1 |
684 |
jeremybenn |
/* Loop autoparallelization.
|
2 |
|
|
Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Sebastian Pop <pop@cri.ensmp.fr> and
|
5 |
|
|
Zdenek Dvorak <dvorakz@suse.cz>.
|
6 |
|
|
|
7 |
|
|
This file is part of GCC.
|
8 |
|
|
|
9 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
10 |
|
|
the terms of the GNU General Public License as published by the Free
|
11 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
12 |
|
|
version.
|
13 |
|
|
|
14 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
15 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
16 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
17 |
|
|
for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with GCC; see the file COPYING3. If not see
|
21 |
|
|
<http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
#include "config.h"
|
24 |
|
|
#include "system.h"
|
25 |
|
|
#include "coretypes.h"
|
26 |
|
|
#include "tree-flow.h"
|
27 |
|
|
#include "cfgloop.h"
|
28 |
|
|
#include "tree-data-ref.h"
|
29 |
|
|
#include "tree-scalar-evolution.h"
|
30 |
|
|
#include "gimple-pretty-print.h"
|
31 |
|
|
#include "tree-pass.h"
|
32 |
|
|
#include "langhooks.h"
|
33 |
|
|
#include "tree-vectorizer.h"
|
34 |
|
|
|
35 |
|
|
/* This pass tries to distribute iterations of loops into several threads.
|
36 |
|
|
The implementation is straightforward -- for each loop we test whether its
|
37 |
|
|
iterations are independent, and if it is the case (and some additional
|
38 |
|
|
conditions regarding profitability and correctness are satisfied), we
|
39 |
|
|
add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
|
40 |
|
|
machinery do its job.
|
41 |
|
|
|
42 |
|
|
The most of the complexity is in bringing the code into shape expected
|
43 |
|
|
by the omp expanders:
|
44 |
|
|
-- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
|
45 |
|
|
variable and that the exit test is at the start of the loop body
|
46 |
|
|
-- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
|
47 |
|
|
variables by accesses through pointers, and breaking up ssa chains
|
48 |
|
|
by storing the values incoming to the parallelized loop to a structure
|
49 |
|
|
passed to the new function as an argument (something similar is done
|
50 |
|
|
in omp gimplification, unfortunately only a small part of the code
|
51 |
|
|
can be shared).
|
52 |
|
|
|
53 |
|
|
TODO:
|
54 |
|
|
-- if there are several parallelizable loops in a function, it may be
|
55 |
|
|
possible to generate the threads just once (using synchronization to
|
56 |
|
|
ensure that cross-loop dependences are obeyed).
|
57 |
|
|
-- handling of common scalar dependence patterns (accumulation, ...)
|
58 |
|
|
-- handling of non-innermost loops */
|
59 |
|
|
|
60 |
|
|
/*
|
61 |
|
|
Reduction handling:
|
62 |
|
|
currently we use vect_force_simple_reduction() to detect reduction patterns.
|
63 |
|
|
The code transformation will be introduced by an example.
|
64 |
|
|
|
65 |
|
|
|
66 |
|
|
parloop
|
67 |
|
|
{
|
68 |
|
|
int sum=1;
|
69 |
|
|
|
70 |
|
|
for (i = 0; i < N; i++)
|
71 |
|
|
{
|
72 |
|
|
x[i] = i + 3;
|
73 |
|
|
sum+=x[i];
|
74 |
|
|
}
|
75 |
|
|
}
|
76 |
|
|
|
77 |
|
|
gimple-like code:
|
78 |
|
|
header_bb:
|
79 |
|
|
|
80 |
|
|
# sum_29 = PHI <sum_11(5), 1(3)>
|
81 |
|
|
# i_28 = PHI <i_12(5), 0(3)>
|
82 |
|
|
D.1795_8 = i_28 + 3;
|
83 |
|
|
x[i_28] = D.1795_8;
|
84 |
|
|
sum_11 = D.1795_8 + sum_29;
|
85 |
|
|
i_12 = i_28 + 1;
|
86 |
|
|
if (N_6(D) > i_12)
|
87 |
|
|
goto header_bb;
|
88 |
|
|
|
89 |
|
|
|
90 |
|
|
exit_bb:
|
91 |
|
|
|
92 |
|
|
# sum_21 = PHI <sum_11(4)>
|
93 |
|
|
printf (&"%d"[0], sum_21);
|
94 |
|
|
|
95 |
|
|
|
96 |
|
|
after reduction transformation (only relevant parts):
|
97 |
|
|
|
98 |
|
|
parloop
|
99 |
|
|
{
|
100 |
|
|
|
101 |
|
|
....
|
102 |
|
|
|
103 |
|
|
|
104 |
|
|
# Storing the initial value given by the user. #
|
105 |
|
|
|
106 |
|
|
.paral_data_store.32.sum.27 = 1;
|
107 |
|
|
|
108 |
|
|
#pragma omp parallel num_threads(4)
|
109 |
|
|
|
110 |
|
|
#pragma omp for schedule(static)
|
111 |
|
|
|
112 |
|
|
# The neutral element corresponding to the particular
|
113 |
|
|
reduction's operation, e.g. 0 for PLUS_EXPR,
|
114 |
|
|
1 for MULT_EXPR, etc. replaces the user's initial value. #
|
115 |
|
|
|
116 |
|
|
# sum.27_29 = PHI <sum.27_11, 0>
|
117 |
|
|
|
118 |
|
|
sum.27_11 = D.1827_8 + sum.27_29;
|
119 |
|
|
|
120 |
|
|
GIMPLE_OMP_CONTINUE
|
121 |
|
|
|
122 |
|
|
# Adding this reduction phi is done at create_phi_for_local_result() #
|
123 |
|
|
# sum.27_56 = PHI <sum.27_11, 0>
|
124 |
|
|
GIMPLE_OMP_RETURN
|
125 |
|
|
|
126 |
|
|
# Creating the atomic operation is done at
|
127 |
|
|
create_call_for_reduction_1() #
|
128 |
|
|
|
129 |
|
|
#pragma omp atomic_load
|
130 |
|
|
D.1839_59 = *&.paral_data_load.33_51->reduction.23;
|
131 |
|
|
D.1840_60 = sum.27_56 + D.1839_59;
|
132 |
|
|
#pragma omp atomic_store (D.1840_60);
|
133 |
|
|
|
134 |
|
|
GIMPLE_OMP_RETURN
|
135 |
|
|
|
136 |
|
|
# collecting the result after the join of the threads is done at
|
137 |
|
|
create_loads_for_reductions().
|
138 |
|
|
The value computed by the threads is loaded from the
|
139 |
|
|
shared struct. #
|
140 |
|
|
|
141 |
|
|
|
142 |
|
|
.paral_data_load.33_52 = &.paral_data_store.32;
|
143 |
|
|
sum_37 = .paral_data_load.33_52->sum.27;
|
144 |
|
|
sum_43 = D.1795_41 + sum_37;
|
145 |
|
|
|
146 |
|
|
exit bb:
|
147 |
|
|
# sum_21 = PHI <sum_43, sum_26>
|
148 |
|
|
printf (&"%d"[0], sum_21);
|
149 |
|
|
|
150 |
|
|
...
|
151 |
|
|
|
152 |
|
|
}
|
153 |
|
|
|
154 |
|
|
*/
|
155 |
|
|
|
156 |
|
|
/* Minimal number of iterations of a loop that should be executed in each
|
157 |
|
|
thread. */
|
158 |
|
|
#define MIN_PER_THREAD 100
|
159 |
|
|
|
160 |
|
|
/* Element of the hashtable, representing a
|
161 |
|
|
reduction in the current loop. */
|
162 |
|
|
struct reduction_info
|
163 |
|
|
{
|
164 |
|
|
gimple reduc_stmt; /* reduction statement. */
|
165 |
|
|
gimple reduc_phi; /* The phi node defining the reduction. */
|
166 |
|
|
enum tree_code reduction_code;/* code for the reduction operation. */
|
167 |
|
|
unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
|
168 |
|
|
result. */
|
169 |
|
|
gimple keep_res; /* The PHI_RESULT of this phi is the resulting value
|
170 |
|
|
of the reduction variable when existing the loop. */
|
171 |
|
|
tree initial_value; /* The initial value of the reduction var before entering the loop. */
|
172 |
|
|
tree field; /* the name of the field in the parloop data structure intended for reduction. */
|
173 |
|
|
tree init; /* reduction initialization value. */
|
174 |
|
|
gimple new_phi; /* (helper field) Newly created phi node whose result
|
175 |
|
|
will be passed to the atomic operation. Represents
|
176 |
|
|
the local result each thread computed for the reduction
|
177 |
|
|
operation. */
|
178 |
|
|
};
|
179 |
|
|
|
180 |
|
|
/* Equality and hash functions for hashtab code. */
|
181 |
|
|
|
182 |
|
|
static int
|
183 |
|
|
reduction_info_eq (const void *aa, const void *bb)
|
184 |
|
|
{
|
185 |
|
|
const struct reduction_info *a = (const struct reduction_info *) aa;
|
186 |
|
|
const struct reduction_info *b = (const struct reduction_info *) bb;
|
187 |
|
|
|
188 |
|
|
return (a->reduc_phi == b->reduc_phi);
|
189 |
|
|
}
|
190 |
|
|
|
191 |
|
|
static hashval_t
|
192 |
|
|
reduction_info_hash (const void *aa)
|
193 |
|
|
{
|
194 |
|
|
const struct reduction_info *a = (const struct reduction_info *) aa;
|
195 |
|
|
|
196 |
|
|
return a->reduc_version;
|
197 |
|
|
}
|
198 |
|
|
|
199 |
|
|
static struct reduction_info *
|
200 |
|
|
reduction_phi (htab_t reduction_list, gimple phi)
|
201 |
|
|
{
|
202 |
|
|
struct reduction_info tmpred, *red;
|
203 |
|
|
|
204 |
|
|
if (htab_elements (reduction_list) == 0 || phi == NULL)
|
205 |
|
|
return NULL;
|
206 |
|
|
|
207 |
|
|
tmpred.reduc_phi = phi;
|
208 |
|
|
tmpred.reduc_version = gimple_uid (phi);
|
209 |
|
|
red = (struct reduction_info *) htab_find (reduction_list, &tmpred);
|
210 |
|
|
|
211 |
|
|
return red;
|
212 |
|
|
}
|
213 |
|
|
|
214 |
|
|
/* Element of hashtable of names to copy. */
|
215 |
|
|
|
216 |
|
|
struct name_to_copy_elt
|
217 |
|
|
{
|
218 |
|
|
unsigned version; /* The version of the name to copy. */
|
219 |
|
|
tree new_name; /* The new name used in the copy. */
|
220 |
|
|
tree field; /* The field of the structure used to pass the
|
221 |
|
|
value. */
|
222 |
|
|
};
|
223 |
|
|
|
224 |
|
|
/* Equality and hash functions for hashtab code. */
|
225 |
|
|
|
226 |
|
|
static int
|
227 |
|
|
name_to_copy_elt_eq (const void *aa, const void *bb)
|
228 |
|
|
{
|
229 |
|
|
const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
|
230 |
|
|
const struct name_to_copy_elt *b = (const struct name_to_copy_elt *) bb;
|
231 |
|
|
|
232 |
|
|
return a->version == b->version;
|
233 |
|
|
}
|
234 |
|
|
|
235 |
|
|
static hashval_t
|
236 |
|
|
name_to_copy_elt_hash (const void *aa)
|
237 |
|
|
{
|
238 |
|
|
const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
|
239 |
|
|
|
240 |
|
|
return (hashval_t) a->version;
|
241 |
|
|
}
|
242 |
|
|
|
243 |
|
|
/* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
|
244 |
|
|
matrix. Rather than use floats, we simply keep a single DENOMINATOR that
|
245 |
|
|
represents the denominator for every element in the matrix. */
|
246 |
|
|
typedef struct lambda_trans_matrix_s
|
247 |
|
|
{
|
248 |
|
|
lambda_matrix matrix;
|
249 |
|
|
int rowsize;
|
250 |
|
|
int colsize;
|
251 |
|
|
int denominator;
|
252 |
|
|
} *lambda_trans_matrix;
|
253 |
|
|
#define LTM_MATRIX(T) ((T)->matrix)
|
254 |
|
|
#define LTM_ROWSIZE(T) ((T)->rowsize)
|
255 |
|
|
#define LTM_COLSIZE(T) ((T)->colsize)
|
256 |
|
|
#define LTM_DENOMINATOR(T) ((T)->denominator)
|
257 |
|
|
|
258 |
|
|
/* Allocate a new transformation matrix. */
|
259 |
|
|
|
260 |
|
|
static lambda_trans_matrix
|
261 |
|
|
lambda_trans_matrix_new (int colsize, int rowsize,
|
262 |
|
|
struct obstack * lambda_obstack)
|
263 |
|
|
{
|
264 |
|
|
lambda_trans_matrix ret;
|
265 |
|
|
|
266 |
|
|
ret = (lambda_trans_matrix)
|
267 |
|
|
obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
|
268 |
|
|
LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
|
269 |
|
|
LTM_ROWSIZE (ret) = rowsize;
|
270 |
|
|
LTM_COLSIZE (ret) = colsize;
|
271 |
|
|
LTM_DENOMINATOR (ret) = 1;
|
272 |
|
|
return ret;
|
273 |
|
|
}
|
274 |
|
|
|
275 |
|
|
/* Multiply a vector VEC by a matrix MAT.
|
276 |
|
|
MAT is an M*N matrix, and VEC is a vector with length N. The result
|
277 |
|
|
is stored in DEST which must be a vector of length M. */
|
278 |
|
|
|
279 |
|
|
static void
|
280 |
|
|
lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
|
281 |
|
|
lambda_vector vec, lambda_vector dest)
|
282 |
|
|
{
|
283 |
|
|
int i, j;
|
284 |
|
|
|
285 |
|
|
lambda_vector_clear (dest, m);
|
286 |
|
|
for (i = 0; i < m; i++)
|
287 |
|
|
for (j = 0; j < n; j++)
|
288 |
|
|
dest[i] += matrix[i][j] * vec[j];
|
289 |
|
|
}
|
290 |
|
|
|
291 |
|
|
/* Return true if TRANS is a legal transformation matrix that respects
|
292 |
|
|
the dependence vectors in DISTS and DIRS. The conservative answer
|
293 |
|
|
is false.
|
294 |
|
|
|
295 |
|
|
"Wolfe proves that a unimodular transformation represented by the
|
296 |
|
|
matrix T is legal when applied to a loop nest with a set of
|
297 |
|
|
lexicographically non-negative distance vectors RDG if and only if
|
298 |
|
|
for each vector d in RDG, (T.d >= 0) is lexicographically positive.
|
299 |
|
|
i.e.: if and only if it transforms the lexicographically positive
|
300 |
|
|
distance vectors to lexicographically positive vectors. Note that
|
301 |
|
|
a unimodular matrix must transform the zero vector (and only it) to
|
302 |
|
|
the zero vector." S.Muchnick. */
|
303 |
|
|
|
304 |
|
|
static bool
|
305 |
|
|
lambda_transform_legal_p (lambda_trans_matrix trans,
|
306 |
|
|
int nb_loops,
|
307 |
|
|
VEC (ddr_p, heap) *dependence_relations)
|
308 |
|
|
{
|
309 |
|
|
unsigned int i, j;
|
310 |
|
|
lambda_vector distres;
|
311 |
|
|
struct data_dependence_relation *ddr;
|
312 |
|
|
|
313 |
|
|
gcc_assert (LTM_COLSIZE (trans) == nb_loops
|
314 |
|
|
&& LTM_ROWSIZE (trans) == nb_loops);
|
315 |
|
|
|
316 |
|
|
/* When there are no dependences, the transformation is correct. */
|
317 |
|
|
if (VEC_length (ddr_p, dependence_relations) == 0)
|
318 |
|
|
return true;
|
319 |
|
|
|
320 |
|
|
ddr = VEC_index (ddr_p, dependence_relations, 0);
|
321 |
|
|
if (ddr == NULL)
|
322 |
|
|
return true;
|
323 |
|
|
|
324 |
|
|
/* When there is an unknown relation in the dependence_relations, we
|
325 |
|
|
know that it is no worth looking at this loop nest: give up. */
|
326 |
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
|
327 |
|
|
return false;
|
328 |
|
|
|
329 |
|
|
distres = lambda_vector_new (nb_loops);
|
330 |
|
|
|
331 |
|
|
/* For each distance vector in the dependence graph. */
|
332 |
|
|
FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr)
|
333 |
|
|
{
|
334 |
|
|
/* Don't care about relations for which we know that there is no
|
335 |
|
|
dependence, nor about read-read (aka. output-dependences):
|
336 |
|
|
these data accesses can happen in any order. */
|
337 |
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_known
|
338 |
|
|
|| (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
|
339 |
|
|
continue;
|
340 |
|
|
|
341 |
|
|
/* Conservatively answer: "this transformation is not valid". */
|
342 |
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
|
343 |
|
|
return false;
|
344 |
|
|
|
345 |
|
|
/* If the dependence could not be captured by a distance vector,
|
346 |
|
|
conservatively answer that the transform is not valid. */
|
347 |
|
|
if (DDR_NUM_DIST_VECTS (ddr) == 0)
|
348 |
|
|
return false;
|
349 |
|
|
|
350 |
|
|
/* Compute trans.dist_vect */
|
351 |
|
|
for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
|
352 |
|
|
{
|
353 |
|
|
lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
|
354 |
|
|
DDR_DIST_VECT (ddr, j), distres);
|
355 |
|
|
|
356 |
|
|
if (!lambda_vector_lexico_pos (distres, nb_loops))
|
357 |
|
|
return false;
|
358 |
|
|
}
|
359 |
|
|
}
|
360 |
|
|
return true;
|
361 |
|
|
}
|
362 |
|
|
|
363 |
|
|
/* Data dependency analysis. Returns true if the iterations of LOOP
|
364 |
|
|
are independent on each other (that is, if we can execute them
|
365 |
|
|
in parallel). */
|
366 |
|
|
|
367 |
|
|
static bool
|
368 |
|
|
loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
|
369 |
|
|
{
|
370 |
|
|
VEC (loop_p, heap) *loop_nest;
|
371 |
|
|
VEC (ddr_p, heap) *dependence_relations;
|
372 |
|
|
VEC (data_reference_p, heap) *datarefs;
|
373 |
|
|
lambda_trans_matrix trans;
|
374 |
|
|
bool ret = false;
|
375 |
|
|
|
376 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
377 |
|
|
{
|
378 |
|
|
fprintf (dump_file, "Considering loop %d\n", loop->num);
|
379 |
|
|
if (!loop->inner)
|
380 |
|
|
fprintf (dump_file, "loop is innermost\n");
|
381 |
|
|
else
|
382 |
|
|
fprintf (dump_file, "loop NOT innermost\n");
|
383 |
|
|
}
|
384 |
|
|
|
385 |
|
|
/* Check for problems with dependences. If the loop can be reversed,
|
386 |
|
|
the iterations are independent. */
|
387 |
|
|
datarefs = VEC_alloc (data_reference_p, heap, 10);
|
388 |
|
|
dependence_relations = VEC_alloc (ddr_p, heap, 10 * 10);
|
389 |
|
|
loop_nest = VEC_alloc (loop_p, heap, 3);
|
390 |
|
|
if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
|
391 |
|
|
&dependence_relations))
|
392 |
|
|
{
|
393 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
394 |
|
|
fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
|
395 |
|
|
ret = false;
|
396 |
|
|
goto end;
|
397 |
|
|
}
|
398 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
399 |
|
|
dump_data_dependence_relations (dump_file, dependence_relations);
|
400 |
|
|
|
401 |
|
|
trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
|
402 |
|
|
LTM_MATRIX (trans)[0][0] = -1;
|
403 |
|
|
|
404 |
|
|
if (lambda_transform_legal_p (trans, 1, dependence_relations))
|
405 |
|
|
{
|
406 |
|
|
ret = true;
|
407 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
408 |
|
|
fprintf (dump_file, " SUCCESS: may be parallelized\n");
|
409 |
|
|
}
|
410 |
|
|
else if (dump_file && (dump_flags & TDF_DETAILS))
|
411 |
|
|
fprintf (dump_file,
|
412 |
|
|
" FAILED: data dependencies exist across iterations\n");
|
413 |
|
|
|
414 |
|
|
end:
|
415 |
|
|
VEC_free (loop_p, heap, loop_nest);
|
416 |
|
|
free_dependence_relations (dependence_relations);
|
417 |
|
|
free_data_refs (datarefs);
|
418 |
|
|
|
419 |
|
|
return ret;
|
420 |
|
|
}
|
421 |
|
|
|
422 |
|
|
/* Return true when LOOP contains basic blocks marked with the
|
423 |
|
|
BB_IRREDUCIBLE_LOOP flag. */
|
424 |
|
|
|
425 |
|
|
static inline bool
|
426 |
|
|
loop_has_blocks_with_irreducible_flag (struct loop *loop)
|
427 |
|
|
{
|
428 |
|
|
unsigned i;
|
429 |
|
|
basic_block *bbs = get_loop_body_in_dom_order (loop);
|
430 |
|
|
bool res = true;
|
431 |
|
|
|
432 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
433 |
|
|
if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
|
434 |
|
|
goto end;
|
435 |
|
|
|
436 |
|
|
res = false;
|
437 |
|
|
end:
|
438 |
|
|
free (bbs);
|
439 |
|
|
return res;
|
440 |
|
|
}
|
441 |
|
|
|
442 |
|
|
/* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
|
443 |
|
|
The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
|
444 |
|
|
to their addresses that can be reused. The address of OBJ is known to
|
445 |
|
|
be invariant in the whole function. Other needed statements are placed
|
446 |
|
|
right before GSI. */
|
447 |
|
|
|
448 |
|
|
static tree
|
449 |
|
|
take_address_of (tree obj, tree type, edge entry, htab_t decl_address,
|
450 |
|
|
gimple_stmt_iterator *gsi)
|
451 |
|
|
{
|
452 |
|
|
int uid;
|
453 |
|
|
void **dslot;
|
454 |
|
|
struct int_tree_map ielt, *nielt;
|
455 |
|
|
tree *var_p, name, bvar, addr;
|
456 |
|
|
gimple stmt;
|
457 |
|
|
gimple_seq stmts;
|
458 |
|
|
|
459 |
|
|
/* Since the address of OBJ is invariant, the trees may be shared.
|
460 |
|
|
Avoid rewriting unrelated parts of the code. */
|
461 |
|
|
obj = unshare_expr (obj);
|
462 |
|
|
for (var_p = &obj;
|
463 |
|
|
handled_component_p (*var_p);
|
464 |
|
|
var_p = &TREE_OPERAND (*var_p, 0))
|
465 |
|
|
continue;
|
466 |
|
|
|
467 |
|
|
/* Canonicalize the access to base on a MEM_REF. */
|
468 |
|
|
if (DECL_P (*var_p))
|
469 |
|
|
*var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
|
470 |
|
|
|
471 |
|
|
/* Assign a canonical SSA name to the address of the base decl used
|
472 |
|
|
in the address and share it for all accesses and addresses based
|
473 |
|
|
on it. */
|
474 |
|
|
uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
|
475 |
|
|
ielt.uid = uid;
|
476 |
|
|
dslot = htab_find_slot_with_hash (decl_address, &ielt, uid, INSERT);
|
477 |
|
|
if (!*dslot)
|
478 |
|
|
{
|
479 |
|
|
if (gsi == NULL)
|
480 |
|
|
return NULL;
|
481 |
|
|
addr = TREE_OPERAND (*var_p, 0);
|
482 |
|
|
bvar = create_tmp_var (TREE_TYPE (addr),
|
483 |
|
|
get_name (TREE_OPERAND
|
484 |
|
|
(TREE_OPERAND (*var_p, 0), 0)));
|
485 |
|
|
add_referenced_var (bvar);
|
486 |
|
|
stmt = gimple_build_assign (bvar, addr);
|
487 |
|
|
name = make_ssa_name (bvar, stmt);
|
488 |
|
|
gimple_assign_set_lhs (stmt, name);
|
489 |
|
|
gsi_insert_on_edge_immediate (entry, stmt);
|
490 |
|
|
|
491 |
|
|
nielt = XNEW (struct int_tree_map);
|
492 |
|
|
nielt->uid = uid;
|
493 |
|
|
nielt->to = name;
|
494 |
|
|
*dslot = nielt;
|
495 |
|
|
}
|
496 |
|
|
else
|
497 |
|
|
name = ((struct int_tree_map *) *dslot)->to;
|
498 |
|
|
|
499 |
|
|
/* Express the address in terms of the canonical SSA name. */
|
500 |
|
|
TREE_OPERAND (*var_p, 0) = name;
|
501 |
|
|
if (gsi == NULL)
|
502 |
|
|
return build_fold_addr_expr_with_type (obj, type);
|
503 |
|
|
|
504 |
|
|
name = force_gimple_operand (build_addr (obj, current_function_decl),
|
505 |
|
|
&stmts, true, NULL_TREE);
|
506 |
|
|
if (!gimple_seq_empty_p (stmts))
|
507 |
|
|
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
508 |
|
|
|
509 |
|
|
if (!useless_type_conversion_p (type, TREE_TYPE (name)))
|
510 |
|
|
{
|
511 |
|
|
name = force_gimple_operand (fold_convert (type, name), &stmts, true,
|
512 |
|
|
NULL_TREE);
|
513 |
|
|
if (!gimple_seq_empty_p (stmts))
|
514 |
|
|
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
515 |
|
|
}
|
516 |
|
|
|
517 |
|
|
return name;
|
518 |
|
|
}
|
519 |
|
|
|
520 |
|
|
/* Callback for htab_traverse. Create the initialization statement
|
521 |
|
|
for reduction described in SLOT, and place it at the preheader of
|
522 |
|
|
the loop described in DATA. */
|
523 |
|
|
|
524 |
|
|
static int
|
525 |
|
|
initialize_reductions (void **slot, void *data)
|
526 |
|
|
{
|
527 |
|
|
tree init, c;
|
528 |
|
|
tree bvar, type, arg;
|
529 |
|
|
edge e;
|
530 |
|
|
|
531 |
|
|
struct reduction_info *const reduc = (struct reduction_info *) *slot;
|
532 |
|
|
struct loop *loop = (struct loop *) data;
|
533 |
|
|
|
534 |
|
|
/* Create initialization in preheader:
|
535 |
|
|
reduction_variable = initialization value of reduction. */
|
536 |
|
|
|
537 |
|
|
/* In the phi node at the header, replace the argument coming
|
538 |
|
|
from the preheader with the reduction initialization value. */
|
539 |
|
|
|
540 |
|
|
/* Create a new variable to initialize the reduction. */
|
541 |
|
|
type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
|
542 |
|
|
bvar = create_tmp_var (type, "reduction");
|
543 |
|
|
add_referenced_var (bvar);
|
544 |
|
|
|
545 |
|
|
c = build_omp_clause (gimple_location (reduc->reduc_stmt),
|
546 |
|
|
OMP_CLAUSE_REDUCTION);
|
547 |
|
|
OMP_CLAUSE_REDUCTION_CODE (c) = reduc->reduction_code;
|
548 |
|
|
OMP_CLAUSE_DECL (c) = SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt));
|
549 |
|
|
|
550 |
|
|
init = omp_reduction_init (c, TREE_TYPE (bvar));
|
551 |
|
|
reduc->init = init;
|
552 |
|
|
|
553 |
|
|
/* Replace the argument representing the initialization value
|
554 |
|
|
with the initialization value for the reduction (neutral
|
555 |
|
|
element for the particular operation, e.g. 0 for PLUS_EXPR,
|
556 |
|
|
1 for MULT_EXPR, etc).
|
557 |
|
|
Keep the old value in a new variable "reduction_initial",
|
558 |
|
|
that will be taken in consideration after the parallel
|
559 |
|
|
computing is done. */
|
560 |
|
|
|
561 |
|
|
e = loop_preheader_edge (loop);
|
562 |
|
|
arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
|
563 |
|
|
/* Create new variable to hold the initial value. */
|
564 |
|
|
|
565 |
|
|
SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
|
566 |
|
|
(reduc->reduc_phi, loop_preheader_edge (loop)), init);
|
567 |
|
|
reduc->initial_value = arg;
|
568 |
|
|
return 1;
|
569 |
|
|
}
|
570 |
|
|
|
571 |
|
|
struct elv_data
|
572 |
|
|
{
|
573 |
|
|
struct walk_stmt_info info;
|
574 |
|
|
edge entry;
|
575 |
|
|
htab_t decl_address;
|
576 |
|
|
gimple_stmt_iterator *gsi;
|
577 |
|
|
bool changed;
|
578 |
|
|
bool reset;
|
579 |
|
|
};
|
580 |
|
|
|
581 |
|
|
/* Eliminates references to local variables in *TP out of the single
|
582 |
|
|
entry single exit region starting at DTA->ENTRY.
|
583 |
|
|
DECL_ADDRESS contains addresses of the references that had their
|
584 |
|
|
address taken already. If the expression is changed, CHANGED is
|
585 |
|
|
set to true. Callback for walk_tree. */
|
586 |
|
|
|
587 |
|
|
static tree
|
588 |
|
|
eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
|
589 |
|
|
{
|
590 |
|
|
struct elv_data *const dta = (struct elv_data *) data;
|
591 |
|
|
tree t = *tp, var, addr, addr_type, type, obj;
|
592 |
|
|
|
593 |
|
|
if (DECL_P (t))
|
594 |
|
|
{
|
595 |
|
|
*walk_subtrees = 0;
|
596 |
|
|
|
597 |
|
|
if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
|
598 |
|
|
return NULL_TREE;
|
599 |
|
|
|
600 |
|
|
type = TREE_TYPE (t);
|
601 |
|
|
addr_type = build_pointer_type (type);
|
602 |
|
|
addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
|
603 |
|
|
dta->gsi);
|
604 |
|
|
if (dta->gsi == NULL && addr == NULL_TREE)
|
605 |
|
|
{
|
606 |
|
|
dta->reset = true;
|
607 |
|
|
return NULL_TREE;
|
608 |
|
|
}
|
609 |
|
|
|
610 |
|
|
*tp = build_simple_mem_ref (addr);
|
611 |
|
|
|
612 |
|
|
dta->changed = true;
|
613 |
|
|
return NULL_TREE;
|
614 |
|
|
}
|
615 |
|
|
|
616 |
|
|
if (TREE_CODE (t) == ADDR_EXPR)
|
617 |
|
|
{
|
618 |
|
|
/* ADDR_EXPR may appear in two contexts:
|
619 |
|
|
-- as a gimple operand, when the address taken is a function invariant
|
620 |
|
|
-- as gimple rhs, when the resulting address in not a function
|
621 |
|
|
invariant
|
622 |
|
|
We do not need to do anything special in the latter case (the base of
|
623 |
|
|
the memory reference whose address is taken may be replaced in the
|
624 |
|
|
DECL_P case). The former case is more complicated, as we need to
|
625 |
|
|
ensure that the new address is still a gimple operand. Thus, it
|
626 |
|
|
is not sufficient to replace just the base of the memory reference --
|
627 |
|
|
we need to move the whole computation of the address out of the
|
628 |
|
|
loop. */
|
629 |
|
|
if (!is_gimple_val (t))
|
630 |
|
|
return NULL_TREE;
|
631 |
|
|
|
632 |
|
|
*walk_subtrees = 0;
|
633 |
|
|
obj = TREE_OPERAND (t, 0);
|
634 |
|
|
var = get_base_address (obj);
|
635 |
|
|
if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
|
636 |
|
|
return NULL_TREE;
|
637 |
|
|
|
638 |
|
|
addr_type = TREE_TYPE (t);
|
639 |
|
|
addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
|
640 |
|
|
dta->gsi);
|
641 |
|
|
if (dta->gsi == NULL && addr == NULL_TREE)
|
642 |
|
|
{
|
643 |
|
|
dta->reset = true;
|
644 |
|
|
return NULL_TREE;
|
645 |
|
|
}
|
646 |
|
|
*tp = addr;
|
647 |
|
|
|
648 |
|
|
dta->changed = true;
|
649 |
|
|
return NULL_TREE;
|
650 |
|
|
}
|
651 |
|
|
|
652 |
|
|
if (!EXPR_P (t))
|
653 |
|
|
*walk_subtrees = 0;
|
654 |
|
|
|
655 |
|
|
return NULL_TREE;
|
656 |
|
|
}
|
657 |
|
|
|
658 |
|
|
/* Moves the references to local variables in STMT at *GSI out of the single
|
659 |
|
|
entry single exit region starting at ENTRY. DECL_ADDRESS contains
|
660 |
|
|
addresses of the references that had their address taken
|
661 |
|
|
already. */
|
662 |
|
|
|
663 |
|
|
static void
|
664 |
|
|
eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
|
665 |
|
|
htab_t decl_address)
|
666 |
|
|
{
|
667 |
|
|
struct elv_data dta;
|
668 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
669 |
|
|
|
670 |
|
|
memset (&dta.info, '\0', sizeof (dta.info));
|
671 |
|
|
dta.entry = entry;
|
672 |
|
|
dta.decl_address = decl_address;
|
673 |
|
|
dta.changed = false;
|
674 |
|
|
dta.reset = false;
|
675 |
|
|
|
676 |
|
|
if (gimple_debug_bind_p (stmt))
|
677 |
|
|
{
|
678 |
|
|
dta.gsi = NULL;
|
679 |
|
|
walk_tree (gimple_debug_bind_get_value_ptr (stmt),
|
680 |
|
|
eliminate_local_variables_1, &dta.info, NULL);
|
681 |
|
|
if (dta.reset)
|
682 |
|
|
{
|
683 |
|
|
gimple_debug_bind_reset_value (stmt);
|
684 |
|
|
dta.changed = true;
|
685 |
|
|
}
|
686 |
|
|
}
|
687 |
|
|
else
|
688 |
|
|
{
|
689 |
|
|
dta.gsi = gsi;
|
690 |
|
|
walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
|
691 |
|
|
}
|
692 |
|
|
|
693 |
|
|
if (dta.changed)
|
694 |
|
|
update_stmt (stmt);
|
695 |
|
|
}
|
696 |
|
|
|
697 |
|
|
/* Eliminates the references to local variables from the single entry
|
698 |
|
|
single exit region between the ENTRY and EXIT edges.
|
699 |
|
|
|
700 |
|
|
This includes:
|
701 |
|
|
1) Taking address of a local variable -- these are moved out of the
|
702 |
|
|
region (and temporary variable is created to hold the address if
|
703 |
|
|
necessary).
|
704 |
|
|
|
705 |
|
|
2) Dereferencing a local variable -- these are replaced with indirect
|
706 |
|
|
references. */
|
707 |
|
|
|
708 |
|
|
static void
|
709 |
|
|
eliminate_local_variables (edge entry, edge exit)
|
710 |
|
|
{
|
711 |
|
|
basic_block bb;
|
712 |
|
|
VEC (basic_block, heap) *body = VEC_alloc (basic_block, heap, 3);
|
713 |
|
|
unsigned i;
|
714 |
|
|
gimple_stmt_iterator gsi;
|
715 |
|
|
bool has_debug_stmt = false;
|
716 |
|
|
htab_t decl_address = htab_create (10, int_tree_map_hash, int_tree_map_eq,
|
717 |
|
|
free);
|
718 |
|
|
basic_block entry_bb = entry->src;
|
719 |
|
|
basic_block exit_bb = exit->dest;
|
720 |
|
|
|
721 |
|
|
gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
|
722 |
|
|
|
723 |
|
|
FOR_EACH_VEC_ELT (basic_block, body, i, bb)
|
724 |
|
|
if (bb != entry_bb && bb != exit_bb)
|
725 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
726 |
|
|
if (is_gimple_debug (gsi_stmt (gsi)))
|
727 |
|
|
{
|
728 |
|
|
if (gimple_debug_bind_p (gsi_stmt (gsi)))
|
729 |
|
|
has_debug_stmt = true;
|
730 |
|
|
}
|
731 |
|
|
else
|
732 |
|
|
eliminate_local_variables_stmt (entry, &gsi, decl_address);
|
733 |
|
|
|
734 |
|
|
if (has_debug_stmt)
|
735 |
|
|
FOR_EACH_VEC_ELT (basic_block, body, i, bb)
|
736 |
|
|
if (bb != entry_bb && bb != exit_bb)
|
737 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
738 |
|
|
if (gimple_debug_bind_p (gsi_stmt (gsi)))
|
739 |
|
|
eliminate_local_variables_stmt (entry, &gsi, decl_address);
|
740 |
|
|
|
741 |
|
|
htab_delete (decl_address);
|
742 |
|
|
VEC_free (basic_block, heap, body);
|
743 |
|
|
}
|
744 |
|
|
|
745 |
|
|
/* Returns true if expression EXPR is not defined between ENTRY and
|
746 |
|
|
EXIT, i.e. if all its operands are defined outside of the region. */
|
747 |
|
|
|
748 |
|
|
static bool
|
749 |
|
|
expr_invariant_in_region_p (edge entry, edge exit, tree expr)
|
750 |
|
|
{
|
751 |
|
|
basic_block entry_bb = entry->src;
|
752 |
|
|
basic_block exit_bb = exit->dest;
|
753 |
|
|
basic_block def_bb;
|
754 |
|
|
|
755 |
|
|
if (is_gimple_min_invariant (expr))
|
756 |
|
|
return true;
|
757 |
|
|
|
758 |
|
|
if (TREE_CODE (expr) == SSA_NAME)
|
759 |
|
|
{
|
760 |
|
|
def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
|
761 |
|
|
if (def_bb
|
762 |
|
|
&& dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
|
763 |
|
|
&& !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
|
764 |
|
|
return false;
|
765 |
|
|
|
766 |
|
|
return true;
|
767 |
|
|
}
|
768 |
|
|
|
769 |
|
|
return false;
|
770 |
|
|
}
|
771 |
|
|
|
772 |
|
|
/* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
|
773 |
|
|
The copies are stored to NAME_COPIES, if NAME was already duplicated,
|
774 |
|
|
its duplicate stored in NAME_COPIES is returned.
|
775 |
|
|
|
776 |
|
|
Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
|
777 |
|
|
duplicated, storing the copies in DECL_COPIES. */
|
778 |
|
|
|
779 |
|
|
static tree
|
780 |
|
|
separate_decls_in_region_name (tree name,
|
781 |
|
|
htab_t name_copies, htab_t decl_copies,
|
782 |
|
|
bool copy_name_p)
|
783 |
|
|
{
|
784 |
|
|
tree copy, var, var_copy;
|
785 |
|
|
unsigned idx, uid, nuid;
|
786 |
|
|
struct int_tree_map ielt, *nielt;
|
787 |
|
|
struct name_to_copy_elt elt, *nelt;
|
788 |
|
|
void **slot, **dslot;
|
789 |
|
|
|
790 |
|
|
if (TREE_CODE (name) != SSA_NAME)
|
791 |
|
|
return name;
|
792 |
|
|
|
793 |
|
|
idx = SSA_NAME_VERSION (name);
|
794 |
|
|
elt.version = idx;
|
795 |
|
|
slot = htab_find_slot_with_hash (name_copies, &elt, idx,
|
796 |
|
|
copy_name_p ? INSERT : NO_INSERT);
|
797 |
|
|
if (slot && *slot)
|
798 |
|
|
return ((struct name_to_copy_elt *) *slot)->new_name;
|
799 |
|
|
|
800 |
|
|
var = SSA_NAME_VAR (name);
|
801 |
|
|
uid = DECL_UID (var);
|
802 |
|
|
ielt.uid = uid;
|
803 |
|
|
dslot = htab_find_slot_with_hash (decl_copies, &ielt, uid, INSERT);
|
804 |
|
|
if (!*dslot)
|
805 |
|
|
{
|
806 |
|
|
var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
|
807 |
|
|
DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
|
808 |
|
|
add_referenced_var (var_copy);
|
809 |
|
|
nielt = XNEW (struct int_tree_map);
|
810 |
|
|
nielt->uid = uid;
|
811 |
|
|
nielt->to = var_copy;
|
812 |
|
|
*dslot = nielt;
|
813 |
|
|
|
814 |
|
|
/* Ensure that when we meet this decl next time, we won't duplicate
|
815 |
|
|
it again. */
|
816 |
|
|
nuid = DECL_UID (var_copy);
|
817 |
|
|
ielt.uid = nuid;
|
818 |
|
|
dslot = htab_find_slot_with_hash (decl_copies, &ielt, nuid, INSERT);
|
819 |
|
|
gcc_assert (!*dslot);
|
820 |
|
|
nielt = XNEW (struct int_tree_map);
|
821 |
|
|
nielt->uid = nuid;
|
822 |
|
|
nielt->to = var_copy;
|
823 |
|
|
*dslot = nielt;
|
824 |
|
|
}
|
825 |
|
|
else
|
826 |
|
|
var_copy = ((struct int_tree_map *) *dslot)->to;
|
827 |
|
|
|
828 |
|
|
if (copy_name_p)
|
829 |
|
|
{
|
830 |
|
|
copy = duplicate_ssa_name (name, NULL);
|
831 |
|
|
nelt = XNEW (struct name_to_copy_elt);
|
832 |
|
|
nelt->version = idx;
|
833 |
|
|
nelt->new_name = copy;
|
834 |
|
|
nelt->field = NULL_TREE;
|
835 |
|
|
*slot = nelt;
|
836 |
|
|
}
|
837 |
|
|
else
|
838 |
|
|
{
|
839 |
|
|
gcc_assert (!slot);
|
840 |
|
|
copy = name;
|
841 |
|
|
}
|
842 |
|
|
|
843 |
|
|
SSA_NAME_VAR (copy) = var_copy;
|
844 |
|
|
return copy;
|
845 |
|
|
}
|
846 |
|
|
|
847 |
|
|
/* Finds the ssa names used in STMT that are defined outside the
|
848 |
|
|
region between ENTRY and EXIT and replaces such ssa names with
|
849 |
|
|
their duplicates. The duplicates are stored to NAME_COPIES. Base
|
850 |
|
|
decls of all ssa names used in STMT (including those defined in
|
851 |
|
|
LOOP) are replaced with the new temporary variables; the
|
852 |
|
|
replacement decls are stored in DECL_COPIES. */
|
853 |
|
|
|
854 |
|
|
static void
|
855 |
|
|
separate_decls_in_region_stmt (edge entry, edge exit, gimple stmt,
|
856 |
|
|
htab_t name_copies, htab_t decl_copies)
|
857 |
|
|
{
|
858 |
|
|
use_operand_p use;
|
859 |
|
|
def_operand_p def;
|
860 |
|
|
ssa_op_iter oi;
|
861 |
|
|
tree name, copy;
|
862 |
|
|
bool copy_name_p;
|
863 |
|
|
|
864 |
|
|
mark_virtual_ops_for_renaming (stmt);
|
865 |
|
|
|
866 |
|
|
FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
|
867 |
|
|
{
|
868 |
|
|
name = DEF_FROM_PTR (def);
|
869 |
|
|
gcc_assert (TREE_CODE (name) == SSA_NAME);
|
870 |
|
|
copy = separate_decls_in_region_name (name, name_copies, decl_copies,
|
871 |
|
|
false);
|
872 |
|
|
gcc_assert (copy == name);
|
873 |
|
|
}
|
874 |
|
|
|
875 |
|
|
FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
|
876 |
|
|
{
|
877 |
|
|
name = USE_FROM_PTR (use);
|
878 |
|
|
if (TREE_CODE (name) != SSA_NAME)
|
879 |
|
|
continue;
|
880 |
|
|
|
881 |
|
|
copy_name_p = expr_invariant_in_region_p (entry, exit, name);
|
882 |
|
|
copy = separate_decls_in_region_name (name, name_copies, decl_copies,
|
883 |
|
|
copy_name_p);
|
884 |
|
|
SET_USE (use, copy);
|
885 |
|
|
}
|
886 |
|
|
}
|
887 |
|
|
|
888 |
|
|
/* Finds the ssa names used in STMT that are defined outside the
|
889 |
|
|
region between ENTRY and EXIT and replaces such ssa names with
|
890 |
|
|
their duplicates. The duplicates are stored to NAME_COPIES. Base
|
891 |
|
|
decls of all ssa names used in STMT (including those defined in
|
892 |
|
|
LOOP) are replaced with the new temporary variables; the
|
893 |
|
|
replacement decls are stored in DECL_COPIES. */
|
894 |
|
|
|
895 |
|
|
static bool
|
896 |
|
|
separate_decls_in_region_debug (gimple stmt, htab_t name_copies,
|
897 |
|
|
htab_t decl_copies)
|
898 |
|
|
{
|
899 |
|
|
use_operand_p use;
|
900 |
|
|
ssa_op_iter oi;
|
901 |
|
|
tree var, name;
|
902 |
|
|
struct int_tree_map ielt;
|
903 |
|
|
struct name_to_copy_elt elt;
|
904 |
|
|
void **slot, **dslot;
|
905 |
|
|
|
906 |
|
|
if (gimple_debug_bind_p (stmt))
|
907 |
|
|
var = gimple_debug_bind_get_var (stmt);
|
908 |
|
|
else if (gimple_debug_source_bind_p (stmt))
|
909 |
|
|
var = gimple_debug_source_bind_get_var (stmt);
|
910 |
|
|
else
|
911 |
|
|
return true;
|
912 |
|
|
if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
|
913 |
|
|
return true;
|
914 |
|
|
gcc_assert (DECL_P (var) && SSA_VAR_P (var));
|
915 |
|
|
ielt.uid = DECL_UID (var);
|
916 |
|
|
dslot = htab_find_slot_with_hash (decl_copies, &ielt, ielt.uid, NO_INSERT);
|
917 |
|
|
if (!dslot)
|
918 |
|
|
return true;
|
919 |
|
|
if (gimple_debug_bind_p (stmt))
|
920 |
|
|
gimple_debug_bind_set_var (stmt, ((struct int_tree_map *) *dslot)->to);
|
921 |
|
|
else if (gimple_debug_source_bind_p (stmt))
|
922 |
|
|
gimple_debug_source_bind_set_var (stmt, ((struct int_tree_map *) *dslot)->to);
|
923 |
|
|
|
924 |
|
|
FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
|
925 |
|
|
{
|
926 |
|
|
name = USE_FROM_PTR (use);
|
927 |
|
|
if (TREE_CODE (name) != SSA_NAME)
|
928 |
|
|
continue;
|
929 |
|
|
|
930 |
|
|
elt.version = SSA_NAME_VERSION (name);
|
931 |
|
|
slot = htab_find_slot_with_hash (name_copies, &elt, elt.version, NO_INSERT);
|
932 |
|
|
if (!slot)
|
933 |
|
|
{
|
934 |
|
|
gimple_debug_bind_reset_value (stmt);
|
935 |
|
|
update_stmt (stmt);
|
936 |
|
|
break;
|
937 |
|
|
}
|
938 |
|
|
|
939 |
|
|
SET_USE (use, ((struct name_to_copy_elt *) *slot)->new_name);
|
940 |
|
|
}
|
941 |
|
|
|
942 |
|
|
return false;
|
943 |
|
|
}
|
944 |
|
|
|
945 |
|
|
/* Callback for htab_traverse. Adds a field corresponding to the reduction
|
946 |
|
|
specified in SLOT. The type is passed in DATA. */
|
947 |
|
|
|
948 |
|
|
static int
|
949 |
|
|
add_field_for_reduction (void **slot, void *data)
|
950 |
|
|
{
|
951 |
|
|
|
952 |
|
|
struct reduction_info *const red = (struct reduction_info *) *slot;
|
953 |
|
|
tree const type = (tree) data;
|
954 |
|
|
tree var = SSA_NAME_VAR (gimple_assign_lhs (red->reduc_stmt));
|
955 |
|
|
tree field = build_decl (gimple_location (red->reduc_stmt),
|
956 |
|
|
FIELD_DECL, DECL_NAME (var), TREE_TYPE (var));
|
957 |
|
|
|
958 |
|
|
insert_field_into_struct (type, field);
|
959 |
|
|
|
960 |
|
|
red->field = field;
|
961 |
|
|
|
962 |
|
|
return 1;
|
963 |
|
|
}
|
964 |
|
|
|
965 |
|
|
/* Callback for htab_traverse. Adds a field corresponding to a ssa name
|
966 |
|
|
described in SLOT. The type is passed in DATA. */
|
967 |
|
|
|
968 |
|
|
static int
|
969 |
|
|
add_field_for_name (void **slot, void *data)
|
970 |
|
|
{
|
971 |
|
|
struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot;
|
972 |
|
|
tree type = (tree) data;
|
973 |
|
|
tree name = ssa_name (elt->version);
|
974 |
|
|
tree var = SSA_NAME_VAR (name);
|
975 |
|
|
tree field = build_decl (DECL_SOURCE_LOCATION (var),
|
976 |
|
|
FIELD_DECL, DECL_NAME (var), TREE_TYPE (var));
|
977 |
|
|
|
978 |
|
|
insert_field_into_struct (type, field);
|
979 |
|
|
elt->field = field;
|
980 |
|
|
|
981 |
|
|
return 1;
|
982 |
|
|
}
|
983 |
|
|
|
984 |
|
|
/* Callback for htab_traverse. A local result is the intermediate result
|
985 |
|
|
computed by a single
|
986 |
|
|
thread, or the initial value in case no iteration was executed.
|
987 |
|
|
This function creates a phi node reflecting these values.
|
988 |
|
|
The phi's result will be stored in NEW_PHI field of the
|
989 |
|
|
reduction's data structure. */
|
990 |
|
|
|
991 |
|
|
static int
|
992 |
|
|
create_phi_for_local_result (void **slot, void *data)
|
993 |
|
|
{
|
994 |
|
|
struct reduction_info *const reduc = (struct reduction_info *) *slot;
|
995 |
|
|
const struct loop *const loop = (const struct loop *) data;
|
996 |
|
|
edge e;
|
997 |
|
|
gimple new_phi;
|
998 |
|
|
basic_block store_bb;
|
999 |
|
|
tree local_res;
|
1000 |
|
|
source_location locus;
|
1001 |
|
|
|
1002 |
|
|
/* STORE_BB is the block where the phi
|
1003 |
|
|
should be stored. It is the destination of the loop exit.
|
1004 |
|
|
(Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
|
1005 |
|
|
store_bb = FALLTHRU_EDGE (loop->latch)->dest;
|
1006 |
|
|
|
1007 |
|
|
/* STORE_BB has two predecessors. One coming from the loop
|
1008 |
|
|
(the reduction's result is computed at the loop),
|
1009 |
|
|
and another coming from a block preceding the loop,
|
1010 |
|
|
when no iterations
|
1011 |
|
|
are executed (the initial value should be taken). */
|
1012 |
|
|
if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (loop->latch))
|
1013 |
|
|
e = EDGE_PRED (store_bb, 1);
|
1014 |
|
|
else
|
1015 |
|
|
e = EDGE_PRED (store_bb, 0);
|
1016 |
|
|
local_res
|
1017 |
|
|
= make_ssa_name (SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt)),
|
1018 |
|
|
NULL);
|
1019 |
|
|
locus = gimple_location (reduc->reduc_stmt);
|
1020 |
|
|
new_phi = create_phi_node (local_res, store_bb);
|
1021 |
|
|
SSA_NAME_DEF_STMT (local_res) = new_phi;
|
1022 |
|
|
add_phi_arg (new_phi, reduc->init, e, locus);
|
1023 |
|
|
add_phi_arg (new_phi, gimple_assign_lhs (reduc->reduc_stmt),
|
1024 |
|
|
FALLTHRU_EDGE (loop->latch), locus);
|
1025 |
|
|
reduc->new_phi = new_phi;
|
1026 |
|
|
|
1027 |
|
|
return 1;
|
1028 |
|
|
}
|
1029 |
|
|
|
1030 |
|
|
struct clsn_data
|
1031 |
|
|
{
|
1032 |
|
|
tree store;
|
1033 |
|
|
tree load;
|
1034 |
|
|
|
1035 |
|
|
basic_block store_bb;
|
1036 |
|
|
basic_block load_bb;
|
1037 |
|
|
};
|
1038 |
|
|
|
1039 |
|
|
/* Callback for htab_traverse. Create an atomic instruction for the
|
1040 |
|
|
reduction described in SLOT.
|
1041 |
|
|
DATA annotates the place in memory the atomic operation relates to,
|
1042 |
|
|
and the basic block it needs to be generated in. */
|
1043 |
|
|
|
1044 |
|
|
static int
|
1045 |
|
|
create_call_for_reduction_1 (void **slot, void *data)
|
1046 |
|
|
{
|
1047 |
|
|
struct reduction_info *const reduc = (struct reduction_info *) *slot;
|
1048 |
|
|
struct clsn_data *const clsn_data = (struct clsn_data *) data;
|
1049 |
|
|
gimple_stmt_iterator gsi;
|
1050 |
|
|
tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
|
1051 |
|
|
tree load_struct;
|
1052 |
|
|
basic_block bb;
|
1053 |
|
|
basic_block new_bb;
|
1054 |
|
|
edge e;
|
1055 |
|
|
tree t, addr, ref, x;
|
1056 |
|
|
tree tmp_load, name;
|
1057 |
|
|
gimple load;
|
1058 |
|
|
|
1059 |
|
|
load_struct = build_simple_mem_ref (clsn_data->load);
|
1060 |
|
|
t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
|
1061 |
|
|
|
1062 |
|
|
addr = build_addr (t, current_function_decl);
|
1063 |
|
|
|
1064 |
|
|
/* Create phi node. */
|
1065 |
|
|
bb = clsn_data->load_bb;
|
1066 |
|
|
|
1067 |
|
|
e = split_block (bb, t);
|
1068 |
|
|
new_bb = e->dest;
|
1069 |
|
|
|
1070 |
|
|
tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)), NULL);
|
1071 |
|
|
add_referenced_var (tmp_load);
|
1072 |
|
|
tmp_load = make_ssa_name (tmp_load, NULL);
|
1073 |
|
|
load = gimple_build_omp_atomic_load (tmp_load, addr);
|
1074 |
|
|
SSA_NAME_DEF_STMT (tmp_load) = load;
|
1075 |
|
|
gsi = gsi_start_bb (new_bb);
|
1076 |
|
|
gsi_insert_after (&gsi, load, GSI_NEW_STMT);
|
1077 |
|
|
|
1078 |
|
|
e = split_block (new_bb, load);
|
1079 |
|
|
new_bb = e->dest;
|
1080 |
|
|
gsi = gsi_start_bb (new_bb);
|
1081 |
|
|
ref = tmp_load;
|
1082 |
|
|
x = fold_build2 (reduc->reduction_code,
|
1083 |
|
|
TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
|
1084 |
|
|
PHI_RESULT (reduc->new_phi));
|
1085 |
|
|
|
1086 |
|
|
name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
|
1087 |
|
|
GSI_CONTINUE_LINKING);
|
1088 |
|
|
|
1089 |
|
|
gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
|
1090 |
|
|
return 1;
|
1091 |
|
|
}
|
1092 |
|
|
|
1093 |
|
|
/* Create the atomic operation at the join point of the threads.
|
1094 |
|
|
REDUCTION_LIST describes the reductions in the LOOP.
|
1095 |
|
|
LD_ST_DATA describes the shared data structure where
|
1096 |
|
|
shared data is stored in and loaded from. */
|
1097 |
|
|
static void
|
1098 |
|
|
create_call_for_reduction (struct loop *loop, htab_t reduction_list,
|
1099 |
|
|
struct clsn_data *ld_st_data)
|
1100 |
|
|
{
|
1101 |
|
|
htab_traverse (reduction_list, create_phi_for_local_result, loop);
|
1102 |
|
|
/* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
|
1103 |
|
|
ld_st_data->load_bb = FALLTHRU_EDGE (loop->latch)->dest;
|
1104 |
|
|
htab_traverse (reduction_list, create_call_for_reduction_1, ld_st_data);
|
1105 |
|
|
}
|
1106 |
|
|
|
1107 |
|
|
/* Callback for htab_traverse. Loads the final reduction value at the
|
1108 |
|
|
join point of all threads, and inserts it in the right place. */
|
1109 |
|
|
|
1110 |
|
|
static int
|
1111 |
|
|
create_loads_for_reductions (void **slot, void *data)
|
1112 |
|
|
{
|
1113 |
|
|
struct reduction_info *const red = (struct reduction_info *) *slot;
|
1114 |
|
|
struct clsn_data *const clsn_data = (struct clsn_data *) data;
|
1115 |
|
|
gimple stmt;
|
1116 |
|
|
gimple_stmt_iterator gsi;
|
1117 |
|
|
tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
|
1118 |
|
|
tree load_struct;
|
1119 |
|
|
tree name;
|
1120 |
|
|
tree x;
|
1121 |
|
|
|
1122 |
|
|
gsi = gsi_after_labels (clsn_data->load_bb);
|
1123 |
|
|
load_struct = build_simple_mem_ref (clsn_data->load);
|
1124 |
|
|
load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
|
1125 |
|
|
NULL_TREE);
|
1126 |
|
|
|
1127 |
|
|
x = load_struct;
|
1128 |
|
|
name = PHI_RESULT (red->keep_res);
|
1129 |
|
|
stmt = gimple_build_assign (name, x);
|
1130 |
|
|
SSA_NAME_DEF_STMT (name) = stmt;
|
1131 |
|
|
|
1132 |
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
1133 |
|
|
|
1134 |
|
|
for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
|
1135 |
|
|
!gsi_end_p (gsi); gsi_next (&gsi))
|
1136 |
|
|
if (gsi_stmt (gsi) == red->keep_res)
|
1137 |
|
|
{
|
1138 |
|
|
remove_phi_node (&gsi, false);
|
1139 |
|
|
return 1;
|
1140 |
|
|
}
|
1141 |
|
|
gcc_unreachable ();
|
1142 |
|
|
}
|
1143 |
|
|
|
1144 |
|
|
/* Load the reduction result that was stored in LD_ST_DATA.
|
1145 |
|
|
REDUCTION_LIST describes the list of reductions that the
|
1146 |
|
|
loads should be generated for. */
|
1147 |
|
|
static void
|
1148 |
|
|
create_final_loads_for_reduction (htab_t reduction_list,
|
1149 |
|
|
struct clsn_data *ld_st_data)
|
1150 |
|
|
{
|
1151 |
|
|
gimple_stmt_iterator gsi;
|
1152 |
|
|
tree t;
|
1153 |
|
|
gimple stmt;
|
1154 |
|
|
|
1155 |
|
|
gsi = gsi_after_labels (ld_st_data->load_bb);
|
1156 |
|
|
t = build_fold_addr_expr (ld_st_data->store);
|
1157 |
|
|
stmt = gimple_build_assign (ld_st_data->load, t);
|
1158 |
|
|
|
1159 |
|
|
gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
|
1160 |
|
|
SSA_NAME_DEF_STMT (ld_st_data->load) = stmt;
|
1161 |
|
|
|
1162 |
|
|
htab_traverse (reduction_list, create_loads_for_reductions, ld_st_data);
|
1163 |
|
|
|
1164 |
|
|
}
|
1165 |
|
|
|
1166 |
|
|
/* Callback for htab_traverse. Store the neutral value for the
|
1167 |
|
|
particular reduction's operation, e.g. 0 for PLUS_EXPR,
|
1168 |
|
|
1 for MULT_EXPR, etc. into the reduction field.
|
1169 |
|
|
The reduction is specified in SLOT. The store information is
|
1170 |
|
|
passed in DATA. */
|
1171 |
|
|
|
1172 |
|
|
static int
|
1173 |
|
|
create_stores_for_reduction (void **slot, void *data)
|
1174 |
|
|
{
|
1175 |
|
|
struct reduction_info *const red = (struct reduction_info *) *slot;
|
1176 |
|
|
struct clsn_data *const clsn_data = (struct clsn_data *) data;
|
1177 |
|
|
tree t;
|
1178 |
|
|
gimple stmt;
|
1179 |
|
|
gimple_stmt_iterator gsi;
|
1180 |
|
|
tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
|
1181 |
|
|
|
1182 |
|
|
gsi = gsi_last_bb (clsn_data->store_bb);
|
1183 |
|
|
t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
|
1184 |
|
|
stmt = gimple_build_assign (t, red->initial_value);
|
1185 |
|
|
mark_virtual_ops_for_renaming (stmt);
|
1186 |
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
1187 |
|
|
|
1188 |
|
|
return 1;
|
1189 |
|
|
}
|
1190 |
|
|
|
1191 |
|
|
/* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
|
1192 |
|
|
store to a field of STORE in STORE_BB for the ssa name and its duplicate
|
1193 |
|
|
specified in SLOT. */
|
1194 |
|
|
|
1195 |
|
|
static int
|
1196 |
|
|
create_loads_and_stores_for_name (void **slot, void *data)
|
1197 |
|
|
{
|
1198 |
|
|
struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot;
|
1199 |
|
|
struct clsn_data *const clsn_data = (struct clsn_data *) data;
|
1200 |
|
|
tree t;
|
1201 |
|
|
gimple stmt;
|
1202 |
|
|
gimple_stmt_iterator gsi;
|
1203 |
|
|
tree type = TREE_TYPE (elt->new_name);
|
1204 |
|
|
tree load_struct;
|
1205 |
|
|
|
1206 |
|
|
gsi = gsi_last_bb (clsn_data->store_bb);
|
1207 |
|
|
t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
|
1208 |
|
|
stmt = gimple_build_assign (t, ssa_name (elt->version));
|
1209 |
|
|
mark_virtual_ops_for_renaming (stmt);
|
1210 |
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
1211 |
|
|
|
1212 |
|
|
gsi = gsi_last_bb (clsn_data->load_bb);
|
1213 |
|
|
load_struct = build_simple_mem_ref (clsn_data->load);
|
1214 |
|
|
t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
|
1215 |
|
|
stmt = gimple_build_assign (elt->new_name, t);
|
1216 |
|
|
SSA_NAME_DEF_STMT (elt->new_name) = stmt;
|
1217 |
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
1218 |
|
|
|
1219 |
|
|
return 1;
|
1220 |
|
|
}
|
1221 |
|
|
|
1222 |
|
|
/* Moves all the variables used in LOOP and defined outside of it (including
|
1223 |
|
|
the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
|
1224 |
|
|
name) to a structure created for this purpose. The code
|
1225 |
|
|
|
1226 |
|
|
while (1)
|
1227 |
|
|
{
|
1228 |
|
|
use (a);
|
1229 |
|
|
use (b);
|
1230 |
|
|
}
|
1231 |
|
|
|
1232 |
|
|
is transformed this way:
|
1233 |
|
|
|
1234 |
|
|
bb0:
|
1235 |
|
|
old.a = a;
|
1236 |
|
|
old.b = b;
|
1237 |
|
|
|
1238 |
|
|
bb1:
|
1239 |
|
|
a' = new->a;
|
1240 |
|
|
b' = new->b;
|
1241 |
|
|
while (1)
|
1242 |
|
|
{
|
1243 |
|
|
use (a');
|
1244 |
|
|
use (b');
|
1245 |
|
|
}
|
1246 |
|
|
|
1247 |
|
|
`old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
|
1248 |
|
|
pointer `new' is intentionally not initialized (the loop will be split to a
|
1249 |
|
|
separate function later, and `new' will be initialized from its arguments).
|
1250 |
|
|
LD_ST_DATA holds information about the shared data structure used to pass
|
1251 |
|
|
information among the threads. It is initialized here, and
|
1252 |
|
|
gen_parallel_loop will pass it to create_call_for_reduction that
|
1253 |
|
|
needs this information. REDUCTION_LIST describes the reductions
|
1254 |
|
|
in LOOP. */
|
1255 |
|
|
|
1256 |
|
|
static void
|
1257 |
|
|
separate_decls_in_region (edge entry, edge exit, htab_t reduction_list,
|
1258 |
|
|
tree *arg_struct, tree *new_arg_struct,
|
1259 |
|
|
struct clsn_data *ld_st_data)
|
1260 |
|
|
|
1261 |
|
|
{
|
1262 |
|
|
basic_block bb1 = split_edge (entry);
|
1263 |
|
|
basic_block bb0 = single_pred (bb1);
|
1264 |
|
|
htab_t name_copies = htab_create (10, name_to_copy_elt_hash,
|
1265 |
|
|
name_to_copy_elt_eq, free);
|
1266 |
|
|
htab_t decl_copies = htab_create (10, int_tree_map_hash, int_tree_map_eq,
|
1267 |
|
|
free);
|
1268 |
|
|
unsigned i;
|
1269 |
|
|
tree type, type_name, nvar;
|
1270 |
|
|
gimple_stmt_iterator gsi;
|
1271 |
|
|
struct clsn_data clsn_data;
|
1272 |
|
|
VEC (basic_block, heap) *body = VEC_alloc (basic_block, heap, 3);
|
1273 |
|
|
basic_block bb;
|
1274 |
|
|
basic_block entry_bb = bb1;
|
1275 |
|
|
basic_block exit_bb = exit->dest;
|
1276 |
|
|
bool has_debug_stmt = false;
|
1277 |
|
|
|
1278 |
|
|
entry = single_succ_edge (entry_bb);
|
1279 |
|
|
gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
|
1280 |
|
|
|
1281 |
|
|
FOR_EACH_VEC_ELT (basic_block, body, i, bb)
|
1282 |
|
|
{
|
1283 |
|
|
if (bb != entry_bb && bb != exit_bb)
|
1284 |
|
|
{
|
1285 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
1286 |
|
|
separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
|
1287 |
|
|
name_copies, decl_copies);
|
1288 |
|
|
|
1289 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
1290 |
|
|
{
|
1291 |
|
|
gimple stmt = gsi_stmt (gsi);
|
1292 |
|
|
|
1293 |
|
|
if (is_gimple_debug (stmt))
|
1294 |
|
|
has_debug_stmt = true;
|
1295 |
|
|
else
|
1296 |
|
|
separate_decls_in_region_stmt (entry, exit, stmt,
|
1297 |
|
|
name_copies, decl_copies);
|
1298 |
|
|
}
|
1299 |
|
|
}
|
1300 |
|
|
}
|
1301 |
|
|
|
1302 |
|
|
/* Now process debug bind stmts. We must not create decls while
|
1303 |
|
|
processing debug stmts, so we defer their processing so as to
|
1304 |
|
|
make sure we will have debug info for as many variables as
|
1305 |
|
|
possible (all of those that were dealt with in the loop above),
|
1306 |
|
|
and discard those for which we know there's nothing we can
|
1307 |
|
|
do. */
|
1308 |
|
|
if (has_debug_stmt)
|
1309 |
|
|
FOR_EACH_VEC_ELT (basic_block, body, i, bb)
|
1310 |
|
|
if (bb != entry_bb && bb != exit_bb)
|
1311 |
|
|
{
|
1312 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
|
1313 |
|
|
{
|
1314 |
|
|
gimple stmt = gsi_stmt (gsi);
|
1315 |
|
|
|
1316 |
|
|
if (is_gimple_debug (stmt))
|
1317 |
|
|
{
|
1318 |
|
|
if (separate_decls_in_region_debug (stmt, name_copies,
|
1319 |
|
|
decl_copies))
|
1320 |
|
|
{
|
1321 |
|
|
gsi_remove (&gsi, true);
|
1322 |
|
|
continue;
|
1323 |
|
|
}
|
1324 |
|
|
}
|
1325 |
|
|
|
1326 |
|
|
gsi_next (&gsi);
|
1327 |
|
|
}
|
1328 |
|
|
}
|
1329 |
|
|
|
1330 |
|
|
VEC_free (basic_block, heap, body);
|
1331 |
|
|
|
1332 |
|
|
if (htab_elements (name_copies) == 0 && htab_elements (reduction_list) == 0)
|
1333 |
|
|
{
|
1334 |
|
|
/* It may happen that there is nothing to copy (if there are only
|
1335 |
|
|
loop carried and external variables in the loop). */
|
1336 |
|
|
*arg_struct = NULL;
|
1337 |
|
|
*new_arg_struct = NULL;
|
1338 |
|
|
}
|
1339 |
|
|
else
|
1340 |
|
|
{
|
1341 |
|
|
/* Create the type for the structure to store the ssa names to. */
|
1342 |
|
|
type = lang_hooks.types.make_type (RECORD_TYPE);
|
1343 |
|
|
type_name = build_decl (UNKNOWN_LOCATION,
|
1344 |
|
|
TYPE_DECL, create_tmp_var_name (".paral_data"),
|
1345 |
|
|
type);
|
1346 |
|
|
TYPE_NAME (type) = type_name;
|
1347 |
|
|
|
1348 |
|
|
htab_traverse (name_copies, add_field_for_name, type);
|
1349 |
|
|
if (reduction_list && htab_elements (reduction_list) > 0)
|
1350 |
|
|
{
|
1351 |
|
|
/* Create the fields for reductions. */
|
1352 |
|
|
htab_traverse (reduction_list, add_field_for_reduction,
|
1353 |
|
|
type);
|
1354 |
|
|
}
|
1355 |
|
|
layout_type (type);
|
1356 |
|
|
|
1357 |
|
|
/* Create the loads and stores. */
|
1358 |
|
|
*arg_struct = create_tmp_var (type, ".paral_data_store");
|
1359 |
|
|
add_referenced_var (*arg_struct);
|
1360 |
|
|
nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
|
1361 |
|
|
add_referenced_var (nvar);
|
1362 |
|
|
*new_arg_struct = make_ssa_name (nvar, NULL);
|
1363 |
|
|
|
1364 |
|
|
ld_st_data->store = *arg_struct;
|
1365 |
|
|
ld_st_data->load = *new_arg_struct;
|
1366 |
|
|
ld_st_data->store_bb = bb0;
|
1367 |
|
|
ld_st_data->load_bb = bb1;
|
1368 |
|
|
|
1369 |
|
|
htab_traverse (name_copies, create_loads_and_stores_for_name,
|
1370 |
|
|
ld_st_data);
|
1371 |
|
|
|
1372 |
|
|
/* Load the calculation from memory (after the join of the threads). */
|
1373 |
|
|
|
1374 |
|
|
if (reduction_list && htab_elements (reduction_list) > 0)
|
1375 |
|
|
{
|
1376 |
|
|
htab_traverse (reduction_list, create_stores_for_reduction,
|
1377 |
|
|
ld_st_data);
|
1378 |
|
|
clsn_data.load = make_ssa_name (nvar, NULL);
|
1379 |
|
|
clsn_data.load_bb = exit->dest;
|
1380 |
|
|
clsn_data.store = ld_st_data->store;
|
1381 |
|
|
create_final_loads_for_reduction (reduction_list, &clsn_data);
|
1382 |
|
|
}
|
1383 |
|
|
}
|
1384 |
|
|
|
1385 |
|
|
htab_delete (decl_copies);
|
1386 |
|
|
htab_delete (name_copies);
|
1387 |
|
|
}
|
1388 |
|
|
|
1389 |
|
|
/* Bitmap containing uids of functions created by parallelization. We cannot
|
1390 |
|
|
allocate it from the default obstack, as it must live across compilation
|
1391 |
|
|
of several functions; we make it gc allocated instead. */
|
1392 |
|
|
|
1393 |
|
|
static GTY(()) bitmap parallelized_functions;
|
1394 |
|
|
|
1395 |
|
|
/* Returns true if FN was created by create_loop_fn. */
|
1396 |
|
|
|
1397 |
|
|
static bool
|
1398 |
|
|
parallelized_function_p (tree fn)
|
1399 |
|
|
{
|
1400 |
|
|
if (!parallelized_functions || !DECL_ARTIFICIAL (fn))
|
1401 |
|
|
return false;
|
1402 |
|
|
|
1403 |
|
|
return bitmap_bit_p (parallelized_functions, DECL_UID (fn));
|
1404 |
|
|
}
|
1405 |
|
|
|
1406 |
|
|
/* Creates and returns an empty function that will receive the body of
|
1407 |
|
|
a parallelized loop. */
|
1408 |
|
|
|
1409 |
|
|
static tree
|
1410 |
|
|
create_loop_fn (location_t loc)
|
1411 |
|
|
{
|
1412 |
|
|
char buf[100];
|
1413 |
|
|
char *tname;
|
1414 |
|
|
tree decl, type, name, t;
|
1415 |
|
|
struct function *act_cfun = cfun;
|
1416 |
|
|
static unsigned loopfn_num;
|
1417 |
|
|
|
1418 |
|
|
snprintf (buf, 100, "%s.$loopfn", current_function_name ());
|
1419 |
|
|
ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
|
1420 |
|
|
clean_symbol_name (tname);
|
1421 |
|
|
name = get_identifier (tname);
|
1422 |
|
|
type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
|
1423 |
|
|
|
1424 |
|
|
decl = build_decl (loc, FUNCTION_DECL, name, type);
|
1425 |
|
|
if (!parallelized_functions)
|
1426 |
|
|
parallelized_functions = BITMAP_GGC_ALLOC ();
|
1427 |
|
|
bitmap_set_bit (parallelized_functions, DECL_UID (decl));
|
1428 |
|
|
|
1429 |
|
|
TREE_STATIC (decl) = 1;
|
1430 |
|
|
TREE_USED (decl) = 1;
|
1431 |
|
|
DECL_ARTIFICIAL (decl) = 1;
|
1432 |
|
|
DECL_IGNORED_P (decl) = 0;
|
1433 |
|
|
TREE_PUBLIC (decl) = 0;
|
1434 |
|
|
DECL_UNINLINABLE (decl) = 1;
|
1435 |
|
|
DECL_EXTERNAL (decl) = 0;
|
1436 |
|
|
DECL_CONTEXT (decl) = NULL_TREE;
|
1437 |
|
|
DECL_INITIAL (decl) = make_node (BLOCK);
|
1438 |
|
|
|
1439 |
|
|
t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
|
1440 |
|
|
DECL_ARTIFICIAL (t) = 1;
|
1441 |
|
|
DECL_IGNORED_P (t) = 1;
|
1442 |
|
|
DECL_RESULT (decl) = t;
|
1443 |
|
|
|
1444 |
|
|
t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
|
1445 |
|
|
ptr_type_node);
|
1446 |
|
|
DECL_ARTIFICIAL (t) = 1;
|
1447 |
|
|
DECL_ARG_TYPE (t) = ptr_type_node;
|
1448 |
|
|
DECL_CONTEXT (t) = decl;
|
1449 |
|
|
TREE_USED (t) = 1;
|
1450 |
|
|
DECL_ARGUMENTS (decl) = t;
|
1451 |
|
|
|
1452 |
|
|
allocate_struct_function (decl, false);
|
1453 |
|
|
|
1454 |
|
|
/* The call to allocate_struct_function clobbers CFUN, so we need to restore
|
1455 |
|
|
it. */
|
1456 |
|
|
set_cfun (act_cfun);
|
1457 |
|
|
|
1458 |
|
|
return decl;
|
1459 |
|
|
}
|
1460 |
|
|
|
1461 |
|
|
/* Moves the exit condition of LOOP to the beginning of its header, and
|
1462 |
|
|
duplicates the part of the last iteration that gets disabled to the
|
1463 |
|
|
exit of the loop. NIT is the number of iterations of the loop
|
1464 |
|
|
(used to initialize the variables in the duplicated part).
|
1465 |
|
|
|
1466 |
|
|
TODO: the common case is that latch of the loop is empty and immediately
|
1467 |
|
|
follows the loop exit. In this case, it would be better not to copy the
|
1468 |
|
|
body of the loop, but only move the entry of the loop directly before the
|
1469 |
|
|
exit check and increase the number of iterations of the loop by one.
|
1470 |
|
|
This may need some additional preconditioning in case NIT = ~0.
|
1471 |
|
|
REDUCTION_LIST describes the reductions in LOOP. */
|
1472 |
|
|
|
1473 |
|
|
static void
|
1474 |
|
|
transform_to_exit_first_loop (struct loop *loop, htab_t reduction_list, tree nit)
|
1475 |
|
|
{
|
1476 |
|
|
basic_block *bbs, *nbbs, ex_bb, orig_header;
|
1477 |
|
|
unsigned n;
|
1478 |
|
|
bool ok;
|
1479 |
|
|
edge exit = single_dom_exit (loop), hpred;
|
1480 |
|
|
tree control, control_name, res, t;
|
1481 |
|
|
gimple phi, nphi, cond_stmt, stmt, cond_nit;
|
1482 |
|
|
gimple_stmt_iterator gsi;
|
1483 |
|
|
tree nit_1;
|
1484 |
|
|
edge exit_1;
|
1485 |
|
|
tree new_rhs;
|
1486 |
|
|
|
1487 |
|
|
split_block_after_labels (loop->header);
|
1488 |
|
|
orig_header = single_succ (loop->header);
|
1489 |
|
|
hpred = single_succ_edge (loop->header);
|
1490 |
|
|
|
1491 |
|
|
cond_stmt = last_stmt (exit->src);
|
1492 |
|
|
control = gimple_cond_lhs (cond_stmt);
|
1493 |
|
|
gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
|
1494 |
|
|
|
1495 |
|
|
/* Make sure that we have phi nodes on exit for all loop header phis
|
1496 |
|
|
(create_parallel_loop requires that). */
|
1497 |
|
|
for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
|
1498 |
|
|
{
|
1499 |
|
|
phi = gsi_stmt (gsi);
|
1500 |
|
|
res = PHI_RESULT (phi);
|
1501 |
|
|
t = make_ssa_name (SSA_NAME_VAR (res), phi);
|
1502 |
|
|
SET_PHI_RESULT (phi, t);
|
1503 |
|
|
nphi = create_phi_node (res, orig_header);
|
1504 |
|
|
SSA_NAME_DEF_STMT (res) = nphi;
|
1505 |
|
|
add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
|
1506 |
|
|
|
1507 |
|
|
if (res == control)
|
1508 |
|
|
{
|
1509 |
|
|
gimple_cond_set_lhs (cond_stmt, t);
|
1510 |
|
|
update_stmt (cond_stmt);
|
1511 |
|
|
control = t;
|
1512 |
|
|
}
|
1513 |
|
|
}
|
1514 |
|
|
|
1515 |
|
|
/* Setting the condition towards peeling the last iteration:
|
1516 |
|
|
If the block consisting of the exit condition has the latch as
|
1517 |
|
|
successor, then the body of the loop is executed before
|
1518 |
|
|
the exit condition is tested. In such case, moving the
|
1519 |
|
|
condition to the entry, causes that the loop will iterate
|
1520 |
|
|
one less iteration (which is the wanted outcome, since we
|
1521 |
|
|
peel out the last iteration). If the body is executed after
|
1522 |
|
|
the condition, moving the condition to the entry requires
|
1523 |
|
|
decrementing one iteration. */
|
1524 |
|
|
exit_1 = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
|
1525 |
|
|
if (exit_1->dest == loop->latch)
|
1526 |
|
|
new_rhs = gimple_cond_rhs (cond_stmt);
|
1527 |
|
|
else
|
1528 |
|
|
{
|
1529 |
|
|
new_rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (gimple_cond_rhs (cond_stmt)),
|
1530 |
|
|
gimple_cond_rhs (cond_stmt),
|
1531 |
|
|
build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt)), 1));
|
1532 |
|
|
if (TREE_CODE (gimple_cond_rhs (cond_stmt)) == SSA_NAME)
|
1533 |
|
|
{
|
1534 |
|
|
basic_block preheader;
|
1535 |
|
|
gimple_stmt_iterator gsi1;
|
1536 |
|
|
|
1537 |
|
|
preheader = loop_preheader_edge(loop)->src;
|
1538 |
|
|
gsi1 = gsi_after_labels (preheader);
|
1539 |
|
|
new_rhs = force_gimple_operand_gsi (&gsi1, new_rhs, true,
|
1540 |
|
|
NULL_TREE,false,GSI_CONTINUE_LINKING);
|
1541 |
|
|
}
|
1542 |
|
|
}
|
1543 |
|
|
gimple_cond_set_rhs (cond_stmt, unshare_expr (new_rhs));
|
1544 |
|
|
gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
|
1545 |
|
|
|
1546 |
|
|
bbs = get_loop_body_in_dom_order (loop);
|
1547 |
|
|
|
1548 |
|
|
for (n = 0; bbs[n] != loop->latch; n++)
|
1549 |
|
|
continue;
|
1550 |
|
|
nbbs = XNEWVEC (basic_block, n);
|
1551 |
|
|
ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
|
1552 |
|
|
bbs + 1, n, nbbs);
|
1553 |
|
|
gcc_assert (ok);
|
1554 |
|
|
free (bbs);
|
1555 |
|
|
ex_bb = nbbs[0];
|
1556 |
|
|
free (nbbs);
|
1557 |
|
|
|
1558 |
|
|
/* Other than reductions, the only gimple reg that should be copied
|
1559 |
|
|
out of the loop is the control variable. */
|
1560 |
|
|
|
1561 |
|
|
control_name = NULL_TREE;
|
1562 |
|
|
for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); )
|
1563 |
|
|
{
|
1564 |
|
|
phi = gsi_stmt (gsi);
|
1565 |
|
|
res = PHI_RESULT (phi);
|
1566 |
|
|
if (!is_gimple_reg (res))
|
1567 |
|
|
{
|
1568 |
|
|
gsi_next (&gsi);
|
1569 |
|
|
continue;
|
1570 |
|
|
}
|
1571 |
|
|
|
1572 |
|
|
/* Check if it is a part of reduction. If it is,
|
1573 |
|
|
keep the phi at the reduction's keep_res field. The
|
1574 |
|
|
PHI_RESULT of this phi is the resulting value of the reduction
|
1575 |
|
|
variable when exiting the loop. */
|
1576 |
|
|
|
1577 |
|
|
exit = single_dom_exit (loop);
|
1578 |
|
|
|
1579 |
|
|
if (htab_elements (reduction_list) > 0)
|
1580 |
|
|
{
|
1581 |
|
|
struct reduction_info *red;
|
1582 |
|
|
|
1583 |
|
|
tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
|
1584 |
|
|
red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
|
1585 |
|
|
if (red)
|
1586 |
|
|
{
|
1587 |
|
|
red->keep_res = phi;
|
1588 |
|
|
gsi_next (&gsi);
|
1589 |
|
|
continue;
|
1590 |
|
|
}
|
1591 |
|
|
}
|
1592 |
|
|
gcc_assert (control_name == NULL_TREE
|
1593 |
|
|
&& SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
|
1594 |
|
|
control_name = res;
|
1595 |
|
|
remove_phi_node (&gsi, false);
|
1596 |
|
|
}
|
1597 |
|
|
gcc_assert (control_name != NULL_TREE);
|
1598 |
|
|
|
1599 |
|
|
/* Initialize the control variable to number of iterations
|
1600 |
|
|
according to the rhs of the exit condition. */
|
1601 |
|
|
gsi = gsi_after_labels (ex_bb);
|
1602 |
|
|
cond_nit = last_stmt (exit->src);
|
1603 |
|
|
nit_1 = gimple_cond_rhs (cond_nit);
|
1604 |
|
|
nit_1 = force_gimple_operand_gsi (&gsi,
|
1605 |
|
|
fold_convert (TREE_TYPE (control_name), nit_1),
|
1606 |
|
|
false, NULL_TREE, false, GSI_SAME_STMT);
|
1607 |
|
|
stmt = gimple_build_assign (control_name, nit_1);
|
1608 |
|
|
gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
|
1609 |
|
|
SSA_NAME_DEF_STMT (control_name) = stmt;
|
1610 |
|
|
}
|
1611 |
|
|
|
1612 |
|
|
/* Create the parallel constructs for LOOP as described in gen_parallel_loop.
|
1613 |
|
|
LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
|
1614 |
|
|
NEW_DATA is the variable that should be initialized from the argument
|
1615 |
|
|
of LOOP_FN. N_THREADS is the requested number of threads. Returns the
|
1616 |
|
|
basic block containing GIMPLE_OMP_PARALLEL tree. */
|
1617 |
|
|
|
1618 |
|
|
static basic_block
|
1619 |
|
|
create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
|
1620 |
|
|
tree new_data, unsigned n_threads, location_t loc)
|
1621 |
|
|
{
|
1622 |
|
|
gimple_stmt_iterator gsi;
|
1623 |
|
|
basic_block bb, paral_bb, for_bb, ex_bb;
|
1624 |
|
|
tree t, param;
|
1625 |
|
|
gimple stmt, for_stmt, phi, cond_stmt;
|
1626 |
|
|
tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
|
1627 |
|
|
edge exit, nexit, guard, end, e;
|
1628 |
|
|
|
1629 |
|
|
/* Prepare the GIMPLE_OMP_PARALLEL statement. */
|
1630 |
|
|
bb = loop_preheader_edge (loop)->src;
|
1631 |
|
|
paral_bb = single_pred (bb);
|
1632 |
|
|
gsi = gsi_last_bb (paral_bb);
|
1633 |
|
|
|
1634 |
|
|
t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
|
1635 |
|
|
OMP_CLAUSE_NUM_THREADS_EXPR (t)
|
1636 |
|
|
= build_int_cst (integer_type_node, n_threads);
|
1637 |
|
|
stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
|
1638 |
|
|
gimple_set_location (stmt, loc);
|
1639 |
|
|
|
1640 |
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
1641 |
|
|
|
1642 |
|
|
/* Initialize NEW_DATA. */
|
1643 |
|
|
if (data)
|
1644 |
|
|
{
|
1645 |
|
|
gsi = gsi_after_labels (bb);
|
1646 |
|
|
|
1647 |
|
|
param = make_ssa_name (DECL_ARGUMENTS (loop_fn), NULL);
|
1648 |
|
|
stmt = gimple_build_assign (param, build_fold_addr_expr (data));
|
1649 |
|
|
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
|
1650 |
|
|
SSA_NAME_DEF_STMT (param) = stmt;
|
1651 |
|
|
|
1652 |
|
|
stmt = gimple_build_assign (new_data,
|
1653 |
|
|
fold_convert (TREE_TYPE (new_data), param));
|
1654 |
|
|
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
|
1655 |
|
|
SSA_NAME_DEF_STMT (new_data) = stmt;
|
1656 |
|
|
}
|
1657 |
|
|
|
1658 |
|
|
/* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
|
1659 |
|
|
bb = split_loop_exit_edge (single_dom_exit (loop));
|
1660 |
|
|
gsi = gsi_last_bb (bb);
|
1661 |
|
|
stmt = gimple_build_omp_return (false);
|
1662 |
|
|
gimple_set_location (stmt, loc);
|
1663 |
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
1664 |
|
|
|
1665 |
|
|
/* Extract data for GIMPLE_OMP_FOR. */
|
1666 |
|
|
gcc_assert (loop->header == single_dom_exit (loop)->src);
|
1667 |
|
|
cond_stmt = last_stmt (loop->header);
|
1668 |
|
|
|
1669 |
|
|
cvar = gimple_cond_lhs (cond_stmt);
|
1670 |
|
|
cvar_base = SSA_NAME_VAR (cvar);
|
1671 |
|
|
phi = SSA_NAME_DEF_STMT (cvar);
|
1672 |
|
|
cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
|
1673 |
|
|
initvar = make_ssa_name (cvar_base, NULL);
|
1674 |
|
|
SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
|
1675 |
|
|
initvar);
|
1676 |
|
|
cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
|
1677 |
|
|
|
1678 |
|
|
gsi = gsi_last_nondebug_bb (loop->latch);
|
1679 |
|
|
gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
|
1680 |
|
|
gsi_remove (&gsi, true);
|
1681 |
|
|
|
1682 |
|
|
/* Prepare cfg. */
|
1683 |
|
|
for_bb = split_edge (loop_preheader_edge (loop));
|
1684 |
|
|
ex_bb = split_loop_exit_edge (single_dom_exit (loop));
|
1685 |
|
|
extract_true_false_edges_from_block (loop->header, &nexit, &exit);
|
1686 |
|
|
gcc_assert (exit == single_dom_exit (loop));
|
1687 |
|
|
|
1688 |
|
|
guard = make_edge (for_bb, ex_bb, 0);
|
1689 |
|
|
single_succ_edge (loop->latch)->flags = 0;
|
1690 |
|
|
end = make_edge (loop->latch, ex_bb, EDGE_FALLTHRU);
|
1691 |
|
|
for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
1692 |
|
|
{
|
1693 |
|
|
source_location locus;
|
1694 |
|
|
tree def;
|
1695 |
|
|
phi = gsi_stmt (gsi);
|
1696 |
|
|
stmt = SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi, exit));
|
1697 |
|
|
|
1698 |
|
|
def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
|
1699 |
|
|
locus = gimple_phi_arg_location_from_edge (stmt,
|
1700 |
|
|
loop_preheader_edge (loop));
|
1701 |
|
|
add_phi_arg (phi, def, guard, locus);
|
1702 |
|
|
|
1703 |
|
|
def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
|
1704 |
|
|
locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
|
1705 |
|
|
add_phi_arg (phi, def, end, locus);
|
1706 |
|
|
}
|
1707 |
|
|
e = redirect_edge_and_branch (exit, nexit->dest);
|
1708 |
|
|
PENDING_STMT (e) = NULL;
|
1709 |
|
|
|
1710 |
|
|
/* Emit GIMPLE_OMP_FOR. */
|
1711 |
|
|
gimple_cond_set_lhs (cond_stmt, cvar_base);
|
1712 |
|
|
type = TREE_TYPE (cvar);
|
1713 |
|
|
t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
|
1714 |
|
|
OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
|
1715 |
|
|
|
1716 |
|
|
for_stmt = gimple_build_omp_for (NULL, t, 1, NULL);
|
1717 |
|
|
gimple_set_location (for_stmt, loc);
|
1718 |
|
|
gimple_omp_for_set_index (for_stmt, 0, initvar);
|
1719 |
|
|
gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
|
1720 |
|
|
gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
|
1721 |
|
|
gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
|
1722 |
|
|
gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
|
1723 |
|
|
cvar_base,
|
1724 |
|
|
build_int_cst (type, 1)));
|
1725 |
|
|
|
1726 |
|
|
gsi = gsi_last_bb (for_bb);
|
1727 |
|
|
gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
|
1728 |
|
|
SSA_NAME_DEF_STMT (initvar) = for_stmt;
|
1729 |
|
|
|
1730 |
|
|
/* Emit GIMPLE_OMP_CONTINUE. */
|
1731 |
|
|
gsi = gsi_last_bb (loop->latch);
|
1732 |
|
|
stmt = gimple_build_omp_continue (cvar_next, cvar);
|
1733 |
|
|
gimple_set_location (stmt, loc);
|
1734 |
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
1735 |
|
|
SSA_NAME_DEF_STMT (cvar_next) = stmt;
|
1736 |
|
|
|
1737 |
|
|
/* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
|
1738 |
|
|
gsi = gsi_last_bb (ex_bb);
|
1739 |
|
|
stmt = gimple_build_omp_return (true);
|
1740 |
|
|
gimple_set_location (stmt, loc);
|
1741 |
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
1742 |
|
|
|
1743 |
|
|
return paral_bb;
|
1744 |
|
|
}
|
1745 |
|
|
|
1746 |
|
|
/* Generates code to execute the iterations of LOOP in N_THREADS
|
1747 |
|
|
threads in parallel.
|
1748 |
|
|
|
1749 |
|
|
NITER describes number of iterations of LOOP.
|
1750 |
|
|
REDUCTION_LIST describes the reductions existent in the LOOP. */
|
1751 |
|
|
|
1752 |
|
|
static void
|
1753 |
|
|
gen_parallel_loop (struct loop *loop, htab_t reduction_list,
|
1754 |
|
|
unsigned n_threads, struct tree_niter_desc *niter)
|
1755 |
|
|
{
|
1756 |
|
|
loop_iterator li;
|
1757 |
|
|
tree many_iterations_cond, type, nit;
|
1758 |
|
|
tree arg_struct, new_arg_struct;
|
1759 |
|
|
gimple_seq stmts;
|
1760 |
|
|
basic_block parallel_head;
|
1761 |
|
|
edge entry, exit;
|
1762 |
|
|
struct clsn_data clsn_data;
|
1763 |
|
|
unsigned prob;
|
1764 |
|
|
location_t loc;
|
1765 |
|
|
gimple cond_stmt;
|
1766 |
|
|
|
1767 |
|
|
/* From
|
1768 |
|
|
|
1769 |
|
|
---------------------------------------------------------------------
|
1770 |
|
|
loop
|
1771 |
|
|
{
|
1772 |
|
|
IV = phi (INIT, IV + STEP)
|
1773 |
|
|
BODY1;
|
1774 |
|
|
if (COND)
|
1775 |
|
|
break;
|
1776 |
|
|
BODY2;
|
1777 |
|
|
}
|
1778 |
|
|
---------------------------------------------------------------------
|
1779 |
|
|
|
1780 |
|
|
with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
|
1781 |
|
|
we generate the following code:
|
1782 |
|
|
|
1783 |
|
|
---------------------------------------------------------------------
|
1784 |
|
|
|
1785 |
|
|
if (MAY_BE_ZERO
|
1786 |
|
|
|| NITER < MIN_PER_THREAD * N_THREADS)
|
1787 |
|
|
goto original;
|
1788 |
|
|
|
1789 |
|
|
BODY1;
|
1790 |
|
|
store all local loop-invariant variables used in body of the loop to DATA.
|
1791 |
|
|
GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
|
1792 |
|
|
load the variables from DATA.
|
1793 |
|
|
GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
|
1794 |
|
|
BODY2;
|
1795 |
|
|
BODY1;
|
1796 |
|
|
GIMPLE_OMP_CONTINUE;
|
1797 |
|
|
GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
|
1798 |
|
|
GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
|
1799 |
|
|
goto end;
|
1800 |
|
|
|
1801 |
|
|
original:
|
1802 |
|
|
loop
|
1803 |
|
|
{
|
1804 |
|
|
IV = phi (INIT, IV + STEP)
|
1805 |
|
|
BODY1;
|
1806 |
|
|
if (COND)
|
1807 |
|
|
break;
|
1808 |
|
|
BODY2;
|
1809 |
|
|
}
|
1810 |
|
|
|
1811 |
|
|
end:
|
1812 |
|
|
|
1813 |
|
|
*/
|
1814 |
|
|
|
1815 |
|
|
/* Create two versions of the loop -- in the old one, we know that the
|
1816 |
|
|
number of iterations is large enough, and we will transform it into the
|
1817 |
|
|
loop that will be split to loop_fn, the new one will be used for the
|
1818 |
|
|
remaining iterations. */
|
1819 |
|
|
|
1820 |
|
|
type = TREE_TYPE (niter->niter);
|
1821 |
|
|
nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
|
1822 |
|
|
NULL_TREE);
|
1823 |
|
|
if (stmts)
|
1824 |
|
|
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
|
1825 |
|
|
|
1826 |
|
|
many_iterations_cond =
|
1827 |
|
|
fold_build2 (GE_EXPR, boolean_type_node,
|
1828 |
|
|
nit, build_int_cst (type, MIN_PER_THREAD * n_threads));
|
1829 |
|
|
many_iterations_cond
|
1830 |
|
|
= fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
1831 |
|
|
invert_truthvalue (unshare_expr (niter->may_be_zero)),
|
1832 |
|
|
many_iterations_cond);
|
1833 |
|
|
many_iterations_cond
|
1834 |
|
|
= force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
|
1835 |
|
|
if (stmts)
|
1836 |
|
|
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
|
1837 |
|
|
if (!is_gimple_condexpr (many_iterations_cond))
|
1838 |
|
|
{
|
1839 |
|
|
many_iterations_cond
|
1840 |
|
|
= force_gimple_operand (many_iterations_cond, &stmts,
|
1841 |
|
|
true, NULL_TREE);
|
1842 |
|
|
if (stmts)
|
1843 |
|
|
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
|
1844 |
|
|
}
|
1845 |
|
|
|
1846 |
|
|
initialize_original_copy_tables ();
|
1847 |
|
|
|
1848 |
|
|
/* We assume that the loop usually iterates a lot. */
|
1849 |
|
|
prob = 4 * REG_BR_PROB_BASE / 5;
|
1850 |
|
|
loop_version (loop, many_iterations_cond, NULL,
|
1851 |
|
|
prob, prob, REG_BR_PROB_BASE - prob, true);
|
1852 |
|
|
update_ssa (TODO_update_ssa);
|
1853 |
|
|
free_original_copy_tables ();
|
1854 |
|
|
|
1855 |
|
|
/* Base all the induction variables in LOOP on a single control one. */
|
1856 |
|
|
canonicalize_loop_ivs (loop, &nit, true);
|
1857 |
|
|
|
1858 |
|
|
/* Ensure that the exit condition is the first statement in the loop. */
|
1859 |
|
|
transform_to_exit_first_loop (loop, reduction_list, nit);
|
1860 |
|
|
|
1861 |
|
|
/* Generate initializations for reductions. */
|
1862 |
|
|
if (htab_elements (reduction_list) > 0)
|
1863 |
|
|
htab_traverse (reduction_list, initialize_reductions, loop);
|
1864 |
|
|
|
1865 |
|
|
/* Eliminate the references to local variables from the loop. */
|
1866 |
|
|
gcc_assert (single_exit (loop));
|
1867 |
|
|
entry = loop_preheader_edge (loop);
|
1868 |
|
|
exit = single_dom_exit (loop);
|
1869 |
|
|
|
1870 |
|
|
eliminate_local_variables (entry, exit);
|
1871 |
|
|
/* In the old loop, move all variables non-local to the loop to a structure
|
1872 |
|
|
and back, and create separate decls for the variables used in loop. */
|
1873 |
|
|
separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
|
1874 |
|
|
&new_arg_struct, &clsn_data);
|
1875 |
|
|
|
1876 |
|
|
/* Create the parallel constructs. */
|
1877 |
|
|
loc = UNKNOWN_LOCATION;
|
1878 |
|
|
cond_stmt = last_stmt (loop->header);
|
1879 |
|
|
if (cond_stmt)
|
1880 |
|
|
loc = gimple_location (cond_stmt);
|
1881 |
|
|
parallel_head = create_parallel_loop (loop, create_loop_fn (loc), arg_struct,
|
1882 |
|
|
new_arg_struct, n_threads, loc);
|
1883 |
|
|
if (htab_elements (reduction_list) > 0)
|
1884 |
|
|
create_call_for_reduction (loop, reduction_list, &clsn_data);
|
1885 |
|
|
|
1886 |
|
|
scev_reset ();
|
1887 |
|
|
|
1888 |
|
|
/* Cancel the loop (it is simpler to do it here rather than to teach the
|
1889 |
|
|
expander to do it). */
|
1890 |
|
|
cancel_loop_tree (loop);
|
1891 |
|
|
|
1892 |
|
|
/* Free loop bound estimations that could contain references to
|
1893 |
|
|
removed statements. */
|
1894 |
|
|
FOR_EACH_LOOP (li, loop, 0)
|
1895 |
|
|
free_numbers_of_iterations_estimates_loop (loop);
|
1896 |
|
|
|
1897 |
|
|
/* Expand the parallel constructs. We do it directly here instead of running
|
1898 |
|
|
a separate expand_omp pass, since it is more efficient, and less likely to
|
1899 |
|
|
cause troubles with further analyses not being able to deal with the
|
1900 |
|
|
OMP trees. */
|
1901 |
|
|
|
1902 |
|
|
omp_expand_local (parallel_head);
|
1903 |
|
|
}
|
1904 |
|
|
|
1905 |
|
|
/* Returns true when LOOP contains vector phi nodes. */
|
1906 |
|
|
|
1907 |
|
|
static bool
|
1908 |
|
|
loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
|
1909 |
|
|
{
|
1910 |
|
|
unsigned i;
|
1911 |
|
|
basic_block *bbs = get_loop_body_in_dom_order (loop);
|
1912 |
|
|
gimple_stmt_iterator gsi;
|
1913 |
|
|
bool res = true;
|
1914 |
|
|
|
1915 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
1916 |
|
|
for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
|
1917 |
|
|
if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi_stmt (gsi)))) == VECTOR_TYPE)
|
1918 |
|
|
goto end;
|
1919 |
|
|
|
1920 |
|
|
res = false;
|
1921 |
|
|
end:
|
1922 |
|
|
free (bbs);
|
1923 |
|
|
return res;
|
1924 |
|
|
}
|
1925 |
|
|
|
1926 |
|
|
/* Create a reduction_info struct, initialize it with REDUC_STMT
|
1927 |
|
|
and PHI, insert it to the REDUCTION_LIST. */
|
1928 |
|
|
|
1929 |
|
|
static void
|
1930 |
|
|
build_new_reduction (htab_t reduction_list, gimple reduc_stmt, gimple phi)
|
1931 |
|
|
{
|
1932 |
|
|
PTR *slot;
|
1933 |
|
|
struct reduction_info *new_reduction;
|
1934 |
|
|
|
1935 |
|
|
gcc_assert (reduc_stmt);
|
1936 |
|
|
|
1937 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1938 |
|
|
{
|
1939 |
|
|
fprintf (dump_file,
|
1940 |
|
|
"Detected reduction. reduction stmt is: \n");
|
1941 |
|
|
print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
|
1942 |
|
|
fprintf (dump_file, "\n");
|
1943 |
|
|
}
|
1944 |
|
|
|
1945 |
|
|
new_reduction = XCNEW (struct reduction_info);
|
1946 |
|
|
|
1947 |
|
|
new_reduction->reduc_stmt = reduc_stmt;
|
1948 |
|
|
new_reduction->reduc_phi = phi;
|
1949 |
|
|
new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
|
1950 |
|
|
new_reduction->reduction_code = gimple_assign_rhs_code (reduc_stmt);
|
1951 |
|
|
slot = htab_find_slot (reduction_list, new_reduction, INSERT);
|
1952 |
|
|
*slot = new_reduction;
|
1953 |
|
|
}
|
1954 |
|
|
|
1955 |
|
|
/* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
|
1956 |
|
|
|
1957 |
|
|
static int
|
1958 |
|
|
set_reduc_phi_uids (void **slot, void *data ATTRIBUTE_UNUSED)
|
1959 |
|
|
{
|
1960 |
|
|
struct reduction_info *const red = (struct reduction_info *) *slot;
|
1961 |
|
|
gimple_set_uid (red->reduc_phi, red->reduc_version);
|
1962 |
|
|
return 1;
|
1963 |
|
|
}
|
1964 |
|
|
|
1965 |
|
|
/* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
|
1966 |
|
|
|
1967 |
|
|
static void
|
1968 |
|
|
gather_scalar_reductions (loop_p loop, htab_t reduction_list)
|
1969 |
|
|
{
|
1970 |
|
|
gimple_stmt_iterator gsi;
|
1971 |
|
|
loop_vec_info simple_loop_info;
|
1972 |
|
|
|
1973 |
|
|
vect_dump = NULL;
|
1974 |
|
|
simple_loop_info = vect_analyze_loop_form (loop);
|
1975 |
|
|
|
1976 |
|
|
for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
|
1977 |
|
|
{
|
1978 |
|
|
gimple phi = gsi_stmt (gsi);
|
1979 |
|
|
affine_iv iv;
|
1980 |
|
|
tree res = PHI_RESULT (phi);
|
1981 |
|
|
bool double_reduc;
|
1982 |
|
|
|
1983 |
|
|
if (!is_gimple_reg (res))
|
1984 |
|
|
continue;
|
1985 |
|
|
|
1986 |
|
|
if (!simple_iv (loop, loop, res, &iv, true)
|
1987 |
|
|
&& simple_loop_info)
|
1988 |
|
|
{
|
1989 |
|
|
gimple reduc_stmt = vect_force_simple_reduction (simple_loop_info,
|
1990 |
|
|
phi, true,
|
1991 |
|
|
&double_reduc);
|
1992 |
|
|
if (reduc_stmt && !double_reduc)
|
1993 |
|
|
build_new_reduction (reduction_list, reduc_stmt, phi);
|
1994 |
|
|
}
|
1995 |
|
|
}
|
1996 |
|
|
destroy_loop_vec_info (simple_loop_info, true);
|
1997 |
|
|
|
1998 |
|
|
/* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
|
1999 |
|
|
and destroy_loop_vec_info, we can set gimple_uid of reduc_phi stmts
|
2000 |
|
|
only now. */
|
2001 |
|
|
htab_traverse (reduction_list, set_reduc_phi_uids, NULL);
|
2002 |
|
|
}
|
2003 |
|
|
|
2004 |
|
|
/* Try to initialize NITER for code generation part. */
|
2005 |
|
|
|
2006 |
|
|
static bool
|
2007 |
|
|
try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
|
2008 |
|
|
{
|
2009 |
|
|
edge exit = single_dom_exit (loop);
|
2010 |
|
|
|
2011 |
|
|
gcc_assert (exit);
|
2012 |
|
|
|
2013 |
|
|
/* We need to know # of iterations, and there should be no uses of values
|
2014 |
|
|
defined inside loop outside of it, unless the values are invariants of
|
2015 |
|
|
the loop. */
|
2016 |
|
|
if (!number_of_iterations_exit (loop, exit, niter, false))
|
2017 |
|
|
{
|
2018 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2019 |
|
|
fprintf (dump_file, " FAILED: number of iterations not known\n");
|
2020 |
|
|
return false;
|
2021 |
|
|
}
|
2022 |
|
|
|
2023 |
|
|
return true;
|
2024 |
|
|
}
|
2025 |
|
|
|
2026 |
|
|
/* Try to initialize REDUCTION_LIST for code generation part.
|
2027 |
|
|
REDUCTION_LIST describes the reductions. */
|
2028 |
|
|
|
2029 |
|
|
static bool
|
2030 |
|
|
try_create_reduction_list (loop_p loop, htab_t reduction_list)
|
2031 |
|
|
{
|
2032 |
|
|
edge exit = single_dom_exit (loop);
|
2033 |
|
|
gimple_stmt_iterator gsi;
|
2034 |
|
|
|
2035 |
|
|
gcc_assert (exit);
|
2036 |
|
|
|
2037 |
|
|
gather_scalar_reductions (loop, reduction_list);
|
2038 |
|
|
|
2039 |
|
|
|
2040 |
|
|
for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
2041 |
|
|
{
|
2042 |
|
|
gimple phi = gsi_stmt (gsi);
|
2043 |
|
|
struct reduction_info *red;
|
2044 |
|
|
imm_use_iterator imm_iter;
|
2045 |
|
|
use_operand_p use_p;
|
2046 |
|
|
gimple reduc_phi;
|
2047 |
|
|
tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
|
2048 |
|
|
|
2049 |
|
|
if (is_gimple_reg (val))
|
2050 |
|
|
{
|
2051 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2052 |
|
|
{
|
2053 |
|
|
fprintf (dump_file, "phi is ");
|
2054 |
|
|
print_gimple_stmt (dump_file, phi, 0, 0);
|
2055 |
|
|
fprintf (dump_file, "arg of phi to exit: value ");
|
2056 |
|
|
print_generic_expr (dump_file, val, 0);
|
2057 |
|
|
fprintf (dump_file, " used outside loop\n");
|
2058 |
|
|
fprintf (dump_file,
|
2059 |
|
|
" checking if it a part of reduction pattern: \n");
|
2060 |
|
|
}
|
2061 |
|
|
if (htab_elements (reduction_list) == 0)
|
2062 |
|
|
{
|
2063 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2064 |
|
|
fprintf (dump_file,
|
2065 |
|
|
" FAILED: it is not a part of reduction.\n");
|
2066 |
|
|
return false;
|
2067 |
|
|
}
|
2068 |
|
|
reduc_phi = NULL;
|
2069 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
|
2070 |
|
|
{
|
2071 |
|
|
if (!gimple_debug_bind_p (USE_STMT (use_p))
|
2072 |
|
|
&& flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
|
2073 |
|
|
{
|
2074 |
|
|
reduc_phi = USE_STMT (use_p);
|
2075 |
|
|
break;
|
2076 |
|
|
}
|
2077 |
|
|
}
|
2078 |
|
|
red = reduction_phi (reduction_list, reduc_phi);
|
2079 |
|
|
if (red == NULL)
|
2080 |
|
|
{
|
2081 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2082 |
|
|
fprintf (dump_file,
|
2083 |
|
|
" FAILED: it is not a part of reduction.\n");
|
2084 |
|
|
return false;
|
2085 |
|
|
}
|
2086 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2087 |
|
|
{
|
2088 |
|
|
fprintf (dump_file, "reduction phi is ");
|
2089 |
|
|
print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
|
2090 |
|
|
fprintf (dump_file, "reduction stmt is ");
|
2091 |
|
|
print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
|
2092 |
|
|
}
|
2093 |
|
|
}
|
2094 |
|
|
}
|
2095 |
|
|
|
2096 |
|
|
/* The iterations of the loop may communicate only through bivs whose
|
2097 |
|
|
iteration space can be distributed efficiently. */
|
2098 |
|
|
for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
|
2099 |
|
|
{
|
2100 |
|
|
gimple phi = gsi_stmt (gsi);
|
2101 |
|
|
tree def = PHI_RESULT (phi);
|
2102 |
|
|
affine_iv iv;
|
2103 |
|
|
|
2104 |
|
|
if (is_gimple_reg (def) && !simple_iv (loop, loop, def, &iv, true))
|
2105 |
|
|
{
|
2106 |
|
|
struct reduction_info *red;
|
2107 |
|
|
|
2108 |
|
|
red = reduction_phi (reduction_list, phi);
|
2109 |
|
|
if (red == NULL)
|
2110 |
|
|
{
|
2111 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2112 |
|
|
fprintf (dump_file,
|
2113 |
|
|
" FAILED: scalar dependency between iterations\n");
|
2114 |
|
|
return false;
|
2115 |
|
|
}
|
2116 |
|
|
}
|
2117 |
|
|
}
|
2118 |
|
|
|
2119 |
|
|
|
2120 |
|
|
return true;
|
2121 |
|
|
}
|
2122 |
|
|
|
2123 |
|
|
/* Detect parallel loops and generate parallel code using libgomp
|
2124 |
|
|
primitives. Returns true if some loop was parallelized, false
|
2125 |
|
|
otherwise. */
|
2126 |
|
|
|
2127 |
|
|
bool
|
2128 |
|
|
parallelize_loops (void)
|
2129 |
|
|
{
|
2130 |
|
|
unsigned n_threads = flag_tree_parallelize_loops;
|
2131 |
|
|
bool changed = false;
|
2132 |
|
|
struct loop *loop;
|
2133 |
|
|
struct tree_niter_desc niter_desc;
|
2134 |
|
|
loop_iterator li;
|
2135 |
|
|
htab_t reduction_list;
|
2136 |
|
|
struct obstack parloop_obstack;
|
2137 |
|
|
HOST_WIDE_INT estimated;
|
2138 |
|
|
LOC loop_loc;
|
2139 |
|
|
|
2140 |
|
|
/* Do not parallelize loops in the functions created by parallelization. */
|
2141 |
|
|
if (parallelized_function_p (cfun->decl))
|
2142 |
|
|
return false;
|
2143 |
|
|
if (cfun->has_nonlocal_label)
|
2144 |
|
|
return false;
|
2145 |
|
|
|
2146 |
|
|
gcc_obstack_init (&parloop_obstack);
|
2147 |
|
|
reduction_list = htab_create (10, reduction_info_hash,
|
2148 |
|
|
reduction_info_eq, free);
|
2149 |
|
|
init_stmt_vec_info_vec ();
|
2150 |
|
|
|
2151 |
|
|
FOR_EACH_LOOP (li, loop, 0)
|
2152 |
|
|
{
|
2153 |
|
|
htab_empty (reduction_list);
|
2154 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2155 |
|
|
{
|
2156 |
|
|
fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
|
2157 |
|
|
if (loop->inner)
|
2158 |
|
|
fprintf (dump_file, "loop %d is not innermost\n",loop->num);
|
2159 |
|
|
else
|
2160 |
|
|
fprintf (dump_file, "loop %d is innermost\n",loop->num);
|
2161 |
|
|
}
|
2162 |
|
|
|
2163 |
|
|
/* If we use autopar in graphite pass, we use its marked dependency
|
2164 |
|
|
checking results. */
|
2165 |
|
|
if (flag_loop_parallelize_all && !loop->can_be_parallel)
|
2166 |
|
|
{
|
2167 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2168 |
|
|
fprintf (dump_file, "loop is not parallel according to graphite\n");
|
2169 |
|
|
continue;
|
2170 |
|
|
}
|
2171 |
|
|
|
2172 |
|
|
if (!single_dom_exit (loop))
|
2173 |
|
|
{
|
2174 |
|
|
|
2175 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2176 |
|
|
fprintf (dump_file, "loop is !single_dom_exit\n");
|
2177 |
|
|
|
2178 |
|
|
continue;
|
2179 |
|
|
}
|
2180 |
|
|
|
2181 |
|
|
if (/* And of course, the loop must be parallelizable. */
|
2182 |
|
|
!can_duplicate_loop_p (loop)
|
2183 |
|
|
|| loop_has_blocks_with_irreducible_flag (loop)
|
2184 |
|
|
|| (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
|
2185 |
|
|
/* FIXME: the check for vector phi nodes could be removed. */
|
2186 |
|
|
|| loop_has_vector_phi_nodes (loop)
|
2187 |
|
|
/* FIXME: transform_to_exit_first_loop does not handle not
|
2188 |
|
|
header-copied loops correctly - see PR46886. */
|
2189 |
|
|
|| !do_while_loop_p (loop))
|
2190 |
|
|
continue;
|
2191 |
|
|
estimated = max_stmt_executions_int (loop, false);
|
2192 |
|
|
/* FIXME: Bypass this check as graphite doesn't update the
|
2193 |
|
|
count and frequency correctly now. */
|
2194 |
|
|
if (!flag_loop_parallelize_all
|
2195 |
|
|
&& ((estimated !=-1
|
2196 |
|
|
&& estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
|
2197 |
|
|
/* Do not bother with loops in cold areas. */
|
2198 |
|
|
|| optimize_loop_nest_for_size_p (loop)))
|
2199 |
|
|
continue;
|
2200 |
|
|
|
2201 |
|
|
if (!try_get_loop_niter (loop, &niter_desc))
|
2202 |
|
|
continue;
|
2203 |
|
|
|
2204 |
|
|
if (!try_create_reduction_list (loop, reduction_list))
|
2205 |
|
|
continue;
|
2206 |
|
|
|
2207 |
|
|
if (!flag_loop_parallelize_all
|
2208 |
|
|
&& !loop_parallel_p (loop, &parloop_obstack))
|
2209 |
|
|
continue;
|
2210 |
|
|
|
2211 |
|
|
changed = true;
|
2212 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2213 |
|
|
{
|
2214 |
|
|
if (loop->inner)
|
2215 |
|
|
fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index);
|
2216 |
|
|
else
|
2217 |
|
|
fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index);
|
2218 |
|
|
loop_loc = find_loop_location (loop);
|
2219 |
|
|
if (loop_loc != UNKNOWN_LOC)
|
2220 |
|
|
fprintf (dump_file, "\nloop at %s:%d: ",
|
2221 |
|
|
LOC_FILE (loop_loc), LOC_LINE (loop_loc));
|
2222 |
|
|
}
|
2223 |
|
|
gen_parallel_loop (loop, reduction_list,
|
2224 |
|
|
n_threads, &niter_desc);
|
2225 |
|
|
verify_flow_info ();
|
2226 |
|
|
verify_dominators (CDI_DOMINATORS);
|
2227 |
|
|
verify_loop_structure ();
|
2228 |
|
|
verify_loop_closed_ssa (true);
|
2229 |
|
|
}
|
2230 |
|
|
|
2231 |
|
|
free_stmt_vec_info_vec ();
|
2232 |
|
|
htab_delete (reduction_list);
|
2233 |
|
|
obstack_free (&parloop_obstack, NULL);
|
2234 |
|
|
|
2235 |
|
|
/* Parallelization will cause new function calls to be inserted through
|
2236 |
|
|
which local variables will escape. Reset the points-to solution
|
2237 |
|
|
for ESCAPED. */
|
2238 |
|
|
if (changed)
|
2239 |
|
|
pt_solution_reset (&cfun->gimple_df->escaped);
|
2240 |
|
|
|
2241 |
|
|
return changed;
|
2242 |
|
|
}
|
2243 |
|
|
|
2244 |
|
|
#include "gt-tree-parloops.h"
|