1 |
684 |
jeremybenn |
/* Control flow functions for trees.
|
2 |
|
|
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
|
3 |
|
|
2010, 2011, 2012 Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Diego Novillo <dnovillo@redhat.com>
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
11 |
|
|
any later version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "config.h"
|
23 |
|
|
#include "system.h"
|
24 |
|
|
#include "coretypes.h"
|
25 |
|
|
#include "tm.h"
|
26 |
|
|
#include "tree.h"
|
27 |
|
|
#include "tm_p.h"
|
28 |
|
|
#include "basic-block.h"
|
29 |
|
|
#include "output.h"
|
30 |
|
|
#include "flags.h"
|
31 |
|
|
#include "function.h"
|
32 |
|
|
#include "ggc.h"
|
33 |
|
|
#include "langhooks.h"
|
34 |
|
|
#include "tree-pretty-print.h"
|
35 |
|
|
#include "gimple-pretty-print.h"
|
36 |
|
|
#include "tree-flow.h"
|
37 |
|
|
#include "timevar.h"
|
38 |
|
|
#include "tree-dump.h"
|
39 |
|
|
#include "tree-pass.h"
|
40 |
|
|
#include "diagnostic-core.h"
|
41 |
|
|
#include "except.h"
|
42 |
|
|
#include "cfgloop.h"
|
43 |
|
|
#include "cfglayout.h"
|
44 |
|
|
#include "tree-ssa-propagate.h"
|
45 |
|
|
#include "value-prof.h"
|
46 |
|
|
#include "pointer-set.h"
|
47 |
|
|
#include "tree-inline.h"
|
48 |
|
|
|
49 |
|
|
/* This file contains functions for building the Control Flow Graph (CFG)
|
50 |
|
|
for a function tree. */
|
51 |
|
|
|
52 |
|
|
/* Local declarations. */
|
53 |
|
|
|
54 |
|
|
/* Initial capacity for the basic block array. */
|
55 |
|
|
static const int initial_cfg_capacity = 20;
|
56 |
|
|
|
57 |
|
|
/* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
|
58 |
|
|
which use a particular edge. The CASE_LABEL_EXPRs are chained together
|
59 |
|
|
via their TREE_CHAIN field, which we clear after we're done with the
|
60 |
|
|
hash table to prevent problems with duplication of GIMPLE_SWITCHes.
|
61 |
|
|
|
62 |
|
|
Access to this list of CASE_LABEL_EXPRs allows us to efficiently
|
63 |
|
|
update the case vector in response to edge redirections.
|
64 |
|
|
|
65 |
|
|
Right now this table is set up and torn down at key points in the
|
66 |
|
|
compilation process. It would be nice if we could make the table
|
67 |
|
|
more persistent. The key is getting notification of changes to
|
68 |
|
|
the CFG (particularly edge removal, creation and redirection). */
|
69 |
|
|
|
70 |
|
|
static struct pointer_map_t *edge_to_cases;
|
71 |
|
|
|
72 |
|
|
/* If we record edge_to_cases, this bitmap will hold indexes
|
73 |
|
|
of basic blocks that end in a GIMPLE_SWITCH which we touched
|
74 |
|
|
due to edge manipulations. */
|
75 |
|
|
|
76 |
|
|
static bitmap touched_switch_bbs;
|
77 |
|
|
|
78 |
|
|
/* CFG statistics. */
|
79 |
|
|
struct cfg_stats_d
|
80 |
|
|
{
|
81 |
|
|
long num_merged_labels;
|
82 |
|
|
};
|
83 |
|
|
|
84 |
|
|
static struct cfg_stats_d cfg_stats;
|
85 |
|
|
|
86 |
|
|
/* Nonzero if we found a computed goto while building basic blocks. */
|
87 |
|
|
static bool found_computed_goto;
|
88 |
|
|
|
89 |
|
|
/* Hash table to store last discriminator assigned for each locus. */
|
90 |
|
|
struct locus_discrim_map
|
91 |
|
|
{
|
92 |
|
|
location_t locus;
|
93 |
|
|
int discriminator;
|
94 |
|
|
};
|
95 |
|
|
static htab_t discriminator_per_locus;
|
96 |
|
|
|
97 |
|
|
/* Basic blocks and flowgraphs. */
|
98 |
|
|
static void make_blocks (gimple_seq);
|
99 |
|
|
static void factor_computed_gotos (void);
|
100 |
|
|
|
101 |
|
|
/* Edges. */
|
102 |
|
|
static void make_edges (void);
|
103 |
|
|
static void make_cond_expr_edges (basic_block);
|
104 |
|
|
static void make_gimple_switch_edges (basic_block);
|
105 |
|
|
static void make_goto_expr_edges (basic_block);
|
106 |
|
|
static void make_gimple_asm_edges (basic_block);
|
107 |
|
|
static unsigned int locus_map_hash (const void *);
|
108 |
|
|
static int locus_map_eq (const void *, const void *);
|
109 |
|
|
static void assign_discriminator (location_t, basic_block);
|
110 |
|
|
static edge gimple_redirect_edge_and_branch (edge, basic_block);
|
111 |
|
|
static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
|
112 |
|
|
static unsigned int split_critical_edges (void);
|
113 |
|
|
|
114 |
|
|
/* Various helpers. */
|
115 |
|
|
static inline bool stmt_starts_bb_p (gimple, gimple);
|
116 |
|
|
static int gimple_verify_flow_info (void);
|
117 |
|
|
static void gimple_make_forwarder_block (edge);
|
118 |
|
|
static void gimple_cfg2vcg (FILE *);
|
119 |
|
|
static gimple first_non_label_stmt (basic_block);
|
120 |
|
|
static bool verify_gimple_transaction (gimple);
|
121 |
|
|
|
122 |
|
|
/* Flowgraph optimization and cleanup. */
|
123 |
|
|
static void gimple_merge_blocks (basic_block, basic_block);
|
124 |
|
|
static bool gimple_can_merge_blocks_p (basic_block, basic_block);
|
125 |
|
|
static void remove_bb (basic_block);
|
126 |
|
|
static edge find_taken_edge_computed_goto (basic_block, tree);
|
127 |
|
|
static edge find_taken_edge_cond_expr (basic_block, tree);
|
128 |
|
|
static edge find_taken_edge_switch_expr (basic_block, tree);
|
129 |
|
|
static tree find_case_label_for_value (gimple, tree);
|
130 |
|
|
static void group_case_labels_stmt (gimple);
|
131 |
|
|
|
132 |
|
|
void
|
133 |
|
|
init_empty_tree_cfg_for_function (struct function *fn)
|
134 |
|
|
{
|
135 |
|
|
/* Initialize the basic block array. */
|
136 |
|
|
init_flow (fn);
|
137 |
|
|
profile_status_for_function (fn) = PROFILE_ABSENT;
|
138 |
|
|
n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
|
139 |
|
|
last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
|
140 |
|
|
basic_block_info_for_function (fn)
|
141 |
|
|
= VEC_alloc (basic_block, gc, initial_cfg_capacity);
|
142 |
|
|
VEC_safe_grow_cleared (basic_block, gc,
|
143 |
|
|
basic_block_info_for_function (fn),
|
144 |
|
|
initial_cfg_capacity);
|
145 |
|
|
|
146 |
|
|
/* Build a mapping of labels to their associated blocks. */
|
147 |
|
|
label_to_block_map_for_function (fn)
|
148 |
|
|
= VEC_alloc (basic_block, gc, initial_cfg_capacity);
|
149 |
|
|
VEC_safe_grow_cleared (basic_block, gc,
|
150 |
|
|
label_to_block_map_for_function (fn),
|
151 |
|
|
initial_cfg_capacity);
|
152 |
|
|
|
153 |
|
|
SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
|
154 |
|
|
ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
|
155 |
|
|
SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
|
156 |
|
|
EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
|
157 |
|
|
|
158 |
|
|
ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
|
159 |
|
|
= EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
|
160 |
|
|
EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
|
161 |
|
|
= ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
|
162 |
|
|
}
|
163 |
|
|
|
164 |
|
|
void
|
165 |
|
|
init_empty_tree_cfg (void)
|
166 |
|
|
{
|
167 |
|
|
init_empty_tree_cfg_for_function (cfun);
|
168 |
|
|
}
|
169 |
|
|
|
170 |
|
|
/*---------------------------------------------------------------------------
|
171 |
|
|
Create basic blocks
|
172 |
|
|
---------------------------------------------------------------------------*/
|
173 |
|
|
|
174 |
|
|
/* Entry point to the CFG builder for trees. SEQ is the sequence of
|
175 |
|
|
statements to be added to the flowgraph. */
|
176 |
|
|
|
177 |
|
|
static void
|
178 |
|
|
build_gimple_cfg (gimple_seq seq)
|
179 |
|
|
{
|
180 |
|
|
/* Register specific gimple functions. */
|
181 |
|
|
gimple_register_cfg_hooks ();
|
182 |
|
|
|
183 |
|
|
memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
|
184 |
|
|
|
185 |
|
|
init_empty_tree_cfg ();
|
186 |
|
|
|
187 |
|
|
found_computed_goto = 0;
|
188 |
|
|
make_blocks (seq);
|
189 |
|
|
|
190 |
|
|
/* Computed gotos are hell to deal with, especially if there are
|
191 |
|
|
lots of them with a large number of destinations. So we factor
|
192 |
|
|
them to a common computed goto location before we build the
|
193 |
|
|
edge list. After we convert back to normal form, we will un-factor
|
194 |
|
|
the computed gotos since factoring introduces an unwanted jump. */
|
195 |
|
|
if (found_computed_goto)
|
196 |
|
|
factor_computed_gotos ();
|
197 |
|
|
|
198 |
|
|
/* Make sure there is always at least one block, even if it's empty. */
|
199 |
|
|
if (n_basic_blocks == NUM_FIXED_BLOCKS)
|
200 |
|
|
create_empty_bb (ENTRY_BLOCK_PTR);
|
201 |
|
|
|
202 |
|
|
/* Adjust the size of the array. */
|
203 |
|
|
if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
|
204 |
|
|
VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
|
205 |
|
|
|
206 |
|
|
/* To speed up statement iterator walks, we first purge dead labels. */
|
207 |
|
|
cleanup_dead_labels ();
|
208 |
|
|
|
209 |
|
|
/* Group case nodes to reduce the number of edges.
|
210 |
|
|
We do this after cleaning up dead labels because otherwise we miss
|
211 |
|
|
a lot of obvious case merging opportunities. */
|
212 |
|
|
group_case_labels ();
|
213 |
|
|
|
214 |
|
|
/* Create the edges of the flowgraph. */
|
215 |
|
|
discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
|
216 |
|
|
free);
|
217 |
|
|
make_edges ();
|
218 |
|
|
cleanup_dead_labels ();
|
219 |
|
|
htab_delete (discriminator_per_locus);
|
220 |
|
|
|
221 |
|
|
/* Debugging dumps. */
|
222 |
|
|
|
223 |
|
|
/* Write the flowgraph to a VCG file. */
|
224 |
|
|
{
|
225 |
|
|
int local_dump_flags;
|
226 |
|
|
FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
|
227 |
|
|
if (vcg_file)
|
228 |
|
|
{
|
229 |
|
|
gimple_cfg2vcg (vcg_file);
|
230 |
|
|
dump_end (TDI_vcg, vcg_file);
|
231 |
|
|
}
|
232 |
|
|
}
|
233 |
|
|
}
|
234 |
|
|
|
235 |
|
|
static unsigned int
|
236 |
|
|
execute_build_cfg (void)
|
237 |
|
|
{
|
238 |
|
|
gimple_seq body = gimple_body (current_function_decl);
|
239 |
|
|
|
240 |
|
|
build_gimple_cfg (body);
|
241 |
|
|
gimple_set_body (current_function_decl, NULL);
|
242 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
243 |
|
|
{
|
244 |
|
|
fprintf (dump_file, "Scope blocks:\n");
|
245 |
|
|
dump_scope_blocks (dump_file, dump_flags);
|
246 |
|
|
}
|
247 |
|
|
return 0;
|
248 |
|
|
}
|
249 |
|
|
|
250 |
|
|
struct gimple_opt_pass pass_build_cfg =
|
251 |
|
|
{
|
252 |
|
|
{
|
253 |
|
|
GIMPLE_PASS,
|
254 |
|
|
"cfg", /* name */
|
255 |
|
|
NULL, /* gate */
|
256 |
|
|
execute_build_cfg, /* execute */
|
257 |
|
|
NULL, /* sub */
|
258 |
|
|
NULL, /* next */
|
259 |
|
|
0, /* static_pass_number */
|
260 |
|
|
TV_TREE_CFG, /* tv_id */
|
261 |
|
|
PROP_gimple_leh, /* properties_required */
|
262 |
|
|
PROP_cfg, /* properties_provided */
|
263 |
|
|
0, /* properties_destroyed */
|
264 |
|
|
0, /* todo_flags_start */
|
265 |
|
|
TODO_verify_stmts | TODO_cleanup_cfg /* todo_flags_finish */
|
266 |
|
|
}
|
267 |
|
|
};
|
268 |
|
|
|
269 |
|
|
|
270 |
|
|
/* Return true if T is a computed goto. */
|
271 |
|
|
|
272 |
|
|
static bool
|
273 |
|
|
computed_goto_p (gimple t)
|
274 |
|
|
{
|
275 |
|
|
return (gimple_code (t) == GIMPLE_GOTO
|
276 |
|
|
&& TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
|
277 |
|
|
}
|
278 |
|
|
|
279 |
|
|
|
280 |
|
|
/* Search the CFG for any computed gotos. If found, factor them to a
|
281 |
|
|
common computed goto site. Also record the location of that site so
|
282 |
|
|
that we can un-factor the gotos after we have converted back to
|
283 |
|
|
normal form. */
|
284 |
|
|
|
285 |
|
|
static void
|
286 |
|
|
factor_computed_gotos (void)
|
287 |
|
|
{
|
288 |
|
|
basic_block bb;
|
289 |
|
|
tree factored_label_decl = NULL;
|
290 |
|
|
tree var = NULL;
|
291 |
|
|
gimple factored_computed_goto_label = NULL;
|
292 |
|
|
gimple factored_computed_goto = NULL;
|
293 |
|
|
|
294 |
|
|
/* We know there are one or more computed gotos in this function.
|
295 |
|
|
Examine the last statement in each basic block to see if the block
|
296 |
|
|
ends with a computed goto. */
|
297 |
|
|
|
298 |
|
|
FOR_EACH_BB (bb)
|
299 |
|
|
{
|
300 |
|
|
gimple_stmt_iterator gsi = gsi_last_bb (bb);
|
301 |
|
|
gimple last;
|
302 |
|
|
|
303 |
|
|
if (gsi_end_p (gsi))
|
304 |
|
|
continue;
|
305 |
|
|
|
306 |
|
|
last = gsi_stmt (gsi);
|
307 |
|
|
|
308 |
|
|
/* Ignore the computed goto we create when we factor the original
|
309 |
|
|
computed gotos. */
|
310 |
|
|
if (last == factored_computed_goto)
|
311 |
|
|
continue;
|
312 |
|
|
|
313 |
|
|
/* If the last statement is a computed goto, factor it. */
|
314 |
|
|
if (computed_goto_p (last))
|
315 |
|
|
{
|
316 |
|
|
gimple assignment;
|
317 |
|
|
|
318 |
|
|
/* The first time we find a computed goto we need to create
|
319 |
|
|
the factored goto block and the variable each original
|
320 |
|
|
computed goto will use for their goto destination. */
|
321 |
|
|
if (!factored_computed_goto)
|
322 |
|
|
{
|
323 |
|
|
basic_block new_bb = create_empty_bb (bb);
|
324 |
|
|
gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
|
325 |
|
|
|
326 |
|
|
/* Create the destination of the factored goto. Each original
|
327 |
|
|
computed goto will put its desired destination into this
|
328 |
|
|
variable and jump to the label we create immediately
|
329 |
|
|
below. */
|
330 |
|
|
var = create_tmp_var (ptr_type_node, "gotovar");
|
331 |
|
|
|
332 |
|
|
/* Build a label for the new block which will contain the
|
333 |
|
|
factored computed goto. */
|
334 |
|
|
factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
|
335 |
|
|
factored_computed_goto_label
|
336 |
|
|
= gimple_build_label (factored_label_decl);
|
337 |
|
|
gsi_insert_after (&new_gsi, factored_computed_goto_label,
|
338 |
|
|
GSI_NEW_STMT);
|
339 |
|
|
|
340 |
|
|
/* Build our new computed goto. */
|
341 |
|
|
factored_computed_goto = gimple_build_goto (var);
|
342 |
|
|
gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
|
343 |
|
|
}
|
344 |
|
|
|
345 |
|
|
/* Copy the original computed goto's destination into VAR. */
|
346 |
|
|
assignment = gimple_build_assign (var, gimple_goto_dest (last));
|
347 |
|
|
gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
|
348 |
|
|
|
349 |
|
|
/* And re-vector the computed goto to the new destination. */
|
350 |
|
|
gimple_goto_set_dest (last, factored_label_decl);
|
351 |
|
|
}
|
352 |
|
|
}
|
353 |
|
|
}
|
354 |
|
|
|
355 |
|
|
|
356 |
|
|
/* Build a flowgraph for the sequence of stmts SEQ. */
|
357 |
|
|
|
358 |
|
|
static void
|
359 |
|
|
make_blocks (gimple_seq seq)
|
360 |
|
|
{
|
361 |
|
|
gimple_stmt_iterator i = gsi_start (seq);
|
362 |
|
|
gimple stmt = NULL;
|
363 |
|
|
bool start_new_block = true;
|
364 |
|
|
bool first_stmt_of_seq = true;
|
365 |
|
|
basic_block bb = ENTRY_BLOCK_PTR;
|
366 |
|
|
|
367 |
|
|
while (!gsi_end_p (i))
|
368 |
|
|
{
|
369 |
|
|
gimple prev_stmt;
|
370 |
|
|
|
371 |
|
|
prev_stmt = stmt;
|
372 |
|
|
stmt = gsi_stmt (i);
|
373 |
|
|
|
374 |
|
|
/* If the statement starts a new basic block or if we have determined
|
375 |
|
|
in a previous pass that we need to create a new block for STMT, do
|
376 |
|
|
so now. */
|
377 |
|
|
if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
|
378 |
|
|
{
|
379 |
|
|
if (!first_stmt_of_seq)
|
380 |
|
|
seq = gsi_split_seq_before (&i);
|
381 |
|
|
bb = create_basic_block (seq, NULL, bb);
|
382 |
|
|
start_new_block = false;
|
383 |
|
|
}
|
384 |
|
|
|
385 |
|
|
/* Now add STMT to BB and create the subgraphs for special statement
|
386 |
|
|
codes. */
|
387 |
|
|
gimple_set_bb (stmt, bb);
|
388 |
|
|
|
389 |
|
|
if (computed_goto_p (stmt))
|
390 |
|
|
found_computed_goto = true;
|
391 |
|
|
|
392 |
|
|
/* If STMT is a basic block terminator, set START_NEW_BLOCK for the
|
393 |
|
|
next iteration. */
|
394 |
|
|
if (stmt_ends_bb_p (stmt))
|
395 |
|
|
{
|
396 |
|
|
/* If the stmt can make abnormal goto use a new temporary
|
397 |
|
|
for the assignment to the LHS. This makes sure the old value
|
398 |
|
|
of the LHS is available on the abnormal edge. Otherwise
|
399 |
|
|
we will end up with overlapping life-ranges for abnormal
|
400 |
|
|
SSA names. */
|
401 |
|
|
if (gimple_has_lhs (stmt)
|
402 |
|
|
&& stmt_can_make_abnormal_goto (stmt)
|
403 |
|
|
&& is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
|
404 |
|
|
{
|
405 |
|
|
tree lhs = gimple_get_lhs (stmt);
|
406 |
|
|
tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
|
407 |
|
|
gimple s = gimple_build_assign (lhs, tmp);
|
408 |
|
|
gimple_set_location (s, gimple_location (stmt));
|
409 |
|
|
gimple_set_block (s, gimple_block (stmt));
|
410 |
|
|
gimple_set_lhs (stmt, tmp);
|
411 |
|
|
if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
|
412 |
|
|
|| TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
|
413 |
|
|
DECL_GIMPLE_REG_P (tmp) = 1;
|
414 |
|
|
gsi_insert_after (&i, s, GSI_SAME_STMT);
|
415 |
|
|
}
|
416 |
|
|
start_new_block = true;
|
417 |
|
|
}
|
418 |
|
|
|
419 |
|
|
gsi_next (&i);
|
420 |
|
|
first_stmt_of_seq = false;
|
421 |
|
|
}
|
422 |
|
|
}
|
423 |
|
|
|
424 |
|
|
|
425 |
|
|
/* Create and return a new empty basic block after bb AFTER. */
|
426 |
|
|
|
427 |
|
|
static basic_block
|
428 |
|
|
create_bb (void *h, void *e, basic_block after)
|
429 |
|
|
{
|
430 |
|
|
basic_block bb;
|
431 |
|
|
|
432 |
|
|
gcc_assert (!e);
|
433 |
|
|
|
434 |
|
|
/* Create and initialize a new basic block. Since alloc_block uses
|
435 |
|
|
GC allocation that clears memory to allocate a basic block, we do
|
436 |
|
|
not have to clear the newly allocated basic block here. */
|
437 |
|
|
bb = alloc_block ();
|
438 |
|
|
|
439 |
|
|
bb->index = last_basic_block;
|
440 |
|
|
bb->flags = BB_NEW;
|
441 |
|
|
bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
|
442 |
|
|
set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
|
443 |
|
|
|
444 |
|
|
/* Add the new block to the linked list of blocks. */
|
445 |
|
|
link_block (bb, after);
|
446 |
|
|
|
447 |
|
|
/* Grow the basic block array if needed. */
|
448 |
|
|
if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
|
449 |
|
|
{
|
450 |
|
|
size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
|
451 |
|
|
VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
|
452 |
|
|
}
|
453 |
|
|
|
454 |
|
|
/* Add the newly created block to the array. */
|
455 |
|
|
SET_BASIC_BLOCK (last_basic_block, bb);
|
456 |
|
|
|
457 |
|
|
n_basic_blocks++;
|
458 |
|
|
last_basic_block++;
|
459 |
|
|
|
460 |
|
|
return bb;
|
461 |
|
|
}
|
462 |
|
|
|
463 |
|
|
|
464 |
|
|
/*---------------------------------------------------------------------------
|
465 |
|
|
Edge creation
|
466 |
|
|
---------------------------------------------------------------------------*/
|
467 |
|
|
|
468 |
|
|
/* Fold COND_EXPR_COND of each COND_EXPR. */
|
469 |
|
|
|
470 |
|
|
void
|
471 |
|
|
fold_cond_expr_cond (void)
|
472 |
|
|
{
|
473 |
|
|
basic_block bb;
|
474 |
|
|
|
475 |
|
|
FOR_EACH_BB (bb)
|
476 |
|
|
{
|
477 |
|
|
gimple stmt = last_stmt (bb);
|
478 |
|
|
|
479 |
|
|
if (stmt && gimple_code (stmt) == GIMPLE_COND)
|
480 |
|
|
{
|
481 |
|
|
location_t loc = gimple_location (stmt);
|
482 |
|
|
tree cond;
|
483 |
|
|
bool zerop, onep;
|
484 |
|
|
|
485 |
|
|
fold_defer_overflow_warnings ();
|
486 |
|
|
cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
|
487 |
|
|
gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
|
488 |
|
|
if (cond)
|
489 |
|
|
{
|
490 |
|
|
zerop = integer_zerop (cond);
|
491 |
|
|
onep = integer_onep (cond);
|
492 |
|
|
}
|
493 |
|
|
else
|
494 |
|
|
zerop = onep = false;
|
495 |
|
|
|
496 |
|
|
fold_undefer_overflow_warnings (zerop || onep,
|
497 |
|
|
stmt,
|
498 |
|
|
WARN_STRICT_OVERFLOW_CONDITIONAL);
|
499 |
|
|
if (zerop)
|
500 |
|
|
gimple_cond_make_false (stmt);
|
501 |
|
|
else if (onep)
|
502 |
|
|
gimple_cond_make_true (stmt);
|
503 |
|
|
}
|
504 |
|
|
}
|
505 |
|
|
}
|
506 |
|
|
|
507 |
|
|
/* Join all the blocks in the flowgraph. */
|
508 |
|
|
|
509 |
|
|
static void
|
510 |
|
|
make_edges (void)
|
511 |
|
|
{
|
512 |
|
|
basic_block bb;
|
513 |
|
|
struct omp_region *cur_region = NULL;
|
514 |
|
|
|
515 |
|
|
/* Create an edge from entry to the first block with executable
|
516 |
|
|
statements in it. */
|
517 |
|
|
make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
|
518 |
|
|
|
519 |
|
|
/* Traverse the basic block array placing edges. */
|
520 |
|
|
FOR_EACH_BB (bb)
|
521 |
|
|
{
|
522 |
|
|
gimple last = last_stmt (bb);
|
523 |
|
|
bool fallthru;
|
524 |
|
|
|
525 |
|
|
if (last)
|
526 |
|
|
{
|
527 |
|
|
enum gimple_code code = gimple_code (last);
|
528 |
|
|
switch (code)
|
529 |
|
|
{
|
530 |
|
|
case GIMPLE_GOTO:
|
531 |
|
|
make_goto_expr_edges (bb);
|
532 |
|
|
fallthru = false;
|
533 |
|
|
break;
|
534 |
|
|
case GIMPLE_RETURN:
|
535 |
|
|
make_edge (bb, EXIT_BLOCK_PTR, 0);
|
536 |
|
|
fallthru = false;
|
537 |
|
|
break;
|
538 |
|
|
case GIMPLE_COND:
|
539 |
|
|
make_cond_expr_edges (bb);
|
540 |
|
|
fallthru = false;
|
541 |
|
|
break;
|
542 |
|
|
case GIMPLE_SWITCH:
|
543 |
|
|
make_gimple_switch_edges (bb);
|
544 |
|
|
fallthru = false;
|
545 |
|
|
break;
|
546 |
|
|
case GIMPLE_RESX:
|
547 |
|
|
make_eh_edges (last);
|
548 |
|
|
fallthru = false;
|
549 |
|
|
break;
|
550 |
|
|
case GIMPLE_EH_DISPATCH:
|
551 |
|
|
fallthru = make_eh_dispatch_edges (last);
|
552 |
|
|
break;
|
553 |
|
|
|
554 |
|
|
case GIMPLE_CALL:
|
555 |
|
|
/* If this function receives a nonlocal goto, then we need to
|
556 |
|
|
make edges from this call site to all the nonlocal goto
|
557 |
|
|
handlers. */
|
558 |
|
|
if (stmt_can_make_abnormal_goto (last))
|
559 |
|
|
make_abnormal_goto_edges (bb, true);
|
560 |
|
|
|
561 |
|
|
/* If this statement has reachable exception handlers, then
|
562 |
|
|
create abnormal edges to them. */
|
563 |
|
|
make_eh_edges (last);
|
564 |
|
|
|
565 |
|
|
/* BUILTIN_RETURN is really a return statement. */
|
566 |
|
|
if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
|
567 |
|
|
make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
|
568 |
|
|
/* Some calls are known not to return. */
|
569 |
|
|
else
|
570 |
|
|
fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
|
571 |
|
|
break;
|
572 |
|
|
|
573 |
|
|
case GIMPLE_ASSIGN:
|
574 |
|
|
/* A GIMPLE_ASSIGN may throw internally and thus be considered
|
575 |
|
|
control-altering. */
|
576 |
|
|
if (is_ctrl_altering_stmt (last))
|
577 |
|
|
make_eh_edges (last);
|
578 |
|
|
fallthru = true;
|
579 |
|
|
break;
|
580 |
|
|
|
581 |
|
|
case GIMPLE_ASM:
|
582 |
|
|
make_gimple_asm_edges (bb);
|
583 |
|
|
fallthru = true;
|
584 |
|
|
break;
|
585 |
|
|
|
586 |
|
|
case GIMPLE_OMP_PARALLEL:
|
587 |
|
|
case GIMPLE_OMP_TASK:
|
588 |
|
|
case GIMPLE_OMP_FOR:
|
589 |
|
|
case GIMPLE_OMP_SINGLE:
|
590 |
|
|
case GIMPLE_OMP_MASTER:
|
591 |
|
|
case GIMPLE_OMP_ORDERED:
|
592 |
|
|
case GIMPLE_OMP_CRITICAL:
|
593 |
|
|
case GIMPLE_OMP_SECTION:
|
594 |
|
|
cur_region = new_omp_region (bb, code, cur_region);
|
595 |
|
|
fallthru = true;
|
596 |
|
|
break;
|
597 |
|
|
|
598 |
|
|
case GIMPLE_OMP_SECTIONS:
|
599 |
|
|
cur_region = new_omp_region (bb, code, cur_region);
|
600 |
|
|
fallthru = true;
|
601 |
|
|
break;
|
602 |
|
|
|
603 |
|
|
case GIMPLE_OMP_SECTIONS_SWITCH:
|
604 |
|
|
fallthru = false;
|
605 |
|
|
break;
|
606 |
|
|
|
607 |
|
|
case GIMPLE_OMP_ATOMIC_LOAD:
|
608 |
|
|
case GIMPLE_OMP_ATOMIC_STORE:
|
609 |
|
|
fallthru = true;
|
610 |
|
|
break;
|
611 |
|
|
|
612 |
|
|
case GIMPLE_OMP_RETURN:
|
613 |
|
|
/* In the case of a GIMPLE_OMP_SECTION, the edge will go
|
614 |
|
|
somewhere other than the next block. This will be
|
615 |
|
|
created later. */
|
616 |
|
|
cur_region->exit = bb;
|
617 |
|
|
fallthru = cur_region->type != GIMPLE_OMP_SECTION;
|
618 |
|
|
cur_region = cur_region->outer;
|
619 |
|
|
break;
|
620 |
|
|
|
621 |
|
|
case GIMPLE_OMP_CONTINUE:
|
622 |
|
|
cur_region->cont = bb;
|
623 |
|
|
switch (cur_region->type)
|
624 |
|
|
{
|
625 |
|
|
case GIMPLE_OMP_FOR:
|
626 |
|
|
/* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
|
627 |
|
|
succs edges as abnormal to prevent splitting
|
628 |
|
|
them. */
|
629 |
|
|
single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
|
630 |
|
|
/* Make the loopback edge. */
|
631 |
|
|
make_edge (bb, single_succ (cur_region->entry),
|
632 |
|
|
EDGE_ABNORMAL);
|
633 |
|
|
|
634 |
|
|
/* Create an edge from GIMPLE_OMP_FOR to exit, which
|
635 |
|
|
corresponds to the case that the body of the loop
|
636 |
|
|
is not executed at all. */
|
637 |
|
|
make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
|
638 |
|
|
make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
|
639 |
|
|
fallthru = false;
|
640 |
|
|
break;
|
641 |
|
|
|
642 |
|
|
case GIMPLE_OMP_SECTIONS:
|
643 |
|
|
/* Wire up the edges into and out of the nested sections. */
|
644 |
|
|
{
|
645 |
|
|
basic_block switch_bb = single_succ (cur_region->entry);
|
646 |
|
|
|
647 |
|
|
struct omp_region *i;
|
648 |
|
|
for (i = cur_region->inner; i ; i = i->next)
|
649 |
|
|
{
|
650 |
|
|
gcc_assert (i->type == GIMPLE_OMP_SECTION);
|
651 |
|
|
make_edge (switch_bb, i->entry, 0);
|
652 |
|
|
make_edge (i->exit, bb, EDGE_FALLTHRU);
|
653 |
|
|
}
|
654 |
|
|
|
655 |
|
|
/* Make the loopback edge to the block with
|
656 |
|
|
GIMPLE_OMP_SECTIONS_SWITCH. */
|
657 |
|
|
make_edge (bb, switch_bb, 0);
|
658 |
|
|
|
659 |
|
|
/* Make the edge from the switch to exit. */
|
660 |
|
|
make_edge (switch_bb, bb->next_bb, 0);
|
661 |
|
|
fallthru = false;
|
662 |
|
|
}
|
663 |
|
|
break;
|
664 |
|
|
|
665 |
|
|
default:
|
666 |
|
|
gcc_unreachable ();
|
667 |
|
|
}
|
668 |
|
|
break;
|
669 |
|
|
|
670 |
|
|
case GIMPLE_TRANSACTION:
|
671 |
|
|
{
|
672 |
|
|
tree abort_label = gimple_transaction_label (last);
|
673 |
|
|
if (abort_label)
|
674 |
|
|
make_edge (bb, label_to_block (abort_label), 0);
|
675 |
|
|
fallthru = true;
|
676 |
|
|
}
|
677 |
|
|
break;
|
678 |
|
|
|
679 |
|
|
default:
|
680 |
|
|
gcc_assert (!stmt_ends_bb_p (last));
|
681 |
|
|
fallthru = true;
|
682 |
|
|
}
|
683 |
|
|
}
|
684 |
|
|
else
|
685 |
|
|
fallthru = true;
|
686 |
|
|
|
687 |
|
|
if (fallthru)
|
688 |
|
|
{
|
689 |
|
|
make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
|
690 |
|
|
if (last)
|
691 |
|
|
assign_discriminator (gimple_location (last), bb->next_bb);
|
692 |
|
|
}
|
693 |
|
|
}
|
694 |
|
|
|
695 |
|
|
if (root_omp_region)
|
696 |
|
|
free_omp_regions ();
|
697 |
|
|
|
698 |
|
|
/* Fold COND_EXPR_COND of each COND_EXPR. */
|
699 |
|
|
fold_cond_expr_cond ();
|
700 |
|
|
}
|
701 |
|
|
|
702 |
|
|
/* Trivial hash function for a location_t. ITEM is a pointer to
|
703 |
|
|
a hash table entry that maps a location_t to a discriminator. */
|
704 |
|
|
|
705 |
|
|
static unsigned int
|
706 |
|
|
locus_map_hash (const void *item)
|
707 |
|
|
{
|
708 |
|
|
return ((const struct locus_discrim_map *) item)->locus;
|
709 |
|
|
}
|
710 |
|
|
|
711 |
|
|
/* Equality function for the locus-to-discriminator map. VA and VB
|
712 |
|
|
point to the two hash table entries to compare. */
|
713 |
|
|
|
714 |
|
|
static int
|
715 |
|
|
locus_map_eq (const void *va, const void *vb)
|
716 |
|
|
{
|
717 |
|
|
const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
|
718 |
|
|
const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
|
719 |
|
|
return a->locus == b->locus;
|
720 |
|
|
}
|
721 |
|
|
|
722 |
|
|
/* Find the next available discriminator value for LOCUS. The
|
723 |
|
|
discriminator distinguishes among several basic blocks that
|
724 |
|
|
share a common locus, allowing for more accurate sample-based
|
725 |
|
|
profiling. */
|
726 |
|
|
|
727 |
|
|
static int
|
728 |
|
|
next_discriminator_for_locus (location_t locus)
|
729 |
|
|
{
|
730 |
|
|
struct locus_discrim_map item;
|
731 |
|
|
struct locus_discrim_map **slot;
|
732 |
|
|
|
733 |
|
|
item.locus = locus;
|
734 |
|
|
item.discriminator = 0;
|
735 |
|
|
slot = (struct locus_discrim_map **)
|
736 |
|
|
htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
|
737 |
|
|
(hashval_t) locus, INSERT);
|
738 |
|
|
gcc_assert (slot);
|
739 |
|
|
if (*slot == HTAB_EMPTY_ENTRY)
|
740 |
|
|
{
|
741 |
|
|
*slot = XNEW (struct locus_discrim_map);
|
742 |
|
|
gcc_assert (*slot);
|
743 |
|
|
(*slot)->locus = locus;
|
744 |
|
|
(*slot)->discriminator = 0;
|
745 |
|
|
}
|
746 |
|
|
(*slot)->discriminator++;
|
747 |
|
|
return (*slot)->discriminator;
|
748 |
|
|
}
|
749 |
|
|
|
750 |
|
|
/* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
|
751 |
|
|
|
752 |
|
|
static bool
|
753 |
|
|
same_line_p (location_t locus1, location_t locus2)
|
754 |
|
|
{
|
755 |
|
|
expanded_location from, to;
|
756 |
|
|
|
757 |
|
|
if (locus1 == locus2)
|
758 |
|
|
return true;
|
759 |
|
|
|
760 |
|
|
from = expand_location (locus1);
|
761 |
|
|
to = expand_location (locus2);
|
762 |
|
|
|
763 |
|
|
if (from.line != to.line)
|
764 |
|
|
return false;
|
765 |
|
|
if (from.file == to.file)
|
766 |
|
|
return true;
|
767 |
|
|
return (from.file != NULL
|
768 |
|
|
&& to.file != NULL
|
769 |
|
|
&& filename_cmp (from.file, to.file) == 0);
|
770 |
|
|
}
|
771 |
|
|
|
772 |
|
|
/* Assign a unique discriminator value to block BB if it begins at the same
|
773 |
|
|
LOCUS as its predecessor block. */
|
774 |
|
|
|
775 |
|
|
static void
|
776 |
|
|
assign_discriminator (location_t locus, basic_block bb)
|
777 |
|
|
{
|
778 |
|
|
gimple first_in_to_bb, last_in_to_bb;
|
779 |
|
|
|
780 |
|
|
if (locus == 0 || bb->discriminator != 0)
|
781 |
|
|
return;
|
782 |
|
|
|
783 |
|
|
first_in_to_bb = first_non_label_stmt (bb);
|
784 |
|
|
last_in_to_bb = last_stmt (bb);
|
785 |
|
|
if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
|
786 |
|
|
|| (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
|
787 |
|
|
bb->discriminator = next_discriminator_for_locus (locus);
|
788 |
|
|
}
|
789 |
|
|
|
790 |
|
|
/* Create the edges for a GIMPLE_COND starting at block BB. */
|
791 |
|
|
|
792 |
|
|
static void
|
793 |
|
|
make_cond_expr_edges (basic_block bb)
|
794 |
|
|
{
|
795 |
|
|
gimple entry = last_stmt (bb);
|
796 |
|
|
gimple then_stmt, else_stmt;
|
797 |
|
|
basic_block then_bb, else_bb;
|
798 |
|
|
tree then_label, else_label;
|
799 |
|
|
edge e;
|
800 |
|
|
location_t entry_locus;
|
801 |
|
|
|
802 |
|
|
gcc_assert (entry);
|
803 |
|
|
gcc_assert (gimple_code (entry) == GIMPLE_COND);
|
804 |
|
|
|
805 |
|
|
entry_locus = gimple_location (entry);
|
806 |
|
|
|
807 |
|
|
/* Entry basic blocks for each component. */
|
808 |
|
|
then_label = gimple_cond_true_label (entry);
|
809 |
|
|
else_label = gimple_cond_false_label (entry);
|
810 |
|
|
then_bb = label_to_block (then_label);
|
811 |
|
|
else_bb = label_to_block (else_label);
|
812 |
|
|
then_stmt = first_stmt (then_bb);
|
813 |
|
|
else_stmt = first_stmt (else_bb);
|
814 |
|
|
|
815 |
|
|
e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
|
816 |
|
|
assign_discriminator (entry_locus, then_bb);
|
817 |
|
|
e->goto_locus = gimple_location (then_stmt);
|
818 |
|
|
if (e->goto_locus)
|
819 |
|
|
e->goto_block = gimple_block (then_stmt);
|
820 |
|
|
e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
|
821 |
|
|
if (e)
|
822 |
|
|
{
|
823 |
|
|
assign_discriminator (entry_locus, else_bb);
|
824 |
|
|
e->goto_locus = gimple_location (else_stmt);
|
825 |
|
|
if (e->goto_locus)
|
826 |
|
|
e->goto_block = gimple_block (else_stmt);
|
827 |
|
|
}
|
828 |
|
|
|
829 |
|
|
/* We do not need the labels anymore. */
|
830 |
|
|
gimple_cond_set_true_label (entry, NULL_TREE);
|
831 |
|
|
gimple_cond_set_false_label (entry, NULL_TREE);
|
832 |
|
|
}
|
833 |
|
|
|
834 |
|
|
|
835 |
|
|
/* Called for each element in the hash table (P) as we delete the
|
836 |
|
|
edge to cases hash table.
|
837 |
|
|
|
838 |
|
|
Clear all the TREE_CHAINs to prevent problems with copying of
|
839 |
|
|
SWITCH_EXPRs and structure sharing rules, then free the hash table
|
840 |
|
|
element. */
|
841 |
|
|
|
842 |
|
|
static bool
|
843 |
|
|
edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
|
844 |
|
|
void *data ATTRIBUTE_UNUSED)
|
845 |
|
|
{
|
846 |
|
|
tree t, next;
|
847 |
|
|
|
848 |
|
|
for (t = (tree) *value; t; t = next)
|
849 |
|
|
{
|
850 |
|
|
next = CASE_CHAIN (t);
|
851 |
|
|
CASE_CHAIN (t) = NULL;
|
852 |
|
|
}
|
853 |
|
|
|
854 |
|
|
*value = NULL;
|
855 |
|
|
return true;
|
856 |
|
|
}
|
857 |
|
|
|
858 |
|
|
/* Start recording information mapping edges to case labels. */
|
859 |
|
|
|
860 |
|
|
void
|
861 |
|
|
start_recording_case_labels (void)
|
862 |
|
|
{
|
863 |
|
|
gcc_assert (edge_to_cases == NULL);
|
864 |
|
|
edge_to_cases = pointer_map_create ();
|
865 |
|
|
touched_switch_bbs = BITMAP_ALLOC (NULL);
|
866 |
|
|
}
|
867 |
|
|
|
868 |
|
|
/* Return nonzero if we are recording information for case labels. */
|
869 |
|
|
|
870 |
|
|
static bool
|
871 |
|
|
recording_case_labels_p (void)
|
872 |
|
|
{
|
873 |
|
|
return (edge_to_cases != NULL);
|
874 |
|
|
}
|
875 |
|
|
|
876 |
|
|
/* Stop recording information mapping edges to case labels and
|
877 |
|
|
remove any information we have recorded. */
|
878 |
|
|
void
|
879 |
|
|
end_recording_case_labels (void)
|
880 |
|
|
{
|
881 |
|
|
bitmap_iterator bi;
|
882 |
|
|
unsigned i;
|
883 |
|
|
pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
|
884 |
|
|
pointer_map_destroy (edge_to_cases);
|
885 |
|
|
edge_to_cases = NULL;
|
886 |
|
|
EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
|
887 |
|
|
{
|
888 |
|
|
basic_block bb = BASIC_BLOCK (i);
|
889 |
|
|
if (bb)
|
890 |
|
|
{
|
891 |
|
|
gimple stmt = last_stmt (bb);
|
892 |
|
|
if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
|
893 |
|
|
group_case_labels_stmt (stmt);
|
894 |
|
|
}
|
895 |
|
|
}
|
896 |
|
|
BITMAP_FREE (touched_switch_bbs);
|
897 |
|
|
}
|
898 |
|
|
|
899 |
|
|
/* If we are inside a {start,end}_recording_cases block, then return
|
900 |
|
|
a chain of CASE_LABEL_EXPRs from T which reference E.
|
901 |
|
|
|
902 |
|
|
Otherwise return NULL. */
|
903 |
|
|
|
904 |
|
|
static tree
|
905 |
|
|
get_cases_for_edge (edge e, gimple t)
|
906 |
|
|
{
|
907 |
|
|
void **slot;
|
908 |
|
|
size_t i, n;
|
909 |
|
|
|
910 |
|
|
/* If we are not recording cases, then we do not have CASE_LABEL_EXPR
|
911 |
|
|
chains available. Return NULL so the caller can detect this case. */
|
912 |
|
|
if (!recording_case_labels_p ())
|
913 |
|
|
return NULL;
|
914 |
|
|
|
915 |
|
|
slot = pointer_map_contains (edge_to_cases, e);
|
916 |
|
|
if (slot)
|
917 |
|
|
return (tree) *slot;
|
918 |
|
|
|
919 |
|
|
/* If we did not find E in the hash table, then this must be the first
|
920 |
|
|
time we have been queried for information about E & T. Add all the
|
921 |
|
|
elements from T to the hash table then perform the query again. */
|
922 |
|
|
|
923 |
|
|
n = gimple_switch_num_labels (t);
|
924 |
|
|
for (i = 0; i < n; i++)
|
925 |
|
|
{
|
926 |
|
|
tree elt = gimple_switch_label (t, i);
|
927 |
|
|
tree lab = CASE_LABEL (elt);
|
928 |
|
|
basic_block label_bb = label_to_block (lab);
|
929 |
|
|
edge this_edge = find_edge (e->src, label_bb);
|
930 |
|
|
|
931 |
|
|
/* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
|
932 |
|
|
a new chain. */
|
933 |
|
|
slot = pointer_map_insert (edge_to_cases, this_edge);
|
934 |
|
|
CASE_CHAIN (elt) = (tree) *slot;
|
935 |
|
|
*slot = elt;
|
936 |
|
|
}
|
937 |
|
|
|
938 |
|
|
return (tree) *pointer_map_contains (edge_to_cases, e);
|
939 |
|
|
}
|
940 |
|
|
|
941 |
|
|
/* Create the edges for a GIMPLE_SWITCH starting at block BB. */
|
942 |
|
|
|
943 |
|
|
static void
|
944 |
|
|
make_gimple_switch_edges (basic_block bb)
|
945 |
|
|
{
|
946 |
|
|
gimple entry = last_stmt (bb);
|
947 |
|
|
location_t entry_locus;
|
948 |
|
|
size_t i, n;
|
949 |
|
|
|
950 |
|
|
entry_locus = gimple_location (entry);
|
951 |
|
|
|
952 |
|
|
n = gimple_switch_num_labels (entry);
|
953 |
|
|
|
954 |
|
|
for (i = 0; i < n; ++i)
|
955 |
|
|
{
|
956 |
|
|
tree lab = CASE_LABEL (gimple_switch_label (entry, i));
|
957 |
|
|
basic_block label_bb = label_to_block (lab);
|
958 |
|
|
make_edge (bb, label_bb, 0);
|
959 |
|
|
assign_discriminator (entry_locus, label_bb);
|
960 |
|
|
}
|
961 |
|
|
}
|
962 |
|
|
|
963 |
|
|
|
964 |
|
|
/* Return the basic block holding label DEST. */
|
965 |
|
|
|
966 |
|
|
basic_block
|
967 |
|
|
label_to_block_fn (struct function *ifun, tree dest)
|
968 |
|
|
{
|
969 |
|
|
int uid = LABEL_DECL_UID (dest);
|
970 |
|
|
|
971 |
|
|
/* We would die hard when faced by an undefined label. Emit a label to
|
972 |
|
|
the very first basic block. This will hopefully make even the dataflow
|
973 |
|
|
and undefined variable warnings quite right. */
|
974 |
|
|
if (seen_error () && uid < 0)
|
975 |
|
|
{
|
976 |
|
|
gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
|
977 |
|
|
gimple stmt;
|
978 |
|
|
|
979 |
|
|
stmt = gimple_build_label (dest);
|
980 |
|
|
gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
|
981 |
|
|
uid = LABEL_DECL_UID (dest);
|
982 |
|
|
}
|
983 |
|
|
if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
|
984 |
|
|
<= (unsigned int) uid)
|
985 |
|
|
return NULL;
|
986 |
|
|
return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
|
987 |
|
|
}
|
988 |
|
|
|
989 |
|
|
/* Create edges for an abnormal goto statement at block BB. If FOR_CALL
|
990 |
|
|
is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
|
991 |
|
|
|
992 |
|
|
void
|
993 |
|
|
make_abnormal_goto_edges (basic_block bb, bool for_call)
|
994 |
|
|
{
|
995 |
|
|
basic_block target_bb;
|
996 |
|
|
gimple_stmt_iterator gsi;
|
997 |
|
|
|
998 |
|
|
FOR_EACH_BB (target_bb)
|
999 |
|
|
for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
1000 |
|
|
{
|
1001 |
|
|
gimple label_stmt = gsi_stmt (gsi);
|
1002 |
|
|
tree target;
|
1003 |
|
|
|
1004 |
|
|
if (gimple_code (label_stmt) != GIMPLE_LABEL)
|
1005 |
|
|
break;
|
1006 |
|
|
|
1007 |
|
|
target = gimple_label_label (label_stmt);
|
1008 |
|
|
|
1009 |
|
|
/* Make an edge to every label block that has been marked as a
|
1010 |
|
|
potential target for a computed goto or a non-local goto. */
|
1011 |
|
|
if ((FORCED_LABEL (target) && !for_call)
|
1012 |
|
|
|| (DECL_NONLOCAL (target) && for_call))
|
1013 |
|
|
{
|
1014 |
|
|
make_edge (bb, target_bb, EDGE_ABNORMAL);
|
1015 |
|
|
break;
|
1016 |
|
|
}
|
1017 |
|
|
}
|
1018 |
|
|
}
|
1019 |
|
|
|
1020 |
|
|
/* Create edges for a goto statement at block BB. */
|
1021 |
|
|
|
1022 |
|
|
static void
|
1023 |
|
|
make_goto_expr_edges (basic_block bb)
|
1024 |
|
|
{
|
1025 |
|
|
gimple_stmt_iterator last = gsi_last_bb (bb);
|
1026 |
|
|
gimple goto_t = gsi_stmt (last);
|
1027 |
|
|
|
1028 |
|
|
/* A simple GOTO creates normal edges. */
|
1029 |
|
|
if (simple_goto_p (goto_t))
|
1030 |
|
|
{
|
1031 |
|
|
tree dest = gimple_goto_dest (goto_t);
|
1032 |
|
|
basic_block label_bb = label_to_block (dest);
|
1033 |
|
|
edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
|
1034 |
|
|
e->goto_locus = gimple_location (goto_t);
|
1035 |
|
|
assign_discriminator (e->goto_locus, label_bb);
|
1036 |
|
|
if (e->goto_locus)
|
1037 |
|
|
e->goto_block = gimple_block (goto_t);
|
1038 |
|
|
gsi_remove (&last, true);
|
1039 |
|
|
return;
|
1040 |
|
|
}
|
1041 |
|
|
|
1042 |
|
|
/* A computed GOTO creates abnormal edges. */
|
1043 |
|
|
make_abnormal_goto_edges (bb, false);
|
1044 |
|
|
}
|
1045 |
|
|
|
1046 |
|
|
/* Create edges for an asm statement with labels at block BB. */
|
1047 |
|
|
|
1048 |
|
|
static void
|
1049 |
|
|
make_gimple_asm_edges (basic_block bb)
|
1050 |
|
|
{
|
1051 |
|
|
gimple stmt = last_stmt (bb);
|
1052 |
|
|
location_t stmt_loc = gimple_location (stmt);
|
1053 |
|
|
int i, n = gimple_asm_nlabels (stmt);
|
1054 |
|
|
|
1055 |
|
|
for (i = 0; i < n; ++i)
|
1056 |
|
|
{
|
1057 |
|
|
tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
|
1058 |
|
|
basic_block label_bb = label_to_block (label);
|
1059 |
|
|
make_edge (bb, label_bb, 0);
|
1060 |
|
|
assign_discriminator (stmt_loc, label_bb);
|
1061 |
|
|
}
|
1062 |
|
|
}
|
1063 |
|
|
|
1064 |
|
|
/*---------------------------------------------------------------------------
|
1065 |
|
|
Flowgraph analysis
|
1066 |
|
|
---------------------------------------------------------------------------*/
|
1067 |
|
|
|
1068 |
|
|
/* Cleanup useless labels in basic blocks. This is something we wish
|
1069 |
|
|
to do early because it allows us to group case labels before creating
|
1070 |
|
|
the edges for the CFG, and it speeds up block statement iterators in
|
1071 |
|
|
all passes later on.
|
1072 |
|
|
We rerun this pass after CFG is created, to get rid of the labels that
|
1073 |
|
|
are no longer referenced. After then we do not run it any more, since
|
1074 |
|
|
(almost) no new labels should be created. */
|
1075 |
|
|
|
1076 |
|
|
/* A map from basic block index to the leading label of that block. */
|
1077 |
|
|
static struct label_record
|
1078 |
|
|
{
|
1079 |
|
|
/* The label. */
|
1080 |
|
|
tree label;
|
1081 |
|
|
|
1082 |
|
|
/* True if the label is referenced from somewhere. */
|
1083 |
|
|
bool used;
|
1084 |
|
|
} *label_for_bb;
|
1085 |
|
|
|
1086 |
|
|
/* Given LABEL return the first label in the same basic block. */
|
1087 |
|
|
|
1088 |
|
|
static tree
|
1089 |
|
|
main_block_label (tree label)
|
1090 |
|
|
{
|
1091 |
|
|
basic_block bb = label_to_block (label);
|
1092 |
|
|
tree main_label = label_for_bb[bb->index].label;
|
1093 |
|
|
|
1094 |
|
|
/* label_to_block possibly inserted undefined label into the chain. */
|
1095 |
|
|
if (!main_label)
|
1096 |
|
|
{
|
1097 |
|
|
label_for_bb[bb->index].label = label;
|
1098 |
|
|
main_label = label;
|
1099 |
|
|
}
|
1100 |
|
|
|
1101 |
|
|
label_for_bb[bb->index].used = true;
|
1102 |
|
|
return main_label;
|
1103 |
|
|
}
|
1104 |
|
|
|
1105 |
|
|
/* Clean up redundant labels within the exception tree. */
|
1106 |
|
|
|
1107 |
|
|
static void
|
1108 |
|
|
cleanup_dead_labels_eh (void)
|
1109 |
|
|
{
|
1110 |
|
|
eh_landing_pad lp;
|
1111 |
|
|
eh_region r;
|
1112 |
|
|
tree lab;
|
1113 |
|
|
int i;
|
1114 |
|
|
|
1115 |
|
|
if (cfun->eh == NULL)
|
1116 |
|
|
return;
|
1117 |
|
|
|
1118 |
|
|
for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
|
1119 |
|
|
if (lp && lp->post_landing_pad)
|
1120 |
|
|
{
|
1121 |
|
|
lab = main_block_label (lp->post_landing_pad);
|
1122 |
|
|
if (lab != lp->post_landing_pad)
|
1123 |
|
|
{
|
1124 |
|
|
EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
|
1125 |
|
|
EH_LANDING_PAD_NR (lab) = lp->index;
|
1126 |
|
|
}
|
1127 |
|
|
}
|
1128 |
|
|
|
1129 |
|
|
FOR_ALL_EH_REGION (r)
|
1130 |
|
|
switch (r->type)
|
1131 |
|
|
{
|
1132 |
|
|
case ERT_CLEANUP:
|
1133 |
|
|
case ERT_MUST_NOT_THROW:
|
1134 |
|
|
break;
|
1135 |
|
|
|
1136 |
|
|
case ERT_TRY:
|
1137 |
|
|
{
|
1138 |
|
|
eh_catch c;
|
1139 |
|
|
for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
|
1140 |
|
|
{
|
1141 |
|
|
lab = c->label;
|
1142 |
|
|
if (lab)
|
1143 |
|
|
c->label = main_block_label (lab);
|
1144 |
|
|
}
|
1145 |
|
|
}
|
1146 |
|
|
break;
|
1147 |
|
|
|
1148 |
|
|
case ERT_ALLOWED_EXCEPTIONS:
|
1149 |
|
|
lab = r->u.allowed.label;
|
1150 |
|
|
if (lab)
|
1151 |
|
|
r->u.allowed.label = main_block_label (lab);
|
1152 |
|
|
break;
|
1153 |
|
|
}
|
1154 |
|
|
}
|
1155 |
|
|
|
1156 |
|
|
|
1157 |
|
|
/* Cleanup redundant labels. This is a three-step process:
|
1158 |
|
|
1) Find the leading label for each block.
|
1159 |
|
|
2) Redirect all references to labels to the leading labels.
|
1160 |
|
|
3) Cleanup all useless labels. */
|
1161 |
|
|
|
1162 |
|
|
void
|
1163 |
|
|
cleanup_dead_labels (void)
|
1164 |
|
|
{
|
1165 |
|
|
basic_block bb;
|
1166 |
|
|
label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
|
1167 |
|
|
|
1168 |
|
|
/* Find a suitable label for each block. We use the first user-defined
|
1169 |
|
|
label if there is one, or otherwise just the first label we see. */
|
1170 |
|
|
FOR_EACH_BB (bb)
|
1171 |
|
|
{
|
1172 |
|
|
gimple_stmt_iterator i;
|
1173 |
|
|
|
1174 |
|
|
for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
|
1175 |
|
|
{
|
1176 |
|
|
tree label;
|
1177 |
|
|
gimple stmt = gsi_stmt (i);
|
1178 |
|
|
|
1179 |
|
|
if (gimple_code (stmt) != GIMPLE_LABEL)
|
1180 |
|
|
break;
|
1181 |
|
|
|
1182 |
|
|
label = gimple_label_label (stmt);
|
1183 |
|
|
|
1184 |
|
|
/* If we have not yet seen a label for the current block,
|
1185 |
|
|
remember this one and see if there are more labels. */
|
1186 |
|
|
if (!label_for_bb[bb->index].label)
|
1187 |
|
|
{
|
1188 |
|
|
label_for_bb[bb->index].label = label;
|
1189 |
|
|
continue;
|
1190 |
|
|
}
|
1191 |
|
|
|
1192 |
|
|
/* If we did see a label for the current block already, but it
|
1193 |
|
|
is an artificially created label, replace it if the current
|
1194 |
|
|
label is a user defined label. */
|
1195 |
|
|
if (!DECL_ARTIFICIAL (label)
|
1196 |
|
|
&& DECL_ARTIFICIAL (label_for_bb[bb->index].label))
|
1197 |
|
|
{
|
1198 |
|
|
label_for_bb[bb->index].label = label;
|
1199 |
|
|
break;
|
1200 |
|
|
}
|
1201 |
|
|
}
|
1202 |
|
|
}
|
1203 |
|
|
|
1204 |
|
|
/* Now redirect all jumps/branches to the selected label.
|
1205 |
|
|
First do so for each block ending in a control statement. */
|
1206 |
|
|
FOR_EACH_BB (bb)
|
1207 |
|
|
{
|
1208 |
|
|
gimple stmt = last_stmt (bb);
|
1209 |
|
|
tree label, new_label;
|
1210 |
|
|
|
1211 |
|
|
if (!stmt)
|
1212 |
|
|
continue;
|
1213 |
|
|
|
1214 |
|
|
switch (gimple_code (stmt))
|
1215 |
|
|
{
|
1216 |
|
|
case GIMPLE_COND:
|
1217 |
|
|
label = gimple_cond_true_label (stmt);
|
1218 |
|
|
if (label)
|
1219 |
|
|
{
|
1220 |
|
|
new_label = main_block_label (label);
|
1221 |
|
|
if (new_label != label)
|
1222 |
|
|
gimple_cond_set_true_label (stmt, new_label);
|
1223 |
|
|
}
|
1224 |
|
|
|
1225 |
|
|
label = gimple_cond_false_label (stmt);
|
1226 |
|
|
if (label)
|
1227 |
|
|
{
|
1228 |
|
|
new_label = main_block_label (label);
|
1229 |
|
|
if (new_label != label)
|
1230 |
|
|
gimple_cond_set_false_label (stmt, new_label);
|
1231 |
|
|
}
|
1232 |
|
|
break;
|
1233 |
|
|
|
1234 |
|
|
case GIMPLE_SWITCH:
|
1235 |
|
|
{
|
1236 |
|
|
size_t i, n = gimple_switch_num_labels (stmt);
|
1237 |
|
|
|
1238 |
|
|
/* Replace all destination labels. */
|
1239 |
|
|
for (i = 0; i < n; ++i)
|
1240 |
|
|
{
|
1241 |
|
|
tree case_label = gimple_switch_label (stmt, i);
|
1242 |
|
|
label = CASE_LABEL (case_label);
|
1243 |
|
|
new_label = main_block_label (label);
|
1244 |
|
|
if (new_label != label)
|
1245 |
|
|
CASE_LABEL (case_label) = new_label;
|
1246 |
|
|
}
|
1247 |
|
|
break;
|
1248 |
|
|
}
|
1249 |
|
|
|
1250 |
|
|
case GIMPLE_ASM:
|
1251 |
|
|
{
|
1252 |
|
|
int i, n = gimple_asm_nlabels (stmt);
|
1253 |
|
|
|
1254 |
|
|
for (i = 0; i < n; ++i)
|
1255 |
|
|
{
|
1256 |
|
|
tree cons = gimple_asm_label_op (stmt, i);
|
1257 |
|
|
tree label = main_block_label (TREE_VALUE (cons));
|
1258 |
|
|
TREE_VALUE (cons) = label;
|
1259 |
|
|
}
|
1260 |
|
|
break;
|
1261 |
|
|
}
|
1262 |
|
|
|
1263 |
|
|
/* We have to handle gotos until they're removed, and we don't
|
1264 |
|
|
remove them until after we've created the CFG edges. */
|
1265 |
|
|
case GIMPLE_GOTO:
|
1266 |
|
|
if (!computed_goto_p (stmt))
|
1267 |
|
|
{
|
1268 |
|
|
label = gimple_goto_dest (stmt);
|
1269 |
|
|
new_label = main_block_label (label);
|
1270 |
|
|
if (new_label != label)
|
1271 |
|
|
gimple_goto_set_dest (stmt, new_label);
|
1272 |
|
|
}
|
1273 |
|
|
break;
|
1274 |
|
|
|
1275 |
|
|
case GIMPLE_TRANSACTION:
|
1276 |
|
|
{
|
1277 |
|
|
tree label = gimple_transaction_label (stmt);
|
1278 |
|
|
if (label)
|
1279 |
|
|
{
|
1280 |
|
|
tree new_label = main_block_label (label);
|
1281 |
|
|
if (new_label != label)
|
1282 |
|
|
gimple_transaction_set_label (stmt, new_label);
|
1283 |
|
|
}
|
1284 |
|
|
}
|
1285 |
|
|
break;
|
1286 |
|
|
|
1287 |
|
|
default:
|
1288 |
|
|
break;
|
1289 |
|
|
}
|
1290 |
|
|
}
|
1291 |
|
|
|
1292 |
|
|
/* Do the same for the exception region tree labels. */
|
1293 |
|
|
cleanup_dead_labels_eh ();
|
1294 |
|
|
|
1295 |
|
|
/* Finally, purge dead labels. All user-defined labels and labels that
|
1296 |
|
|
can be the target of non-local gotos and labels which have their
|
1297 |
|
|
address taken are preserved. */
|
1298 |
|
|
FOR_EACH_BB (bb)
|
1299 |
|
|
{
|
1300 |
|
|
gimple_stmt_iterator i;
|
1301 |
|
|
tree label_for_this_bb = label_for_bb[bb->index].label;
|
1302 |
|
|
|
1303 |
|
|
if (!label_for_this_bb)
|
1304 |
|
|
continue;
|
1305 |
|
|
|
1306 |
|
|
/* If the main label of the block is unused, we may still remove it. */
|
1307 |
|
|
if (!label_for_bb[bb->index].used)
|
1308 |
|
|
label_for_this_bb = NULL;
|
1309 |
|
|
|
1310 |
|
|
for (i = gsi_start_bb (bb); !gsi_end_p (i); )
|
1311 |
|
|
{
|
1312 |
|
|
tree label;
|
1313 |
|
|
gimple stmt = gsi_stmt (i);
|
1314 |
|
|
|
1315 |
|
|
if (gimple_code (stmt) != GIMPLE_LABEL)
|
1316 |
|
|
break;
|
1317 |
|
|
|
1318 |
|
|
label = gimple_label_label (stmt);
|
1319 |
|
|
|
1320 |
|
|
if (label == label_for_this_bb
|
1321 |
|
|
|| !DECL_ARTIFICIAL (label)
|
1322 |
|
|
|| DECL_NONLOCAL (label)
|
1323 |
|
|
|| FORCED_LABEL (label))
|
1324 |
|
|
gsi_next (&i);
|
1325 |
|
|
else
|
1326 |
|
|
gsi_remove (&i, true);
|
1327 |
|
|
}
|
1328 |
|
|
}
|
1329 |
|
|
|
1330 |
|
|
free (label_for_bb);
|
1331 |
|
|
}
|
1332 |
|
|
|
1333 |
|
|
/* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
|
1334 |
|
|
the ones jumping to the same label.
|
1335 |
|
|
Eg. three separate entries 1: 2: 3: become one entry 1..3: */
|
1336 |
|
|
|
1337 |
|
|
static void
|
1338 |
|
|
group_case_labels_stmt (gimple stmt)
|
1339 |
|
|
{
|
1340 |
|
|
int old_size = gimple_switch_num_labels (stmt);
|
1341 |
|
|
int i, j, new_size = old_size;
|
1342 |
|
|
tree default_case = NULL_TREE;
|
1343 |
|
|
tree default_label = NULL_TREE;
|
1344 |
|
|
bool has_default;
|
1345 |
|
|
|
1346 |
|
|
/* The default label is always the first case in a switch
|
1347 |
|
|
statement after gimplification if it was not optimized
|
1348 |
|
|
away */
|
1349 |
|
|
if (!CASE_LOW (gimple_switch_default_label (stmt))
|
1350 |
|
|
&& !CASE_HIGH (gimple_switch_default_label (stmt)))
|
1351 |
|
|
{
|
1352 |
|
|
default_case = gimple_switch_default_label (stmt);
|
1353 |
|
|
default_label = CASE_LABEL (default_case);
|
1354 |
|
|
has_default = true;
|
1355 |
|
|
}
|
1356 |
|
|
else
|
1357 |
|
|
has_default = false;
|
1358 |
|
|
|
1359 |
|
|
/* Look for possible opportunities to merge cases. */
|
1360 |
|
|
if (has_default)
|
1361 |
|
|
i = 1;
|
1362 |
|
|
else
|
1363 |
|
|
i = 0;
|
1364 |
|
|
while (i < old_size)
|
1365 |
|
|
{
|
1366 |
|
|
tree base_case, base_label, base_high;
|
1367 |
|
|
base_case = gimple_switch_label (stmt, i);
|
1368 |
|
|
|
1369 |
|
|
gcc_assert (base_case);
|
1370 |
|
|
base_label = CASE_LABEL (base_case);
|
1371 |
|
|
|
1372 |
|
|
/* Discard cases that have the same destination as the
|
1373 |
|
|
default case. */
|
1374 |
|
|
if (base_label == default_label)
|
1375 |
|
|
{
|
1376 |
|
|
gimple_switch_set_label (stmt, i, NULL_TREE);
|
1377 |
|
|
i++;
|
1378 |
|
|
new_size--;
|
1379 |
|
|
continue;
|
1380 |
|
|
}
|
1381 |
|
|
|
1382 |
|
|
base_high = CASE_HIGH (base_case)
|
1383 |
|
|
? CASE_HIGH (base_case)
|
1384 |
|
|
: CASE_LOW (base_case);
|
1385 |
|
|
i++;
|
1386 |
|
|
|
1387 |
|
|
/* Try to merge case labels. Break out when we reach the end
|
1388 |
|
|
of the label vector or when we cannot merge the next case
|
1389 |
|
|
label with the current one. */
|
1390 |
|
|
while (i < old_size)
|
1391 |
|
|
{
|
1392 |
|
|
tree merge_case = gimple_switch_label (stmt, i);
|
1393 |
|
|
tree merge_label = CASE_LABEL (merge_case);
|
1394 |
|
|
double_int bhp1 = double_int_add (tree_to_double_int (base_high),
|
1395 |
|
|
double_int_one);
|
1396 |
|
|
|
1397 |
|
|
/* Merge the cases if they jump to the same place,
|
1398 |
|
|
and their ranges are consecutive. */
|
1399 |
|
|
if (merge_label == base_label
|
1400 |
|
|
&& double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
|
1401 |
|
|
bhp1))
|
1402 |
|
|
{
|
1403 |
|
|
base_high = CASE_HIGH (merge_case) ?
|
1404 |
|
|
CASE_HIGH (merge_case) : CASE_LOW (merge_case);
|
1405 |
|
|
CASE_HIGH (base_case) = base_high;
|
1406 |
|
|
gimple_switch_set_label (stmt, i, NULL_TREE);
|
1407 |
|
|
new_size--;
|
1408 |
|
|
i++;
|
1409 |
|
|
}
|
1410 |
|
|
else
|
1411 |
|
|
break;
|
1412 |
|
|
}
|
1413 |
|
|
}
|
1414 |
|
|
|
1415 |
|
|
/* Compress the case labels in the label vector, and adjust the
|
1416 |
|
|
length of the vector. */
|
1417 |
|
|
for (i = 0, j = 0; i < new_size; i++)
|
1418 |
|
|
{
|
1419 |
|
|
while (! gimple_switch_label (stmt, j))
|
1420 |
|
|
j++;
|
1421 |
|
|
gimple_switch_set_label (stmt, i,
|
1422 |
|
|
gimple_switch_label (stmt, j++));
|
1423 |
|
|
}
|
1424 |
|
|
|
1425 |
|
|
gcc_assert (new_size <= old_size);
|
1426 |
|
|
gimple_switch_set_num_labels (stmt, new_size);
|
1427 |
|
|
}
|
1428 |
|
|
|
1429 |
|
|
/* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
|
1430 |
|
|
and scan the sorted vector of cases. Combine the ones jumping to the
|
1431 |
|
|
same label. */
|
1432 |
|
|
|
1433 |
|
|
void
|
1434 |
|
|
group_case_labels (void)
|
1435 |
|
|
{
|
1436 |
|
|
basic_block bb;
|
1437 |
|
|
|
1438 |
|
|
FOR_EACH_BB (bb)
|
1439 |
|
|
{
|
1440 |
|
|
gimple stmt = last_stmt (bb);
|
1441 |
|
|
if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
|
1442 |
|
|
group_case_labels_stmt (stmt);
|
1443 |
|
|
}
|
1444 |
|
|
}
|
1445 |
|
|
|
1446 |
|
|
/* Checks whether we can merge block B into block A. */
|
1447 |
|
|
|
1448 |
|
|
static bool
|
1449 |
|
|
gimple_can_merge_blocks_p (basic_block a, basic_block b)
|
1450 |
|
|
{
|
1451 |
|
|
gimple stmt;
|
1452 |
|
|
gimple_stmt_iterator gsi;
|
1453 |
|
|
gimple_seq phis;
|
1454 |
|
|
|
1455 |
|
|
if (!single_succ_p (a))
|
1456 |
|
|
return false;
|
1457 |
|
|
|
1458 |
|
|
if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH | EDGE_PRESERVE))
|
1459 |
|
|
return false;
|
1460 |
|
|
|
1461 |
|
|
if (single_succ (a) != b)
|
1462 |
|
|
return false;
|
1463 |
|
|
|
1464 |
|
|
if (!single_pred_p (b))
|
1465 |
|
|
return false;
|
1466 |
|
|
|
1467 |
|
|
if (b == EXIT_BLOCK_PTR)
|
1468 |
|
|
return false;
|
1469 |
|
|
|
1470 |
|
|
/* If A ends by a statement causing exceptions or something similar, we
|
1471 |
|
|
cannot merge the blocks. */
|
1472 |
|
|
stmt = last_stmt (a);
|
1473 |
|
|
if (stmt && stmt_ends_bb_p (stmt))
|
1474 |
|
|
return false;
|
1475 |
|
|
|
1476 |
|
|
/* Do not allow a block with only a non-local label to be merged. */
|
1477 |
|
|
if (stmt
|
1478 |
|
|
&& gimple_code (stmt) == GIMPLE_LABEL
|
1479 |
|
|
&& DECL_NONLOCAL (gimple_label_label (stmt)))
|
1480 |
|
|
return false;
|
1481 |
|
|
|
1482 |
|
|
/* Examine the labels at the beginning of B. */
|
1483 |
|
|
for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
|
1484 |
|
|
{
|
1485 |
|
|
tree lab;
|
1486 |
|
|
stmt = gsi_stmt (gsi);
|
1487 |
|
|
if (gimple_code (stmt) != GIMPLE_LABEL)
|
1488 |
|
|
break;
|
1489 |
|
|
lab = gimple_label_label (stmt);
|
1490 |
|
|
|
1491 |
|
|
/* Do not remove user forced labels or for -O0 any user labels. */
|
1492 |
|
|
if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
|
1493 |
|
|
return false;
|
1494 |
|
|
}
|
1495 |
|
|
|
1496 |
|
|
/* Protect the loop latches. */
|
1497 |
|
|
if (current_loops && b->loop_father->latch == b)
|
1498 |
|
|
return false;
|
1499 |
|
|
|
1500 |
|
|
/* It must be possible to eliminate all phi nodes in B. If ssa form
|
1501 |
|
|
is not up-to-date and a name-mapping is registered, we cannot eliminate
|
1502 |
|
|
any phis. Symbols marked for renaming are never a problem though. */
|
1503 |
|
|
phis = phi_nodes (b);
|
1504 |
|
|
if (!gimple_seq_empty_p (phis)
|
1505 |
|
|
&& name_mappings_registered_p ())
|
1506 |
|
|
return false;
|
1507 |
|
|
|
1508 |
|
|
/* When not optimizing, don't merge if we'd lose goto_locus. */
|
1509 |
|
|
if (!optimize
|
1510 |
|
|
&& single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
|
1511 |
|
|
{
|
1512 |
|
|
location_t goto_locus = single_succ_edge (a)->goto_locus;
|
1513 |
|
|
gimple_stmt_iterator prev, next;
|
1514 |
|
|
prev = gsi_last_nondebug_bb (a);
|
1515 |
|
|
next = gsi_after_labels (b);
|
1516 |
|
|
if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
|
1517 |
|
|
gsi_next_nondebug (&next);
|
1518 |
|
|
if ((gsi_end_p (prev)
|
1519 |
|
|
|| gimple_location (gsi_stmt (prev)) != goto_locus)
|
1520 |
|
|
&& (gsi_end_p (next)
|
1521 |
|
|
|| gimple_location (gsi_stmt (next)) != goto_locus))
|
1522 |
|
|
return false;
|
1523 |
|
|
}
|
1524 |
|
|
|
1525 |
|
|
return true;
|
1526 |
|
|
}
|
1527 |
|
|
|
1528 |
|
|
/* Return true if the var whose chain of uses starts at PTR has no
|
1529 |
|
|
nondebug uses. */
|
1530 |
|
|
bool
|
1531 |
|
|
has_zero_uses_1 (const ssa_use_operand_t *head)
|
1532 |
|
|
{
|
1533 |
|
|
const ssa_use_operand_t *ptr;
|
1534 |
|
|
|
1535 |
|
|
for (ptr = head->next; ptr != head; ptr = ptr->next)
|
1536 |
|
|
if (!is_gimple_debug (USE_STMT (ptr)))
|
1537 |
|
|
return false;
|
1538 |
|
|
|
1539 |
|
|
return true;
|
1540 |
|
|
}
|
1541 |
|
|
|
1542 |
|
|
/* Return true if the var whose chain of uses starts at PTR has a
|
1543 |
|
|
single nondebug use. Set USE_P and STMT to that single nondebug
|
1544 |
|
|
use, if so, or to NULL otherwise. */
|
1545 |
|
|
bool
|
1546 |
|
|
single_imm_use_1 (const ssa_use_operand_t *head,
|
1547 |
|
|
use_operand_p *use_p, gimple *stmt)
|
1548 |
|
|
{
|
1549 |
|
|
ssa_use_operand_t *ptr, *single_use = 0;
|
1550 |
|
|
|
1551 |
|
|
for (ptr = head->next; ptr != head; ptr = ptr->next)
|
1552 |
|
|
if (!is_gimple_debug (USE_STMT (ptr)))
|
1553 |
|
|
{
|
1554 |
|
|
if (single_use)
|
1555 |
|
|
{
|
1556 |
|
|
single_use = NULL;
|
1557 |
|
|
break;
|
1558 |
|
|
}
|
1559 |
|
|
single_use = ptr;
|
1560 |
|
|
}
|
1561 |
|
|
|
1562 |
|
|
if (use_p)
|
1563 |
|
|
*use_p = single_use;
|
1564 |
|
|
|
1565 |
|
|
if (stmt)
|
1566 |
|
|
*stmt = single_use ? single_use->loc.stmt : NULL;
|
1567 |
|
|
|
1568 |
|
|
return !!single_use;
|
1569 |
|
|
}
|
1570 |
|
|
|
1571 |
|
|
/* Replaces all uses of NAME by VAL. */
|
1572 |
|
|
|
1573 |
|
|
void
|
1574 |
|
|
replace_uses_by (tree name, tree val)
|
1575 |
|
|
{
|
1576 |
|
|
imm_use_iterator imm_iter;
|
1577 |
|
|
use_operand_p use;
|
1578 |
|
|
gimple stmt;
|
1579 |
|
|
edge e;
|
1580 |
|
|
|
1581 |
|
|
FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
|
1582 |
|
|
{
|
1583 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
|
1584 |
|
|
{
|
1585 |
|
|
replace_exp (use, val);
|
1586 |
|
|
|
1587 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
1588 |
|
|
{
|
1589 |
|
|
e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
|
1590 |
|
|
if (e->flags & EDGE_ABNORMAL)
|
1591 |
|
|
{
|
1592 |
|
|
/* This can only occur for virtual operands, since
|
1593 |
|
|
for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
|
1594 |
|
|
would prevent replacement. */
|
1595 |
|
|
gcc_checking_assert (!is_gimple_reg (name));
|
1596 |
|
|
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
|
1597 |
|
|
}
|
1598 |
|
|
}
|
1599 |
|
|
}
|
1600 |
|
|
|
1601 |
|
|
if (gimple_code (stmt) != GIMPLE_PHI)
|
1602 |
|
|
{
|
1603 |
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
|
1604 |
|
|
gimple orig_stmt = stmt;
|
1605 |
|
|
size_t i;
|
1606 |
|
|
|
1607 |
|
|
/* Mark the block if we changed the last stmt in it. */
|
1608 |
|
|
if (cfgcleanup_altered_bbs
|
1609 |
|
|
&& stmt_ends_bb_p (stmt))
|
1610 |
|
|
bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
|
1611 |
|
|
|
1612 |
|
|
/* FIXME. It shouldn't be required to keep TREE_CONSTANT
|
1613 |
|
|
on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
|
1614 |
|
|
only change sth from non-invariant to invariant, and only
|
1615 |
|
|
when propagating constants. */
|
1616 |
|
|
if (is_gimple_min_invariant (val))
|
1617 |
|
|
for (i = 0; i < gimple_num_ops (stmt); i++)
|
1618 |
|
|
{
|
1619 |
|
|
tree op = gimple_op (stmt, i);
|
1620 |
|
|
/* Operands may be empty here. For example, the labels
|
1621 |
|
|
of a GIMPLE_COND are nulled out following the creation
|
1622 |
|
|
of the corresponding CFG edges. */
|
1623 |
|
|
if (op && TREE_CODE (op) == ADDR_EXPR)
|
1624 |
|
|
recompute_tree_invariant_for_addr_expr (op);
|
1625 |
|
|
}
|
1626 |
|
|
|
1627 |
|
|
if (fold_stmt (&gsi))
|
1628 |
|
|
stmt = gsi_stmt (gsi);
|
1629 |
|
|
|
1630 |
|
|
if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
|
1631 |
|
|
gimple_purge_dead_eh_edges (gimple_bb (stmt));
|
1632 |
|
|
|
1633 |
|
|
update_stmt (stmt);
|
1634 |
|
|
}
|
1635 |
|
|
}
|
1636 |
|
|
|
1637 |
|
|
gcc_checking_assert (has_zero_uses (name));
|
1638 |
|
|
|
1639 |
|
|
/* Also update the trees stored in loop structures. */
|
1640 |
|
|
if (current_loops)
|
1641 |
|
|
{
|
1642 |
|
|
struct loop *loop;
|
1643 |
|
|
loop_iterator li;
|
1644 |
|
|
|
1645 |
|
|
FOR_EACH_LOOP (li, loop, 0)
|
1646 |
|
|
{
|
1647 |
|
|
substitute_in_loop_info (loop, name, val);
|
1648 |
|
|
}
|
1649 |
|
|
}
|
1650 |
|
|
}
|
1651 |
|
|
|
1652 |
|
|
/* Merge block B into block A. */
|
1653 |
|
|
|
1654 |
|
|
static void
|
1655 |
|
|
gimple_merge_blocks (basic_block a, basic_block b)
|
1656 |
|
|
{
|
1657 |
|
|
gimple_stmt_iterator last, gsi, psi;
|
1658 |
|
|
gimple_seq phis = phi_nodes (b);
|
1659 |
|
|
|
1660 |
|
|
if (dump_file)
|
1661 |
|
|
fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
|
1662 |
|
|
|
1663 |
|
|
/* Remove all single-valued PHI nodes from block B of the form
|
1664 |
|
|
V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
|
1665 |
|
|
gsi = gsi_last_bb (a);
|
1666 |
|
|
for (psi = gsi_start (phis); !gsi_end_p (psi); )
|
1667 |
|
|
{
|
1668 |
|
|
gimple phi = gsi_stmt (psi);
|
1669 |
|
|
tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
|
1670 |
|
|
gimple copy;
|
1671 |
|
|
bool may_replace_uses = !is_gimple_reg (def)
|
1672 |
|
|
|| may_propagate_copy (def, use);
|
1673 |
|
|
|
1674 |
|
|
/* In case we maintain loop closed ssa form, do not propagate arguments
|
1675 |
|
|
of loop exit phi nodes. */
|
1676 |
|
|
if (current_loops
|
1677 |
|
|
&& loops_state_satisfies_p (LOOP_CLOSED_SSA)
|
1678 |
|
|
&& is_gimple_reg (def)
|
1679 |
|
|
&& TREE_CODE (use) == SSA_NAME
|
1680 |
|
|
&& a->loop_father != b->loop_father)
|
1681 |
|
|
may_replace_uses = false;
|
1682 |
|
|
|
1683 |
|
|
if (!may_replace_uses)
|
1684 |
|
|
{
|
1685 |
|
|
gcc_assert (is_gimple_reg (def));
|
1686 |
|
|
|
1687 |
|
|
/* Note that just emitting the copies is fine -- there is no problem
|
1688 |
|
|
with ordering of phi nodes. This is because A is the single
|
1689 |
|
|
predecessor of B, therefore results of the phi nodes cannot
|
1690 |
|
|
appear as arguments of the phi nodes. */
|
1691 |
|
|
copy = gimple_build_assign (def, use);
|
1692 |
|
|
gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
|
1693 |
|
|
remove_phi_node (&psi, false);
|
1694 |
|
|
}
|
1695 |
|
|
else
|
1696 |
|
|
{
|
1697 |
|
|
/* If we deal with a PHI for virtual operands, we can simply
|
1698 |
|
|
propagate these without fussing with folding or updating
|
1699 |
|
|
the stmt. */
|
1700 |
|
|
if (!is_gimple_reg (def))
|
1701 |
|
|
{
|
1702 |
|
|
imm_use_iterator iter;
|
1703 |
|
|
use_operand_p use_p;
|
1704 |
|
|
gimple stmt;
|
1705 |
|
|
|
1706 |
|
|
FOR_EACH_IMM_USE_STMT (stmt, iter, def)
|
1707 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
|
1708 |
|
|
SET_USE (use_p, use);
|
1709 |
|
|
|
1710 |
|
|
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
|
1711 |
|
|
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
|
1712 |
|
|
}
|
1713 |
|
|
else
|
1714 |
|
|
replace_uses_by (def, use);
|
1715 |
|
|
|
1716 |
|
|
remove_phi_node (&psi, true);
|
1717 |
|
|
}
|
1718 |
|
|
}
|
1719 |
|
|
|
1720 |
|
|
/* Ensure that B follows A. */
|
1721 |
|
|
move_block_after (b, a);
|
1722 |
|
|
|
1723 |
|
|
gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
|
1724 |
|
|
gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
|
1725 |
|
|
|
1726 |
|
|
/* Remove labels from B and set gimple_bb to A for other statements. */
|
1727 |
|
|
for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
|
1728 |
|
|
{
|
1729 |
|
|
gimple stmt = gsi_stmt (gsi);
|
1730 |
|
|
if (gimple_code (stmt) == GIMPLE_LABEL)
|
1731 |
|
|
{
|
1732 |
|
|
tree label = gimple_label_label (stmt);
|
1733 |
|
|
int lp_nr;
|
1734 |
|
|
|
1735 |
|
|
gsi_remove (&gsi, false);
|
1736 |
|
|
|
1737 |
|
|
/* Now that we can thread computed gotos, we might have
|
1738 |
|
|
a situation where we have a forced label in block B
|
1739 |
|
|
However, the label at the start of block B might still be
|
1740 |
|
|
used in other ways (think about the runtime checking for
|
1741 |
|
|
Fortran assigned gotos). So we can not just delete the
|
1742 |
|
|
label. Instead we move the label to the start of block A. */
|
1743 |
|
|
if (FORCED_LABEL (label))
|
1744 |
|
|
{
|
1745 |
|
|
gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
|
1746 |
|
|
gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
|
1747 |
|
|
}
|
1748 |
|
|
/* Other user labels keep around in a form of a debug stmt. */
|
1749 |
|
|
else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
|
1750 |
|
|
{
|
1751 |
|
|
gimple dbg = gimple_build_debug_bind (label,
|
1752 |
|
|
integer_zero_node,
|
1753 |
|
|
stmt);
|
1754 |
|
|
gimple_debug_bind_reset_value (dbg);
|
1755 |
|
|
gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
|
1756 |
|
|
}
|
1757 |
|
|
|
1758 |
|
|
lp_nr = EH_LANDING_PAD_NR (label);
|
1759 |
|
|
if (lp_nr)
|
1760 |
|
|
{
|
1761 |
|
|
eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
|
1762 |
|
|
lp->post_landing_pad = NULL;
|
1763 |
|
|
}
|
1764 |
|
|
}
|
1765 |
|
|
else
|
1766 |
|
|
{
|
1767 |
|
|
gimple_set_bb (stmt, a);
|
1768 |
|
|
gsi_next (&gsi);
|
1769 |
|
|
}
|
1770 |
|
|
}
|
1771 |
|
|
|
1772 |
|
|
/* Merge the sequences. */
|
1773 |
|
|
last = gsi_last_bb (a);
|
1774 |
|
|
gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
|
1775 |
|
|
set_bb_seq (b, NULL);
|
1776 |
|
|
|
1777 |
|
|
if (cfgcleanup_altered_bbs)
|
1778 |
|
|
bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
|
1779 |
|
|
}
|
1780 |
|
|
|
1781 |
|
|
|
1782 |
|
|
/* Return the one of two successors of BB that is not reachable by a
|
1783 |
|
|
complex edge, if there is one. Else, return BB. We use
|
1784 |
|
|
this in optimizations that use post-dominators for their heuristics,
|
1785 |
|
|
to catch the cases in C++ where function calls are involved. */
|
1786 |
|
|
|
1787 |
|
|
basic_block
|
1788 |
|
|
single_noncomplex_succ (basic_block bb)
|
1789 |
|
|
{
|
1790 |
|
|
edge e0, e1;
|
1791 |
|
|
if (EDGE_COUNT (bb->succs) != 2)
|
1792 |
|
|
return bb;
|
1793 |
|
|
|
1794 |
|
|
e0 = EDGE_SUCC (bb, 0);
|
1795 |
|
|
e1 = EDGE_SUCC (bb, 1);
|
1796 |
|
|
if (e0->flags & EDGE_COMPLEX)
|
1797 |
|
|
return e1->dest;
|
1798 |
|
|
if (e1->flags & EDGE_COMPLEX)
|
1799 |
|
|
return e0->dest;
|
1800 |
|
|
|
1801 |
|
|
return bb;
|
1802 |
|
|
}
|
1803 |
|
|
|
1804 |
|
|
/* T is CALL_EXPR. Set current_function_calls_* flags. */
|
1805 |
|
|
|
1806 |
|
|
void
|
1807 |
|
|
notice_special_calls (gimple call)
|
1808 |
|
|
{
|
1809 |
|
|
int flags = gimple_call_flags (call);
|
1810 |
|
|
|
1811 |
|
|
if (flags & ECF_MAY_BE_ALLOCA)
|
1812 |
|
|
cfun->calls_alloca = true;
|
1813 |
|
|
if (flags & ECF_RETURNS_TWICE)
|
1814 |
|
|
cfun->calls_setjmp = true;
|
1815 |
|
|
}
|
1816 |
|
|
|
1817 |
|
|
|
1818 |
|
|
/* Clear flags set by notice_special_calls. Used by dead code removal
|
1819 |
|
|
to update the flags. */
|
1820 |
|
|
|
1821 |
|
|
void
|
1822 |
|
|
clear_special_calls (void)
|
1823 |
|
|
{
|
1824 |
|
|
cfun->calls_alloca = false;
|
1825 |
|
|
cfun->calls_setjmp = false;
|
1826 |
|
|
}
|
1827 |
|
|
|
1828 |
|
|
/* Remove PHI nodes associated with basic block BB and all edges out of BB. */
|
1829 |
|
|
|
1830 |
|
|
static void
|
1831 |
|
|
remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
|
1832 |
|
|
{
|
1833 |
|
|
/* Since this block is no longer reachable, we can just delete all
|
1834 |
|
|
of its PHI nodes. */
|
1835 |
|
|
remove_phi_nodes (bb);
|
1836 |
|
|
|
1837 |
|
|
/* Remove edges to BB's successors. */
|
1838 |
|
|
while (EDGE_COUNT (bb->succs) > 0)
|
1839 |
|
|
remove_edge (EDGE_SUCC (bb, 0));
|
1840 |
|
|
}
|
1841 |
|
|
|
1842 |
|
|
|
1843 |
|
|
/* Remove statements of basic block BB. */
|
1844 |
|
|
|
1845 |
|
|
static void
|
1846 |
|
|
remove_bb (basic_block bb)
|
1847 |
|
|
{
|
1848 |
|
|
gimple_stmt_iterator i;
|
1849 |
|
|
|
1850 |
|
|
if (dump_file)
|
1851 |
|
|
{
|
1852 |
|
|
fprintf (dump_file, "Removing basic block %d\n", bb->index);
|
1853 |
|
|
if (dump_flags & TDF_DETAILS)
|
1854 |
|
|
{
|
1855 |
|
|
dump_bb (bb, dump_file, 0);
|
1856 |
|
|
fprintf (dump_file, "\n");
|
1857 |
|
|
}
|
1858 |
|
|
}
|
1859 |
|
|
|
1860 |
|
|
if (current_loops)
|
1861 |
|
|
{
|
1862 |
|
|
struct loop *loop = bb->loop_father;
|
1863 |
|
|
|
1864 |
|
|
/* If a loop gets removed, clean up the information associated
|
1865 |
|
|
with it. */
|
1866 |
|
|
if (loop->latch == bb
|
1867 |
|
|
|| loop->header == bb)
|
1868 |
|
|
free_numbers_of_iterations_estimates_loop (loop);
|
1869 |
|
|
}
|
1870 |
|
|
|
1871 |
|
|
/* Remove all the instructions in the block. */
|
1872 |
|
|
if (bb_seq (bb) != NULL)
|
1873 |
|
|
{
|
1874 |
|
|
/* Walk backwards so as to get a chance to substitute all
|
1875 |
|
|
released DEFs into debug stmts. See
|
1876 |
|
|
eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
|
1877 |
|
|
details. */
|
1878 |
|
|
for (i = gsi_last_bb (bb); !gsi_end_p (i);)
|
1879 |
|
|
{
|
1880 |
|
|
gimple stmt = gsi_stmt (i);
|
1881 |
|
|
if (gimple_code (stmt) == GIMPLE_LABEL
|
1882 |
|
|
&& (FORCED_LABEL (gimple_label_label (stmt))
|
1883 |
|
|
|| DECL_NONLOCAL (gimple_label_label (stmt))))
|
1884 |
|
|
{
|
1885 |
|
|
basic_block new_bb;
|
1886 |
|
|
gimple_stmt_iterator new_gsi;
|
1887 |
|
|
|
1888 |
|
|
/* A non-reachable non-local label may still be referenced.
|
1889 |
|
|
But it no longer needs to carry the extra semantics of
|
1890 |
|
|
non-locality. */
|
1891 |
|
|
if (DECL_NONLOCAL (gimple_label_label (stmt)))
|
1892 |
|
|
{
|
1893 |
|
|
DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
|
1894 |
|
|
FORCED_LABEL (gimple_label_label (stmt)) = 1;
|
1895 |
|
|
}
|
1896 |
|
|
|
1897 |
|
|
new_bb = bb->prev_bb;
|
1898 |
|
|
new_gsi = gsi_start_bb (new_bb);
|
1899 |
|
|
gsi_remove (&i, false);
|
1900 |
|
|
gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
|
1901 |
|
|
}
|
1902 |
|
|
else
|
1903 |
|
|
{
|
1904 |
|
|
/* Release SSA definitions if we are in SSA. Note that we
|
1905 |
|
|
may be called when not in SSA. For example,
|
1906 |
|
|
final_cleanup calls this function via
|
1907 |
|
|
cleanup_tree_cfg. */
|
1908 |
|
|
if (gimple_in_ssa_p (cfun))
|
1909 |
|
|
release_defs (stmt);
|
1910 |
|
|
|
1911 |
|
|
gsi_remove (&i, true);
|
1912 |
|
|
}
|
1913 |
|
|
|
1914 |
|
|
if (gsi_end_p (i))
|
1915 |
|
|
i = gsi_last_bb (bb);
|
1916 |
|
|
else
|
1917 |
|
|
gsi_prev (&i);
|
1918 |
|
|
}
|
1919 |
|
|
}
|
1920 |
|
|
|
1921 |
|
|
remove_phi_nodes_and_edges_for_unreachable_block (bb);
|
1922 |
|
|
bb->il.gimple = NULL;
|
1923 |
|
|
}
|
1924 |
|
|
|
1925 |
|
|
|
1926 |
|
|
/* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
|
1927 |
|
|
predicate VAL, return the edge that will be taken out of the block.
|
1928 |
|
|
If VAL does not match a unique edge, NULL is returned. */
|
1929 |
|
|
|
1930 |
|
|
edge
|
1931 |
|
|
find_taken_edge (basic_block bb, tree val)
|
1932 |
|
|
{
|
1933 |
|
|
gimple stmt;
|
1934 |
|
|
|
1935 |
|
|
stmt = last_stmt (bb);
|
1936 |
|
|
|
1937 |
|
|
gcc_assert (stmt);
|
1938 |
|
|
gcc_assert (is_ctrl_stmt (stmt));
|
1939 |
|
|
|
1940 |
|
|
if (val == NULL)
|
1941 |
|
|
return NULL;
|
1942 |
|
|
|
1943 |
|
|
if (!is_gimple_min_invariant (val))
|
1944 |
|
|
return NULL;
|
1945 |
|
|
|
1946 |
|
|
if (gimple_code (stmt) == GIMPLE_COND)
|
1947 |
|
|
return find_taken_edge_cond_expr (bb, val);
|
1948 |
|
|
|
1949 |
|
|
if (gimple_code (stmt) == GIMPLE_SWITCH)
|
1950 |
|
|
return find_taken_edge_switch_expr (bb, val);
|
1951 |
|
|
|
1952 |
|
|
if (computed_goto_p (stmt))
|
1953 |
|
|
{
|
1954 |
|
|
/* Only optimize if the argument is a label, if the argument is
|
1955 |
|
|
not a label then we can not construct a proper CFG.
|
1956 |
|
|
|
1957 |
|
|
It may be the case that we only need to allow the LABEL_REF to
|
1958 |
|
|
appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
|
1959 |
|
|
appear inside a LABEL_EXPR just to be safe. */
|
1960 |
|
|
if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
|
1961 |
|
|
&& TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
|
1962 |
|
|
return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
|
1963 |
|
|
return NULL;
|
1964 |
|
|
}
|
1965 |
|
|
|
1966 |
|
|
gcc_unreachable ();
|
1967 |
|
|
}
|
1968 |
|
|
|
1969 |
|
|
/* Given a constant value VAL and the entry block BB to a GOTO_EXPR
|
1970 |
|
|
statement, determine which of the outgoing edges will be taken out of the
|
1971 |
|
|
block. Return NULL if either edge may be taken. */
|
1972 |
|
|
|
1973 |
|
|
static edge
|
1974 |
|
|
find_taken_edge_computed_goto (basic_block bb, tree val)
|
1975 |
|
|
{
|
1976 |
|
|
basic_block dest;
|
1977 |
|
|
edge e = NULL;
|
1978 |
|
|
|
1979 |
|
|
dest = label_to_block (val);
|
1980 |
|
|
if (dest)
|
1981 |
|
|
{
|
1982 |
|
|
e = find_edge (bb, dest);
|
1983 |
|
|
gcc_assert (e != NULL);
|
1984 |
|
|
}
|
1985 |
|
|
|
1986 |
|
|
return e;
|
1987 |
|
|
}
|
1988 |
|
|
|
1989 |
|
|
/* Given a constant value VAL and the entry block BB to a COND_EXPR
|
1990 |
|
|
statement, determine which of the two edges will be taken out of the
|
1991 |
|
|
block. Return NULL if either edge may be taken. */
|
1992 |
|
|
|
1993 |
|
|
static edge
|
1994 |
|
|
find_taken_edge_cond_expr (basic_block bb, tree val)
|
1995 |
|
|
{
|
1996 |
|
|
edge true_edge, false_edge;
|
1997 |
|
|
|
1998 |
|
|
extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
|
1999 |
|
|
|
2000 |
|
|
gcc_assert (TREE_CODE (val) == INTEGER_CST);
|
2001 |
|
|
return (integer_zerop (val) ? false_edge : true_edge);
|
2002 |
|
|
}
|
2003 |
|
|
|
2004 |
|
|
/* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
|
2005 |
|
|
statement, determine which edge will be taken out of the block. Return
|
2006 |
|
|
NULL if any edge may be taken. */
|
2007 |
|
|
|
2008 |
|
|
static edge
|
2009 |
|
|
find_taken_edge_switch_expr (basic_block bb, tree val)
|
2010 |
|
|
{
|
2011 |
|
|
basic_block dest_bb;
|
2012 |
|
|
edge e;
|
2013 |
|
|
gimple switch_stmt;
|
2014 |
|
|
tree taken_case;
|
2015 |
|
|
|
2016 |
|
|
switch_stmt = last_stmt (bb);
|
2017 |
|
|
taken_case = find_case_label_for_value (switch_stmt, val);
|
2018 |
|
|
dest_bb = label_to_block (CASE_LABEL (taken_case));
|
2019 |
|
|
|
2020 |
|
|
e = find_edge (bb, dest_bb);
|
2021 |
|
|
gcc_assert (e);
|
2022 |
|
|
return e;
|
2023 |
|
|
}
|
2024 |
|
|
|
2025 |
|
|
|
2026 |
|
|
/* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
|
2027 |
|
|
We can make optimal use here of the fact that the case labels are
|
2028 |
|
|
sorted: We can do a binary search for a case matching VAL. */
|
2029 |
|
|
|
2030 |
|
|
static tree
|
2031 |
|
|
find_case_label_for_value (gimple switch_stmt, tree val)
|
2032 |
|
|
{
|
2033 |
|
|
size_t low, high, n = gimple_switch_num_labels (switch_stmt);
|
2034 |
|
|
tree default_case = gimple_switch_default_label (switch_stmt);
|
2035 |
|
|
|
2036 |
|
|
for (low = 0, high = n; high - low > 1; )
|
2037 |
|
|
{
|
2038 |
|
|
size_t i = (high + low) / 2;
|
2039 |
|
|
tree t = gimple_switch_label (switch_stmt, i);
|
2040 |
|
|
int cmp;
|
2041 |
|
|
|
2042 |
|
|
/* Cache the result of comparing CASE_LOW and val. */
|
2043 |
|
|
cmp = tree_int_cst_compare (CASE_LOW (t), val);
|
2044 |
|
|
|
2045 |
|
|
if (cmp > 0)
|
2046 |
|
|
high = i;
|
2047 |
|
|
else
|
2048 |
|
|
low = i;
|
2049 |
|
|
|
2050 |
|
|
if (CASE_HIGH (t) == NULL)
|
2051 |
|
|
{
|
2052 |
|
|
/* A singe-valued case label. */
|
2053 |
|
|
if (cmp == 0)
|
2054 |
|
|
return t;
|
2055 |
|
|
}
|
2056 |
|
|
else
|
2057 |
|
|
{
|
2058 |
|
|
/* A case range. We can only handle integer ranges. */
|
2059 |
|
|
if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
|
2060 |
|
|
return t;
|
2061 |
|
|
}
|
2062 |
|
|
}
|
2063 |
|
|
|
2064 |
|
|
return default_case;
|
2065 |
|
|
}
|
2066 |
|
|
|
2067 |
|
|
|
2068 |
|
|
/* Dump a basic block on stderr. */
|
2069 |
|
|
|
2070 |
|
|
void
|
2071 |
|
|
gimple_debug_bb (basic_block bb)
|
2072 |
|
|
{
|
2073 |
|
|
gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
|
2074 |
|
|
}
|
2075 |
|
|
|
2076 |
|
|
|
2077 |
|
|
/* Dump basic block with index N on stderr. */
|
2078 |
|
|
|
2079 |
|
|
basic_block
|
2080 |
|
|
gimple_debug_bb_n (int n)
|
2081 |
|
|
{
|
2082 |
|
|
gimple_debug_bb (BASIC_BLOCK (n));
|
2083 |
|
|
return BASIC_BLOCK (n);
|
2084 |
|
|
}
|
2085 |
|
|
|
2086 |
|
|
|
2087 |
|
|
/* Dump the CFG on stderr.
|
2088 |
|
|
|
2089 |
|
|
FLAGS are the same used by the tree dumping functions
|
2090 |
|
|
(see TDF_* in tree-pass.h). */
|
2091 |
|
|
|
2092 |
|
|
void
|
2093 |
|
|
gimple_debug_cfg (int flags)
|
2094 |
|
|
{
|
2095 |
|
|
gimple_dump_cfg (stderr, flags);
|
2096 |
|
|
}
|
2097 |
|
|
|
2098 |
|
|
|
2099 |
|
|
/* Dump the program showing basic block boundaries on the given FILE.
|
2100 |
|
|
|
2101 |
|
|
FLAGS are the same used by the tree dumping functions (see TDF_* in
|
2102 |
|
|
tree.h). */
|
2103 |
|
|
|
2104 |
|
|
void
|
2105 |
|
|
gimple_dump_cfg (FILE *file, int flags)
|
2106 |
|
|
{
|
2107 |
|
|
if (flags & TDF_DETAILS)
|
2108 |
|
|
{
|
2109 |
|
|
dump_function_header (file, current_function_decl, flags);
|
2110 |
|
|
fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
|
2111 |
|
|
n_basic_blocks, n_edges, last_basic_block);
|
2112 |
|
|
|
2113 |
|
|
brief_dump_cfg (file);
|
2114 |
|
|
fprintf (file, "\n");
|
2115 |
|
|
}
|
2116 |
|
|
|
2117 |
|
|
if (flags & TDF_STATS)
|
2118 |
|
|
dump_cfg_stats (file);
|
2119 |
|
|
|
2120 |
|
|
dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
|
2121 |
|
|
}
|
2122 |
|
|
|
2123 |
|
|
|
2124 |
|
|
/* Dump CFG statistics on FILE. */
|
2125 |
|
|
|
2126 |
|
|
void
|
2127 |
|
|
dump_cfg_stats (FILE *file)
|
2128 |
|
|
{
|
2129 |
|
|
static long max_num_merged_labels = 0;
|
2130 |
|
|
unsigned long size, total = 0;
|
2131 |
|
|
long num_edges;
|
2132 |
|
|
basic_block bb;
|
2133 |
|
|
const char * const fmt_str = "%-30s%-13s%12s\n";
|
2134 |
|
|
const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
|
2135 |
|
|
const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
|
2136 |
|
|
const char * const fmt_str_3 = "%-43s%11lu%c\n";
|
2137 |
|
|
const char *funcname
|
2138 |
|
|
= lang_hooks.decl_printable_name (current_function_decl, 2);
|
2139 |
|
|
|
2140 |
|
|
|
2141 |
|
|
fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
|
2142 |
|
|
|
2143 |
|
|
fprintf (file, "---------------------------------------------------------\n");
|
2144 |
|
|
fprintf (file, fmt_str, "", " Number of ", "Memory");
|
2145 |
|
|
fprintf (file, fmt_str, "", " instances ", "used ");
|
2146 |
|
|
fprintf (file, "---------------------------------------------------------\n");
|
2147 |
|
|
|
2148 |
|
|
size = n_basic_blocks * sizeof (struct basic_block_def);
|
2149 |
|
|
total += size;
|
2150 |
|
|
fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
|
2151 |
|
|
SCALE (size), LABEL (size));
|
2152 |
|
|
|
2153 |
|
|
num_edges = 0;
|
2154 |
|
|
FOR_EACH_BB (bb)
|
2155 |
|
|
num_edges += EDGE_COUNT (bb->succs);
|
2156 |
|
|
size = num_edges * sizeof (struct edge_def);
|
2157 |
|
|
total += size;
|
2158 |
|
|
fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
|
2159 |
|
|
|
2160 |
|
|
fprintf (file, "---------------------------------------------------------\n");
|
2161 |
|
|
fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
|
2162 |
|
|
LABEL (total));
|
2163 |
|
|
fprintf (file, "---------------------------------------------------------\n");
|
2164 |
|
|
fprintf (file, "\n");
|
2165 |
|
|
|
2166 |
|
|
if (cfg_stats.num_merged_labels > max_num_merged_labels)
|
2167 |
|
|
max_num_merged_labels = cfg_stats.num_merged_labels;
|
2168 |
|
|
|
2169 |
|
|
fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
|
2170 |
|
|
cfg_stats.num_merged_labels, max_num_merged_labels);
|
2171 |
|
|
|
2172 |
|
|
fprintf (file, "\n");
|
2173 |
|
|
}
|
2174 |
|
|
|
2175 |
|
|
|
2176 |
|
|
/* Dump CFG statistics on stderr. Keep extern so that it's always
|
2177 |
|
|
linked in the final executable. */
|
2178 |
|
|
|
2179 |
|
|
DEBUG_FUNCTION void
|
2180 |
|
|
debug_cfg_stats (void)
|
2181 |
|
|
{
|
2182 |
|
|
dump_cfg_stats (stderr);
|
2183 |
|
|
}
|
2184 |
|
|
|
2185 |
|
|
|
2186 |
|
|
/* Dump the flowgraph to a .vcg FILE. */
|
2187 |
|
|
|
2188 |
|
|
static void
|
2189 |
|
|
gimple_cfg2vcg (FILE *file)
|
2190 |
|
|
{
|
2191 |
|
|
edge e;
|
2192 |
|
|
edge_iterator ei;
|
2193 |
|
|
basic_block bb;
|
2194 |
|
|
const char *funcname
|
2195 |
|
|
= lang_hooks.decl_printable_name (current_function_decl, 2);
|
2196 |
|
|
|
2197 |
|
|
/* Write the file header. */
|
2198 |
|
|
fprintf (file, "graph: { title: \"%s\"\n", funcname);
|
2199 |
|
|
fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
|
2200 |
|
|
fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
|
2201 |
|
|
|
2202 |
|
|
/* Write blocks and edges. */
|
2203 |
|
|
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
|
2204 |
|
|
{
|
2205 |
|
|
fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
|
2206 |
|
|
e->dest->index);
|
2207 |
|
|
|
2208 |
|
|
if (e->flags & EDGE_FAKE)
|
2209 |
|
|
fprintf (file, " linestyle: dotted priority: 10");
|
2210 |
|
|
else
|
2211 |
|
|
fprintf (file, " linestyle: solid priority: 100");
|
2212 |
|
|
|
2213 |
|
|
fprintf (file, " }\n");
|
2214 |
|
|
}
|
2215 |
|
|
fputc ('\n', file);
|
2216 |
|
|
|
2217 |
|
|
FOR_EACH_BB (bb)
|
2218 |
|
|
{
|
2219 |
|
|
enum gimple_code head_code, end_code;
|
2220 |
|
|
const char *head_name, *end_name;
|
2221 |
|
|
int head_line = 0;
|
2222 |
|
|
int end_line = 0;
|
2223 |
|
|
gimple first = first_stmt (bb);
|
2224 |
|
|
gimple last = last_stmt (bb);
|
2225 |
|
|
|
2226 |
|
|
if (first)
|
2227 |
|
|
{
|
2228 |
|
|
head_code = gimple_code (first);
|
2229 |
|
|
head_name = gimple_code_name[head_code];
|
2230 |
|
|
head_line = get_lineno (first);
|
2231 |
|
|
}
|
2232 |
|
|
else
|
2233 |
|
|
head_name = "no-statement";
|
2234 |
|
|
|
2235 |
|
|
if (last)
|
2236 |
|
|
{
|
2237 |
|
|
end_code = gimple_code (last);
|
2238 |
|
|
end_name = gimple_code_name[end_code];
|
2239 |
|
|
end_line = get_lineno (last);
|
2240 |
|
|
}
|
2241 |
|
|
else
|
2242 |
|
|
end_name = "no-statement";
|
2243 |
|
|
|
2244 |
|
|
fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
|
2245 |
|
|
bb->index, bb->index, head_name, head_line, end_name,
|
2246 |
|
|
end_line);
|
2247 |
|
|
|
2248 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
2249 |
|
|
{
|
2250 |
|
|
if (e->dest == EXIT_BLOCK_PTR)
|
2251 |
|
|
fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
|
2252 |
|
|
else
|
2253 |
|
|
fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
|
2254 |
|
|
|
2255 |
|
|
if (e->flags & EDGE_FAKE)
|
2256 |
|
|
fprintf (file, " priority: 10 linestyle: dotted");
|
2257 |
|
|
else
|
2258 |
|
|
fprintf (file, " priority: 100 linestyle: solid");
|
2259 |
|
|
|
2260 |
|
|
fprintf (file, " }\n");
|
2261 |
|
|
}
|
2262 |
|
|
|
2263 |
|
|
if (bb->next_bb != EXIT_BLOCK_PTR)
|
2264 |
|
|
fputc ('\n', file);
|
2265 |
|
|
}
|
2266 |
|
|
|
2267 |
|
|
fputs ("}\n\n", file);
|
2268 |
|
|
}
|
2269 |
|
|
|
2270 |
|
|
|
2271 |
|
|
|
2272 |
|
|
/*---------------------------------------------------------------------------
|
2273 |
|
|
Miscellaneous helpers
|
2274 |
|
|
---------------------------------------------------------------------------*/
|
2275 |
|
|
|
2276 |
|
|
/* Return true if T represents a stmt that always transfers control. */
|
2277 |
|
|
|
2278 |
|
|
bool
|
2279 |
|
|
is_ctrl_stmt (gimple t)
|
2280 |
|
|
{
|
2281 |
|
|
switch (gimple_code (t))
|
2282 |
|
|
{
|
2283 |
|
|
case GIMPLE_COND:
|
2284 |
|
|
case GIMPLE_SWITCH:
|
2285 |
|
|
case GIMPLE_GOTO:
|
2286 |
|
|
case GIMPLE_RETURN:
|
2287 |
|
|
case GIMPLE_RESX:
|
2288 |
|
|
return true;
|
2289 |
|
|
default:
|
2290 |
|
|
return false;
|
2291 |
|
|
}
|
2292 |
|
|
}
|
2293 |
|
|
|
2294 |
|
|
|
2295 |
|
|
/* Return true if T is a statement that may alter the flow of control
|
2296 |
|
|
(e.g., a call to a non-returning function). */
|
2297 |
|
|
|
2298 |
|
|
bool
|
2299 |
|
|
is_ctrl_altering_stmt (gimple t)
|
2300 |
|
|
{
|
2301 |
|
|
gcc_assert (t);
|
2302 |
|
|
|
2303 |
|
|
switch (gimple_code (t))
|
2304 |
|
|
{
|
2305 |
|
|
case GIMPLE_CALL:
|
2306 |
|
|
{
|
2307 |
|
|
int flags = gimple_call_flags (t);
|
2308 |
|
|
|
2309 |
|
|
/* A non-pure/const call alters flow control if the current
|
2310 |
|
|
function has nonlocal labels. */
|
2311 |
|
|
if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
|
2312 |
|
|
&& cfun->has_nonlocal_label)
|
2313 |
|
|
return true;
|
2314 |
|
|
|
2315 |
|
|
/* A call also alters control flow if it does not return. */
|
2316 |
|
|
if (flags & ECF_NORETURN)
|
2317 |
|
|
return true;
|
2318 |
|
|
|
2319 |
|
|
/* TM ending statements have backedges out of the transaction.
|
2320 |
|
|
Return true so we split the basic block containing them.
|
2321 |
|
|
Note that the TM_BUILTIN test is merely an optimization. */
|
2322 |
|
|
if ((flags & ECF_TM_BUILTIN)
|
2323 |
|
|
&& is_tm_ending_fndecl (gimple_call_fndecl (t)))
|
2324 |
|
|
return true;
|
2325 |
|
|
|
2326 |
|
|
/* BUILT_IN_RETURN call is same as return statement. */
|
2327 |
|
|
if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
|
2328 |
|
|
return true;
|
2329 |
|
|
}
|
2330 |
|
|
break;
|
2331 |
|
|
|
2332 |
|
|
case GIMPLE_EH_DISPATCH:
|
2333 |
|
|
/* EH_DISPATCH branches to the individual catch handlers at
|
2334 |
|
|
this level of a try or allowed-exceptions region. It can
|
2335 |
|
|
fallthru to the next statement as well. */
|
2336 |
|
|
return true;
|
2337 |
|
|
|
2338 |
|
|
case GIMPLE_ASM:
|
2339 |
|
|
if (gimple_asm_nlabels (t) > 0)
|
2340 |
|
|
return true;
|
2341 |
|
|
break;
|
2342 |
|
|
|
2343 |
|
|
CASE_GIMPLE_OMP:
|
2344 |
|
|
/* OpenMP directives alter control flow. */
|
2345 |
|
|
return true;
|
2346 |
|
|
|
2347 |
|
|
case GIMPLE_TRANSACTION:
|
2348 |
|
|
/* A transaction start alters control flow. */
|
2349 |
|
|
return true;
|
2350 |
|
|
|
2351 |
|
|
default:
|
2352 |
|
|
break;
|
2353 |
|
|
}
|
2354 |
|
|
|
2355 |
|
|
/* If a statement can throw, it alters control flow. */
|
2356 |
|
|
return stmt_can_throw_internal (t);
|
2357 |
|
|
}
|
2358 |
|
|
|
2359 |
|
|
|
2360 |
|
|
/* Return true if T is a simple local goto. */
|
2361 |
|
|
|
2362 |
|
|
bool
|
2363 |
|
|
simple_goto_p (gimple t)
|
2364 |
|
|
{
|
2365 |
|
|
return (gimple_code (t) == GIMPLE_GOTO
|
2366 |
|
|
&& TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
|
2367 |
|
|
}
|
2368 |
|
|
|
2369 |
|
|
|
2370 |
|
|
/* Return true if T can make an abnormal transfer of control flow.
|
2371 |
|
|
Transfers of control flow associated with EH are excluded. */
|
2372 |
|
|
|
2373 |
|
|
bool
|
2374 |
|
|
stmt_can_make_abnormal_goto (gimple t)
|
2375 |
|
|
{
|
2376 |
|
|
if (computed_goto_p (t))
|
2377 |
|
|
return true;
|
2378 |
|
|
if (is_gimple_call (t))
|
2379 |
|
|
return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
|
2380 |
|
|
&& !(gimple_call_flags (t) & ECF_LEAF));
|
2381 |
|
|
return false;
|
2382 |
|
|
}
|
2383 |
|
|
|
2384 |
|
|
|
2385 |
|
|
/* Return true if STMT should start a new basic block. PREV_STMT is
|
2386 |
|
|
the statement preceding STMT. It is used when STMT is a label or a
|
2387 |
|
|
case label. Labels should only start a new basic block if their
|
2388 |
|
|
previous statement wasn't a label. Otherwise, sequence of labels
|
2389 |
|
|
would generate unnecessary basic blocks that only contain a single
|
2390 |
|
|
label. */
|
2391 |
|
|
|
2392 |
|
|
static inline bool
|
2393 |
|
|
stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
|
2394 |
|
|
{
|
2395 |
|
|
if (stmt == NULL)
|
2396 |
|
|
return false;
|
2397 |
|
|
|
2398 |
|
|
/* Labels start a new basic block only if the preceding statement
|
2399 |
|
|
wasn't a label of the same type. This prevents the creation of
|
2400 |
|
|
consecutive blocks that have nothing but a single label. */
|
2401 |
|
|
if (gimple_code (stmt) == GIMPLE_LABEL)
|
2402 |
|
|
{
|
2403 |
|
|
/* Nonlocal and computed GOTO targets always start a new block. */
|
2404 |
|
|
if (DECL_NONLOCAL (gimple_label_label (stmt))
|
2405 |
|
|
|| FORCED_LABEL (gimple_label_label (stmt)))
|
2406 |
|
|
return true;
|
2407 |
|
|
|
2408 |
|
|
if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
|
2409 |
|
|
{
|
2410 |
|
|
if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
|
2411 |
|
|
return true;
|
2412 |
|
|
|
2413 |
|
|
cfg_stats.num_merged_labels++;
|
2414 |
|
|
return false;
|
2415 |
|
|
}
|
2416 |
|
|
else
|
2417 |
|
|
return true;
|
2418 |
|
|
}
|
2419 |
|
|
|
2420 |
|
|
return false;
|
2421 |
|
|
}
|
2422 |
|
|
|
2423 |
|
|
|
2424 |
|
|
/* Return true if T should end a basic block. */
|
2425 |
|
|
|
2426 |
|
|
bool
|
2427 |
|
|
stmt_ends_bb_p (gimple t)
|
2428 |
|
|
{
|
2429 |
|
|
return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
|
2430 |
|
|
}
|
2431 |
|
|
|
2432 |
|
|
/* Remove block annotations and other data structures. */
|
2433 |
|
|
|
2434 |
|
|
void
|
2435 |
|
|
delete_tree_cfg_annotations (void)
|
2436 |
|
|
{
|
2437 |
|
|
label_to_block_map = NULL;
|
2438 |
|
|
}
|
2439 |
|
|
|
2440 |
|
|
|
2441 |
|
|
/* Return the first statement in basic block BB. */
|
2442 |
|
|
|
2443 |
|
|
gimple
|
2444 |
|
|
first_stmt (basic_block bb)
|
2445 |
|
|
{
|
2446 |
|
|
gimple_stmt_iterator i = gsi_start_bb (bb);
|
2447 |
|
|
gimple stmt = NULL;
|
2448 |
|
|
|
2449 |
|
|
while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
|
2450 |
|
|
{
|
2451 |
|
|
gsi_next (&i);
|
2452 |
|
|
stmt = NULL;
|
2453 |
|
|
}
|
2454 |
|
|
return stmt;
|
2455 |
|
|
}
|
2456 |
|
|
|
2457 |
|
|
/* Return the first non-label statement in basic block BB. */
|
2458 |
|
|
|
2459 |
|
|
static gimple
|
2460 |
|
|
first_non_label_stmt (basic_block bb)
|
2461 |
|
|
{
|
2462 |
|
|
gimple_stmt_iterator i = gsi_start_bb (bb);
|
2463 |
|
|
while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
|
2464 |
|
|
gsi_next (&i);
|
2465 |
|
|
return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
|
2466 |
|
|
}
|
2467 |
|
|
|
2468 |
|
|
/* Return the last statement in basic block BB. */
|
2469 |
|
|
|
2470 |
|
|
gimple
|
2471 |
|
|
last_stmt (basic_block bb)
|
2472 |
|
|
{
|
2473 |
|
|
gimple_stmt_iterator i = gsi_last_bb (bb);
|
2474 |
|
|
gimple stmt = NULL;
|
2475 |
|
|
|
2476 |
|
|
while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
|
2477 |
|
|
{
|
2478 |
|
|
gsi_prev (&i);
|
2479 |
|
|
stmt = NULL;
|
2480 |
|
|
}
|
2481 |
|
|
return stmt;
|
2482 |
|
|
}
|
2483 |
|
|
|
2484 |
|
|
/* Return the last statement of an otherwise empty block. Return NULL
|
2485 |
|
|
if the block is totally empty, or if it contains more than one
|
2486 |
|
|
statement. */
|
2487 |
|
|
|
2488 |
|
|
gimple
|
2489 |
|
|
last_and_only_stmt (basic_block bb)
|
2490 |
|
|
{
|
2491 |
|
|
gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
|
2492 |
|
|
gimple last, prev;
|
2493 |
|
|
|
2494 |
|
|
if (gsi_end_p (i))
|
2495 |
|
|
return NULL;
|
2496 |
|
|
|
2497 |
|
|
last = gsi_stmt (i);
|
2498 |
|
|
gsi_prev_nondebug (&i);
|
2499 |
|
|
if (gsi_end_p (i))
|
2500 |
|
|
return last;
|
2501 |
|
|
|
2502 |
|
|
/* Empty statements should no longer appear in the instruction stream.
|
2503 |
|
|
Everything that might have appeared before should be deleted by
|
2504 |
|
|
remove_useless_stmts, and the optimizers should just gsi_remove
|
2505 |
|
|
instead of smashing with build_empty_stmt.
|
2506 |
|
|
|
2507 |
|
|
Thus the only thing that should appear here in a block containing
|
2508 |
|
|
one executable statement is a label. */
|
2509 |
|
|
prev = gsi_stmt (i);
|
2510 |
|
|
if (gimple_code (prev) == GIMPLE_LABEL)
|
2511 |
|
|
return last;
|
2512 |
|
|
else
|
2513 |
|
|
return NULL;
|
2514 |
|
|
}
|
2515 |
|
|
|
2516 |
|
|
/* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
|
2517 |
|
|
|
2518 |
|
|
static void
|
2519 |
|
|
reinstall_phi_args (edge new_edge, edge old_edge)
|
2520 |
|
|
{
|
2521 |
|
|
edge_var_map_vector v;
|
2522 |
|
|
edge_var_map *vm;
|
2523 |
|
|
int i;
|
2524 |
|
|
gimple_stmt_iterator phis;
|
2525 |
|
|
|
2526 |
|
|
v = redirect_edge_var_map_vector (old_edge);
|
2527 |
|
|
if (!v)
|
2528 |
|
|
return;
|
2529 |
|
|
|
2530 |
|
|
for (i = 0, phis = gsi_start_phis (new_edge->dest);
|
2531 |
|
|
VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
|
2532 |
|
|
i++, gsi_next (&phis))
|
2533 |
|
|
{
|
2534 |
|
|
gimple phi = gsi_stmt (phis);
|
2535 |
|
|
tree result = redirect_edge_var_map_result (vm);
|
2536 |
|
|
tree arg = redirect_edge_var_map_def (vm);
|
2537 |
|
|
|
2538 |
|
|
gcc_assert (result == gimple_phi_result (phi));
|
2539 |
|
|
|
2540 |
|
|
add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
|
2541 |
|
|
}
|
2542 |
|
|
|
2543 |
|
|
redirect_edge_var_map_clear (old_edge);
|
2544 |
|
|
}
|
2545 |
|
|
|
2546 |
|
|
/* Returns the basic block after which the new basic block created
|
2547 |
|
|
by splitting edge EDGE_IN should be placed. Tries to keep the new block
|
2548 |
|
|
near its "logical" location. This is of most help to humans looking
|
2549 |
|
|
at debugging dumps. */
|
2550 |
|
|
|
2551 |
|
|
static basic_block
|
2552 |
|
|
split_edge_bb_loc (edge edge_in)
|
2553 |
|
|
{
|
2554 |
|
|
basic_block dest = edge_in->dest;
|
2555 |
|
|
basic_block dest_prev = dest->prev_bb;
|
2556 |
|
|
|
2557 |
|
|
if (dest_prev)
|
2558 |
|
|
{
|
2559 |
|
|
edge e = find_edge (dest_prev, dest);
|
2560 |
|
|
if (e && !(e->flags & EDGE_COMPLEX))
|
2561 |
|
|
return edge_in->src;
|
2562 |
|
|
}
|
2563 |
|
|
return dest_prev;
|
2564 |
|
|
}
|
2565 |
|
|
|
2566 |
|
|
/* Split a (typically critical) edge EDGE_IN. Return the new block.
|
2567 |
|
|
Abort on abnormal edges. */
|
2568 |
|
|
|
2569 |
|
|
static basic_block
|
2570 |
|
|
gimple_split_edge (edge edge_in)
|
2571 |
|
|
{
|
2572 |
|
|
basic_block new_bb, after_bb, dest;
|
2573 |
|
|
edge new_edge, e;
|
2574 |
|
|
|
2575 |
|
|
/* Abnormal edges cannot be split. */
|
2576 |
|
|
gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
|
2577 |
|
|
|
2578 |
|
|
dest = edge_in->dest;
|
2579 |
|
|
|
2580 |
|
|
after_bb = split_edge_bb_loc (edge_in);
|
2581 |
|
|
|
2582 |
|
|
new_bb = create_empty_bb (after_bb);
|
2583 |
|
|
new_bb->frequency = EDGE_FREQUENCY (edge_in);
|
2584 |
|
|
new_bb->count = edge_in->count;
|
2585 |
|
|
new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
|
2586 |
|
|
new_edge->probability = REG_BR_PROB_BASE;
|
2587 |
|
|
new_edge->count = edge_in->count;
|
2588 |
|
|
|
2589 |
|
|
e = redirect_edge_and_branch (edge_in, new_bb);
|
2590 |
|
|
gcc_assert (e == edge_in);
|
2591 |
|
|
reinstall_phi_args (new_edge, e);
|
2592 |
|
|
|
2593 |
|
|
return new_bb;
|
2594 |
|
|
}
|
2595 |
|
|
|
2596 |
|
|
|
2597 |
|
|
/* Verify properties of the address expression T with base object BASE. */
|
2598 |
|
|
|
2599 |
|
|
static tree
|
2600 |
|
|
verify_address (tree t, tree base)
|
2601 |
|
|
{
|
2602 |
|
|
bool old_constant;
|
2603 |
|
|
bool old_side_effects;
|
2604 |
|
|
bool new_constant;
|
2605 |
|
|
bool new_side_effects;
|
2606 |
|
|
|
2607 |
|
|
old_constant = TREE_CONSTANT (t);
|
2608 |
|
|
old_side_effects = TREE_SIDE_EFFECTS (t);
|
2609 |
|
|
|
2610 |
|
|
recompute_tree_invariant_for_addr_expr (t);
|
2611 |
|
|
new_side_effects = TREE_SIDE_EFFECTS (t);
|
2612 |
|
|
new_constant = TREE_CONSTANT (t);
|
2613 |
|
|
|
2614 |
|
|
if (old_constant != new_constant)
|
2615 |
|
|
{
|
2616 |
|
|
error ("constant not recomputed when ADDR_EXPR changed");
|
2617 |
|
|
return t;
|
2618 |
|
|
}
|
2619 |
|
|
if (old_side_effects != new_side_effects)
|
2620 |
|
|
{
|
2621 |
|
|
error ("side effects not recomputed when ADDR_EXPR changed");
|
2622 |
|
|
return t;
|
2623 |
|
|
}
|
2624 |
|
|
|
2625 |
|
|
if (!(TREE_CODE (base) == VAR_DECL
|
2626 |
|
|
|| TREE_CODE (base) == PARM_DECL
|
2627 |
|
|
|| TREE_CODE (base) == RESULT_DECL))
|
2628 |
|
|
return NULL_TREE;
|
2629 |
|
|
|
2630 |
|
|
if (DECL_GIMPLE_REG_P (base))
|
2631 |
|
|
{
|
2632 |
|
|
error ("DECL_GIMPLE_REG_P set on a variable with address taken");
|
2633 |
|
|
return base;
|
2634 |
|
|
}
|
2635 |
|
|
|
2636 |
|
|
return NULL_TREE;
|
2637 |
|
|
}
|
2638 |
|
|
|
2639 |
|
|
/* Callback for walk_tree, check that all elements with address taken are
|
2640 |
|
|
properly noticed as such. The DATA is an int* that is 1 if TP was seen
|
2641 |
|
|
inside a PHI node. */
|
2642 |
|
|
|
2643 |
|
|
static tree
|
2644 |
|
|
verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
|
2645 |
|
|
{
|
2646 |
|
|
tree t = *tp, x;
|
2647 |
|
|
|
2648 |
|
|
if (TYPE_P (t))
|
2649 |
|
|
*walk_subtrees = 0;
|
2650 |
|
|
|
2651 |
|
|
/* Check operand N for being valid GIMPLE and give error MSG if not. */
|
2652 |
|
|
#define CHECK_OP(N, MSG) \
|
2653 |
|
|
do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
|
2654 |
|
|
{ error (MSG); return TREE_OPERAND (t, N); }} while (0)
|
2655 |
|
|
|
2656 |
|
|
switch (TREE_CODE (t))
|
2657 |
|
|
{
|
2658 |
|
|
case SSA_NAME:
|
2659 |
|
|
if (SSA_NAME_IN_FREE_LIST (t))
|
2660 |
|
|
{
|
2661 |
|
|
error ("SSA name in freelist but still referenced");
|
2662 |
|
|
return *tp;
|
2663 |
|
|
}
|
2664 |
|
|
break;
|
2665 |
|
|
|
2666 |
|
|
case INDIRECT_REF:
|
2667 |
|
|
error ("INDIRECT_REF in gimple IL");
|
2668 |
|
|
return t;
|
2669 |
|
|
|
2670 |
|
|
case MEM_REF:
|
2671 |
|
|
x = TREE_OPERAND (t, 0);
|
2672 |
|
|
if (!POINTER_TYPE_P (TREE_TYPE (x))
|
2673 |
|
|
|| !is_gimple_mem_ref_addr (x))
|
2674 |
|
|
{
|
2675 |
|
|
error ("invalid first operand of MEM_REF");
|
2676 |
|
|
return x;
|
2677 |
|
|
}
|
2678 |
|
|
if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
|
2679 |
|
|
|| !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
|
2680 |
|
|
{
|
2681 |
|
|
error ("invalid offset operand of MEM_REF");
|
2682 |
|
|
return TREE_OPERAND (t, 1);
|
2683 |
|
|
}
|
2684 |
|
|
if (TREE_CODE (x) == ADDR_EXPR
|
2685 |
|
|
&& (x = verify_address (x, TREE_OPERAND (x, 0))))
|
2686 |
|
|
return x;
|
2687 |
|
|
*walk_subtrees = 0;
|
2688 |
|
|
break;
|
2689 |
|
|
|
2690 |
|
|
case ASSERT_EXPR:
|
2691 |
|
|
x = fold (ASSERT_EXPR_COND (t));
|
2692 |
|
|
if (x == boolean_false_node)
|
2693 |
|
|
{
|
2694 |
|
|
error ("ASSERT_EXPR with an always-false condition");
|
2695 |
|
|
return *tp;
|
2696 |
|
|
}
|
2697 |
|
|
break;
|
2698 |
|
|
|
2699 |
|
|
case MODIFY_EXPR:
|
2700 |
|
|
error ("MODIFY_EXPR not expected while having tuples");
|
2701 |
|
|
return *tp;
|
2702 |
|
|
|
2703 |
|
|
case ADDR_EXPR:
|
2704 |
|
|
{
|
2705 |
|
|
tree tem;
|
2706 |
|
|
|
2707 |
|
|
gcc_assert (is_gimple_address (t));
|
2708 |
|
|
|
2709 |
|
|
/* Skip any references (they will be checked when we recurse down the
|
2710 |
|
|
tree) and ensure that any variable used as a prefix is marked
|
2711 |
|
|
addressable. */
|
2712 |
|
|
for (x = TREE_OPERAND (t, 0);
|
2713 |
|
|
handled_component_p (x);
|
2714 |
|
|
x = TREE_OPERAND (x, 0))
|
2715 |
|
|
;
|
2716 |
|
|
|
2717 |
|
|
if ((tem = verify_address (t, x)))
|
2718 |
|
|
return tem;
|
2719 |
|
|
|
2720 |
|
|
if (!(TREE_CODE (x) == VAR_DECL
|
2721 |
|
|
|| TREE_CODE (x) == PARM_DECL
|
2722 |
|
|
|| TREE_CODE (x) == RESULT_DECL))
|
2723 |
|
|
return NULL;
|
2724 |
|
|
|
2725 |
|
|
if (!TREE_ADDRESSABLE (x))
|
2726 |
|
|
{
|
2727 |
|
|
error ("address taken, but ADDRESSABLE bit not set");
|
2728 |
|
|
return x;
|
2729 |
|
|
}
|
2730 |
|
|
|
2731 |
|
|
break;
|
2732 |
|
|
}
|
2733 |
|
|
|
2734 |
|
|
case COND_EXPR:
|
2735 |
|
|
x = COND_EXPR_COND (t);
|
2736 |
|
|
if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
|
2737 |
|
|
{
|
2738 |
|
|
error ("non-integral used in condition");
|
2739 |
|
|
return x;
|
2740 |
|
|
}
|
2741 |
|
|
if (!is_gimple_condexpr (x))
|
2742 |
|
|
{
|
2743 |
|
|
error ("invalid conditional operand");
|
2744 |
|
|
return x;
|
2745 |
|
|
}
|
2746 |
|
|
break;
|
2747 |
|
|
|
2748 |
|
|
case NON_LVALUE_EXPR:
|
2749 |
|
|
case TRUTH_NOT_EXPR:
|
2750 |
|
|
gcc_unreachable ();
|
2751 |
|
|
|
2752 |
|
|
CASE_CONVERT:
|
2753 |
|
|
case FIX_TRUNC_EXPR:
|
2754 |
|
|
case FLOAT_EXPR:
|
2755 |
|
|
case NEGATE_EXPR:
|
2756 |
|
|
case ABS_EXPR:
|
2757 |
|
|
case BIT_NOT_EXPR:
|
2758 |
|
|
CHECK_OP (0, "invalid operand to unary operator");
|
2759 |
|
|
break;
|
2760 |
|
|
|
2761 |
|
|
case REALPART_EXPR:
|
2762 |
|
|
case IMAGPART_EXPR:
|
2763 |
|
|
case COMPONENT_REF:
|
2764 |
|
|
case ARRAY_REF:
|
2765 |
|
|
case ARRAY_RANGE_REF:
|
2766 |
|
|
case BIT_FIELD_REF:
|
2767 |
|
|
case VIEW_CONVERT_EXPR:
|
2768 |
|
|
/* We have a nest of references. Verify that each of the operands
|
2769 |
|
|
that determine where to reference is either a constant or a variable,
|
2770 |
|
|
verify that the base is valid, and then show we've already checked
|
2771 |
|
|
the subtrees. */
|
2772 |
|
|
while (handled_component_p (t))
|
2773 |
|
|
{
|
2774 |
|
|
if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
|
2775 |
|
|
CHECK_OP (2, "invalid COMPONENT_REF offset operator");
|
2776 |
|
|
else if (TREE_CODE (t) == ARRAY_REF
|
2777 |
|
|
|| TREE_CODE (t) == ARRAY_RANGE_REF)
|
2778 |
|
|
{
|
2779 |
|
|
CHECK_OP (1, "invalid array index");
|
2780 |
|
|
if (TREE_OPERAND (t, 2))
|
2781 |
|
|
CHECK_OP (2, "invalid array lower bound");
|
2782 |
|
|
if (TREE_OPERAND (t, 3))
|
2783 |
|
|
CHECK_OP (3, "invalid array stride");
|
2784 |
|
|
}
|
2785 |
|
|
else if (TREE_CODE (t) == BIT_FIELD_REF)
|
2786 |
|
|
{
|
2787 |
|
|
if (!host_integerp (TREE_OPERAND (t, 1), 1)
|
2788 |
|
|
|| !host_integerp (TREE_OPERAND (t, 2), 1))
|
2789 |
|
|
{
|
2790 |
|
|
error ("invalid position or size operand to BIT_FIELD_REF");
|
2791 |
|
|
return t;
|
2792 |
|
|
}
|
2793 |
|
|
else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
|
2794 |
|
|
&& (TYPE_PRECISION (TREE_TYPE (t))
|
2795 |
|
|
!= TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
|
2796 |
|
|
{
|
2797 |
|
|
error ("integral result type precision does not match "
|
2798 |
|
|
"field size of BIT_FIELD_REF");
|
2799 |
|
|
return t;
|
2800 |
|
|
}
|
2801 |
|
|
if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
|
2802 |
|
|
&& (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
|
2803 |
|
|
!= TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
|
2804 |
|
|
{
|
2805 |
|
|
error ("mode precision of non-integral result does not "
|
2806 |
|
|
"match field size of BIT_FIELD_REF");
|
2807 |
|
|
return t;
|
2808 |
|
|
}
|
2809 |
|
|
}
|
2810 |
|
|
|
2811 |
|
|
t = TREE_OPERAND (t, 0);
|
2812 |
|
|
}
|
2813 |
|
|
|
2814 |
|
|
if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
|
2815 |
|
|
{
|
2816 |
|
|
error ("invalid reference prefix");
|
2817 |
|
|
return t;
|
2818 |
|
|
}
|
2819 |
|
|
*walk_subtrees = 0;
|
2820 |
|
|
break;
|
2821 |
|
|
case PLUS_EXPR:
|
2822 |
|
|
case MINUS_EXPR:
|
2823 |
|
|
/* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
|
2824 |
|
|
POINTER_PLUS_EXPR. */
|
2825 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (t)))
|
2826 |
|
|
{
|
2827 |
|
|
error ("invalid operand to plus/minus, type is a pointer");
|
2828 |
|
|
return t;
|
2829 |
|
|
}
|
2830 |
|
|
CHECK_OP (0, "invalid operand to binary operator");
|
2831 |
|
|
CHECK_OP (1, "invalid operand to binary operator");
|
2832 |
|
|
break;
|
2833 |
|
|
|
2834 |
|
|
case POINTER_PLUS_EXPR:
|
2835 |
|
|
/* Check to make sure the first operand is a pointer or reference type. */
|
2836 |
|
|
if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
|
2837 |
|
|
{
|
2838 |
|
|
error ("invalid operand to pointer plus, first operand is not a pointer");
|
2839 |
|
|
return t;
|
2840 |
|
|
}
|
2841 |
|
|
/* Check to make sure the second operand is a ptrofftype. */
|
2842 |
|
|
if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
|
2843 |
|
|
{
|
2844 |
|
|
error ("invalid operand to pointer plus, second operand is not an "
|
2845 |
|
|
"integer type of appropriate width");
|
2846 |
|
|
return t;
|
2847 |
|
|
}
|
2848 |
|
|
/* FALLTHROUGH */
|
2849 |
|
|
case LT_EXPR:
|
2850 |
|
|
case LE_EXPR:
|
2851 |
|
|
case GT_EXPR:
|
2852 |
|
|
case GE_EXPR:
|
2853 |
|
|
case EQ_EXPR:
|
2854 |
|
|
case NE_EXPR:
|
2855 |
|
|
case UNORDERED_EXPR:
|
2856 |
|
|
case ORDERED_EXPR:
|
2857 |
|
|
case UNLT_EXPR:
|
2858 |
|
|
case UNLE_EXPR:
|
2859 |
|
|
case UNGT_EXPR:
|
2860 |
|
|
case UNGE_EXPR:
|
2861 |
|
|
case UNEQ_EXPR:
|
2862 |
|
|
case LTGT_EXPR:
|
2863 |
|
|
case MULT_EXPR:
|
2864 |
|
|
case TRUNC_DIV_EXPR:
|
2865 |
|
|
case CEIL_DIV_EXPR:
|
2866 |
|
|
case FLOOR_DIV_EXPR:
|
2867 |
|
|
case ROUND_DIV_EXPR:
|
2868 |
|
|
case TRUNC_MOD_EXPR:
|
2869 |
|
|
case CEIL_MOD_EXPR:
|
2870 |
|
|
case FLOOR_MOD_EXPR:
|
2871 |
|
|
case ROUND_MOD_EXPR:
|
2872 |
|
|
case RDIV_EXPR:
|
2873 |
|
|
case EXACT_DIV_EXPR:
|
2874 |
|
|
case MIN_EXPR:
|
2875 |
|
|
case MAX_EXPR:
|
2876 |
|
|
case LSHIFT_EXPR:
|
2877 |
|
|
case RSHIFT_EXPR:
|
2878 |
|
|
case LROTATE_EXPR:
|
2879 |
|
|
case RROTATE_EXPR:
|
2880 |
|
|
case BIT_IOR_EXPR:
|
2881 |
|
|
case BIT_XOR_EXPR:
|
2882 |
|
|
case BIT_AND_EXPR:
|
2883 |
|
|
CHECK_OP (0, "invalid operand to binary operator");
|
2884 |
|
|
CHECK_OP (1, "invalid operand to binary operator");
|
2885 |
|
|
break;
|
2886 |
|
|
|
2887 |
|
|
case CONSTRUCTOR:
|
2888 |
|
|
if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
|
2889 |
|
|
*walk_subtrees = 0;
|
2890 |
|
|
break;
|
2891 |
|
|
|
2892 |
|
|
case CASE_LABEL_EXPR:
|
2893 |
|
|
if (CASE_CHAIN (t))
|
2894 |
|
|
{
|
2895 |
|
|
error ("invalid CASE_CHAIN");
|
2896 |
|
|
return t;
|
2897 |
|
|
}
|
2898 |
|
|
break;
|
2899 |
|
|
|
2900 |
|
|
default:
|
2901 |
|
|
break;
|
2902 |
|
|
}
|
2903 |
|
|
return NULL;
|
2904 |
|
|
|
2905 |
|
|
#undef CHECK_OP
|
2906 |
|
|
}
|
2907 |
|
|
|
2908 |
|
|
|
2909 |
|
|
/* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
|
2910 |
|
|
Returns true if there is an error, otherwise false. */
|
2911 |
|
|
|
2912 |
|
|
static bool
|
2913 |
|
|
verify_types_in_gimple_min_lval (tree expr)
|
2914 |
|
|
{
|
2915 |
|
|
tree op;
|
2916 |
|
|
|
2917 |
|
|
if (is_gimple_id (expr))
|
2918 |
|
|
return false;
|
2919 |
|
|
|
2920 |
|
|
if (TREE_CODE (expr) != TARGET_MEM_REF
|
2921 |
|
|
&& TREE_CODE (expr) != MEM_REF)
|
2922 |
|
|
{
|
2923 |
|
|
error ("invalid expression for min lvalue");
|
2924 |
|
|
return true;
|
2925 |
|
|
}
|
2926 |
|
|
|
2927 |
|
|
/* TARGET_MEM_REFs are strange beasts. */
|
2928 |
|
|
if (TREE_CODE (expr) == TARGET_MEM_REF)
|
2929 |
|
|
return false;
|
2930 |
|
|
|
2931 |
|
|
op = TREE_OPERAND (expr, 0);
|
2932 |
|
|
if (!is_gimple_val (op))
|
2933 |
|
|
{
|
2934 |
|
|
error ("invalid operand in indirect reference");
|
2935 |
|
|
debug_generic_stmt (op);
|
2936 |
|
|
return true;
|
2937 |
|
|
}
|
2938 |
|
|
/* Memory references now generally can involve a value conversion. */
|
2939 |
|
|
|
2940 |
|
|
return false;
|
2941 |
|
|
}
|
2942 |
|
|
|
2943 |
|
|
/* Verify if EXPR is a valid GIMPLE reference expression. If
|
2944 |
|
|
REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
|
2945 |
|
|
if there is an error, otherwise false. */
|
2946 |
|
|
|
2947 |
|
|
static bool
|
2948 |
|
|
verify_types_in_gimple_reference (tree expr, bool require_lvalue)
|
2949 |
|
|
{
|
2950 |
|
|
while (handled_component_p (expr))
|
2951 |
|
|
{
|
2952 |
|
|
tree op = TREE_OPERAND (expr, 0);
|
2953 |
|
|
|
2954 |
|
|
if (TREE_CODE (expr) == ARRAY_REF
|
2955 |
|
|
|| TREE_CODE (expr) == ARRAY_RANGE_REF)
|
2956 |
|
|
{
|
2957 |
|
|
if (!is_gimple_val (TREE_OPERAND (expr, 1))
|
2958 |
|
|
|| (TREE_OPERAND (expr, 2)
|
2959 |
|
|
&& !is_gimple_val (TREE_OPERAND (expr, 2)))
|
2960 |
|
|
|| (TREE_OPERAND (expr, 3)
|
2961 |
|
|
&& !is_gimple_val (TREE_OPERAND (expr, 3))))
|
2962 |
|
|
{
|
2963 |
|
|
error ("invalid operands to array reference");
|
2964 |
|
|
debug_generic_stmt (expr);
|
2965 |
|
|
return true;
|
2966 |
|
|
}
|
2967 |
|
|
}
|
2968 |
|
|
|
2969 |
|
|
/* Verify if the reference array element types are compatible. */
|
2970 |
|
|
if (TREE_CODE (expr) == ARRAY_REF
|
2971 |
|
|
&& !useless_type_conversion_p (TREE_TYPE (expr),
|
2972 |
|
|
TREE_TYPE (TREE_TYPE (op))))
|
2973 |
|
|
{
|
2974 |
|
|
error ("type mismatch in array reference");
|
2975 |
|
|
debug_generic_stmt (TREE_TYPE (expr));
|
2976 |
|
|
debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
|
2977 |
|
|
return true;
|
2978 |
|
|
}
|
2979 |
|
|
if (TREE_CODE (expr) == ARRAY_RANGE_REF
|
2980 |
|
|
&& !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
|
2981 |
|
|
TREE_TYPE (TREE_TYPE (op))))
|
2982 |
|
|
{
|
2983 |
|
|
error ("type mismatch in array range reference");
|
2984 |
|
|
debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
|
2985 |
|
|
debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
|
2986 |
|
|
return true;
|
2987 |
|
|
}
|
2988 |
|
|
|
2989 |
|
|
if ((TREE_CODE (expr) == REALPART_EXPR
|
2990 |
|
|
|| TREE_CODE (expr) == IMAGPART_EXPR)
|
2991 |
|
|
&& !useless_type_conversion_p (TREE_TYPE (expr),
|
2992 |
|
|
TREE_TYPE (TREE_TYPE (op))))
|
2993 |
|
|
{
|
2994 |
|
|
error ("type mismatch in real/imagpart reference");
|
2995 |
|
|
debug_generic_stmt (TREE_TYPE (expr));
|
2996 |
|
|
debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
|
2997 |
|
|
return true;
|
2998 |
|
|
}
|
2999 |
|
|
|
3000 |
|
|
if (TREE_CODE (expr) == COMPONENT_REF
|
3001 |
|
|
&& !useless_type_conversion_p (TREE_TYPE (expr),
|
3002 |
|
|
TREE_TYPE (TREE_OPERAND (expr, 1))))
|
3003 |
|
|
{
|
3004 |
|
|
error ("type mismatch in component reference");
|
3005 |
|
|
debug_generic_stmt (TREE_TYPE (expr));
|
3006 |
|
|
debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
|
3007 |
|
|
return true;
|
3008 |
|
|
}
|
3009 |
|
|
|
3010 |
|
|
if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
|
3011 |
|
|
{
|
3012 |
|
|
/* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
|
3013 |
|
|
that their operand is not an SSA name or an invariant when
|
3014 |
|
|
requiring an lvalue (this usually means there is a SRA or IPA-SRA
|
3015 |
|
|
bug). Otherwise there is nothing to verify, gross mismatches at
|
3016 |
|
|
most invoke undefined behavior. */
|
3017 |
|
|
if (require_lvalue
|
3018 |
|
|
&& (TREE_CODE (op) == SSA_NAME
|
3019 |
|
|
|| is_gimple_min_invariant (op)))
|
3020 |
|
|
{
|
3021 |
|
|
error ("conversion of an SSA_NAME on the left hand side");
|
3022 |
|
|
debug_generic_stmt (expr);
|
3023 |
|
|
return true;
|
3024 |
|
|
}
|
3025 |
|
|
else if (TREE_CODE (op) == SSA_NAME
|
3026 |
|
|
&& TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
|
3027 |
|
|
{
|
3028 |
|
|
error ("conversion of register to a different size");
|
3029 |
|
|
debug_generic_stmt (expr);
|
3030 |
|
|
return true;
|
3031 |
|
|
}
|
3032 |
|
|
else if (!handled_component_p (op))
|
3033 |
|
|
return false;
|
3034 |
|
|
}
|
3035 |
|
|
|
3036 |
|
|
expr = op;
|
3037 |
|
|
}
|
3038 |
|
|
|
3039 |
|
|
if (TREE_CODE (expr) == MEM_REF)
|
3040 |
|
|
{
|
3041 |
|
|
if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
|
3042 |
|
|
{
|
3043 |
|
|
error ("invalid address operand in MEM_REF");
|
3044 |
|
|
debug_generic_stmt (expr);
|
3045 |
|
|
return true;
|
3046 |
|
|
}
|
3047 |
|
|
if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
|
3048 |
|
|
|| !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
|
3049 |
|
|
{
|
3050 |
|
|
error ("invalid offset operand in MEM_REF");
|
3051 |
|
|
debug_generic_stmt (expr);
|
3052 |
|
|
return true;
|
3053 |
|
|
}
|
3054 |
|
|
}
|
3055 |
|
|
else if (TREE_CODE (expr) == TARGET_MEM_REF)
|
3056 |
|
|
{
|
3057 |
|
|
if (!TMR_BASE (expr)
|
3058 |
|
|
|| !is_gimple_mem_ref_addr (TMR_BASE (expr)))
|
3059 |
|
|
{
|
3060 |
|
|
error ("invalid address operand in TARGET_MEM_REF");
|
3061 |
|
|
return true;
|
3062 |
|
|
}
|
3063 |
|
|
if (!TMR_OFFSET (expr)
|
3064 |
|
|
|| TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
|
3065 |
|
|
|| !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
|
3066 |
|
|
{
|
3067 |
|
|
error ("invalid offset operand in TARGET_MEM_REF");
|
3068 |
|
|
debug_generic_stmt (expr);
|
3069 |
|
|
return true;
|
3070 |
|
|
}
|
3071 |
|
|
}
|
3072 |
|
|
|
3073 |
|
|
return ((require_lvalue || !is_gimple_min_invariant (expr))
|
3074 |
|
|
&& verify_types_in_gimple_min_lval (expr));
|
3075 |
|
|
}
|
3076 |
|
|
|
3077 |
|
|
/* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
|
3078 |
|
|
list of pointer-to types that is trivially convertible to DEST. */
|
3079 |
|
|
|
3080 |
|
|
static bool
|
3081 |
|
|
one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
|
3082 |
|
|
{
|
3083 |
|
|
tree src;
|
3084 |
|
|
|
3085 |
|
|
if (!TYPE_POINTER_TO (src_obj))
|
3086 |
|
|
return true;
|
3087 |
|
|
|
3088 |
|
|
for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
|
3089 |
|
|
if (useless_type_conversion_p (dest, src))
|
3090 |
|
|
return true;
|
3091 |
|
|
|
3092 |
|
|
return false;
|
3093 |
|
|
}
|
3094 |
|
|
|
3095 |
|
|
/* Return true if TYPE1 is a fixed-point type and if conversions to and
|
3096 |
|
|
from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
|
3097 |
|
|
|
3098 |
|
|
static bool
|
3099 |
|
|
valid_fixed_convert_types_p (tree type1, tree type2)
|
3100 |
|
|
{
|
3101 |
|
|
return (FIXED_POINT_TYPE_P (type1)
|
3102 |
|
|
&& (INTEGRAL_TYPE_P (type2)
|
3103 |
|
|
|| SCALAR_FLOAT_TYPE_P (type2)
|
3104 |
|
|
|| FIXED_POINT_TYPE_P (type2)));
|
3105 |
|
|
}
|
3106 |
|
|
|
3107 |
|
|
/* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
|
3108 |
|
|
is a problem, otherwise false. */
|
3109 |
|
|
|
3110 |
|
|
static bool
|
3111 |
|
|
verify_gimple_call (gimple stmt)
|
3112 |
|
|
{
|
3113 |
|
|
tree fn = gimple_call_fn (stmt);
|
3114 |
|
|
tree fntype, fndecl;
|
3115 |
|
|
unsigned i;
|
3116 |
|
|
|
3117 |
|
|
if (gimple_call_internal_p (stmt))
|
3118 |
|
|
{
|
3119 |
|
|
if (fn)
|
3120 |
|
|
{
|
3121 |
|
|
error ("gimple call has two targets");
|
3122 |
|
|
debug_generic_stmt (fn);
|
3123 |
|
|
return true;
|
3124 |
|
|
}
|
3125 |
|
|
}
|
3126 |
|
|
else
|
3127 |
|
|
{
|
3128 |
|
|
if (!fn)
|
3129 |
|
|
{
|
3130 |
|
|
error ("gimple call has no target");
|
3131 |
|
|
return true;
|
3132 |
|
|
}
|
3133 |
|
|
}
|
3134 |
|
|
|
3135 |
|
|
if (fn && !is_gimple_call_addr (fn))
|
3136 |
|
|
{
|
3137 |
|
|
error ("invalid function in gimple call");
|
3138 |
|
|
debug_generic_stmt (fn);
|
3139 |
|
|
return true;
|
3140 |
|
|
}
|
3141 |
|
|
|
3142 |
|
|
if (fn
|
3143 |
|
|
&& (!POINTER_TYPE_P (TREE_TYPE (fn))
|
3144 |
|
|
|| (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
|
3145 |
|
|
&& TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
|
3146 |
|
|
{
|
3147 |
|
|
error ("non-function in gimple call");
|
3148 |
|
|
return true;
|
3149 |
|
|
}
|
3150 |
|
|
|
3151 |
|
|
fndecl = gimple_call_fndecl (stmt);
|
3152 |
|
|
if (fndecl
|
3153 |
|
|
&& TREE_CODE (fndecl) == FUNCTION_DECL
|
3154 |
|
|
&& DECL_LOOPING_CONST_OR_PURE_P (fndecl)
|
3155 |
|
|
&& !DECL_PURE_P (fndecl)
|
3156 |
|
|
&& !TREE_READONLY (fndecl))
|
3157 |
|
|
{
|
3158 |
|
|
error ("invalid pure const state for function");
|
3159 |
|
|
return true;
|
3160 |
|
|
}
|
3161 |
|
|
|
3162 |
|
|
if (gimple_call_lhs (stmt)
|
3163 |
|
|
&& (!is_gimple_lvalue (gimple_call_lhs (stmt))
|
3164 |
|
|
|| verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
|
3165 |
|
|
{
|
3166 |
|
|
error ("invalid LHS in gimple call");
|
3167 |
|
|
return true;
|
3168 |
|
|
}
|
3169 |
|
|
|
3170 |
|
|
if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
|
3171 |
|
|
{
|
3172 |
|
|
error ("LHS in noreturn call");
|
3173 |
|
|
return true;
|
3174 |
|
|
}
|
3175 |
|
|
|
3176 |
|
|
fntype = gimple_call_fntype (stmt);
|
3177 |
|
|
if (fntype
|
3178 |
|
|
&& gimple_call_lhs (stmt)
|
3179 |
|
|
&& !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
|
3180 |
|
|
TREE_TYPE (fntype))
|
3181 |
|
|
/* ??? At least C++ misses conversions at assignments from
|
3182 |
|
|
void * call results.
|
3183 |
|
|
??? Java is completely off. Especially with functions
|
3184 |
|
|
returning java.lang.Object.
|
3185 |
|
|
For now simply allow arbitrary pointer type conversions. */
|
3186 |
|
|
&& !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
|
3187 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (fntype))))
|
3188 |
|
|
{
|
3189 |
|
|
error ("invalid conversion in gimple call");
|
3190 |
|
|
debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
|
3191 |
|
|
debug_generic_stmt (TREE_TYPE (fntype));
|
3192 |
|
|
return true;
|
3193 |
|
|
}
|
3194 |
|
|
|
3195 |
|
|
if (gimple_call_chain (stmt)
|
3196 |
|
|
&& !is_gimple_val (gimple_call_chain (stmt)))
|
3197 |
|
|
{
|
3198 |
|
|
error ("invalid static chain in gimple call");
|
3199 |
|
|
debug_generic_stmt (gimple_call_chain (stmt));
|
3200 |
|
|
return true;
|
3201 |
|
|
}
|
3202 |
|
|
|
3203 |
|
|
/* If there is a static chain argument, this should not be an indirect
|
3204 |
|
|
call, and the decl should have DECL_STATIC_CHAIN set. */
|
3205 |
|
|
if (gimple_call_chain (stmt))
|
3206 |
|
|
{
|
3207 |
|
|
if (!gimple_call_fndecl (stmt))
|
3208 |
|
|
{
|
3209 |
|
|
error ("static chain in indirect gimple call");
|
3210 |
|
|
return true;
|
3211 |
|
|
}
|
3212 |
|
|
fn = TREE_OPERAND (fn, 0);
|
3213 |
|
|
|
3214 |
|
|
if (!DECL_STATIC_CHAIN (fn))
|
3215 |
|
|
{
|
3216 |
|
|
error ("static chain with function that doesn%'t use one");
|
3217 |
|
|
return true;
|
3218 |
|
|
}
|
3219 |
|
|
}
|
3220 |
|
|
|
3221 |
|
|
/* ??? The C frontend passes unpromoted arguments in case it
|
3222 |
|
|
didn't see a function declaration before the call. So for now
|
3223 |
|
|
leave the call arguments mostly unverified. Once we gimplify
|
3224 |
|
|
unit-at-a-time we have a chance to fix this. */
|
3225 |
|
|
|
3226 |
|
|
for (i = 0; i < gimple_call_num_args (stmt); ++i)
|
3227 |
|
|
{
|
3228 |
|
|
tree arg = gimple_call_arg (stmt, i);
|
3229 |
|
|
if ((is_gimple_reg_type (TREE_TYPE (arg))
|
3230 |
|
|
&& !is_gimple_val (arg))
|
3231 |
|
|
|| (!is_gimple_reg_type (TREE_TYPE (arg))
|
3232 |
|
|
&& !is_gimple_lvalue (arg)))
|
3233 |
|
|
{
|
3234 |
|
|
error ("invalid argument to gimple call");
|
3235 |
|
|
debug_generic_expr (arg);
|
3236 |
|
|
return true;
|
3237 |
|
|
}
|
3238 |
|
|
}
|
3239 |
|
|
|
3240 |
|
|
return false;
|
3241 |
|
|
}
|
3242 |
|
|
|
3243 |
|
|
/* Verifies the gimple comparison with the result type TYPE and
|
3244 |
|
|
the operands OP0 and OP1. */
|
3245 |
|
|
|
3246 |
|
|
static bool
|
3247 |
|
|
verify_gimple_comparison (tree type, tree op0, tree op1)
|
3248 |
|
|
{
|
3249 |
|
|
tree op0_type = TREE_TYPE (op0);
|
3250 |
|
|
tree op1_type = TREE_TYPE (op1);
|
3251 |
|
|
|
3252 |
|
|
if (!is_gimple_val (op0) || !is_gimple_val (op1))
|
3253 |
|
|
{
|
3254 |
|
|
error ("invalid operands in gimple comparison");
|
3255 |
|
|
return true;
|
3256 |
|
|
}
|
3257 |
|
|
|
3258 |
|
|
/* For comparisons we do not have the operations type as the
|
3259 |
|
|
effective type the comparison is carried out in. Instead
|
3260 |
|
|
we require that either the first operand is trivially
|
3261 |
|
|
convertible into the second, or the other way around.
|
3262 |
|
|
Because we special-case pointers to void we allow
|
3263 |
|
|
comparisons of pointers with the same mode as well. */
|
3264 |
|
|
if (!useless_type_conversion_p (op0_type, op1_type)
|
3265 |
|
|
&& !useless_type_conversion_p (op1_type, op0_type)
|
3266 |
|
|
&& (!POINTER_TYPE_P (op0_type)
|
3267 |
|
|
|| !POINTER_TYPE_P (op1_type)
|
3268 |
|
|
|| TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
|
3269 |
|
|
{
|
3270 |
|
|
error ("mismatching comparison operand types");
|
3271 |
|
|
debug_generic_expr (op0_type);
|
3272 |
|
|
debug_generic_expr (op1_type);
|
3273 |
|
|
return true;
|
3274 |
|
|
}
|
3275 |
|
|
|
3276 |
|
|
/* The resulting type of a comparison may be an effective boolean type. */
|
3277 |
|
|
if (INTEGRAL_TYPE_P (type)
|
3278 |
|
|
&& (TREE_CODE (type) == BOOLEAN_TYPE
|
3279 |
|
|
|| TYPE_PRECISION (type) == 1))
|
3280 |
|
|
;
|
3281 |
|
|
/* Or an integer vector type with the same size and element count
|
3282 |
|
|
as the comparison operand types. */
|
3283 |
|
|
else if (TREE_CODE (type) == VECTOR_TYPE
|
3284 |
|
|
&& TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
|
3285 |
|
|
{
|
3286 |
|
|
if (TREE_CODE (op0_type) != VECTOR_TYPE
|
3287 |
|
|
|| TREE_CODE (op1_type) != VECTOR_TYPE)
|
3288 |
|
|
{
|
3289 |
|
|
error ("non-vector operands in vector comparison");
|
3290 |
|
|
debug_generic_expr (op0_type);
|
3291 |
|
|
debug_generic_expr (op1_type);
|
3292 |
|
|
return true;
|
3293 |
|
|
}
|
3294 |
|
|
|
3295 |
|
|
if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
|
3296 |
|
|
|| (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
|
3297 |
|
|
!= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type)))))
|
3298 |
|
|
{
|
3299 |
|
|
error ("invalid vector comparison resulting type");
|
3300 |
|
|
debug_generic_expr (type);
|
3301 |
|
|
return true;
|
3302 |
|
|
}
|
3303 |
|
|
}
|
3304 |
|
|
else
|
3305 |
|
|
{
|
3306 |
|
|
error ("bogus comparison result type");
|
3307 |
|
|
debug_generic_expr (type);
|
3308 |
|
|
return true;
|
3309 |
|
|
}
|
3310 |
|
|
|
3311 |
|
|
return false;
|
3312 |
|
|
}
|
3313 |
|
|
|
3314 |
|
|
/* Verify a gimple assignment statement STMT with an unary rhs.
|
3315 |
|
|
Returns true if anything is wrong. */
|
3316 |
|
|
|
3317 |
|
|
static bool
|
3318 |
|
|
verify_gimple_assign_unary (gimple stmt)
|
3319 |
|
|
{
|
3320 |
|
|
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
|
3321 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
3322 |
|
|
tree lhs_type = TREE_TYPE (lhs);
|
3323 |
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
3324 |
|
|
tree rhs1_type = TREE_TYPE (rhs1);
|
3325 |
|
|
|
3326 |
|
|
if (!is_gimple_reg (lhs))
|
3327 |
|
|
{
|
3328 |
|
|
error ("non-register as LHS of unary operation");
|
3329 |
|
|
return true;
|
3330 |
|
|
}
|
3331 |
|
|
|
3332 |
|
|
if (!is_gimple_val (rhs1))
|
3333 |
|
|
{
|
3334 |
|
|
error ("invalid operand in unary operation");
|
3335 |
|
|
return true;
|
3336 |
|
|
}
|
3337 |
|
|
|
3338 |
|
|
/* First handle conversions. */
|
3339 |
|
|
switch (rhs_code)
|
3340 |
|
|
{
|
3341 |
|
|
CASE_CONVERT:
|
3342 |
|
|
{
|
3343 |
|
|
/* Allow conversions between integral types and pointers only if
|
3344 |
|
|
there is no sign or zero extension involved.
|
3345 |
|
|
For targets were the precision of ptrofftype doesn't match that
|
3346 |
|
|
of pointers we need to allow arbitrary conversions from and
|
3347 |
|
|
to ptrofftype. */
|
3348 |
|
|
if ((POINTER_TYPE_P (lhs_type)
|
3349 |
|
|
&& INTEGRAL_TYPE_P (rhs1_type)
|
3350 |
|
|
&& (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
|
3351 |
|
|
|| ptrofftype_p (rhs1_type)))
|
3352 |
|
|
|| (POINTER_TYPE_P (rhs1_type)
|
3353 |
|
|
&& INTEGRAL_TYPE_P (lhs_type)
|
3354 |
|
|
&& (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
|
3355 |
|
|
|| ptrofftype_p (sizetype))))
|
3356 |
|
|
return false;
|
3357 |
|
|
|
3358 |
|
|
/* Allow conversion from integer to offset type and vice versa. */
|
3359 |
|
|
if ((TREE_CODE (lhs_type) == OFFSET_TYPE
|
3360 |
|
|
&& TREE_CODE (rhs1_type) == INTEGER_TYPE)
|
3361 |
|
|
|| (TREE_CODE (lhs_type) == INTEGER_TYPE
|
3362 |
|
|
&& TREE_CODE (rhs1_type) == OFFSET_TYPE))
|
3363 |
|
|
return false;
|
3364 |
|
|
|
3365 |
|
|
/* Otherwise assert we are converting between types of the
|
3366 |
|
|
same kind. */
|
3367 |
|
|
if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
|
3368 |
|
|
{
|
3369 |
|
|
error ("invalid types in nop conversion");
|
3370 |
|
|
debug_generic_expr (lhs_type);
|
3371 |
|
|
debug_generic_expr (rhs1_type);
|
3372 |
|
|
return true;
|
3373 |
|
|
}
|
3374 |
|
|
|
3375 |
|
|
return false;
|
3376 |
|
|
}
|
3377 |
|
|
|
3378 |
|
|
case ADDR_SPACE_CONVERT_EXPR:
|
3379 |
|
|
{
|
3380 |
|
|
if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
|
3381 |
|
|
|| (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
|
3382 |
|
|
== TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
|
3383 |
|
|
{
|
3384 |
|
|
error ("invalid types in address space conversion");
|
3385 |
|
|
debug_generic_expr (lhs_type);
|
3386 |
|
|
debug_generic_expr (rhs1_type);
|
3387 |
|
|
return true;
|
3388 |
|
|
}
|
3389 |
|
|
|
3390 |
|
|
return false;
|
3391 |
|
|
}
|
3392 |
|
|
|
3393 |
|
|
case FIXED_CONVERT_EXPR:
|
3394 |
|
|
{
|
3395 |
|
|
if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
|
3396 |
|
|
&& !valid_fixed_convert_types_p (rhs1_type, lhs_type))
|
3397 |
|
|
{
|
3398 |
|
|
error ("invalid types in fixed-point conversion");
|
3399 |
|
|
debug_generic_expr (lhs_type);
|
3400 |
|
|
debug_generic_expr (rhs1_type);
|
3401 |
|
|
return true;
|
3402 |
|
|
}
|
3403 |
|
|
|
3404 |
|
|
return false;
|
3405 |
|
|
}
|
3406 |
|
|
|
3407 |
|
|
case FLOAT_EXPR:
|
3408 |
|
|
{
|
3409 |
|
|
if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
|
3410 |
|
|
&& (!VECTOR_INTEGER_TYPE_P (rhs1_type)
|
3411 |
|
|
|| !VECTOR_FLOAT_TYPE_P(lhs_type)))
|
3412 |
|
|
{
|
3413 |
|
|
error ("invalid types in conversion to floating point");
|
3414 |
|
|
debug_generic_expr (lhs_type);
|
3415 |
|
|
debug_generic_expr (rhs1_type);
|
3416 |
|
|
return true;
|
3417 |
|
|
}
|
3418 |
|
|
|
3419 |
|
|
return false;
|
3420 |
|
|
}
|
3421 |
|
|
|
3422 |
|
|
case FIX_TRUNC_EXPR:
|
3423 |
|
|
{
|
3424 |
|
|
if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
|
3425 |
|
|
&& (!VECTOR_INTEGER_TYPE_P (lhs_type)
|
3426 |
|
|
|| !VECTOR_FLOAT_TYPE_P(rhs1_type)))
|
3427 |
|
|
{
|
3428 |
|
|
error ("invalid types in conversion to integer");
|
3429 |
|
|
debug_generic_expr (lhs_type);
|
3430 |
|
|
debug_generic_expr (rhs1_type);
|
3431 |
|
|
return true;
|
3432 |
|
|
}
|
3433 |
|
|
|
3434 |
|
|
return false;
|
3435 |
|
|
}
|
3436 |
|
|
|
3437 |
|
|
case VEC_UNPACK_HI_EXPR:
|
3438 |
|
|
case VEC_UNPACK_LO_EXPR:
|
3439 |
|
|
case REDUC_MAX_EXPR:
|
3440 |
|
|
case REDUC_MIN_EXPR:
|
3441 |
|
|
case REDUC_PLUS_EXPR:
|
3442 |
|
|
case VEC_UNPACK_FLOAT_HI_EXPR:
|
3443 |
|
|
case VEC_UNPACK_FLOAT_LO_EXPR:
|
3444 |
|
|
/* FIXME. */
|
3445 |
|
|
return false;
|
3446 |
|
|
|
3447 |
|
|
case NEGATE_EXPR:
|
3448 |
|
|
case ABS_EXPR:
|
3449 |
|
|
case BIT_NOT_EXPR:
|
3450 |
|
|
case PAREN_EXPR:
|
3451 |
|
|
case NON_LVALUE_EXPR:
|
3452 |
|
|
case CONJ_EXPR:
|
3453 |
|
|
break;
|
3454 |
|
|
|
3455 |
|
|
default:
|
3456 |
|
|
gcc_unreachable ();
|
3457 |
|
|
}
|
3458 |
|
|
|
3459 |
|
|
/* For the remaining codes assert there is no conversion involved. */
|
3460 |
|
|
if (!useless_type_conversion_p (lhs_type, rhs1_type))
|
3461 |
|
|
{
|
3462 |
|
|
error ("non-trivial conversion in unary operation");
|
3463 |
|
|
debug_generic_expr (lhs_type);
|
3464 |
|
|
debug_generic_expr (rhs1_type);
|
3465 |
|
|
return true;
|
3466 |
|
|
}
|
3467 |
|
|
|
3468 |
|
|
return false;
|
3469 |
|
|
}
|
3470 |
|
|
|
3471 |
|
|
/* Verify a gimple assignment statement STMT with a binary rhs.
|
3472 |
|
|
Returns true if anything is wrong. */
|
3473 |
|
|
|
3474 |
|
|
static bool
|
3475 |
|
|
verify_gimple_assign_binary (gimple stmt)
|
3476 |
|
|
{
|
3477 |
|
|
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
|
3478 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
3479 |
|
|
tree lhs_type = TREE_TYPE (lhs);
|
3480 |
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
3481 |
|
|
tree rhs1_type = TREE_TYPE (rhs1);
|
3482 |
|
|
tree rhs2 = gimple_assign_rhs2 (stmt);
|
3483 |
|
|
tree rhs2_type = TREE_TYPE (rhs2);
|
3484 |
|
|
|
3485 |
|
|
if (!is_gimple_reg (lhs))
|
3486 |
|
|
{
|
3487 |
|
|
error ("non-register as LHS of binary operation");
|
3488 |
|
|
return true;
|
3489 |
|
|
}
|
3490 |
|
|
|
3491 |
|
|
if (!is_gimple_val (rhs1)
|
3492 |
|
|
|| !is_gimple_val (rhs2))
|
3493 |
|
|
{
|
3494 |
|
|
error ("invalid operands in binary operation");
|
3495 |
|
|
return true;
|
3496 |
|
|
}
|
3497 |
|
|
|
3498 |
|
|
/* First handle operations that involve different types. */
|
3499 |
|
|
switch (rhs_code)
|
3500 |
|
|
{
|
3501 |
|
|
case COMPLEX_EXPR:
|
3502 |
|
|
{
|
3503 |
|
|
if (TREE_CODE (lhs_type) != COMPLEX_TYPE
|
3504 |
|
|
|| !(INTEGRAL_TYPE_P (rhs1_type)
|
3505 |
|
|
|| SCALAR_FLOAT_TYPE_P (rhs1_type))
|
3506 |
|
|
|| !(INTEGRAL_TYPE_P (rhs2_type)
|
3507 |
|
|
|| SCALAR_FLOAT_TYPE_P (rhs2_type)))
|
3508 |
|
|
{
|
3509 |
|
|
error ("type mismatch in complex expression");
|
3510 |
|
|
debug_generic_expr (lhs_type);
|
3511 |
|
|
debug_generic_expr (rhs1_type);
|
3512 |
|
|
debug_generic_expr (rhs2_type);
|
3513 |
|
|
return true;
|
3514 |
|
|
}
|
3515 |
|
|
|
3516 |
|
|
return false;
|
3517 |
|
|
}
|
3518 |
|
|
|
3519 |
|
|
case LSHIFT_EXPR:
|
3520 |
|
|
case RSHIFT_EXPR:
|
3521 |
|
|
case LROTATE_EXPR:
|
3522 |
|
|
case RROTATE_EXPR:
|
3523 |
|
|
{
|
3524 |
|
|
/* Shifts and rotates are ok on integral types, fixed point
|
3525 |
|
|
types and integer vector types. */
|
3526 |
|
|
if ((!INTEGRAL_TYPE_P (rhs1_type)
|
3527 |
|
|
&& !FIXED_POINT_TYPE_P (rhs1_type)
|
3528 |
|
|
&& !(TREE_CODE (rhs1_type) == VECTOR_TYPE
|
3529 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
|
3530 |
|
|
|| (!INTEGRAL_TYPE_P (rhs2_type)
|
3531 |
|
|
/* Vector shifts of vectors are also ok. */
|
3532 |
|
|
&& !(TREE_CODE (rhs1_type) == VECTOR_TYPE
|
3533 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
|
3534 |
|
|
&& TREE_CODE (rhs2_type) == VECTOR_TYPE
|
3535 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
|
3536 |
|
|
|| !useless_type_conversion_p (lhs_type, rhs1_type))
|
3537 |
|
|
{
|
3538 |
|
|
error ("type mismatch in shift expression");
|
3539 |
|
|
debug_generic_expr (lhs_type);
|
3540 |
|
|
debug_generic_expr (rhs1_type);
|
3541 |
|
|
debug_generic_expr (rhs2_type);
|
3542 |
|
|
return true;
|
3543 |
|
|
}
|
3544 |
|
|
|
3545 |
|
|
return false;
|
3546 |
|
|
}
|
3547 |
|
|
|
3548 |
|
|
case VEC_LSHIFT_EXPR:
|
3549 |
|
|
case VEC_RSHIFT_EXPR:
|
3550 |
|
|
{
|
3551 |
|
|
if (TREE_CODE (rhs1_type) != VECTOR_TYPE
|
3552 |
|
|
|| !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
|
3553 |
|
|
|| POINTER_TYPE_P (TREE_TYPE (rhs1_type))
|
3554 |
|
|
|| FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
|
3555 |
|
|
|| SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
|
3556 |
|
|
|| (!INTEGRAL_TYPE_P (rhs2_type)
|
3557 |
|
|
&& (TREE_CODE (rhs2_type) != VECTOR_TYPE
|
3558 |
|
|
|| !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
|
3559 |
|
|
|| !useless_type_conversion_p (lhs_type, rhs1_type))
|
3560 |
|
|
{
|
3561 |
|
|
error ("type mismatch in vector shift expression");
|
3562 |
|
|
debug_generic_expr (lhs_type);
|
3563 |
|
|
debug_generic_expr (rhs1_type);
|
3564 |
|
|
debug_generic_expr (rhs2_type);
|
3565 |
|
|
return true;
|
3566 |
|
|
}
|
3567 |
|
|
/* For shifting a vector of non-integral components we
|
3568 |
|
|
only allow shifting by a constant multiple of the element size. */
|
3569 |
|
|
if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
|
3570 |
|
|
&& (TREE_CODE (rhs2) != INTEGER_CST
|
3571 |
|
|
|| !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
|
3572 |
|
|
TYPE_SIZE (TREE_TYPE (rhs1_type)))))
|
3573 |
|
|
{
|
3574 |
|
|
error ("non-element sized vector shift of floating point vector");
|
3575 |
|
|
return true;
|
3576 |
|
|
}
|
3577 |
|
|
|
3578 |
|
|
return false;
|
3579 |
|
|
}
|
3580 |
|
|
|
3581 |
|
|
case WIDEN_LSHIFT_EXPR:
|
3582 |
|
|
{
|
3583 |
|
|
if (!INTEGRAL_TYPE_P (lhs_type)
|
3584 |
|
|
|| !INTEGRAL_TYPE_P (rhs1_type)
|
3585 |
|
|
|| TREE_CODE (rhs2) != INTEGER_CST
|
3586 |
|
|
|| (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
|
3587 |
|
|
{
|
3588 |
|
|
error ("type mismatch in widening vector shift expression");
|
3589 |
|
|
debug_generic_expr (lhs_type);
|
3590 |
|
|
debug_generic_expr (rhs1_type);
|
3591 |
|
|
debug_generic_expr (rhs2_type);
|
3592 |
|
|
return true;
|
3593 |
|
|
}
|
3594 |
|
|
|
3595 |
|
|
return false;
|
3596 |
|
|
}
|
3597 |
|
|
|
3598 |
|
|
case VEC_WIDEN_LSHIFT_HI_EXPR:
|
3599 |
|
|
case VEC_WIDEN_LSHIFT_LO_EXPR:
|
3600 |
|
|
{
|
3601 |
|
|
if (TREE_CODE (rhs1_type) != VECTOR_TYPE
|
3602 |
|
|
|| TREE_CODE (lhs_type) != VECTOR_TYPE
|
3603 |
|
|
|| !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
|
3604 |
|
|
|| !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
|
3605 |
|
|
|| TREE_CODE (rhs2) != INTEGER_CST
|
3606 |
|
|
|| (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
|
3607 |
|
|
> TYPE_PRECISION (TREE_TYPE (lhs_type))))
|
3608 |
|
|
{
|
3609 |
|
|
error ("type mismatch in widening vector shift expression");
|
3610 |
|
|
debug_generic_expr (lhs_type);
|
3611 |
|
|
debug_generic_expr (rhs1_type);
|
3612 |
|
|
debug_generic_expr (rhs2_type);
|
3613 |
|
|
return true;
|
3614 |
|
|
}
|
3615 |
|
|
|
3616 |
|
|
return false;
|
3617 |
|
|
}
|
3618 |
|
|
|
3619 |
|
|
case PLUS_EXPR:
|
3620 |
|
|
case MINUS_EXPR:
|
3621 |
|
|
{
|
3622 |
|
|
/* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
|
3623 |
|
|
??? This just makes the checker happy and may not be what is
|
3624 |
|
|
intended. */
|
3625 |
|
|
if (TREE_CODE (lhs_type) == VECTOR_TYPE
|
3626 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (lhs_type)))
|
3627 |
|
|
{
|
3628 |
|
|
if (TREE_CODE (rhs1_type) != VECTOR_TYPE
|
3629 |
|
|
|| TREE_CODE (rhs2_type) != VECTOR_TYPE)
|
3630 |
|
|
{
|
3631 |
|
|
error ("invalid non-vector operands to vector valued plus");
|
3632 |
|
|
return true;
|
3633 |
|
|
}
|
3634 |
|
|
lhs_type = TREE_TYPE (lhs_type);
|
3635 |
|
|
rhs1_type = TREE_TYPE (rhs1_type);
|
3636 |
|
|
rhs2_type = TREE_TYPE (rhs2_type);
|
3637 |
|
|
/* PLUS_EXPR is commutative, so we might end up canonicalizing
|
3638 |
|
|
the pointer to 2nd place. */
|
3639 |
|
|
if (POINTER_TYPE_P (rhs2_type))
|
3640 |
|
|
{
|
3641 |
|
|
tree tem = rhs1_type;
|
3642 |
|
|
rhs1_type = rhs2_type;
|
3643 |
|
|
rhs2_type = tem;
|
3644 |
|
|
}
|
3645 |
|
|
goto do_pointer_plus_expr_check;
|
3646 |
|
|
}
|
3647 |
|
|
if (POINTER_TYPE_P (lhs_type)
|
3648 |
|
|
|| POINTER_TYPE_P (rhs1_type)
|
3649 |
|
|
|| POINTER_TYPE_P (rhs2_type))
|
3650 |
|
|
{
|
3651 |
|
|
error ("invalid (pointer) operands to plus/minus");
|
3652 |
|
|
return true;
|
3653 |
|
|
}
|
3654 |
|
|
|
3655 |
|
|
/* Continue with generic binary expression handling. */
|
3656 |
|
|
break;
|
3657 |
|
|
}
|
3658 |
|
|
|
3659 |
|
|
case POINTER_PLUS_EXPR:
|
3660 |
|
|
{
|
3661 |
|
|
do_pointer_plus_expr_check:
|
3662 |
|
|
if (!POINTER_TYPE_P (rhs1_type)
|
3663 |
|
|
|| !useless_type_conversion_p (lhs_type, rhs1_type)
|
3664 |
|
|
|| !ptrofftype_p (rhs2_type))
|
3665 |
|
|
{
|
3666 |
|
|
error ("type mismatch in pointer plus expression");
|
3667 |
|
|
debug_generic_stmt (lhs_type);
|
3668 |
|
|
debug_generic_stmt (rhs1_type);
|
3669 |
|
|
debug_generic_stmt (rhs2_type);
|
3670 |
|
|
return true;
|
3671 |
|
|
}
|
3672 |
|
|
|
3673 |
|
|
return false;
|
3674 |
|
|
}
|
3675 |
|
|
|
3676 |
|
|
case TRUTH_ANDIF_EXPR:
|
3677 |
|
|
case TRUTH_ORIF_EXPR:
|
3678 |
|
|
case TRUTH_AND_EXPR:
|
3679 |
|
|
case TRUTH_OR_EXPR:
|
3680 |
|
|
case TRUTH_XOR_EXPR:
|
3681 |
|
|
|
3682 |
|
|
gcc_unreachable ();
|
3683 |
|
|
|
3684 |
|
|
case LT_EXPR:
|
3685 |
|
|
case LE_EXPR:
|
3686 |
|
|
case GT_EXPR:
|
3687 |
|
|
case GE_EXPR:
|
3688 |
|
|
case EQ_EXPR:
|
3689 |
|
|
case NE_EXPR:
|
3690 |
|
|
case UNORDERED_EXPR:
|
3691 |
|
|
case ORDERED_EXPR:
|
3692 |
|
|
case UNLT_EXPR:
|
3693 |
|
|
case UNLE_EXPR:
|
3694 |
|
|
case UNGT_EXPR:
|
3695 |
|
|
case UNGE_EXPR:
|
3696 |
|
|
case UNEQ_EXPR:
|
3697 |
|
|
case LTGT_EXPR:
|
3698 |
|
|
/* Comparisons are also binary, but the result type is not
|
3699 |
|
|
connected to the operand types. */
|
3700 |
|
|
return verify_gimple_comparison (lhs_type, rhs1, rhs2);
|
3701 |
|
|
|
3702 |
|
|
case WIDEN_MULT_EXPR:
|
3703 |
|
|
if (TREE_CODE (lhs_type) != INTEGER_TYPE)
|
3704 |
|
|
return true;
|
3705 |
|
|
return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
|
3706 |
|
|
|| (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
|
3707 |
|
|
|
3708 |
|
|
case WIDEN_SUM_EXPR:
|
3709 |
|
|
case VEC_WIDEN_MULT_HI_EXPR:
|
3710 |
|
|
case VEC_WIDEN_MULT_LO_EXPR:
|
3711 |
|
|
case VEC_PACK_TRUNC_EXPR:
|
3712 |
|
|
case VEC_PACK_SAT_EXPR:
|
3713 |
|
|
case VEC_PACK_FIX_TRUNC_EXPR:
|
3714 |
|
|
/* FIXME. */
|
3715 |
|
|
return false;
|
3716 |
|
|
|
3717 |
|
|
case MULT_EXPR:
|
3718 |
|
|
case TRUNC_DIV_EXPR:
|
3719 |
|
|
case CEIL_DIV_EXPR:
|
3720 |
|
|
case FLOOR_DIV_EXPR:
|
3721 |
|
|
case ROUND_DIV_EXPR:
|
3722 |
|
|
case TRUNC_MOD_EXPR:
|
3723 |
|
|
case CEIL_MOD_EXPR:
|
3724 |
|
|
case FLOOR_MOD_EXPR:
|
3725 |
|
|
case ROUND_MOD_EXPR:
|
3726 |
|
|
case RDIV_EXPR:
|
3727 |
|
|
case EXACT_DIV_EXPR:
|
3728 |
|
|
case MIN_EXPR:
|
3729 |
|
|
case MAX_EXPR:
|
3730 |
|
|
case BIT_IOR_EXPR:
|
3731 |
|
|
case BIT_XOR_EXPR:
|
3732 |
|
|
case BIT_AND_EXPR:
|
3733 |
|
|
/* Continue with generic binary expression handling. */
|
3734 |
|
|
break;
|
3735 |
|
|
|
3736 |
|
|
default:
|
3737 |
|
|
gcc_unreachable ();
|
3738 |
|
|
}
|
3739 |
|
|
|
3740 |
|
|
if (!useless_type_conversion_p (lhs_type, rhs1_type)
|
3741 |
|
|
|| !useless_type_conversion_p (lhs_type, rhs2_type))
|
3742 |
|
|
{
|
3743 |
|
|
error ("type mismatch in binary expression");
|
3744 |
|
|
debug_generic_stmt (lhs_type);
|
3745 |
|
|
debug_generic_stmt (rhs1_type);
|
3746 |
|
|
debug_generic_stmt (rhs2_type);
|
3747 |
|
|
return true;
|
3748 |
|
|
}
|
3749 |
|
|
|
3750 |
|
|
return false;
|
3751 |
|
|
}
|
3752 |
|
|
|
3753 |
|
|
/* Verify a gimple assignment statement STMT with a ternary rhs.
|
3754 |
|
|
Returns true if anything is wrong. */
|
3755 |
|
|
|
3756 |
|
|
static bool
|
3757 |
|
|
verify_gimple_assign_ternary (gimple stmt)
|
3758 |
|
|
{
|
3759 |
|
|
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
|
3760 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
3761 |
|
|
tree lhs_type = TREE_TYPE (lhs);
|
3762 |
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
3763 |
|
|
tree rhs1_type = TREE_TYPE (rhs1);
|
3764 |
|
|
tree rhs2 = gimple_assign_rhs2 (stmt);
|
3765 |
|
|
tree rhs2_type = TREE_TYPE (rhs2);
|
3766 |
|
|
tree rhs3 = gimple_assign_rhs3 (stmt);
|
3767 |
|
|
tree rhs3_type = TREE_TYPE (rhs3);
|
3768 |
|
|
|
3769 |
|
|
if (!is_gimple_reg (lhs))
|
3770 |
|
|
{
|
3771 |
|
|
error ("non-register as LHS of ternary operation");
|
3772 |
|
|
return true;
|
3773 |
|
|
}
|
3774 |
|
|
|
3775 |
|
|
if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
|
3776 |
|
|
? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
|
3777 |
|
|
|| !is_gimple_val (rhs2)
|
3778 |
|
|
|| !is_gimple_val (rhs3))
|
3779 |
|
|
{
|
3780 |
|
|
error ("invalid operands in ternary operation");
|
3781 |
|
|
return true;
|
3782 |
|
|
}
|
3783 |
|
|
|
3784 |
|
|
/* First handle operations that involve different types. */
|
3785 |
|
|
switch (rhs_code)
|
3786 |
|
|
{
|
3787 |
|
|
case WIDEN_MULT_PLUS_EXPR:
|
3788 |
|
|
case WIDEN_MULT_MINUS_EXPR:
|
3789 |
|
|
if ((!INTEGRAL_TYPE_P (rhs1_type)
|
3790 |
|
|
&& !FIXED_POINT_TYPE_P (rhs1_type))
|
3791 |
|
|
|| !useless_type_conversion_p (rhs1_type, rhs2_type)
|
3792 |
|
|
|| !useless_type_conversion_p (lhs_type, rhs3_type)
|
3793 |
|
|
|| 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
|
3794 |
|
|
|| TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
|
3795 |
|
|
{
|
3796 |
|
|
error ("type mismatch in widening multiply-accumulate expression");
|
3797 |
|
|
debug_generic_expr (lhs_type);
|
3798 |
|
|
debug_generic_expr (rhs1_type);
|
3799 |
|
|
debug_generic_expr (rhs2_type);
|
3800 |
|
|
debug_generic_expr (rhs3_type);
|
3801 |
|
|
return true;
|
3802 |
|
|
}
|
3803 |
|
|
break;
|
3804 |
|
|
|
3805 |
|
|
case FMA_EXPR:
|
3806 |
|
|
if (!useless_type_conversion_p (lhs_type, rhs1_type)
|
3807 |
|
|
|| !useless_type_conversion_p (lhs_type, rhs2_type)
|
3808 |
|
|
|| !useless_type_conversion_p (lhs_type, rhs3_type))
|
3809 |
|
|
{
|
3810 |
|
|
error ("type mismatch in fused multiply-add expression");
|
3811 |
|
|
debug_generic_expr (lhs_type);
|
3812 |
|
|
debug_generic_expr (rhs1_type);
|
3813 |
|
|
debug_generic_expr (rhs2_type);
|
3814 |
|
|
debug_generic_expr (rhs3_type);
|
3815 |
|
|
return true;
|
3816 |
|
|
}
|
3817 |
|
|
break;
|
3818 |
|
|
|
3819 |
|
|
case COND_EXPR:
|
3820 |
|
|
case VEC_COND_EXPR:
|
3821 |
|
|
if (!useless_type_conversion_p (lhs_type, rhs2_type)
|
3822 |
|
|
|| !useless_type_conversion_p (lhs_type, rhs3_type))
|
3823 |
|
|
{
|
3824 |
|
|
error ("type mismatch in conditional expression");
|
3825 |
|
|
debug_generic_expr (lhs_type);
|
3826 |
|
|
debug_generic_expr (rhs2_type);
|
3827 |
|
|
debug_generic_expr (rhs3_type);
|
3828 |
|
|
return true;
|
3829 |
|
|
}
|
3830 |
|
|
break;
|
3831 |
|
|
|
3832 |
|
|
case VEC_PERM_EXPR:
|
3833 |
|
|
if (!useless_type_conversion_p (lhs_type, rhs1_type)
|
3834 |
|
|
|| !useless_type_conversion_p (lhs_type, rhs2_type))
|
3835 |
|
|
{
|
3836 |
|
|
error ("type mismatch in vector permute expression");
|
3837 |
|
|
debug_generic_expr (lhs_type);
|
3838 |
|
|
debug_generic_expr (rhs1_type);
|
3839 |
|
|
debug_generic_expr (rhs2_type);
|
3840 |
|
|
debug_generic_expr (rhs3_type);
|
3841 |
|
|
return true;
|
3842 |
|
|
}
|
3843 |
|
|
|
3844 |
|
|
if (TREE_CODE (rhs1_type) != VECTOR_TYPE
|
3845 |
|
|
|| TREE_CODE (rhs2_type) != VECTOR_TYPE
|
3846 |
|
|
|| TREE_CODE (rhs3_type) != VECTOR_TYPE)
|
3847 |
|
|
{
|
3848 |
|
|
error ("vector types expected in vector permute expression");
|
3849 |
|
|
debug_generic_expr (lhs_type);
|
3850 |
|
|
debug_generic_expr (rhs1_type);
|
3851 |
|
|
debug_generic_expr (rhs2_type);
|
3852 |
|
|
debug_generic_expr (rhs3_type);
|
3853 |
|
|
return true;
|
3854 |
|
|
}
|
3855 |
|
|
|
3856 |
|
|
if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
|
3857 |
|
|
|| TYPE_VECTOR_SUBPARTS (rhs2_type)
|
3858 |
|
|
!= TYPE_VECTOR_SUBPARTS (rhs3_type)
|
3859 |
|
|
|| TYPE_VECTOR_SUBPARTS (rhs3_type)
|
3860 |
|
|
!= TYPE_VECTOR_SUBPARTS (lhs_type))
|
3861 |
|
|
{
|
3862 |
|
|
error ("vectors with different element number found "
|
3863 |
|
|
"in vector permute expression");
|
3864 |
|
|
debug_generic_expr (lhs_type);
|
3865 |
|
|
debug_generic_expr (rhs1_type);
|
3866 |
|
|
debug_generic_expr (rhs2_type);
|
3867 |
|
|
debug_generic_expr (rhs3_type);
|
3868 |
|
|
return true;
|
3869 |
|
|
}
|
3870 |
|
|
|
3871 |
|
|
if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
|
3872 |
|
|
|| GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
|
3873 |
|
|
!= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
|
3874 |
|
|
{
|
3875 |
|
|
error ("invalid mask type in vector permute expression");
|
3876 |
|
|
debug_generic_expr (lhs_type);
|
3877 |
|
|
debug_generic_expr (rhs1_type);
|
3878 |
|
|
debug_generic_expr (rhs2_type);
|
3879 |
|
|
debug_generic_expr (rhs3_type);
|
3880 |
|
|
return true;
|
3881 |
|
|
}
|
3882 |
|
|
|
3883 |
|
|
return false;
|
3884 |
|
|
|
3885 |
|
|
case DOT_PROD_EXPR:
|
3886 |
|
|
case REALIGN_LOAD_EXPR:
|
3887 |
|
|
/* FIXME. */
|
3888 |
|
|
return false;
|
3889 |
|
|
|
3890 |
|
|
default:
|
3891 |
|
|
gcc_unreachable ();
|
3892 |
|
|
}
|
3893 |
|
|
return false;
|
3894 |
|
|
}
|
3895 |
|
|
|
3896 |
|
|
/* Verify a gimple assignment statement STMT with a single rhs.
|
3897 |
|
|
Returns true if anything is wrong. */
|
3898 |
|
|
|
3899 |
|
|
static bool
|
3900 |
|
|
verify_gimple_assign_single (gimple stmt)
|
3901 |
|
|
{
|
3902 |
|
|
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
|
3903 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
3904 |
|
|
tree lhs_type = TREE_TYPE (lhs);
|
3905 |
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
3906 |
|
|
tree rhs1_type = TREE_TYPE (rhs1);
|
3907 |
|
|
bool res = false;
|
3908 |
|
|
|
3909 |
|
|
if (!useless_type_conversion_p (lhs_type, rhs1_type))
|
3910 |
|
|
{
|
3911 |
|
|
error ("non-trivial conversion at assignment");
|
3912 |
|
|
debug_generic_expr (lhs_type);
|
3913 |
|
|
debug_generic_expr (rhs1_type);
|
3914 |
|
|
return true;
|
3915 |
|
|
}
|
3916 |
|
|
|
3917 |
|
|
if (handled_component_p (lhs))
|
3918 |
|
|
res |= verify_types_in_gimple_reference (lhs, true);
|
3919 |
|
|
|
3920 |
|
|
/* Special codes we cannot handle via their class. */
|
3921 |
|
|
switch (rhs_code)
|
3922 |
|
|
{
|
3923 |
|
|
case ADDR_EXPR:
|
3924 |
|
|
{
|
3925 |
|
|
tree op = TREE_OPERAND (rhs1, 0);
|
3926 |
|
|
if (!is_gimple_addressable (op))
|
3927 |
|
|
{
|
3928 |
|
|
error ("invalid operand in unary expression");
|
3929 |
|
|
return true;
|
3930 |
|
|
}
|
3931 |
|
|
|
3932 |
|
|
/* Technically there is no longer a need for matching types, but
|
3933 |
|
|
gimple hygiene asks for this check. In LTO we can end up
|
3934 |
|
|
combining incompatible units and thus end up with addresses
|
3935 |
|
|
of globals that change their type to a common one. */
|
3936 |
|
|
if (!in_lto_p
|
3937 |
|
|
&& !types_compatible_p (TREE_TYPE (op),
|
3938 |
|
|
TREE_TYPE (TREE_TYPE (rhs1)))
|
3939 |
|
|
&& !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
|
3940 |
|
|
TREE_TYPE (op)))
|
3941 |
|
|
{
|
3942 |
|
|
error ("type mismatch in address expression");
|
3943 |
|
|
debug_generic_stmt (TREE_TYPE (rhs1));
|
3944 |
|
|
debug_generic_stmt (TREE_TYPE (op));
|
3945 |
|
|
return true;
|
3946 |
|
|
}
|
3947 |
|
|
|
3948 |
|
|
return verify_types_in_gimple_reference (op, true);
|
3949 |
|
|
}
|
3950 |
|
|
|
3951 |
|
|
/* tcc_reference */
|
3952 |
|
|
case INDIRECT_REF:
|
3953 |
|
|
error ("INDIRECT_REF in gimple IL");
|
3954 |
|
|
return true;
|
3955 |
|
|
|
3956 |
|
|
case COMPONENT_REF:
|
3957 |
|
|
case BIT_FIELD_REF:
|
3958 |
|
|
case ARRAY_REF:
|
3959 |
|
|
case ARRAY_RANGE_REF:
|
3960 |
|
|
case VIEW_CONVERT_EXPR:
|
3961 |
|
|
case REALPART_EXPR:
|
3962 |
|
|
case IMAGPART_EXPR:
|
3963 |
|
|
case TARGET_MEM_REF:
|
3964 |
|
|
case MEM_REF:
|
3965 |
|
|
if (!is_gimple_reg (lhs)
|
3966 |
|
|
&& is_gimple_reg_type (TREE_TYPE (lhs)))
|
3967 |
|
|
{
|
3968 |
|
|
error ("invalid rhs for gimple memory store");
|
3969 |
|
|
debug_generic_stmt (lhs);
|
3970 |
|
|
debug_generic_stmt (rhs1);
|
3971 |
|
|
return true;
|
3972 |
|
|
}
|
3973 |
|
|
return res || verify_types_in_gimple_reference (rhs1, false);
|
3974 |
|
|
|
3975 |
|
|
/* tcc_constant */
|
3976 |
|
|
case SSA_NAME:
|
3977 |
|
|
case INTEGER_CST:
|
3978 |
|
|
case REAL_CST:
|
3979 |
|
|
case FIXED_CST:
|
3980 |
|
|
case COMPLEX_CST:
|
3981 |
|
|
case VECTOR_CST:
|
3982 |
|
|
case STRING_CST:
|
3983 |
|
|
return res;
|
3984 |
|
|
|
3985 |
|
|
/* tcc_declaration */
|
3986 |
|
|
case CONST_DECL:
|
3987 |
|
|
return res;
|
3988 |
|
|
case VAR_DECL:
|
3989 |
|
|
case PARM_DECL:
|
3990 |
|
|
if (!is_gimple_reg (lhs)
|
3991 |
|
|
&& !is_gimple_reg (rhs1)
|
3992 |
|
|
&& is_gimple_reg_type (TREE_TYPE (lhs)))
|
3993 |
|
|
{
|
3994 |
|
|
error ("invalid rhs for gimple memory store");
|
3995 |
|
|
debug_generic_stmt (lhs);
|
3996 |
|
|
debug_generic_stmt (rhs1);
|
3997 |
|
|
return true;
|
3998 |
|
|
}
|
3999 |
|
|
return res;
|
4000 |
|
|
|
4001 |
|
|
case CONSTRUCTOR:
|
4002 |
|
|
case OBJ_TYPE_REF:
|
4003 |
|
|
case ASSERT_EXPR:
|
4004 |
|
|
case WITH_SIZE_EXPR:
|
4005 |
|
|
/* FIXME. */
|
4006 |
|
|
return res;
|
4007 |
|
|
|
4008 |
|
|
default:;
|
4009 |
|
|
}
|
4010 |
|
|
|
4011 |
|
|
return res;
|
4012 |
|
|
}
|
4013 |
|
|
|
4014 |
|
|
/* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
|
4015 |
|
|
is a problem, otherwise false. */
|
4016 |
|
|
|
4017 |
|
|
static bool
|
4018 |
|
|
verify_gimple_assign (gimple stmt)
|
4019 |
|
|
{
|
4020 |
|
|
switch (gimple_assign_rhs_class (stmt))
|
4021 |
|
|
{
|
4022 |
|
|
case GIMPLE_SINGLE_RHS:
|
4023 |
|
|
return verify_gimple_assign_single (stmt);
|
4024 |
|
|
|
4025 |
|
|
case GIMPLE_UNARY_RHS:
|
4026 |
|
|
return verify_gimple_assign_unary (stmt);
|
4027 |
|
|
|
4028 |
|
|
case GIMPLE_BINARY_RHS:
|
4029 |
|
|
return verify_gimple_assign_binary (stmt);
|
4030 |
|
|
|
4031 |
|
|
case GIMPLE_TERNARY_RHS:
|
4032 |
|
|
return verify_gimple_assign_ternary (stmt);
|
4033 |
|
|
|
4034 |
|
|
default:
|
4035 |
|
|
gcc_unreachable ();
|
4036 |
|
|
}
|
4037 |
|
|
}
|
4038 |
|
|
|
4039 |
|
|
/* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
|
4040 |
|
|
is a problem, otherwise false. */
|
4041 |
|
|
|
4042 |
|
|
static bool
|
4043 |
|
|
verify_gimple_return (gimple stmt)
|
4044 |
|
|
{
|
4045 |
|
|
tree op = gimple_return_retval (stmt);
|
4046 |
|
|
tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
|
4047 |
|
|
|
4048 |
|
|
/* We cannot test for present return values as we do not fix up missing
|
4049 |
|
|
return values from the original source. */
|
4050 |
|
|
if (op == NULL)
|
4051 |
|
|
return false;
|
4052 |
|
|
|
4053 |
|
|
if (!is_gimple_val (op)
|
4054 |
|
|
&& TREE_CODE (op) != RESULT_DECL)
|
4055 |
|
|
{
|
4056 |
|
|
error ("invalid operand in return statement");
|
4057 |
|
|
debug_generic_stmt (op);
|
4058 |
|
|
return true;
|
4059 |
|
|
}
|
4060 |
|
|
|
4061 |
|
|
if ((TREE_CODE (op) == RESULT_DECL
|
4062 |
|
|
&& DECL_BY_REFERENCE (op))
|
4063 |
|
|
|| (TREE_CODE (op) == SSA_NAME
|
4064 |
|
|
&& TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
|
4065 |
|
|
&& DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
|
4066 |
|
|
op = TREE_TYPE (op);
|
4067 |
|
|
|
4068 |
|
|
if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
|
4069 |
|
|
{
|
4070 |
|
|
error ("invalid conversion in return statement");
|
4071 |
|
|
debug_generic_stmt (restype);
|
4072 |
|
|
debug_generic_stmt (TREE_TYPE (op));
|
4073 |
|
|
return true;
|
4074 |
|
|
}
|
4075 |
|
|
|
4076 |
|
|
return false;
|
4077 |
|
|
}
|
4078 |
|
|
|
4079 |
|
|
|
4080 |
|
|
/* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
|
4081 |
|
|
is a problem, otherwise false. */
|
4082 |
|
|
|
4083 |
|
|
static bool
|
4084 |
|
|
verify_gimple_goto (gimple stmt)
|
4085 |
|
|
{
|
4086 |
|
|
tree dest = gimple_goto_dest (stmt);
|
4087 |
|
|
|
4088 |
|
|
/* ??? We have two canonical forms of direct goto destinations, a
|
4089 |
|
|
bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
|
4090 |
|
|
if (TREE_CODE (dest) != LABEL_DECL
|
4091 |
|
|
&& (!is_gimple_val (dest)
|
4092 |
|
|
|| !POINTER_TYPE_P (TREE_TYPE (dest))))
|
4093 |
|
|
{
|
4094 |
|
|
error ("goto destination is neither a label nor a pointer");
|
4095 |
|
|
return true;
|
4096 |
|
|
}
|
4097 |
|
|
|
4098 |
|
|
return false;
|
4099 |
|
|
}
|
4100 |
|
|
|
4101 |
|
|
/* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
|
4102 |
|
|
is a problem, otherwise false. */
|
4103 |
|
|
|
4104 |
|
|
static bool
|
4105 |
|
|
verify_gimple_switch (gimple stmt)
|
4106 |
|
|
{
|
4107 |
|
|
if (!is_gimple_val (gimple_switch_index (stmt)))
|
4108 |
|
|
{
|
4109 |
|
|
error ("invalid operand to switch statement");
|
4110 |
|
|
debug_generic_stmt (gimple_switch_index (stmt));
|
4111 |
|
|
return true;
|
4112 |
|
|
}
|
4113 |
|
|
|
4114 |
|
|
return false;
|
4115 |
|
|
}
|
4116 |
|
|
|
4117 |
|
|
/* Verify a gimple debug statement STMT.
|
4118 |
|
|
Returns true if anything is wrong. */
|
4119 |
|
|
|
4120 |
|
|
static bool
|
4121 |
|
|
verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
|
4122 |
|
|
{
|
4123 |
|
|
/* There isn't much that could be wrong in a gimple debug stmt. A
|
4124 |
|
|
gimple debug bind stmt, for example, maps a tree, that's usually
|
4125 |
|
|
a VAR_DECL or a PARM_DECL, but that could also be some scalarized
|
4126 |
|
|
component or member of an aggregate type, to another tree, that
|
4127 |
|
|
can be an arbitrary expression. These stmts expand into debug
|
4128 |
|
|
insns, and are converted to debug notes by var-tracking.c. */
|
4129 |
|
|
return false;
|
4130 |
|
|
}
|
4131 |
|
|
|
4132 |
|
|
/* Verify a gimple label statement STMT.
|
4133 |
|
|
Returns true if anything is wrong. */
|
4134 |
|
|
|
4135 |
|
|
static bool
|
4136 |
|
|
verify_gimple_label (gimple stmt)
|
4137 |
|
|
{
|
4138 |
|
|
tree decl = gimple_label_label (stmt);
|
4139 |
|
|
int uid;
|
4140 |
|
|
bool err = false;
|
4141 |
|
|
|
4142 |
|
|
if (TREE_CODE (decl) != LABEL_DECL)
|
4143 |
|
|
return true;
|
4144 |
|
|
|
4145 |
|
|
uid = LABEL_DECL_UID (decl);
|
4146 |
|
|
if (cfun->cfg
|
4147 |
|
|
&& (uid == -1
|
4148 |
|
|
|| VEC_index (basic_block,
|
4149 |
|
|
label_to_block_map, uid) != gimple_bb (stmt)))
|
4150 |
|
|
{
|
4151 |
|
|
error ("incorrect entry in label_to_block_map");
|
4152 |
|
|
err |= true;
|
4153 |
|
|
}
|
4154 |
|
|
|
4155 |
|
|
uid = EH_LANDING_PAD_NR (decl);
|
4156 |
|
|
if (uid)
|
4157 |
|
|
{
|
4158 |
|
|
eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
|
4159 |
|
|
if (decl != lp->post_landing_pad)
|
4160 |
|
|
{
|
4161 |
|
|
error ("incorrect setting of landing pad number");
|
4162 |
|
|
err |= true;
|
4163 |
|
|
}
|
4164 |
|
|
}
|
4165 |
|
|
|
4166 |
|
|
return err;
|
4167 |
|
|
}
|
4168 |
|
|
|
4169 |
|
|
/* Verify the GIMPLE statement STMT. Returns true if there is an
|
4170 |
|
|
error, otherwise false. */
|
4171 |
|
|
|
4172 |
|
|
static bool
|
4173 |
|
|
verify_gimple_stmt (gimple stmt)
|
4174 |
|
|
{
|
4175 |
|
|
switch (gimple_code (stmt))
|
4176 |
|
|
{
|
4177 |
|
|
case GIMPLE_ASSIGN:
|
4178 |
|
|
return verify_gimple_assign (stmt);
|
4179 |
|
|
|
4180 |
|
|
case GIMPLE_LABEL:
|
4181 |
|
|
return verify_gimple_label (stmt);
|
4182 |
|
|
|
4183 |
|
|
case GIMPLE_CALL:
|
4184 |
|
|
return verify_gimple_call (stmt);
|
4185 |
|
|
|
4186 |
|
|
case GIMPLE_COND:
|
4187 |
|
|
if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
|
4188 |
|
|
{
|
4189 |
|
|
error ("invalid comparison code in gimple cond");
|
4190 |
|
|
return true;
|
4191 |
|
|
}
|
4192 |
|
|
if (!(!gimple_cond_true_label (stmt)
|
4193 |
|
|
|| TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
|
4194 |
|
|
|| !(!gimple_cond_false_label (stmt)
|
4195 |
|
|
|| TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
|
4196 |
|
|
{
|
4197 |
|
|
error ("invalid labels in gimple cond");
|
4198 |
|
|
return true;
|
4199 |
|
|
}
|
4200 |
|
|
|
4201 |
|
|
return verify_gimple_comparison (boolean_type_node,
|
4202 |
|
|
gimple_cond_lhs (stmt),
|
4203 |
|
|
gimple_cond_rhs (stmt));
|
4204 |
|
|
|
4205 |
|
|
case GIMPLE_GOTO:
|
4206 |
|
|
return verify_gimple_goto (stmt);
|
4207 |
|
|
|
4208 |
|
|
case GIMPLE_SWITCH:
|
4209 |
|
|
return verify_gimple_switch (stmt);
|
4210 |
|
|
|
4211 |
|
|
case GIMPLE_RETURN:
|
4212 |
|
|
return verify_gimple_return (stmt);
|
4213 |
|
|
|
4214 |
|
|
case GIMPLE_ASM:
|
4215 |
|
|
return false;
|
4216 |
|
|
|
4217 |
|
|
case GIMPLE_TRANSACTION:
|
4218 |
|
|
return verify_gimple_transaction (stmt);
|
4219 |
|
|
|
4220 |
|
|
/* Tuples that do not have tree operands. */
|
4221 |
|
|
case GIMPLE_NOP:
|
4222 |
|
|
case GIMPLE_PREDICT:
|
4223 |
|
|
case GIMPLE_RESX:
|
4224 |
|
|
case GIMPLE_EH_DISPATCH:
|
4225 |
|
|
case GIMPLE_EH_MUST_NOT_THROW:
|
4226 |
|
|
return false;
|
4227 |
|
|
|
4228 |
|
|
CASE_GIMPLE_OMP:
|
4229 |
|
|
/* OpenMP directives are validated by the FE and never operated
|
4230 |
|
|
on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
|
4231 |
|
|
non-gimple expressions when the main index variable has had
|
4232 |
|
|
its address taken. This does not affect the loop itself
|
4233 |
|
|
because the header of an GIMPLE_OMP_FOR is merely used to determine
|
4234 |
|
|
how to setup the parallel iteration. */
|
4235 |
|
|
return false;
|
4236 |
|
|
|
4237 |
|
|
case GIMPLE_DEBUG:
|
4238 |
|
|
return verify_gimple_debug (stmt);
|
4239 |
|
|
|
4240 |
|
|
default:
|
4241 |
|
|
gcc_unreachable ();
|
4242 |
|
|
}
|
4243 |
|
|
}
|
4244 |
|
|
|
4245 |
|
|
/* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
|
4246 |
|
|
and false otherwise. */
|
4247 |
|
|
|
4248 |
|
|
static bool
|
4249 |
|
|
verify_gimple_phi (gimple phi)
|
4250 |
|
|
{
|
4251 |
|
|
bool err = false;
|
4252 |
|
|
unsigned i;
|
4253 |
|
|
tree phi_result = gimple_phi_result (phi);
|
4254 |
|
|
bool virtual_p;
|
4255 |
|
|
|
4256 |
|
|
if (!phi_result)
|
4257 |
|
|
{
|
4258 |
|
|
error ("invalid PHI result");
|
4259 |
|
|
return true;
|
4260 |
|
|
}
|
4261 |
|
|
|
4262 |
|
|
virtual_p = !is_gimple_reg (phi_result);
|
4263 |
|
|
if (TREE_CODE (phi_result) != SSA_NAME
|
4264 |
|
|
|| (virtual_p
|
4265 |
|
|
&& SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
|
4266 |
|
|
{
|
4267 |
|
|
error ("invalid PHI result");
|
4268 |
|
|
err = true;
|
4269 |
|
|
}
|
4270 |
|
|
|
4271 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
4272 |
|
|
{
|
4273 |
|
|
tree t = gimple_phi_arg_def (phi, i);
|
4274 |
|
|
|
4275 |
|
|
if (!t)
|
4276 |
|
|
{
|
4277 |
|
|
error ("missing PHI def");
|
4278 |
|
|
err |= true;
|
4279 |
|
|
continue;
|
4280 |
|
|
}
|
4281 |
|
|
/* Addressable variables do have SSA_NAMEs but they
|
4282 |
|
|
are not considered gimple values. */
|
4283 |
|
|
else if ((TREE_CODE (t) == SSA_NAME
|
4284 |
|
|
&& virtual_p != !is_gimple_reg (t))
|
4285 |
|
|
|| (virtual_p
|
4286 |
|
|
&& (TREE_CODE (t) != SSA_NAME
|
4287 |
|
|
|| SSA_NAME_VAR (t) != gimple_vop (cfun)))
|
4288 |
|
|
|| (!virtual_p
|
4289 |
|
|
&& !is_gimple_val (t)))
|
4290 |
|
|
{
|
4291 |
|
|
error ("invalid PHI argument");
|
4292 |
|
|
debug_generic_expr (t);
|
4293 |
|
|
err |= true;
|
4294 |
|
|
}
|
4295 |
|
|
#ifdef ENABLE_TYPES_CHECKING
|
4296 |
|
|
if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
|
4297 |
|
|
{
|
4298 |
|
|
error ("incompatible types in PHI argument %u", i);
|
4299 |
|
|
debug_generic_stmt (TREE_TYPE (phi_result));
|
4300 |
|
|
debug_generic_stmt (TREE_TYPE (t));
|
4301 |
|
|
err |= true;
|
4302 |
|
|
}
|
4303 |
|
|
#endif
|
4304 |
|
|
}
|
4305 |
|
|
|
4306 |
|
|
return err;
|
4307 |
|
|
}
|
4308 |
|
|
|
4309 |
|
|
/* Verify the GIMPLE statements inside the sequence STMTS. */
|
4310 |
|
|
|
4311 |
|
|
static bool
|
4312 |
|
|
verify_gimple_in_seq_2 (gimple_seq stmts)
|
4313 |
|
|
{
|
4314 |
|
|
gimple_stmt_iterator ittr;
|
4315 |
|
|
bool err = false;
|
4316 |
|
|
|
4317 |
|
|
for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
|
4318 |
|
|
{
|
4319 |
|
|
gimple stmt = gsi_stmt (ittr);
|
4320 |
|
|
|
4321 |
|
|
switch (gimple_code (stmt))
|
4322 |
|
|
{
|
4323 |
|
|
case GIMPLE_BIND:
|
4324 |
|
|
err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
|
4325 |
|
|
break;
|
4326 |
|
|
|
4327 |
|
|
case GIMPLE_TRY:
|
4328 |
|
|
err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
|
4329 |
|
|
err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
|
4330 |
|
|
break;
|
4331 |
|
|
|
4332 |
|
|
case GIMPLE_EH_FILTER:
|
4333 |
|
|
err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
|
4334 |
|
|
break;
|
4335 |
|
|
|
4336 |
|
|
case GIMPLE_EH_ELSE:
|
4337 |
|
|
err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
|
4338 |
|
|
err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
|
4339 |
|
|
break;
|
4340 |
|
|
|
4341 |
|
|
case GIMPLE_CATCH:
|
4342 |
|
|
err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
|
4343 |
|
|
break;
|
4344 |
|
|
|
4345 |
|
|
case GIMPLE_TRANSACTION:
|
4346 |
|
|
err |= verify_gimple_transaction (stmt);
|
4347 |
|
|
break;
|
4348 |
|
|
|
4349 |
|
|
default:
|
4350 |
|
|
{
|
4351 |
|
|
bool err2 = verify_gimple_stmt (stmt);
|
4352 |
|
|
if (err2)
|
4353 |
|
|
debug_gimple_stmt (stmt);
|
4354 |
|
|
err |= err2;
|
4355 |
|
|
}
|
4356 |
|
|
}
|
4357 |
|
|
}
|
4358 |
|
|
|
4359 |
|
|
return err;
|
4360 |
|
|
}
|
4361 |
|
|
|
4362 |
|
|
/* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
|
4363 |
|
|
is a problem, otherwise false. */
|
4364 |
|
|
|
4365 |
|
|
static bool
|
4366 |
|
|
verify_gimple_transaction (gimple stmt)
|
4367 |
|
|
{
|
4368 |
|
|
tree lab = gimple_transaction_label (stmt);
|
4369 |
|
|
if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
|
4370 |
|
|
return true;
|
4371 |
|
|
return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
|
4372 |
|
|
}
|
4373 |
|
|
|
4374 |
|
|
|
4375 |
|
|
/* Verify the GIMPLE statements inside the statement list STMTS. */
|
4376 |
|
|
|
4377 |
|
|
DEBUG_FUNCTION void
|
4378 |
|
|
verify_gimple_in_seq (gimple_seq stmts)
|
4379 |
|
|
{
|
4380 |
|
|
timevar_push (TV_TREE_STMT_VERIFY);
|
4381 |
|
|
if (verify_gimple_in_seq_2 (stmts))
|
4382 |
|
|
internal_error ("verify_gimple failed");
|
4383 |
|
|
timevar_pop (TV_TREE_STMT_VERIFY);
|
4384 |
|
|
}
|
4385 |
|
|
|
4386 |
|
|
/* Return true when the T can be shared. */
|
4387 |
|
|
|
4388 |
|
|
bool
|
4389 |
|
|
tree_node_can_be_shared (tree t)
|
4390 |
|
|
{
|
4391 |
|
|
if (IS_TYPE_OR_DECL_P (t)
|
4392 |
|
|
|| is_gimple_min_invariant (t)
|
4393 |
|
|
|| TREE_CODE (t) == SSA_NAME
|
4394 |
|
|
|| t == error_mark_node
|
4395 |
|
|
|| TREE_CODE (t) == IDENTIFIER_NODE)
|
4396 |
|
|
return true;
|
4397 |
|
|
|
4398 |
|
|
if (TREE_CODE (t) == CASE_LABEL_EXPR)
|
4399 |
|
|
return true;
|
4400 |
|
|
|
4401 |
|
|
while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
|
4402 |
|
|
&& is_gimple_min_invariant (TREE_OPERAND (t, 1)))
|
4403 |
|
|
|| TREE_CODE (t) == COMPONENT_REF
|
4404 |
|
|
|| TREE_CODE (t) == REALPART_EXPR
|
4405 |
|
|
|| TREE_CODE (t) == IMAGPART_EXPR)
|
4406 |
|
|
t = TREE_OPERAND (t, 0);
|
4407 |
|
|
|
4408 |
|
|
if (DECL_P (t))
|
4409 |
|
|
return true;
|
4410 |
|
|
|
4411 |
|
|
return false;
|
4412 |
|
|
}
|
4413 |
|
|
|
4414 |
|
|
/* Called via walk_gimple_stmt. Verify tree sharing. */
|
4415 |
|
|
|
4416 |
|
|
static tree
|
4417 |
|
|
verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
|
4418 |
|
|
{
|
4419 |
|
|
struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
|
4420 |
|
|
struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
|
4421 |
|
|
|
4422 |
|
|
if (tree_node_can_be_shared (*tp))
|
4423 |
|
|
{
|
4424 |
|
|
*walk_subtrees = false;
|
4425 |
|
|
return NULL;
|
4426 |
|
|
}
|
4427 |
|
|
|
4428 |
|
|
if (pointer_set_insert (visited, *tp))
|
4429 |
|
|
return *tp;
|
4430 |
|
|
|
4431 |
|
|
return NULL;
|
4432 |
|
|
}
|
4433 |
|
|
|
4434 |
|
|
static bool eh_error_found;
|
4435 |
|
|
static int
|
4436 |
|
|
verify_eh_throw_stmt_node (void **slot, void *data)
|
4437 |
|
|
{
|
4438 |
|
|
struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
|
4439 |
|
|
struct pointer_set_t *visited = (struct pointer_set_t *) data;
|
4440 |
|
|
|
4441 |
|
|
if (!pointer_set_contains (visited, node->stmt))
|
4442 |
|
|
{
|
4443 |
|
|
error ("dead STMT in EH table");
|
4444 |
|
|
debug_gimple_stmt (node->stmt);
|
4445 |
|
|
eh_error_found = true;
|
4446 |
|
|
}
|
4447 |
|
|
return 1;
|
4448 |
|
|
}
|
4449 |
|
|
|
4450 |
|
|
/* Verify the GIMPLE statements in the CFG of FN. */
|
4451 |
|
|
|
4452 |
|
|
DEBUG_FUNCTION void
|
4453 |
|
|
verify_gimple_in_cfg (struct function *fn)
|
4454 |
|
|
{
|
4455 |
|
|
basic_block bb;
|
4456 |
|
|
bool err = false;
|
4457 |
|
|
struct pointer_set_t *visited, *visited_stmts;
|
4458 |
|
|
|
4459 |
|
|
timevar_push (TV_TREE_STMT_VERIFY);
|
4460 |
|
|
visited = pointer_set_create ();
|
4461 |
|
|
visited_stmts = pointer_set_create ();
|
4462 |
|
|
|
4463 |
|
|
FOR_EACH_BB_FN (bb, fn)
|
4464 |
|
|
{
|
4465 |
|
|
gimple_stmt_iterator gsi;
|
4466 |
|
|
|
4467 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
4468 |
|
|
{
|
4469 |
|
|
gimple phi = gsi_stmt (gsi);
|
4470 |
|
|
bool err2 = false;
|
4471 |
|
|
unsigned i;
|
4472 |
|
|
|
4473 |
|
|
pointer_set_insert (visited_stmts, phi);
|
4474 |
|
|
|
4475 |
|
|
if (gimple_bb (phi) != bb)
|
4476 |
|
|
{
|
4477 |
|
|
error ("gimple_bb (phi) is set to a wrong basic block");
|
4478 |
|
|
err2 = true;
|
4479 |
|
|
}
|
4480 |
|
|
|
4481 |
|
|
err2 |= verify_gimple_phi (phi);
|
4482 |
|
|
|
4483 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
4484 |
|
|
{
|
4485 |
|
|
tree arg = gimple_phi_arg_def (phi, i);
|
4486 |
|
|
tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
|
4487 |
|
|
if (addr)
|
4488 |
|
|
{
|
4489 |
|
|
error ("incorrect sharing of tree nodes");
|
4490 |
|
|
debug_generic_expr (addr);
|
4491 |
|
|
err2 |= true;
|
4492 |
|
|
}
|
4493 |
|
|
}
|
4494 |
|
|
|
4495 |
|
|
if (err2)
|
4496 |
|
|
debug_gimple_stmt (phi);
|
4497 |
|
|
err |= err2;
|
4498 |
|
|
}
|
4499 |
|
|
|
4500 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
4501 |
|
|
{
|
4502 |
|
|
gimple stmt = gsi_stmt (gsi);
|
4503 |
|
|
bool err2 = false;
|
4504 |
|
|
struct walk_stmt_info wi;
|
4505 |
|
|
tree addr;
|
4506 |
|
|
int lp_nr;
|
4507 |
|
|
|
4508 |
|
|
pointer_set_insert (visited_stmts, stmt);
|
4509 |
|
|
|
4510 |
|
|
if (gimple_bb (stmt) != bb)
|
4511 |
|
|
{
|
4512 |
|
|
error ("gimple_bb (stmt) is set to a wrong basic block");
|
4513 |
|
|
err2 = true;
|
4514 |
|
|
}
|
4515 |
|
|
|
4516 |
|
|
err2 |= verify_gimple_stmt (stmt);
|
4517 |
|
|
|
4518 |
|
|
memset (&wi, 0, sizeof (wi));
|
4519 |
|
|
wi.info = (void *) visited;
|
4520 |
|
|
addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
|
4521 |
|
|
if (addr)
|
4522 |
|
|
{
|
4523 |
|
|
error ("incorrect sharing of tree nodes");
|
4524 |
|
|
debug_generic_expr (addr);
|
4525 |
|
|
err2 |= true;
|
4526 |
|
|
}
|
4527 |
|
|
|
4528 |
|
|
/* ??? Instead of not checking these stmts at all the walker
|
4529 |
|
|
should know its context via wi. */
|
4530 |
|
|
if (!is_gimple_debug (stmt)
|
4531 |
|
|
&& !is_gimple_omp (stmt))
|
4532 |
|
|
{
|
4533 |
|
|
memset (&wi, 0, sizeof (wi));
|
4534 |
|
|
addr = walk_gimple_op (stmt, verify_expr, &wi);
|
4535 |
|
|
if (addr)
|
4536 |
|
|
{
|
4537 |
|
|
debug_generic_expr (addr);
|
4538 |
|
|
inform (gimple_location (stmt), "in statement");
|
4539 |
|
|
err2 |= true;
|
4540 |
|
|
}
|
4541 |
|
|
}
|
4542 |
|
|
|
4543 |
|
|
/* If the statement is marked as part of an EH region, then it is
|
4544 |
|
|
expected that the statement could throw. Verify that when we
|
4545 |
|
|
have optimizations that simplify statements such that we prove
|
4546 |
|
|
that they cannot throw, that we update other data structures
|
4547 |
|
|
to match. */
|
4548 |
|
|
lp_nr = lookup_stmt_eh_lp (stmt);
|
4549 |
|
|
if (lp_nr != 0)
|
4550 |
|
|
{
|
4551 |
|
|
if (!stmt_could_throw_p (stmt))
|
4552 |
|
|
{
|
4553 |
|
|
error ("statement marked for throw, but doesn%'t");
|
4554 |
|
|
err2 |= true;
|
4555 |
|
|
}
|
4556 |
|
|
else if (lp_nr > 0
|
4557 |
|
|
&& !gsi_one_before_end_p (gsi)
|
4558 |
|
|
&& stmt_can_throw_internal (stmt))
|
4559 |
|
|
{
|
4560 |
|
|
error ("statement marked for throw in middle of block");
|
4561 |
|
|
err2 |= true;
|
4562 |
|
|
}
|
4563 |
|
|
}
|
4564 |
|
|
|
4565 |
|
|
if (err2)
|
4566 |
|
|
debug_gimple_stmt (stmt);
|
4567 |
|
|
err |= err2;
|
4568 |
|
|
}
|
4569 |
|
|
}
|
4570 |
|
|
|
4571 |
|
|
eh_error_found = false;
|
4572 |
|
|
if (get_eh_throw_stmt_table (cfun))
|
4573 |
|
|
htab_traverse (get_eh_throw_stmt_table (cfun),
|
4574 |
|
|
verify_eh_throw_stmt_node,
|
4575 |
|
|
visited_stmts);
|
4576 |
|
|
|
4577 |
|
|
if (err || eh_error_found)
|
4578 |
|
|
internal_error ("verify_gimple failed");
|
4579 |
|
|
|
4580 |
|
|
pointer_set_destroy (visited);
|
4581 |
|
|
pointer_set_destroy (visited_stmts);
|
4582 |
|
|
verify_histograms ();
|
4583 |
|
|
timevar_pop (TV_TREE_STMT_VERIFY);
|
4584 |
|
|
}
|
4585 |
|
|
|
4586 |
|
|
|
4587 |
|
|
/* Verifies that the flow information is OK. */
|
4588 |
|
|
|
4589 |
|
|
static int
|
4590 |
|
|
gimple_verify_flow_info (void)
|
4591 |
|
|
{
|
4592 |
|
|
int err = 0;
|
4593 |
|
|
basic_block bb;
|
4594 |
|
|
gimple_stmt_iterator gsi;
|
4595 |
|
|
gimple stmt;
|
4596 |
|
|
edge e;
|
4597 |
|
|
edge_iterator ei;
|
4598 |
|
|
|
4599 |
|
|
if (ENTRY_BLOCK_PTR->il.gimple)
|
4600 |
|
|
{
|
4601 |
|
|
error ("ENTRY_BLOCK has IL associated with it");
|
4602 |
|
|
err = 1;
|
4603 |
|
|
}
|
4604 |
|
|
|
4605 |
|
|
if (EXIT_BLOCK_PTR->il.gimple)
|
4606 |
|
|
{
|
4607 |
|
|
error ("EXIT_BLOCK has IL associated with it");
|
4608 |
|
|
err = 1;
|
4609 |
|
|
}
|
4610 |
|
|
|
4611 |
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
4612 |
|
|
if (e->flags & EDGE_FALLTHRU)
|
4613 |
|
|
{
|
4614 |
|
|
error ("fallthru to exit from bb %d", e->src->index);
|
4615 |
|
|
err = 1;
|
4616 |
|
|
}
|
4617 |
|
|
|
4618 |
|
|
FOR_EACH_BB (bb)
|
4619 |
|
|
{
|
4620 |
|
|
bool found_ctrl_stmt = false;
|
4621 |
|
|
|
4622 |
|
|
stmt = NULL;
|
4623 |
|
|
|
4624 |
|
|
/* Skip labels on the start of basic block. */
|
4625 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
4626 |
|
|
{
|
4627 |
|
|
tree label;
|
4628 |
|
|
gimple prev_stmt = stmt;
|
4629 |
|
|
|
4630 |
|
|
stmt = gsi_stmt (gsi);
|
4631 |
|
|
|
4632 |
|
|
if (gimple_code (stmt) != GIMPLE_LABEL)
|
4633 |
|
|
break;
|
4634 |
|
|
|
4635 |
|
|
label = gimple_label_label (stmt);
|
4636 |
|
|
if (prev_stmt && DECL_NONLOCAL (label))
|
4637 |
|
|
{
|
4638 |
|
|
error ("nonlocal label ");
|
4639 |
|
|
print_generic_expr (stderr, label, 0);
|
4640 |
|
|
fprintf (stderr, " is not first in a sequence of labels in bb %d",
|
4641 |
|
|
bb->index);
|
4642 |
|
|
err = 1;
|
4643 |
|
|
}
|
4644 |
|
|
|
4645 |
|
|
if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
|
4646 |
|
|
{
|
4647 |
|
|
error ("EH landing pad label ");
|
4648 |
|
|
print_generic_expr (stderr, label, 0);
|
4649 |
|
|
fprintf (stderr, " is not first in a sequence of labels in bb %d",
|
4650 |
|
|
bb->index);
|
4651 |
|
|
err = 1;
|
4652 |
|
|
}
|
4653 |
|
|
|
4654 |
|
|
if (label_to_block (label) != bb)
|
4655 |
|
|
{
|
4656 |
|
|
error ("label ");
|
4657 |
|
|
print_generic_expr (stderr, label, 0);
|
4658 |
|
|
fprintf (stderr, " to block does not match in bb %d",
|
4659 |
|
|
bb->index);
|
4660 |
|
|
err = 1;
|
4661 |
|
|
}
|
4662 |
|
|
|
4663 |
|
|
if (decl_function_context (label) != current_function_decl)
|
4664 |
|
|
{
|
4665 |
|
|
error ("label ");
|
4666 |
|
|
print_generic_expr (stderr, label, 0);
|
4667 |
|
|
fprintf (stderr, " has incorrect context in bb %d",
|
4668 |
|
|
bb->index);
|
4669 |
|
|
err = 1;
|
4670 |
|
|
}
|
4671 |
|
|
}
|
4672 |
|
|
|
4673 |
|
|
/* Verify that body of basic block BB is free of control flow. */
|
4674 |
|
|
for (; !gsi_end_p (gsi); gsi_next (&gsi))
|
4675 |
|
|
{
|
4676 |
|
|
gimple stmt = gsi_stmt (gsi);
|
4677 |
|
|
|
4678 |
|
|
if (found_ctrl_stmt)
|
4679 |
|
|
{
|
4680 |
|
|
error ("control flow in the middle of basic block %d",
|
4681 |
|
|
bb->index);
|
4682 |
|
|
err = 1;
|
4683 |
|
|
}
|
4684 |
|
|
|
4685 |
|
|
if (stmt_ends_bb_p (stmt))
|
4686 |
|
|
found_ctrl_stmt = true;
|
4687 |
|
|
|
4688 |
|
|
if (gimple_code (stmt) == GIMPLE_LABEL)
|
4689 |
|
|
{
|
4690 |
|
|
error ("label ");
|
4691 |
|
|
print_generic_expr (stderr, gimple_label_label (stmt), 0);
|
4692 |
|
|
fprintf (stderr, " in the middle of basic block %d", bb->index);
|
4693 |
|
|
err = 1;
|
4694 |
|
|
}
|
4695 |
|
|
}
|
4696 |
|
|
|
4697 |
|
|
gsi = gsi_last_bb (bb);
|
4698 |
|
|
if (gsi_end_p (gsi))
|
4699 |
|
|
continue;
|
4700 |
|
|
|
4701 |
|
|
stmt = gsi_stmt (gsi);
|
4702 |
|
|
|
4703 |
|
|
if (gimple_code (stmt) == GIMPLE_LABEL)
|
4704 |
|
|
continue;
|
4705 |
|
|
|
4706 |
|
|
err |= verify_eh_edges (stmt);
|
4707 |
|
|
|
4708 |
|
|
if (is_ctrl_stmt (stmt))
|
4709 |
|
|
{
|
4710 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
4711 |
|
|
if (e->flags & EDGE_FALLTHRU)
|
4712 |
|
|
{
|
4713 |
|
|
error ("fallthru edge after a control statement in bb %d",
|
4714 |
|
|
bb->index);
|
4715 |
|
|
err = 1;
|
4716 |
|
|
}
|
4717 |
|
|
}
|
4718 |
|
|
|
4719 |
|
|
if (gimple_code (stmt) != GIMPLE_COND)
|
4720 |
|
|
{
|
4721 |
|
|
/* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
|
4722 |
|
|
after anything else but if statement. */
|
4723 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
4724 |
|
|
if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
|
4725 |
|
|
{
|
4726 |
|
|
error ("true/false edge after a non-GIMPLE_COND in bb %d",
|
4727 |
|
|
bb->index);
|
4728 |
|
|
err = 1;
|
4729 |
|
|
}
|
4730 |
|
|
}
|
4731 |
|
|
|
4732 |
|
|
switch (gimple_code (stmt))
|
4733 |
|
|
{
|
4734 |
|
|
case GIMPLE_COND:
|
4735 |
|
|
{
|
4736 |
|
|
edge true_edge;
|
4737 |
|
|
edge false_edge;
|
4738 |
|
|
|
4739 |
|
|
extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
|
4740 |
|
|
|
4741 |
|
|
if (!true_edge
|
4742 |
|
|
|| !false_edge
|
4743 |
|
|
|| !(true_edge->flags & EDGE_TRUE_VALUE)
|
4744 |
|
|
|| !(false_edge->flags & EDGE_FALSE_VALUE)
|
4745 |
|
|
|| (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
|
4746 |
|
|
|| (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
|
4747 |
|
|
|| EDGE_COUNT (bb->succs) >= 3)
|
4748 |
|
|
{
|
4749 |
|
|
error ("wrong outgoing edge flags at end of bb %d",
|
4750 |
|
|
bb->index);
|
4751 |
|
|
err = 1;
|
4752 |
|
|
}
|
4753 |
|
|
}
|
4754 |
|
|
break;
|
4755 |
|
|
|
4756 |
|
|
case GIMPLE_GOTO:
|
4757 |
|
|
if (simple_goto_p (stmt))
|
4758 |
|
|
{
|
4759 |
|
|
error ("explicit goto at end of bb %d", bb->index);
|
4760 |
|
|
err = 1;
|
4761 |
|
|
}
|
4762 |
|
|
else
|
4763 |
|
|
{
|
4764 |
|
|
/* FIXME. We should double check that the labels in the
|
4765 |
|
|
destination blocks have their address taken. */
|
4766 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
4767 |
|
|
if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
|
4768 |
|
|
| EDGE_FALSE_VALUE))
|
4769 |
|
|
|| !(e->flags & EDGE_ABNORMAL))
|
4770 |
|
|
{
|
4771 |
|
|
error ("wrong outgoing edge flags at end of bb %d",
|
4772 |
|
|
bb->index);
|
4773 |
|
|
err = 1;
|
4774 |
|
|
}
|
4775 |
|
|
}
|
4776 |
|
|
break;
|
4777 |
|
|
|
4778 |
|
|
case GIMPLE_CALL:
|
4779 |
|
|
if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
|
4780 |
|
|
break;
|
4781 |
|
|
/* ... fallthru ... */
|
4782 |
|
|
case GIMPLE_RETURN:
|
4783 |
|
|
if (!single_succ_p (bb)
|
4784 |
|
|
|| (single_succ_edge (bb)->flags
|
4785 |
|
|
& (EDGE_FALLTHRU | EDGE_ABNORMAL
|
4786 |
|
|
| EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
|
4787 |
|
|
{
|
4788 |
|
|
error ("wrong outgoing edge flags at end of bb %d", bb->index);
|
4789 |
|
|
err = 1;
|
4790 |
|
|
}
|
4791 |
|
|
if (single_succ (bb) != EXIT_BLOCK_PTR)
|
4792 |
|
|
{
|
4793 |
|
|
error ("return edge does not point to exit in bb %d",
|
4794 |
|
|
bb->index);
|
4795 |
|
|
err = 1;
|
4796 |
|
|
}
|
4797 |
|
|
break;
|
4798 |
|
|
|
4799 |
|
|
case GIMPLE_SWITCH:
|
4800 |
|
|
{
|
4801 |
|
|
tree prev;
|
4802 |
|
|
edge e;
|
4803 |
|
|
size_t i, n;
|
4804 |
|
|
|
4805 |
|
|
n = gimple_switch_num_labels (stmt);
|
4806 |
|
|
|
4807 |
|
|
/* Mark all the destination basic blocks. */
|
4808 |
|
|
for (i = 0; i < n; ++i)
|
4809 |
|
|
{
|
4810 |
|
|
tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
|
4811 |
|
|
basic_block label_bb = label_to_block (lab);
|
4812 |
|
|
gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
|
4813 |
|
|
label_bb->aux = (void *)1;
|
4814 |
|
|
}
|
4815 |
|
|
|
4816 |
|
|
/* Verify that the case labels are sorted. */
|
4817 |
|
|
prev = gimple_switch_label (stmt, 0);
|
4818 |
|
|
for (i = 1; i < n; ++i)
|
4819 |
|
|
{
|
4820 |
|
|
tree c = gimple_switch_label (stmt, i);
|
4821 |
|
|
if (!CASE_LOW (c))
|
4822 |
|
|
{
|
4823 |
|
|
error ("found default case not at the start of "
|
4824 |
|
|
"case vector");
|
4825 |
|
|
err = 1;
|
4826 |
|
|
continue;
|
4827 |
|
|
}
|
4828 |
|
|
if (CASE_LOW (prev)
|
4829 |
|
|
&& !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
|
4830 |
|
|
{
|
4831 |
|
|
error ("case labels not sorted: ");
|
4832 |
|
|
print_generic_expr (stderr, prev, 0);
|
4833 |
|
|
fprintf (stderr," is greater than ");
|
4834 |
|
|
print_generic_expr (stderr, c, 0);
|
4835 |
|
|
fprintf (stderr," but comes before it.\n");
|
4836 |
|
|
err = 1;
|
4837 |
|
|
}
|
4838 |
|
|
prev = c;
|
4839 |
|
|
}
|
4840 |
|
|
/* VRP will remove the default case if it can prove it will
|
4841 |
|
|
never be executed. So do not verify there always exists
|
4842 |
|
|
a default case here. */
|
4843 |
|
|
|
4844 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
4845 |
|
|
{
|
4846 |
|
|
if (!e->dest->aux)
|
4847 |
|
|
{
|
4848 |
|
|
error ("extra outgoing edge %d->%d",
|
4849 |
|
|
bb->index, e->dest->index);
|
4850 |
|
|
err = 1;
|
4851 |
|
|
}
|
4852 |
|
|
|
4853 |
|
|
e->dest->aux = (void *)2;
|
4854 |
|
|
if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
|
4855 |
|
|
| EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
|
4856 |
|
|
{
|
4857 |
|
|
error ("wrong outgoing edge flags at end of bb %d",
|
4858 |
|
|
bb->index);
|
4859 |
|
|
err = 1;
|
4860 |
|
|
}
|
4861 |
|
|
}
|
4862 |
|
|
|
4863 |
|
|
/* Check that we have all of them. */
|
4864 |
|
|
for (i = 0; i < n; ++i)
|
4865 |
|
|
{
|
4866 |
|
|
tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
|
4867 |
|
|
basic_block label_bb = label_to_block (lab);
|
4868 |
|
|
|
4869 |
|
|
if (label_bb->aux != (void *)2)
|
4870 |
|
|
{
|
4871 |
|
|
error ("missing edge %i->%i", bb->index, label_bb->index);
|
4872 |
|
|
err = 1;
|
4873 |
|
|
}
|
4874 |
|
|
}
|
4875 |
|
|
|
4876 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
4877 |
|
|
e->dest->aux = (void *)0;
|
4878 |
|
|
}
|
4879 |
|
|
break;
|
4880 |
|
|
|
4881 |
|
|
case GIMPLE_EH_DISPATCH:
|
4882 |
|
|
err |= verify_eh_dispatch_edge (stmt);
|
4883 |
|
|
break;
|
4884 |
|
|
|
4885 |
|
|
default:
|
4886 |
|
|
break;
|
4887 |
|
|
}
|
4888 |
|
|
}
|
4889 |
|
|
|
4890 |
|
|
if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
|
4891 |
|
|
verify_dominators (CDI_DOMINATORS);
|
4892 |
|
|
|
4893 |
|
|
return err;
|
4894 |
|
|
}
|
4895 |
|
|
|
4896 |
|
|
|
4897 |
|
|
/* Updates phi nodes after creating a forwarder block joined
|
4898 |
|
|
by edge FALLTHRU. */
|
4899 |
|
|
|
4900 |
|
|
static void
|
4901 |
|
|
gimple_make_forwarder_block (edge fallthru)
|
4902 |
|
|
{
|
4903 |
|
|
edge e;
|
4904 |
|
|
edge_iterator ei;
|
4905 |
|
|
basic_block dummy, bb;
|
4906 |
|
|
tree var;
|
4907 |
|
|
gimple_stmt_iterator gsi;
|
4908 |
|
|
|
4909 |
|
|
dummy = fallthru->src;
|
4910 |
|
|
bb = fallthru->dest;
|
4911 |
|
|
|
4912 |
|
|
if (single_pred_p (bb))
|
4913 |
|
|
return;
|
4914 |
|
|
|
4915 |
|
|
/* If we redirected a branch we must create new PHI nodes at the
|
4916 |
|
|
start of BB. */
|
4917 |
|
|
for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
|
4918 |
|
|
{
|
4919 |
|
|
gimple phi, new_phi;
|
4920 |
|
|
|
4921 |
|
|
phi = gsi_stmt (gsi);
|
4922 |
|
|
var = gimple_phi_result (phi);
|
4923 |
|
|
new_phi = create_phi_node (var, bb);
|
4924 |
|
|
SSA_NAME_DEF_STMT (var) = new_phi;
|
4925 |
|
|
gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
|
4926 |
|
|
add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
|
4927 |
|
|
UNKNOWN_LOCATION);
|
4928 |
|
|
}
|
4929 |
|
|
|
4930 |
|
|
/* Add the arguments we have stored on edges. */
|
4931 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
4932 |
|
|
{
|
4933 |
|
|
if (e == fallthru)
|
4934 |
|
|
continue;
|
4935 |
|
|
|
4936 |
|
|
flush_pending_stmts (e);
|
4937 |
|
|
}
|
4938 |
|
|
}
|
4939 |
|
|
|
4940 |
|
|
|
4941 |
|
|
/* Return a non-special label in the head of basic block BLOCK.
|
4942 |
|
|
Create one if it doesn't exist. */
|
4943 |
|
|
|
4944 |
|
|
tree
|
4945 |
|
|
gimple_block_label (basic_block bb)
|
4946 |
|
|
{
|
4947 |
|
|
gimple_stmt_iterator i, s = gsi_start_bb (bb);
|
4948 |
|
|
bool first = true;
|
4949 |
|
|
tree label;
|
4950 |
|
|
gimple stmt;
|
4951 |
|
|
|
4952 |
|
|
for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
|
4953 |
|
|
{
|
4954 |
|
|
stmt = gsi_stmt (i);
|
4955 |
|
|
if (gimple_code (stmt) != GIMPLE_LABEL)
|
4956 |
|
|
break;
|
4957 |
|
|
label = gimple_label_label (stmt);
|
4958 |
|
|
if (!DECL_NONLOCAL (label))
|
4959 |
|
|
{
|
4960 |
|
|
if (!first)
|
4961 |
|
|
gsi_move_before (&i, &s);
|
4962 |
|
|
return label;
|
4963 |
|
|
}
|
4964 |
|
|
}
|
4965 |
|
|
|
4966 |
|
|
label = create_artificial_label (UNKNOWN_LOCATION);
|
4967 |
|
|
stmt = gimple_build_label (label);
|
4968 |
|
|
gsi_insert_before (&s, stmt, GSI_NEW_STMT);
|
4969 |
|
|
return label;
|
4970 |
|
|
}
|
4971 |
|
|
|
4972 |
|
|
|
4973 |
|
|
/* Attempt to perform edge redirection by replacing a possibly complex
|
4974 |
|
|
jump instruction by a goto or by removing the jump completely.
|
4975 |
|
|
This can apply only if all edges now point to the same block. The
|
4976 |
|
|
parameters and return values are equivalent to
|
4977 |
|
|
redirect_edge_and_branch. */
|
4978 |
|
|
|
4979 |
|
|
static edge
|
4980 |
|
|
gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
|
4981 |
|
|
{
|
4982 |
|
|
basic_block src = e->src;
|
4983 |
|
|
gimple_stmt_iterator i;
|
4984 |
|
|
gimple stmt;
|
4985 |
|
|
|
4986 |
|
|
/* We can replace or remove a complex jump only when we have exactly
|
4987 |
|
|
two edges. */
|
4988 |
|
|
if (EDGE_COUNT (src->succs) != 2
|
4989 |
|
|
/* Verify that all targets will be TARGET. Specifically, the
|
4990 |
|
|
edge that is not E must also go to TARGET. */
|
4991 |
|
|
|| EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
|
4992 |
|
|
return NULL;
|
4993 |
|
|
|
4994 |
|
|
i = gsi_last_bb (src);
|
4995 |
|
|
if (gsi_end_p (i))
|
4996 |
|
|
return NULL;
|
4997 |
|
|
|
4998 |
|
|
stmt = gsi_stmt (i);
|
4999 |
|
|
|
5000 |
|
|
if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
|
5001 |
|
|
{
|
5002 |
|
|
gsi_remove (&i, true);
|
5003 |
|
|
e = ssa_redirect_edge (e, target);
|
5004 |
|
|
e->flags = EDGE_FALLTHRU;
|
5005 |
|
|
return e;
|
5006 |
|
|
}
|
5007 |
|
|
|
5008 |
|
|
return NULL;
|
5009 |
|
|
}
|
5010 |
|
|
|
5011 |
|
|
|
5012 |
|
|
/* Redirect E to DEST. Return NULL on failure. Otherwise, return the
|
5013 |
|
|
edge representing the redirected branch. */
|
5014 |
|
|
|
5015 |
|
|
static edge
|
5016 |
|
|
gimple_redirect_edge_and_branch (edge e, basic_block dest)
|
5017 |
|
|
{
|
5018 |
|
|
basic_block bb = e->src;
|
5019 |
|
|
gimple_stmt_iterator gsi;
|
5020 |
|
|
edge ret;
|
5021 |
|
|
gimple stmt;
|
5022 |
|
|
|
5023 |
|
|
if (e->flags & EDGE_ABNORMAL)
|
5024 |
|
|
return NULL;
|
5025 |
|
|
|
5026 |
|
|
if (e->dest == dest)
|
5027 |
|
|
return NULL;
|
5028 |
|
|
|
5029 |
|
|
if (e->flags & EDGE_EH)
|
5030 |
|
|
return redirect_eh_edge (e, dest);
|
5031 |
|
|
|
5032 |
|
|
if (e->src != ENTRY_BLOCK_PTR)
|
5033 |
|
|
{
|
5034 |
|
|
ret = gimple_try_redirect_by_replacing_jump (e, dest);
|
5035 |
|
|
if (ret)
|
5036 |
|
|
return ret;
|
5037 |
|
|
}
|
5038 |
|
|
|
5039 |
|
|
gsi = gsi_last_bb (bb);
|
5040 |
|
|
stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
|
5041 |
|
|
|
5042 |
|
|
switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
|
5043 |
|
|
{
|
5044 |
|
|
case GIMPLE_COND:
|
5045 |
|
|
/* For COND_EXPR, we only need to redirect the edge. */
|
5046 |
|
|
break;
|
5047 |
|
|
|
5048 |
|
|
case GIMPLE_GOTO:
|
5049 |
|
|
/* No non-abnormal edges should lead from a non-simple goto, and
|
5050 |
|
|
simple ones should be represented implicitly. */
|
5051 |
|
|
gcc_unreachable ();
|
5052 |
|
|
|
5053 |
|
|
case GIMPLE_SWITCH:
|
5054 |
|
|
{
|
5055 |
|
|
tree label = gimple_block_label (dest);
|
5056 |
|
|
tree cases = get_cases_for_edge (e, stmt);
|
5057 |
|
|
|
5058 |
|
|
/* If we have a list of cases associated with E, then use it
|
5059 |
|
|
as it's a lot faster than walking the entire case vector. */
|
5060 |
|
|
if (cases)
|
5061 |
|
|
{
|
5062 |
|
|
edge e2 = find_edge (e->src, dest);
|
5063 |
|
|
tree last, first;
|
5064 |
|
|
|
5065 |
|
|
first = cases;
|
5066 |
|
|
while (cases)
|
5067 |
|
|
{
|
5068 |
|
|
last = cases;
|
5069 |
|
|
CASE_LABEL (cases) = label;
|
5070 |
|
|
cases = CASE_CHAIN (cases);
|
5071 |
|
|
}
|
5072 |
|
|
|
5073 |
|
|
/* If there was already an edge in the CFG, then we need
|
5074 |
|
|
to move all the cases associated with E to E2. */
|
5075 |
|
|
if (e2)
|
5076 |
|
|
{
|
5077 |
|
|
tree cases2 = get_cases_for_edge (e2, stmt);
|
5078 |
|
|
|
5079 |
|
|
CASE_CHAIN (last) = CASE_CHAIN (cases2);
|
5080 |
|
|
CASE_CHAIN (cases2) = first;
|
5081 |
|
|
}
|
5082 |
|
|
bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
|
5083 |
|
|
}
|
5084 |
|
|
else
|
5085 |
|
|
{
|
5086 |
|
|
size_t i, n = gimple_switch_num_labels (stmt);
|
5087 |
|
|
|
5088 |
|
|
for (i = 0; i < n; i++)
|
5089 |
|
|
{
|
5090 |
|
|
tree elt = gimple_switch_label (stmt, i);
|
5091 |
|
|
if (label_to_block (CASE_LABEL (elt)) == e->dest)
|
5092 |
|
|
CASE_LABEL (elt) = label;
|
5093 |
|
|
}
|
5094 |
|
|
}
|
5095 |
|
|
}
|
5096 |
|
|
break;
|
5097 |
|
|
|
5098 |
|
|
case GIMPLE_ASM:
|
5099 |
|
|
{
|
5100 |
|
|
int i, n = gimple_asm_nlabels (stmt);
|
5101 |
|
|
tree label = NULL;
|
5102 |
|
|
|
5103 |
|
|
for (i = 0; i < n; ++i)
|
5104 |
|
|
{
|
5105 |
|
|
tree cons = gimple_asm_label_op (stmt, i);
|
5106 |
|
|
if (label_to_block (TREE_VALUE (cons)) == e->dest)
|
5107 |
|
|
{
|
5108 |
|
|
if (!label)
|
5109 |
|
|
label = gimple_block_label (dest);
|
5110 |
|
|
TREE_VALUE (cons) = label;
|
5111 |
|
|
}
|
5112 |
|
|
}
|
5113 |
|
|
|
5114 |
|
|
/* If we didn't find any label matching the former edge in the
|
5115 |
|
|
asm labels, we must be redirecting the fallthrough
|
5116 |
|
|
edge. */
|
5117 |
|
|
gcc_assert (label || (e->flags & EDGE_FALLTHRU));
|
5118 |
|
|
}
|
5119 |
|
|
break;
|
5120 |
|
|
|
5121 |
|
|
case GIMPLE_RETURN:
|
5122 |
|
|
gsi_remove (&gsi, true);
|
5123 |
|
|
e->flags |= EDGE_FALLTHRU;
|
5124 |
|
|
break;
|
5125 |
|
|
|
5126 |
|
|
case GIMPLE_OMP_RETURN:
|
5127 |
|
|
case GIMPLE_OMP_CONTINUE:
|
5128 |
|
|
case GIMPLE_OMP_SECTIONS_SWITCH:
|
5129 |
|
|
case GIMPLE_OMP_FOR:
|
5130 |
|
|
/* The edges from OMP constructs can be simply redirected. */
|
5131 |
|
|
break;
|
5132 |
|
|
|
5133 |
|
|
case GIMPLE_EH_DISPATCH:
|
5134 |
|
|
if (!(e->flags & EDGE_FALLTHRU))
|
5135 |
|
|
redirect_eh_dispatch_edge (stmt, e, dest);
|
5136 |
|
|
break;
|
5137 |
|
|
|
5138 |
|
|
case GIMPLE_TRANSACTION:
|
5139 |
|
|
/* The ABORT edge has a stored label associated with it, otherwise
|
5140 |
|
|
the edges are simply redirectable. */
|
5141 |
|
|
if (e->flags == 0)
|
5142 |
|
|
gimple_transaction_set_label (stmt, gimple_block_label (dest));
|
5143 |
|
|
break;
|
5144 |
|
|
|
5145 |
|
|
default:
|
5146 |
|
|
/* Otherwise it must be a fallthru edge, and we don't need to
|
5147 |
|
|
do anything besides redirecting it. */
|
5148 |
|
|
gcc_assert (e->flags & EDGE_FALLTHRU);
|
5149 |
|
|
break;
|
5150 |
|
|
}
|
5151 |
|
|
|
5152 |
|
|
/* Update/insert PHI nodes as necessary. */
|
5153 |
|
|
|
5154 |
|
|
/* Now update the edges in the CFG. */
|
5155 |
|
|
e = ssa_redirect_edge (e, dest);
|
5156 |
|
|
|
5157 |
|
|
return e;
|
5158 |
|
|
}
|
5159 |
|
|
|
5160 |
|
|
/* Returns true if it is possible to remove edge E by redirecting
|
5161 |
|
|
it to the destination of the other edge from E->src. */
|
5162 |
|
|
|
5163 |
|
|
static bool
|
5164 |
|
|
gimple_can_remove_branch_p (const_edge e)
|
5165 |
|
|
{
|
5166 |
|
|
if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
|
5167 |
|
|
return false;
|
5168 |
|
|
|
5169 |
|
|
return true;
|
5170 |
|
|
}
|
5171 |
|
|
|
5172 |
|
|
/* Simple wrapper, as we can always redirect fallthru edges. */
|
5173 |
|
|
|
5174 |
|
|
static basic_block
|
5175 |
|
|
gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
|
5176 |
|
|
{
|
5177 |
|
|
e = gimple_redirect_edge_and_branch (e, dest);
|
5178 |
|
|
gcc_assert (e);
|
5179 |
|
|
|
5180 |
|
|
return NULL;
|
5181 |
|
|
}
|
5182 |
|
|
|
5183 |
|
|
|
5184 |
|
|
/* Splits basic block BB after statement STMT (but at least after the
|
5185 |
|
|
labels). If STMT is NULL, BB is split just after the labels. */
|
5186 |
|
|
|
5187 |
|
|
static basic_block
|
5188 |
|
|
gimple_split_block (basic_block bb, void *stmt)
|
5189 |
|
|
{
|
5190 |
|
|
gimple_stmt_iterator gsi;
|
5191 |
|
|
gimple_stmt_iterator gsi_tgt;
|
5192 |
|
|
gimple act;
|
5193 |
|
|
gimple_seq list;
|
5194 |
|
|
basic_block new_bb;
|
5195 |
|
|
edge e;
|
5196 |
|
|
edge_iterator ei;
|
5197 |
|
|
|
5198 |
|
|
new_bb = create_empty_bb (bb);
|
5199 |
|
|
|
5200 |
|
|
/* Redirect the outgoing edges. */
|
5201 |
|
|
new_bb->succs = bb->succs;
|
5202 |
|
|
bb->succs = NULL;
|
5203 |
|
|
FOR_EACH_EDGE (e, ei, new_bb->succs)
|
5204 |
|
|
e->src = new_bb;
|
5205 |
|
|
|
5206 |
|
|
if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
|
5207 |
|
|
stmt = NULL;
|
5208 |
|
|
|
5209 |
|
|
/* Move everything from GSI to the new basic block. */
|
5210 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
5211 |
|
|
{
|
5212 |
|
|
act = gsi_stmt (gsi);
|
5213 |
|
|
if (gimple_code (act) == GIMPLE_LABEL)
|
5214 |
|
|
continue;
|
5215 |
|
|
|
5216 |
|
|
if (!stmt)
|
5217 |
|
|
break;
|
5218 |
|
|
|
5219 |
|
|
if (stmt == act)
|
5220 |
|
|
{
|
5221 |
|
|
gsi_next (&gsi);
|
5222 |
|
|
break;
|
5223 |
|
|
}
|
5224 |
|
|
}
|
5225 |
|
|
|
5226 |
|
|
if (gsi_end_p (gsi))
|
5227 |
|
|
return new_bb;
|
5228 |
|
|
|
5229 |
|
|
/* Split the statement list - avoid re-creating new containers as this
|
5230 |
|
|
brings ugly quadratic memory consumption in the inliner.
|
5231 |
|
|
(We are still quadratic since we need to update stmt BB pointers,
|
5232 |
|
|
sadly.) */
|
5233 |
|
|
list = gsi_split_seq_before (&gsi);
|
5234 |
|
|
set_bb_seq (new_bb, list);
|
5235 |
|
|
for (gsi_tgt = gsi_start (list);
|
5236 |
|
|
!gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
|
5237 |
|
|
gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
|
5238 |
|
|
|
5239 |
|
|
return new_bb;
|
5240 |
|
|
}
|
5241 |
|
|
|
5242 |
|
|
|
5243 |
|
|
/* Moves basic block BB after block AFTER. */
|
5244 |
|
|
|
5245 |
|
|
static bool
|
5246 |
|
|
gimple_move_block_after (basic_block bb, basic_block after)
|
5247 |
|
|
{
|
5248 |
|
|
if (bb->prev_bb == after)
|
5249 |
|
|
return true;
|
5250 |
|
|
|
5251 |
|
|
unlink_block (bb);
|
5252 |
|
|
link_block (bb, after);
|
5253 |
|
|
|
5254 |
|
|
return true;
|
5255 |
|
|
}
|
5256 |
|
|
|
5257 |
|
|
|
5258 |
|
|
/* Return true if basic_block can be duplicated. */
|
5259 |
|
|
|
5260 |
|
|
static bool
|
5261 |
|
|
gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
|
5262 |
|
|
{
|
5263 |
|
|
return true;
|
5264 |
|
|
}
|
5265 |
|
|
|
5266 |
|
|
/* Create a duplicate of the basic block BB. NOTE: This does not
|
5267 |
|
|
preserve SSA form. */
|
5268 |
|
|
|
5269 |
|
|
static basic_block
|
5270 |
|
|
gimple_duplicate_bb (basic_block bb)
|
5271 |
|
|
{
|
5272 |
|
|
basic_block new_bb;
|
5273 |
|
|
gimple_stmt_iterator gsi, gsi_tgt;
|
5274 |
|
|
gimple_seq phis = phi_nodes (bb);
|
5275 |
|
|
gimple phi, stmt, copy;
|
5276 |
|
|
|
5277 |
|
|
new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
|
5278 |
|
|
|
5279 |
|
|
/* Copy the PHI nodes. We ignore PHI node arguments here because
|
5280 |
|
|
the incoming edges have not been setup yet. */
|
5281 |
|
|
for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
|
5282 |
|
|
{
|
5283 |
|
|
phi = gsi_stmt (gsi);
|
5284 |
|
|
copy = create_phi_node (gimple_phi_result (phi), new_bb);
|
5285 |
|
|
create_new_def_for (gimple_phi_result (copy), copy,
|
5286 |
|
|
gimple_phi_result_ptr (copy));
|
5287 |
|
|
}
|
5288 |
|
|
|
5289 |
|
|
gsi_tgt = gsi_start_bb (new_bb);
|
5290 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
5291 |
|
|
{
|
5292 |
|
|
def_operand_p def_p;
|
5293 |
|
|
ssa_op_iter op_iter;
|
5294 |
|
|
tree lhs;
|
5295 |
|
|
|
5296 |
|
|
stmt = gsi_stmt (gsi);
|
5297 |
|
|
if (gimple_code (stmt) == GIMPLE_LABEL)
|
5298 |
|
|
continue;
|
5299 |
|
|
|
5300 |
|
|
/* Don't duplicate label debug stmts. */
|
5301 |
|
|
if (gimple_debug_bind_p (stmt)
|
5302 |
|
|
&& TREE_CODE (gimple_debug_bind_get_var (stmt))
|
5303 |
|
|
== LABEL_DECL)
|
5304 |
|
|
continue;
|
5305 |
|
|
|
5306 |
|
|
/* Create a new copy of STMT and duplicate STMT's virtual
|
5307 |
|
|
operands. */
|
5308 |
|
|
copy = gimple_copy (stmt);
|
5309 |
|
|
gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
|
5310 |
|
|
|
5311 |
|
|
maybe_duplicate_eh_stmt (copy, stmt);
|
5312 |
|
|
gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
|
5313 |
|
|
|
5314 |
|
|
/* When copying around a stmt writing into a local non-user
|
5315 |
|
|
aggregate, make sure it won't share stack slot with other
|
5316 |
|
|
vars. */
|
5317 |
|
|
lhs = gimple_get_lhs (stmt);
|
5318 |
|
|
if (lhs && TREE_CODE (lhs) != SSA_NAME)
|
5319 |
|
|
{
|
5320 |
|
|
tree base = get_base_address (lhs);
|
5321 |
|
|
if (base
|
5322 |
|
|
&& (TREE_CODE (base) == VAR_DECL
|
5323 |
|
|
|| TREE_CODE (base) == RESULT_DECL)
|
5324 |
|
|
&& DECL_IGNORED_P (base)
|
5325 |
|
|
&& !TREE_STATIC (base)
|
5326 |
|
|
&& !DECL_EXTERNAL (base)
|
5327 |
|
|
&& (TREE_CODE (base) != VAR_DECL
|
5328 |
|
|
|| !DECL_HAS_VALUE_EXPR_P (base)))
|
5329 |
|
|
DECL_NONSHAREABLE (base) = 1;
|
5330 |
|
|
}
|
5331 |
|
|
|
5332 |
|
|
/* Create new names for all the definitions created by COPY and
|
5333 |
|
|
add replacement mappings for each new name. */
|
5334 |
|
|
FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
|
5335 |
|
|
create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
|
5336 |
|
|
}
|
5337 |
|
|
|
5338 |
|
|
return new_bb;
|
5339 |
|
|
}
|
5340 |
|
|
|
5341 |
|
|
/* Adds phi node arguments for edge E_COPY after basic block duplication. */
|
5342 |
|
|
|
5343 |
|
|
static void
|
5344 |
|
|
add_phi_args_after_copy_edge (edge e_copy)
|
5345 |
|
|
{
|
5346 |
|
|
basic_block bb, bb_copy = e_copy->src, dest;
|
5347 |
|
|
edge e;
|
5348 |
|
|
edge_iterator ei;
|
5349 |
|
|
gimple phi, phi_copy;
|
5350 |
|
|
tree def;
|
5351 |
|
|
gimple_stmt_iterator psi, psi_copy;
|
5352 |
|
|
|
5353 |
|
|
if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
|
5354 |
|
|
return;
|
5355 |
|
|
|
5356 |
|
|
bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
|
5357 |
|
|
|
5358 |
|
|
if (e_copy->dest->flags & BB_DUPLICATED)
|
5359 |
|
|
dest = get_bb_original (e_copy->dest);
|
5360 |
|
|
else
|
5361 |
|
|
dest = e_copy->dest;
|
5362 |
|
|
|
5363 |
|
|
e = find_edge (bb, dest);
|
5364 |
|
|
if (!e)
|
5365 |
|
|
{
|
5366 |
|
|
/* During loop unrolling the target of the latch edge is copied.
|
5367 |
|
|
In this case we are not looking for edge to dest, but to
|
5368 |
|
|
duplicated block whose original was dest. */
|
5369 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
5370 |
|
|
{
|
5371 |
|
|
if ((e->dest->flags & BB_DUPLICATED)
|
5372 |
|
|
&& get_bb_original (e->dest) == dest)
|
5373 |
|
|
break;
|
5374 |
|
|
}
|
5375 |
|
|
|
5376 |
|
|
gcc_assert (e != NULL);
|
5377 |
|
|
}
|
5378 |
|
|
|
5379 |
|
|
for (psi = gsi_start_phis (e->dest),
|
5380 |
|
|
psi_copy = gsi_start_phis (e_copy->dest);
|
5381 |
|
|
!gsi_end_p (psi);
|
5382 |
|
|
gsi_next (&psi), gsi_next (&psi_copy))
|
5383 |
|
|
{
|
5384 |
|
|
phi = gsi_stmt (psi);
|
5385 |
|
|
phi_copy = gsi_stmt (psi_copy);
|
5386 |
|
|
def = PHI_ARG_DEF_FROM_EDGE (phi, e);
|
5387 |
|
|
add_phi_arg (phi_copy, def, e_copy,
|
5388 |
|
|
gimple_phi_arg_location_from_edge (phi, e));
|
5389 |
|
|
}
|
5390 |
|
|
}
|
5391 |
|
|
|
5392 |
|
|
|
5393 |
|
|
/* Basic block BB_COPY was created by code duplication. Add phi node
|
5394 |
|
|
arguments for edges going out of BB_COPY. The blocks that were
|
5395 |
|
|
duplicated have BB_DUPLICATED set. */
|
5396 |
|
|
|
5397 |
|
|
void
|
5398 |
|
|
add_phi_args_after_copy_bb (basic_block bb_copy)
|
5399 |
|
|
{
|
5400 |
|
|
edge e_copy;
|
5401 |
|
|
edge_iterator ei;
|
5402 |
|
|
|
5403 |
|
|
FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
|
5404 |
|
|
{
|
5405 |
|
|
add_phi_args_after_copy_edge (e_copy);
|
5406 |
|
|
}
|
5407 |
|
|
}
|
5408 |
|
|
|
5409 |
|
|
/* Blocks in REGION_COPY array of length N_REGION were created by
|
5410 |
|
|
duplication of basic blocks. Add phi node arguments for edges
|
5411 |
|
|
going from these blocks. If E_COPY is not NULL, also add
|
5412 |
|
|
phi node arguments for its destination.*/
|
5413 |
|
|
|
5414 |
|
|
void
|
5415 |
|
|
add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
|
5416 |
|
|
edge e_copy)
|
5417 |
|
|
{
|
5418 |
|
|
unsigned i;
|
5419 |
|
|
|
5420 |
|
|
for (i = 0; i < n_region; i++)
|
5421 |
|
|
region_copy[i]->flags |= BB_DUPLICATED;
|
5422 |
|
|
|
5423 |
|
|
for (i = 0; i < n_region; i++)
|
5424 |
|
|
add_phi_args_after_copy_bb (region_copy[i]);
|
5425 |
|
|
if (e_copy)
|
5426 |
|
|
add_phi_args_after_copy_edge (e_copy);
|
5427 |
|
|
|
5428 |
|
|
for (i = 0; i < n_region; i++)
|
5429 |
|
|
region_copy[i]->flags &= ~BB_DUPLICATED;
|
5430 |
|
|
}
|
5431 |
|
|
|
5432 |
|
|
/* Duplicates a REGION (set of N_REGION basic blocks) with just a single
|
5433 |
|
|
important exit edge EXIT. By important we mean that no SSA name defined
|
5434 |
|
|
inside region is live over the other exit edges of the region. All entry
|
5435 |
|
|
edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
|
5436 |
|
|
to the duplicate of the region. SSA form, dominance and loop information
|
5437 |
|
|
is updated. The new basic blocks are stored to REGION_COPY in the same
|
5438 |
|
|
order as they had in REGION, provided that REGION_COPY is not NULL.
|
5439 |
|
|
The function returns false if it is unable to copy the region,
|
5440 |
|
|
true otherwise. */
|
5441 |
|
|
|
5442 |
|
|
bool
|
5443 |
|
|
gimple_duplicate_sese_region (edge entry, edge exit,
|
5444 |
|
|
basic_block *region, unsigned n_region,
|
5445 |
|
|
basic_block *region_copy)
|
5446 |
|
|
{
|
5447 |
|
|
unsigned i;
|
5448 |
|
|
bool free_region_copy = false, copying_header = false;
|
5449 |
|
|
struct loop *loop = entry->dest->loop_father;
|
5450 |
|
|
edge exit_copy;
|
5451 |
|
|
VEC (basic_block, heap) *doms;
|
5452 |
|
|
edge redirected;
|
5453 |
|
|
int total_freq = 0, entry_freq = 0;
|
5454 |
|
|
gcov_type total_count = 0, entry_count = 0;
|
5455 |
|
|
|
5456 |
|
|
if (!can_copy_bbs_p (region, n_region))
|
5457 |
|
|
return false;
|
5458 |
|
|
|
5459 |
|
|
/* Some sanity checking. Note that we do not check for all possible
|
5460 |
|
|
missuses of the functions. I.e. if you ask to copy something weird,
|
5461 |
|
|
it will work, but the state of structures probably will not be
|
5462 |
|
|
correct. */
|
5463 |
|
|
for (i = 0; i < n_region; i++)
|
5464 |
|
|
{
|
5465 |
|
|
/* We do not handle subloops, i.e. all the blocks must belong to the
|
5466 |
|
|
same loop. */
|
5467 |
|
|
if (region[i]->loop_father != loop)
|
5468 |
|
|
return false;
|
5469 |
|
|
|
5470 |
|
|
if (region[i] != entry->dest
|
5471 |
|
|
&& region[i] == loop->header)
|
5472 |
|
|
return false;
|
5473 |
|
|
}
|
5474 |
|
|
|
5475 |
|
|
set_loop_copy (loop, loop);
|
5476 |
|
|
|
5477 |
|
|
/* In case the function is used for loop header copying (which is the primary
|
5478 |
|
|
use), ensure that EXIT and its copy will be new latch and entry edges. */
|
5479 |
|
|
if (loop->header == entry->dest)
|
5480 |
|
|
{
|
5481 |
|
|
copying_header = true;
|
5482 |
|
|
set_loop_copy (loop, loop_outer (loop));
|
5483 |
|
|
|
5484 |
|
|
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
|
5485 |
|
|
return false;
|
5486 |
|
|
|
5487 |
|
|
for (i = 0; i < n_region; i++)
|
5488 |
|
|
if (region[i] != exit->src
|
5489 |
|
|
&& dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
|
5490 |
|
|
return false;
|
5491 |
|
|
}
|
5492 |
|
|
|
5493 |
|
|
if (!region_copy)
|
5494 |
|
|
{
|
5495 |
|
|
region_copy = XNEWVEC (basic_block, n_region);
|
5496 |
|
|
free_region_copy = true;
|
5497 |
|
|
}
|
5498 |
|
|
|
5499 |
|
|
gcc_assert (!need_ssa_update_p (cfun));
|
5500 |
|
|
|
5501 |
|
|
/* Record blocks outside the region that are dominated by something
|
5502 |
|
|
inside. */
|
5503 |
|
|
doms = NULL;
|
5504 |
|
|
initialize_original_copy_tables ();
|
5505 |
|
|
|
5506 |
|
|
doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
|
5507 |
|
|
|
5508 |
|
|
if (entry->dest->count)
|
5509 |
|
|
{
|
5510 |
|
|
total_count = entry->dest->count;
|
5511 |
|
|
entry_count = entry->count;
|
5512 |
|
|
/* Fix up corner cases, to avoid division by zero or creation of negative
|
5513 |
|
|
frequencies. */
|
5514 |
|
|
if (entry_count > total_count)
|
5515 |
|
|
entry_count = total_count;
|
5516 |
|
|
}
|
5517 |
|
|
else
|
5518 |
|
|
{
|
5519 |
|
|
total_freq = entry->dest->frequency;
|
5520 |
|
|
entry_freq = EDGE_FREQUENCY (entry);
|
5521 |
|
|
/* Fix up corner cases, to avoid division by zero or creation of negative
|
5522 |
|
|
frequencies. */
|
5523 |
|
|
if (total_freq == 0)
|
5524 |
|
|
total_freq = 1;
|
5525 |
|
|
else if (entry_freq > total_freq)
|
5526 |
|
|
entry_freq = total_freq;
|
5527 |
|
|
}
|
5528 |
|
|
|
5529 |
|
|
copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
|
5530 |
|
|
split_edge_bb_loc (entry));
|
5531 |
|
|
if (total_count)
|
5532 |
|
|
{
|
5533 |
|
|
scale_bbs_frequencies_gcov_type (region, n_region,
|
5534 |
|
|
total_count - entry_count,
|
5535 |
|
|
total_count);
|
5536 |
|
|
scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
|
5537 |
|
|
total_count);
|
5538 |
|
|
}
|
5539 |
|
|
else
|
5540 |
|
|
{
|
5541 |
|
|
scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
|
5542 |
|
|
total_freq);
|
5543 |
|
|
scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
|
5544 |
|
|
}
|
5545 |
|
|
|
5546 |
|
|
if (copying_header)
|
5547 |
|
|
{
|
5548 |
|
|
loop->header = exit->dest;
|
5549 |
|
|
loop->latch = exit->src;
|
5550 |
|
|
}
|
5551 |
|
|
|
5552 |
|
|
/* Redirect the entry and add the phi node arguments. */
|
5553 |
|
|
redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
|
5554 |
|
|
gcc_assert (redirected != NULL);
|
5555 |
|
|
flush_pending_stmts (entry);
|
5556 |
|
|
|
5557 |
|
|
/* Concerning updating of dominators: We must recount dominators
|
5558 |
|
|
for entry block and its copy. Anything that is outside of the
|
5559 |
|
|
region, but was dominated by something inside needs recounting as
|
5560 |
|
|
well. */
|
5561 |
|
|
set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
|
5562 |
|
|
VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
|
5563 |
|
|
iterate_fix_dominators (CDI_DOMINATORS, doms, false);
|
5564 |
|
|
VEC_free (basic_block, heap, doms);
|
5565 |
|
|
|
5566 |
|
|
/* Add the other PHI node arguments. */
|
5567 |
|
|
add_phi_args_after_copy (region_copy, n_region, NULL);
|
5568 |
|
|
|
5569 |
|
|
/* Update the SSA web. */
|
5570 |
|
|
update_ssa (TODO_update_ssa);
|
5571 |
|
|
|
5572 |
|
|
if (free_region_copy)
|
5573 |
|
|
free (region_copy);
|
5574 |
|
|
|
5575 |
|
|
free_original_copy_tables ();
|
5576 |
|
|
return true;
|
5577 |
|
|
}
|
5578 |
|
|
|
5579 |
|
|
/* Duplicates REGION consisting of N_REGION blocks. The new blocks
|
5580 |
|
|
are stored to REGION_COPY in the same order in that they appear
|
5581 |
|
|
in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
|
5582 |
|
|
the region, EXIT an exit from it. The condition guarding EXIT
|
5583 |
|
|
is moved to ENTRY. Returns true if duplication succeeds, false
|
5584 |
|
|
otherwise.
|
5585 |
|
|
|
5586 |
|
|
For example,
|
5587 |
|
|
|
5588 |
|
|
some_code;
|
5589 |
|
|
if (cond)
|
5590 |
|
|
A;
|
5591 |
|
|
else
|
5592 |
|
|
B;
|
5593 |
|
|
|
5594 |
|
|
is transformed to
|
5595 |
|
|
|
5596 |
|
|
if (cond)
|
5597 |
|
|
{
|
5598 |
|
|
some_code;
|
5599 |
|
|
A;
|
5600 |
|
|
}
|
5601 |
|
|
else
|
5602 |
|
|
{
|
5603 |
|
|
some_code;
|
5604 |
|
|
B;
|
5605 |
|
|
}
|
5606 |
|
|
*/
|
5607 |
|
|
|
5608 |
|
|
bool
|
5609 |
|
|
gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
|
5610 |
|
|
basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
|
5611 |
|
|
basic_block *region_copy ATTRIBUTE_UNUSED)
|
5612 |
|
|
{
|
5613 |
|
|
unsigned i;
|
5614 |
|
|
bool free_region_copy = false;
|
5615 |
|
|
struct loop *loop = exit->dest->loop_father;
|
5616 |
|
|
struct loop *orig_loop = entry->dest->loop_father;
|
5617 |
|
|
basic_block switch_bb, entry_bb, nentry_bb;
|
5618 |
|
|
VEC (basic_block, heap) *doms;
|
5619 |
|
|
int total_freq = 0, exit_freq = 0;
|
5620 |
|
|
gcov_type total_count = 0, exit_count = 0;
|
5621 |
|
|
edge exits[2], nexits[2], e;
|
5622 |
|
|
gimple_stmt_iterator gsi;
|
5623 |
|
|
gimple cond_stmt;
|
5624 |
|
|
edge sorig, snew;
|
5625 |
|
|
basic_block exit_bb;
|
5626 |
|
|
gimple_stmt_iterator psi;
|
5627 |
|
|
gimple phi;
|
5628 |
|
|
tree def;
|
5629 |
|
|
|
5630 |
|
|
gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
|
5631 |
|
|
exits[0] = exit;
|
5632 |
|
|
exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
|
5633 |
|
|
|
5634 |
|
|
if (!can_copy_bbs_p (region, n_region))
|
5635 |
|
|
return false;
|
5636 |
|
|
|
5637 |
|
|
initialize_original_copy_tables ();
|
5638 |
|
|
set_loop_copy (orig_loop, loop);
|
5639 |
|
|
duplicate_subloops (orig_loop, loop);
|
5640 |
|
|
|
5641 |
|
|
if (!region_copy)
|
5642 |
|
|
{
|
5643 |
|
|
region_copy = XNEWVEC (basic_block, n_region);
|
5644 |
|
|
free_region_copy = true;
|
5645 |
|
|
}
|
5646 |
|
|
|
5647 |
|
|
gcc_assert (!need_ssa_update_p (cfun));
|
5648 |
|
|
|
5649 |
|
|
/* Record blocks outside the region that are dominated by something
|
5650 |
|
|
inside. */
|
5651 |
|
|
doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
|
5652 |
|
|
|
5653 |
|
|
if (exit->src->count)
|
5654 |
|
|
{
|
5655 |
|
|
total_count = exit->src->count;
|
5656 |
|
|
exit_count = exit->count;
|
5657 |
|
|
/* Fix up corner cases, to avoid division by zero or creation of negative
|
5658 |
|
|
frequencies. */
|
5659 |
|
|
if (exit_count > total_count)
|
5660 |
|
|
exit_count = total_count;
|
5661 |
|
|
}
|
5662 |
|
|
else
|
5663 |
|
|
{
|
5664 |
|
|
total_freq = exit->src->frequency;
|
5665 |
|
|
exit_freq = EDGE_FREQUENCY (exit);
|
5666 |
|
|
/* Fix up corner cases, to avoid division by zero or creation of negative
|
5667 |
|
|
frequencies. */
|
5668 |
|
|
if (total_freq == 0)
|
5669 |
|
|
total_freq = 1;
|
5670 |
|
|
if (exit_freq > total_freq)
|
5671 |
|
|
exit_freq = total_freq;
|
5672 |
|
|
}
|
5673 |
|
|
|
5674 |
|
|
copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
|
5675 |
|
|
split_edge_bb_loc (exit));
|
5676 |
|
|
if (total_count)
|
5677 |
|
|
{
|
5678 |
|
|
scale_bbs_frequencies_gcov_type (region, n_region,
|
5679 |
|
|
total_count - exit_count,
|
5680 |
|
|
total_count);
|
5681 |
|
|
scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
|
5682 |
|
|
total_count);
|
5683 |
|
|
}
|
5684 |
|
|
else
|
5685 |
|
|
{
|
5686 |
|
|
scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
|
5687 |
|
|
total_freq);
|
5688 |
|
|
scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
|
5689 |
|
|
}
|
5690 |
|
|
|
5691 |
|
|
/* Create the switch block, and put the exit condition to it. */
|
5692 |
|
|
entry_bb = entry->dest;
|
5693 |
|
|
nentry_bb = get_bb_copy (entry_bb);
|
5694 |
|
|
if (!last_stmt (entry->src)
|
5695 |
|
|
|| !stmt_ends_bb_p (last_stmt (entry->src)))
|
5696 |
|
|
switch_bb = entry->src;
|
5697 |
|
|
else
|
5698 |
|
|
switch_bb = split_edge (entry);
|
5699 |
|
|
set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
|
5700 |
|
|
|
5701 |
|
|
gsi = gsi_last_bb (switch_bb);
|
5702 |
|
|
cond_stmt = last_stmt (exit->src);
|
5703 |
|
|
gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
|
5704 |
|
|
cond_stmt = gimple_copy (cond_stmt);
|
5705 |
|
|
|
5706 |
|
|
gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
|
5707 |
|
|
|
5708 |
|
|
sorig = single_succ_edge (switch_bb);
|
5709 |
|
|
sorig->flags = exits[1]->flags;
|
5710 |
|
|
snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
|
5711 |
|
|
|
5712 |
|
|
/* Register the new edge from SWITCH_BB in loop exit lists. */
|
5713 |
|
|
rescan_loop_exit (snew, true, false);
|
5714 |
|
|
|
5715 |
|
|
/* Add the PHI node arguments. */
|
5716 |
|
|
add_phi_args_after_copy (region_copy, n_region, snew);
|
5717 |
|
|
|
5718 |
|
|
/* Get rid of now superfluous conditions and associated edges (and phi node
|
5719 |
|
|
arguments). */
|
5720 |
|
|
exit_bb = exit->dest;
|
5721 |
|
|
|
5722 |
|
|
e = redirect_edge_and_branch (exits[0], exits[1]->dest);
|
5723 |
|
|
PENDING_STMT (e) = NULL;
|
5724 |
|
|
|
5725 |
|
|
/* The latch of ORIG_LOOP was copied, and so was the backedge
|
5726 |
|
|
to the original header. We redirect this backedge to EXIT_BB. */
|
5727 |
|
|
for (i = 0; i < n_region; i++)
|
5728 |
|
|
if (get_bb_original (region_copy[i]) == orig_loop->latch)
|
5729 |
|
|
{
|
5730 |
|
|
gcc_assert (single_succ_edge (region_copy[i]));
|
5731 |
|
|
e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
|
5732 |
|
|
PENDING_STMT (e) = NULL;
|
5733 |
|
|
for (psi = gsi_start_phis (exit_bb);
|
5734 |
|
|
!gsi_end_p (psi);
|
5735 |
|
|
gsi_next (&psi))
|
5736 |
|
|
{
|
5737 |
|
|
phi = gsi_stmt (psi);
|
5738 |
|
|
def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
|
5739 |
|
|
add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
|
5740 |
|
|
}
|
5741 |
|
|
}
|
5742 |
|
|
e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
|
5743 |
|
|
PENDING_STMT (e) = NULL;
|
5744 |
|
|
|
5745 |
|
|
/* Anything that is outside of the region, but was dominated by something
|
5746 |
|
|
inside needs to update dominance info. */
|
5747 |
|
|
iterate_fix_dominators (CDI_DOMINATORS, doms, false);
|
5748 |
|
|
VEC_free (basic_block, heap, doms);
|
5749 |
|
|
/* Update the SSA web. */
|
5750 |
|
|
update_ssa (TODO_update_ssa);
|
5751 |
|
|
|
5752 |
|
|
if (free_region_copy)
|
5753 |
|
|
free (region_copy);
|
5754 |
|
|
|
5755 |
|
|
free_original_copy_tables ();
|
5756 |
|
|
return true;
|
5757 |
|
|
}
|
5758 |
|
|
|
5759 |
|
|
/* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
|
5760 |
|
|
adding blocks when the dominator traversal reaches EXIT. This
|
5761 |
|
|
function silently assumes that ENTRY strictly dominates EXIT. */
|
5762 |
|
|
|
5763 |
|
|
void
|
5764 |
|
|
gather_blocks_in_sese_region (basic_block entry, basic_block exit,
|
5765 |
|
|
VEC(basic_block,heap) **bbs_p)
|
5766 |
|
|
{
|
5767 |
|
|
basic_block son;
|
5768 |
|
|
|
5769 |
|
|
for (son = first_dom_son (CDI_DOMINATORS, entry);
|
5770 |
|
|
son;
|
5771 |
|
|
son = next_dom_son (CDI_DOMINATORS, son))
|
5772 |
|
|
{
|
5773 |
|
|
VEC_safe_push (basic_block, heap, *bbs_p, son);
|
5774 |
|
|
if (son != exit)
|
5775 |
|
|
gather_blocks_in_sese_region (son, exit, bbs_p);
|
5776 |
|
|
}
|
5777 |
|
|
}
|
5778 |
|
|
|
5779 |
|
|
/* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
|
5780 |
|
|
The duplicates are recorded in VARS_MAP. */
|
5781 |
|
|
|
5782 |
|
|
static void
|
5783 |
|
|
replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
|
5784 |
|
|
tree to_context)
|
5785 |
|
|
{
|
5786 |
|
|
tree t = *tp, new_t;
|
5787 |
|
|
struct function *f = DECL_STRUCT_FUNCTION (to_context);
|
5788 |
|
|
void **loc;
|
5789 |
|
|
|
5790 |
|
|
if (DECL_CONTEXT (t) == to_context)
|
5791 |
|
|
return;
|
5792 |
|
|
|
5793 |
|
|
loc = pointer_map_contains (vars_map, t);
|
5794 |
|
|
|
5795 |
|
|
if (!loc)
|
5796 |
|
|
{
|
5797 |
|
|
loc = pointer_map_insert (vars_map, t);
|
5798 |
|
|
|
5799 |
|
|
if (SSA_VAR_P (t))
|
5800 |
|
|
{
|
5801 |
|
|
new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
|
5802 |
|
|
add_local_decl (f, new_t);
|
5803 |
|
|
}
|
5804 |
|
|
else
|
5805 |
|
|
{
|
5806 |
|
|
gcc_assert (TREE_CODE (t) == CONST_DECL);
|
5807 |
|
|
new_t = copy_node (t);
|
5808 |
|
|
}
|
5809 |
|
|
DECL_CONTEXT (new_t) = to_context;
|
5810 |
|
|
|
5811 |
|
|
*loc = new_t;
|
5812 |
|
|
}
|
5813 |
|
|
else
|
5814 |
|
|
new_t = (tree) *loc;
|
5815 |
|
|
|
5816 |
|
|
*tp = new_t;
|
5817 |
|
|
}
|
5818 |
|
|
|
5819 |
|
|
|
5820 |
|
|
/* Creates an ssa name in TO_CONTEXT equivalent to NAME.
|
5821 |
|
|
VARS_MAP maps old ssa names and var_decls to the new ones. */
|
5822 |
|
|
|
5823 |
|
|
static tree
|
5824 |
|
|
replace_ssa_name (tree name, struct pointer_map_t *vars_map,
|
5825 |
|
|
tree to_context)
|
5826 |
|
|
{
|
5827 |
|
|
void **loc;
|
5828 |
|
|
tree new_name, decl = SSA_NAME_VAR (name);
|
5829 |
|
|
|
5830 |
|
|
gcc_assert (is_gimple_reg (name));
|
5831 |
|
|
|
5832 |
|
|
loc = pointer_map_contains (vars_map, name);
|
5833 |
|
|
|
5834 |
|
|
if (!loc)
|
5835 |
|
|
{
|
5836 |
|
|
replace_by_duplicate_decl (&decl, vars_map, to_context);
|
5837 |
|
|
|
5838 |
|
|
push_cfun (DECL_STRUCT_FUNCTION (to_context));
|
5839 |
|
|
if (gimple_in_ssa_p (cfun))
|
5840 |
|
|
add_referenced_var (decl);
|
5841 |
|
|
|
5842 |
|
|
new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
|
5843 |
|
|
if (SSA_NAME_IS_DEFAULT_DEF (name))
|
5844 |
|
|
set_default_def (decl, new_name);
|
5845 |
|
|
pop_cfun ();
|
5846 |
|
|
|
5847 |
|
|
loc = pointer_map_insert (vars_map, name);
|
5848 |
|
|
*loc = new_name;
|
5849 |
|
|
}
|
5850 |
|
|
else
|
5851 |
|
|
new_name = (tree) *loc;
|
5852 |
|
|
|
5853 |
|
|
return new_name;
|
5854 |
|
|
}
|
5855 |
|
|
|
5856 |
|
|
struct move_stmt_d
|
5857 |
|
|
{
|
5858 |
|
|
tree orig_block;
|
5859 |
|
|
tree new_block;
|
5860 |
|
|
tree from_context;
|
5861 |
|
|
tree to_context;
|
5862 |
|
|
struct pointer_map_t *vars_map;
|
5863 |
|
|
htab_t new_label_map;
|
5864 |
|
|
struct pointer_map_t *eh_map;
|
5865 |
|
|
bool remap_decls_p;
|
5866 |
|
|
};
|
5867 |
|
|
|
5868 |
|
|
/* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
|
5869 |
|
|
contained in *TP if it has been ORIG_BLOCK previously and change the
|
5870 |
|
|
DECL_CONTEXT of every local variable referenced in *TP. */
|
5871 |
|
|
|
5872 |
|
|
static tree
|
5873 |
|
|
move_stmt_op (tree *tp, int *walk_subtrees, void *data)
|
5874 |
|
|
{
|
5875 |
|
|
struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
|
5876 |
|
|
struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
|
5877 |
|
|
tree t = *tp;
|
5878 |
|
|
|
5879 |
|
|
if (EXPR_P (t))
|
5880 |
|
|
/* We should never have TREE_BLOCK set on non-statements. */
|
5881 |
|
|
gcc_assert (!TREE_BLOCK (t));
|
5882 |
|
|
|
5883 |
|
|
else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
|
5884 |
|
|
{
|
5885 |
|
|
if (TREE_CODE (t) == SSA_NAME)
|
5886 |
|
|
*tp = replace_ssa_name (t, p->vars_map, p->to_context);
|
5887 |
|
|
else if (TREE_CODE (t) == LABEL_DECL)
|
5888 |
|
|
{
|
5889 |
|
|
if (p->new_label_map)
|
5890 |
|
|
{
|
5891 |
|
|
struct tree_map in, *out;
|
5892 |
|
|
in.base.from = t;
|
5893 |
|
|
out = (struct tree_map *)
|
5894 |
|
|
htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
|
5895 |
|
|
if (out)
|
5896 |
|
|
*tp = t = out->to;
|
5897 |
|
|
}
|
5898 |
|
|
|
5899 |
|
|
DECL_CONTEXT (t) = p->to_context;
|
5900 |
|
|
}
|
5901 |
|
|
else if (p->remap_decls_p)
|
5902 |
|
|
{
|
5903 |
|
|
/* Replace T with its duplicate. T should no longer appear in the
|
5904 |
|
|
parent function, so this looks wasteful; however, it may appear
|
5905 |
|
|
in referenced_vars, and more importantly, as virtual operands of
|
5906 |
|
|
statements, and in alias lists of other variables. It would be
|
5907 |
|
|
quite difficult to expunge it from all those places. ??? It might
|
5908 |
|
|
suffice to do this for addressable variables. */
|
5909 |
|
|
if ((TREE_CODE (t) == VAR_DECL
|
5910 |
|
|
&& !is_global_var (t))
|
5911 |
|
|
|| TREE_CODE (t) == CONST_DECL)
|
5912 |
|
|
replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
|
5913 |
|
|
|
5914 |
|
|
if (SSA_VAR_P (t)
|
5915 |
|
|
&& gimple_in_ssa_p (cfun))
|
5916 |
|
|
{
|
5917 |
|
|
push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
|
5918 |
|
|
add_referenced_var (*tp);
|
5919 |
|
|
pop_cfun ();
|
5920 |
|
|
}
|
5921 |
|
|
}
|
5922 |
|
|
*walk_subtrees = 0;
|
5923 |
|
|
}
|
5924 |
|
|
else if (TYPE_P (t))
|
5925 |
|
|
*walk_subtrees = 0;
|
5926 |
|
|
|
5927 |
|
|
return NULL_TREE;
|
5928 |
|
|
}
|
5929 |
|
|
|
5930 |
|
|
/* Helper for move_stmt_r. Given an EH region number for the source
|
5931 |
|
|
function, map that to the duplicate EH regio number in the dest. */
|
5932 |
|
|
|
5933 |
|
|
static int
|
5934 |
|
|
move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
|
5935 |
|
|
{
|
5936 |
|
|
eh_region old_r, new_r;
|
5937 |
|
|
void **slot;
|
5938 |
|
|
|
5939 |
|
|
old_r = get_eh_region_from_number (old_nr);
|
5940 |
|
|
slot = pointer_map_contains (p->eh_map, old_r);
|
5941 |
|
|
new_r = (eh_region) *slot;
|
5942 |
|
|
|
5943 |
|
|
return new_r->index;
|
5944 |
|
|
}
|
5945 |
|
|
|
5946 |
|
|
/* Similar, but operate on INTEGER_CSTs. */
|
5947 |
|
|
|
5948 |
|
|
static tree
|
5949 |
|
|
move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
|
5950 |
|
|
{
|
5951 |
|
|
int old_nr, new_nr;
|
5952 |
|
|
|
5953 |
|
|
old_nr = tree_low_cst (old_t_nr, 0);
|
5954 |
|
|
new_nr = move_stmt_eh_region_nr (old_nr, p);
|
5955 |
|
|
|
5956 |
|
|
return build_int_cst (integer_type_node, new_nr);
|
5957 |
|
|
}
|
5958 |
|
|
|
5959 |
|
|
/* Like move_stmt_op, but for gimple statements.
|
5960 |
|
|
|
5961 |
|
|
Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
|
5962 |
|
|
contained in the current statement in *GSI_P and change the
|
5963 |
|
|
DECL_CONTEXT of every local variable referenced in the current
|
5964 |
|
|
statement. */
|
5965 |
|
|
|
5966 |
|
|
static tree
|
5967 |
|
|
move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
|
5968 |
|
|
struct walk_stmt_info *wi)
|
5969 |
|
|
{
|
5970 |
|
|
struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
|
5971 |
|
|
gimple stmt = gsi_stmt (*gsi_p);
|
5972 |
|
|
tree block = gimple_block (stmt);
|
5973 |
|
|
|
5974 |
|
|
if (p->orig_block == NULL_TREE
|
5975 |
|
|
|| block == p->orig_block
|
5976 |
|
|
|| block == NULL_TREE)
|
5977 |
|
|
gimple_set_block (stmt, p->new_block);
|
5978 |
|
|
#ifdef ENABLE_CHECKING
|
5979 |
|
|
else if (block != p->new_block)
|
5980 |
|
|
{
|
5981 |
|
|
while (block && block != p->orig_block)
|
5982 |
|
|
block = BLOCK_SUPERCONTEXT (block);
|
5983 |
|
|
gcc_assert (block);
|
5984 |
|
|
}
|
5985 |
|
|
#endif
|
5986 |
|
|
|
5987 |
|
|
switch (gimple_code (stmt))
|
5988 |
|
|
{
|
5989 |
|
|
case GIMPLE_CALL:
|
5990 |
|
|
/* Remap the region numbers for __builtin_eh_{pointer,filter}. */
|
5991 |
|
|
{
|
5992 |
|
|
tree r, fndecl = gimple_call_fndecl (stmt);
|
5993 |
|
|
if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
|
5994 |
|
|
switch (DECL_FUNCTION_CODE (fndecl))
|
5995 |
|
|
{
|
5996 |
|
|
case BUILT_IN_EH_COPY_VALUES:
|
5997 |
|
|
r = gimple_call_arg (stmt, 1);
|
5998 |
|
|
r = move_stmt_eh_region_tree_nr (r, p);
|
5999 |
|
|
gimple_call_set_arg (stmt, 1, r);
|
6000 |
|
|
/* FALLTHRU */
|
6001 |
|
|
|
6002 |
|
|
case BUILT_IN_EH_POINTER:
|
6003 |
|
|
case BUILT_IN_EH_FILTER:
|
6004 |
|
|
r = gimple_call_arg (stmt, 0);
|
6005 |
|
|
r = move_stmt_eh_region_tree_nr (r, p);
|
6006 |
|
|
gimple_call_set_arg (stmt, 0, r);
|
6007 |
|
|
break;
|
6008 |
|
|
|
6009 |
|
|
default:
|
6010 |
|
|
break;
|
6011 |
|
|
}
|
6012 |
|
|
}
|
6013 |
|
|
break;
|
6014 |
|
|
|
6015 |
|
|
case GIMPLE_RESX:
|
6016 |
|
|
{
|
6017 |
|
|
int r = gimple_resx_region (stmt);
|
6018 |
|
|
r = move_stmt_eh_region_nr (r, p);
|
6019 |
|
|
gimple_resx_set_region (stmt, r);
|
6020 |
|
|
}
|
6021 |
|
|
break;
|
6022 |
|
|
|
6023 |
|
|
case GIMPLE_EH_DISPATCH:
|
6024 |
|
|
{
|
6025 |
|
|
int r = gimple_eh_dispatch_region (stmt);
|
6026 |
|
|
r = move_stmt_eh_region_nr (r, p);
|
6027 |
|
|
gimple_eh_dispatch_set_region (stmt, r);
|
6028 |
|
|
}
|
6029 |
|
|
break;
|
6030 |
|
|
|
6031 |
|
|
case GIMPLE_OMP_RETURN:
|
6032 |
|
|
case GIMPLE_OMP_CONTINUE:
|
6033 |
|
|
break;
|
6034 |
|
|
default:
|
6035 |
|
|
if (is_gimple_omp (stmt))
|
6036 |
|
|
{
|
6037 |
|
|
/* Do not remap variables inside OMP directives. Variables
|
6038 |
|
|
referenced in clauses and directive header belong to the
|
6039 |
|
|
parent function and should not be moved into the child
|
6040 |
|
|
function. */
|
6041 |
|
|
bool save_remap_decls_p = p->remap_decls_p;
|
6042 |
|
|
p->remap_decls_p = false;
|
6043 |
|
|
*handled_ops_p = true;
|
6044 |
|
|
|
6045 |
|
|
walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
|
6046 |
|
|
move_stmt_op, wi);
|
6047 |
|
|
|
6048 |
|
|
p->remap_decls_p = save_remap_decls_p;
|
6049 |
|
|
}
|
6050 |
|
|
break;
|
6051 |
|
|
}
|
6052 |
|
|
|
6053 |
|
|
return NULL_TREE;
|
6054 |
|
|
}
|
6055 |
|
|
|
6056 |
|
|
/* Move basic block BB from function CFUN to function DEST_FN. The
|
6057 |
|
|
block is moved out of the original linked list and placed after
|
6058 |
|
|
block AFTER in the new list. Also, the block is removed from the
|
6059 |
|
|
original array of blocks and placed in DEST_FN's array of blocks.
|
6060 |
|
|
If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
|
6061 |
|
|
updated to reflect the moved edges.
|
6062 |
|
|
|
6063 |
|
|
The local variables are remapped to new instances, VARS_MAP is used
|
6064 |
|
|
to record the mapping. */
|
6065 |
|
|
|
6066 |
|
|
static void
|
6067 |
|
|
move_block_to_fn (struct function *dest_cfun, basic_block bb,
|
6068 |
|
|
basic_block after, bool update_edge_count_p,
|
6069 |
|
|
struct move_stmt_d *d)
|
6070 |
|
|
{
|
6071 |
|
|
struct control_flow_graph *cfg;
|
6072 |
|
|
edge_iterator ei;
|
6073 |
|
|
edge e;
|
6074 |
|
|
gimple_stmt_iterator si;
|
6075 |
|
|
unsigned old_len, new_len;
|
6076 |
|
|
|
6077 |
|
|
/* Remove BB from dominance structures. */
|
6078 |
|
|
delete_from_dominance_info (CDI_DOMINATORS, bb);
|
6079 |
|
|
if (current_loops)
|
6080 |
|
|
remove_bb_from_loops (bb);
|
6081 |
|
|
|
6082 |
|
|
/* Link BB to the new linked list. */
|
6083 |
|
|
move_block_after (bb, after);
|
6084 |
|
|
|
6085 |
|
|
/* Update the edge count in the corresponding flowgraphs. */
|
6086 |
|
|
if (update_edge_count_p)
|
6087 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
6088 |
|
|
{
|
6089 |
|
|
cfun->cfg->x_n_edges--;
|
6090 |
|
|
dest_cfun->cfg->x_n_edges++;
|
6091 |
|
|
}
|
6092 |
|
|
|
6093 |
|
|
/* Remove BB from the original basic block array. */
|
6094 |
|
|
VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
|
6095 |
|
|
cfun->cfg->x_n_basic_blocks--;
|
6096 |
|
|
|
6097 |
|
|
/* Grow DEST_CFUN's basic block array if needed. */
|
6098 |
|
|
cfg = dest_cfun->cfg;
|
6099 |
|
|
cfg->x_n_basic_blocks++;
|
6100 |
|
|
if (bb->index >= cfg->x_last_basic_block)
|
6101 |
|
|
cfg->x_last_basic_block = bb->index + 1;
|
6102 |
|
|
|
6103 |
|
|
old_len = VEC_length (basic_block, cfg->x_basic_block_info);
|
6104 |
|
|
if ((unsigned) cfg->x_last_basic_block >= old_len)
|
6105 |
|
|
{
|
6106 |
|
|
new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
|
6107 |
|
|
VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
|
6108 |
|
|
new_len);
|
6109 |
|
|
}
|
6110 |
|
|
|
6111 |
|
|
VEC_replace (basic_block, cfg->x_basic_block_info,
|
6112 |
|
|
bb->index, bb);
|
6113 |
|
|
|
6114 |
|
|
/* Remap the variables in phi nodes. */
|
6115 |
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); )
|
6116 |
|
|
{
|
6117 |
|
|
gimple phi = gsi_stmt (si);
|
6118 |
|
|
use_operand_p use;
|
6119 |
|
|
tree op = PHI_RESULT (phi);
|
6120 |
|
|
ssa_op_iter oi;
|
6121 |
|
|
|
6122 |
|
|
if (!is_gimple_reg (op))
|
6123 |
|
|
{
|
6124 |
|
|
/* Remove the phi nodes for virtual operands (alias analysis will be
|
6125 |
|
|
run for the new function, anyway). */
|
6126 |
|
|
remove_phi_node (&si, true);
|
6127 |
|
|
continue;
|
6128 |
|
|
}
|
6129 |
|
|
|
6130 |
|
|
SET_PHI_RESULT (phi,
|
6131 |
|
|
replace_ssa_name (op, d->vars_map, dest_cfun->decl));
|
6132 |
|
|
FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
|
6133 |
|
|
{
|
6134 |
|
|
op = USE_FROM_PTR (use);
|
6135 |
|
|
if (TREE_CODE (op) == SSA_NAME)
|
6136 |
|
|
SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
|
6137 |
|
|
}
|
6138 |
|
|
|
6139 |
|
|
gsi_next (&si);
|
6140 |
|
|
}
|
6141 |
|
|
|
6142 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
6143 |
|
|
{
|
6144 |
|
|
gimple stmt = gsi_stmt (si);
|
6145 |
|
|
struct walk_stmt_info wi;
|
6146 |
|
|
|
6147 |
|
|
memset (&wi, 0, sizeof (wi));
|
6148 |
|
|
wi.info = d;
|
6149 |
|
|
walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
|
6150 |
|
|
|
6151 |
|
|
if (gimple_code (stmt) == GIMPLE_LABEL)
|
6152 |
|
|
{
|
6153 |
|
|
tree label = gimple_label_label (stmt);
|
6154 |
|
|
int uid = LABEL_DECL_UID (label);
|
6155 |
|
|
|
6156 |
|
|
gcc_assert (uid > -1);
|
6157 |
|
|
|
6158 |
|
|
old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
|
6159 |
|
|
if (old_len <= (unsigned) uid)
|
6160 |
|
|
{
|
6161 |
|
|
new_len = 3 * uid / 2 + 1;
|
6162 |
|
|
VEC_safe_grow_cleared (basic_block, gc,
|
6163 |
|
|
cfg->x_label_to_block_map, new_len);
|
6164 |
|
|
}
|
6165 |
|
|
|
6166 |
|
|
VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
|
6167 |
|
|
VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
|
6168 |
|
|
|
6169 |
|
|
gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
|
6170 |
|
|
|
6171 |
|
|
if (uid >= dest_cfun->cfg->last_label_uid)
|
6172 |
|
|
dest_cfun->cfg->last_label_uid = uid + 1;
|
6173 |
|
|
}
|
6174 |
|
|
|
6175 |
|
|
maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
|
6176 |
|
|
remove_stmt_from_eh_lp_fn (cfun, stmt);
|
6177 |
|
|
|
6178 |
|
|
gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
|
6179 |
|
|
gimple_remove_stmt_histograms (cfun, stmt);
|
6180 |
|
|
|
6181 |
|
|
/* We cannot leave any operands allocated from the operand caches of
|
6182 |
|
|
the current function. */
|
6183 |
|
|
free_stmt_operands (stmt);
|
6184 |
|
|
push_cfun (dest_cfun);
|
6185 |
|
|
update_stmt (stmt);
|
6186 |
|
|
pop_cfun ();
|
6187 |
|
|
}
|
6188 |
|
|
|
6189 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
6190 |
|
|
if (e->goto_locus)
|
6191 |
|
|
{
|
6192 |
|
|
tree block = e->goto_block;
|
6193 |
|
|
if (d->orig_block == NULL_TREE
|
6194 |
|
|
|| block == d->orig_block)
|
6195 |
|
|
e->goto_block = d->new_block;
|
6196 |
|
|
#ifdef ENABLE_CHECKING
|
6197 |
|
|
else if (block != d->new_block)
|
6198 |
|
|
{
|
6199 |
|
|
while (block && block != d->orig_block)
|
6200 |
|
|
block = BLOCK_SUPERCONTEXT (block);
|
6201 |
|
|
gcc_assert (block);
|
6202 |
|
|
}
|
6203 |
|
|
#endif
|
6204 |
|
|
}
|
6205 |
|
|
}
|
6206 |
|
|
|
6207 |
|
|
/* Examine the statements in BB (which is in SRC_CFUN); find and return
|
6208 |
|
|
the outermost EH region. Use REGION as the incoming base EH region. */
|
6209 |
|
|
|
6210 |
|
|
static eh_region
|
6211 |
|
|
find_outermost_region_in_block (struct function *src_cfun,
|
6212 |
|
|
basic_block bb, eh_region region)
|
6213 |
|
|
{
|
6214 |
|
|
gimple_stmt_iterator si;
|
6215 |
|
|
|
6216 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
6217 |
|
|
{
|
6218 |
|
|
gimple stmt = gsi_stmt (si);
|
6219 |
|
|
eh_region stmt_region;
|
6220 |
|
|
int lp_nr;
|
6221 |
|
|
|
6222 |
|
|
lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
|
6223 |
|
|
stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
|
6224 |
|
|
if (stmt_region)
|
6225 |
|
|
{
|
6226 |
|
|
if (region == NULL)
|
6227 |
|
|
region = stmt_region;
|
6228 |
|
|
else if (stmt_region != region)
|
6229 |
|
|
{
|
6230 |
|
|
region = eh_region_outermost (src_cfun, stmt_region, region);
|
6231 |
|
|
gcc_assert (region != NULL);
|
6232 |
|
|
}
|
6233 |
|
|
}
|
6234 |
|
|
}
|
6235 |
|
|
|
6236 |
|
|
return region;
|
6237 |
|
|
}
|
6238 |
|
|
|
6239 |
|
|
static tree
|
6240 |
|
|
new_label_mapper (tree decl, void *data)
|
6241 |
|
|
{
|
6242 |
|
|
htab_t hash = (htab_t) data;
|
6243 |
|
|
struct tree_map *m;
|
6244 |
|
|
void **slot;
|
6245 |
|
|
|
6246 |
|
|
gcc_assert (TREE_CODE (decl) == LABEL_DECL);
|
6247 |
|
|
|
6248 |
|
|
m = XNEW (struct tree_map);
|
6249 |
|
|
m->hash = DECL_UID (decl);
|
6250 |
|
|
m->base.from = decl;
|
6251 |
|
|
m->to = create_artificial_label (UNKNOWN_LOCATION);
|
6252 |
|
|
LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
|
6253 |
|
|
if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
|
6254 |
|
|
cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
|
6255 |
|
|
|
6256 |
|
|
slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
|
6257 |
|
|
gcc_assert (*slot == NULL);
|
6258 |
|
|
|
6259 |
|
|
*slot = m;
|
6260 |
|
|
|
6261 |
|
|
return m->to;
|
6262 |
|
|
}
|
6263 |
|
|
|
6264 |
|
|
/* Change DECL_CONTEXT of all BLOCK_VARS in block, including
|
6265 |
|
|
subblocks. */
|
6266 |
|
|
|
6267 |
|
|
static void
|
6268 |
|
|
replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
|
6269 |
|
|
tree to_context)
|
6270 |
|
|
{
|
6271 |
|
|
tree *tp, t;
|
6272 |
|
|
|
6273 |
|
|
for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
|
6274 |
|
|
{
|
6275 |
|
|
t = *tp;
|
6276 |
|
|
if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
|
6277 |
|
|
continue;
|
6278 |
|
|
replace_by_duplicate_decl (&t, vars_map, to_context);
|
6279 |
|
|
if (t != *tp)
|
6280 |
|
|
{
|
6281 |
|
|
if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
|
6282 |
|
|
{
|
6283 |
|
|
SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
|
6284 |
|
|
DECL_HAS_VALUE_EXPR_P (t) = 1;
|
6285 |
|
|
}
|
6286 |
|
|
DECL_CHAIN (t) = DECL_CHAIN (*tp);
|
6287 |
|
|
*tp = t;
|
6288 |
|
|
}
|
6289 |
|
|
}
|
6290 |
|
|
|
6291 |
|
|
for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
|
6292 |
|
|
replace_block_vars_by_duplicates (block, vars_map, to_context);
|
6293 |
|
|
}
|
6294 |
|
|
|
6295 |
|
|
/* Move a single-entry, single-exit region delimited by ENTRY_BB and
|
6296 |
|
|
EXIT_BB to function DEST_CFUN. The whole region is replaced by a
|
6297 |
|
|
single basic block in the original CFG and the new basic block is
|
6298 |
|
|
returned. DEST_CFUN must not have a CFG yet.
|
6299 |
|
|
|
6300 |
|
|
Note that the region need not be a pure SESE region. Blocks inside
|
6301 |
|
|
the region may contain calls to abort/exit. The only restriction
|
6302 |
|
|
is that ENTRY_BB should be the only entry point and it must
|
6303 |
|
|
dominate EXIT_BB.
|
6304 |
|
|
|
6305 |
|
|
Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
|
6306 |
|
|
functions outermost BLOCK, move all subblocks of ORIG_BLOCK
|
6307 |
|
|
to the new function.
|
6308 |
|
|
|
6309 |
|
|
All local variables referenced in the region are assumed to be in
|
6310 |
|
|
the corresponding BLOCK_VARS and unexpanded variable lists
|
6311 |
|
|
associated with DEST_CFUN. */
|
6312 |
|
|
|
6313 |
|
|
basic_block
|
6314 |
|
|
move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
|
6315 |
|
|
basic_block exit_bb, tree orig_block)
|
6316 |
|
|
{
|
6317 |
|
|
VEC(basic_block,heap) *bbs, *dom_bbs;
|
6318 |
|
|
basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
|
6319 |
|
|
basic_block after, bb, *entry_pred, *exit_succ, abb;
|
6320 |
|
|
struct function *saved_cfun = cfun;
|
6321 |
|
|
int *entry_flag, *exit_flag;
|
6322 |
|
|
unsigned *entry_prob, *exit_prob;
|
6323 |
|
|
unsigned i, num_entry_edges, num_exit_edges;
|
6324 |
|
|
edge e;
|
6325 |
|
|
edge_iterator ei;
|
6326 |
|
|
htab_t new_label_map;
|
6327 |
|
|
struct pointer_map_t *vars_map, *eh_map;
|
6328 |
|
|
struct loop *loop = entry_bb->loop_father;
|
6329 |
|
|
struct move_stmt_d d;
|
6330 |
|
|
|
6331 |
|
|
/* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
|
6332 |
|
|
region. */
|
6333 |
|
|
gcc_assert (entry_bb != exit_bb
|
6334 |
|
|
&& (!exit_bb
|
6335 |
|
|
|| dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
|
6336 |
|
|
|
6337 |
|
|
/* Collect all the blocks in the region. Manually add ENTRY_BB
|
6338 |
|
|
because it won't be added by dfs_enumerate_from. */
|
6339 |
|
|
bbs = NULL;
|
6340 |
|
|
VEC_safe_push (basic_block, heap, bbs, entry_bb);
|
6341 |
|
|
gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
|
6342 |
|
|
|
6343 |
|
|
/* The blocks that used to be dominated by something in BBS will now be
|
6344 |
|
|
dominated by the new block. */
|
6345 |
|
|
dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
|
6346 |
|
|
VEC_address (basic_block, bbs),
|
6347 |
|
|
VEC_length (basic_block, bbs));
|
6348 |
|
|
|
6349 |
|
|
/* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
|
6350 |
|
|
the predecessor edges to ENTRY_BB and the successor edges to
|
6351 |
|
|
EXIT_BB so that we can re-attach them to the new basic block that
|
6352 |
|
|
will replace the region. */
|
6353 |
|
|
num_entry_edges = EDGE_COUNT (entry_bb->preds);
|
6354 |
|
|
entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
|
6355 |
|
|
entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
|
6356 |
|
|
entry_prob = XNEWVEC (unsigned, num_entry_edges);
|
6357 |
|
|
i = 0;
|
6358 |
|
|
for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
|
6359 |
|
|
{
|
6360 |
|
|
entry_prob[i] = e->probability;
|
6361 |
|
|
entry_flag[i] = e->flags;
|
6362 |
|
|
entry_pred[i++] = e->src;
|
6363 |
|
|
remove_edge (e);
|
6364 |
|
|
}
|
6365 |
|
|
|
6366 |
|
|
if (exit_bb)
|
6367 |
|
|
{
|
6368 |
|
|
num_exit_edges = EDGE_COUNT (exit_bb->succs);
|
6369 |
|
|
exit_succ = (basic_block *) xcalloc (num_exit_edges,
|
6370 |
|
|
sizeof (basic_block));
|
6371 |
|
|
exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
|
6372 |
|
|
exit_prob = XNEWVEC (unsigned, num_exit_edges);
|
6373 |
|
|
i = 0;
|
6374 |
|
|
for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
|
6375 |
|
|
{
|
6376 |
|
|
exit_prob[i] = e->probability;
|
6377 |
|
|
exit_flag[i] = e->flags;
|
6378 |
|
|
exit_succ[i++] = e->dest;
|
6379 |
|
|
remove_edge (e);
|
6380 |
|
|
}
|
6381 |
|
|
}
|
6382 |
|
|
else
|
6383 |
|
|
{
|
6384 |
|
|
num_exit_edges = 0;
|
6385 |
|
|
exit_succ = NULL;
|
6386 |
|
|
exit_flag = NULL;
|
6387 |
|
|
exit_prob = NULL;
|
6388 |
|
|
}
|
6389 |
|
|
|
6390 |
|
|
/* Switch context to the child function to initialize DEST_FN's CFG. */
|
6391 |
|
|
gcc_assert (dest_cfun->cfg == NULL);
|
6392 |
|
|
push_cfun (dest_cfun);
|
6393 |
|
|
|
6394 |
|
|
init_empty_tree_cfg ();
|
6395 |
|
|
|
6396 |
|
|
/* Initialize EH information for the new function. */
|
6397 |
|
|
eh_map = NULL;
|
6398 |
|
|
new_label_map = NULL;
|
6399 |
|
|
if (saved_cfun->eh)
|
6400 |
|
|
{
|
6401 |
|
|
eh_region region = NULL;
|
6402 |
|
|
|
6403 |
|
|
FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
|
6404 |
|
|
region = find_outermost_region_in_block (saved_cfun, bb, region);
|
6405 |
|
|
|
6406 |
|
|
init_eh_for_function ();
|
6407 |
|
|
if (region != NULL)
|
6408 |
|
|
{
|
6409 |
|
|
new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
|
6410 |
|
|
eh_map = duplicate_eh_regions (saved_cfun, region, 0,
|
6411 |
|
|
new_label_mapper, new_label_map);
|
6412 |
|
|
}
|
6413 |
|
|
}
|
6414 |
|
|
|
6415 |
|
|
pop_cfun ();
|
6416 |
|
|
|
6417 |
|
|
/* Move blocks from BBS into DEST_CFUN. */
|
6418 |
|
|
gcc_assert (VEC_length (basic_block, bbs) >= 2);
|
6419 |
|
|
after = dest_cfun->cfg->x_entry_block_ptr;
|
6420 |
|
|
vars_map = pointer_map_create ();
|
6421 |
|
|
|
6422 |
|
|
memset (&d, 0, sizeof (d));
|
6423 |
|
|
d.orig_block = orig_block;
|
6424 |
|
|
d.new_block = DECL_INITIAL (dest_cfun->decl);
|
6425 |
|
|
d.from_context = cfun->decl;
|
6426 |
|
|
d.to_context = dest_cfun->decl;
|
6427 |
|
|
d.vars_map = vars_map;
|
6428 |
|
|
d.new_label_map = new_label_map;
|
6429 |
|
|
d.eh_map = eh_map;
|
6430 |
|
|
d.remap_decls_p = true;
|
6431 |
|
|
|
6432 |
|
|
FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
|
6433 |
|
|
{
|
6434 |
|
|
/* No need to update edge counts on the last block. It has
|
6435 |
|
|
already been updated earlier when we detached the region from
|
6436 |
|
|
the original CFG. */
|
6437 |
|
|
move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
|
6438 |
|
|
after = bb;
|
6439 |
|
|
}
|
6440 |
|
|
|
6441 |
|
|
/* Rewire BLOCK_SUBBLOCKS of orig_block. */
|
6442 |
|
|
if (orig_block)
|
6443 |
|
|
{
|
6444 |
|
|
tree block;
|
6445 |
|
|
gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
|
6446 |
|
|
== NULL_TREE);
|
6447 |
|
|
BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
|
6448 |
|
|
= BLOCK_SUBBLOCKS (orig_block);
|
6449 |
|
|
for (block = BLOCK_SUBBLOCKS (orig_block);
|
6450 |
|
|
block; block = BLOCK_CHAIN (block))
|
6451 |
|
|
BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
|
6452 |
|
|
BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
|
6453 |
|
|
}
|
6454 |
|
|
|
6455 |
|
|
replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
|
6456 |
|
|
vars_map, dest_cfun->decl);
|
6457 |
|
|
|
6458 |
|
|
if (new_label_map)
|
6459 |
|
|
htab_delete (new_label_map);
|
6460 |
|
|
if (eh_map)
|
6461 |
|
|
pointer_map_destroy (eh_map);
|
6462 |
|
|
pointer_map_destroy (vars_map);
|
6463 |
|
|
|
6464 |
|
|
/* Rewire the entry and exit blocks. The successor to the entry
|
6465 |
|
|
block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
|
6466 |
|
|
the child function. Similarly, the predecessor of DEST_FN's
|
6467 |
|
|
EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
|
6468 |
|
|
need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
|
6469 |
|
|
various CFG manipulation function get to the right CFG.
|
6470 |
|
|
|
6471 |
|
|
FIXME, this is silly. The CFG ought to become a parameter to
|
6472 |
|
|
these helpers. */
|
6473 |
|
|
push_cfun (dest_cfun);
|
6474 |
|
|
make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
|
6475 |
|
|
if (exit_bb)
|
6476 |
|
|
make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
|
6477 |
|
|
pop_cfun ();
|
6478 |
|
|
|
6479 |
|
|
/* Back in the original function, the SESE region has disappeared,
|
6480 |
|
|
create a new basic block in its place. */
|
6481 |
|
|
bb = create_empty_bb (entry_pred[0]);
|
6482 |
|
|
if (current_loops)
|
6483 |
|
|
add_bb_to_loop (bb, loop);
|
6484 |
|
|
for (i = 0; i < num_entry_edges; i++)
|
6485 |
|
|
{
|
6486 |
|
|
e = make_edge (entry_pred[i], bb, entry_flag[i]);
|
6487 |
|
|
e->probability = entry_prob[i];
|
6488 |
|
|
}
|
6489 |
|
|
|
6490 |
|
|
for (i = 0; i < num_exit_edges; i++)
|
6491 |
|
|
{
|
6492 |
|
|
e = make_edge (bb, exit_succ[i], exit_flag[i]);
|
6493 |
|
|
e->probability = exit_prob[i];
|
6494 |
|
|
}
|
6495 |
|
|
|
6496 |
|
|
set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
|
6497 |
|
|
FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
|
6498 |
|
|
set_immediate_dominator (CDI_DOMINATORS, abb, bb);
|
6499 |
|
|
VEC_free (basic_block, heap, dom_bbs);
|
6500 |
|
|
|
6501 |
|
|
if (exit_bb)
|
6502 |
|
|
{
|
6503 |
|
|
free (exit_prob);
|
6504 |
|
|
free (exit_flag);
|
6505 |
|
|
free (exit_succ);
|
6506 |
|
|
}
|
6507 |
|
|
free (entry_prob);
|
6508 |
|
|
free (entry_flag);
|
6509 |
|
|
free (entry_pred);
|
6510 |
|
|
VEC_free (basic_block, heap, bbs);
|
6511 |
|
|
|
6512 |
|
|
return bb;
|
6513 |
|
|
}
|
6514 |
|
|
|
6515 |
|
|
|
6516 |
|
|
/* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
|
6517 |
|
|
*/
|
6518 |
|
|
|
6519 |
|
|
void
|
6520 |
|
|
dump_function_to_file (tree fn, FILE *file, int flags)
|
6521 |
|
|
{
|
6522 |
|
|
tree arg, var;
|
6523 |
|
|
struct function *dsf;
|
6524 |
|
|
bool ignore_topmost_bind = false, any_var = false;
|
6525 |
|
|
basic_block bb;
|
6526 |
|
|
tree chain;
|
6527 |
|
|
bool tmclone = TREE_CODE (fn) == FUNCTION_DECL && decl_is_tm_clone (fn);
|
6528 |
|
|
|
6529 |
|
|
fprintf (file, "%s %s(", lang_hooks.decl_printable_name (fn, 2),
|
6530 |
|
|
tmclone ? "[tm-clone] " : "");
|
6531 |
|
|
|
6532 |
|
|
arg = DECL_ARGUMENTS (fn);
|
6533 |
|
|
while (arg)
|
6534 |
|
|
{
|
6535 |
|
|
print_generic_expr (file, TREE_TYPE (arg), dump_flags);
|
6536 |
|
|
fprintf (file, " ");
|
6537 |
|
|
print_generic_expr (file, arg, dump_flags);
|
6538 |
|
|
if (flags & TDF_VERBOSE)
|
6539 |
|
|
print_node (file, "", arg, 4);
|
6540 |
|
|
if (DECL_CHAIN (arg))
|
6541 |
|
|
fprintf (file, ", ");
|
6542 |
|
|
arg = DECL_CHAIN (arg);
|
6543 |
|
|
}
|
6544 |
|
|
fprintf (file, ")\n");
|
6545 |
|
|
|
6546 |
|
|
if (flags & TDF_VERBOSE)
|
6547 |
|
|
print_node (file, "", fn, 2);
|
6548 |
|
|
|
6549 |
|
|
dsf = DECL_STRUCT_FUNCTION (fn);
|
6550 |
|
|
if (dsf && (flags & TDF_EH))
|
6551 |
|
|
dump_eh_tree (file, dsf);
|
6552 |
|
|
|
6553 |
|
|
if (flags & TDF_RAW && !gimple_has_body_p (fn))
|
6554 |
|
|
{
|
6555 |
|
|
dump_node (fn, TDF_SLIM | flags, file);
|
6556 |
|
|
return;
|
6557 |
|
|
}
|
6558 |
|
|
|
6559 |
|
|
/* Switch CFUN to point to FN. */
|
6560 |
|
|
push_cfun (DECL_STRUCT_FUNCTION (fn));
|
6561 |
|
|
|
6562 |
|
|
/* When GIMPLE is lowered, the variables are no longer available in
|
6563 |
|
|
BIND_EXPRs, so display them separately. */
|
6564 |
|
|
if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
|
6565 |
|
|
{
|
6566 |
|
|
unsigned ix;
|
6567 |
|
|
ignore_topmost_bind = true;
|
6568 |
|
|
|
6569 |
|
|
fprintf (file, "{\n");
|
6570 |
|
|
FOR_EACH_LOCAL_DECL (cfun, ix, var)
|
6571 |
|
|
{
|
6572 |
|
|
print_generic_decl (file, var, flags);
|
6573 |
|
|
if (flags & TDF_VERBOSE)
|
6574 |
|
|
print_node (file, "", var, 4);
|
6575 |
|
|
fprintf (file, "\n");
|
6576 |
|
|
|
6577 |
|
|
any_var = true;
|
6578 |
|
|
}
|
6579 |
|
|
}
|
6580 |
|
|
|
6581 |
|
|
if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
|
6582 |
|
|
{
|
6583 |
|
|
/* If the CFG has been built, emit a CFG-based dump. */
|
6584 |
|
|
check_bb_profile (ENTRY_BLOCK_PTR, file);
|
6585 |
|
|
if (!ignore_topmost_bind)
|
6586 |
|
|
fprintf (file, "{\n");
|
6587 |
|
|
|
6588 |
|
|
if (any_var && n_basic_blocks)
|
6589 |
|
|
fprintf (file, "\n");
|
6590 |
|
|
|
6591 |
|
|
FOR_EACH_BB (bb)
|
6592 |
|
|
gimple_dump_bb (bb, file, 2, flags);
|
6593 |
|
|
|
6594 |
|
|
fprintf (file, "}\n");
|
6595 |
|
|
check_bb_profile (EXIT_BLOCK_PTR, file);
|
6596 |
|
|
}
|
6597 |
|
|
else if (DECL_SAVED_TREE (fn) == NULL)
|
6598 |
|
|
{
|
6599 |
|
|
/* The function is now in GIMPLE form but the CFG has not been
|
6600 |
|
|
built yet. Emit the single sequence of GIMPLE statements
|
6601 |
|
|
that make up its body. */
|
6602 |
|
|
gimple_seq body = gimple_body (fn);
|
6603 |
|
|
|
6604 |
|
|
if (gimple_seq_first_stmt (body)
|
6605 |
|
|
&& gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
|
6606 |
|
|
&& gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
|
6607 |
|
|
print_gimple_seq (file, body, 0, flags);
|
6608 |
|
|
else
|
6609 |
|
|
{
|
6610 |
|
|
if (!ignore_topmost_bind)
|
6611 |
|
|
fprintf (file, "{\n");
|
6612 |
|
|
|
6613 |
|
|
if (any_var)
|
6614 |
|
|
fprintf (file, "\n");
|
6615 |
|
|
|
6616 |
|
|
print_gimple_seq (file, body, 2, flags);
|
6617 |
|
|
fprintf (file, "}\n");
|
6618 |
|
|
}
|
6619 |
|
|
}
|
6620 |
|
|
else
|
6621 |
|
|
{
|
6622 |
|
|
int indent;
|
6623 |
|
|
|
6624 |
|
|
/* Make a tree based dump. */
|
6625 |
|
|
chain = DECL_SAVED_TREE (fn);
|
6626 |
|
|
|
6627 |
|
|
if (chain && TREE_CODE (chain) == BIND_EXPR)
|
6628 |
|
|
{
|
6629 |
|
|
if (ignore_topmost_bind)
|
6630 |
|
|
{
|
6631 |
|
|
chain = BIND_EXPR_BODY (chain);
|
6632 |
|
|
indent = 2;
|
6633 |
|
|
}
|
6634 |
|
|
else
|
6635 |
|
|
indent = 0;
|
6636 |
|
|
}
|
6637 |
|
|
else
|
6638 |
|
|
{
|
6639 |
|
|
if (!ignore_topmost_bind)
|
6640 |
|
|
fprintf (file, "{\n");
|
6641 |
|
|
indent = 2;
|
6642 |
|
|
}
|
6643 |
|
|
|
6644 |
|
|
if (any_var)
|
6645 |
|
|
fprintf (file, "\n");
|
6646 |
|
|
|
6647 |
|
|
print_generic_stmt_indented (file, chain, flags, indent);
|
6648 |
|
|
if (ignore_topmost_bind)
|
6649 |
|
|
fprintf (file, "}\n");
|
6650 |
|
|
}
|
6651 |
|
|
|
6652 |
|
|
if (flags & TDF_ENUMERATE_LOCALS)
|
6653 |
|
|
dump_enumerated_decls (file, flags);
|
6654 |
|
|
fprintf (file, "\n\n");
|
6655 |
|
|
|
6656 |
|
|
/* Restore CFUN. */
|
6657 |
|
|
pop_cfun ();
|
6658 |
|
|
}
|
6659 |
|
|
|
6660 |
|
|
|
6661 |
|
|
/* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
|
6662 |
|
|
|
6663 |
|
|
DEBUG_FUNCTION void
|
6664 |
|
|
debug_function (tree fn, int flags)
|
6665 |
|
|
{
|
6666 |
|
|
dump_function_to_file (fn, stderr, flags);
|
6667 |
|
|
}
|
6668 |
|
|
|
6669 |
|
|
|
6670 |
|
|
/* Print on FILE the indexes for the predecessors of basic_block BB. */
|
6671 |
|
|
|
6672 |
|
|
static void
|
6673 |
|
|
print_pred_bbs (FILE *file, basic_block bb)
|
6674 |
|
|
{
|
6675 |
|
|
edge e;
|
6676 |
|
|
edge_iterator ei;
|
6677 |
|
|
|
6678 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
6679 |
|
|
fprintf (file, "bb_%d ", e->src->index);
|
6680 |
|
|
}
|
6681 |
|
|
|
6682 |
|
|
|
6683 |
|
|
/* Print on FILE the indexes for the successors of basic_block BB. */
|
6684 |
|
|
|
6685 |
|
|
static void
|
6686 |
|
|
print_succ_bbs (FILE *file, basic_block bb)
|
6687 |
|
|
{
|
6688 |
|
|
edge e;
|
6689 |
|
|
edge_iterator ei;
|
6690 |
|
|
|
6691 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
6692 |
|
|
fprintf (file, "bb_%d ", e->dest->index);
|
6693 |
|
|
}
|
6694 |
|
|
|
6695 |
|
|
/* Print to FILE the basic block BB following the VERBOSITY level. */
|
6696 |
|
|
|
6697 |
|
|
void
|
6698 |
|
|
print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
|
6699 |
|
|
{
|
6700 |
|
|
char *s_indent = (char *) alloca ((size_t) indent + 1);
|
6701 |
|
|
memset ((void *) s_indent, ' ', (size_t) indent);
|
6702 |
|
|
s_indent[indent] = '\0';
|
6703 |
|
|
|
6704 |
|
|
/* Print basic_block's header. */
|
6705 |
|
|
if (verbosity >= 2)
|
6706 |
|
|
{
|
6707 |
|
|
fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
|
6708 |
|
|
print_pred_bbs (file, bb);
|
6709 |
|
|
fprintf (file, "}, succs = {");
|
6710 |
|
|
print_succ_bbs (file, bb);
|
6711 |
|
|
fprintf (file, "})\n");
|
6712 |
|
|
}
|
6713 |
|
|
|
6714 |
|
|
/* Print basic_block's body. */
|
6715 |
|
|
if (verbosity >= 3)
|
6716 |
|
|
{
|
6717 |
|
|
fprintf (file, "%s {\n", s_indent);
|
6718 |
|
|
gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
|
6719 |
|
|
fprintf (file, "%s }\n", s_indent);
|
6720 |
|
|
}
|
6721 |
|
|
}
|
6722 |
|
|
|
6723 |
|
|
static void print_loop_and_siblings (FILE *, struct loop *, int, int);
|
6724 |
|
|
|
6725 |
|
|
/* Pretty print LOOP on FILE, indented INDENT spaces. Following
|
6726 |
|
|
VERBOSITY level this outputs the contents of the loop, or just its
|
6727 |
|
|
structure. */
|
6728 |
|
|
|
6729 |
|
|
static void
|
6730 |
|
|
print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
|
6731 |
|
|
{
|
6732 |
|
|
char *s_indent;
|
6733 |
|
|
basic_block bb;
|
6734 |
|
|
|
6735 |
|
|
if (loop == NULL)
|
6736 |
|
|
return;
|
6737 |
|
|
|
6738 |
|
|
s_indent = (char *) alloca ((size_t) indent + 1);
|
6739 |
|
|
memset ((void *) s_indent, ' ', (size_t) indent);
|
6740 |
|
|
s_indent[indent] = '\0';
|
6741 |
|
|
|
6742 |
|
|
/* Print loop's header. */
|
6743 |
|
|
fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
|
6744 |
|
|
loop->num, loop->header->index, loop->latch->index);
|
6745 |
|
|
fprintf (file, ", niter = ");
|
6746 |
|
|
print_generic_expr (file, loop->nb_iterations, 0);
|
6747 |
|
|
|
6748 |
|
|
if (loop->any_upper_bound)
|
6749 |
|
|
{
|
6750 |
|
|
fprintf (file, ", upper_bound = ");
|
6751 |
|
|
dump_double_int (file, loop->nb_iterations_upper_bound, true);
|
6752 |
|
|
}
|
6753 |
|
|
|
6754 |
|
|
if (loop->any_estimate)
|
6755 |
|
|
{
|
6756 |
|
|
fprintf (file, ", estimate = ");
|
6757 |
|
|
dump_double_int (file, loop->nb_iterations_estimate, true);
|
6758 |
|
|
}
|
6759 |
|
|
fprintf (file, ")\n");
|
6760 |
|
|
|
6761 |
|
|
/* Print loop's body. */
|
6762 |
|
|
if (verbosity >= 1)
|
6763 |
|
|
{
|
6764 |
|
|
fprintf (file, "%s{\n", s_indent);
|
6765 |
|
|
FOR_EACH_BB (bb)
|
6766 |
|
|
if (bb->loop_father == loop)
|
6767 |
|
|
print_loops_bb (file, bb, indent, verbosity);
|
6768 |
|
|
|
6769 |
|
|
print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
|
6770 |
|
|
fprintf (file, "%s}\n", s_indent);
|
6771 |
|
|
}
|
6772 |
|
|
}
|
6773 |
|
|
|
6774 |
|
|
/* Print the LOOP and its sibling loops on FILE, indented INDENT
|
6775 |
|
|
spaces. Following VERBOSITY level this outputs the contents of the
|
6776 |
|
|
loop, or just its structure. */
|
6777 |
|
|
|
6778 |
|
|
static void
|
6779 |
|
|
print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
|
6780 |
|
|
{
|
6781 |
|
|
if (loop == NULL)
|
6782 |
|
|
return;
|
6783 |
|
|
|
6784 |
|
|
print_loop (file, loop, indent, verbosity);
|
6785 |
|
|
print_loop_and_siblings (file, loop->next, indent, verbosity);
|
6786 |
|
|
}
|
6787 |
|
|
|
6788 |
|
|
/* Follow a CFG edge from the entry point of the program, and on entry
|
6789 |
|
|
of a loop, pretty print the loop structure on FILE. */
|
6790 |
|
|
|
6791 |
|
|
void
|
6792 |
|
|
print_loops (FILE *file, int verbosity)
|
6793 |
|
|
{
|
6794 |
|
|
basic_block bb;
|
6795 |
|
|
|
6796 |
|
|
bb = ENTRY_BLOCK_PTR;
|
6797 |
|
|
if (bb && bb->loop_father)
|
6798 |
|
|
print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
|
6799 |
|
|
}
|
6800 |
|
|
|
6801 |
|
|
|
6802 |
|
|
/* Debugging loops structure at tree level, at some VERBOSITY level. */
|
6803 |
|
|
|
6804 |
|
|
DEBUG_FUNCTION void
|
6805 |
|
|
debug_loops (int verbosity)
|
6806 |
|
|
{
|
6807 |
|
|
print_loops (stderr, verbosity);
|
6808 |
|
|
}
|
6809 |
|
|
|
6810 |
|
|
/* Print on stderr the code of LOOP, at some VERBOSITY level. */
|
6811 |
|
|
|
6812 |
|
|
DEBUG_FUNCTION void
|
6813 |
|
|
debug_loop (struct loop *loop, int verbosity)
|
6814 |
|
|
{
|
6815 |
|
|
print_loop (stderr, loop, 0, verbosity);
|
6816 |
|
|
}
|
6817 |
|
|
|
6818 |
|
|
/* Print on stderr the code of loop number NUM, at some VERBOSITY
|
6819 |
|
|
level. */
|
6820 |
|
|
|
6821 |
|
|
DEBUG_FUNCTION void
|
6822 |
|
|
debug_loop_num (unsigned num, int verbosity)
|
6823 |
|
|
{
|
6824 |
|
|
debug_loop (get_loop (num), verbosity);
|
6825 |
|
|
}
|
6826 |
|
|
|
6827 |
|
|
/* Return true if BB ends with a call, possibly followed by some
|
6828 |
|
|
instructions that must stay with the call. Return false,
|
6829 |
|
|
otherwise. */
|
6830 |
|
|
|
6831 |
|
|
static bool
|
6832 |
|
|
gimple_block_ends_with_call_p (basic_block bb)
|
6833 |
|
|
{
|
6834 |
|
|
gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
|
6835 |
|
|
return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
|
6836 |
|
|
}
|
6837 |
|
|
|
6838 |
|
|
|
6839 |
|
|
/* Return true if BB ends with a conditional branch. Return false,
|
6840 |
|
|
otherwise. */
|
6841 |
|
|
|
6842 |
|
|
static bool
|
6843 |
|
|
gimple_block_ends_with_condjump_p (const_basic_block bb)
|
6844 |
|
|
{
|
6845 |
|
|
gimple stmt = last_stmt (CONST_CAST_BB (bb));
|
6846 |
|
|
return (stmt && gimple_code (stmt) == GIMPLE_COND);
|
6847 |
|
|
}
|
6848 |
|
|
|
6849 |
|
|
|
6850 |
|
|
/* Return true if we need to add fake edge to exit at statement T.
|
6851 |
|
|
Helper function for gimple_flow_call_edges_add. */
|
6852 |
|
|
|
6853 |
|
|
static bool
|
6854 |
|
|
need_fake_edge_p (gimple t)
|
6855 |
|
|
{
|
6856 |
|
|
tree fndecl = NULL_TREE;
|
6857 |
|
|
int call_flags = 0;
|
6858 |
|
|
|
6859 |
|
|
/* NORETURN and LONGJMP calls already have an edge to exit.
|
6860 |
|
|
CONST and PURE calls do not need one.
|
6861 |
|
|
We don't currently check for CONST and PURE here, although
|
6862 |
|
|
it would be a good idea, because those attributes are
|
6863 |
|
|
figured out from the RTL in mark_constant_function, and
|
6864 |
|
|
the counter incrementation code from -fprofile-arcs
|
6865 |
|
|
leads to different results from -fbranch-probabilities. */
|
6866 |
|
|
if (is_gimple_call (t))
|
6867 |
|
|
{
|
6868 |
|
|
fndecl = gimple_call_fndecl (t);
|
6869 |
|
|
call_flags = gimple_call_flags (t);
|
6870 |
|
|
}
|
6871 |
|
|
|
6872 |
|
|
if (is_gimple_call (t)
|
6873 |
|
|
&& fndecl
|
6874 |
|
|
&& DECL_BUILT_IN (fndecl)
|
6875 |
|
|
&& (call_flags & ECF_NOTHROW)
|
6876 |
|
|
&& !(call_flags & ECF_RETURNS_TWICE)
|
6877 |
|
|
/* fork() doesn't really return twice, but the effect of
|
6878 |
|
|
wrapping it in __gcov_fork() which calls __gcov_flush()
|
6879 |
|
|
and clears the counters before forking has the same
|
6880 |
|
|
effect as returning twice. Force a fake edge. */
|
6881 |
|
|
&& !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
|
6882 |
|
|
&& DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
|
6883 |
|
|
return false;
|
6884 |
|
|
|
6885 |
|
|
if (is_gimple_call (t))
|
6886 |
|
|
{
|
6887 |
|
|
edge_iterator ei;
|
6888 |
|
|
edge e;
|
6889 |
|
|
basic_block bb;
|
6890 |
|
|
|
6891 |
|
|
if (!(call_flags & ECF_NORETURN))
|
6892 |
|
|
return true;
|
6893 |
|
|
|
6894 |
|
|
bb = gimple_bb (t);
|
6895 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
6896 |
|
|
if ((e->flags & EDGE_FAKE) == 0)
|
6897 |
|
|
return true;
|
6898 |
|
|
}
|
6899 |
|
|
|
6900 |
|
|
if (gimple_code (t) == GIMPLE_ASM
|
6901 |
|
|
&& (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
|
6902 |
|
|
return true;
|
6903 |
|
|
|
6904 |
|
|
return false;
|
6905 |
|
|
}
|
6906 |
|
|
|
6907 |
|
|
|
6908 |
|
|
/* Add fake edges to the function exit for any non constant and non
|
6909 |
|
|
noreturn calls (or noreturn calls with EH/abnormal edges),
|
6910 |
|
|
volatile inline assembly in the bitmap of blocks specified by BLOCKS
|
6911 |
|
|
or to the whole CFG if BLOCKS is zero. Return the number of blocks
|
6912 |
|
|
that were split.
|
6913 |
|
|
|
6914 |
|
|
The goal is to expose cases in which entering a basic block does
|
6915 |
|
|
not imply that all subsequent instructions must be executed. */
|
6916 |
|
|
|
6917 |
|
|
static int
|
6918 |
|
|
gimple_flow_call_edges_add (sbitmap blocks)
|
6919 |
|
|
{
|
6920 |
|
|
int i;
|
6921 |
|
|
int blocks_split = 0;
|
6922 |
|
|
int last_bb = last_basic_block;
|
6923 |
|
|
bool check_last_block = false;
|
6924 |
|
|
|
6925 |
|
|
if (n_basic_blocks == NUM_FIXED_BLOCKS)
|
6926 |
|
|
return 0;
|
6927 |
|
|
|
6928 |
|
|
if (! blocks)
|
6929 |
|
|
check_last_block = true;
|
6930 |
|
|
else
|
6931 |
|
|
check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
|
6932 |
|
|
|
6933 |
|
|
/* In the last basic block, before epilogue generation, there will be
|
6934 |
|
|
a fallthru edge to EXIT. Special care is required if the last insn
|
6935 |
|
|
of the last basic block is a call because make_edge folds duplicate
|
6936 |
|
|
edges, which would result in the fallthru edge also being marked
|
6937 |
|
|
fake, which would result in the fallthru edge being removed by
|
6938 |
|
|
remove_fake_edges, which would result in an invalid CFG.
|
6939 |
|
|
|
6940 |
|
|
Moreover, we can't elide the outgoing fake edge, since the block
|
6941 |
|
|
profiler needs to take this into account in order to solve the minimal
|
6942 |
|
|
spanning tree in the case that the call doesn't return.
|
6943 |
|
|
|
6944 |
|
|
Handle this by adding a dummy instruction in a new last basic block. */
|
6945 |
|
|
if (check_last_block)
|
6946 |
|
|
{
|
6947 |
|
|
basic_block bb = EXIT_BLOCK_PTR->prev_bb;
|
6948 |
|
|
gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
|
6949 |
|
|
gimple t = NULL;
|
6950 |
|
|
|
6951 |
|
|
if (!gsi_end_p (gsi))
|
6952 |
|
|
t = gsi_stmt (gsi);
|
6953 |
|
|
|
6954 |
|
|
if (t && need_fake_edge_p (t))
|
6955 |
|
|
{
|
6956 |
|
|
edge e;
|
6957 |
|
|
|
6958 |
|
|
e = find_edge (bb, EXIT_BLOCK_PTR);
|
6959 |
|
|
if (e)
|
6960 |
|
|
{
|
6961 |
|
|
gsi_insert_on_edge (e, gimple_build_nop ());
|
6962 |
|
|
gsi_commit_edge_inserts ();
|
6963 |
|
|
}
|
6964 |
|
|
}
|
6965 |
|
|
}
|
6966 |
|
|
|
6967 |
|
|
/* Now add fake edges to the function exit for any non constant
|
6968 |
|
|
calls since there is no way that we can determine if they will
|
6969 |
|
|
return or not... */
|
6970 |
|
|
for (i = 0; i < last_bb; i++)
|
6971 |
|
|
{
|
6972 |
|
|
basic_block bb = BASIC_BLOCK (i);
|
6973 |
|
|
gimple_stmt_iterator gsi;
|
6974 |
|
|
gimple stmt, last_stmt;
|
6975 |
|
|
|
6976 |
|
|
if (!bb)
|
6977 |
|
|
continue;
|
6978 |
|
|
|
6979 |
|
|
if (blocks && !TEST_BIT (blocks, i))
|
6980 |
|
|
continue;
|
6981 |
|
|
|
6982 |
|
|
gsi = gsi_last_nondebug_bb (bb);
|
6983 |
|
|
if (!gsi_end_p (gsi))
|
6984 |
|
|
{
|
6985 |
|
|
last_stmt = gsi_stmt (gsi);
|
6986 |
|
|
do
|
6987 |
|
|
{
|
6988 |
|
|
stmt = gsi_stmt (gsi);
|
6989 |
|
|
if (need_fake_edge_p (stmt))
|
6990 |
|
|
{
|
6991 |
|
|
edge e;
|
6992 |
|
|
|
6993 |
|
|
/* The handling above of the final block before the
|
6994 |
|
|
epilogue should be enough to verify that there is
|
6995 |
|
|
no edge to the exit block in CFG already.
|
6996 |
|
|
Calling make_edge in such case would cause us to
|
6997 |
|
|
mark that edge as fake and remove it later. */
|
6998 |
|
|
#ifdef ENABLE_CHECKING
|
6999 |
|
|
if (stmt == last_stmt)
|
7000 |
|
|
{
|
7001 |
|
|
e = find_edge (bb, EXIT_BLOCK_PTR);
|
7002 |
|
|
gcc_assert (e == NULL);
|
7003 |
|
|
}
|
7004 |
|
|
#endif
|
7005 |
|
|
|
7006 |
|
|
/* Note that the following may create a new basic block
|
7007 |
|
|
and renumber the existing basic blocks. */
|
7008 |
|
|
if (stmt != last_stmt)
|
7009 |
|
|
{
|
7010 |
|
|
e = split_block (bb, stmt);
|
7011 |
|
|
if (e)
|
7012 |
|
|
blocks_split++;
|
7013 |
|
|
}
|
7014 |
|
|
make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
|
7015 |
|
|
}
|
7016 |
|
|
gsi_prev (&gsi);
|
7017 |
|
|
}
|
7018 |
|
|
while (!gsi_end_p (gsi));
|
7019 |
|
|
}
|
7020 |
|
|
}
|
7021 |
|
|
|
7022 |
|
|
if (blocks_split)
|
7023 |
|
|
verify_flow_info ();
|
7024 |
|
|
|
7025 |
|
|
return blocks_split;
|
7026 |
|
|
}
|
7027 |
|
|
|
7028 |
|
|
/* Removes edge E and all the blocks dominated by it, and updates dominance
|
7029 |
|
|
information. The IL in E->src needs to be updated separately.
|
7030 |
|
|
If dominance info is not available, only the edge E is removed.*/
|
7031 |
|
|
|
7032 |
|
|
void
|
7033 |
|
|
remove_edge_and_dominated_blocks (edge e)
|
7034 |
|
|
{
|
7035 |
|
|
VEC (basic_block, heap) *bbs_to_remove = NULL;
|
7036 |
|
|
VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
|
7037 |
|
|
bitmap df, df_idom;
|
7038 |
|
|
edge f;
|
7039 |
|
|
edge_iterator ei;
|
7040 |
|
|
bool none_removed = false;
|
7041 |
|
|
unsigned i;
|
7042 |
|
|
basic_block bb, dbb;
|
7043 |
|
|
bitmap_iterator bi;
|
7044 |
|
|
|
7045 |
|
|
if (!dom_info_available_p (CDI_DOMINATORS))
|
7046 |
|
|
{
|
7047 |
|
|
remove_edge (e);
|
7048 |
|
|
return;
|
7049 |
|
|
}
|
7050 |
|
|
|
7051 |
|
|
/* No updating is needed for edges to exit. */
|
7052 |
|
|
if (e->dest == EXIT_BLOCK_PTR)
|
7053 |
|
|
{
|
7054 |
|
|
if (cfgcleanup_altered_bbs)
|
7055 |
|
|
bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
|
7056 |
|
|
remove_edge (e);
|
7057 |
|
|
return;
|
7058 |
|
|
}
|
7059 |
|
|
|
7060 |
|
|
/* First, we find the basic blocks to remove. If E->dest has a predecessor
|
7061 |
|
|
that is not dominated by E->dest, then this set is empty. Otherwise,
|
7062 |
|
|
all the basic blocks dominated by E->dest are removed.
|
7063 |
|
|
|
7064 |
|
|
Also, to DF_IDOM we store the immediate dominators of the blocks in
|
7065 |
|
|
the dominance frontier of E (i.e., of the successors of the
|
7066 |
|
|
removed blocks, if there are any, and of E->dest otherwise). */
|
7067 |
|
|
FOR_EACH_EDGE (f, ei, e->dest->preds)
|
7068 |
|
|
{
|
7069 |
|
|
if (f == e)
|
7070 |
|
|
continue;
|
7071 |
|
|
|
7072 |
|
|
if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
|
7073 |
|
|
{
|
7074 |
|
|
none_removed = true;
|
7075 |
|
|
break;
|
7076 |
|
|
}
|
7077 |
|
|
}
|
7078 |
|
|
|
7079 |
|
|
df = BITMAP_ALLOC (NULL);
|
7080 |
|
|
df_idom = BITMAP_ALLOC (NULL);
|
7081 |
|
|
|
7082 |
|
|
if (none_removed)
|
7083 |
|
|
bitmap_set_bit (df_idom,
|
7084 |
|
|
get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
|
7085 |
|
|
else
|
7086 |
|
|
{
|
7087 |
|
|
bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
|
7088 |
|
|
FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
|
7089 |
|
|
{
|
7090 |
|
|
FOR_EACH_EDGE (f, ei, bb->succs)
|
7091 |
|
|
{
|
7092 |
|
|
if (f->dest != EXIT_BLOCK_PTR)
|
7093 |
|
|
bitmap_set_bit (df, f->dest->index);
|
7094 |
|
|
}
|
7095 |
|
|
}
|
7096 |
|
|
FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
|
7097 |
|
|
bitmap_clear_bit (df, bb->index);
|
7098 |
|
|
|
7099 |
|
|
EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
|
7100 |
|
|
{
|
7101 |
|
|
bb = BASIC_BLOCK (i);
|
7102 |
|
|
bitmap_set_bit (df_idom,
|
7103 |
|
|
get_immediate_dominator (CDI_DOMINATORS, bb)->index);
|
7104 |
|
|
}
|
7105 |
|
|
}
|
7106 |
|
|
|
7107 |
|
|
if (cfgcleanup_altered_bbs)
|
7108 |
|
|
{
|
7109 |
|
|
/* Record the set of the altered basic blocks. */
|
7110 |
|
|
bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
|
7111 |
|
|
bitmap_ior_into (cfgcleanup_altered_bbs, df);
|
7112 |
|
|
}
|
7113 |
|
|
|
7114 |
|
|
/* Remove E and the cancelled blocks. */
|
7115 |
|
|
if (none_removed)
|
7116 |
|
|
remove_edge (e);
|
7117 |
|
|
else
|
7118 |
|
|
{
|
7119 |
|
|
/* Walk backwards so as to get a chance to substitute all
|
7120 |
|
|
released DEFs into debug stmts. See
|
7121 |
|
|
eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
|
7122 |
|
|
details. */
|
7123 |
|
|
for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
|
7124 |
|
|
delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
|
7125 |
|
|
}
|
7126 |
|
|
|
7127 |
|
|
/* Update the dominance information. The immediate dominator may change only
|
7128 |
|
|
for blocks whose immediate dominator belongs to DF_IDOM:
|
7129 |
|
|
|
7130 |
|
|
Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
|
7131 |
|
|
removal. Let Z the arbitrary block such that idom(Z) = Y and
|
7132 |
|
|
Z dominates X after the removal. Before removal, there exists a path P
|
7133 |
|
|
from Y to X that avoids Z. Let F be the last edge on P that is
|
7134 |
|
|
removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
|
7135 |
|
|
dominates W, and because of P, Z does not dominate W), and W belongs to
|
7136 |
|
|
the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
|
7137 |
|
|
EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
|
7138 |
|
|
{
|
7139 |
|
|
bb = BASIC_BLOCK (i);
|
7140 |
|
|
for (dbb = first_dom_son (CDI_DOMINATORS, bb);
|
7141 |
|
|
dbb;
|
7142 |
|
|
dbb = next_dom_son (CDI_DOMINATORS, dbb))
|
7143 |
|
|
VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
|
7144 |
|
|
}
|
7145 |
|
|
|
7146 |
|
|
iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
|
7147 |
|
|
|
7148 |
|
|
BITMAP_FREE (df);
|
7149 |
|
|
BITMAP_FREE (df_idom);
|
7150 |
|
|
VEC_free (basic_block, heap, bbs_to_remove);
|
7151 |
|
|
VEC_free (basic_block, heap, bbs_to_fix_dom);
|
7152 |
|
|
}
|
7153 |
|
|
|
7154 |
|
|
/* Purge dead EH edges from basic block BB. */
|
7155 |
|
|
|
7156 |
|
|
bool
|
7157 |
|
|
gimple_purge_dead_eh_edges (basic_block bb)
|
7158 |
|
|
{
|
7159 |
|
|
bool changed = false;
|
7160 |
|
|
edge e;
|
7161 |
|
|
edge_iterator ei;
|
7162 |
|
|
gimple stmt = last_stmt (bb);
|
7163 |
|
|
|
7164 |
|
|
if (stmt && stmt_can_throw_internal (stmt))
|
7165 |
|
|
return false;
|
7166 |
|
|
|
7167 |
|
|
for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
|
7168 |
|
|
{
|
7169 |
|
|
if (e->flags & EDGE_EH)
|
7170 |
|
|
{
|
7171 |
|
|
remove_edge_and_dominated_blocks (e);
|
7172 |
|
|
changed = true;
|
7173 |
|
|
}
|
7174 |
|
|
else
|
7175 |
|
|
ei_next (&ei);
|
7176 |
|
|
}
|
7177 |
|
|
|
7178 |
|
|
return changed;
|
7179 |
|
|
}
|
7180 |
|
|
|
7181 |
|
|
/* Purge dead EH edges from basic block listed in BLOCKS. */
|
7182 |
|
|
|
7183 |
|
|
bool
|
7184 |
|
|
gimple_purge_all_dead_eh_edges (const_bitmap blocks)
|
7185 |
|
|
{
|
7186 |
|
|
bool changed = false;
|
7187 |
|
|
unsigned i;
|
7188 |
|
|
bitmap_iterator bi;
|
7189 |
|
|
|
7190 |
|
|
EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
|
7191 |
|
|
{
|
7192 |
|
|
basic_block bb = BASIC_BLOCK (i);
|
7193 |
|
|
|
7194 |
|
|
/* Earlier gimple_purge_dead_eh_edges could have removed
|
7195 |
|
|
this basic block already. */
|
7196 |
|
|
gcc_assert (bb || changed);
|
7197 |
|
|
if (bb != NULL)
|
7198 |
|
|
changed |= gimple_purge_dead_eh_edges (bb);
|
7199 |
|
|
}
|
7200 |
|
|
|
7201 |
|
|
return changed;
|
7202 |
|
|
}
|
7203 |
|
|
|
7204 |
|
|
/* Purge dead abnormal call edges from basic block BB. */
|
7205 |
|
|
|
7206 |
|
|
bool
|
7207 |
|
|
gimple_purge_dead_abnormal_call_edges (basic_block bb)
|
7208 |
|
|
{
|
7209 |
|
|
bool changed = false;
|
7210 |
|
|
edge e;
|
7211 |
|
|
edge_iterator ei;
|
7212 |
|
|
gimple stmt = last_stmt (bb);
|
7213 |
|
|
|
7214 |
|
|
if (!cfun->has_nonlocal_label)
|
7215 |
|
|
return false;
|
7216 |
|
|
|
7217 |
|
|
if (stmt && stmt_can_make_abnormal_goto (stmt))
|
7218 |
|
|
return false;
|
7219 |
|
|
|
7220 |
|
|
for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
|
7221 |
|
|
{
|
7222 |
|
|
if (e->flags & EDGE_ABNORMAL)
|
7223 |
|
|
{
|
7224 |
|
|
remove_edge_and_dominated_blocks (e);
|
7225 |
|
|
changed = true;
|
7226 |
|
|
}
|
7227 |
|
|
else
|
7228 |
|
|
ei_next (&ei);
|
7229 |
|
|
}
|
7230 |
|
|
|
7231 |
|
|
return changed;
|
7232 |
|
|
}
|
7233 |
|
|
|
7234 |
|
|
/* Purge dead abnormal call edges from basic block listed in BLOCKS. */
|
7235 |
|
|
|
7236 |
|
|
bool
|
7237 |
|
|
gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
|
7238 |
|
|
{
|
7239 |
|
|
bool changed = false;
|
7240 |
|
|
unsigned i;
|
7241 |
|
|
bitmap_iterator bi;
|
7242 |
|
|
|
7243 |
|
|
EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
|
7244 |
|
|
{
|
7245 |
|
|
basic_block bb = BASIC_BLOCK (i);
|
7246 |
|
|
|
7247 |
|
|
/* Earlier gimple_purge_dead_abnormal_call_edges could have removed
|
7248 |
|
|
this basic block already. */
|
7249 |
|
|
gcc_assert (bb || changed);
|
7250 |
|
|
if (bb != NULL)
|
7251 |
|
|
changed |= gimple_purge_dead_abnormal_call_edges (bb);
|
7252 |
|
|
}
|
7253 |
|
|
|
7254 |
|
|
return changed;
|
7255 |
|
|
}
|
7256 |
|
|
|
7257 |
|
|
/* This function is called whenever a new edge is created or
|
7258 |
|
|
redirected. */
|
7259 |
|
|
|
7260 |
|
|
static void
|
7261 |
|
|
gimple_execute_on_growing_pred (edge e)
|
7262 |
|
|
{
|
7263 |
|
|
basic_block bb = e->dest;
|
7264 |
|
|
|
7265 |
|
|
if (!gimple_seq_empty_p (phi_nodes (bb)))
|
7266 |
|
|
reserve_phi_args_for_new_edge (bb);
|
7267 |
|
|
}
|
7268 |
|
|
|
7269 |
|
|
/* This function is called immediately before edge E is removed from
|
7270 |
|
|
the edge vector E->dest->preds. */
|
7271 |
|
|
|
7272 |
|
|
static void
|
7273 |
|
|
gimple_execute_on_shrinking_pred (edge e)
|
7274 |
|
|
{
|
7275 |
|
|
if (!gimple_seq_empty_p (phi_nodes (e->dest)))
|
7276 |
|
|
remove_phi_args (e);
|
7277 |
|
|
}
|
7278 |
|
|
|
7279 |
|
|
/*---------------------------------------------------------------------------
|
7280 |
|
|
Helper functions for Loop versioning
|
7281 |
|
|
---------------------------------------------------------------------------*/
|
7282 |
|
|
|
7283 |
|
|
/* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
|
7284 |
|
|
of 'first'. Both of them are dominated by 'new_head' basic block. When
|
7285 |
|
|
'new_head' was created by 'second's incoming edge it received phi arguments
|
7286 |
|
|
on the edge by split_edge(). Later, additional edge 'e' was created to
|
7287 |
|
|
connect 'new_head' and 'first'. Now this routine adds phi args on this
|
7288 |
|
|
additional edge 'e' that new_head to second edge received as part of edge
|
7289 |
|
|
splitting. */
|
7290 |
|
|
|
7291 |
|
|
static void
|
7292 |
|
|
gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
|
7293 |
|
|
basic_block new_head, edge e)
|
7294 |
|
|
{
|
7295 |
|
|
gimple phi1, phi2;
|
7296 |
|
|
gimple_stmt_iterator psi1, psi2;
|
7297 |
|
|
tree def;
|
7298 |
|
|
edge e2 = find_edge (new_head, second);
|
7299 |
|
|
|
7300 |
|
|
/* Because NEW_HEAD has been created by splitting SECOND's incoming
|
7301 |
|
|
edge, we should always have an edge from NEW_HEAD to SECOND. */
|
7302 |
|
|
gcc_assert (e2 != NULL);
|
7303 |
|
|
|
7304 |
|
|
/* Browse all 'second' basic block phi nodes and add phi args to
|
7305 |
|
|
edge 'e' for 'first' head. PHI args are always in correct order. */
|
7306 |
|
|
|
7307 |
|
|
for (psi2 = gsi_start_phis (second),
|
7308 |
|
|
psi1 = gsi_start_phis (first);
|
7309 |
|
|
!gsi_end_p (psi2) && !gsi_end_p (psi1);
|
7310 |
|
|
gsi_next (&psi2), gsi_next (&psi1))
|
7311 |
|
|
{
|
7312 |
|
|
phi1 = gsi_stmt (psi1);
|
7313 |
|
|
phi2 = gsi_stmt (psi2);
|
7314 |
|
|
def = PHI_ARG_DEF (phi2, e2->dest_idx);
|
7315 |
|
|
add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
|
7316 |
|
|
}
|
7317 |
|
|
}
|
7318 |
|
|
|
7319 |
|
|
|
7320 |
|
|
/* Adds a if else statement to COND_BB with condition COND_EXPR.
|
7321 |
|
|
SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
|
7322 |
|
|
the destination of the ELSE part. */
|
7323 |
|
|
|
7324 |
|
|
static void
|
7325 |
|
|
gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
|
7326 |
|
|
basic_block second_head ATTRIBUTE_UNUSED,
|
7327 |
|
|
basic_block cond_bb, void *cond_e)
|
7328 |
|
|
{
|
7329 |
|
|
gimple_stmt_iterator gsi;
|
7330 |
|
|
gimple new_cond_expr;
|
7331 |
|
|
tree cond_expr = (tree) cond_e;
|
7332 |
|
|
edge e0;
|
7333 |
|
|
|
7334 |
|
|
/* Build new conditional expr */
|
7335 |
|
|
new_cond_expr = gimple_build_cond_from_tree (cond_expr,
|
7336 |
|
|
NULL_TREE, NULL_TREE);
|
7337 |
|
|
|
7338 |
|
|
/* Add new cond in cond_bb. */
|
7339 |
|
|
gsi = gsi_last_bb (cond_bb);
|
7340 |
|
|
gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
|
7341 |
|
|
|
7342 |
|
|
/* Adjust edges appropriately to connect new head with first head
|
7343 |
|
|
as well as second head. */
|
7344 |
|
|
e0 = single_succ_edge (cond_bb);
|
7345 |
|
|
e0->flags &= ~EDGE_FALLTHRU;
|
7346 |
|
|
e0->flags |= EDGE_FALSE_VALUE;
|
7347 |
|
|
}
|
7348 |
|
|
|
7349 |
|
|
struct cfg_hooks gimple_cfg_hooks = {
|
7350 |
|
|
"gimple",
|
7351 |
|
|
gimple_verify_flow_info,
|
7352 |
|
|
gimple_dump_bb, /* dump_bb */
|
7353 |
|
|
create_bb, /* create_basic_block */
|
7354 |
|
|
gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
|
7355 |
|
|
gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
|
7356 |
|
|
gimple_can_remove_branch_p, /* can_remove_branch_p */
|
7357 |
|
|
remove_bb, /* delete_basic_block */
|
7358 |
|
|
gimple_split_block, /* split_block */
|
7359 |
|
|
gimple_move_block_after, /* move_block_after */
|
7360 |
|
|
gimple_can_merge_blocks_p, /* can_merge_blocks_p */
|
7361 |
|
|
gimple_merge_blocks, /* merge_blocks */
|
7362 |
|
|
gimple_predict_edge, /* predict_edge */
|
7363 |
|
|
gimple_predicted_by_p, /* predicted_by_p */
|
7364 |
|
|
gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
|
7365 |
|
|
gimple_duplicate_bb, /* duplicate_block */
|
7366 |
|
|
gimple_split_edge, /* split_edge */
|
7367 |
|
|
gimple_make_forwarder_block, /* make_forward_block */
|
7368 |
|
|
NULL, /* tidy_fallthru_edge */
|
7369 |
|
|
NULL, /* force_nonfallthru */
|
7370 |
|
|
gimple_block_ends_with_call_p,/* block_ends_with_call_p */
|
7371 |
|
|
gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
|
7372 |
|
|
gimple_flow_call_edges_add, /* flow_call_edges_add */
|
7373 |
|
|
gimple_execute_on_growing_pred, /* execute_on_growing_pred */
|
7374 |
|
|
gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
|
7375 |
|
|
gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
|
7376 |
|
|
gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
|
7377 |
|
|
gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
|
7378 |
|
|
extract_true_false_edges_from_block, /* extract_cond_bb_edges */
|
7379 |
|
|
flush_pending_stmts /* flush_pending_stmts */
|
7380 |
|
|
};
|
7381 |
|
|
|
7382 |
|
|
|
7383 |
|
|
/* Split all critical edges. */
|
7384 |
|
|
|
7385 |
|
|
static unsigned int
|
7386 |
|
|
split_critical_edges (void)
|
7387 |
|
|
{
|
7388 |
|
|
basic_block bb;
|
7389 |
|
|
edge e;
|
7390 |
|
|
edge_iterator ei;
|
7391 |
|
|
|
7392 |
|
|
/* split_edge can redirect edges out of SWITCH_EXPRs, which can get
|
7393 |
|
|
expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
|
7394 |
|
|
mappings around the calls to split_edge. */
|
7395 |
|
|
start_recording_case_labels ();
|
7396 |
|
|
FOR_ALL_BB (bb)
|
7397 |
|
|
{
|
7398 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
7399 |
|
|
{
|
7400 |
|
|
if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
|
7401 |
|
|
split_edge (e);
|
7402 |
|
|
/* PRE inserts statements to edges and expects that
|
7403 |
|
|
since split_critical_edges was done beforehand, committing edge
|
7404 |
|
|
insertions will not split more edges. In addition to critical
|
7405 |
|
|
edges we must split edges that have multiple successors and
|
7406 |
|
|
end by control flow statements, such as RESX.
|
7407 |
|
|
Go ahead and split them too. This matches the logic in
|
7408 |
|
|
gimple_find_edge_insert_loc. */
|
7409 |
|
|
else if ((!single_pred_p (e->dest)
|
7410 |
|
|
|| !gimple_seq_empty_p (phi_nodes (e->dest))
|
7411 |
|
|
|| e->dest == EXIT_BLOCK_PTR)
|
7412 |
|
|
&& e->src != ENTRY_BLOCK_PTR
|
7413 |
|
|
&& !(e->flags & EDGE_ABNORMAL))
|
7414 |
|
|
{
|
7415 |
|
|
gimple_stmt_iterator gsi;
|
7416 |
|
|
|
7417 |
|
|
gsi = gsi_last_bb (e->src);
|
7418 |
|
|
if (!gsi_end_p (gsi)
|
7419 |
|
|
&& stmt_ends_bb_p (gsi_stmt (gsi))
|
7420 |
|
|
&& (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
|
7421 |
|
|
&& !gimple_call_builtin_p (gsi_stmt (gsi),
|
7422 |
|
|
BUILT_IN_RETURN)))
|
7423 |
|
|
split_edge (e);
|
7424 |
|
|
}
|
7425 |
|
|
}
|
7426 |
|
|
}
|
7427 |
|
|
end_recording_case_labels ();
|
7428 |
|
|
return 0;
|
7429 |
|
|
}
|
7430 |
|
|
|
7431 |
|
|
struct gimple_opt_pass pass_split_crit_edges =
|
7432 |
|
|
{
|
7433 |
|
|
{
|
7434 |
|
|
GIMPLE_PASS,
|
7435 |
|
|
"crited", /* name */
|
7436 |
|
|
NULL, /* gate */
|
7437 |
|
|
split_critical_edges, /* execute */
|
7438 |
|
|
NULL, /* sub */
|
7439 |
|
|
NULL, /* next */
|
7440 |
|
|
0, /* static_pass_number */
|
7441 |
|
|
TV_TREE_SPLIT_EDGES, /* tv_id */
|
7442 |
|
|
PROP_cfg, /* properties required */
|
7443 |
|
|
PROP_no_crit_edges, /* properties_provided */
|
7444 |
|
|
0, /* properties_destroyed */
|
7445 |
|
|
0, /* todo_flags_start */
|
7446 |
|
|
TODO_verify_flow /* todo_flags_finish */
|
7447 |
|
|
}
|
7448 |
|
|
};
|
7449 |
|
|
|
7450 |
|
|
|
7451 |
|
|
/* Build a ternary operation and gimplify it. Emit code before GSI.
|
7452 |
|
|
Return the gimple_val holding the result. */
|
7453 |
|
|
|
7454 |
|
|
tree
|
7455 |
|
|
gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
|
7456 |
|
|
tree type, tree a, tree b, tree c)
|
7457 |
|
|
{
|
7458 |
|
|
tree ret;
|
7459 |
|
|
location_t loc = gimple_location (gsi_stmt (*gsi));
|
7460 |
|
|
|
7461 |
|
|
ret = fold_build3_loc (loc, code, type, a, b, c);
|
7462 |
|
|
STRIP_NOPS (ret);
|
7463 |
|
|
|
7464 |
|
|
return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
|
7465 |
|
|
GSI_SAME_STMT);
|
7466 |
|
|
}
|
7467 |
|
|
|
7468 |
|
|
/* Build a binary operation and gimplify it. Emit code before GSI.
|
7469 |
|
|
Return the gimple_val holding the result. */
|
7470 |
|
|
|
7471 |
|
|
tree
|
7472 |
|
|
gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
|
7473 |
|
|
tree type, tree a, tree b)
|
7474 |
|
|
{
|
7475 |
|
|
tree ret;
|
7476 |
|
|
|
7477 |
|
|
ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
|
7478 |
|
|
STRIP_NOPS (ret);
|
7479 |
|
|
|
7480 |
|
|
return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
|
7481 |
|
|
GSI_SAME_STMT);
|
7482 |
|
|
}
|
7483 |
|
|
|
7484 |
|
|
/* Build a unary operation and gimplify it. Emit code before GSI.
|
7485 |
|
|
Return the gimple_val holding the result. */
|
7486 |
|
|
|
7487 |
|
|
tree
|
7488 |
|
|
gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
|
7489 |
|
|
tree a)
|
7490 |
|
|
{
|
7491 |
|
|
tree ret;
|
7492 |
|
|
|
7493 |
|
|
ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
|
7494 |
|
|
STRIP_NOPS (ret);
|
7495 |
|
|
|
7496 |
|
|
return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
|
7497 |
|
|
GSI_SAME_STMT);
|
7498 |
|
|
}
|
7499 |
|
|
|
7500 |
|
|
|
7501 |
|
|
|
7502 |
|
|
/* Emit return warnings. */
|
7503 |
|
|
|
7504 |
|
|
static unsigned int
|
7505 |
|
|
execute_warn_function_return (void)
|
7506 |
|
|
{
|
7507 |
|
|
source_location location;
|
7508 |
|
|
gimple last;
|
7509 |
|
|
edge e;
|
7510 |
|
|
edge_iterator ei;
|
7511 |
|
|
|
7512 |
|
|
/* If we have a path to EXIT, then we do return. */
|
7513 |
|
|
if (TREE_THIS_VOLATILE (cfun->decl)
|
7514 |
|
|
&& EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
|
7515 |
|
|
{
|
7516 |
|
|
location = UNKNOWN_LOCATION;
|
7517 |
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
7518 |
|
|
{
|
7519 |
|
|
last = last_stmt (e->src);
|
7520 |
|
|
if ((gimple_code (last) == GIMPLE_RETURN
|
7521 |
|
|
|| gimple_call_builtin_p (last, BUILT_IN_RETURN))
|
7522 |
|
|
&& (location = gimple_location (last)) != UNKNOWN_LOCATION)
|
7523 |
|
|
break;
|
7524 |
|
|
}
|
7525 |
|
|
if (location == UNKNOWN_LOCATION)
|
7526 |
|
|
location = cfun->function_end_locus;
|
7527 |
|
|
warning_at (location, 0, "%<noreturn%> function does return");
|
7528 |
|
|
}
|
7529 |
|
|
|
7530 |
|
|
/* If we see "return;" in some basic block, then we do reach the end
|
7531 |
|
|
without returning a value. */
|
7532 |
|
|
else if (warn_return_type
|
7533 |
|
|
&& !TREE_NO_WARNING (cfun->decl)
|
7534 |
|
|
&& EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
|
7535 |
|
|
&& !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
|
7536 |
|
|
{
|
7537 |
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
7538 |
|
|
{
|
7539 |
|
|
gimple last = last_stmt (e->src);
|
7540 |
|
|
if (gimple_code (last) == GIMPLE_RETURN
|
7541 |
|
|
&& gimple_return_retval (last) == NULL
|
7542 |
|
|
&& !gimple_no_warning_p (last))
|
7543 |
|
|
{
|
7544 |
|
|
location = gimple_location (last);
|
7545 |
|
|
if (location == UNKNOWN_LOCATION)
|
7546 |
|
|
location = cfun->function_end_locus;
|
7547 |
|
|
warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
|
7548 |
|
|
TREE_NO_WARNING (cfun->decl) = 1;
|
7549 |
|
|
break;
|
7550 |
|
|
}
|
7551 |
|
|
}
|
7552 |
|
|
}
|
7553 |
|
|
return 0;
|
7554 |
|
|
}
|
7555 |
|
|
|
7556 |
|
|
|
7557 |
|
|
/* Given a basic block B which ends with a conditional and has
|
7558 |
|
|
precisely two successors, determine which of the edges is taken if
|
7559 |
|
|
the conditional is true and which is taken if the conditional is
|
7560 |
|
|
false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
|
7561 |
|
|
|
7562 |
|
|
void
|
7563 |
|
|
extract_true_false_edges_from_block (basic_block b,
|
7564 |
|
|
edge *true_edge,
|
7565 |
|
|
edge *false_edge)
|
7566 |
|
|
{
|
7567 |
|
|
edge e = EDGE_SUCC (b, 0);
|
7568 |
|
|
|
7569 |
|
|
if (e->flags & EDGE_TRUE_VALUE)
|
7570 |
|
|
{
|
7571 |
|
|
*true_edge = e;
|
7572 |
|
|
*false_edge = EDGE_SUCC (b, 1);
|
7573 |
|
|
}
|
7574 |
|
|
else
|
7575 |
|
|
{
|
7576 |
|
|
*false_edge = e;
|
7577 |
|
|
*true_edge = EDGE_SUCC (b, 1);
|
7578 |
|
|
}
|
7579 |
|
|
}
|
7580 |
|
|
|
7581 |
|
|
struct gimple_opt_pass pass_warn_function_return =
|
7582 |
|
|
{
|
7583 |
|
|
{
|
7584 |
|
|
GIMPLE_PASS,
|
7585 |
|
|
"*warn_function_return", /* name */
|
7586 |
|
|
NULL, /* gate */
|
7587 |
|
|
execute_warn_function_return, /* execute */
|
7588 |
|
|
NULL, /* sub */
|
7589 |
|
|
NULL, /* next */
|
7590 |
|
|
0, /* static_pass_number */
|
7591 |
|
|
TV_NONE, /* tv_id */
|
7592 |
|
|
PROP_cfg, /* properties_required */
|
7593 |
|
|
0, /* properties_provided */
|
7594 |
|
|
0, /* properties_destroyed */
|
7595 |
|
|
0, /* todo_flags_start */
|
7596 |
|
|
|
7597 |
|
|
}
|
7598 |
|
|
};
|
7599 |
|
|
|
7600 |
|
|
/* Emit noreturn warnings. */
|
7601 |
|
|
|
7602 |
|
|
static unsigned int
|
7603 |
|
|
execute_warn_function_noreturn (void)
|
7604 |
|
|
{
|
7605 |
|
|
if (!TREE_THIS_VOLATILE (current_function_decl)
|
7606 |
|
|
&& EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
|
7607 |
|
|
warn_function_noreturn (current_function_decl);
|
7608 |
|
|
return 0;
|
7609 |
|
|
}
|
7610 |
|
|
|
7611 |
|
|
static bool
|
7612 |
|
|
gate_warn_function_noreturn (void)
|
7613 |
|
|
{
|
7614 |
|
|
return warn_suggest_attribute_noreturn;
|
7615 |
|
|
}
|
7616 |
|
|
|
7617 |
|
|
struct gimple_opt_pass pass_warn_function_noreturn =
|
7618 |
|
|
{
|
7619 |
|
|
{
|
7620 |
|
|
GIMPLE_PASS,
|
7621 |
|
|
"*warn_function_noreturn", /* name */
|
7622 |
|
|
gate_warn_function_noreturn, /* gate */
|
7623 |
|
|
execute_warn_function_noreturn, /* execute */
|
7624 |
|
|
NULL, /* sub */
|
7625 |
|
|
NULL, /* next */
|
7626 |
|
|
0, /* static_pass_number */
|
7627 |
|
|
TV_NONE, /* tv_id */
|
7628 |
|
|
PROP_cfg, /* properties_required */
|
7629 |
|
|
0, /* properties_provided */
|
7630 |
|
|
0, /* properties_destroyed */
|
7631 |
|
|
0, /* todo_flags_start */
|
7632 |
|
|
|
7633 |
|
|
}
|
7634 |
|
|
};
|
7635 |
|
|
|
7636 |
|
|
|
7637 |
|
|
/* Walk a gimplified function and warn for functions whose return value is
|
7638 |
|
|
ignored and attribute((warn_unused_result)) is set. This is done before
|
7639 |
|
|
inlining, so we don't have to worry about that. */
|
7640 |
|
|
|
7641 |
|
|
static void
|
7642 |
|
|
do_warn_unused_result (gimple_seq seq)
|
7643 |
|
|
{
|
7644 |
|
|
tree fdecl, ftype;
|
7645 |
|
|
gimple_stmt_iterator i;
|
7646 |
|
|
|
7647 |
|
|
for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
|
7648 |
|
|
{
|
7649 |
|
|
gimple g = gsi_stmt (i);
|
7650 |
|
|
|
7651 |
|
|
switch (gimple_code (g))
|
7652 |
|
|
{
|
7653 |
|
|
case GIMPLE_BIND:
|
7654 |
|
|
do_warn_unused_result (gimple_bind_body (g));
|
7655 |
|
|
break;
|
7656 |
|
|
case GIMPLE_TRY:
|
7657 |
|
|
do_warn_unused_result (gimple_try_eval (g));
|
7658 |
|
|
do_warn_unused_result (gimple_try_cleanup (g));
|
7659 |
|
|
break;
|
7660 |
|
|
case GIMPLE_CATCH:
|
7661 |
|
|
do_warn_unused_result (gimple_catch_handler (g));
|
7662 |
|
|
break;
|
7663 |
|
|
case GIMPLE_EH_FILTER:
|
7664 |
|
|
do_warn_unused_result (gimple_eh_filter_failure (g));
|
7665 |
|
|
break;
|
7666 |
|
|
|
7667 |
|
|
case GIMPLE_CALL:
|
7668 |
|
|
if (gimple_call_lhs (g))
|
7669 |
|
|
break;
|
7670 |
|
|
if (gimple_call_internal_p (g))
|
7671 |
|
|
break;
|
7672 |
|
|
|
7673 |
|
|
/* This is a naked call, as opposed to a GIMPLE_CALL with an
|
7674 |
|
|
LHS. All calls whose value is ignored should be
|
7675 |
|
|
represented like this. Look for the attribute. */
|
7676 |
|
|
fdecl = gimple_call_fndecl (g);
|
7677 |
|
|
ftype = gimple_call_fntype (g);
|
7678 |
|
|
|
7679 |
|
|
if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
|
7680 |
|
|
{
|
7681 |
|
|
location_t loc = gimple_location (g);
|
7682 |
|
|
|
7683 |
|
|
if (fdecl)
|
7684 |
|
|
warning_at (loc, OPT_Wunused_result,
|
7685 |
|
|
"ignoring return value of %qD, "
|
7686 |
|
|
"declared with attribute warn_unused_result",
|
7687 |
|
|
fdecl);
|
7688 |
|
|
else
|
7689 |
|
|
warning_at (loc, OPT_Wunused_result,
|
7690 |
|
|
"ignoring return value of function "
|
7691 |
|
|
"declared with attribute warn_unused_result");
|
7692 |
|
|
}
|
7693 |
|
|
break;
|
7694 |
|
|
|
7695 |
|
|
default:
|
7696 |
|
|
/* Not a container, not a call, or a call whose value is used. */
|
7697 |
|
|
break;
|
7698 |
|
|
}
|
7699 |
|
|
}
|
7700 |
|
|
}
|
7701 |
|
|
|
7702 |
|
|
static unsigned int
|
7703 |
|
|
run_warn_unused_result (void)
|
7704 |
|
|
{
|
7705 |
|
|
do_warn_unused_result (gimple_body (current_function_decl));
|
7706 |
|
|
return 0;
|
7707 |
|
|
}
|
7708 |
|
|
|
7709 |
|
|
static bool
|
7710 |
|
|
gate_warn_unused_result (void)
|
7711 |
|
|
{
|
7712 |
|
|
return flag_warn_unused_result;
|
7713 |
|
|
}
|
7714 |
|
|
|
7715 |
|
|
struct gimple_opt_pass pass_warn_unused_result =
|
7716 |
|
|
{
|
7717 |
|
|
{
|
7718 |
|
|
GIMPLE_PASS,
|
7719 |
|
|
"*warn_unused_result", /* name */
|
7720 |
|
|
gate_warn_unused_result, /* gate */
|
7721 |
|
|
run_warn_unused_result, /* execute */
|
7722 |
|
|
NULL, /* sub */
|
7723 |
|
|
NULL, /* next */
|
7724 |
|
|
0, /* static_pass_number */
|
7725 |
|
|
TV_NONE, /* tv_id */
|
7726 |
|
|
PROP_gimple_any, /* properties_required */
|
7727 |
|
|
0, /* properties_provided */
|
7728 |
|
|
0, /* properties_destroyed */
|
7729 |
|
|
0, /* todo_flags_start */
|
7730 |
|
|
0, /* todo_flags_finish */
|
7731 |
|
|
}
|
7732 |
|
|
};
|