| 1 |
684 |
jeremybenn |
/* SSA Dominator optimizations for trees
|
| 2 |
|
|
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
Contributed by Diego Novillo <dnovillo@redhat.com>
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GCC.
|
| 7 |
|
|
|
| 8 |
|
|
GCC is free software; you can redistribute it and/or modify
|
| 9 |
|
|
it under the terms of the GNU General Public License as published by
|
| 10 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
| 11 |
|
|
any later version.
|
| 12 |
|
|
|
| 13 |
|
|
GCC is distributed in the hope that it will be useful,
|
| 14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 16 |
|
|
GNU General Public License for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 20 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
#include "config.h"
|
| 23 |
|
|
#include "system.h"
|
| 24 |
|
|
#include "coretypes.h"
|
| 25 |
|
|
#include "tm.h"
|
| 26 |
|
|
#include "tree.h"
|
| 27 |
|
|
#include "flags.h"
|
| 28 |
|
|
#include "tm_p.h"
|
| 29 |
|
|
#include "basic-block.h"
|
| 30 |
|
|
#include "cfgloop.h"
|
| 31 |
|
|
#include "output.h"
|
| 32 |
|
|
#include "function.h"
|
| 33 |
|
|
#include "tree-pretty-print.h"
|
| 34 |
|
|
#include "gimple-pretty-print.h"
|
| 35 |
|
|
#include "timevar.h"
|
| 36 |
|
|
#include "tree-dump.h"
|
| 37 |
|
|
#include "tree-flow.h"
|
| 38 |
|
|
#include "domwalk.h"
|
| 39 |
|
|
#include "tree-pass.h"
|
| 40 |
|
|
#include "tree-ssa-propagate.h"
|
| 41 |
|
|
#include "langhooks.h"
|
| 42 |
|
|
#include "params.h"
|
| 43 |
|
|
|
| 44 |
|
|
/* This file implements optimizations on the dominator tree. */
|
| 45 |
|
|
|
| 46 |
|
|
/* Representation of a "naked" right-hand-side expression, to be used
|
| 47 |
|
|
in recording available expressions in the expression hash table. */
|
| 48 |
|
|
|
| 49 |
|
|
enum expr_kind
|
| 50 |
|
|
{
|
| 51 |
|
|
EXPR_SINGLE,
|
| 52 |
|
|
EXPR_UNARY,
|
| 53 |
|
|
EXPR_BINARY,
|
| 54 |
|
|
EXPR_TERNARY,
|
| 55 |
|
|
EXPR_CALL,
|
| 56 |
|
|
EXPR_PHI
|
| 57 |
|
|
};
|
| 58 |
|
|
|
| 59 |
|
|
struct hashable_expr
|
| 60 |
|
|
{
|
| 61 |
|
|
tree type;
|
| 62 |
|
|
enum expr_kind kind;
|
| 63 |
|
|
union {
|
| 64 |
|
|
struct { tree rhs; } single;
|
| 65 |
|
|
struct { enum tree_code op; tree opnd; } unary;
|
| 66 |
|
|
struct { enum tree_code op; tree opnd0, opnd1; } binary;
|
| 67 |
|
|
struct { enum tree_code op; tree opnd0, opnd1, opnd2; } ternary;
|
| 68 |
|
|
struct { gimple fn_from; bool pure; size_t nargs; tree *args; } call;
|
| 69 |
|
|
struct { size_t nargs; tree *args; } phi;
|
| 70 |
|
|
} ops;
|
| 71 |
|
|
};
|
| 72 |
|
|
|
| 73 |
|
|
/* Structure for recording known values of a conditional expression
|
| 74 |
|
|
at the exits from its block. */
|
| 75 |
|
|
|
| 76 |
|
|
typedef struct cond_equivalence_s
|
| 77 |
|
|
{
|
| 78 |
|
|
struct hashable_expr cond;
|
| 79 |
|
|
tree value;
|
| 80 |
|
|
} cond_equivalence;
|
| 81 |
|
|
|
| 82 |
|
|
DEF_VEC_O(cond_equivalence);
|
| 83 |
|
|
DEF_VEC_ALLOC_O(cond_equivalence,heap);
|
| 84 |
|
|
|
| 85 |
|
|
/* Structure for recording edge equivalences as well as any pending
|
| 86 |
|
|
edge redirections during the dominator optimizer.
|
| 87 |
|
|
|
| 88 |
|
|
Computing and storing the edge equivalences instead of creating
|
| 89 |
|
|
them on-demand can save significant amounts of time, particularly
|
| 90 |
|
|
for pathological cases involving switch statements.
|
| 91 |
|
|
|
| 92 |
|
|
These structures live for a single iteration of the dominator
|
| 93 |
|
|
optimizer in the edge's AUX field. At the end of an iteration we
|
| 94 |
|
|
free each of these structures and update the AUX field to point
|
| 95 |
|
|
to any requested redirection target (the code for updating the
|
| 96 |
|
|
CFG and SSA graph for edge redirection expects redirection edge
|
| 97 |
|
|
targets to be in the AUX field for each edge. */
|
| 98 |
|
|
|
| 99 |
|
|
struct edge_info
|
| 100 |
|
|
{
|
| 101 |
|
|
/* If this edge creates a simple equivalence, the LHS and RHS of
|
| 102 |
|
|
the equivalence will be stored here. */
|
| 103 |
|
|
tree lhs;
|
| 104 |
|
|
tree rhs;
|
| 105 |
|
|
|
| 106 |
|
|
/* Traversing an edge may also indicate one or more particular conditions
|
| 107 |
|
|
are true or false. */
|
| 108 |
|
|
VEC(cond_equivalence, heap) *cond_equivalences;
|
| 109 |
|
|
};
|
| 110 |
|
|
|
| 111 |
|
|
/* Hash table with expressions made available during the renaming process.
|
| 112 |
|
|
When an assignment of the form X_i = EXPR is found, the statement is
|
| 113 |
|
|
stored in this table. If the same expression EXPR is later found on the
|
| 114 |
|
|
RHS of another statement, it is replaced with X_i (thus performing
|
| 115 |
|
|
global redundancy elimination). Similarly as we pass through conditionals
|
| 116 |
|
|
we record the conditional itself as having either a true or false value
|
| 117 |
|
|
in this table. */
|
| 118 |
|
|
static htab_t avail_exprs;
|
| 119 |
|
|
|
| 120 |
|
|
/* Stack of available expressions in AVAIL_EXPRs. Each block pushes any
|
| 121 |
|
|
expressions it enters into the hash table along with a marker entry
|
| 122 |
|
|
(null). When we finish processing the block, we pop off entries and
|
| 123 |
|
|
remove the expressions from the global hash table until we hit the
|
| 124 |
|
|
marker. */
|
| 125 |
|
|
typedef struct expr_hash_elt * expr_hash_elt_t;
|
| 126 |
|
|
DEF_VEC_P(expr_hash_elt_t);
|
| 127 |
|
|
DEF_VEC_ALLOC_P(expr_hash_elt_t,heap);
|
| 128 |
|
|
|
| 129 |
|
|
static VEC(expr_hash_elt_t,heap) *avail_exprs_stack;
|
| 130 |
|
|
|
| 131 |
|
|
/* Structure for entries in the expression hash table. */
|
| 132 |
|
|
|
| 133 |
|
|
struct expr_hash_elt
|
| 134 |
|
|
{
|
| 135 |
|
|
/* The value (lhs) of this expression. */
|
| 136 |
|
|
tree lhs;
|
| 137 |
|
|
|
| 138 |
|
|
/* The expression (rhs) we want to record. */
|
| 139 |
|
|
struct hashable_expr expr;
|
| 140 |
|
|
|
| 141 |
|
|
/* The stmt pointer if this element corresponds to a statement. */
|
| 142 |
|
|
gimple stmt;
|
| 143 |
|
|
|
| 144 |
|
|
/* The hash value for RHS. */
|
| 145 |
|
|
hashval_t hash;
|
| 146 |
|
|
|
| 147 |
|
|
/* A unique stamp, typically the address of the hash
|
| 148 |
|
|
element itself, used in removing entries from the table. */
|
| 149 |
|
|
struct expr_hash_elt *stamp;
|
| 150 |
|
|
};
|
| 151 |
|
|
|
| 152 |
|
|
/* Stack of dest,src pairs that need to be restored during finalization.
|
| 153 |
|
|
|
| 154 |
|
|
A NULL entry is used to mark the end of pairs which need to be
|
| 155 |
|
|
restored during finalization of this block. */
|
| 156 |
|
|
static VEC(tree,heap) *const_and_copies_stack;
|
| 157 |
|
|
|
| 158 |
|
|
/* Track whether or not we have changed the control flow graph. */
|
| 159 |
|
|
static bool cfg_altered;
|
| 160 |
|
|
|
| 161 |
|
|
/* Bitmap of blocks that have had EH statements cleaned. We should
|
| 162 |
|
|
remove their dead edges eventually. */
|
| 163 |
|
|
static bitmap need_eh_cleanup;
|
| 164 |
|
|
|
| 165 |
|
|
/* Statistics for dominator optimizations. */
|
| 166 |
|
|
struct opt_stats_d
|
| 167 |
|
|
{
|
| 168 |
|
|
long num_stmts;
|
| 169 |
|
|
long num_exprs_considered;
|
| 170 |
|
|
long num_re;
|
| 171 |
|
|
long num_const_prop;
|
| 172 |
|
|
long num_copy_prop;
|
| 173 |
|
|
};
|
| 174 |
|
|
|
| 175 |
|
|
static struct opt_stats_d opt_stats;
|
| 176 |
|
|
|
| 177 |
|
|
/* Local functions. */
|
| 178 |
|
|
static void optimize_stmt (basic_block, gimple_stmt_iterator);
|
| 179 |
|
|
static tree lookup_avail_expr (gimple, bool);
|
| 180 |
|
|
static hashval_t avail_expr_hash (const void *);
|
| 181 |
|
|
static hashval_t real_avail_expr_hash (const void *);
|
| 182 |
|
|
static int avail_expr_eq (const void *, const void *);
|
| 183 |
|
|
static void htab_statistics (FILE *, htab_t);
|
| 184 |
|
|
static void record_cond (cond_equivalence *);
|
| 185 |
|
|
static void record_const_or_copy (tree, tree);
|
| 186 |
|
|
static void record_equality (tree, tree);
|
| 187 |
|
|
static void record_equivalences_from_phis (basic_block);
|
| 188 |
|
|
static void record_equivalences_from_incoming_edge (basic_block);
|
| 189 |
|
|
static void eliminate_redundant_computations (gimple_stmt_iterator *);
|
| 190 |
|
|
static void record_equivalences_from_stmt (gimple, int);
|
| 191 |
|
|
static void dom_thread_across_edge (struct dom_walk_data *, edge);
|
| 192 |
|
|
static void dom_opt_leave_block (struct dom_walk_data *, basic_block);
|
| 193 |
|
|
static void dom_opt_enter_block (struct dom_walk_data *, basic_block);
|
| 194 |
|
|
static void remove_local_expressions_from_table (void);
|
| 195 |
|
|
static void restore_vars_to_original_value (void);
|
| 196 |
|
|
static edge single_incoming_edge_ignoring_loop_edges (basic_block);
|
| 197 |
|
|
|
| 198 |
|
|
|
| 199 |
|
|
/* Given a statement STMT, initialize the hash table element pointed to
|
| 200 |
|
|
by ELEMENT. */
|
| 201 |
|
|
|
| 202 |
|
|
static void
|
| 203 |
|
|
initialize_hash_element (gimple stmt, tree lhs,
|
| 204 |
|
|
struct expr_hash_elt *element)
|
| 205 |
|
|
{
|
| 206 |
|
|
enum gimple_code code = gimple_code (stmt);
|
| 207 |
|
|
struct hashable_expr *expr = &element->expr;
|
| 208 |
|
|
|
| 209 |
|
|
if (code == GIMPLE_ASSIGN)
|
| 210 |
|
|
{
|
| 211 |
|
|
enum tree_code subcode = gimple_assign_rhs_code (stmt);
|
| 212 |
|
|
|
| 213 |
|
|
switch (get_gimple_rhs_class (subcode))
|
| 214 |
|
|
{
|
| 215 |
|
|
case GIMPLE_SINGLE_RHS:
|
| 216 |
|
|
expr->kind = EXPR_SINGLE;
|
| 217 |
|
|
expr->type = TREE_TYPE (gimple_assign_rhs1 (stmt));
|
| 218 |
|
|
expr->ops.single.rhs = gimple_assign_rhs1 (stmt);
|
| 219 |
|
|
break;
|
| 220 |
|
|
case GIMPLE_UNARY_RHS:
|
| 221 |
|
|
expr->kind = EXPR_UNARY;
|
| 222 |
|
|
expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
|
| 223 |
|
|
expr->ops.unary.op = subcode;
|
| 224 |
|
|
expr->ops.unary.opnd = gimple_assign_rhs1 (stmt);
|
| 225 |
|
|
break;
|
| 226 |
|
|
case GIMPLE_BINARY_RHS:
|
| 227 |
|
|
expr->kind = EXPR_BINARY;
|
| 228 |
|
|
expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
|
| 229 |
|
|
expr->ops.binary.op = subcode;
|
| 230 |
|
|
expr->ops.binary.opnd0 = gimple_assign_rhs1 (stmt);
|
| 231 |
|
|
expr->ops.binary.opnd1 = gimple_assign_rhs2 (stmt);
|
| 232 |
|
|
break;
|
| 233 |
|
|
case GIMPLE_TERNARY_RHS:
|
| 234 |
|
|
expr->kind = EXPR_TERNARY;
|
| 235 |
|
|
expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
|
| 236 |
|
|
expr->ops.ternary.op = subcode;
|
| 237 |
|
|
expr->ops.ternary.opnd0 = gimple_assign_rhs1 (stmt);
|
| 238 |
|
|
expr->ops.ternary.opnd1 = gimple_assign_rhs2 (stmt);
|
| 239 |
|
|
expr->ops.ternary.opnd2 = gimple_assign_rhs3 (stmt);
|
| 240 |
|
|
break;
|
| 241 |
|
|
default:
|
| 242 |
|
|
gcc_unreachable ();
|
| 243 |
|
|
}
|
| 244 |
|
|
}
|
| 245 |
|
|
else if (code == GIMPLE_COND)
|
| 246 |
|
|
{
|
| 247 |
|
|
expr->type = boolean_type_node;
|
| 248 |
|
|
expr->kind = EXPR_BINARY;
|
| 249 |
|
|
expr->ops.binary.op = gimple_cond_code (stmt);
|
| 250 |
|
|
expr->ops.binary.opnd0 = gimple_cond_lhs (stmt);
|
| 251 |
|
|
expr->ops.binary.opnd1 = gimple_cond_rhs (stmt);
|
| 252 |
|
|
}
|
| 253 |
|
|
else if (code == GIMPLE_CALL)
|
| 254 |
|
|
{
|
| 255 |
|
|
size_t nargs = gimple_call_num_args (stmt);
|
| 256 |
|
|
size_t i;
|
| 257 |
|
|
|
| 258 |
|
|
gcc_assert (gimple_call_lhs (stmt));
|
| 259 |
|
|
|
| 260 |
|
|
expr->type = TREE_TYPE (gimple_call_lhs (stmt));
|
| 261 |
|
|
expr->kind = EXPR_CALL;
|
| 262 |
|
|
expr->ops.call.fn_from = stmt;
|
| 263 |
|
|
|
| 264 |
|
|
if (gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE))
|
| 265 |
|
|
expr->ops.call.pure = true;
|
| 266 |
|
|
else
|
| 267 |
|
|
expr->ops.call.pure = false;
|
| 268 |
|
|
|
| 269 |
|
|
expr->ops.call.nargs = nargs;
|
| 270 |
|
|
expr->ops.call.args = XCNEWVEC (tree, nargs);
|
| 271 |
|
|
for (i = 0; i < nargs; i++)
|
| 272 |
|
|
expr->ops.call.args[i] = gimple_call_arg (stmt, i);
|
| 273 |
|
|
}
|
| 274 |
|
|
else if (code == GIMPLE_SWITCH)
|
| 275 |
|
|
{
|
| 276 |
|
|
expr->type = TREE_TYPE (gimple_switch_index (stmt));
|
| 277 |
|
|
expr->kind = EXPR_SINGLE;
|
| 278 |
|
|
expr->ops.single.rhs = gimple_switch_index (stmt);
|
| 279 |
|
|
}
|
| 280 |
|
|
else if (code == GIMPLE_GOTO)
|
| 281 |
|
|
{
|
| 282 |
|
|
expr->type = TREE_TYPE (gimple_goto_dest (stmt));
|
| 283 |
|
|
expr->kind = EXPR_SINGLE;
|
| 284 |
|
|
expr->ops.single.rhs = gimple_goto_dest (stmt);
|
| 285 |
|
|
}
|
| 286 |
|
|
else if (code == GIMPLE_PHI)
|
| 287 |
|
|
{
|
| 288 |
|
|
size_t nargs = gimple_phi_num_args (stmt);
|
| 289 |
|
|
size_t i;
|
| 290 |
|
|
|
| 291 |
|
|
expr->type = TREE_TYPE (gimple_phi_result (stmt));
|
| 292 |
|
|
expr->kind = EXPR_PHI;
|
| 293 |
|
|
expr->ops.phi.nargs = nargs;
|
| 294 |
|
|
expr->ops.phi.args = XCNEWVEC (tree, nargs);
|
| 295 |
|
|
|
| 296 |
|
|
for (i = 0; i < nargs; i++)
|
| 297 |
|
|
expr->ops.phi.args[i] = gimple_phi_arg_def (stmt, i);
|
| 298 |
|
|
}
|
| 299 |
|
|
else
|
| 300 |
|
|
gcc_unreachable ();
|
| 301 |
|
|
|
| 302 |
|
|
element->lhs = lhs;
|
| 303 |
|
|
element->stmt = stmt;
|
| 304 |
|
|
element->hash = avail_expr_hash (element);
|
| 305 |
|
|
element->stamp = element;
|
| 306 |
|
|
}
|
| 307 |
|
|
|
| 308 |
|
|
/* Given a conditional expression COND as a tree, initialize
|
| 309 |
|
|
a hashable_expr expression EXPR. The conditional must be a
|
| 310 |
|
|
comparison or logical negation. A constant or a variable is
|
| 311 |
|
|
not permitted. */
|
| 312 |
|
|
|
| 313 |
|
|
static void
|
| 314 |
|
|
initialize_expr_from_cond (tree cond, struct hashable_expr *expr)
|
| 315 |
|
|
{
|
| 316 |
|
|
expr->type = boolean_type_node;
|
| 317 |
|
|
|
| 318 |
|
|
if (COMPARISON_CLASS_P (cond))
|
| 319 |
|
|
{
|
| 320 |
|
|
expr->kind = EXPR_BINARY;
|
| 321 |
|
|
expr->ops.binary.op = TREE_CODE (cond);
|
| 322 |
|
|
expr->ops.binary.opnd0 = TREE_OPERAND (cond, 0);
|
| 323 |
|
|
expr->ops.binary.opnd1 = TREE_OPERAND (cond, 1);
|
| 324 |
|
|
}
|
| 325 |
|
|
else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
|
| 326 |
|
|
{
|
| 327 |
|
|
expr->kind = EXPR_UNARY;
|
| 328 |
|
|
expr->ops.unary.op = TRUTH_NOT_EXPR;
|
| 329 |
|
|
expr->ops.unary.opnd = TREE_OPERAND (cond, 0);
|
| 330 |
|
|
}
|
| 331 |
|
|
else
|
| 332 |
|
|
gcc_unreachable ();
|
| 333 |
|
|
}
|
| 334 |
|
|
|
| 335 |
|
|
/* Given a hashable_expr expression EXPR and an LHS,
|
| 336 |
|
|
initialize the hash table element pointed to by ELEMENT. */
|
| 337 |
|
|
|
| 338 |
|
|
static void
|
| 339 |
|
|
initialize_hash_element_from_expr (struct hashable_expr *expr,
|
| 340 |
|
|
tree lhs,
|
| 341 |
|
|
struct expr_hash_elt *element)
|
| 342 |
|
|
{
|
| 343 |
|
|
element->expr = *expr;
|
| 344 |
|
|
element->lhs = lhs;
|
| 345 |
|
|
element->stmt = NULL;
|
| 346 |
|
|
element->hash = avail_expr_hash (element);
|
| 347 |
|
|
element->stamp = element;
|
| 348 |
|
|
}
|
| 349 |
|
|
|
| 350 |
|
|
/* Compare two hashable_expr structures for equivalence.
|
| 351 |
|
|
They are considered equivalent when the the expressions
|
| 352 |
|
|
they denote must necessarily be equal. The logic is intended
|
| 353 |
|
|
to follow that of operand_equal_p in fold-const.c */
|
| 354 |
|
|
|
| 355 |
|
|
static bool
|
| 356 |
|
|
hashable_expr_equal_p (const struct hashable_expr *expr0,
|
| 357 |
|
|
const struct hashable_expr *expr1)
|
| 358 |
|
|
{
|
| 359 |
|
|
tree type0 = expr0->type;
|
| 360 |
|
|
tree type1 = expr1->type;
|
| 361 |
|
|
|
| 362 |
|
|
/* If either type is NULL, there is nothing to check. */
|
| 363 |
|
|
if ((type0 == NULL_TREE) ^ (type1 == NULL_TREE))
|
| 364 |
|
|
return false;
|
| 365 |
|
|
|
| 366 |
|
|
/* If both types don't have the same signedness, precision, and mode,
|
| 367 |
|
|
then we can't consider them equal. */
|
| 368 |
|
|
if (type0 != type1
|
| 369 |
|
|
&& (TREE_CODE (type0) == ERROR_MARK
|
| 370 |
|
|
|| TREE_CODE (type1) == ERROR_MARK
|
| 371 |
|
|
|| TYPE_UNSIGNED (type0) != TYPE_UNSIGNED (type1)
|
| 372 |
|
|
|| TYPE_PRECISION (type0) != TYPE_PRECISION (type1)
|
| 373 |
|
|
|| TYPE_MODE (type0) != TYPE_MODE (type1)))
|
| 374 |
|
|
return false;
|
| 375 |
|
|
|
| 376 |
|
|
if (expr0->kind != expr1->kind)
|
| 377 |
|
|
return false;
|
| 378 |
|
|
|
| 379 |
|
|
switch (expr0->kind)
|
| 380 |
|
|
{
|
| 381 |
|
|
case EXPR_SINGLE:
|
| 382 |
|
|
return operand_equal_p (expr0->ops.single.rhs,
|
| 383 |
|
|
expr1->ops.single.rhs, 0);
|
| 384 |
|
|
|
| 385 |
|
|
case EXPR_UNARY:
|
| 386 |
|
|
if (expr0->ops.unary.op != expr1->ops.unary.op)
|
| 387 |
|
|
return false;
|
| 388 |
|
|
|
| 389 |
|
|
if ((CONVERT_EXPR_CODE_P (expr0->ops.unary.op)
|
| 390 |
|
|
|| expr0->ops.unary.op == NON_LVALUE_EXPR)
|
| 391 |
|
|
&& TYPE_UNSIGNED (expr0->type) != TYPE_UNSIGNED (expr1->type))
|
| 392 |
|
|
return false;
|
| 393 |
|
|
|
| 394 |
|
|
return operand_equal_p (expr0->ops.unary.opnd,
|
| 395 |
|
|
expr1->ops.unary.opnd, 0);
|
| 396 |
|
|
|
| 397 |
|
|
case EXPR_BINARY:
|
| 398 |
|
|
if (expr0->ops.binary.op != expr1->ops.binary.op)
|
| 399 |
|
|
return false;
|
| 400 |
|
|
|
| 401 |
|
|
if (operand_equal_p (expr0->ops.binary.opnd0,
|
| 402 |
|
|
expr1->ops.binary.opnd0, 0)
|
| 403 |
|
|
&& operand_equal_p (expr0->ops.binary.opnd1,
|
| 404 |
|
|
expr1->ops.binary.opnd1, 0))
|
| 405 |
|
|
return true;
|
| 406 |
|
|
|
| 407 |
|
|
/* For commutative ops, allow the other order. */
|
| 408 |
|
|
return (commutative_tree_code (expr0->ops.binary.op)
|
| 409 |
|
|
&& operand_equal_p (expr0->ops.binary.opnd0,
|
| 410 |
|
|
expr1->ops.binary.opnd1, 0)
|
| 411 |
|
|
&& operand_equal_p (expr0->ops.binary.opnd1,
|
| 412 |
|
|
expr1->ops.binary.opnd0, 0));
|
| 413 |
|
|
|
| 414 |
|
|
case EXPR_TERNARY:
|
| 415 |
|
|
if (expr0->ops.ternary.op != expr1->ops.ternary.op
|
| 416 |
|
|
|| !operand_equal_p (expr0->ops.ternary.opnd2,
|
| 417 |
|
|
expr1->ops.ternary.opnd2, 0))
|
| 418 |
|
|
return false;
|
| 419 |
|
|
|
| 420 |
|
|
if (operand_equal_p (expr0->ops.ternary.opnd0,
|
| 421 |
|
|
expr1->ops.ternary.opnd0, 0)
|
| 422 |
|
|
&& operand_equal_p (expr0->ops.ternary.opnd1,
|
| 423 |
|
|
expr1->ops.ternary.opnd1, 0))
|
| 424 |
|
|
return true;
|
| 425 |
|
|
|
| 426 |
|
|
/* For commutative ops, allow the other order. */
|
| 427 |
|
|
return (commutative_ternary_tree_code (expr0->ops.ternary.op)
|
| 428 |
|
|
&& operand_equal_p (expr0->ops.ternary.opnd0,
|
| 429 |
|
|
expr1->ops.ternary.opnd1, 0)
|
| 430 |
|
|
&& operand_equal_p (expr0->ops.ternary.opnd1,
|
| 431 |
|
|
expr1->ops.ternary.opnd0, 0));
|
| 432 |
|
|
|
| 433 |
|
|
case EXPR_CALL:
|
| 434 |
|
|
{
|
| 435 |
|
|
size_t i;
|
| 436 |
|
|
|
| 437 |
|
|
/* If the calls are to different functions, then they
|
| 438 |
|
|
clearly cannot be equal. */
|
| 439 |
|
|
if (!gimple_call_same_target_p (expr0->ops.call.fn_from,
|
| 440 |
|
|
expr1->ops.call.fn_from))
|
| 441 |
|
|
return false;
|
| 442 |
|
|
|
| 443 |
|
|
if (! expr0->ops.call.pure)
|
| 444 |
|
|
return false;
|
| 445 |
|
|
|
| 446 |
|
|
if (expr0->ops.call.nargs != expr1->ops.call.nargs)
|
| 447 |
|
|
return false;
|
| 448 |
|
|
|
| 449 |
|
|
for (i = 0; i < expr0->ops.call.nargs; i++)
|
| 450 |
|
|
if (! operand_equal_p (expr0->ops.call.args[i],
|
| 451 |
|
|
expr1->ops.call.args[i], 0))
|
| 452 |
|
|
return false;
|
| 453 |
|
|
|
| 454 |
|
|
return true;
|
| 455 |
|
|
}
|
| 456 |
|
|
|
| 457 |
|
|
case EXPR_PHI:
|
| 458 |
|
|
{
|
| 459 |
|
|
size_t i;
|
| 460 |
|
|
|
| 461 |
|
|
if (expr0->ops.phi.nargs != expr1->ops.phi.nargs)
|
| 462 |
|
|
return false;
|
| 463 |
|
|
|
| 464 |
|
|
for (i = 0; i < expr0->ops.phi.nargs; i++)
|
| 465 |
|
|
if (! operand_equal_p (expr0->ops.phi.args[i],
|
| 466 |
|
|
expr1->ops.phi.args[i], 0))
|
| 467 |
|
|
return false;
|
| 468 |
|
|
|
| 469 |
|
|
return true;
|
| 470 |
|
|
}
|
| 471 |
|
|
|
| 472 |
|
|
default:
|
| 473 |
|
|
gcc_unreachable ();
|
| 474 |
|
|
}
|
| 475 |
|
|
}
|
| 476 |
|
|
|
| 477 |
|
|
/* Compute a hash value for a hashable_expr value EXPR and a
|
| 478 |
|
|
previously accumulated hash value VAL. If two hashable_expr
|
| 479 |
|
|
values compare equal with hashable_expr_equal_p, they must
|
| 480 |
|
|
hash to the same value, given an identical value of VAL.
|
| 481 |
|
|
The logic is intended to follow iterative_hash_expr in tree.c. */
|
| 482 |
|
|
|
| 483 |
|
|
static hashval_t
|
| 484 |
|
|
iterative_hash_hashable_expr (const struct hashable_expr *expr, hashval_t val)
|
| 485 |
|
|
{
|
| 486 |
|
|
switch (expr->kind)
|
| 487 |
|
|
{
|
| 488 |
|
|
case EXPR_SINGLE:
|
| 489 |
|
|
val = iterative_hash_expr (expr->ops.single.rhs, val);
|
| 490 |
|
|
break;
|
| 491 |
|
|
|
| 492 |
|
|
case EXPR_UNARY:
|
| 493 |
|
|
val = iterative_hash_object (expr->ops.unary.op, val);
|
| 494 |
|
|
|
| 495 |
|
|
/* Make sure to include signedness in the hash computation.
|
| 496 |
|
|
Don't hash the type, that can lead to having nodes which
|
| 497 |
|
|
compare equal according to operand_equal_p, but which
|
| 498 |
|
|
have different hash codes. */
|
| 499 |
|
|
if (CONVERT_EXPR_CODE_P (expr->ops.unary.op)
|
| 500 |
|
|
|| expr->ops.unary.op == NON_LVALUE_EXPR)
|
| 501 |
|
|
val += TYPE_UNSIGNED (expr->type);
|
| 502 |
|
|
|
| 503 |
|
|
val = iterative_hash_expr (expr->ops.unary.opnd, val);
|
| 504 |
|
|
break;
|
| 505 |
|
|
|
| 506 |
|
|
case EXPR_BINARY:
|
| 507 |
|
|
val = iterative_hash_object (expr->ops.binary.op, val);
|
| 508 |
|
|
if (commutative_tree_code (expr->ops.binary.op))
|
| 509 |
|
|
val = iterative_hash_exprs_commutative (expr->ops.binary.opnd0,
|
| 510 |
|
|
expr->ops.binary.opnd1, val);
|
| 511 |
|
|
else
|
| 512 |
|
|
{
|
| 513 |
|
|
val = iterative_hash_expr (expr->ops.binary.opnd0, val);
|
| 514 |
|
|
val = iterative_hash_expr (expr->ops.binary.opnd1, val);
|
| 515 |
|
|
}
|
| 516 |
|
|
break;
|
| 517 |
|
|
|
| 518 |
|
|
case EXPR_TERNARY:
|
| 519 |
|
|
val = iterative_hash_object (expr->ops.ternary.op, val);
|
| 520 |
|
|
if (commutative_ternary_tree_code (expr->ops.ternary.op))
|
| 521 |
|
|
val = iterative_hash_exprs_commutative (expr->ops.ternary.opnd0,
|
| 522 |
|
|
expr->ops.ternary.opnd1, val);
|
| 523 |
|
|
else
|
| 524 |
|
|
{
|
| 525 |
|
|
val = iterative_hash_expr (expr->ops.ternary.opnd0, val);
|
| 526 |
|
|
val = iterative_hash_expr (expr->ops.ternary.opnd1, val);
|
| 527 |
|
|
}
|
| 528 |
|
|
val = iterative_hash_expr (expr->ops.ternary.opnd2, val);
|
| 529 |
|
|
break;
|
| 530 |
|
|
|
| 531 |
|
|
case EXPR_CALL:
|
| 532 |
|
|
{
|
| 533 |
|
|
size_t i;
|
| 534 |
|
|
enum tree_code code = CALL_EXPR;
|
| 535 |
|
|
gimple fn_from;
|
| 536 |
|
|
|
| 537 |
|
|
val = iterative_hash_object (code, val);
|
| 538 |
|
|
fn_from = expr->ops.call.fn_from;
|
| 539 |
|
|
if (gimple_call_internal_p (fn_from))
|
| 540 |
|
|
val = iterative_hash_hashval_t
|
| 541 |
|
|
((hashval_t) gimple_call_internal_fn (fn_from), val);
|
| 542 |
|
|
else
|
| 543 |
|
|
val = iterative_hash_expr (gimple_call_fn (fn_from), val);
|
| 544 |
|
|
for (i = 0; i < expr->ops.call.nargs; i++)
|
| 545 |
|
|
val = iterative_hash_expr (expr->ops.call.args[i], val);
|
| 546 |
|
|
}
|
| 547 |
|
|
break;
|
| 548 |
|
|
|
| 549 |
|
|
case EXPR_PHI:
|
| 550 |
|
|
{
|
| 551 |
|
|
size_t i;
|
| 552 |
|
|
|
| 553 |
|
|
for (i = 0; i < expr->ops.phi.nargs; i++)
|
| 554 |
|
|
val = iterative_hash_expr (expr->ops.phi.args[i], val);
|
| 555 |
|
|
}
|
| 556 |
|
|
break;
|
| 557 |
|
|
|
| 558 |
|
|
default:
|
| 559 |
|
|
gcc_unreachable ();
|
| 560 |
|
|
}
|
| 561 |
|
|
|
| 562 |
|
|
return val;
|
| 563 |
|
|
}
|
| 564 |
|
|
|
| 565 |
|
|
/* Print a diagnostic dump of an expression hash table entry. */
|
| 566 |
|
|
|
| 567 |
|
|
static void
|
| 568 |
|
|
print_expr_hash_elt (FILE * stream, const struct expr_hash_elt *element)
|
| 569 |
|
|
{
|
| 570 |
|
|
if (element->stmt)
|
| 571 |
|
|
fprintf (stream, "STMT ");
|
| 572 |
|
|
else
|
| 573 |
|
|
fprintf (stream, "COND ");
|
| 574 |
|
|
|
| 575 |
|
|
if (element->lhs)
|
| 576 |
|
|
{
|
| 577 |
|
|
print_generic_expr (stream, element->lhs, 0);
|
| 578 |
|
|
fprintf (stream, " = ");
|
| 579 |
|
|
}
|
| 580 |
|
|
|
| 581 |
|
|
switch (element->expr.kind)
|
| 582 |
|
|
{
|
| 583 |
|
|
case EXPR_SINGLE:
|
| 584 |
|
|
print_generic_expr (stream, element->expr.ops.single.rhs, 0);
|
| 585 |
|
|
break;
|
| 586 |
|
|
|
| 587 |
|
|
case EXPR_UNARY:
|
| 588 |
|
|
fprintf (stream, "%s ", tree_code_name[element->expr.ops.unary.op]);
|
| 589 |
|
|
print_generic_expr (stream, element->expr.ops.unary.opnd, 0);
|
| 590 |
|
|
break;
|
| 591 |
|
|
|
| 592 |
|
|
case EXPR_BINARY:
|
| 593 |
|
|
print_generic_expr (stream, element->expr.ops.binary.opnd0, 0);
|
| 594 |
|
|
fprintf (stream, " %s ", tree_code_name[element->expr.ops.binary.op]);
|
| 595 |
|
|
print_generic_expr (stream, element->expr.ops.binary.opnd1, 0);
|
| 596 |
|
|
break;
|
| 597 |
|
|
|
| 598 |
|
|
case EXPR_TERNARY:
|
| 599 |
|
|
fprintf (stream, " %s <", tree_code_name[element->expr.ops.ternary.op]);
|
| 600 |
|
|
print_generic_expr (stream, element->expr.ops.ternary.opnd0, 0);
|
| 601 |
|
|
fputs (", ", stream);
|
| 602 |
|
|
print_generic_expr (stream, element->expr.ops.ternary.opnd1, 0);
|
| 603 |
|
|
fputs (", ", stream);
|
| 604 |
|
|
print_generic_expr (stream, element->expr.ops.ternary.opnd2, 0);
|
| 605 |
|
|
fputs (">", stream);
|
| 606 |
|
|
break;
|
| 607 |
|
|
|
| 608 |
|
|
case EXPR_CALL:
|
| 609 |
|
|
{
|
| 610 |
|
|
size_t i;
|
| 611 |
|
|
size_t nargs = element->expr.ops.call.nargs;
|
| 612 |
|
|
gimple fn_from;
|
| 613 |
|
|
|
| 614 |
|
|
fn_from = element->expr.ops.call.fn_from;
|
| 615 |
|
|
if (gimple_call_internal_p (fn_from))
|
| 616 |
|
|
fputs (internal_fn_name (gimple_call_internal_fn (fn_from)),
|
| 617 |
|
|
stream);
|
| 618 |
|
|
else
|
| 619 |
|
|
print_generic_expr (stream, gimple_call_fn (fn_from), 0);
|
| 620 |
|
|
fprintf (stream, " (");
|
| 621 |
|
|
for (i = 0; i < nargs; i++)
|
| 622 |
|
|
{
|
| 623 |
|
|
print_generic_expr (stream, element->expr.ops.call.args[i], 0);
|
| 624 |
|
|
if (i + 1 < nargs)
|
| 625 |
|
|
fprintf (stream, ", ");
|
| 626 |
|
|
}
|
| 627 |
|
|
fprintf (stream, ")");
|
| 628 |
|
|
}
|
| 629 |
|
|
break;
|
| 630 |
|
|
|
| 631 |
|
|
case EXPR_PHI:
|
| 632 |
|
|
{
|
| 633 |
|
|
size_t i;
|
| 634 |
|
|
size_t nargs = element->expr.ops.phi.nargs;
|
| 635 |
|
|
|
| 636 |
|
|
fprintf (stream, "PHI <");
|
| 637 |
|
|
for (i = 0; i < nargs; i++)
|
| 638 |
|
|
{
|
| 639 |
|
|
print_generic_expr (stream, element->expr.ops.phi.args[i], 0);
|
| 640 |
|
|
if (i + 1 < nargs)
|
| 641 |
|
|
fprintf (stream, ", ");
|
| 642 |
|
|
}
|
| 643 |
|
|
fprintf (stream, ">");
|
| 644 |
|
|
}
|
| 645 |
|
|
break;
|
| 646 |
|
|
}
|
| 647 |
|
|
fprintf (stream, "\n");
|
| 648 |
|
|
|
| 649 |
|
|
if (element->stmt)
|
| 650 |
|
|
{
|
| 651 |
|
|
fprintf (stream, " ");
|
| 652 |
|
|
print_gimple_stmt (stream, element->stmt, 0, 0);
|
| 653 |
|
|
}
|
| 654 |
|
|
}
|
| 655 |
|
|
|
| 656 |
|
|
/* Delete an expr_hash_elt and reclaim its storage. */
|
| 657 |
|
|
|
| 658 |
|
|
static void
|
| 659 |
|
|
free_expr_hash_elt (void *elt)
|
| 660 |
|
|
{
|
| 661 |
|
|
struct expr_hash_elt *element = ((struct expr_hash_elt *)elt);
|
| 662 |
|
|
|
| 663 |
|
|
if (element->expr.kind == EXPR_CALL)
|
| 664 |
|
|
free (element->expr.ops.call.args);
|
| 665 |
|
|
|
| 666 |
|
|
if (element->expr.kind == EXPR_PHI)
|
| 667 |
|
|
free (element->expr.ops.phi.args);
|
| 668 |
|
|
|
| 669 |
|
|
free (element);
|
| 670 |
|
|
}
|
| 671 |
|
|
|
| 672 |
|
|
/* Allocate an EDGE_INFO for edge E and attach it to E.
|
| 673 |
|
|
Return the new EDGE_INFO structure. */
|
| 674 |
|
|
|
| 675 |
|
|
static struct edge_info *
|
| 676 |
|
|
allocate_edge_info (edge e)
|
| 677 |
|
|
{
|
| 678 |
|
|
struct edge_info *edge_info;
|
| 679 |
|
|
|
| 680 |
|
|
edge_info = XCNEW (struct edge_info);
|
| 681 |
|
|
|
| 682 |
|
|
e->aux = edge_info;
|
| 683 |
|
|
return edge_info;
|
| 684 |
|
|
}
|
| 685 |
|
|
|
| 686 |
|
|
/* Free all EDGE_INFO structures associated with edges in the CFG.
|
| 687 |
|
|
If a particular edge can be threaded, copy the redirection
|
| 688 |
|
|
target from the EDGE_INFO structure into the edge's AUX field
|
| 689 |
|
|
as required by code to update the CFG and SSA graph for
|
| 690 |
|
|
jump threading. */
|
| 691 |
|
|
|
| 692 |
|
|
static void
|
| 693 |
|
|
free_all_edge_infos (void)
|
| 694 |
|
|
{
|
| 695 |
|
|
basic_block bb;
|
| 696 |
|
|
edge_iterator ei;
|
| 697 |
|
|
edge e;
|
| 698 |
|
|
|
| 699 |
|
|
FOR_EACH_BB (bb)
|
| 700 |
|
|
{
|
| 701 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 702 |
|
|
{
|
| 703 |
|
|
struct edge_info *edge_info = (struct edge_info *) e->aux;
|
| 704 |
|
|
|
| 705 |
|
|
if (edge_info)
|
| 706 |
|
|
{
|
| 707 |
|
|
if (edge_info->cond_equivalences)
|
| 708 |
|
|
VEC_free (cond_equivalence, heap, edge_info->cond_equivalences);
|
| 709 |
|
|
free (edge_info);
|
| 710 |
|
|
e->aux = NULL;
|
| 711 |
|
|
}
|
| 712 |
|
|
}
|
| 713 |
|
|
}
|
| 714 |
|
|
}
|
| 715 |
|
|
|
| 716 |
|
|
/* Jump threading, redundancy elimination and const/copy propagation.
|
| 717 |
|
|
|
| 718 |
|
|
This pass may expose new symbols that need to be renamed into SSA. For
|
| 719 |
|
|
every new symbol exposed, its corresponding bit will be set in
|
| 720 |
|
|
VARS_TO_RENAME. */
|
| 721 |
|
|
|
| 722 |
|
|
static unsigned int
|
| 723 |
|
|
tree_ssa_dominator_optimize (void)
|
| 724 |
|
|
{
|
| 725 |
|
|
struct dom_walk_data walk_data;
|
| 726 |
|
|
|
| 727 |
|
|
memset (&opt_stats, 0, sizeof (opt_stats));
|
| 728 |
|
|
|
| 729 |
|
|
/* Create our hash tables. */
|
| 730 |
|
|
avail_exprs = htab_create (1024, real_avail_expr_hash, avail_expr_eq, free_expr_hash_elt);
|
| 731 |
|
|
avail_exprs_stack = VEC_alloc (expr_hash_elt_t, heap, 20);
|
| 732 |
|
|
const_and_copies_stack = VEC_alloc (tree, heap, 20);
|
| 733 |
|
|
need_eh_cleanup = BITMAP_ALLOC (NULL);
|
| 734 |
|
|
|
| 735 |
|
|
/* Setup callbacks for the generic dominator tree walker. */
|
| 736 |
|
|
walk_data.dom_direction = CDI_DOMINATORS;
|
| 737 |
|
|
walk_data.initialize_block_local_data = NULL;
|
| 738 |
|
|
walk_data.before_dom_children = dom_opt_enter_block;
|
| 739 |
|
|
walk_data.after_dom_children = dom_opt_leave_block;
|
| 740 |
|
|
/* Right now we only attach a dummy COND_EXPR to the global data pointer.
|
| 741 |
|
|
When we attach more stuff we'll need to fill this out with a real
|
| 742 |
|
|
structure. */
|
| 743 |
|
|
walk_data.global_data = NULL;
|
| 744 |
|
|
walk_data.block_local_data_size = 0;
|
| 745 |
|
|
|
| 746 |
|
|
/* Now initialize the dominator walker. */
|
| 747 |
|
|
init_walk_dominator_tree (&walk_data);
|
| 748 |
|
|
|
| 749 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
| 750 |
|
|
cfg_altered = false;
|
| 751 |
|
|
|
| 752 |
|
|
/* We need to know loop structures in order to avoid destroying them
|
| 753 |
|
|
in jump threading. Note that we still can e.g. thread through loop
|
| 754 |
|
|
headers to an exit edge, or through loop header to the loop body, assuming
|
| 755 |
|
|
that we update the loop info. */
|
| 756 |
|
|
loop_optimizer_init (LOOPS_HAVE_SIMPLE_LATCHES);
|
| 757 |
|
|
|
| 758 |
|
|
/* Initialize the value-handle array. */
|
| 759 |
|
|
threadedge_initialize_values ();
|
| 760 |
|
|
|
| 761 |
|
|
/* We need accurate information regarding back edges in the CFG
|
| 762 |
|
|
for jump threading; this may include back edges that are not part of
|
| 763 |
|
|
a single loop. */
|
| 764 |
|
|
mark_dfs_back_edges ();
|
| 765 |
|
|
|
| 766 |
|
|
/* Recursively walk the dominator tree optimizing statements. */
|
| 767 |
|
|
walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
|
| 768 |
|
|
|
| 769 |
|
|
{
|
| 770 |
|
|
gimple_stmt_iterator gsi;
|
| 771 |
|
|
basic_block bb;
|
| 772 |
|
|
FOR_EACH_BB (bb)
|
| 773 |
|
|
{
|
| 774 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 775 |
|
|
update_stmt_if_modified (gsi_stmt (gsi));
|
| 776 |
|
|
}
|
| 777 |
|
|
}
|
| 778 |
|
|
|
| 779 |
|
|
/* If we exposed any new variables, go ahead and put them into
|
| 780 |
|
|
SSA form now, before we handle jump threading. This simplifies
|
| 781 |
|
|
interactions between rewriting of _DECL nodes into SSA form
|
| 782 |
|
|
and rewriting SSA_NAME nodes into SSA form after block
|
| 783 |
|
|
duplication and CFG manipulation. */
|
| 784 |
|
|
update_ssa (TODO_update_ssa);
|
| 785 |
|
|
|
| 786 |
|
|
free_all_edge_infos ();
|
| 787 |
|
|
|
| 788 |
|
|
/* Thread jumps, creating duplicate blocks as needed. */
|
| 789 |
|
|
cfg_altered |= thread_through_all_blocks (first_pass_instance);
|
| 790 |
|
|
|
| 791 |
|
|
if (cfg_altered)
|
| 792 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
| 793 |
|
|
|
| 794 |
|
|
/* Removal of statements may make some EH edges dead. Purge
|
| 795 |
|
|
such edges from the CFG as needed. */
|
| 796 |
|
|
if (!bitmap_empty_p (need_eh_cleanup))
|
| 797 |
|
|
{
|
| 798 |
|
|
unsigned i;
|
| 799 |
|
|
bitmap_iterator bi;
|
| 800 |
|
|
|
| 801 |
|
|
/* Jump threading may have created forwarder blocks from blocks
|
| 802 |
|
|
needing EH cleanup; the new successor of these blocks, which
|
| 803 |
|
|
has inherited from the original block, needs the cleanup. */
|
| 804 |
|
|
EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi)
|
| 805 |
|
|
{
|
| 806 |
|
|
basic_block bb = BASIC_BLOCK (i);
|
| 807 |
|
|
if (bb
|
| 808 |
|
|
&& single_succ_p (bb)
|
| 809 |
|
|
&& (single_succ_edge (bb)->flags & EDGE_EH) == 0)
|
| 810 |
|
|
{
|
| 811 |
|
|
bitmap_clear_bit (need_eh_cleanup, i);
|
| 812 |
|
|
bitmap_set_bit (need_eh_cleanup, single_succ (bb)->index);
|
| 813 |
|
|
}
|
| 814 |
|
|
}
|
| 815 |
|
|
|
| 816 |
|
|
gimple_purge_all_dead_eh_edges (need_eh_cleanup);
|
| 817 |
|
|
bitmap_zero (need_eh_cleanup);
|
| 818 |
|
|
}
|
| 819 |
|
|
|
| 820 |
|
|
statistics_counter_event (cfun, "Redundant expressions eliminated",
|
| 821 |
|
|
opt_stats.num_re);
|
| 822 |
|
|
statistics_counter_event (cfun, "Constants propagated",
|
| 823 |
|
|
opt_stats.num_const_prop);
|
| 824 |
|
|
statistics_counter_event (cfun, "Copies propagated",
|
| 825 |
|
|
opt_stats.num_copy_prop);
|
| 826 |
|
|
|
| 827 |
|
|
/* Debugging dumps. */
|
| 828 |
|
|
if (dump_file && (dump_flags & TDF_STATS))
|
| 829 |
|
|
dump_dominator_optimization_stats (dump_file);
|
| 830 |
|
|
|
| 831 |
|
|
loop_optimizer_finalize ();
|
| 832 |
|
|
|
| 833 |
|
|
/* Delete our main hashtable. */
|
| 834 |
|
|
htab_delete (avail_exprs);
|
| 835 |
|
|
|
| 836 |
|
|
/* And finalize the dominator walker. */
|
| 837 |
|
|
fini_walk_dominator_tree (&walk_data);
|
| 838 |
|
|
|
| 839 |
|
|
/* Free asserted bitmaps and stacks. */
|
| 840 |
|
|
BITMAP_FREE (need_eh_cleanup);
|
| 841 |
|
|
|
| 842 |
|
|
VEC_free (expr_hash_elt_t, heap, avail_exprs_stack);
|
| 843 |
|
|
VEC_free (tree, heap, const_and_copies_stack);
|
| 844 |
|
|
|
| 845 |
|
|
/* Free the value-handle array. */
|
| 846 |
|
|
threadedge_finalize_values ();
|
| 847 |
|
|
ssa_name_values = NULL;
|
| 848 |
|
|
|
| 849 |
|
|
return 0;
|
| 850 |
|
|
}
|
| 851 |
|
|
|
| 852 |
|
|
static bool
|
| 853 |
|
|
gate_dominator (void)
|
| 854 |
|
|
{
|
| 855 |
|
|
return flag_tree_dom != 0;
|
| 856 |
|
|
}
|
| 857 |
|
|
|
| 858 |
|
|
struct gimple_opt_pass pass_dominator =
|
| 859 |
|
|
{
|
| 860 |
|
|
{
|
| 861 |
|
|
GIMPLE_PASS,
|
| 862 |
|
|
"dom", /* name */
|
| 863 |
|
|
gate_dominator, /* gate */
|
| 864 |
|
|
tree_ssa_dominator_optimize, /* execute */
|
| 865 |
|
|
NULL, /* sub */
|
| 866 |
|
|
NULL, /* next */
|
| 867 |
|
|
0, /* static_pass_number */
|
| 868 |
|
|
TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
|
| 869 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
| 870 |
|
|
0, /* properties_provided */
|
| 871 |
|
|
0, /* properties_destroyed */
|
| 872 |
|
|
0, /* todo_flags_start */
|
| 873 |
|
|
TODO_cleanup_cfg
|
| 874 |
|
|
| TODO_update_ssa
|
| 875 |
|
|
| TODO_verify_ssa
|
| 876 |
|
|
| TODO_verify_flow /* todo_flags_finish */
|
| 877 |
|
|
}
|
| 878 |
|
|
};
|
| 879 |
|
|
|
| 880 |
|
|
|
| 881 |
|
|
/* Given a conditional statement CONDSTMT, convert the
|
| 882 |
|
|
condition to a canonical form. */
|
| 883 |
|
|
|
| 884 |
|
|
static void
|
| 885 |
|
|
canonicalize_comparison (gimple condstmt)
|
| 886 |
|
|
{
|
| 887 |
|
|
tree op0;
|
| 888 |
|
|
tree op1;
|
| 889 |
|
|
enum tree_code code;
|
| 890 |
|
|
|
| 891 |
|
|
gcc_assert (gimple_code (condstmt) == GIMPLE_COND);
|
| 892 |
|
|
|
| 893 |
|
|
op0 = gimple_cond_lhs (condstmt);
|
| 894 |
|
|
op1 = gimple_cond_rhs (condstmt);
|
| 895 |
|
|
|
| 896 |
|
|
code = gimple_cond_code (condstmt);
|
| 897 |
|
|
|
| 898 |
|
|
/* If it would be profitable to swap the operands, then do so to
|
| 899 |
|
|
canonicalize the statement, enabling better optimization.
|
| 900 |
|
|
|
| 901 |
|
|
By placing canonicalization of such expressions here we
|
| 902 |
|
|
transparently keep statements in canonical form, even
|
| 903 |
|
|
when the statement is modified. */
|
| 904 |
|
|
if (tree_swap_operands_p (op0, op1, false))
|
| 905 |
|
|
{
|
| 906 |
|
|
/* For relationals we need to swap the operands
|
| 907 |
|
|
and change the code. */
|
| 908 |
|
|
if (code == LT_EXPR
|
| 909 |
|
|
|| code == GT_EXPR
|
| 910 |
|
|
|| code == LE_EXPR
|
| 911 |
|
|
|| code == GE_EXPR)
|
| 912 |
|
|
{
|
| 913 |
|
|
code = swap_tree_comparison (code);
|
| 914 |
|
|
|
| 915 |
|
|
gimple_cond_set_code (condstmt, code);
|
| 916 |
|
|
gimple_cond_set_lhs (condstmt, op1);
|
| 917 |
|
|
gimple_cond_set_rhs (condstmt, op0);
|
| 918 |
|
|
|
| 919 |
|
|
update_stmt (condstmt);
|
| 920 |
|
|
}
|
| 921 |
|
|
}
|
| 922 |
|
|
}
|
| 923 |
|
|
|
| 924 |
|
|
/* Initialize local stacks for this optimizer and record equivalences
|
| 925 |
|
|
upon entry to BB. Equivalences can come from the edge traversed to
|
| 926 |
|
|
reach BB or they may come from PHI nodes at the start of BB. */
|
| 927 |
|
|
|
| 928 |
|
|
/* Remove all the expressions in LOCALS from TABLE, stopping when there are
|
| 929 |
|
|
LIMIT entries left in LOCALs. */
|
| 930 |
|
|
|
| 931 |
|
|
static void
|
| 932 |
|
|
remove_local_expressions_from_table (void)
|
| 933 |
|
|
{
|
| 934 |
|
|
/* Remove all the expressions made available in this block. */
|
| 935 |
|
|
while (VEC_length (expr_hash_elt_t, avail_exprs_stack) > 0)
|
| 936 |
|
|
{
|
| 937 |
|
|
expr_hash_elt_t victim = VEC_pop (expr_hash_elt_t, avail_exprs_stack);
|
| 938 |
|
|
void **slot;
|
| 939 |
|
|
|
| 940 |
|
|
if (victim == NULL)
|
| 941 |
|
|
break;
|
| 942 |
|
|
|
| 943 |
|
|
/* This must precede the actual removal from the hash table,
|
| 944 |
|
|
as ELEMENT and the table entry may share a call argument
|
| 945 |
|
|
vector which will be freed during removal. */
|
| 946 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 947 |
|
|
{
|
| 948 |
|
|
fprintf (dump_file, "<<<< ");
|
| 949 |
|
|
print_expr_hash_elt (dump_file, victim);
|
| 950 |
|
|
}
|
| 951 |
|
|
|
| 952 |
|
|
slot = htab_find_slot_with_hash (avail_exprs,
|
| 953 |
|
|
victim, victim->hash, NO_INSERT);
|
| 954 |
|
|
gcc_assert (slot && *slot == (void *) victim);
|
| 955 |
|
|
htab_clear_slot (avail_exprs, slot);
|
| 956 |
|
|
}
|
| 957 |
|
|
}
|
| 958 |
|
|
|
| 959 |
|
|
/* Use the source/dest pairs in CONST_AND_COPIES_STACK to restore
|
| 960 |
|
|
CONST_AND_COPIES to its original state, stopping when we hit a
|
| 961 |
|
|
NULL marker. */
|
| 962 |
|
|
|
| 963 |
|
|
static void
|
| 964 |
|
|
restore_vars_to_original_value (void)
|
| 965 |
|
|
{
|
| 966 |
|
|
while (VEC_length (tree, const_and_copies_stack) > 0)
|
| 967 |
|
|
{
|
| 968 |
|
|
tree prev_value, dest;
|
| 969 |
|
|
|
| 970 |
|
|
dest = VEC_pop (tree, const_and_copies_stack);
|
| 971 |
|
|
|
| 972 |
|
|
if (dest == NULL)
|
| 973 |
|
|
break;
|
| 974 |
|
|
|
| 975 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 976 |
|
|
{
|
| 977 |
|
|
fprintf (dump_file, "<<<< COPY ");
|
| 978 |
|
|
print_generic_expr (dump_file, dest, 0);
|
| 979 |
|
|
fprintf (dump_file, " = ");
|
| 980 |
|
|
print_generic_expr (dump_file, SSA_NAME_VALUE (dest), 0);
|
| 981 |
|
|
fprintf (dump_file, "\n");
|
| 982 |
|
|
}
|
| 983 |
|
|
|
| 984 |
|
|
prev_value = VEC_pop (tree, const_and_copies_stack);
|
| 985 |
|
|
set_ssa_name_value (dest, prev_value);
|
| 986 |
|
|
}
|
| 987 |
|
|
}
|
| 988 |
|
|
|
| 989 |
|
|
/* A trivial wrapper so that we can present the generic jump
|
| 990 |
|
|
threading code with a simple API for simplifying statements. */
|
| 991 |
|
|
static tree
|
| 992 |
|
|
simplify_stmt_for_jump_threading (gimple stmt,
|
| 993 |
|
|
gimple within_stmt ATTRIBUTE_UNUSED)
|
| 994 |
|
|
{
|
| 995 |
|
|
return lookup_avail_expr (stmt, false);
|
| 996 |
|
|
}
|
| 997 |
|
|
|
| 998 |
|
|
/* Wrapper for common code to attempt to thread an edge. For example,
|
| 999 |
|
|
it handles lazily building the dummy condition and the bookkeeping
|
| 1000 |
|
|
when jump threading is successful. */
|
| 1001 |
|
|
|
| 1002 |
|
|
static void
|
| 1003 |
|
|
dom_thread_across_edge (struct dom_walk_data *walk_data, edge e)
|
| 1004 |
|
|
{
|
| 1005 |
|
|
if (! walk_data->global_data)
|
| 1006 |
|
|
{
|
| 1007 |
|
|
gimple dummy_cond =
|
| 1008 |
|
|
gimple_build_cond (NE_EXPR,
|
| 1009 |
|
|
integer_zero_node, integer_zero_node,
|
| 1010 |
|
|
NULL, NULL);
|
| 1011 |
|
|
walk_data->global_data = dummy_cond;
|
| 1012 |
|
|
}
|
| 1013 |
|
|
|
| 1014 |
|
|
thread_across_edge ((gimple) walk_data->global_data, e, false,
|
| 1015 |
|
|
&const_and_copies_stack,
|
| 1016 |
|
|
simplify_stmt_for_jump_threading);
|
| 1017 |
|
|
}
|
| 1018 |
|
|
|
| 1019 |
|
|
/* PHI nodes can create equivalences too.
|
| 1020 |
|
|
|
| 1021 |
|
|
Ignoring any alternatives which are the same as the result, if
|
| 1022 |
|
|
all the alternatives are equal, then the PHI node creates an
|
| 1023 |
|
|
equivalence. */
|
| 1024 |
|
|
|
| 1025 |
|
|
static void
|
| 1026 |
|
|
record_equivalences_from_phis (basic_block bb)
|
| 1027 |
|
|
{
|
| 1028 |
|
|
gimple_stmt_iterator gsi;
|
| 1029 |
|
|
|
| 1030 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 1031 |
|
|
{
|
| 1032 |
|
|
gimple phi = gsi_stmt (gsi);
|
| 1033 |
|
|
|
| 1034 |
|
|
tree lhs = gimple_phi_result (phi);
|
| 1035 |
|
|
tree rhs = NULL;
|
| 1036 |
|
|
size_t i;
|
| 1037 |
|
|
|
| 1038 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
| 1039 |
|
|
{
|
| 1040 |
|
|
tree t = gimple_phi_arg_def (phi, i);
|
| 1041 |
|
|
|
| 1042 |
|
|
/* Ignore alternatives which are the same as our LHS. Since
|
| 1043 |
|
|
LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
|
| 1044 |
|
|
can simply compare pointers. */
|
| 1045 |
|
|
if (lhs == t)
|
| 1046 |
|
|
continue;
|
| 1047 |
|
|
|
| 1048 |
|
|
/* If we have not processed an alternative yet, then set
|
| 1049 |
|
|
RHS to this alternative. */
|
| 1050 |
|
|
if (rhs == NULL)
|
| 1051 |
|
|
rhs = t;
|
| 1052 |
|
|
/* If we have processed an alternative (stored in RHS), then
|
| 1053 |
|
|
see if it is equal to this one. If it isn't, then stop
|
| 1054 |
|
|
the search. */
|
| 1055 |
|
|
else if (! operand_equal_for_phi_arg_p (rhs, t))
|
| 1056 |
|
|
break;
|
| 1057 |
|
|
}
|
| 1058 |
|
|
|
| 1059 |
|
|
/* If we had no interesting alternatives, then all the RHS alternatives
|
| 1060 |
|
|
must have been the same as LHS. */
|
| 1061 |
|
|
if (!rhs)
|
| 1062 |
|
|
rhs = lhs;
|
| 1063 |
|
|
|
| 1064 |
|
|
/* If we managed to iterate through each PHI alternative without
|
| 1065 |
|
|
breaking out of the loop, then we have a PHI which may create
|
| 1066 |
|
|
a useful equivalence. We do not need to record unwind data for
|
| 1067 |
|
|
this, since this is a true assignment and not an equivalence
|
| 1068 |
|
|
inferred from a comparison. All uses of this ssa name are dominated
|
| 1069 |
|
|
by this assignment, so unwinding just costs time and space. */
|
| 1070 |
|
|
if (i == gimple_phi_num_args (phi) && may_propagate_copy (lhs, rhs))
|
| 1071 |
|
|
set_ssa_name_value (lhs, rhs);
|
| 1072 |
|
|
}
|
| 1073 |
|
|
}
|
| 1074 |
|
|
|
| 1075 |
|
|
/* Ignoring loop backedges, if BB has precisely one incoming edge then
|
| 1076 |
|
|
return that edge. Otherwise return NULL. */
|
| 1077 |
|
|
static edge
|
| 1078 |
|
|
single_incoming_edge_ignoring_loop_edges (basic_block bb)
|
| 1079 |
|
|
{
|
| 1080 |
|
|
edge retval = NULL;
|
| 1081 |
|
|
edge e;
|
| 1082 |
|
|
edge_iterator ei;
|
| 1083 |
|
|
|
| 1084 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 1085 |
|
|
{
|
| 1086 |
|
|
/* A loop back edge can be identified by the destination of
|
| 1087 |
|
|
the edge dominating the source of the edge. */
|
| 1088 |
|
|
if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
|
| 1089 |
|
|
continue;
|
| 1090 |
|
|
|
| 1091 |
|
|
/* If we have already seen a non-loop edge, then we must have
|
| 1092 |
|
|
multiple incoming non-loop edges and thus we return NULL. */
|
| 1093 |
|
|
if (retval)
|
| 1094 |
|
|
return NULL;
|
| 1095 |
|
|
|
| 1096 |
|
|
/* This is the first non-loop incoming edge we have found. Record
|
| 1097 |
|
|
it. */
|
| 1098 |
|
|
retval = e;
|
| 1099 |
|
|
}
|
| 1100 |
|
|
|
| 1101 |
|
|
return retval;
|
| 1102 |
|
|
}
|
| 1103 |
|
|
|
| 1104 |
|
|
/* Record any equivalences created by the incoming edge to BB. If BB
|
| 1105 |
|
|
has more than one incoming edge, then no equivalence is created. */
|
| 1106 |
|
|
|
| 1107 |
|
|
static void
|
| 1108 |
|
|
record_equivalences_from_incoming_edge (basic_block bb)
|
| 1109 |
|
|
{
|
| 1110 |
|
|
edge e;
|
| 1111 |
|
|
basic_block parent;
|
| 1112 |
|
|
struct edge_info *edge_info;
|
| 1113 |
|
|
|
| 1114 |
|
|
/* If our parent block ended with a control statement, then we may be
|
| 1115 |
|
|
able to record some equivalences based on which outgoing edge from
|
| 1116 |
|
|
the parent was followed. */
|
| 1117 |
|
|
parent = get_immediate_dominator (CDI_DOMINATORS, bb);
|
| 1118 |
|
|
|
| 1119 |
|
|
e = single_incoming_edge_ignoring_loop_edges (bb);
|
| 1120 |
|
|
|
| 1121 |
|
|
/* If we had a single incoming edge from our parent block, then enter
|
| 1122 |
|
|
any data associated with the edge into our tables. */
|
| 1123 |
|
|
if (e && e->src == parent)
|
| 1124 |
|
|
{
|
| 1125 |
|
|
unsigned int i;
|
| 1126 |
|
|
|
| 1127 |
|
|
edge_info = (struct edge_info *) e->aux;
|
| 1128 |
|
|
|
| 1129 |
|
|
if (edge_info)
|
| 1130 |
|
|
{
|
| 1131 |
|
|
tree lhs = edge_info->lhs;
|
| 1132 |
|
|
tree rhs = edge_info->rhs;
|
| 1133 |
|
|
cond_equivalence *eq;
|
| 1134 |
|
|
|
| 1135 |
|
|
if (lhs)
|
| 1136 |
|
|
record_equality (lhs, rhs);
|
| 1137 |
|
|
|
| 1138 |
|
|
for (i = 0; VEC_iterate (cond_equivalence,
|
| 1139 |
|
|
edge_info->cond_equivalences, i, eq); ++i)
|
| 1140 |
|
|
record_cond (eq);
|
| 1141 |
|
|
}
|
| 1142 |
|
|
}
|
| 1143 |
|
|
}
|
| 1144 |
|
|
|
| 1145 |
|
|
/* Dump SSA statistics on FILE. */
|
| 1146 |
|
|
|
| 1147 |
|
|
void
|
| 1148 |
|
|
dump_dominator_optimization_stats (FILE *file)
|
| 1149 |
|
|
{
|
| 1150 |
|
|
fprintf (file, "Total number of statements: %6ld\n\n",
|
| 1151 |
|
|
opt_stats.num_stmts);
|
| 1152 |
|
|
fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
|
| 1153 |
|
|
opt_stats.num_exprs_considered);
|
| 1154 |
|
|
|
| 1155 |
|
|
fprintf (file, "\nHash table statistics:\n");
|
| 1156 |
|
|
|
| 1157 |
|
|
fprintf (file, " avail_exprs: ");
|
| 1158 |
|
|
htab_statistics (file, avail_exprs);
|
| 1159 |
|
|
}
|
| 1160 |
|
|
|
| 1161 |
|
|
|
| 1162 |
|
|
/* Dump SSA statistics on stderr. */
|
| 1163 |
|
|
|
| 1164 |
|
|
DEBUG_FUNCTION void
|
| 1165 |
|
|
debug_dominator_optimization_stats (void)
|
| 1166 |
|
|
{
|
| 1167 |
|
|
dump_dominator_optimization_stats (stderr);
|
| 1168 |
|
|
}
|
| 1169 |
|
|
|
| 1170 |
|
|
|
| 1171 |
|
|
/* Dump statistics for the hash table HTAB. */
|
| 1172 |
|
|
|
| 1173 |
|
|
static void
|
| 1174 |
|
|
htab_statistics (FILE *file, htab_t htab)
|
| 1175 |
|
|
{
|
| 1176 |
|
|
fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
|
| 1177 |
|
|
(long) htab_size (htab),
|
| 1178 |
|
|
(long) htab_elements (htab),
|
| 1179 |
|
|
htab_collisions (htab));
|
| 1180 |
|
|
}
|
| 1181 |
|
|
|
| 1182 |
|
|
|
| 1183 |
|
|
/* Enter condition equivalence into the expression hash table.
|
| 1184 |
|
|
This indicates that a conditional expression has a known
|
| 1185 |
|
|
boolean value. */
|
| 1186 |
|
|
|
| 1187 |
|
|
static void
|
| 1188 |
|
|
record_cond (cond_equivalence *p)
|
| 1189 |
|
|
{
|
| 1190 |
|
|
struct expr_hash_elt *element = XCNEW (struct expr_hash_elt);
|
| 1191 |
|
|
void **slot;
|
| 1192 |
|
|
|
| 1193 |
|
|
initialize_hash_element_from_expr (&p->cond, p->value, element);
|
| 1194 |
|
|
|
| 1195 |
|
|
slot = htab_find_slot_with_hash (avail_exprs, (void *)element,
|
| 1196 |
|
|
element->hash, INSERT);
|
| 1197 |
|
|
if (*slot == NULL)
|
| 1198 |
|
|
{
|
| 1199 |
|
|
*slot = (void *) element;
|
| 1200 |
|
|
|
| 1201 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1202 |
|
|
{
|
| 1203 |
|
|
fprintf (dump_file, "1>>> ");
|
| 1204 |
|
|
print_expr_hash_elt (dump_file, element);
|
| 1205 |
|
|
}
|
| 1206 |
|
|
|
| 1207 |
|
|
VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, element);
|
| 1208 |
|
|
}
|
| 1209 |
|
|
else
|
| 1210 |
|
|
free (element);
|
| 1211 |
|
|
}
|
| 1212 |
|
|
|
| 1213 |
|
|
/* Build a cond_equivalence record indicating that the comparison
|
| 1214 |
|
|
CODE holds between operands OP0 and OP1 and push it to **P. */
|
| 1215 |
|
|
|
| 1216 |
|
|
static void
|
| 1217 |
|
|
build_and_record_new_cond (enum tree_code code,
|
| 1218 |
|
|
tree op0, tree op1,
|
| 1219 |
|
|
VEC(cond_equivalence, heap) **p)
|
| 1220 |
|
|
{
|
| 1221 |
|
|
cond_equivalence c;
|
| 1222 |
|
|
struct hashable_expr *cond = &c.cond;
|
| 1223 |
|
|
|
| 1224 |
|
|
gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison);
|
| 1225 |
|
|
|
| 1226 |
|
|
cond->type = boolean_type_node;
|
| 1227 |
|
|
cond->kind = EXPR_BINARY;
|
| 1228 |
|
|
cond->ops.binary.op = code;
|
| 1229 |
|
|
cond->ops.binary.opnd0 = op0;
|
| 1230 |
|
|
cond->ops.binary.opnd1 = op1;
|
| 1231 |
|
|
|
| 1232 |
|
|
c.value = boolean_true_node;
|
| 1233 |
|
|
VEC_safe_push (cond_equivalence, heap, *p, &c);
|
| 1234 |
|
|
}
|
| 1235 |
|
|
|
| 1236 |
|
|
/* Record that COND is true and INVERTED is false into the edge information
|
| 1237 |
|
|
structure. Also record that any conditions dominated by COND are true
|
| 1238 |
|
|
as well.
|
| 1239 |
|
|
|
| 1240 |
|
|
For example, if a < b is true, then a <= b must also be true. */
|
| 1241 |
|
|
|
| 1242 |
|
|
static void
|
| 1243 |
|
|
record_conditions (struct edge_info *edge_info, tree cond, tree inverted)
|
| 1244 |
|
|
{
|
| 1245 |
|
|
tree op0, op1;
|
| 1246 |
|
|
cond_equivalence c;
|
| 1247 |
|
|
|
| 1248 |
|
|
if (!COMPARISON_CLASS_P (cond))
|
| 1249 |
|
|
return;
|
| 1250 |
|
|
|
| 1251 |
|
|
op0 = TREE_OPERAND (cond, 0);
|
| 1252 |
|
|
op1 = TREE_OPERAND (cond, 1);
|
| 1253 |
|
|
|
| 1254 |
|
|
switch (TREE_CODE (cond))
|
| 1255 |
|
|
{
|
| 1256 |
|
|
case LT_EXPR:
|
| 1257 |
|
|
case GT_EXPR:
|
| 1258 |
|
|
if (FLOAT_TYPE_P (TREE_TYPE (op0)))
|
| 1259 |
|
|
{
|
| 1260 |
|
|
build_and_record_new_cond (ORDERED_EXPR, op0, op1,
|
| 1261 |
|
|
&edge_info->cond_equivalences);
|
| 1262 |
|
|
build_and_record_new_cond (LTGT_EXPR, op0, op1,
|
| 1263 |
|
|
&edge_info->cond_equivalences);
|
| 1264 |
|
|
}
|
| 1265 |
|
|
|
| 1266 |
|
|
build_and_record_new_cond ((TREE_CODE (cond) == LT_EXPR
|
| 1267 |
|
|
? LE_EXPR : GE_EXPR),
|
| 1268 |
|
|
op0, op1, &edge_info->cond_equivalences);
|
| 1269 |
|
|
build_and_record_new_cond (NE_EXPR, op0, op1,
|
| 1270 |
|
|
&edge_info->cond_equivalences);
|
| 1271 |
|
|
break;
|
| 1272 |
|
|
|
| 1273 |
|
|
case GE_EXPR:
|
| 1274 |
|
|
case LE_EXPR:
|
| 1275 |
|
|
if (FLOAT_TYPE_P (TREE_TYPE (op0)))
|
| 1276 |
|
|
{
|
| 1277 |
|
|
build_and_record_new_cond (ORDERED_EXPR, op0, op1,
|
| 1278 |
|
|
&edge_info->cond_equivalences);
|
| 1279 |
|
|
}
|
| 1280 |
|
|
break;
|
| 1281 |
|
|
|
| 1282 |
|
|
case EQ_EXPR:
|
| 1283 |
|
|
if (FLOAT_TYPE_P (TREE_TYPE (op0)))
|
| 1284 |
|
|
{
|
| 1285 |
|
|
build_and_record_new_cond (ORDERED_EXPR, op0, op1,
|
| 1286 |
|
|
&edge_info->cond_equivalences);
|
| 1287 |
|
|
}
|
| 1288 |
|
|
build_and_record_new_cond (LE_EXPR, op0, op1,
|
| 1289 |
|
|
&edge_info->cond_equivalences);
|
| 1290 |
|
|
build_and_record_new_cond (GE_EXPR, op0, op1,
|
| 1291 |
|
|
&edge_info->cond_equivalences);
|
| 1292 |
|
|
break;
|
| 1293 |
|
|
|
| 1294 |
|
|
case UNORDERED_EXPR:
|
| 1295 |
|
|
build_and_record_new_cond (NE_EXPR, op0, op1,
|
| 1296 |
|
|
&edge_info->cond_equivalences);
|
| 1297 |
|
|
build_and_record_new_cond (UNLE_EXPR, op0, op1,
|
| 1298 |
|
|
&edge_info->cond_equivalences);
|
| 1299 |
|
|
build_and_record_new_cond (UNGE_EXPR, op0, op1,
|
| 1300 |
|
|
&edge_info->cond_equivalences);
|
| 1301 |
|
|
build_and_record_new_cond (UNEQ_EXPR, op0, op1,
|
| 1302 |
|
|
&edge_info->cond_equivalences);
|
| 1303 |
|
|
build_and_record_new_cond (UNLT_EXPR, op0, op1,
|
| 1304 |
|
|
&edge_info->cond_equivalences);
|
| 1305 |
|
|
build_and_record_new_cond (UNGT_EXPR, op0, op1,
|
| 1306 |
|
|
&edge_info->cond_equivalences);
|
| 1307 |
|
|
break;
|
| 1308 |
|
|
|
| 1309 |
|
|
case UNLT_EXPR:
|
| 1310 |
|
|
case UNGT_EXPR:
|
| 1311 |
|
|
build_and_record_new_cond ((TREE_CODE (cond) == UNLT_EXPR
|
| 1312 |
|
|
? UNLE_EXPR : UNGE_EXPR),
|
| 1313 |
|
|
op0, op1, &edge_info->cond_equivalences);
|
| 1314 |
|
|
build_and_record_new_cond (NE_EXPR, op0, op1,
|
| 1315 |
|
|
&edge_info->cond_equivalences);
|
| 1316 |
|
|
break;
|
| 1317 |
|
|
|
| 1318 |
|
|
case UNEQ_EXPR:
|
| 1319 |
|
|
build_and_record_new_cond (UNLE_EXPR, op0, op1,
|
| 1320 |
|
|
&edge_info->cond_equivalences);
|
| 1321 |
|
|
build_and_record_new_cond (UNGE_EXPR, op0, op1,
|
| 1322 |
|
|
&edge_info->cond_equivalences);
|
| 1323 |
|
|
break;
|
| 1324 |
|
|
|
| 1325 |
|
|
case LTGT_EXPR:
|
| 1326 |
|
|
build_and_record_new_cond (NE_EXPR, op0, op1,
|
| 1327 |
|
|
&edge_info->cond_equivalences);
|
| 1328 |
|
|
build_and_record_new_cond (ORDERED_EXPR, op0, op1,
|
| 1329 |
|
|
&edge_info->cond_equivalences);
|
| 1330 |
|
|
break;
|
| 1331 |
|
|
|
| 1332 |
|
|
default:
|
| 1333 |
|
|
break;
|
| 1334 |
|
|
}
|
| 1335 |
|
|
|
| 1336 |
|
|
/* Now store the original true and false conditions into the first
|
| 1337 |
|
|
two slots. */
|
| 1338 |
|
|
initialize_expr_from_cond (cond, &c.cond);
|
| 1339 |
|
|
c.value = boolean_true_node;
|
| 1340 |
|
|
VEC_safe_push (cond_equivalence, heap, edge_info->cond_equivalences, &c);
|
| 1341 |
|
|
|
| 1342 |
|
|
/* It is possible for INVERTED to be the negation of a comparison,
|
| 1343 |
|
|
and not a valid RHS or GIMPLE_COND condition. This happens because
|
| 1344 |
|
|
invert_truthvalue may return such an expression when asked to invert
|
| 1345 |
|
|
a floating-point comparison. These comparisons are not assumed to
|
| 1346 |
|
|
obey the trichotomy law. */
|
| 1347 |
|
|
initialize_expr_from_cond (inverted, &c.cond);
|
| 1348 |
|
|
c.value = boolean_false_node;
|
| 1349 |
|
|
VEC_safe_push (cond_equivalence, heap, edge_info->cond_equivalences, &c);
|
| 1350 |
|
|
}
|
| 1351 |
|
|
|
| 1352 |
|
|
/* A helper function for record_const_or_copy and record_equality.
|
| 1353 |
|
|
Do the work of recording the value and undo info. */
|
| 1354 |
|
|
|
| 1355 |
|
|
static void
|
| 1356 |
|
|
record_const_or_copy_1 (tree x, tree y, tree prev_x)
|
| 1357 |
|
|
{
|
| 1358 |
|
|
set_ssa_name_value (x, y);
|
| 1359 |
|
|
|
| 1360 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1361 |
|
|
{
|
| 1362 |
|
|
fprintf (dump_file, "0>>> COPY ");
|
| 1363 |
|
|
print_generic_expr (dump_file, x, 0);
|
| 1364 |
|
|
fprintf (dump_file, " = ");
|
| 1365 |
|
|
print_generic_expr (dump_file, y, 0);
|
| 1366 |
|
|
fprintf (dump_file, "\n");
|
| 1367 |
|
|
}
|
| 1368 |
|
|
|
| 1369 |
|
|
VEC_reserve (tree, heap, const_and_copies_stack, 2);
|
| 1370 |
|
|
VEC_quick_push (tree, const_and_copies_stack, prev_x);
|
| 1371 |
|
|
VEC_quick_push (tree, const_and_copies_stack, x);
|
| 1372 |
|
|
}
|
| 1373 |
|
|
|
| 1374 |
|
|
/* Return the loop depth of the basic block of the defining statement of X.
|
| 1375 |
|
|
This number should not be treated as absolutely correct because the loop
|
| 1376 |
|
|
information may not be completely up-to-date when dom runs. However, it
|
| 1377 |
|
|
will be relatively correct, and as more passes are taught to keep loop info
|
| 1378 |
|
|
up to date, the result will become more and more accurate. */
|
| 1379 |
|
|
|
| 1380 |
|
|
int
|
| 1381 |
|
|
loop_depth_of_name (tree x)
|
| 1382 |
|
|
{
|
| 1383 |
|
|
gimple defstmt;
|
| 1384 |
|
|
basic_block defbb;
|
| 1385 |
|
|
|
| 1386 |
|
|
/* If it's not an SSA_NAME, we have no clue where the definition is. */
|
| 1387 |
|
|
if (TREE_CODE (x) != SSA_NAME)
|
| 1388 |
|
|
return 0;
|
| 1389 |
|
|
|
| 1390 |
|
|
/* Otherwise return the loop depth of the defining statement's bb.
|
| 1391 |
|
|
Note that there may not actually be a bb for this statement, if the
|
| 1392 |
|
|
ssa_name is live on entry. */
|
| 1393 |
|
|
defstmt = SSA_NAME_DEF_STMT (x);
|
| 1394 |
|
|
defbb = gimple_bb (defstmt);
|
| 1395 |
|
|
if (!defbb)
|
| 1396 |
|
|
return 0;
|
| 1397 |
|
|
|
| 1398 |
|
|
return defbb->loop_depth;
|
| 1399 |
|
|
}
|
| 1400 |
|
|
|
| 1401 |
|
|
/* Record that X is equal to Y in const_and_copies. Record undo
|
| 1402 |
|
|
information in the block-local vector. */
|
| 1403 |
|
|
|
| 1404 |
|
|
static void
|
| 1405 |
|
|
record_const_or_copy (tree x, tree y)
|
| 1406 |
|
|
{
|
| 1407 |
|
|
tree prev_x = SSA_NAME_VALUE (x);
|
| 1408 |
|
|
|
| 1409 |
|
|
gcc_assert (TREE_CODE (x) == SSA_NAME);
|
| 1410 |
|
|
|
| 1411 |
|
|
if (TREE_CODE (y) == SSA_NAME)
|
| 1412 |
|
|
{
|
| 1413 |
|
|
tree tmp = SSA_NAME_VALUE (y);
|
| 1414 |
|
|
if (tmp)
|
| 1415 |
|
|
y = tmp;
|
| 1416 |
|
|
}
|
| 1417 |
|
|
|
| 1418 |
|
|
record_const_or_copy_1 (x, y, prev_x);
|
| 1419 |
|
|
}
|
| 1420 |
|
|
|
| 1421 |
|
|
/* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
|
| 1422 |
|
|
This constrains the cases in which we may treat this as assignment. */
|
| 1423 |
|
|
|
| 1424 |
|
|
static void
|
| 1425 |
|
|
record_equality (tree x, tree y)
|
| 1426 |
|
|
{
|
| 1427 |
|
|
tree prev_x = NULL, prev_y = NULL;
|
| 1428 |
|
|
|
| 1429 |
|
|
if (TREE_CODE (x) == SSA_NAME)
|
| 1430 |
|
|
prev_x = SSA_NAME_VALUE (x);
|
| 1431 |
|
|
if (TREE_CODE (y) == SSA_NAME)
|
| 1432 |
|
|
prev_y = SSA_NAME_VALUE (y);
|
| 1433 |
|
|
|
| 1434 |
|
|
/* If one of the previous values is invariant, or invariant in more loops
|
| 1435 |
|
|
(by depth), then use that.
|
| 1436 |
|
|
Otherwise it doesn't matter which value we choose, just so
|
| 1437 |
|
|
long as we canonicalize on one value. */
|
| 1438 |
|
|
if (is_gimple_min_invariant (y))
|
| 1439 |
|
|
;
|
| 1440 |
|
|
else if (is_gimple_min_invariant (x)
|
| 1441 |
|
|
|| (loop_depth_of_name (x) <= loop_depth_of_name (y)))
|
| 1442 |
|
|
prev_x = x, x = y, y = prev_x, prev_x = prev_y;
|
| 1443 |
|
|
else if (prev_x && is_gimple_min_invariant (prev_x))
|
| 1444 |
|
|
x = y, y = prev_x, prev_x = prev_y;
|
| 1445 |
|
|
else if (prev_y)
|
| 1446 |
|
|
y = prev_y;
|
| 1447 |
|
|
|
| 1448 |
|
|
/* After the swapping, we must have one SSA_NAME. */
|
| 1449 |
|
|
if (TREE_CODE (x) != SSA_NAME)
|
| 1450 |
|
|
return;
|
| 1451 |
|
|
|
| 1452 |
|
|
/* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
|
| 1453 |
|
|
variable compared against zero. If we're honoring signed zeros,
|
| 1454 |
|
|
then we cannot record this value unless we know that the value is
|
| 1455 |
|
|
nonzero. */
|
| 1456 |
|
|
if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (x)))
|
| 1457 |
|
|
&& (TREE_CODE (y) != REAL_CST
|
| 1458 |
|
|
|| REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (y))))
|
| 1459 |
|
|
return;
|
| 1460 |
|
|
|
| 1461 |
|
|
record_const_or_copy_1 (x, y, prev_x);
|
| 1462 |
|
|
}
|
| 1463 |
|
|
|
| 1464 |
|
|
/* Returns true when STMT is a simple iv increment. It detects the
|
| 1465 |
|
|
following situation:
|
| 1466 |
|
|
|
| 1467 |
|
|
i_1 = phi (..., i_2)
|
| 1468 |
|
|
i_2 = i_1 +/- ... */
|
| 1469 |
|
|
|
| 1470 |
|
|
bool
|
| 1471 |
|
|
simple_iv_increment_p (gimple stmt)
|
| 1472 |
|
|
{
|
| 1473 |
|
|
enum tree_code code;
|
| 1474 |
|
|
tree lhs, preinc;
|
| 1475 |
|
|
gimple phi;
|
| 1476 |
|
|
size_t i;
|
| 1477 |
|
|
|
| 1478 |
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
| 1479 |
|
|
return false;
|
| 1480 |
|
|
|
| 1481 |
|
|
lhs = gimple_assign_lhs (stmt);
|
| 1482 |
|
|
if (TREE_CODE (lhs) != SSA_NAME)
|
| 1483 |
|
|
return false;
|
| 1484 |
|
|
|
| 1485 |
|
|
code = gimple_assign_rhs_code (stmt);
|
| 1486 |
|
|
if (code != PLUS_EXPR
|
| 1487 |
|
|
&& code != MINUS_EXPR
|
| 1488 |
|
|
&& code != POINTER_PLUS_EXPR)
|
| 1489 |
|
|
return false;
|
| 1490 |
|
|
|
| 1491 |
|
|
preinc = gimple_assign_rhs1 (stmt);
|
| 1492 |
|
|
if (TREE_CODE (preinc) != SSA_NAME)
|
| 1493 |
|
|
return false;
|
| 1494 |
|
|
|
| 1495 |
|
|
phi = SSA_NAME_DEF_STMT (preinc);
|
| 1496 |
|
|
if (gimple_code (phi) != GIMPLE_PHI)
|
| 1497 |
|
|
return false;
|
| 1498 |
|
|
|
| 1499 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
| 1500 |
|
|
if (gimple_phi_arg_def (phi, i) == lhs)
|
| 1501 |
|
|
return true;
|
| 1502 |
|
|
|
| 1503 |
|
|
return false;
|
| 1504 |
|
|
}
|
| 1505 |
|
|
|
| 1506 |
|
|
/* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
|
| 1507 |
|
|
known value for that SSA_NAME (or NULL if no value is known).
|
| 1508 |
|
|
|
| 1509 |
|
|
Propagate values from CONST_AND_COPIES into the PHI nodes of the
|
| 1510 |
|
|
successors of BB. */
|
| 1511 |
|
|
|
| 1512 |
|
|
static void
|
| 1513 |
|
|
cprop_into_successor_phis (basic_block bb)
|
| 1514 |
|
|
{
|
| 1515 |
|
|
edge e;
|
| 1516 |
|
|
edge_iterator ei;
|
| 1517 |
|
|
|
| 1518 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 1519 |
|
|
{
|
| 1520 |
|
|
int indx;
|
| 1521 |
|
|
gimple_stmt_iterator gsi;
|
| 1522 |
|
|
|
| 1523 |
|
|
/* If this is an abnormal edge, then we do not want to copy propagate
|
| 1524 |
|
|
into the PHI alternative associated with this edge. */
|
| 1525 |
|
|
if (e->flags & EDGE_ABNORMAL)
|
| 1526 |
|
|
continue;
|
| 1527 |
|
|
|
| 1528 |
|
|
gsi = gsi_start_phis (e->dest);
|
| 1529 |
|
|
if (gsi_end_p (gsi))
|
| 1530 |
|
|
continue;
|
| 1531 |
|
|
|
| 1532 |
|
|
indx = e->dest_idx;
|
| 1533 |
|
|
for ( ; !gsi_end_p (gsi); gsi_next (&gsi))
|
| 1534 |
|
|
{
|
| 1535 |
|
|
tree new_val;
|
| 1536 |
|
|
use_operand_p orig_p;
|
| 1537 |
|
|
tree orig_val;
|
| 1538 |
|
|
gimple phi = gsi_stmt (gsi);
|
| 1539 |
|
|
|
| 1540 |
|
|
/* The alternative may be associated with a constant, so verify
|
| 1541 |
|
|
it is an SSA_NAME before doing anything with it. */
|
| 1542 |
|
|
orig_p = gimple_phi_arg_imm_use_ptr (phi, indx);
|
| 1543 |
|
|
orig_val = get_use_from_ptr (orig_p);
|
| 1544 |
|
|
if (TREE_CODE (orig_val) != SSA_NAME)
|
| 1545 |
|
|
continue;
|
| 1546 |
|
|
|
| 1547 |
|
|
/* If we have *ORIG_P in our constant/copy table, then replace
|
| 1548 |
|
|
ORIG_P with its value in our constant/copy table. */
|
| 1549 |
|
|
new_val = SSA_NAME_VALUE (orig_val);
|
| 1550 |
|
|
if (new_val
|
| 1551 |
|
|
&& new_val != orig_val
|
| 1552 |
|
|
&& (TREE_CODE (new_val) == SSA_NAME
|
| 1553 |
|
|
|| is_gimple_min_invariant (new_val))
|
| 1554 |
|
|
&& may_propagate_copy (orig_val, new_val))
|
| 1555 |
|
|
propagate_value (orig_p, new_val);
|
| 1556 |
|
|
}
|
| 1557 |
|
|
}
|
| 1558 |
|
|
}
|
| 1559 |
|
|
|
| 1560 |
|
|
/* We have finished optimizing BB, record any information implied by
|
| 1561 |
|
|
taking a specific outgoing edge from BB. */
|
| 1562 |
|
|
|
| 1563 |
|
|
static void
|
| 1564 |
|
|
record_edge_info (basic_block bb)
|
| 1565 |
|
|
{
|
| 1566 |
|
|
gimple_stmt_iterator gsi = gsi_last_bb (bb);
|
| 1567 |
|
|
struct edge_info *edge_info;
|
| 1568 |
|
|
|
| 1569 |
|
|
if (! gsi_end_p (gsi))
|
| 1570 |
|
|
{
|
| 1571 |
|
|
gimple stmt = gsi_stmt (gsi);
|
| 1572 |
|
|
location_t loc = gimple_location (stmt);
|
| 1573 |
|
|
|
| 1574 |
|
|
if (gimple_code (stmt) == GIMPLE_SWITCH)
|
| 1575 |
|
|
{
|
| 1576 |
|
|
tree index = gimple_switch_index (stmt);
|
| 1577 |
|
|
|
| 1578 |
|
|
if (TREE_CODE (index) == SSA_NAME)
|
| 1579 |
|
|
{
|
| 1580 |
|
|
int i;
|
| 1581 |
|
|
int n_labels = gimple_switch_num_labels (stmt);
|
| 1582 |
|
|
tree *info = XCNEWVEC (tree, last_basic_block);
|
| 1583 |
|
|
edge e;
|
| 1584 |
|
|
edge_iterator ei;
|
| 1585 |
|
|
|
| 1586 |
|
|
for (i = 0; i < n_labels; i++)
|
| 1587 |
|
|
{
|
| 1588 |
|
|
tree label = gimple_switch_label (stmt, i);
|
| 1589 |
|
|
basic_block target_bb = label_to_block (CASE_LABEL (label));
|
| 1590 |
|
|
if (CASE_HIGH (label)
|
| 1591 |
|
|
|| !CASE_LOW (label)
|
| 1592 |
|
|
|| info[target_bb->index])
|
| 1593 |
|
|
info[target_bb->index] = error_mark_node;
|
| 1594 |
|
|
else
|
| 1595 |
|
|
info[target_bb->index] = label;
|
| 1596 |
|
|
}
|
| 1597 |
|
|
|
| 1598 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 1599 |
|
|
{
|
| 1600 |
|
|
basic_block target_bb = e->dest;
|
| 1601 |
|
|
tree label = info[target_bb->index];
|
| 1602 |
|
|
|
| 1603 |
|
|
if (label != NULL && label != error_mark_node)
|
| 1604 |
|
|
{
|
| 1605 |
|
|
tree x = fold_convert_loc (loc, TREE_TYPE (index),
|
| 1606 |
|
|
CASE_LOW (label));
|
| 1607 |
|
|
edge_info = allocate_edge_info (e);
|
| 1608 |
|
|
edge_info->lhs = index;
|
| 1609 |
|
|
edge_info->rhs = x;
|
| 1610 |
|
|
}
|
| 1611 |
|
|
}
|
| 1612 |
|
|
free (info);
|
| 1613 |
|
|
}
|
| 1614 |
|
|
}
|
| 1615 |
|
|
|
| 1616 |
|
|
/* A COND_EXPR may create equivalences too. */
|
| 1617 |
|
|
if (gimple_code (stmt) == GIMPLE_COND)
|
| 1618 |
|
|
{
|
| 1619 |
|
|
edge true_edge;
|
| 1620 |
|
|
edge false_edge;
|
| 1621 |
|
|
|
| 1622 |
|
|
tree op0 = gimple_cond_lhs (stmt);
|
| 1623 |
|
|
tree op1 = gimple_cond_rhs (stmt);
|
| 1624 |
|
|
enum tree_code code = gimple_cond_code (stmt);
|
| 1625 |
|
|
|
| 1626 |
|
|
extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
|
| 1627 |
|
|
|
| 1628 |
|
|
/* Special case comparing booleans against a constant as we
|
| 1629 |
|
|
know the value of OP0 on both arms of the branch. i.e., we
|
| 1630 |
|
|
can record an equivalence for OP0 rather than COND. */
|
| 1631 |
|
|
if ((code == EQ_EXPR || code == NE_EXPR)
|
| 1632 |
|
|
&& TREE_CODE (op0) == SSA_NAME
|
| 1633 |
|
|
&& TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
|
| 1634 |
|
|
&& is_gimple_min_invariant (op1))
|
| 1635 |
|
|
{
|
| 1636 |
|
|
if (code == EQ_EXPR)
|
| 1637 |
|
|
{
|
| 1638 |
|
|
edge_info = allocate_edge_info (true_edge);
|
| 1639 |
|
|
edge_info->lhs = op0;
|
| 1640 |
|
|
edge_info->rhs = (integer_zerop (op1)
|
| 1641 |
|
|
? boolean_false_node
|
| 1642 |
|
|
: boolean_true_node);
|
| 1643 |
|
|
|
| 1644 |
|
|
edge_info = allocate_edge_info (false_edge);
|
| 1645 |
|
|
edge_info->lhs = op0;
|
| 1646 |
|
|
edge_info->rhs = (integer_zerop (op1)
|
| 1647 |
|
|
? boolean_true_node
|
| 1648 |
|
|
: boolean_false_node);
|
| 1649 |
|
|
}
|
| 1650 |
|
|
else
|
| 1651 |
|
|
{
|
| 1652 |
|
|
edge_info = allocate_edge_info (true_edge);
|
| 1653 |
|
|
edge_info->lhs = op0;
|
| 1654 |
|
|
edge_info->rhs = (integer_zerop (op1)
|
| 1655 |
|
|
? boolean_true_node
|
| 1656 |
|
|
: boolean_false_node);
|
| 1657 |
|
|
|
| 1658 |
|
|
edge_info = allocate_edge_info (false_edge);
|
| 1659 |
|
|
edge_info->lhs = op0;
|
| 1660 |
|
|
edge_info->rhs = (integer_zerop (op1)
|
| 1661 |
|
|
? boolean_false_node
|
| 1662 |
|
|
: boolean_true_node);
|
| 1663 |
|
|
}
|
| 1664 |
|
|
}
|
| 1665 |
|
|
else if (is_gimple_min_invariant (op0)
|
| 1666 |
|
|
&& (TREE_CODE (op1) == SSA_NAME
|
| 1667 |
|
|
|| is_gimple_min_invariant (op1)))
|
| 1668 |
|
|
{
|
| 1669 |
|
|
tree cond = build2 (code, boolean_type_node, op0, op1);
|
| 1670 |
|
|
tree inverted = invert_truthvalue_loc (loc, cond);
|
| 1671 |
|
|
bool can_infer_simple_equiv
|
| 1672 |
|
|
= !(HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op0)))
|
| 1673 |
|
|
&& real_zerop (op0));
|
| 1674 |
|
|
struct edge_info *edge_info;
|
| 1675 |
|
|
|
| 1676 |
|
|
edge_info = allocate_edge_info (true_edge);
|
| 1677 |
|
|
record_conditions (edge_info, cond, inverted);
|
| 1678 |
|
|
|
| 1679 |
|
|
if (can_infer_simple_equiv && code == EQ_EXPR)
|
| 1680 |
|
|
{
|
| 1681 |
|
|
edge_info->lhs = op1;
|
| 1682 |
|
|
edge_info->rhs = op0;
|
| 1683 |
|
|
}
|
| 1684 |
|
|
|
| 1685 |
|
|
edge_info = allocate_edge_info (false_edge);
|
| 1686 |
|
|
record_conditions (edge_info, inverted, cond);
|
| 1687 |
|
|
|
| 1688 |
|
|
if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
|
| 1689 |
|
|
{
|
| 1690 |
|
|
edge_info->lhs = op1;
|
| 1691 |
|
|
edge_info->rhs = op0;
|
| 1692 |
|
|
}
|
| 1693 |
|
|
}
|
| 1694 |
|
|
|
| 1695 |
|
|
else if (TREE_CODE (op0) == SSA_NAME
|
| 1696 |
|
|
&& (TREE_CODE (op1) == SSA_NAME
|
| 1697 |
|
|
|| is_gimple_min_invariant (op1)))
|
| 1698 |
|
|
{
|
| 1699 |
|
|
tree cond = build2 (code, boolean_type_node, op0, op1);
|
| 1700 |
|
|
tree inverted = invert_truthvalue_loc (loc, cond);
|
| 1701 |
|
|
bool can_infer_simple_equiv
|
| 1702 |
|
|
= !(HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op1)))
|
| 1703 |
|
|
&& (TREE_CODE (op1) == SSA_NAME || real_zerop (op1)));
|
| 1704 |
|
|
struct edge_info *edge_info;
|
| 1705 |
|
|
|
| 1706 |
|
|
edge_info = allocate_edge_info (true_edge);
|
| 1707 |
|
|
record_conditions (edge_info, cond, inverted);
|
| 1708 |
|
|
|
| 1709 |
|
|
if (can_infer_simple_equiv && code == EQ_EXPR)
|
| 1710 |
|
|
{
|
| 1711 |
|
|
edge_info->lhs = op0;
|
| 1712 |
|
|
edge_info->rhs = op1;
|
| 1713 |
|
|
}
|
| 1714 |
|
|
|
| 1715 |
|
|
edge_info = allocate_edge_info (false_edge);
|
| 1716 |
|
|
record_conditions (edge_info, inverted, cond);
|
| 1717 |
|
|
|
| 1718 |
|
|
if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
|
| 1719 |
|
|
{
|
| 1720 |
|
|
edge_info->lhs = op0;
|
| 1721 |
|
|
edge_info->rhs = op1;
|
| 1722 |
|
|
}
|
| 1723 |
|
|
}
|
| 1724 |
|
|
}
|
| 1725 |
|
|
|
| 1726 |
|
|
/* ??? TRUTH_NOT_EXPR can create an equivalence too. */
|
| 1727 |
|
|
}
|
| 1728 |
|
|
}
|
| 1729 |
|
|
|
| 1730 |
|
|
static void
|
| 1731 |
|
|
dom_opt_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
|
| 1732 |
|
|
basic_block bb)
|
| 1733 |
|
|
{
|
| 1734 |
|
|
gimple_stmt_iterator gsi;
|
| 1735 |
|
|
|
| 1736 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1737 |
|
|
fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);
|
| 1738 |
|
|
|
| 1739 |
|
|
/* Push a marker on the stacks of local information so that we know how
|
| 1740 |
|
|
far to unwind when we finalize this block. */
|
| 1741 |
|
|
VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, NULL);
|
| 1742 |
|
|
VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE);
|
| 1743 |
|
|
|
| 1744 |
|
|
record_equivalences_from_incoming_edge (bb);
|
| 1745 |
|
|
|
| 1746 |
|
|
/* PHI nodes can create equivalences too. */
|
| 1747 |
|
|
record_equivalences_from_phis (bb);
|
| 1748 |
|
|
|
| 1749 |
|
|
/* Create equivalences from redundant PHIs. PHIs are only truly
|
| 1750 |
|
|
redundant when they exist in the same block, so push another
|
| 1751 |
|
|
marker and unwind right afterwards. */
|
| 1752 |
|
|
VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, NULL);
|
| 1753 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 1754 |
|
|
eliminate_redundant_computations (&gsi);
|
| 1755 |
|
|
remove_local_expressions_from_table ();
|
| 1756 |
|
|
|
| 1757 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 1758 |
|
|
optimize_stmt (bb, gsi);
|
| 1759 |
|
|
|
| 1760 |
|
|
/* Now prepare to process dominated blocks. */
|
| 1761 |
|
|
record_edge_info (bb);
|
| 1762 |
|
|
cprop_into_successor_phis (bb);
|
| 1763 |
|
|
}
|
| 1764 |
|
|
|
| 1765 |
|
|
/* We have finished processing the dominator children of BB, perform
|
| 1766 |
|
|
any finalization actions in preparation for leaving this node in
|
| 1767 |
|
|
the dominator tree. */
|
| 1768 |
|
|
|
| 1769 |
|
|
static void
|
| 1770 |
|
|
dom_opt_leave_block (struct dom_walk_data *walk_data, basic_block bb)
|
| 1771 |
|
|
{
|
| 1772 |
|
|
gimple last;
|
| 1773 |
|
|
|
| 1774 |
|
|
/* If we have an outgoing edge to a block with multiple incoming and
|
| 1775 |
|
|
outgoing edges, then we may be able to thread the edge, i.e., we
|
| 1776 |
|
|
may be able to statically determine which of the outgoing edges
|
| 1777 |
|
|
will be traversed when the incoming edge from BB is traversed. */
|
| 1778 |
|
|
if (single_succ_p (bb)
|
| 1779 |
|
|
&& (single_succ_edge (bb)->flags & EDGE_ABNORMAL) == 0
|
| 1780 |
|
|
&& potentially_threadable_block (single_succ (bb)))
|
| 1781 |
|
|
{
|
| 1782 |
|
|
/* Push a marker on the stack, which thread_across_edge expects
|
| 1783 |
|
|
and will remove. */
|
| 1784 |
|
|
VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE);
|
| 1785 |
|
|
dom_thread_across_edge (walk_data, single_succ_edge (bb));
|
| 1786 |
|
|
}
|
| 1787 |
|
|
else if ((last = last_stmt (bb))
|
| 1788 |
|
|
&& gimple_code (last) == GIMPLE_COND
|
| 1789 |
|
|
&& EDGE_COUNT (bb->succs) == 2
|
| 1790 |
|
|
&& (EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL) == 0
|
| 1791 |
|
|
&& (EDGE_SUCC (bb, 1)->flags & EDGE_ABNORMAL) == 0)
|
| 1792 |
|
|
{
|
| 1793 |
|
|
edge true_edge, false_edge;
|
| 1794 |
|
|
|
| 1795 |
|
|
extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
|
| 1796 |
|
|
|
| 1797 |
|
|
/* Only try to thread the edge if it reaches a target block with
|
| 1798 |
|
|
more than one predecessor and more than one successor. */
|
| 1799 |
|
|
if (potentially_threadable_block (true_edge->dest))
|
| 1800 |
|
|
{
|
| 1801 |
|
|
struct edge_info *edge_info;
|
| 1802 |
|
|
unsigned int i;
|
| 1803 |
|
|
|
| 1804 |
|
|
/* Push a marker onto the available expression stack so that we
|
| 1805 |
|
|
unwind any expressions related to the TRUE arm before processing
|
| 1806 |
|
|
the false arm below. */
|
| 1807 |
|
|
VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, NULL);
|
| 1808 |
|
|
VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE);
|
| 1809 |
|
|
|
| 1810 |
|
|
edge_info = (struct edge_info *) true_edge->aux;
|
| 1811 |
|
|
|
| 1812 |
|
|
/* If we have info associated with this edge, record it into
|
| 1813 |
|
|
our equivalence tables. */
|
| 1814 |
|
|
if (edge_info)
|
| 1815 |
|
|
{
|
| 1816 |
|
|
cond_equivalence *eq;
|
| 1817 |
|
|
tree lhs = edge_info->lhs;
|
| 1818 |
|
|
tree rhs = edge_info->rhs;
|
| 1819 |
|
|
|
| 1820 |
|
|
/* If we have a simple NAME = VALUE equivalence, record it. */
|
| 1821 |
|
|
if (lhs && TREE_CODE (lhs) == SSA_NAME)
|
| 1822 |
|
|
record_const_or_copy (lhs, rhs);
|
| 1823 |
|
|
|
| 1824 |
|
|
/* If we have 0 = COND or 1 = COND equivalences, record them
|
| 1825 |
|
|
into our expression hash tables. */
|
| 1826 |
|
|
for (i = 0; VEC_iterate (cond_equivalence,
|
| 1827 |
|
|
edge_info->cond_equivalences, i, eq); ++i)
|
| 1828 |
|
|
record_cond (eq);
|
| 1829 |
|
|
}
|
| 1830 |
|
|
|
| 1831 |
|
|
dom_thread_across_edge (walk_data, true_edge);
|
| 1832 |
|
|
|
| 1833 |
|
|
/* And restore the various tables to their state before
|
| 1834 |
|
|
we threaded this edge. */
|
| 1835 |
|
|
remove_local_expressions_from_table ();
|
| 1836 |
|
|
}
|
| 1837 |
|
|
|
| 1838 |
|
|
/* Similarly for the ELSE arm. */
|
| 1839 |
|
|
if (potentially_threadable_block (false_edge->dest))
|
| 1840 |
|
|
{
|
| 1841 |
|
|
struct edge_info *edge_info;
|
| 1842 |
|
|
unsigned int i;
|
| 1843 |
|
|
|
| 1844 |
|
|
VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE);
|
| 1845 |
|
|
edge_info = (struct edge_info *) false_edge->aux;
|
| 1846 |
|
|
|
| 1847 |
|
|
/* If we have info associated with this edge, record it into
|
| 1848 |
|
|
our equivalence tables. */
|
| 1849 |
|
|
if (edge_info)
|
| 1850 |
|
|
{
|
| 1851 |
|
|
cond_equivalence *eq;
|
| 1852 |
|
|
tree lhs = edge_info->lhs;
|
| 1853 |
|
|
tree rhs = edge_info->rhs;
|
| 1854 |
|
|
|
| 1855 |
|
|
/* If we have a simple NAME = VALUE equivalence, record it. */
|
| 1856 |
|
|
if (lhs && TREE_CODE (lhs) == SSA_NAME)
|
| 1857 |
|
|
record_const_or_copy (lhs, rhs);
|
| 1858 |
|
|
|
| 1859 |
|
|
/* If we have 0 = COND or 1 = COND equivalences, record them
|
| 1860 |
|
|
into our expression hash tables. */
|
| 1861 |
|
|
for (i = 0; VEC_iterate (cond_equivalence,
|
| 1862 |
|
|
edge_info->cond_equivalences, i, eq); ++i)
|
| 1863 |
|
|
record_cond (eq);
|
| 1864 |
|
|
}
|
| 1865 |
|
|
|
| 1866 |
|
|
/* Now thread the edge. */
|
| 1867 |
|
|
dom_thread_across_edge (walk_data, false_edge);
|
| 1868 |
|
|
|
| 1869 |
|
|
/* No need to remove local expressions from our tables
|
| 1870 |
|
|
or restore vars to their original value as that will
|
| 1871 |
|
|
be done immediately below. */
|
| 1872 |
|
|
}
|
| 1873 |
|
|
}
|
| 1874 |
|
|
|
| 1875 |
|
|
remove_local_expressions_from_table ();
|
| 1876 |
|
|
restore_vars_to_original_value ();
|
| 1877 |
|
|
}
|
| 1878 |
|
|
|
| 1879 |
|
|
/* Search for redundant computations in STMT. If any are found, then
|
| 1880 |
|
|
replace them with the variable holding the result of the computation.
|
| 1881 |
|
|
|
| 1882 |
|
|
If safe, record this expression into the available expression hash
|
| 1883 |
|
|
table. */
|
| 1884 |
|
|
|
| 1885 |
|
|
static void
|
| 1886 |
|
|
eliminate_redundant_computations (gimple_stmt_iterator* gsi)
|
| 1887 |
|
|
{
|
| 1888 |
|
|
tree expr_type;
|
| 1889 |
|
|
tree cached_lhs;
|
| 1890 |
|
|
tree def;
|
| 1891 |
|
|
bool insert = true;
|
| 1892 |
|
|
bool assigns_var_p = false;
|
| 1893 |
|
|
|
| 1894 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
| 1895 |
|
|
|
| 1896 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
| 1897 |
|
|
def = gimple_phi_result (stmt);
|
| 1898 |
|
|
else
|
| 1899 |
|
|
def = gimple_get_lhs (stmt);
|
| 1900 |
|
|
|
| 1901 |
|
|
/* Certain expressions on the RHS can be optimized away, but can not
|
| 1902 |
|
|
themselves be entered into the hash tables. */
|
| 1903 |
|
|
if (! def
|
| 1904 |
|
|
|| TREE_CODE (def) != SSA_NAME
|
| 1905 |
|
|
|| SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
|
| 1906 |
|
|
|| gimple_vdef (stmt)
|
| 1907 |
|
|
/* Do not record equivalences for increments of ivs. This would create
|
| 1908 |
|
|
overlapping live ranges for a very questionable gain. */
|
| 1909 |
|
|
|| simple_iv_increment_p (stmt))
|
| 1910 |
|
|
insert = false;
|
| 1911 |
|
|
|
| 1912 |
|
|
/* Check if the expression has been computed before. */
|
| 1913 |
|
|
cached_lhs = lookup_avail_expr (stmt, insert);
|
| 1914 |
|
|
|
| 1915 |
|
|
opt_stats.num_exprs_considered++;
|
| 1916 |
|
|
|
| 1917 |
|
|
/* Get the type of the expression we are trying to optimize. */
|
| 1918 |
|
|
if (is_gimple_assign (stmt))
|
| 1919 |
|
|
{
|
| 1920 |
|
|
expr_type = TREE_TYPE (gimple_assign_lhs (stmt));
|
| 1921 |
|
|
assigns_var_p = true;
|
| 1922 |
|
|
}
|
| 1923 |
|
|
else if (gimple_code (stmt) == GIMPLE_COND)
|
| 1924 |
|
|
expr_type = boolean_type_node;
|
| 1925 |
|
|
else if (is_gimple_call (stmt))
|
| 1926 |
|
|
{
|
| 1927 |
|
|
gcc_assert (gimple_call_lhs (stmt));
|
| 1928 |
|
|
expr_type = TREE_TYPE (gimple_call_lhs (stmt));
|
| 1929 |
|
|
assigns_var_p = true;
|
| 1930 |
|
|
}
|
| 1931 |
|
|
else if (gimple_code (stmt) == GIMPLE_SWITCH)
|
| 1932 |
|
|
expr_type = TREE_TYPE (gimple_switch_index (stmt));
|
| 1933 |
|
|
else if (gimple_code (stmt) == GIMPLE_PHI)
|
| 1934 |
|
|
/* We can't propagate into a phi, so the logic below doesn't apply.
|
| 1935 |
|
|
Instead record an equivalence between the cached LHS and the
|
| 1936 |
|
|
PHI result of this statement, provided they are in the same block.
|
| 1937 |
|
|
This should be sufficient to kill the redundant phi. */
|
| 1938 |
|
|
{
|
| 1939 |
|
|
if (def && cached_lhs)
|
| 1940 |
|
|
record_const_or_copy (def, cached_lhs);
|
| 1941 |
|
|
return;
|
| 1942 |
|
|
}
|
| 1943 |
|
|
else
|
| 1944 |
|
|
gcc_unreachable ();
|
| 1945 |
|
|
|
| 1946 |
|
|
if (!cached_lhs)
|
| 1947 |
|
|
return;
|
| 1948 |
|
|
|
| 1949 |
|
|
/* It is safe to ignore types here since we have already done
|
| 1950 |
|
|
type checking in the hashing and equality routines. In fact
|
| 1951 |
|
|
type checking here merely gets in the way of constant
|
| 1952 |
|
|
propagation. Also, make sure that it is safe to propagate
|
| 1953 |
|
|
CACHED_LHS into the expression in STMT. */
|
| 1954 |
|
|
if ((TREE_CODE (cached_lhs) != SSA_NAME
|
| 1955 |
|
|
&& (assigns_var_p
|
| 1956 |
|
|
|| useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))))
|
| 1957 |
|
|
|| may_propagate_copy_into_stmt (stmt, cached_lhs))
|
| 1958 |
|
|
{
|
| 1959 |
|
|
gcc_checking_assert (TREE_CODE (cached_lhs) == SSA_NAME
|
| 1960 |
|
|
|| is_gimple_min_invariant (cached_lhs));
|
| 1961 |
|
|
|
| 1962 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1963 |
|
|
{
|
| 1964 |
|
|
fprintf (dump_file, " Replaced redundant expr '");
|
| 1965 |
|
|
print_gimple_expr (dump_file, stmt, 0, dump_flags);
|
| 1966 |
|
|
fprintf (dump_file, "' with '");
|
| 1967 |
|
|
print_generic_expr (dump_file, cached_lhs, dump_flags);
|
| 1968 |
|
|
fprintf (dump_file, "'\n");
|
| 1969 |
|
|
}
|
| 1970 |
|
|
|
| 1971 |
|
|
opt_stats.num_re++;
|
| 1972 |
|
|
|
| 1973 |
|
|
if (assigns_var_p
|
| 1974 |
|
|
&& !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))
|
| 1975 |
|
|
cached_lhs = fold_convert (expr_type, cached_lhs);
|
| 1976 |
|
|
|
| 1977 |
|
|
propagate_tree_value_into_stmt (gsi, cached_lhs);
|
| 1978 |
|
|
|
| 1979 |
|
|
/* Since it is always necessary to mark the result as modified,
|
| 1980 |
|
|
perhaps we should move this into propagate_tree_value_into_stmt
|
| 1981 |
|
|
itself. */
|
| 1982 |
|
|
gimple_set_modified (gsi_stmt (*gsi), true);
|
| 1983 |
|
|
}
|
| 1984 |
|
|
}
|
| 1985 |
|
|
|
| 1986 |
|
|
/* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
|
| 1987 |
|
|
the available expressions table or the const_and_copies table.
|
| 1988 |
|
|
Detect and record those equivalences. */
|
| 1989 |
|
|
/* We handle only very simple copy equivalences here. The heavy
|
| 1990 |
|
|
lifing is done by eliminate_redundant_computations. */
|
| 1991 |
|
|
|
| 1992 |
|
|
static void
|
| 1993 |
|
|
record_equivalences_from_stmt (gimple stmt, int may_optimize_p)
|
| 1994 |
|
|
{
|
| 1995 |
|
|
tree lhs;
|
| 1996 |
|
|
enum tree_code lhs_code;
|
| 1997 |
|
|
|
| 1998 |
|
|
gcc_assert (is_gimple_assign (stmt));
|
| 1999 |
|
|
|
| 2000 |
|
|
lhs = gimple_assign_lhs (stmt);
|
| 2001 |
|
|
lhs_code = TREE_CODE (lhs);
|
| 2002 |
|
|
|
| 2003 |
|
|
if (lhs_code == SSA_NAME
|
| 2004 |
|
|
&& gimple_assign_single_p (stmt))
|
| 2005 |
|
|
{
|
| 2006 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
| 2007 |
|
|
|
| 2008 |
|
|
/* If the RHS of the assignment is a constant or another variable that
|
| 2009 |
|
|
may be propagated, register it in the CONST_AND_COPIES table. We
|
| 2010 |
|
|
do not need to record unwind data for this, since this is a true
|
| 2011 |
|
|
assignment and not an equivalence inferred from a comparison. All
|
| 2012 |
|
|
uses of this ssa name are dominated by this assignment, so unwinding
|
| 2013 |
|
|
just costs time and space. */
|
| 2014 |
|
|
if (may_optimize_p
|
| 2015 |
|
|
&& (TREE_CODE (rhs) == SSA_NAME
|
| 2016 |
|
|
|| is_gimple_min_invariant (rhs)))
|
| 2017 |
|
|
{
|
| 2018 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2019 |
|
|
{
|
| 2020 |
|
|
fprintf (dump_file, "==== ASGN ");
|
| 2021 |
|
|
print_generic_expr (dump_file, lhs, 0);
|
| 2022 |
|
|
fprintf (dump_file, " = ");
|
| 2023 |
|
|
print_generic_expr (dump_file, rhs, 0);
|
| 2024 |
|
|
fprintf (dump_file, "\n");
|
| 2025 |
|
|
}
|
| 2026 |
|
|
|
| 2027 |
|
|
set_ssa_name_value (lhs, rhs);
|
| 2028 |
|
|
}
|
| 2029 |
|
|
}
|
| 2030 |
|
|
|
| 2031 |
|
|
/* A memory store, even an aliased store, creates a useful
|
| 2032 |
|
|
equivalence. By exchanging the LHS and RHS, creating suitable
|
| 2033 |
|
|
vops and recording the result in the available expression table,
|
| 2034 |
|
|
we may be able to expose more redundant loads. */
|
| 2035 |
|
|
if (!gimple_has_volatile_ops (stmt)
|
| 2036 |
|
|
&& gimple_references_memory_p (stmt)
|
| 2037 |
|
|
&& gimple_assign_single_p (stmt)
|
| 2038 |
|
|
&& (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
|
| 2039 |
|
|
|| is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
|
| 2040 |
|
|
&& !is_gimple_reg (lhs))
|
| 2041 |
|
|
{
|
| 2042 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
| 2043 |
|
|
gimple new_stmt;
|
| 2044 |
|
|
|
| 2045 |
|
|
/* Build a new statement with the RHS and LHS exchanged. */
|
| 2046 |
|
|
if (TREE_CODE (rhs) == SSA_NAME)
|
| 2047 |
|
|
{
|
| 2048 |
|
|
/* NOTE tuples. The call to gimple_build_assign below replaced
|
| 2049 |
|
|
a call to build_gimple_modify_stmt, which did not set the
|
| 2050 |
|
|
SSA_NAME_DEF_STMT on the LHS of the assignment. Doing so
|
| 2051 |
|
|
may cause an SSA validation failure, as the LHS may be a
|
| 2052 |
|
|
default-initialized name and should have no definition. I'm
|
| 2053 |
|
|
a bit dubious of this, as the artificial statement that we
|
| 2054 |
|
|
generate here may in fact be ill-formed, but it is simply
|
| 2055 |
|
|
used as an internal device in this pass, and never becomes
|
| 2056 |
|
|
part of the CFG. */
|
| 2057 |
|
|
gimple defstmt = SSA_NAME_DEF_STMT (rhs);
|
| 2058 |
|
|
new_stmt = gimple_build_assign (rhs, lhs);
|
| 2059 |
|
|
SSA_NAME_DEF_STMT (rhs) = defstmt;
|
| 2060 |
|
|
}
|
| 2061 |
|
|
else
|
| 2062 |
|
|
new_stmt = gimple_build_assign (rhs, lhs);
|
| 2063 |
|
|
|
| 2064 |
|
|
gimple_set_vuse (new_stmt, gimple_vdef (stmt));
|
| 2065 |
|
|
|
| 2066 |
|
|
/* Finally enter the statement into the available expression
|
| 2067 |
|
|
table. */
|
| 2068 |
|
|
lookup_avail_expr (new_stmt, true);
|
| 2069 |
|
|
}
|
| 2070 |
|
|
}
|
| 2071 |
|
|
|
| 2072 |
|
|
/* Replace *OP_P in STMT with any known equivalent value for *OP_P from
|
| 2073 |
|
|
CONST_AND_COPIES. */
|
| 2074 |
|
|
|
| 2075 |
|
|
static void
|
| 2076 |
|
|
cprop_operand (gimple stmt, use_operand_p op_p)
|
| 2077 |
|
|
{
|
| 2078 |
|
|
tree val;
|
| 2079 |
|
|
tree op = USE_FROM_PTR (op_p);
|
| 2080 |
|
|
|
| 2081 |
|
|
/* If the operand has a known constant value or it is known to be a
|
| 2082 |
|
|
copy of some other variable, use the value or copy stored in
|
| 2083 |
|
|
CONST_AND_COPIES. */
|
| 2084 |
|
|
val = SSA_NAME_VALUE (op);
|
| 2085 |
|
|
if (val && val != op)
|
| 2086 |
|
|
{
|
| 2087 |
|
|
/* Do not replace hard register operands in asm statements. */
|
| 2088 |
|
|
if (gimple_code (stmt) == GIMPLE_ASM
|
| 2089 |
|
|
&& !may_propagate_copy_into_asm (op))
|
| 2090 |
|
|
return;
|
| 2091 |
|
|
|
| 2092 |
|
|
/* Certain operands are not allowed to be copy propagated due
|
| 2093 |
|
|
to their interaction with exception handling and some GCC
|
| 2094 |
|
|
extensions. */
|
| 2095 |
|
|
if (!may_propagate_copy (op, val))
|
| 2096 |
|
|
return;
|
| 2097 |
|
|
|
| 2098 |
|
|
/* Do not propagate addresses that point to volatiles into memory
|
| 2099 |
|
|
stmts without volatile operands. */
|
| 2100 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (val))
|
| 2101 |
|
|
&& TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (val)))
|
| 2102 |
|
|
&& gimple_has_mem_ops (stmt)
|
| 2103 |
|
|
&& !gimple_has_volatile_ops (stmt))
|
| 2104 |
|
|
return;
|
| 2105 |
|
|
|
| 2106 |
|
|
/* Do not propagate copies if the propagated value is at a deeper loop
|
| 2107 |
|
|
depth than the propagatee. Otherwise, this may move loop variant
|
| 2108 |
|
|
variables outside of their loops and prevent coalescing
|
| 2109 |
|
|
opportunities. If the value was loop invariant, it will be hoisted
|
| 2110 |
|
|
by LICM and exposed for copy propagation. */
|
| 2111 |
|
|
if (loop_depth_of_name (val) > loop_depth_of_name (op))
|
| 2112 |
|
|
return;
|
| 2113 |
|
|
|
| 2114 |
|
|
/* Do not propagate copies into simple IV increment statements.
|
| 2115 |
|
|
See PR23821 for how this can disturb IV analysis. */
|
| 2116 |
|
|
if (TREE_CODE (val) != INTEGER_CST
|
| 2117 |
|
|
&& simple_iv_increment_p (stmt))
|
| 2118 |
|
|
return;
|
| 2119 |
|
|
|
| 2120 |
|
|
/* Dump details. */
|
| 2121 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2122 |
|
|
{
|
| 2123 |
|
|
fprintf (dump_file, " Replaced '");
|
| 2124 |
|
|
print_generic_expr (dump_file, op, dump_flags);
|
| 2125 |
|
|
fprintf (dump_file, "' with %s '",
|
| 2126 |
|
|
(TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
|
| 2127 |
|
|
print_generic_expr (dump_file, val, dump_flags);
|
| 2128 |
|
|
fprintf (dump_file, "'\n");
|
| 2129 |
|
|
}
|
| 2130 |
|
|
|
| 2131 |
|
|
if (TREE_CODE (val) != SSA_NAME)
|
| 2132 |
|
|
opt_stats.num_const_prop++;
|
| 2133 |
|
|
else
|
| 2134 |
|
|
opt_stats.num_copy_prop++;
|
| 2135 |
|
|
|
| 2136 |
|
|
propagate_value (op_p, val);
|
| 2137 |
|
|
|
| 2138 |
|
|
/* And note that we modified this statement. This is now
|
| 2139 |
|
|
safe, even if we changed virtual operands since we will
|
| 2140 |
|
|
rescan the statement and rewrite its operands again. */
|
| 2141 |
|
|
gimple_set_modified (stmt, true);
|
| 2142 |
|
|
}
|
| 2143 |
|
|
}
|
| 2144 |
|
|
|
| 2145 |
|
|
/* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
|
| 2146 |
|
|
known value for that SSA_NAME (or NULL if no value is known).
|
| 2147 |
|
|
|
| 2148 |
|
|
Propagate values from CONST_AND_COPIES into the uses, vuses and
|
| 2149 |
|
|
vdef_ops of STMT. */
|
| 2150 |
|
|
|
| 2151 |
|
|
static void
|
| 2152 |
|
|
cprop_into_stmt (gimple stmt)
|
| 2153 |
|
|
{
|
| 2154 |
|
|
use_operand_p op_p;
|
| 2155 |
|
|
ssa_op_iter iter;
|
| 2156 |
|
|
|
| 2157 |
|
|
FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_USE)
|
| 2158 |
|
|
cprop_operand (stmt, op_p);
|
| 2159 |
|
|
}
|
| 2160 |
|
|
|
| 2161 |
|
|
/* Optimize the statement pointed to by iterator SI.
|
| 2162 |
|
|
|
| 2163 |
|
|
We try to perform some simplistic global redundancy elimination and
|
| 2164 |
|
|
constant propagation:
|
| 2165 |
|
|
|
| 2166 |
|
|
1- To detect global redundancy, we keep track of expressions that have
|
| 2167 |
|
|
been computed in this block and its dominators. If we find that the
|
| 2168 |
|
|
same expression is computed more than once, we eliminate repeated
|
| 2169 |
|
|
computations by using the target of the first one.
|
| 2170 |
|
|
|
| 2171 |
|
|
2- Constant values and copy assignments. This is used to do very
|
| 2172 |
|
|
simplistic constant and copy propagation. When a constant or copy
|
| 2173 |
|
|
assignment is found, we map the value on the RHS of the assignment to
|
| 2174 |
|
|
the variable in the LHS in the CONST_AND_COPIES table. */
|
| 2175 |
|
|
|
| 2176 |
|
|
static void
|
| 2177 |
|
|
optimize_stmt (basic_block bb, gimple_stmt_iterator si)
|
| 2178 |
|
|
{
|
| 2179 |
|
|
gimple stmt, old_stmt;
|
| 2180 |
|
|
bool may_optimize_p;
|
| 2181 |
|
|
bool modified_p = false;
|
| 2182 |
|
|
|
| 2183 |
|
|
old_stmt = stmt = gsi_stmt (si);
|
| 2184 |
|
|
|
| 2185 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2186 |
|
|
{
|
| 2187 |
|
|
fprintf (dump_file, "Optimizing statement ");
|
| 2188 |
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
| 2189 |
|
|
}
|
| 2190 |
|
|
|
| 2191 |
|
|
if (gimple_code (stmt) == GIMPLE_COND)
|
| 2192 |
|
|
canonicalize_comparison (stmt);
|
| 2193 |
|
|
|
| 2194 |
|
|
update_stmt_if_modified (stmt);
|
| 2195 |
|
|
opt_stats.num_stmts++;
|
| 2196 |
|
|
|
| 2197 |
|
|
/* Const/copy propagate into USES, VUSES and the RHS of VDEFs. */
|
| 2198 |
|
|
cprop_into_stmt (stmt);
|
| 2199 |
|
|
|
| 2200 |
|
|
/* If the statement has been modified with constant replacements,
|
| 2201 |
|
|
fold its RHS before checking for redundant computations. */
|
| 2202 |
|
|
if (gimple_modified_p (stmt))
|
| 2203 |
|
|
{
|
| 2204 |
|
|
tree rhs = NULL;
|
| 2205 |
|
|
|
| 2206 |
|
|
/* Try to fold the statement making sure that STMT is kept
|
| 2207 |
|
|
up to date. */
|
| 2208 |
|
|
if (fold_stmt (&si))
|
| 2209 |
|
|
{
|
| 2210 |
|
|
stmt = gsi_stmt (si);
|
| 2211 |
|
|
gimple_set_modified (stmt, true);
|
| 2212 |
|
|
|
| 2213 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2214 |
|
|
{
|
| 2215 |
|
|
fprintf (dump_file, " Folded to: ");
|
| 2216 |
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
| 2217 |
|
|
}
|
| 2218 |
|
|
}
|
| 2219 |
|
|
|
| 2220 |
|
|
/* We only need to consider cases that can yield a gimple operand. */
|
| 2221 |
|
|
if (gimple_assign_single_p (stmt))
|
| 2222 |
|
|
rhs = gimple_assign_rhs1 (stmt);
|
| 2223 |
|
|
else if (gimple_code (stmt) == GIMPLE_GOTO)
|
| 2224 |
|
|
rhs = gimple_goto_dest (stmt);
|
| 2225 |
|
|
else if (gimple_code (stmt) == GIMPLE_SWITCH)
|
| 2226 |
|
|
/* This should never be an ADDR_EXPR. */
|
| 2227 |
|
|
rhs = gimple_switch_index (stmt);
|
| 2228 |
|
|
|
| 2229 |
|
|
if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
|
| 2230 |
|
|
recompute_tree_invariant_for_addr_expr (rhs);
|
| 2231 |
|
|
|
| 2232 |
|
|
/* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
|
| 2233 |
|
|
even if fold_stmt updated the stmt already and thus cleared
|
| 2234 |
|
|
gimple_modified_p flag on it. */
|
| 2235 |
|
|
modified_p = true;
|
| 2236 |
|
|
}
|
| 2237 |
|
|
|
| 2238 |
|
|
/* Check for redundant computations. Do this optimization only
|
| 2239 |
|
|
for assignments that have no volatile ops and conditionals. */
|
| 2240 |
|
|
may_optimize_p = (!gimple_has_side_effects (stmt)
|
| 2241 |
|
|
&& (is_gimple_assign (stmt)
|
| 2242 |
|
|
|| (is_gimple_call (stmt)
|
| 2243 |
|
|
&& gimple_call_lhs (stmt) != NULL_TREE)
|
| 2244 |
|
|
|| gimple_code (stmt) == GIMPLE_COND
|
| 2245 |
|
|
|| gimple_code (stmt) == GIMPLE_SWITCH));
|
| 2246 |
|
|
|
| 2247 |
|
|
if (may_optimize_p)
|
| 2248 |
|
|
{
|
| 2249 |
|
|
if (gimple_code (stmt) == GIMPLE_CALL)
|
| 2250 |
|
|
{
|
| 2251 |
|
|
/* Resolve __builtin_constant_p. If it hasn't been
|
| 2252 |
|
|
folded to integer_one_node by now, it's fairly
|
| 2253 |
|
|
certain that the value simply isn't constant. */
|
| 2254 |
|
|
tree callee = gimple_call_fndecl (stmt);
|
| 2255 |
|
|
if (callee
|
| 2256 |
|
|
&& DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
|
| 2257 |
|
|
&& DECL_FUNCTION_CODE (callee) == BUILT_IN_CONSTANT_P)
|
| 2258 |
|
|
{
|
| 2259 |
|
|
propagate_tree_value_into_stmt (&si, integer_zero_node);
|
| 2260 |
|
|
stmt = gsi_stmt (si);
|
| 2261 |
|
|
}
|
| 2262 |
|
|
}
|
| 2263 |
|
|
|
| 2264 |
|
|
update_stmt_if_modified (stmt);
|
| 2265 |
|
|
eliminate_redundant_computations (&si);
|
| 2266 |
|
|
stmt = gsi_stmt (si);
|
| 2267 |
|
|
|
| 2268 |
|
|
/* Perform simple redundant store elimination. */
|
| 2269 |
|
|
if (gimple_assign_single_p (stmt)
|
| 2270 |
|
|
&& TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
|
| 2271 |
|
|
{
|
| 2272 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
| 2273 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
| 2274 |
|
|
tree cached_lhs;
|
| 2275 |
|
|
gimple new_stmt;
|
| 2276 |
|
|
if (TREE_CODE (rhs) == SSA_NAME)
|
| 2277 |
|
|
{
|
| 2278 |
|
|
tree tem = SSA_NAME_VALUE (rhs);
|
| 2279 |
|
|
if (tem)
|
| 2280 |
|
|
rhs = tem;
|
| 2281 |
|
|
}
|
| 2282 |
|
|
/* Build a new statement with the RHS and LHS exchanged. */
|
| 2283 |
|
|
if (TREE_CODE (rhs) == SSA_NAME)
|
| 2284 |
|
|
{
|
| 2285 |
|
|
gimple defstmt = SSA_NAME_DEF_STMT (rhs);
|
| 2286 |
|
|
new_stmt = gimple_build_assign (rhs, lhs);
|
| 2287 |
|
|
SSA_NAME_DEF_STMT (rhs) = defstmt;
|
| 2288 |
|
|
}
|
| 2289 |
|
|
else
|
| 2290 |
|
|
new_stmt = gimple_build_assign (rhs, lhs);
|
| 2291 |
|
|
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
|
| 2292 |
|
|
cached_lhs = lookup_avail_expr (new_stmt, false);
|
| 2293 |
|
|
if (cached_lhs
|
| 2294 |
|
|
&& rhs == cached_lhs)
|
| 2295 |
|
|
{
|
| 2296 |
|
|
basic_block bb = gimple_bb (stmt);
|
| 2297 |
|
|
int lp_nr = lookup_stmt_eh_lp (stmt);
|
| 2298 |
|
|
unlink_stmt_vdef (stmt);
|
| 2299 |
|
|
gsi_remove (&si, true);
|
| 2300 |
|
|
if (lp_nr != 0)
|
| 2301 |
|
|
{
|
| 2302 |
|
|
bitmap_set_bit (need_eh_cleanup, bb->index);
|
| 2303 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2304 |
|
|
fprintf (dump_file, " Flagged to clear EH edges.\n");
|
| 2305 |
|
|
}
|
| 2306 |
|
|
return;
|
| 2307 |
|
|
}
|
| 2308 |
|
|
}
|
| 2309 |
|
|
}
|
| 2310 |
|
|
|
| 2311 |
|
|
/* Record any additional equivalences created by this statement. */
|
| 2312 |
|
|
if (is_gimple_assign (stmt))
|
| 2313 |
|
|
record_equivalences_from_stmt (stmt, may_optimize_p);
|
| 2314 |
|
|
|
| 2315 |
|
|
/* If STMT is a COND_EXPR and it was modified, then we may know
|
| 2316 |
|
|
where it goes. If that is the case, then mark the CFG as altered.
|
| 2317 |
|
|
|
| 2318 |
|
|
This will cause us to later call remove_unreachable_blocks and
|
| 2319 |
|
|
cleanup_tree_cfg when it is safe to do so. It is not safe to
|
| 2320 |
|
|
clean things up here since removal of edges and such can trigger
|
| 2321 |
|
|
the removal of PHI nodes, which in turn can release SSA_NAMEs to
|
| 2322 |
|
|
the manager.
|
| 2323 |
|
|
|
| 2324 |
|
|
That's all fine and good, except that once SSA_NAMEs are released
|
| 2325 |
|
|
to the manager, we must not call create_ssa_name until all references
|
| 2326 |
|
|
to released SSA_NAMEs have been eliminated.
|
| 2327 |
|
|
|
| 2328 |
|
|
All references to the deleted SSA_NAMEs can not be eliminated until
|
| 2329 |
|
|
we remove unreachable blocks.
|
| 2330 |
|
|
|
| 2331 |
|
|
We can not remove unreachable blocks until after we have completed
|
| 2332 |
|
|
any queued jump threading.
|
| 2333 |
|
|
|
| 2334 |
|
|
We can not complete any queued jump threads until we have taken
|
| 2335 |
|
|
appropriate variables out of SSA form. Taking variables out of
|
| 2336 |
|
|
SSA form can call create_ssa_name and thus we lose.
|
| 2337 |
|
|
|
| 2338 |
|
|
Ultimately I suspect we're going to need to change the interface
|
| 2339 |
|
|
into the SSA_NAME manager. */
|
| 2340 |
|
|
if (gimple_modified_p (stmt) || modified_p)
|
| 2341 |
|
|
{
|
| 2342 |
|
|
tree val = NULL;
|
| 2343 |
|
|
|
| 2344 |
|
|
update_stmt_if_modified (stmt);
|
| 2345 |
|
|
|
| 2346 |
|
|
if (gimple_code (stmt) == GIMPLE_COND)
|
| 2347 |
|
|
val = fold_binary_loc (gimple_location (stmt),
|
| 2348 |
|
|
gimple_cond_code (stmt), boolean_type_node,
|
| 2349 |
|
|
gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
|
| 2350 |
|
|
else if (gimple_code (stmt) == GIMPLE_SWITCH)
|
| 2351 |
|
|
val = gimple_switch_index (stmt);
|
| 2352 |
|
|
|
| 2353 |
|
|
if (val && TREE_CODE (val) == INTEGER_CST && find_taken_edge (bb, val))
|
| 2354 |
|
|
cfg_altered = true;
|
| 2355 |
|
|
|
| 2356 |
|
|
/* If we simplified a statement in such a way as to be shown that it
|
| 2357 |
|
|
cannot trap, update the eh information and the cfg to match. */
|
| 2358 |
|
|
if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
|
| 2359 |
|
|
{
|
| 2360 |
|
|
bitmap_set_bit (need_eh_cleanup, bb->index);
|
| 2361 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2362 |
|
|
fprintf (dump_file, " Flagged to clear EH edges.\n");
|
| 2363 |
|
|
}
|
| 2364 |
|
|
}
|
| 2365 |
|
|
}
|
| 2366 |
|
|
|
| 2367 |
|
|
/* Search for an existing instance of STMT in the AVAIL_EXPRS table.
|
| 2368 |
|
|
If found, return its LHS. Otherwise insert STMT in the table and
|
| 2369 |
|
|
return NULL_TREE.
|
| 2370 |
|
|
|
| 2371 |
|
|
Also, when an expression is first inserted in the table, it is also
|
| 2372 |
|
|
is also added to AVAIL_EXPRS_STACK, so that it can be removed when
|
| 2373 |
|
|
we finish processing this block and its children. */
|
| 2374 |
|
|
|
| 2375 |
|
|
static tree
|
| 2376 |
|
|
lookup_avail_expr (gimple stmt, bool insert)
|
| 2377 |
|
|
{
|
| 2378 |
|
|
void **slot;
|
| 2379 |
|
|
tree lhs;
|
| 2380 |
|
|
tree temp;
|
| 2381 |
|
|
struct expr_hash_elt element;
|
| 2382 |
|
|
|
| 2383 |
|
|
/* Get LHS of phi, assignment, or call; else NULL_TREE. */
|
| 2384 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
| 2385 |
|
|
lhs = gimple_phi_result (stmt);
|
| 2386 |
|
|
else
|
| 2387 |
|
|
lhs = gimple_get_lhs (stmt);
|
| 2388 |
|
|
|
| 2389 |
|
|
initialize_hash_element (stmt, lhs, &element);
|
| 2390 |
|
|
|
| 2391 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2392 |
|
|
{
|
| 2393 |
|
|
fprintf (dump_file, "LKUP ");
|
| 2394 |
|
|
print_expr_hash_elt (dump_file, &element);
|
| 2395 |
|
|
}
|
| 2396 |
|
|
|
| 2397 |
|
|
/* Don't bother remembering constant assignments and copy operations.
|
| 2398 |
|
|
Constants and copy operations are handled by the constant/copy propagator
|
| 2399 |
|
|
in optimize_stmt. */
|
| 2400 |
|
|
if (element.expr.kind == EXPR_SINGLE
|
| 2401 |
|
|
&& (TREE_CODE (element.expr.ops.single.rhs) == SSA_NAME
|
| 2402 |
|
|
|| is_gimple_min_invariant (element.expr.ops.single.rhs)))
|
| 2403 |
|
|
return NULL_TREE;
|
| 2404 |
|
|
|
| 2405 |
|
|
/* Finally try to find the expression in the main expression hash table. */
|
| 2406 |
|
|
slot = htab_find_slot_with_hash (avail_exprs, &element, element.hash,
|
| 2407 |
|
|
(insert ? INSERT : NO_INSERT));
|
| 2408 |
|
|
if (slot == NULL)
|
| 2409 |
|
|
return NULL_TREE;
|
| 2410 |
|
|
|
| 2411 |
|
|
if (*slot == NULL)
|
| 2412 |
|
|
{
|
| 2413 |
|
|
struct expr_hash_elt *element2 = XNEW (struct expr_hash_elt);
|
| 2414 |
|
|
*element2 = element;
|
| 2415 |
|
|
element2->stamp = element2;
|
| 2416 |
|
|
*slot = (void *) element2;
|
| 2417 |
|
|
|
| 2418 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2419 |
|
|
{
|
| 2420 |
|
|
fprintf (dump_file, "2>>> ");
|
| 2421 |
|
|
print_expr_hash_elt (dump_file, element2);
|
| 2422 |
|
|
}
|
| 2423 |
|
|
|
| 2424 |
|
|
VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, element2);
|
| 2425 |
|
|
return NULL_TREE;
|
| 2426 |
|
|
}
|
| 2427 |
|
|
|
| 2428 |
|
|
/* Extract the LHS of the assignment so that it can be used as the current
|
| 2429 |
|
|
definition of another variable. */
|
| 2430 |
|
|
lhs = ((struct expr_hash_elt *)*slot)->lhs;
|
| 2431 |
|
|
|
| 2432 |
|
|
/* See if the LHS appears in the CONST_AND_COPIES table. If it does, then
|
| 2433 |
|
|
use the value from the const_and_copies table. */
|
| 2434 |
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
| 2435 |
|
|
{
|
| 2436 |
|
|
temp = SSA_NAME_VALUE (lhs);
|
| 2437 |
|
|
if (temp)
|
| 2438 |
|
|
lhs = temp;
|
| 2439 |
|
|
}
|
| 2440 |
|
|
|
| 2441 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2442 |
|
|
{
|
| 2443 |
|
|
fprintf (dump_file, "FIND: ");
|
| 2444 |
|
|
print_generic_expr (dump_file, lhs, 0);
|
| 2445 |
|
|
fprintf (dump_file, "\n");
|
| 2446 |
|
|
}
|
| 2447 |
|
|
|
| 2448 |
|
|
return lhs;
|
| 2449 |
|
|
}
|
| 2450 |
|
|
|
| 2451 |
|
|
/* Hashing and equality functions for AVAIL_EXPRS. We compute a value number
|
| 2452 |
|
|
for expressions using the code of the expression and the SSA numbers of
|
| 2453 |
|
|
its operands. */
|
| 2454 |
|
|
|
| 2455 |
|
|
static hashval_t
|
| 2456 |
|
|
avail_expr_hash (const void *p)
|
| 2457 |
|
|
{
|
| 2458 |
|
|
gimple stmt = ((const struct expr_hash_elt *)p)->stmt;
|
| 2459 |
|
|
const struct hashable_expr *expr = &((const struct expr_hash_elt *)p)->expr;
|
| 2460 |
|
|
tree vuse;
|
| 2461 |
|
|
hashval_t val = 0;
|
| 2462 |
|
|
|
| 2463 |
|
|
val = iterative_hash_hashable_expr (expr, val);
|
| 2464 |
|
|
|
| 2465 |
|
|
/* If the hash table entry is not associated with a statement, then we
|
| 2466 |
|
|
can just hash the expression and not worry about virtual operands
|
| 2467 |
|
|
and such. */
|
| 2468 |
|
|
if (!stmt)
|
| 2469 |
|
|
return val;
|
| 2470 |
|
|
|
| 2471 |
|
|
/* Add the SSA version numbers of the vuse operand. This is important
|
| 2472 |
|
|
because compound variables like arrays are not renamed in the
|
| 2473 |
|
|
operands. Rather, the rename is done on the virtual variable
|
| 2474 |
|
|
representing all the elements of the array. */
|
| 2475 |
|
|
if ((vuse = gimple_vuse (stmt)))
|
| 2476 |
|
|
val = iterative_hash_expr (vuse, val);
|
| 2477 |
|
|
|
| 2478 |
|
|
return val;
|
| 2479 |
|
|
}
|
| 2480 |
|
|
|
| 2481 |
|
|
static hashval_t
|
| 2482 |
|
|
real_avail_expr_hash (const void *p)
|
| 2483 |
|
|
{
|
| 2484 |
|
|
return ((const struct expr_hash_elt *)p)->hash;
|
| 2485 |
|
|
}
|
| 2486 |
|
|
|
| 2487 |
|
|
static int
|
| 2488 |
|
|
avail_expr_eq (const void *p1, const void *p2)
|
| 2489 |
|
|
{
|
| 2490 |
|
|
gimple stmt1 = ((const struct expr_hash_elt *)p1)->stmt;
|
| 2491 |
|
|
const struct hashable_expr *expr1 = &((const struct expr_hash_elt *)p1)->expr;
|
| 2492 |
|
|
const struct expr_hash_elt *stamp1 = ((const struct expr_hash_elt *)p1)->stamp;
|
| 2493 |
|
|
gimple stmt2 = ((const struct expr_hash_elt *)p2)->stmt;
|
| 2494 |
|
|
const struct hashable_expr *expr2 = &((const struct expr_hash_elt *)p2)->expr;
|
| 2495 |
|
|
const struct expr_hash_elt *stamp2 = ((const struct expr_hash_elt *)p2)->stamp;
|
| 2496 |
|
|
|
| 2497 |
|
|
/* This case should apply only when removing entries from the table. */
|
| 2498 |
|
|
if (stamp1 == stamp2)
|
| 2499 |
|
|
return true;
|
| 2500 |
|
|
|
| 2501 |
|
|
/* FIXME tuples:
|
| 2502 |
|
|
We add stmts to a hash table and them modify them. To detect the case
|
| 2503 |
|
|
that we modify a stmt and then search for it, we assume that the hash
|
| 2504 |
|
|
is always modified by that change.
|
| 2505 |
|
|
We have to fully check why this doesn't happen on trunk or rewrite
|
| 2506 |
|
|
this in a more reliable (and easier to understand) way. */
|
| 2507 |
|
|
if (((const struct expr_hash_elt *)p1)->hash
|
| 2508 |
|
|
!= ((const struct expr_hash_elt *)p2)->hash)
|
| 2509 |
|
|
return false;
|
| 2510 |
|
|
|
| 2511 |
|
|
/* In case of a collision, both RHS have to be identical and have the
|
| 2512 |
|
|
same VUSE operands. */
|
| 2513 |
|
|
if (hashable_expr_equal_p (expr1, expr2)
|
| 2514 |
|
|
&& types_compatible_p (expr1->type, expr2->type))
|
| 2515 |
|
|
{
|
| 2516 |
|
|
/* Note that STMT1 and/or STMT2 may be NULL. */
|
| 2517 |
|
|
return ((stmt1 ? gimple_vuse (stmt1) : NULL_TREE)
|
| 2518 |
|
|
== (stmt2 ? gimple_vuse (stmt2) : NULL_TREE));
|
| 2519 |
|
|
}
|
| 2520 |
|
|
|
| 2521 |
|
|
return false;
|
| 2522 |
|
|
}
|
| 2523 |
|
|
|
| 2524 |
|
|
/* PHI-ONLY copy and constant propagation. This pass is meant to clean
|
| 2525 |
|
|
up degenerate PHIs created by or exposed by jump threading. */
|
| 2526 |
|
|
|
| 2527 |
|
|
/* Given PHI, return its RHS if the PHI is a degenerate, otherwise return
|
| 2528 |
|
|
NULL. */
|
| 2529 |
|
|
|
| 2530 |
|
|
tree
|
| 2531 |
|
|
degenerate_phi_result (gimple phi)
|
| 2532 |
|
|
{
|
| 2533 |
|
|
tree lhs = gimple_phi_result (phi);
|
| 2534 |
|
|
tree val = NULL;
|
| 2535 |
|
|
size_t i;
|
| 2536 |
|
|
|
| 2537 |
|
|
/* Ignoring arguments which are the same as LHS, if all the remaining
|
| 2538 |
|
|
arguments are the same, then the PHI is a degenerate and has the
|
| 2539 |
|
|
value of that common argument. */
|
| 2540 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
| 2541 |
|
|
{
|
| 2542 |
|
|
tree arg = gimple_phi_arg_def (phi, i);
|
| 2543 |
|
|
|
| 2544 |
|
|
if (arg == lhs)
|
| 2545 |
|
|
continue;
|
| 2546 |
|
|
else if (!arg)
|
| 2547 |
|
|
break;
|
| 2548 |
|
|
else if (!val)
|
| 2549 |
|
|
val = arg;
|
| 2550 |
|
|
else if (arg == val)
|
| 2551 |
|
|
continue;
|
| 2552 |
|
|
/* We bring in some of operand_equal_p not only to speed things
|
| 2553 |
|
|
up, but also to avoid crashing when dereferencing the type of
|
| 2554 |
|
|
a released SSA name. */
|
| 2555 |
|
|
else if (TREE_CODE (val) != TREE_CODE (arg)
|
| 2556 |
|
|
|| TREE_CODE (val) == SSA_NAME
|
| 2557 |
|
|
|| !operand_equal_p (arg, val, 0))
|
| 2558 |
|
|
break;
|
| 2559 |
|
|
}
|
| 2560 |
|
|
return (i == gimple_phi_num_args (phi) ? val : NULL);
|
| 2561 |
|
|
}
|
| 2562 |
|
|
|
| 2563 |
|
|
/* Given a statement STMT, which is either a PHI node or an assignment,
|
| 2564 |
|
|
remove it from the IL. */
|
| 2565 |
|
|
|
| 2566 |
|
|
static void
|
| 2567 |
|
|
remove_stmt_or_phi (gimple stmt)
|
| 2568 |
|
|
{
|
| 2569 |
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
|
| 2570 |
|
|
|
| 2571 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
| 2572 |
|
|
remove_phi_node (&gsi, true);
|
| 2573 |
|
|
else
|
| 2574 |
|
|
{
|
| 2575 |
|
|
gsi_remove (&gsi, true);
|
| 2576 |
|
|
release_defs (stmt);
|
| 2577 |
|
|
}
|
| 2578 |
|
|
}
|
| 2579 |
|
|
|
| 2580 |
|
|
/* Given a statement STMT, which is either a PHI node or an assignment,
|
| 2581 |
|
|
return the "rhs" of the node, in the case of a non-degenerate
|
| 2582 |
|
|
phi, NULL is returned. */
|
| 2583 |
|
|
|
| 2584 |
|
|
static tree
|
| 2585 |
|
|
get_rhs_or_phi_arg (gimple stmt)
|
| 2586 |
|
|
{
|
| 2587 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
| 2588 |
|
|
return degenerate_phi_result (stmt);
|
| 2589 |
|
|
else if (gimple_assign_single_p (stmt))
|
| 2590 |
|
|
return gimple_assign_rhs1 (stmt);
|
| 2591 |
|
|
else
|
| 2592 |
|
|
gcc_unreachable ();
|
| 2593 |
|
|
}
|
| 2594 |
|
|
|
| 2595 |
|
|
|
| 2596 |
|
|
/* Given a statement STMT, which is either a PHI node or an assignment,
|
| 2597 |
|
|
return the "lhs" of the node. */
|
| 2598 |
|
|
|
| 2599 |
|
|
static tree
|
| 2600 |
|
|
get_lhs_or_phi_result (gimple stmt)
|
| 2601 |
|
|
{
|
| 2602 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
| 2603 |
|
|
return gimple_phi_result (stmt);
|
| 2604 |
|
|
else if (is_gimple_assign (stmt))
|
| 2605 |
|
|
return gimple_assign_lhs (stmt);
|
| 2606 |
|
|
else
|
| 2607 |
|
|
gcc_unreachable ();
|
| 2608 |
|
|
}
|
| 2609 |
|
|
|
| 2610 |
|
|
/* Propagate RHS into all uses of LHS (when possible).
|
| 2611 |
|
|
|
| 2612 |
|
|
RHS and LHS are derived from STMT, which is passed in solely so
|
| 2613 |
|
|
that we can remove it if propagation is successful.
|
| 2614 |
|
|
|
| 2615 |
|
|
When propagating into a PHI node or into a statement which turns
|
| 2616 |
|
|
into a trivial copy or constant initialization, set the
|
| 2617 |
|
|
appropriate bit in INTERESTING_NAMEs so that we will visit those
|
| 2618 |
|
|
nodes as well in an effort to pick up secondary optimization
|
| 2619 |
|
|
opportunities. */
|
| 2620 |
|
|
|
| 2621 |
|
|
static void
|
| 2622 |
|
|
propagate_rhs_into_lhs (gimple stmt, tree lhs, tree rhs, bitmap interesting_names)
|
| 2623 |
|
|
{
|
| 2624 |
|
|
/* First verify that propagation is valid and isn't going to move a
|
| 2625 |
|
|
loop variant variable outside its loop. */
|
| 2626 |
|
|
if (! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
|
| 2627 |
|
|
&& (TREE_CODE (rhs) != SSA_NAME
|
| 2628 |
|
|
|| ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs))
|
| 2629 |
|
|
&& may_propagate_copy (lhs, rhs)
|
| 2630 |
|
|
&& loop_depth_of_name (lhs) >= loop_depth_of_name (rhs))
|
| 2631 |
|
|
{
|
| 2632 |
|
|
use_operand_p use_p;
|
| 2633 |
|
|
imm_use_iterator iter;
|
| 2634 |
|
|
gimple use_stmt;
|
| 2635 |
|
|
bool all = true;
|
| 2636 |
|
|
|
| 2637 |
|
|
/* Dump details. */
|
| 2638 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2639 |
|
|
{
|
| 2640 |
|
|
fprintf (dump_file, " Replacing '");
|
| 2641 |
|
|
print_generic_expr (dump_file, lhs, dump_flags);
|
| 2642 |
|
|
fprintf (dump_file, "' with %s '",
|
| 2643 |
|
|
(TREE_CODE (rhs) != SSA_NAME ? "constant" : "variable"));
|
| 2644 |
|
|
print_generic_expr (dump_file, rhs, dump_flags);
|
| 2645 |
|
|
fprintf (dump_file, "'\n");
|
| 2646 |
|
|
}
|
| 2647 |
|
|
|
| 2648 |
|
|
/* Walk over every use of LHS and try to replace the use with RHS.
|
| 2649 |
|
|
At this point the only reason why such a propagation would not
|
| 2650 |
|
|
be successful would be if the use occurs in an ASM_EXPR. */
|
| 2651 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
|
| 2652 |
|
|
{
|
| 2653 |
|
|
/* Leave debug stmts alone. If we succeed in propagating
|
| 2654 |
|
|
all non-debug uses, we'll drop the DEF, and propagation
|
| 2655 |
|
|
into debug stmts will occur then. */
|
| 2656 |
|
|
if (gimple_debug_bind_p (use_stmt))
|
| 2657 |
|
|
continue;
|
| 2658 |
|
|
|
| 2659 |
|
|
/* It's not always safe to propagate into an ASM_EXPR. */
|
| 2660 |
|
|
if (gimple_code (use_stmt) == GIMPLE_ASM
|
| 2661 |
|
|
&& ! may_propagate_copy_into_asm (lhs))
|
| 2662 |
|
|
{
|
| 2663 |
|
|
all = false;
|
| 2664 |
|
|
continue;
|
| 2665 |
|
|
}
|
| 2666 |
|
|
|
| 2667 |
|
|
/* It's not ok to propagate into the definition stmt of RHS.
|
| 2668 |
|
|
<bb 9>:
|
| 2669 |
|
|
# prephitmp.12_36 = PHI <g_67.1_6(9)>
|
| 2670 |
|
|
g_67.1_6 = prephitmp.12_36;
|
| 2671 |
|
|
goto <bb 9>;
|
| 2672 |
|
|
While this is strictly all dead code we do not want to
|
| 2673 |
|
|
deal with this here. */
|
| 2674 |
|
|
if (TREE_CODE (rhs) == SSA_NAME
|
| 2675 |
|
|
&& SSA_NAME_DEF_STMT (rhs) == use_stmt)
|
| 2676 |
|
|
{
|
| 2677 |
|
|
all = false;
|
| 2678 |
|
|
continue;
|
| 2679 |
|
|
}
|
| 2680 |
|
|
|
| 2681 |
|
|
/* Dump details. */
|
| 2682 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2683 |
|
|
{
|
| 2684 |
|
|
fprintf (dump_file, " Original statement:");
|
| 2685 |
|
|
print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
|
| 2686 |
|
|
}
|
| 2687 |
|
|
|
| 2688 |
|
|
/* Propagate the RHS into this use of the LHS. */
|
| 2689 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
|
| 2690 |
|
|
propagate_value (use_p, rhs);
|
| 2691 |
|
|
|
| 2692 |
|
|
/* Special cases to avoid useless calls into the folding
|
| 2693 |
|
|
routines, operand scanning, etc.
|
| 2694 |
|
|
|
| 2695 |
|
|
First, propagation into a PHI may cause the PHI to become
|
| 2696 |
|
|
a degenerate, so mark the PHI as interesting. No other
|
| 2697 |
|
|
actions are necessary.
|
| 2698 |
|
|
|
| 2699 |
|
|
Second, if we're propagating a virtual operand and the
|
| 2700 |
|
|
propagation does not change the underlying _DECL node for
|
| 2701 |
|
|
the virtual operand, then no further actions are necessary. */
|
| 2702 |
|
|
if (gimple_code (use_stmt) == GIMPLE_PHI
|
| 2703 |
|
|
|| (! is_gimple_reg (lhs)
|
| 2704 |
|
|
&& TREE_CODE (rhs) == SSA_NAME
|
| 2705 |
|
|
&& SSA_NAME_VAR (lhs) == SSA_NAME_VAR (rhs)))
|
| 2706 |
|
|
{
|
| 2707 |
|
|
/* Dump details. */
|
| 2708 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2709 |
|
|
{
|
| 2710 |
|
|
fprintf (dump_file, " Updated statement:");
|
| 2711 |
|
|
print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
|
| 2712 |
|
|
}
|
| 2713 |
|
|
|
| 2714 |
|
|
/* Propagation into a PHI may expose new degenerate PHIs,
|
| 2715 |
|
|
so mark the result of the PHI as interesting. */
|
| 2716 |
|
|
if (gimple_code (use_stmt) == GIMPLE_PHI)
|
| 2717 |
|
|
{
|
| 2718 |
|
|
tree result = get_lhs_or_phi_result (use_stmt);
|
| 2719 |
|
|
bitmap_set_bit (interesting_names, SSA_NAME_VERSION (result));
|
| 2720 |
|
|
}
|
| 2721 |
|
|
|
| 2722 |
|
|
continue;
|
| 2723 |
|
|
}
|
| 2724 |
|
|
|
| 2725 |
|
|
/* From this point onward we are propagating into a
|
| 2726 |
|
|
real statement. Folding may (or may not) be possible,
|
| 2727 |
|
|
we may expose new operands, expose dead EH edges,
|
| 2728 |
|
|
etc. */
|
| 2729 |
|
|
/* NOTE tuples. In the tuples world, fold_stmt_inplace
|
| 2730 |
|
|
cannot fold a call that simplifies to a constant,
|
| 2731 |
|
|
because the GIMPLE_CALL must be replaced by a
|
| 2732 |
|
|
GIMPLE_ASSIGN, and there is no way to effect such a
|
| 2733 |
|
|
transformation in-place. We might want to consider
|
| 2734 |
|
|
using the more general fold_stmt here. */
|
| 2735 |
|
|
{
|
| 2736 |
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
|
| 2737 |
|
|
fold_stmt_inplace (&gsi);
|
| 2738 |
|
|
}
|
| 2739 |
|
|
|
| 2740 |
|
|
/* Sometimes propagation can expose new operands to the
|
| 2741 |
|
|
renamer. */
|
| 2742 |
|
|
update_stmt (use_stmt);
|
| 2743 |
|
|
|
| 2744 |
|
|
/* Dump details. */
|
| 2745 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2746 |
|
|
{
|
| 2747 |
|
|
fprintf (dump_file, " Updated statement:");
|
| 2748 |
|
|
print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
|
| 2749 |
|
|
}
|
| 2750 |
|
|
|
| 2751 |
|
|
/* If we replaced a variable index with a constant, then
|
| 2752 |
|
|
we would need to update the invariant flag for ADDR_EXPRs. */
|
| 2753 |
|
|
if (gimple_assign_single_p (use_stmt)
|
| 2754 |
|
|
&& TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ADDR_EXPR)
|
| 2755 |
|
|
recompute_tree_invariant_for_addr_expr
|
| 2756 |
|
|
(gimple_assign_rhs1 (use_stmt));
|
| 2757 |
|
|
|
| 2758 |
|
|
/* If we cleaned up EH information from the statement,
|
| 2759 |
|
|
mark its containing block as needing EH cleanups. */
|
| 2760 |
|
|
if (maybe_clean_or_replace_eh_stmt (use_stmt, use_stmt))
|
| 2761 |
|
|
{
|
| 2762 |
|
|
bitmap_set_bit (need_eh_cleanup, gimple_bb (use_stmt)->index);
|
| 2763 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2764 |
|
|
fprintf (dump_file, " Flagged to clear EH edges.\n");
|
| 2765 |
|
|
}
|
| 2766 |
|
|
|
| 2767 |
|
|
/* Propagation may expose new trivial copy/constant propagation
|
| 2768 |
|
|
opportunities. */
|
| 2769 |
|
|
if (gimple_assign_single_p (use_stmt)
|
| 2770 |
|
|
&& TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
|
| 2771 |
|
|
&& (TREE_CODE (gimple_assign_rhs1 (use_stmt)) == SSA_NAME
|
| 2772 |
|
|
|| is_gimple_min_invariant (gimple_assign_rhs1 (use_stmt))))
|
| 2773 |
|
|
{
|
| 2774 |
|
|
tree result = get_lhs_or_phi_result (use_stmt);
|
| 2775 |
|
|
bitmap_set_bit (interesting_names, SSA_NAME_VERSION (result));
|
| 2776 |
|
|
}
|
| 2777 |
|
|
|
| 2778 |
|
|
/* Propagation into these nodes may make certain edges in
|
| 2779 |
|
|
the CFG unexecutable. We want to identify them as PHI nodes
|
| 2780 |
|
|
at the destination of those unexecutable edges may become
|
| 2781 |
|
|
degenerates. */
|
| 2782 |
|
|
else if (gimple_code (use_stmt) == GIMPLE_COND
|
| 2783 |
|
|
|| gimple_code (use_stmt) == GIMPLE_SWITCH
|
| 2784 |
|
|
|| gimple_code (use_stmt) == GIMPLE_GOTO)
|
| 2785 |
|
|
{
|
| 2786 |
|
|
tree val;
|
| 2787 |
|
|
|
| 2788 |
|
|
if (gimple_code (use_stmt) == GIMPLE_COND)
|
| 2789 |
|
|
val = fold_binary_loc (gimple_location (use_stmt),
|
| 2790 |
|
|
gimple_cond_code (use_stmt),
|
| 2791 |
|
|
boolean_type_node,
|
| 2792 |
|
|
gimple_cond_lhs (use_stmt),
|
| 2793 |
|
|
gimple_cond_rhs (use_stmt));
|
| 2794 |
|
|
else if (gimple_code (use_stmt) == GIMPLE_SWITCH)
|
| 2795 |
|
|
val = gimple_switch_index (use_stmt);
|
| 2796 |
|
|
else
|
| 2797 |
|
|
val = gimple_goto_dest (use_stmt);
|
| 2798 |
|
|
|
| 2799 |
|
|
if (val && is_gimple_min_invariant (val))
|
| 2800 |
|
|
{
|
| 2801 |
|
|
basic_block bb = gimple_bb (use_stmt);
|
| 2802 |
|
|
edge te = find_taken_edge (bb, val);
|
| 2803 |
|
|
edge_iterator ei;
|
| 2804 |
|
|
edge e;
|
| 2805 |
|
|
gimple_stmt_iterator gsi, psi;
|
| 2806 |
|
|
|
| 2807 |
|
|
/* Remove all outgoing edges except TE. */
|
| 2808 |
|
|
for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei));)
|
| 2809 |
|
|
{
|
| 2810 |
|
|
if (e != te)
|
| 2811 |
|
|
{
|
| 2812 |
|
|
/* Mark all the PHI nodes at the destination of
|
| 2813 |
|
|
the unexecutable edge as interesting. */
|
| 2814 |
|
|
for (psi = gsi_start_phis (e->dest);
|
| 2815 |
|
|
!gsi_end_p (psi);
|
| 2816 |
|
|
gsi_next (&psi))
|
| 2817 |
|
|
{
|
| 2818 |
|
|
gimple phi = gsi_stmt (psi);
|
| 2819 |
|
|
|
| 2820 |
|
|
tree result = gimple_phi_result (phi);
|
| 2821 |
|
|
int version = SSA_NAME_VERSION (result);
|
| 2822 |
|
|
|
| 2823 |
|
|
bitmap_set_bit (interesting_names, version);
|
| 2824 |
|
|
}
|
| 2825 |
|
|
|
| 2826 |
|
|
te->probability += e->probability;
|
| 2827 |
|
|
|
| 2828 |
|
|
te->count += e->count;
|
| 2829 |
|
|
remove_edge (e);
|
| 2830 |
|
|
cfg_altered = true;
|
| 2831 |
|
|
}
|
| 2832 |
|
|
else
|
| 2833 |
|
|
ei_next (&ei);
|
| 2834 |
|
|
}
|
| 2835 |
|
|
|
| 2836 |
|
|
gsi = gsi_last_bb (gimple_bb (use_stmt));
|
| 2837 |
|
|
gsi_remove (&gsi, true);
|
| 2838 |
|
|
|
| 2839 |
|
|
/* And fixup the flags on the single remaining edge. */
|
| 2840 |
|
|
te->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
|
| 2841 |
|
|
te->flags &= ~EDGE_ABNORMAL;
|
| 2842 |
|
|
te->flags |= EDGE_FALLTHRU;
|
| 2843 |
|
|
if (te->probability > REG_BR_PROB_BASE)
|
| 2844 |
|
|
te->probability = REG_BR_PROB_BASE;
|
| 2845 |
|
|
}
|
| 2846 |
|
|
}
|
| 2847 |
|
|
}
|
| 2848 |
|
|
|
| 2849 |
|
|
/* Ensure there is nothing else to do. */
|
| 2850 |
|
|
gcc_assert (!all || has_zero_uses (lhs));
|
| 2851 |
|
|
|
| 2852 |
|
|
/* If we were able to propagate away all uses of LHS, then
|
| 2853 |
|
|
we can remove STMT. */
|
| 2854 |
|
|
if (all)
|
| 2855 |
|
|
remove_stmt_or_phi (stmt);
|
| 2856 |
|
|
}
|
| 2857 |
|
|
}
|
| 2858 |
|
|
|
| 2859 |
|
|
/* STMT is either a PHI node (potentially a degenerate PHI node) or
|
| 2860 |
|
|
a statement that is a trivial copy or constant initialization.
|
| 2861 |
|
|
|
| 2862 |
|
|
Attempt to eliminate T by propagating its RHS into all uses of
|
| 2863 |
|
|
its LHS. This may in turn set new bits in INTERESTING_NAMES
|
| 2864 |
|
|
for nodes we want to revisit later.
|
| 2865 |
|
|
|
| 2866 |
|
|
All exit paths should clear INTERESTING_NAMES for the result
|
| 2867 |
|
|
of STMT. */
|
| 2868 |
|
|
|
| 2869 |
|
|
static void
|
| 2870 |
|
|
eliminate_const_or_copy (gimple stmt, bitmap interesting_names)
|
| 2871 |
|
|
{
|
| 2872 |
|
|
tree lhs = get_lhs_or_phi_result (stmt);
|
| 2873 |
|
|
tree rhs;
|
| 2874 |
|
|
int version = SSA_NAME_VERSION (lhs);
|
| 2875 |
|
|
|
| 2876 |
|
|
/* If the LHS of this statement or PHI has no uses, then we can
|
| 2877 |
|
|
just eliminate it. This can occur if, for example, the PHI
|
| 2878 |
|
|
was created by block duplication due to threading and its only
|
| 2879 |
|
|
use was in the conditional at the end of the block which was
|
| 2880 |
|
|
deleted. */
|
| 2881 |
|
|
if (has_zero_uses (lhs))
|
| 2882 |
|
|
{
|
| 2883 |
|
|
bitmap_clear_bit (interesting_names, version);
|
| 2884 |
|
|
remove_stmt_or_phi (stmt);
|
| 2885 |
|
|
return;
|
| 2886 |
|
|
}
|
| 2887 |
|
|
|
| 2888 |
|
|
/* Get the RHS of the assignment or PHI node if the PHI is a
|
| 2889 |
|
|
degenerate. */
|
| 2890 |
|
|
rhs = get_rhs_or_phi_arg (stmt);
|
| 2891 |
|
|
if (!rhs)
|
| 2892 |
|
|
{
|
| 2893 |
|
|
bitmap_clear_bit (interesting_names, version);
|
| 2894 |
|
|
return;
|
| 2895 |
|
|
}
|
| 2896 |
|
|
|
| 2897 |
|
|
propagate_rhs_into_lhs (stmt, lhs, rhs, interesting_names);
|
| 2898 |
|
|
|
| 2899 |
|
|
/* Note that STMT may well have been deleted by now, so do
|
| 2900 |
|
|
not access it, instead use the saved version # to clear
|
| 2901 |
|
|
T's entry in the worklist. */
|
| 2902 |
|
|
bitmap_clear_bit (interesting_names, version);
|
| 2903 |
|
|
}
|
| 2904 |
|
|
|
| 2905 |
|
|
/* The first phase in degenerate PHI elimination.
|
| 2906 |
|
|
|
| 2907 |
|
|
Eliminate the degenerate PHIs in BB, then recurse on the
|
| 2908 |
|
|
dominator children of BB. */
|
| 2909 |
|
|
|
| 2910 |
|
|
static void
|
| 2911 |
|
|
eliminate_degenerate_phis_1 (basic_block bb, bitmap interesting_names)
|
| 2912 |
|
|
{
|
| 2913 |
|
|
gimple_stmt_iterator gsi;
|
| 2914 |
|
|
basic_block son;
|
| 2915 |
|
|
|
| 2916 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 2917 |
|
|
{
|
| 2918 |
|
|
gimple phi = gsi_stmt (gsi);
|
| 2919 |
|
|
|
| 2920 |
|
|
eliminate_const_or_copy (phi, interesting_names);
|
| 2921 |
|
|
}
|
| 2922 |
|
|
|
| 2923 |
|
|
/* Recurse into the dominator children of BB. */
|
| 2924 |
|
|
for (son = first_dom_son (CDI_DOMINATORS, bb);
|
| 2925 |
|
|
son;
|
| 2926 |
|
|
son = next_dom_son (CDI_DOMINATORS, son))
|
| 2927 |
|
|
eliminate_degenerate_phis_1 (son, interesting_names);
|
| 2928 |
|
|
}
|
| 2929 |
|
|
|
| 2930 |
|
|
|
| 2931 |
|
|
/* A very simple pass to eliminate degenerate PHI nodes from the
|
| 2932 |
|
|
IL. This is meant to be fast enough to be able to be run several
|
| 2933 |
|
|
times in the optimization pipeline.
|
| 2934 |
|
|
|
| 2935 |
|
|
Certain optimizations, particularly those which duplicate blocks
|
| 2936 |
|
|
or remove edges from the CFG can create or expose PHIs which are
|
| 2937 |
|
|
trivial copies or constant initializations.
|
| 2938 |
|
|
|
| 2939 |
|
|
While we could pick up these optimizations in DOM or with the
|
| 2940 |
|
|
combination of copy-prop and CCP, those solutions are far too
|
| 2941 |
|
|
heavy-weight for our needs.
|
| 2942 |
|
|
|
| 2943 |
|
|
This implementation has two phases so that we can efficiently
|
| 2944 |
|
|
eliminate the first order degenerate PHIs and second order
|
| 2945 |
|
|
degenerate PHIs.
|
| 2946 |
|
|
|
| 2947 |
|
|
The first phase performs a dominator walk to identify and eliminate
|
| 2948 |
|
|
the vast majority of the degenerate PHIs. When a degenerate PHI
|
| 2949 |
|
|
is identified and eliminated any affected statements or PHIs
|
| 2950 |
|
|
are put on a worklist.
|
| 2951 |
|
|
|
| 2952 |
|
|
The second phase eliminates degenerate PHIs and trivial copies
|
| 2953 |
|
|
or constant initializations using the worklist. This is how we
|
| 2954 |
|
|
pick up the secondary optimization opportunities with minimal
|
| 2955 |
|
|
cost. */
|
| 2956 |
|
|
|
| 2957 |
|
|
static unsigned int
|
| 2958 |
|
|
eliminate_degenerate_phis (void)
|
| 2959 |
|
|
{
|
| 2960 |
|
|
bitmap interesting_names;
|
| 2961 |
|
|
bitmap interesting_names1;
|
| 2962 |
|
|
|
| 2963 |
|
|
/* Bitmap of blocks which need EH information updated. We can not
|
| 2964 |
|
|
update it on-the-fly as doing so invalidates the dominator tree. */
|
| 2965 |
|
|
need_eh_cleanup = BITMAP_ALLOC (NULL);
|
| 2966 |
|
|
|
| 2967 |
|
|
/* INTERESTING_NAMES is effectively our worklist, indexed by
|
| 2968 |
|
|
SSA_NAME_VERSION.
|
| 2969 |
|
|
|
| 2970 |
|
|
A set bit indicates that the statement or PHI node which
|
| 2971 |
|
|
defines the SSA_NAME should be (re)examined to determine if
|
| 2972 |
|
|
it has become a degenerate PHI or trivial const/copy propagation
|
| 2973 |
|
|
opportunity.
|
| 2974 |
|
|
|
| 2975 |
|
|
Experiments have show we generally get better compilation
|
| 2976 |
|
|
time behavior with bitmaps rather than sbitmaps. */
|
| 2977 |
|
|
interesting_names = BITMAP_ALLOC (NULL);
|
| 2978 |
|
|
interesting_names1 = BITMAP_ALLOC (NULL);
|
| 2979 |
|
|
|
| 2980 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
| 2981 |
|
|
cfg_altered = false;
|
| 2982 |
|
|
|
| 2983 |
|
|
/* First phase. Eliminate degenerate PHIs via a dominator
|
| 2984 |
|
|
walk of the CFG.
|
| 2985 |
|
|
|
| 2986 |
|
|
Experiments have indicated that we generally get better
|
| 2987 |
|
|
compile-time behavior by visiting blocks in the first
|
| 2988 |
|
|
phase in dominator order. Presumably this is because walking
|
| 2989 |
|
|
in dominator order leaves fewer PHIs for later examination
|
| 2990 |
|
|
by the worklist phase. */
|
| 2991 |
|
|
eliminate_degenerate_phis_1 (ENTRY_BLOCK_PTR, interesting_names);
|
| 2992 |
|
|
|
| 2993 |
|
|
/* Second phase. Eliminate second order degenerate PHIs as well
|
| 2994 |
|
|
as trivial copies or constant initializations identified by
|
| 2995 |
|
|
the first phase or this phase. Basically we keep iterating
|
| 2996 |
|
|
until our set of INTERESTING_NAMEs is empty. */
|
| 2997 |
|
|
while (!bitmap_empty_p (interesting_names))
|
| 2998 |
|
|
{
|
| 2999 |
|
|
unsigned int i;
|
| 3000 |
|
|
bitmap_iterator bi;
|
| 3001 |
|
|
|
| 3002 |
|
|
/* EXECUTE_IF_SET_IN_BITMAP does not like its bitmap
|
| 3003 |
|
|
changed during the loop. Copy it to another bitmap and
|
| 3004 |
|
|
use that. */
|
| 3005 |
|
|
bitmap_copy (interesting_names1, interesting_names);
|
| 3006 |
|
|
|
| 3007 |
|
|
EXECUTE_IF_SET_IN_BITMAP (interesting_names1, 0, i, bi)
|
| 3008 |
|
|
{
|
| 3009 |
|
|
tree name = ssa_name (i);
|
| 3010 |
|
|
|
| 3011 |
|
|
/* Ignore SSA_NAMEs that have been released because
|
| 3012 |
|
|
their defining statement was deleted (unreachable). */
|
| 3013 |
|
|
if (name)
|
| 3014 |
|
|
eliminate_const_or_copy (SSA_NAME_DEF_STMT (ssa_name (i)),
|
| 3015 |
|
|
interesting_names);
|
| 3016 |
|
|
}
|
| 3017 |
|
|
}
|
| 3018 |
|
|
|
| 3019 |
|
|
if (cfg_altered)
|
| 3020 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
| 3021 |
|
|
|
| 3022 |
|
|
/* Propagation of const and copies may make some EH edges dead. Purge
|
| 3023 |
|
|
such edges from the CFG as needed. */
|
| 3024 |
|
|
if (!bitmap_empty_p (need_eh_cleanup))
|
| 3025 |
|
|
{
|
| 3026 |
|
|
gimple_purge_all_dead_eh_edges (need_eh_cleanup);
|
| 3027 |
|
|
BITMAP_FREE (need_eh_cleanup);
|
| 3028 |
|
|
}
|
| 3029 |
|
|
|
| 3030 |
|
|
BITMAP_FREE (interesting_names);
|
| 3031 |
|
|
BITMAP_FREE (interesting_names1);
|
| 3032 |
|
|
return 0;
|
| 3033 |
|
|
}
|
| 3034 |
|
|
|
| 3035 |
|
|
struct gimple_opt_pass pass_phi_only_cprop =
|
| 3036 |
|
|
{
|
| 3037 |
|
|
{
|
| 3038 |
|
|
GIMPLE_PASS,
|
| 3039 |
|
|
"phicprop", /* name */
|
| 3040 |
|
|
gate_dominator, /* gate */
|
| 3041 |
|
|
eliminate_degenerate_phis, /* execute */
|
| 3042 |
|
|
NULL, /* sub */
|
| 3043 |
|
|
NULL, /* next */
|
| 3044 |
|
|
0, /* static_pass_number */
|
| 3045 |
|
|
TV_TREE_PHI_CPROP, /* tv_id */
|
| 3046 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
| 3047 |
|
|
0, /* properties_provided */
|
| 3048 |
|
|
0, /* properties_destroyed */
|
| 3049 |
|
|
0, /* todo_flags_start */
|
| 3050 |
|
|
TODO_cleanup_cfg
|
| 3051 |
|
|
| TODO_ggc_collect
|
| 3052 |
|
|
| TODO_verify_ssa
|
| 3053 |
|
|
| TODO_verify_stmts
|
| 3054 |
|
|
| TODO_update_ssa /* todo_flags_finish */
|
| 3055 |
|
|
}
|
| 3056 |
|
|
};
|