| 1 |
684 |
jeremybenn |
/* Generic routines for manipulating PHIs
|
| 2 |
|
|
Copyright (C) 2003, 2005, 2007, 2008, 2009, 2010
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GCC.
|
| 6 |
|
|
|
| 7 |
|
|
GCC is free software; you can redistribute it and/or modify
|
| 8 |
|
|
it under the terms of the GNU General Public License as published by
|
| 9 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
| 10 |
|
|
any later version.
|
| 11 |
|
|
|
| 12 |
|
|
GCC is distributed in the hope that it will be useful,
|
| 13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 15 |
|
|
GNU General Public License for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
#include "config.h"
|
| 22 |
|
|
#include "system.h"
|
| 23 |
|
|
#include "coretypes.h"
|
| 24 |
|
|
#include "tm.h"
|
| 25 |
|
|
#include "tree.h"
|
| 26 |
|
|
#include "rtl.h" /* FIXME: Only for ceil_log2, of all things... */
|
| 27 |
|
|
#include "ggc.h"
|
| 28 |
|
|
#include "basic-block.h"
|
| 29 |
|
|
#include "tree-flow.h"
|
| 30 |
|
|
#include "diagnostic-core.h"
|
| 31 |
|
|
#include "gimple.h"
|
| 32 |
|
|
|
| 33 |
|
|
/* Rewriting a function into SSA form can create a huge number of PHIs
|
| 34 |
|
|
many of which may be thrown away shortly after their creation if jumps
|
| 35 |
|
|
were threaded through PHI nodes.
|
| 36 |
|
|
|
| 37 |
|
|
While our garbage collection mechanisms will handle this situation, it
|
| 38 |
|
|
is extremely wasteful to create nodes and throw them away, especially
|
| 39 |
|
|
when the nodes can be reused.
|
| 40 |
|
|
|
| 41 |
|
|
For PR 8361, we can significantly reduce the number of nodes allocated
|
| 42 |
|
|
and thus the total amount of memory allocated by managing PHIs a
|
| 43 |
|
|
little. This additionally helps reduce the amount of work done by the
|
| 44 |
|
|
garbage collector. Similar results have been seen on a wider variety
|
| 45 |
|
|
of tests (such as the compiler itself).
|
| 46 |
|
|
|
| 47 |
|
|
Right now we maintain our free list on a per-function basis. It may
|
| 48 |
|
|
or may not make sense to maintain the free list for the duration of
|
| 49 |
|
|
a compilation unit.
|
| 50 |
|
|
|
| 51 |
|
|
We could also use a zone allocator for these objects since they have
|
| 52 |
|
|
a very well defined lifetime. If someone wants to experiment with that
|
| 53 |
|
|
this is the place to try it.
|
| 54 |
|
|
|
| 55 |
|
|
PHI nodes have different sizes, so we can't have a single list of all
|
| 56 |
|
|
the PHI nodes as it would be too expensive to walk down that list to
|
| 57 |
|
|
find a PHI of a suitable size.
|
| 58 |
|
|
|
| 59 |
|
|
Instead we have an array of lists of free PHI nodes. The array is
|
| 60 |
|
|
indexed by the number of PHI alternatives that PHI node can hold.
|
| 61 |
|
|
Except for the last array member, which holds all remaining PHI
|
| 62 |
|
|
nodes.
|
| 63 |
|
|
|
| 64 |
|
|
So to find a free PHI node, we compute its index into the free PHI
|
| 65 |
|
|
node array and see if there are any elements with an exact match.
|
| 66 |
|
|
If so, then we are done. Otherwise, we test the next larger size
|
| 67 |
|
|
up and continue until we are in the last array element.
|
| 68 |
|
|
|
| 69 |
|
|
We do not actually walk members of the last array element. While it
|
| 70 |
|
|
might allow us to pick up a few reusable PHI nodes, it could potentially
|
| 71 |
|
|
be very expensive if the program has released a bunch of large PHI nodes,
|
| 72 |
|
|
but keeps asking for even larger PHI nodes. Experiments have shown that
|
| 73 |
|
|
walking the elements of the last array entry would result in finding less
|
| 74 |
|
|
than .1% additional reusable PHI nodes.
|
| 75 |
|
|
|
| 76 |
|
|
Note that we can never have less than two PHI argument slots. Thus,
|
| 77 |
|
|
the -2 on all the calculations below. */
|
| 78 |
|
|
|
| 79 |
|
|
#define NUM_BUCKETS 10
|
| 80 |
|
|
static GTY ((deletable (""))) VEC(gimple,gc) *free_phinodes[NUM_BUCKETS - 2];
|
| 81 |
|
|
static unsigned long free_phinode_count;
|
| 82 |
|
|
|
| 83 |
|
|
static int ideal_phi_node_len (int);
|
| 84 |
|
|
|
| 85 |
|
|
#ifdef GATHER_STATISTICS
|
| 86 |
|
|
unsigned int phi_nodes_reused;
|
| 87 |
|
|
unsigned int phi_nodes_created;
|
| 88 |
|
|
#endif
|
| 89 |
|
|
|
| 90 |
|
|
/* Initialize management of PHIs. */
|
| 91 |
|
|
|
| 92 |
|
|
void
|
| 93 |
|
|
init_phinodes (void)
|
| 94 |
|
|
{
|
| 95 |
|
|
int i;
|
| 96 |
|
|
|
| 97 |
|
|
for (i = 0; i < NUM_BUCKETS - 2; i++)
|
| 98 |
|
|
free_phinodes[i] = NULL;
|
| 99 |
|
|
free_phinode_count = 0;
|
| 100 |
|
|
}
|
| 101 |
|
|
|
| 102 |
|
|
/* Finalize management of PHIs. */
|
| 103 |
|
|
|
| 104 |
|
|
void
|
| 105 |
|
|
fini_phinodes (void)
|
| 106 |
|
|
{
|
| 107 |
|
|
int i;
|
| 108 |
|
|
|
| 109 |
|
|
for (i = 0; i < NUM_BUCKETS - 2; i++)
|
| 110 |
|
|
free_phinodes[i] = NULL;
|
| 111 |
|
|
free_phinode_count = 0;
|
| 112 |
|
|
}
|
| 113 |
|
|
|
| 114 |
|
|
/* Dump some simple statistics regarding the re-use of PHI nodes. */
|
| 115 |
|
|
|
| 116 |
|
|
#ifdef GATHER_STATISTICS
|
| 117 |
|
|
void
|
| 118 |
|
|
phinodes_print_statistics (void)
|
| 119 |
|
|
{
|
| 120 |
|
|
fprintf (stderr, "PHI nodes allocated: %u\n", phi_nodes_created);
|
| 121 |
|
|
fprintf (stderr, "PHI nodes reused: %u\n", phi_nodes_reused);
|
| 122 |
|
|
}
|
| 123 |
|
|
#endif
|
| 124 |
|
|
|
| 125 |
|
|
/* Allocate a PHI node with at least LEN arguments. If the free list
|
| 126 |
|
|
happens to contain a PHI node with LEN arguments or more, return
|
| 127 |
|
|
that one. */
|
| 128 |
|
|
|
| 129 |
|
|
static inline gimple
|
| 130 |
|
|
allocate_phi_node (size_t len)
|
| 131 |
|
|
{
|
| 132 |
|
|
gimple phi;
|
| 133 |
|
|
size_t bucket = NUM_BUCKETS - 2;
|
| 134 |
|
|
size_t size = sizeof (struct gimple_statement_phi)
|
| 135 |
|
|
+ (len - 1) * sizeof (struct phi_arg_d);
|
| 136 |
|
|
|
| 137 |
|
|
if (free_phinode_count)
|
| 138 |
|
|
for (bucket = len - 2; bucket < NUM_BUCKETS - 2; bucket++)
|
| 139 |
|
|
if (free_phinodes[bucket])
|
| 140 |
|
|
break;
|
| 141 |
|
|
|
| 142 |
|
|
/* If our free list has an element, then use it. */
|
| 143 |
|
|
if (bucket < NUM_BUCKETS - 2
|
| 144 |
|
|
&& gimple_phi_capacity (VEC_index (gimple, free_phinodes[bucket], 0))
|
| 145 |
|
|
>= len)
|
| 146 |
|
|
{
|
| 147 |
|
|
free_phinode_count--;
|
| 148 |
|
|
phi = VEC_pop (gimple, free_phinodes[bucket]);
|
| 149 |
|
|
if (VEC_empty (gimple, free_phinodes[bucket]))
|
| 150 |
|
|
VEC_free (gimple, gc, free_phinodes[bucket]);
|
| 151 |
|
|
#ifdef GATHER_STATISTICS
|
| 152 |
|
|
phi_nodes_reused++;
|
| 153 |
|
|
#endif
|
| 154 |
|
|
}
|
| 155 |
|
|
else
|
| 156 |
|
|
{
|
| 157 |
|
|
phi = ggc_alloc_gimple_statement_d (size);
|
| 158 |
|
|
#ifdef GATHER_STATISTICS
|
| 159 |
|
|
phi_nodes_created++;
|
| 160 |
|
|
{
|
| 161 |
|
|
enum gimple_alloc_kind kind = gimple_alloc_kind (GIMPLE_PHI);
|
| 162 |
|
|
gimple_alloc_counts[(int) kind]++;
|
| 163 |
|
|
gimple_alloc_sizes[(int) kind] += size;
|
| 164 |
|
|
}
|
| 165 |
|
|
#endif
|
| 166 |
|
|
}
|
| 167 |
|
|
|
| 168 |
|
|
return phi;
|
| 169 |
|
|
}
|
| 170 |
|
|
|
| 171 |
|
|
/* Given LEN, the original number of requested PHI arguments, return
|
| 172 |
|
|
a new, "ideal" length for the PHI node. The "ideal" length rounds
|
| 173 |
|
|
the total size of the PHI node up to the next power of two bytes.
|
| 174 |
|
|
|
| 175 |
|
|
Rounding up will not result in wasting any memory since the size request
|
| 176 |
|
|
will be rounded up by the GC system anyway. [ Note this is not entirely
|
| 177 |
|
|
true since the original length might have fit on one of the special
|
| 178 |
|
|
GC pages. ] By rounding up, we may avoid the need to reallocate the
|
| 179 |
|
|
PHI node later if we increase the number of arguments for the PHI. */
|
| 180 |
|
|
|
| 181 |
|
|
static int
|
| 182 |
|
|
ideal_phi_node_len (int len)
|
| 183 |
|
|
{
|
| 184 |
|
|
size_t size, new_size;
|
| 185 |
|
|
int log2, new_len;
|
| 186 |
|
|
|
| 187 |
|
|
/* We do not support allocations of less than two PHI argument slots. */
|
| 188 |
|
|
if (len < 2)
|
| 189 |
|
|
len = 2;
|
| 190 |
|
|
|
| 191 |
|
|
/* Compute the number of bytes of the original request. */
|
| 192 |
|
|
size = sizeof (struct gimple_statement_phi)
|
| 193 |
|
|
+ (len - 1) * sizeof (struct phi_arg_d);
|
| 194 |
|
|
|
| 195 |
|
|
/* Round it up to the next power of two. */
|
| 196 |
|
|
log2 = ceil_log2 (size);
|
| 197 |
|
|
new_size = 1 << log2;
|
| 198 |
|
|
|
| 199 |
|
|
/* Now compute and return the number of PHI argument slots given an
|
| 200 |
|
|
ideal size allocation. */
|
| 201 |
|
|
new_len = len + (new_size - size) / sizeof (struct phi_arg_d);
|
| 202 |
|
|
return new_len;
|
| 203 |
|
|
}
|
| 204 |
|
|
|
| 205 |
|
|
/* Return a PHI node with LEN argument slots for variable VAR. */
|
| 206 |
|
|
|
| 207 |
|
|
static gimple
|
| 208 |
|
|
make_phi_node (tree var, int len)
|
| 209 |
|
|
{
|
| 210 |
|
|
gimple phi;
|
| 211 |
|
|
int capacity, i;
|
| 212 |
|
|
|
| 213 |
|
|
capacity = ideal_phi_node_len (len);
|
| 214 |
|
|
|
| 215 |
|
|
phi = allocate_phi_node (capacity);
|
| 216 |
|
|
|
| 217 |
|
|
/* We need to clear the entire PHI node, including the argument
|
| 218 |
|
|
portion, because we represent a "missing PHI argument" by placing
|
| 219 |
|
|
NULL_TREE in PHI_ARG_DEF. */
|
| 220 |
|
|
memset (phi, 0, (sizeof (struct gimple_statement_phi)
|
| 221 |
|
|
- sizeof (struct phi_arg_d)
|
| 222 |
|
|
+ sizeof (struct phi_arg_d) * len));
|
| 223 |
|
|
phi->gsbase.code = GIMPLE_PHI;
|
| 224 |
|
|
phi->gimple_phi.nargs = len;
|
| 225 |
|
|
phi->gimple_phi.capacity = capacity;
|
| 226 |
|
|
if (TREE_CODE (var) == SSA_NAME)
|
| 227 |
|
|
gimple_phi_set_result (phi, var);
|
| 228 |
|
|
else
|
| 229 |
|
|
gimple_phi_set_result (phi, make_ssa_name (var, phi));
|
| 230 |
|
|
|
| 231 |
|
|
for (i = 0; i < capacity; i++)
|
| 232 |
|
|
{
|
| 233 |
|
|
use_operand_p imm;
|
| 234 |
|
|
|
| 235 |
|
|
gimple_phi_arg_set_location (phi, i, UNKNOWN_LOCATION);
|
| 236 |
|
|
imm = gimple_phi_arg_imm_use_ptr (phi, i);
|
| 237 |
|
|
imm->use = gimple_phi_arg_def_ptr (phi, i);
|
| 238 |
|
|
imm->prev = NULL;
|
| 239 |
|
|
imm->next = NULL;
|
| 240 |
|
|
imm->loc.stmt = phi;
|
| 241 |
|
|
}
|
| 242 |
|
|
|
| 243 |
|
|
return phi;
|
| 244 |
|
|
}
|
| 245 |
|
|
|
| 246 |
|
|
/* We no longer need PHI, release it so that it may be reused. */
|
| 247 |
|
|
|
| 248 |
|
|
void
|
| 249 |
|
|
release_phi_node (gimple phi)
|
| 250 |
|
|
{
|
| 251 |
|
|
size_t bucket;
|
| 252 |
|
|
size_t len = gimple_phi_capacity (phi);
|
| 253 |
|
|
size_t x;
|
| 254 |
|
|
|
| 255 |
|
|
for (x = 0; x < gimple_phi_num_args (phi); x++)
|
| 256 |
|
|
{
|
| 257 |
|
|
use_operand_p imm;
|
| 258 |
|
|
imm = gimple_phi_arg_imm_use_ptr (phi, x);
|
| 259 |
|
|
delink_imm_use (imm);
|
| 260 |
|
|
}
|
| 261 |
|
|
|
| 262 |
|
|
bucket = len > NUM_BUCKETS - 1 ? NUM_BUCKETS - 1 : len;
|
| 263 |
|
|
bucket -= 2;
|
| 264 |
|
|
VEC_safe_push (gimple, gc, free_phinodes[bucket], phi);
|
| 265 |
|
|
free_phinode_count++;
|
| 266 |
|
|
}
|
| 267 |
|
|
|
| 268 |
|
|
|
| 269 |
|
|
/* Resize an existing PHI node. The only way is up. Return the
|
| 270 |
|
|
possibly relocated phi. */
|
| 271 |
|
|
|
| 272 |
|
|
static void
|
| 273 |
|
|
resize_phi_node (gimple *phi, size_t len)
|
| 274 |
|
|
{
|
| 275 |
|
|
size_t old_size, i;
|
| 276 |
|
|
gimple new_phi;
|
| 277 |
|
|
|
| 278 |
|
|
gcc_assert (len > gimple_phi_capacity (*phi));
|
| 279 |
|
|
|
| 280 |
|
|
/* The garbage collector will not look at the PHI node beyond the
|
| 281 |
|
|
first PHI_NUM_ARGS elements. Therefore, all we have to copy is a
|
| 282 |
|
|
portion of the PHI node currently in use. */
|
| 283 |
|
|
old_size = sizeof (struct gimple_statement_phi)
|
| 284 |
|
|
+ (gimple_phi_num_args (*phi) - 1) * sizeof (struct phi_arg_d);
|
| 285 |
|
|
|
| 286 |
|
|
new_phi = allocate_phi_node (len);
|
| 287 |
|
|
|
| 288 |
|
|
memcpy (new_phi, *phi, old_size);
|
| 289 |
|
|
|
| 290 |
|
|
for (i = 0; i < gimple_phi_num_args (new_phi); i++)
|
| 291 |
|
|
{
|
| 292 |
|
|
use_operand_p imm, old_imm;
|
| 293 |
|
|
imm = gimple_phi_arg_imm_use_ptr (new_phi, i);
|
| 294 |
|
|
old_imm = gimple_phi_arg_imm_use_ptr (*phi, i);
|
| 295 |
|
|
imm->use = gimple_phi_arg_def_ptr (new_phi, i);
|
| 296 |
|
|
relink_imm_use_stmt (imm, old_imm, new_phi);
|
| 297 |
|
|
}
|
| 298 |
|
|
|
| 299 |
|
|
new_phi->gimple_phi.capacity = len;
|
| 300 |
|
|
|
| 301 |
|
|
for (i = gimple_phi_num_args (new_phi); i < len; i++)
|
| 302 |
|
|
{
|
| 303 |
|
|
use_operand_p imm;
|
| 304 |
|
|
|
| 305 |
|
|
gimple_phi_arg_set_location (new_phi, i, UNKNOWN_LOCATION);
|
| 306 |
|
|
imm = gimple_phi_arg_imm_use_ptr (new_phi, i);
|
| 307 |
|
|
imm->use = gimple_phi_arg_def_ptr (new_phi, i);
|
| 308 |
|
|
imm->prev = NULL;
|
| 309 |
|
|
imm->next = NULL;
|
| 310 |
|
|
imm->loc.stmt = new_phi;
|
| 311 |
|
|
}
|
| 312 |
|
|
|
| 313 |
|
|
*phi = new_phi;
|
| 314 |
|
|
}
|
| 315 |
|
|
|
| 316 |
|
|
/* Reserve PHI arguments for a new edge to basic block BB. */
|
| 317 |
|
|
|
| 318 |
|
|
void
|
| 319 |
|
|
reserve_phi_args_for_new_edge (basic_block bb)
|
| 320 |
|
|
{
|
| 321 |
|
|
size_t len = EDGE_COUNT (bb->preds);
|
| 322 |
|
|
size_t cap = ideal_phi_node_len (len + 4);
|
| 323 |
|
|
gimple_stmt_iterator gsi;
|
| 324 |
|
|
|
| 325 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 326 |
|
|
{
|
| 327 |
|
|
gimple *loc = gsi_stmt_ptr (&gsi);
|
| 328 |
|
|
|
| 329 |
|
|
if (len > gimple_phi_capacity (*loc))
|
| 330 |
|
|
{
|
| 331 |
|
|
gimple old_phi = *loc;
|
| 332 |
|
|
|
| 333 |
|
|
resize_phi_node (loc, cap);
|
| 334 |
|
|
|
| 335 |
|
|
/* The result of the PHI is defined by this PHI node. */
|
| 336 |
|
|
SSA_NAME_DEF_STMT (gimple_phi_result (*loc)) = *loc;
|
| 337 |
|
|
|
| 338 |
|
|
release_phi_node (old_phi);
|
| 339 |
|
|
}
|
| 340 |
|
|
|
| 341 |
|
|
/* We represent a "missing PHI argument" by placing NULL_TREE in
|
| 342 |
|
|
the corresponding slot. If PHI arguments were added
|
| 343 |
|
|
immediately after an edge is created, this zeroing would not
|
| 344 |
|
|
be necessary, but unfortunately this is not the case. For
|
| 345 |
|
|
example, the loop optimizer duplicates several basic blocks,
|
| 346 |
|
|
redirects edges, and then fixes up PHI arguments later in
|
| 347 |
|
|
batch. */
|
| 348 |
|
|
SET_PHI_ARG_DEF (*loc, len - 1, NULL_TREE);
|
| 349 |
|
|
|
| 350 |
|
|
(*loc)->gimple_phi.nargs++;
|
| 351 |
|
|
}
|
| 352 |
|
|
}
|
| 353 |
|
|
|
| 354 |
|
|
/* Adds PHI to BB. */
|
| 355 |
|
|
|
| 356 |
|
|
void
|
| 357 |
|
|
add_phi_node_to_bb (gimple phi, basic_block bb)
|
| 358 |
|
|
{
|
| 359 |
|
|
gimple_stmt_iterator gsi;
|
| 360 |
|
|
/* Add the new PHI node to the list of PHI nodes for block BB. */
|
| 361 |
|
|
if (phi_nodes (bb) == NULL)
|
| 362 |
|
|
set_phi_nodes (bb, gimple_seq_alloc ());
|
| 363 |
|
|
|
| 364 |
|
|
gsi = gsi_last (phi_nodes (bb));
|
| 365 |
|
|
gsi_insert_after (&gsi, phi, GSI_NEW_STMT);
|
| 366 |
|
|
|
| 367 |
|
|
/* Associate BB to the PHI node. */
|
| 368 |
|
|
gimple_set_bb (phi, bb);
|
| 369 |
|
|
|
| 370 |
|
|
}
|
| 371 |
|
|
|
| 372 |
|
|
/* Create a new PHI node for variable VAR at basic block BB. */
|
| 373 |
|
|
|
| 374 |
|
|
gimple
|
| 375 |
|
|
create_phi_node (tree var, basic_block bb)
|
| 376 |
|
|
{
|
| 377 |
|
|
gimple phi = make_phi_node (var, EDGE_COUNT (bb->preds));
|
| 378 |
|
|
|
| 379 |
|
|
add_phi_node_to_bb (phi, bb);
|
| 380 |
|
|
return phi;
|
| 381 |
|
|
}
|
| 382 |
|
|
|
| 383 |
|
|
|
| 384 |
|
|
/* Add a new argument to PHI node PHI. DEF is the incoming reaching
|
| 385 |
|
|
definition and E is the edge through which DEF reaches PHI. The new
|
| 386 |
|
|
argument is added at the end of the argument list.
|
| 387 |
|
|
If PHI has reached its maximum capacity, add a few slots. In this case,
|
| 388 |
|
|
PHI points to the reallocated phi node when we return. */
|
| 389 |
|
|
|
| 390 |
|
|
void
|
| 391 |
|
|
add_phi_arg (gimple phi, tree def, edge e, source_location locus)
|
| 392 |
|
|
{
|
| 393 |
|
|
basic_block bb = e->dest;
|
| 394 |
|
|
|
| 395 |
|
|
gcc_assert (bb == gimple_bb (phi));
|
| 396 |
|
|
|
| 397 |
|
|
/* We resize PHI nodes upon edge creation. We should always have
|
| 398 |
|
|
enough room at this point. */
|
| 399 |
|
|
gcc_assert (gimple_phi_num_args (phi) <= gimple_phi_capacity (phi));
|
| 400 |
|
|
|
| 401 |
|
|
/* We resize PHI nodes upon edge creation. We should always have
|
| 402 |
|
|
enough room at this point. */
|
| 403 |
|
|
gcc_assert (e->dest_idx < gimple_phi_num_args (phi));
|
| 404 |
|
|
|
| 405 |
|
|
/* Copy propagation needs to know what object occur in abnormal
|
| 406 |
|
|
PHI nodes. This is a convenient place to record such information. */
|
| 407 |
|
|
if (e->flags & EDGE_ABNORMAL)
|
| 408 |
|
|
{
|
| 409 |
|
|
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def) = 1;
|
| 410 |
|
|
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)) = 1;
|
| 411 |
|
|
}
|
| 412 |
|
|
|
| 413 |
|
|
SET_PHI_ARG_DEF (phi, e->dest_idx, def);
|
| 414 |
|
|
gimple_phi_arg_set_location (phi, e->dest_idx, locus);
|
| 415 |
|
|
}
|
| 416 |
|
|
|
| 417 |
|
|
|
| 418 |
|
|
/* Remove the Ith argument from PHI's argument list. This routine
|
| 419 |
|
|
implements removal by swapping the last alternative with the
|
| 420 |
|
|
alternative we want to delete and then shrinking the vector, which
|
| 421 |
|
|
is consistent with how we remove an edge from the edge vector. */
|
| 422 |
|
|
|
| 423 |
|
|
static void
|
| 424 |
|
|
remove_phi_arg_num (gimple phi, int i)
|
| 425 |
|
|
{
|
| 426 |
|
|
int num_elem = gimple_phi_num_args (phi);
|
| 427 |
|
|
|
| 428 |
|
|
gcc_assert (i < num_elem);
|
| 429 |
|
|
|
| 430 |
|
|
/* Delink the item which is being removed. */
|
| 431 |
|
|
delink_imm_use (gimple_phi_arg_imm_use_ptr (phi, i));
|
| 432 |
|
|
|
| 433 |
|
|
/* If it is not the last element, move the last element
|
| 434 |
|
|
to the element we want to delete, resetting all the links. */
|
| 435 |
|
|
if (i != num_elem - 1)
|
| 436 |
|
|
{
|
| 437 |
|
|
use_operand_p old_p, new_p;
|
| 438 |
|
|
old_p = gimple_phi_arg_imm_use_ptr (phi, num_elem - 1);
|
| 439 |
|
|
new_p = gimple_phi_arg_imm_use_ptr (phi, i);
|
| 440 |
|
|
/* Set use on new node, and link into last element's place. */
|
| 441 |
|
|
*(new_p->use) = *(old_p->use);
|
| 442 |
|
|
relink_imm_use (new_p, old_p);
|
| 443 |
|
|
/* Move the location as well. */
|
| 444 |
|
|
gimple_phi_arg_set_location (phi, i,
|
| 445 |
|
|
gimple_phi_arg_location (phi, num_elem - 1));
|
| 446 |
|
|
}
|
| 447 |
|
|
|
| 448 |
|
|
/* Shrink the vector and return. Note that we do not have to clear
|
| 449 |
|
|
PHI_ARG_DEF because the garbage collector will not look at those
|
| 450 |
|
|
elements beyond the first PHI_NUM_ARGS elements of the array. */
|
| 451 |
|
|
phi->gimple_phi.nargs--;
|
| 452 |
|
|
}
|
| 453 |
|
|
|
| 454 |
|
|
|
| 455 |
|
|
/* Remove all PHI arguments associated with edge E. */
|
| 456 |
|
|
|
| 457 |
|
|
void
|
| 458 |
|
|
remove_phi_args (edge e)
|
| 459 |
|
|
{
|
| 460 |
|
|
gimple_stmt_iterator gsi;
|
| 461 |
|
|
|
| 462 |
|
|
for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 463 |
|
|
remove_phi_arg_num (gsi_stmt (gsi), e->dest_idx);
|
| 464 |
|
|
}
|
| 465 |
|
|
|
| 466 |
|
|
|
| 467 |
|
|
/* Remove the PHI node pointed-to by iterator GSI from basic block BB. After
|
| 468 |
|
|
removal, iterator GSI is updated to point to the next PHI node in the
|
| 469 |
|
|
sequence. If RELEASE_LHS_P is true, the LHS of this PHI node is released
|
| 470 |
|
|
into the free pool of SSA names. */
|
| 471 |
|
|
|
| 472 |
|
|
void
|
| 473 |
|
|
remove_phi_node (gimple_stmt_iterator *gsi, bool release_lhs_p)
|
| 474 |
|
|
{
|
| 475 |
|
|
gimple phi = gsi_stmt (*gsi);
|
| 476 |
|
|
|
| 477 |
|
|
if (release_lhs_p)
|
| 478 |
|
|
insert_debug_temps_for_defs (gsi);
|
| 479 |
|
|
|
| 480 |
|
|
gsi_remove (gsi, false);
|
| 481 |
|
|
|
| 482 |
|
|
/* If we are deleting the PHI node, then we should release the
|
| 483 |
|
|
SSA_NAME node so that it can be reused. */
|
| 484 |
|
|
release_phi_node (phi);
|
| 485 |
|
|
if (release_lhs_p)
|
| 486 |
|
|
release_ssa_name (gimple_phi_result (phi));
|
| 487 |
|
|
}
|
| 488 |
|
|
|
| 489 |
|
|
/* Remove all the phi nodes from BB. */
|
| 490 |
|
|
|
| 491 |
|
|
void
|
| 492 |
|
|
remove_phi_nodes (basic_block bb)
|
| 493 |
|
|
{
|
| 494 |
|
|
gimple_stmt_iterator gsi;
|
| 495 |
|
|
|
| 496 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
|
| 497 |
|
|
remove_phi_node (&gsi, true);
|
| 498 |
|
|
|
| 499 |
|
|
set_phi_nodes (bb, NULL);
|
| 500 |
|
|
}
|
| 501 |
|
|
|
| 502 |
|
|
#include "gt-tree-phinodes.h"
|