache sse_os_support_available {
1145
                int main ()
1146
                {
1147
                  asm volatile ("movaps %xmm0,%xmm0");
1148
                  return 0;
1149
                }
1150
            } "-msse"
1151
        } else {
1152
            expr 1
1153
        }
1154
    }]
1155
}
1156
 
1157
# Return 1 if the target OS supports running AVX executables, 0
1158
# otherwise.  Cache the result.
1159
 
1160
proc check_avx_os_support_available { } {
1161
    return [check_cached_effective_target avx_os_support_available {
1162
        # If this is not the right target then we can skip the test.
1163
        if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1164
            expr 0
1165
        } else {
1166
            # Check that OS has AVX and SSE saving enabled.
1167
            check_runtime_nocache avx_os_support_available {
1168
                int main ()
1169
                {
1170
                  unsigned int eax, edx;
1171
 
1172
                  asm ("xgetbv" : "=a" (eax), "=d" (edx) : "c" (0));
1173
                  return (eax & 6) != 6;
1174
                }
1175
            } ""
1176
        }
1177
    }]
1178
}
1179
 
1180
# Return 1 if the target supports executing SSE instructions, 0
1181
# otherwise.  Cache the result.
1182
 
1183
proc check_sse_hw_available { } {
1184
    return [check_cached_effective_target sse_hw_available {
1185
        # If this is not the right target then we can skip the test.
1186
        if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1187
            expr 0
1188
        } else {
1189
            check_runtime_nocache sse_hw_available {
1190
                #include "cpuid.h"
1191
                int main ()
1192
                {
1193
                  unsigned int eax, ebx, ecx, edx;
1194
                  if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
1195
                    return !(edx & bit_SSE);
1196
                  return 1;
1197
                }
1198
            } ""
1199
        }
1200
    }]
1201
}
1202
 
1203
# Return 1 if the target supports executing SSE2 instructions, 0
1204
# otherwise.  Cache the result.
1205
 
1206
proc check_sse2_hw_available { } {
1207
    return [check_cached_effective_target sse2_hw_available {
1208
        # If this is not the right target then we can skip the test.
1209
        if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1210
            expr 0
1211
        } else {
1212
            check_runtime_nocache sse2_hw_available {
1213
                #include "cpuid.h"
1214
                int main ()
1215
                {
1216
                  unsigned int eax, ebx, ecx, edx;
1217
                  if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
1218
                    return !(edx & bit_SSE2);
1219
                  return 1;
1220
                }
1221
            } ""
1222
        }
1223
    }]
1224
}
1225
 
1226
# Return 1 if the target supports executing AVX instructions, 0
1227
# otherwise.  Cache the result.
1228
 
1229
proc check_avx_hw_available { } {
1230
    return [check_cached_effective_target avx_hw_available {
1231
        # If this is not the right target then we can skip the test.
1232
        if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1233
            expr 0
1234
        } else {
1235
            check_runtime_nocache avx_hw_available {
1236
                #include "cpuid.h"
1237
                int main ()
1238
                {
1239
                  unsigned int eax, ebx, ecx, edx;
1240
                  if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
1241
                    return ((ecx & (bit_AVX | bit_OSXSAVE))
1242
                            != (bit_AVX | bit_OSXSAVE));
1243
                  return 1;
1244
                }
1245
            } ""
1246
        }
1247
    }]
1248
}
1249
 
1250
# Return 1 if the target supports running SSE executables, 0 otherwise.
1251
 
1252
proc check_effective_target_sse_runtime { } {
1253
    if { [check_effective_target_sse]
1254
         && [check_sse_hw_available]
1255
         && [check_sse_os_support_available] } {
1256
        return 1
1257
    }
1258
    return 0
1259
}
1260
 
1261
# Return 1 if the target supports running SSE2 executables, 0 otherwise.
1262
 
1263
proc check_effective_target_sse2_runtime { } {
1264
    if { [check_effective_target_sse2]
1265
         && [check_sse2_hw_available]
1266
         && [check_sse_os_support_available] } {
1267
        return 1
1268
    }
1269
    return 0
1270
}
1271
 
1272
# Return 1 if the target supports running AVX executables, 0 otherwise.
1273
 
1274
proc check_effective_target_avx_runtime { } {
1275
    if { [check_effective_target_avx]
1276
         && [check_avx_hw_available]
1277
         && [check_avx_os_support_available] } {
1278
        return 1
1279
    }
1280
    return 0
1281
}
1282
 
1283
# Return 1 if the target supports executing VSX instructions, 0
1284
# otherwise.  Cache the result.
1285
 
1286
proc check_vsx_hw_available { } {
1287
    return [check_cached_effective_target vsx_hw_available {
1288
        # Some simulators are known to not support VSX instructions.
1289
        # For now, disable on Darwin
1290
        if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
1291
            expr 0
1292
        } else {
1293
            set options "-mvsx"
1294
            check_runtime_nocache vsx_hw_available {
1295
                int main()
1296
                {
1297
                #ifdef __MACH__
1298
                  asm volatile ("xxlor vs0,vs0,vs0");
1299
                #else
1300
                  asm volatile ("xxlor 0,0,0");
1301
                #endif
1302
                  return 0;
1303
                }
1304
            } $options
1305
        }
1306
    }]
1307
}
1308
 
1309
# Return 1 if the target supports executing AltiVec instructions, 0
1310
# otherwise.  Cache the result.
1311
 
1312
proc check_vmx_hw_available { } {
1313
    return [check_cached_effective_target vmx_hw_available {
1314
        # Some simulators are known to not support VMX instructions.
1315
        if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] } {
1316
            expr 0
1317
        } else {
1318
            # Most targets don't require special flags for this test case, but
1319
            # Darwin does.  Just to be sure, make sure VSX is not enabled for
1320
            # the altivec tests.
1321
            if { [istarget *-*-darwin*]
1322
                 || [istarget *-*-aix*] } {
1323
                set options "-maltivec -mno-vsx"
1324
            } else {
1325
                set options "-mno-vsx"
1326
            }
1327
            check_runtime_nocache vmx_hw_available {
1328
                int main()
1329
                {
1330
                #ifdef __MACH__
1331
                  asm volatile ("vor v0,v0,v0");
1332
                #else
1333
                  asm volatile ("vor 0,0,0");
1334
                #endif
1335
                  return 0;
1336
                }
1337
            } $options
1338
        }
1339
    }]
1340
}
1341
 
1342
proc check_ppc_recip_hw_available { } {
1343
    return [check_cached_effective_target ppc_recip_hw_available {
1344
        # Some simulators may not support FRE/FRES/FRSQRTE/FRSQRTES
1345
        # For now, disable on Darwin
1346
        if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
1347
            expr 0
1348
        } else {
1349
            set options "-mpowerpc-gfxopt -mpowerpc-gpopt -mpopcntb"
1350
            check_runtime_nocache ppc_recip_hw_available {
1351
                volatile double d_recip, d_rsqrt, d_four = 4.0;
1352
                volatile float f_recip, f_rsqrt, f_four = 4.0f;
1353
                int main()
1354
                {
1355
                  asm volatile ("fres %0,%1" : "=f" (f_recip) : "f" (f_four));
1356
                  asm volatile ("fre %0,%1" : "=d" (d_recip) : "d" (d_four));
1357
                  asm volatile ("frsqrtes %0,%1" : "=f" (f_rsqrt) : "f" (f_four));
1358
                  asm volatile ("frsqrte %0,%1" : "=f" (d_rsqrt) : "d" (d_four));
1359
                  return 0;
1360
                }
1361
            } $options
1362
        }
1363
    }]
1364
}
1365
 
1366
# Return 1 if the target supports executing AltiVec and Cell PPU
1367
# instructions, 0 otherwise.  Cache the result.
1368
 
1369
proc check_effective_target_cell_hw { } {
1370
    return [check_cached_effective_target cell_hw_available {
1371
        # Some simulators are known to not support VMX and PPU instructions.
1372
        if { [istarget powerpc-*-eabi*] } {
1373
            expr 0
1374
        } else {
1375
            # Most targets don't require special flags for this test
1376
            # case, but Darwin and AIX do.
1377
            if { [istarget *-*-darwin*]
1378
                 || [istarget *-*-aix*] } {
1379
                set options "-maltivec -mcpu=cell"
1380
            } else {
1381
                set options "-mcpu=cell"
1382
            }
1383
            check_runtime_nocache cell_hw_available {
1384
                int main()
1385
                {
1386
                #ifdef __MACH__
1387
                  asm volatile ("vor v0,v0,v0");
1388
                  asm volatile ("lvlx v0,r0,r0");
1389
                #else
1390
                  asm volatile ("vor 0,0,0");
1391
                  asm volatile ("lvlx 0,0,0");
1392
                #endif
1393
                  return 0;
1394
                }
1395
            } $options
1396
        }
1397
    }]
1398
}
1399
 
1400
# Return 1 if the target supports executing 64-bit instructions, 0
1401
# otherwise.  Cache the result.
1402
 
1403
proc check_effective_target_powerpc64 { } {
1404
    global powerpc64_available_saved
1405
    global tool
1406
 
1407
    if [info exists powerpc64_available_saved] {
1408
        verbose "check_effective_target_powerpc64 returning saved $powerpc64_available_saved" 2
1409
    } else {
1410
        set powerpc64_available_saved 0
1411
 
1412
        # Some simulators are known to not support powerpc64 instructions.
1413
        if { [istarget powerpc-*-eabi*] || [istarget powerpc-ibm-aix*] } {
1414
            verbose "check_effective_target_powerpc64 returning 0" 2
1415
            return $powerpc64_available_saved
1416
        }
1417
 
1418
        # Set up, compile, and execute a test program containing a 64-bit
1419
        # instruction.  Include the current process ID in the file
1420
        # names to prevent conflicts with invocations for multiple
1421
        # testsuites.
1422
        set src ppc[pid].c
1423
        set exe ppc[pid].x
1424
 
1425
        set f [open $src "w"]
1426
        puts $f "int main() {"
1427
        puts $f "#ifdef __MACH__"
1428
        puts $f "  asm volatile (\"extsw r0,r0\");"
1429
        puts $f "#else"
1430
        puts $f "  asm volatile (\"extsw 0,0\");"
1431
        puts $f "#endif"
1432
        puts $f "  return 0; }"
1433
        close $f
1434
 
1435
        set opts "additional_flags=-mcpu=G5"
1436
 
1437
        verbose "check_effective_target_powerpc64 compiling testfile $src" 2
1438
        set lines [${tool}_target_compile $src $exe executable "$opts"]
1439
        file delete $src
1440
 
1441
        if [string match "" $lines] then {
1442
            # No error message, compilation succeeded.
1443
            set result [${tool}_load "./$exe" "" ""]
1444
            set status [lindex $result 0]
1445
            remote_file build delete $exe
1446
            verbose "check_effective_target_powerpc64 testfile status is <$status>" 2
1447
 
1448
            if { $status == "pass" } then {
1449
                set powerpc64_available_saved 1
1450
            }
1451
        } else {
1452
            verbose "check_effective_target_powerpc64 testfile compilation failed" 2
1453
        }
1454
    }
1455
 
1456
    return $powerpc64_available_saved
1457
}
1458
 
1459
# GCC 3.4.0 for powerpc64-*-linux* included an ABI fix for passing
1460
# complex float arguments.  This affects gfortran tests that call cabsf
1461
# in libm built by an earlier compiler.  Return 1 if libm uses the same
1462
# argument passing as the compiler under test, 0 otherwise.
1463
#
1464
# When the target name changes, replace the cached result.
1465
 
1466
proc check_effective_target_broken_cplxf_arg { } {
1467
    return [check_cached_effective_target broken_cplxf_arg {
1468
        # Skip the work for targets known not to be affected.
1469
        if { ![istarget powerpc64-*-linux*] } {
1470
            expr 0
1471
        } elseif { ![is-effective-target lp64] } {
1472
            expr 0
1473
        } else {
1474
            check_runtime_nocache broken_cplxf_arg {
1475
                #include 
1476
                extern void abort (void);
1477
                float fabsf (float);
1478
                float cabsf (_Complex float);
1479
                int main ()
1480
                {
1481
                  _Complex float cf;
1482
                  float f;
1483
                  cf = 3 + 4.0fi;
1484
                  f = cabsf (cf);
1485
                  if (fabsf (f - 5.0) > 0.0001)
1486
                    abort ();
1487
                  return 0;
1488
                }
1489
            } "-lm"
1490
        }
1491
    }]
1492
}
1493
 
1494
# Return 1 is this is a TI C6X target supporting C67X instructions
1495
proc check_effective_target_ti_c67x { } {
1496
    return [check_no_compiler_messages ti_c67x assembly {
1497
        #if !defined(_TMS320C6700)
1498
        #error FOO
1499
        #endif
1500
    }]
1501
}
1502
 
1503
# Return 1 is this is a TI C6X target supporting C64X+ instructions
1504
proc check_effective_target_ti_c64xp { } {
1505
    return [check_no_compiler_messages ti_c64xp assembly {
1506
        #if !defined(_TMS320C6400_PLUS)
1507
        #error FOO
1508
        #endif
1509
    }]
1510
}
1511
 
1512
 
1513
proc check_alpha_max_hw_available { } {
1514
    return [check_runtime alpha_max_hw_available {
1515
        int main() { return __builtin_alpha_amask(1<<8) != 0; }
1516
    }]
1517
}
1518
 
1519
# Returns true iff the FUNCTION is available on the target system.
1520
# (This is essentially a Tcl implementation of Autoconf's
1521
# AC_CHECK_FUNC.)
1522
 
1523
proc check_function_available { function } {
1524
    return [check_no_compiler_messages ${function}_available \
1525
                executable [subst {
1526
        #ifdef __cplusplus
1527
        extern "C"
1528
        #endif
1529
        char $function ();
1530
        int main () { $function (); }
1531
    }] "-fno-builtin" ]
1532
}
1533
 
1534
# Returns true iff "fork" is available on the target system.
1535
 
1536
proc check_fork_available {} {
1537
    return [check_function_available "fork"]
1538
}
1539
 
1540
# Returns true iff "mkfifo" is available on the target system.
1541
 
1542
proc check_mkfifo_available {} {
1543
    if { [istarget *-*-cygwin*] } {
1544
       # Cygwin has mkfifo, but support is incomplete.
1545
       return 0
1546
     }
1547
 
1548
    return [check_function_available "mkfifo"]
1549
}
1550
 
1551
# Returns true iff "__cxa_atexit" is used on the target system.
1552
 
1553
proc check_cxa_atexit_available { } {
1554
    return [check_cached_effective_target cxa_atexit_available {
1555
        if { [istarget hppa*-*-hpux10*] } {
1556
            # HP-UX 10 doesn't have __cxa_atexit but subsequent test passes.
1557
            expr 0
1558
        } elseif { [istarget *-*-vxworks] } {
1559
            # vxworks doesn't have __cxa_atexit but subsequent test passes.
1560
            expr 0
1561
        } else {
1562
            check_runtime_nocache cxa_atexit_available {
1563
                // C++
1564
                #include 
1565
                static unsigned int count;
1566
                struct X
1567
                {
1568
                  X() { count = 1; }
1569
                  ~X()
1570
                  {
1571
                    if (count != 3)
1572
                      exit(1);
1573
                    count = 4;
1574
                  }
1575
                };
1576
                void f()
1577
                {
1578
                  static X x;
1579
                }
1580
                struct Y
1581
                {
1582
                  Y() { f(); count = 2; }
1583
                  ~Y()
1584
                  {
1585
                    if (count != 2)
1586
                      exit(1);
1587
                    count = 3;
1588
                  }
1589
                };
1590
                Y y;
1591
                int main() { return 0; }
1592
            }
1593
        }
1594
    }]
1595
}
1596
 
1597
proc check_effective_target_objc2 { } {
1598
    return [check_no_compiler_messages objc2 object {
1599
        #ifdef __OBJC2__
1600
        int dummy[1];
1601
        #else
1602
        #error
1603
        #endif
1604
    }]
1605
}
1606
 
1607
proc check_effective_target_next_runtime { } {
1608
    return [check_no_compiler_messages objc2 object {
1609
        #ifdef __NEXT_RUNTIME__
1610
        int dummy[1];
1611
        #else
1612
        #error
1613
        #endif
1614
    }]
1615
}
1616
 
1617
# Return 1 if we're generating 32-bit code using default options, 0
1618
# otherwise.
1619
 
1620
proc check_effective_target_ilp32 { } {
1621
    return [check_no_compiler_messages ilp32 object {
1622
        int dummy[sizeof (int) == 4
1623
                  && sizeof (void *) == 4
1624
                  && sizeof (long) == 4 ? 1 : -1];
1625
    }]
1626
}
1627
 
1628
# Return 1 if we're generating ia32 code using default options, 0
1629
# otherwise.
1630
 
1631
proc check_effective_target_ia32 { } {
1632
    return [check_no_compiler_messages ia32 object {
1633
        int dummy[sizeof (int) == 4
1634
                  && sizeof (void *) == 4
1635
                  && sizeof (long) == 4 ? 1 : -1] = { __i386__ };
1636
    }]
1637
}
1638
 
1639
# Return 1 if we're generating x32 code using default options, 0
1640
# otherwise.
1641
 
1642
proc check_effective_target_x32 { } {
1643
    return [check_no_compiler_messages x32 object {
1644
        int dummy[sizeof (int) == 4
1645
                  && sizeof (void *) == 4
1646
                  && sizeof (long) == 4 ? 1 : -1] = { __x86_64__ };
1647
    }]
1648
}
1649
 
1650
# Return 1 if we're generating 32-bit or larger integers using default
1651
# options, 0 otherwise.
1652
 
1653
proc check_effective_target_int32plus { } {
1654
    return [check_no_compiler_messages int32plus object {
1655
        int dummy[sizeof (int) >= 4 ? 1 : -1];
1656
    }]
1657
}
1658
 
1659
# Return 1 if we're generating 32-bit or larger pointers using default
1660
# options, 0 otherwise.
1661
 
1662
proc check_effective_target_ptr32plus { } {
1663
    return [check_no_compiler_messages ptr32plus object {
1664
        int dummy[sizeof (void *) >= 4 ? 1 : -1];
1665
    }]
1666
}
1667
 
1668
# Return 1 if we support 32-bit or larger array and structure sizes
1669
# using default options, 0 otherwise.
1670
 
1671
proc check_effective_target_size32plus { } {
1672
    return [check_no_compiler_messages size32plus object {
1673
        char dummy[65537];
1674
    }]
1675
}
1676
 
1677
# Returns 1 if we're generating 16-bit or smaller integers with the
1678
# default options, 0 otherwise.
1679
 
1680
proc check_effective_target_int16 { } {
1681
    return [check_no_compiler_messages int16 object {
1682
        int dummy[sizeof (int) < 4 ? 1 : -1];
1683
    }]
1684
}
1685
 
1686
# Return 1 if we're generating 64-bit code using default options, 0
1687
# otherwise.
1688
 
1689
proc check_effective_target_lp64 { } {
1690
    return [check_no_compiler_messages lp64 object {
1691
        int dummy[sizeof (int) == 4
1692
                  && sizeof (void *) == 8
1693
                  && sizeof (long) == 8 ? 1 : -1];
1694
    }]
1695
}
1696
 
1697
# Return 1 if we're generating 64-bit code using default llp64 options,
1698
# 0 otherwise.
1699
 
1700
proc check_effective_target_llp64 { } {
1701
    return [check_no_compiler_messages llp64 object {
1702
        int dummy[sizeof (int) == 4
1703
                  && sizeof (void *) == 8
1704
                  && sizeof (long long) == 8
1705
                  && sizeof (long) == 4 ? 1 : -1];
1706
    }]
1707
}
1708
 
1709
# Return 1 if the target supports long double larger than double,
1710
# 0 otherwise.
1711
 
1712
proc check_effective_target_large_long_double { } {
1713
    return [check_no_compiler_messages large_long_double object {
1714
        int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
1715
    }]
1716
}
1717
 
1718
# Return 1 if the target supports double larger than float,
1719
# 0 otherwise.
1720
 
1721
proc check_effective_target_large_double { } {
1722
    return [check_no_compiler_messages large_double object {
1723
        int dummy[sizeof(double) > sizeof(float) ? 1 : -1];
1724
    }]
1725
}
1726
 
1727
# Return 1 if the target supports double of 64 bits,
1728
# 0 otherwise.
1729
 
1730
proc check_effective_target_double64 { } {
1731
    return [check_no_compiler_messages double64 object {
1732
        int dummy[sizeof(double) == 8 ? 1 : -1];
1733
    }]
1734
}
1735
 
1736
# Return 1 if the target supports double of at least 64 bits,
1737
# 0 otherwise.
1738
 
1739
proc check_effective_target_double64plus { } {
1740
    return [check_no_compiler_messages double64plus object {
1741
        int dummy[sizeof(double) >= 8 ? 1 : -1];
1742
    }]
1743
}
1744
 
1745
# Return 1 if the target supports compiling fixed-point,
1746
# 0 otherwise.
1747
 
1748
proc check_effective_target_fixed_point { } {
1749
    return [check_no_compiler_messages fixed_point object {
1750
        _Sat _Fract x; _Sat _Accum y;
1751
    }]
1752
}
1753
 
1754
# Return 1 if the target supports compiling decimal floating point,
1755
# 0 otherwise.
1756
 
1757
proc check_effective_target_dfp_nocache { } {
1758
    verbose "check_effective_target_dfp_nocache: compiling source" 2
1759
    set ret [check_no_compiler_messages_nocache dfp object {
1760
        float x __attribute__((mode(DD)));
1761
    }]
1762
    verbose "check_effective_target_dfp_nocache: returning $ret" 2
1763
    return $ret
1764
}
1765
 
1766
proc check_effective_target_dfprt_nocache { } {
1767
    return [check_runtime_nocache dfprt {
1768
        typedef float d64 __attribute__((mode(DD)));
1769
        d64 x = 1.2df, y = 2.3dd, z;
1770
        int main () { z = x + y; return 0; }
1771
    }]
1772
}
1773
 
1774
# Return 1 if the target supports compiling Decimal Floating Point,
1775
# 0 otherwise.
1776
#
1777
# This won't change for different subtargets so cache the result.
1778
 
1779
proc check_effective_target_dfp { } {
1780
    return [check_cached_effective_target dfp {
1781
        check_effective_target_dfp_nocache
1782
    }]
1783
}
1784
 
1785
# Return 1 if the target supports linking and executing Decimal Floating
1786
# Point, 0 otherwise.
1787
#
1788
# This won't change for different subtargets so cache the result.
1789
 
1790
proc check_effective_target_dfprt { } {
1791
    return [check_cached_effective_target dfprt {
1792
        check_effective_target_dfprt_nocache
1793
    }]
1794
}
1795
 
1796
# Return 1 if the target supports compiling and assembling UCN, 0 otherwise.
1797
 
1798
proc check_effective_target_ucn_nocache { } {
1799
    # -std=c99 is only valid for C
1800
    if [check_effective_target_c] {
1801
        set ucnopts "-std=c99"
1802
    }
1803
    append ucnopts " -fextended-identifiers"
1804
    verbose "check_effective_target_ucn_nocache: compiling source" 2
1805
    set ret [check_no_compiler_messages_nocache ucn object {
1806
        int \u00C0;
1807
    } $ucnopts]
1808
    verbose "check_effective_target_ucn_nocache: returning $ret" 2
1809
    return $ret
1810
}
1811
 
1812
# Return 1 if the target supports compiling and assembling UCN, 0 otherwise.
1813
#
1814
# This won't change for different subtargets, so cache the result.
1815
 
1816
proc check_effective_target_ucn { } {
1817
    return [check_cached_effective_target ucn {
1818
        check_effective_target_ucn_nocache
1819
    }]
1820
}
1821
 
1822
# Return 1 if the target needs a command line argument to enable a SIMD
1823
# instruction set.
1824
 
1825
proc check_effective_target_vect_cmdline_needed { } {
1826
    global et_vect_cmdline_needed_saved
1827
    global et_vect_cmdline_needed_target_name
1828
 
1829
    if { ![info exists et_vect_cmdline_needed_target_name] } {
1830
        set et_vect_cmdline_needed_target_name ""
1831
    }
1832
 
1833
    # If the target has changed since we set the cached value, clear it.
1834
    set current_target [current_target_name]
1835
    if { $current_target != $et_vect_cmdline_needed_target_name } {
1836
        verbose "check_effective_target_vect_cmdline_needed: `$et_vect_cmdline_needed_target_name' `$current_target'" 2
1837
        set et_vect_cmdline_needed_target_name $current_target
1838
        if { [info exists et_vect_cmdline_needed_saved] } {
1839
            verbose "check_effective_target_vect_cmdline_needed: removing cached result" 2
1840
            unset et_vect_cmdline_needed_saved
1841
        }
1842
    }
1843
 
1844
    if [info exists et_vect_cmdline_needed_saved] {
1845
        verbose "check_effective_target_vect_cmdline_needed: using cached result" 2
1846
    } else {
1847
        set et_vect_cmdline_needed_saved 1
1848
        if { [istarget alpha*-*-*]
1849
             || [istarget ia64-*-*]
1850
             || (([istarget x86_64-*-*] || [istarget i?86-*-*])
1851
                 && ([check_effective_target_x32]
1852
                     || [check_effective_target_lp64]))
1853
             || ([istarget powerpc*-*-*]
1854
                 && ([check_effective_target_powerpc_spe]
1855
                     || [check_effective_target_powerpc_altivec]))
1856
             || ([istarget sparc*-*-*] && [check_effective_target_sparc_vis])
1857
             || [istarget spu-*-*]
1858
             || ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
1859
           set et_vect_cmdline_needed_saved 0
1860
        }
1861
    }
1862
 
1863
    verbose "check_effective_target_vect_cmdline_needed: returning $et_vect_cmdline_needed_saved" 2
1864
    return $et_vect_cmdline_needed_saved
1865
}
1866
 
1867
# Return 1 if the target supports hardware vectors of int, 0 otherwise.
1868
#
1869
# This won't change for different subtargets so cache the result.
1870
 
1871
proc check_effective_target_vect_int { } {
1872
    global et_vect_int_saved
1873
 
1874
    if [info exists et_vect_int_saved] {
1875
        verbose "check_effective_target_vect_int: using cached result" 2
1876
    } else {
1877
        set et_vect_int_saved 0
1878
        if { [istarget i?86-*-*]
1879
             || ([istarget powerpc*-*-*]
1880
                  && ![istarget powerpc-*-linux*paired*])
1881
              || [istarget spu-*-*]
1882
              || [istarget x86_64-*-*]
1883
              || [istarget sparc*-*-*]
1884
              || [istarget alpha*-*-*]
1885
              || [istarget ia64-*-*]
1886
              || [check_effective_target_arm32]
1887
              || ([istarget mips*-*-*]
1888
                  && [check_effective_target_mips_loongson]) } {
1889
           set et_vect_int_saved 1
1890
        }
1891
    }
1892
 
1893
    verbose "check_effective_target_vect_int: returning $et_vect_int_saved" 2
1894
    return $et_vect_int_saved
1895
}
1896
 
1897
# Return 1 if the target supports signed int->float conversion
1898
#
1899
 
1900
proc check_effective_target_vect_intfloat_cvt { } {
1901
    global et_vect_intfloat_cvt_saved
1902
 
1903
    if [info exists et_vect_intfloat_cvt_saved] {
1904
        verbose "check_effective_target_vect_intfloat_cvt: using cached result" 2
1905
    } else {
1906
        set et_vect_intfloat_cvt_saved 0
1907
        if { [istarget i?86-*-*]
1908
              || ([istarget powerpc*-*-*]
1909
                   && ![istarget powerpc-*-linux*paired*])
1910
              || [istarget x86_64-*-*]
1911
              || ([istarget arm*-*-*]
1912
                  && [check_effective_target_arm_neon_ok])} {
1913
           set et_vect_intfloat_cvt_saved 1
1914
        }
1915
    }
1916
 
1917
    verbose "check_effective_target_vect_intfloat_cvt: returning $et_vect_intfloat_cvt_saved" 2
1918
    return $et_vect_intfloat_cvt_saved
1919
}
1920
 
1921
#Return 1 if we're supporting __int128 for target, 0 otherwise.
1922
 
1923
proc check_effective_target_int128 { } {
1924
    return [check_no_compiler_messages int128 object {
1925
        int dummy[
1926
        #ifndef __SIZEOF_INT128__
1927
        -1
1928
        #else
1929
        1
1930
        #endif
1931
        ];
1932
    }]
1933
}
1934
 
1935
# Return 1 if the target supports unsigned int->float conversion
1936
#
1937
 
1938
proc check_effective_target_vect_uintfloat_cvt { } {
1939
    global et_vect_uintfloat_cvt_saved
1940
 
1941
    if [info exists et_vect_uintfloat_cvt_saved] {
1942
        verbose "check_effective_target_vect_uintfloat_cvt: using cached result" 2
1943
    } else {
1944
        set et_vect_uintfloat_cvt_saved 0
1945
        if { [istarget i?86-*-*]
1946
              || ([istarget powerpc*-*-*]
1947
                  && ![istarget powerpc-*-linux*paired*])
1948
              || [istarget x86_64-*-*]
1949
              || ([istarget arm*-*-*]
1950
                  && [check_effective_target_arm_neon_ok])} {
1951
           set et_vect_uintfloat_cvt_saved 1
1952
        }
1953
    }
1954
 
1955
    verbose "check_effective_target_vect_uintfloat_cvt: returning $et_vect_uintfloat_cvt_saved" 2
1956
    return $et_vect_uintfloat_cvt_saved
1957
}
1958
 
1959
 
1960
# Return 1 if the target supports signed float->int conversion
1961
#
1962
 
1963
proc check_effective_target_vect_floatint_cvt { } {
1964
    global et_vect_floatint_cvt_saved
1965
 
1966
    if [info exists et_vect_floatint_cvt_saved] {
1967
        verbose "check_effective_target_vect_floatint_cvt: using cached result" 2
1968
    } else {
1969
        set et_vect_floatint_cvt_saved 0
1970
        if { [istarget i?86-*-*]
1971
              || ([istarget powerpc*-*-*]
1972
                   && ![istarget powerpc-*-linux*paired*])
1973
              || [istarget x86_64-*-*]
1974
              || ([istarget arm*-*-*]
1975
                  && [check_effective_target_arm_neon_ok])} {
1976
           set et_vect_floatint_cvt_saved 1
1977
        }
1978
    }
1979
 
1980
    verbose "check_effective_target_vect_floatint_cvt: returning $et_vect_floatint_cvt_saved" 2
1981
    return $et_vect_floatint_cvt_saved
1982
}
1983
 
1984
# Return 1 if the target supports unsigned float->int conversion
1985
#
1986
 
1987
proc check_effective_target_vect_floatuint_cvt { } {
1988
    global et_vect_floatuint_cvt_saved
1989
 
1990
    if [info exists et_vect_floatuint_cvt_saved] {
1991
        verbose "check_effective_target_vect_floatuint_cvt: using cached result" 2
1992
    } else {
1993
        set et_vect_floatuint_cvt_saved 0
1994
        if { ([istarget powerpc*-*-*]
1995
              && ![istarget powerpc-*-linux*paired*])
1996
            || ([istarget arm*-*-*]
1997
                && [check_effective_target_arm_neon_ok])} {
1998
           set et_vect_floatuint_cvt_saved 1
1999
        }
2000
    }
2001
 
2002
    verbose "check_effective_target_vect_floatuint_cvt: returning $et_vect_floatuint_cvt_saved" 2
2003
    return $et_vect_floatuint_cvt_saved
2004
}
2005
 
2006
# Return 1 is this is an arm target using 32-bit instructions
2007
proc check_effective_target_arm32 { } {
2008
    return [check_no_compiler_messages arm32 assembly {
2009
        #if !defined(__arm__) || (defined(__thumb__) && !defined(__thumb2__))
2010
        #error FOO
2011
        #endif
2012
    }]
2013
}
2014
 
2015
# Return 1 is this is an arm target not using Thumb
2016
proc check_effective_target_arm_nothumb { } {
2017
    return [check_no_compiler_messages arm_nothumb assembly {
2018
        #if (defined(__thumb__) || defined(__thumb2__))
2019
        #error FOO
2020
        #endif
2021
    }]
2022
}
2023
 
2024
# Return 1 if this is a little-endian ARM target
2025
proc check_effective_target_arm_little_endian { } {
2026
    return [check_no_compiler_messages arm_little_endian assembly {
2027
        #if !defined(__arm__) || !defined(__ARMEL__)
2028
        #error FOO
2029
        #endif
2030
    }]
2031
}
2032
 
2033
# Return 1 if this is an ARM target that only supports aligned vector accesses
2034
proc check_effective_target_arm_vect_no_misalign { } {
2035
    return [check_no_compiler_messages arm_vect_no_misalign assembly {
2036
        #if !defined(__arm__) \
2037
            || (defined(__ARMEL__) \
2038
                && (!defined(__thumb__) || defined(__thumb2__)))
2039
        #error FOO
2040
        #endif
2041
    }]
2042
}
2043
 
2044
 
2045
# Return 1 if this is an ARM target supporting -mfpu=vfp
2046
# -mfloat-abi=softfp.  Some multilibs may be incompatible with these
2047
# options.
2048
 
2049
proc check_effective_target_arm_vfp_ok { } {
2050
    if { [check_effective_target_arm32] } {
2051
        return [check_no_compiler_messages arm_vfp_ok object {
2052
            int dummy;
2053
        } "-mfpu=vfp -mfloat-abi=softfp"]
2054
    } else {
2055
        return 0
2056
    }
2057
}
2058
 
2059
# Return 1 if this is an ARM target supporting -mfpu=vfp
2060
# -mfloat-abi=hard.  Some multilibs may be incompatible with these
2061
# options.
2062
 
2063
proc check_effective_target_arm_hard_vfp_ok { } {
2064
    if { [check_effective_target_arm32] } {
2065
        return [check_no_compiler_messages arm_hard_vfp_ok executable {
2066
            int main() { return 0;}
2067
        } "-mfpu=vfp -mfloat-abi=hard"]
2068
    } else {
2069
        return 0
2070
    }
2071
}
2072
 
2073
# Return 1 if this is an ARM target that supports DSP multiply with
2074
# current multilib flags.
2075
 
2076
proc check_effective_target_arm_dsp { } {
2077
    return [check_no_compiler_messages arm_dsp assembly {
2078
        #ifndef __ARM_FEATURE_DSP
2079
        #error not DSP
2080
        #endif
2081
        int i;
2082
    }]
2083
}
2084
 
2085
# Return 1 if this is an ARM target that supports unaligned word/halfword
2086
# load/store instructions.
2087
 
2088
proc check_effective_target_arm_unaligned { } {
2089
    return [check_no_compiler_messages arm_unaligned assembly {
2090
        #ifndef __ARM_FEATURE_UNALIGNED
2091
        #error no unaligned support
2092
        #endif
2093
        int i;
2094
    }]
2095
}
2096
 
2097
# Add the options needed for NEON.  We need either -mfloat-abi=softfp
2098
# or -mfloat-abi=hard, but if one is already specified by the
2099
# multilib, use it.  Similarly, if a -mfpu option already enables
2100
# NEON, do not add -mfpu=neon.
2101
 
2102
proc add_options_for_arm_neon { flags } {
2103
    if { ! [check_effective_target_arm_neon_ok] } {
2104
        return "$flags"
2105
    }
2106
    global et_arm_neon_flags
2107
    return "$flags $et_arm_neon_flags"
2108
}
2109
 
2110
# Return 1 if this is an ARM target supporting -mfpu=neon
2111
# -mfloat-abi=softfp or equivalent options.  Some multilibs may be
2112
# incompatible with these options.  Also set et_arm_neon_flags to the
2113
# best options to add.
2114
 
2115
proc check_effective_target_arm_neon_ok_nocache { } {
2116
    global et_arm_neon_flags
2117
    set et_arm_neon_flags ""
2118
    if { [check_effective_target_arm32] } {
2119
        foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon" "-mfpu=neon -mfloat-abi=softfp"} {
2120
            if { [check_no_compiler_messages_nocache arm_neon_ok object {
2121
                #include "arm_neon.h"
2122
                int dummy;
2123
            } "$flags"] } {
2124
                set et_arm_neon_flags $flags
2125
                return 1
2126
            }
2127
        }
2128
    }
2129
 
2130
    return 0
2131
}
2132
 
2133
proc check_effective_target_arm_neon_ok { } {
2134
    return [check_cached_effective_target arm_neon_ok \
2135
                check_effective_target_arm_neon_ok_nocache]
2136
}
2137
 
2138
# Add the options needed for NEON.  We need either -mfloat-abi=softfp
2139
# or -mfloat-abi=hard, but if one is already specified by the
2140
# multilib, use it.
2141
 
2142
proc add_options_for_arm_fp16 { flags } {
2143
    if { ! [check_effective_target_arm_fp16_ok] } {
2144
        return "$flags"
2145
    }
2146
    global et_arm_fp16_flags
2147
    return "$flags $et_arm_fp16_flags"
2148
}
2149
 
2150
# Return 1 if this is an ARM target that can support a VFP fp16 variant.
2151
# Skip multilibs that are incompatible with these options and set
2152
# et_arm_fp16_flags to the best options to add.
2153
 
2154
proc check_effective_target_arm_fp16_ok_nocache { } {
2155
    global et_arm_fp16_flags
2156
    set et_arm_fp16_flags ""
2157
    if { ! [check_effective_target_arm32] } {
2158
        return 0;
2159
    }
2160
    if [check-flags [list "" { *-*-* } { "-mfpu=*" } { "-mfpu=*fp16*" "-mfpu=*fpv[4-9]*" "-mfpu=*fpv[1-9][0-9]*" } ]] {
2161
        # Multilib flags would override -mfpu.
2162
        return 0
2163
    }
2164
    if [check-flags [list "" { *-*-* } { "-mfloat-abi=soft" } { "" } ]] {
2165
        # Must generate floating-point instructions.
2166
        return 0
2167
    }
2168
    if [check-flags [list "" { *-*-* } { "-mfpu=*" } { "" } ]] {
2169
        # The existing -mfpu value is OK; use it, but add softfp.
2170
        set et_arm_fp16_flags "-mfloat-abi=softfp"
2171
        return 1;
2172
    }
2173
    # Add -mfpu for a VFP fp16 variant since there is no preprocessor
2174
    # macro to check for this support.
2175
    set flags "-mfpu=vfpv4 -mfloat-abi=softfp"
2176
    if { [check_no_compiler_messages_nocache arm_fp16_ok assembly {
2177
        int dummy;
2178
    } "$flags"] } {
2179
        set et_arm_fp16_flags "$flags"
2180
        return 1
2181
    }
2182
 
2183
    return 0
2184
}
2185
 
2186
proc check_effective_target_arm_fp16_ok { } {
2187
    return [check_cached_effective_target arm_fp16_ok \
2188
                check_effective_target_arm_fp16_ok_nocache]
2189
}
2190
 
2191
# Creates a series of routines that return 1 if the given architecture
2192
# can be selected and a routine to give the flags to select that architecture
2193
# Note: Extra flags may be added to disable options from newer compilers
2194
# (Thumb in particular - but others may be added in the future)
2195
# Usage: /* { dg-require-effective-target arm_arch_v5_ok } */
2196
#        /* { dg-add-options arm_arch_v5 } */
2197
foreach { armfunc armflag armdef } { v5 "-march=armv5 -marm" __ARM_ARCH_5__
2198
                                     v6 "-march=armv6" __ARM_ARCH_6__
2199
                                     v6k "-march=armv6k" __ARM_ARCH_6K__
2200
                                     v7a "-march=armv7-a" __ARM_ARCH_7A__ } {
2201
    eval [string map [list FUNC $armfunc FLAG $armflag DEF $armdef ] {
2202
        proc check_effective_target_arm_arch_FUNC_ok { } {
2203
            if { [ string match "*-marm*" "FLAG" ] &&
2204
                ![check_effective_target_arm_arm_ok] } {
2205
                return 0
2206
            }
2207
            return [check_no_compiler_messages arm_arch_FUNC_ok assembly {
2208
                #if !defined (DEF)
2209
                #error FOO
2210
                #endif
2211
            } "FLAG" ]
2212
        }
2213
 
2214
        proc add_options_for_arm_arch_FUNC { flags } {
2215
            return "$flags FLAG"
2216
        }
2217
    }]
2218
}
2219
 
2220
# Return 1 if this is an ARM target where -marm causes ARM to be
2221
# used (not Thumb)
2222
 
2223
proc check_effective_target_arm_arm_ok { } {
2224
    return [check_no_compiler_messages arm_arm_ok assembly {
2225
        #if !defined (__arm__) || defined (__thumb__) || defined (__thumb2__)
2226
        #error FOO
2227
        #endif
2228
    } "-marm"]
2229
}
2230
 
2231
 
2232
# Return 1 is this is an ARM target where -mthumb causes Thumb-1 to be
2233
# used.
2234
 
2235
proc check_effective_target_arm_thumb1_ok { } {
2236
    return [check_no_compiler_messages arm_thumb1_ok assembly {
2237
        #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__)
2238
        #error FOO
2239
        #endif
2240
    } "-mthumb"]
2241
}
2242
 
2243
# Return 1 is this is an ARM target where -mthumb causes Thumb-2 to be
2244
# used.
2245
 
2246
proc check_effective_target_arm_thumb2_ok { } {
2247
    return [check_no_compiler_messages arm_thumb2_ok assembly {
2248
        #if !defined(__thumb2__)
2249
        #error FOO
2250
        #endif
2251
    } "-mthumb"]
2252
}
2253
 
2254
# Return 1 if this is an ARM target where Thumb-1 is used without options
2255
# added by the test.
2256
 
2257
proc check_effective_target_arm_thumb1 { } {
2258
    return [check_no_compiler_messages arm_thumb1 assembly {
2259
        #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__)
2260
        #error not thumb1
2261
        #endif
2262
        int i;
2263
    } ""]
2264
}
2265
 
2266
# Return 1 if this is an ARM target where Thumb-2 is used without options
2267
# added by the test.
2268
 
2269
proc check_effective_target_arm_thumb2 { } {
2270
    return [check_no_compiler_messages arm_thumb2 assembly {
2271
        #if !defined(__thumb2__)
2272
        #error FOO
2273
        #endif
2274
        int i;
2275
    } ""]
2276
}
2277
 
2278
# Return 1 if this is an ARM cortex-M profile cpu
2279
 
2280
proc check_effective_target_arm_cortex_m { } {
2281
    return [check_no_compiler_messages arm_cortex_m assembly {
2282
        #if !defined(__ARM_ARCH_7M__) \
2283
            && !defined (__ARM_ARCH_7EM__) \
2284
            && !defined (__ARM_ARCH_6M__)
2285
        #error FOO
2286
        #endif
2287
        int i;
2288
    } "-mthumb"]
2289
}
2290
 
2291
# Return 1 if the target supports executing NEON instructions, 0
2292
# otherwise.  Cache the result.
2293
 
2294
proc check_effective_target_arm_neon_hw { } {
2295
    return [check_runtime arm_neon_hw_available {
2296
        int
2297
        main (void)
2298
        {
2299
          long long a = 0, b = 1;
2300
          asm ("vorr %P0, %P1, %P2"
2301
               : "=w" (a)
2302
               : "0" (a), "w" (b));
2303
          return (a != 1);
2304
        }
2305
    } [add_options_for_arm_neon ""]]
2306
}
2307
 
2308
# Return 1 if this is a ARM target with NEON enabled.
2309
 
2310
proc check_effective_target_arm_neon { } {
2311
    if { [check_effective_target_arm32] } {
2312
        return [check_no_compiler_messages arm_neon object {
2313
            #ifndef __ARM_NEON__
2314
            #error not NEON
2315
            #else
2316
            int dummy;
2317
            #endif
2318
        }]
2319
    } else {
2320
        return 0
2321
    }
2322
}
2323
 
2324
# Return 1 if this a Loongson-2E or -2F target using an ABI that supports
2325
# the Loongson vector modes.
2326
 
2327
proc check_effective_target_mips_loongson { } {
2328
    return [check_no_compiler_messages loongson assembly {
2329
        #if !defined(__mips_loongson_vector_rev)
2330
        #error FOO
2331
        #endif
2332
    }]
2333
}
2334
 
2335
# Return 1 if this is an ARM target that adheres to the ABI for the ARM
2336
# Architecture.
2337
 
2338
proc check_effective_target_arm_eabi { } {
2339
    return [check_no_compiler_messages arm_eabi object {
2340
        #ifndef __ARM_EABI__
2341
        #error not EABI
2342
        #else
2343
        int dummy;
2344
        #endif
2345
    }]
2346
}
2347
 
2348
# Return 1 if this is an ARM target supporting -mcpu=iwmmxt.
2349
# Some multilibs may be incompatible with this option.
2350
 
2351
proc check_effective_target_arm_iwmmxt_ok { } {
2352
    if { [check_effective_target_arm32] } {
2353
        return [check_no_compiler_messages arm_iwmmxt_ok object {
2354
            int dummy;
2355
        } "-mcpu=iwmmxt"]
2356
    } else {
2357
        return 0
2358
    }
2359
}
2360
 
2361
# Return 1 if this is a PowerPC target with floating-point registers.
2362
 
2363
proc check_effective_target_powerpc_fprs { } {
2364
    if { [istarget powerpc*-*-*]
2365
         || [istarget rs6000-*-*] } {
2366
        return [check_no_compiler_messages powerpc_fprs object {
2367
            #ifdef __NO_FPRS__
2368
            #error no FPRs
2369
            #else
2370
            int dummy;
2371
            #endif
2372
        }]
2373
    } else {
2374
        return 0
2375
    }
2376
}
2377
 
2378
# Return 1 if this is a PowerPC target with hardware double-precision
2379
# floating point.
2380
 
2381
proc check_effective_target_powerpc_hard_double { } {
2382
    if { [istarget powerpc*-*-*]
2383
         || [istarget rs6000-*-*] } {
2384
        return [check_no_compiler_messages powerpc_hard_double object {
2385
            #ifdef _SOFT_DOUBLE
2386
            #error soft double
2387
            #else
2388
            int dummy;
2389
            #endif
2390
        }]
2391
    } else {
2392
        return 0
2393
    }
2394
}
2395
 
2396
# Return 1 if this is a PowerPC target supporting -maltivec.
2397
 
2398
proc check_effective_target_powerpc_altivec_ok { } {
2399
    if { ([istarget powerpc*-*-*]
2400
         && ![istarget powerpc-*-linux*paired*])
2401
         || [istarget rs6000-*-*] } {
2402
        # AltiVec is not supported on AIX before 5.3.
2403
        if { [istarget powerpc*-*-aix4*]
2404
             || [istarget powerpc*-*-aix5.1*]
2405
             || [istarget powerpc*-*-aix5.2*] } {
2406
            return 0
2407
        }
2408
        return [check_no_compiler_messages powerpc_altivec_ok object {
2409
            int dummy;
2410
        } "-maltivec"]
2411
    } else {
2412
        return 0
2413
    }
2414
}
2415
 
2416
# Return 1 if this is a PowerPC target supporting -mvsx
2417
 
2418
proc check_effective_target_powerpc_vsx_ok { } {
2419
    if { ([istarget powerpc*-*-*]
2420
         && ![istarget powerpc-*-linux*paired*])
2421
         || [istarget rs6000-*-*] } {
2422
        # AltiVec is not supported on AIX before 5.3.
2423
        if { [istarget powerpc*-*-aix4*]
2424
             || [istarget powerpc*-*-aix5.1*]
2425
             || [istarget powerpc*-*-aix5.2*] } {
2426
            return 0
2427
        }
2428
        return [check_no_compiler_messages powerpc_vsx_ok object {
2429
            int main (void) {
2430
#ifdef __MACH__
2431
                asm volatile ("xxlor vs0,vs0,vs0");
2432
#else
2433
                asm volatile ("xxlor 0,0,0");
2434
#endif
2435
                return 0;
2436
            }
2437
        } "-mvsx"]
2438
    } else {
2439
        return 0
2440
    }
2441
}
2442
 
2443
# Return 1 if this is a PowerPC target supporting -mcpu=cell.
2444
 
2445
proc check_effective_target_powerpc_ppu_ok { } {
2446
    if [check_effective_target_powerpc_altivec_ok] {
2447
        return [check_no_compiler_messages cell_asm_available object {
2448
            int main (void) {
2449
#ifdef __MACH__
2450
                asm volatile ("lvlx v0,v0,v0");
2451
#else
2452
                asm volatile ("lvlx 0,0,0");
2453
#endif
2454
                return 0;
2455
            }
2456
        }]
2457
    } else {
2458
        return 0
2459
    }
2460
}
2461
 
2462
# Return 1 if this is a PowerPC target that supports SPU.
2463
 
2464
proc check_effective_target_powerpc_spu { } {
2465
    if { [istarget powerpc*-*-linux*] } {
2466
        return [check_effective_target_powerpc_altivec_ok]
2467
    } else {
2468
        return 0
2469
    }
2470
}
2471
 
2472
# Return 1 if this is a PowerPC SPE target.  The check includes options
2473
# specified by dg-options for this test, so don't cache the result.
2474
 
2475
proc check_effective_target_powerpc_spe_nocache { } {
2476
    if { [istarget powerpc*-*-*] } {
2477
        return [check_no_compiler_messages_nocache powerpc_spe object {
2478
            #ifndef __SPE__
2479
            #error not SPE
2480
            #else
2481
            int dummy;
2482
            #endif
2483
        } [current_compiler_flags]]
2484
    } else {
2485
        return 0
2486
    }
2487
}
2488
 
2489
# Return 1 if this is a PowerPC target with SPE enabled.
2490
 
2491
proc check_effective_target_powerpc_spe { } {
2492
    if { [istarget powerpc*-*-*] } {
2493
        return [check_no_compiler_messages powerpc_spe object {
2494
            #ifndef __SPE__
2495
            #error not SPE
2496
            #else
2497
            int dummy;
2498
            #endif
2499
        }]
2500
    } else {
2501
        return 0
2502
    }
2503
}
2504
 
2505
# Return 1 if this is a PowerPC target with Altivec enabled.
2506
 
2507
proc check_effective_target_powerpc_altivec { } {
2508
    if { [istarget powerpc*-*-*] } {
2509
        return [check_no_compiler_messages powerpc_altivec object {
2510
            #ifndef __ALTIVEC__
2511
            #error not Altivec
2512
            #else
2513
            int dummy;
2514
            #endif
2515
        }]
2516
    } else {
2517
        return 0
2518
    }
2519
}
2520
 
2521
# Return 1 if this is a PowerPC 405 target.  The check includes options
2522
# specified by dg-options for this test, so don't cache the result.
2523
 
2524
proc check_effective_target_powerpc_405_nocache { } {
2525
    if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } {
2526
        return [check_no_compiler_messages_nocache powerpc_405 object {
2527
            #ifdef __PPC405__
2528
            int dummy;
2529
            #else
2530
            #error not a PPC405
2531
            #endif
2532
        } [current_compiler_flags]]
2533
    } else {
2534
        return 0
2535
    }
2536
}
2537
 
2538
# Return 1 if this is a SPU target with a toolchain that
2539
# supports automatic overlay generation.
2540
 
2541
proc check_effective_target_spu_auto_overlay { } {
2542
    if { [istarget spu*-*-elf*] } {
2543
        return [check_no_compiler_messages spu_auto_overlay executable {
2544
                int main (void) { }
2545
                } "-Wl,--auto-overlay" ]
2546
    } else {
2547
        return 0
2548
    }
2549
}
2550
 
2551
# The VxWorks SPARC simulator accepts only EM_SPARC executables and
2552
# chokes on EM_SPARC32PLUS or EM_SPARCV9 executables.  Return 1 if the
2553
# test environment appears to run executables on such a simulator.
2554
 
2555
proc check_effective_target_ultrasparc_hw { } {
2556
    return [check_runtime ultrasparc_hw {
2557
        int main() { return 0; }
2558
    } "-mcpu=ultrasparc"]
2559
}
2560
 
2561
# Return 1 if the test environment supports executing UltraSPARC VIS2
2562
# instructions.  We check this by attempting: "bmask %g0, %g0, %g0"
2563
 
2564
proc check_effective_target_ultrasparc_vis2_hw { } {
2565
    return [check_runtime ultrasparc_vis2_hw {
2566
        int main() { __asm__(".word 0x81b00320"); return 0; }
2567
    } "-mcpu=ultrasparc3"]
2568
}
2569
 
2570
# Return 1 if the test environment supports executing UltraSPARC VIS3
2571
# instructions.  We check this by attempting: "addxc %g0, %g0, %g0"
2572
 
2573
proc check_effective_target_ultrasparc_vis3_hw { } {
2574
    return [check_runtime ultrasparc_vis3_hw {
2575
        int main() { __asm__(".word 0x81b00220"); return 0; }
2576
    } "-mcpu=niagara3"]
2577
}
2578
 
2579
# Return 1 if this is a Sparc target with VIS enabled.
2580
 
2581
proc check_effective_target_sparc_vis { } {
2582
    if { [istarget sparc*-*-*] } {
2583
        return [check_no_compiler_messages sparc_vis object {
2584
            #ifndef __VIS__
2585
            #error not VIS
2586
            #else
2587
            int dummy;
2588
            #endif
2589
        }]
2590
    } else {
2591
        return 0
2592
    }
2593
}
2594
 
2595
# Return 1 if the target supports hardware vector shift operation.
2596
 
2597
proc check_effective_target_vect_shift { } {
2598
    global et_vect_shift_saved
2599
 
2600
    if [info exists et_vect_shift_saved] {
2601
        verbose "check_effective_target_vect_shift: using cached result" 2
2602
    } else {
2603
        set et_vect_shift_saved 0
2604
        if { ([istarget powerpc*-*-*]
2605
             && ![istarget powerpc-*-linux*paired*])
2606
             || [istarget ia64-*-*]
2607
             || [istarget i?86-*-*]
2608
             || [istarget x86_64-*-*]
2609
             || [check_effective_target_arm32]
2610
             || ([istarget mips*-*-*]
2611
                 && [check_effective_target_mips_loongson]) } {
2612
           set et_vect_shift_saved 1
2613
        }
2614
    }
2615
 
2616
    verbose "check_effective_target_vect_shift: returning $et_vect_shift_saved" 2
2617
    return $et_vect_shift_saved
2618
}
2619
 
2620
# Return 1 if the target supports hardware vector shift operation for char.
2621
 
2622
proc check_effective_target_vect_shift_char { } {
2623
    global et_vect_shift_char_saved
2624
 
2625
    if [info exists et_vect_shift_char_saved] {
2626
        verbose "check_effective_target_vect_shift_char: using cached result" 2
2627
    } else {
2628
        set et_vect_shift_char_saved 0
2629
        if { ([istarget powerpc*-*-*]
2630
             && ![istarget powerpc-*-linux*paired*])
2631
             || [check_effective_target_arm32] } {
2632
           set et_vect_shift_char_saved 1
2633
        }
2634
    }
2635
 
2636
    verbose "check_effective_target_vect_shift_char: returning $et_vect_shift_char_saved" 2
2637
    return $et_vect_shift_char_saved
2638
}
2639
 
2640
# Return 1 if the target supports hardware vectors of long, 0 otherwise.
2641
#
2642
# This can change for different subtargets so do not cache the result.
2643
 
2644
proc check_effective_target_vect_long { } {
2645
    if { [istarget i?86-*-*]
2646
         || (([istarget powerpc*-*-*]
2647
              && ![istarget powerpc-*-linux*paired*])
2648
              && [check_effective_target_ilp32])
2649
         || [istarget x86_64-*-*]
2650
         || [check_effective_target_arm32]
2651
         || ([istarget sparc*-*-*] && [check_effective_target_ilp32]) } {
2652
        set answer 1
2653
    } else {
2654
        set answer 0
2655
    }
2656
 
2657
    verbose "check_effective_target_vect_long: returning $answer" 2
2658
    return $answer
2659
}
2660
 
2661
# Return 1 if the target supports hardware vectors of float, 0 otherwise.
2662
#
2663
# This won't change for different subtargets so cache the result.
2664
 
2665
proc check_effective_target_vect_float { } {
2666
    global et_vect_float_saved
2667
 
2668
    if [info exists et_vect_float_saved] {
2669
        verbose "check_effective_target_vect_float: using cached result" 2
2670
    } else {
2671
        set et_vect_float_saved 0
2672
        if { [istarget i?86-*-*]
2673
              || [istarget powerpc*-*-*]
2674
              || [istarget spu-*-*]
2675
              || [istarget mipsisa64*-*-*]
2676
              || [istarget x86_64-*-*]
2677
              || [istarget ia64-*-*]
2678
              || [check_effective_target_arm32] } {
2679
           set et_vect_float_saved 1
2680
        }
2681
    }
2682
 
2683
    verbose "check_effective_target_vect_float: returning $et_vect_float_saved" 2
2684
    return $et_vect_float_saved
2685
}
2686
 
2687
# Return 1 if the target supports hardware vectors of double, 0 otherwise.
2688
#
2689
# This won't change for different subtargets so cache the result.
2690
 
2691
proc check_effective_target_vect_double { } {
2692
    global et_vect_double_saved
2693
 
2694
    if [info exists et_vect_double_saved] {
2695
        verbose "check_effective_target_vect_double: using cached result" 2
2696
    } else {
2697
        set et_vect_double_saved 0
2698
        if { [istarget i?86-*-*]
2699
              || [istarget x86_64-*-*] } {
2700
           if { [check_no_compiler_messages vect_double assembly {
2701
                 #ifdef __tune_atom__
2702
                 # error No double vectorizer support.
2703
                 #endif
2704
                }] } {
2705
                set et_vect_double_saved 1
2706
            } else {
2707
                set et_vect_double_saved 0
2708
            }
2709
        } elseif { [istarget spu-*-*] } {
2710
           set et_vect_double_saved 1
2711
        }
2712
    }
2713
 
2714
    verbose "check_effective_target_vect_double: returning $et_vect_double_saved" 2
2715
    return $et_vect_double_saved
2716
}
2717
 
2718
# Return 1 if the target supports hardware vectors of long long, 0 otherwise.
2719
#
2720
# This won't change for different subtargets so cache the result.
2721
 
2722
proc check_effective_target_vect_long_long { } {
2723
    global et_vect_long_long_saved
2724
 
2725
    if [info exists et_vect_long_long_saved] {
2726
        verbose "check_effective_target_vect_long_long: using cached result" 2
2727
    } else {
2728
        set et_vect_long_long_saved 0
2729
        if { [istarget i?86-*-*]
2730
              || [istarget x86_64-*-*] } {
2731
           set et_vect_long_long_saved 1
2732
        }
2733
    }
2734
 
2735
    verbose "check_effective_target_vect_long_long: returning $et_vect_long_long_saved" 2
2736
    return $et_vect_long_long_saved
2737
}
2738
 
2739
 
2740
# Return 1 if the target plus current options does not support a vector
2741
# max instruction on "int", 0 otherwise.
2742
#
2743
# This won't change for different subtargets so cache the result.
2744
 
2745
proc check_effective_target_vect_no_int_max { } {
2746
    global et_vect_no_int_max_saved
2747
 
2748
    if [info exists et_vect_no_int_max_saved] {
2749
        verbose "check_effective_target_vect_no_int_max: using cached result" 2
2750
    } else {
2751
        set et_vect_no_int_max_saved 0
2752
        if { [istarget sparc*-*-*]
2753
             || [istarget spu-*-*]
2754
             || [istarget alpha*-*-*]
2755
             || ([istarget mips*-*-*]
2756
                 && [check_effective_target_mips_loongson]) } {
2757
            set et_vect_no_int_max_saved 1
2758
        }
2759
    }
2760
    verbose "check_effective_target_vect_no_int_max: returning $et_vect_no_int_max_saved" 2
2761
    return $et_vect_no_int_max_saved
2762
}
2763
 
2764
# Return 1 if the target plus current options does not support a vector
2765
# add instruction on "int", 0 otherwise.
2766
#
2767
# This won't change for different subtargets so cache the result.
2768
 
2769
proc check_effective_target_vect_no_int_add { } {
2770
    global et_vect_no_int_add_saved
2771
 
2772
    if [info exists et_vect_no_int_add_saved] {
2773
        verbose "check_effective_target_vect_no_int_add: using cached result" 2
2774
    } else {
2775
        set et_vect_no_int_add_saved 0
2776
        # Alpha only supports vector add on V8QI and V4HI.
2777
        if { [istarget alpha*-*-*] } {
2778
            set et_vect_no_int_add_saved 1
2779
        }
2780
    }
2781
    verbose "check_effective_target_vect_no_int_add: returning $et_vect_no_int_add_saved" 2
2782
    return $et_vect_no_int_add_saved
2783
}
2784
 
2785
# Return 1 if the target plus current options does not support vector
2786
# bitwise instructions, 0 otherwise.
2787
#
2788
# This won't change for different subtargets so cache the result.
2789
 
2790
proc check_effective_target_vect_no_bitwise { } {
2791
    global et_vect_no_bitwise_saved
2792
 
2793
    if [info exists et_vect_no_bitwise_saved] {
2794
        verbose "check_effective_target_vect_no_bitwise: using cached result" 2
2795
    } else {
2796
        set et_vect_no_bitwise_saved 0
2797
    }
2798
    verbose "check_effective_target_vect_no_bitwise: returning $et_vect_no_bitwise_saved" 2
2799
    return $et_vect_no_bitwise_saved
2800
}
2801
 
2802
# Return 1 if the target plus current options supports vector permutation,
2803
# 0 otherwise.
2804
#
2805
# This won't change for different subtargets so cache the result.
2806
 
2807
proc check_effective_target_vect_perm { } {
2808
    global et_vect_perm
2809
 
2810
    if [info exists et_vect_perm_saved] {
2811
        verbose "check_effective_target_vect_perm: using cached result" 2
2812
    } else {
2813
        set et_vect_perm_saved 0
2814
        if { [is-effective-target arm_neon_ok]
2815
             || [istarget powerpc*-*-*]
2816
             || [istarget spu-*-*]
2817
             || [istarget i?86-*-*]
2818
             || [istarget x86_64-*-*]
2819
             || ([istarget mips*-*-*]
2820
                 && [check_effective_target_mpaired_single]) } {
2821
            set et_vect_perm_saved 1
2822
        }
2823
    }
2824
    verbose "check_effective_target_vect_perm: returning $et_vect_perm_saved" 2
2825
    return $et_vect_perm_saved
2826
}
2827
 
2828
# Return 1 if the target plus current options supports vector permutation
2829
# on byte-sized elements, 0 otherwise.
2830
#
2831
# This won't change for different subtargets so cache the result.
2832
 
2833
proc check_effective_target_vect_perm_byte { } {
2834
    global et_vect_perm_byte
2835
 
2836
    if [info exists et_vect_perm_byte_saved] {
2837
        verbose "check_effective_target_vect_perm_byte: using cached result" 2
2838
    } else {
2839
        set et_vect_perm_byte_saved 0
2840
        if { [is-effective-target arm_neon_ok]
2841
             || [istarget powerpc*-*-*]
2842
             || [istarget spu-*-*] } {
2843
            set et_vect_perm_byte_saved 1
2844
        }
2845
    }
2846
    verbose "check_effective_target_vect_perm_byte: returning $et_vect_perm_byte_saved" 2
2847
    return $et_vect_perm_byte_saved
2848
}
2849
 
2850
# Return 1 if the target plus current options supports vector permutation
2851
# on short-sized elements, 0 otherwise.
2852
#
2853
# This won't change for different subtargets so cache the result.
2854
 
2855
proc check_effective_target_vect_perm_short { } {
2856
    global et_vect_perm_short
2857
 
2858
    if [info exists et_vect_perm_short_saved] {
2859
        verbose "check_effective_target_vect_perm_short: using cached result" 2
2860
    } else {
2861
        set et_vect_perm_short_saved 0
2862
        if { [is-effective-target arm_neon_ok]
2863
             || [istarget powerpc*-*-*]
2864
             || [istarget spu-*-*] } {
2865
            set et_vect_perm_short_saved 1
2866
        }
2867
    }
2868
    verbose "check_effective_target_vect_perm_short: returning $et_vect_perm_short_saved" 2
2869
    return $et_vect_perm_short_saved
2870
}
2871
 
2872
# Return 1 if the target plus current options supports a vector
2873
# widening summation of *short* args into *int* result, 0 otherwise.
2874
#
2875
# This won't change for different subtargets so cache the result.
2876
 
2877
proc check_effective_target_vect_widen_sum_hi_to_si_pattern { } {
2878
    global et_vect_widen_sum_hi_to_si_pattern
2879
 
2880
    if [info exists et_vect_widen_sum_hi_to_si_pattern_saved] {
2881
        verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: using cached result" 2
2882
    } else {
2883
        set et_vect_widen_sum_hi_to_si_pattern_saved 0
2884
        if { [istarget powerpc*-*-*]
2885
             || [istarget ia64-*-*] } {
2886
            set et_vect_widen_sum_hi_to_si_pattern_saved 1
2887
        }
2888
    }
2889
    verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: returning $et_vect_widen_sum_hi_to_si_pattern_saved" 2
2890
    return $et_vect_widen_sum_hi_to_si_pattern_saved
2891
}
2892
 
2893
# Return 1 if the target plus current options supports a vector
2894
# widening summation of *short* args into *int* result, 0 otherwise.
2895
# A target can also support this widening summation if it can support
2896
# promotion (unpacking) from shorts to ints.
2897
#
2898
# This won't change for different subtargets so cache the result.
2899
 
2900
proc check_effective_target_vect_widen_sum_hi_to_si { } {
2901
    global et_vect_widen_sum_hi_to_si
2902
 
2903
    if [info exists et_vect_widen_sum_hi_to_si_saved] {
2904
        verbose "check_effective_target_vect_widen_sum_hi_to_si: using cached result" 2
2905
    } else {
2906
        set et_vect_widen_sum_hi_to_si_saved [check_effective_target_vect_unpack]
2907
        if { [istarget powerpc*-*-*]
2908
             || [istarget ia64-*-*] } {
2909
            set et_vect_widen_sum_hi_to_si_saved 1
2910
        }
2911
    }
2912
    verbose "check_effective_target_vect_widen_sum_hi_to_si: returning $et_vect_widen_sum_hi_to_si_saved" 2
2913
    return $et_vect_widen_sum_hi_to_si_saved
2914
}
2915
 
2916
# Return 1 if the target plus current options supports a vector
2917
# widening summation of *char* args into *short* result, 0 otherwise.
2918
# A target can also support this widening summation if it can support
2919
# promotion (unpacking) from chars to shorts.
2920
#
2921
# This won't change for different subtargets so cache the result.
2922
 
2923
proc check_effective_target_vect_widen_sum_qi_to_hi { } {
2924
    global et_vect_widen_sum_qi_to_hi
2925
 
2926
    if [info exists et_vect_widen_sum_qi_to_hi_saved] {
2927
        verbose "check_effective_target_vect_widen_sum_qi_to_hi: using cached result" 2
2928
    } else {
2929
        set et_vect_widen_sum_qi_to_hi_saved 0
2930
        if { [check_effective_target_vect_unpack]
2931
             || [istarget ia64-*-*] } {
2932
            set et_vect_widen_sum_qi_to_hi_saved 1
2933
        }
2934
    }
2935
    verbose "check_effective_target_vect_widen_sum_qi_to_hi: returning $et_vect_widen_sum_qi_to_hi_saved" 2
2936
    return $et_vect_widen_sum_qi_to_hi_saved
2937
}
2938
 
2939
# Return 1 if the target plus current options supports a vector
2940
# widening summation of *char* args into *int* result, 0 otherwise.
2941
#
2942
# This won't change for different subtargets so cache the result.
2943
 
2944
proc check_effective_target_vect_widen_sum_qi_to_si { } {
2945
    global et_vect_widen_sum_qi_to_si
2946
 
2947
    if [info exists et_vect_widen_sum_qi_to_si_saved] {
2948
        verbose "check_effective_target_vect_widen_sum_qi_to_si: using cached result" 2
2949
    } else {
2950
        set et_vect_widen_sum_qi_to_si_saved 0
2951
        if { [istarget powerpc*-*-*] } {
2952
            set et_vect_widen_sum_qi_to_si_saved 1
2953
        }
2954
    }
2955
    verbose "check_effective_target_vect_widen_sum_qi_to_si: returning $et_vect_widen_sum_qi_to_si_saved" 2
2956
    return $et_vect_widen_sum_qi_to_si_saved
2957
}
2958
 
2959
# Return 1 if the target plus current options supports a vector
2960
# widening multiplication of *char* args into *short* result, 0 otherwise.
2961
# A target can also support this widening multplication if it can support
2962
# promotion (unpacking) from chars to shorts, and vect_short_mult (non-widening
2963
# multiplication of shorts).
2964
#
2965
# This won't change for different subtargets so cache the result.
2966
 
2967
 
2968
proc check_effective_target_vect_widen_mult_qi_to_hi { } {
2969
    global et_vect_widen_mult_qi_to_hi
2970
 
2971
    if [info exists et_vect_widen_mult_qi_to_hi_saved] {
2972
        verbose "check_effective_target_vect_widen_mult_qi_to_hi: using cached result" 2
2973
    } else {
2974
        if { [check_effective_target_vect_unpack]
2975
             && [check_effective_target_vect_short_mult] } {
2976
            set et_vect_widen_mult_qi_to_hi_saved 1
2977
        } else {
2978
            set et_vect_widen_mult_qi_to_hi_saved 0
2979
        }
2980
        if { [istarget powerpc*-*-*]
2981
              || ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
2982
            set et_vect_widen_mult_qi_to_hi_saved 1
2983
        }
2984
    }
2985
    verbose "check_effective_target_vect_widen_mult_qi_to_hi: returning $et_vect_widen_mult_qi_to_hi_saved" 2
2986
    return $et_vect_widen_mult_qi_to_hi_saved
2987
}
2988
 
2989
# Return 1 if the target plus current options supports a vector
2990
# widening multiplication of *short* args into *int* result, 0 otherwise.
2991
# A target can also support this widening multplication if it can support
2992
# promotion (unpacking) from shorts to ints, and vect_int_mult (non-widening
2993
# multiplication of ints).
2994
#
2995
# This won't change for different subtargets so cache the result.
2996
 
2997
 
2998
proc check_effective_target_vect_widen_mult_hi_to_si { } {
2999
    global et_vect_widen_mult_hi_to_si
3000
 
3001
    if [info exists et_vect_widen_mult_hi_to_si_saved] {
3002
        verbose "check_effective_target_vect_widen_mult_hi_to_si: using cached result" 2
3003
    } else {
3004
        if { [check_effective_target_vect_unpack]
3005
             && [check_effective_target_vect_int_mult] } {
3006
          set et_vect_widen_mult_hi_to_si_saved 1
3007
        } else {
3008
          set et_vect_widen_mult_hi_to_si_saved 0
3009
        }
3010
        if { [istarget powerpc*-*-*]
3011
              || [istarget spu-*-*]
3012
              || [istarget ia64-*-*]
3013
              || [istarget i?86-*-*]
3014
              || [istarget x86_64-*-*]
3015
              || ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
3016
            set et_vect_widen_mult_hi_to_si_saved 1
3017
        }
3018
    }
3019
    verbose "check_effective_target_vect_widen_mult_hi_to_si: returning $et_vect_widen_mult_hi_to_si_saved" 2
3020
    return $et_vect_widen_mult_hi_to_si_saved
3021
}
3022
 
3023
# Return 1 if the target plus current options supports a vector
3024
# widening multiplication of *char* args into *short* result, 0 otherwise.
3025
#
3026
# This won't change for different subtargets so cache the result.
3027
 
3028
proc check_effective_target_vect_widen_mult_qi_to_hi_pattern { } {
3029
    global et_vect_widen_mult_qi_to_hi_pattern
3030
 
3031
    if [info exists et_vect_widen_mult_qi_to_hi_pattern_saved] {
3032
        verbose "check_effective_target_vect_widen_mult_qi_to_hi_pattern: using cached result" 2
3033
    } else {
3034
        set et_vect_widen_mult_qi_to_hi_pattern_saved 0
3035
        if { [istarget powerpc*-*-*]
3036
              || ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
3037
            set et_vect_widen_mult_qi_to_hi_pattern_saved 1
3038
        }
3039
    }
3040
    verbose "check_effective_target_vect_widen_mult_qi_to_hi_pattern: returning $et_vect_widen_mult_qi_to_hi_pattern_saved" 2
3041
    return $et_vect_widen_mult_qi_to_hi_pattern_saved
3042
}
3043
 
3044
# Return 1 if the target plus current options supports a vector
3045
# widening multiplication of *short* args into *int* result, 0 otherwise.
3046
#
3047
# This won't change for different subtargets so cache the result.
3048
 
3049
proc check_effective_target_vect_widen_mult_hi_to_si_pattern { } {
3050
    global et_vect_widen_mult_hi_to_si_pattern
3051
 
3052
    if [info exists et_vect_widen_mult_hi_to_si_pattern_saved] {
3053
        verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern: using cached result" 2
3054
    } else {
3055
        set et_vect_widen_mult_hi_to_si_pattern_saved 0
3056
        if { [istarget powerpc*-*-*]
3057
              || [istarget spu-*-*]
3058
              || [istarget ia64-*-*]
3059
              || [istarget i?86-*-*]
3060
              || [istarget x86_64-*-*]
3061
              || ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
3062
            set et_vect_widen_mult_hi_to_si_pattern_saved 1
3063
        }
3064
    }
3065
    verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern: returning $et_vect_widen_mult_hi_to_si_pattern_saved" 2
3066
    return $et_vect_widen_mult_hi_to_si_pattern_saved
3067
}
3068
 
3069
# Return 1 if the target plus current options supports a vector
3070
# widening shift, 0 otherwise.
3071
#
3072
# This won't change for different subtargets so cache the result.
3073
 
3074
proc check_effective_target_vect_widen_shift { } {
3075
    global et_vect_widen_shift_saved
3076
 
3077
    if [info exists et_vect_shift_saved] {
3078
        verbose "check_effective_target_vect_widen_shift: using cached result" 2
3079
    } else {
3080
        set et_vect_widen_shift_saved 0
3081
        if { ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
3082
            set et_vect_widen_shift_saved 1
3083
        }
3084
    }
3085
    verbose "check_effective_target_vect_widen_shift: returning $et_vect_widen_shift_saved" 2
3086
    return $et_vect_widen_shift_saved
3087
}
3088
 
3089
# Return 1 if the target plus current options supports a vector
3090
# dot-product of signed chars, 0 otherwise.
3091
#
3092
# This won't change for different subtargets so cache the result.
3093
 
3094
proc check_effective_target_vect_sdot_qi { } {
3095
    global et_vect_sdot_qi
3096
 
3097
    if [info exists et_vect_sdot_qi_saved] {
3098
        verbose "check_effective_target_vect_sdot_qi: using cached result" 2
3099
    } else {
3100
        set et_vect_sdot_qi_saved 0
3101
        if { [istarget ia64-*-*] } {
3102
            set et_vect_udot_qi_saved 1
3103
        }
3104
    }
3105
    verbose "check_effective_target_vect_sdot_qi: returning $et_vect_sdot_qi_saved" 2
3106
    return $et_vect_sdot_qi_saved
3107
}
3108
 
3109
# Return 1 if the target plus current options supports a vector
3110
# dot-product of unsigned chars, 0 otherwise.
3111
#
3112
# This won't change for different subtargets so cache the result.
3113
 
3114
proc check_effective_target_vect_udot_qi { } {
3115
    global et_vect_udot_qi
3116
 
3117
    if [info exists et_vect_udot_qi_saved] {
3118
        verbose "check_effective_target_vect_udot_qi: using cached result" 2
3119
    } else {
3120
        set et_vect_udot_qi_saved 0
3121
        if { [istarget powerpc*-*-*]
3122
             || [istarget ia64-*-*] } {
3123
            set et_vect_udot_qi_saved 1
3124
        }
3125
    }
3126
    verbose "check_effective_target_vect_udot_qi: returning $et_vect_udot_qi_saved" 2
3127
    return $et_vect_udot_qi_saved
3128
}
3129
 
3130
# Return 1 if the target plus current options supports a vector
3131
# dot-product of signed shorts, 0 otherwise.
3132
#
3133
# This won't change for different subtargets so cache the result.
3134
 
3135
proc check_effective_target_vect_sdot_hi { } {
3136
    global et_vect_sdot_hi
3137
 
3138
    if [info exists et_vect_sdot_hi_saved] {
3139
        verbose "check_effective_target_vect_sdot_hi: using cached result" 2
3140
    } else {
3141
        set et_vect_sdot_hi_saved 0
3142
        if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
3143
             || [istarget ia64-*-*]
3144
             || [istarget i?86-*-*]
3145
             || [istarget x86_64-*-*] } {
3146
            set et_vect_sdot_hi_saved 1
3147
        }
3148
    }
3149
    verbose "check_effective_target_vect_sdot_hi: returning $et_vect_sdot_hi_saved" 2
3150
    return $et_vect_sdot_hi_saved
3151
}
3152
 
3153
# Return 1 if the target plus current options supports a vector
3154
# dot-product of unsigned shorts, 0 otherwise.
3155
#
3156
# This won't change for different subtargets so cache the result.
3157
 
3158
proc check_effective_target_vect_udot_hi { } {
3159
    global et_vect_udot_hi
3160
 
3161
    if [info exists et_vect_udot_hi_saved] {
3162
        verbose "check_effective_target_vect_udot_hi: using cached result" 2
3163
    } else {
3164
        set et_vect_udot_hi_saved 0
3165
        if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) } {
3166
            set et_vect_udot_hi_saved 1
3167
        }
3168
    }
3169
    verbose "check_effective_target_vect_udot_hi: returning $et_vect_udot_hi_saved" 2
3170
    return $et_vect_udot_hi_saved
3171
}
3172
 
3173
 
3174
# Return 1 if the target plus current options supports a vector
3175
# demotion (packing) of shorts (to chars) and ints (to shorts)
3176
# using modulo arithmetic, 0 otherwise.
3177
#
3178
# This won't change for different subtargets so cache the result.
3179
 
3180
proc check_effective_target_vect_pack_trunc { } {
3181
    global et_vect_pack_trunc
3182
 
3183
    if [info exists et_vect_pack_trunc_saved] {
3184
        verbose "check_effective_target_vect_pack_trunc: using cached result" 2
3185
    } else {
3186
        set et_vect_pack_trunc_saved 0
3187
        if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
3188
             || [istarget i?86-*-*]
3189
             || [istarget x86_64-*-*]
3190
             || [istarget spu-*-*]
3191
             || ([istarget arm*-*-*] && [check_effective_target_arm_neon]
3192
                 && [check_effective_target_arm_little_endian]) } {
3193
            set et_vect_pack_trunc_saved 1
3194
        }
3195
    }
3196
    verbose "check_effective_target_vect_pack_trunc: returning $et_vect_pack_trunc_saved" 2
3197
    return $et_vect_pack_trunc_saved
3198
}
3199
 
3200
# Return 1 if the target plus current options supports a vector
3201
# promotion (unpacking) of chars (to shorts) and shorts (to ints), 0 otherwise.
3202
#
3203
# This won't change for different subtargets so cache the result.
3204
 
3205
proc check_effective_target_vect_unpack { } {
3206
    global et_vect_unpack
3207
 
3208
    if [info exists et_vect_unpack_saved] {
3209
        verbose "check_effective_target_vect_unpack: using cached result" 2
3210
    } else {
3211
        set et_vect_unpack_saved 0
3212
        if { ([istarget powerpc*-*-*] && ![istarget powerpc-*paired*])
3213
             || [istarget i?86-*-*]
3214
             || [istarget x86_64-*-*]
3215
             || [istarget spu-*-*]
3216
             || [istarget ia64-*-*]
3217
             || ([istarget arm*-*-*] && [check_effective_target_arm_neon]
3218
                 && [check_effective_target_arm_little_endian]) } {
3219
            set et_vect_unpack_saved 1
3220
        }
3221
    }
3222
    verbose "check_effective_target_vect_unpack: returning $et_vect_unpack_saved" 2
3223
    return $et_vect_unpack_saved
3224
}
3225
 
3226
# Return 1 if the target plus current options does not guarantee
3227
# that its STACK_BOUNDARY is >= the reguired vector alignment.
3228
#
3229
# This won't change for different subtargets so cache the result.
3230
 
3231
proc check_effective_target_unaligned_stack { } {
3232
    global et_unaligned_stack_saved
3233
 
3234
    if [info exists et_unaligned_stack_saved] {
3235
        verbose "check_effective_target_unaligned_stack: using cached result" 2
3236
    } else {
3237
        set et_unaligned_stack_saved 0
3238
    }
3239
    verbose "check_effective_target_unaligned_stack: returning $et_unaligned_stack_saved" 2
3240
    return $et_unaligned_stack_saved
3241
}
3242
 
3243
# Return 1 if the target plus current options does not support a vector
3244
# alignment mechanism, 0 otherwise.
3245
#
3246
# This won't change for different subtargets so cache the result.
3247
 
3248
proc check_effective_target_vect_no_align { } {
3249
    global et_vect_no_align_saved
3250
 
3251
    if [info exists et_vect_no_align_saved] {
3252
        verbose "check_effective_target_vect_no_align: using cached result" 2
3253
    } else {
3254
        set et_vect_no_align_saved 0
3255
        if { [istarget mipsisa64*-*-*]
3256
             || [istarget sparc*-*-*]
3257
             || [istarget ia64-*-*]
3258
             || [check_effective_target_arm_vect_no_misalign]
3259
             || ([istarget mips*-*-*]
3260
                 && [check_effective_target_mips_loongson]) } {
3261
            set et_vect_no_align_saved 1
3262
        }
3263
    }
3264
    verbose "check_effective_target_vect_no_align: returning $et_vect_no_align_saved" 2
3265
    return $et_vect_no_align_saved
3266
}
3267
 
3268
# Return 1 if the target supports a vector misalign access, 0 otherwise.
3269
#
3270
# This won't change for different subtargets so cache the result.
3271
 
3272
proc check_effective_target_vect_hw_misalign { } {
3273
    global et_vect_hw_misalign_saved
3274
 
3275
    if [info exists et_vect_hw_misalign_saved] {
3276
        verbose "check_effective_target_vect_hw_misalign: using cached result" 2
3277
    } else {
3278
        set et_vect_hw_misalign_saved 0
3279
       if { ([istarget x86_64-*-*]
3280
            || [istarget i?86-*-*]) } {
3281
          set et_vect_hw_misalign_saved 1
3282
       }
3283
    }
3284
    verbose "check_effective_target_vect_hw_misalign: returning $et_vect_hw_misalign_saved" 2
3285
    return $et_vect_hw_misalign_saved
3286
}
3287
 
3288
 
3289
# Return 1 if arrays are aligned to the vector alignment
3290
# boundary, 0 otherwise.
3291
#
3292
# This won't change for different subtargets so cache the result.
3293
 
3294
proc check_effective_target_vect_aligned_arrays { } {
3295
    global et_vect_aligned_arrays
3296
 
3297
    if [info exists et_vect_aligned_arrays_saved] {
3298
        verbose "check_effective_target_vect_aligned_arrays: using cached result" 2
3299
    } else {
3300
        set et_vect_aligned_arrays_saved 0
3301
        if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
3302
            if { ([is-effective-target lp64]
3303
                  && ( ![check_avx_available]
3304
                     || [check_prefer_avx128])) } {
3305
                 set et_vect_aligned_arrays_saved 1
3306
            }
3307
        }
3308
        if [istarget spu-*-*] {
3309
            set et_vect_aligned_arrays_saved 1
3310
        }
3311
    }
3312
    verbose "check_effective_target_vect_aligned_arrays: returning $et_vect_aligned_arrays_saved" 2
3313
    return $et_vect_aligned_arrays_saved
3314
}
3315
 
3316
# Return 1 if types of size 32 bit or less are naturally aligned
3317
# (aligned to their type-size), 0 otherwise.
3318
#
3319
# This won't change for different subtargets so cache the result.
3320
 
3321
proc check_effective_target_natural_alignment_32 { } {
3322
    global et_natural_alignment_32
3323
 
3324
    if [info exists et_natural_alignment_32_saved] {
3325
        verbose "check_effective_target_natural_alignment_32: using cached result" 2
3326
    } else {
3327
        # FIXME: 32bit powerpc: guaranteed only if MASK_ALIGN_NATURAL/POWER.
3328
        set et_natural_alignment_32_saved 1
3329
        if { ([istarget *-*-darwin*] && [is-effective-target lp64]) } {
3330
            set et_natural_alignment_32_saved 0
3331
        }
3332
    }
3333
    verbose "check_effective_target_natural_alignment_32: returning $et_natural_alignment_32_saved" 2
3334
    return $et_natural_alignment_32_saved
3335
}
3336
 
3337
# Return 1 if types of size 64 bit or less are naturally aligned (aligned to their
3338
# type-size), 0 otherwise.
3339
#
3340
# This won't change for different subtargets so cache the result.
3341
 
3342
proc check_effective_target_natural_alignment_64 { } {
3343
    global et_natural_alignment_64
3344
 
3345
    if [info exists et_natural_alignment_64_saved] {
3346
        verbose "check_effective_target_natural_alignment_64: using cached result" 2
3347
    } else {
3348
        set et_natural_alignment_64_saved 0
3349
        if { ([is-effective-target lp64] && ![istarget *-*-darwin*])
3350
             || [istarget spu-*-*] } {
3351
            set et_natural_alignment_64_saved 1
3352
        }
3353
    }
3354
    verbose "check_effective_target_natural_alignment_64: returning $et_natural_alignment_64_saved" 2
3355
    return $et_natural_alignment_64_saved
3356
}
3357
 
3358
# Return 1 if vector alignment (for types of size 32 bit or less) is reachable, 0 otherwise.
3359
#
3360
# This won't change for different subtargets so cache the result.
3361
 
3362
proc check_effective_target_vector_alignment_reachable { } {
3363
    global et_vector_alignment_reachable
3364
 
3365
    if [info exists et_vector_alignment_reachable_saved] {
3366
        verbose "check_effective_target_vector_alignment_reachable: using cached result" 2
3367
    } else {
3368
        if { [check_effective_target_vect_aligned_arrays]
3369
             || [check_effective_target_natural_alignment_32] } {
3370
            set et_vector_alignment_reachable_saved 1
3371
        } else {
3372
            set et_vector_alignment_reachable_saved 0
3373
        }
3374
    }
3375
    verbose "check_effective_target_vector_alignment_reachable: returning $et_vector_alignment_reachable_saved" 2
3376
    return $et_vector_alignment_reachable_saved
3377
}
3378
 
3379
# Return 1 if vector alignment for 64 bit is reachable, 0 otherwise.
3380
#
3381
# This won't change for different subtargets so cache the result.
3382
 
3383
proc check_effective_target_vector_alignment_reachable_for_64bit { } {
3384
    global et_vector_alignment_reachable_for_64bit
3385
 
3386
    if [info exists et_vector_alignment_reachable_for_64bit_saved] {
3387
        verbose "check_effective_target_vector_alignment_reachable_for_64bit: using cached result" 2
3388
    } else {
3389
        if { [check_effective_target_vect_aligned_arrays]
3390
             || [check_effective_target_natural_alignment_64] } {
3391
            set et_vector_alignment_reachable_for_64bit_saved 1
3392
        } else {
3393
            set et_vector_alignment_reachable_for_64bit_saved 0
3394
        }
3395
    }
3396
    verbose "check_effective_target_vector_alignment_reachable_for_64bit: returning $et_vector_alignment_reachable_for_64bit_saved" 2
3397
    return $et_vector_alignment_reachable_for_64bit_saved
3398
}
3399
 
3400
# Return 1 if the target only requires element alignment for vector accesses
3401
 
3402
proc check_effective_target_vect_element_align { } {
3403
    global et_vect_element_align
3404
 
3405
    if [info exists et_vect_element_align] {
3406
        verbose "check_effective_target_vect_element_align: using cached result" 2
3407
    } else {
3408
        set et_vect_element_align 0
3409
        if { ([istarget arm*-*-*]
3410
              && ![check_effective_target_arm_vect_no_misalign])
3411
             || [check_effective_target_vect_hw_misalign] } {
3412
           set et_vect_element_align 1
3413
        }
3414
    }
3415
 
3416
    verbose "check_effective_target_vect_element_align: returning $et_vect_element_align" 2
3417
    return $et_vect_element_align
3418
}
3419
 
3420
# Return 1 if the target supports vector conditional operations, 0 otherwise.
3421
 
3422
proc check_effective_target_vect_condition { } {
3423
    global et_vect_cond_saved
3424
 
3425
    if [info exists et_vect_cond_saved] {
3426
        verbose "check_effective_target_vect_cond: using cached result" 2
3427
    } else {
3428
        set et_vect_cond_saved 0
3429
        if { [istarget powerpc*-*-*]
3430
             || [istarget ia64-*-*]
3431
             || [istarget i?86-*-*]
3432
             || [istarget spu-*-*]
3433
             || [istarget x86_64-*-*]
3434
             || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
3435
           set et_vect_cond_saved 1
3436
        }
3437
    }
3438
 
3439
    verbose "check_effective_target_vect_cond: returning $et_vect_cond_saved" 2
3440
    return $et_vect_cond_saved
3441
}
3442
 
3443
# Return 1 if the target supports vector conditional operations where
3444
# the comparison has different type from the lhs, 0 otherwise.
3445
 
3446
proc check_effective_target_vect_cond_mixed { } {
3447
    global et_vect_cond_mixed_saved
3448
 
3449
    if [info exists et_vect_cond_mixed_saved] {
3450
        verbose "check_effective_target_vect_cond_mixed: using cached result" 2
3451
    } else {
3452
        set et_vect_cond_mixed_saved 0
3453
        if { [istarget i?86-*-*]
3454
             || [istarget x86_64-*-*]
3455
             || [istarget powerpc*-*-*] } {
3456
           set et_vect_cond_mixed_saved 1
3457
        }
3458
    }
3459
 
3460
    verbose "check_effective_target_vect_cond_mixed: returning $et_vect_cond_mixed_saved" 2
3461
    return $et_vect_cond_mixed_saved
3462
}
3463
 
3464
# Return 1 if the target supports vector char multiplication, 0 otherwise.
3465
 
3466
proc check_effective_target_vect_char_mult { } {
3467
    global et_vect_char_mult_saved
3468
 
3469
    if [info exists et_vect_char_mult_saved] {
3470
        verbose "check_effective_target_vect_char_mult: using cached result" 2
3471
    } else {
3472
        set et_vect_char_mult_saved 0
3473
        if { [istarget ia64-*-*]
3474
             || [istarget i?86-*-*]
3475
             || [istarget x86_64-*-*] } {
3476
           set et_vect_char_mult_saved 1
3477
        }
3478
    }
3479
 
3480
    verbose "check_effective_target_vect_char_mult: returning $et_vect_char_mult_saved" 2
3481
    return $et_vect_char_mult_saved
3482
}
3483
 
3484
# Return 1 if the target supports vector short multiplication, 0 otherwise.
3485
 
3486
proc check_effective_target_vect_short_mult { } {
3487
    global et_vect_short_mult_saved
3488
 
3489
    if [info exists et_vect_short_mult_saved] {
3490
        verbose "check_effective_target_vect_short_mult: using cached result" 2
3491
    } else {
3492
        set et_vect_short_mult_saved 0
3493
        if { [istarget ia64-*-*]
3494
             || [istarget spu-*-*]
3495
             || [istarget i?86-*-*]
3496
             || [istarget x86_64-*-*]
3497
             || [istarget powerpc*-*-*]
3498
             || [check_effective_target_arm32]
3499
             || ([istarget mips*-*-*]
3500
                 && [check_effective_target_mips_loongson]) } {
3501
           set et_vect_short_mult_saved 1
3502
        }
3503
    }
3504
 
3505
    verbose "check_effective_target_vect_short_mult: returning $et_vect_short_mult_saved" 2
3506
    return $et_vect_short_mult_saved
3507
}
3508
 
3509
# Return 1 if the target supports vector int multiplication, 0 otherwise.
3510
 
3511
proc check_effective_target_vect_int_mult { } {
3512
    global et_vect_int_mult_saved
3513
 
3514
    if [info exists et_vect_int_mult_saved] {
3515
        verbose "check_effective_target_vect_int_mult: using cached result" 2
3516
    } else {
3517
        set et_vect_int_mult_saved 0
3518
        if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
3519
             || [istarget spu-*-*]
3520
             || [istarget i?86-*-*]
3521
             || [istarget x86_64-*-*]
3522
             || [istarget ia64-*-*]
3523
             || [check_effective_target_arm32] } {
3524
           set et_vect_int_mult_saved 1
3525
        }
3526
    }
3527
 
3528
    verbose "check_effective_target_vect_int_mult: returning $et_vect_int_mult_saved" 2
3529
    return $et_vect_int_mult_saved
3530
}
3531
 
3532
# Return 1 if the target supports vector even/odd elements extraction, 0 otherwise.
3533
 
3534
proc check_effective_target_vect_extract_even_odd { } {
3535
    global et_vect_extract_even_odd_saved
3536
 
3537
    if [info exists et_vect_extract_even_odd_saved] {
3538
        verbose "check_effective_target_vect_extract_even_odd: using cached result" 2
3539
    } else {
3540
        set et_vect_extract_even_odd_saved 0
3541
        if { [istarget powerpc*-*-*]
3542
            || [is-effective-target arm_neon_ok]
3543
             || [istarget i?86-*-*]
3544
             || [istarget x86_64-*-*]
3545
             || [istarget ia64-*-*]
3546
             || [istarget spu-*-*]
3547
             || ([istarget mips*-*-*]
3548
                 && [check_effective_target_mpaired_single]) } {
3549
            set et_vect_extract_even_odd_saved 1
3550
        }
3551
    }
3552
 
3553
    verbose "check_effective_target_vect_extract_even_odd: returning $et_vect_extract_even_odd_saved" 2
3554
    return $et_vect_extract_even_odd_saved
3555
}
3556
 
3557
# Return 1 if the target supports vector interleaving, 0 otherwise.
3558
 
3559
proc check_effective_target_vect_interleave { } {
3560
    global et_vect_interleave_saved
3561
 
3562
    if [info exists et_vect_interleave_saved] {
3563
        verbose "check_effective_target_vect_interleave: using cached result" 2
3564
    } else {
3565
        set et_vect_interleave_saved 0
3566
        if { [istarget powerpc*-*-*]
3567
            || [is-effective-target arm_neon_ok]
3568
             || [istarget i?86-*-*]
3569
             || [istarget x86_64-*-*]
3570
             || [istarget ia64-*-*]
3571
             || [istarget spu-*-*]
3572
             || ([istarget mips*-*-*]
3573
                 && [check_effective_target_mpaired_single]) } {
3574
           set et_vect_interleave_saved 1
3575
        }
3576
    }
3577
 
3578
    verbose "check_effective_target_vect_interleave: returning $et_vect_interleave_saved" 2
3579
    return $et_vect_interleave_saved
3580
}
3581
 
3582
foreach N {2 3 4 8} {
3583
    eval [string map [list N $N] {
3584
        # Return 1 if the target supports 2-vector interleaving
3585
        proc check_effective_target_vect_stridedN { } {
3586
            global et_vect_stridedN_saved
3587
 
3588
            if [info exists et_vect_stridedN_saved] {
3589
                verbose "check_effective_target_vect_stridedN: using cached result" 2
3590
            } else {
3591
                set et_vect_stridedN_saved 0
3592
                if { (N & -N) == N
3593
                     && [check_effective_target_vect_interleave]
3594
                     && [check_effective_target_vect_extract_even_odd] } {
3595
                    set et_vect_stridedN_saved 1
3596
                }
3597
                if { [istarget arm*-*-*] && N >= 2 && N <= 4 } {
3598
                    set et_vect_stridedN_saved 1
3599
                }
3600
            }
3601
 
3602
            verbose "check_effective_target_vect_stridedN: returning $et_vect_stridedN_saved" 2
3603
            return $et_vect_stridedN_saved
3604
        }
3605
    }]
3606
}
3607
 
3608
# Return 1 if the target supports multiple vector sizes
3609
 
3610
proc check_effective_target_vect_multiple_sizes { } {
3611
    global et_vect_multiple_sizes_saved
3612
 
3613
    set et_vect_multiple_sizes_saved 0
3614
    if { ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
3615
       set et_vect_multiple_sizes_saved 1
3616
    }
3617
    if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
3618
      if { ([check_avx_available] && ![check_prefer_avx128]) } {
3619
        set et_vect_multiple_sizes_saved 1
3620
      }
3621
    }
3622
 
3623
    verbose "check_effective_target_vect_multiple_sizes: returning $et_vect_multiple_sizes_saved" 2
3624
    return $et_vect_multiple_sizes_saved
3625
}
3626
 
3627
# Return 1 if the target supports vectors of 64 bits.
3628
 
3629
proc check_effective_target_vect64 { } {
3630
    global et_vect64_saved
3631
 
3632
    if [info exists et_vect64_saved] {
3633
        verbose "check_effective_target_vect64: using cached result" 2
3634
    } else {
3635
        set et_vect64_saved 0
3636
        if { ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
3637
           set et_vect64_saved 1
3638
        }
3639
    }
3640
 
3641
    verbose "check_effective_target_vect64: returning $et_vect64_saved" 2
3642
    return $et_vect64_saved
3643
}
3644
 
3645
# Return 1 if the target supports vector copysignf calls.
3646
 
3647
proc check_effective_target_vect_call_copysignf { } {
3648
    global et_vect_call_copysignf_saved
3649
 
3650
    if [info exists et_vect_call_copysignf_saved] {
3651
        verbose "check_effective_target_vect_call_copysignf: using cached result" 2
3652
    } else {
3653
        set et_vect_call_copysignf_saved 0
3654
        if { [istarget i?86-*-*]
3655
             || [istarget x86_64-*-*]
3656
             || [istarget powerpc*-*-*] } {
3657
           set et_vect_call_copysignf_saved 1
3658
        }
3659
    }
3660
 
3661
    verbose "check_effective_target_vect_call_copysignf: returning $et_vect_call_copysignf_saved" 2
3662
    return $et_vect_call_copysignf_saved
3663
}
3664
 
3665
# Return 1 if the target supports vector sqrtf calls.
3666
 
3667
proc check_effective_target_vect_call_sqrtf { } {
3668
    global et_vect_call_sqrtf_saved
3669
 
3670
    if [info exists et_vect_call_sqrtf_saved] {
3671
        verbose "check_effective_target_vect_call_sqrtf: using cached result" 2
3672
    } else {
3673
        set et_vect_call_sqrtf_saved 0
3674
        if { [istarget i?86-*-*]
3675
             || [istarget x86_64-*-*]
3676
             || ([istarget powerpc*-*-*] && [check_vsx_hw_available]) } {
3677
            set et_vect_call_sqrtf_saved 1
3678
        }
3679
    }
3680
 
3681
    verbose "check_effective_target_vect_call_sqrtf: returning $et_vect_call_sqrtf_saved" 2
3682
    return $et_vect_call_sqrtf_saved
3683
}
3684
 
3685
# Return 1 if the target supports vector lrint calls.
3686
 
3687
proc check_effective_target_vect_call_lrint { } {
3688
    set et_vect_call_lrint 0
3689
    if { ([istarget i?86-*-*] || [istarget x86_64-*-*]) && [check_effective_target_ilp32] } {
3690
        set et_vect_call_lrint 1
3691
    }
3692
 
3693
    verbose "check_effective_target_vect_call_lrint: returning $et_vect_call_lrint" 2
3694
    return $et_vect_call_lrint
3695
}
3696
 
3697
# Return 1 if the target supports section-anchors
3698
 
3699
proc check_effective_target_section_anchors { } {
3700
    global et_section_anchors_saved
3701
 
3702
    if [info exists et_section_anchors_saved] {
3703
        verbose "check_effective_target_section_anchors: using cached result" 2
3704
    } else {
3705
        set et_section_anchors_saved 0
3706
        if { [istarget powerpc*-*-*]
3707
              || [istarget arm*-*-*] } {
3708
           set et_section_anchors_saved 1
3709
        }
3710
    }
3711
 
3712
    verbose "check_effective_target_section_anchors: returning $et_section_anchors_saved" 2
3713
    return $et_section_anchors_saved
3714
}
3715
 
3716
# Return 1 if the target supports atomic operations on "int_128" values.
3717
 
3718
proc check_effective_target_sync_int_128 { } {
3719
    if { ([istarget x86_64-*-*] || [istarget i?86-*-*])
3720
         && ![is-effective-target ia32] } {
3721
        return 1
3722
    } else {
3723
        return 0
3724
    }
3725
}
3726
 
3727
# Return 1 if the target supports atomic operations on "int_128" values
3728
# and can execute them.
3729
 
3730
proc check_effective_target_sync_int_128_runtime { } {
3731
    if { ([istarget x86_64-*-*] || [istarget i?86-*-*])
3732
         && ![is-effective-target ia32] } {
3733
        return [check_cached_effective_target sync_int_128_available {
3734
            check_runtime_nocache sync_int_128_available {
3735
                #include "cpuid.h"
3736
                int main ()
3737
                {
3738
                  unsigned int eax, ebx, ecx, edx;
3739
                  if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
3740
                    return !(ecx & bit_CMPXCHG16B);
3741
                  return 1;
3742
                }
3743
            } ""
3744
        }]
3745
    } else {
3746
        return 0
3747
    }
3748
}
3749
 
3750
# Return 1 if the target supports atomic operations on "long long".
3751
#
3752
# Note: 32bit x86 targets require -march=pentium in dg-options.
3753
 
3754
proc check_effective_target_sync_long_long { } {
3755
    if { [istarget x86_64-*-*]
3756
         || [istarget i?86-*-*])
3757
         || [istarget arm*-*-*]
3758
         || [istarget alpha*-*-*] } {
3759
        return 1
3760
    } else {
3761
        return 0
3762
    }
3763
}
3764
 
3765
# Return 1 if the target supports atomic operations on "long long"
3766
# and can execute them.
3767
#
3768
# Note: 32bit x86 targets require -march=pentium in dg-options.
3769
 
3770
proc check_effective_target_sync_long_long_runtime { } {
3771
    if { [istarget x86_64-*-*]
3772
         || [istarget i?86-*-*] } {
3773
        return [check_cached_effective_target sync_long_long_available {
3774
            check_runtime_nocache sync_long_long_available {
3775
                #include "cpuid.h"
3776
                int main ()
3777
                {
3778
                  unsigned int eax, ebx, ecx, edx;
3779
                  if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
3780
                    return !(edx & bit_CMPXCHG8B);
3781
                  return 1;
3782
                }
3783
            } ""
3784
        }]
3785
    } elseif { [istarget arm*-*-linux-gnueabi] } {
3786
        return [check_runtime sync_longlong_runtime {
3787
            #include 
3788
            int main ()
3789
            {
3790
              long long l1;
3791
 
3792
              if (sizeof (long long) != 8)
3793
                exit (1);
3794
 
3795
              /* Just check for native; checking for kernel fallback is tricky.  */
3796
              asm volatile ("ldrexd r0,r1, [%0]" : : "r" (&l1) : "r0", "r1");
3797
 
3798
              exit (0);
3799
            }
3800
        } "" ]
3801
    } elseif { [istarget alpha*-*-*] } {
3802
        return 1
3803
    } else {
3804
        return 0
3805
    }
3806
}
3807
 
3808
# Return 1 if the target supports atomic operations on "int" and "long".
3809
 
3810
proc check_effective_target_sync_int_long { } {
3811
    global et_sync_int_long_saved
3812
 
3813
    if [info exists et_sync_int_long_saved] {
3814
        verbose "check_effective_target_sync_int_long: using cached result" 2
3815
    } else {
3816
        set et_sync_int_long_saved 0
3817
# This is intentionally powerpc but not rs6000, rs6000 doesn't have the
3818
# load-reserved/store-conditional instructions.
3819
        if { [istarget ia64-*-*]
3820
             || [istarget i?86-*-*]
3821
             || [istarget x86_64-*-*]
3822
             || [istarget alpha*-*-*]
3823
             || [istarget arm*-*-linux-gnueabi]
3824
             || [istarget bfin*-*linux*]
3825
             || [istarget hppa*-*linux*]
3826
             || [istarget s390*-*-*]
3827
             || [istarget powerpc*-*-*]
3828
             || [istarget sparc64-*-*]
3829
             || [istarget sparcv9-*-*]
3830
             || [check_effective_target_mips_llsc] } {
3831
           set et_sync_int_long_saved 1
3832
        }
3833
    }
3834
 
3835
    verbose "check_effective_target_sync_int_long: returning $et_sync_int_long_saved" 2
3836
    return $et_sync_int_long_saved
3837
}
3838
 
3839
# Return 1 if the target supports atomic operations on "char" and "short".
3840
 
3841
proc check_effective_target_sync_char_short { } {
3842
    global et_sync_char_short_saved
3843
 
3844
    if [info exists et_sync_char_short_saved] {
3845
        verbose "check_effective_target_sync_char_short: using cached result" 2
3846
    } else {
3847
        set et_sync_char_short_saved 0
3848
# This is intentionally powerpc but not rs6000, rs6000 doesn't have the
3849
# load-reserved/store-conditional instructions.
3850
        if { [istarget ia64-*-*]
3851
             || [istarget i?86-*-*]
3852
             || [istarget x86_64-*-*]
3853
             || [istarget alpha*-*-*]
3854
             || [istarget arm*-*-linux-gnueabi]
3855
             || [istarget hppa*-*linux*]
3856
             || [istarget s390*-*-*]
3857
             || [istarget powerpc*-*-*]
3858
             || [istarget sparc64-*-*]
3859
             || [istarget sparcv9-*-*]
3860
             || [check_effective_target_mips_llsc] } {
3861
           set et_sync_char_short_saved 1
3862
        }
3863
    }
3864
 
3865
    verbose "check_effective_target_sync_char_short: returning $et_sync_char_short_saved" 2
3866
    return $et_sync_char_short_saved
3867
}
3868
 
3869
# Return 1 if the target uses a ColdFire FPU.
3870
 
3871
proc check_effective_target_coldfire_fpu { } {
3872
    return [check_no_compiler_messages coldfire_fpu assembly {
3873
        #ifndef __mcffpu__
3874
        #error FOO
3875
        #endif
3876
    }]
3877
}
3878
 
3879
# Return true if this is a uClibc target.
3880
 
3881
proc check_effective_target_uclibc {} {
3882
    return [check_no_compiler_messages uclibc object {
3883
        #include 
3884
        #if !defined (__UCLIBC__)
3885
        #error FOO
3886
        #endif
3887
    }]
3888
}
3889
 
3890
# Return true if this is a uclibc target and if the uclibc feature
3891
# described by __$feature__ is not present.
3892
 
3893
proc check_missing_uclibc_feature {feature} {
3894
    return [check_no_compiler_messages $feature object "
3895
        #include 
3896
        #if !defined (__UCLIBC) || defined (__${feature}__)
3897
        #error FOO
3898
        #endif
3899
    "]
3900
}
3901
 
3902
# Return true if this is a Newlib target.
3903
 
3904
proc check_effective_target_newlib {} {
3905
    return [check_no_compiler_messages newlib object {
3906
        #include 
3907
    }]
3908
}
3909
 
3910
# Return 1 if
3911
#   (a) an error of a few ULP is expected in string to floating-point
3912
#       conversion functions; and
3913
#   (b) overflow is not always detected correctly by those functions.
3914
 
3915
proc check_effective_target_lax_strtofp {} {
3916
    # By default, assume that all uClibc targets suffer from this.
3917
    return [check_effective_target_uclibc]
3918
}
3919
 
3920
# Return 1 if this is a target for which wcsftime is a dummy
3921
# function that always returns 0.
3922
 
3923
proc check_effective_target_dummy_wcsftime {} {
3924
    # By default, assume that all uClibc targets suffer from this.
3925
    return [check_effective_target_uclibc]
3926
}
3927
 
3928
# Return 1 if constructors with initialization priority arguments are
3929
# supposed on this target.
3930
 
3931
proc check_effective_target_init_priority {} {
3932
    return [check_no_compiler_messages init_priority assembly "
3933
        void f() __attribute__((constructor (1000)));
3934
        void f() \{\}
3935
    "]
3936
}
3937
 
3938
# Return 1 if the target matches the effective target 'arg', 0 otherwise.
3939
# This can be used with any check_* proc that takes no argument and
3940
# returns only 1 or 0.  It could be used with check_* procs that take
3941
# arguments with keywords that pass particular arguments.
3942
 
3943
proc is-effective-target { arg } {
3944
    set selected 0
3945
    if { [info procs check_effective_target_${arg}] != [list] } {
3946
        set selected [check_effective_target_${arg}]
3947
    } else {
3948
        switch $arg {
3949
          "vmx_hw"         { set selected [check_vmx_hw_available] }
3950
          "vsx_hw"         { set selected [check_vsx_hw_available] }
3951
          "ppc_recip_hw"   { set selected [check_ppc_recip_hw_available] }
3952
          "named_sections" { set selected [check_named_sections_available] }
3953
          "gc_sections"    { set selected [check_gc_sections_available] }
3954
          "cxa_atexit"     { set selected [check_cxa_atexit_available] }
3955
          default          { error "unknown effective target keyword `$arg'" }
3956
        }
3957
    }
3958
    verbose "is-effective-target: $arg $selected" 2
3959
    return $selected
3960
}
3961
 
3962
# Return 1 if the argument is an effective-target keyword, 0 otherwise.
3963
 
3964
proc is-effective-target-keyword { arg } {
3965
    if { [info procs check_effective_target_${arg}] != [list] } {
3966
        return 1
3967
    } else {
3968
        # These have different names for their check_* procs.
3969
        switch $arg {
3970
          "vmx_hw"         { return 1 }
3971
          "vsx_hw"         { return 1 }
3972
          "ppc_recip_hw"   { return 1 }
3973
          "named_sections" { return 1 }
3974
          "gc_sections"    { return 1 }
3975
          "cxa_atexit"     { return 1 }
3976
          default          { return 0 }
3977
        }
3978
    }
3979
}
3980
 
3981
# Return 1 if target default to short enums
3982
 
3983
proc check_effective_target_short_enums { } {
3984
    return [check_no_compiler_messages short_enums assembly {
3985
        enum foo { bar };
3986
        int s[sizeof (enum foo) == 1 ? 1 : -1];
3987
    }]
3988
}
3989
 
3990
# Return 1 if target supports merging string constants at link time.
3991
 
3992
proc check_effective_target_string_merging { } {
3993
    return [check_no_messages_and_pattern string_merging \
3994
                "rodata\\.str" assembly {
3995
                    const char *var = "String";
3996
                } {-O2}]
3997
}
3998
 
3999
# Return 1 if target has the basic signed and unsigned types in
4000
# , 0 otherwise.  This will be obsolete when GCC ensures a
4001
# working  for all targets.
4002
 
4003
proc check_effective_target_stdint_types { } {
4004
    return [check_no_compiler_messages stdint_types assembly {
4005
        #include 
4006
        int8_t a; int16_t b; int32_t c; int64_t d;
4007
        uint8_t e; uint16_t f; uint32_t g; uint64_t h;
4008
    }]
4009
}
4010
 
4011
# Return 1 if target has the basic signed and unsigned types in
4012
# , 0 otherwise.  This is for tests that GCC's notions of
4013
# these types agree with those in the header, as some systems have
4014
# only .
4015
 
4016
proc check_effective_target_inttypes_types { } {
4017
    return [check_no_compiler_messages inttypes_types assembly {
4018
        #include 
4019
        int8_t a; int16_t b; int32_t c; int64_t d;
4020
        uint8_t e; uint16_t f; uint32_t g; uint64_t h;
4021
    }]
4022
}
4023
 
4024
# Return 1 if programs are intended to be run on a simulator
4025
# (i.e. slowly) rather than hardware (i.e. fast).
4026
 
4027
proc check_effective_target_simulator { } {
4028
 
4029
    # All "src/sim" simulators set this one.
4030
    if [board_info target exists is_simulator] {
4031
        return [board_info target is_simulator]
4032
    }
4033
 
4034
    # The "sid" simulators don't set that one, but at least they set
4035
    # this one.
4036
    if [board_info target exists slow_simulator] {
4037
        return [board_info target slow_simulator]
4038
    }
4039
 
4040
    return 0
4041
}
4042
 
4043
# Return 1 if the target is a VxWorks kernel.
4044
 
4045
proc check_effective_target_vxworks_kernel { } {
4046
    return [check_no_compiler_messages vxworks_kernel assembly {
4047
        #if !defined __vxworks || defined __RTP__
4048
        #error NO
4049
        #endif
4050
    }]
4051
}
4052
 
4053
# Return 1 if the target is a VxWorks RTP.
4054
 
4055
proc check_effective_target_vxworks_rtp { } {
4056
    return [check_no_compiler_messages vxworks_rtp assembly {
4057
        #if !defined __vxworks || !defined __RTP__
4058
        #error NO
4059
        #endif
4060
    }]
4061
}
4062
 
4063
# Return 1 if the target is expected to provide wide character support.
4064
 
4065
proc check_effective_target_wchar { } {
4066
    if {[check_missing_uclibc_feature UCLIBC_HAS_WCHAR]} {
4067
        return 0
4068
    }
4069
    return [check_no_compiler_messages wchar assembly {
4070
        #include 
4071
    }]
4072
}
4073
 
4074
# Return 1 if the target has .
4075
 
4076
proc check_effective_target_pthread_h { } {
4077
    return [check_no_compiler_messages pthread_h assembly {
4078
        #include 
4079
    }]
4080
}
4081
 
4082
# Return 1 if the target can truncate a file from a file-descriptor,
4083
# as used by libgfortran/io/unix.c:fd_truncate; i.e. ftruncate or
4084
# chsize.  We test for a trivially functional truncation; no stubs.
4085
# As libgfortran uses _FILE_OFFSET_BITS 64, we do too; it'll cause a
4086
# different function to be used.
4087
 
4088
proc check_effective_target_fd_truncate { } {
4089
    set prog {
4090
        #define _FILE_OFFSET_BITS 64
4091
        #include 
4092
        #include 
4093
        #include 
4094
        int main ()
4095
        {
4096
          FILE *f = fopen ("tst.tmp", "wb");
4097
          int fd;
4098
          const char t[] = "test writing more than ten characters";
4099
          char s[11];
4100
          int status = 0;
4101
          fd = fileno (f);
4102
          write (fd, t, sizeof (t) - 1);
4103
          lseek (fd, 0, 0);
4104
          if (ftruncate (fd, 10) != 0)
4105
            status = 1;
4106
          close (fd);
4107
          fclose (f);
4108
          if (status)
4109
            {
4110
              unlink ("tst.tmp");
4111
              exit (status);
4112
            }
4113
          f = fopen ("tst.tmp", "rb");
4114
          if (fread (s, 1, sizeof (s), f) != 10 || strncmp (s, t, 10) != 0)
4115
            status = 1;
4116
          fclose (f);
4117
          unlink ("tst.tmp");
4118
          exit (status);
4119
        }
4120
    }
4121
 
4122
    if { [check_runtime ftruncate $prog] } {
4123
      return 1;
4124
    }
4125
 
4126
    regsub "ftruncate" $prog "chsize" prog
4127
    return [check_runtime chsize $prog]
4128
}
4129
 
4130
# Add to FLAGS all the target-specific flags needed to access the c99 runtime.
4131
 
4132
proc add_options_for_c99_runtime { flags } {
4133
    if { [istarget *-*-solaris2*] } {
4134
        return "$flags -std=c99"
4135
    }
4136
    if { [istarget mips-sgi-irix6.5*] } {
4137
        return "$flags -std=c99"
4138
    }
4139
    if { [istarget powerpc-*-darwin*] } {
4140
        return "$flags -mmacosx-version-min=10.3"
4141
    }
4142
    return $flags
4143
}
4144
 
4145
# Add to FLAGS all the target-specific flags needed to enable
4146
# full IEEE compliance mode.
4147
 
4148
proc add_options_for_ieee { flags } {
4149
    if { [istarget alpha*-*-*]
4150
         || [istarget sh*-*-*] } {
4151
       return "$flags -mieee"
4152
    }
4153
    if { [istarget rx-*-*] } {
4154
       return "$flags -mnofpu"
4155
    }
4156
    return $flags
4157
}
4158
 
4159
# Add to FLAGS the flags needed to enable functions to bind locally
4160
# when using pic/PIC passes in the testsuite.
4161
 
4162
proc add_options_for_bind_pic_locally { flags } {
4163
    if {[check_no_compiler_messages using_pic2 assembly {
4164
        #if __PIC__ != 2
4165
        #error FOO
4166
        #endif
4167
    }]} {
4168
        return "$flags -fPIE"
4169
    }
4170
    if {[check_no_compiler_messages using_pic1 assembly {
4171
        #if __PIC__ != 1
4172
        #error FOO
4173
        #endif
4174
    }]} {
4175
        return "$flags -fpie"
4176
    }
4177
 
4178
    return $flags
4179
}
4180
 
4181
# Add to FLAGS the flags needed to enable 64-bit vectors.
4182
 
4183
proc add_options_for_double_vectors { flags } {
4184
    if [is-effective-target arm_neon_ok] {
4185
        return "$flags -mvectorize-with-neon-double"
4186
    }
4187
 
4188
    return $flags
4189
}
4190
 
4191
# Return 1 if the target provides a full C99 runtime.
4192
 
4193
proc check_effective_target_c99_runtime { } {
4194
    return [check_cached_effective_target c99_runtime {
4195
        global srcdir
4196
 
4197
        set file [open "$srcdir/gcc.dg/builtins-config.h"]
4198
        set contents [read $file]
4199
        close $file
4200
        append contents {
4201
            #ifndef HAVE_C99_RUNTIME
4202
            #error FOO
4203
            #endif
4204
        }
4205
        check_no_compiler_messages_nocache c99_runtime assembly \
4206
            $contents [add_options_for_c99_runtime ""]
4207
    }]
4208
}
4209
 
4210
# Return 1 if  target wchar_t is at least 4 bytes.
4211
 
4212
proc check_effective_target_4byte_wchar_t { } {
4213
    return [check_no_compiler_messages 4byte_wchar_t object {
4214
        int dummy[sizeof (__WCHAR_TYPE__) >= 4 ? 1 : -1];
4215
    }]
4216
}
4217
 
4218
# Return 1 if the target supports automatic stack alignment.
4219
 
4220
proc check_effective_target_automatic_stack_alignment  { } {
4221
    # Ordinarily x86 supports automatic stack alignment ...
4222
    if { [istarget i?86*-*-*] || [istarget x86_64-*-*] } then {
4223
        if { [istarget *-*-mingw*] || [istarget *-*-cygwin*] } {
4224
            # ... except Win64 SEH doesn't.  Succeed for Win32 though.
4225
            return [check_effective_target_ilp32];
4226
        }
4227
        return 1;
4228
    }
4229
    return 0;
4230
}
4231
 
4232
# Return true if we are compiling for AVX target.
4233
 
4234
proc check_avx_available { } {
4235
  if { [check_no_compiler_messages avx_available assembly {
4236
    #ifndef __AVX__
4237
    #error unsupported
4238
    #endif
4239
  } ""] } {
4240
    return 1;
4241
  }
4242
  return 0;
4243
}
4244
 
4245
# Return true if 32- and 16-bytes vectors are available.
4246
 
4247
proc check_effective_target_vect_sizes_32B_16B { } {
4248
  return [check_avx_available];
4249
}
4250
 
4251
# Return true if 128-bits vectors are preferred even if 256-bits vectors
4252
# are available.
4253
 
4254
proc check_prefer_avx128 { } {
4255
    if ![check_avx_available] {
4256
      return 0;
4257
    }
4258
    return [check_no_messages_and_pattern avx_explicit "xmm" assembly {
4259
      float a[1024],b[1024],c[1024];
4260
      void foo (void) { int i; for (i = 0; i < 1024; i++) a[i]=b[i]+c[i];}
4261
    } "-O2 -ftree-vectorize"]
4262
}
4263
 
4264
 
4265
# Return 1 if avx instructions can be compiled.
4266
 
4267
proc check_effective_target_avx { } {
4268
    return [check_no_compiler_messages avx object {
4269
        void _mm256_zeroall (void)
4270
        {
4271
           __builtin_ia32_vzeroall ();
4272
        }
4273
    } "-O2 -mavx" ]
4274
}
4275
 
4276
# Return 1 if sse instructions can be compiled.
4277
proc check_effective_target_sse { } {
4278
    return [check_no_compiler_messages sse object {
4279
        int main ()
4280
        {
4281
            __builtin_ia32_stmxcsr ();
4282
            return 0;
4283
        }
4284
    } "-O2 -msse" ]
4285
}
4286
 
4287
# Return 1 if sse2 instructions can be compiled.
4288
proc check_effective_target_sse2 { } {
4289
    return [check_no_compiler_messages sse2 object {
4290
        typedef long long __m128i __attribute__ ((__vector_size__ (16)));
4291
 
4292
        __m128i _mm_srli_si128 (__m128i __A, int __N)
4293
        {
4294
            return (__m128i)__builtin_ia32_psrldqi128 (__A, 8);
4295
        }
4296
    } "-O2 -msse2" ]
4297
}
4298
 
4299
# Return 1 if F16C instructions can be compiled.
4300
 
4301
proc check_effective_target_f16c { } {
4302
    return [check_no_compiler_messages f16c object {
4303
        #include "immintrin.h"
4304
        float
4305
        foo (unsigned short val)
4306
        {
4307
          return _cvtsh_ss (val);
4308
        }
4309
    } "-O2 -mf16c" ]
4310
}
4311
 
4312
# Return 1 if C wchar_t type is compatible with char16_t.
4313
 
4314
proc check_effective_target_wchar_t_char16_t_compatible { } {
4315
    return [check_no_compiler_messages wchar_t_char16_t object {
4316
        __WCHAR_TYPE__ wc;
4317
        __CHAR16_TYPE__ *p16 = &wc;
4318
        char t[(((__CHAR16_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
4319
    }]
4320
}
4321
 
4322
# Return 1 if C wchar_t type is compatible with char32_t.
4323
 
4324
proc check_effective_target_wchar_t_char32_t_compatible { } {
4325
    return [check_no_compiler_messages wchar_t_char32_t object {
4326
        __WCHAR_TYPE__ wc;
4327
        __CHAR32_TYPE__ *p32 = &wc;
4328
        char t[(((__CHAR32_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
4329
    }]
4330
}
4331
 
4332
# Return 1 if pow10 function exists.
4333
 
4334
proc check_effective_target_pow10 { } {
4335
    return [check_runtime pow10 {
4336
        #include 
4337
        int main () {
4338
        double x;
4339
        x = pow10 (1);
4340
        return 0;
4341
        }
4342
    } "-lm" ]
4343
}
4344
 
4345
# Return 1 if current options generate DFP instructions, 0 otherwise.
4346
 
4347
proc check_effective_target_hard_dfp {} {
4348
    return [check_no_messages_and_pattern hard_dfp "!adddd3" assembly {
4349
        typedef float d64 __attribute__((mode(DD)));
4350
        d64 x, y, z;
4351
        void foo (void) { z = x + y; }
4352
    }]
4353
}
4354
 
4355
# Return 1 if string.h and wchar.h headers provide C++ requires overloads
4356
# for strchr etc. functions.
4357
 
4358
proc check_effective_target_correct_iso_cpp_string_wchar_protos { } {
4359
    return [check_no_compiler_messages correct_iso_cpp_string_wchar_protos assembly {
4360
        #include 
4361
        #include 
4362
        #if !defined(__cplusplus) \
4363
            || !defined(__CORRECT_ISO_CPP_STRING_H_PROTO) \
4364
            || !defined(__CORRECT_ISO_CPP_WCHAR_H_PROTO)
4365
        ISO C++ correct string.h and wchar.h protos not supported.
4366
        #else
4367
        int i;
4368
        #endif
4369
    }]
4370
}
4371
 
4372
# Return 1 if GNU as is used.
4373
 
4374
proc check_effective_target_gas { } {
4375
    global use_gas_saved
4376
    global tool
4377
 
4378
    if {![info exists use_gas_saved]} {
4379
        # Check if the as used by gcc is GNU as.
4380
        set gcc_as [lindex [${tool}_target_compile "-print-prog-name=as" "" "none" ""] 0]
4381
        # Provide /dev/null as input, otherwise gas times out reading from
4382
        # stdin.
4383
        set status [remote_exec host "$gcc_as" "-v /dev/null"]
4384
        set as_output [lindex $status 1]
4385
        if { [ string first "GNU" $as_output ] >= 0 } {
4386
            set use_gas_saved 1
4387
        } else {
4388
            set use_gas_saved 0
4389
        }
4390
    }
4391
    return $use_gas_saved
4392
}
4393
 
4394
# Return 1 if GNU ld is used.
4395
 
4396
proc check_effective_target_gld { } {
4397
    global use_gld_saved
4398
    global tool
4399
 
4400
    if {![info exists use_gld_saved]} {
4401
        # Check if the ld used by gcc is GNU ld.
4402
        set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=ld" "" "none" ""] 0]
4403
        set status [remote_exec host "$gcc_ld" "--version"]
4404
        set ld_output [lindex $status 1]
4405
        if { [ string first "GNU" $ld_output ] >= 0 } {
4406
            set use_gld_saved 1
4407
        } else {
4408
            set use_gld_saved 0
4409
        }
4410
    }
4411
    return $use_gld_saved
4412
}
4413
 
4414
# Return 1 if the compiler has been configure with link-time optimization
4415
# (LTO) support.
4416
 
4417
proc check_effective_target_lto { } {
4418
    global ENABLE_LTO
4419
    return [info exists ENABLE_LTO]
4420
}
4421
 
4422
# Return 1 if this target supports the -fsplit-stack option, 0
4423
# otherwise.
4424
 
4425
proc check_effective_target_split_stack {} {
4426
    return [check_no_compiler_messages split_stack object {
4427
        void foo (void) { }
4428
    } "-fsplit-stack"]
4429
}
4430
 
4431
# Return 1 if the language for the compiler under test is C.
4432
 
4433
proc check_effective_target_c { } {
4434
 global tool
4435
    if [string match $tool "gcc"] {
4436
   return 1
4437
    }
4438
 return 0
4439
}
4440
 
4441
# Return 1 if the language for the compiler under test is C++.
4442
 
4443
proc check_effective_target_c++ { } {
4444
 global tool
4445
    if [string match $tool "g++"] {
4446
   return 1
4447
    }
4448
 return 0
4449
}
4450
 
4451
# Check which language standard is active by checking for the presence of
4452
# one of the C++11 -std flags.  This assumes that the default for the
4453
# compiler is C++98, and that there will never be multiple -std= arguments
4454
# on the command line.
4455
proc check_effective_target_c++11 { } {
4456
    if ![check_effective_target_c++] {
4457
        return 0
4458
    }
4459
    return [check-flags { { } { } { -std=c++0x -std=gnu++0x -std=c++11 -std=gnu++11 } }]
4460
}
4461
 
4462
proc check_effective_target_c++98 { } {
4463
    if ![check_effective_target_c++] {
4464
        return 0
4465
    }
4466
    return [check-flags { { } { } { } { -std=c++0x -std=gnu++0x -std=c++11 -std=gnu++11 } }]
4467
}
4468
 
4469
# Return 1 if expensive testcases should be run.
4470
 
4471
proc check_effective_target_run_expensive_tests { } {
4472
    if { [getenv GCC_TEST_RUN_EXPENSIVE] != "" } {
4473
        return 1
4474
    }
4475
    return 0
4476
}
4477
 
4478
# Returns 1 if "mempcpy" is available on the target system.
4479
 
4480
proc check_effective_target_mempcpy {} {
4481
    return [check_function_available "mempcpy"]
4482
}
4483
 
4484
# Check whether the vectorizer tests are supported by the target and
4485
# append additional target-dependent compile flags to DEFAULT_VECTCFLAGS.
4486
# Set dg-do-what-default to either compile or run, depending on target
4487
# capabilities.  Return 1 if vectorizer tests are supported by
4488
# target, 0 otherwise.
4489
 
4490
proc check_vect_support_and_set_flags { } {
4491
    global DEFAULT_VECTCFLAGS
4492
    global dg-do-what-default
4493
 
4494
    if  [istarget powerpc-*paired*]  {
4495
        lappend DEFAULT_VECTCFLAGS "-mpaired"
4496
        if [check_750cl_hw_available] {
4497
            set dg-do-what-default run
4498
        } else {
4499
            set dg-do-what-default compile
4500
        }
4501
    } elseif [istarget powerpc*-*-*] {
4502
        # Skip targets not supporting -maltivec.
4503
        if ![is-effective-target powerpc_altivec_ok] {
4504
            return 0
4505
        }
4506
 
4507
        lappend DEFAULT_VECTCFLAGS "-maltivec"
4508
        if [check_vsx_hw_available] {
4509
            lappend DEFAULT_VECTCFLAGS "-mvsx" "-mno-allow-movmisalign"
4510
        }
4511
 
4512
        if [check_vmx_hw_available] {
4513
            set dg-do-what-default run
4514
        } else {
4515
            if [is-effective-target ilp32] {
4516
                # Specify a cpu that supports VMX for compile-only tests.
4517
                lappend DEFAULT_VECTCFLAGS "-mcpu=970"
4518
            }
4519
            set dg-do-what-default compile
4520
        }
4521
    } elseif { [istarget spu-*-*] } {
4522
        set dg-do-what-default run
4523
    } elseif { [istarget i?86-*-*] || [istarget x86_64-*-*] } {
4524
        lappend DEFAULT_VECTCFLAGS "-msse2"
4525
        if { [check_effective_target_sse2_runtime] } {
4526
            set dg-do-what-default run
4527
        } else {
4528
            set dg-do-what-default compile
4529
        }
4530
    } elseif { [istarget mips*-*-*]
4531
               && ([check_effective_target_mpaired_single]
4532
                    || [check_effective_target_mips_loongson])
4533
               && [check_effective_target_nomips16] } {
4534
        if { [check_effective_target_mpaired_single] } {
4535
            lappend DEFAULT_VECTCFLAGS "-mpaired-single"
4536
        }
4537
        set dg-do-what-default run
4538
    } elseif [istarget sparc*-*-*] {
4539
        lappend DEFAULT_VECTCFLAGS "-mcpu=ultrasparc" "-mvis"
4540
        if [check_effective_target_ultrasparc_hw] {
4541
            set dg-do-what-default run
4542
        } else {
4543
            set dg-do-what-default compile
4544
        }
4545
    } elseif [istarget alpha*-*-*] {
4546
        # Alpha's vectorization capabilities are extremely limited.
4547
        # It's more effort than its worth disabling all of the tests
4548
        # that it cannot pass.  But if you actually want to see what
4549
        # does work, command out the return.
4550
        return 0
4551
 
4552
        lappend DEFAULT_VECTCFLAGS "-mmax"
4553
        if [check_alpha_max_hw_available] {
4554
            set dg-do-what-default run
4555
        } else {
4556
            set dg-do-what-default compile
4557
        }
4558
    } elseif [istarget ia64-*-*] {
4559
        set dg-do-what-default run
4560
    } elseif [is-effective-target arm_neon_ok] {
4561
        eval lappend DEFAULT_VECTCFLAGS [add_options_for_arm_neon ""]
4562
        # NEON does not support denormals, so is not used for vectorization by
4563
        # default to avoid loss of precision.  We must pass -ffast-math to test
4564
        # vectorization of float operations.
4565
        lappend DEFAULT_VECTCFLAGS "-ffast-math"
4566
        if [is-effective-target arm_neon_hw] {
4567
            set dg-do-what-default run
4568
        } else {
4569
            set dg-do-what-default compile
4570
        }
4571
    } else {
4572
        return 0
4573
    }
4574
 
4575
    return 1
4576
}
4577
 
4578
proc check_effective_target_non_strict_align {} {
4579
    return [check_no_compiler_messages non_strict_align assembly {
4580
        char *y;
4581
        typedef char __attribute__ ((__aligned__(__BIGGEST_ALIGNMENT__))) c;
4582
        c *z;
4583
        void foo(void) { z = (c *) y; }
4584
    } "-Wcast-align"]
4585
}
4586
 
4587
# Return 1 if the target has .
4588
 
4589
proc check_effective_target_ucontext_h { } {
4590
    return [check_no_compiler_messages ucontext_h assembly {
4591
        #include 
4592
    }]
4593
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.