| 1 |
684 |
jeremybenn |
/* Forward propagation of expressions for single use variables.
|
| 2 |
|
|
Copyright (C) 2004, 2005, 2007, 2008, 2009, 2010, 2011
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GCC.
|
| 6 |
|
|
|
| 7 |
|
|
GCC is free software; you can redistribute it and/or modify
|
| 8 |
|
|
it under the terms of the GNU General Public License as published by
|
| 9 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
| 10 |
|
|
any later version.
|
| 11 |
|
|
|
| 12 |
|
|
GCC is distributed in the hope that it will be useful,
|
| 13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 15 |
|
|
GNU General Public License for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
#include "config.h"
|
| 22 |
|
|
#include "system.h"
|
| 23 |
|
|
#include "coretypes.h"
|
| 24 |
|
|
#include "tm.h"
|
| 25 |
|
|
#include "tree.h"
|
| 26 |
|
|
#include "tm_p.h"
|
| 27 |
|
|
#include "basic-block.h"
|
| 28 |
|
|
#include "timevar.h"
|
| 29 |
|
|
#include "gimple-pretty-print.h"
|
| 30 |
|
|
#include "tree-flow.h"
|
| 31 |
|
|
#include "tree-pass.h"
|
| 32 |
|
|
#include "tree-dump.h"
|
| 33 |
|
|
#include "langhooks.h"
|
| 34 |
|
|
#include "flags.h"
|
| 35 |
|
|
#include "gimple.h"
|
| 36 |
|
|
#include "expr.h"
|
| 37 |
|
|
|
| 38 |
|
|
/* This pass propagates the RHS of assignment statements into use
|
| 39 |
|
|
sites of the LHS of the assignment. It's basically a specialized
|
| 40 |
|
|
form of tree combination. It is hoped all of this can disappear
|
| 41 |
|
|
when we have a generalized tree combiner.
|
| 42 |
|
|
|
| 43 |
|
|
One class of common cases we handle is forward propagating a single use
|
| 44 |
|
|
variable into a COND_EXPR.
|
| 45 |
|
|
|
| 46 |
|
|
bb0:
|
| 47 |
|
|
x = a COND b;
|
| 48 |
|
|
if (x) goto ... else goto ...
|
| 49 |
|
|
|
| 50 |
|
|
Will be transformed into:
|
| 51 |
|
|
|
| 52 |
|
|
bb0:
|
| 53 |
|
|
if (a COND b) goto ... else goto ...
|
| 54 |
|
|
|
| 55 |
|
|
Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
|
| 56 |
|
|
|
| 57 |
|
|
Or (assuming c1 and c2 are constants):
|
| 58 |
|
|
|
| 59 |
|
|
bb0:
|
| 60 |
|
|
x = a + c1;
|
| 61 |
|
|
if (x EQ/NEQ c2) goto ... else goto ...
|
| 62 |
|
|
|
| 63 |
|
|
Will be transformed into:
|
| 64 |
|
|
|
| 65 |
|
|
bb0:
|
| 66 |
|
|
if (a EQ/NEQ (c2 - c1)) goto ... else goto ...
|
| 67 |
|
|
|
| 68 |
|
|
Similarly for x = a - c1.
|
| 69 |
|
|
|
| 70 |
|
|
Or
|
| 71 |
|
|
|
| 72 |
|
|
bb0:
|
| 73 |
|
|
x = !a
|
| 74 |
|
|
if (x) goto ... else goto ...
|
| 75 |
|
|
|
| 76 |
|
|
Will be transformed into:
|
| 77 |
|
|
|
| 78 |
|
|
bb0:
|
| 79 |
|
|
if (a == 0) goto ... else goto ...
|
| 80 |
|
|
|
| 81 |
|
|
Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
|
| 82 |
|
|
For these cases, we propagate A into all, possibly more than one,
|
| 83 |
|
|
COND_EXPRs that use X.
|
| 84 |
|
|
|
| 85 |
|
|
Or
|
| 86 |
|
|
|
| 87 |
|
|
bb0:
|
| 88 |
|
|
x = (typecast) a
|
| 89 |
|
|
if (x) goto ... else goto ...
|
| 90 |
|
|
|
| 91 |
|
|
Will be transformed into:
|
| 92 |
|
|
|
| 93 |
|
|
bb0:
|
| 94 |
|
|
if (a != 0) goto ... else goto ...
|
| 95 |
|
|
|
| 96 |
|
|
(Assuming a is an integral type and x is a boolean or x is an
|
| 97 |
|
|
integral and a is a boolean.)
|
| 98 |
|
|
|
| 99 |
|
|
Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
|
| 100 |
|
|
For these cases, we propagate A into all, possibly more than one,
|
| 101 |
|
|
COND_EXPRs that use X.
|
| 102 |
|
|
|
| 103 |
|
|
In addition to eliminating the variable and the statement which assigns
|
| 104 |
|
|
a value to the variable, we may be able to later thread the jump without
|
| 105 |
|
|
adding insane complexity in the dominator optimizer.
|
| 106 |
|
|
|
| 107 |
|
|
Also note these transformations can cascade. We handle this by having
|
| 108 |
|
|
a worklist of COND_EXPR statements to examine. As we make a change to
|
| 109 |
|
|
a statement, we put it back on the worklist to examine on the next
|
| 110 |
|
|
iteration of the main loop.
|
| 111 |
|
|
|
| 112 |
|
|
A second class of propagation opportunities arises for ADDR_EXPR
|
| 113 |
|
|
nodes.
|
| 114 |
|
|
|
| 115 |
|
|
ptr = &x->y->z;
|
| 116 |
|
|
res = *ptr;
|
| 117 |
|
|
|
| 118 |
|
|
Will get turned into
|
| 119 |
|
|
|
| 120 |
|
|
res = x->y->z;
|
| 121 |
|
|
|
| 122 |
|
|
Or
|
| 123 |
|
|
ptr = (type1*)&type2var;
|
| 124 |
|
|
res = *ptr
|
| 125 |
|
|
|
| 126 |
|
|
Will get turned into (if type1 and type2 are the same size
|
| 127 |
|
|
and neither have volatile on them):
|
| 128 |
|
|
res = VIEW_CONVERT_EXPR<type1>(type2var)
|
| 129 |
|
|
|
| 130 |
|
|
Or
|
| 131 |
|
|
|
| 132 |
|
|
ptr = &x[0];
|
| 133 |
|
|
ptr2 = ptr + <constant>;
|
| 134 |
|
|
|
| 135 |
|
|
Will get turned into
|
| 136 |
|
|
|
| 137 |
|
|
ptr2 = &x[constant/elementsize];
|
| 138 |
|
|
|
| 139 |
|
|
Or
|
| 140 |
|
|
|
| 141 |
|
|
ptr = &x[0];
|
| 142 |
|
|
offset = index * element_size;
|
| 143 |
|
|
offset_p = (pointer) offset;
|
| 144 |
|
|
ptr2 = ptr + offset_p
|
| 145 |
|
|
|
| 146 |
|
|
Will get turned into:
|
| 147 |
|
|
|
| 148 |
|
|
ptr2 = &x[index];
|
| 149 |
|
|
|
| 150 |
|
|
Or
|
| 151 |
|
|
ssa = (int) decl
|
| 152 |
|
|
res = ssa & 1
|
| 153 |
|
|
|
| 154 |
|
|
Provided that decl has known alignment >= 2, will get turned into
|
| 155 |
|
|
|
| 156 |
|
|
res = 0
|
| 157 |
|
|
|
| 158 |
|
|
We also propagate casts into SWITCH_EXPR and COND_EXPR conditions to
|
| 159 |
|
|
allow us to remove the cast and {NOT_EXPR,NEG_EXPR} into a subsequent
|
| 160 |
|
|
{NOT_EXPR,NEG_EXPR}.
|
| 161 |
|
|
|
| 162 |
|
|
This will (of course) be extended as other needs arise. */
|
| 163 |
|
|
|
| 164 |
|
|
static bool forward_propagate_addr_expr (tree name, tree rhs);
|
| 165 |
|
|
|
| 166 |
|
|
/* Set to true if we delete EH edges during the optimization. */
|
| 167 |
|
|
static bool cfg_changed;
|
| 168 |
|
|
|
| 169 |
|
|
static tree rhs_to_tree (tree type, gimple stmt);
|
| 170 |
|
|
|
| 171 |
|
|
/* Get the next statement we can propagate NAME's value into skipping
|
| 172 |
|
|
trivial copies. Returns the statement that is suitable as a
|
| 173 |
|
|
propagation destination or NULL_TREE if there is no such one.
|
| 174 |
|
|
This only returns destinations in a single-use chain. FINAL_NAME_P
|
| 175 |
|
|
if non-NULL is written to the ssa name that represents the use. */
|
| 176 |
|
|
|
| 177 |
|
|
static gimple
|
| 178 |
|
|
get_prop_dest_stmt (tree name, tree *final_name_p)
|
| 179 |
|
|
{
|
| 180 |
|
|
use_operand_p use;
|
| 181 |
|
|
gimple use_stmt;
|
| 182 |
|
|
|
| 183 |
|
|
do {
|
| 184 |
|
|
/* If name has multiple uses, bail out. */
|
| 185 |
|
|
if (!single_imm_use (name, &use, &use_stmt))
|
| 186 |
|
|
return NULL;
|
| 187 |
|
|
|
| 188 |
|
|
/* If this is not a trivial copy, we found it. */
|
| 189 |
|
|
if (!gimple_assign_ssa_name_copy_p (use_stmt)
|
| 190 |
|
|
|| gimple_assign_rhs1 (use_stmt) != name)
|
| 191 |
|
|
break;
|
| 192 |
|
|
|
| 193 |
|
|
/* Continue searching uses of the copy destination. */
|
| 194 |
|
|
name = gimple_assign_lhs (use_stmt);
|
| 195 |
|
|
} while (1);
|
| 196 |
|
|
|
| 197 |
|
|
if (final_name_p)
|
| 198 |
|
|
*final_name_p = name;
|
| 199 |
|
|
|
| 200 |
|
|
return use_stmt;
|
| 201 |
|
|
}
|
| 202 |
|
|
|
| 203 |
|
|
/* Get the statement we can propagate from into NAME skipping
|
| 204 |
|
|
trivial copies. Returns the statement which defines the
|
| 205 |
|
|
propagation source or NULL_TREE if there is no such one.
|
| 206 |
|
|
If SINGLE_USE_ONLY is set considers only sources which have
|
| 207 |
|
|
a single use chain up to NAME. If SINGLE_USE_P is non-null,
|
| 208 |
|
|
it is set to whether the chain to NAME is a single use chain
|
| 209 |
|
|
or not. SINGLE_USE_P is not written to if SINGLE_USE_ONLY is set. */
|
| 210 |
|
|
|
| 211 |
|
|
static gimple
|
| 212 |
|
|
get_prop_source_stmt (tree name, bool single_use_only, bool *single_use_p)
|
| 213 |
|
|
{
|
| 214 |
|
|
bool single_use = true;
|
| 215 |
|
|
|
| 216 |
|
|
do {
|
| 217 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (name);
|
| 218 |
|
|
|
| 219 |
|
|
if (!has_single_use (name))
|
| 220 |
|
|
{
|
| 221 |
|
|
single_use = false;
|
| 222 |
|
|
if (single_use_only)
|
| 223 |
|
|
return NULL;
|
| 224 |
|
|
}
|
| 225 |
|
|
|
| 226 |
|
|
/* If name is defined by a PHI node or is the default def, bail out. */
|
| 227 |
|
|
if (!is_gimple_assign (def_stmt))
|
| 228 |
|
|
return NULL;
|
| 229 |
|
|
|
| 230 |
|
|
/* If def_stmt is not a simple copy, we possibly found it. */
|
| 231 |
|
|
if (!gimple_assign_ssa_name_copy_p (def_stmt))
|
| 232 |
|
|
{
|
| 233 |
|
|
tree rhs;
|
| 234 |
|
|
|
| 235 |
|
|
if (!single_use_only && single_use_p)
|
| 236 |
|
|
*single_use_p = single_use;
|
| 237 |
|
|
|
| 238 |
|
|
/* We can look through pointer conversions in the search
|
| 239 |
|
|
for a useful stmt for the comparison folding. */
|
| 240 |
|
|
rhs = gimple_assign_rhs1 (def_stmt);
|
| 241 |
|
|
if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
|
| 242 |
|
|
&& TREE_CODE (rhs) == SSA_NAME
|
| 243 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (def_stmt)))
|
| 244 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (rhs)))
|
| 245 |
|
|
name = rhs;
|
| 246 |
|
|
else
|
| 247 |
|
|
return def_stmt;
|
| 248 |
|
|
}
|
| 249 |
|
|
else
|
| 250 |
|
|
{
|
| 251 |
|
|
/* Continue searching the def of the copy source name. */
|
| 252 |
|
|
name = gimple_assign_rhs1 (def_stmt);
|
| 253 |
|
|
}
|
| 254 |
|
|
} while (1);
|
| 255 |
|
|
}
|
| 256 |
|
|
|
| 257 |
|
|
/* Checks if the destination ssa name in DEF_STMT can be used as
|
| 258 |
|
|
propagation source. Returns true if so, otherwise false. */
|
| 259 |
|
|
|
| 260 |
|
|
static bool
|
| 261 |
|
|
can_propagate_from (gimple def_stmt)
|
| 262 |
|
|
{
|
| 263 |
|
|
gcc_assert (is_gimple_assign (def_stmt));
|
| 264 |
|
|
|
| 265 |
|
|
/* If the rhs has side-effects we cannot propagate from it. */
|
| 266 |
|
|
if (gimple_has_volatile_ops (def_stmt))
|
| 267 |
|
|
return false;
|
| 268 |
|
|
|
| 269 |
|
|
/* If the rhs is a load we cannot propagate from it. */
|
| 270 |
|
|
if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) == tcc_reference
|
| 271 |
|
|
|| TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) == tcc_declaration)
|
| 272 |
|
|
return false;
|
| 273 |
|
|
|
| 274 |
|
|
/* Constants can be always propagated. */
|
| 275 |
|
|
if (gimple_assign_single_p (def_stmt)
|
| 276 |
|
|
&& is_gimple_min_invariant (gimple_assign_rhs1 (def_stmt)))
|
| 277 |
|
|
return true;
|
| 278 |
|
|
|
| 279 |
|
|
/* We cannot propagate ssa names that occur in abnormal phi nodes. */
|
| 280 |
|
|
if (stmt_references_abnormal_ssa_name (def_stmt))
|
| 281 |
|
|
return false;
|
| 282 |
|
|
|
| 283 |
|
|
/* If the definition is a conversion of a pointer to a function type,
|
| 284 |
|
|
then we can not apply optimizations as some targets require
|
| 285 |
|
|
function pointers to be canonicalized and in this case this
|
| 286 |
|
|
optimization could eliminate a necessary canonicalization. */
|
| 287 |
|
|
if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
|
| 288 |
|
|
{
|
| 289 |
|
|
tree rhs = gimple_assign_rhs1 (def_stmt);
|
| 290 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (rhs))
|
| 291 |
|
|
&& TREE_CODE (TREE_TYPE (TREE_TYPE (rhs))) == FUNCTION_TYPE)
|
| 292 |
|
|
return false;
|
| 293 |
|
|
}
|
| 294 |
|
|
|
| 295 |
|
|
return true;
|
| 296 |
|
|
}
|
| 297 |
|
|
|
| 298 |
|
|
/* Remove a chain of dead statements starting at the definition of
|
| 299 |
|
|
NAME. The chain is linked via the first operand of the defining statements.
|
| 300 |
|
|
If NAME was replaced in its only use then this function can be used
|
| 301 |
|
|
to clean up dead stmts. The function handles already released SSA
|
| 302 |
|
|
names gracefully.
|
| 303 |
|
|
Returns true if cleanup-cfg has to run. */
|
| 304 |
|
|
|
| 305 |
|
|
static bool
|
| 306 |
|
|
remove_prop_source_from_use (tree name)
|
| 307 |
|
|
{
|
| 308 |
|
|
gimple_stmt_iterator gsi;
|
| 309 |
|
|
gimple stmt;
|
| 310 |
|
|
bool cfg_changed = false;
|
| 311 |
|
|
|
| 312 |
|
|
do {
|
| 313 |
|
|
basic_block bb;
|
| 314 |
|
|
|
| 315 |
|
|
if (SSA_NAME_IN_FREE_LIST (name)
|
| 316 |
|
|
|| SSA_NAME_IS_DEFAULT_DEF (name)
|
| 317 |
|
|
|| !has_zero_uses (name))
|
| 318 |
|
|
return cfg_changed;
|
| 319 |
|
|
|
| 320 |
|
|
stmt = SSA_NAME_DEF_STMT (name);
|
| 321 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI
|
| 322 |
|
|
|| gimple_has_side_effects (stmt))
|
| 323 |
|
|
return cfg_changed;
|
| 324 |
|
|
|
| 325 |
|
|
bb = gimple_bb (stmt);
|
| 326 |
|
|
gsi = gsi_for_stmt (stmt);
|
| 327 |
|
|
unlink_stmt_vdef (stmt);
|
| 328 |
|
|
gsi_remove (&gsi, true);
|
| 329 |
|
|
release_defs (stmt);
|
| 330 |
|
|
cfg_changed |= gimple_purge_dead_eh_edges (bb);
|
| 331 |
|
|
|
| 332 |
|
|
name = is_gimple_assign (stmt) ? gimple_assign_rhs1 (stmt) : NULL_TREE;
|
| 333 |
|
|
} while (name && TREE_CODE (name) == SSA_NAME);
|
| 334 |
|
|
|
| 335 |
|
|
return cfg_changed;
|
| 336 |
|
|
}
|
| 337 |
|
|
|
| 338 |
|
|
/* Return the rhs of a gimple_assign STMT in a form of a single tree,
|
| 339 |
|
|
converted to type TYPE.
|
| 340 |
|
|
|
| 341 |
|
|
This should disappear, but is needed so we can combine expressions and use
|
| 342 |
|
|
the fold() interfaces. Long term, we need to develop folding and combine
|
| 343 |
|
|
routines that deal with gimple exclusively . */
|
| 344 |
|
|
|
| 345 |
|
|
static tree
|
| 346 |
|
|
rhs_to_tree (tree type, gimple stmt)
|
| 347 |
|
|
{
|
| 348 |
|
|
location_t loc = gimple_location (stmt);
|
| 349 |
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
| 350 |
|
|
if (get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS)
|
| 351 |
|
|
return fold_build3_loc (loc, code, type, gimple_assign_rhs1 (stmt),
|
| 352 |
|
|
gimple_assign_rhs2 (stmt),
|
| 353 |
|
|
gimple_assign_rhs3 (stmt));
|
| 354 |
|
|
else if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
|
| 355 |
|
|
return fold_build2_loc (loc, code, type, gimple_assign_rhs1 (stmt),
|
| 356 |
|
|
gimple_assign_rhs2 (stmt));
|
| 357 |
|
|
else if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
|
| 358 |
|
|
return build1 (code, type, gimple_assign_rhs1 (stmt));
|
| 359 |
|
|
else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
|
| 360 |
|
|
return gimple_assign_rhs1 (stmt);
|
| 361 |
|
|
else
|
| 362 |
|
|
gcc_unreachable ();
|
| 363 |
|
|
}
|
| 364 |
|
|
|
| 365 |
|
|
/* Combine OP0 CODE OP1 in the context of a COND_EXPR. Returns
|
| 366 |
|
|
the folded result in a form suitable for COND_EXPR_COND or
|
| 367 |
|
|
NULL_TREE, if there is no suitable simplified form. If
|
| 368 |
|
|
INVARIANT_ONLY is true only gimple_min_invariant results are
|
| 369 |
|
|
considered simplified. */
|
| 370 |
|
|
|
| 371 |
|
|
static tree
|
| 372 |
|
|
combine_cond_expr_cond (gimple stmt, enum tree_code code, tree type,
|
| 373 |
|
|
tree op0, tree op1, bool invariant_only)
|
| 374 |
|
|
{
|
| 375 |
|
|
tree t;
|
| 376 |
|
|
|
| 377 |
|
|
gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison);
|
| 378 |
|
|
|
| 379 |
|
|
fold_defer_overflow_warnings ();
|
| 380 |
|
|
t = fold_binary_loc (gimple_location (stmt), code, type, op0, op1);
|
| 381 |
|
|
if (!t)
|
| 382 |
|
|
{
|
| 383 |
|
|
fold_undefer_overflow_warnings (false, NULL, 0);
|
| 384 |
|
|
return NULL_TREE;
|
| 385 |
|
|
}
|
| 386 |
|
|
|
| 387 |
|
|
/* Require that we got a boolean type out if we put one in. */
|
| 388 |
|
|
gcc_assert (TREE_CODE (TREE_TYPE (t)) == TREE_CODE (type));
|
| 389 |
|
|
|
| 390 |
|
|
/* Canonicalize the combined condition for use in a COND_EXPR. */
|
| 391 |
|
|
t = canonicalize_cond_expr_cond (t);
|
| 392 |
|
|
|
| 393 |
|
|
/* Bail out if we required an invariant but didn't get one. */
|
| 394 |
|
|
if (!t || (invariant_only && !is_gimple_min_invariant (t)))
|
| 395 |
|
|
{
|
| 396 |
|
|
fold_undefer_overflow_warnings (false, NULL, 0);
|
| 397 |
|
|
return NULL_TREE;
|
| 398 |
|
|
}
|
| 399 |
|
|
|
| 400 |
|
|
fold_undefer_overflow_warnings (!gimple_no_warning_p (stmt), stmt, 0);
|
| 401 |
|
|
|
| 402 |
|
|
return t;
|
| 403 |
|
|
}
|
| 404 |
|
|
|
| 405 |
|
|
/* Combine the comparison OP0 CODE OP1 at LOC with the defining statements
|
| 406 |
|
|
of its operand. Return a new comparison tree or NULL_TREE if there
|
| 407 |
|
|
were no simplifying combines. */
|
| 408 |
|
|
|
| 409 |
|
|
static tree
|
| 410 |
|
|
forward_propagate_into_comparison_1 (gimple stmt,
|
| 411 |
|
|
enum tree_code code, tree type,
|
| 412 |
|
|
tree op0, tree op1)
|
| 413 |
|
|
{
|
| 414 |
|
|
tree tmp = NULL_TREE;
|
| 415 |
|
|
tree rhs0 = NULL_TREE, rhs1 = NULL_TREE;
|
| 416 |
|
|
bool single_use0_p = false, single_use1_p = false;
|
| 417 |
|
|
|
| 418 |
|
|
/* For comparisons use the first operand, that is likely to
|
| 419 |
|
|
simplify comparisons against constants. */
|
| 420 |
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
| 421 |
|
|
{
|
| 422 |
|
|
gimple def_stmt = get_prop_source_stmt (op0, false, &single_use0_p);
|
| 423 |
|
|
if (def_stmt && can_propagate_from (def_stmt))
|
| 424 |
|
|
{
|
| 425 |
|
|
rhs0 = rhs_to_tree (TREE_TYPE (op1), def_stmt);
|
| 426 |
|
|
tmp = combine_cond_expr_cond (stmt, code, type,
|
| 427 |
|
|
rhs0, op1, !single_use0_p);
|
| 428 |
|
|
if (tmp)
|
| 429 |
|
|
return tmp;
|
| 430 |
|
|
}
|
| 431 |
|
|
}
|
| 432 |
|
|
|
| 433 |
|
|
/* If that wasn't successful, try the second operand. */
|
| 434 |
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
| 435 |
|
|
{
|
| 436 |
|
|
gimple def_stmt = get_prop_source_stmt (op1, false, &single_use1_p);
|
| 437 |
|
|
if (def_stmt && can_propagate_from (def_stmt))
|
| 438 |
|
|
{
|
| 439 |
|
|
rhs1 = rhs_to_tree (TREE_TYPE (op0), def_stmt);
|
| 440 |
|
|
tmp = combine_cond_expr_cond (stmt, code, type,
|
| 441 |
|
|
op0, rhs1, !single_use1_p);
|
| 442 |
|
|
if (tmp)
|
| 443 |
|
|
return tmp;
|
| 444 |
|
|
}
|
| 445 |
|
|
}
|
| 446 |
|
|
|
| 447 |
|
|
/* If that wasn't successful either, try both operands. */
|
| 448 |
|
|
if (rhs0 != NULL_TREE
|
| 449 |
|
|
&& rhs1 != NULL_TREE)
|
| 450 |
|
|
tmp = combine_cond_expr_cond (stmt, code, type,
|
| 451 |
|
|
rhs0, rhs1,
|
| 452 |
|
|
!(single_use0_p && single_use1_p));
|
| 453 |
|
|
|
| 454 |
|
|
return tmp;
|
| 455 |
|
|
}
|
| 456 |
|
|
|
| 457 |
|
|
/* Propagate from the ssa name definition statements of the assignment
|
| 458 |
|
|
from a comparison at *GSI into the conditional if that simplifies it.
|
| 459 |
|
|
Returns 1 if the stmt was modified and 2 if the CFG needs cleanup,
|
| 460 |
|
|
otherwise returns 0. */
|
| 461 |
|
|
|
| 462 |
|
|
static int
|
| 463 |
|
|
forward_propagate_into_comparison (gimple_stmt_iterator *gsi)
|
| 464 |
|
|
{
|
| 465 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
| 466 |
|
|
tree tmp;
|
| 467 |
|
|
bool cfg_changed = false;
|
| 468 |
|
|
tree type = TREE_TYPE (gimple_assign_lhs (stmt));
|
| 469 |
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
| 470 |
|
|
tree rhs2 = gimple_assign_rhs2 (stmt);
|
| 471 |
|
|
|
| 472 |
|
|
/* Combine the comparison with defining statements. */
|
| 473 |
|
|
tmp = forward_propagate_into_comparison_1 (stmt,
|
| 474 |
|
|
gimple_assign_rhs_code (stmt),
|
| 475 |
|
|
type, rhs1, rhs2);
|
| 476 |
|
|
if (tmp && useless_type_conversion_p (type, TREE_TYPE (tmp)))
|
| 477 |
|
|
{
|
| 478 |
|
|
gimple_assign_set_rhs_from_tree (gsi, tmp);
|
| 479 |
|
|
fold_stmt (gsi);
|
| 480 |
|
|
update_stmt (gsi_stmt (*gsi));
|
| 481 |
|
|
|
| 482 |
|
|
if (TREE_CODE (rhs1) == SSA_NAME)
|
| 483 |
|
|
cfg_changed |= remove_prop_source_from_use (rhs1);
|
| 484 |
|
|
if (TREE_CODE (rhs2) == SSA_NAME)
|
| 485 |
|
|
cfg_changed |= remove_prop_source_from_use (rhs2);
|
| 486 |
|
|
return cfg_changed ? 2 : 1;
|
| 487 |
|
|
}
|
| 488 |
|
|
|
| 489 |
|
|
return 0;
|
| 490 |
|
|
}
|
| 491 |
|
|
|
| 492 |
|
|
/* Propagate from the ssa name definition statements of COND_EXPR
|
| 493 |
|
|
in GIMPLE_COND statement STMT into the conditional if that simplifies it.
|
| 494 |
|
|
Returns zero if no statement was changed, one if there were
|
| 495 |
|
|
changes and two if cfg_cleanup needs to run.
|
| 496 |
|
|
|
| 497 |
|
|
This must be kept in sync with forward_propagate_into_cond. */
|
| 498 |
|
|
|
| 499 |
|
|
static int
|
| 500 |
|
|
forward_propagate_into_gimple_cond (gimple stmt)
|
| 501 |
|
|
{
|
| 502 |
|
|
tree tmp;
|
| 503 |
|
|
enum tree_code code = gimple_cond_code (stmt);
|
| 504 |
|
|
bool cfg_changed = false;
|
| 505 |
|
|
tree rhs1 = gimple_cond_lhs (stmt);
|
| 506 |
|
|
tree rhs2 = gimple_cond_rhs (stmt);
|
| 507 |
|
|
|
| 508 |
|
|
/* We can do tree combining on SSA_NAME and comparison expressions. */
|
| 509 |
|
|
if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
|
| 510 |
|
|
return 0;
|
| 511 |
|
|
|
| 512 |
|
|
tmp = forward_propagate_into_comparison_1 (stmt, code,
|
| 513 |
|
|
boolean_type_node,
|
| 514 |
|
|
rhs1, rhs2);
|
| 515 |
|
|
if (tmp)
|
| 516 |
|
|
{
|
| 517 |
|
|
if (dump_file && tmp)
|
| 518 |
|
|
{
|
| 519 |
|
|
fprintf (dump_file, " Replaced '");
|
| 520 |
|
|
print_gimple_expr (dump_file, stmt, 0, 0);
|
| 521 |
|
|
fprintf (dump_file, "' with '");
|
| 522 |
|
|
print_generic_expr (dump_file, tmp, 0);
|
| 523 |
|
|
fprintf (dump_file, "'\n");
|
| 524 |
|
|
}
|
| 525 |
|
|
|
| 526 |
|
|
gimple_cond_set_condition_from_tree (stmt, unshare_expr (tmp));
|
| 527 |
|
|
update_stmt (stmt);
|
| 528 |
|
|
|
| 529 |
|
|
if (TREE_CODE (rhs1) == SSA_NAME)
|
| 530 |
|
|
cfg_changed |= remove_prop_source_from_use (rhs1);
|
| 531 |
|
|
if (TREE_CODE (rhs2) == SSA_NAME)
|
| 532 |
|
|
cfg_changed |= remove_prop_source_from_use (rhs2);
|
| 533 |
|
|
return (cfg_changed || is_gimple_min_invariant (tmp)) ? 2 : 1;
|
| 534 |
|
|
}
|
| 535 |
|
|
|
| 536 |
|
|
/* Canonicalize _Bool == 0 and _Bool != 1 to _Bool != 0 by swapping edges. */
|
| 537 |
|
|
if ((TREE_CODE (TREE_TYPE (rhs1)) == BOOLEAN_TYPE
|
| 538 |
|
|
|| (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
|
| 539 |
|
|
&& TYPE_PRECISION (TREE_TYPE (rhs1)) == 1))
|
| 540 |
|
|
&& ((code == EQ_EXPR
|
| 541 |
|
|
&& integer_zerop (rhs2))
|
| 542 |
|
|
|| (code == NE_EXPR
|
| 543 |
|
|
&& integer_onep (rhs2))))
|
| 544 |
|
|
{
|
| 545 |
|
|
basic_block bb = gimple_bb (stmt);
|
| 546 |
|
|
gimple_cond_set_code (stmt, NE_EXPR);
|
| 547 |
|
|
gimple_cond_set_rhs (stmt, build_zero_cst (TREE_TYPE (rhs1)));
|
| 548 |
|
|
EDGE_SUCC (bb, 0)->flags ^= (EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
|
| 549 |
|
|
EDGE_SUCC (bb, 1)->flags ^= (EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
|
| 550 |
|
|
return 1;
|
| 551 |
|
|
}
|
| 552 |
|
|
|
| 553 |
|
|
return 0;
|
| 554 |
|
|
}
|
| 555 |
|
|
|
| 556 |
|
|
|
| 557 |
|
|
/* Propagate from the ssa name definition statements of COND_EXPR
|
| 558 |
|
|
in the rhs of statement STMT into the conditional if that simplifies it.
|
| 559 |
|
|
Returns true zero if the stmt was changed. */
|
| 560 |
|
|
|
| 561 |
|
|
static bool
|
| 562 |
|
|
forward_propagate_into_cond (gimple_stmt_iterator *gsi_p)
|
| 563 |
|
|
{
|
| 564 |
|
|
gimple stmt = gsi_stmt (*gsi_p);
|
| 565 |
|
|
tree tmp = NULL_TREE;
|
| 566 |
|
|
tree cond = gimple_assign_rhs1 (stmt);
|
| 567 |
|
|
bool swap = false;
|
| 568 |
|
|
|
| 569 |
|
|
/* We can do tree combining on SSA_NAME and comparison expressions. */
|
| 570 |
|
|
if (COMPARISON_CLASS_P (cond))
|
| 571 |
|
|
tmp = forward_propagate_into_comparison_1 (stmt, TREE_CODE (cond),
|
| 572 |
|
|
boolean_type_node,
|
| 573 |
|
|
TREE_OPERAND (cond, 0),
|
| 574 |
|
|
TREE_OPERAND (cond, 1));
|
| 575 |
|
|
else if (TREE_CODE (cond) == SSA_NAME)
|
| 576 |
|
|
{
|
| 577 |
|
|
enum tree_code code;
|
| 578 |
|
|
tree name = cond;
|
| 579 |
|
|
gimple def_stmt = get_prop_source_stmt (name, true, NULL);
|
| 580 |
|
|
if (!def_stmt || !can_propagate_from (def_stmt))
|
| 581 |
|
|
return 0;
|
| 582 |
|
|
|
| 583 |
|
|
code = gimple_assign_rhs_code (def_stmt);
|
| 584 |
|
|
if (TREE_CODE_CLASS (code) == tcc_comparison)
|
| 585 |
|
|
tmp = fold_build2_loc (gimple_location (def_stmt),
|
| 586 |
|
|
code,
|
| 587 |
|
|
boolean_type_node,
|
| 588 |
|
|
gimple_assign_rhs1 (def_stmt),
|
| 589 |
|
|
gimple_assign_rhs2 (def_stmt));
|
| 590 |
|
|
else if ((code == BIT_NOT_EXPR
|
| 591 |
|
|
&& TYPE_PRECISION (TREE_TYPE (cond)) == 1)
|
| 592 |
|
|
|| (code == BIT_XOR_EXPR
|
| 593 |
|
|
&& integer_onep (gimple_assign_rhs2 (def_stmt))))
|
| 594 |
|
|
{
|
| 595 |
|
|
tmp = gimple_assign_rhs1 (def_stmt);
|
| 596 |
|
|
swap = true;
|
| 597 |
|
|
}
|
| 598 |
|
|
}
|
| 599 |
|
|
|
| 600 |
|
|
if (tmp
|
| 601 |
|
|
&& is_gimple_condexpr (tmp))
|
| 602 |
|
|
{
|
| 603 |
|
|
if (dump_file && tmp)
|
| 604 |
|
|
{
|
| 605 |
|
|
fprintf (dump_file, " Replaced '");
|
| 606 |
|
|
print_generic_expr (dump_file, cond, 0);
|
| 607 |
|
|
fprintf (dump_file, "' with '");
|
| 608 |
|
|
print_generic_expr (dump_file, tmp, 0);
|
| 609 |
|
|
fprintf (dump_file, "'\n");
|
| 610 |
|
|
}
|
| 611 |
|
|
|
| 612 |
|
|
if (integer_onep (tmp))
|
| 613 |
|
|
gimple_assign_set_rhs_from_tree (gsi_p, gimple_assign_rhs2 (stmt));
|
| 614 |
|
|
else if (integer_zerop (tmp))
|
| 615 |
|
|
gimple_assign_set_rhs_from_tree (gsi_p, gimple_assign_rhs3 (stmt));
|
| 616 |
|
|
else
|
| 617 |
|
|
{
|
| 618 |
|
|
gimple_assign_set_rhs1 (stmt, unshare_expr (tmp));
|
| 619 |
|
|
if (swap)
|
| 620 |
|
|
{
|
| 621 |
|
|
tree t = gimple_assign_rhs2 (stmt);
|
| 622 |
|
|
gimple_assign_set_rhs2 (stmt, gimple_assign_rhs3 (stmt));
|
| 623 |
|
|
gimple_assign_set_rhs3 (stmt, t);
|
| 624 |
|
|
}
|
| 625 |
|
|
}
|
| 626 |
|
|
stmt = gsi_stmt (*gsi_p);
|
| 627 |
|
|
update_stmt (stmt);
|
| 628 |
|
|
|
| 629 |
|
|
return true;
|
| 630 |
|
|
}
|
| 631 |
|
|
|
| 632 |
|
|
return 0;
|
| 633 |
|
|
}
|
| 634 |
|
|
|
| 635 |
|
|
/* We've just substituted an ADDR_EXPR into stmt. Update all the
|
| 636 |
|
|
relevant data structures to match. */
|
| 637 |
|
|
|
| 638 |
|
|
static void
|
| 639 |
|
|
tidy_after_forward_propagate_addr (gimple stmt)
|
| 640 |
|
|
{
|
| 641 |
|
|
/* We may have turned a trapping insn into a non-trapping insn. */
|
| 642 |
|
|
if (maybe_clean_or_replace_eh_stmt (stmt, stmt)
|
| 643 |
|
|
&& gimple_purge_dead_eh_edges (gimple_bb (stmt)))
|
| 644 |
|
|
cfg_changed = true;
|
| 645 |
|
|
|
| 646 |
|
|
if (TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR)
|
| 647 |
|
|
recompute_tree_invariant_for_addr_expr (gimple_assign_rhs1 (stmt));
|
| 648 |
|
|
}
|
| 649 |
|
|
|
| 650 |
|
|
/* DEF_RHS contains the address of the 0th element in an array.
|
| 651 |
|
|
USE_STMT uses type of DEF_RHS to compute the address of an
|
| 652 |
|
|
arbitrary element within the array. The (variable) byte offset
|
| 653 |
|
|
of the element is contained in OFFSET.
|
| 654 |
|
|
|
| 655 |
|
|
We walk back through the use-def chains of OFFSET to verify that
|
| 656 |
|
|
it is indeed computing the offset of an element within the array
|
| 657 |
|
|
and extract the index corresponding to the given byte offset.
|
| 658 |
|
|
|
| 659 |
|
|
We then try to fold the entire address expression into a form
|
| 660 |
|
|
&array[index].
|
| 661 |
|
|
|
| 662 |
|
|
If we are successful, we replace the right hand side of USE_STMT
|
| 663 |
|
|
with the new address computation. */
|
| 664 |
|
|
|
| 665 |
|
|
static bool
|
| 666 |
|
|
forward_propagate_addr_into_variable_array_index (tree offset,
|
| 667 |
|
|
tree def_rhs,
|
| 668 |
|
|
gimple_stmt_iterator *use_stmt_gsi)
|
| 669 |
|
|
{
|
| 670 |
|
|
tree index, tunit;
|
| 671 |
|
|
gimple offset_def, use_stmt = gsi_stmt (*use_stmt_gsi);
|
| 672 |
|
|
tree new_rhs, tmp;
|
| 673 |
|
|
|
| 674 |
|
|
if (TREE_CODE (TREE_OPERAND (def_rhs, 0)) == ARRAY_REF)
|
| 675 |
|
|
tunit = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (def_rhs)));
|
| 676 |
|
|
else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (def_rhs, 0))) == ARRAY_TYPE)
|
| 677 |
|
|
tunit = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (TREE_TYPE (def_rhs))));
|
| 678 |
|
|
else
|
| 679 |
|
|
return false;
|
| 680 |
|
|
if (!host_integerp (tunit, 1))
|
| 681 |
|
|
return false;
|
| 682 |
|
|
|
| 683 |
|
|
/* Get the offset's defining statement. */
|
| 684 |
|
|
offset_def = SSA_NAME_DEF_STMT (offset);
|
| 685 |
|
|
|
| 686 |
|
|
/* Try to find an expression for a proper index. This is either a
|
| 687 |
|
|
multiplication expression by the element size or just the ssa name we came
|
| 688 |
|
|
along in case the element size is one. In that case, however, we do not
|
| 689 |
|
|
allow multiplications because they can be computing index to a higher
|
| 690 |
|
|
level dimension (PR 37861). */
|
| 691 |
|
|
if (integer_onep (tunit))
|
| 692 |
|
|
{
|
| 693 |
|
|
if (is_gimple_assign (offset_def)
|
| 694 |
|
|
&& gimple_assign_rhs_code (offset_def) == MULT_EXPR)
|
| 695 |
|
|
return false;
|
| 696 |
|
|
|
| 697 |
|
|
index = offset;
|
| 698 |
|
|
}
|
| 699 |
|
|
else
|
| 700 |
|
|
{
|
| 701 |
|
|
/* The statement which defines OFFSET before type conversion
|
| 702 |
|
|
must be a simple GIMPLE_ASSIGN. */
|
| 703 |
|
|
if (!is_gimple_assign (offset_def))
|
| 704 |
|
|
return false;
|
| 705 |
|
|
|
| 706 |
|
|
/* The RHS of the statement which defines OFFSET must be a
|
| 707 |
|
|
multiplication of an object by the size of the array elements.
|
| 708 |
|
|
This implicitly verifies that the size of the array elements
|
| 709 |
|
|
is constant. */
|
| 710 |
|
|
if (gimple_assign_rhs_code (offset_def) == MULT_EXPR
|
| 711 |
|
|
&& TREE_CODE (gimple_assign_rhs2 (offset_def)) == INTEGER_CST
|
| 712 |
|
|
&& tree_int_cst_equal (gimple_assign_rhs2 (offset_def), tunit))
|
| 713 |
|
|
{
|
| 714 |
|
|
/* The first operand to the MULT_EXPR is the desired index. */
|
| 715 |
|
|
index = gimple_assign_rhs1 (offset_def);
|
| 716 |
|
|
}
|
| 717 |
|
|
/* If we have idx * tunit + CST * tunit re-associate that. */
|
| 718 |
|
|
else if ((gimple_assign_rhs_code (offset_def) == PLUS_EXPR
|
| 719 |
|
|
|| gimple_assign_rhs_code (offset_def) == MINUS_EXPR)
|
| 720 |
|
|
&& TREE_CODE (gimple_assign_rhs1 (offset_def)) == SSA_NAME
|
| 721 |
|
|
&& TREE_CODE (gimple_assign_rhs2 (offset_def)) == INTEGER_CST
|
| 722 |
|
|
&& (tmp = div_if_zero_remainder (EXACT_DIV_EXPR,
|
| 723 |
|
|
gimple_assign_rhs2 (offset_def),
|
| 724 |
|
|
tunit)) != NULL_TREE)
|
| 725 |
|
|
{
|
| 726 |
|
|
gimple offset_def2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (offset_def));
|
| 727 |
|
|
if (is_gimple_assign (offset_def2)
|
| 728 |
|
|
&& gimple_assign_rhs_code (offset_def2) == MULT_EXPR
|
| 729 |
|
|
&& TREE_CODE (gimple_assign_rhs2 (offset_def2)) == INTEGER_CST
|
| 730 |
|
|
&& tree_int_cst_equal (gimple_assign_rhs2 (offset_def2), tunit))
|
| 731 |
|
|
{
|
| 732 |
|
|
index = fold_build2 (gimple_assign_rhs_code (offset_def),
|
| 733 |
|
|
TREE_TYPE (offset),
|
| 734 |
|
|
gimple_assign_rhs1 (offset_def2), tmp);
|
| 735 |
|
|
}
|
| 736 |
|
|
else
|
| 737 |
|
|
return false;
|
| 738 |
|
|
}
|
| 739 |
|
|
else
|
| 740 |
|
|
return false;
|
| 741 |
|
|
}
|
| 742 |
|
|
|
| 743 |
|
|
/* Replace the pointer addition with array indexing. */
|
| 744 |
|
|
index = force_gimple_operand_gsi (use_stmt_gsi, index, true, NULL_TREE,
|
| 745 |
|
|
true, GSI_SAME_STMT);
|
| 746 |
|
|
if (TREE_CODE (TREE_OPERAND (def_rhs, 0)) == ARRAY_REF)
|
| 747 |
|
|
{
|
| 748 |
|
|
new_rhs = unshare_expr (def_rhs);
|
| 749 |
|
|
TREE_OPERAND (TREE_OPERAND (new_rhs, 0), 1) = index;
|
| 750 |
|
|
}
|
| 751 |
|
|
else
|
| 752 |
|
|
{
|
| 753 |
|
|
new_rhs = build4 (ARRAY_REF, TREE_TYPE (TREE_TYPE (TREE_TYPE (def_rhs))),
|
| 754 |
|
|
unshare_expr (TREE_OPERAND (def_rhs, 0)),
|
| 755 |
|
|
index, integer_zero_node, NULL_TREE);
|
| 756 |
|
|
new_rhs = build_fold_addr_expr (new_rhs);
|
| 757 |
|
|
if (!useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (use_stmt)),
|
| 758 |
|
|
TREE_TYPE (new_rhs)))
|
| 759 |
|
|
{
|
| 760 |
|
|
new_rhs = force_gimple_operand_gsi (use_stmt_gsi, new_rhs, true,
|
| 761 |
|
|
NULL_TREE, true, GSI_SAME_STMT);
|
| 762 |
|
|
new_rhs = fold_convert (TREE_TYPE (gimple_assign_lhs (use_stmt)),
|
| 763 |
|
|
new_rhs);
|
| 764 |
|
|
}
|
| 765 |
|
|
}
|
| 766 |
|
|
gimple_assign_set_rhs_from_tree (use_stmt_gsi, new_rhs);
|
| 767 |
|
|
fold_stmt (use_stmt_gsi);
|
| 768 |
|
|
tidy_after_forward_propagate_addr (gsi_stmt (*use_stmt_gsi));
|
| 769 |
|
|
return true;
|
| 770 |
|
|
}
|
| 771 |
|
|
|
| 772 |
|
|
/* NAME is a SSA_NAME representing DEF_RHS which is of the form
|
| 773 |
|
|
ADDR_EXPR <whatever>.
|
| 774 |
|
|
|
| 775 |
|
|
Try to forward propagate the ADDR_EXPR into the use USE_STMT.
|
| 776 |
|
|
Often this will allow for removal of an ADDR_EXPR and INDIRECT_REF
|
| 777 |
|
|
node or for recovery of array indexing from pointer arithmetic.
|
| 778 |
|
|
|
| 779 |
|
|
Return true if the propagation was successful (the propagation can
|
| 780 |
|
|
be not totally successful, yet things may have been changed). */
|
| 781 |
|
|
|
| 782 |
|
|
static bool
|
| 783 |
|
|
forward_propagate_addr_expr_1 (tree name, tree def_rhs,
|
| 784 |
|
|
gimple_stmt_iterator *use_stmt_gsi,
|
| 785 |
|
|
bool single_use_p)
|
| 786 |
|
|
{
|
| 787 |
|
|
tree lhs, rhs, rhs2, array_ref;
|
| 788 |
|
|
gimple use_stmt = gsi_stmt (*use_stmt_gsi);
|
| 789 |
|
|
enum tree_code rhs_code;
|
| 790 |
|
|
bool res = true;
|
| 791 |
|
|
|
| 792 |
|
|
gcc_assert (TREE_CODE (def_rhs) == ADDR_EXPR);
|
| 793 |
|
|
|
| 794 |
|
|
lhs = gimple_assign_lhs (use_stmt);
|
| 795 |
|
|
rhs_code = gimple_assign_rhs_code (use_stmt);
|
| 796 |
|
|
rhs = gimple_assign_rhs1 (use_stmt);
|
| 797 |
|
|
|
| 798 |
|
|
/* Trivial cases. The use statement could be a trivial copy or a
|
| 799 |
|
|
useless conversion. Recurse to the uses of the lhs as copyprop does
|
| 800 |
|
|
not copy through different variant pointers and FRE does not catch
|
| 801 |
|
|
all useless conversions. Treat the case of a single-use name and
|
| 802 |
|
|
a conversion to def_rhs type separate, though. */
|
| 803 |
|
|
if (TREE_CODE (lhs) == SSA_NAME
|
| 804 |
|
|
&& ((rhs_code == SSA_NAME && rhs == name)
|
| 805 |
|
|
|| CONVERT_EXPR_CODE_P (rhs_code)))
|
| 806 |
|
|
{
|
| 807 |
|
|
/* Only recurse if we don't deal with a single use or we cannot
|
| 808 |
|
|
do the propagation to the current statement. In particular
|
| 809 |
|
|
we can end up with a conversion needed for a non-invariant
|
| 810 |
|
|
address which we cannot do in a single statement. */
|
| 811 |
|
|
if (!single_use_p
|
| 812 |
|
|
|| (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (def_rhs))
|
| 813 |
|
|
&& (!is_gimple_min_invariant (def_rhs)
|
| 814 |
|
|
|| (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|
| 815 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (def_rhs))
|
| 816 |
|
|
&& (TYPE_PRECISION (TREE_TYPE (lhs))
|
| 817 |
|
|
> TYPE_PRECISION (TREE_TYPE (def_rhs)))))))
|
| 818 |
|
|
return forward_propagate_addr_expr (lhs, def_rhs);
|
| 819 |
|
|
|
| 820 |
|
|
gimple_assign_set_rhs1 (use_stmt, unshare_expr (def_rhs));
|
| 821 |
|
|
if (useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (def_rhs)))
|
| 822 |
|
|
gimple_assign_set_rhs_code (use_stmt, TREE_CODE (def_rhs));
|
| 823 |
|
|
else
|
| 824 |
|
|
gimple_assign_set_rhs_code (use_stmt, NOP_EXPR);
|
| 825 |
|
|
return true;
|
| 826 |
|
|
}
|
| 827 |
|
|
|
| 828 |
|
|
/* Propagate through constant pointer adjustments. */
|
| 829 |
|
|
if (TREE_CODE (lhs) == SSA_NAME
|
| 830 |
|
|
&& rhs_code == POINTER_PLUS_EXPR
|
| 831 |
|
|
&& rhs == name
|
| 832 |
|
|
&& TREE_CODE (gimple_assign_rhs2 (use_stmt)) == INTEGER_CST)
|
| 833 |
|
|
{
|
| 834 |
|
|
tree new_def_rhs;
|
| 835 |
|
|
/* As we come here with non-invariant addresses in def_rhs we need
|
| 836 |
|
|
to make sure we can build a valid constant offsetted address
|
| 837 |
|
|
for further propagation. Simply rely on fold building that
|
| 838 |
|
|
and check after the fact. */
|
| 839 |
|
|
new_def_rhs = fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (rhs)),
|
| 840 |
|
|
def_rhs,
|
| 841 |
|
|
fold_convert (ptr_type_node,
|
| 842 |
|
|
gimple_assign_rhs2 (use_stmt)));
|
| 843 |
|
|
if (TREE_CODE (new_def_rhs) == MEM_REF
|
| 844 |
|
|
&& !is_gimple_mem_ref_addr (TREE_OPERAND (new_def_rhs, 0)))
|
| 845 |
|
|
return false;
|
| 846 |
|
|
new_def_rhs = build_fold_addr_expr_with_type (new_def_rhs,
|
| 847 |
|
|
TREE_TYPE (rhs));
|
| 848 |
|
|
|
| 849 |
|
|
/* Recurse. If we could propagate into all uses of lhs do not
|
| 850 |
|
|
bother to replace into the current use but just pretend we did. */
|
| 851 |
|
|
if (TREE_CODE (new_def_rhs) == ADDR_EXPR
|
| 852 |
|
|
&& forward_propagate_addr_expr (lhs, new_def_rhs))
|
| 853 |
|
|
return true;
|
| 854 |
|
|
|
| 855 |
|
|
if (useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (new_def_rhs)))
|
| 856 |
|
|
gimple_assign_set_rhs_with_ops (use_stmt_gsi, TREE_CODE (new_def_rhs),
|
| 857 |
|
|
new_def_rhs, NULL_TREE);
|
| 858 |
|
|
else if (is_gimple_min_invariant (new_def_rhs))
|
| 859 |
|
|
gimple_assign_set_rhs_with_ops (use_stmt_gsi, NOP_EXPR,
|
| 860 |
|
|
new_def_rhs, NULL_TREE);
|
| 861 |
|
|
else
|
| 862 |
|
|
return false;
|
| 863 |
|
|
gcc_assert (gsi_stmt (*use_stmt_gsi) == use_stmt);
|
| 864 |
|
|
update_stmt (use_stmt);
|
| 865 |
|
|
return true;
|
| 866 |
|
|
}
|
| 867 |
|
|
|
| 868 |
|
|
/* Now strip away any outer COMPONENT_REF/ARRAY_REF nodes from the LHS.
|
| 869 |
|
|
ADDR_EXPR will not appear on the LHS. */
|
| 870 |
|
|
lhs = gimple_assign_lhs (use_stmt);
|
| 871 |
|
|
while (handled_component_p (lhs))
|
| 872 |
|
|
lhs = TREE_OPERAND (lhs, 0);
|
| 873 |
|
|
|
| 874 |
|
|
/* Now see if the LHS node is a MEM_REF using NAME. If so,
|
| 875 |
|
|
propagate the ADDR_EXPR into the use of NAME and fold the result. */
|
| 876 |
|
|
if (TREE_CODE (lhs) == MEM_REF
|
| 877 |
|
|
&& TREE_OPERAND (lhs, 0) == name)
|
| 878 |
|
|
{
|
| 879 |
|
|
tree def_rhs_base;
|
| 880 |
|
|
HOST_WIDE_INT def_rhs_offset;
|
| 881 |
|
|
/* If the address is invariant we can always fold it. */
|
| 882 |
|
|
if ((def_rhs_base = get_addr_base_and_unit_offset (TREE_OPERAND (def_rhs, 0),
|
| 883 |
|
|
&def_rhs_offset)))
|
| 884 |
|
|
{
|
| 885 |
|
|
double_int off = mem_ref_offset (lhs);
|
| 886 |
|
|
tree new_ptr;
|
| 887 |
|
|
off = double_int_add (off,
|
| 888 |
|
|
shwi_to_double_int (def_rhs_offset));
|
| 889 |
|
|
if (TREE_CODE (def_rhs_base) == MEM_REF)
|
| 890 |
|
|
{
|
| 891 |
|
|
off = double_int_add (off, mem_ref_offset (def_rhs_base));
|
| 892 |
|
|
new_ptr = TREE_OPERAND (def_rhs_base, 0);
|
| 893 |
|
|
}
|
| 894 |
|
|
else
|
| 895 |
|
|
new_ptr = build_fold_addr_expr (def_rhs_base);
|
| 896 |
|
|
TREE_OPERAND (lhs, 0) = new_ptr;
|
| 897 |
|
|
TREE_OPERAND (lhs, 1)
|
| 898 |
|
|
= double_int_to_tree (TREE_TYPE (TREE_OPERAND (lhs, 1)), off);
|
| 899 |
|
|
tidy_after_forward_propagate_addr (use_stmt);
|
| 900 |
|
|
/* Continue propagating into the RHS if this was not the only use. */
|
| 901 |
|
|
if (single_use_p)
|
| 902 |
|
|
return true;
|
| 903 |
|
|
}
|
| 904 |
|
|
/* If the LHS is a plain dereference and the value type is the same as
|
| 905 |
|
|
that of the pointed-to type of the address we can put the
|
| 906 |
|
|
dereferenced address on the LHS preserving the original alias-type. */
|
| 907 |
|
|
else if (gimple_assign_lhs (use_stmt) == lhs
|
| 908 |
|
|
&& useless_type_conversion_p
|
| 909 |
|
|
(TREE_TYPE (TREE_OPERAND (def_rhs, 0)),
|
| 910 |
|
|
TREE_TYPE (gimple_assign_rhs1 (use_stmt))))
|
| 911 |
|
|
{
|
| 912 |
|
|
tree *def_rhs_basep = &TREE_OPERAND (def_rhs, 0);
|
| 913 |
|
|
tree new_offset, new_base, saved, new_lhs;
|
| 914 |
|
|
while (handled_component_p (*def_rhs_basep))
|
| 915 |
|
|
def_rhs_basep = &TREE_OPERAND (*def_rhs_basep, 0);
|
| 916 |
|
|
saved = *def_rhs_basep;
|
| 917 |
|
|
if (TREE_CODE (*def_rhs_basep) == MEM_REF)
|
| 918 |
|
|
{
|
| 919 |
|
|
new_base = TREE_OPERAND (*def_rhs_basep, 0);
|
| 920 |
|
|
new_offset
|
| 921 |
|
|
= int_const_binop (PLUS_EXPR, TREE_OPERAND (lhs, 1),
|
| 922 |
|
|
TREE_OPERAND (*def_rhs_basep, 1));
|
| 923 |
|
|
}
|
| 924 |
|
|
else
|
| 925 |
|
|
{
|
| 926 |
|
|
new_base = build_fold_addr_expr (*def_rhs_basep);
|
| 927 |
|
|
new_offset = TREE_OPERAND (lhs, 1);
|
| 928 |
|
|
}
|
| 929 |
|
|
*def_rhs_basep = build2 (MEM_REF, TREE_TYPE (*def_rhs_basep),
|
| 930 |
|
|
new_base, new_offset);
|
| 931 |
|
|
TREE_THIS_VOLATILE (*def_rhs_basep) = TREE_THIS_VOLATILE (lhs);
|
| 932 |
|
|
TREE_SIDE_EFFECTS (*def_rhs_basep) = TREE_SIDE_EFFECTS (lhs);
|
| 933 |
|
|
TREE_THIS_NOTRAP (*def_rhs_basep) = TREE_THIS_NOTRAP (lhs);
|
| 934 |
|
|
new_lhs = unshare_expr (TREE_OPERAND (def_rhs, 0));
|
| 935 |
|
|
gimple_assign_set_lhs (use_stmt, new_lhs);
|
| 936 |
|
|
TREE_THIS_VOLATILE (new_lhs) = TREE_THIS_VOLATILE (lhs);
|
| 937 |
|
|
TREE_SIDE_EFFECTS (new_lhs) = TREE_SIDE_EFFECTS (lhs);
|
| 938 |
|
|
*def_rhs_basep = saved;
|
| 939 |
|
|
tidy_after_forward_propagate_addr (use_stmt);
|
| 940 |
|
|
/* Continue propagating into the RHS if this was not the
|
| 941 |
|
|
only use. */
|
| 942 |
|
|
if (single_use_p)
|
| 943 |
|
|
return true;
|
| 944 |
|
|
}
|
| 945 |
|
|
else
|
| 946 |
|
|
/* We can have a struct assignment dereferencing our name twice.
|
| 947 |
|
|
Note that we didn't propagate into the lhs to not falsely
|
| 948 |
|
|
claim we did when propagating into the rhs. */
|
| 949 |
|
|
res = false;
|
| 950 |
|
|
}
|
| 951 |
|
|
|
| 952 |
|
|
/* Strip away any outer COMPONENT_REF, ARRAY_REF or ADDR_EXPR
|
| 953 |
|
|
nodes from the RHS. */
|
| 954 |
|
|
rhs = gimple_assign_rhs1 (use_stmt);
|
| 955 |
|
|
if (TREE_CODE (rhs) == ADDR_EXPR)
|
| 956 |
|
|
rhs = TREE_OPERAND (rhs, 0);
|
| 957 |
|
|
while (handled_component_p (rhs))
|
| 958 |
|
|
rhs = TREE_OPERAND (rhs, 0);
|
| 959 |
|
|
|
| 960 |
|
|
/* Now see if the RHS node is a MEM_REF using NAME. If so,
|
| 961 |
|
|
propagate the ADDR_EXPR into the use of NAME and fold the result. */
|
| 962 |
|
|
if (TREE_CODE (rhs) == MEM_REF
|
| 963 |
|
|
&& TREE_OPERAND (rhs, 0) == name)
|
| 964 |
|
|
{
|
| 965 |
|
|
tree def_rhs_base;
|
| 966 |
|
|
HOST_WIDE_INT def_rhs_offset;
|
| 967 |
|
|
if ((def_rhs_base = get_addr_base_and_unit_offset (TREE_OPERAND (def_rhs, 0),
|
| 968 |
|
|
&def_rhs_offset)))
|
| 969 |
|
|
{
|
| 970 |
|
|
double_int off = mem_ref_offset (rhs);
|
| 971 |
|
|
tree new_ptr;
|
| 972 |
|
|
off = double_int_add (off,
|
| 973 |
|
|
shwi_to_double_int (def_rhs_offset));
|
| 974 |
|
|
if (TREE_CODE (def_rhs_base) == MEM_REF)
|
| 975 |
|
|
{
|
| 976 |
|
|
off = double_int_add (off, mem_ref_offset (def_rhs_base));
|
| 977 |
|
|
new_ptr = TREE_OPERAND (def_rhs_base, 0);
|
| 978 |
|
|
}
|
| 979 |
|
|
else
|
| 980 |
|
|
new_ptr = build_fold_addr_expr (def_rhs_base);
|
| 981 |
|
|
TREE_OPERAND (rhs, 0) = new_ptr;
|
| 982 |
|
|
TREE_OPERAND (rhs, 1)
|
| 983 |
|
|
= double_int_to_tree (TREE_TYPE (TREE_OPERAND (rhs, 1)), off);
|
| 984 |
|
|
fold_stmt_inplace (use_stmt_gsi);
|
| 985 |
|
|
tidy_after_forward_propagate_addr (use_stmt);
|
| 986 |
|
|
return res;
|
| 987 |
|
|
}
|
| 988 |
|
|
/* If the RHS is a plain dereference and the value type is the same as
|
| 989 |
|
|
that of the pointed-to type of the address we can put the
|
| 990 |
|
|
dereferenced address on the RHS preserving the original alias-type. */
|
| 991 |
|
|
else if (gimple_assign_rhs1 (use_stmt) == rhs
|
| 992 |
|
|
&& useless_type_conversion_p
|
| 993 |
|
|
(TREE_TYPE (gimple_assign_lhs (use_stmt)),
|
| 994 |
|
|
TREE_TYPE (TREE_OPERAND (def_rhs, 0))))
|
| 995 |
|
|
{
|
| 996 |
|
|
tree *def_rhs_basep = &TREE_OPERAND (def_rhs, 0);
|
| 997 |
|
|
tree new_offset, new_base, saved, new_rhs;
|
| 998 |
|
|
while (handled_component_p (*def_rhs_basep))
|
| 999 |
|
|
def_rhs_basep = &TREE_OPERAND (*def_rhs_basep, 0);
|
| 1000 |
|
|
saved = *def_rhs_basep;
|
| 1001 |
|
|
if (TREE_CODE (*def_rhs_basep) == MEM_REF)
|
| 1002 |
|
|
{
|
| 1003 |
|
|
new_base = TREE_OPERAND (*def_rhs_basep, 0);
|
| 1004 |
|
|
new_offset
|
| 1005 |
|
|
= int_const_binop (PLUS_EXPR, TREE_OPERAND (rhs, 1),
|
| 1006 |
|
|
TREE_OPERAND (*def_rhs_basep, 1));
|
| 1007 |
|
|
}
|
| 1008 |
|
|
else
|
| 1009 |
|
|
{
|
| 1010 |
|
|
new_base = build_fold_addr_expr (*def_rhs_basep);
|
| 1011 |
|
|
new_offset = TREE_OPERAND (rhs, 1);
|
| 1012 |
|
|
}
|
| 1013 |
|
|
*def_rhs_basep = build2 (MEM_REF, TREE_TYPE (*def_rhs_basep),
|
| 1014 |
|
|
new_base, new_offset);
|
| 1015 |
|
|
TREE_THIS_VOLATILE (*def_rhs_basep) = TREE_THIS_VOLATILE (rhs);
|
| 1016 |
|
|
TREE_SIDE_EFFECTS (*def_rhs_basep) = TREE_SIDE_EFFECTS (rhs);
|
| 1017 |
|
|
TREE_THIS_NOTRAP (*def_rhs_basep) = TREE_THIS_NOTRAP (rhs);
|
| 1018 |
|
|
new_rhs = unshare_expr (TREE_OPERAND (def_rhs, 0));
|
| 1019 |
|
|
gimple_assign_set_rhs1 (use_stmt, new_rhs);
|
| 1020 |
|
|
TREE_THIS_VOLATILE (new_rhs) = TREE_THIS_VOLATILE (rhs);
|
| 1021 |
|
|
TREE_SIDE_EFFECTS (new_rhs) = TREE_SIDE_EFFECTS (rhs);
|
| 1022 |
|
|
*def_rhs_basep = saved;
|
| 1023 |
|
|
fold_stmt_inplace (use_stmt_gsi);
|
| 1024 |
|
|
tidy_after_forward_propagate_addr (use_stmt);
|
| 1025 |
|
|
return res;
|
| 1026 |
|
|
}
|
| 1027 |
|
|
}
|
| 1028 |
|
|
|
| 1029 |
|
|
/* If the use of the ADDR_EXPR is not a POINTER_PLUS_EXPR, there
|
| 1030 |
|
|
is nothing to do. */
|
| 1031 |
|
|
if (gimple_assign_rhs_code (use_stmt) != POINTER_PLUS_EXPR
|
| 1032 |
|
|
|| gimple_assign_rhs1 (use_stmt) != name)
|
| 1033 |
|
|
return false;
|
| 1034 |
|
|
|
| 1035 |
|
|
/* The remaining cases are all for turning pointer arithmetic into
|
| 1036 |
|
|
array indexing. They only apply when we have the address of
|
| 1037 |
|
|
element zero in an array. If that is not the case then there
|
| 1038 |
|
|
is nothing to do. */
|
| 1039 |
|
|
array_ref = TREE_OPERAND (def_rhs, 0);
|
| 1040 |
|
|
if ((TREE_CODE (array_ref) != ARRAY_REF
|
| 1041 |
|
|
|| TREE_CODE (TREE_TYPE (TREE_OPERAND (array_ref, 0))) != ARRAY_TYPE
|
| 1042 |
|
|
|| TREE_CODE (TREE_OPERAND (array_ref, 1)) != INTEGER_CST)
|
| 1043 |
|
|
&& TREE_CODE (TREE_TYPE (array_ref)) != ARRAY_TYPE)
|
| 1044 |
|
|
return false;
|
| 1045 |
|
|
|
| 1046 |
|
|
rhs2 = gimple_assign_rhs2 (use_stmt);
|
| 1047 |
|
|
/* Optimize &x[C1] p+ C2 to &x p+ C3 with C3 = C1 * element_size + C2. */
|
| 1048 |
|
|
if (TREE_CODE (rhs2) == INTEGER_CST)
|
| 1049 |
|
|
{
|
| 1050 |
|
|
tree new_rhs = build1_loc (gimple_location (use_stmt),
|
| 1051 |
|
|
ADDR_EXPR, TREE_TYPE (def_rhs),
|
| 1052 |
|
|
fold_build2 (MEM_REF,
|
| 1053 |
|
|
TREE_TYPE (TREE_TYPE (def_rhs)),
|
| 1054 |
|
|
unshare_expr (def_rhs),
|
| 1055 |
|
|
fold_convert (ptr_type_node,
|
| 1056 |
|
|
rhs2)));
|
| 1057 |
|
|
gimple_assign_set_rhs_from_tree (use_stmt_gsi, new_rhs);
|
| 1058 |
|
|
use_stmt = gsi_stmt (*use_stmt_gsi);
|
| 1059 |
|
|
update_stmt (use_stmt);
|
| 1060 |
|
|
tidy_after_forward_propagate_addr (use_stmt);
|
| 1061 |
|
|
return true;
|
| 1062 |
|
|
}
|
| 1063 |
|
|
|
| 1064 |
|
|
/* Try to optimize &x[0] p+ OFFSET where OFFSET is defined by
|
| 1065 |
|
|
converting a multiplication of an index by the size of the
|
| 1066 |
|
|
array elements, then the result is converted into the proper
|
| 1067 |
|
|
type for the arithmetic. */
|
| 1068 |
|
|
if (TREE_CODE (rhs2) == SSA_NAME
|
| 1069 |
|
|
&& (TREE_CODE (array_ref) != ARRAY_REF
|
| 1070 |
|
|
|| integer_zerop (TREE_OPERAND (array_ref, 1)))
|
| 1071 |
|
|
&& useless_type_conversion_p (TREE_TYPE (name), TREE_TYPE (def_rhs))
|
| 1072 |
|
|
/* Avoid problems with IVopts creating PLUS_EXPRs with a
|
| 1073 |
|
|
different type than their operands. */
|
| 1074 |
|
|
&& useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (def_rhs)))
|
| 1075 |
|
|
return forward_propagate_addr_into_variable_array_index (rhs2, def_rhs,
|
| 1076 |
|
|
use_stmt_gsi);
|
| 1077 |
|
|
return false;
|
| 1078 |
|
|
}
|
| 1079 |
|
|
|
| 1080 |
|
|
/* STMT is a statement of the form SSA_NAME = ADDR_EXPR <whatever>.
|
| 1081 |
|
|
|
| 1082 |
|
|
Try to forward propagate the ADDR_EXPR into all uses of the SSA_NAME.
|
| 1083 |
|
|
Often this will allow for removal of an ADDR_EXPR and INDIRECT_REF
|
| 1084 |
|
|
node or for recovery of array indexing from pointer arithmetic.
|
| 1085 |
|
|
Returns true, if all uses have been propagated into. */
|
| 1086 |
|
|
|
| 1087 |
|
|
static bool
|
| 1088 |
|
|
forward_propagate_addr_expr (tree name, tree rhs)
|
| 1089 |
|
|
{
|
| 1090 |
|
|
int stmt_loop_depth = gimple_bb (SSA_NAME_DEF_STMT (name))->loop_depth;
|
| 1091 |
|
|
imm_use_iterator iter;
|
| 1092 |
|
|
gimple use_stmt;
|
| 1093 |
|
|
bool all = true;
|
| 1094 |
|
|
bool single_use_p = has_single_use (name);
|
| 1095 |
|
|
|
| 1096 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, iter, name)
|
| 1097 |
|
|
{
|
| 1098 |
|
|
bool result;
|
| 1099 |
|
|
tree use_rhs;
|
| 1100 |
|
|
|
| 1101 |
|
|
/* If the use is not in a simple assignment statement, then
|
| 1102 |
|
|
there is nothing we can do. */
|
| 1103 |
|
|
if (gimple_code (use_stmt) != GIMPLE_ASSIGN)
|
| 1104 |
|
|
{
|
| 1105 |
|
|
if (!is_gimple_debug (use_stmt))
|
| 1106 |
|
|
all = false;
|
| 1107 |
|
|
continue;
|
| 1108 |
|
|
}
|
| 1109 |
|
|
|
| 1110 |
|
|
/* If the use is in a deeper loop nest, then we do not want
|
| 1111 |
|
|
to propagate non-invariant ADDR_EXPRs into the loop as that
|
| 1112 |
|
|
is likely adding expression evaluations into the loop. */
|
| 1113 |
|
|
if (gimple_bb (use_stmt)->loop_depth > stmt_loop_depth
|
| 1114 |
|
|
&& !is_gimple_min_invariant (rhs))
|
| 1115 |
|
|
{
|
| 1116 |
|
|
all = false;
|
| 1117 |
|
|
continue;
|
| 1118 |
|
|
}
|
| 1119 |
|
|
|
| 1120 |
|
|
{
|
| 1121 |
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
|
| 1122 |
|
|
result = forward_propagate_addr_expr_1 (name, rhs, &gsi,
|
| 1123 |
|
|
single_use_p);
|
| 1124 |
|
|
/* If the use has moved to a different statement adjust
|
| 1125 |
|
|
the update machinery for the old statement too. */
|
| 1126 |
|
|
if (use_stmt != gsi_stmt (gsi))
|
| 1127 |
|
|
{
|
| 1128 |
|
|
update_stmt (use_stmt);
|
| 1129 |
|
|
use_stmt = gsi_stmt (gsi);
|
| 1130 |
|
|
}
|
| 1131 |
|
|
|
| 1132 |
|
|
update_stmt (use_stmt);
|
| 1133 |
|
|
}
|
| 1134 |
|
|
all &= result;
|
| 1135 |
|
|
|
| 1136 |
|
|
/* Remove intermediate now unused copy and conversion chains. */
|
| 1137 |
|
|
use_rhs = gimple_assign_rhs1 (use_stmt);
|
| 1138 |
|
|
if (result
|
| 1139 |
|
|
&& TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
|
| 1140 |
|
|
&& TREE_CODE (use_rhs) == SSA_NAME
|
| 1141 |
|
|
&& has_zero_uses (gimple_assign_lhs (use_stmt)))
|
| 1142 |
|
|
{
|
| 1143 |
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
|
| 1144 |
|
|
release_defs (use_stmt);
|
| 1145 |
|
|
gsi_remove (&gsi, true);
|
| 1146 |
|
|
}
|
| 1147 |
|
|
}
|
| 1148 |
|
|
|
| 1149 |
|
|
return all && has_zero_uses (name);
|
| 1150 |
|
|
}
|
| 1151 |
|
|
|
| 1152 |
|
|
|
| 1153 |
|
|
/* Forward propagate the comparison defined in STMT like
|
| 1154 |
|
|
cond_1 = x CMP y to uses of the form
|
| 1155 |
|
|
a_1 = (T')cond_1
|
| 1156 |
|
|
a_1 = !cond_1
|
| 1157 |
|
|
a_1 = cond_1 != 0
|
| 1158 |
|
|
Returns true if stmt is now unused. */
|
| 1159 |
|
|
|
| 1160 |
|
|
static bool
|
| 1161 |
|
|
forward_propagate_comparison (gimple stmt)
|
| 1162 |
|
|
{
|
| 1163 |
|
|
tree name = gimple_assign_lhs (stmt);
|
| 1164 |
|
|
gimple use_stmt;
|
| 1165 |
|
|
tree tmp = NULL_TREE;
|
| 1166 |
|
|
gimple_stmt_iterator gsi;
|
| 1167 |
|
|
enum tree_code code;
|
| 1168 |
|
|
tree lhs;
|
| 1169 |
|
|
|
| 1170 |
|
|
/* Don't propagate ssa names that occur in abnormal phis. */
|
| 1171 |
|
|
if ((TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
|
| 1172 |
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (stmt)))
|
| 1173 |
|
|
|| (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME
|
| 1174 |
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs2 (stmt))))
|
| 1175 |
|
|
return false;
|
| 1176 |
|
|
|
| 1177 |
|
|
/* Do not un-cse comparisons. But propagate through copies. */
|
| 1178 |
|
|
use_stmt = get_prop_dest_stmt (name, &name);
|
| 1179 |
|
|
if (!use_stmt
|
| 1180 |
|
|
|| !is_gimple_assign (use_stmt))
|
| 1181 |
|
|
return false;
|
| 1182 |
|
|
|
| 1183 |
|
|
code = gimple_assign_rhs_code (use_stmt);
|
| 1184 |
|
|
lhs = gimple_assign_lhs (use_stmt);
|
| 1185 |
|
|
if (!INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
|
| 1186 |
|
|
return false;
|
| 1187 |
|
|
|
| 1188 |
|
|
/* We can propagate the condition into a statement that
|
| 1189 |
|
|
computes the logical negation of the comparison result. */
|
| 1190 |
|
|
if ((code == BIT_NOT_EXPR
|
| 1191 |
|
|
&& TYPE_PRECISION (TREE_TYPE (lhs)) == 1)
|
| 1192 |
|
|
|| (code == BIT_XOR_EXPR
|
| 1193 |
|
|
&& integer_onep (gimple_assign_rhs2 (use_stmt))))
|
| 1194 |
|
|
{
|
| 1195 |
|
|
tree type = TREE_TYPE (gimple_assign_rhs1 (stmt));
|
| 1196 |
|
|
bool nans = HONOR_NANS (TYPE_MODE (type));
|
| 1197 |
|
|
enum tree_code inv_code;
|
| 1198 |
|
|
inv_code = invert_tree_comparison (gimple_assign_rhs_code (stmt), nans);
|
| 1199 |
|
|
if (inv_code == ERROR_MARK)
|
| 1200 |
|
|
return false;
|
| 1201 |
|
|
|
| 1202 |
|
|
tmp = build2 (inv_code, TREE_TYPE (lhs), gimple_assign_rhs1 (stmt),
|
| 1203 |
|
|
gimple_assign_rhs2 (stmt));
|
| 1204 |
|
|
}
|
| 1205 |
|
|
else
|
| 1206 |
|
|
return false;
|
| 1207 |
|
|
|
| 1208 |
|
|
gsi = gsi_for_stmt (use_stmt);
|
| 1209 |
|
|
gimple_assign_set_rhs_from_tree (&gsi, unshare_expr (tmp));
|
| 1210 |
|
|
use_stmt = gsi_stmt (gsi);
|
| 1211 |
|
|
update_stmt (use_stmt);
|
| 1212 |
|
|
|
| 1213 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1214 |
|
|
{
|
| 1215 |
|
|
fprintf (dump_file, " Replaced '");
|
| 1216 |
|
|
print_gimple_expr (dump_file, stmt, 0, dump_flags);
|
| 1217 |
|
|
fprintf (dump_file, "' with '");
|
| 1218 |
|
|
print_gimple_expr (dump_file, use_stmt, 0, dump_flags);
|
| 1219 |
|
|
fprintf (dump_file, "'\n");
|
| 1220 |
|
|
}
|
| 1221 |
|
|
|
| 1222 |
|
|
/* Remove defining statements. */
|
| 1223 |
|
|
return remove_prop_source_from_use (name);
|
| 1224 |
|
|
}
|
| 1225 |
|
|
|
| 1226 |
|
|
|
| 1227 |
|
|
/* If we have lhs = ~x (STMT), look and see if earlier we had x = ~y.
|
| 1228 |
|
|
If so, we can change STMT into lhs = y which can later be copy
|
| 1229 |
|
|
propagated. Similarly for negation.
|
| 1230 |
|
|
|
| 1231 |
|
|
This could trivially be formulated as a forward propagation
|
| 1232 |
|
|
to immediate uses. However, we already had an implementation
|
| 1233 |
|
|
from DOM which used backward propagation via the use-def links.
|
| 1234 |
|
|
|
| 1235 |
|
|
It turns out that backward propagation is actually faster as
|
| 1236 |
|
|
there's less work to do for each NOT/NEG expression we find.
|
| 1237 |
|
|
Backwards propagation needs to look at the statement in a single
|
| 1238 |
|
|
backlink. Forward propagation needs to look at potentially more
|
| 1239 |
|
|
than one forward link.
|
| 1240 |
|
|
|
| 1241 |
|
|
Returns true when the statement was changed. */
|
| 1242 |
|
|
|
| 1243 |
|
|
static bool
|
| 1244 |
|
|
simplify_not_neg_expr (gimple_stmt_iterator *gsi_p)
|
| 1245 |
|
|
{
|
| 1246 |
|
|
gimple stmt = gsi_stmt (*gsi_p);
|
| 1247 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
| 1248 |
|
|
gimple rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
|
| 1249 |
|
|
|
| 1250 |
|
|
/* See if the RHS_DEF_STMT has the same form as our statement. */
|
| 1251 |
|
|
if (is_gimple_assign (rhs_def_stmt)
|
| 1252 |
|
|
&& gimple_assign_rhs_code (rhs_def_stmt) == gimple_assign_rhs_code (stmt))
|
| 1253 |
|
|
{
|
| 1254 |
|
|
tree rhs_def_operand = gimple_assign_rhs1 (rhs_def_stmt);
|
| 1255 |
|
|
|
| 1256 |
|
|
/* Verify that RHS_DEF_OPERAND is a suitable SSA_NAME. */
|
| 1257 |
|
|
if (TREE_CODE (rhs_def_operand) == SSA_NAME
|
| 1258 |
|
|
&& ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs_def_operand))
|
| 1259 |
|
|
{
|
| 1260 |
|
|
gimple_assign_set_rhs_from_tree (gsi_p, rhs_def_operand);
|
| 1261 |
|
|
stmt = gsi_stmt (*gsi_p);
|
| 1262 |
|
|
update_stmt (stmt);
|
| 1263 |
|
|
return true;
|
| 1264 |
|
|
}
|
| 1265 |
|
|
}
|
| 1266 |
|
|
|
| 1267 |
|
|
return false;
|
| 1268 |
|
|
}
|
| 1269 |
|
|
|
| 1270 |
|
|
/* STMT is a SWITCH_EXPR for which we attempt to find equivalent forms of
|
| 1271 |
|
|
the condition which we may be able to optimize better. */
|
| 1272 |
|
|
|
| 1273 |
|
|
static bool
|
| 1274 |
|
|
simplify_gimple_switch (gimple stmt)
|
| 1275 |
|
|
{
|
| 1276 |
|
|
tree cond = gimple_switch_index (stmt);
|
| 1277 |
|
|
tree def, to, ti;
|
| 1278 |
|
|
gimple def_stmt;
|
| 1279 |
|
|
|
| 1280 |
|
|
/* The optimization that we really care about is removing unnecessary
|
| 1281 |
|
|
casts. That will let us do much better in propagating the inferred
|
| 1282 |
|
|
constant at the switch target. */
|
| 1283 |
|
|
if (TREE_CODE (cond) == SSA_NAME)
|
| 1284 |
|
|
{
|
| 1285 |
|
|
def_stmt = SSA_NAME_DEF_STMT (cond);
|
| 1286 |
|
|
if (is_gimple_assign (def_stmt))
|
| 1287 |
|
|
{
|
| 1288 |
|
|
if (gimple_assign_rhs_code (def_stmt) == NOP_EXPR)
|
| 1289 |
|
|
{
|
| 1290 |
|
|
int need_precision;
|
| 1291 |
|
|
bool fail;
|
| 1292 |
|
|
|
| 1293 |
|
|
def = gimple_assign_rhs1 (def_stmt);
|
| 1294 |
|
|
|
| 1295 |
|
|
/* ??? Why was Jeff testing this? We are gimple... */
|
| 1296 |
|
|
gcc_checking_assert (is_gimple_val (def));
|
| 1297 |
|
|
|
| 1298 |
|
|
to = TREE_TYPE (cond);
|
| 1299 |
|
|
ti = TREE_TYPE (def);
|
| 1300 |
|
|
|
| 1301 |
|
|
/* If we have an extension that preserves value, then we
|
| 1302 |
|
|
can copy the source value into the switch. */
|
| 1303 |
|
|
|
| 1304 |
|
|
need_precision = TYPE_PRECISION (ti);
|
| 1305 |
|
|
fail = false;
|
| 1306 |
|
|
if (! INTEGRAL_TYPE_P (ti))
|
| 1307 |
|
|
fail = true;
|
| 1308 |
|
|
else if (TYPE_UNSIGNED (to) && !TYPE_UNSIGNED (ti))
|
| 1309 |
|
|
fail = true;
|
| 1310 |
|
|
else if (!TYPE_UNSIGNED (to) && TYPE_UNSIGNED (ti))
|
| 1311 |
|
|
need_precision += 1;
|
| 1312 |
|
|
if (TYPE_PRECISION (to) < need_precision)
|
| 1313 |
|
|
fail = true;
|
| 1314 |
|
|
|
| 1315 |
|
|
if (!fail)
|
| 1316 |
|
|
{
|
| 1317 |
|
|
gimple_switch_set_index (stmt, def);
|
| 1318 |
|
|
update_stmt (stmt);
|
| 1319 |
|
|
return true;
|
| 1320 |
|
|
}
|
| 1321 |
|
|
}
|
| 1322 |
|
|
}
|
| 1323 |
|
|
}
|
| 1324 |
|
|
|
| 1325 |
|
|
return false;
|
| 1326 |
|
|
}
|
| 1327 |
|
|
|
| 1328 |
|
|
/* For pointers p2 and p1 return p2 - p1 if the
|
| 1329 |
|
|
difference is known and constant, otherwise return NULL. */
|
| 1330 |
|
|
|
| 1331 |
|
|
static tree
|
| 1332 |
|
|
constant_pointer_difference (tree p1, tree p2)
|
| 1333 |
|
|
{
|
| 1334 |
|
|
int i, j;
|
| 1335 |
|
|
#define CPD_ITERATIONS 5
|
| 1336 |
|
|
tree exps[2][CPD_ITERATIONS];
|
| 1337 |
|
|
tree offs[2][CPD_ITERATIONS];
|
| 1338 |
|
|
int cnt[2];
|
| 1339 |
|
|
|
| 1340 |
|
|
for (i = 0; i < 2; i++)
|
| 1341 |
|
|
{
|
| 1342 |
|
|
tree p = i ? p1 : p2;
|
| 1343 |
|
|
tree off = size_zero_node;
|
| 1344 |
|
|
gimple stmt;
|
| 1345 |
|
|
enum tree_code code;
|
| 1346 |
|
|
|
| 1347 |
|
|
/* For each of p1 and p2 we need to iterate at least
|
| 1348 |
|
|
twice, to handle ADDR_EXPR directly in p1/p2,
|
| 1349 |
|
|
SSA_NAME with ADDR_EXPR or POINTER_PLUS_EXPR etc.
|
| 1350 |
|
|
on definition's stmt RHS. Iterate a few extra times. */
|
| 1351 |
|
|
j = 0;
|
| 1352 |
|
|
do
|
| 1353 |
|
|
{
|
| 1354 |
|
|
if (!POINTER_TYPE_P (TREE_TYPE (p)))
|
| 1355 |
|
|
break;
|
| 1356 |
|
|
if (TREE_CODE (p) == ADDR_EXPR)
|
| 1357 |
|
|
{
|
| 1358 |
|
|
tree q = TREE_OPERAND (p, 0);
|
| 1359 |
|
|
HOST_WIDE_INT offset;
|
| 1360 |
|
|
tree base = get_addr_base_and_unit_offset (q, &offset);
|
| 1361 |
|
|
if (base)
|
| 1362 |
|
|
{
|
| 1363 |
|
|
q = base;
|
| 1364 |
|
|
if (offset)
|
| 1365 |
|
|
off = size_binop (PLUS_EXPR, off, size_int (offset));
|
| 1366 |
|
|
}
|
| 1367 |
|
|
if (TREE_CODE (q) == MEM_REF
|
| 1368 |
|
|
&& TREE_CODE (TREE_OPERAND (q, 0)) == SSA_NAME)
|
| 1369 |
|
|
{
|
| 1370 |
|
|
p = TREE_OPERAND (q, 0);
|
| 1371 |
|
|
off = size_binop (PLUS_EXPR, off,
|
| 1372 |
|
|
double_int_to_tree (sizetype,
|
| 1373 |
|
|
mem_ref_offset (q)));
|
| 1374 |
|
|
}
|
| 1375 |
|
|
else
|
| 1376 |
|
|
{
|
| 1377 |
|
|
exps[i][j] = q;
|
| 1378 |
|
|
offs[i][j++] = off;
|
| 1379 |
|
|
break;
|
| 1380 |
|
|
}
|
| 1381 |
|
|
}
|
| 1382 |
|
|
if (TREE_CODE (p) != SSA_NAME)
|
| 1383 |
|
|
break;
|
| 1384 |
|
|
exps[i][j] = p;
|
| 1385 |
|
|
offs[i][j++] = off;
|
| 1386 |
|
|
if (j == CPD_ITERATIONS)
|
| 1387 |
|
|
break;
|
| 1388 |
|
|
stmt = SSA_NAME_DEF_STMT (p);
|
| 1389 |
|
|
if (!is_gimple_assign (stmt) || gimple_assign_lhs (stmt) != p)
|
| 1390 |
|
|
break;
|
| 1391 |
|
|
code = gimple_assign_rhs_code (stmt);
|
| 1392 |
|
|
if (code == POINTER_PLUS_EXPR)
|
| 1393 |
|
|
{
|
| 1394 |
|
|
if (TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
|
| 1395 |
|
|
break;
|
| 1396 |
|
|
off = size_binop (PLUS_EXPR, off, gimple_assign_rhs2 (stmt));
|
| 1397 |
|
|
p = gimple_assign_rhs1 (stmt);
|
| 1398 |
|
|
}
|
| 1399 |
|
|
else if (code == ADDR_EXPR || code == NOP_EXPR)
|
| 1400 |
|
|
p = gimple_assign_rhs1 (stmt);
|
| 1401 |
|
|
else
|
| 1402 |
|
|
break;
|
| 1403 |
|
|
}
|
| 1404 |
|
|
while (1);
|
| 1405 |
|
|
cnt[i] = j;
|
| 1406 |
|
|
}
|
| 1407 |
|
|
|
| 1408 |
|
|
for (i = 0; i < cnt[0]; i++)
|
| 1409 |
|
|
for (j = 0; j < cnt[1]; j++)
|
| 1410 |
|
|
if (exps[0][i] == exps[1][j])
|
| 1411 |
|
|
return size_binop (MINUS_EXPR, offs[0][i], offs[1][j]);
|
| 1412 |
|
|
|
| 1413 |
|
|
return NULL_TREE;
|
| 1414 |
|
|
}
|
| 1415 |
|
|
|
| 1416 |
|
|
/* *GSI_P is a GIMPLE_CALL to a builtin function.
|
| 1417 |
|
|
Optimize
|
| 1418 |
|
|
memcpy (p, "abcd", 4);
|
| 1419 |
|
|
memset (p + 4, ' ', 3);
|
| 1420 |
|
|
into
|
| 1421 |
|
|
memcpy (p, "abcd ", 7);
|
| 1422 |
|
|
call if the latter can be stored by pieces during expansion. */
|
| 1423 |
|
|
|
| 1424 |
|
|
static bool
|
| 1425 |
|
|
simplify_builtin_call (gimple_stmt_iterator *gsi_p, tree callee2)
|
| 1426 |
|
|
{
|
| 1427 |
|
|
gimple stmt1, stmt2 = gsi_stmt (*gsi_p);
|
| 1428 |
|
|
tree vuse = gimple_vuse (stmt2);
|
| 1429 |
|
|
if (vuse == NULL)
|
| 1430 |
|
|
return false;
|
| 1431 |
|
|
stmt1 = SSA_NAME_DEF_STMT (vuse);
|
| 1432 |
|
|
|
| 1433 |
|
|
switch (DECL_FUNCTION_CODE (callee2))
|
| 1434 |
|
|
{
|
| 1435 |
|
|
case BUILT_IN_MEMSET:
|
| 1436 |
|
|
if (gimple_call_num_args (stmt2) != 3
|
| 1437 |
|
|
|| gimple_call_lhs (stmt2)
|
| 1438 |
|
|
|| CHAR_BIT != 8
|
| 1439 |
|
|
|| BITS_PER_UNIT != 8)
|
| 1440 |
|
|
break;
|
| 1441 |
|
|
else
|
| 1442 |
|
|
{
|
| 1443 |
|
|
tree callee1;
|
| 1444 |
|
|
tree ptr1, src1, str1, off1, len1, lhs1;
|
| 1445 |
|
|
tree ptr2 = gimple_call_arg (stmt2, 0);
|
| 1446 |
|
|
tree val2 = gimple_call_arg (stmt2, 1);
|
| 1447 |
|
|
tree len2 = gimple_call_arg (stmt2, 2);
|
| 1448 |
|
|
tree diff, vdef, new_str_cst;
|
| 1449 |
|
|
gimple use_stmt;
|
| 1450 |
|
|
unsigned int ptr1_align;
|
| 1451 |
|
|
unsigned HOST_WIDE_INT src_len;
|
| 1452 |
|
|
char *src_buf;
|
| 1453 |
|
|
use_operand_p use_p;
|
| 1454 |
|
|
|
| 1455 |
|
|
if (!host_integerp (val2, 0)
|
| 1456 |
|
|
|| !host_integerp (len2, 1))
|
| 1457 |
|
|
break;
|
| 1458 |
|
|
if (is_gimple_call (stmt1))
|
| 1459 |
|
|
{
|
| 1460 |
|
|
/* If first stmt is a call, it needs to be memcpy
|
| 1461 |
|
|
or mempcpy, with string literal as second argument and
|
| 1462 |
|
|
constant length. */
|
| 1463 |
|
|
callee1 = gimple_call_fndecl (stmt1);
|
| 1464 |
|
|
if (callee1 == NULL_TREE
|
| 1465 |
|
|
|| DECL_BUILT_IN_CLASS (callee1) != BUILT_IN_NORMAL
|
| 1466 |
|
|
|| gimple_call_num_args (stmt1) != 3)
|
| 1467 |
|
|
break;
|
| 1468 |
|
|
if (DECL_FUNCTION_CODE (callee1) != BUILT_IN_MEMCPY
|
| 1469 |
|
|
&& DECL_FUNCTION_CODE (callee1) != BUILT_IN_MEMPCPY)
|
| 1470 |
|
|
break;
|
| 1471 |
|
|
ptr1 = gimple_call_arg (stmt1, 0);
|
| 1472 |
|
|
src1 = gimple_call_arg (stmt1, 1);
|
| 1473 |
|
|
len1 = gimple_call_arg (stmt1, 2);
|
| 1474 |
|
|
lhs1 = gimple_call_lhs (stmt1);
|
| 1475 |
|
|
if (!host_integerp (len1, 1))
|
| 1476 |
|
|
break;
|
| 1477 |
|
|
str1 = string_constant (src1, &off1);
|
| 1478 |
|
|
if (str1 == NULL_TREE)
|
| 1479 |
|
|
break;
|
| 1480 |
|
|
if (!host_integerp (off1, 1)
|
| 1481 |
|
|
|| compare_tree_int (off1, TREE_STRING_LENGTH (str1) - 1) > 0
|
| 1482 |
|
|
|| compare_tree_int (len1, TREE_STRING_LENGTH (str1)
|
| 1483 |
|
|
- tree_low_cst (off1, 1)) > 0
|
| 1484 |
|
|
|| TREE_CODE (TREE_TYPE (str1)) != ARRAY_TYPE
|
| 1485 |
|
|
|| TYPE_MODE (TREE_TYPE (TREE_TYPE (str1)))
|
| 1486 |
|
|
!= TYPE_MODE (char_type_node))
|
| 1487 |
|
|
break;
|
| 1488 |
|
|
}
|
| 1489 |
|
|
else if (gimple_assign_single_p (stmt1))
|
| 1490 |
|
|
{
|
| 1491 |
|
|
/* Otherwise look for length 1 memcpy optimized into
|
| 1492 |
|
|
assignment. */
|
| 1493 |
|
|
ptr1 = gimple_assign_lhs (stmt1);
|
| 1494 |
|
|
src1 = gimple_assign_rhs1 (stmt1);
|
| 1495 |
|
|
if (TREE_CODE (ptr1) != MEM_REF
|
| 1496 |
|
|
|| TYPE_MODE (TREE_TYPE (ptr1)) != TYPE_MODE (char_type_node)
|
| 1497 |
|
|
|| !host_integerp (src1, 0))
|
| 1498 |
|
|
break;
|
| 1499 |
|
|
ptr1 = build_fold_addr_expr (ptr1);
|
| 1500 |
|
|
callee1 = NULL_TREE;
|
| 1501 |
|
|
len1 = size_one_node;
|
| 1502 |
|
|
lhs1 = NULL_TREE;
|
| 1503 |
|
|
off1 = size_zero_node;
|
| 1504 |
|
|
str1 = NULL_TREE;
|
| 1505 |
|
|
}
|
| 1506 |
|
|
else
|
| 1507 |
|
|
break;
|
| 1508 |
|
|
|
| 1509 |
|
|
diff = constant_pointer_difference (ptr1, ptr2);
|
| 1510 |
|
|
if (diff == NULL && lhs1 != NULL)
|
| 1511 |
|
|
{
|
| 1512 |
|
|
diff = constant_pointer_difference (lhs1, ptr2);
|
| 1513 |
|
|
if (DECL_FUNCTION_CODE (callee1) == BUILT_IN_MEMPCPY
|
| 1514 |
|
|
&& diff != NULL)
|
| 1515 |
|
|
diff = size_binop (PLUS_EXPR, diff,
|
| 1516 |
|
|
fold_convert (sizetype, len1));
|
| 1517 |
|
|
}
|
| 1518 |
|
|
/* If the difference between the second and first destination pointer
|
| 1519 |
|
|
is not constant, or is bigger than memcpy length, bail out. */
|
| 1520 |
|
|
if (diff == NULL
|
| 1521 |
|
|
|| !host_integerp (diff, 1)
|
| 1522 |
|
|
|| tree_int_cst_lt (len1, diff))
|
| 1523 |
|
|
break;
|
| 1524 |
|
|
|
| 1525 |
|
|
/* Use maximum of difference plus memset length and memcpy length
|
| 1526 |
|
|
as the new memcpy length, if it is too big, bail out. */
|
| 1527 |
|
|
src_len = tree_low_cst (diff, 1);
|
| 1528 |
|
|
src_len += tree_low_cst (len2, 1);
|
| 1529 |
|
|
if (src_len < (unsigned HOST_WIDE_INT) tree_low_cst (len1, 1))
|
| 1530 |
|
|
src_len = tree_low_cst (len1, 1);
|
| 1531 |
|
|
if (src_len > 1024)
|
| 1532 |
|
|
break;
|
| 1533 |
|
|
|
| 1534 |
|
|
/* If mempcpy value is used elsewhere, bail out, as mempcpy
|
| 1535 |
|
|
with bigger length will return different result. */
|
| 1536 |
|
|
if (lhs1 != NULL_TREE
|
| 1537 |
|
|
&& DECL_FUNCTION_CODE (callee1) == BUILT_IN_MEMPCPY
|
| 1538 |
|
|
&& (TREE_CODE (lhs1) != SSA_NAME
|
| 1539 |
|
|
|| !single_imm_use (lhs1, &use_p, &use_stmt)
|
| 1540 |
|
|
|| use_stmt != stmt2))
|
| 1541 |
|
|
break;
|
| 1542 |
|
|
|
| 1543 |
|
|
/* If anything reads memory in between memcpy and memset
|
| 1544 |
|
|
call, the modified memcpy call might change it. */
|
| 1545 |
|
|
vdef = gimple_vdef (stmt1);
|
| 1546 |
|
|
if (vdef != NULL
|
| 1547 |
|
|
&& (!single_imm_use (vdef, &use_p, &use_stmt)
|
| 1548 |
|
|
|| use_stmt != stmt2))
|
| 1549 |
|
|
break;
|
| 1550 |
|
|
|
| 1551 |
|
|
ptr1_align = get_pointer_alignment (ptr1);
|
| 1552 |
|
|
/* Construct the new source string literal. */
|
| 1553 |
|
|
src_buf = XALLOCAVEC (char, src_len + 1);
|
| 1554 |
|
|
if (callee1)
|
| 1555 |
|
|
memcpy (src_buf,
|
| 1556 |
|
|
TREE_STRING_POINTER (str1) + tree_low_cst (off1, 1),
|
| 1557 |
|
|
tree_low_cst (len1, 1));
|
| 1558 |
|
|
else
|
| 1559 |
|
|
src_buf[0] = tree_low_cst (src1, 0);
|
| 1560 |
|
|
memset (src_buf + tree_low_cst (diff, 1),
|
| 1561 |
|
|
tree_low_cst (val2, 1), tree_low_cst (len2, 1));
|
| 1562 |
|
|
src_buf[src_len] = '\0';
|
| 1563 |
|
|
/* Neither builtin_strncpy_read_str nor builtin_memcpy_read_str
|
| 1564 |
|
|
handle embedded '\0's. */
|
| 1565 |
|
|
if (strlen (src_buf) != src_len)
|
| 1566 |
|
|
break;
|
| 1567 |
|
|
rtl_profile_for_bb (gimple_bb (stmt2));
|
| 1568 |
|
|
/* If the new memcpy wouldn't be emitted by storing the literal
|
| 1569 |
|
|
by pieces, this optimization might enlarge .rodata too much,
|
| 1570 |
|
|
as commonly used string literals couldn't be shared any
|
| 1571 |
|
|
longer. */
|
| 1572 |
|
|
if (!can_store_by_pieces (src_len,
|
| 1573 |
|
|
builtin_strncpy_read_str,
|
| 1574 |
|
|
src_buf, ptr1_align, false))
|
| 1575 |
|
|
break;
|
| 1576 |
|
|
|
| 1577 |
|
|
new_str_cst = build_string_literal (src_len, src_buf);
|
| 1578 |
|
|
if (callee1)
|
| 1579 |
|
|
{
|
| 1580 |
|
|
/* If STMT1 is a mem{,p}cpy call, adjust it and remove
|
| 1581 |
|
|
memset call. */
|
| 1582 |
|
|
if (lhs1 && DECL_FUNCTION_CODE (callee1) == BUILT_IN_MEMPCPY)
|
| 1583 |
|
|
gimple_call_set_lhs (stmt1, NULL_TREE);
|
| 1584 |
|
|
gimple_call_set_arg (stmt1, 1, new_str_cst);
|
| 1585 |
|
|
gimple_call_set_arg (stmt1, 2,
|
| 1586 |
|
|
build_int_cst (TREE_TYPE (len1), src_len));
|
| 1587 |
|
|
update_stmt (stmt1);
|
| 1588 |
|
|
unlink_stmt_vdef (stmt2);
|
| 1589 |
|
|
gsi_remove (gsi_p, true);
|
| 1590 |
|
|
release_defs (stmt2);
|
| 1591 |
|
|
if (lhs1 && DECL_FUNCTION_CODE (callee1) == BUILT_IN_MEMPCPY)
|
| 1592 |
|
|
release_ssa_name (lhs1);
|
| 1593 |
|
|
return true;
|
| 1594 |
|
|
}
|
| 1595 |
|
|
else
|
| 1596 |
|
|
{
|
| 1597 |
|
|
/* Otherwise, if STMT1 is length 1 memcpy optimized into
|
| 1598 |
|
|
assignment, remove STMT1 and change memset call into
|
| 1599 |
|
|
memcpy call. */
|
| 1600 |
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (stmt1);
|
| 1601 |
|
|
|
| 1602 |
|
|
if (!is_gimple_val (ptr1))
|
| 1603 |
|
|
ptr1 = force_gimple_operand_gsi (gsi_p, ptr1, true, NULL_TREE,
|
| 1604 |
|
|
true, GSI_SAME_STMT);
|
| 1605 |
|
|
gimple_call_set_fndecl (stmt2,
|
| 1606 |
|
|
builtin_decl_explicit (BUILT_IN_MEMCPY));
|
| 1607 |
|
|
gimple_call_set_arg (stmt2, 0, ptr1);
|
| 1608 |
|
|
gimple_call_set_arg (stmt2, 1, new_str_cst);
|
| 1609 |
|
|
gimple_call_set_arg (stmt2, 2,
|
| 1610 |
|
|
build_int_cst (TREE_TYPE (len2), src_len));
|
| 1611 |
|
|
unlink_stmt_vdef (stmt1);
|
| 1612 |
|
|
gsi_remove (&gsi, true);
|
| 1613 |
|
|
release_defs (stmt1);
|
| 1614 |
|
|
update_stmt (stmt2);
|
| 1615 |
|
|
return false;
|
| 1616 |
|
|
}
|
| 1617 |
|
|
}
|
| 1618 |
|
|
break;
|
| 1619 |
|
|
default:
|
| 1620 |
|
|
break;
|
| 1621 |
|
|
}
|
| 1622 |
|
|
return false;
|
| 1623 |
|
|
}
|
| 1624 |
|
|
|
| 1625 |
|
|
/* Checks if expression has type of one-bit precision, or is a known
|
| 1626 |
|
|
truth-valued expression. */
|
| 1627 |
|
|
static bool
|
| 1628 |
|
|
truth_valued_ssa_name (tree name)
|
| 1629 |
|
|
{
|
| 1630 |
|
|
gimple def;
|
| 1631 |
|
|
tree type = TREE_TYPE (name);
|
| 1632 |
|
|
|
| 1633 |
|
|
if (!INTEGRAL_TYPE_P (type))
|
| 1634 |
|
|
return false;
|
| 1635 |
|
|
/* Don't check here for BOOLEAN_TYPE as the precision isn't
|
| 1636 |
|
|
necessarily one and so ~X is not equal to !X. */
|
| 1637 |
|
|
if (TYPE_PRECISION (type) == 1)
|
| 1638 |
|
|
return true;
|
| 1639 |
|
|
def = SSA_NAME_DEF_STMT (name);
|
| 1640 |
|
|
if (is_gimple_assign (def))
|
| 1641 |
|
|
return truth_value_p (gimple_assign_rhs_code (def));
|
| 1642 |
|
|
return false;
|
| 1643 |
|
|
}
|
| 1644 |
|
|
|
| 1645 |
|
|
/* Helper routine for simplify_bitwise_binary_1 function.
|
| 1646 |
|
|
Return for the SSA name NAME the expression X if it mets condition
|
| 1647 |
|
|
NAME = !X. Otherwise return NULL_TREE.
|
| 1648 |
|
|
Detected patterns for NAME = !X are:
|
| 1649 |
|
|
!X and X == 0 for X with integral type.
|
| 1650 |
|
|
X ^ 1, X != 1,or ~X for X with integral type with precision of one. */
|
| 1651 |
|
|
static tree
|
| 1652 |
|
|
lookup_logical_inverted_value (tree name)
|
| 1653 |
|
|
{
|
| 1654 |
|
|
tree op1, op2;
|
| 1655 |
|
|
enum tree_code code;
|
| 1656 |
|
|
gimple def;
|
| 1657 |
|
|
|
| 1658 |
|
|
/* If name has none-intergal type, or isn't a SSA_NAME, then
|
| 1659 |
|
|
return. */
|
| 1660 |
|
|
if (TREE_CODE (name) != SSA_NAME
|
| 1661 |
|
|
|| !INTEGRAL_TYPE_P (TREE_TYPE (name)))
|
| 1662 |
|
|
return NULL_TREE;
|
| 1663 |
|
|
def = SSA_NAME_DEF_STMT (name);
|
| 1664 |
|
|
if (!is_gimple_assign (def))
|
| 1665 |
|
|
return NULL_TREE;
|
| 1666 |
|
|
|
| 1667 |
|
|
code = gimple_assign_rhs_code (def);
|
| 1668 |
|
|
op1 = gimple_assign_rhs1 (def);
|
| 1669 |
|
|
op2 = NULL_TREE;
|
| 1670 |
|
|
|
| 1671 |
|
|
/* Get for EQ_EXPR or BIT_XOR_EXPR operation the second operand.
|
| 1672 |
|
|
If CODE isn't an EQ_EXPR, BIT_XOR_EXPR, or BIT_NOT_EXPR, then return. */
|
| 1673 |
|
|
if (code == EQ_EXPR || code == NE_EXPR
|
| 1674 |
|
|
|| code == BIT_XOR_EXPR)
|
| 1675 |
|
|
op2 = gimple_assign_rhs2 (def);
|
| 1676 |
|
|
|
| 1677 |
|
|
switch (code)
|
| 1678 |
|
|
{
|
| 1679 |
|
|
case BIT_NOT_EXPR:
|
| 1680 |
|
|
if (truth_valued_ssa_name (name))
|
| 1681 |
|
|
return op1;
|
| 1682 |
|
|
break;
|
| 1683 |
|
|
case EQ_EXPR:
|
| 1684 |
|
|
/* Check if we have X == 0 and X has an integral type. */
|
| 1685 |
|
|
if (!INTEGRAL_TYPE_P (TREE_TYPE (op1)))
|
| 1686 |
|
|
break;
|
| 1687 |
|
|
if (integer_zerop (op2))
|
| 1688 |
|
|
return op1;
|
| 1689 |
|
|
break;
|
| 1690 |
|
|
case NE_EXPR:
|
| 1691 |
|
|
/* Check if we have X != 1 and X is a truth-valued. */
|
| 1692 |
|
|
if (!INTEGRAL_TYPE_P (TREE_TYPE (op1)))
|
| 1693 |
|
|
break;
|
| 1694 |
|
|
if (integer_onep (op2) && truth_valued_ssa_name (op1))
|
| 1695 |
|
|
return op1;
|
| 1696 |
|
|
break;
|
| 1697 |
|
|
case BIT_XOR_EXPR:
|
| 1698 |
|
|
/* Check if we have X ^ 1 and X is truth valued. */
|
| 1699 |
|
|
if (integer_onep (op2) && truth_valued_ssa_name (op1))
|
| 1700 |
|
|
return op1;
|
| 1701 |
|
|
break;
|
| 1702 |
|
|
default:
|
| 1703 |
|
|
break;
|
| 1704 |
|
|
}
|
| 1705 |
|
|
|
| 1706 |
|
|
return NULL_TREE;
|
| 1707 |
|
|
}
|
| 1708 |
|
|
|
| 1709 |
|
|
/* Optimize ARG1 CODE ARG2 to a constant for bitwise binary
|
| 1710 |
|
|
operations CODE, if one operand has the logically inverted
|
| 1711 |
|
|
value of the other. */
|
| 1712 |
|
|
static tree
|
| 1713 |
|
|
simplify_bitwise_binary_1 (enum tree_code code, tree type,
|
| 1714 |
|
|
tree arg1, tree arg2)
|
| 1715 |
|
|
{
|
| 1716 |
|
|
tree anot;
|
| 1717 |
|
|
|
| 1718 |
|
|
/* If CODE isn't a bitwise binary operation, return NULL_TREE. */
|
| 1719 |
|
|
if (code != BIT_AND_EXPR && code != BIT_IOR_EXPR
|
| 1720 |
|
|
&& code != BIT_XOR_EXPR)
|
| 1721 |
|
|
return NULL_TREE;
|
| 1722 |
|
|
|
| 1723 |
|
|
/* First check if operands ARG1 and ARG2 are equal. If so
|
| 1724 |
|
|
return NULL_TREE as this optimization is handled fold_stmt. */
|
| 1725 |
|
|
if (arg1 == arg2)
|
| 1726 |
|
|
return NULL_TREE;
|
| 1727 |
|
|
/* See if we have in arguments logical-not patterns. */
|
| 1728 |
|
|
if (((anot = lookup_logical_inverted_value (arg1)) == NULL_TREE
|
| 1729 |
|
|
|| anot != arg2)
|
| 1730 |
|
|
&& ((anot = lookup_logical_inverted_value (arg2)) == NULL_TREE
|
| 1731 |
|
|
|| anot != arg1))
|
| 1732 |
|
|
return NULL_TREE;
|
| 1733 |
|
|
|
| 1734 |
|
|
/* X & !X -> 0. */
|
| 1735 |
|
|
if (code == BIT_AND_EXPR)
|
| 1736 |
|
|
return fold_convert (type, integer_zero_node);
|
| 1737 |
|
|
/* X | !X -> 1 and X ^ !X -> 1, if X is truth-valued. */
|
| 1738 |
|
|
if (truth_valued_ssa_name (anot))
|
| 1739 |
|
|
return fold_convert (type, integer_one_node);
|
| 1740 |
|
|
|
| 1741 |
|
|
/* ??? Otherwise result is (X != 0 ? X : 1). not handled. */
|
| 1742 |
|
|
return NULL_TREE;
|
| 1743 |
|
|
}
|
| 1744 |
|
|
|
| 1745 |
|
|
/* Simplify bitwise binary operations.
|
| 1746 |
|
|
Return true if a transformation applied, otherwise return false. */
|
| 1747 |
|
|
|
| 1748 |
|
|
static bool
|
| 1749 |
|
|
simplify_bitwise_binary (gimple_stmt_iterator *gsi)
|
| 1750 |
|
|
{
|
| 1751 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
| 1752 |
|
|
tree arg1 = gimple_assign_rhs1 (stmt);
|
| 1753 |
|
|
tree arg2 = gimple_assign_rhs2 (stmt);
|
| 1754 |
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
| 1755 |
|
|
tree res;
|
| 1756 |
|
|
gimple def1 = NULL, def2 = NULL;
|
| 1757 |
|
|
tree def1_arg1, def2_arg1;
|
| 1758 |
|
|
enum tree_code def1_code, def2_code;
|
| 1759 |
|
|
|
| 1760 |
|
|
def1_code = TREE_CODE (arg1);
|
| 1761 |
|
|
def1_arg1 = arg1;
|
| 1762 |
|
|
if (TREE_CODE (arg1) == SSA_NAME)
|
| 1763 |
|
|
{
|
| 1764 |
|
|
def1 = SSA_NAME_DEF_STMT (arg1);
|
| 1765 |
|
|
if (is_gimple_assign (def1))
|
| 1766 |
|
|
{
|
| 1767 |
|
|
def1_code = gimple_assign_rhs_code (def1);
|
| 1768 |
|
|
def1_arg1 = gimple_assign_rhs1 (def1);
|
| 1769 |
|
|
}
|
| 1770 |
|
|
}
|
| 1771 |
|
|
|
| 1772 |
|
|
def2_code = TREE_CODE (arg2);
|
| 1773 |
|
|
def2_arg1 = arg2;
|
| 1774 |
|
|
if (TREE_CODE (arg2) == SSA_NAME)
|
| 1775 |
|
|
{
|
| 1776 |
|
|
def2 = SSA_NAME_DEF_STMT (arg2);
|
| 1777 |
|
|
if (is_gimple_assign (def2))
|
| 1778 |
|
|
{
|
| 1779 |
|
|
def2_code = gimple_assign_rhs_code (def2);
|
| 1780 |
|
|
def2_arg1 = gimple_assign_rhs1 (def2);
|
| 1781 |
|
|
}
|
| 1782 |
|
|
}
|
| 1783 |
|
|
|
| 1784 |
|
|
/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST)). */
|
| 1785 |
|
|
if (TREE_CODE (arg2) == INTEGER_CST
|
| 1786 |
|
|
&& CONVERT_EXPR_CODE_P (def1_code)
|
| 1787 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (def1_arg1))
|
| 1788 |
|
|
&& int_fits_type_p (arg2, TREE_TYPE (def1_arg1)))
|
| 1789 |
|
|
{
|
| 1790 |
|
|
gimple newop;
|
| 1791 |
|
|
tree tem = create_tmp_reg (TREE_TYPE (def1_arg1), NULL);
|
| 1792 |
|
|
newop =
|
| 1793 |
|
|
gimple_build_assign_with_ops (code, tem, def1_arg1,
|
| 1794 |
|
|
fold_convert_loc (gimple_location (stmt),
|
| 1795 |
|
|
TREE_TYPE (def1_arg1),
|
| 1796 |
|
|
arg2));
|
| 1797 |
|
|
tem = make_ssa_name (tem, newop);
|
| 1798 |
|
|
gimple_assign_set_lhs (newop, tem);
|
| 1799 |
|
|
gimple_set_location (newop, gimple_location (stmt));
|
| 1800 |
|
|
gsi_insert_before (gsi, newop, GSI_SAME_STMT);
|
| 1801 |
|
|
gimple_assign_set_rhs_with_ops_1 (gsi, NOP_EXPR,
|
| 1802 |
|
|
tem, NULL_TREE, NULL_TREE);
|
| 1803 |
|
|
update_stmt (gsi_stmt (*gsi));
|
| 1804 |
|
|
return true;
|
| 1805 |
|
|
}
|
| 1806 |
|
|
|
| 1807 |
|
|
/* For bitwise binary operations apply operand conversions to the
|
| 1808 |
|
|
binary operation result instead of to the operands. This allows
|
| 1809 |
|
|
to combine successive conversions and bitwise binary operations. */
|
| 1810 |
|
|
if (CONVERT_EXPR_CODE_P (def1_code)
|
| 1811 |
|
|
&& CONVERT_EXPR_CODE_P (def2_code)
|
| 1812 |
|
|
&& types_compatible_p (TREE_TYPE (def1_arg1), TREE_TYPE (def2_arg1))
|
| 1813 |
|
|
/* Make sure that the conversion widens the operands, or has same
|
| 1814 |
|
|
precision, or that it changes the operation to a bitfield
|
| 1815 |
|
|
precision. */
|
| 1816 |
|
|
&& ((TYPE_PRECISION (TREE_TYPE (def1_arg1))
|
| 1817 |
|
|
<= TYPE_PRECISION (TREE_TYPE (arg1)))
|
| 1818 |
|
|
|| (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (arg1)))
|
| 1819 |
|
|
!= MODE_INT)
|
| 1820 |
|
|
|| (TYPE_PRECISION (TREE_TYPE (arg1))
|
| 1821 |
|
|
!= GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg1))))))
|
| 1822 |
|
|
{
|
| 1823 |
|
|
gimple newop;
|
| 1824 |
|
|
tree tem = create_tmp_reg (TREE_TYPE (def1_arg1),
|
| 1825 |
|
|
NULL);
|
| 1826 |
|
|
newop = gimple_build_assign_with_ops (code, tem, def1_arg1, def2_arg1);
|
| 1827 |
|
|
tem = make_ssa_name (tem, newop);
|
| 1828 |
|
|
gimple_assign_set_lhs (newop, tem);
|
| 1829 |
|
|
gimple_set_location (newop, gimple_location (stmt));
|
| 1830 |
|
|
gsi_insert_before (gsi, newop, GSI_SAME_STMT);
|
| 1831 |
|
|
gimple_assign_set_rhs_with_ops_1 (gsi, NOP_EXPR,
|
| 1832 |
|
|
tem, NULL_TREE, NULL_TREE);
|
| 1833 |
|
|
update_stmt (gsi_stmt (*gsi));
|
| 1834 |
|
|
return true;
|
| 1835 |
|
|
}
|
| 1836 |
|
|
|
| 1837 |
|
|
/* (a | CST1) & CST2 -> (a & CST2) | (CST1 & CST2). */
|
| 1838 |
|
|
if (code == BIT_AND_EXPR
|
| 1839 |
|
|
&& def1_code == BIT_IOR_EXPR
|
| 1840 |
|
|
&& TREE_CODE (arg2) == INTEGER_CST
|
| 1841 |
|
|
&& TREE_CODE (gimple_assign_rhs2 (def1)) == INTEGER_CST)
|
| 1842 |
|
|
{
|
| 1843 |
|
|
tree cst = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg2),
|
| 1844 |
|
|
arg2, gimple_assign_rhs2 (def1));
|
| 1845 |
|
|
tree tem;
|
| 1846 |
|
|
gimple newop;
|
| 1847 |
|
|
if (integer_zerop (cst))
|
| 1848 |
|
|
{
|
| 1849 |
|
|
gimple_assign_set_rhs1 (stmt, def1_arg1);
|
| 1850 |
|
|
update_stmt (stmt);
|
| 1851 |
|
|
return true;
|
| 1852 |
|
|
}
|
| 1853 |
|
|
tem = create_tmp_reg (TREE_TYPE (arg2), NULL);
|
| 1854 |
|
|
newop = gimple_build_assign_with_ops (BIT_AND_EXPR,
|
| 1855 |
|
|
tem, def1_arg1, arg2);
|
| 1856 |
|
|
tem = make_ssa_name (tem, newop);
|
| 1857 |
|
|
gimple_assign_set_lhs (newop, tem);
|
| 1858 |
|
|
gimple_set_location (newop, gimple_location (stmt));
|
| 1859 |
|
|
/* Make sure to re-process the new stmt as it's walking upwards. */
|
| 1860 |
|
|
gsi_insert_before (gsi, newop, GSI_NEW_STMT);
|
| 1861 |
|
|
gimple_assign_set_rhs1 (stmt, tem);
|
| 1862 |
|
|
gimple_assign_set_rhs2 (stmt, cst);
|
| 1863 |
|
|
gimple_assign_set_rhs_code (stmt, BIT_IOR_EXPR);
|
| 1864 |
|
|
update_stmt (stmt);
|
| 1865 |
|
|
return true;
|
| 1866 |
|
|
}
|
| 1867 |
|
|
|
| 1868 |
|
|
/* Combine successive equal operations with constants. */
|
| 1869 |
|
|
if ((code == BIT_AND_EXPR
|
| 1870 |
|
|
|| code == BIT_IOR_EXPR
|
| 1871 |
|
|
|| code == BIT_XOR_EXPR)
|
| 1872 |
|
|
&& def1_code == code
|
| 1873 |
|
|
&& TREE_CODE (arg2) == INTEGER_CST
|
| 1874 |
|
|
&& TREE_CODE (gimple_assign_rhs2 (def1)) == INTEGER_CST)
|
| 1875 |
|
|
{
|
| 1876 |
|
|
tree cst = fold_build2 (code, TREE_TYPE (arg2),
|
| 1877 |
|
|
arg2, gimple_assign_rhs2 (def1));
|
| 1878 |
|
|
gimple_assign_set_rhs1 (stmt, def1_arg1);
|
| 1879 |
|
|
gimple_assign_set_rhs2 (stmt, cst);
|
| 1880 |
|
|
update_stmt (stmt);
|
| 1881 |
|
|
return true;
|
| 1882 |
|
|
}
|
| 1883 |
|
|
|
| 1884 |
|
|
/* Canonicalize X ^ ~0 to ~X. */
|
| 1885 |
|
|
if (code == BIT_XOR_EXPR
|
| 1886 |
|
|
&& TREE_CODE (arg2) == INTEGER_CST
|
| 1887 |
|
|
&& integer_all_onesp (arg2))
|
| 1888 |
|
|
{
|
| 1889 |
|
|
gimple_assign_set_rhs_with_ops (gsi, BIT_NOT_EXPR, arg1, NULL_TREE);
|
| 1890 |
|
|
gcc_assert (gsi_stmt (*gsi) == stmt);
|
| 1891 |
|
|
update_stmt (stmt);
|
| 1892 |
|
|
return true;
|
| 1893 |
|
|
}
|
| 1894 |
|
|
|
| 1895 |
|
|
/* Try simple folding for X op !X, and X op X. */
|
| 1896 |
|
|
res = simplify_bitwise_binary_1 (code, TREE_TYPE (arg1), arg1, arg2);
|
| 1897 |
|
|
if (res != NULL_TREE)
|
| 1898 |
|
|
{
|
| 1899 |
|
|
gimple_assign_set_rhs_from_tree (gsi, res);
|
| 1900 |
|
|
update_stmt (gsi_stmt (*gsi));
|
| 1901 |
|
|
return true;
|
| 1902 |
|
|
}
|
| 1903 |
|
|
|
| 1904 |
|
|
return false;
|
| 1905 |
|
|
}
|
| 1906 |
|
|
|
| 1907 |
|
|
|
| 1908 |
|
|
/* Perform re-associations of the plus or minus statement STMT that are
|
| 1909 |
|
|
always permitted. Returns true if the CFG was changed. */
|
| 1910 |
|
|
|
| 1911 |
|
|
static bool
|
| 1912 |
|
|
associate_plusminus (gimple_stmt_iterator *gsi)
|
| 1913 |
|
|
{
|
| 1914 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
| 1915 |
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
| 1916 |
|
|
tree rhs2 = gimple_assign_rhs2 (stmt);
|
| 1917 |
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
| 1918 |
|
|
bool changed;
|
| 1919 |
|
|
|
| 1920 |
|
|
/* We can't reassociate at all for saturating types. */
|
| 1921 |
|
|
if (TYPE_SATURATING (TREE_TYPE (rhs1)))
|
| 1922 |
|
|
return false;
|
| 1923 |
|
|
|
| 1924 |
|
|
/* First contract negates. */
|
| 1925 |
|
|
do
|
| 1926 |
|
|
{
|
| 1927 |
|
|
changed = false;
|
| 1928 |
|
|
|
| 1929 |
|
|
/* A +- (-B) -> A -+ B. */
|
| 1930 |
|
|
if (TREE_CODE (rhs2) == SSA_NAME)
|
| 1931 |
|
|
{
|
| 1932 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (rhs2);
|
| 1933 |
|
|
if (is_gimple_assign (def_stmt)
|
| 1934 |
|
|
&& gimple_assign_rhs_code (def_stmt) == NEGATE_EXPR
|
| 1935 |
|
|
&& can_propagate_from (def_stmt))
|
| 1936 |
|
|
{
|
| 1937 |
|
|
code = (code == MINUS_EXPR) ? PLUS_EXPR : MINUS_EXPR;
|
| 1938 |
|
|
gimple_assign_set_rhs_code (stmt, code);
|
| 1939 |
|
|
rhs2 = gimple_assign_rhs1 (def_stmt);
|
| 1940 |
|
|
gimple_assign_set_rhs2 (stmt, rhs2);
|
| 1941 |
|
|
gimple_set_modified (stmt, true);
|
| 1942 |
|
|
changed = true;
|
| 1943 |
|
|
}
|
| 1944 |
|
|
}
|
| 1945 |
|
|
|
| 1946 |
|
|
/* (-A) + B -> B - A. */
|
| 1947 |
|
|
if (TREE_CODE (rhs1) == SSA_NAME
|
| 1948 |
|
|
&& code == PLUS_EXPR)
|
| 1949 |
|
|
{
|
| 1950 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (rhs1);
|
| 1951 |
|
|
if (is_gimple_assign (def_stmt)
|
| 1952 |
|
|
&& gimple_assign_rhs_code (def_stmt) == NEGATE_EXPR
|
| 1953 |
|
|
&& can_propagate_from (def_stmt))
|
| 1954 |
|
|
{
|
| 1955 |
|
|
code = MINUS_EXPR;
|
| 1956 |
|
|
gimple_assign_set_rhs_code (stmt, code);
|
| 1957 |
|
|
rhs1 = rhs2;
|
| 1958 |
|
|
gimple_assign_set_rhs1 (stmt, rhs1);
|
| 1959 |
|
|
rhs2 = gimple_assign_rhs1 (def_stmt);
|
| 1960 |
|
|
gimple_assign_set_rhs2 (stmt, rhs2);
|
| 1961 |
|
|
gimple_set_modified (stmt, true);
|
| 1962 |
|
|
changed = true;
|
| 1963 |
|
|
}
|
| 1964 |
|
|
}
|
| 1965 |
|
|
}
|
| 1966 |
|
|
while (changed);
|
| 1967 |
|
|
|
| 1968 |
|
|
/* We can't reassociate floating-point or fixed-point plus or minus
|
| 1969 |
|
|
because of saturation to +-Inf. */
|
| 1970 |
|
|
if (FLOAT_TYPE_P (TREE_TYPE (rhs1))
|
| 1971 |
|
|
|| FIXED_POINT_TYPE_P (TREE_TYPE (rhs1)))
|
| 1972 |
|
|
goto out;
|
| 1973 |
|
|
|
| 1974 |
|
|
/* Second match patterns that allow contracting a plus-minus pair
|
| 1975 |
|
|
irrespective of overflow issues.
|
| 1976 |
|
|
|
| 1977 |
|
|
(A +- B) - A -> +- B
|
| 1978 |
|
|
(A +- B) -+ B -> A
|
| 1979 |
|
|
(CST +- A) +- CST -> CST +- A
|
| 1980 |
|
|
(A + CST) +- CST -> A + CST
|
| 1981 |
|
|
~A + A -> -1
|
| 1982 |
|
|
~A + 1 -> -A
|
| 1983 |
|
|
A - (A +- B) -> -+ B
|
| 1984 |
|
|
A +- (B +- A) -> +- B
|
| 1985 |
|
|
CST +- (CST +- A) -> CST +- A
|
| 1986 |
|
|
CST +- (A +- CST) -> CST +- A
|
| 1987 |
|
|
A + ~A -> -1
|
| 1988 |
|
|
|
| 1989 |
|
|
via commutating the addition and contracting operations to zero
|
| 1990 |
|
|
by reassociation. */
|
| 1991 |
|
|
|
| 1992 |
|
|
if (TREE_CODE (rhs1) == SSA_NAME)
|
| 1993 |
|
|
{
|
| 1994 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (rhs1);
|
| 1995 |
|
|
if (is_gimple_assign (def_stmt) && can_propagate_from (def_stmt))
|
| 1996 |
|
|
{
|
| 1997 |
|
|
enum tree_code def_code = gimple_assign_rhs_code (def_stmt);
|
| 1998 |
|
|
if (def_code == PLUS_EXPR
|
| 1999 |
|
|
|| def_code == MINUS_EXPR)
|
| 2000 |
|
|
{
|
| 2001 |
|
|
tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
|
| 2002 |
|
|
tree def_rhs2 = gimple_assign_rhs2 (def_stmt);
|
| 2003 |
|
|
if (operand_equal_p (def_rhs1, rhs2, 0)
|
| 2004 |
|
|
&& code == MINUS_EXPR)
|
| 2005 |
|
|
{
|
| 2006 |
|
|
/* (A +- B) - A -> +- B. */
|
| 2007 |
|
|
code = ((def_code == PLUS_EXPR)
|
| 2008 |
|
|
? TREE_CODE (def_rhs2) : NEGATE_EXPR);
|
| 2009 |
|
|
rhs1 = def_rhs2;
|
| 2010 |
|
|
rhs2 = NULL_TREE;
|
| 2011 |
|
|
gimple_assign_set_rhs_with_ops (gsi, code, rhs1, NULL_TREE);
|
| 2012 |
|
|
gcc_assert (gsi_stmt (*gsi) == stmt);
|
| 2013 |
|
|
gimple_set_modified (stmt, true);
|
| 2014 |
|
|
}
|
| 2015 |
|
|
else if (operand_equal_p (def_rhs2, rhs2, 0)
|
| 2016 |
|
|
&& code != def_code)
|
| 2017 |
|
|
{
|
| 2018 |
|
|
/* (A +- B) -+ B -> A. */
|
| 2019 |
|
|
code = TREE_CODE (def_rhs1);
|
| 2020 |
|
|
rhs1 = def_rhs1;
|
| 2021 |
|
|
rhs2 = NULL_TREE;
|
| 2022 |
|
|
gimple_assign_set_rhs_with_ops (gsi, code, rhs1, NULL_TREE);
|
| 2023 |
|
|
gcc_assert (gsi_stmt (*gsi) == stmt);
|
| 2024 |
|
|
gimple_set_modified (stmt, true);
|
| 2025 |
|
|
}
|
| 2026 |
|
|
else if (TREE_CODE (rhs2) == INTEGER_CST
|
| 2027 |
|
|
&& TREE_CODE (def_rhs1) == INTEGER_CST)
|
| 2028 |
|
|
{
|
| 2029 |
|
|
/* (CST +- A) +- CST -> CST +- A. */
|
| 2030 |
|
|
tree cst = fold_binary (code, TREE_TYPE (rhs1),
|
| 2031 |
|
|
def_rhs1, rhs2);
|
| 2032 |
|
|
if (cst && !TREE_OVERFLOW (cst))
|
| 2033 |
|
|
{
|
| 2034 |
|
|
code = def_code;
|
| 2035 |
|
|
gimple_assign_set_rhs_code (stmt, code);
|
| 2036 |
|
|
rhs1 = cst;
|
| 2037 |
|
|
gimple_assign_set_rhs1 (stmt, rhs1);
|
| 2038 |
|
|
rhs2 = def_rhs2;
|
| 2039 |
|
|
gimple_assign_set_rhs2 (stmt, rhs2);
|
| 2040 |
|
|
gimple_set_modified (stmt, true);
|
| 2041 |
|
|
}
|
| 2042 |
|
|
}
|
| 2043 |
|
|
else if (TREE_CODE (rhs2) == INTEGER_CST
|
| 2044 |
|
|
&& TREE_CODE (def_rhs2) == INTEGER_CST
|
| 2045 |
|
|
&& def_code == PLUS_EXPR)
|
| 2046 |
|
|
{
|
| 2047 |
|
|
/* (A + CST) +- CST -> A + CST. */
|
| 2048 |
|
|
tree cst = fold_binary (code, TREE_TYPE (rhs1),
|
| 2049 |
|
|
def_rhs2, rhs2);
|
| 2050 |
|
|
if (cst && !TREE_OVERFLOW (cst))
|
| 2051 |
|
|
{
|
| 2052 |
|
|
code = PLUS_EXPR;
|
| 2053 |
|
|
gimple_assign_set_rhs_code (stmt, code);
|
| 2054 |
|
|
rhs1 = def_rhs1;
|
| 2055 |
|
|
gimple_assign_set_rhs1 (stmt, rhs1);
|
| 2056 |
|
|
rhs2 = cst;
|
| 2057 |
|
|
gimple_assign_set_rhs2 (stmt, rhs2);
|
| 2058 |
|
|
gimple_set_modified (stmt, true);
|
| 2059 |
|
|
}
|
| 2060 |
|
|
}
|
| 2061 |
|
|
}
|
| 2062 |
|
|
else if (def_code == BIT_NOT_EXPR
|
| 2063 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
|
| 2064 |
|
|
{
|
| 2065 |
|
|
tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
|
| 2066 |
|
|
if (code == PLUS_EXPR
|
| 2067 |
|
|
&& operand_equal_p (def_rhs1, rhs2, 0))
|
| 2068 |
|
|
{
|
| 2069 |
|
|
/* ~A + A -> -1. */
|
| 2070 |
|
|
code = INTEGER_CST;
|
| 2071 |
|
|
rhs1 = build_int_cst_type (TREE_TYPE (rhs2), -1);
|
| 2072 |
|
|
rhs2 = NULL_TREE;
|
| 2073 |
|
|
gimple_assign_set_rhs_with_ops (gsi, code, rhs1, NULL_TREE);
|
| 2074 |
|
|
gcc_assert (gsi_stmt (*gsi) == stmt);
|
| 2075 |
|
|
gimple_set_modified (stmt, true);
|
| 2076 |
|
|
}
|
| 2077 |
|
|
else if (code == PLUS_EXPR
|
| 2078 |
|
|
&& integer_onep (rhs1))
|
| 2079 |
|
|
{
|
| 2080 |
|
|
/* ~A + 1 -> -A. */
|
| 2081 |
|
|
code = NEGATE_EXPR;
|
| 2082 |
|
|
rhs1 = def_rhs1;
|
| 2083 |
|
|
rhs2 = NULL_TREE;
|
| 2084 |
|
|
gimple_assign_set_rhs_with_ops (gsi, code, rhs1, NULL_TREE);
|
| 2085 |
|
|
gcc_assert (gsi_stmt (*gsi) == stmt);
|
| 2086 |
|
|
gimple_set_modified (stmt, true);
|
| 2087 |
|
|
}
|
| 2088 |
|
|
}
|
| 2089 |
|
|
}
|
| 2090 |
|
|
}
|
| 2091 |
|
|
|
| 2092 |
|
|
if (rhs2 && TREE_CODE (rhs2) == SSA_NAME)
|
| 2093 |
|
|
{
|
| 2094 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (rhs2);
|
| 2095 |
|
|
if (is_gimple_assign (def_stmt) && can_propagate_from (def_stmt))
|
| 2096 |
|
|
{
|
| 2097 |
|
|
enum tree_code def_code = gimple_assign_rhs_code (def_stmt);
|
| 2098 |
|
|
if (def_code == PLUS_EXPR
|
| 2099 |
|
|
|| def_code == MINUS_EXPR)
|
| 2100 |
|
|
{
|
| 2101 |
|
|
tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
|
| 2102 |
|
|
tree def_rhs2 = gimple_assign_rhs2 (def_stmt);
|
| 2103 |
|
|
if (operand_equal_p (def_rhs1, rhs1, 0)
|
| 2104 |
|
|
&& code == MINUS_EXPR)
|
| 2105 |
|
|
{
|
| 2106 |
|
|
/* A - (A +- B) -> -+ B. */
|
| 2107 |
|
|
code = ((def_code == PLUS_EXPR)
|
| 2108 |
|
|
? NEGATE_EXPR : TREE_CODE (def_rhs2));
|
| 2109 |
|
|
rhs1 = def_rhs2;
|
| 2110 |
|
|
rhs2 = NULL_TREE;
|
| 2111 |
|
|
gimple_assign_set_rhs_with_ops (gsi, code, rhs1, NULL_TREE);
|
| 2112 |
|
|
gcc_assert (gsi_stmt (*gsi) == stmt);
|
| 2113 |
|
|
gimple_set_modified (stmt, true);
|
| 2114 |
|
|
}
|
| 2115 |
|
|
else if (operand_equal_p (def_rhs2, rhs1, 0)
|
| 2116 |
|
|
&& code != def_code)
|
| 2117 |
|
|
{
|
| 2118 |
|
|
/* A +- (B +- A) -> +- B. */
|
| 2119 |
|
|
code = ((code == PLUS_EXPR)
|
| 2120 |
|
|
? TREE_CODE (def_rhs1) : NEGATE_EXPR);
|
| 2121 |
|
|
rhs1 = def_rhs1;
|
| 2122 |
|
|
rhs2 = NULL_TREE;
|
| 2123 |
|
|
gimple_assign_set_rhs_with_ops (gsi, code, rhs1, NULL_TREE);
|
| 2124 |
|
|
gcc_assert (gsi_stmt (*gsi) == stmt);
|
| 2125 |
|
|
gimple_set_modified (stmt, true);
|
| 2126 |
|
|
}
|
| 2127 |
|
|
else if (TREE_CODE (rhs1) == INTEGER_CST
|
| 2128 |
|
|
&& TREE_CODE (def_rhs1) == INTEGER_CST)
|
| 2129 |
|
|
{
|
| 2130 |
|
|
/* CST +- (CST +- A) -> CST +- A. */
|
| 2131 |
|
|
tree cst = fold_binary (code, TREE_TYPE (rhs2),
|
| 2132 |
|
|
rhs1, def_rhs1);
|
| 2133 |
|
|
if (cst && !TREE_OVERFLOW (cst))
|
| 2134 |
|
|
{
|
| 2135 |
|
|
code = (code == def_code ? PLUS_EXPR : MINUS_EXPR);
|
| 2136 |
|
|
gimple_assign_set_rhs_code (stmt, code);
|
| 2137 |
|
|
rhs1 = cst;
|
| 2138 |
|
|
gimple_assign_set_rhs1 (stmt, rhs1);
|
| 2139 |
|
|
rhs2 = def_rhs2;
|
| 2140 |
|
|
gimple_assign_set_rhs2 (stmt, rhs2);
|
| 2141 |
|
|
gimple_set_modified (stmt, true);
|
| 2142 |
|
|
}
|
| 2143 |
|
|
}
|
| 2144 |
|
|
else if (TREE_CODE (rhs1) == INTEGER_CST
|
| 2145 |
|
|
&& TREE_CODE (def_rhs2) == INTEGER_CST)
|
| 2146 |
|
|
{
|
| 2147 |
|
|
/* CST +- (A +- CST) -> CST +- A. */
|
| 2148 |
|
|
tree cst = fold_binary (def_code == code
|
| 2149 |
|
|
? PLUS_EXPR : MINUS_EXPR,
|
| 2150 |
|
|
TREE_TYPE (rhs2),
|
| 2151 |
|
|
rhs1, def_rhs2);
|
| 2152 |
|
|
if (cst && !TREE_OVERFLOW (cst))
|
| 2153 |
|
|
{
|
| 2154 |
|
|
rhs1 = cst;
|
| 2155 |
|
|
gimple_assign_set_rhs1 (stmt, rhs1);
|
| 2156 |
|
|
rhs2 = def_rhs1;
|
| 2157 |
|
|
gimple_assign_set_rhs2 (stmt, rhs2);
|
| 2158 |
|
|
gimple_set_modified (stmt, true);
|
| 2159 |
|
|
}
|
| 2160 |
|
|
}
|
| 2161 |
|
|
}
|
| 2162 |
|
|
else if (def_code == BIT_NOT_EXPR
|
| 2163 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs2)))
|
| 2164 |
|
|
{
|
| 2165 |
|
|
tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
|
| 2166 |
|
|
if (code == PLUS_EXPR
|
| 2167 |
|
|
&& operand_equal_p (def_rhs1, rhs1, 0))
|
| 2168 |
|
|
{
|
| 2169 |
|
|
/* A + ~A -> -1. */
|
| 2170 |
|
|
code = INTEGER_CST;
|
| 2171 |
|
|
rhs1 = build_int_cst_type (TREE_TYPE (rhs1), -1);
|
| 2172 |
|
|
rhs2 = NULL_TREE;
|
| 2173 |
|
|
gimple_assign_set_rhs_with_ops (gsi, code, rhs1, NULL_TREE);
|
| 2174 |
|
|
gcc_assert (gsi_stmt (*gsi) == stmt);
|
| 2175 |
|
|
gimple_set_modified (stmt, true);
|
| 2176 |
|
|
}
|
| 2177 |
|
|
}
|
| 2178 |
|
|
}
|
| 2179 |
|
|
}
|
| 2180 |
|
|
|
| 2181 |
|
|
out:
|
| 2182 |
|
|
if (gimple_modified_p (stmt))
|
| 2183 |
|
|
{
|
| 2184 |
|
|
fold_stmt_inplace (gsi);
|
| 2185 |
|
|
update_stmt (stmt);
|
| 2186 |
|
|
if (maybe_clean_or_replace_eh_stmt (stmt, stmt)
|
| 2187 |
|
|
&& gimple_purge_dead_eh_edges (gimple_bb (stmt)))
|
| 2188 |
|
|
return true;
|
| 2189 |
|
|
}
|
| 2190 |
|
|
|
| 2191 |
|
|
return false;
|
| 2192 |
|
|
}
|
| 2193 |
|
|
|
| 2194 |
|
|
/* Combine two conversions in a row for the second conversion at *GSI.
|
| 2195 |
|
|
Returns 1 if there were any changes made, 2 if cfg-cleanup needs to
|
| 2196 |
|
|
run. Else it returns 0. */
|
| 2197 |
|
|
|
| 2198 |
|
|
static int
|
| 2199 |
|
|
combine_conversions (gimple_stmt_iterator *gsi)
|
| 2200 |
|
|
{
|
| 2201 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
| 2202 |
|
|
gimple def_stmt;
|
| 2203 |
|
|
tree op0, lhs;
|
| 2204 |
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
| 2205 |
|
|
|
| 2206 |
|
|
gcc_checking_assert (CONVERT_EXPR_CODE_P (code)
|
| 2207 |
|
|
|| code == FLOAT_EXPR
|
| 2208 |
|
|
|| code == FIX_TRUNC_EXPR);
|
| 2209 |
|
|
|
| 2210 |
|
|
lhs = gimple_assign_lhs (stmt);
|
| 2211 |
|
|
op0 = gimple_assign_rhs1 (stmt);
|
| 2212 |
|
|
if (useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0)))
|
| 2213 |
|
|
{
|
| 2214 |
|
|
gimple_assign_set_rhs_code (stmt, TREE_CODE (op0));
|
| 2215 |
|
|
return 1;
|
| 2216 |
|
|
}
|
| 2217 |
|
|
|
| 2218 |
|
|
if (TREE_CODE (op0) != SSA_NAME)
|
| 2219 |
|
|
return 0;
|
| 2220 |
|
|
|
| 2221 |
|
|
def_stmt = SSA_NAME_DEF_STMT (op0);
|
| 2222 |
|
|
if (!is_gimple_assign (def_stmt))
|
| 2223 |
|
|
return 0;
|
| 2224 |
|
|
|
| 2225 |
|
|
if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
|
| 2226 |
|
|
{
|
| 2227 |
|
|
tree defop0 = gimple_assign_rhs1 (def_stmt);
|
| 2228 |
|
|
tree type = TREE_TYPE (lhs);
|
| 2229 |
|
|
tree inside_type = TREE_TYPE (defop0);
|
| 2230 |
|
|
tree inter_type = TREE_TYPE (op0);
|
| 2231 |
|
|
int inside_int = INTEGRAL_TYPE_P (inside_type);
|
| 2232 |
|
|
int inside_ptr = POINTER_TYPE_P (inside_type);
|
| 2233 |
|
|
int inside_float = FLOAT_TYPE_P (inside_type);
|
| 2234 |
|
|
int inside_vec = TREE_CODE (inside_type) == VECTOR_TYPE;
|
| 2235 |
|
|
unsigned int inside_prec = TYPE_PRECISION (inside_type);
|
| 2236 |
|
|
int inside_unsignedp = TYPE_UNSIGNED (inside_type);
|
| 2237 |
|
|
int inter_int = INTEGRAL_TYPE_P (inter_type);
|
| 2238 |
|
|
int inter_ptr = POINTER_TYPE_P (inter_type);
|
| 2239 |
|
|
int inter_float = FLOAT_TYPE_P (inter_type);
|
| 2240 |
|
|
int inter_vec = TREE_CODE (inter_type) == VECTOR_TYPE;
|
| 2241 |
|
|
unsigned int inter_prec = TYPE_PRECISION (inter_type);
|
| 2242 |
|
|
int inter_unsignedp = TYPE_UNSIGNED (inter_type);
|
| 2243 |
|
|
int final_int = INTEGRAL_TYPE_P (type);
|
| 2244 |
|
|
int final_ptr = POINTER_TYPE_P (type);
|
| 2245 |
|
|
int final_float = FLOAT_TYPE_P (type);
|
| 2246 |
|
|
int final_vec = TREE_CODE (type) == VECTOR_TYPE;
|
| 2247 |
|
|
unsigned int final_prec = TYPE_PRECISION (type);
|
| 2248 |
|
|
int final_unsignedp = TYPE_UNSIGNED (type);
|
| 2249 |
|
|
|
| 2250 |
|
|
/* In addition to the cases of two conversions in a row
|
| 2251 |
|
|
handled below, if we are converting something to its own
|
| 2252 |
|
|
type via an object of identical or wider precision, neither
|
| 2253 |
|
|
conversion is needed. */
|
| 2254 |
|
|
if (useless_type_conversion_p (type, inside_type)
|
| 2255 |
|
|
&& (((inter_int || inter_ptr) && final_int)
|
| 2256 |
|
|
|| (inter_float && final_float))
|
| 2257 |
|
|
&& inter_prec >= final_prec)
|
| 2258 |
|
|
{
|
| 2259 |
|
|
gimple_assign_set_rhs1 (stmt, unshare_expr (defop0));
|
| 2260 |
|
|
gimple_assign_set_rhs_code (stmt, TREE_CODE (defop0));
|
| 2261 |
|
|
update_stmt (stmt);
|
| 2262 |
|
|
return remove_prop_source_from_use (op0) ? 2 : 1;
|
| 2263 |
|
|
}
|
| 2264 |
|
|
|
| 2265 |
|
|
/* Likewise, if the intermediate and initial types are either both
|
| 2266 |
|
|
float or both integer, we don't need the middle conversion if the
|
| 2267 |
|
|
former is wider than the latter and doesn't change the signedness
|
| 2268 |
|
|
(for integers). Avoid this if the final type is a pointer since
|
| 2269 |
|
|
then we sometimes need the middle conversion. Likewise if the
|
| 2270 |
|
|
final type has a precision not equal to the size of its mode. */
|
| 2271 |
|
|
if (((inter_int && inside_int)
|
| 2272 |
|
|
|| (inter_float && inside_float)
|
| 2273 |
|
|
|| (inter_vec && inside_vec))
|
| 2274 |
|
|
&& inter_prec >= inside_prec
|
| 2275 |
|
|
&& (inter_float || inter_vec
|
| 2276 |
|
|
|| inter_unsignedp == inside_unsignedp)
|
| 2277 |
|
|
&& ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
|
| 2278 |
|
|
&& TYPE_MODE (type) == TYPE_MODE (inter_type))
|
| 2279 |
|
|
&& ! final_ptr
|
| 2280 |
|
|
&& (! final_vec || inter_prec == inside_prec))
|
| 2281 |
|
|
{
|
| 2282 |
|
|
gimple_assign_set_rhs1 (stmt, defop0);
|
| 2283 |
|
|
update_stmt (stmt);
|
| 2284 |
|
|
return remove_prop_source_from_use (op0) ? 2 : 1;
|
| 2285 |
|
|
}
|
| 2286 |
|
|
|
| 2287 |
|
|
/* If we have a sign-extension of a zero-extended value, we can
|
| 2288 |
|
|
replace that by a single zero-extension. */
|
| 2289 |
|
|
if (inside_int && inter_int && final_int
|
| 2290 |
|
|
&& inside_prec < inter_prec && inter_prec < final_prec
|
| 2291 |
|
|
&& inside_unsignedp && !inter_unsignedp)
|
| 2292 |
|
|
{
|
| 2293 |
|
|
gimple_assign_set_rhs1 (stmt, defop0);
|
| 2294 |
|
|
update_stmt (stmt);
|
| 2295 |
|
|
return remove_prop_source_from_use (op0) ? 2 : 1;
|
| 2296 |
|
|
}
|
| 2297 |
|
|
|
| 2298 |
|
|
/* Two conversions in a row are not needed unless:
|
| 2299 |
|
|
- some conversion is floating-point (overstrict for now), or
|
| 2300 |
|
|
- some conversion is a vector (overstrict for now), or
|
| 2301 |
|
|
- the intermediate type is narrower than both initial and
|
| 2302 |
|
|
final, or
|
| 2303 |
|
|
- the intermediate type and innermost type differ in signedness,
|
| 2304 |
|
|
and the outermost type is wider than the intermediate, or
|
| 2305 |
|
|
- the initial type is a pointer type and the precisions of the
|
| 2306 |
|
|
intermediate and final types differ, or
|
| 2307 |
|
|
- the final type is a pointer type and the precisions of the
|
| 2308 |
|
|
initial and intermediate types differ. */
|
| 2309 |
|
|
if (! inside_float && ! inter_float && ! final_float
|
| 2310 |
|
|
&& ! inside_vec && ! inter_vec && ! final_vec
|
| 2311 |
|
|
&& (inter_prec >= inside_prec || inter_prec >= final_prec)
|
| 2312 |
|
|
&& ! (inside_int && inter_int
|
| 2313 |
|
|
&& inter_unsignedp != inside_unsignedp
|
| 2314 |
|
|
&& inter_prec < final_prec)
|
| 2315 |
|
|
&& ((inter_unsignedp && inter_prec > inside_prec)
|
| 2316 |
|
|
== (final_unsignedp && final_prec > inter_prec))
|
| 2317 |
|
|
&& ! (inside_ptr && inter_prec != final_prec)
|
| 2318 |
|
|
&& ! (final_ptr && inside_prec != inter_prec)
|
| 2319 |
|
|
&& ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
|
| 2320 |
|
|
&& TYPE_MODE (type) == TYPE_MODE (inter_type)))
|
| 2321 |
|
|
{
|
| 2322 |
|
|
gimple_assign_set_rhs1 (stmt, defop0);
|
| 2323 |
|
|
update_stmt (stmt);
|
| 2324 |
|
|
return remove_prop_source_from_use (op0) ? 2 : 1;
|
| 2325 |
|
|
}
|
| 2326 |
|
|
|
| 2327 |
|
|
/* A truncation to an unsigned type should be canonicalized as
|
| 2328 |
|
|
bitwise and of a mask. */
|
| 2329 |
|
|
if (final_int && inter_int && inside_int
|
| 2330 |
|
|
&& final_prec == inside_prec
|
| 2331 |
|
|
&& final_prec > inter_prec
|
| 2332 |
|
|
&& inter_unsignedp)
|
| 2333 |
|
|
{
|
| 2334 |
|
|
tree tem;
|
| 2335 |
|
|
tem = fold_build2 (BIT_AND_EXPR, inside_type,
|
| 2336 |
|
|
defop0,
|
| 2337 |
|
|
double_int_to_tree
|
| 2338 |
|
|
(inside_type, double_int_mask (inter_prec)));
|
| 2339 |
|
|
if (!useless_type_conversion_p (type, inside_type))
|
| 2340 |
|
|
{
|
| 2341 |
|
|
tem = force_gimple_operand_gsi (gsi, tem, true, NULL_TREE, true,
|
| 2342 |
|
|
GSI_SAME_STMT);
|
| 2343 |
|
|
gimple_assign_set_rhs1 (stmt, tem);
|
| 2344 |
|
|
}
|
| 2345 |
|
|
else
|
| 2346 |
|
|
gimple_assign_set_rhs_from_tree (gsi, tem);
|
| 2347 |
|
|
update_stmt (gsi_stmt (*gsi));
|
| 2348 |
|
|
return 1;
|
| 2349 |
|
|
}
|
| 2350 |
|
|
}
|
| 2351 |
|
|
|
| 2352 |
|
|
return 0;
|
| 2353 |
|
|
}
|
| 2354 |
|
|
|
| 2355 |
|
|
/* Main entry point for the forward propagation and statement combine
|
| 2356 |
|
|
optimizer. */
|
| 2357 |
|
|
|
| 2358 |
|
|
static unsigned int
|
| 2359 |
|
|
ssa_forward_propagate_and_combine (void)
|
| 2360 |
|
|
{
|
| 2361 |
|
|
basic_block bb;
|
| 2362 |
|
|
unsigned int todoflags = 0;
|
| 2363 |
|
|
|
| 2364 |
|
|
cfg_changed = false;
|
| 2365 |
|
|
|
| 2366 |
|
|
FOR_EACH_BB (bb)
|
| 2367 |
|
|
{
|
| 2368 |
|
|
gimple_stmt_iterator gsi, prev;
|
| 2369 |
|
|
bool prev_initialized;
|
| 2370 |
|
|
|
| 2371 |
|
|
/* Apply forward propagation to all stmts in the basic-block.
|
| 2372 |
|
|
Note we update GSI within the loop as necessary. */
|
| 2373 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
|
| 2374 |
|
|
{
|
| 2375 |
|
|
gimple stmt = gsi_stmt (gsi);
|
| 2376 |
|
|
tree lhs, rhs;
|
| 2377 |
|
|
enum tree_code code;
|
| 2378 |
|
|
|
| 2379 |
|
|
if (!is_gimple_assign (stmt))
|
| 2380 |
|
|
{
|
| 2381 |
|
|
gsi_next (&gsi);
|
| 2382 |
|
|
continue;
|
| 2383 |
|
|
}
|
| 2384 |
|
|
|
| 2385 |
|
|
lhs = gimple_assign_lhs (stmt);
|
| 2386 |
|
|
rhs = gimple_assign_rhs1 (stmt);
|
| 2387 |
|
|
code = gimple_assign_rhs_code (stmt);
|
| 2388 |
|
|
if (TREE_CODE (lhs) != SSA_NAME
|
| 2389 |
|
|
|| has_zero_uses (lhs))
|
| 2390 |
|
|
{
|
| 2391 |
|
|
gsi_next (&gsi);
|
| 2392 |
|
|
continue;
|
| 2393 |
|
|
}
|
| 2394 |
|
|
|
| 2395 |
|
|
/* If this statement sets an SSA_NAME to an address,
|
| 2396 |
|
|
try to propagate the address into the uses of the SSA_NAME. */
|
| 2397 |
|
|
if (code == ADDR_EXPR
|
| 2398 |
|
|
/* Handle pointer conversions on invariant addresses
|
| 2399 |
|
|
as well, as this is valid gimple. */
|
| 2400 |
|
|
|| (CONVERT_EXPR_CODE_P (code)
|
| 2401 |
|
|
&& TREE_CODE (rhs) == ADDR_EXPR
|
| 2402 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (lhs))))
|
| 2403 |
|
|
{
|
| 2404 |
|
|
tree base = get_base_address (TREE_OPERAND (rhs, 0));
|
| 2405 |
|
|
if ((!base
|
| 2406 |
|
|
|| !DECL_P (base)
|
| 2407 |
|
|
|| decl_address_invariant_p (base))
|
| 2408 |
|
|
&& !stmt_references_abnormal_ssa_name (stmt)
|
| 2409 |
|
|
&& forward_propagate_addr_expr (lhs, rhs))
|
| 2410 |
|
|
{
|
| 2411 |
|
|
release_defs (stmt);
|
| 2412 |
|
|
todoflags |= TODO_remove_unused_locals;
|
| 2413 |
|
|
gsi_remove (&gsi, true);
|
| 2414 |
|
|
}
|
| 2415 |
|
|
else
|
| 2416 |
|
|
gsi_next (&gsi);
|
| 2417 |
|
|
}
|
| 2418 |
|
|
else if (code == POINTER_PLUS_EXPR)
|
| 2419 |
|
|
{
|
| 2420 |
|
|
tree off = gimple_assign_rhs2 (stmt);
|
| 2421 |
|
|
if (TREE_CODE (off) == INTEGER_CST
|
| 2422 |
|
|
&& can_propagate_from (stmt)
|
| 2423 |
|
|
&& !simple_iv_increment_p (stmt)
|
| 2424 |
|
|
/* ??? Better adjust the interface to that function
|
| 2425 |
|
|
instead of building new trees here. */
|
| 2426 |
|
|
&& forward_propagate_addr_expr
|
| 2427 |
|
|
(lhs,
|
| 2428 |
|
|
build1_loc (gimple_location (stmt),
|
| 2429 |
|
|
ADDR_EXPR, TREE_TYPE (rhs),
|
| 2430 |
|
|
fold_build2 (MEM_REF,
|
| 2431 |
|
|
TREE_TYPE (TREE_TYPE (rhs)),
|
| 2432 |
|
|
rhs,
|
| 2433 |
|
|
fold_convert (ptr_type_node,
|
| 2434 |
|
|
off)))))
|
| 2435 |
|
|
{
|
| 2436 |
|
|
release_defs (stmt);
|
| 2437 |
|
|
todoflags |= TODO_remove_unused_locals;
|
| 2438 |
|
|
gsi_remove (&gsi, true);
|
| 2439 |
|
|
}
|
| 2440 |
|
|
else if (is_gimple_min_invariant (rhs))
|
| 2441 |
|
|
{
|
| 2442 |
|
|
/* Make sure to fold &a[0] + off_1 here. */
|
| 2443 |
|
|
fold_stmt_inplace (&gsi);
|
| 2444 |
|
|
update_stmt (stmt);
|
| 2445 |
|
|
if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR)
|
| 2446 |
|
|
gsi_next (&gsi);
|
| 2447 |
|
|
}
|
| 2448 |
|
|
else
|
| 2449 |
|
|
gsi_next (&gsi);
|
| 2450 |
|
|
}
|
| 2451 |
|
|
else if (TREE_CODE_CLASS (code) == tcc_comparison)
|
| 2452 |
|
|
{
|
| 2453 |
|
|
if (forward_propagate_comparison (stmt))
|
| 2454 |
|
|
cfg_changed = true;
|
| 2455 |
|
|
gsi_next (&gsi);
|
| 2456 |
|
|
}
|
| 2457 |
|
|
else
|
| 2458 |
|
|
gsi_next (&gsi);
|
| 2459 |
|
|
}
|
| 2460 |
|
|
|
| 2461 |
|
|
/* Combine stmts with the stmts defining their operands.
|
| 2462 |
|
|
Note we update GSI within the loop as necessary. */
|
| 2463 |
|
|
prev_initialized = false;
|
| 2464 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
|
| 2465 |
|
|
{
|
| 2466 |
|
|
gimple stmt = gsi_stmt (gsi);
|
| 2467 |
|
|
bool changed = false;
|
| 2468 |
|
|
|
| 2469 |
|
|
switch (gimple_code (stmt))
|
| 2470 |
|
|
{
|
| 2471 |
|
|
case GIMPLE_ASSIGN:
|
| 2472 |
|
|
{
|
| 2473 |
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
| 2474 |
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
| 2475 |
|
|
|
| 2476 |
|
|
if ((code == BIT_NOT_EXPR
|
| 2477 |
|
|
|| code == NEGATE_EXPR)
|
| 2478 |
|
|
&& TREE_CODE (rhs1) == SSA_NAME)
|
| 2479 |
|
|
changed = simplify_not_neg_expr (&gsi);
|
| 2480 |
|
|
else if (code == COND_EXPR)
|
| 2481 |
|
|
{
|
| 2482 |
|
|
/* In this case the entire COND_EXPR is in rhs1. */
|
| 2483 |
|
|
changed |= forward_propagate_into_cond (&gsi);
|
| 2484 |
|
|
stmt = gsi_stmt (gsi);
|
| 2485 |
|
|
}
|
| 2486 |
|
|
else if (TREE_CODE_CLASS (code) == tcc_comparison)
|
| 2487 |
|
|
{
|
| 2488 |
|
|
int did_something;
|
| 2489 |
|
|
did_something = forward_propagate_into_comparison (&gsi);
|
| 2490 |
|
|
if (did_something == 2)
|
| 2491 |
|
|
cfg_changed = true;
|
| 2492 |
|
|
changed = did_something != 0;
|
| 2493 |
|
|
}
|
| 2494 |
|
|
else if (code == BIT_AND_EXPR
|
| 2495 |
|
|
|| code == BIT_IOR_EXPR
|
| 2496 |
|
|
|| code == BIT_XOR_EXPR)
|
| 2497 |
|
|
changed = simplify_bitwise_binary (&gsi);
|
| 2498 |
|
|
else if (code == PLUS_EXPR
|
| 2499 |
|
|
|| code == MINUS_EXPR)
|
| 2500 |
|
|
changed = associate_plusminus (&gsi);
|
| 2501 |
|
|
else if (CONVERT_EXPR_CODE_P (code)
|
| 2502 |
|
|
|| code == FLOAT_EXPR
|
| 2503 |
|
|
|| code == FIX_TRUNC_EXPR)
|
| 2504 |
|
|
{
|
| 2505 |
|
|
int did_something = combine_conversions (&gsi);
|
| 2506 |
|
|
if (did_something == 2)
|
| 2507 |
|
|
cfg_changed = true;
|
| 2508 |
|
|
changed = did_something != 0;
|
| 2509 |
|
|
}
|
| 2510 |
|
|
break;
|
| 2511 |
|
|
}
|
| 2512 |
|
|
|
| 2513 |
|
|
case GIMPLE_SWITCH:
|
| 2514 |
|
|
changed = simplify_gimple_switch (stmt);
|
| 2515 |
|
|
break;
|
| 2516 |
|
|
|
| 2517 |
|
|
case GIMPLE_COND:
|
| 2518 |
|
|
{
|
| 2519 |
|
|
int did_something;
|
| 2520 |
|
|
did_something = forward_propagate_into_gimple_cond (stmt);
|
| 2521 |
|
|
if (did_something == 2)
|
| 2522 |
|
|
cfg_changed = true;
|
| 2523 |
|
|
changed = did_something != 0;
|
| 2524 |
|
|
break;
|
| 2525 |
|
|
}
|
| 2526 |
|
|
|
| 2527 |
|
|
case GIMPLE_CALL:
|
| 2528 |
|
|
{
|
| 2529 |
|
|
tree callee = gimple_call_fndecl (stmt);
|
| 2530 |
|
|
if (callee != NULL_TREE
|
| 2531 |
|
|
&& DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
|
| 2532 |
|
|
changed = simplify_builtin_call (&gsi, callee);
|
| 2533 |
|
|
break;
|
| 2534 |
|
|
}
|
| 2535 |
|
|
|
| 2536 |
|
|
default:;
|
| 2537 |
|
|
}
|
| 2538 |
|
|
|
| 2539 |
|
|
if (changed)
|
| 2540 |
|
|
{
|
| 2541 |
|
|
/* If the stmt changed then re-visit it and the statements
|
| 2542 |
|
|
inserted before it. */
|
| 2543 |
|
|
if (!prev_initialized)
|
| 2544 |
|
|
gsi = gsi_start_bb (bb);
|
| 2545 |
|
|
else
|
| 2546 |
|
|
{
|
| 2547 |
|
|
gsi = prev;
|
| 2548 |
|
|
gsi_next (&gsi);
|
| 2549 |
|
|
}
|
| 2550 |
|
|
}
|
| 2551 |
|
|
else
|
| 2552 |
|
|
{
|
| 2553 |
|
|
prev = gsi;
|
| 2554 |
|
|
prev_initialized = true;
|
| 2555 |
|
|
gsi_next (&gsi);
|
| 2556 |
|
|
}
|
| 2557 |
|
|
}
|
| 2558 |
|
|
}
|
| 2559 |
|
|
|
| 2560 |
|
|
if (cfg_changed)
|
| 2561 |
|
|
todoflags |= TODO_cleanup_cfg;
|
| 2562 |
|
|
|
| 2563 |
|
|
return todoflags;
|
| 2564 |
|
|
}
|
| 2565 |
|
|
|
| 2566 |
|
|
|
| 2567 |
|
|
static bool
|
| 2568 |
|
|
gate_forwprop (void)
|
| 2569 |
|
|
{
|
| 2570 |
|
|
return flag_tree_forwprop;
|
| 2571 |
|
|
}
|
| 2572 |
|
|
|
| 2573 |
|
|
struct gimple_opt_pass pass_forwprop =
|
| 2574 |
|
|
{
|
| 2575 |
|
|
{
|
| 2576 |
|
|
GIMPLE_PASS,
|
| 2577 |
|
|
"forwprop", /* name */
|
| 2578 |
|
|
gate_forwprop, /* gate */
|
| 2579 |
|
|
ssa_forward_propagate_and_combine, /* execute */
|
| 2580 |
|
|
NULL, /* sub */
|
| 2581 |
|
|
NULL, /* next */
|
| 2582 |
|
|
0, /* static_pass_number */
|
| 2583 |
|
|
TV_TREE_FORWPROP, /* tv_id */
|
| 2584 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
| 2585 |
|
|
0, /* properties_provided */
|
| 2586 |
|
|
0, /* properties_destroyed */
|
| 2587 |
|
|
0, /* todo_flags_start */
|
| 2588 |
|
|
TODO_ggc_collect
|
| 2589 |
|
|
| TODO_update_ssa
|
| 2590 |
|
|
| TODO_verify_ssa /* todo_flags_finish */
|
| 2591 |
|
|
}
|
| 2592 |
|
|
};
|