| 1 |
684 |
jeremybenn |
/* Convert a program in SSA form into Normal form.
|
| 2 |
|
|
Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
Contributed by Andrew Macleod <amacleod@redhat.com>
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GCC.
|
| 7 |
|
|
|
| 8 |
|
|
GCC is free software; you can redistribute it and/or modify
|
| 9 |
|
|
it under the terms of the GNU General Public License as published by
|
| 10 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
| 11 |
|
|
any later version.
|
| 12 |
|
|
|
| 13 |
|
|
GCC is distributed in the hope that it will be useful,
|
| 14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 16 |
|
|
GNU General Public License for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 20 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
#include "config.h"
|
| 23 |
|
|
#include "system.h"
|
| 24 |
|
|
#include "coretypes.h"
|
| 25 |
|
|
#include "tm.h"
|
| 26 |
|
|
#include "tree.h"
|
| 27 |
|
|
#include "ggc.h"
|
| 28 |
|
|
#include "basic-block.h"
|
| 29 |
|
|
#include "tree-pretty-print.h"
|
| 30 |
|
|
#include "gimple-pretty-print.h"
|
| 31 |
|
|
#include "bitmap.h"
|
| 32 |
|
|
#include "tree-flow.h"
|
| 33 |
|
|
#include "timevar.h"
|
| 34 |
|
|
#include "tree-dump.h"
|
| 35 |
|
|
#include "tree-pass.h"
|
| 36 |
|
|
#include "diagnostic-core.h"
|
| 37 |
|
|
#include "ssaexpand.h"
|
| 38 |
|
|
|
| 39 |
|
|
/* FIXME: A lot of code here deals with expanding to RTL. All that code
|
| 40 |
|
|
should be in cfgexpand.c. */
|
| 41 |
|
|
#include "expr.h"
|
| 42 |
|
|
|
| 43 |
|
|
|
| 44 |
|
|
DEF_VEC_I(source_location);
|
| 45 |
|
|
DEF_VEC_ALLOC_I(source_location,heap);
|
| 46 |
|
|
|
| 47 |
|
|
/* Used to hold all the components required to do SSA PHI elimination.
|
| 48 |
|
|
The node and pred/succ list is a simple linear list of nodes and
|
| 49 |
|
|
edges represented as pairs of nodes.
|
| 50 |
|
|
|
| 51 |
|
|
The predecessor and successor list: Nodes are entered in pairs, where
|
| 52 |
|
|
[0] ->PRED, [1]->SUCC. All the even indexes in the array represent
|
| 53 |
|
|
predecessors, all the odd elements are successors.
|
| 54 |
|
|
|
| 55 |
|
|
Rationale:
|
| 56 |
|
|
When implemented as bitmaps, very large programs SSA->Normal times were
|
| 57 |
|
|
being dominated by clearing the interference graph.
|
| 58 |
|
|
|
| 59 |
|
|
Typically this list of edges is extremely small since it only includes
|
| 60 |
|
|
PHI results and uses from a single edge which have not coalesced with
|
| 61 |
|
|
each other. This means that no virtual PHI nodes are included, and
|
| 62 |
|
|
empirical evidence suggests that the number of edges rarely exceed
|
| 63 |
|
|
3, and in a bootstrap of GCC, the maximum size encountered was 7.
|
| 64 |
|
|
This also limits the number of possible nodes that are involved to
|
| 65 |
|
|
rarely more than 6, and in the bootstrap of gcc, the maximum number
|
| 66 |
|
|
of nodes encountered was 12. */
|
| 67 |
|
|
|
| 68 |
|
|
typedef struct _elim_graph {
|
| 69 |
|
|
/* Size of the elimination vectors. */
|
| 70 |
|
|
int size;
|
| 71 |
|
|
|
| 72 |
|
|
/* List of nodes in the elimination graph. */
|
| 73 |
|
|
VEC(int,heap) *nodes;
|
| 74 |
|
|
|
| 75 |
|
|
/* The predecessor and successor edge list. */
|
| 76 |
|
|
VEC(int,heap) *edge_list;
|
| 77 |
|
|
|
| 78 |
|
|
/* Source locus on each edge */
|
| 79 |
|
|
VEC(source_location,heap) *edge_locus;
|
| 80 |
|
|
|
| 81 |
|
|
/* Visited vector. */
|
| 82 |
|
|
sbitmap visited;
|
| 83 |
|
|
|
| 84 |
|
|
/* Stack for visited nodes. */
|
| 85 |
|
|
VEC(int,heap) *stack;
|
| 86 |
|
|
|
| 87 |
|
|
/* The variable partition map. */
|
| 88 |
|
|
var_map map;
|
| 89 |
|
|
|
| 90 |
|
|
/* Edge being eliminated by this graph. */
|
| 91 |
|
|
edge e;
|
| 92 |
|
|
|
| 93 |
|
|
/* List of constant copies to emit. These are pushed on in pairs. */
|
| 94 |
|
|
VEC(int,heap) *const_dests;
|
| 95 |
|
|
VEC(tree,heap) *const_copies;
|
| 96 |
|
|
|
| 97 |
|
|
/* Source locations for any constant copies. */
|
| 98 |
|
|
VEC(source_location,heap) *copy_locus;
|
| 99 |
|
|
} *elim_graph;
|
| 100 |
|
|
|
| 101 |
|
|
|
| 102 |
|
|
/* For an edge E find out a good source location to associate with
|
| 103 |
|
|
instructions inserted on edge E. If E has an implicit goto set,
|
| 104 |
|
|
use its location. Otherwise search instructions in predecessors
|
| 105 |
|
|
of E for a location, and use that one. That makes sense because
|
| 106 |
|
|
we insert on edges for PHI nodes, and effects of PHIs happen on
|
| 107 |
|
|
the end of the predecessor conceptually. */
|
| 108 |
|
|
|
| 109 |
|
|
static void
|
| 110 |
|
|
set_location_for_edge (edge e)
|
| 111 |
|
|
{
|
| 112 |
|
|
if (e->goto_locus)
|
| 113 |
|
|
{
|
| 114 |
|
|
set_curr_insn_source_location (e->goto_locus);
|
| 115 |
|
|
set_curr_insn_block (e->goto_block);
|
| 116 |
|
|
}
|
| 117 |
|
|
else
|
| 118 |
|
|
{
|
| 119 |
|
|
basic_block bb = e->src;
|
| 120 |
|
|
gimple_stmt_iterator gsi;
|
| 121 |
|
|
|
| 122 |
|
|
do
|
| 123 |
|
|
{
|
| 124 |
|
|
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
|
| 125 |
|
|
{
|
| 126 |
|
|
gimple stmt = gsi_stmt (gsi);
|
| 127 |
|
|
if (is_gimple_debug (stmt))
|
| 128 |
|
|
continue;
|
| 129 |
|
|
if (gimple_has_location (stmt) || gimple_block (stmt))
|
| 130 |
|
|
{
|
| 131 |
|
|
set_curr_insn_source_location (gimple_location (stmt));
|
| 132 |
|
|
set_curr_insn_block (gimple_block (stmt));
|
| 133 |
|
|
return;
|
| 134 |
|
|
}
|
| 135 |
|
|
}
|
| 136 |
|
|
/* Nothing found in this basic block. Make a half-assed attempt
|
| 137 |
|
|
to continue with another block. */
|
| 138 |
|
|
if (single_pred_p (bb))
|
| 139 |
|
|
bb = single_pred (bb);
|
| 140 |
|
|
else
|
| 141 |
|
|
bb = e->src;
|
| 142 |
|
|
}
|
| 143 |
|
|
while (bb != e->src);
|
| 144 |
|
|
}
|
| 145 |
|
|
}
|
| 146 |
|
|
|
| 147 |
|
|
/* Emit insns to copy SRC into DEST converting SRC if necessary. As
|
| 148 |
|
|
SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from
|
| 149 |
|
|
which we deduce the size to copy in that case. */
|
| 150 |
|
|
|
| 151 |
|
|
static inline rtx
|
| 152 |
|
|
emit_partition_copy (rtx dest, rtx src, int unsignedsrcp, tree sizeexp)
|
| 153 |
|
|
{
|
| 154 |
|
|
rtx seq;
|
| 155 |
|
|
|
| 156 |
|
|
start_sequence ();
|
| 157 |
|
|
|
| 158 |
|
|
if (GET_MODE (src) != VOIDmode && GET_MODE (src) != GET_MODE (dest))
|
| 159 |
|
|
src = convert_to_mode (GET_MODE (dest), src, unsignedsrcp);
|
| 160 |
|
|
if (GET_MODE (src) == BLKmode)
|
| 161 |
|
|
{
|
| 162 |
|
|
gcc_assert (GET_MODE (dest) == BLKmode);
|
| 163 |
|
|
emit_block_move (dest, src, expr_size (sizeexp), BLOCK_OP_NORMAL);
|
| 164 |
|
|
}
|
| 165 |
|
|
else
|
| 166 |
|
|
emit_move_insn (dest, src);
|
| 167 |
|
|
|
| 168 |
|
|
seq = get_insns ();
|
| 169 |
|
|
end_sequence ();
|
| 170 |
|
|
|
| 171 |
|
|
return seq;
|
| 172 |
|
|
}
|
| 173 |
|
|
|
| 174 |
|
|
/* Insert a copy instruction from partition SRC to DEST onto edge E. */
|
| 175 |
|
|
|
| 176 |
|
|
static void
|
| 177 |
|
|
insert_partition_copy_on_edge (edge e, int dest, int src, source_location locus)
|
| 178 |
|
|
{
|
| 179 |
|
|
tree var;
|
| 180 |
|
|
rtx seq;
|
| 181 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 182 |
|
|
{
|
| 183 |
|
|
fprintf (dump_file,
|
| 184 |
|
|
"Inserting a partition copy on edge BB%d->BB%d :"
|
| 185 |
|
|
"PART.%d = PART.%d",
|
| 186 |
|
|
e->src->index,
|
| 187 |
|
|
e->dest->index, dest, src);
|
| 188 |
|
|
fprintf (dump_file, "\n");
|
| 189 |
|
|
}
|
| 190 |
|
|
|
| 191 |
|
|
gcc_assert (SA.partition_to_pseudo[dest]);
|
| 192 |
|
|
gcc_assert (SA.partition_to_pseudo[src]);
|
| 193 |
|
|
|
| 194 |
|
|
set_location_for_edge (e);
|
| 195 |
|
|
/* If a locus is provided, override the default. */
|
| 196 |
|
|
if (locus)
|
| 197 |
|
|
set_curr_insn_source_location (locus);
|
| 198 |
|
|
|
| 199 |
|
|
var = partition_to_var (SA.map, src);
|
| 200 |
|
|
seq = emit_partition_copy (SA.partition_to_pseudo[dest],
|
| 201 |
|
|
SA.partition_to_pseudo[src],
|
| 202 |
|
|
TYPE_UNSIGNED (TREE_TYPE (var)),
|
| 203 |
|
|
var);
|
| 204 |
|
|
|
| 205 |
|
|
insert_insn_on_edge (seq, e);
|
| 206 |
|
|
}
|
| 207 |
|
|
|
| 208 |
|
|
/* Insert a copy instruction from expression SRC to partition DEST
|
| 209 |
|
|
onto edge E. */
|
| 210 |
|
|
|
| 211 |
|
|
static void
|
| 212 |
|
|
insert_value_copy_on_edge (edge e, int dest, tree src, source_location locus)
|
| 213 |
|
|
{
|
| 214 |
|
|
rtx seq, x;
|
| 215 |
|
|
enum machine_mode dest_mode, src_mode;
|
| 216 |
|
|
int unsignedp;
|
| 217 |
|
|
tree var;
|
| 218 |
|
|
|
| 219 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 220 |
|
|
{
|
| 221 |
|
|
fprintf (dump_file,
|
| 222 |
|
|
"Inserting a value copy on edge BB%d->BB%d : PART.%d = ",
|
| 223 |
|
|
e->src->index,
|
| 224 |
|
|
e->dest->index, dest);
|
| 225 |
|
|
print_generic_expr (dump_file, src, TDF_SLIM);
|
| 226 |
|
|
fprintf (dump_file, "\n");
|
| 227 |
|
|
}
|
| 228 |
|
|
|
| 229 |
|
|
gcc_assert (SA.partition_to_pseudo[dest]);
|
| 230 |
|
|
|
| 231 |
|
|
set_location_for_edge (e);
|
| 232 |
|
|
/* If a locus is provided, override the default. */
|
| 233 |
|
|
if (locus)
|
| 234 |
|
|
set_curr_insn_source_location (locus);
|
| 235 |
|
|
|
| 236 |
|
|
start_sequence ();
|
| 237 |
|
|
|
| 238 |
|
|
var = SSA_NAME_VAR (partition_to_var (SA.map, dest));
|
| 239 |
|
|
src_mode = TYPE_MODE (TREE_TYPE (src));
|
| 240 |
|
|
dest_mode = GET_MODE (SA.partition_to_pseudo[dest]);
|
| 241 |
|
|
gcc_assert (src_mode == TYPE_MODE (TREE_TYPE (var)));
|
| 242 |
|
|
gcc_assert (!REG_P (SA.partition_to_pseudo[dest])
|
| 243 |
|
|
|| dest_mode == promote_decl_mode (var, &unsignedp));
|
| 244 |
|
|
|
| 245 |
|
|
if (src_mode != dest_mode)
|
| 246 |
|
|
{
|
| 247 |
|
|
x = expand_expr (src, NULL, src_mode, EXPAND_NORMAL);
|
| 248 |
|
|
x = convert_modes (dest_mode, src_mode, x, unsignedp);
|
| 249 |
|
|
}
|
| 250 |
|
|
else if (src_mode == BLKmode)
|
| 251 |
|
|
{
|
| 252 |
|
|
x = SA.partition_to_pseudo[dest];
|
| 253 |
|
|
store_expr (src, x, 0, false);
|
| 254 |
|
|
}
|
| 255 |
|
|
else
|
| 256 |
|
|
x = expand_expr (src, SA.partition_to_pseudo[dest],
|
| 257 |
|
|
dest_mode, EXPAND_NORMAL);
|
| 258 |
|
|
|
| 259 |
|
|
if (x != SA.partition_to_pseudo[dest])
|
| 260 |
|
|
emit_move_insn (SA.partition_to_pseudo[dest], x);
|
| 261 |
|
|
seq = get_insns ();
|
| 262 |
|
|
end_sequence ();
|
| 263 |
|
|
|
| 264 |
|
|
insert_insn_on_edge (seq, e);
|
| 265 |
|
|
}
|
| 266 |
|
|
|
| 267 |
|
|
/* Insert a copy instruction from RTL expression SRC to partition DEST
|
| 268 |
|
|
onto edge E. */
|
| 269 |
|
|
|
| 270 |
|
|
static void
|
| 271 |
|
|
insert_rtx_to_part_on_edge (edge e, int dest, rtx src, int unsignedsrcp,
|
| 272 |
|
|
source_location locus)
|
| 273 |
|
|
{
|
| 274 |
|
|
rtx seq;
|
| 275 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 276 |
|
|
{
|
| 277 |
|
|
fprintf (dump_file,
|
| 278 |
|
|
"Inserting a temp copy on edge BB%d->BB%d : PART.%d = ",
|
| 279 |
|
|
e->src->index,
|
| 280 |
|
|
e->dest->index, dest);
|
| 281 |
|
|
print_simple_rtl (dump_file, src);
|
| 282 |
|
|
fprintf (dump_file, "\n");
|
| 283 |
|
|
}
|
| 284 |
|
|
|
| 285 |
|
|
gcc_assert (SA.partition_to_pseudo[dest]);
|
| 286 |
|
|
|
| 287 |
|
|
set_location_for_edge (e);
|
| 288 |
|
|
/* If a locus is provided, override the default. */
|
| 289 |
|
|
if (locus)
|
| 290 |
|
|
set_curr_insn_source_location (locus);
|
| 291 |
|
|
|
| 292 |
|
|
/* We give the destination as sizeexp in case src/dest are BLKmode
|
| 293 |
|
|
mems. Usually we give the source. As we result from SSA names
|
| 294 |
|
|
the left and right size should be the same (and no WITH_SIZE_EXPR
|
| 295 |
|
|
involved), so it doesn't matter. */
|
| 296 |
|
|
seq = emit_partition_copy (SA.partition_to_pseudo[dest],
|
| 297 |
|
|
src, unsignedsrcp,
|
| 298 |
|
|
partition_to_var (SA.map, dest));
|
| 299 |
|
|
|
| 300 |
|
|
insert_insn_on_edge (seq, e);
|
| 301 |
|
|
}
|
| 302 |
|
|
|
| 303 |
|
|
/* Insert a copy instruction from partition SRC to RTL lvalue DEST
|
| 304 |
|
|
onto edge E. */
|
| 305 |
|
|
|
| 306 |
|
|
static void
|
| 307 |
|
|
insert_part_to_rtx_on_edge (edge e, rtx dest, int src, source_location locus)
|
| 308 |
|
|
{
|
| 309 |
|
|
tree var;
|
| 310 |
|
|
rtx seq;
|
| 311 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 312 |
|
|
{
|
| 313 |
|
|
fprintf (dump_file,
|
| 314 |
|
|
"Inserting a temp copy on edge BB%d->BB%d : ",
|
| 315 |
|
|
e->src->index,
|
| 316 |
|
|
e->dest->index);
|
| 317 |
|
|
print_simple_rtl (dump_file, dest);
|
| 318 |
|
|
fprintf (dump_file, "= PART.%d\n", src);
|
| 319 |
|
|
}
|
| 320 |
|
|
|
| 321 |
|
|
gcc_assert (SA.partition_to_pseudo[src]);
|
| 322 |
|
|
|
| 323 |
|
|
set_location_for_edge (e);
|
| 324 |
|
|
/* If a locus is provided, override the default. */
|
| 325 |
|
|
if (locus)
|
| 326 |
|
|
set_curr_insn_source_location (locus);
|
| 327 |
|
|
|
| 328 |
|
|
var = partition_to_var (SA.map, src);
|
| 329 |
|
|
seq = emit_partition_copy (dest,
|
| 330 |
|
|
SA.partition_to_pseudo[src],
|
| 331 |
|
|
TYPE_UNSIGNED (TREE_TYPE (var)),
|
| 332 |
|
|
var);
|
| 333 |
|
|
|
| 334 |
|
|
insert_insn_on_edge (seq, e);
|
| 335 |
|
|
}
|
| 336 |
|
|
|
| 337 |
|
|
|
| 338 |
|
|
/* Create an elimination graph with SIZE nodes and associated data
|
| 339 |
|
|
structures. */
|
| 340 |
|
|
|
| 341 |
|
|
static elim_graph
|
| 342 |
|
|
new_elim_graph (int size)
|
| 343 |
|
|
{
|
| 344 |
|
|
elim_graph g = (elim_graph) xmalloc (sizeof (struct _elim_graph));
|
| 345 |
|
|
|
| 346 |
|
|
g->nodes = VEC_alloc (int, heap, 30);
|
| 347 |
|
|
g->const_dests = VEC_alloc (int, heap, 20);
|
| 348 |
|
|
g->const_copies = VEC_alloc (tree, heap, 20);
|
| 349 |
|
|
g->copy_locus = VEC_alloc (source_location, heap, 10);
|
| 350 |
|
|
g->edge_list = VEC_alloc (int, heap, 20);
|
| 351 |
|
|
g->edge_locus = VEC_alloc (source_location, heap, 10);
|
| 352 |
|
|
g->stack = VEC_alloc (int, heap, 30);
|
| 353 |
|
|
|
| 354 |
|
|
g->visited = sbitmap_alloc (size);
|
| 355 |
|
|
|
| 356 |
|
|
return g;
|
| 357 |
|
|
}
|
| 358 |
|
|
|
| 359 |
|
|
|
| 360 |
|
|
/* Empty elimination graph G. */
|
| 361 |
|
|
|
| 362 |
|
|
static inline void
|
| 363 |
|
|
clear_elim_graph (elim_graph g)
|
| 364 |
|
|
{
|
| 365 |
|
|
VEC_truncate (int, g->nodes, 0);
|
| 366 |
|
|
VEC_truncate (int, g->edge_list, 0);
|
| 367 |
|
|
VEC_truncate (source_location, g->edge_locus, 0);
|
| 368 |
|
|
}
|
| 369 |
|
|
|
| 370 |
|
|
|
| 371 |
|
|
/* Delete elimination graph G. */
|
| 372 |
|
|
|
| 373 |
|
|
static inline void
|
| 374 |
|
|
delete_elim_graph (elim_graph g)
|
| 375 |
|
|
{
|
| 376 |
|
|
sbitmap_free (g->visited);
|
| 377 |
|
|
VEC_free (int, heap, g->stack);
|
| 378 |
|
|
VEC_free (int, heap, g->edge_list);
|
| 379 |
|
|
VEC_free (tree, heap, g->const_copies);
|
| 380 |
|
|
VEC_free (int, heap, g->const_dests);
|
| 381 |
|
|
VEC_free (int, heap, g->nodes);
|
| 382 |
|
|
VEC_free (source_location, heap, g->copy_locus);
|
| 383 |
|
|
VEC_free (source_location, heap, g->edge_locus);
|
| 384 |
|
|
|
| 385 |
|
|
free (g);
|
| 386 |
|
|
}
|
| 387 |
|
|
|
| 388 |
|
|
|
| 389 |
|
|
/* Return the number of nodes in graph G. */
|
| 390 |
|
|
|
| 391 |
|
|
static inline int
|
| 392 |
|
|
elim_graph_size (elim_graph g)
|
| 393 |
|
|
{
|
| 394 |
|
|
return VEC_length (int, g->nodes);
|
| 395 |
|
|
}
|
| 396 |
|
|
|
| 397 |
|
|
|
| 398 |
|
|
/* Add NODE to graph G, if it doesn't exist already. */
|
| 399 |
|
|
|
| 400 |
|
|
static inline void
|
| 401 |
|
|
elim_graph_add_node (elim_graph g, int node)
|
| 402 |
|
|
{
|
| 403 |
|
|
int x;
|
| 404 |
|
|
int t;
|
| 405 |
|
|
|
| 406 |
|
|
FOR_EACH_VEC_ELT (int, g->nodes, x, t)
|
| 407 |
|
|
if (t == node)
|
| 408 |
|
|
return;
|
| 409 |
|
|
VEC_safe_push (int, heap, g->nodes, node);
|
| 410 |
|
|
}
|
| 411 |
|
|
|
| 412 |
|
|
|
| 413 |
|
|
/* Add the edge PRED->SUCC to graph G. */
|
| 414 |
|
|
|
| 415 |
|
|
static inline void
|
| 416 |
|
|
elim_graph_add_edge (elim_graph g, int pred, int succ, source_location locus)
|
| 417 |
|
|
{
|
| 418 |
|
|
VEC_safe_push (int, heap, g->edge_list, pred);
|
| 419 |
|
|
VEC_safe_push (int, heap, g->edge_list, succ);
|
| 420 |
|
|
VEC_safe_push (source_location, heap, g->edge_locus, locus);
|
| 421 |
|
|
}
|
| 422 |
|
|
|
| 423 |
|
|
|
| 424 |
|
|
/* Remove an edge from graph G for which NODE is the predecessor, and
|
| 425 |
|
|
return the successor node. -1 is returned if there is no such edge. */
|
| 426 |
|
|
|
| 427 |
|
|
static inline int
|
| 428 |
|
|
elim_graph_remove_succ_edge (elim_graph g, int node, source_location *locus)
|
| 429 |
|
|
{
|
| 430 |
|
|
int y;
|
| 431 |
|
|
unsigned x;
|
| 432 |
|
|
for (x = 0; x < VEC_length (int, g->edge_list); x += 2)
|
| 433 |
|
|
if (VEC_index (int, g->edge_list, x) == node)
|
| 434 |
|
|
{
|
| 435 |
|
|
VEC_replace (int, g->edge_list, x, -1);
|
| 436 |
|
|
y = VEC_index (int, g->edge_list, x + 1);
|
| 437 |
|
|
VEC_replace (int, g->edge_list, x + 1, -1);
|
| 438 |
|
|
*locus = VEC_index (source_location, g->edge_locus, x / 2);
|
| 439 |
|
|
VEC_replace (source_location, g->edge_locus, x / 2, UNKNOWN_LOCATION);
|
| 440 |
|
|
return y;
|
| 441 |
|
|
}
|
| 442 |
|
|
*locus = UNKNOWN_LOCATION;
|
| 443 |
|
|
return -1;
|
| 444 |
|
|
}
|
| 445 |
|
|
|
| 446 |
|
|
|
| 447 |
|
|
/* Find all the nodes in GRAPH which are successors to NODE in the
|
| 448 |
|
|
edge list. VAR will hold the partition number found. CODE is the
|
| 449 |
|
|
code fragment executed for every node found. */
|
| 450 |
|
|
|
| 451 |
|
|
#define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE) \
|
| 452 |
|
|
do { \
|
| 453 |
|
|
unsigned x_; \
|
| 454 |
|
|
int y_; \
|
| 455 |
|
|
for (x_ = 0; x_ < VEC_length (int, (GRAPH)->edge_list); x_ += 2) \
|
| 456 |
|
|
{ \
|
| 457 |
|
|
y_ = VEC_index (int, (GRAPH)->edge_list, x_); \
|
| 458 |
|
|
if (y_ != (NODE)) \
|
| 459 |
|
|
continue; \
|
| 460 |
|
|
(void) ((VAR) = VEC_index (int, (GRAPH)->edge_list, x_ + 1)); \
|
| 461 |
|
|
(void) ((LOCUS) = VEC_index (source_location, \
|
| 462 |
|
|
(GRAPH)->edge_locus, x_ / 2)); \
|
| 463 |
|
|
CODE; \
|
| 464 |
|
|
} \
|
| 465 |
|
|
} while (0)
|
| 466 |
|
|
|
| 467 |
|
|
|
| 468 |
|
|
/* Find all the nodes which are predecessors of NODE in the edge list for
|
| 469 |
|
|
GRAPH. VAR will hold the partition number found. CODE is the
|
| 470 |
|
|
code fragment executed for every node found. */
|
| 471 |
|
|
|
| 472 |
|
|
#define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE) \
|
| 473 |
|
|
do { \
|
| 474 |
|
|
unsigned x_; \
|
| 475 |
|
|
int y_; \
|
| 476 |
|
|
for (x_ = 0; x_ < VEC_length (int, (GRAPH)->edge_list); x_ += 2) \
|
| 477 |
|
|
{ \
|
| 478 |
|
|
y_ = VEC_index (int, (GRAPH)->edge_list, x_ + 1); \
|
| 479 |
|
|
if (y_ != (NODE)) \
|
| 480 |
|
|
continue; \
|
| 481 |
|
|
(void) ((VAR) = VEC_index (int, (GRAPH)->edge_list, x_)); \
|
| 482 |
|
|
(void) ((LOCUS) = VEC_index (source_location, \
|
| 483 |
|
|
(GRAPH)->edge_locus, x_ / 2)); \
|
| 484 |
|
|
CODE; \
|
| 485 |
|
|
} \
|
| 486 |
|
|
} while (0)
|
| 487 |
|
|
|
| 488 |
|
|
|
| 489 |
|
|
/* Add T to elimination graph G. */
|
| 490 |
|
|
|
| 491 |
|
|
static inline void
|
| 492 |
|
|
eliminate_name (elim_graph g, int T)
|
| 493 |
|
|
{
|
| 494 |
|
|
elim_graph_add_node (g, T);
|
| 495 |
|
|
}
|
| 496 |
|
|
|
| 497 |
|
|
|
| 498 |
|
|
/* Build elimination graph G for basic block BB on incoming PHI edge
|
| 499 |
|
|
G->e. */
|
| 500 |
|
|
|
| 501 |
|
|
static void
|
| 502 |
|
|
eliminate_build (elim_graph g)
|
| 503 |
|
|
{
|
| 504 |
|
|
tree Ti;
|
| 505 |
|
|
int p0, pi;
|
| 506 |
|
|
gimple_stmt_iterator gsi;
|
| 507 |
|
|
|
| 508 |
|
|
clear_elim_graph (g);
|
| 509 |
|
|
|
| 510 |
|
|
for (gsi = gsi_start_phis (g->e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 511 |
|
|
{
|
| 512 |
|
|
gimple phi = gsi_stmt (gsi);
|
| 513 |
|
|
source_location locus;
|
| 514 |
|
|
|
| 515 |
|
|
p0 = var_to_partition (g->map, gimple_phi_result (phi));
|
| 516 |
|
|
/* Ignore results which are not in partitions. */
|
| 517 |
|
|
if (p0 == NO_PARTITION)
|
| 518 |
|
|
continue;
|
| 519 |
|
|
|
| 520 |
|
|
Ti = PHI_ARG_DEF (phi, g->e->dest_idx);
|
| 521 |
|
|
locus = gimple_phi_arg_location_from_edge (phi, g->e);
|
| 522 |
|
|
|
| 523 |
|
|
/* If this argument is a constant, or a SSA_NAME which is being
|
| 524 |
|
|
left in SSA form, just queue a copy to be emitted on this
|
| 525 |
|
|
edge. */
|
| 526 |
|
|
if (!phi_ssa_name_p (Ti)
|
| 527 |
|
|
|| (TREE_CODE (Ti) == SSA_NAME
|
| 528 |
|
|
&& var_to_partition (g->map, Ti) == NO_PARTITION))
|
| 529 |
|
|
{
|
| 530 |
|
|
/* Save constant copies until all other copies have been emitted
|
| 531 |
|
|
on this edge. */
|
| 532 |
|
|
VEC_safe_push (int, heap, g->const_dests, p0);
|
| 533 |
|
|
VEC_safe_push (tree, heap, g->const_copies, Ti);
|
| 534 |
|
|
VEC_safe_push (source_location, heap, g->copy_locus, locus);
|
| 535 |
|
|
}
|
| 536 |
|
|
else
|
| 537 |
|
|
{
|
| 538 |
|
|
pi = var_to_partition (g->map, Ti);
|
| 539 |
|
|
if (p0 != pi)
|
| 540 |
|
|
{
|
| 541 |
|
|
eliminate_name (g, p0);
|
| 542 |
|
|
eliminate_name (g, pi);
|
| 543 |
|
|
elim_graph_add_edge (g, p0, pi, locus);
|
| 544 |
|
|
}
|
| 545 |
|
|
}
|
| 546 |
|
|
}
|
| 547 |
|
|
}
|
| 548 |
|
|
|
| 549 |
|
|
|
| 550 |
|
|
/* Push successors of T onto the elimination stack for G. */
|
| 551 |
|
|
|
| 552 |
|
|
static void
|
| 553 |
|
|
elim_forward (elim_graph g, int T)
|
| 554 |
|
|
{
|
| 555 |
|
|
int S;
|
| 556 |
|
|
source_location locus;
|
| 557 |
|
|
|
| 558 |
|
|
SET_BIT (g->visited, T);
|
| 559 |
|
|
FOR_EACH_ELIM_GRAPH_SUCC (g, T, S, locus,
|
| 560 |
|
|
{
|
| 561 |
|
|
if (!TEST_BIT (g->visited, S))
|
| 562 |
|
|
elim_forward (g, S);
|
| 563 |
|
|
});
|
| 564 |
|
|
VEC_safe_push (int, heap, g->stack, T);
|
| 565 |
|
|
}
|
| 566 |
|
|
|
| 567 |
|
|
|
| 568 |
|
|
/* Return 1 if there unvisited predecessors of T in graph G. */
|
| 569 |
|
|
|
| 570 |
|
|
static int
|
| 571 |
|
|
elim_unvisited_predecessor (elim_graph g, int T)
|
| 572 |
|
|
{
|
| 573 |
|
|
int P;
|
| 574 |
|
|
source_location locus;
|
| 575 |
|
|
|
| 576 |
|
|
FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
|
| 577 |
|
|
{
|
| 578 |
|
|
if (!TEST_BIT (g->visited, P))
|
| 579 |
|
|
return 1;
|
| 580 |
|
|
});
|
| 581 |
|
|
return 0;
|
| 582 |
|
|
}
|
| 583 |
|
|
|
| 584 |
|
|
/* Process predecessors first, and insert a copy. */
|
| 585 |
|
|
|
| 586 |
|
|
static void
|
| 587 |
|
|
elim_backward (elim_graph g, int T)
|
| 588 |
|
|
{
|
| 589 |
|
|
int P;
|
| 590 |
|
|
source_location locus;
|
| 591 |
|
|
|
| 592 |
|
|
SET_BIT (g->visited, T);
|
| 593 |
|
|
FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
|
| 594 |
|
|
{
|
| 595 |
|
|
if (!TEST_BIT (g->visited, P))
|
| 596 |
|
|
{
|
| 597 |
|
|
elim_backward (g, P);
|
| 598 |
|
|
insert_partition_copy_on_edge (g->e, P, T, locus);
|
| 599 |
|
|
}
|
| 600 |
|
|
});
|
| 601 |
|
|
}
|
| 602 |
|
|
|
| 603 |
|
|
/* Allocate a new pseudo register usable for storing values sitting
|
| 604 |
|
|
in NAME (a decl or SSA name), i.e. with matching mode and attributes. */
|
| 605 |
|
|
|
| 606 |
|
|
static rtx
|
| 607 |
|
|
get_temp_reg (tree name)
|
| 608 |
|
|
{
|
| 609 |
|
|
tree var = TREE_CODE (name) == SSA_NAME ? SSA_NAME_VAR (name) : name;
|
| 610 |
|
|
tree type = TREE_TYPE (var);
|
| 611 |
|
|
int unsignedp;
|
| 612 |
|
|
enum machine_mode reg_mode = promote_decl_mode (var, &unsignedp);
|
| 613 |
|
|
rtx x = gen_reg_rtx (reg_mode);
|
| 614 |
|
|
if (POINTER_TYPE_P (type))
|
| 615 |
|
|
mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (var))));
|
| 616 |
|
|
return x;
|
| 617 |
|
|
}
|
| 618 |
|
|
|
| 619 |
|
|
/* Insert required copies for T in graph G. Check for a strongly connected
|
| 620 |
|
|
region, and create a temporary to break the cycle if one is found. */
|
| 621 |
|
|
|
| 622 |
|
|
static void
|
| 623 |
|
|
elim_create (elim_graph g, int T)
|
| 624 |
|
|
{
|
| 625 |
|
|
int P, S;
|
| 626 |
|
|
source_location locus;
|
| 627 |
|
|
|
| 628 |
|
|
if (elim_unvisited_predecessor (g, T))
|
| 629 |
|
|
{
|
| 630 |
|
|
tree var = partition_to_var (g->map, T);
|
| 631 |
|
|
rtx U = get_temp_reg (var);
|
| 632 |
|
|
int unsignedsrcp = TYPE_UNSIGNED (TREE_TYPE (var));
|
| 633 |
|
|
|
| 634 |
|
|
insert_part_to_rtx_on_edge (g->e, U, T, UNKNOWN_LOCATION);
|
| 635 |
|
|
FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
|
| 636 |
|
|
{
|
| 637 |
|
|
if (!TEST_BIT (g->visited, P))
|
| 638 |
|
|
{
|
| 639 |
|
|
elim_backward (g, P);
|
| 640 |
|
|
insert_rtx_to_part_on_edge (g->e, P, U, unsignedsrcp, locus);
|
| 641 |
|
|
}
|
| 642 |
|
|
});
|
| 643 |
|
|
}
|
| 644 |
|
|
else
|
| 645 |
|
|
{
|
| 646 |
|
|
S = elim_graph_remove_succ_edge (g, T, &locus);
|
| 647 |
|
|
if (S != -1)
|
| 648 |
|
|
{
|
| 649 |
|
|
SET_BIT (g->visited, T);
|
| 650 |
|
|
insert_partition_copy_on_edge (g->e, T, S, locus);
|
| 651 |
|
|
}
|
| 652 |
|
|
}
|
| 653 |
|
|
}
|
| 654 |
|
|
|
| 655 |
|
|
|
| 656 |
|
|
/* Eliminate all the phi nodes on edge E in graph G. */
|
| 657 |
|
|
|
| 658 |
|
|
static void
|
| 659 |
|
|
eliminate_phi (edge e, elim_graph g)
|
| 660 |
|
|
{
|
| 661 |
|
|
int x;
|
| 662 |
|
|
|
| 663 |
|
|
gcc_assert (VEC_length (tree, g->const_copies) == 0);
|
| 664 |
|
|
gcc_assert (VEC_length (source_location, g->copy_locus) == 0);
|
| 665 |
|
|
|
| 666 |
|
|
/* Abnormal edges already have everything coalesced. */
|
| 667 |
|
|
if (e->flags & EDGE_ABNORMAL)
|
| 668 |
|
|
return;
|
| 669 |
|
|
|
| 670 |
|
|
g->e = e;
|
| 671 |
|
|
|
| 672 |
|
|
eliminate_build (g);
|
| 673 |
|
|
|
| 674 |
|
|
if (elim_graph_size (g) != 0)
|
| 675 |
|
|
{
|
| 676 |
|
|
int part;
|
| 677 |
|
|
|
| 678 |
|
|
sbitmap_zero (g->visited);
|
| 679 |
|
|
VEC_truncate (int, g->stack, 0);
|
| 680 |
|
|
|
| 681 |
|
|
FOR_EACH_VEC_ELT (int, g->nodes, x, part)
|
| 682 |
|
|
{
|
| 683 |
|
|
if (!TEST_BIT (g->visited, part))
|
| 684 |
|
|
elim_forward (g, part);
|
| 685 |
|
|
}
|
| 686 |
|
|
|
| 687 |
|
|
sbitmap_zero (g->visited);
|
| 688 |
|
|
while (VEC_length (int, g->stack) > 0)
|
| 689 |
|
|
{
|
| 690 |
|
|
x = VEC_pop (int, g->stack);
|
| 691 |
|
|
if (!TEST_BIT (g->visited, x))
|
| 692 |
|
|
elim_create (g, x);
|
| 693 |
|
|
}
|
| 694 |
|
|
}
|
| 695 |
|
|
|
| 696 |
|
|
/* If there are any pending constant copies, issue them now. */
|
| 697 |
|
|
while (VEC_length (tree, g->const_copies) > 0)
|
| 698 |
|
|
{
|
| 699 |
|
|
int dest;
|
| 700 |
|
|
tree src;
|
| 701 |
|
|
source_location locus;
|
| 702 |
|
|
|
| 703 |
|
|
src = VEC_pop (tree, g->const_copies);
|
| 704 |
|
|
dest = VEC_pop (int, g->const_dests);
|
| 705 |
|
|
locus = VEC_pop (source_location, g->copy_locus);
|
| 706 |
|
|
insert_value_copy_on_edge (e, dest, src, locus);
|
| 707 |
|
|
}
|
| 708 |
|
|
}
|
| 709 |
|
|
|
| 710 |
|
|
|
| 711 |
|
|
/* Remove each argument from PHI. If an arg was the last use of an SSA_NAME,
|
| 712 |
|
|
check to see if this allows another PHI node to be removed. */
|
| 713 |
|
|
|
| 714 |
|
|
static void
|
| 715 |
|
|
remove_gimple_phi_args (gimple phi)
|
| 716 |
|
|
{
|
| 717 |
|
|
use_operand_p arg_p;
|
| 718 |
|
|
ssa_op_iter iter;
|
| 719 |
|
|
|
| 720 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 721 |
|
|
{
|
| 722 |
|
|
fprintf (dump_file, "Removing Dead PHI definition: ");
|
| 723 |
|
|
print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
|
| 724 |
|
|
}
|
| 725 |
|
|
|
| 726 |
|
|
FOR_EACH_PHI_ARG (arg_p, phi, iter, SSA_OP_USE)
|
| 727 |
|
|
{
|
| 728 |
|
|
tree arg = USE_FROM_PTR (arg_p);
|
| 729 |
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
| 730 |
|
|
{
|
| 731 |
|
|
/* Remove the reference to the existing argument. */
|
| 732 |
|
|
SET_USE (arg_p, NULL_TREE);
|
| 733 |
|
|
if (has_zero_uses (arg))
|
| 734 |
|
|
{
|
| 735 |
|
|
gimple stmt;
|
| 736 |
|
|
gimple_stmt_iterator gsi;
|
| 737 |
|
|
|
| 738 |
|
|
stmt = SSA_NAME_DEF_STMT (arg);
|
| 739 |
|
|
|
| 740 |
|
|
/* Also remove the def if it is a PHI node. */
|
| 741 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
| 742 |
|
|
{
|
| 743 |
|
|
remove_gimple_phi_args (stmt);
|
| 744 |
|
|
gsi = gsi_for_stmt (stmt);
|
| 745 |
|
|
remove_phi_node (&gsi, true);
|
| 746 |
|
|
}
|
| 747 |
|
|
|
| 748 |
|
|
}
|
| 749 |
|
|
}
|
| 750 |
|
|
}
|
| 751 |
|
|
}
|
| 752 |
|
|
|
| 753 |
|
|
/* Remove any PHI node which is a virtual PHI, or a PHI with no uses. */
|
| 754 |
|
|
|
| 755 |
|
|
static void
|
| 756 |
|
|
eliminate_useless_phis (void)
|
| 757 |
|
|
{
|
| 758 |
|
|
basic_block bb;
|
| 759 |
|
|
gimple_stmt_iterator gsi;
|
| 760 |
|
|
tree result;
|
| 761 |
|
|
|
| 762 |
|
|
FOR_EACH_BB (bb)
|
| 763 |
|
|
{
|
| 764 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
|
| 765 |
|
|
{
|
| 766 |
|
|
gimple phi = gsi_stmt (gsi);
|
| 767 |
|
|
result = gimple_phi_result (phi);
|
| 768 |
|
|
if (!is_gimple_reg (SSA_NAME_VAR (result)))
|
| 769 |
|
|
{
|
| 770 |
|
|
#ifdef ENABLE_CHECKING
|
| 771 |
|
|
size_t i;
|
| 772 |
|
|
/* There should be no arguments which are not virtual, or the
|
| 773 |
|
|
results will be incorrect. */
|
| 774 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
| 775 |
|
|
{
|
| 776 |
|
|
tree arg = PHI_ARG_DEF (phi, i);
|
| 777 |
|
|
if (TREE_CODE (arg) == SSA_NAME
|
| 778 |
|
|
&& is_gimple_reg (SSA_NAME_VAR (arg)))
|
| 779 |
|
|
{
|
| 780 |
|
|
fprintf (stderr, "Argument of PHI is not virtual (");
|
| 781 |
|
|
print_generic_expr (stderr, arg, TDF_SLIM);
|
| 782 |
|
|
fprintf (stderr, "), but the result is :");
|
| 783 |
|
|
print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
|
| 784 |
|
|
internal_error ("SSA corruption");
|
| 785 |
|
|
}
|
| 786 |
|
|
}
|
| 787 |
|
|
#endif
|
| 788 |
|
|
remove_phi_node (&gsi, true);
|
| 789 |
|
|
}
|
| 790 |
|
|
else
|
| 791 |
|
|
{
|
| 792 |
|
|
/* Also remove real PHIs with no uses. */
|
| 793 |
|
|
if (has_zero_uses (result))
|
| 794 |
|
|
{
|
| 795 |
|
|
remove_gimple_phi_args (phi);
|
| 796 |
|
|
remove_phi_node (&gsi, true);
|
| 797 |
|
|
}
|
| 798 |
|
|
else
|
| 799 |
|
|
gsi_next (&gsi);
|
| 800 |
|
|
}
|
| 801 |
|
|
}
|
| 802 |
|
|
}
|
| 803 |
|
|
}
|
| 804 |
|
|
|
| 805 |
|
|
|
| 806 |
|
|
/* This function will rewrite the current program using the variable mapping
|
| 807 |
|
|
found in MAP. If the replacement vector VALUES is provided, any
|
| 808 |
|
|
occurrences of partitions with non-null entries in the vector will be
|
| 809 |
|
|
replaced with the expression in the vector instead of its mapped
|
| 810 |
|
|
variable. */
|
| 811 |
|
|
|
| 812 |
|
|
static void
|
| 813 |
|
|
rewrite_trees (var_map map ATTRIBUTE_UNUSED)
|
| 814 |
|
|
{
|
| 815 |
|
|
#ifdef ENABLE_CHECKING
|
| 816 |
|
|
basic_block bb;
|
| 817 |
|
|
/* Search for PHIs where the destination has no partition, but one
|
| 818 |
|
|
or more arguments has a partition. This should not happen and can
|
| 819 |
|
|
create incorrect code. */
|
| 820 |
|
|
FOR_EACH_BB (bb)
|
| 821 |
|
|
{
|
| 822 |
|
|
gimple_stmt_iterator gsi;
|
| 823 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 824 |
|
|
{
|
| 825 |
|
|
gimple phi = gsi_stmt (gsi);
|
| 826 |
|
|
tree T0 = var_to_partition_to_var (map, gimple_phi_result (phi));
|
| 827 |
|
|
if (T0 == NULL_TREE)
|
| 828 |
|
|
{
|
| 829 |
|
|
size_t i;
|
| 830 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
| 831 |
|
|
{
|
| 832 |
|
|
tree arg = PHI_ARG_DEF (phi, i);
|
| 833 |
|
|
|
| 834 |
|
|
if (TREE_CODE (arg) == SSA_NAME
|
| 835 |
|
|
&& var_to_partition (map, arg) != NO_PARTITION)
|
| 836 |
|
|
{
|
| 837 |
|
|
fprintf (stderr, "Argument of PHI is in a partition :(");
|
| 838 |
|
|
print_generic_expr (stderr, arg, TDF_SLIM);
|
| 839 |
|
|
fprintf (stderr, "), but the result is not :");
|
| 840 |
|
|
print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
|
| 841 |
|
|
internal_error ("SSA corruption");
|
| 842 |
|
|
}
|
| 843 |
|
|
}
|
| 844 |
|
|
}
|
| 845 |
|
|
}
|
| 846 |
|
|
}
|
| 847 |
|
|
#endif
|
| 848 |
|
|
}
|
| 849 |
|
|
|
| 850 |
|
|
/* Given the out-of-ssa info object SA (with prepared partitions)
|
| 851 |
|
|
eliminate all phi nodes in all basic blocks. Afterwards no
|
| 852 |
|
|
basic block will have phi nodes anymore and there are possibly
|
| 853 |
|
|
some RTL instructions inserted on edges. */
|
| 854 |
|
|
|
| 855 |
|
|
void
|
| 856 |
|
|
expand_phi_nodes (struct ssaexpand *sa)
|
| 857 |
|
|
{
|
| 858 |
|
|
basic_block bb;
|
| 859 |
|
|
elim_graph g = new_elim_graph (sa->map->num_partitions);
|
| 860 |
|
|
g->map = sa->map;
|
| 861 |
|
|
|
| 862 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR, next_bb)
|
| 863 |
|
|
if (!gimple_seq_empty_p (phi_nodes (bb)))
|
| 864 |
|
|
{
|
| 865 |
|
|
edge e;
|
| 866 |
|
|
edge_iterator ei;
|
| 867 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 868 |
|
|
eliminate_phi (e, g);
|
| 869 |
|
|
set_phi_nodes (bb, NULL);
|
| 870 |
|
|
/* We can't redirect EH edges in RTL land, so we need to do this
|
| 871 |
|
|
here. Redirection happens only when splitting is necessary,
|
| 872 |
|
|
which it is only for critical edges, normally. For EH edges
|
| 873 |
|
|
it might also be necessary when the successor has more than
|
| 874 |
|
|
one predecessor. In that case the edge is either required to
|
| 875 |
|
|
be fallthru (which EH edges aren't), or the predecessor needs
|
| 876 |
|
|
to end with a jump (which again, isn't the case with EH edges).
|
| 877 |
|
|
Hence, split all EH edges on which we inserted instructions
|
| 878 |
|
|
and whose successor has multiple predecessors. */
|
| 879 |
|
|
for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
|
| 880 |
|
|
{
|
| 881 |
|
|
if (e->insns.r && (e->flags & EDGE_EH)
|
| 882 |
|
|
&& !single_pred_p (e->dest))
|
| 883 |
|
|
{
|
| 884 |
|
|
rtx insns = e->insns.r;
|
| 885 |
|
|
basic_block bb;
|
| 886 |
|
|
e->insns.r = NULL_RTX;
|
| 887 |
|
|
bb = split_edge (e);
|
| 888 |
|
|
single_pred_edge (bb)->insns.r = insns;
|
| 889 |
|
|
}
|
| 890 |
|
|
else
|
| 891 |
|
|
ei_next (&ei);
|
| 892 |
|
|
}
|
| 893 |
|
|
}
|
| 894 |
|
|
|
| 895 |
|
|
delete_elim_graph (g);
|
| 896 |
|
|
}
|
| 897 |
|
|
|
| 898 |
|
|
|
| 899 |
|
|
/* Remove the ssa-names in the current function and translate them into normal
|
| 900 |
|
|
compiler variables. PERFORM_TER is true if Temporary Expression Replacement
|
| 901 |
|
|
should also be used. */
|
| 902 |
|
|
|
| 903 |
|
|
static void
|
| 904 |
|
|
remove_ssa_form (bool perform_ter, struct ssaexpand *sa)
|
| 905 |
|
|
{
|
| 906 |
|
|
bitmap values = NULL;
|
| 907 |
|
|
var_map map;
|
| 908 |
|
|
unsigned i;
|
| 909 |
|
|
|
| 910 |
|
|
map = coalesce_ssa_name ();
|
| 911 |
|
|
|
| 912 |
|
|
/* Return to viewing the variable list as just all reference variables after
|
| 913 |
|
|
coalescing has been performed. */
|
| 914 |
|
|
partition_view_normal (map, false);
|
| 915 |
|
|
|
| 916 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 917 |
|
|
{
|
| 918 |
|
|
fprintf (dump_file, "After Coalescing:\n");
|
| 919 |
|
|
dump_var_map (dump_file, map);
|
| 920 |
|
|
}
|
| 921 |
|
|
|
| 922 |
|
|
if (perform_ter)
|
| 923 |
|
|
{
|
| 924 |
|
|
values = find_replaceable_exprs (map);
|
| 925 |
|
|
if (values && dump_file && (dump_flags & TDF_DETAILS))
|
| 926 |
|
|
dump_replaceable_exprs (dump_file, values);
|
| 927 |
|
|
}
|
| 928 |
|
|
|
| 929 |
|
|
rewrite_trees (map);
|
| 930 |
|
|
|
| 931 |
|
|
sa->map = map;
|
| 932 |
|
|
sa->values = values;
|
| 933 |
|
|
sa->partition_has_default_def = BITMAP_ALLOC (NULL);
|
| 934 |
|
|
for (i = 1; i < num_ssa_names; i++)
|
| 935 |
|
|
{
|
| 936 |
|
|
tree t = ssa_name (i);
|
| 937 |
|
|
if (t && SSA_NAME_IS_DEFAULT_DEF (t))
|
| 938 |
|
|
{
|
| 939 |
|
|
int p = var_to_partition (map, t);
|
| 940 |
|
|
if (p != NO_PARTITION)
|
| 941 |
|
|
bitmap_set_bit (sa->partition_has_default_def, p);
|
| 942 |
|
|
}
|
| 943 |
|
|
}
|
| 944 |
|
|
}
|
| 945 |
|
|
|
| 946 |
|
|
|
| 947 |
|
|
/* If not already done so for basic block BB, assign increasing uids
|
| 948 |
|
|
to each of its instructions. */
|
| 949 |
|
|
|
| 950 |
|
|
static void
|
| 951 |
|
|
maybe_renumber_stmts_bb (basic_block bb)
|
| 952 |
|
|
{
|
| 953 |
|
|
unsigned i = 0;
|
| 954 |
|
|
gimple_stmt_iterator gsi;
|
| 955 |
|
|
|
| 956 |
|
|
if (!bb->aux)
|
| 957 |
|
|
return;
|
| 958 |
|
|
bb->aux = NULL;
|
| 959 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 960 |
|
|
{
|
| 961 |
|
|
gimple stmt = gsi_stmt (gsi);
|
| 962 |
|
|
gimple_set_uid (stmt, i);
|
| 963 |
|
|
i++;
|
| 964 |
|
|
}
|
| 965 |
|
|
}
|
| 966 |
|
|
|
| 967 |
|
|
|
| 968 |
|
|
/* Return true if we can determine that the SSA_NAMEs RESULT (a result
|
| 969 |
|
|
of a PHI node) and ARG (one of its arguments) conflict. Return false
|
| 970 |
|
|
otherwise, also when we simply aren't sure. */
|
| 971 |
|
|
|
| 972 |
|
|
static bool
|
| 973 |
|
|
trivially_conflicts_p (basic_block bb, tree result, tree arg)
|
| 974 |
|
|
{
|
| 975 |
|
|
use_operand_p use;
|
| 976 |
|
|
imm_use_iterator imm_iter;
|
| 977 |
|
|
gimple defa = SSA_NAME_DEF_STMT (arg);
|
| 978 |
|
|
|
| 979 |
|
|
/* If ARG isn't defined in the same block it's too complicated for
|
| 980 |
|
|
our little mind. */
|
| 981 |
|
|
if (gimple_bb (defa) != bb)
|
| 982 |
|
|
return false;
|
| 983 |
|
|
|
| 984 |
|
|
FOR_EACH_IMM_USE_FAST (use, imm_iter, result)
|
| 985 |
|
|
{
|
| 986 |
|
|
gimple use_stmt = USE_STMT (use);
|
| 987 |
|
|
if (is_gimple_debug (use_stmt))
|
| 988 |
|
|
continue;
|
| 989 |
|
|
/* Now, if there's a use of RESULT that lies outside this basic block,
|
| 990 |
|
|
then there surely is a conflict with ARG. */
|
| 991 |
|
|
if (gimple_bb (use_stmt) != bb)
|
| 992 |
|
|
return true;
|
| 993 |
|
|
if (gimple_code (use_stmt) == GIMPLE_PHI)
|
| 994 |
|
|
continue;
|
| 995 |
|
|
/* The use now is in a real stmt of BB, so if ARG was defined
|
| 996 |
|
|
in a PHI node (like RESULT) both conflict. */
|
| 997 |
|
|
if (gimple_code (defa) == GIMPLE_PHI)
|
| 998 |
|
|
return true;
|
| 999 |
|
|
maybe_renumber_stmts_bb (bb);
|
| 1000 |
|
|
/* If the use of RESULT occurs after the definition of ARG,
|
| 1001 |
|
|
the two conflict too. */
|
| 1002 |
|
|
if (gimple_uid (defa) < gimple_uid (use_stmt))
|
| 1003 |
|
|
return true;
|
| 1004 |
|
|
}
|
| 1005 |
|
|
|
| 1006 |
|
|
return false;
|
| 1007 |
|
|
}
|
| 1008 |
|
|
|
| 1009 |
|
|
|
| 1010 |
|
|
/* Search every PHI node for arguments associated with backedges which
|
| 1011 |
|
|
we can trivially determine will need a copy (the argument is either
|
| 1012 |
|
|
not an SSA_NAME or the argument has a different underlying variable
|
| 1013 |
|
|
than the PHI result).
|
| 1014 |
|
|
|
| 1015 |
|
|
Insert a copy from the PHI argument to a new destination at the
|
| 1016 |
|
|
end of the block with the backedge to the top of the loop. Update
|
| 1017 |
|
|
the PHI argument to reference this new destination. */
|
| 1018 |
|
|
|
| 1019 |
|
|
static void
|
| 1020 |
|
|
insert_backedge_copies (void)
|
| 1021 |
|
|
{
|
| 1022 |
|
|
basic_block bb;
|
| 1023 |
|
|
gimple_stmt_iterator gsi;
|
| 1024 |
|
|
|
| 1025 |
|
|
mark_dfs_back_edges ();
|
| 1026 |
|
|
|
| 1027 |
|
|
FOR_EACH_BB (bb)
|
| 1028 |
|
|
{
|
| 1029 |
|
|
/* Mark block as possibly needing calculation of UIDs. */
|
| 1030 |
|
|
bb->aux = &bb->aux;
|
| 1031 |
|
|
|
| 1032 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 1033 |
|
|
{
|
| 1034 |
|
|
gimple phi = gsi_stmt (gsi);
|
| 1035 |
|
|
tree result = gimple_phi_result (phi);
|
| 1036 |
|
|
tree result_var;
|
| 1037 |
|
|
size_t i;
|
| 1038 |
|
|
|
| 1039 |
|
|
if (!is_gimple_reg (result))
|
| 1040 |
|
|
continue;
|
| 1041 |
|
|
|
| 1042 |
|
|
result_var = SSA_NAME_VAR (result);
|
| 1043 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
| 1044 |
|
|
{
|
| 1045 |
|
|
tree arg = gimple_phi_arg_def (phi, i);
|
| 1046 |
|
|
edge e = gimple_phi_arg_edge (phi, i);
|
| 1047 |
|
|
|
| 1048 |
|
|
/* If the argument is not an SSA_NAME, then we will need a
|
| 1049 |
|
|
constant initialization. If the argument is an SSA_NAME with
|
| 1050 |
|
|
a different underlying variable then a copy statement will be
|
| 1051 |
|
|
needed. */
|
| 1052 |
|
|
if ((e->flags & EDGE_DFS_BACK)
|
| 1053 |
|
|
&& (TREE_CODE (arg) != SSA_NAME
|
| 1054 |
|
|
|| SSA_NAME_VAR (arg) != result_var
|
| 1055 |
|
|
|| trivially_conflicts_p (bb, result, arg)))
|
| 1056 |
|
|
{
|
| 1057 |
|
|
tree name;
|
| 1058 |
|
|
gimple stmt, last = NULL;
|
| 1059 |
|
|
gimple_stmt_iterator gsi2;
|
| 1060 |
|
|
|
| 1061 |
|
|
gsi2 = gsi_last_bb (gimple_phi_arg_edge (phi, i)->src);
|
| 1062 |
|
|
if (!gsi_end_p (gsi2))
|
| 1063 |
|
|
last = gsi_stmt (gsi2);
|
| 1064 |
|
|
|
| 1065 |
|
|
/* In theory the only way we ought to get back to the
|
| 1066 |
|
|
start of a loop should be with a COND_EXPR or GOTO_EXPR.
|
| 1067 |
|
|
However, better safe than sorry.
|
| 1068 |
|
|
If the block ends with a control statement or
|
| 1069 |
|
|
something that might throw, then we have to
|
| 1070 |
|
|
insert this assignment before the last
|
| 1071 |
|
|
statement. Else insert it after the last statement. */
|
| 1072 |
|
|
if (last && stmt_ends_bb_p (last))
|
| 1073 |
|
|
{
|
| 1074 |
|
|
/* If the last statement in the block is the definition
|
| 1075 |
|
|
site of the PHI argument, then we can't insert
|
| 1076 |
|
|
anything after it. */
|
| 1077 |
|
|
if (TREE_CODE (arg) == SSA_NAME
|
| 1078 |
|
|
&& SSA_NAME_DEF_STMT (arg) == last)
|
| 1079 |
|
|
continue;
|
| 1080 |
|
|
}
|
| 1081 |
|
|
|
| 1082 |
|
|
/* Create a new instance of the underlying variable of the
|
| 1083 |
|
|
PHI result. */
|
| 1084 |
|
|
stmt = gimple_build_assign (result_var,
|
| 1085 |
|
|
gimple_phi_arg_def (phi, i));
|
| 1086 |
|
|
name = make_ssa_name (result_var, stmt);
|
| 1087 |
|
|
gimple_assign_set_lhs (stmt, name);
|
| 1088 |
|
|
|
| 1089 |
|
|
/* copy location if present. */
|
| 1090 |
|
|
if (gimple_phi_arg_has_location (phi, i))
|
| 1091 |
|
|
gimple_set_location (stmt,
|
| 1092 |
|
|
gimple_phi_arg_location (phi, i));
|
| 1093 |
|
|
|
| 1094 |
|
|
/* Insert the new statement into the block and update
|
| 1095 |
|
|
the PHI node. */
|
| 1096 |
|
|
if (last && stmt_ends_bb_p (last))
|
| 1097 |
|
|
gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT);
|
| 1098 |
|
|
else
|
| 1099 |
|
|
gsi_insert_after (&gsi2, stmt, GSI_NEW_STMT);
|
| 1100 |
|
|
SET_PHI_ARG_DEF (phi, i, name);
|
| 1101 |
|
|
}
|
| 1102 |
|
|
}
|
| 1103 |
|
|
}
|
| 1104 |
|
|
|
| 1105 |
|
|
/* Unmark this block again. */
|
| 1106 |
|
|
bb->aux = NULL;
|
| 1107 |
|
|
}
|
| 1108 |
|
|
}
|
| 1109 |
|
|
|
| 1110 |
|
|
/* Free all memory associated with going out of SSA form. SA is
|
| 1111 |
|
|
the outof-SSA info object. */
|
| 1112 |
|
|
|
| 1113 |
|
|
void
|
| 1114 |
|
|
finish_out_of_ssa (struct ssaexpand *sa)
|
| 1115 |
|
|
{
|
| 1116 |
|
|
free (sa->partition_to_pseudo);
|
| 1117 |
|
|
if (sa->values)
|
| 1118 |
|
|
BITMAP_FREE (sa->values);
|
| 1119 |
|
|
delete_var_map (sa->map);
|
| 1120 |
|
|
BITMAP_FREE (sa->partition_has_default_def);
|
| 1121 |
|
|
memset (sa, 0, sizeof *sa);
|
| 1122 |
|
|
}
|
| 1123 |
|
|
|
| 1124 |
|
|
/* Take the current function out of SSA form, translating PHIs as described in
|
| 1125 |
|
|
R. Morgan, ``Building an Optimizing Compiler'',
|
| 1126 |
|
|
Butterworth-Heinemann, Boston, MA, 1998. pp 176-186. */
|
| 1127 |
|
|
|
| 1128 |
|
|
unsigned int
|
| 1129 |
|
|
rewrite_out_of_ssa (struct ssaexpand *sa)
|
| 1130 |
|
|
{
|
| 1131 |
|
|
/* If elimination of a PHI requires inserting a copy on a backedge,
|
| 1132 |
|
|
then we will have to split the backedge which has numerous
|
| 1133 |
|
|
undesirable performance effects.
|
| 1134 |
|
|
|
| 1135 |
|
|
A significant number of such cases can be handled here by inserting
|
| 1136 |
|
|
copies into the loop itself. */
|
| 1137 |
|
|
insert_backedge_copies ();
|
| 1138 |
|
|
|
| 1139 |
|
|
|
| 1140 |
|
|
/* Eliminate PHIs which are of no use, such as virtual or dead phis. */
|
| 1141 |
|
|
eliminate_useless_phis ();
|
| 1142 |
|
|
|
| 1143 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1144 |
|
|
gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
|
| 1145 |
|
|
|
| 1146 |
|
|
remove_ssa_form (flag_tree_ter, sa);
|
| 1147 |
|
|
|
| 1148 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1149 |
|
|
gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
|
| 1150 |
|
|
|
| 1151 |
|
|
return 0;
|
| 1152 |
|
|
}
|