1 |
684 |
jeremybenn |
/* Data references and dependences detectors.
|
2 |
|
|
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Sebastian Pop <pop@cri.ensmp.fr>
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#ifndef GCC_TREE_DATA_REF_H
|
23 |
|
|
#define GCC_TREE_DATA_REF_H
|
24 |
|
|
|
25 |
|
|
#include "graphds.h"
|
26 |
|
|
#include "omega.h"
|
27 |
|
|
#include "tree-chrec.h"
|
28 |
|
|
|
29 |
|
|
/*
|
30 |
|
|
innermost_loop_behavior describes the evolution of the address of the memory
|
31 |
|
|
reference in the innermost enclosing loop. The address is expressed as
|
32 |
|
|
BASE + STEP * # of iteration, and base is further decomposed as the base
|
33 |
|
|
pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
|
34 |
|
|
constant offset (INIT). Examples, in loop nest
|
35 |
|
|
|
36 |
|
|
for (i = 0; i < 100; i++)
|
37 |
|
|
for (j = 3; j < 100; j++)
|
38 |
|
|
|
39 |
|
|
Example 1 Example 2
|
40 |
|
|
data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
|
41 |
|
|
|
42 |
|
|
|
43 |
|
|
innermost_loop_behavior
|
44 |
|
|
base_address &a p
|
45 |
|
|
offset i * D_i x
|
46 |
|
|
init 3 * D_j + offsetof (b) 28
|
47 |
|
|
step D_j 4
|
48 |
|
|
|
49 |
|
|
*/
|
50 |
|
|
struct innermost_loop_behavior
|
51 |
|
|
{
|
52 |
|
|
tree base_address;
|
53 |
|
|
tree offset;
|
54 |
|
|
tree init;
|
55 |
|
|
tree step;
|
56 |
|
|
|
57 |
|
|
/* Alignment information. ALIGNED_TO is set to the largest power of two
|
58 |
|
|
that divides OFFSET. */
|
59 |
|
|
tree aligned_to;
|
60 |
|
|
};
|
61 |
|
|
|
62 |
|
|
/* Describes the evolutions of indices of the memory reference. The indices
|
63 |
|
|
are indices of the ARRAY_REFs and the operands of INDIRECT_REFs.
|
64 |
|
|
For ARRAY_REFs, BASE_OBJECT is the reference with zeroed indices
|
65 |
|
|
(note that this reference does not have to be valid, if zero does not
|
66 |
|
|
belong to the range of the array; hence it is not recommended to use
|
67 |
|
|
BASE_OBJECT in any code generation). For INDIRECT_REFs, the address is
|
68 |
|
|
set to the loop-invariant part of the address of the object, except for
|
69 |
|
|
the constant offset. For the examples above,
|
70 |
|
|
|
71 |
|
|
base_object: a[0].b[0][0] *(p + x + 4B * j_0)
|
72 |
|
|
indices: {j_0, +, 1}_2 {16, +, 4}_2
|
73 |
|
|
{i_0, +, 1}_1
|
74 |
|
|
{j_0, +, 1}_2
|
75 |
|
|
*/
|
76 |
|
|
|
77 |
|
|
struct indices
|
78 |
|
|
{
|
79 |
|
|
/* The object. */
|
80 |
|
|
tree base_object;
|
81 |
|
|
|
82 |
|
|
/* A list of chrecs. Access functions of the indices. */
|
83 |
|
|
VEC(tree,heap) *access_fns;
|
84 |
|
|
};
|
85 |
|
|
|
86 |
|
|
struct dr_alias
|
87 |
|
|
{
|
88 |
|
|
/* The alias information that should be used for new pointers to this
|
89 |
|
|
location. SYMBOL_TAG is either a DECL or a SYMBOL_MEMORY_TAG. */
|
90 |
|
|
struct ptr_info_def *ptr_info;
|
91 |
|
|
|
92 |
|
|
/* The set of virtual operands corresponding to this memory reference,
|
93 |
|
|
serving as a description of the alias information for the memory
|
94 |
|
|
reference. This could be eliminated if we had alias oracle. */
|
95 |
|
|
bitmap vops;
|
96 |
|
|
};
|
97 |
|
|
|
98 |
|
|
/* An integer vector. A vector formally consists of an element of a vector
|
99 |
|
|
space. A vector space is a set that is closed under vector addition
|
100 |
|
|
and scalar multiplication. In this vector space, an element is a list of
|
101 |
|
|
integers. */
|
102 |
|
|
typedef int *lambda_vector;
|
103 |
|
|
DEF_VEC_P(lambda_vector);
|
104 |
|
|
DEF_VEC_ALLOC_P(lambda_vector,heap);
|
105 |
|
|
DEF_VEC_ALLOC_P(lambda_vector,gc);
|
106 |
|
|
|
107 |
|
|
/* An integer matrix. A matrix consists of m vectors of length n (IE
|
108 |
|
|
all vectors are the same length). */
|
109 |
|
|
typedef lambda_vector *lambda_matrix;
|
110 |
|
|
|
111 |
|
|
/* Each vector of the access matrix represents a linear access
|
112 |
|
|
function for a subscript. First elements correspond to the
|
113 |
|
|
leftmost indices, ie. for a[i][j] the first vector corresponds to
|
114 |
|
|
the subscript in "i". The elements of a vector are relative to
|
115 |
|
|
the loop nests in which the data reference is considered,
|
116 |
|
|
i.e. the vector is relative to the SCoP that provides the context
|
117 |
|
|
in which this data reference occurs.
|
118 |
|
|
|
119 |
|
|
For example, in
|
120 |
|
|
|
121 |
|
|
| loop_1
|
122 |
|
|
| loop_2
|
123 |
|
|
| a[i+3][2*j+n-1]
|
124 |
|
|
|
125 |
|
|
if "i" varies in loop_1 and "j" varies in loop_2, the access
|
126 |
|
|
matrix with respect to the loop nest {loop_1, loop_2} is:
|
127 |
|
|
|
128 |
|
|
| loop_1 loop_2 param_n cst
|
129 |
|
|
| 1 0 0 3
|
130 |
|
|
| 0 2 1 -1
|
131 |
|
|
|
132 |
|
|
whereas the access matrix with respect to loop_2 considers "i" as
|
133 |
|
|
a parameter:
|
134 |
|
|
|
135 |
|
|
| loop_2 param_i param_n cst
|
136 |
|
|
| 0 1 0 3
|
137 |
|
|
| 2 0 1 -1
|
138 |
|
|
*/
|
139 |
|
|
struct access_matrix
|
140 |
|
|
{
|
141 |
|
|
VEC (loop_p, heap) *loop_nest;
|
142 |
|
|
int nb_induction_vars;
|
143 |
|
|
VEC (tree, heap) *parameters;
|
144 |
|
|
VEC (lambda_vector, gc) *matrix;
|
145 |
|
|
};
|
146 |
|
|
|
147 |
|
|
#define AM_LOOP_NEST(M) (M)->loop_nest
|
148 |
|
|
#define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars
|
149 |
|
|
#define AM_PARAMETERS(M) (M)->parameters
|
150 |
|
|
#define AM_MATRIX(M) (M)->matrix
|
151 |
|
|
#define AM_NB_PARAMETERS(M) (VEC_length (tree, AM_PARAMETERS(M)))
|
152 |
|
|
#define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M))
|
153 |
|
|
#define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1)
|
154 |
|
|
#define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) VEC_index (lambda_vector, AM_MATRIX (M), I)
|
155 |
|
|
#define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J]
|
156 |
|
|
|
157 |
|
|
/* Return the column in the access matrix of LOOP_NUM. */
|
158 |
|
|
|
159 |
|
|
static inline int
|
160 |
|
|
am_vector_index_for_loop (struct access_matrix *access_matrix, int loop_num)
|
161 |
|
|
{
|
162 |
|
|
int i;
|
163 |
|
|
loop_p l;
|
164 |
|
|
|
165 |
|
|
for (i = 0; VEC_iterate (loop_p, AM_LOOP_NEST (access_matrix), i, l); i++)
|
166 |
|
|
if (l->num == loop_num)
|
167 |
|
|
return i;
|
168 |
|
|
|
169 |
|
|
gcc_unreachable();
|
170 |
|
|
}
|
171 |
|
|
|
172 |
|
|
int access_matrix_get_index_for_parameter (tree, struct access_matrix *);
|
173 |
|
|
|
174 |
|
|
struct data_reference
|
175 |
|
|
{
|
176 |
|
|
/* A pointer to the statement that contains this DR. */
|
177 |
|
|
gimple stmt;
|
178 |
|
|
|
179 |
|
|
/* A pointer to the memory reference. */
|
180 |
|
|
tree ref;
|
181 |
|
|
|
182 |
|
|
/* Auxiliary info specific to a pass. */
|
183 |
|
|
void *aux;
|
184 |
|
|
|
185 |
|
|
/* True when the data reference is in RHS of a stmt. */
|
186 |
|
|
bool is_read;
|
187 |
|
|
|
188 |
|
|
/* Behavior of the memory reference in the innermost loop. */
|
189 |
|
|
struct innermost_loop_behavior innermost;
|
190 |
|
|
|
191 |
|
|
/* Subscripts of this data reference. */
|
192 |
|
|
struct indices indices;
|
193 |
|
|
|
194 |
|
|
/* Alias information for the data reference. */
|
195 |
|
|
struct dr_alias alias;
|
196 |
|
|
|
197 |
|
|
/* Matrix representation for the data access functions. */
|
198 |
|
|
struct access_matrix *access_matrix;
|
199 |
|
|
};
|
200 |
|
|
|
201 |
|
|
#define DR_STMT(DR) (DR)->stmt
|
202 |
|
|
#define DR_REF(DR) (DR)->ref
|
203 |
|
|
#define DR_BASE_OBJECT(DR) (DR)->indices.base_object
|
204 |
|
|
#define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
|
205 |
|
|
#define DR_ACCESS_FN(DR, I) VEC_index (tree, DR_ACCESS_FNS (DR), I)
|
206 |
|
|
#define DR_NUM_DIMENSIONS(DR) VEC_length (tree, DR_ACCESS_FNS (DR))
|
207 |
|
|
#define DR_IS_READ(DR) (DR)->is_read
|
208 |
|
|
#define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
|
209 |
|
|
#define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
|
210 |
|
|
#define DR_OFFSET(DR) (DR)->innermost.offset
|
211 |
|
|
#define DR_INIT(DR) (DR)->innermost.init
|
212 |
|
|
#define DR_STEP(DR) (DR)->innermost.step
|
213 |
|
|
#define DR_PTR_INFO(DR) (DR)->alias.ptr_info
|
214 |
|
|
#define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
|
215 |
|
|
#define DR_ACCESS_MATRIX(DR) (DR)->access_matrix
|
216 |
|
|
|
217 |
|
|
typedef struct data_reference *data_reference_p;
|
218 |
|
|
DEF_VEC_P(data_reference_p);
|
219 |
|
|
DEF_VEC_ALLOC_P (data_reference_p, heap);
|
220 |
|
|
|
221 |
|
|
enum data_dependence_direction {
|
222 |
|
|
dir_positive,
|
223 |
|
|
dir_negative,
|
224 |
|
|
dir_equal,
|
225 |
|
|
dir_positive_or_negative,
|
226 |
|
|
dir_positive_or_equal,
|
227 |
|
|
dir_negative_or_equal,
|
228 |
|
|
dir_star,
|
229 |
|
|
dir_independent
|
230 |
|
|
};
|
231 |
|
|
|
232 |
|
|
/* The description of the grid of iterations that overlap. At most
|
233 |
|
|
two loops are considered at the same time just now, hence at most
|
234 |
|
|
two functions are needed. For each of the functions, we store
|
235 |
|
|
the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
|
236 |
|
|
where x, y, ... are variables. */
|
237 |
|
|
|
238 |
|
|
#define MAX_DIM 2
|
239 |
|
|
|
240 |
|
|
/* Special values of N. */
|
241 |
|
|
#define NO_DEPENDENCE 0
|
242 |
|
|
#define NOT_KNOWN (MAX_DIM + 1)
|
243 |
|
|
#define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
|
244 |
|
|
#define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
|
245 |
|
|
#define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
|
246 |
|
|
|
247 |
|
|
typedef VEC (tree, heap) *affine_fn;
|
248 |
|
|
|
249 |
|
|
typedef struct
|
250 |
|
|
{
|
251 |
|
|
unsigned n;
|
252 |
|
|
affine_fn fns[MAX_DIM];
|
253 |
|
|
} conflict_function;
|
254 |
|
|
|
255 |
|
|
/* What is a subscript? Given two array accesses a subscript is the
|
256 |
|
|
tuple composed of the access functions for a given dimension.
|
257 |
|
|
Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
|
258 |
|
|
subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
|
259 |
|
|
are stored in the data_dependence_relation structure under the form
|
260 |
|
|
of an array of subscripts. */
|
261 |
|
|
|
262 |
|
|
struct subscript
|
263 |
|
|
{
|
264 |
|
|
/* A description of the iterations for which the elements are
|
265 |
|
|
accessed twice. */
|
266 |
|
|
conflict_function *conflicting_iterations_in_a;
|
267 |
|
|
conflict_function *conflicting_iterations_in_b;
|
268 |
|
|
|
269 |
|
|
/* This field stores the information about the iteration domain
|
270 |
|
|
validity of the dependence relation. */
|
271 |
|
|
tree last_conflict;
|
272 |
|
|
|
273 |
|
|
/* Distance from the iteration that access a conflicting element in
|
274 |
|
|
A to the iteration that access this same conflicting element in
|
275 |
|
|
B. The distance is a tree scalar expression, i.e. a constant or a
|
276 |
|
|
symbolic expression, but certainly not a chrec function. */
|
277 |
|
|
tree distance;
|
278 |
|
|
};
|
279 |
|
|
|
280 |
|
|
typedef struct subscript *subscript_p;
|
281 |
|
|
DEF_VEC_P(subscript_p);
|
282 |
|
|
DEF_VEC_ALLOC_P (subscript_p, heap);
|
283 |
|
|
|
284 |
|
|
#define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
|
285 |
|
|
#define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
|
286 |
|
|
#define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
|
287 |
|
|
#define SUB_DISTANCE(SUB) SUB->distance
|
288 |
|
|
|
289 |
|
|
/* A data_dependence_relation represents a relation between two
|
290 |
|
|
data_references A and B. */
|
291 |
|
|
|
292 |
|
|
struct data_dependence_relation
|
293 |
|
|
{
|
294 |
|
|
|
295 |
|
|
struct data_reference *a;
|
296 |
|
|
struct data_reference *b;
|
297 |
|
|
|
298 |
|
|
/* A "yes/no/maybe" field for the dependence relation:
|
299 |
|
|
|
300 |
|
|
- when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
|
301 |
|
|
relation between A and B, and the description of this relation
|
302 |
|
|
is given in the SUBSCRIPTS array,
|
303 |
|
|
|
304 |
|
|
- when "ARE_DEPENDENT == chrec_known", there is no dependence and
|
305 |
|
|
SUBSCRIPTS is empty,
|
306 |
|
|
|
307 |
|
|
- when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
|
308 |
|
|
but the analyzer cannot be more specific. */
|
309 |
|
|
tree are_dependent;
|
310 |
|
|
|
311 |
|
|
/* For each subscript in the dependence test, there is an element in
|
312 |
|
|
this array. This is the attribute that labels the edge A->B of
|
313 |
|
|
the data_dependence_relation. */
|
314 |
|
|
VEC (subscript_p, heap) *subscripts;
|
315 |
|
|
|
316 |
|
|
/* The analyzed loop nest. */
|
317 |
|
|
VEC (loop_p, heap) *loop_nest;
|
318 |
|
|
|
319 |
|
|
/* The classic direction vector. */
|
320 |
|
|
VEC (lambda_vector, heap) *dir_vects;
|
321 |
|
|
|
322 |
|
|
/* The classic distance vector. */
|
323 |
|
|
VEC (lambda_vector, heap) *dist_vects;
|
324 |
|
|
|
325 |
|
|
/* An index in loop_nest for the innermost loop that varies for
|
326 |
|
|
this data dependence relation. */
|
327 |
|
|
unsigned inner_loop;
|
328 |
|
|
|
329 |
|
|
/* Is the dependence reversed with respect to the lexicographic order? */
|
330 |
|
|
bool reversed_p;
|
331 |
|
|
|
332 |
|
|
/* When the dependence relation is affine, it can be represented by
|
333 |
|
|
a distance vector. */
|
334 |
|
|
bool affine_p;
|
335 |
|
|
|
336 |
|
|
/* Set to true when the dependence relation is on the same data
|
337 |
|
|
access. */
|
338 |
|
|
bool self_reference_p;
|
339 |
|
|
};
|
340 |
|
|
|
341 |
|
|
typedef struct data_dependence_relation *ddr_p;
|
342 |
|
|
DEF_VEC_P(ddr_p);
|
343 |
|
|
DEF_VEC_ALLOC_P(ddr_p,heap);
|
344 |
|
|
|
345 |
|
|
#define DDR_A(DDR) DDR->a
|
346 |
|
|
#define DDR_B(DDR) DDR->b
|
347 |
|
|
#define DDR_AFFINE_P(DDR) DDR->affine_p
|
348 |
|
|
#define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
|
349 |
|
|
#define DDR_SUBSCRIPTS(DDR) DDR->subscripts
|
350 |
|
|
#define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I)
|
351 |
|
|
#define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR))
|
352 |
|
|
|
353 |
|
|
#define DDR_LOOP_NEST(DDR) DDR->loop_nest
|
354 |
|
|
/* The size of the direction/distance vectors: the number of loops in
|
355 |
|
|
the loop nest. */
|
356 |
|
|
#define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR)))
|
357 |
|
|
#define DDR_INNER_LOOP(DDR) DDR->inner_loop
|
358 |
|
|
#define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
|
359 |
|
|
|
360 |
|
|
#define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
|
361 |
|
|
#define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
|
362 |
|
|
#define DDR_NUM_DIST_VECTS(DDR) \
|
363 |
|
|
(VEC_length (lambda_vector, DDR_DIST_VECTS (DDR)))
|
364 |
|
|
#define DDR_NUM_DIR_VECTS(DDR) \
|
365 |
|
|
(VEC_length (lambda_vector, DDR_DIR_VECTS (DDR)))
|
366 |
|
|
#define DDR_DIR_VECT(DDR, I) \
|
367 |
|
|
VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I)
|
368 |
|
|
#define DDR_DIST_VECT(DDR, I) \
|
369 |
|
|
VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I)
|
370 |
|
|
#define DDR_REVERSED_P(DDR) DDR->reversed_p
|
371 |
|
|
|
372 |
|
|
|
373 |
|
|
|
374 |
|
|
/* Describes a location of a memory reference. */
|
375 |
|
|
|
376 |
|
|
typedef struct data_ref_loc_d
|
377 |
|
|
{
|
378 |
|
|
/* Position of the memory reference. */
|
379 |
|
|
tree *pos;
|
380 |
|
|
|
381 |
|
|
/* True if the memory reference is read. */
|
382 |
|
|
bool is_read;
|
383 |
|
|
} data_ref_loc;
|
384 |
|
|
|
385 |
|
|
DEF_VEC_O (data_ref_loc);
|
386 |
|
|
DEF_VEC_ALLOC_O (data_ref_loc, heap);
|
387 |
|
|
|
388 |
|
|
bool get_references_in_stmt (gimple, VEC (data_ref_loc, heap) **);
|
389 |
|
|
bool dr_analyze_innermost (struct data_reference *, struct loop *);
|
390 |
|
|
extern bool compute_data_dependences_for_loop (struct loop *, bool,
|
391 |
|
|
VEC (loop_p, heap) **,
|
392 |
|
|
VEC (data_reference_p, heap) **,
|
393 |
|
|
VEC (ddr_p, heap) **);
|
394 |
|
|
extern bool compute_data_dependences_for_bb (basic_block, bool,
|
395 |
|
|
VEC (data_reference_p, heap) **,
|
396 |
|
|
VEC (ddr_p, heap) **);
|
397 |
|
|
extern void print_direction_vector (FILE *, lambda_vector, int);
|
398 |
|
|
extern void print_dir_vectors (FILE *, VEC (lambda_vector, heap) *, int);
|
399 |
|
|
extern void print_dist_vectors (FILE *, VEC (lambda_vector, heap) *, int);
|
400 |
|
|
extern void dump_subscript (FILE *, struct subscript *);
|
401 |
|
|
extern void dump_ddrs (FILE *, VEC (ddr_p, heap) *);
|
402 |
|
|
extern void dump_dist_dir_vectors (FILE *, VEC (ddr_p, heap) *);
|
403 |
|
|
extern void dump_data_reference (FILE *, struct data_reference *);
|
404 |
|
|
extern void debug_data_reference (struct data_reference *);
|
405 |
|
|
extern void dump_data_references (FILE *, VEC (data_reference_p, heap) *);
|
406 |
|
|
extern void debug_data_references (VEC (data_reference_p, heap) *);
|
407 |
|
|
extern void debug_data_dependence_relation (struct data_dependence_relation *);
|
408 |
|
|
extern void dump_data_dependence_relation (FILE *,
|
409 |
|
|
struct data_dependence_relation *);
|
410 |
|
|
extern void dump_data_dependence_relations (FILE *, VEC (ddr_p, heap) *);
|
411 |
|
|
extern void debug_data_dependence_relations (VEC (ddr_p, heap) *);
|
412 |
|
|
extern void dump_data_dependence_direction (FILE *,
|
413 |
|
|
enum data_dependence_direction);
|
414 |
|
|
extern void free_dependence_relation (struct data_dependence_relation *);
|
415 |
|
|
extern void free_dependence_relations (VEC (ddr_p, heap) *);
|
416 |
|
|
extern void free_data_ref (data_reference_p);
|
417 |
|
|
extern void free_data_refs (VEC (data_reference_p, heap) *);
|
418 |
|
|
extern bool find_data_references_in_stmt (struct loop *, gimple,
|
419 |
|
|
VEC (data_reference_p, heap) **);
|
420 |
|
|
extern bool graphite_find_data_references_in_stmt (loop_p, loop_p, gimple,
|
421 |
|
|
VEC (data_reference_p, heap) **);
|
422 |
|
|
struct data_reference *create_data_ref (loop_p, loop_p, tree, gimple, bool);
|
423 |
|
|
extern bool find_loop_nest (struct loop *, VEC (loop_p, heap) **);
|
424 |
|
|
extern struct data_dependence_relation *initialize_data_dependence_relation
|
425 |
|
|
(struct data_reference *, struct data_reference *, VEC (loop_p, heap) *);
|
426 |
|
|
extern void compute_self_dependence (struct data_dependence_relation *);
|
427 |
|
|
extern bool compute_all_dependences (VEC (data_reference_p, heap) *,
|
428 |
|
|
VEC (ddr_p, heap) **, VEC (loop_p, heap) *,
|
429 |
|
|
bool);
|
430 |
|
|
extern tree find_data_references_in_bb (struct loop *, basic_block,
|
431 |
|
|
VEC (data_reference_p, heap) **);
|
432 |
|
|
|
433 |
|
|
extern void create_rdg_vertices (struct graph *, VEC (gimple, heap) *);
|
434 |
|
|
extern bool dr_may_alias_p (const struct data_reference *,
|
435 |
|
|
const struct data_reference *, bool);
|
436 |
|
|
extern bool dr_equal_offsets_p (struct data_reference *,
|
437 |
|
|
struct data_reference *);
|
438 |
|
|
|
439 |
|
|
|
440 |
|
|
/* Return true when the base objects of data references A and B are
|
441 |
|
|
the same memory object. */
|
442 |
|
|
|
443 |
|
|
static inline bool
|
444 |
|
|
same_data_refs_base_objects (data_reference_p a, data_reference_p b)
|
445 |
|
|
{
|
446 |
|
|
return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
|
447 |
|
|
&& operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
|
448 |
|
|
}
|
449 |
|
|
|
450 |
|
|
/* Return true when the data references A and B are accessing the same
|
451 |
|
|
memory object with the same access functions. */
|
452 |
|
|
|
453 |
|
|
static inline bool
|
454 |
|
|
same_data_refs (data_reference_p a, data_reference_p b)
|
455 |
|
|
{
|
456 |
|
|
unsigned int i;
|
457 |
|
|
|
458 |
|
|
/* The references are exactly the same. */
|
459 |
|
|
if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
|
460 |
|
|
return true;
|
461 |
|
|
|
462 |
|
|
if (!same_data_refs_base_objects (a, b))
|
463 |
|
|
return false;
|
464 |
|
|
|
465 |
|
|
for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
|
466 |
|
|
if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
|
467 |
|
|
return false;
|
468 |
|
|
|
469 |
|
|
return true;
|
470 |
|
|
}
|
471 |
|
|
|
472 |
|
|
/* Return true when the DDR contains two data references that have the
|
473 |
|
|
same access functions. */
|
474 |
|
|
|
475 |
|
|
static inline bool
|
476 |
|
|
same_access_functions (const struct data_dependence_relation *ddr)
|
477 |
|
|
{
|
478 |
|
|
unsigned i;
|
479 |
|
|
|
480 |
|
|
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
481 |
|
|
if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
|
482 |
|
|
DR_ACCESS_FN (DDR_B (ddr), i)))
|
483 |
|
|
return false;
|
484 |
|
|
|
485 |
|
|
return true;
|
486 |
|
|
}
|
487 |
|
|
|
488 |
|
|
/* Return true when DDR is an anti-dependence relation. */
|
489 |
|
|
|
490 |
|
|
static inline bool
|
491 |
|
|
ddr_is_anti_dependent (ddr_p ddr)
|
492 |
|
|
{
|
493 |
|
|
return (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
|
494 |
|
|
&& DR_IS_READ (DDR_A (ddr))
|
495 |
|
|
&& DR_IS_WRITE (DDR_B (ddr))
|
496 |
|
|
&& !same_access_functions (ddr));
|
497 |
|
|
}
|
498 |
|
|
|
499 |
|
|
/* Return true when DEPENDENCE_RELATIONS contains an anti-dependence. */
|
500 |
|
|
|
501 |
|
|
static inline bool
|
502 |
|
|
ddrs_have_anti_deps (VEC (ddr_p, heap) *dependence_relations)
|
503 |
|
|
{
|
504 |
|
|
unsigned i;
|
505 |
|
|
ddr_p ddr;
|
506 |
|
|
|
507 |
|
|
for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
|
508 |
|
|
if (ddr_is_anti_dependent (ddr))
|
509 |
|
|
return true;
|
510 |
|
|
|
511 |
|
|
return false;
|
512 |
|
|
}
|
513 |
|
|
|
514 |
|
|
/* Returns the dependence level for a vector DIST of size LENGTH.
|
515 |
|
|
LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
|
516 |
|
|
to the sequence of statements, not carried by any loop. */
|
517 |
|
|
|
518 |
|
|
static inline unsigned
|
519 |
|
|
dependence_level (lambda_vector dist_vect, int length)
|
520 |
|
|
{
|
521 |
|
|
int i;
|
522 |
|
|
|
523 |
|
|
for (i = 0; i < length; i++)
|
524 |
|
|
if (dist_vect[i] != 0)
|
525 |
|
|
return i + 1;
|
526 |
|
|
|
527 |
|
|
return 0;
|
528 |
|
|
}
|
529 |
|
|
|
530 |
|
|
/* Return the dependence level for the DDR relation. */
|
531 |
|
|
|
532 |
|
|
static inline unsigned
|
533 |
|
|
ddr_dependence_level (ddr_p ddr)
|
534 |
|
|
{
|
535 |
|
|
unsigned vector;
|
536 |
|
|
unsigned level = 0;
|
537 |
|
|
|
538 |
|
|
if (DDR_DIST_VECTS (ddr))
|
539 |
|
|
level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
|
540 |
|
|
|
541 |
|
|
for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
|
542 |
|
|
level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
|
543 |
|
|
DDR_NB_LOOPS (ddr)));
|
544 |
|
|
return level;
|
545 |
|
|
}
|
546 |
|
|
|
547 |
|
|
|
548 |
|
|
|
549 |
|
|
/* A Reduced Dependence Graph (RDG) vertex representing a statement. */
|
550 |
|
|
typedef struct rdg_vertex
|
551 |
|
|
{
|
552 |
|
|
/* The statement represented by this vertex. */
|
553 |
|
|
gimple stmt;
|
554 |
|
|
|
555 |
|
|
/* True when the statement contains a write to memory. */
|
556 |
|
|
bool has_mem_write;
|
557 |
|
|
|
558 |
|
|
/* True when the statement contains a read from memory. */
|
559 |
|
|
bool has_mem_reads;
|
560 |
|
|
} *rdg_vertex_p;
|
561 |
|
|
|
562 |
|
|
#define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
|
563 |
|
|
#define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
|
564 |
|
|
#define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
|
565 |
|
|
#define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
|
566 |
|
|
#define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
|
567 |
|
|
#define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
|
568 |
|
|
|
569 |
|
|
void dump_rdg_vertex (FILE *, struct graph *, int);
|
570 |
|
|
void debug_rdg_vertex (struct graph *, int);
|
571 |
|
|
void dump_rdg_component (FILE *, struct graph *, int, bitmap);
|
572 |
|
|
void debug_rdg_component (struct graph *, int);
|
573 |
|
|
void dump_rdg (FILE *, struct graph *);
|
574 |
|
|
void debug_rdg (struct graph *);
|
575 |
|
|
int rdg_vertex_for_stmt (struct graph *, gimple);
|
576 |
|
|
|
577 |
|
|
/* Data dependence type. */
|
578 |
|
|
|
579 |
|
|
enum rdg_dep_type
|
580 |
|
|
{
|
581 |
|
|
/* Read After Write (RAW). */
|
582 |
|
|
flow_dd = 'f',
|
583 |
|
|
|
584 |
|
|
/* Write After Read (WAR). */
|
585 |
|
|
anti_dd = 'a',
|
586 |
|
|
|
587 |
|
|
/* Write After Write (WAW). */
|
588 |
|
|
output_dd = 'o',
|
589 |
|
|
|
590 |
|
|
/* Read After Read (RAR). */
|
591 |
|
|
input_dd = 'i'
|
592 |
|
|
};
|
593 |
|
|
|
594 |
|
|
/* Dependence information attached to an edge of the RDG. */
|
595 |
|
|
|
596 |
|
|
typedef struct rdg_edge
|
597 |
|
|
{
|
598 |
|
|
/* Type of the dependence. */
|
599 |
|
|
enum rdg_dep_type type;
|
600 |
|
|
|
601 |
|
|
/* Levels of the dependence: the depth of the loops that carry the
|
602 |
|
|
dependence. */
|
603 |
|
|
unsigned level;
|
604 |
|
|
|
605 |
|
|
/* Dependence relation between data dependences, NULL when one of
|
606 |
|
|
the vertices is a scalar. */
|
607 |
|
|
ddr_p relation;
|
608 |
|
|
} *rdg_edge_p;
|
609 |
|
|
|
610 |
|
|
#define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
|
611 |
|
|
#define RDGE_LEVEL(E) ((struct rdg_edge *) ((E)->data))->level
|
612 |
|
|
#define RDGE_RELATION(E) ((struct rdg_edge *) ((E)->data))->relation
|
613 |
|
|
|
614 |
|
|
struct graph *build_rdg (struct loop *,
|
615 |
|
|
VEC (loop_p, heap) **,
|
616 |
|
|
VEC (ddr_p, heap) **,
|
617 |
|
|
VEC (data_reference_p, heap) **);
|
618 |
|
|
struct graph *build_empty_rdg (int);
|
619 |
|
|
void free_rdg (struct graph *);
|
620 |
|
|
|
621 |
|
|
/* Return the index of the variable VAR in the LOOP_NEST array. */
|
622 |
|
|
|
623 |
|
|
static inline int
|
624 |
|
|
index_in_loop_nest (int var, VEC (loop_p, heap) *loop_nest)
|
625 |
|
|
{
|
626 |
|
|
struct loop *loopi;
|
627 |
|
|
int var_index;
|
628 |
|
|
|
629 |
|
|
for (var_index = 0; VEC_iterate (loop_p, loop_nest, var_index, loopi);
|
630 |
|
|
var_index++)
|
631 |
|
|
if (loopi->num == var)
|
632 |
|
|
break;
|
633 |
|
|
|
634 |
|
|
return var_index;
|
635 |
|
|
}
|
636 |
|
|
|
637 |
|
|
void stores_from_loop (struct loop *, VEC (gimple, heap) **);
|
638 |
|
|
void stores_zero_from_loop (struct loop *, VEC (gimple, heap) **);
|
639 |
|
|
void remove_similar_memory_refs (VEC (gimple, heap) **);
|
640 |
|
|
bool rdg_defs_used_in_other_loops_p (struct graph *, int);
|
641 |
|
|
bool have_similar_memory_accesses (gimple, gimple);
|
642 |
|
|
bool stmt_with_adjacent_zero_store_dr_p (gimple);
|
643 |
|
|
|
644 |
|
|
/* Returns true when STRIDE is equal in absolute value to the size of
|
645 |
|
|
the unit type of TYPE. */
|
646 |
|
|
|
647 |
|
|
static inline bool
|
648 |
|
|
stride_of_unit_type_p (tree stride, tree type)
|
649 |
|
|
{
|
650 |
|
|
return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (stride),
|
651 |
|
|
stride),
|
652 |
|
|
TYPE_SIZE_UNIT (type));
|
653 |
|
|
}
|
654 |
|
|
|
655 |
|
|
/* Determines whether RDG vertices V1 and V2 access to similar memory
|
656 |
|
|
locations, in which case they have to be in the same partition. */
|
657 |
|
|
|
658 |
|
|
static inline bool
|
659 |
|
|
rdg_has_similar_memory_accesses (struct graph *rdg, int v1, int v2)
|
660 |
|
|
{
|
661 |
|
|
return have_similar_memory_accesses (RDG_STMT (rdg, v1),
|
662 |
|
|
RDG_STMT (rdg, v2));
|
663 |
|
|
}
|
664 |
|
|
|
665 |
|
|
/* In tree-data-ref.c */
|
666 |
|
|
void split_constant_offset (tree , tree *, tree *);
|
667 |
|
|
|
668 |
|
|
/* Strongly connected components of the reduced data dependence graph. */
|
669 |
|
|
|
670 |
|
|
typedef struct rdg_component
|
671 |
|
|
{
|
672 |
|
|
int num;
|
673 |
|
|
VEC (int, heap) *vertices;
|
674 |
|
|
} *rdgc;
|
675 |
|
|
|
676 |
|
|
DEF_VEC_P (rdgc);
|
677 |
|
|
DEF_VEC_ALLOC_P (rdgc, heap);
|
678 |
|
|
|
679 |
|
|
DEF_VEC_P (bitmap);
|
680 |
|
|
DEF_VEC_ALLOC_P (bitmap, heap);
|
681 |
|
|
|
682 |
|
|
/* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
|
683 |
|
|
|
684 |
|
|
static inline int
|
685 |
|
|
lambda_vector_gcd (lambda_vector vector, int size)
|
686 |
|
|
{
|
687 |
|
|
int i;
|
688 |
|
|
int gcd1 = 0;
|
689 |
|
|
|
690 |
|
|
if (size > 0)
|
691 |
|
|
{
|
692 |
|
|
gcd1 = vector[0];
|
693 |
|
|
for (i = 1; i < size; i++)
|
694 |
|
|
gcd1 = gcd (gcd1, vector[i]);
|
695 |
|
|
}
|
696 |
|
|
return gcd1;
|
697 |
|
|
}
|
698 |
|
|
|
699 |
|
|
/* Allocate a new vector of given SIZE. */
|
700 |
|
|
|
701 |
|
|
static inline lambda_vector
|
702 |
|
|
lambda_vector_new (int size)
|
703 |
|
|
{
|
704 |
|
|
return (lambda_vector) ggc_alloc_cleared_atomic (sizeof (int) * size);
|
705 |
|
|
}
|
706 |
|
|
|
707 |
|
|
/* Clear out vector VEC1 of length SIZE. */
|
708 |
|
|
|
709 |
|
|
static inline void
|
710 |
|
|
lambda_vector_clear (lambda_vector vec1, int size)
|
711 |
|
|
{
|
712 |
|
|
memset (vec1, 0, size * sizeof (*vec1));
|
713 |
|
|
}
|
714 |
|
|
|
715 |
|
|
/* Returns true when the vector V is lexicographically positive, in
|
716 |
|
|
other words, when the first nonzero element is positive. */
|
717 |
|
|
|
718 |
|
|
static inline bool
|
719 |
|
|
lambda_vector_lexico_pos (lambda_vector v,
|
720 |
|
|
unsigned n)
|
721 |
|
|
{
|
722 |
|
|
unsigned i;
|
723 |
|
|
for (i = 0; i < n; i++)
|
724 |
|
|
{
|
725 |
|
|
if (v[i] == 0)
|
726 |
|
|
continue;
|
727 |
|
|
if (v[i] < 0)
|
728 |
|
|
return false;
|
729 |
|
|
if (v[i] > 0)
|
730 |
|
|
return true;
|
731 |
|
|
}
|
732 |
|
|
return true;
|
733 |
|
|
}
|
734 |
|
|
|
735 |
|
|
/* Return true if vector VEC1 of length SIZE is the zero vector. */
|
736 |
|
|
|
737 |
|
|
static inline bool
|
738 |
|
|
lambda_vector_zerop (lambda_vector vec1, int size)
|
739 |
|
|
{
|
740 |
|
|
int i;
|
741 |
|
|
for (i = 0; i < size; i++)
|
742 |
|
|
if (vec1[i] != 0)
|
743 |
|
|
return false;
|
744 |
|
|
return true;
|
745 |
|
|
}
|
746 |
|
|
|
747 |
|
|
/* Allocate a matrix of M rows x N cols. */
|
748 |
|
|
|
749 |
|
|
static inline lambda_matrix
|
750 |
|
|
lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
|
751 |
|
|
{
|
752 |
|
|
lambda_matrix mat;
|
753 |
|
|
int i;
|
754 |
|
|
|
755 |
|
|
mat = (lambda_matrix) obstack_alloc (lambda_obstack,
|
756 |
|
|
sizeof (lambda_vector *) * m);
|
757 |
|
|
|
758 |
|
|
for (i = 0; i < m; i++)
|
759 |
|
|
mat[i] = lambda_vector_new (n);
|
760 |
|
|
|
761 |
|
|
return mat;
|
762 |
|
|
}
|
763 |
|
|
|
764 |
|
|
#endif /* GCC_TREE_DATA_REF_H */
|