| 1 |
684 |
jeremybenn |
/* Data references and dependences detectors.
|
| 2 |
|
|
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
Contributed by Sebastian Pop <pop@cri.ensmp.fr>
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GCC.
|
| 7 |
|
|
|
| 8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 9 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 11 |
|
|
version.
|
| 12 |
|
|
|
| 13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 16 |
|
|
for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 20 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
#ifndef GCC_TREE_DATA_REF_H
|
| 23 |
|
|
#define GCC_TREE_DATA_REF_H
|
| 24 |
|
|
|
| 25 |
|
|
#include "graphds.h"
|
| 26 |
|
|
#include "omega.h"
|
| 27 |
|
|
#include "tree-chrec.h"
|
| 28 |
|
|
|
| 29 |
|
|
/*
|
| 30 |
|
|
innermost_loop_behavior describes the evolution of the address of the memory
|
| 31 |
|
|
reference in the innermost enclosing loop. The address is expressed as
|
| 32 |
|
|
BASE + STEP * # of iteration, and base is further decomposed as the base
|
| 33 |
|
|
pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
|
| 34 |
|
|
constant offset (INIT). Examples, in loop nest
|
| 35 |
|
|
|
| 36 |
|
|
for (i = 0; i < 100; i++)
|
| 37 |
|
|
for (j = 3; j < 100; j++)
|
| 38 |
|
|
|
| 39 |
|
|
Example 1 Example 2
|
| 40 |
|
|
data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
|
| 41 |
|
|
|
| 42 |
|
|
|
| 43 |
|
|
innermost_loop_behavior
|
| 44 |
|
|
base_address &a p
|
| 45 |
|
|
offset i * D_i x
|
| 46 |
|
|
init 3 * D_j + offsetof (b) 28
|
| 47 |
|
|
step D_j 4
|
| 48 |
|
|
|
| 49 |
|
|
*/
|
| 50 |
|
|
struct innermost_loop_behavior
|
| 51 |
|
|
{
|
| 52 |
|
|
tree base_address;
|
| 53 |
|
|
tree offset;
|
| 54 |
|
|
tree init;
|
| 55 |
|
|
tree step;
|
| 56 |
|
|
|
| 57 |
|
|
/* Alignment information. ALIGNED_TO is set to the largest power of two
|
| 58 |
|
|
that divides OFFSET. */
|
| 59 |
|
|
tree aligned_to;
|
| 60 |
|
|
};
|
| 61 |
|
|
|
| 62 |
|
|
/* Describes the evolutions of indices of the memory reference. The indices
|
| 63 |
|
|
are indices of the ARRAY_REFs and the operands of INDIRECT_REFs.
|
| 64 |
|
|
For ARRAY_REFs, BASE_OBJECT is the reference with zeroed indices
|
| 65 |
|
|
(note that this reference does not have to be valid, if zero does not
|
| 66 |
|
|
belong to the range of the array; hence it is not recommended to use
|
| 67 |
|
|
BASE_OBJECT in any code generation). For INDIRECT_REFs, the address is
|
| 68 |
|
|
set to the loop-invariant part of the address of the object, except for
|
| 69 |
|
|
the constant offset. For the examples above,
|
| 70 |
|
|
|
| 71 |
|
|
base_object: a[0].b[0][0] *(p + x + 4B * j_0)
|
| 72 |
|
|
indices: {j_0, +, 1}_2 {16, +, 4}_2
|
| 73 |
|
|
{i_0, +, 1}_1
|
| 74 |
|
|
{j_0, +, 1}_2
|
| 75 |
|
|
*/
|
| 76 |
|
|
|
| 77 |
|
|
struct indices
|
| 78 |
|
|
{
|
| 79 |
|
|
/* The object. */
|
| 80 |
|
|
tree base_object;
|
| 81 |
|
|
|
| 82 |
|
|
/* A list of chrecs. Access functions of the indices. */
|
| 83 |
|
|
VEC(tree,heap) *access_fns;
|
| 84 |
|
|
};
|
| 85 |
|
|
|
| 86 |
|
|
struct dr_alias
|
| 87 |
|
|
{
|
| 88 |
|
|
/* The alias information that should be used for new pointers to this
|
| 89 |
|
|
location. SYMBOL_TAG is either a DECL or a SYMBOL_MEMORY_TAG. */
|
| 90 |
|
|
struct ptr_info_def *ptr_info;
|
| 91 |
|
|
|
| 92 |
|
|
/* The set of virtual operands corresponding to this memory reference,
|
| 93 |
|
|
serving as a description of the alias information for the memory
|
| 94 |
|
|
reference. This could be eliminated if we had alias oracle. */
|
| 95 |
|
|
bitmap vops;
|
| 96 |
|
|
};
|
| 97 |
|
|
|
| 98 |
|
|
/* An integer vector. A vector formally consists of an element of a vector
|
| 99 |
|
|
space. A vector space is a set that is closed under vector addition
|
| 100 |
|
|
and scalar multiplication. In this vector space, an element is a list of
|
| 101 |
|
|
integers. */
|
| 102 |
|
|
typedef int *lambda_vector;
|
| 103 |
|
|
DEF_VEC_P(lambda_vector);
|
| 104 |
|
|
DEF_VEC_ALLOC_P(lambda_vector,heap);
|
| 105 |
|
|
DEF_VEC_ALLOC_P(lambda_vector,gc);
|
| 106 |
|
|
|
| 107 |
|
|
/* An integer matrix. A matrix consists of m vectors of length n (IE
|
| 108 |
|
|
all vectors are the same length). */
|
| 109 |
|
|
typedef lambda_vector *lambda_matrix;
|
| 110 |
|
|
|
| 111 |
|
|
/* Each vector of the access matrix represents a linear access
|
| 112 |
|
|
function for a subscript. First elements correspond to the
|
| 113 |
|
|
leftmost indices, ie. for a[i][j] the first vector corresponds to
|
| 114 |
|
|
the subscript in "i". The elements of a vector are relative to
|
| 115 |
|
|
the loop nests in which the data reference is considered,
|
| 116 |
|
|
i.e. the vector is relative to the SCoP that provides the context
|
| 117 |
|
|
in which this data reference occurs.
|
| 118 |
|
|
|
| 119 |
|
|
For example, in
|
| 120 |
|
|
|
| 121 |
|
|
| loop_1
|
| 122 |
|
|
| loop_2
|
| 123 |
|
|
| a[i+3][2*j+n-1]
|
| 124 |
|
|
|
| 125 |
|
|
if "i" varies in loop_1 and "j" varies in loop_2, the access
|
| 126 |
|
|
matrix with respect to the loop nest {loop_1, loop_2} is:
|
| 127 |
|
|
|
| 128 |
|
|
| loop_1 loop_2 param_n cst
|
| 129 |
|
|
| 1 0 0 3
|
| 130 |
|
|
| 0 2 1 -1
|
| 131 |
|
|
|
| 132 |
|
|
whereas the access matrix with respect to loop_2 considers "i" as
|
| 133 |
|
|
a parameter:
|
| 134 |
|
|
|
| 135 |
|
|
| loop_2 param_i param_n cst
|
| 136 |
|
|
| 0 1 0 3
|
| 137 |
|
|
| 2 0 1 -1
|
| 138 |
|
|
*/
|
| 139 |
|
|
struct access_matrix
|
| 140 |
|
|
{
|
| 141 |
|
|
VEC (loop_p, heap) *loop_nest;
|
| 142 |
|
|
int nb_induction_vars;
|
| 143 |
|
|
VEC (tree, heap) *parameters;
|
| 144 |
|
|
VEC (lambda_vector, gc) *matrix;
|
| 145 |
|
|
};
|
| 146 |
|
|
|
| 147 |
|
|
#define AM_LOOP_NEST(M) (M)->loop_nest
|
| 148 |
|
|
#define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars
|
| 149 |
|
|
#define AM_PARAMETERS(M) (M)->parameters
|
| 150 |
|
|
#define AM_MATRIX(M) (M)->matrix
|
| 151 |
|
|
#define AM_NB_PARAMETERS(M) (VEC_length (tree, AM_PARAMETERS(M)))
|
| 152 |
|
|
#define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M))
|
| 153 |
|
|
#define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1)
|
| 154 |
|
|
#define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) VEC_index (lambda_vector, AM_MATRIX (M), I)
|
| 155 |
|
|
#define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J]
|
| 156 |
|
|
|
| 157 |
|
|
/* Return the column in the access matrix of LOOP_NUM. */
|
| 158 |
|
|
|
| 159 |
|
|
static inline int
|
| 160 |
|
|
am_vector_index_for_loop (struct access_matrix *access_matrix, int loop_num)
|
| 161 |
|
|
{
|
| 162 |
|
|
int i;
|
| 163 |
|
|
loop_p l;
|
| 164 |
|
|
|
| 165 |
|
|
for (i = 0; VEC_iterate (loop_p, AM_LOOP_NEST (access_matrix), i, l); i++)
|
| 166 |
|
|
if (l->num == loop_num)
|
| 167 |
|
|
return i;
|
| 168 |
|
|
|
| 169 |
|
|
gcc_unreachable();
|
| 170 |
|
|
}
|
| 171 |
|
|
|
| 172 |
|
|
int access_matrix_get_index_for_parameter (tree, struct access_matrix *);
|
| 173 |
|
|
|
| 174 |
|
|
struct data_reference
|
| 175 |
|
|
{
|
| 176 |
|
|
/* A pointer to the statement that contains this DR. */
|
| 177 |
|
|
gimple stmt;
|
| 178 |
|
|
|
| 179 |
|
|
/* A pointer to the memory reference. */
|
| 180 |
|
|
tree ref;
|
| 181 |
|
|
|
| 182 |
|
|
/* Auxiliary info specific to a pass. */
|
| 183 |
|
|
void *aux;
|
| 184 |
|
|
|
| 185 |
|
|
/* True when the data reference is in RHS of a stmt. */
|
| 186 |
|
|
bool is_read;
|
| 187 |
|
|
|
| 188 |
|
|
/* Behavior of the memory reference in the innermost loop. */
|
| 189 |
|
|
struct innermost_loop_behavior innermost;
|
| 190 |
|
|
|
| 191 |
|
|
/* Subscripts of this data reference. */
|
| 192 |
|
|
struct indices indices;
|
| 193 |
|
|
|
| 194 |
|
|
/* Alias information for the data reference. */
|
| 195 |
|
|
struct dr_alias alias;
|
| 196 |
|
|
|
| 197 |
|
|
/* Matrix representation for the data access functions. */
|
| 198 |
|
|
struct access_matrix *access_matrix;
|
| 199 |
|
|
};
|
| 200 |
|
|
|
| 201 |
|
|
#define DR_STMT(DR) (DR)->stmt
|
| 202 |
|
|
#define DR_REF(DR) (DR)->ref
|
| 203 |
|
|
#define DR_BASE_OBJECT(DR) (DR)->indices.base_object
|
| 204 |
|
|
#define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
|
| 205 |
|
|
#define DR_ACCESS_FN(DR, I) VEC_index (tree, DR_ACCESS_FNS (DR), I)
|
| 206 |
|
|
#define DR_NUM_DIMENSIONS(DR) VEC_length (tree, DR_ACCESS_FNS (DR))
|
| 207 |
|
|
#define DR_IS_READ(DR) (DR)->is_read
|
| 208 |
|
|
#define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
|
| 209 |
|
|
#define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
|
| 210 |
|
|
#define DR_OFFSET(DR) (DR)->innermost.offset
|
| 211 |
|
|
#define DR_INIT(DR) (DR)->innermost.init
|
| 212 |
|
|
#define DR_STEP(DR) (DR)->innermost.step
|
| 213 |
|
|
#define DR_PTR_INFO(DR) (DR)->alias.ptr_info
|
| 214 |
|
|
#define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
|
| 215 |
|
|
#define DR_ACCESS_MATRIX(DR) (DR)->access_matrix
|
| 216 |
|
|
|
| 217 |
|
|
typedef struct data_reference *data_reference_p;
|
| 218 |
|
|
DEF_VEC_P(data_reference_p);
|
| 219 |
|
|
DEF_VEC_ALLOC_P (data_reference_p, heap);
|
| 220 |
|
|
|
| 221 |
|
|
enum data_dependence_direction {
|
| 222 |
|
|
dir_positive,
|
| 223 |
|
|
dir_negative,
|
| 224 |
|
|
dir_equal,
|
| 225 |
|
|
dir_positive_or_negative,
|
| 226 |
|
|
dir_positive_or_equal,
|
| 227 |
|
|
dir_negative_or_equal,
|
| 228 |
|
|
dir_star,
|
| 229 |
|
|
dir_independent
|
| 230 |
|
|
};
|
| 231 |
|
|
|
| 232 |
|
|
/* The description of the grid of iterations that overlap. At most
|
| 233 |
|
|
two loops are considered at the same time just now, hence at most
|
| 234 |
|
|
two functions are needed. For each of the functions, we store
|
| 235 |
|
|
the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
|
| 236 |
|
|
where x, y, ... are variables. */
|
| 237 |
|
|
|
| 238 |
|
|
#define MAX_DIM 2
|
| 239 |
|
|
|
| 240 |
|
|
/* Special values of N. */
|
| 241 |
|
|
#define NO_DEPENDENCE 0
|
| 242 |
|
|
#define NOT_KNOWN (MAX_DIM + 1)
|
| 243 |
|
|
#define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
|
| 244 |
|
|
#define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
|
| 245 |
|
|
#define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
|
| 246 |
|
|
|
| 247 |
|
|
typedef VEC (tree, heap) *affine_fn;
|
| 248 |
|
|
|
| 249 |
|
|
typedef struct
|
| 250 |
|
|
{
|
| 251 |
|
|
unsigned n;
|
| 252 |
|
|
affine_fn fns[MAX_DIM];
|
| 253 |
|
|
} conflict_function;
|
| 254 |
|
|
|
| 255 |
|
|
/* What is a subscript? Given two array accesses a subscript is the
|
| 256 |
|
|
tuple composed of the access functions for a given dimension.
|
| 257 |
|
|
Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
|
| 258 |
|
|
subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
|
| 259 |
|
|
are stored in the data_dependence_relation structure under the form
|
| 260 |
|
|
of an array of subscripts. */
|
| 261 |
|
|
|
| 262 |
|
|
struct subscript
|
| 263 |
|
|
{
|
| 264 |
|
|
/* A description of the iterations for which the elements are
|
| 265 |
|
|
accessed twice. */
|
| 266 |
|
|
conflict_function *conflicting_iterations_in_a;
|
| 267 |
|
|
conflict_function *conflicting_iterations_in_b;
|
| 268 |
|
|
|
| 269 |
|
|
/* This field stores the information about the iteration domain
|
| 270 |
|
|
validity of the dependence relation. */
|
| 271 |
|
|
tree last_conflict;
|
| 272 |
|
|
|
| 273 |
|
|
/* Distance from the iteration that access a conflicting element in
|
| 274 |
|
|
A to the iteration that access this same conflicting element in
|
| 275 |
|
|
B. The distance is a tree scalar expression, i.e. a constant or a
|
| 276 |
|
|
symbolic expression, but certainly not a chrec function. */
|
| 277 |
|
|
tree distance;
|
| 278 |
|
|
};
|
| 279 |
|
|
|
| 280 |
|
|
typedef struct subscript *subscript_p;
|
| 281 |
|
|
DEF_VEC_P(subscript_p);
|
| 282 |
|
|
DEF_VEC_ALLOC_P (subscript_p, heap);
|
| 283 |
|
|
|
| 284 |
|
|
#define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
|
| 285 |
|
|
#define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
|
| 286 |
|
|
#define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
|
| 287 |
|
|
#define SUB_DISTANCE(SUB) SUB->distance
|
| 288 |
|
|
|
| 289 |
|
|
/* A data_dependence_relation represents a relation between two
|
| 290 |
|
|
data_references A and B. */
|
| 291 |
|
|
|
| 292 |
|
|
struct data_dependence_relation
|
| 293 |
|
|
{
|
| 294 |
|
|
|
| 295 |
|
|
struct data_reference *a;
|
| 296 |
|
|
struct data_reference *b;
|
| 297 |
|
|
|
| 298 |
|
|
/* A "yes/no/maybe" field for the dependence relation:
|
| 299 |
|
|
|
| 300 |
|
|
- when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
|
| 301 |
|
|
relation between A and B, and the description of this relation
|
| 302 |
|
|
is given in the SUBSCRIPTS array,
|
| 303 |
|
|
|
| 304 |
|
|
- when "ARE_DEPENDENT == chrec_known", there is no dependence and
|
| 305 |
|
|
SUBSCRIPTS is empty,
|
| 306 |
|
|
|
| 307 |
|
|
- when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
|
| 308 |
|
|
but the analyzer cannot be more specific. */
|
| 309 |
|
|
tree are_dependent;
|
| 310 |
|
|
|
| 311 |
|
|
/* For each subscript in the dependence test, there is an element in
|
| 312 |
|
|
this array. This is the attribute that labels the edge A->B of
|
| 313 |
|
|
the data_dependence_relation. */
|
| 314 |
|
|
VEC (subscript_p, heap) *subscripts;
|
| 315 |
|
|
|
| 316 |
|
|
/* The analyzed loop nest. */
|
| 317 |
|
|
VEC (loop_p, heap) *loop_nest;
|
| 318 |
|
|
|
| 319 |
|
|
/* The classic direction vector. */
|
| 320 |
|
|
VEC (lambda_vector, heap) *dir_vects;
|
| 321 |
|
|
|
| 322 |
|
|
/* The classic distance vector. */
|
| 323 |
|
|
VEC (lambda_vector, heap) *dist_vects;
|
| 324 |
|
|
|
| 325 |
|
|
/* An index in loop_nest for the innermost loop that varies for
|
| 326 |
|
|
this data dependence relation. */
|
| 327 |
|
|
unsigned inner_loop;
|
| 328 |
|
|
|
| 329 |
|
|
/* Is the dependence reversed with respect to the lexicographic order? */
|
| 330 |
|
|
bool reversed_p;
|
| 331 |
|
|
|
| 332 |
|
|
/* When the dependence relation is affine, it can be represented by
|
| 333 |
|
|
a distance vector. */
|
| 334 |
|
|
bool affine_p;
|
| 335 |
|
|
|
| 336 |
|
|
/* Set to true when the dependence relation is on the same data
|
| 337 |
|
|
access. */
|
| 338 |
|
|
bool self_reference_p;
|
| 339 |
|
|
};
|
| 340 |
|
|
|
| 341 |
|
|
typedef struct data_dependence_relation *ddr_p;
|
| 342 |
|
|
DEF_VEC_P(ddr_p);
|
| 343 |
|
|
DEF_VEC_ALLOC_P(ddr_p,heap);
|
| 344 |
|
|
|
| 345 |
|
|
#define DDR_A(DDR) DDR->a
|
| 346 |
|
|
#define DDR_B(DDR) DDR->b
|
| 347 |
|
|
#define DDR_AFFINE_P(DDR) DDR->affine_p
|
| 348 |
|
|
#define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
|
| 349 |
|
|
#define DDR_SUBSCRIPTS(DDR) DDR->subscripts
|
| 350 |
|
|
#define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I)
|
| 351 |
|
|
#define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR))
|
| 352 |
|
|
|
| 353 |
|
|
#define DDR_LOOP_NEST(DDR) DDR->loop_nest
|
| 354 |
|
|
/* The size of the direction/distance vectors: the number of loops in
|
| 355 |
|
|
the loop nest. */
|
| 356 |
|
|
#define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR)))
|
| 357 |
|
|
#define DDR_INNER_LOOP(DDR) DDR->inner_loop
|
| 358 |
|
|
#define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
|
| 359 |
|
|
|
| 360 |
|
|
#define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
|
| 361 |
|
|
#define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
|
| 362 |
|
|
#define DDR_NUM_DIST_VECTS(DDR) \
|
| 363 |
|
|
(VEC_length (lambda_vector, DDR_DIST_VECTS (DDR)))
|
| 364 |
|
|
#define DDR_NUM_DIR_VECTS(DDR) \
|
| 365 |
|
|
(VEC_length (lambda_vector, DDR_DIR_VECTS (DDR)))
|
| 366 |
|
|
#define DDR_DIR_VECT(DDR, I) \
|
| 367 |
|
|
VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I)
|
| 368 |
|
|
#define DDR_DIST_VECT(DDR, I) \
|
| 369 |
|
|
VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I)
|
| 370 |
|
|
#define DDR_REVERSED_P(DDR) DDR->reversed_p
|
| 371 |
|
|
|
| 372 |
|
|
|
| 373 |
|
|
|
| 374 |
|
|
/* Describes a location of a memory reference. */
|
| 375 |
|
|
|
| 376 |
|
|
typedef struct data_ref_loc_d
|
| 377 |
|
|
{
|
| 378 |
|
|
/* Position of the memory reference. */
|
| 379 |
|
|
tree *pos;
|
| 380 |
|
|
|
| 381 |
|
|
/* True if the memory reference is read. */
|
| 382 |
|
|
bool is_read;
|
| 383 |
|
|
} data_ref_loc;
|
| 384 |
|
|
|
| 385 |
|
|
DEF_VEC_O (data_ref_loc);
|
| 386 |
|
|
DEF_VEC_ALLOC_O (data_ref_loc, heap);
|
| 387 |
|
|
|
| 388 |
|
|
bool get_references_in_stmt (gimple, VEC (data_ref_loc, heap) **);
|
| 389 |
|
|
bool dr_analyze_innermost (struct data_reference *, struct loop *);
|
| 390 |
|
|
extern bool compute_data_dependences_for_loop (struct loop *, bool,
|
| 391 |
|
|
VEC (loop_p, heap) **,
|
| 392 |
|
|
VEC (data_reference_p, heap) **,
|
| 393 |
|
|
VEC (ddr_p, heap) **);
|
| 394 |
|
|
extern bool compute_data_dependences_for_bb (basic_block, bool,
|
| 395 |
|
|
VEC (data_reference_p, heap) **,
|
| 396 |
|
|
VEC (ddr_p, heap) **);
|
| 397 |
|
|
extern void print_direction_vector (FILE *, lambda_vector, int);
|
| 398 |
|
|
extern void print_dir_vectors (FILE *, VEC (lambda_vector, heap) *, int);
|
| 399 |
|
|
extern void print_dist_vectors (FILE *, VEC (lambda_vector, heap) *, int);
|
| 400 |
|
|
extern void dump_subscript (FILE *, struct subscript *);
|
| 401 |
|
|
extern void dump_ddrs (FILE *, VEC (ddr_p, heap) *);
|
| 402 |
|
|
extern void dump_dist_dir_vectors (FILE *, VEC (ddr_p, heap) *);
|
| 403 |
|
|
extern void dump_data_reference (FILE *, struct data_reference *);
|
| 404 |
|
|
extern void debug_data_reference (struct data_reference *);
|
| 405 |
|
|
extern void dump_data_references (FILE *, VEC (data_reference_p, heap) *);
|
| 406 |
|
|
extern void debug_data_references (VEC (data_reference_p, heap) *);
|
| 407 |
|
|
extern void debug_data_dependence_relation (struct data_dependence_relation *);
|
| 408 |
|
|
extern void dump_data_dependence_relation (FILE *,
|
| 409 |
|
|
struct data_dependence_relation *);
|
| 410 |
|
|
extern void dump_data_dependence_relations (FILE *, VEC (ddr_p, heap) *);
|
| 411 |
|
|
extern void debug_data_dependence_relations (VEC (ddr_p, heap) *);
|
| 412 |
|
|
extern void dump_data_dependence_direction (FILE *,
|
| 413 |
|
|
enum data_dependence_direction);
|
| 414 |
|
|
extern void free_dependence_relation (struct data_dependence_relation *);
|
| 415 |
|
|
extern void free_dependence_relations (VEC (ddr_p, heap) *);
|
| 416 |
|
|
extern void free_data_ref (data_reference_p);
|
| 417 |
|
|
extern void free_data_refs (VEC (data_reference_p, heap) *);
|
| 418 |
|
|
extern bool find_data_references_in_stmt (struct loop *, gimple,
|
| 419 |
|
|
VEC (data_reference_p, heap) **);
|
| 420 |
|
|
extern bool graphite_find_data_references_in_stmt (loop_p, loop_p, gimple,
|
| 421 |
|
|
VEC (data_reference_p, heap) **);
|
| 422 |
|
|
struct data_reference *create_data_ref (loop_p, loop_p, tree, gimple, bool);
|
| 423 |
|
|
extern bool find_loop_nest (struct loop *, VEC (loop_p, heap) **);
|
| 424 |
|
|
extern struct data_dependence_relation *initialize_data_dependence_relation
|
| 425 |
|
|
(struct data_reference *, struct data_reference *, VEC (loop_p, heap) *);
|
| 426 |
|
|
extern void compute_self_dependence (struct data_dependence_relation *);
|
| 427 |
|
|
extern bool compute_all_dependences (VEC (data_reference_p, heap) *,
|
| 428 |
|
|
VEC (ddr_p, heap) **, VEC (loop_p, heap) *,
|
| 429 |
|
|
bool);
|
| 430 |
|
|
extern tree find_data_references_in_bb (struct loop *, basic_block,
|
| 431 |
|
|
VEC (data_reference_p, heap) **);
|
| 432 |
|
|
|
| 433 |
|
|
extern void create_rdg_vertices (struct graph *, VEC (gimple, heap) *);
|
| 434 |
|
|
extern bool dr_may_alias_p (const struct data_reference *,
|
| 435 |
|
|
const struct data_reference *, bool);
|
| 436 |
|
|
extern bool dr_equal_offsets_p (struct data_reference *,
|
| 437 |
|
|
struct data_reference *);
|
| 438 |
|
|
|
| 439 |
|
|
|
| 440 |
|
|
/* Return true when the base objects of data references A and B are
|
| 441 |
|
|
the same memory object. */
|
| 442 |
|
|
|
| 443 |
|
|
static inline bool
|
| 444 |
|
|
same_data_refs_base_objects (data_reference_p a, data_reference_p b)
|
| 445 |
|
|
{
|
| 446 |
|
|
return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
|
| 447 |
|
|
&& operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
|
| 448 |
|
|
}
|
| 449 |
|
|
|
| 450 |
|
|
/* Return true when the data references A and B are accessing the same
|
| 451 |
|
|
memory object with the same access functions. */
|
| 452 |
|
|
|
| 453 |
|
|
static inline bool
|
| 454 |
|
|
same_data_refs (data_reference_p a, data_reference_p b)
|
| 455 |
|
|
{
|
| 456 |
|
|
unsigned int i;
|
| 457 |
|
|
|
| 458 |
|
|
/* The references are exactly the same. */
|
| 459 |
|
|
if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
|
| 460 |
|
|
return true;
|
| 461 |
|
|
|
| 462 |
|
|
if (!same_data_refs_base_objects (a, b))
|
| 463 |
|
|
return false;
|
| 464 |
|
|
|
| 465 |
|
|
for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
|
| 466 |
|
|
if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
|
| 467 |
|
|
return false;
|
| 468 |
|
|
|
| 469 |
|
|
return true;
|
| 470 |
|
|
}
|
| 471 |
|
|
|
| 472 |
|
|
/* Return true when the DDR contains two data references that have the
|
| 473 |
|
|
same access functions. */
|
| 474 |
|
|
|
| 475 |
|
|
static inline bool
|
| 476 |
|
|
same_access_functions (const struct data_dependence_relation *ddr)
|
| 477 |
|
|
{
|
| 478 |
|
|
unsigned i;
|
| 479 |
|
|
|
| 480 |
|
|
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
| 481 |
|
|
if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
|
| 482 |
|
|
DR_ACCESS_FN (DDR_B (ddr), i)))
|
| 483 |
|
|
return false;
|
| 484 |
|
|
|
| 485 |
|
|
return true;
|
| 486 |
|
|
}
|
| 487 |
|
|
|
| 488 |
|
|
/* Return true when DDR is an anti-dependence relation. */
|
| 489 |
|
|
|
| 490 |
|
|
static inline bool
|
| 491 |
|
|
ddr_is_anti_dependent (ddr_p ddr)
|
| 492 |
|
|
{
|
| 493 |
|
|
return (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
|
| 494 |
|
|
&& DR_IS_READ (DDR_A (ddr))
|
| 495 |
|
|
&& DR_IS_WRITE (DDR_B (ddr))
|
| 496 |
|
|
&& !same_access_functions (ddr));
|
| 497 |
|
|
}
|
| 498 |
|
|
|
| 499 |
|
|
/* Return true when DEPENDENCE_RELATIONS contains an anti-dependence. */
|
| 500 |
|
|
|
| 501 |
|
|
static inline bool
|
| 502 |
|
|
ddrs_have_anti_deps (VEC (ddr_p, heap) *dependence_relations)
|
| 503 |
|
|
{
|
| 504 |
|
|
unsigned i;
|
| 505 |
|
|
ddr_p ddr;
|
| 506 |
|
|
|
| 507 |
|
|
for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
|
| 508 |
|
|
if (ddr_is_anti_dependent (ddr))
|
| 509 |
|
|
return true;
|
| 510 |
|
|
|
| 511 |
|
|
return false;
|
| 512 |
|
|
}
|
| 513 |
|
|
|
| 514 |
|
|
/* Returns the dependence level for a vector DIST of size LENGTH.
|
| 515 |
|
|
LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
|
| 516 |
|
|
to the sequence of statements, not carried by any loop. */
|
| 517 |
|
|
|
| 518 |
|
|
static inline unsigned
|
| 519 |
|
|
dependence_level (lambda_vector dist_vect, int length)
|
| 520 |
|
|
{
|
| 521 |
|
|
int i;
|
| 522 |
|
|
|
| 523 |
|
|
for (i = 0; i < length; i++)
|
| 524 |
|
|
if (dist_vect[i] != 0)
|
| 525 |
|
|
return i + 1;
|
| 526 |
|
|
|
| 527 |
|
|
return 0;
|
| 528 |
|
|
}
|
| 529 |
|
|
|
| 530 |
|
|
/* Return the dependence level for the DDR relation. */
|
| 531 |
|
|
|
| 532 |
|
|
static inline unsigned
|
| 533 |
|
|
ddr_dependence_level (ddr_p ddr)
|
| 534 |
|
|
{
|
| 535 |
|
|
unsigned vector;
|
| 536 |
|
|
unsigned level = 0;
|
| 537 |
|
|
|
| 538 |
|
|
if (DDR_DIST_VECTS (ddr))
|
| 539 |
|
|
level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
|
| 540 |
|
|
|
| 541 |
|
|
for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
|
| 542 |
|
|
level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
|
| 543 |
|
|
DDR_NB_LOOPS (ddr)));
|
| 544 |
|
|
return level;
|
| 545 |
|
|
}
|
| 546 |
|
|
|
| 547 |
|
|
|
| 548 |
|
|
|
| 549 |
|
|
/* A Reduced Dependence Graph (RDG) vertex representing a statement. */
|
| 550 |
|
|
typedef struct rdg_vertex
|
| 551 |
|
|
{
|
| 552 |
|
|
/* The statement represented by this vertex. */
|
| 553 |
|
|
gimple stmt;
|
| 554 |
|
|
|
| 555 |
|
|
/* True when the statement contains a write to memory. */
|
| 556 |
|
|
bool has_mem_write;
|
| 557 |
|
|
|
| 558 |
|
|
/* True when the statement contains a read from memory. */
|
| 559 |
|
|
bool has_mem_reads;
|
| 560 |
|
|
} *rdg_vertex_p;
|
| 561 |
|
|
|
| 562 |
|
|
#define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
|
| 563 |
|
|
#define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
|
| 564 |
|
|
#define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
|
| 565 |
|
|
#define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
|
| 566 |
|
|
#define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
|
| 567 |
|
|
#define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
|
| 568 |
|
|
|
| 569 |
|
|
void dump_rdg_vertex (FILE *, struct graph *, int);
|
| 570 |
|
|
void debug_rdg_vertex (struct graph *, int);
|
| 571 |
|
|
void dump_rdg_component (FILE *, struct graph *, int, bitmap);
|
| 572 |
|
|
void debug_rdg_component (struct graph *, int);
|
| 573 |
|
|
void dump_rdg (FILE *, struct graph *);
|
| 574 |
|
|
void debug_rdg (struct graph *);
|
| 575 |
|
|
int rdg_vertex_for_stmt (struct graph *, gimple);
|
| 576 |
|
|
|
| 577 |
|
|
/* Data dependence type. */
|
| 578 |
|
|
|
| 579 |
|
|
enum rdg_dep_type
|
| 580 |
|
|
{
|
| 581 |
|
|
/* Read After Write (RAW). */
|
| 582 |
|
|
flow_dd = 'f',
|
| 583 |
|
|
|
| 584 |
|
|
/* Write After Read (WAR). */
|
| 585 |
|
|
anti_dd = 'a',
|
| 586 |
|
|
|
| 587 |
|
|
/* Write After Write (WAW). */
|
| 588 |
|
|
output_dd = 'o',
|
| 589 |
|
|
|
| 590 |
|
|
/* Read After Read (RAR). */
|
| 591 |
|
|
input_dd = 'i'
|
| 592 |
|
|
};
|
| 593 |
|
|
|
| 594 |
|
|
/* Dependence information attached to an edge of the RDG. */
|
| 595 |
|
|
|
| 596 |
|
|
typedef struct rdg_edge
|
| 597 |
|
|
{
|
| 598 |
|
|
/* Type of the dependence. */
|
| 599 |
|
|
enum rdg_dep_type type;
|
| 600 |
|
|
|
| 601 |
|
|
/* Levels of the dependence: the depth of the loops that carry the
|
| 602 |
|
|
dependence. */
|
| 603 |
|
|
unsigned level;
|
| 604 |
|
|
|
| 605 |
|
|
/* Dependence relation between data dependences, NULL when one of
|
| 606 |
|
|
the vertices is a scalar. */
|
| 607 |
|
|
ddr_p relation;
|
| 608 |
|
|
} *rdg_edge_p;
|
| 609 |
|
|
|
| 610 |
|
|
#define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
|
| 611 |
|
|
#define RDGE_LEVEL(E) ((struct rdg_edge *) ((E)->data))->level
|
| 612 |
|
|
#define RDGE_RELATION(E) ((struct rdg_edge *) ((E)->data))->relation
|
| 613 |
|
|
|
| 614 |
|
|
struct graph *build_rdg (struct loop *,
|
| 615 |
|
|
VEC (loop_p, heap) **,
|
| 616 |
|
|
VEC (ddr_p, heap) **,
|
| 617 |
|
|
VEC (data_reference_p, heap) **);
|
| 618 |
|
|
struct graph *build_empty_rdg (int);
|
| 619 |
|
|
void free_rdg (struct graph *);
|
| 620 |
|
|
|
| 621 |
|
|
/* Return the index of the variable VAR in the LOOP_NEST array. */
|
| 622 |
|
|
|
| 623 |
|
|
static inline int
|
| 624 |
|
|
index_in_loop_nest (int var, VEC (loop_p, heap) *loop_nest)
|
| 625 |
|
|
{
|
| 626 |
|
|
struct loop *loopi;
|
| 627 |
|
|
int var_index;
|
| 628 |
|
|
|
| 629 |
|
|
for (var_index = 0; VEC_iterate (loop_p, loop_nest, var_index, loopi);
|
| 630 |
|
|
var_index++)
|
| 631 |
|
|
if (loopi->num == var)
|
| 632 |
|
|
break;
|
| 633 |
|
|
|
| 634 |
|
|
return var_index;
|
| 635 |
|
|
}
|
| 636 |
|
|
|
| 637 |
|
|
void stores_from_loop (struct loop *, VEC (gimple, heap) **);
|
| 638 |
|
|
void stores_zero_from_loop (struct loop *, VEC (gimple, heap) **);
|
| 639 |
|
|
void remove_similar_memory_refs (VEC (gimple, heap) **);
|
| 640 |
|
|
bool rdg_defs_used_in_other_loops_p (struct graph *, int);
|
| 641 |
|
|
bool have_similar_memory_accesses (gimple, gimple);
|
| 642 |
|
|
bool stmt_with_adjacent_zero_store_dr_p (gimple);
|
| 643 |
|
|
|
| 644 |
|
|
/* Returns true when STRIDE is equal in absolute value to the size of
|
| 645 |
|
|
the unit type of TYPE. */
|
| 646 |
|
|
|
| 647 |
|
|
static inline bool
|
| 648 |
|
|
stride_of_unit_type_p (tree stride, tree type)
|
| 649 |
|
|
{
|
| 650 |
|
|
return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (stride),
|
| 651 |
|
|
stride),
|
| 652 |
|
|
TYPE_SIZE_UNIT (type));
|
| 653 |
|
|
}
|
| 654 |
|
|
|
| 655 |
|
|
/* Determines whether RDG vertices V1 and V2 access to similar memory
|
| 656 |
|
|
locations, in which case they have to be in the same partition. */
|
| 657 |
|
|
|
| 658 |
|
|
static inline bool
|
| 659 |
|
|
rdg_has_similar_memory_accesses (struct graph *rdg, int v1, int v2)
|
| 660 |
|
|
{
|
| 661 |
|
|
return have_similar_memory_accesses (RDG_STMT (rdg, v1),
|
| 662 |
|
|
RDG_STMT (rdg, v2));
|
| 663 |
|
|
}
|
| 664 |
|
|
|
| 665 |
|
|
/* In tree-data-ref.c */
|
| 666 |
|
|
void split_constant_offset (tree , tree *, tree *);
|
| 667 |
|
|
|
| 668 |
|
|
/* Strongly connected components of the reduced data dependence graph. */
|
| 669 |
|
|
|
| 670 |
|
|
typedef struct rdg_component
|
| 671 |
|
|
{
|
| 672 |
|
|
int num;
|
| 673 |
|
|
VEC (int, heap) *vertices;
|
| 674 |
|
|
} *rdgc;
|
| 675 |
|
|
|
| 676 |
|
|
DEF_VEC_P (rdgc);
|
| 677 |
|
|
DEF_VEC_ALLOC_P (rdgc, heap);
|
| 678 |
|
|
|
| 679 |
|
|
DEF_VEC_P (bitmap);
|
| 680 |
|
|
DEF_VEC_ALLOC_P (bitmap, heap);
|
| 681 |
|
|
|
| 682 |
|
|
/* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
|
| 683 |
|
|
|
| 684 |
|
|
static inline int
|
| 685 |
|
|
lambda_vector_gcd (lambda_vector vector, int size)
|
| 686 |
|
|
{
|
| 687 |
|
|
int i;
|
| 688 |
|
|
int gcd1 = 0;
|
| 689 |
|
|
|
| 690 |
|
|
if (size > 0)
|
| 691 |
|
|
{
|
| 692 |
|
|
gcd1 = vector[0];
|
| 693 |
|
|
for (i = 1; i < size; i++)
|
| 694 |
|
|
gcd1 = gcd (gcd1, vector[i]);
|
| 695 |
|
|
}
|
| 696 |
|
|
return gcd1;
|
| 697 |
|
|
}
|
| 698 |
|
|
|
| 699 |
|
|
/* Allocate a new vector of given SIZE. */
|
| 700 |
|
|
|
| 701 |
|
|
static inline lambda_vector
|
| 702 |
|
|
lambda_vector_new (int size)
|
| 703 |
|
|
{
|
| 704 |
|
|
return (lambda_vector) ggc_alloc_cleared_atomic (sizeof (int) * size);
|
| 705 |
|
|
}
|
| 706 |
|
|
|
| 707 |
|
|
/* Clear out vector VEC1 of length SIZE. */
|
| 708 |
|
|
|
| 709 |
|
|
static inline void
|
| 710 |
|
|
lambda_vector_clear (lambda_vector vec1, int size)
|
| 711 |
|
|
{
|
| 712 |
|
|
memset (vec1, 0, size * sizeof (*vec1));
|
| 713 |
|
|
}
|
| 714 |
|
|
|
| 715 |
|
|
/* Returns true when the vector V is lexicographically positive, in
|
| 716 |
|
|
other words, when the first nonzero element is positive. */
|
| 717 |
|
|
|
| 718 |
|
|
static inline bool
|
| 719 |
|
|
lambda_vector_lexico_pos (lambda_vector v,
|
| 720 |
|
|
unsigned n)
|
| 721 |
|
|
{
|
| 722 |
|
|
unsigned i;
|
| 723 |
|
|
for (i = 0; i < n; i++)
|
| 724 |
|
|
{
|
| 725 |
|
|
if (v[i] == 0)
|
| 726 |
|
|
continue;
|
| 727 |
|
|
if (v[i] < 0)
|
| 728 |
|
|
return false;
|
| 729 |
|
|
if (v[i] > 0)
|
| 730 |
|
|
return true;
|
| 731 |
|
|
}
|
| 732 |
|
|
return true;
|
| 733 |
|
|
}
|
| 734 |
|
|
|
| 735 |
|
|
/* Return true if vector VEC1 of length SIZE is the zero vector. */
|
| 736 |
|
|
|
| 737 |
|
|
static inline bool
|
| 738 |
|
|
lambda_vector_zerop (lambda_vector vec1, int size)
|
| 739 |
|
|
{
|
| 740 |
|
|
int i;
|
| 741 |
|
|
for (i = 0; i < size; i++)
|
| 742 |
|
|
if (vec1[i] != 0)
|
| 743 |
|
|
return false;
|
| 744 |
|
|
return true;
|
| 745 |
|
|
}
|
| 746 |
|
|
|
| 747 |
|
|
/* Allocate a matrix of M rows x N cols. */
|
| 748 |
|
|
|
| 749 |
|
|
static inline lambda_matrix
|
| 750 |
|
|
lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
|
| 751 |
|
|
{
|
| 752 |
|
|
lambda_matrix mat;
|
| 753 |
|
|
int i;
|
| 754 |
|
|
|
| 755 |
|
|
mat = (lambda_matrix) obstack_alloc (lambda_obstack,
|
| 756 |
|
|
sizeof (lambda_vector *) * m);
|
| 757 |
|
|
|
| 758 |
|
|
for (i = 0; i < m; i++)
|
| 759 |
|
|
mat[i] = lambda_vector_new (n);
|
| 760 |
|
|
|
| 761 |
|
|
return mat;
|
| 762 |
|
|
}
|
| 763 |
|
|
|
| 764 |
|
|
#endif /* GCC_TREE_DATA_REF_H */
|