| 1 |
684 |
jeremybenn |
/* Coalesce SSA_NAMES together for the out-of-ssa pass.
|
| 2 |
|
|
Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
Contributed by Andrew MacLeod <amacleod@redhat.com>
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GCC.
|
| 7 |
|
|
|
| 8 |
|
|
GCC is free software; you can redistribute it and/or modify
|
| 9 |
|
|
it under the terms of the GNU General Public License as published by
|
| 10 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
| 11 |
|
|
any later version.
|
| 12 |
|
|
|
| 13 |
|
|
GCC is distributed in the hope that it will be useful,
|
| 14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 16 |
|
|
GNU General Public License for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 20 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
#include "config.h"
|
| 23 |
|
|
#include "system.h"
|
| 24 |
|
|
#include "coretypes.h"
|
| 25 |
|
|
#include "tm.h"
|
| 26 |
|
|
#include "tree.h"
|
| 27 |
|
|
#include "flags.h"
|
| 28 |
|
|
#include "tree-pretty-print.h"
|
| 29 |
|
|
#include "bitmap.h"
|
| 30 |
|
|
#include "tree-flow.h"
|
| 31 |
|
|
#include "hashtab.h"
|
| 32 |
|
|
#include "tree-dump.h"
|
| 33 |
|
|
#include "tree-ssa-live.h"
|
| 34 |
|
|
#include "diagnostic-core.h"
|
| 35 |
|
|
|
| 36 |
|
|
|
| 37 |
|
|
/* This set of routines implements a coalesce_list. This is an object which
|
| 38 |
|
|
is used to track pairs of ssa_names which are desirable to coalesce
|
| 39 |
|
|
together to avoid copies. Costs are associated with each pair, and when
|
| 40 |
|
|
all desired information has been collected, the object can be used to
|
| 41 |
|
|
order the pairs for processing. */
|
| 42 |
|
|
|
| 43 |
|
|
/* This structure defines a pair entry. */
|
| 44 |
|
|
|
| 45 |
|
|
typedef struct coalesce_pair
|
| 46 |
|
|
{
|
| 47 |
|
|
int first_element;
|
| 48 |
|
|
int second_element;
|
| 49 |
|
|
int cost;
|
| 50 |
|
|
} * coalesce_pair_p;
|
| 51 |
|
|
typedef const struct coalesce_pair *const_coalesce_pair_p;
|
| 52 |
|
|
|
| 53 |
|
|
typedef struct cost_one_pair_d
|
| 54 |
|
|
{
|
| 55 |
|
|
int first_element;
|
| 56 |
|
|
int second_element;
|
| 57 |
|
|
struct cost_one_pair_d *next;
|
| 58 |
|
|
} * cost_one_pair_p;
|
| 59 |
|
|
|
| 60 |
|
|
/* This structure maintains the list of coalesce pairs. */
|
| 61 |
|
|
|
| 62 |
|
|
typedef struct coalesce_list_d
|
| 63 |
|
|
{
|
| 64 |
|
|
htab_t list; /* Hash table. */
|
| 65 |
|
|
coalesce_pair_p *sorted; /* List when sorted. */
|
| 66 |
|
|
int num_sorted; /* Number in the sorted list. */
|
| 67 |
|
|
cost_one_pair_p cost_one_list;/* Single use coalesces with cost 1. */
|
| 68 |
|
|
} *coalesce_list_p;
|
| 69 |
|
|
|
| 70 |
|
|
#define NO_BEST_COALESCE -1
|
| 71 |
|
|
#define MUST_COALESCE_COST INT_MAX
|
| 72 |
|
|
|
| 73 |
|
|
|
| 74 |
|
|
/* Return cost of execution of copy instruction with FREQUENCY. */
|
| 75 |
|
|
|
| 76 |
|
|
static inline int
|
| 77 |
|
|
coalesce_cost (int frequency, bool optimize_for_size)
|
| 78 |
|
|
{
|
| 79 |
|
|
/* Base costs on BB frequencies bounded by 1. */
|
| 80 |
|
|
int cost = frequency;
|
| 81 |
|
|
|
| 82 |
|
|
if (!cost)
|
| 83 |
|
|
cost = 1;
|
| 84 |
|
|
|
| 85 |
|
|
if (optimize_for_size)
|
| 86 |
|
|
cost = 1;
|
| 87 |
|
|
|
| 88 |
|
|
return cost;
|
| 89 |
|
|
}
|
| 90 |
|
|
|
| 91 |
|
|
|
| 92 |
|
|
/* Return the cost of executing a copy instruction in basic block BB. */
|
| 93 |
|
|
|
| 94 |
|
|
static inline int
|
| 95 |
|
|
coalesce_cost_bb (basic_block bb)
|
| 96 |
|
|
{
|
| 97 |
|
|
return coalesce_cost (bb->frequency, optimize_bb_for_size_p (bb));
|
| 98 |
|
|
}
|
| 99 |
|
|
|
| 100 |
|
|
|
| 101 |
|
|
/* Return the cost of executing a copy instruction on edge E. */
|
| 102 |
|
|
|
| 103 |
|
|
static inline int
|
| 104 |
|
|
coalesce_cost_edge (edge e)
|
| 105 |
|
|
{
|
| 106 |
|
|
int mult = 1;
|
| 107 |
|
|
|
| 108 |
|
|
/* Inserting copy on critical edge costs more than inserting it elsewhere. */
|
| 109 |
|
|
if (EDGE_CRITICAL_P (e))
|
| 110 |
|
|
mult = 2;
|
| 111 |
|
|
if (e->flags & EDGE_ABNORMAL)
|
| 112 |
|
|
return MUST_COALESCE_COST;
|
| 113 |
|
|
if (e->flags & EDGE_EH)
|
| 114 |
|
|
{
|
| 115 |
|
|
edge e2;
|
| 116 |
|
|
edge_iterator ei;
|
| 117 |
|
|
FOR_EACH_EDGE (e2, ei, e->dest->preds)
|
| 118 |
|
|
if (e2 != e)
|
| 119 |
|
|
{
|
| 120 |
|
|
/* Putting code on EH edge that leads to BB
|
| 121 |
|
|
with multiple predecestors imply splitting of
|
| 122 |
|
|
edge too. */
|
| 123 |
|
|
if (mult < 2)
|
| 124 |
|
|
mult = 2;
|
| 125 |
|
|
/* If there are multiple EH predecestors, we
|
| 126 |
|
|
also copy EH regions and produce separate
|
| 127 |
|
|
landing pad. This is expensive. */
|
| 128 |
|
|
if (e2->flags & EDGE_EH)
|
| 129 |
|
|
{
|
| 130 |
|
|
mult = 5;
|
| 131 |
|
|
break;
|
| 132 |
|
|
}
|
| 133 |
|
|
}
|
| 134 |
|
|
}
|
| 135 |
|
|
|
| 136 |
|
|
return coalesce_cost (EDGE_FREQUENCY (e),
|
| 137 |
|
|
optimize_edge_for_size_p (e)) * mult;
|
| 138 |
|
|
}
|
| 139 |
|
|
|
| 140 |
|
|
|
| 141 |
|
|
/* Retrieve a pair to coalesce from the cost_one_list in CL. Returns the
|
| 142 |
|
|
2 elements via P1 and P2. 1 is returned by the function if there is a pair,
|
| 143 |
|
|
NO_BEST_COALESCE is returned if there aren't any. */
|
| 144 |
|
|
|
| 145 |
|
|
static inline int
|
| 146 |
|
|
pop_cost_one_pair (coalesce_list_p cl, int *p1, int *p2)
|
| 147 |
|
|
{
|
| 148 |
|
|
cost_one_pair_p ptr;
|
| 149 |
|
|
|
| 150 |
|
|
ptr = cl->cost_one_list;
|
| 151 |
|
|
if (!ptr)
|
| 152 |
|
|
return NO_BEST_COALESCE;
|
| 153 |
|
|
|
| 154 |
|
|
*p1 = ptr->first_element;
|
| 155 |
|
|
*p2 = ptr->second_element;
|
| 156 |
|
|
cl->cost_one_list = ptr->next;
|
| 157 |
|
|
|
| 158 |
|
|
free (ptr);
|
| 159 |
|
|
|
| 160 |
|
|
return 1;
|
| 161 |
|
|
}
|
| 162 |
|
|
|
| 163 |
|
|
/* Retrieve the most expensive remaining pair to coalesce from CL. Returns the
|
| 164 |
|
|
2 elements via P1 and P2. Their calculated cost is returned by the function.
|
| 165 |
|
|
NO_BEST_COALESCE is returned if the coalesce list is empty. */
|
| 166 |
|
|
|
| 167 |
|
|
static inline int
|
| 168 |
|
|
pop_best_coalesce (coalesce_list_p cl, int *p1, int *p2)
|
| 169 |
|
|
{
|
| 170 |
|
|
coalesce_pair_p node;
|
| 171 |
|
|
int ret;
|
| 172 |
|
|
|
| 173 |
|
|
if (cl->sorted == NULL)
|
| 174 |
|
|
return pop_cost_one_pair (cl, p1, p2);
|
| 175 |
|
|
|
| 176 |
|
|
if (cl->num_sorted == 0)
|
| 177 |
|
|
return pop_cost_one_pair (cl, p1, p2);
|
| 178 |
|
|
|
| 179 |
|
|
node = cl->sorted[--(cl->num_sorted)];
|
| 180 |
|
|
*p1 = node->first_element;
|
| 181 |
|
|
*p2 = node->second_element;
|
| 182 |
|
|
ret = node->cost;
|
| 183 |
|
|
free (node);
|
| 184 |
|
|
|
| 185 |
|
|
return ret;
|
| 186 |
|
|
}
|
| 187 |
|
|
|
| 188 |
|
|
|
| 189 |
|
|
#define COALESCE_HASH_FN(R1, R2) ((R2) * ((R2) - 1) / 2 + (R1))
|
| 190 |
|
|
|
| 191 |
|
|
/* Hash function for coalesce list. Calculate hash for PAIR. */
|
| 192 |
|
|
|
| 193 |
|
|
static unsigned int
|
| 194 |
|
|
coalesce_pair_map_hash (const void *pair)
|
| 195 |
|
|
{
|
| 196 |
|
|
hashval_t a = (hashval_t)(((const_coalesce_pair_p)pair)->first_element);
|
| 197 |
|
|
hashval_t b = (hashval_t)(((const_coalesce_pair_p)pair)->second_element);
|
| 198 |
|
|
|
| 199 |
|
|
return COALESCE_HASH_FN (a,b);
|
| 200 |
|
|
}
|
| 201 |
|
|
|
| 202 |
|
|
|
| 203 |
|
|
/* Equality function for coalesce list hash table. Compare PAIR1 and PAIR2,
|
| 204 |
|
|
returning TRUE if the two pairs are equivalent. */
|
| 205 |
|
|
|
| 206 |
|
|
static int
|
| 207 |
|
|
coalesce_pair_map_eq (const void *pair1, const void *pair2)
|
| 208 |
|
|
{
|
| 209 |
|
|
const_coalesce_pair_p const p1 = (const_coalesce_pair_p) pair1;
|
| 210 |
|
|
const_coalesce_pair_p const p2 = (const_coalesce_pair_p) pair2;
|
| 211 |
|
|
|
| 212 |
|
|
return (p1->first_element == p2->first_element
|
| 213 |
|
|
&& p1->second_element == p2->second_element);
|
| 214 |
|
|
}
|
| 215 |
|
|
|
| 216 |
|
|
|
| 217 |
|
|
/* Create a new empty coalesce list object and return it. */
|
| 218 |
|
|
|
| 219 |
|
|
static inline coalesce_list_p
|
| 220 |
|
|
create_coalesce_list (void)
|
| 221 |
|
|
{
|
| 222 |
|
|
coalesce_list_p list;
|
| 223 |
|
|
unsigned size = num_ssa_names * 3;
|
| 224 |
|
|
|
| 225 |
|
|
if (size < 40)
|
| 226 |
|
|
size = 40;
|
| 227 |
|
|
|
| 228 |
|
|
list = (coalesce_list_p) xmalloc (sizeof (struct coalesce_list_d));
|
| 229 |
|
|
list->list = htab_create (size, coalesce_pair_map_hash,
|
| 230 |
|
|
coalesce_pair_map_eq, NULL);
|
| 231 |
|
|
list->sorted = NULL;
|
| 232 |
|
|
list->num_sorted = 0;
|
| 233 |
|
|
list->cost_one_list = NULL;
|
| 234 |
|
|
return list;
|
| 235 |
|
|
}
|
| 236 |
|
|
|
| 237 |
|
|
|
| 238 |
|
|
/* Delete coalesce list CL. */
|
| 239 |
|
|
|
| 240 |
|
|
static inline void
|
| 241 |
|
|
delete_coalesce_list (coalesce_list_p cl)
|
| 242 |
|
|
{
|
| 243 |
|
|
gcc_assert (cl->cost_one_list == NULL);
|
| 244 |
|
|
htab_delete (cl->list);
|
| 245 |
|
|
free (cl->sorted);
|
| 246 |
|
|
gcc_assert (cl->num_sorted == 0);
|
| 247 |
|
|
free (cl);
|
| 248 |
|
|
}
|
| 249 |
|
|
|
| 250 |
|
|
|
| 251 |
|
|
/* Find a matching coalesce pair object in CL for the pair P1 and P2. If
|
| 252 |
|
|
one isn't found, return NULL if CREATE is false, otherwise create a new
|
| 253 |
|
|
coalesce pair object and return it. */
|
| 254 |
|
|
|
| 255 |
|
|
static coalesce_pair_p
|
| 256 |
|
|
find_coalesce_pair (coalesce_list_p cl, int p1, int p2, bool create)
|
| 257 |
|
|
{
|
| 258 |
|
|
struct coalesce_pair p;
|
| 259 |
|
|
void **slot;
|
| 260 |
|
|
unsigned int hash;
|
| 261 |
|
|
|
| 262 |
|
|
/* Normalize so that p1 is the smaller value. */
|
| 263 |
|
|
if (p2 < p1)
|
| 264 |
|
|
{
|
| 265 |
|
|
p.first_element = p2;
|
| 266 |
|
|
p.second_element = p1;
|
| 267 |
|
|
}
|
| 268 |
|
|
else
|
| 269 |
|
|
{
|
| 270 |
|
|
p.first_element = p1;
|
| 271 |
|
|
p.second_element = p2;
|
| 272 |
|
|
}
|
| 273 |
|
|
|
| 274 |
|
|
hash = coalesce_pair_map_hash (&p);
|
| 275 |
|
|
slot = htab_find_slot_with_hash (cl->list, &p, hash,
|
| 276 |
|
|
create ? INSERT : NO_INSERT);
|
| 277 |
|
|
if (!slot)
|
| 278 |
|
|
return NULL;
|
| 279 |
|
|
|
| 280 |
|
|
if (!*slot)
|
| 281 |
|
|
{
|
| 282 |
|
|
struct coalesce_pair * pair = XNEW (struct coalesce_pair);
|
| 283 |
|
|
gcc_assert (cl->sorted == NULL);
|
| 284 |
|
|
pair->first_element = p.first_element;
|
| 285 |
|
|
pair->second_element = p.second_element;
|
| 286 |
|
|
pair->cost = 0;
|
| 287 |
|
|
*slot = (void *)pair;
|
| 288 |
|
|
}
|
| 289 |
|
|
|
| 290 |
|
|
return (struct coalesce_pair *) *slot;
|
| 291 |
|
|
}
|
| 292 |
|
|
|
| 293 |
|
|
static inline void
|
| 294 |
|
|
add_cost_one_coalesce (coalesce_list_p cl, int p1, int p2)
|
| 295 |
|
|
{
|
| 296 |
|
|
cost_one_pair_p pair;
|
| 297 |
|
|
|
| 298 |
|
|
pair = XNEW (struct cost_one_pair_d);
|
| 299 |
|
|
pair->first_element = p1;
|
| 300 |
|
|
pair->second_element = p2;
|
| 301 |
|
|
pair->next = cl->cost_one_list;
|
| 302 |
|
|
cl->cost_one_list = pair;
|
| 303 |
|
|
}
|
| 304 |
|
|
|
| 305 |
|
|
|
| 306 |
|
|
/* Add a coalesce between P1 and P2 in list CL with a cost of VALUE. */
|
| 307 |
|
|
|
| 308 |
|
|
static inline void
|
| 309 |
|
|
add_coalesce (coalesce_list_p cl, int p1, int p2, int value)
|
| 310 |
|
|
{
|
| 311 |
|
|
coalesce_pair_p node;
|
| 312 |
|
|
|
| 313 |
|
|
gcc_assert (cl->sorted == NULL);
|
| 314 |
|
|
if (p1 == p2)
|
| 315 |
|
|
return;
|
| 316 |
|
|
|
| 317 |
|
|
node = find_coalesce_pair (cl, p1, p2, true);
|
| 318 |
|
|
|
| 319 |
|
|
/* Once the value is at least MUST_COALESCE_COST - 1, leave it that way. */
|
| 320 |
|
|
if (node->cost < MUST_COALESCE_COST - 1)
|
| 321 |
|
|
{
|
| 322 |
|
|
if (value < MUST_COALESCE_COST - 1)
|
| 323 |
|
|
node->cost += value;
|
| 324 |
|
|
else
|
| 325 |
|
|
node->cost = value;
|
| 326 |
|
|
}
|
| 327 |
|
|
}
|
| 328 |
|
|
|
| 329 |
|
|
|
| 330 |
|
|
/* Comparison function to allow qsort to sort P1 and P2 in Ascending order. */
|
| 331 |
|
|
|
| 332 |
|
|
static int
|
| 333 |
|
|
compare_pairs (const void *p1, const void *p2)
|
| 334 |
|
|
{
|
| 335 |
|
|
const_coalesce_pair_p const *const pp1 = (const_coalesce_pair_p const *) p1;
|
| 336 |
|
|
const_coalesce_pair_p const *const pp2 = (const_coalesce_pair_p const *) p2;
|
| 337 |
|
|
int result;
|
| 338 |
|
|
|
| 339 |
|
|
result = (* pp1)->cost - (* pp2)->cost;
|
| 340 |
|
|
/* Since qsort does not guarantee stability we use the elements
|
| 341 |
|
|
as a secondary key. This provides us with independence from
|
| 342 |
|
|
the host's implementation of the sorting algorithm. */
|
| 343 |
|
|
if (result == 0)
|
| 344 |
|
|
{
|
| 345 |
|
|
result = (* pp2)->first_element - (* pp1)->first_element;
|
| 346 |
|
|
if (result == 0)
|
| 347 |
|
|
result = (* pp2)->second_element - (* pp1)->second_element;
|
| 348 |
|
|
}
|
| 349 |
|
|
|
| 350 |
|
|
return result;
|
| 351 |
|
|
}
|
| 352 |
|
|
|
| 353 |
|
|
|
| 354 |
|
|
/* Return the number of unique coalesce pairs in CL. */
|
| 355 |
|
|
|
| 356 |
|
|
static inline int
|
| 357 |
|
|
num_coalesce_pairs (coalesce_list_p cl)
|
| 358 |
|
|
{
|
| 359 |
|
|
return htab_elements (cl->list);
|
| 360 |
|
|
}
|
| 361 |
|
|
|
| 362 |
|
|
|
| 363 |
|
|
/* Iterator over hash table pairs. */
|
| 364 |
|
|
typedef struct
|
| 365 |
|
|
{
|
| 366 |
|
|
htab_iterator hti;
|
| 367 |
|
|
} coalesce_pair_iterator;
|
| 368 |
|
|
|
| 369 |
|
|
|
| 370 |
|
|
/* Return first partition pair from list CL, initializing iterator ITER. */
|
| 371 |
|
|
|
| 372 |
|
|
static inline coalesce_pair_p
|
| 373 |
|
|
first_coalesce_pair (coalesce_list_p cl, coalesce_pair_iterator *iter)
|
| 374 |
|
|
{
|
| 375 |
|
|
coalesce_pair_p pair;
|
| 376 |
|
|
|
| 377 |
|
|
pair = (coalesce_pair_p) first_htab_element (&(iter->hti), cl->list);
|
| 378 |
|
|
return pair;
|
| 379 |
|
|
}
|
| 380 |
|
|
|
| 381 |
|
|
|
| 382 |
|
|
/* Return TRUE if there are no more partitions in for ITER to process. */
|
| 383 |
|
|
|
| 384 |
|
|
static inline bool
|
| 385 |
|
|
end_coalesce_pair_p (coalesce_pair_iterator *iter)
|
| 386 |
|
|
{
|
| 387 |
|
|
return end_htab_p (&(iter->hti));
|
| 388 |
|
|
}
|
| 389 |
|
|
|
| 390 |
|
|
|
| 391 |
|
|
/* Return the next partition pair to be visited by ITER. */
|
| 392 |
|
|
|
| 393 |
|
|
static inline coalesce_pair_p
|
| 394 |
|
|
next_coalesce_pair (coalesce_pair_iterator *iter)
|
| 395 |
|
|
{
|
| 396 |
|
|
coalesce_pair_p pair;
|
| 397 |
|
|
|
| 398 |
|
|
pair = (coalesce_pair_p) next_htab_element (&(iter->hti));
|
| 399 |
|
|
return pair;
|
| 400 |
|
|
}
|
| 401 |
|
|
|
| 402 |
|
|
|
| 403 |
|
|
/* Iterate over CL using ITER, returning values in PAIR. */
|
| 404 |
|
|
|
| 405 |
|
|
#define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL) \
|
| 406 |
|
|
for ((PAIR) = first_coalesce_pair ((CL), &(ITER)); \
|
| 407 |
|
|
!end_coalesce_pair_p (&(ITER)); \
|
| 408 |
|
|
(PAIR) = next_coalesce_pair (&(ITER)))
|
| 409 |
|
|
|
| 410 |
|
|
|
| 411 |
|
|
/* Prepare CL for removal of preferred pairs. When finished they are sorted
|
| 412 |
|
|
in order from most important coalesce to least important. */
|
| 413 |
|
|
|
| 414 |
|
|
static void
|
| 415 |
|
|
sort_coalesce_list (coalesce_list_p cl)
|
| 416 |
|
|
{
|
| 417 |
|
|
unsigned x, num;
|
| 418 |
|
|
coalesce_pair_p p;
|
| 419 |
|
|
coalesce_pair_iterator ppi;
|
| 420 |
|
|
|
| 421 |
|
|
gcc_assert (cl->sorted == NULL);
|
| 422 |
|
|
|
| 423 |
|
|
num = num_coalesce_pairs (cl);
|
| 424 |
|
|
cl->num_sorted = num;
|
| 425 |
|
|
if (num == 0)
|
| 426 |
|
|
return;
|
| 427 |
|
|
|
| 428 |
|
|
/* Allocate a vector for the pair pointers. */
|
| 429 |
|
|
cl->sorted = XNEWVEC (coalesce_pair_p, num);
|
| 430 |
|
|
|
| 431 |
|
|
/* Populate the vector with pointers to the pairs. */
|
| 432 |
|
|
x = 0;
|
| 433 |
|
|
FOR_EACH_PARTITION_PAIR (p, ppi, cl)
|
| 434 |
|
|
cl->sorted[x++] = p;
|
| 435 |
|
|
gcc_assert (x == num);
|
| 436 |
|
|
|
| 437 |
|
|
/* Already sorted. */
|
| 438 |
|
|
if (num == 1)
|
| 439 |
|
|
return;
|
| 440 |
|
|
|
| 441 |
|
|
/* If there are only 2, just pick swap them if the order isn't correct. */
|
| 442 |
|
|
if (num == 2)
|
| 443 |
|
|
{
|
| 444 |
|
|
if (cl->sorted[0]->cost > cl->sorted[1]->cost)
|
| 445 |
|
|
{
|
| 446 |
|
|
p = cl->sorted[0];
|
| 447 |
|
|
cl->sorted[0] = cl->sorted[1];
|
| 448 |
|
|
cl->sorted[1] = p;
|
| 449 |
|
|
}
|
| 450 |
|
|
return;
|
| 451 |
|
|
}
|
| 452 |
|
|
|
| 453 |
|
|
/* Only call qsort if there are more than 2 items. */
|
| 454 |
|
|
if (num > 2)
|
| 455 |
|
|
qsort (cl->sorted, num, sizeof (coalesce_pair_p), compare_pairs);
|
| 456 |
|
|
}
|
| 457 |
|
|
|
| 458 |
|
|
|
| 459 |
|
|
/* Send debug info for coalesce list CL to file F. */
|
| 460 |
|
|
|
| 461 |
|
|
static void
|
| 462 |
|
|
dump_coalesce_list (FILE *f, coalesce_list_p cl)
|
| 463 |
|
|
{
|
| 464 |
|
|
coalesce_pair_p node;
|
| 465 |
|
|
coalesce_pair_iterator ppi;
|
| 466 |
|
|
int x;
|
| 467 |
|
|
tree var;
|
| 468 |
|
|
|
| 469 |
|
|
if (cl->sorted == NULL)
|
| 470 |
|
|
{
|
| 471 |
|
|
fprintf (f, "Coalesce List:\n");
|
| 472 |
|
|
FOR_EACH_PARTITION_PAIR (node, ppi, cl)
|
| 473 |
|
|
{
|
| 474 |
|
|
tree var1 = ssa_name (node->first_element);
|
| 475 |
|
|
tree var2 = ssa_name (node->second_element);
|
| 476 |
|
|
print_generic_expr (f, var1, TDF_SLIM);
|
| 477 |
|
|
fprintf (f, " <-> ");
|
| 478 |
|
|
print_generic_expr (f, var2, TDF_SLIM);
|
| 479 |
|
|
fprintf (f, " (%1d), ", node->cost);
|
| 480 |
|
|
fprintf (f, "\n");
|
| 481 |
|
|
}
|
| 482 |
|
|
}
|
| 483 |
|
|
else
|
| 484 |
|
|
{
|
| 485 |
|
|
fprintf (f, "Sorted Coalesce list:\n");
|
| 486 |
|
|
for (x = cl->num_sorted - 1 ; x >=0; x--)
|
| 487 |
|
|
{
|
| 488 |
|
|
node = cl->sorted[x];
|
| 489 |
|
|
fprintf (f, "(%d) ", node->cost);
|
| 490 |
|
|
var = ssa_name (node->first_element);
|
| 491 |
|
|
print_generic_expr (f, var, TDF_SLIM);
|
| 492 |
|
|
fprintf (f, " <-> ");
|
| 493 |
|
|
var = ssa_name (node->second_element);
|
| 494 |
|
|
print_generic_expr (f, var, TDF_SLIM);
|
| 495 |
|
|
fprintf (f, "\n");
|
| 496 |
|
|
}
|
| 497 |
|
|
}
|
| 498 |
|
|
}
|
| 499 |
|
|
|
| 500 |
|
|
|
| 501 |
|
|
/* This represents a conflict graph. Implemented as an array of bitmaps.
|
| 502 |
|
|
A full matrix is used for conflicts rather than just upper triangular form.
|
| 503 |
|
|
this make sit much simpler and faster to perform conflict merges. */
|
| 504 |
|
|
|
| 505 |
|
|
typedef struct ssa_conflicts_d
|
| 506 |
|
|
{
|
| 507 |
|
|
unsigned size;
|
| 508 |
|
|
bitmap *conflicts;
|
| 509 |
|
|
} * ssa_conflicts_p;
|
| 510 |
|
|
|
| 511 |
|
|
|
| 512 |
|
|
/* Return an empty new conflict graph for SIZE elements. */
|
| 513 |
|
|
|
| 514 |
|
|
static inline ssa_conflicts_p
|
| 515 |
|
|
ssa_conflicts_new (unsigned size)
|
| 516 |
|
|
{
|
| 517 |
|
|
ssa_conflicts_p ptr;
|
| 518 |
|
|
|
| 519 |
|
|
ptr = XNEW (struct ssa_conflicts_d);
|
| 520 |
|
|
ptr->conflicts = XCNEWVEC (bitmap, size);
|
| 521 |
|
|
ptr->size = size;
|
| 522 |
|
|
return ptr;
|
| 523 |
|
|
}
|
| 524 |
|
|
|
| 525 |
|
|
|
| 526 |
|
|
/* Free storage for conflict graph PTR. */
|
| 527 |
|
|
|
| 528 |
|
|
static inline void
|
| 529 |
|
|
ssa_conflicts_delete (ssa_conflicts_p ptr)
|
| 530 |
|
|
{
|
| 531 |
|
|
unsigned x;
|
| 532 |
|
|
for (x = 0; x < ptr->size; x++)
|
| 533 |
|
|
if (ptr->conflicts[x])
|
| 534 |
|
|
BITMAP_FREE (ptr->conflicts[x]);
|
| 535 |
|
|
|
| 536 |
|
|
free (ptr->conflicts);
|
| 537 |
|
|
free (ptr);
|
| 538 |
|
|
}
|
| 539 |
|
|
|
| 540 |
|
|
|
| 541 |
|
|
/* Test if elements X and Y conflict in graph PTR. */
|
| 542 |
|
|
|
| 543 |
|
|
static inline bool
|
| 544 |
|
|
ssa_conflicts_test_p (ssa_conflicts_p ptr, unsigned x, unsigned y)
|
| 545 |
|
|
{
|
| 546 |
|
|
bitmap b;
|
| 547 |
|
|
|
| 548 |
|
|
gcc_checking_assert (x < ptr->size);
|
| 549 |
|
|
gcc_checking_assert (y < ptr->size);
|
| 550 |
|
|
gcc_checking_assert (x != y);
|
| 551 |
|
|
|
| 552 |
|
|
b = ptr->conflicts[x];
|
| 553 |
|
|
if (b)
|
| 554 |
|
|
/* Avoid the lookup if Y has no conflicts. */
|
| 555 |
|
|
return ptr->conflicts[y] ? bitmap_bit_p (b, y) : false;
|
| 556 |
|
|
else
|
| 557 |
|
|
return false;
|
| 558 |
|
|
}
|
| 559 |
|
|
|
| 560 |
|
|
|
| 561 |
|
|
/* Add a conflict with Y to the bitmap for X in graph PTR. */
|
| 562 |
|
|
|
| 563 |
|
|
static inline void
|
| 564 |
|
|
ssa_conflicts_add_one (ssa_conflicts_p ptr, unsigned x, unsigned y)
|
| 565 |
|
|
{
|
| 566 |
|
|
/* If there are no conflicts yet, allocate the bitmap and set bit. */
|
| 567 |
|
|
if (!ptr->conflicts[x])
|
| 568 |
|
|
ptr->conflicts[x] = BITMAP_ALLOC (NULL);
|
| 569 |
|
|
bitmap_set_bit (ptr->conflicts[x], y);
|
| 570 |
|
|
}
|
| 571 |
|
|
|
| 572 |
|
|
|
| 573 |
|
|
/* Add conflicts between X and Y in graph PTR. */
|
| 574 |
|
|
|
| 575 |
|
|
static inline void
|
| 576 |
|
|
ssa_conflicts_add (ssa_conflicts_p ptr, unsigned x, unsigned y)
|
| 577 |
|
|
{
|
| 578 |
|
|
gcc_checking_assert (x < ptr->size);
|
| 579 |
|
|
gcc_checking_assert (y < ptr->size);
|
| 580 |
|
|
gcc_checking_assert (x != y);
|
| 581 |
|
|
ssa_conflicts_add_one (ptr, x, y);
|
| 582 |
|
|
ssa_conflicts_add_one (ptr, y, x);
|
| 583 |
|
|
}
|
| 584 |
|
|
|
| 585 |
|
|
|
| 586 |
|
|
/* Merge all Y's conflict into X in graph PTR. */
|
| 587 |
|
|
|
| 588 |
|
|
static inline void
|
| 589 |
|
|
ssa_conflicts_merge (ssa_conflicts_p ptr, unsigned x, unsigned y)
|
| 590 |
|
|
{
|
| 591 |
|
|
unsigned z;
|
| 592 |
|
|
bitmap_iterator bi;
|
| 593 |
|
|
|
| 594 |
|
|
gcc_assert (x != y);
|
| 595 |
|
|
if (!(ptr->conflicts[y]))
|
| 596 |
|
|
return;
|
| 597 |
|
|
|
| 598 |
|
|
/* Add a conflict between X and every one Y has. If the bitmap doesn't
|
| 599 |
|
|
exist, then it has already been coalesced, and we don't need to add a
|
| 600 |
|
|
conflict. */
|
| 601 |
|
|
EXECUTE_IF_SET_IN_BITMAP (ptr->conflicts[y], 0, z, bi)
|
| 602 |
|
|
if (ptr->conflicts[z])
|
| 603 |
|
|
bitmap_set_bit (ptr->conflicts[z], x);
|
| 604 |
|
|
|
| 605 |
|
|
if (ptr->conflicts[x])
|
| 606 |
|
|
{
|
| 607 |
|
|
/* If X has conflicts, add Y's to X. */
|
| 608 |
|
|
bitmap_ior_into (ptr->conflicts[x], ptr->conflicts[y]);
|
| 609 |
|
|
BITMAP_FREE (ptr->conflicts[y]);
|
| 610 |
|
|
}
|
| 611 |
|
|
else
|
| 612 |
|
|
{
|
| 613 |
|
|
/* If X has no conflicts, simply use Y's. */
|
| 614 |
|
|
ptr->conflicts[x] = ptr->conflicts[y];
|
| 615 |
|
|
ptr->conflicts[y] = NULL;
|
| 616 |
|
|
}
|
| 617 |
|
|
}
|
| 618 |
|
|
|
| 619 |
|
|
|
| 620 |
|
|
/* Dump a conflicts graph. */
|
| 621 |
|
|
|
| 622 |
|
|
static void
|
| 623 |
|
|
ssa_conflicts_dump (FILE *file, ssa_conflicts_p ptr)
|
| 624 |
|
|
{
|
| 625 |
|
|
unsigned x;
|
| 626 |
|
|
|
| 627 |
|
|
fprintf (file, "\nConflict graph:\n");
|
| 628 |
|
|
|
| 629 |
|
|
for (x = 0; x < ptr->size; x++)
|
| 630 |
|
|
if (ptr->conflicts[x])
|
| 631 |
|
|
{
|
| 632 |
|
|
fprintf (dump_file, "%d: ", x);
|
| 633 |
|
|
dump_bitmap (file, ptr->conflicts[x]);
|
| 634 |
|
|
}
|
| 635 |
|
|
}
|
| 636 |
|
|
|
| 637 |
|
|
|
| 638 |
|
|
/* This structure is used to efficiently record the current status of live
|
| 639 |
|
|
SSA_NAMES when building a conflict graph.
|
| 640 |
|
|
LIVE_BASE_VAR has a bit set for each base variable which has at least one
|
| 641 |
|
|
ssa version live.
|
| 642 |
|
|
LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
|
| 643 |
|
|
index, and is used to track what partitions of each base variable are
|
| 644 |
|
|
live. This makes it easy to add conflicts between just live partitions
|
| 645 |
|
|
with the same base variable.
|
| 646 |
|
|
The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
|
| 647 |
|
|
marked as being live. This delays clearing of these bitmaps until
|
| 648 |
|
|
they are actually needed again. */
|
| 649 |
|
|
|
| 650 |
|
|
typedef struct live_track_d
|
| 651 |
|
|
{
|
| 652 |
|
|
bitmap live_base_var; /* Indicates if a basevar is live. */
|
| 653 |
|
|
bitmap *live_base_partitions; /* Live partitions for each basevar. */
|
| 654 |
|
|
var_map map; /* Var_map being used for partition mapping. */
|
| 655 |
|
|
} * live_track_p;
|
| 656 |
|
|
|
| 657 |
|
|
|
| 658 |
|
|
/* This routine will create a new live track structure based on the partitions
|
| 659 |
|
|
in MAP. */
|
| 660 |
|
|
|
| 661 |
|
|
static live_track_p
|
| 662 |
|
|
new_live_track (var_map map)
|
| 663 |
|
|
{
|
| 664 |
|
|
live_track_p ptr;
|
| 665 |
|
|
int lim, x;
|
| 666 |
|
|
|
| 667 |
|
|
/* Make sure there is a partition view in place. */
|
| 668 |
|
|
gcc_assert (map->partition_to_base_index != NULL);
|
| 669 |
|
|
|
| 670 |
|
|
ptr = (live_track_p) xmalloc (sizeof (struct live_track_d));
|
| 671 |
|
|
ptr->map = map;
|
| 672 |
|
|
lim = num_basevars (map);
|
| 673 |
|
|
ptr->live_base_partitions = (bitmap *) xmalloc(sizeof (bitmap *) * lim);
|
| 674 |
|
|
ptr->live_base_var = BITMAP_ALLOC (NULL);
|
| 675 |
|
|
for (x = 0; x < lim; x++)
|
| 676 |
|
|
ptr->live_base_partitions[x] = BITMAP_ALLOC (NULL);
|
| 677 |
|
|
return ptr;
|
| 678 |
|
|
}
|
| 679 |
|
|
|
| 680 |
|
|
|
| 681 |
|
|
/* This routine will free the memory associated with PTR. */
|
| 682 |
|
|
|
| 683 |
|
|
static void
|
| 684 |
|
|
delete_live_track (live_track_p ptr)
|
| 685 |
|
|
{
|
| 686 |
|
|
int x, lim;
|
| 687 |
|
|
|
| 688 |
|
|
lim = num_basevars (ptr->map);
|
| 689 |
|
|
for (x = 0; x < lim; x++)
|
| 690 |
|
|
BITMAP_FREE (ptr->live_base_partitions[x]);
|
| 691 |
|
|
BITMAP_FREE (ptr->live_base_var);
|
| 692 |
|
|
free (ptr->live_base_partitions);
|
| 693 |
|
|
free (ptr);
|
| 694 |
|
|
}
|
| 695 |
|
|
|
| 696 |
|
|
|
| 697 |
|
|
/* This function will remove PARTITION from the live list in PTR. */
|
| 698 |
|
|
|
| 699 |
|
|
static inline void
|
| 700 |
|
|
live_track_remove_partition (live_track_p ptr, int partition)
|
| 701 |
|
|
{
|
| 702 |
|
|
int root;
|
| 703 |
|
|
|
| 704 |
|
|
root = basevar_index (ptr->map, partition);
|
| 705 |
|
|
bitmap_clear_bit (ptr->live_base_partitions[root], partition);
|
| 706 |
|
|
/* If the element list is empty, make the base variable not live either. */
|
| 707 |
|
|
if (bitmap_empty_p (ptr->live_base_partitions[root]))
|
| 708 |
|
|
bitmap_clear_bit (ptr->live_base_var, root);
|
| 709 |
|
|
}
|
| 710 |
|
|
|
| 711 |
|
|
|
| 712 |
|
|
/* This function will adds PARTITION to the live list in PTR. */
|
| 713 |
|
|
|
| 714 |
|
|
static inline void
|
| 715 |
|
|
live_track_add_partition (live_track_p ptr, int partition)
|
| 716 |
|
|
{
|
| 717 |
|
|
int root;
|
| 718 |
|
|
|
| 719 |
|
|
root = basevar_index (ptr->map, partition);
|
| 720 |
|
|
/* If this base var wasn't live before, it is now. Clear the element list
|
| 721 |
|
|
since it was delayed until needed. */
|
| 722 |
|
|
if (bitmap_set_bit (ptr->live_base_var, root))
|
| 723 |
|
|
bitmap_clear (ptr->live_base_partitions[root]);
|
| 724 |
|
|
bitmap_set_bit (ptr->live_base_partitions[root], partition);
|
| 725 |
|
|
|
| 726 |
|
|
}
|
| 727 |
|
|
|
| 728 |
|
|
|
| 729 |
|
|
/* Clear the live bit for VAR in PTR. */
|
| 730 |
|
|
|
| 731 |
|
|
static inline void
|
| 732 |
|
|
live_track_clear_var (live_track_p ptr, tree var)
|
| 733 |
|
|
{
|
| 734 |
|
|
int p;
|
| 735 |
|
|
|
| 736 |
|
|
p = var_to_partition (ptr->map, var);
|
| 737 |
|
|
if (p != NO_PARTITION)
|
| 738 |
|
|
live_track_remove_partition (ptr, p);
|
| 739 |
|
|
}
|
| 740 |
|
|
|
| 741 |
|
|
|
| 742 |
|
|
/* Return TRUE if VAR is live in PTR. */
|
| 743 |
|
|
|
| 744 |
|
|
static inline bool
|
| 745 |
|
|
live_track_live_p (live_track_p ptr, tree var)
|
| 746 |
|
|
{
|
| 747 |
|
|
int p, root;
|
| 748 |
|
|
|
| 749 |
|
|
p = var_to_partition (ptr->map, var);
|
| 750 |
|
|
if (p != NO_PARTITION)
|
| 751 |
|
|
{
|
| 752 |
|
|
root = basevar_index (ptr->map, p);
|
| 753 |
|
|
if (bitmap_bit_p (ptr->live_base_var, root))
|
| 754 |
|
|
return bitmap_bit_p (ptr->live_base_partitions[root], p);
|
| 755 |
|
|
}
|
| 756 |
|
|
return false;
|
| 757 |
|
|
}
|
| 758 |
|
|
|
| 759 |
|
|
|
| 760 |
|
|
/* This routine will add USE to PTR. USE will be marked as live in both the
|
| 761 |
|
|
ssa live map and the live bitmap for the root of USE. */
|
| 762 |
|
|
|
| 763 |
|
|
static inline void
|
| 764 |
|
|
live_track_process_use (live_track_p ptr, tree use)
|
| 765 |
|
|
{
|
| 766 |
|
|
int p;
|
| 767 |
|
|
|
| 768 |
|
|
p = var_to_partition (ptr->map, use);
|
| 769 |
|
|
if (p == NO_PARTITION)
|
| 770 |
|
|
return;
|
| 771 |
|
|
|
| 772 |
|
|
/* Mark as live in the appropriate live list. */
|
| 773 |
|
|
live_track_add_partition (ptr, p);
|
| 774 |
|
|
}
|
| 775 |
|
|
|
| 776 |
|
|
|
| 777 |
|
|
/* This routine will process a DEF in PTR. DEF will be removed from the live
|
| 778 |
|
|
lists, and if there are any other live partitions with the same base
|
| 779 |
|
|
variable, conflicts will be added to GRAPH. */
|
| 780 |
|
|
|
| 781 |
|
|
static inline void
|
| 782 |
|
|
live_track_process_def (live_track_p ptr, tree def, ssa_conflicts_p graph)
|
| 783 |
|
|
{
|
| 784 |
|
|
int p, root;
|
| 785 |
|
|
bitmap b;
|
| 786 |
|
|
unsigned x;
|
| 787 |
|
|
bitmap_iterator bi;
|
| 788 |
|
|
|
| 789 |
|
|
p = var_to_partition (ptr->map, def);
|
| 790 |
|
|
if (p == NO_PARTITION)
|
| 791 |
|
|
return;
|
| 792 |
|
|
|
| 793 |
|
|
/* Clear the liveness bit. */
|
| 794 |
|
|
live_track_remove_partition (ptr, p);
|
| 795 |
|
|
|
| 796 |
|
|
/* If the bitmap isn't empty now, conflicts need to be added. */
|
| 797 |
|
|
root = basevar_index (ptr->map, p);
|
| 798 |
|
|
if (bitmap_bit_p (ptr->live_base_var, root))
|
| 799 |
|
|
{
|
| 800 |
|
|
b = ptr->live_base_partitions[root];
|
| 801 |
|
|
EXECUTE_IF_SET_IN_BITMAP (b, 0, x, bi)
|
| 802 |
|
|
ssa_conflicts_add (graph, p, x);
|
| 803 |
|
|
}
|
| 804 |
|
|
}
|
| 805 |
|
|
|
| 806 |
|
|
|
| 807 |
|
|
/* Initialize PTR with the partitions set in INIT. */
|
| 808 |
|
|
|
| 809 |
|
|
static inline void
|
| 810 |
|
|
live_track_init (live_track_p ptr, bitmap init)
|
| 811 |
|
|
{
|
| 812 |
|
|
unsigned p;
|
| 813 |
|
|
bitmap_iterator bi;
|
| 814 |
|
|
|
| 815 |
|
|
/* Mark all live on exit partitions. */
|
| 816 |
|
|
EXECUTE_IF_SET_IN_BITMAP (init, 0, p, bi)
|
| 817 |
|
|
live_track_add_partition (ptr, p);
|
| 818 |
|
|
}
|
| 819 |
|
|
|
| 820 |
|
|
|
| 821 |
|
|
/* This routine will clear all live partitions in PTR. */
|
| 822 |
|
|
|
| 823 |
|
|
static inline void
|
| 824 |
|
|
live_track_clear_base_vars (live_track_p ptr)
|
| 825 |
|
|
{
|
| 826 |
|
|
/* Simply clear the live base list. Anything marked as live in the element
|
| 827 |
|
|
lists will be cleared later if/when the base variable ever comes alive
|
| 828 |
|
|
again. */
|
| 829 |
|
|
bitmap_clear (ptr->live_base_var);
|
| 830 |
|
|
}
|
| 831 |
|
|
|
| 832 |
|
|
|
| 833 |
|
|
/* Build a conflict graph based on LIVEINFO. Any partitions which are in the
|
| 834 |
|
|
partition view of the var_map liveinfo is based on get entries in the
|
| 835 |
|
|
conflict graph. Only conflicts between ssa_name partitions with the same
|
| 836 |
|
|
base variable are added. */
|
| 837 |
|
|
|
| 838 |
|
|
static ssa_conflicts_p
|
| 839 |
|
|
build_ssa_conflict_graph (tree_live_info_p liveinfo)
|
| 840 |
|
|
{
|
| 841 |
|
|
ssa_conflicts_p graph;
|
| 842 |
|
|
var_map map;
|
| 843 |
|
|
basic_block bb;
|
| 844 |
|
|
ssa_op_iter iter;
|
| 845 |
|
|
live_track_p live;
|
| 846 |
|
|
|
| 847 |
|
|
map = live_var_map (liveinfo);
|
| 848 |
|
|
graph = ssa_conflicts_new (num_var_partitions (map));
|
| 849 |
|
|
|
| 850 |
|
|
live = new_live_track (map);
|
| 851 |
|
|
|
| 852 |
|
|
FOR_EACH_BB (bb)
|
| 853 |
|
|
{
|
| 854 |
|
|
gimple_stmt_iterator gsi;
|
| 855 |
|
|
|
| 856 |
|
|
/* Start with live on exit temporaries. */
|
| 857 |
|
|
live_track_init (live, live_on_exit (liveinfo, bb));
|
| 858 |
|
|
|
| 859 |
|
|
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
|
| 860 |
|
|
{
|
| 861 |
|
|
tree var;
|
| 862 |
|
|
gimple stmt = gsi_stmt (gsi);
|
| 863 |
|
|
|
| 864 |
|
|
/* A copy between 2 partitions does not introduce an interference
|
| 865 |
|
|
by itself. If they did, you would never be able to coalesce
|
| 866 |
|
|
two things which are copied. If the two variables really do
|
| 867 |
|
|
conflict, they will conflict elsewhere in the program.
|
| 868 |
|
|
|
| 869 |
|
|
This is handled by simply removing the SRC of the copy from the
|
| 870 |
|
|
live list, and processing the stmt normally. */
|
| 871 |
|
|
if (is_gimple_assign (stmt))
|
| 872 |
|
|
{
|
| 873 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
| 874 |
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
| 875 |
|
|
if (gimple_assign_copy_p (stmt)
|
| 876 |
|
|
&& TREE_CODE (lhs) == SSA_NAME
|
| 877 |
|
|
&& TREE_CODE (rhs1) == SSA_NAME)
|
| 878 |
|
|
live_track_clear_var (live, rhs1);
|
| 879 |
|
|
}
|
| 880 |
|
|
else if (is_gimple_debug (stmt))
|
| 881 |
|
|
continue;
|
| 882 |
|
|
|
| 883 |
|
|
FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
|
| 884 |
|
|
live_track_process_def (live, var, graph);
|
| 885 |
|
|
|
| 886 |
|
|
FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
|
| 887 |
|
|
live_track_process_use (live, var);
|
| 888 |
|
|
}
|
| 889 |
|
|
|
| 890 |
|
|
/* If result of a PHI is unused, looping over the statements will not
|
| 891 |
|
|
record any conflicts since the def was never live. Since the PHI node
|
| 892 |
|
|
is going to be translated out of SSA form, it will insert a copy.
|
| 893 |
|
|
There must be a conflict recorded between the result of the PHI and
|
| 894 |
|
|
any variables that are live. Otherwise the out-of-ssa translation
|
| 895 |
|
|
may create incorrect code. */
|
| 896 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 897 |
|
|
{
|
| 898 |
|
|
gimple phi = gsi_stmt (gsi);
|
| 899 |
|
|
tree result = PHI_RESULT (phi);
|
| 900 |
|
|
if (live_track_live_p (live, result))
|
| 901 |
|
|
live_track_process_def (live, result, graph);
|
| 902 |
|
|
}
|
| 903 |
|
|
|
| 904 |
|
|
live_track_clear_base_vars (live);
|
| 905 |
|
|
}
|
| 906 |
|
|
|
| 907 |
|
|
delete_live_track (live);
|
| 908 |
|
|
return graph;
|
| 909 |
|
|
}
|
| 910 |
|
|
|
| 911 |
|
|
|
| 912 |
|
|
/* Shortcut routine to print messages to file F of the form:
|
| 913 |
|
|
"STR1 EXPR1 STR2 EXPR2 STR3." */
|
| 914 |
|
|
|
| 915 |
|
|
static inline void
|
| 916 |
|
|
print_exprs (FILE *f, const char *str1, tree expr1, const char *str2,
|
| 917 |
|
|
tree expr2, const char *str3)
|
| 918 |
|
|
{
|
| 919 |
|
|
fprintf (f, "%s", str1);
|
| 920 |
|
|
print_generic_expr (f, expr1, TDF_SLIM);
|
| 921 |
|
|
fprintf (f, "%s", str2);
|
| 922 |
|
|
print_generic_expr (f, expr2, TDF_SLIM);
|
| 923 |
|
|
fprintf (f, "%s", str3);
|
| 924 |
|
|
}
|
| 925 |
|
|
|
| 926 |
|
|
|
| 927 |
|
|
/* Called if a coalesce across and abnormal edge cannot be performed. PHI is
|
| 928 |
|
|
the phi node at fault, I is the argument index at fault. A message is
|
| 929 |
|
|
printed and compilation is then terminated. */
|
| 930 |
|
|
|
| 931 |
|
|
static inline void
|
| 932 |
|
|
abnormal_corrupt (gimple phi, int i)
|
| 933 |
|
|
{
|
| 934 |
|
|
edge e = gimple_phi_arg_edge (phi, i);
|
| 935 |
|
|
tree res = gimple_phi_result (phi);
|
| 936 |
|
|
tree arg = gimple_phi_arg_def (phi, i);
|
| 937 |
|
|
|
| 938 |
|
|
fprintf (stderr, " Corrupt SSA across abnormal edge BB%d->BB%d\n",
|
| 939 |
|
|
e->src->index, e->dest->index);
|
| 940 |
|
|
fprintf (stderr, "Argument %d (", i);
|
| 941 |
|
|
print_generic_expr (stderr, arg, TDF_SLIM);
|
| 942 |
|
|
if (TREE_CODE (arg) != SSA_NAME)
|
| 943 |
|
|
fprintf (stderr, ") is not an SSA_NAME.\n");
|
| 944 |
|
|
else
|
| 945 |
|
|
{
|
| 946 |
|
|
gcc_assert (SSA_NAME_VAR (res) != SSA_NAME_VAR (arg));
|
| 947 |
|
|
fprintf (stderr, ") does not have the same base variable as the result ");
|
| 948 |
|
|
print_generic_stmt (stderr, res, TDF_SLIM);
|
| 949 |
|
|
}
|
| 950 |
|
|
|
| 951 |
|
|
internal_error ("SSA corruption");
|
| 952 |
|
|
}
|
| 953 |
|
|
|
| 954 |
|
|
|
| 955 |
|
|
/* Print a failure to coalesce a MUST_COALESCE pair X and Y. */
|
| 956 |
|
|
|
| 957 |
|
|
static inline void
|
| 958 |
|
|
fail_abnormal_edge_coalesce (int x, int y)
|
| 959 |
|
|
{
|
| 960 |
|
|
fprintf (stderr, "\nUnable to coalesce ssa_names %d and %d",x, y);
|
| 961 |
|
|
fprintf (stderr, " which are marked as MUST COALESCE.\n");
|
| 962 |
|
|
print_generic_expr (stderr, ssa_name (x), TDF_SLIM);
|
| 963 |
|
|
fprintf (stderr, " and ");
|
| 964 |
|
|
print_generic_stmt (stderr, ssa_name (y), TDF_SLIM);
|
| 965 |
|
|
|
| 966 |
|
|
internal_error ("SSA corruption");
|
| 967 |
|
|
}
|
| 968 |
|
|
|
| 969 |
|
|
|
| 970 |
|
|
/* This function creates a var_map for the current function as well as creating
|
| 971 |
|
|
a coalesce list for use later in the out of ssa process. */
|
| 972 |
|
|
|
| 973 |
|
|
static var_map
|
| 974 |
|
|
create_outofssa_var_map (coalesce_list_p cl, bitmap used_in_copy)
|
| 975 |
|
|
{
|
| 976 |
|
|
gimple_stmt_iterator gsi;
|
| 977 |
|
|
basic_block bb;
|
| 978 |
|
|
tree var;
|
| 979 |
|
|
gimple stmt;
|
| 980 |
|
|
tree first;
|
| 981 |
|
|
var_map map;
|
| 982 |
|
|
ssa_op_iter iter;
|
| 983 |
|
|
int v1, v2, cost;
|
| 984 |
|
|
unsigned i;
|
| 985 |
|
|
|
| 986 |
|
|
#ifdef ENABLE_CHECKING
|
| 987 |
|
|
bitmap used_in_real_ops;
|
| 988 |
|
|
bitmap used_in_virtual_ops;
|
| 989 |
|
|
|
| 990 |
|
|
used_in_real_ops = BITMAP_ALLOC (NULL);
|
| 991 |
|
|
used_in_virtual_ops = BITMAP_ALLOC (NULL);
|
| 992 |
|
|
#endif
|
| 993 |
|
|
|
| 994 |
|
|
map = init_var_map (num_ssa_names);
|
| 995 |
|
|
|
| 996 |
|
|
FOR_EACH_BB (bb)
|
| 997 |
|
|
{
|
| 998 |
|
|
tree arg;
|
| 999 |
|
|
|
| 1000 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 1001 |
|
|
{
|
| 1002 |
|
|
gimple phi = gsi_stmt (gsi);
|
| 1003 |
|
|
size_t i;
|
| 1004 |
|
|
int ver;
|
| 1005 |
|
|
tree res;
|
| 1006 |
|
|
bool saw_copy = false;
|
| 1007 |
|
|
|
| 1008 |
|
|
res = gimple_phi_result (phi);
|
| 1009 |
|
|
ver = SSA_NAME_VERSION (res);
|
| 1010 |
|
|
register_ssa_partition (map, res);
|
| 1011 |
|
|
|
| 1012 |
|
|
/* Register ssa_names and coalesces between the args and the result
|
| 1013 |
|
|
of all PHI. */
|
| 1014 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
| 1015 |
|
|
{
|
| 1016 |
|
|
edge e = gimple_phi_arg_edge (phi, i);
|
| 1017 |
|
|
arg = PHI_ARG_DEF (phi, i);
|
| 1018 |
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
| 1019 |
|
|
register_ssa_partition (map, arg);
|
| 1020 |
|
|
if (TREE_CODE (arg) == SSA_NAME
|
| 1021 |
|
|
&& SSA_NAME_VAR (arg) == SSA_NAME_VAR (res))
|
| 1022 |
|
|
{
|
| 1023 |
|
|
saw_copy = true;
|
| 1024 |
|
|
bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (arg));
|
| 1025 |
|
|
if ((e->flags & EDGE_ABNORMAL) == 0)
|
| 1026 |
|
|
{
|
| 1027 |
|
|
int cost = coalesce_cost_edge (e);
|
| 1028 |
|
|
if (cost == 1 && has_single_use (arg))
|
| 1029 |
|
|
add_cost_one_coalesce (cl, ver, SSA_NAME_VERSION (arg));
|
| 1030 |
|
|
else
|
| 1031 |
|
|
add_coalesce (cl, ver, SSA_NAME_VERSION (arg), cost);
|
| 1032 |
|
|
}
|
| 1033 |
|
|
}
|
| 1034 |
|
|
else
|
| 1035 |
|
|
if (e->flags & EDGE_ABNORMAL)
|
| 1036 |
|
|
abnormal_corrupt (phi, i);
|
| 1037 |
|
|
}
|
| 1038 |
|
|
if (saw_copy)
|
| 1039 |
|
|
bitmap_set_bit (used_in_copy, ver);
|
| 1040 |
|
|
}
|
| 1041 |
|
|
|
| 1042 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 1043 |
|
|
{
|
| 1044 |
|
|
stmt = gsi_stmt (gsi);
|
| 1045 |
|
|
|
| 1046 |
|
|
if (is_gimple_debug (stmt))
|
| 1047 |
|
|
continue;
|
| 1048 |
|
|
|
| 1049 |
|
|
/* Register USE and DEF operands in each statement. */
|
| 1050 |
|
|
FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
|
| 1051 |
|
|
register_ssa_partition (map, var);
|
| 1052 |
|
|
|
| 1053 |
|
|
/* Check for copy coalesces. */
|
| 1054 |
|
|
switch (gimple_code (stmt))
|
| 1055 |
|
|
{
|
| 1056 |
|
|
case GIMPLE_ASSIGN:
|
| 1057 |
|
|
{
|
| 1058 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
| 1059 |
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
| 1060 |
|
|
|
| 1061 |
|
|
if (gimple_assign_copy_p (stmt)
|
| 1062 |
|
|
&& TREE_CODE (lhs) == SSA_NAME
|
| 1063 |
|
|
&& TREE_CODE (rhs1) == SSA_NAME
|
| 1064 |
|
|
&& SSA_NAME_VAR (lhs) == SSA_NAME_VAR (rhs1))
|
| 1065 |
|
|
{
|
| 1066 |
|
|
v1 = SSA_NAME_VERSION (lhs);
|
| 1067 |
|
|
v2 = SSA_NAME_VERSION (rhs1);
|
| 1068 |
|
|
cost = coalesce_cost_bb (bb);
|
| 1069 |
|
|
add_coalesce (cl, v1, v2, cost);
|
| 1070 |
|
|
bitmap_set_bit (used_in_copy, v1);
|
| 1071 |
|
|
bitmap_set_bit (used_in_copy, v2);
|
| 1072 |
|
|
}
|
| 1073 |
|
|
}
|
| 1074 |
|
|
break;
|
| 1075 |
|
|
|
| 1076 |
|
|
case GIMPLE_ASM:
|
| 1077 |
|
|
{
|
| 1078 |
|
|
unsigned long noutputs, i;
|
| 1079 |
|
|
unsigned long ninputs;
|
| 1080 |
|
|
tree *outputs, link;
|
| 1081 |
|
|
noutputs = gimple_asm_noutputs (stmt);
|
| 1082 |
|
|
ninputs = gimple_asm_ninputs (stmt);
|
| 1083 |
|
|
outputs = (tree *) alloca (noutputs * sizeof (tree));
|
| 1084 |
|
|
for (i = 0; i < noutputs; ++i) {
|
| 1085 |
|
|
link = gimple_asm_output_op (stmt, i);
|
| 1086 |
|
|
outputs[i] = TREE_VALUE (link);
|
| 1087 |
|
|
}
|
| 1088 |
|
|
|
| 1089 |
|
|
for (i = 0; i < ninputs; ++i)
|
| 1090 |
|
|
{
|
| 1091 |
|
|
const char *constraint;
|
| 1092 |
|
|
tree input;
|
| 1093 |
|
|
char *end;
|
| 1094 |
|
|
unsigned long match;
|
| 1095 |
|
|
|
| 1096 |
|
|
link = gimple_asm_input_op (stmt, i);
|
| 1097 |
|
|
constraint
|
| 1098 |
|
|
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
|
| 1099 |
|
|
input = TREE_VALUE (link);
|
| 1100 |
|
|
|
| 1101 |
|
|
if (TREE_CODE (input) != SSA_NAME)
|
| 1102 |
|
|
continue;
|
| 1103 |
|
|
|
| 1104 |
|
|
match = strtoul (constraint, &end, 10);
|
| 1105 |
|
|
if (match >= noutputs || end == constraint)
|
| 1106 |
|
|
continue;
|
| 1107 |
|
|
|
| 1108 |
|
|
if (TREE_CODE (outputs[match]) != SSA_NAME)
|
| 1109 |
|
|
continue;
|
| 1110 |
|
|
|
| 1111 |
|
|
v1 = SSA_NAME_VERSION (outputs[match]);
|
| 1112 |
|
|
v2 = SSA_NAME_VERSION (input);
|
| 1113 |
|
|
|
| 1114 |
|
|
if (SSA_NAME_VAR (outputs[match]) == SSA_NAME_VAR (input))
|
| 1115 |
|
|
{
|
| 1116 |
|
|
cost = coalesce_cost (REG_BR_PROB_BASE,
|
| 1117 |
|
|
optimize_bb_for_size_p (bb));
|
| 1118 |
|
|
add_coalesce (cl, v1, v2, cost);
|
| 1119 |
|
|
bitmap_set_bit (used_in_copy, v1);
|
| 1120 |
|
|
bitmap_set_bit (used_in_copy, v2);
|
| 1121 |
|
|
}
|
| 1122 |
|
|
}
|
| 1123 |
|
|
break;
|
| 1124 |
|
|
}
|
| 1125 |
|
|
|
| 1126 |
|
|
default:
|
| 1127 |
|
|
break;
|
| 1128 |
|
|
}
|
| 1129 |
|
|
|
| 1130 |
|
|
#ifdef ENABLE_CHECKING
|
| 1131 |
|
|
/* Mark real uses and defs. */
|
| 1132 |
|
|
FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
|
| 1133 |
|
|
bitmap_set_bit (used_in_real_ops, DECL_UID (SSA_NAME_VAR (var)));
|
| 1134 |
|
|
|
| 1135 |
|
|
/* Validate that virtual ops don't get used in funny ways. */
|
| 1136 |
|
|
if (gimple_vuse (stmt))
|
| 1137 |
|
|
bitmap_set_bit (used_in_virtual_ops,
|
| 1138 |
|
|
DECL_UID (SSA_NAME_VAR (gimple_vuse (stmt))));
|
| 1139 |
|
|
#endif /* ENABLE_CHECKING */
|
| 1140 |
|
|
}
|
| 1141 |
|
|
}
|
| 1142 |
|
|
|
| 1143 |
|
|
/* Now process result decls and live on entry variables for entry into
|
| 1144 |
|
|
the coalesce list. */
|
| 1145 |
|
|
first = NULL_TREE;
|
| 1146 |
|
|
for (i = 1; i < num_ssa_names; i++)
|
| 1147 |
|
|
{
|
| 1148 |
|
|
var = ssa_name (i);
|
| 1149 |
|
|
if (var != NULL_TREE && is_gimple_reg (var))
|
| 1150 |
|
|
{
|
| 1151 |
|
|
/* Add coalesces between all the result decls. */
|
| 1152 |
|
|
if (TREE_CODE (SSA_NAME_VAR (var)) == RESULT_DECL)
|
| 1153 |
|
|
{
|
| 1154 |
|
|
if (first == NULL_TREE)
|
| 1155 |
|
|
first = var;
|
| 1156 |
|
|
else
|
| 1157 |
|
|
{
|
| 1158 |
|
|
gcc_assert (SSA_NAME_VAR (var) == SSA_NAME_VAR (first));
|
| 1159 |
|
|
v1 = SSA_NAME_VERSION (first);
|
| 1160 |
|
|
v2 = SSA_NAME_VERSION (var);
|
| 1161 |
|
|
bitmap_set_bit (used_in_copy, v1);
|
| 1162 |
|
|
bitmap_set_bit (used_in_copy, v2);
|
| 1163 |
|
|
cost = coalesce_cost_bb (EXIT_BLOCK_PTR);
|
| 1164 |
|
|
add_coalesce (cl, v1, v2, cost);
|
| 1165 |
|
|
}
|
| 1166 |
|
|
}
|
| 1167 |
|
|
/* Mark any default_def variables as being in the coalesce list
|
| 1168 |
|
|
since they will have to be coalesced with the base variable. If
|
| 1169 |
|
|
not marked as present, they won't be in the coalesce view. */
|
| 1170 |
|
|
if (gimple_default_def (cfun, SSA_NAME_VAR (var)) == var
|
| 1171 |
|
|
&& !has_zero_uses (var))
|
| 1172 |
|
|
bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
|
| 1173 |
|
|
}
|
| 1174 |
|
|
}
|
| 1175 |
|
|
|
| 1176 |
|
|
#if defined ENABLE_CHECKING
|
| 1177 |
|
|
{
|
| 1178 |
|
|
unsigned i;
|
| 1179 |
|
|
bitmap both = BITMAP_ALLOC (NULL);
|
| 1180 |
|
|
bitmap_and (both, used_in_real_ops, used_in_virtual_ops);
|
| 1181 |
|
|
if (!bitmap_empty_p (both))
|
| 1182 |
|
|
{
|
| 1183 |
|
|
bitmap_iterator bi;
|
| 1184 |
|
|
|
| 1185 |
|
|
EXECUTE_IF_SET_IN_BITMAP (both, 0, i, bi)
|
| 1186 |
|
|
fprintf (stderr, "Variable %s used in real and virtual operands\n",
|
| 1187 |
|
|
get_name (referenced_var (i)));
|
| 1188 |
|
|
internal_error ("SSA corruption");
|
| 1189 |
|
|
}
|
| 1190 |
|
|
|
| 1191 |
|
|
BITMAP_FREE (used_in_real_ops);
|
| 1192 |
|
|
BITMAP_FREE (used_in_virtual_ops);
|
| 1193 |
|
|
BITMAP_FREE (both);
|
| 1194 |
|
|
}
|
| 1195 |
|
|
#endif
|
| 1196 |
|
|
|
| 1197 |
|
|
return map;
|
| 1198 |
|
|
}
|
| 1199 |
|
|
|
| 1200 |
|
|
|
| 1201 |
|
|
/* Attempt to coalesce ssa versions X and Y together using the partition
|
| 1202 |
|
|
mapping in MAP and checking conflicts in GRAPH. Output any debug info to
|
| 1203 |
|
|
DEBUG, if it is nun-NULL. */
|
| 1204 |
|
|
|
| 1205 |
|
|
static inline bool
|
| 1206 |
|
|
attempt_coalesce (var_map map, ssa_conflicts_p graph, int x, int y,
|
| 1207 |
|
|
FILE *debug)
|
| 1208 |
|
|
{
|
| 1209 |
|
|
int z;
|
| 1210 |
|
|
tree var1, var2;
|
| 1211 |
|
|
int p1, p2;
|
| 1212 |
|
|
|
| 1213 |
|
|
p1 = var_to_partition (map, ssa_name (x));
|
| 1214 |
|
|
p2 = var_to_partition (map, ssa_name (y));
|
| 1215 |
|
|
|
| 1216 |
|
|
if (debug)
|
| 1217 |
|
|
{
|
| 1218 |
|
|
fprintf (debug, "(%d)", x);
|
| 1219 |
|
|
print_generic_expr (debug, partition_to_var (map, p1), TDF_SLIM);
|
| 1220 |
|
|
fprintf (debug, " & (%d)", y);
|
| 1221 |
|
|
print_generic_expr (debug, partition_to_var (map, p2), TDF_SLIM);
|
| 1222 |
|
|
}
|
| 1223 |
|
|
|
| 1224 |
|
|
if (p1 == p2)
|
| 1225 |
|
|
{
|
| 1226 |
|
|
if (debug)
|
| 1227 |
|
|
fprintf (debug, ": Already Coalesced.\n");
|
| 1228 |
|
|
return true;
|
| 1229 |
|
|
}
|
| 1230 |
|
|
|
| 1231 |
|
|
if (debug)
|
| 1232 |
|
|
fprintf (debug, " [map: %d, %d] ", p1, p2);
|
| 1233 |
|
|
|
| 1234 |
|
|
|
| 1235 |
|
|
if (!ssa_conflicts_test_p (graph, p1, p2))
|
| 1236 |
|
|
{
|
| 1237 |
|
|
var1 = partition_to_var (map, p1);
|
| 1238 |
|
|
var2 = partition_to_var (map, p2);
|
| 1239 |
|
|
z = var_union (map, var1, var2);
|
| 1240 |
|
|
if (z == NO_PARTITION)
|
| 1241 |
|
|
{
|
| 1242 |
|
|
if (debug)
|
| 1243 |
|
|
fprintf (debug, ": Unable to perform partition union.\n");
|
| 1244 |
|
|
return false;
|
| 1245 |
|
|
}
|
| 1246 |
|
|
|
| 1247 |
|
|
/* z is the new combined partition. Remove the other partition from
|
| 1248 |
|
|
the list, and merge the conflicts. */
|
| 1249 |
|
|
if (z == p1)
|
| 1250 |
|
|
ssa_conflicts_merge (graph, p1, p2);
|
| 1251 |
|
|
else
|
| 1252 |
|
|
ssa_conflicts_merge (graph, p2, p1);
|
| 1253 |
|
|
|
| 1254 |
|
|
if (debug)
|
| 1255 |
|
|
fprintf (debug, ": Success -> %d\n", z);
|
| 1256 |
|
|
return true;
|
| 1257 |
|
|
}
|
| 1258 |
|
|
|
| 1259 |
|
|
if (debug)
|
| 1260 |
|
|
fprintf (debug, ": Fail due to conflict\n");
|
| 1261 |
|
|
|
| 1262 |
|
|
return false;
|
| 1263 |
|
|
}
|
| 1264 |
|
|
|
| 1265 |
|
|
|
| 1266 |
|
|
/* Attempt to Coalesce partitions in MAP which occur in the list CL using
|
| 1267 |
|
|
GRAPH. Debug output is sent to DEBUG if it is non-NULL. */
|
| 1268 |
|
|
|
| 1269 |
|
|
static void
|
| 1270 |
|
|
coalesce_partitions (var_map map, ssa_conflicts_p graph, coalesce_list_p cl,
|
| 1271 |
|
|
FILE *debug)
|
| 1272 |
|
|
{
|
| 1273 |
|
|
int x = 0, y = 0;
|
| 1274 |
|
|
tree var1, var2;
|
| 1275 |
|
|
int cost;
|
| 1276 |
|
|
basic_block bb;
|
| 1277 |
|
|
edge e;
|
| 1278 |
|
|
edge_iterator ei;
|
| 1279 |
|
|
|
| 1280 |
|
|
/* First, coalesce all the copies across abnormal edges. These are not placed
|
| 1281 |
|
|
in the coalesce list because they do not need to be sorted, and simply
|
| 1282 |
|
|
consume extra memory/compilation time in large programs. */
|
| 1283 |
|
|
|
| 1284 |
|
|
FOR_EACH_BB (bb)
|
| 1285 |
|
|
{
|
| 1286 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 1287 |
|
|
if (e->flags & EDGE_ABNORMAL)
|
| 1288 |
|
|
{
|
| 1289 |
|
|
gimple_stmt_iterator gsi;
|
| 1290 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
|
| 1291 |
|
|
gsi_next (&gsi))
|
| 1292 |
|
|
{
|
| 1293 |
|
|
gimple phi = gsi_stmt (gsi);
|
| 1294 |
|
|
tree res = PHI_RESULT (phi);
|
| 1295 |
|
|
tree arg = PHI_ARG_DEF (phi, e->dest_idx);
|
| 1296 |
|
|
int v1 = SSA_NAME_VERSION (res);
|
| 1297 |
|
|
int v2 = SSA_NAME_VERSION (arg);
|
| 1298 |
|
|
|
| 1299 |
|
|
if (SSA_NAME_VAR (arg) != SSA_NAME_VAR (res))
|
| 1300 |
|
|
abnormal_corrupt (phi, e->dest_idx);
|
| 1301 |
|
|
|
| 1302 |
|
|
if (debug)
|
| 1303 |
|
|
fprintf (debug, "Abnormal coalesce: ");
|
| 1304 |
|
|
|
| 1305 |
|
|
if (!attempt_coalesce (map, graph, v1, v2, debug))
|
| 1306 |
|
|
fail_abnormal_edge_coalesce (v1, v2);
|
| 1307 |
|
|
}
|
| 1308 |
|
|
}
|
| 1309 |
|
|
}
|
| 1310 |
|
|
|
| 1311 |
|
|
/* Now process the items in the coalesce list. */
|
| 1312 |
|
|
|
| 1313 |
|
|
while ((cost = pop_best_coalesce (cl, &x, &y)) != NO_BEST_COALESCE)
|
| 1314 |
|
|
{
|
| 1315 |
|
|
var1 = ssa_name (x);
|
| 1316 |
|
|
var2 = ssa_name (y);
|
| 1317 |
|
|
|
| 1318 |
|
|
/* Assert the coalesces have the same base variable. */
|
| 1319 |
|
|
gcc_assert (SSA_NAME_VAR (var1) == SSA_NAME_VAR (var2));
|
| 1320 |
|
|
|
| 1321 |
|
|
if (debug)
|
| 1322 |
|
|
fprintf (debug, "Coalesce list: ");
|
| 1323 |
|
|
attempt_coalesce (map, graph, x, y, debug);
|
| 1324 |
|
|
}
|
| 1325 |
|
|
}
|
| 1326 |
|
|
|
| 1327 |
|
|
/* Returns a hash code for P. */
|
| 1328 |
|
|
|
| 1329 |
|
|
static hashval_t
|
| 1330 |
|
|
hash_ssa_name_by_var (const void *p)
|
| 1331 |
|
|
{
|
| 1332 |
|
|
const_tree n = (const_tree) p;
|
| 1333 |
|
|
return (hashval_t) htab_hash_pointer (SSA_NAME_VAR (n));
|
| 1334 |
|
|
}
|
| 1335 |
|
|
|
| 1336 |
|
|
/* Returns nonzero if P1 and P2 are equal. */
|
| 1337 |
|
|
|
| 1338 |
|
|
static int
|
| 1339 |
|
|
eq_ssa_name_by_var (const void *p1, const void *p2)
|
| 1340 |
|
|
{
|
| 1341 |
|
|
const_tree n1 = (const_tree) p1;
|
| 1342 |
|
|
const_tree n2 = (const_tree) p2;
|
| 1343 |
|
|
return SSA_NAME_VAR (n1) == SSA_NAME_VAR (n2);
|
| 1344 |
|
|
}
|
| 1345 |
|
|
|
| 1346 |
|
|
/* Reduce the number of copies by coalescing variables in the function. Return
|
| 1347 |
|
|
a partition map with the resulting coalesces. */
|
| 1348 |
|
|
|
| 1349 |
|
|
extern var_map
|
| 1350 |
|
|
coalesce_ssa_name (void)
|
| 1351 |
|
|
{
|
| 1352 |
|
|
tree_live_info_p liveinfo;
|
| 1353 |
|
|
ssa_conflicts_p graph;
|
| 1354 |
|
|
coalesce_list_p cl;
|
| 1355 |
|
|
bitmap used_in_copies = BITMAP_ALLOC (NULL);
|
| 1356 |
|
|
var_map map;
|
| 1357 |
|
|
unsigned int i;
|
| 1358 |
|
|
static htab_t ssa_name_hash;
|
| 1359 |
|
|
|
| 1360 |
|
|
cl = create_coalesce_list ();
|
| 1361 |
|
|
map = create_outofssa_var_map (cl, used_in_copies);
|
| 1362 |
|
|
|
| 1363 |
|
|
/* We need to coalesce all names originating same SSA_NAME_VAR
|
| 1364 |
|
|
so debug info remains undisturbed. */
|
| 1365 |
|
|
if (!optimize)
|
| 1366 |
|
|
{
|
| 1367 |
|
|
ssa_name_hash = htab_create (10, hash_ssa_name_by_var,
|
| 1368 |
|
|
eq_ssa_name_by_var, NULL);
|
| 1369 |
|
|
for (i = 1; i < num_ssa_names; i++)
|
| 1370 |
|
|
{
|
| 1371 |
|
|
tree a = ssa_name (i);
|
| 1372 |
|
|
|
| 1373 |
|
|
if (a
|
| 1374 |
|
|
&& SSA_NAME_VAR (a)
|
| 1375 |
|
|
&& !DECL_IGNORED_P (SSA_NAME_VAR (a))
|
| 1376 |
|
|
&& (!has_zero_uses (a) || !SSA_NAME_IS_DEFAULT_DEF (a)))
|
| 1377 |
|
|
{
|
| 1378 |
|
|
tree *slot = (tree *) htab_find_slot (ssa_name_hash, a, INSERT);
|
| 1379 |
|
|
|
| 1380 |
|
|
if (!*slot)
|
| 1381 |
|
|
*slot = a;
|
| 1382 |
|
|
else
|
| 1383 |
|
|
{
|
| 1384 |
|
|
add_coalesce (cl, SSA_NAME_VERSION (a), SSA_NAME_VERSION (*slot),
|
| 1385 |
|
|
MUST_COALESCE_COST - 1);
|
| 1386 |
|
|
bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (a));
|
| 1387 |
|
|
bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (*slot));
|
| 1388 |
|
|
}
|
| 1389 |
|
|
}
|
| 1390 |
|
|
}
|
| 1391 |
|
|
htab_delete (ssa_name_hash);
|
| 1392 |
|
|
}
|
| 1393 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1394 |
|
|
dump_var_map (dump_file, map);
|
| 1395 |
|
|
|
| 1396 |
|
|
/* Don't calculate live ranges for variables not in the coalesce list. */
|
| 1397 |
|
|
partition_view_bitmap (map, used_in_copies, true);
|
| 1398 |
|
|
BITMAP_FREE (used_in_copies);
|
| 1399 |
|
|
|
| 1400 |
|
|
if (num_var_partitions (map) < 1)
|
| 1401 |
|
|
{
|
| 1402 |
|
|
delete_coalesce_list (cl);
|
| 1403 |
|
|
return map;
|
| 1404 |
|
|
}
|
| 1405 |
|
|
|
| 1406 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1407 |
|
|
dump_var_map (dump_file, map);
|
| 1408 |
|
|
|
| 1409 |
|
|
liveinfo = calculate_live_ranges (map);
|
| 1410 |
|
|
|
| 1411 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1412 |
|
|
dump_live_info (dump_file, liveinfo, LIVEDUMP_ENTRY);
|
| 1413 |
|
|
|
| 1414 |
|
|
/* Build a conflict graph. */
|
| 1415 |
|
|
graph = build_ssa_conflict_graph (liveinfo);
|
| 1416 |
|
|
delete_tree_live_info (liveinfo);
|
| 1417 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1418 |
|
|
ssa_conflicts_dump (dump_file, graph);
|
| 1419 |
|
|
|
| 1420 |
|
|
sort_coalesce_list (cl);
|
| 1421 |
|
|
|
| 1422 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1423 |
|
|
{
|
| 1424 |
|
|
fprintf (dump_file, "\nAfter sorting:\n");
|
| 1425 |
|
|
dump_coalesce_list (dump_file, cl);
|
| 1426 |
|
|
}
|
| 1427 |
|
|
|
| 1428 |
|
|
/* First, coalesce all live on entry variables to their base variable.
|
| 1429 |
|
|
This will ensure the first use is coming from the correct location. */
|
| 1430 |
|
|
|
| 1431 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1432 |
|
|
dump_var_map (dump_file, map);
|
| 1433 |
|
|
|
| 1434 |
|
|
/* Now coalesce everything in the list. */
|
| 1435 |
|
|
coalesce_partitions (map, graph, cl,
|
| 1436 |
|
|
((dump_flags & TDF_DETAILS) ? dump_file
|
| 1437 |
|
|
: NULL));
|
| 1438 |
|
|
|
| 1439 |
|
|
delete_coalesce_list (cl);
|
| 1440 |
|
|
ssa_conflicts_delete (graph);
|
| 1441 |
|
|
|
| 1442 |
|
|
return map;
|
| 1443 |
|
|
}
|