| 1 |
684 |
jeremybenn |
/* Loop distribution.
|
| 2 |
|
|
Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
Contributed by Georges-Andre Silber <Georges-Andre.Silber@ensmp.fr>
|
| 5 |
|
|
and Sebastian Pop <sebastian.pop@amd.com>.
|
| 6 |
|
|
|
| 7 |
|
|
This file is part of GCC.
|
| 8 |
|
|
|
| 9 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
| 10 |
|
|
under the terms of the GNU General Public License as published by the
|
| 11 |
|
|
Free Software Foundation; either version 3, or (at your option) any
|
| 12 |
|
|
later version.
|
| 13 |
|
|
|
| 14 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
| 15 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 16 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 17 |
|
|
for more details.
|
| 18 |
|
|
|
| 19 |
|
|
You should have received a copy of the GNU General Public License
|
| 20 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 21 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 22 |
|
|
|
| 23 |
|
|
/* This pass performs loop distribution: for example, the loop
|
| 24 |
|
|
|
| 25 |
|
|
|DO I = 2, N
|
| 26 |
|
|
| A(I) = B(I) + C
|
| 27 |
|
|
| D(I) = A(I-1)*E
|
| 28 |
|
|
|ENDDO
|
| 29 |
|
|
|
| 30 |
|
|
is transformed to
|
| 31 |
|
|
|
| 32 |
|
|
|DOALL I = 2, N
|
| 33 |
|
|
| A(I) = B(I) + C
|
| 34 |
|
|
|ENDDO
|
| 35 |
|
|
|
|
| 36 |
|
|
|DOALL I = 2, N
|
| 37 |
|
|
| D(I) = A(I-1)*E
|
| 38 |
|
|
|ENDDO
|
| 39 |
|
|
|
| 40 |
|
|
This pass uses an RDG, Reduced Dependence Graph built on top of the
|
| 41 |
|
|
data dependence relations. The RDG is then topologically sorted to
|
| 42 |
|
|
obtain a map of information producers/consumers based on which it
|
| 43 |
|
|
generates the new loops. */
|
| 44 |
|
|
|
| 45 |
|
|
#include "config.h"
|
| 46 |
|
|
#include "system.h"
|
| 47 |
|
|
#include "coretypes.h"
|
| 48 |
|
|
#include "tree-flow.h"
|
| 49 |
|
|
#include "cfgloop.h"
|
| 50 |
|
|
#include "tree-chrec.h"
|
| 51 |
|
|
#include "tree-data-ref.h"
|
| 52 |
|
|
#include "tree-scalar-evolution.h"
|
| 53 |
|
|
#include "tree-pass.h"
|
| 54 |
|
|
|
| 55 |
|
|
/* If bit I is not set, it means that this node represents an
|
| 56 |
|
|
operation that has already been performed, and that should not be
|
| 57 |
|
|
performed again. This is the subgraph of remaining important
|
| 58 |
|
|
computations that is passed to the DFS algorithm for avoiding to
|
| 59 |
|
|
include several times the same stores in different loops. */
|
| 60 |
|
|
static bitmap remaining_stmts;
|
| 61 |
|
|
|
| 62 |
|
|
/* A node of the RDG is marked in this bitmap when it has as a
|
| 63 |
|
|
predecessor a node that writes to memory. */
|
| 64 |
|
|
static bitmap upstream_mem_writes;
|
| 65 |
|
|
|
| 66 |
|
|
/* Returns true when DEF is an SSA_NAME defined in LOOP and used after
|
| 67 |
|
|
the LOOP. */
|
| 68 |
|
|
|
| 69 |
|
|
static bool
|
| 70 |
|
|
ssa_name_has_uses_outside_loop_p (tree def, loop_p loop)
|
| 71 |
|
|
{
|
| 72 |
|
|
imm_use_iterator imm_iter;
|
| 73 |
|
|
use_operand_p use_p;
|
| 74 |
|
|
|
| 75 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
|
| 76 |
|
|
if (loop != loop_containing_stmt (USE_STMT (use_p)))
|
| 77 |
|
|
return true;
|
| 78 |
|
|
|
| 79 |
|
|
return false;
|
| 80 |
|
|
}
|
| 81 |
|
|
|
| 82 |
|
|
/* Returns true when STMT defines a scalar variable used after the
|
| 83 |
|
|
loop. */
|
| 84 |
|
|
|
| 85 |
|
|
static bool
|
| 86 |
|
|
stmt_has_scalar_dependences_outside_loop (gimple stmt)
|
| 87 |
|
|
{
|
| 88 |
|
|
tree name;
|
| 89 |
|
|
|
| 90 |
|
|
switch (gimple_code (stmt))
|
| 91 |
|
|
{
|
| 92 |
|
|
case GIMPLE_CALL:
|
| 93 |
|
|
case GIMPLE_ASSIGN:
|
| 94 |
|
|
name = gimple_get_lhs (stmt);
|
| 95 |
|
|
break;
|
| 96 |
|
|
|
| 97 |
|
|
case GIMPLE_PHI:
|
| 98 |
|
|
name = gimple_phi_result (stmt);
|
| 99 |
|
|
break;
|
| 100 |
|
|
|
| 101 |
|
|
default:
|
| 102 |
|
|
return false;
|
| 103 |
|
|
}
|
| 104 |
|
|
|
| 105 |
|
|
return (name
|
| 106 |
|
|
&& TREE_CODE (name) == SSA_NAME
|
| 107 |
|
|
&& ssa_name_has_uses_outside_loop_p (name,
|
| 108 |
|
|
loop_containing_stmt (stmt)));
|
| 109 |
|
|
}
|
| 110 |
|
|
|
| 111 |
|
|
/* Update the PHI nodes of NEW_LOOP. NEW_LOOP is a duplicate of
|
| 112 |
|
|
ORIG_LOOP. */
|
| 113 |
|
|
|
| 114 |
|
|
static void
|
| 115 |
|
|
update_phis_for_loop_copy (struct loop *orig_loop, struct loop *new_loop)
|
| 116 |
|
|
{
|
| 117 |
|
|
tree new_ssa_name;
|
| 118 |
|
|
gimple_stmt_iterator si_new, si_orig;
|
| 119 |
|
|
edge orig_loop_latch = loop_latch_edge (orig_loop);
|
| 120 |
|
|
edge orig_entry_e = loop_preheader_edge (orig_loop);
|
| 121 |
|
|
edge new_loop_entry_e = loop_preheader_edge (new_loop);
|
| 122 |
|
|
|
| 123 |
|
|
/* Scan the phis in the headers of the old and new loops
|
| 124 |
|
|
(they are organized in exactly the same order). */
|
| 125 |
|
|
for (si_new = gsi_start_phis (new_loop->header),
|
| 126 |
|
|
si_orig = gsi_start_phis (orig_loop->header);
|
| 127 |
|
|
!gsi_end_p (si_new) && !gsi_end_p (si_orig);
|
| 128 |
|
|
gsi_next (&si_new), gsi_next (&si_orig))
|
| 129 |
|
|
{
|
| 130 |
|
|
tree def;
|
| 131 |
|
|
source_location locus;
|
| 132 |
|
|
gimple phi_new = gsi_stmt (si_new);
|
| 133 |
|
|
gimple phi_orig = gsi_stmt (si_orig);
|
| 134 |
|
|
|
| 135 |
|
|
/* Add the first phi argument for the phi in NEW_LOOP (the one
|
| 136 |
|
|
associated with the entry of NEW_LOOP) */
|
| 137 |
|
|
def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_entry_e);
|
| 138 |
|
|
locus = gimple_phi_arg_location_from_edge (phi_orig, orig_entry_e);
|
| 139 |
|
|
add_phi_arg (phi_new, def, new_loop_entry_e, locus);
|
| 140 |
|
|
|
| 141 |
|
|
/* Add the second phi argument for the phi in NEW_LOOP (the one
|
| 142 |
|
|
associated with the latch of NEW_LOOP) */
|
| 143 |
|
|
def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
|
| 144 |
|
|
locus = gimple_phi_arg_location_from_edge (phi_orig, orig_loop_latch);
|
| 145 |
|
|
|
| 146 |
|
|
if (TREE_CODE (def) == SSA_NAME)
|
| 147 |
|
|
{
|
| 148 |
|
|
new_ssa_name = get_current_def (def);
|
| 149 |
|
|
|
| 150 |
|
|
if (!new_ssa_name)
|
| 151 |
|
|
/* This only happens if there are no definitions inside the
|
| 152 |
|
|
loop. Use the the invariant in the new loop as is. */
|
| 153 |
|
|
new_ssa_name = def;
|
| 154 |
|
|
}
|
| 155 |
|
|
else
|
| 156 |
|
|
/* Could be an integer. */
|
| 157 |
|
|
new_ssa_name = def;
|
| 158 |
|
|
|
| 159 |
|
|
add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop), locus);
|
| 160 |
|
|
}
|
| 161 |
|
|
}
|
| 162 |
|
|
|
| 163 |
|
|
/* Return a copy of LOOP placed before LOOP. */
|
| 164 |
|
|
|
| 165 |
|
|
static struct loop *
|
| 166 |
|
|
copy_loop_before (struct loop *loop)
|
| 167 |
|
|
{
|
| 168 |
|
|
struct loop *res;
|
| 169 |
|
|
edge preheader = loop_preheader_edge (loop);
|
| 170 |
|
|
|
| 171 |
|
|
if (!single_exit (loop))
|
| 172 |
|
|
return NULL;
|
| 173 |
|
|
|
| 174 |
|
|
initialize_original_copy_tables ();
|
| 175 |
|
|
res = slpeel_tree_duplicate_loop_to_edge_cfg (loop, preheader);
|
| 176 |
|
|
free_original_copy_tables ();
|
| 177 |
|
|
|
| 178 |
|
|
if (!res)
|
| 179 |
|
|
return NULL;
|
| 180 |
|
|
|
| 181 |
|
|
update_phis_for_loop_copy (loop, res);
|
| 182 |
|
|
rename_variables_in_loop (res);
|
| 183 |
|
|
|
| 184 |
|
|
return res;
|
| 185 |
|
|
}
|
| 186 |
|
|
|
| 187 |
|
|
/* Creates an empty basic block after LOOP. */
|
| 188 |
|
|
|
| 189 |
|
|
static void
|
| 190 |
|
|
create_bb_after_loop (struct loop *loop)
|
| 191 |
|
|
{
|
| 192 |
|
|
edge exit = single_exit (loop);
|
| 193 |
|
|
|
| 194 |
|
|
if (!exit)
|
| 195 |
|
|
return;
|
| 196 |
|
|
|
| 197 |
|
|
split_edge (exit);
|
| 198 |
|
|
}
|
| 199 |
|
|
|
| 200 |
|
|
/* Generate code for PARTITION from the code in LOOP. The loop is
|
| 201 |
|
|
copied when COPY_P is true. All the statements not flagged in the
|
| 202 |
|
|
PARTITION bitmap are removed from the loop or from its copy. The
|
| 203 |
|
|
statements are indexed in sequence inside a basic block, and the
|
| 204 |
|
|
basic blocks of a loop are taken in dom order. Returns true when
|
| 205 |
|
|
the code gen succeeded. */
|
| 206 |
|
|
|
| 207 |
|
|
static bool
|
| 208 |
|
|
generate_loops_for_partition (struct loop *loop, bitmap partition, bool copy_p)
|
| 209 |
|
|
{
|
| 210 |
|
|
unsigned i, x;
|
| 211 |
|
|
gimple_stmt_iterator bsi;
|
| 212 |
|
|
basic_block *bbs;
|
| 213 |
|
|
|
| 214 |
|
|
if (copy_p)
|
| 215 |
|
|
{
|
| 216 |
|
|
loop = copy_loop_before (loop);
|
| 217 |
|
|
create_preheader (loop, CP_SIMPLE_PREHEADERS);
|
| 218 |
|
|
create_bb_after_loop (loop);
|
| 219 |
|
|
}
|
| 220 |
|
|
|
| 221 |
|
|
if (loop == NULL)
|
| 222 |
|
|
return false;
|
| 223 |
|
|
|
| 224 |
|
|
/* Remove stmts not in the PARTITION bitmap. The order in which we
|
| 225 |
|
|
visit the phi nodes and the statements is exactly as in
|
| 226 |
|
|
stmts_from_loop. */
|
| 227 |
|
|
bbs = get_loop_body_in_dom_order (loop);
|
| 228 |
|
|
|
| 229 |
|
|
if (MAY_HAVE_DEBUG_STMTS)
|
| 230 |
|
|
for (x = 0, i = 0; i < loop->num_nodes; i++)
|
| 231 |
|
|
{
|
| 232 |
|
|
basic_block bb = bbs[i];
|
| 233 |
|
|
|
| 234 |
|
|
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
| 235 |
|
|
if (!bitmap_bit_p (partition, x++))
|
| 236 |
|
|
reset_debug_uses (gsi_stmt (bsi));
|
| 237 |
|
|
|
| 238 |
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
| 239 |
|
|
{
|
| 240 |
|
|
gimple stmt = gsi_stmt (bsi);
|
| 241 |
|
|
if (gimple_code (stmt) != GIMPLE_LABEL
|
| 242 |
|
|
&& !is_gimple_debug (stmt)
|
| 243 |
|
|
&& !bitmap_bit_p (partition, x++))
|
| 244 |
|
|
reset_debug_uses (stmt);
|
| 245 |
|
|
}
|
| 246 |
|
|
}
|
| 247 |
|
|
|
| 248 |
|
|
for (x = 0, i = 0; i < loop->num_nodes; i++)
|
| 249 |
|
|
{
|
| 250 |
|
|
basic_block bb = bbs[i];
|
| 251 |
|
|
|
| 252 |
|
|
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi);)
|
| 253 |
|
|
if (!bitmap_bit_p (partition, x++))
|
| 254 |
|
|
{
|
| 255 |
|
|
gimple phi = gsi_stmt (bsi);
|
| 256 |
|
|
if (!is_gimple_reg (gimple_phi_result (phi)))
|
| 257 |
|
|
mark_virtual_phi_result_for_renaming (phi);
|
| 258 |
|
|
remove_phi_node (&bsi, true);
|
| 259 |
|
|
}
|
| 260 |
|
|
else
|
| 261 |
|
|
gsi_next (&bsi);
|
| 262 |
|
|
|
| 263 |
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi);)
|
| 264 |
|
|
{
|
| 265 |
|
|
gimple stmt = gsi_stmt (bsi);
|
| 266 |
|
|
if (gimple_code (stmt) != GIMPLE_LABEL
|
| 267 |
|
|
&& !is_gimple_debug (stmt)
|
| 268 |
|
|
&& !bitmap_bit_p (partition, x++))
|
| 269 |
|
|
{
|
| 270 |
|
|
unlink_stmt_vdef (stmt);
|
| 271 |
|
|
gsi_remove (&bsi, true);
|
| 272 |
|
|
release_defs (stmt);
|
| 273 |
|
|
}
|
| 274 |
|
|
else
|
| 275 |
|
|
gsi_next (&bsi);
|
| 276 |
|
|
}
|
| 277 |
|
|
}
|
| 278 |
|
|
|
| 279 |
|
|
free (bbs);
|
| 280 |
|
|
return true;
|
| 281 |
|
|
}
|
| 282 |
|
|
|
| 283 |
|
|
/* Build the size argument for a memset call. */
|
| 284 |
|
|
|
| 285 |
|
|
static inline tree
|
| 286 |
|
|
build_size_arg_loc (location_t loc, tree nb_iter, tree op,
|
| 287 |
|
|
gimple_seq *stmt_list)
|
| 288 |
|
|
{
|
| 289 |
|
|
gimple_seq stmts;
|
| 290 |
|
|
tree x = fold_build2_loc (loc, MULT_EXPR, size_type_node,
|
| 291 |
|
|
fold_convert_loc (loc, size_type_node, nb_iter),
|
| 292 |
|
|
fold_convert_loc (loc, size_type_node,
|
| 293 |
|
|
TYPE_SIZE_UNIT (TREE_TYPE (op))));
|
| 294 |
|
|
x = force_gimple_operand (x, &stmts, true, NULL);
|
| 295 |
|
|
gimple_seq_add_seq (stmt_list, stmts);
|
| 296 |
|
|
|
| 297 |
|
|
return x;
|
| 298 |
|
|
}
|
| 299 |
|
|
|
| 300 |
|
|
/* Generate a call to memset. Return true when the operation succeeded. */
|
| 301 |
|
|
|
| 302 |
|
|
static void
|
| 303 |
|
|
generate_memset_zero (gimple stmt, tree op0, tree nb_iter,
|
| 304 |
|
|
gimple_stmt_iterator bsi)
|
| 305 |
|
|
{
|
| 306 |
|
|
tree addr_base, nb_bytes;
|
| 307 |
|
|
bool res = false;
|
| 308 |
|
|
gimple_seq stmt_list = NULL, stmts;
|
| 309 |
|
|
gimple fn_call;
|
| 310 |
|
|
tree mem, fn;
|
| 311 |
|
|
struct data_reference *dr = XCNEW (struct data_reference);
|
| 312 |
|
|
location_t loc = gimple_location (stmt);
|
| 313 |
|
|
|
| 314 |
|
|
DR_STMT (dr) = stmt;
|
| 315 |
|
|
DR_REF (dr) = op0;
|
| 316 |
|
|
res = dr_analyze_innermost (dr, loop_containing_stmt (stmt));
|
| 317 |
|
|
gcc_assert (res && stride_of_unit_type_p (DR_STEP (dr), TREE_TYPE (op0)));
|
| 318 |
|
|
|
| 319 |
|
|
nb_bytes = build_size_arg_loc (loc, nb_iter, op0, &stmt_list);
|
| 320 |
|
|
addr_base = size_binop_loc (loc, PLUS_EXPR, DR_OFFSET (dr), DR_INIT (dr));
|
| 321 |
|
|
addr_base = fold_convert_loc (loc, sizetype, addr_base);
|
| 322 |
|
|
|
| 323 |
|
|
/* Test for a negative stride, iterating over every element. */
|
| 324 |
|
|
if (tree_int_cst_sgn (DR_STEP (dr)) == -1)
|
| 325 |
|
|
{
|
| 326 |
|
|
addr_base = size_binop_loc (loc, MINUS_EXPR, addr_base,
|
| 327 |
|
|
fold_convert_loc (loc, sizetype, nb_bytes));
|
| 328 |
|
|
addr_base = size_binop_loc (loc, PLUS_EXPR, addr_base,
|
| 329 |
|
|
TYPE_SIZE_UNIT (TREE_TYPE (op0)));
|
| 330 |
|
|
}
|
| 331 |
|
|
|
| 332 |
|
|
addr_base = fold_build_pointer_plus_loc (loc,
|
| 333 |
|
|
DR_BASE_ADDRESS (dr), addr_base);
|
| 334 |
|
|
mem = force_gimple_operand (addr_base, &stmts, true, NULL);
|
| 335 |
|
|
gimple_seq_add_seq (&stmt_list, stmts);
|
| 336 |
|
|
|
| 337 |
|
|
fn = build_fold_addr_expr (builtin_decl_implicit (BUILT_IN_MEMSET));
|
| 338 |
|
|
fn_call = gimple_build_call (fn, 3, mem, integer_zero_node, nb_bytes);
|
| 339 |
|
|
gimple_seq_add_stmt (&stmt_list, fn_call);
|
| 340 |
|
|
gsi_insert_seq_after (&bsi, stmt_list, GSI_CONTINUE_LINKING);
|
| 341 |
|
|
|
| 342 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 343 |
|
|
fprintf (dump_file, "generated memset zero\n");
|
| 344 |
|
|
|
| 345 |
|
|
free_data_ref (dr);
|
| 346 |
|
|
}
|
| 347 |
|
|
|
| 348 |
|
|
/* Tries to generate a builtin function for the instructions of LOOP
|
| 349 |
|
|
pointed to by the bits set in PARTITION. Returns true when the
|
| 350 |
|
|
operation succeeded. */
|
| 351 |
|
|
|
| 352 |
|
|
static bool
|
| 353 |
|
|
generate_builtin (struct loop *loop, bitmap partition, bool copy_p)
|
| 354 |
|
|
{
|
| 355 |
|
|
bool res = false;
|
| 356 |
|
|
unsigned i, x = 0;
|
| 357 |
|
|
basic_block *bbs;
|
| 358 |
|
|
gimple write = NULL;
|
| 359 |
|
|
gimple_stmt_iterator bsi;
|
| 360 |
|
|
tree nb_iter = number_of_exit_cond_executions (loop);
|
| 361 |
|
|
|
| 362 |
|
|
if (!nb_iter || nb_iter == chrec_dont_know)
|
| 363 |
|
|
return false;
|
| 364 |
|
|
|
| 365 |
|
|
bbs = get_loop_body_in_dom_order (loop);
|
| 366 |
|
|
|
| 367 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
| 368 |
|
|
{
|
| 369 |
|
|
basic_block bb = bbs[i];
|
| 370 |
|
|
|
| 371 |
|
|
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
| 372 |
|
|
x++;
|
| 373 |
|
|
|
| 374 |
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
| 375 |
|
|
{
|
| 376 |
|
|
gimple stmt = gsi_stmt (bsi);
|
| 377 |
|
|
|
| 378 |
|
|
if (gimple_code (stmt) == GIMPLE_LABEL
|
| 379 |
|
|
|| is_gimple_debug (stmt))
|
| 380 |
|
|
continue;
|
| 381 |
|
|
|
| 382 |
|
|
if (!bitmap_bit_p (partition, x++))
|
| 383 |
|
|
continue;
|
| 384 |
|
|
|
| 385 |
|
|
/* If the stmt has uses outside of the loop fail. */
|
| 386 |
|
|
if (stmt_has_scalar_dependences_outside_loop (stmt))
|
| 387 |
|
|
goto end;
|
| 388 |
|
|
|
| 389 |
|
|
if (is_gimple_assign (stmt)
|
| 390 |
|
|
&& !is_gimple_reg (gimple_assign_lhs (stmt)))
|
| 391 |
|
|
{
|
| 392 |
|
|
/* Don't generate the builtins when there are more than
|
| 393 |
|
|
one memory write. */
|
| 394 |
|
|
if (write != NULL)
|
| 395 |
|
|
goto end;
|
| 396 |
|
|
|
| 397 |
|
|
write = stmt;
|
| 398 |
|
|
if (bb == loop->latch)
|
| 399 |
|
|
nb_iter = number_of_latch_executions (loop);
|
| 400 |
|
|
}
|
| 401 |
|
|
}
|
| 402 |
|
|
}
|
| 403 |
|
|
|
| 404 |
|
|
if (!stmt_with_adjacent_zero_store_dr_p (write))
|
| 405 |
|
|
goto end;
|
| 406 |
|
|
|
| 407 |
|
|
/* The new statements will be placed before LOOP. */
|
| 408 |
|
|
bsi = gsi_last_bb (loop_preheader_edge (loop)->src);
|
| 409 |
|
|
generate_memset_zero (write, gimple_assign_lhs (write), nb_iter, bsi);
|
| 410 |
|
|
res = true;
|
| 411 |
|
|
|
| 412 |
|
|
/* If this is the last partition for which we generate code, we have
|
| 413 |
|
|
to destroy the loop. */
|
| 414 |
|
|
if (!copy_p)
|
| 415 |
|
|
{
|
| 416 |
|
|
unsigned nbbs = loop->num_nodes;
|
| 417 |
|
|
edge exit = single_exit (loop);
|
| 418 |
|
|
basic_block src = loop_preheader_edge (loop)->src, dest = exit->dest;
|
| 419 |
|
|
redirect_edge_pred (exit, src);
|
| 420 |
|
|
exit->flags &= ~(EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
|
| 421 |
|
|
exit->flags |= EDGE_FALLTHRU;
|
| 422 |
|
|
cancel_loop_tree (loop);
|
| 423 |
|
|
rescan_loop_exit (exit, false, true);
|
| 424 |
|
|
|
| 425 |
|
|
for (i = 0; i < nbbs; i++)
|
| 426 |
|
|
delete_basic_block (bbs[i]);
|
| 427 |
|
|
|
| 428 |
|
|
set_immediate_dominator (CDI_DOMINATORS, dest,
|
| 429 |
|
|
recompute_dominator (CDI_DOMINATORS, dest));
|
| 430 |
|
|
}
|
| 431 |
|
|
|
| 432 |
|
|
end:
|
| 433 |
|
|
free (bbs);
|
| 434 |
|
|
return res;
|
| 435 |
|
|
}
|
| 436 |
|
|
|
| 437 |
|
|
/* Generates code for PARTITION. For simple loops, this function can
|
| 438 |
|
|
generate a built-in. */
|
| 439 |
|
|
|
| 440 |
|
|
static bool
|
| 441 |
|
|
generate_code_for_partition (struct loop *loop, bitmap partition, bool copy_p)
|
| 442 |
|
|
{
|
| 443 |
|
|
if (generate_builtin (loop, partition, copy_p))
|
| 444 |
|
|
return true;
|
| 445 |
|
|
|
| 446 |
|
|
return generate_loops_for_partition (loop, partition, copy_p);
|
| 447 |
|
|
}
|
| 448 |
|
|
|
| 449 |
|
|
|
| 450 |
|
|
/* Returns true if the node V of RDG cannot be recomputed. */
|
| 451 |
|
|
|
| 452 |
|
|
static bool
|
| 453 |
|
|
rdg_cannot_recompute_vertex_p (struct graph *rdg, int v)
|
| 454 |
|
|
{
|
| 455 |
|
|
if (RDG_MEM_WRITE_STMT (rdg, v))
|
| 456 |
|
|
return true;
|
| 457 |
|
|
|
| 458 |
|
|
return false;
|
| 459 |
|
|
}
|
| 460 |
|
|
|
| 461 |
|
|
/* Returns true when the vertex V has already been generated in the
|
| 462 |
|
|
current partition (V is in PROCESSED), or when V belongs to another
|
| 463 |
|
|
partition and cannot be recomputed (V is not in REMAINING_STMTS). */
|
| 464 |
|
|
|
| 465 |
|
|
static inline bool
|
| 466 |
|
|
already_processed_vertex_p (bitmap processed, int v)
|
| 467 |
|
|
{
|
| 468 |
|
|
return (bitmap_bit_p (processed, v)
|
| 469 |
|
|
|| !bitmap_bit_p (remaining_stmts, v));
|
| 470 |
|
|
}
|
| 471 |
|
|
|
| 472 |
|
|
/* Returns NULL when there is no anti-dependence among the successors
|
| 473 |
|
|
of vertex V, otherwise returns the edge with the anti-dep. */
|
| 474 |
|
|
|
| 475 |
|
|
static struct graph_edge *
|
| 476 |
|
|
has_anti_dependence (struct vertex *v)
|
| 477 |
|
|
{
|
| 478 |
|
|
struct graph_edge *e;
|
| 479 |
|
|
|
| 480 |
|
|
if (v->succ)
|
| 481 |
|
|
for (e = v->succ; e; e = e->succ_next)
|
| 482 |
|
|
if (RDGE_TYPE (e) == anti_dd)
|
| 483 |
|
|
return e;
|
| 484 |
|
|
|
| 485 |
|
|
return NULL;
|
| 486 |
|
|
}
|
| 487 |
|
|
|
| 488 |
|
|
/* Returns true when V has an anti-dependence edge among its successors. */
|
| 489 |
|
|
|
| 490 |
|
|
static bool
|
| 491 |
|
|
predecessor_has_mem_write (struct graph *rdg, struct vertex *v)
|
| 492 |
|
|
{
|
| 493 |
|
|
struct graph_edge *e;
|
| 494 |
|
|
|
| 495 |
|
|
if (v->pred)
|
| 496 |
|
|
for (e = v->pred; e; e = e->pred_next)
|
| 497 |
|
|
if (bitmap_bit_p (upstream_mem_writes, e->src)
|
| 498 |
|
|
/* Don't consider flow channels: a write to memory followed
|
| 499 |
|
|
by a read from memory. These channels allow the split of
|
| 500 |
|
|
the RDG in different partitions. */
|
| 501 |
|
|
&& !RDG_MEM_WRITE_STMT (rdg, e->src))
|
| 502 |
|
|
return true;
|
| 503 |
|
|
|
| 504 |
|
|
return false;
|
| 505 |
|
|
}
|
| 506 |
|
|
|
| 507 |
|
|
/* Initializes the upstream_mem_writes bitmap following the
|
| 508 |
|
|
information from RDG. */
|
| 509 |
|
|
|
| 510 |
|
|
static void
|
| 511 |
|
|
mark_nodes_having_upstream_mem_writes (struct graph *rdg)
|
| 512 |
|
|
{
|
| 513 |
|
|
int v, x;
|
| 514 |
|
|
bitmap seen = BITMAP_ALLOC (NULL);
|
| 515 |
|
|
|
| 516 |
|
|
for (v = rdg->n_vertices - 1; v >= 0; v--)
|
| 517 |
|
|
if (!bitmap_bit_p (seen, v))
|
| 518 |
|
|
{
|
| 519 |
|
|
unsigned i;
|
| 520 |
|
|
VEC (int, heap) *nodes = VEC_alloc (int, heap, 3);
|
| 521 |
|
|
|
| 522 |
|
|
graphds_dfs (rdg, &v, 1, &nodes, false, NULL);
|
| 523 |
|
|
|
| 524 |
|
|
FOR_EACH_VEC_ELT (int, nodes, i, x)
|
| 525 |
|
|
{
|
| 526 |
|
|
if (!bitmap_set_bit (seen, x))
|
| 527 |
|
|
continue;
|
| 528 |
|
|
|
| 529 |
|
|
if (RDG_MEM_WRITE_STMT (rdg, x)
|
| 530 |
|
|
|| predecessor_has_mem_write (rdg, &(rdg->vertices[x]))
|
| 531 |
|
|
/* In anti dependences the read should occur before
|
| 532 |
|
|
the write, this is why both the read and the write
|
| 533 |
|
|
should be placed in the same partition. */
|
| 534 |
|
|
|| has_anti_dependence (&(rdg->vertices[x])))
|
| 535 |
|
|
{
|
| 536 |
|
|
bitmap_set_bit (upstream_mem_writes, x);
|
| 537 |
|
|
}
|
| 538 |
|
|
}
|
| 539 |
|
|
|
| 540 |
|
|
VEC_free (int, heap, nodes);
|
| 541 |
|
|
}
|
| 542 |
|
|
}
|
| 543 |
|
|
|
| 544 |
|
|
/* Returns true when vertex u has a memory write node as a predecessor
|
| 545 |
|
|
in RDG. */
|
| 546 |
|
|
|
| 547 |
|
|
static bool
|
| 548 |
|
|
has_upstream_mem_writes (int u)
|
| 549 |
|
|
{
|
| 550 |
|
|
return bitmap_bit_p (upstream_mem_writes, u);
|
| 551 |
|
|
}
|
| 552 |
|
|
|
| 553 |
|
|
static void rdg_flag_vertex_and_dependent (struct graph *, int, bitmap, bitmap,
|
| 554 |
|
|
bitmap, bool *);
|
| 555 |
|
|
|
| 556 |
|
|
/* Flag the uses of U stopping following the information from
|
| 557 |
|
|
upstream_mem_writes. */
|
| 558 |
|
|
|
| 559 |
|
|
static void
|
| 560 |
|
|
rdg_flag_uses (struct graph *rdg, int u, bitmap partition, bitmap loops,
|
| 561 |
|
|
bitmap processed, bool *part_has_writes)
|
| 562 |
|
|
{
|
| 563 |
|
|
use_operand_p use_p;
|
| 564 |
|
|
struct vertex *x = &(rdg->vertices[u]);
|
| 565 |
|
|
gimple stmt = RDGV_STMT (x);
|
| 566 |
|
|
struct graph_edge *anti_dep = has_anti_dependence (x);
|
| 567 |
|
|
|
| 568 |
|
|
/* Keep in the same partition the destination of an antidependence,
|
| 569 |
|
|
because this is a store to the exact same location. Putting this
|
| 570 |
|
|
in another partition is bad for cache locality. */
|
| 571 |
|
|
if (anti_dep)
|
| 572 |
|
|
{
|
| 573 |
|
|
int v = anti_dep->dest;
|
| 574 |
|
|
|
| 575 |
|
|
if (!already_processed_vertex_p (processed, v))
|
| 576 |
|
|
rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
|
| 577 |
|
|
processed, part_has_writes);
|
| 578 |
|
|
}
|
| 579 |
|
|
|
| 580 |
|
|
if (gimple_code (stmt) != GIMPLE_PHI)
|
| 581 |
|
|
{
|
| 582 |
|
|
if ((use_p = gimple_vuse_op (stmt)) != NULL_USE_OPERAND_P)
|
| 583 |
|
|
{
|
| 584 |
|
|
tree use = USE_FROM_PTR (use_p);
|
| 585 |
|
|
|
| 586 |
|
|
if (TREE_CODE (use) == SSA_NAME)
|
| 587 |
|
|
{
|
| 588 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (use);
|
| 589 |
|
|
int v = rdg_vertex_for_stmt (rdg, def_stmt);
|
| 590 |
|
|
|
| 591 |
|
|
if (v >= 0
|
| 592 |
|
|
&& !already_processed_vertex_p (processed, v))
|
| 593 |
|
|
rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
|
| 594 |
|
|
processed, part_has_writes);
|
| 595 |
|
|
}
|
| 596 |
|
|
}
|
| 597 |
|
|
}
|
| 598 |
|
|
|
| 599 |
|
|
if (is_gimple_assign (stmt) && has_upstream_mem_writes (u))
|
| 600 |
|
|
{
|
| 601 |
|
|
tree op0 = gimple_assign_lhs (stmt);
|
| 602 |
|
|
|
| 603 |
|
|
/* Scalar channels don't have enough space for transmitting data
|
| 604 |
|
|
between tasks, unless we add more storage by privatizing. */
|
| 605 |
|
|
if (is_gimple_reg (op0))
|
| 606 |
|
|
{
|
| 607 |
|
|
use_operand_p use_p;
|
| 608 |
|
|
imm_use_iterator iter;
|
| 609 |
|
|
|
| 610 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, iter, op0)
|
| 611 |
|
|
{
|
| 612 |
|
|
int v = rdg_vertex_for_stmt (rdg, USE_STMT (use_p));
|
| 613 |
|
|
|
| 614 |
|
|
if (!already_processed_vertex_p (processed, v))
|
| 615 |
|
|
rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
|
| 616 |
|
|
processed, part_has_writes);
|
| 617 |
|
|
}
|
| 618 |
|
|
}
|
| 619 |
|
|
}
|
| 620 |
|
|
}
|
| 621 |
|
|
|
| 622 |
|
|
/* Flag V from RDG as part of PARTITION, and also flag its loop number
|
| 623 |
|
|
in LOOPS. */
|
| 624 |
|
|
|
| 625 |
|
|
static void
|
| 626 |
|
|
rdg_flag_vertex (struct graph *rdg, int v, bitmap partition, bitmap loops,
|
| 627 |
|
|
bool *part_has_writes)
|
| 628 |
|
|
{
|
| 629 |
|
|
struct loop *loop;
|
| 630 |
|
|
|
| 631 |
|
|
if (!bitmap_set_bit (partition, v))
|
| 632 |
|
|
return;
|
| 633 |
|
|
|
| 634 |
|
|
loop = loop_containing_stmt (RDG_STMT (rdg, v));
|
| 635 |
|
|
bitmap_set_bit (loops, loop->num);
|
| 636 |
|
|
|
| 637 |
|
|
if (rdg_cannot_recompute_vertex_p (rdg, v))
|
| 638 |
|
|
{
|
| 639 |
|
|
*part_has_writes = true;
|
| 640 |
|
|
bitmap_clear_bit (remaining_stmts, v);
|
| 641 |
|
|
}
|
| 642 |
|
|
}
|
| 643 |
|
|
|
| 644 |
|
|
/* Flag in the bitmap PARTITION the vertex V and all its predecessors.
|
| 645 |
|
|
Also flag their loop number in LOOPS. */
|
| 646 |
|
|
|
| 647 |
|
|
static void
|
| 648 |
|
|
rdg_flag_vertex_and_dependent (struct graph *rdg, int v, bitmap partition,
|
| 649 |
|
|
bitmap loops, bitmap processed,
|
| 650 |
|
|
bool *part_has_writes)
|
| 651 |
|
|
{
|
| 652 |
|
|
unsigned i;
|
| 653 |
|
|
VEC (int, heap) *nodes = VEC_alloc (int, heap, 3);
|
| 654 |
|
|
int x;
|
| 655 |
|
|
|
| 656 |
|
|
bitmap_set_bit (processed, v);
|
| 657 |
|
|
rdg_flag_uses (rdg, v, partition, loops, processed, part_has_writes);
|
| 658 |
|
|
graphds_dfs (rdg, &v, 1, &nodes, false, remaining_stmts);
|
| 659 |
|
|
rdg_flag_vertex (rdg, v, partition, loops, part_has_writes);
|
| 660 |
|
|
|
| 661 |
|
|
FOR_EACH_VEC_ELT (int, nodes, i, x)
|
| 662 |
|
|
if (!already_processed_vertex_p (processed, x))
|
| 663 |
|
|
rdg_flag_vertex_and_dependent (rdg, x, partition, loops, processed,
|
| 664 |
|
|
part_has_writes);
|
| 665 |
|
|
|
| 666 |
|
|
VEC_free (int, heap, nodes);
|
| 667 |
|
|
}
|
| 668 |
|
|
|
| 669 |
|
|
/* Initialize CONDS with all the condition statements from the basic
|
| 670 |
|
|
blocks of LOOP. */
|
| 671 |
|
|
|
| 672 |
|
|
static void
|
| 673 |
|
|
collect_condition_stmts (struct loop *loop, VEC (gimple, heap) **conds)
|
| 674 |
|
|
{
|
| 675 |
|
|
unsigned i;
|
| 676 |
|
|
edge e;
|
| 677 |
|
|
VEC (edge, heap) *exits = get_loop_exit_edges (loop);
|
| 678 |
|
|
|
| 679 |
|
|
FOR_EACH_VEC_ELT (edge, exits, i, e)
|
| 680 |
|
|
{
|
| 681 |
|
|
gimple cond = last_stmt (e->src);
|
| 682 |
|
|
|
| 683 |
|
|
if (cond)
|
| 684 |
|
|
VEC_safe_push (gimple, heap, *conds, cond);
|
| 685 |
|
|
}
|
| 686 |
|
|
|
| 687 |
|
|
VEC_free (edge, heap, exits);
|
| 688 |
|
|
}
|
| 689 |
|
|
|
| 690 |
|
|
/* Add to PARTITION all the exit condition statements for LOOPS
|
| 691 |
|
|
together with all their dependent statements determined from
|
| 692 |
|
|
RDG. */
|
| 693 |
|
|
|
| 694 |
|
|
static void
|
| 695 |
|
|
rdg_flag_loop_exits (struct graph *rdg, bitmap loops, bitmap partition,
|
| 696 |
|
|
bitmap processed, bool *part_has_writes)
|
| 697 |
|
|
{
|
| 698 |
|
|
unsigned i;
|
| 699 |
|
|
bitmap_iterator bi;
|
| 700 |
|
|
VEC (gimple, heap) *conds = VEC_alloc (gimple, heap, 3);
|
| 701 |
|
|
|
| 702 |
|
|
EXECUTE_IF_SET_IN_BITMAP (loops, 0, i, bi)
|
| 703 |
|
|
collect_condition_stmts (get_loop (i), &conds);
|
| 704 |
|
|
|
| 705 |
|
|
while (!VEC_empty (gimple, conds))
|
| 706 |
|
|
{
|
| 707 |
|
|
gimple cond = VEC_pop (gimple, conds);
|
| 708 |
|
|
int v = rdg_vertex_for_stmt (rdg, cond);
|
| 709 |
|
|
bitmap new_loops = BITMAP_ALLOC (NULL);
|
| 710 |
|
|
|
| 711 |
|
|
if (!already_processed_vertex_p (processed, v))
|
| 712 |
|
|
rdg_flag_vertex_and_dependent (rdg, v, partition, new_loops, processed,
|
| 713 |
|
|
part_has_writes);
|
| 714 |
|
|
|
| 715 |
|
|
EXECUTE_IF_SET_IN_BITMAP (new_loops, 0, i, bi)
|
| 716 |
|
|
if (bitmap_set_bit (loops, i))
|
| 717 |
|
|
collect_condition_stmts (get_loop (i), &conds);
|
| 718 |
|
|
|
| 719 |
|
|
BITMAP_FREE (new_loops);
|
| 720 |
|
|
}
|
| 721 |
|
|
|
| 722 |
|
|
VEC_free (gimple, heap, conds);
|
| 723 |
|
|
}
|
| 724 |
|
|
|
| 725 |
|
|
/* Returns a bitmap in which all the statements needed for computing
|
| 726 |
|
|
the strongly connected component C of the RDG are flagged, also
|
| 727 |
|
|
including the loop exit conditions. */
|
| 728 |
|
|
|
| 729 |
|
|
static bitmap
|
| 730 |
|
|
build_rdg_partition_for_component (struct graph *rdg, rdgc c,
|
| 731 |
|
|
bool *part_has_writes)
|
| 732 |
|
|
{
|
| 733 |
|
|
int i, v;
|
| 734 |
|
|
bitmap partition = BITMAP_ALLOC (NULL);
|
| 735 |
|
|
bitmap loops = BITMAP_ALLOC (NULL);
|
| 736 |
|
|
bitmap processed = BITMAP_ALLOC (NULL);
|
| 737 |
|
|
|
| 738 |
|
|
FOR_EACH_VEC_ELT (int, c->vertices, i, v)
|
| 739 |
|
|
if (!already_processed_vertex_p (processed, v))
|
| 740 |
|
|
rdg_flag_vertex_and_dependent (rdg, v, partition, loops, processed,
|
| 741 |
|
|
part_has_writes);
|
| 742 |
|
|
|
| 743 |
|
|
rdg_flag_loop_exits (rdg, loops, partition, processed, part_has_writes);
|
| 744 |
|
|
|
| 745 |
|
|
BITMAP_FREE (processed);
|
| 746 |
|
|
BITMAP_FREE (loops);
|
| 747 |
|
|
return partition;
|
| 748 |
|
|
}
|
| 749 |
|
|
|
| 750 |
|
|
/* Free memory for COMPONENTS. */
|
| 751 |
|
|
|
| 752 |
|
|
static void
|
| 753 |
|
|
free_rdg_components (VEC (rdgc, heap) *components)
|
| 754 |
|
|
{
|
| 755 |
|
|
int i;
|
| 756 |
|
|
rdgc x;
|
| 757 |
|
|
|
| 758 |
|
|
FOR_EACH_VEC_ELT (rdgc, components, i, x)
|
| 759 |
|
|
{
|
| 760 |
|
|
VEC_free (int, heap, x->vertices);
|
| 761 |
|
|
free (x);
|
| 762 |
|
|
}
|
| 763 |
|
|
|
| 764 |
|
|
VEC_free (rdgc, heap, components);
|
| 765 |
|
|
}
|
| 766 |
|
|
|
| 767 |
|
|
/* Build the COMPONENTS vector with the strongly connected components
|
| 768 |
|
|
of RDG in which the STARTING_VERTICES occur. */
|
| 769 |
|
|
|
| 770 |
|
|
static void
|
| 771 |
|
|
rdg_build_components (struct graph *rdg, VEC (int, heap) *starting_vertices,
|
| 772 |
|
|
VEC (rdgc, heap) **components)
|
| 773 |
|
|
{
|
| 774 |
|
|
int i, v;
|
| 775 |
|
|
bitmap saved_components = BITMAP_ALLOC (NULL);
|
| 776 |
|
|
int n_components = graphds_scc (rdg, NULL);
|
| 777 |
|
|
VEC (int, heap) **all_components = XNEWVEC (VEC (int, heap) *, n_components);
|
| 778 |
|
|
|
| 779 |
|
|
for (i = 0; i < n_components; i++)
|
| 780 |
|
|
all_components[i] = VEC_alloc (int, heap, 3);
|
| 781 |
|
|
|
| 782 |
|
|
for (i = 0; i < rdg->n_vertices; i++)
|
| 783 |
|
|
VEC_safe_push (int, heap, all_components[rdg->vertices[i].component], i);
|
| 784 |
|
|
|
| 785 |
|
|
FOR_EACH_VEC_ELT (int, starting_vertices, i, v)
|
| 786 |
|
|
{
|
| 787 |
|
|
int c = rdg->vertices[v].component;
|
| 788 |
|
|
|
| 789 |
|
|
if (bitmap_set_bit (saved_components, c))
|
| 790 |
|
|
{
|
| 791 |
|
|
rdgc x = XCNEW (struct rdg_component);
|
| 792 |
|
|
x->num = c;
|
| 793 |
|
|
x->vertices = all_components[c];
|
| 794 |
|
|
|
| 795 |
|
|
VEC_safe_push (rdgc, heap, *components, x);
|
| 796 |
|
|
}
|
| 797 |
|
|
}
|
| 798 |
|
|
|
| 799 |
|
|
for (i = 0; i < n_components; i++)
|
| 800 |
|
|
if (!bitmap_bit_p (saved_components, i))
|
| 801 |
|
|
VEC_free (int, heap, all_components[i]);
|
| 802 |
|
|
|
| 803 |
|
|
free (all_components);
|
| 804 |
|
|
BITMAP_FREE (saved_components);
|
| 805 |
|
|
}
|
| 806 |
|
|
|
| 807 |
|
|
/* Returns true when it is possible to generate a builtin pattern for
|
| 808 |
|
|
the PARTITION of RDG. For the moment we detect only the memset
|
| 809 |
|
|
zero pattern. */
|
| 810 |
|
|
|
| 811 |
|
|
static bool
|
| 812 |
|
|
can_generate_builtin (struct graph *rdg, bitmap partition)
|
| 813 |
|
|
{
|
| 814 |
|
|
unsigned i;
|
| 815 |
|
|
bitmap_iterator bi;
|
| 816 |
|
|
int nb_reads = 0;
|
| 817 |
|
|
int nb_writes = 0;
|
| 818 |
|
|
int stores_zero = 0;
|
| 819 |
|
|
|
| 820 |
|
|
EXECUTE_IF_SET_IN_BITMAP (partition, 0, i, bi)
|
| 821 |
|
|
if (RDG_MEM_READS_STMT (rdg, i))
|
| 822 |
|
|
nb_reads++;
|
| 823 |
|
|
else if (RDG_MEM_WRITE_STMT (rdg, i))
|
| 824 |
|
|
{
|
| 825 |
|
|
nb_writes++;
|
| 826 |
|
|
if (stmt_with_adjacent_zero_store_dr_p (RDG_STMT (rdg, i)))
|
| 827 |
|
|
stores_zero++;
|
| 828 |
|
|
}
|
| 829 |
|
|
|
| 830 |
|
|
return stores_zero == 1 && nb_writes == 1 && nb_reads == 0;
|
| 831 |
|
|
}
|
| 832 |
|
|
|
| 833 |
|
|
/* Returns true when PARTITION1 and PARTITION2 have similar memory
|
| 834 |
|
|
accesses in RDG. */
|
| 835 |
|
|
|
| 836 |
|
|
static bool
|
| 837 |
|
|
similar_memory_accesses (struct graph *rdg, bitmap partition1,
|
| 838 |
|
|
bitmap partition2)
|
| 839 |
|
|
{
|
| 840 |
|
|
unsigned i, j;
|
| 841 |
|
|
bitmap_iterator bi, bj;
|
| 842 |
|
|
|
| 843 |
|
|
EXECUTE_IF_SET_IN_BITMAP (partition1, 0, i, bi)
|
| 844 |
|
|
if (RDG_MEM_WRITE_STMT (rdg, i)
|
| 845 |
|
|
|| RDG_MEM_READS_STMT (rdg, i))
|
| 846 |
|
|
EXECUTE_IF_SET_IN_BITMAP (partition2, 0, j, bj)
|
| 847 |
|
|
if (RDG_MEM_WRITE_STMT (rdg, j)
|
| 848 |
|
|
|| RDG_MEM_READS_STMT (rdg, j))
|
| 849 |
|
|
if (rdg_has_similar_memory_accesses (rdg, i, j))
|
| 850 |
|
|
return true;
|
| 851 |
|
|
|
| 852 |
|
|
return false;
|
| 853 |
|
|
}
|
| 854 |
|
|
|
| 855 |
|
|
/* Fuse all the partitions from PARTITIONS that contain similar memory
|
| 856 |
|
|
references, i.e., we're taking care of cache locality. This
|
| 857 |
|
|
function does not fuse those partitions that contain patterns that
|
| 858 |
|
|
can be code generated with builtins. */
|
| 859 |
|
|
|
| 860 |
|
|
static void
|
| 861 |
|
|
fuse_partitions_with_similar_memory_accesses (struct graph *rdg,
|
| 862 |
|
|
VEC (bitmap, heap) **partitions)
|
| 863 |
|
|
{
|
| 864 |
|
|
int p1, p2;
|
| 865 |
|
|
bitmap partition1, partition2;
|
| 866 |
|
|
|
| 867 |
|
|
FOR_EACH_VEC_ELT (bitmap, *partitions, p1, partition1)
|
| 868 |
|
|
if (!can_generate_builtin (rdg, partition1))
|
| 869 |
|
|
FOR_EACH_VEC_ELT (bitmap, *partitions, p2, partition2)
|
| 870 |
|
|
if (p1 != p2
|
| 871 |
|
|
&& !can_generate_builtin (rdg, partition2)
|
| 872 |
|
|
&& similar_memory_accesses (rdg, partition1, partition2))
|
| 873 |
|
|
{
|
| 874 |
|
|
bitmap_ior_into (partition1, partition2);
|
| 875 |
|
|
VEC_ordered_remove (bitmap, *partitions, p2);
|
| 876 |
|
|
p2--;
|
| 877 |
|
|
}
|
| 878 |
|
|
}
|
| 879 |
|
|
|
| 880 |
|
|
/* Returns true when STMT will be code generated in a partition of RDG
|
| 881 |
|
|
different than PART and that will not be code generated as a
|
| 882 |
|
|
builtin. */
|
| 883 |
|
|
|
| 884 |
|
|
static bool
|
| 885 |
|
|
stmt_generated_in_another_partition (struct graph *rdg, gimple stmt, int part,
|
| 886 |
|
|
VEC (bitmap, heap) *partitions)
|
| 887 |
|
|
{
|
| 888 |
|
|
int p;
|
| 889 |
|
|
bitmap pp;
|
| 890 |
|
|
unsigned i;
|
| 891 |
|
|
bitmap_iterator bi;
|
| 892 |
|
|
|
| 893 |
|
|
FOR_EACH_VEC_ELT (bitmap, partitions, p, pp)
|
| 894 |
|
|
if (p != part
|
| 895 |
|
|
&& !can_generate_builtin (rdg, pp))
|
| 896 |
|
|
EXECUTE_IF_SET_IN_BITMAP (pp, 0, i, bi)
|
| 897 |
|
|
if (stmt == RDG_STMT (rdg, i))
|
| 898 |
|
|
return true;
|
| 899 |
|
|
|
| 900 |
|
|
return false;
|
| 901 |
|
|
}
|
| 902 |
|
|
|
| 903 |
|
|
/* For each partition in PARTITIONS that will be code generated using
|
| 904 |
|
|
a builtin, add its scalar computations used after the loop to
|
| 905 |
|
|
PARTITION. */
|
| 906 |
|
|
|
| 907 |
|
|
static void
|
| 908 |
|
|
add_scalar_computations_to_partition (struct graph *rdg,
|
| 909 |
|
|
VEC (bitmap, heap) *partitions,
|
| 910 |
|
|
bitmap partition)
|
| 911 |
|
|
{
|
| 912 |
|
|
int p;
|
| 913 |
|
|
bitmap pp;
|
| 914 |
|
|
unsigned i;
|
| 915 |
|
|
bitmap_iterator bi;
|
| 916 |
|
|
bitmap l = BITMAP_ALLOC (NULL);
|
| 917 |
|
|
bitmap pr = BITMAP_ALLOC (NULL);
|
| 918 |
|
|
bool f = false;
|
| 919 |
|
|
|
| 920 |
|
|
FOR_EACH_VEC_ELT (bitmap, partitions, p, pp)
|
| 921 |
|
|
if (can_generate_builtin (rdg, pp))
|
| 922 |
|
|
EXECUTE_IF_SET_IN_BITMAP (pp, 0, i, bi)
|
| 923 |
|
|
if (stmt_has_scalar_dependences_outside_loop (RDG_STMT (rdg, i))
|
| 924 |
|
|
&& !stmt_generated_in_another_partition (rdg, RDG_STMT (rdg, i), p,
|
| 925 |
|
|
partitions))
|
| 926 |
|
|
rdg_flag_vertex_and_dependent (rdg, i, partition, l, pr, &f);
|
| 927 |
|
|
|
| 928 |
|
|
rdg_flag_loop_exits (rdg, l, partition, pr, &f);
|
| 929 |
|
|
|
| 930 |
|
|
BITMAP_FREE (pr);
|
| 931 |
|
|
BITMAP_FREE (l);
|
| 932 |
|
|
}
|
| 933 |
|
|
|
| 934 |
|
|
/* Aggregate several components into a useful partition that is
|
| 935 |
|
|
registered in the PARTITIONS vector. Partitions will be
|
| 936 |
|
|
distributed in different loops. */
|
| 937 |
|
|
|
| 938 |
|
|
static void
|
| 939 |
|
|
rdg_build_partitions (struct graph *rdg, VEC (rdgc, heap) *components,
|
| 940 |
|
|
VEC (int, heap) **other_stores,
|
| 941 |
|
|
VEC (bitmap, heap) **partitions, bitmap processed)
|
| 942 |
|
|
{
|
| 943 |
|
|
int i;
|
| 944 |
|
|
rdgc x;
|
| 945 |
|
|
bitmap partition = BITMAP_ALLOC (NULL);
|
| 946 |
|
|
|
| 947 |
|
|
FOR_EACH_VEC_ELT (rdgc, components, i, x)
|
| 948 |
|
|
{
|
| 949 |
|
|
bitmap np;
|
| 950 |
|
|
bool part_has_writes = false;
|
| 951 |
|
|
int v = VEC_index (int, x->vertices, 0);
|
| 952 |
|
|
|
| 953 |
|
|
if (bitmap_bit_p (processed, v))
|
| 954 |
|
|
continue;
|
| 955 |
|
|
|
| 956 |
|
|
np = build_rdg_partition_for_component (rdg, x, &part_has_writes);
|
| 957 |
|
|
bitmap_ior_into (partition, np);
|
| 958 |
|
|
bitmap_ior_into (processed, np);
|
| 959 |
|
|
BITMAP_FREE (np);
|
| 960 |
|
|
|
| 961 |
|
|
if (part_has_writes)
|
| 962 |
|
|
{
|
| 963 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 964 |
|
|
{
|
| 965 |
|
|
fprintf (dump_file, "ldist useful partition:\n");
|
| 966 |
|
|
dump_bitmap (dump_file, partition);
|
| 967 |
|
|
}
|
| 968 |
|
|
|
| 969 |
|
|
VEC_safe_push (bitmap, heap, *partitions, partition);
|
| 970 |
|
|
partition = BITMAP_ALLOC (NULL);
|
| 971 |
|
|
}
|
| 972 |
|
|
}
|
| 973 |
|
|
|
| 974 |
|
|
/* Add the nodes from the RDG that were not marked as processed, and
|
| 975 |
|
|
that are used outside the current loop. These are scalar
|
| 976 |
|
|
computations that are not yet part of previous partitions. */
|
| 977 |
|
|
for (i = 0; i < rdg->n_vertices; i++)
|
| 978 |
|
|
if (!bitmap_bit_p (processed, i)
|
| 979 |
|
|
&& rdg_defs_used_in_other_loops_p (rdg, i))
|
| 980 |
|
|
VEC_safe_push (int, heap, *other_stores, i);
|
| 981 |
|
|
|
| 982 |
|
|
/* If there are still statements left in the OTHER_STORES array,
|
| 983 |
|
|
create other components and partitions with these stores and
|
| 984 |
|
|
their dependences. */
|
| 985 |
|
|
if (VEC_length (int, *other_stores) > 0)
|
| 986 |
|
|
{
|
| 987 |
|
|
VEC (rdgc, heap) *comps = VEC_alloc (rdgc, heap, 3);
|
| 988 |
|
|
VEC (int, heap) *foo = VEC_alloc (int, heap, 3);
|
| 989 |
|
|
|
| 990 |
|
|
rdg_build_components (rdg, *other_stores, &comps);
|
| 991 |
|
|
rdg_build_partitions (rdg, comps, &foo, partitions, processed);
|
| 992 |
|
|
|
| 993 |
|
|
VEC_free (int, heap, foo);
|
| 994 |
|
|
free_rdg_components (comps);
|
| 995 |
|
|
}
|
| 996 |
|
|
|
| 997 |
|
|
add_scalar_computations_to_partition (rdg, *partitions, partition);
|
| 998 |
|
|
|
| 999 |
|
|
/* If there is something left in the last partition, save it. */
|
| 1000 |
|
|
if (bitmap_count_bits (partition) > 0)
|
| 1001 |
|
|
VEC_safe_push (bitmap, heap, *partitions, partition);
|
| 1002 |
|
|
else
|
| 1003 |
|
|
BITMAP_FREE (partition);
|
| 1004 |
|
|
|
| 1005 |
|
|
fuse_partitions_with_similar_memory_accesses (rdg, partitions);
|
| 1006 |
|
|
}
|
| 1007 |
|
|
|
| 1008 |
|
|
/* Dump to FILE the PARTITIONS. */
|
| 1009 |
|
|
|
| 1010 |
|
|
static void
|
| 1011 |
|
|
dump_rdg_partitions (FILE *file, VEC (bitmap, heap) *partitions)
|
| 1012 |
|
|
{
|
| 1013 |
|
|
int i;
|
| 1014 |
|
|
bitmap partition;
|
| 1015 |
|
|
|
| 1016 |
|
|
FOR_EACH_VEC_ELT (bitmap, partitions, i, partition)
|
| 1017 |
|
|
debug_bitmap_file (file, partition);
|
| 1018 |
|
|
}
|
| 1019 |
|
|
|
| 1020 |
|
|
/* Debug PARTITIONS. */
|
| 1021 |
|
|
extern void debug_rdg_partitions (VEC (bitmap, heap) *);
|
| 1022 |
|
|
|
| 1023 |
|
|
DEBUG_FUNCTION void
|
| 1024 |
|
|
debug_rdg_partitions (VEC (bitmap, heap) *partitions)
|
| 1025 |
|
|
{
|
| 1026 |
|
|
dump_rdg_partitions (stderr, partitions);
|
| 1027 |
|
|
}
|
| 1028 |
|
|
|
| 1029 |
|
|
/* Returns the number of read and write operations in the RDG. */
|
| 1030 |
|
|
|
| 1031 |
|
|
static int
|
| 1032 |
|
|
number_of_rw_in_rdg (struct graph *rdg)
|
| 1033 |
|
|
{
|
| 1034 |
|
|
int i, res = 0;
|
| 1035 |
|
|
|
| 1036 |
|
|
for (i = 0; i < rdg->n_vertices; i++)
|
| 1037 |
|
|
{
|
| 1038 |
|
|
if (RDG_MEM_WRITE_STMT (rdg, i))
|
| 1039 |
|
|
++res;
|
| 1040 |
|
|
|
| 1041 |
|
|
if (RDG_MEM_READS_STMT (rdg, i))
|
| 1042 |
|
|
++res;
|
| 1043 |
|
|
}
|
| 1044 |
|
|
|
| 1045 |
|
|
return res;
|
| 1046 |
|
|
}
|
| 1047 |
|
|
|
| 1048 |
|
|
/* Returns the number of read and write operations in a PARTITION of
|
| 1049 |
|
|
the RDG. */
|
| 1050 |
|
|
|
| 1051 |
|
|
static int
|
| 1052 |
|
|
number_of_rw_in_partition (struct graph *rdg, bitmap partition)
|
| 1053 |
|
|
{
|
| 1054 |
|
|
int res = 0;
|
| 1055 |
|
|
unsigned i;
|
| 1056 |
|
|
bitmap_iterator ii;
|
| 1057 |
|
|
|
| 1058 |
|
|
EXECUTE_IF_SET_IN_BITMAP (partition, 0, i, ii)
|
| 1059 |
|
|
{
|
| 1060 |
|
|
if (RDG_MEM_WRITE_STMT (rdg, i))
|
| 1061 |
|
|
++res;
|
| 1062 |
|
|
|
| 1063 |
|
|
if (RDG_MEM_READS_STMT (rdg, i))
|
| 1064 |
|
|
++res;
|
| 1065 |
|
|
}
|
| 1066 |
|
|
|
| 1067 |
|
|
return res;
|
| 1068 |
|
|
}
|
| 1069 |
|
|
|
| 1070 |
|
|
/* Returns true when one of the PARTITIONS contains all the read or
|
| 1071 |
|
|
write operations of RDG. */
|
| 1072 |
|
|
|
| 1073 |
|
|
static bool
|
| 1074 |
|
|
partition_contains_all_rw (struct graph *rdg, VEC (bitmap, heap) *partitions)
|
| 1075 |
|
|
{
|
| 1076 |
|
|
int i;
|
| 1077 |
|
|
bitmap partition;
|
| 1078 |
|
|
int nrw = number_of_rw_in_rdg (rdg);
|
| 1079 |
|
|
|
| 1080 |
|
|
FOR_EACH_VEC_ELT (bitmap, partitions, i, partition)
|
| 1081 |
|
|
if (nrw == number_of_rw_in_partition (rdg, partition))
|
| 1082 |
|
|
return true;
|
| 1083 |
|
|
|
| 1084 |
|
|
return false;
|
| 1085 |
|
|
}
|
| 1086 |
|
|
|
| 1087 |
|
|
/* Generate code from STARTING_VERTICES in RDG. Returns the number of
|
| 1088 |
|
|
distributed loops. */
|
| 1089 |
|
|
|
| 1090 |
|
|
static int
|
| 1091 |
|
|
ldist_gen (struct loop *loop, struct graph *rdg,
|
| 1092 |
|
|
VEC (int, heap) *starting_vertices)
|
| 1093 |
|
|
{
|
| 1094 |
|
|
int i, nbp;
|
| 1095 |
|
|
VEC (rdgc, heap) *components = VEC_alloc (rdgc, heap, 3);
|
| 1096 |
|
|
VEC (bitmap, heap) *partitions = VEC_alloc (bitmap, heap, 3);
|
| 1097 |
|
|
VEC (int, heap) *other_stores = VEC_alloc (int, heap, 3);
|
| 1098 |
|
|
bitmap partition, processed = BITMAP_ALLOC (NULL);
|
| 1099 |
|
|
|
| 1100 |
|
|
remaining_stmts = BITMAP_ALLOC (NULL);
|
| 1101 |
|
|
upstream_mem_writes = BITMAP_ALLOC (NULL);
|
| 1102 |
|
|
|
| 1103 |
|
|
for (i = 0; i < rdg->n_vertices; i++)
|
| 1104 |
|
|
{
|
| 1105 |
|
|
bitmap_set_bit (remaining_stmts, i);
|
| 1106 |
|
|
|
| 1107 |
|
|
/* Save in OTHER_STORES all the memory writes that are not in
|
| 1108 |
|
|
STARTING_VERTICES. */
|
| 1109 |
|
|
if (RDG_MEM_WRITE_STMT (rdg, i))
|
| 1110 |
|
|
{
|
| 1111 |
|
|
int v;
|
| 1112 |
|
|
unsigned j;
|
| 1113 |
|
|
bool found = false;
|
| 1114 |
|
|
|
| 1115 |
|
|
FOR_EACH_VEC_ELT (int, starting_vertices, j, v)
|
| 1116 |
|
|
if (i == v)
|
| 1117 |
|
|
{
|
| 1118 |
|
|
found = true;
|
| 1119 |
|
|
break;
|
| 1120 |
|
|
}
|
| 1121 |
|
|
|
| 1122 |
|
|
if (!found)
|
| 1123 |
|
|
VEC_safe_push (int, heap, other_stores, i);
|
| 1124 |
|
|
}
|
| 1125 |
|
|
}
|
| 1126 |
|
|
|
| 1127 |
|
|
mark_nodes_having_upstream_mem_writes (rdg);
|
| 1128 |
|
|
rdg_build_components (rdg, starting_vertices, &components);
|
| 1129 |
|
|
rdg_build_partitions (rdg, components, &other_stores, &partitions,
|
| 1130 |
|
|
processed);
|
| 1131 |
|
|
BITMAP_FREE (processed);
|
| 1132 |
|
|
nbp = VEC_length (bitmap, partitions);
|
| 1133 |
|
|
|
| 1134 |
|
|
if (nbp <= 1
|
| 1135 |
|
|
|| partition_contains_all_rw (rdg, partitions))
|
| 1136 |
|
|
goto ldist_done;
|
| 1137 |
|
|
|
| 1138 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1139 |
|
|
dump_rdg_partitions (dump_file, partitions);
|
| 1140 |
|
|
|
| 1141 |
|
|
FOR_EACH_VEC_ELT (bitmap, partitions, i, partition)
|
| 1142 |
|
|
if (!generate_code_for_partition (loop, partition, i < nbp - 1))
|
| 1143 |
|
|
goto ldist_done;
|
| 1144 |
|
|
|
| 1145 |
|
|
rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
|
| 1146 |
|
|
mark_sym_for_renaming (gimple_vop (cfun));
|
| 1147 |
|
|
update_ssa (TODO_update_ssa_only_virtuals);
|
| 1148 |
|
|
|
| 1149 |
|
|
ldist_done:
|
| 1150 |
|
|
|
| 1151 |
|
|
BITMAP_FREE (remaining_stmts);
|
| 1152 |
|
|
BITMAP_FREE (upstream_mem_writes);
|
| 1153 |
|
|
|
| 1154 |
|
|
FOR_EACH_VEC_ELT (bitmap, partitions, i, partition)
|
| 1155 |
|
|
BITMAP_FREE (partition);
|
| 1156 |
|
|
|
| 1157 |
|
|
VEC_free (int, heap, other_stores);
|
| 1158 |
|
|
VEC_free (bitmap, heap, partitions);
|
| 1159 |
|
|
free_rdg_components (components);
|
| 1160 |
|
|
return nbp;
|
| 1161 |
|
|
}
|
| 1162 |
|
|
|
| 1163 |
|
|
/* Distributes the code from LOOP in such a way that producer
|
| 1164 |
|
|
statements are placed before consumer statements. When STMTS is
|
| 1165 |
|
|
NULL, performs the maximal distribution, if STMTS is not NULL,
|
| 1166 |
|
|
tries to separate only these statements from the LOOP's body.
|
| 1167 |
|
|
Returns the number of distributed loops. */
|
| 1168 |
|
|
|
| 1169 |
|
|
static int
|
| 1170 |
|
|
distribute_loop (struct loop *loop, VEC (gimple, heap) *stmts)
|
| 1171 |
|
|
{
|
| 1172 |
|
|
int res = 0;
|
| 1173 |
|
|
struct graph *rdg;
|
| 1174 |
|
|
gimple s;
|
| 1175 |
|
|
unsigned i;
|
| 1176 |
|
|
VEC (int, heap) *vertices;
|
| 1177 |
|
|
VEC (ddr_p, heap) *dependence_relations;
|
| 1178 |
|
|
VEC (data_reference_p, heap) *datarefs;
|
| 1179 |
|
|
VEC (loop_p, heap) *loop_nest;
|
| 1180 |
|
|
|
| 1181 |
|
|
if (loop->num_nodes > 2)
|
| 1182 |
|
|
{
|
| 1183 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1184 |
|
|
fprintf (dump_file,
|
| 1185 |
|
|
"FIXME: Loop %d not distributed: it has more than two basic blocks.\n",
|
| 1186 |
|
|
loop->num);
|
| 1187 |
|
|
|
| 1188 |
|
|
return res;
|
| 1189 |
|
|
}
|
| 1190 |
|
|
|
| 1191 |
|
|
datarefs = VEC_alloc (data_reference_p, heap, 10);
|
| 1192 |
|
|
dependence_relations = VEC_alloc (ddr_p, heap, 100);
|
| 1193 |
|
|
loop_nest = VEC_alloc (loop_p, heap, 3);
|
| 1194 |
|
|
rdg = build_rdg (loop, &loop_nest, &dependence_relations, &datarefs);
|
| 1195 |
|
|
|
| 1196 |
|
|
if (!rdg)
|
| 1197 |
|
|
{
|
| 1198 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1199 |
|
|
fprintf (dump_file,
|
| 1200 |
|
|
"FIXME: Loop %d not distributed: failed to build the RDG.\n",
|
| 1201 |
|
|
loop->num);
|
| 1202 |
|
|
|
| 1203 |
|
|
free_dependence_relations (dependence_relations);
|
| 1204 |
|
|
free_data_refs (datarefs);
|
| 1205 |
|
|
VEC_free (loop_p, heap, loop_nest);
|
| 1206 |
|
|
return res;
|
| 1207 |
|
|
}
|
| 1208 |
|
|
|
| 1209 |
|
|
vertices = VEC_alloc (int, heap, 3);
|
| 1210 |
|
|
|
| 1211 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1212 |
|
|
dump_rdg (dump_file, rdg);
|
| 1213 |
|
|
|
| 1214 |
|
|
FOR_EACH_VEC_ELT (gimple, stmts, i, s)
|
| 1215 |
|
|
{
|
| 1216 |
|
|
int v = rdg_vertex_for_stmt (rdg, s);
|
| 1217 |
|
|
|
| 1218 |
|
|
if (v >= 0)
|
| 1219 |
|
|
{
|
| 1220 |
|
|
VEC_safe_push (int, heap, vertices, v);
|
| 1221 |
|
|
|
| 1222 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1223 |
|
|
fprintf (dump_file,
|
| 1224 |
|
|
"ldist asked to generate code for vertex %d\n", v);
|
| 1225 |
|
|
}
|
| 1226 |
|
|
}
|
| 1227 |
|
|
|
| 1228 |
|
|
res = ldist_gen (loop, rdg, vertices);
|
| 1229 |
|
|
VEC_free (int, heap, vertices);
|
| 1230 |
|
|
free_rdg (rdg);
|
| 1231 |
|
|
free_dependence_relations (dependence_relations);
|
| 1232 |
|
|
free_data_refs (datarefs);
|
| 1233 |
|
|
VEC_free (loop_p, heap, loop_nest);
|
| 1234 |
|
|
return res;
|
| 1235 |
|
|
}
|
| 1236 |
|
|
|
| 1237 |
|
|
/* Distribute all loops in the current function. */
|
| 1238 |
|
|
|
| 1239 |
|
|
static unsigned int
|
| 1240 |
|
|
tree_loop_distribution (void)
|
| 1241 |
|
|
{
|
| 1242 |
|
|
struct loop *loop;
|
| 1243 |
|
|
loop_iterator li;
|
| 1244 |
|
|
int nb_generated_loops = 0;
|
| 1245 |
|
|
|
| 1246 |
|
|
FOR_EACH_LOOP (li, loop, 0)
|
| 1247 |
|
|
{
|
| 1248 |
|
|
VEC (gimple, heap) *work_list = NULL;
|
| 1249 |
|
|
int num = loop->num;
|
| 1250 |
|
|
|
| 1251 |
|
|
/* If the loop doesn't have a single exit we will fail anyway,
|
| 1252 |
|
|
so do that early. */
|
| 1253 |
|
|
if (!single_exit (loop))
|
| 1254 |
|
|
continue;
|
| 1255 |
|
|
|
| 1256 |
|
|
/* If both flag_tree_loop_distribute_patterns and
|
| 1257 |
|
|
flag_tree_loop_distribution are set, then only
|
| 1258 |
|
|
distribute_patterns is executed. */
|
| 1259 |
|
|
if (flag_tree_loop_distribute_patterns)
|
| 1260 |
|
|
{
|
| 1261 |
|
|
/* With the following working list, we're asking
|
| 1262 |
|
|
distribute_loop to separate from the rest of the loop the
|
| 1263 |
|
|
stores of the form "A[i] = 0". */
|
| 1264 |
|
|
stores_zero_from_loop (loop, &work_list);
|
| 1265 |
|
|
|
| 1266 |
|
|
/* Do nothing if there are no patterns to be distributed. */
|
| 1267 |
|
|
if (VEC_length (gimple, work_list) > 0)
|
| 1268 |
|
|
nb_generated_loops = distribute_loop (loop, work_list);
|
| 1269 |
|
|
}
|
| 1270 |
|
|
else if (flag_tree_loop_distribution)
|
| 1271 |
|
|
{
|
| 1272 |
|
|
/* With the following working list, we're asking
|
| 1273 |
|
|
distribute_loop to separate the stores of the loop: when
|
| 1274 |
|
|
dependences allow, it will end on having one store per
|
| 1275 |
|
|
loop. */
|
| 1276 |
|
|
stores_from_loop (loop, &work_list);
|
| 1277 |
|
|
|
| 1278 |
|
|
/* A simple heuristic for cache locality is to not split
|
| 1279 |
|
|
stores to the same array. Without this call, an unrolled
|
| 1280 |
|
|
loop would be split into as many loops as unroll factor,
|
| 1281 |
|
|
each loop storing in the same array. */
|
| 1282 |
|
|
remove_similar_memory_refs (&work_list);
|
| 1283 |
|
|
|
| 1284 |
|
|
nb_generated_loops = distribute_loop (loop, work_list);
|
| 1285 |
|
|
}
|
| 1286 |
|
|
|
| 1287 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1288 |
|
|
{
|
| 1289 |
|
|
if (nb_generated_loops > 1)
|
| 1290 |
|
|
fprintf (dump_file, "Loop %d distributed: split to %d loops.\n",
|
| 1291 |
|
|
num, nb_generated_loops);
|
| 1292 |
|
|
else
|
| 1293 |
|
|
fprintf (dump_file, "Loop %d is the same.\n", num);
|
| 1294 |
|
|
}
|
| 1295 |
|
|
|
| 1296 |
|
|
verify_loop_structure ();
|
| 1297 |
|
|
|
| 1298 |
|
|
VEC_free (gimple, heap, work_list);
|
| 1299 |
|
|
}
|
| 1300 |
|
|
|
| 1301 |
|
|
return 0;
|
| 1302 |
|
|
}
|
| 1303 |
|
|
|
| 1304 |
|
|
static bool
|
| 1305 |
|
|
gate_tree_loop_distribution (void)
|
| 1306 |
|
|
{
|
| 1307 |
|
|
return flag_tree_loop_distribution
|
| 1308 |
|
|
|| flag_tree_loop_distribute_patterns;
|
| 1309 |
|
|
}
|
| 1310 |
|
|
|
| 1311 |
|
|
struct gimple_opt_pass pass_loop_distribution =
|
| 1312 |
|
|
{
|
| 1313 |
|
|
{
|
| 1314 |
|
|
GIMPLE_PASS,
|
| 1315 |
|
|
"ldist", /* name */
|
| 1316 |
|
|
gate_tree_loop_distribution, /* gate */
|
| 1317 |
|
|
tree_loop_distribution, /* execute */
|
| 1318 |
|
|
NULL, /* sub */
|
| 1319 |
|
|
NULL, /* next */
|
| 1320 |
|
|
0, /* static_pass_number */
|
| 1321 |
|
|
TV_TREE_LOOP_DISTRIBUTION, /* tv_id */
|
| 1322 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
| 1323 |
|
|
0, /* properties_provided */
|
| 1324 |
|
|
0, /* properties_destroyed */
|
| 1325 |
|
|
0, /* todo_flags_start */
|
| 1326 |
|
|
TODO_ggc_collect
|
| 1327 |
|
|
| TODO_verify_ssa /* todo_flags_finish */
|
| 1328 |
|
|
}
|
| 1329 |
|
|
};
|