1 |
684 |
jeremybenn |
/* Forward propagation of expressions for single use variables.
|
2 |
|
|
Copyright (C) 2004, 2005, 2007, 2008, 2009, 2010, 2011
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
10 |
|
|
any later version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "config.h"
|
22 |
|
|
#include "system.h"
|
23 |
|
|
#include "coretypes.h"
|
24 |
|
|
#include "tm.h"
|
25 |
|
|
#include "tree.h"
|
26 |
|
|
#include "tm_p.h"
|
27 |
|
|
#include "basic-block.h"
|
28 |
|
|
#include "timevar.h"
|
29 |
|
|
#include "gimple-pretty-print.h"
|
30 |
|
|
#include "tree-flow.h"
|
31 |
|
|
#include "tree-pass.h"
|
32 |
|
|
#include "tree-dump.h"
|
33 |
|
|
#include "langhooks.h"
|
34 |
|
|
#include "flags.h"
|
35 |
|
|
#include "gimple.h"
|
36 |
|
|
#include "expr.h"
|
37 |
|
|
|
38 |
|
|
/* This pass propagates the RHS of assignment statements into use
|
39 |
|
|
sites of the LHS of the assignment. It's basically a specialized
|
40 |
|
|
form of tree combination. It is hoped all of this can disappear
|
41 |
|
|
when we have a generalized tree combiner.
|
42 |
|
|
|
43 |
|
|
One class of common cases we handle is forward propagating a single use
|
44 |
|
|
variable into a COND_EXPR.
|
45 |
|
|
|
46 |
|
|
bb0:
|
47 |
|
|
x = a COND b;
|
48 |
|
|
if (x) goto ... else goto ...
|
49 |
|
|
|
50 |
|
|
Will be transformed into:
|
51 |
|
|
|
52 |
|
|
bb0:
|
53 |
|
|
if (a COND b) goto ... else goto ...
|
54 |
|
|
|
55 |
|
|
Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
|
56 |
|
|
|
57 |
|
|
Or (assuming c1 and c2 are constants):
|
58 |
|
|
|
59 |
|
|
bb0:
|
60 |
|
|
x = a + c1;
|
61 |
|
|
if (x EQ/NEQ c2) goto ... else goto ...
|
62 |
|
|
|
63 |
|
|
Will be transformed into:
|
64 |
|
|
|
65 |
|
|
bb0:
|
66 |
|
|
if (a EQ/NEQ (c2 - c1)) goto ... else goto ...
|
67 |
|
|
|
68 |
|
|
Similarly for x = a - c1.
|
69 |
|
|
|
70 |
|
|
Or
|
71 |
|
|
|
72 |
|
|
bb0:
|
73 |
|
|
x = !a
|
74 |
|
|
if (x) goto ... else goto ...
|
75 |
|
|
|
76 |
|
|
Will be transformed into:
|
77 |
|
|
|
78 |
|
|
bb0:
|
79 |
|
|
if (a == 0) goto ... else goto ...
|
80 |
|
|
|
81 |
|
|
Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
|
82 |
|
|
For these cases, we propagate A into all, possibly more than one,
|
83 |
|
|
COND_EXPRs that use X.
|
84 |
|
|
|
85 |
|
|
Or
|
86 |
|
|
|
87 |
|
|
bb0:
|
88 |
|
|
x = (typecast) a
|
89 |
|
|
if (x) goto ... else goto ...
|
90 |
|
|
|
91 |
|
|
Will be transformed into:
|
92 |
|
|
|
93 |
|
|
bb0:
|
94 |
|
|
if (a != 0) goto ... else goto ...
|
95 |
|
|
|
96 |
|
|
(Assuming a is an integral type and x is a boolean or x is an
|
97 |
|
|
integral and a is a boolean.)
|
98 |
|
|
|
99 |
|
|
Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
|
100 |
|
|
For these cases, we propagate A into all, possibly more than one,
|
101 |
|
|
COND_EXPRs that use X.
|
102 |
|
|
|
103 |
|
|
In addition to eliminating the variable and the statement which assigns
|
104 |
|
|
a value to the variable, we may be able to later thread the jump without
|
105 |
|
|
adding insane complexity in the dominator optimizer.
|
106 |
|
|
|
107 |
|
|
Also note these transformations can cascade. We handle this by having
|
108 |
|
|
a worklist of COND_EXPR statements to examine. As we make a change to
|
109 |
|
|
a statement, we put it back on the worklist to examine on the next
|
110 |
|
|
iteration of the main loop.
|
111 |
|
|
|
112 |
|
|
A second class of propagation opportunities arises for ADDR_EXPR
|
113 |
|
|
nodes.
|
114 |
|
|
|
115 |
|
|
ptr = &x->y->z;
|
116 |
|
|
res = *ptr;
|
117 |
|
|
|
118 |
|
|
Will get turned into
|
119 |
|
|
|
120 |
|
|
res = x->y->z;
|
121 |
|
|
|
122 |
|
|
Or
|
123 |
|
|
ptr = (type1*)&type2var;
|
124 |
|
|
res = *ptr
|
125 |
|
|
|
126 |
|
|
Will get turned into (if type1 and type2 are the same size
|
127 |
|
|
and neither have volatile on them):
|
128 |
|
|
res = VIEW_CONVERT_EXPR<type1>(type2var)
|
129 |
|
|
|
130 |
|
|
Or
|
131 |
|
|
|
132 |
|
|
ptr = &x[0];
|
133 |
|
|
ptr2 = ptr + <constant>;
|
134 |
|
|
|
135 |
|
|
Will get turned into
|
136 |
|
|
|
137 |
|
|
ptr2 = &x[constant/elementsize];
|
138 |
|
|
|
139 |
|
|
Or
|
140 |
|
|
|
141 |
|
|
ptr = &x[0];
|
142 |
|
|
offset = index * element_size;
|
143 |
|
|
offset_p = (pointer) offset;
|
144 |
|
|
ptr2 = ptr + offset_p
|
145 |
|
|
|
146 |
|
|
Will get turned into:
|
147 |
|
|
|
148 |
|
|
ptr2 = &x[index];
|
149 |
|
|
|
150 |
|
|
Or
|
151 |
|
|
ssa = (int) decl
|
152 |
|
|
res = ssa & 1
|
153 |
|
|
|
154 |
|
|
Provided that decl has known alignment >= 2, will get turned into
|
155 |
|
|
|
156 |
|
|
res = 0
|
157 |
|
|
|
158 |
|
|
We also propagate casts into SWITCH_EXPR and COND_EXPR conditions to
|
159 |
|
|
allow us to remove the cast and {NOT_EXPR,NEG_EXPR} into a subsequent
|
160 |
|
|
{NOT_EXPR,NEG_EXPR}.
|
161 |
|
|
|
162 |
|
|
This will (of course) be extended as other needs arise. */
|
163 |
|
|
|
164 |
|
|
static bool forward_propagate_addr_expr (tree name, tree rhs);
|
165 |
|
|
|
166 |
|
|
/* Set to true if we delete EH edges during the optimization. */
|
167 |
|
|
static bool cfg_changed;
|
168 |
|
|
|
169 |
|
|
static tree rhs_to_tree (tree type, gimple stmt);
|
170 |
|
|
|
171 |
|
|
/* Get the next statement we can propagate NAME's value into skipping
|
172 |
|
|
trivial copies. Returns the statement that is suitable as a
|
173 |
|
|
propagation destination or NULL_TREE if there is no such one.
|
174 |
|
|
This only returns destinations in a single-use chain. FINAL_NAME_P
|
175 |
|
|
if non-NULL is written to the ssa name that represents the use. */
|
176 |
|
|
|
177 |
|
|
static gimple
|
178 |
|
|
get_prop_dest_stmt (tree name, tree *final_name_p)
|
179 |
|
|
{
|
180 |
|
|
use_operand_p use;
|
181 |
|
|
gimple use_stmt;
|
182 |
|
|
|
183 |
|
|
do {
|
184 |
|
|
/* If name has multiple uses, bail out. */
|
185 |
|
|
if (!single_imm_use (name, &use, &use_stmt))
|
186 |
|
|
return NULL;
|
187 |
|
|
|
188 |
|
|
/* If this is not a trivial copy, we found it. */
|
189 |
|
|
if (!gimple_assign_ssa_name_copy_p (use_stmt)
|
190 |
|
|
|| gimple_assign_rhs1 (use_stmt) != name)
|
191 |
|
|
break;
|
192 |
|
|
|
193 |
|
|
/* Continue searching uses of the copy destination. */
|
194 |
|
|
name = gimple_assign_lhs (use_stmt);
|
195 |
|
|
} while (1);
|
196 |
|
|
|
197 |
|
|
if (final_name_p)
|
198 |
|
|
*final_name_p = name;
|
199 |
|
|
|
200 |
|
|
return use_stmt;
|
201 |
|
|
}
|
202 |
|
|
|
203 |
|
|
/* Get the statement we can propagate from into NAME skipping
|
204 |
|
|
trivial copies. Returns the statement which defines the
|
205 |
|
|
propagation source or NULL_TREE if there is no such one.
|
206 |
|
|
If SINGLE_USE_ONLY is set considers only sources which have
|
207 |
|
|
a single use chain up to NAME. If SINGLE_USE_P is non-null,
|
208 |
|
|
it is set to whether the chain to NAME is a single use chain
|
209 |
|
|
or not. SINGLE_USE_P is not written to if SINGLE_USE_ONLY is set. */
|
210 |
|
|
|
211 |
|
|
static gimple
|
212 |
|
|
get_prop_source_stmt (tree name, bool single_use_only, bool *single_use_p)
|
213 |
|
|
{
|
214 |
|
|
bool single_use = true;
|
215 |
|
|
|
216 |
|
|
do {
|
217 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (name);
|
218 |
|
|
|
219 |
|
|
if (!has_single_use (name))
|
220 |
|
|
{
|
221 |
|
|
single_use = false;
|
222 |
|
|
if (single_use_only)
|
223 |
|
|
return NULL;
|
224 |
|
|
}
|
225 |
|
|
|
226 |
|
|
/* If name is defined by a PHI node or is the default def, bail out. */
|
227 |
|
|
if (!is_gimple_assign (def_stmt))
|
228 |
|
|
return NULL;
|
229 |
|
|
|
230 |
|
|
/* If def_stmt is not a simple copy, we possibly found it. */
|
231 |
|
|
if (!gimple_assign_ssa_name_copy_p (def_stmt))
|
232 |
|
|
{
|
233 |
|
|
tree rhs;
|
234 |
|
|
|
235 |
|
|
if (!single_use_only && single_use_p)
|
236 |
|
|
*single_use_p = single_use;
|
237 |
|
|
|
238 |
|
|
/* We can look through pointer conversions in the search
|
239 |
|
|
for a useful stmt for the comparison folding. */
|
240 |
|
|
rhs = gimple_assign_rhs1 (def_stmt);
|
241 |
|
|
if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
|
242 |
|
|
&& TREE_CODE (rhs) == SSA_NAME
|
243 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (def_stmt)))
|
244 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (rhs)))
|
245 |
|
|
name = rhs;
|
246 |
|
|
else
|
247 |
|
|
return def_stmt;
|
248 |
|
|
}
|
249 |
|
|
else
|
250 |
|
|
{
|
251 |
|
|
/* Continue searching the def of the copy source name. */
|
252 |
|
|
name = gimple_assign_rhs1 (def_stmt);
|
253 |
|
|
}
|
254 |
|
|
} while (1);
|
255 |
|
|
}
|
256 |
|
|
|
257 |
|
|
/* Checks if the destination ssa name in DEF_STMT can be used as
|
258 |
|
|
propagation source. Returns true if so, otherwise false. */
|
259 |
|
|
|
260 |
|
|
static bool
|
261 |
|
|
can_propagate_from (gimple def_stmt)
|
262 |
|
|
{
|
263 |
|
|
gcc_assert (is_gimple_assign (def_stmt));
|
264 |
|
|
|
265 |
|
|
/* If the rhs has side-effects we cannot propagate from it. */
|
266 |
|
|
if (gimple_has_volatile_ops (def_stmt))
|
267 |
|
|
return false;
|
268 |
|
|
|
269 |
|
|
/* If the rhs is a load we cannot propagate from it. */
|
270 |
|
|
if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) == tcc_reference
|
271 |
|
|
|| TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) == tcc_declaration)
|
272 |
|
|
return false;
|
273 |
|
|
|
274 |
|
|
/* Constants can be always propagated. */
|
275 |
|
|
if (gimple_assign_single_p (def_stmt)
|
276 |
|
|
&& is_gimple_min_invariant (gimple_assign_rhs1 (def_stmt)))
|
277 |
|
|
return true;
|
278 |
|
|
|
279 |
|
|
/* We cannot propagate ssa names that occur in abnormal phi nodes. */
|
280 |
|
|
if (stmt_references_abnormal_ssa_name (def_stmt))
|
281 |
|
|
return false;
|
282 |
|
|
|
283 |
|
|
/* If the definition is a conversion of a pointer to a function type,
|
284 |
|
|
then we can not apply optimizations as some targets require
|
285 |
|
|
function pointers to be canonicalized and in this case this
|
286 |
|
|
optimization could eliminate a necessary canonicalization. */
|
287 |
|
|
if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
|
288 |
|
|
{
|
289 |
|
|
tree rhs = gimple_assign_rhs1 (def_stmt);
|
290 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (rhs))
|
291 |
|
|
&& TREE_CODE (TREE_TYPE (TREE_TYPE (rhs))) == FUNCTION_TYPE)
|
292 |
|
|
return false;
|
293 |
|
|
}
|
294 |
|
|
|
295 |
|
|
return true;
|
296 |
|
|
}
|
297 |
|
|
|
298 |
|
|
/* Remove a chain of dead statements starting at the definition of
|
299 |
|
|
NAME. The chain is linked via the first operand of the defining statements.
|
300 |
|
|
If NAME was replaced in its only use then this function can be used
|
301 |
|
|
to clean up dead stmts. The function handles already released SSA
|
302 |
|
|
names gracefully.
|
303 |
|
|
Returns true if cleanup-cfg has to run. */
|
304 |
|
|
|
305 |
|
|
static bool
|
306 |
|
|
remove_prop_source_from_use (tree name)
|
307 |
|
|
{
|
308 |
|
|
gimple_stmt_iterator gsi;
|
309 |
|
|
gimple stmt;
|
310 |
|
|
bool cfg_changed = false;
|
311 |
|
|
|
312 |
|
|
do {
|
313 |
|
|
basic_block bb;
|
314 |
|
|
|
315 |
|
|
if (SSA_NAME_IN_FREE_LIST (name)
|
316 |
|
|
|| SSA_NAME_IS_DEFAULT_DEF (name)
|
317 |
|
|
|| !has_zero_uses (name))
|
318 |
|
|
return cfg_changed;
|
319 |
|
|
|
320 |
|
|
stmt = SSA_NAME_DEF_STMT (name);
|
321 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI
|
322 |
|
|
|| gimple_has_side_effects (stmt))
|
323 |
|
|
return cfg_changed;
|
324 |
|
|
|
325 |
|
|
bb = gimple_bb (stmt);
|
326 |
|
|
gsi = gsi_for_stmt (stmt);
|
327 |
|
|
unlink_stmt_vdef (stmt);
|
328 |
|
|
gsi_remove (&gsi, true);
|
329 |
|
|
release_defs (stmt);
|
330 |
|
|
cfg_changed |= gimple_purge_dead_eh_edges (bb);
|
331 |
|
|
|
332 |
|
|
name = is_gimple_assign (stmt) ? gimple_assign_rhs1 (stmt) : NULL_TREE;
|
333 |
|
|
} while (name && TREE_CODE (name) == SSA_NAME);
|
334 |
|
|
|
335 |
|
|
return cfg_changed;
|
336 |
|
|
}
|
337 |
|
|
|
338 |
|
|
/* Return the rhs of a gimple_assign STMT in a form of a single tree,
|
339 |
|
|
converted to type TYPE.
|
340 |
|
|
|
341 |
|
|
This should disappear, but is needed so we can combine expressions and use
|
342 |
|
|
the fold() interfaces. Long term, we need to develop folding and combine
|
343 |
|
|
routines that deal with gimple exclusively . */
|
344 |
|
|
|
345 |
|
|
static tree
|
346 |
|
|
rhs_to_tree (tree type, gimple stmt)
|
347 |
|
|
{
|
348 |
|
|
location_t loc = gimple_location (stmt);
|
349 |
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
350 |
|
|
if (get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS)
|
351 |
|
|
return fold_build3_loc (loc, code, type, gimple_assign_rhs1 (stmt),
|
352 |
|
|
gimple_assign_rhs2 (stmt),
|
353 |
|
|
gimple_assign_rhs3 (stmt));
|
354 |
|
|
else if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
|
355 |
|
|
return fold_build2_loc (loc, code, type, gimple_assign_rhs1 (stmt),
|
356 |
|
|
gimple_assign_rhs2 (stmt));
|
357 |
|
|
else if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
|
358 |
|
|
return build1 (code, type, gimple_assign_rhs1 (stmt));
|
359 |
|
|
else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
|
360 |
|
|
return gimple_assign_rhs1 (stmt);
|
361 |
|
|
else
|
362 |
|
|
gcc_unreachable ();
|
363 |
|
|
}
|
364 |
|
|
|
365 |
|
|
/* Combine OP0 CODE OP1 in the context of a COND_EXPR. Returns
|
366 |
|
|
the folded result in a form suitable for COND_EXPR_COND or
|
367 |
|
|
NULL_TREE, if there is no suitable simplified form. If
|
368 |
|
|
INVARIANT_ONLY is true only gimple_min_invariant results are
|
369 |
|
|
considered simplified. */
|
370 |
|
|
|
371 |
|
|
static tree
|
372 |
|
|
combine_cond_expr_cond (gimple stmt, enum tree_code code, tree type,
|
373 |
|
|
tree op0, tree op1, bool invariant_only)
|
374 |
|
|
{
|
375 |
|
|
tree t;
|
376 |
|
|
|
377 |
|
|
gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison);
|
378 |
|
|
|
379 |
|
|
fold_defer_overflow_warnings ();
|
380 |
|
|
t = fold_binary_loc (gimple_location (stmt), code, type, op0, op1);
|
381 |
|
|
if (!t)
|
382 |
|
|
{
|
383 |
|
|
fold_undefer_overflow_warnings (false, NULL, 0);
|
384 |
|
|
return NULL_TREE;
|
385 |
|
|
}
|
386 |
|
|
|
387 |
|
|
/* Require that we got a boolean type out if we put one in. */
|
388 |
|
|
gcc_assert (TREE_CODE (TREE_TYPE (t)) == TREE_CODE (type));
|
389 |
|
|
|
390 |
|
|
/* Canonicalize the combined condition for use in a COND_EXPR. */
|
391 |
|
|
t = canonicalize_cond_expr_cond (t);
|
392 |
|
|
|
393 |
|
|
/* Bail out if we required an invariant but didn't get one. */
|
394 |
|
|
if (!t || (invariant_only && !is_gimple_min_invariant (t)))
|
395 |
|
|
{
|
396 |
|
|
fold_undefer_overflow_warnings (false, NULL, 0);
|
397 |
|
|
return NULL_TREE;
|
398 |
|
|
}
|
399 |
|
|
|
400 |
|
|
fold_undefer_overflow_warnings (!gimple_no_warning_p (stmt), stmt, 0);
|
401 |
|
|
|
402 |
|
|
return t;
|
403 |
|
|
}
|
404 |
|
|
|
405 |
|
|
/* Combine the comparison OP0 CODE OP1 at LOC with the defining statements
|
406 |
|
|
of its operand. Return a new comparison tree or NULL_TREE if there
|
407 |
|
|
were no simplifying combines. */
|
408 |
|
|
|
409 |
|
|
static tree
|
410 |
|
|
forward_propagate_into_comparison_1 (gimple stmt,
|
411 |
|
|
enum tree_code code, tree type,
|
412 |
|
|
tree op0, tree op1)
|
413 |
|
|
{
|
414 |
|
|
tree tmp = NULL_TREE;
|
415 |
|
|
tree rhs0 = NULL_TREE, rhs1 = NULL_TREE;
|
416 |
|
|
bool single_use0_p = false, single_use1_p = false;
|
417 |
|
|
|
418 |
|
|
/* For comparisons use the first operand, that is likely to
|
419 |
|
|
simplify comparisons against constants. */
|
420 |
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
421 |
|
|
{
|
422 |
|
|
gimple def_stmt = get_prop_source_stmt (op0, false, &single_use0_p);
|
423 |
|
|
if (def_stmt && can_propagate_from (def_stmt))
|
424 |
|
|
{
|
425 |
|
|
rhs0 = rhs_to_tree (TREE_TYPE (op1), def_stmt);
|
426 |
|
|
tmp = combine_cond_expr_cond (stmt, code, type,
|
427 |
|
|
rhs0, op1, !single_use0_p);
|
428 |
|
|
if (tmp)
|
429 |
|
|
return tmp;
|
430 |
|
|
}
|
431 |
|
|
}
|
432 |
|
|
|
433 |
|
|
/* If that wasn't successful, try the second operand. */
|
434 |
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
435 |
|
|
{
|
436 |
|
|
gimple def_stmt = get_prop_source_stmt (op1, false, &single_use1_p);
|
437 |
|
|
if (def_stmt && can_propagate_from (def_stmt))
|
438 |
|
|
{
|
439 |
|
|
rhs1 = rhs_to_tree (TREE_TYPE (op0), def_stmt);
|
440 |
|
|
tmp = combine_cond_expr_cond (stmt, code, type,
|
441 |
|
|
op0, rhs1, !single_use1_p);
|
442 |
|
|
if (tmp)
|
443 |
|
|
return tmp;
|
444 |
|
|
}
|
445 |
|
|
}
|
446 |
|
|
|
447 |
|
|
/* If that wasn't successful either, try both operands. */
|
448 |
|
|
if (rhs0 != NULL_TREE
|
449 |
|
|
&& rhs1 != NULL_TREE)
|
450 |
|
|
tmp = combine_cond_expr_cond (stmt, code, type,
|
451 |
|
|
rhs0, rhs1,
|
452 |
|
|
!(single_use0_p && single_use1_p));
|
453 |
|
|
|
454 |
|
|
return tmp;
|
455 |
|
|
}
|
456 |
|
|
|
457 |
|
|
/* Propagate from the ssa name definition statements of the assignment
|
458 |
|
|
from a comparison at *GSI into the conditional if that simplifies it.
|
459 |
|
|
Returns 1 if the stmt was modified and 2 if the CFG needs cleanup,
|
460 |
|
|
otherwise returns 0. */
|
461 |
|
|
|
462 |
|
|
static int
|
463 |
|
|
forward_propagate_into_comparison (gimple_stmt_iterator *gsi)
|
464 |
|
|
{
|
465 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
466 |
|
|
tree tmp;
|
467 |
|
|
bool cfg_changed = false;
|
468 |
|
|
tree type = TREE_TYPE (gimple_assign_lhs (stmt));
|
469 |
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
470 |
|
|
tree rhs2 = gimple_assign_rhs2 (stmt);
|
471 |
|
|
|
472 |
|
|
/* Combine the comparison with defining statements. */
|
473 |
|
|
tmp = forward_propagate_into_comparison_1 (stmt,
|
474 |
|
|
gimple_assign_rhs_code (stmt),
|
475 |
|
|
type, rhs1, rhs2);
|
476 |
|
|
if (tmp && useless_type_conversion_p (type, TREE_TYPE (tmp)))
|
477 |
|
|
{
|
478 |
|
|
gimple_assign_set_rhs_from_tree (gsi, tmp);
|
479 |
|
|
fold_stmt (gsi);
|
480 |
|
|
update_stmt (gsi_stmt (*gsi));
|
481 |
|
|
|
482 |
|
|
if (TREE_CODE (rhs1) == SSA_NAME)
|
483 |
|
|
cfg_changed |= remove_prop_source_from_use (rhs1);
|
484 |
|
|
if (TREE_CODE (rhs2) == SSA_NAME)
|
485 |
|
|
cfg_changed |= remove_prop_source_from_use (rhs2);
|
486 |
|
|
return cfg_changed ? 2 : 1;
|
487 |
|
|
}
|
488 |
|
|
|
489 |
|
|
return 0;
|
490 |
|
|
}
|
491 |
|
|
|
492 |
|
|
/* Propagate from the ssa name definition statements of COND_EXPR
|
493 |
|
|
in GIMPLE_COND statement STMT into the conditional if that simplifies it.
|
494 |
|
|
Returns zero if no statement was changed, one if there were
|
495 |
|
|
changes and two if cfg_cleanup needs to run.
|
496 |
|
|
|
497 |
|
|
This must be kept in sync with forward_propagate_into_cond. */
|
498 |
|
|
|
499 |
|
|
static int
|
500 |
|
|
forward_propagate_into_gimple_cond (gimple stmt)
|
501 |
|
|
{
|
502 |
|
|
tree tmp;
|
503 |
|
|
enum tree_code code = gimple_cond_code (stmt);
|
504 |
|
|
bool cfg_changed = false;
|
505 |
|
|
tree rhs1 = gimple_cond_lhs (stmt);
|
506 |
|
|
tree rhs2 = gimple_cond_rhs (stmt);
|
507 |
|
|
|
508 |
|
|
/* We can do tree combining on SSA_NAME and comparison expressions. */
|
509 |
|
|
if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
|
510 |
|
|
return 0;
|
511 |
|
|
|
512 |
|
|
tmp = forward_propagate_into_comparison_1 (stmt, code,
|
513 |
|
|
boolean_type_node,
|
514 |
|
|
rhs1, rhs2);
|
515 |
|
|
if (tmp)
|
516 |
|
|
{
|
517 |
|
|
if (dump_file && tmp)
|
518 |
|
|
{
|
519 |
|
|
fprintf (dump_file, " Replaced '");
|
520 |
|
|
print_gimple_expr (dump_file, stmt, 0, 0);
|
521 |
|
|
fprintf (dump_file, "' with '");
|
522 |
|
|
print_generic_expr (dump_file, tmp, 0);
|
523 |
|
|
fprintf (dump_file, "'\n");
|
524 |
|
|
}
|
525 |
|
|
|
526 |
|
|
gimple_cond_set_condition_from_tree (stmt, unshare_expr (tmp));
|
527 |
|
|
update_stmt (stmt);
|
528 |
|
|
|
529 |
|
|
if (TREE_CODE (rhs1) == SSA_NAME)
|
530 |
|
|
cfg_changed |= remove_prop_source_from_use (rhs1);
|
531 |
|
|
if (TREE_CODE (rhs2) == SSA_NAME)
|
532 |
|
|
cfg_changed |= remove_prop_source_from_use (rhs2);
|
533 |
|
|
return (cfg_changed || is_gimple_min_invariant (tmp)) ? 2 : 1;
|
534 |
|
|
}
|
535 |
|
|
|
536 |
|
|
/* Canonicalize _Bool == 0 and _Bool != 1 to _Bool != 0 by swapping edges. */
|
537 |
|
|
if ((TREE_CODE (TREE_TYPE (rhs1)) == BOOLEAN_TYPE
|
538 |
|
|
|| (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
|
539 |
|
|
&& TYPE_PRECISION (TREE_TYPE (rhs1)) == 1))
|
540 |
|
|
&& ((code == EQ_EXPR
|
541 |
|
|
&& integer_zerop (rhs2))
|
542 |
|
|
|| (code == NE_EXPR
|
543 |
|
|
&& integer_onep (rhs2))))
|
544 |
|
|
{
|
545 |
|
|
basic_block bb = gimple_bb (stmt);
|
546 |
|
|
gimple_cond_set_code (stmt, NE_EXPR);
|
547 |
|
|
gimple_cond_set_rhs (stmt, build_zero_cst (TREE_TYPE (rhs1)));
|
548 |
|
|
EDGE_SUCC (bb, 0)->flags ^= (EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
|
549 |
|
|
EDGE_SUCC (bb, 1)->flags ^= (EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
|
550 |
|
|
return 1;
|
551 |
|
|
}
|
552 |
|
|
|
553 |
|
|
return 0;
|
554 |
|
|
}
|
555 |
|
|
|
556 |
|
|
|
557 |
|
|
/* Propagate from the ssa name definition statements of COND_EXPR
|
558 |
|
|
in the rhs of statement STMT into the conditional if that simplifies it.
|
559 |
|
|
Returns true zero if the stmt was changed. */
|
560 |
|
|
|
561 |
|
|
static bool
|
562 |
|
|
forward_propagate_into_cond (gimple_stmt_iterator *gsi_p)
|
563 |
|
|
{
|
564 |
|
|
gimple stmt = gsi_stmt (*gsi_p);
|
565 |
|
|
tree tmp = NULL_TREE;
|
566 |
|
|
tree cond = gimple_assign_rhs1 (stmt);
|
567 |
|
|
bool swap = false;
|
568 |
|
|
|
569 |
|
|
/* We can do tree combining on SSA_NAME and comparison expressions. */
|
570 |
|
|
if (COMPARISON_CLASS_P (cond))
|
571 |
|
|
tmp = forward_propagate_into_comparison_1 (stmt, TREE_CODE (cond),
|
572 |
|
|
boolean_type_node,
|
573 |
|
|
TREE_OPERAND (cond, 0),
|
574 |
|
|
TREE_OPERAND (cond, 1));
|
575 |
|
|
else if (TREE_CODE (cond) == SSA_NAME)
|
576 |
|
|
{
|
577 |
|
|
enum tree_code code;
|
578 |
|
|
tree name = cond;
|
579 |
|
|
gimple def_stmt = get_prop_source_stmt (name, true, NULL);
|
580 |
|
|
if (!def_stmt || !can_propagate_from (def_stmt))
|
581 |
|
|
return 0;
|
582 |
|
|
|
583 |
|
|
code = gimple_assign_rhs_code (def_stmt);
|
584 |
|
|
if (TREE_CODE_CLASS (code) == tcc_comparison)
|
585 |
|
|
tmp = fold_build2_loc (gimple_location (def_stmt),
|
586 |
|
|
code,
|
587 |
|
|
boolean_type_node,
|
588 |
|
|
gimple_assign_rhs1 (def_stmt),
|
589 |
|
|
gimple_assign_rhs2 (def_stmt));
|
590 |
|
|
else if ((code == BIT_NOT_EXPR
|
591 |
|
|
&& TYPE_PRECISION (TREE_TYPE (cond)) == 1)
|
592 |
|
|
|| (code == BIT_XOR_EXPR
|
593 |
|
|
&& integer_onep (gimple_assign_rhs2 (def_stmt))))
|
594 |
|
|
{
|
595 |
|
|
tmp = gimple_assign_rhs1 (def_stmt);
|
596 |
|
|
swap = true;
|
597 |
|
|
}
|
598 |
|
|
}
|
599 |
|
|
|
600 |
|
|
if (tmp
|
601 |
|
|
&& is_gimple_condexpr (tmp))
|
602 |
|
|
{
|
603 |
|
|
if (dump_file && tmp)
|
604 |
|
|
{
|
605 |
|
|
fprintf (dump_file, " Replaced '");
|
606 |
|
|
print_generic_expr (dump_file, cond, 0);
|
607 |
|
|
fprintf (dump_file, "' with '");
|
608 |
|
|
print_generic_expr (dump_file, tmp, 0);
|
609 |
|
|
fprintf (dump_file, "'\n");
|
610 |
|
|
}
|
611 |
|
|
|
612 |
|
|
if (integer_onep (tmp))
|
613 |
|
|
gimple_assign_set_rhs_from_tree (gsi_p, gimple_assign_rhs2 (stmt));
|
614 |
|
|
else if (integer_zerop (tmp))
|
615 |
|
|
gimple_assign_set_rhs_from_tree (gsi_p, gimple_assign_rhs3 (stmt));
|
616 |
|
|
else
|
617 |
|
|
{
|
618 |
|
|
gimple_assign_set_rhs1 (stmt, unshare_expr (tmp));
|
619 |
|
|
if (swap)
|
620 |
|
|
{
|
621 |
|
|
tree t = gimple_assign_rhs2 (stmt);
|
622 |
|
|
gimple_assign_set_rhs2 (stmt, gimple_assign_rhs3 (stmt));
|
623 |
|
|
gimple_assign_set_rhs3 (stmt, t);
|
624 |
|
|
}
|
625 |
|
|
}
|
626 |
|
|
stmt = gsi_stmt (*gsi_p);
|
627 |
|
|
update_stmt (stmt);
|
628 |
|
|
|
629 |
|
|
return true;
|
630 |
|
|
}
|
631 |
|
|
|
632 |
|
|
return 0;
|
633 |
|
|
}
|
634 |
|
|
|
635 |
|
|
/* We've just substituted an ADDR_EXPR into stmt. Update all the
|
636 |
|
|
relevant data structures to match. */
|
637 |
|
|
|
638 |
|
|
static void
|
639 |
|
|
tidy_after_forward_propagate_addr (gimple stmt)
|
640 |
|
|
{
|
641 |
|
|
/* We may have turned a trapping insn into a non-trapping insn. */
|
642 |
|
|
if (maybe_clean_or_replace_eh_stmt (stmt, stmt)
|
643 |
|
|
&& gimple_purge_dead_eh_edges (gimple_bb (stmt)))
|
644 |
|
|
cfg_changed = true;
|
645 |
|
|
|
646 |
|
|
if (TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR)
|
647 |
|
|
recompute_tree_invariant_for_addr_expr (gimple_assign_rhs1 (stmt));
|
648 |
|
|
}
|
649 |
|
|
|
650 |
|
|
/* DEF_RHS contains the address of the 0th element in an array.
|
651 |
|
|
USE_STMT uses type of DEF_RHS to compute the address of an
|
652 |
|
|
arbitrary element within the array. The (variable) byte offset
|
653 |
|
|
of the element is contained in OFFSET.
|
654 |
|
|
|
655 |
|
|
We walk back through the use-def chains of OFFSET to verify that
|
656 |
|
|
it is indeed computing the offset of an element within the array
|
657 |
|
|
and extract the index corresponding to the given byte offset.
|
658 |
|
|
|
659 |
|
|
We then try to fold the entire address expression into a form
|
660 |
|
|
&array[index].
|
661 |
|
|
|
662 |
|
|
If we are successful, we replace the right hand side of USE_STMT
|
663 |
|
|
with the new address computation. */
|
664 |
|
|
|
665 |
|
|
static bool
|
666 |
|
|
forward_propagate_addr_into_variable_array_index (tree offset,
|
667 |
|
|
tree def_rhs,
|
668 |
|
|
gimple_stmt_iterator *use_stmt_gsi)
|
669 |
|
|
{
|
670 |
|
|
tree index, tunit;
|
671 |
|
|
gimple offset_def, use_stmt = gsi_stmt (*use_stmt_gsi);
|
672 |
|
|
tree new_rhs, tmp;
|
673 |
|
|
|
674 |
|
|
if (TREE_CODE (TREE_OPERAND (def_rhs, 0)) == ARRAY_REF)
|
675 |
|
|
tunit = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (def_rhs)));
|
676 |
|
|
else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (def_rhs, 0))) == ARRAY_TYPE)
|
677 |
|
|
tunit = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (TREE_TYPE (def_rhs))));
|
678 |
|
|
else
|
679 |
|
|
return false;
|
680 |
|
|
if (!host_integerp (tunit, 1))
|
681 |
|
|
return false;
|
682 |
|
|
|
683 |
|
|
/* Get the offset's defining statement. */
|
684 |
|
|
offset_def = SSA_NAME_DEF_STMT (offset);
|
685 |
|
|
|
686 |
|
|
/* Try to find an expression for a proper index. This is either a
|
687 |
|
|
multiplication expression by the element size or just the ssa name we came
|
688 |
|
|
along in case the element size is one. In that case, however, we do not
|
689 |
|
|
allow multiplications because they can be computing index to a higher
|
690 |
|
|
level dimension (PR 37861). */
|
691 |
|
|
if (integer_onep (tunit))
|
692 |
|
|
{
|
693 |
|
|
if (is_gimple_assign (offset_def)
|
694 |
|
|
&& gimple_assign_rhs_code (offset_def) == MULT_EXPR)
|
695 |
|
|
return false;
|
696 |
|
|
|
697 |
|
|
index = offset;
|
698 |
|
|
}
|
699 |
|
|
else
|
700 |
|
|
{
|
701 |
|
|
/* The statement which defines OFFSET before type conversion
|
702 |
|
|
must be a simple GIMPLE_ASSIGN. */
|
703 |
|
|
if (!is_gimple_assign (offset_def))
|
704 |
|
|
return false;
|
705 |
|
|
|
706 |
|
|
/* The RHS of the statement which defines OFFSET must be a
|
707 |
|
|
multiplication of an object by the size of the array elements.
|
708 |
|
|
This implicitly verifies that the size of the array elements
|
709 |
|
|
is constant. */
|
710 |
|
|
if (gimple_assign_rhs_code (offset_def) == MULT_EXPR
|
711 |
|
|
&& TREE_CODE (gimple_assign_rhs2 (offset_def)) == INTEGER_CST
|
712 |
|
|
&& tree_int_cst_equal (gimple_assign_rhs2 (offset_def), tunit))
|
713 |
|
|
{
|
714 |
|
|
/* The first operand to the MULT_EXPR is the desired index. */
|
715 |
|
|
index = gimple_assign_rhs1 (offset_def);
|
716 |
|
|
}
|
717 |
|
|
/* If we have idx * tunit + CST * tunit re-associate that. */
|
718 |
|
|
else if ((gimple_assign_rhs_code (offset_def) == PLUS_EXPR
|
719 |
|
|
|| gimple_assign_rhs_code (offset_def) == MINUS_EXPR)
|
720 |
|
|
&& TREE_CODE (gimple_assign_rhs1 (offset_def)) == SSA_NAME
|
721 |
|
|
&& TREE_CODE (gimple_assign_rhs2 (offset_def)) == INTEGER_CST
|
722 |
|
|
&& (tmp = div_if_zero_remainder (EXACT_DIV_EXPR,
|
723 |
|
|
gimple_assign_rhs2 (offset_def),
|
724 |
|
|
tunit)) != NULL_TREE)
|
725 |
|
|
{
|
726 |
|
|
gimple offset_def2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (offset_def));
|
727 |
|
|
if (is_gimple_assign (offset_def2)
|
728 |
|
|
&& gimple_assign_rhs_code (offset_def2) == MULT_EXPR
|
729 |
|
|
&& TREE_CODE (gimple_assign_rhs2 (offset_def2)) == INTEGER_CST
|
730 |
|
|
&& tree_int_cst_equal (gimple_assign_rhs2 (offset_def2), tunit))
|
731 |
|
|
{
|
732 |
|
|
index = fold_build2 (gimple_assign_rhs_code (offset_def),
|
733 |
|
|
TREE_TYPE (offset),
|
734 |
|
|
gimple_assign_rhs1 (offset_def2), tmp);
|
735 |
|
|
}
|
736 |
|
|
else
|
737 |
|
|
return false;
|
738 |
|
|
}
|
739 |
|
|
else
|
740 |
|
|
return false;
|
741 |
|
|
}
|
742 |
|
|
|
743 |
|
|
/* Replace the pointer addition with array indexing. */
|
744 |
|
|
index = force_gimple_operand_gsi (use_stmt_gsi, index, true, NULL_TREE,
|
745 |
|
|
true, GSI_SAME_STMT);
|
746 |
|
|
if (TREE_CODE (TREE_OPERAND (def_rhs, 0)) == ARRAY_REF)
|
747 |
|
|
{
|
748 |
|
|
new_rhs = unshare_expr (def_rhs);
|
749 |
|
|
TREE_OPERAND (TREE_OPERAND (new_rhs, 0), 1) = index;
|
750 |
|
|
}
|
751 |
|
|
else
|
752 |
|
|
{
|
753 |
|
|
new_rhs = build4 (ARRAY_REF, TREE_TYPE (TREE_TYPE (TREE_TYPE (def_rhs))),
|
754 |
|
|
unshare_expr (TREE_OPERAND (def_rhs, 0)),
|
755 |
|
|
index, integer_zero_node, NULL_TREE);
|
756 |
|
|
new_rhs = build_fold_addr_expr (new_rhs);
|
757 |
|
|
if (!useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (use_stmt)),
|
758 |
|
|
TREE_TYPE (new_rhs)))
|
759 |
|
|
{
|
760 |
|
|
new_rhs = force_gimple_operand_gsi (use_stmt_gsi, new_rhs, true,
|
761 |
|
|
NULL_TREE, true, GSI_SAME_STMT);
|
762 |
|
|
new_rhs = fold_convert (TREE_TYPE (gimple_assign_lhs (use_stmt)),
|
763 |
|
|
new_rhs);
|
764 |
|
|
}
|
765 |
|
|
}
|
766 |
|
|
gimple_assign_set_rhs_from_tree (use_stmt_gsi, new_rhs);
|
767 |
|
|
fold_stmt (use_stmt_gsi);
|
768 |
|
|
tidy_after_forward_propagate_addr (gsi_stmt (*use_stmt_gsi));
|
769 |
|
|
return true;
|
770 |
|
|
}
|
771 |
|
|
|
772 |
|
|
/* NAME is a SSA_NAME representing DEF_RHS which is of the form
|
773 |
|
|
ADDR_EXPR <whatever>.
|
774 |
|
|
|
775 |
|
|
Try to forward propagate the ADDR_EXPR into the use USE_STMT.
|
776 |
|
|
Often this will allow for removal of an ADDR_EXPR and INDIRECT_REF
|
777 |
|
|
node or for recovery of array indexing from pointer arithmetic.
|
778 |
|
|
|
779 |
|
|
Return true if the propagation was successful (the propagation can
|
780 |
|
|
be not totally successful, yet things may have been changed). */
|
781 |
|
|
|
782 |
|
|
static bool
|
783 |
|
|
forward_propagate_addr_expr_1 (tree name, tree def_rhs,
|
784 |
|
|
gimple_stmt_iterator *use_stmt_gsi,
|
785 |
|
|
bool single_use_p)
|
786 |
|
|
{
|
787 |
|
|
tree lhs, rhs, rhs2, array_ref;
|
788 |
|
|
gimple use_stmt = gsi_stmt (*use_stmt_gsi);
|
789 |
|
|
enum tree_code rhs_code;
|
790 |
|
|
bool res = true;
|
791 |
|
|
|
792 |
|
|
gcc_assert (TREE_CODE (def_rhs) == ADDR_EXPR);
|
793 |
|
|
|
794 |
|
|
lhs = gimple_assign_lhs (use_stmt);
|
795 |
|
|
rhs_code = gimple_assign_rhs_code (use_stmt);
|
796 |
|
|
rhs = gimple_assign_rhs1 (use_stmt);
|
797 |
|
|
|
798 |
|
|
/* Trivial cases. The use statement could be a trivial copy or a
|
799 |
|
|
useless conversion. Recurse to the uses of the lhs as copyprop does
|
800 |
|
|
not copy through different variant pointers and FRE does not catch
|
801 |
|
|
all useless conversions. Treat the case of a single-use name and
|
802 |
|
|
a conversion to def_rhs type separate, though. */
|
803 |
|
|
if (TREE_CODE (lhs) == SSA_NAME
|
804 |
|
|
&& ((rhs_code == SSA_NAME && rhs == name)
|
805 |
|
|
|| CONVERT_EXPR_CODE_P (rhs_code)))
|
806 |
|
|
{
|
807 |
|
|
/* Only recurse if we don't deal with a single use or we cannot
|
808 |
|
|
do the propagation to the current statement. In particular
|
809 |
|
|
we can end up with a conversion needed for a non-invariant
|
810 |
|
|
address which we cannot do in a single statement. */
|
811 |
|
|
if (!single_use_p
|
812 |
|
|
|| (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (def_rhs))
|
813 |
|
|
&& (!is_gimple_min_invariant (def_rhs)
|
814 |
|
|
|| (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|
815 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (def_rhs))
|
816 |
|
|
&& (TYPE_PRECISION (TREE_TYPE (lhs))
|
817 |
|
|
> TYPE_PRECISION (TREE_TYPE (def_rhs)))))))
|
818 |
|
|
return forward_propagate_addr_expr (lhs, def_rhs);
|
819 |
|
|
|
820 |
|
|
gimple_assign_set_rhs1 (use_stmt, unshare_expr (def_rhs));
|
821 |
|
|
if (useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (def_rhs)))
|
822 |
|
|
gimple_assign_set_rhs_code (use_stmt, TREE_CODE (def_rhs));
|
823 |
|
|
else
|
824 |
|
|
gimple_assign_set_rhs_code (use_stmt, NOP_EXPR);
|
825 |
|
|
return true;
|
826 |
|
|
}
|
827 |
|
|
|
828 |
|
|
/* Propagate through constant pointer adjustments. */
|
829 |
|
|
if (TREE_CODE (lhs) == SSA_NAME
|
830 |
|
|
&& rhs_code == POINTER_PLUS_EXPR
|
831 |
|
|
&& rhs == name
|
832 |
|
|
&& TREE_CODE (gimple_assign_rhs2 (use_stmt)) == INTEGER_CST)
|
833 |
|
|
{
|
834 |
|
|
tree new_def_rhs;
|
835 |
|
|
/* As we come here with non-invariant addresses in def_rhs we need
|
836 |
|
|
to make sure we can build a valid constant offsetted address
|
837 |
|
|
for further propagation. Simply rely on fold building that
|
838 |
|
|
and check after the fact. */
|
839 |
|
|
new_def_rhs = fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (rhs)),
|
840 |
|
|
def_rhs,
|
841 |
|
|
fold_convert (ptr_type_node,
|
842 |
|
|
gimple_assign_rhs2 (use_stmt)));
|
843 |
|
|
if (TREE_CODE (new_def_rhs) == MEM_REF
|
844 |
|
|
&& !is_gimple_mem_ref_addr (TREE_OPERAND (new_def_rhs, 0)))
|
845 |
|
|
return false;
|
846 |
|
|
new_def_rhs = build_fold_addr_expr_with_type (new_def_rhs,
|
847 |
|
|
TREE_TYPE (rhs));
|
848 |
|
|
|
849 |
|
|
/* Recurse. If we could propagate into all uses of lhs do not
|
850 |
|
|
bother to replace into the current use but just pretend we did. */
|
851 |
|
|
if (TREE_CODE (new_def_rhs) == ADDR_EXPR
|
852 |
|
|
&& forward_propagate_addr_expr (lhs, new_def_rhs))
|
853 |
|
|
return true;
|
854 |
|
|
|
855 |
|
|
if (useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (new_def_rhs)))
|
856 |
|
|
gimple_assign_set_rhs_with_ops (use_stmt_gsi, TREE_CODE (new_def_rhs),
|
857 |
|
|
new_def_rhs, NULL_TREE);
|
858 |
|
|
else if (is_gimple_min_invariant (new_def_rhs))
|
859 |
|
|
gimple_assign_set_rhs_with_ops (use_stmt_gsi, NOP_EXPR,
|
860 |
|
|
new_def_rhs, NULL_TREE);
|
861 |
|
|
else
|
862 |
|
|
return false;
|
863 |
|
|
gcc_assert (gsi_stmt (*use_stmt_gsi) == use_stmt);
|
864 |
|
|
update_stmt (use_stmt);
|
865 |
|
|
return true;
|
866 |
|
|
}
|
867 |
|
|
|
868 |
|
|
/* Now strip away any outer COMPONENT_REF/ARRAY_REF nodes from the LHS.
|
869 |
|
|
ADDR_EXPR will not appear on the LHS. */
|
870 |
|
|
lhs = gimple_assign_lhs (use_stmt);
|
871 |
|
|
while (handled_component_p (lhs))
|
872 |
|
|
lhs = TREE_OPERAND (lhs, 0);
|
873 |
|
|
|
874 |
|
|
/* Now see if the LHS node is a MEM_REF using NAME. If so,
|
875 |
|
|
propagate the ADDR_EXPR into the use of NAME and fold the result. */
|
876 |
|
|
if (TREE_CODE (lhs) == MEM_REF
|
877 |
|
|
&& TREE_OPERAND (lhs, 0) == name)
|
878 |
|
|
{
|
879 |
|
|
tree def_rhs_base;
|
880 |
|
|
HOST_WIDE_INT def_rhs_offset;
|
881 |
|
|
/* If the address is invariant we can always fold it. */
|
882 |
|
|
if ((def_rhs_base = get_addr_base_and_unit_offset (TREE_OPERAND (def_rhs, 0),
|
883 |
|
|
&def_rhs_offset)))
|
884 |
|
|
{
|
885 |
|
|
double_int off = mem_ref_offset (lhs);
|
886 |
|
|
tree new_ptr;
|
887 |
|
|
off = double_int_add (off,
|
888 |
|
|
shwi_to_double_int (def_rhs_offset));
|
889 |
|
|
if (TREE_CODE (def_rhs_base) == MEM_REF)
|
890 |
|
|
{
|
891 |
|
|
off = double_int_add (off, mem_ref_offset (def_rhs_base));
|
892 |
|
|
new_ptr = TREE_OPERAND (def_rhs_base, 0);
|
893 |
|
|
}
|
894 |
|
|
else
|
895 |
|
|
new_ptr = build_fold_addr_expr (def_rhs_base);
|
896 |
|
|
TREE_OPERAND (lhs, 0) = new_ptr;
|
897 |
|
|
TREE_OPERAND (lhs, 1)
|
898 |
|
|
= double_int_to_tree (TREE_TYPE (TREE_OPERAND (lhs, 1)), off);
|
899 |
|
|
tidy_after_forward_propagate_addr (use_stmt);
|
900 |
|
|
/* Continue propagating into the RHS if this was not the only use. */
|
901 |
|
|
if (single_use_p)
|
902 |
|
|
return true;
|
903 |
|
|
}
|
904 |
|
|
/* If the LHS is a plain dereference and the value type is the same as
|
905 |
|
|
that of the pointed-to type of the address we can put the
|
906 |
|
|
dereferenced address on the LHS preserving the original alias-type. */
|
907 |
|
|
else if (gimple_assign_lhs (use_stmt) == lhs
|
908 |
|
|
&& useless_type_conversion_p
|
909 |
|
|
(TREE_TYPE (TREE_OPERAND (def_rhs, 0)),
|
910 |
|
|
TREE_TYPE (gimple_assign_rhs1 (use_stmt))))
|
911 |
|
|
{
|
912 |
|
|
tree *def_rhs_basep = &TREE_OPERAND (def_rhs, 0);
|
913 |
|
|
tree new_offset, new_base, saved, new_lhs;
|
914 |
|
|
while (handled_component_p (*def_rhs_basep))
|
915 |
|
|
def_rhs_basep = &TREE_OPERAND (*def_rhs_basep, 0);
|
916 |
|
|
saved = *def_rhs_basep;
|
917 |
|
|
if (TREE_CODE (*def_rhs_basep) == MEM_REF)
|
918 |
|
|
{
|
919 |
|
|
new_base = TREE_OPERAND (*def_rhs_basep, 0);
|
920 |
|
|
new_offset
|
921 |
|
|
= int_const_binop (PLUS_EXPR, TREE_OPERAND (lhs, 1),
|
922 |
|
|
TREE_OPERAND (*def_rhs_basep, 1));
|
923 |
|
|
}
|
924 |
|
|
else
|
925 |
|
|
{
|
926 |
|
|
new_base = build_fold_addr_expr (*def_rhs_basep);
|
927 |
|
|
new_offset = TREE_OPERAND (lhs, 1);
|
928 |
|
|
}
|
929 |
|
|
*def_rhs_basep = build2 (MEM_REF, TREE_TYPE (*def_rhs_basep),
|
930 |
|
|
new_base, new_offset);
|
931 |
|
|
TREE_THIS_VOLATILE (*def_rhs_basep) = TREE_THIS_VOLATILE (lhs);
|
932 |
|
|
TREE_SIDE_EFFECTS (*def_rhs_basep) = TREE_SIDE_EFFECTS (lhs);
|
933 |
|
|
TREE_THIS_NOTRAP (*def_rhs_basep) = TREE_THIS_NOTRAP (lhs);
|
934 |
|
|
new_lhs = unshare_expr (TREE_OPERAND (def_rhs, 0));
|
935 |
|
|
gimple_assign_set_lhs (use_stmt, new_lhs);
|
936 |
|
|
TREE_THIS_VOLATILE (new_lhs) = TREE_THIS_VOLATILE (lhs);
|
937 |
|
|
TREE_SIDE_EFFECTS (new_lhs) = TREE_SIDE_EFFECTS (lhs);
|
938 |
|
|
*def_rhs_basep = saved;
|
939 |
|
|
tidy_after_forward_propagate_addr (use_stmt);
|
940 |
|
|
/* Continue propagating into the RHS if this was not the
|
941 |
|
|
only use. */
|
942 |
|
|
if (single_use_p)
|
943 |
|
|
return true;
|
944 |
|
|
}
|
945 |
|
|
else
|
946 |
|
|
/* We can have a struct assignment dereferencing our name twice.
|
947 |
|
|
Note that we didn't propagate into the lhs to not falsely
|
948 |
|
|
claim we did when propagating into the rhs. */
|
949 |
|
|
res = false;
|
950 |
|
|
}
|
951 |
|
|
|
952 |
|
|
/* Strip away any outer COMPONENT_REF, ARRAY_REF or ADDR_EXPR
|
953 |
|
|
nodes from the RHS. */
|
954 |
|
|
rhs = gimple_assign_rhs1 (use_stmt);
|
955 |
|
|
if (TREE_CODE (rhs) == ADDR_EXPR)
|
956 |
|
|
rhs = TREE_OPERAND (rhs, 0);
|
957 |
|
|
while (handled_component_p (rhs))
|
958 |
|
|
rhs = TREE_OPERAND (rhs, 0);
|
959 |
|
|
|
960 |
|
|
/* Now see if the RHS node is a MEM_REF using NAME. If so,
|
961 |
|
|
propagate the ADDR_EXPR into the use of NAME and fold the result. */
|
962 |
|
|
if (TREE_CODE (rhs) == MEM_REF
|
963 |
|
|
&& TREE_OPERAND (rhs, 0) == name)
|
964 |
|
|
{
|
965 |
|
|
tree def_rhs_base;
|
966 |
|
|
HOST_WIDE_INT def_rhs_offset;
|
967 |
|
|
if ((def_rhs_base = get_addr_base_and_unit_offset (TREE_OPERAND (def_rhs, 0),
|
968 |
|
|
&def_rhs_offset)))
|
969 |
|
|
{
|
970 |
|
|
double_int off = mem_ref_offset (rhs);
|
971 |
|
|
tree new_ptr;
|
972 |
|
|
off = double_int_add (off,
|
973 |
|
|
shwi_to_double_int (def_rhs_offset));
|
974 |
|
|
if (TREE_CODE (def_rhs_base) == MEM_REF)
|
975 |
|
|
{
|
976 |
|
|
off = double_int_add (off, mem_ref_offset (def_rhs_base));
|
977 |
|
|
new_ptr = TREE_OPERAND (def_rhs_base, 0);
|
978 |
|
|
}
|
979 |
|
|
else
|
980 |
|
|
new_ptr = build_fold_addr_expr (def_rhs_base);
|
981 |
|
|
TREE_OPERAND (rhs, 0) = new_ptr;
|
982 |
|
|
TREE_OPERAND (rhs, 1)
|
983 |
|
|
= double_int_to_tree (TREE_TYPE (TREE_OPERAND (rhs, 1)), off);
|
984 |
|
|
fold_stmt_inplace (use_stmt_gsi);
|
985 |
|
|
tidy_after_forward_propagate_addr (use_stmt);
|
986 |
|
|
return res;
|
987 |
|
|
}
|
988 |
|
|
/* If the RHS is a plain dereference and the value type is the same as
|
989 |
|
|
that of the pointed-to type of the address we can put the
|
990 |
|
|
dereferenced address on the RHS preserving the original alias-type. */
|
991 |
|
|
else if (gimple_assign_rhs1 (use_stmt) == rhs
|
992 |
|
|
&& useless_type_conversion_p
|
993 |
|
|
(TREE_TYPE (gimple_assign_lhs (use_stmt)),
|
994 |
|
|
TREE_TYPE (TREE_OPERAND (def_rhs, 0))))
|
995 |
|
|
{
|
996 |
|
|
tree *def_rhs_basep = &TREE_OPERAND (def_rhs, 0);
|
997 |
|
|
tree new_offset, new_base, saved, new_rhs;
|
998 |
|
|
while (handled_component_p (*def_rhs_basep))
|
999 |
|
|
def_rhs_basep = &TREE_OPERAND (*def_rhs_basep, 0);
|
1000 |
|
|
saved = *def_rhs_basep;
|
1001 |
|
|
if (TREE_CODE (*def_rhs_basep) == MEM_REF)
|
1002 |
|
|
{
|
1003 |
|
|
new_base = TREE_OPERAND (*def_rhs_basep, 0);
|
1004 |
|
|
new_offset
|
1005 |
|
|
= int_const_binop (PLUS_EXPR, TREE_OPERAND (rhs, 1),
|
1006 |
|
|
TREE_OPERAND (*def_rhs_basep, 1));
|
1007 |
|
|
}
|
1008 |
|
|
else
|
1009 |
|
|
{
|
1010 |
|
|
new_base = build_fold_addr_expr (*def_rhs_basep);
|
1011 |
|
|
new_offset = TREE_OPERAND (rhs, 1);
|
1012 |
|
|
}
|
1013 |
|
|
*def_rhs_basep = build2 (MEM_REF, TREE_TYPE (*def_rhs_basep),
|
1014 |
|
|
new_base, new_offset);
|
1015 |
|
|
TREE_THIS_VOLATILE (*def_rhs_basep) = TREE_THIS_VOLATILE (rhs);
|
1016 |
|
|
TREE_SIDE_EFFECTS (*def_rhs_basep) = TREE_SIDE_EFFECTS (rhs);
|
1017 |
|
|
TREE_THIS_NOTRAP (*def_rhs_basep) = TREE_THIS_NOTRAP (rhs);
|
1018 |
|
|
new_rhs = unshare_expr (TREE_OPERAND (def_rhs, 0));
|
1019 |
|
|
gimple_assign_set_rhs1 (use_stmt, new_rhs);
|
1020 |
|
|
TREE_THIS_VOLATILE (new_rhs) = TREE_THIS_VOLATILE (rhs);
|
1021 |
|
|
TREE_SIDE_EFFECTS (new_rhs) = TREE_SIDE_EFFECTS (rhs);
|
1022 |
|
|
*def_rhs_basep = saved;
|
1023 |
|
|
fold_stmt_inplace (use_stmt_gsi);
|
1024 |
|
|
tidy_after_forward_propagate_addr (use_stmt);
|
1025 |
|
|
return res;
|
1026 |
|
|
}
|
1027 |
|
|
}
|
1028 |
|
|
|
1029 |
|
|
/* If the use of the ADDR_EXPR is not a POINTER_PLUS_EXPR, there
|
1030 |
|
|
is nothing to do. */
|
1031 |
|
|
if (gimple_assign_rhs_code (use_stmt) != POINTER_PLUS_EXPR
|
1032 |
|
|
|| gimple_assign_rhs1 (use_stmt) != name)
|
1033 |
|
|
return false;
|
1034 |
|
|
|
1035 |
|
|
/* The remaining cases are all for turning pointer arithmetic into
|
1036 |
|
|
array indexing. They only apply when we have the address of
|
1037 |
|
|
element zero in an array. If that is not the case then there
|
1038 |
|
|
is nothing to do. */
|
1039 |
|
|
array_ref = TREE_OPERAND (def_rhs, 0);
|
1040 |
|
|
if ((TREE_CODE (array_ref) != ARRAY_REF
|
1041 |
|
|
|| TREE_CODE (TREE_TYPE (TREE_OPERAND (array_ref, 0))) != ARRAY_TYPE
|
1042 |
|
|
|| TREE_CODE (TREE_OPERAND (array_ref, 1)) != INTEGER_CST)
|
1043 |
|
|
&& TREE_CODE (TREE_TYPE (array_ref)) != ARRAY_TYPE)
|
1044 |
|
|
return false;
|
1045 |
|
|
|
1046 |
|
|
rhs2 = gimple_assign_rhs2 (use_stmt);
|
1047 |
|
|
/* Optimize &x[C1] p+ C2 to &x p+ C3 with C3 = C1 * element_size + C2. */
|
1048 |
|
|
if (TREE_CODE (rhs2) == INTEGER_CST)
|
1049 |
|
|
{
|
1050 |
|
|
tree new_rhs = build1_loc (gimple_location (use_stmt),
|
1051 |
|
|
ADDR_EXPR, TREE_TYPE (def_rhs),
|
1052 |
|
|
fold_build2 (MEM_REF,
|
1053 |
|
|
TREE_TYPE (TREE_TYPE (def_rhs)),
|
1054 |
|
|
unshare_expr (def_rhs),
|
1055 |
|
|
fold_convert (ptr_type_node,
|
1056 |
|
|
rhs2)));
|
1057 |
|
|
gimple_assign_set_rhs_from_tree (use_stmt_gsi, new_rhs);
|
1058 |
|
|
use_stmt = gsi_stmt (*use_stmt_gsi);
|
1059 |
|
|
update_stmt (use_stmt);
|
1060 |
|
|
tidy_after_forward_propagate_addr (use_stmt);
|
1061 |
|
|
return true;
|
1062 |
|
|
}
|
1063 |
|
|
|
1064 |
|
|
/* Try to optimize &x[0] p+ OFFSET where OFFSET is defined by
|
1065 |
|
|
converting a multiplication of an index by the size of the
|
1066 |
|
|
array elements, then the result is converted into the proper
|
1067 |
|
|
type for the arithmetic. */
|
1068 |
|
|
if (TREE_CODE (rhs2) == SSA_NAME
|
1069 |
|
|
&& (TREE_CODE (array_ref) != ARRAY_REF
|
1070 |
|
|
|| integer_zerop (TREE_OPERAND (array_ref, 1)))
|
1071 |
|
|
&& useless_type_conversion_p (TREE_TYPE (name), TREE_TYPE (def_rhs))
|
1072 |
|
|
/* Avoid problems with IVopts creating PLUS_EXPRs with a
|
1073 |
|
|
different type than their operands. */
|
1074 |
|
|
&& useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (def_rhs)))
|
1075 |
|
|
return forward_propagate_addr_into_variable_array_index (rhs2, def_rhs,
|
1076 |
|
|
use_stmt_gsi);
|
1077 |
|
|
return false;
|
1078 |
|
|
}
|
1079 |
|
|
|
1080 |
|
|
/* STMT is a statement of the form SSA_NAME = ADDR_EXPR <whatever>.
|
1081 |
|
|
|
1082 |
|
|
Try to forward propagate the ADDR_EXPR into all uses of the SSA_NAME.
|
1083 |
|
|
Often this will allow for removal of an ADDR_EXPR and INDIRECT_REF
|
1084 |
|
|
node or for recovery of array indexing from pointer arithmetic.
|
1085 |
|
|
Returns true, if all uses have been propagated into. */
|
1086 |
|
|
|
1087 |
|
|
static bool
|
1088 |
|
|
forward_propagate_addr_expr (tree name, tree rhs)
|
1089 |
|
|
{
|
1090 |
|
|
int stmt_loop_depth = gimple_bb (SSA_NAME_DEF_STMT (name))->loop_depth;
|
1091 |
|
|
imm_use_iterator iter;
|
1092 |
|
|
gimple use_stmt;
|
1093 |
|
|
bool all = true;
|
1094 |
|
|
bool single_use_p = has_single_use (name);
|
1095 |
|
|
|
1096 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, iter, name)
|
1097 |
|
|
{
|
1098 |
|
|
bool result;
|
1099 |
|
|
tree use_rhs;
|
1100 |
|
|
|
1101 |
|
|
/* If the use is not in a simple assignment statement, then
|
1102 |
|
|
there is nothing we can do. */
|
1103 |
|
|
if (gimple_code (use_stmt) != GIMPLE_ASSIGN)
|
1104 |
|
|
{
|
1105 |
|
|
if (!is_gimple_debug (use_stmt))
|
1106 |
|
|
all = false;
|
1107 |
|
|
continue;
|
1108 |
|
|
}
|
1109 |
|
|
|
1110 |
|
|
/* If the use is in a deeper loop nest, then we do not want
|
1111 |
|
|
to propagate non-invariant ADDR_EXPRs into the loop as that
|
1112 |
|
|
is likely adding expression evaluations into the loop. */
|
1113 |
|
|
if (gimple_bb (use_stmt)->loop_depth > stmt_loop_depth
|
1114 |
|
|
&& !is_gimple_min_invariant (rhs))
|
1115 |
|
|
{
|
1116 |
|
|
all = false;
|
1117 |
|
|
continue;
|
1118 |
|
|
}
|
1119 |
|
|
|
1120 |
|
|
{
|
1121 |
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
|
1122 |
|
|
result = forward_propagate_addr_expr_1 (name, rhs, &gsi,
|
1123 |
|
|
single_use_p);
|
1124 |
|
|
/* If the use has moved to a different statement adjust
|
1125 |
|
|
the update machinery for the old statement too. */
|
1126 |
|
|
if (use_stmt != gsi_stmt (gsi))
|
1127 |
|
|
{
|
1128 |
|
|
update_stmt (use_stmt);
|
1129 |
|
|
use_stmt = gsi_stmt (gsi);
|
1130 |
|
|
}
|
1131 |
|
|
|
1132 |
|
|
update_stmt (use_stmt);
|
1133 |
|
|
}
|
1134 |
|
|
all &= result;
|
1135 |
|
|
|
1136 |
|
|
/* Remove intermediate now unused copy and conversion chains. */
|
1137 |
|
|
use_rhs = gimple_assign_rhs1 (use_stmt);
|
1138 |
|
|
if (result
|
1139 |
|
|
&& TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
|
1140 |
|
|
&& TREE_CODE (use_rhs) == SSA_NAME
|
1141 |
|
|
&& has_zero_uses (gimple_assign_lhs (use_stmt)))
|
1142 |
|
|
{
|
1143 |
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
|
1144 |
|
|
release_defs (use_stmt);
|
1145 |
|
|
gsi_remove (&gsi, true);
|
1146 |
|
|
}
|
1147 |
|
|
}
|
1148 |
|
|
|
1149 |
|
|
return all && has_zero_uses (name);
|
1150 |
|
|
}
|
1151 |
|
|
|
1152 |
|
|
|
1153 |
|
|
/* Forward propagate the comparison defined in STMT like
|
1154 |
|
|
cond_1 = x CMP y to uses of the form
|
1155 |
|
|
a_1 = (T')cond_1
|
1156 |
|
|
a_1 = !cond_1
|
1157 |
|
|
a_1 = cond_1 != 0
|
1158 |
|
|
Returns true if stmt is now unused. */
|
1159 |
|
|
|
1160 |
|
|
static bool
|
1161 |
|
|
forward_propagate_comparison (gimple stmt)
|
1162 |
|
|
{
|
1163 |
|
|
tree name = gimple_assign_lhs (stmt);
|
1164 |
|
|
gimple use_stmt;
|
1165 |
|
|
tree tmp = NULL_TREE;
|
1166 |
|
|
gimple_stmt_iterator gsi;
|
1167 |
|
|
enum tree_code code;
|
1168 |
|
|
tree lhs;
|
1169 |
|
|
|
1170 |
|
|
/* Don't propagate ssa names that occur in abnormal phis. */
|
1171 |
|
|
if ((TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
|
1172 |
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (stmt)))
|
1173 |
|
|
|| (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME
|
1174 |
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs2 (stmt))))
|
1175 |
|
|
return false;
|
1176 |
|
|
|
1177 |
|
|
/* Do not un-cse comparisons. But propagate through copies. */
|
1178 |
|
|
use_stmt = get_prop_dest_stmt (name, &name);
|
1179 |
|
|
if (!use_stmt
|
1180 |
|
|
|| !is_gimple_assign (use_stmt))
|
1181 |
|
|
return false;
|
1182 |
|
|
|
1183 |
|
|
code = gimple_assign_rhs_code (use_stmt);
|
1184 |
|
|
lhs = gimple_assign_lhs (use_stmt);
|
1185 |
|
|
if (!INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
|
1186 |
|
|
return false;
|
1187 |
|
|
|
1188 |
|
|
/* We can propagate the condition into a statement that
|
1189 |
|
|
computes the logical negation of the comparison result. */
|
1190 |
|
|
if ((code == BIT_NOT_EXPR
|
1191 |
|
|
&& TYPE_PRECISION (TREE_TYPE (lhs)) == 1)
|
1192 |
|
|
|| (code == BIT_XOR_EXPR
|
1193 |
|
|
&& integer_onep (gimple_assign_rhs2 (use_stmt))))
|
1194 |
|
|
{
|
1195 |
|
|
tree type = TREE_TYPE (gimple_assign_rhs1 (stmt));
|
1196 |
|
|
bool nans = HONOR_NANS (TYPE_MODE (type));
|
1197 |
|
|
enum tree_code inv_code;
|
1198 |
|
|
inv_code = invert_tree_comparison (gimple_assign_rhs_code (stmt), nans);
|
1199 |
|
|
if (inv_code == ERROR_MARK)
|
1200 |
|
|
return false;
|
1201 |
|
|
|
1202 |
|
|
tmp = build2 (inv_code, TREE_TYPE (lhs), gimple_assign_rhs1 (stmt),
|
1203 |
|
|
gimple_assign_rhs2 (stmt));
|
1204 |
|
|
}
|
1205 |
|
|
else
|
1206 |
|
|
return false;
|
1207 |
|
|
|
1208 |
|
|
gsi = gsi_for_stmt (use_stmt);
|
1209 |
|
|
gimple_assign_set_rhs_from_tree (&gsi, unshare_expr (tmp));
|
1210 |
|
|
use_stmt = gsi_stmt (gsi);
|
1211 |
|
|
update_stmt (use_stmt);
|
1212 |
|
|
|
1213 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1214 |
|
|
{
|
1215 |
|
|
fprintf (dump_file, " Replaced '");
|
1216 |
|
|
print_gimple_expr (dump_file, stmt, 0, dump_flags);
|
1217 |
|
|
fprintf (dump_file, "' with '");
|
1218 |
|
|
print_gimple_expr (dump_file, use_stmt, 0, dump_flags);
|
1219 |
|
|
fprintf (dump_file, "'\n");
|
1220 |
|
|
}
|
1221 |
|
|
|
1222 |
|
|
/* Remove defining statements. */
|
1223 |
|
|
return remove_prop_source_from_use (name);
|
1224 |
|
|
}
|
1225 |
|
|
|
1226 |
|
|
|
1227 |
|
|
/* If we have lhs = ~x (STMT), look and see if earlier we had x = ~y.
|
1228 |
|
|
If so, we can change STMT into lhs = y which can later be copy
|
1229 |
|
|
propagated. Similarly for negation.
|
1230 |
|
|
|
1231 |
|
|
This could trivially be formulated as a forward propagation
|
1232 |
|
|
to immediate uses. However, we already had an implementation
|
1233 |
|
|
from DOM which used backward propagation via the use-def links.
|
1234 |
|
|
|
1235 |
|
|
It turns out that backward propagation is actually faster as
|
1236 |
|
|
there's less work to do for each NOT/NEG expression we find.
|
1237 |
|
|
Backwards propagation needs to look at the statement in a single
|
1238 |
|
|
backlink. Forward propagation needs to look at potentially more
|
1239 |
|
|
than one forward link.
|
1240 |
|
|
|
1241 |
|
|
Returns true when the statement was changed. */
|
1242 |
|
|
|
1243 |
|
|
static bool
|
1244 |
|
|
simplify_not_neg_expr (gimple_stmt_iterator *gsi_p)
|
1245 |
|
|
{
|
1246 |
|
|
gimple stmt = gsi_stmt (*gsi_p);
|
1247 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
1248 |
|
|
gimple rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
|
1249 |
|
|
|
1250 |
|
|
/* See if the RHS_DEF_STMT has the same form as our statement. */
|
1251 |
|
|
if (is_gimple_assign (rhs_def_stmt)
|
1252 |
|
|
&& gimple_assign_rhs_code (rhs_def_stmt) == gimple_assign_rhs_code (stmt))
|
1253 |
|
|
{
|
1254 |
|
|
tree rhs_def_operand = gimple_assign_rhs1 (rhs_def_stmt);
|
1255 |
|
|
|
1256 |
|
|
/* Verify that RHS_DEF_OPERAND is a suitable SSA_NAME. */
|
1257 |
|
|
if (TREE_CODE (rhs_def_operand) == SSA_NAME
|
1258 |
|
|
&& ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs_def_operand))
|
1259 |
|
|
{
|
1260 |
|
|
gimple_assign_set_rhs_from_tree (gsi_p, rhs_def_operand);
|
1261 |
|
|
stmt = gsi_stmt (*gsi_p);
|
1262 |
|
|
update_stmt (stmt);
|
1263 |
|
|
return true;
|
1264 |
|
|
}
|
1265 |
|
|
}
|
1266 |
|
|
|
1267 |
|
|
return false;
|
1268 |
|
|
}
|
1269 |
|
|
|
1270 |
|
|
/* STMT is a SWITCH_EXPR for which we attempt to find equivalent forms of
|
1271 |
|
|
the condition which we may be able to optimize better. */
|
1272 |
|
|
|
1273 |
|
|
static bool
|
1274 |
|
|
simplify_gimple_switch (gimple stmt)
|
1275 |
|
|
{
|
1276 |
|
|
tree cond = gimple_switch_index (stmt);
|
1277 |
|
|
tree def, to, ti;
|
1278 |
|
|
gimple def_stmt;
|
1279 |
|
|
|
1280 |
|
|
/* The optimization that we really care about is removing unnecessary
|
1281 |
|
|
casts. That will let us do much better in propagating the inferred
|
1282 |
|
|
constant at the switch target. */
|
1283 |
|
|
if (TREE_CODE (cond) == SSA_NAME)
|
1284 |
|
|
{
|
1285 |
|
|
def_stmt = SSA_NAME_DEF_STMT (cond);
|
1286 |
|
|
if (is_gimple_assign (def_stmt))
|
1287 |
|
|
{
|
1288 |
|
|
if (gimple_assign_rhs_code (def_stmt) == NOP_EXPR)
|
1289 |
|
|
{
|
1290 |
|
|
int need_precision;
|
1291 |
|
|
bool fail;
|
1292 |
|
|
|
1293 |
|
|
def = gimple_assign_rhs1 (def_stmt);
|
1294 |
|
|
|
1295 |
|
|
/* ??? Why was Jeff testing this? We are gimple... */
|
1296 |
|
|
gcc_checking_assert (is_gimple_val (def));
|
1297 |
|
|
|
1298 |
|
|
to = TREE_TYPE (cond);
|
1299 |
|
|
ti = TREE_TYPE (def);
|
1300 |
|
|
|
1301 |
|
|
/* If we have an extension that preserves value, then we
|
1302 |
|
|
can copy the source value into the switch. */
|
1303 |
|
|
|
1304 |
|
|
need_precision = TYPE_PRECISION (ti);
|
1305 |
|
|
fail = false;
|
1306 |
|
|
if (! INTEGRAL_TYPE_P (ti))
|
1307 |
|
|
fail = true;
|
1308 |
|
|
else if (TYPE_UNSIGNED (to) && !TYPE_UNSIGNED (ti))
|
1309 |
|
|
fail = true;
|
1310 |
|
|
else if (!TYPE_UNSIGNED (to) && TYPE_UNSIGNED (ti))
|
1311 |
|
|
need_precision += 1;
|
1312 |
|
|
if (TYPE_PRECISION (to) < need_precision)
|
1313 |
|
|
fail = true;
|
1314 |
|
|
|
1315 |
|
|
if (!fail)
|
1316 |
|
|
{
|
1317 |
|
|
gimple_switch_set_index (stmt, def);
|
1318 |
|
|
update_stmt (stmt);
|
1319 |
|
|
return true;
|
1320 |
|
|
}
|
1321 |
|
|
}
|
1322 |
|
|
}
|
1323 |
|
|
}
|
1324 |
|
|
|
1325 |
|
|
return false;
|
1326 |
|
|
}
|
1327 |
|
|
|
1328 |
|
|
/* For pointers p2 and p1 return p2 - p1 if the
|
1329 |
|
|
difference is known and constant, otherwise return NULL. */
|
1330 |
|
|
|
1331 |
|
|
static tree
|
1332 |
|
|
constant_pointer_difference (tree p1, tree p2)
|
1333 |
|
|
{
|
1334 |
|
|
int i, j;
|
1335 |
|
|
#define CPD_ITERATIONS 5
|
1336 |
|
|
tree exps[2][CPD_ITERATIONS];
|
1337 |
|
|
tree offs[2][CPD_ITERATIONS];
|
1338 |
|
|
int cnt[2];
|
1339 |
|
|
|
1340 |
|
|
for (i = 0; i < 2; i++)
|
1341 |
|
|
{
|
1342 |
|
|
tree p = i ? p1 : p2;
|
1343 |
|
|
tree off = size_zero_node;
|
1344 |
|
|
gimple stmt;
|
1345 |
|
|
enum tree_code code;
|
1346 |
|
|
|
1347 |
|
|
/* For each of p1 and p2 we need to iterate at least
|
1348 |
|
|
twice, to handle ADDR_EXPR directly in p1/p2,
|
1349 |
|
|
SSA_NAME with ADDR_EXPR or POINTER_PLUS_EXPR etc.
|
1350 |
|
|
on definition's stmt RHS. Iterate a few extra times. */
|
1351 |
|
|
j = 0;
|
1352 |
|
|
do
|
1353 |
|
|
{
|
1354 |
|
|
if (!POINTER_TYPE_P (TREE_TYPE (p)))
|
1355 |
|
|
break;
|
1356 |
|
|
if (TREE_CODE (p) == ADDR_EXPR)
|
1357 |
|
|
{
|
1358 |
|
|
tree q = TREE_OPERAND (p, 0);
|
1359 |
|
|
HOST_WIDE_INT offset;
|
1360 |
|
|
tree base = get_addr_base_and_unit_offset (q, &offset);
|
1361 |
|
|
if (base)
|
1362 |
|
|
{
|
1363 |
|
|
q = base;
|
1364 |
|
|
if (offset)
|
1365 |
|
|
off = size_binop (PLUS_EXPR, off, size_int (offset));
|
1366 |
|
|
}
|
1367 |
|
|
if (TREE_CODE (q) == MEM_REF
|
1368 |
|
|
&& TREE_CODE (TREE_OPERAND (q, 0)) == SSA_NAME)
|
1369 |
|
|
{
|
1370 |
|
|
p = TREE_OPERAND (q, 0);
|
1371 |
|
|
off = size_binop (PLUS_EXPR, off,
|
1372 |
|
|
double_int_to_tree (sizetype,
|
1373 |
|
|
mem_ref_offset (q)));
|
1374 |
|
|
}
|
1375 |
|
|
else
|
1376 |
|
|
{
|
1377 |
|
|
exps[i][j] = q;
|
1378 |
|
|
offs[i][j++] = off;
|
1379 |
|
|
break;
|
1380 |
|
|
}
|
1381 |
|
|
}
|
1382 |
|
|
if (TREE_CODE (p) != SSA_NAME)
|
1383 |
|
|
break;
|
1384 |
|
|
exps[i][j] = p;
|
1385 |
|
|
offs[i][j++] = off;
|
1386 |
|
|
if (j == CPD_ITERATIONS)
|
1387 |
|
|
break;
|
1388 |
|
|
stmt = SSA_NAME_DEF_STMT (p);
|
1389 |
|
|
if (!is_gimple_assign (stmt) || gimple_assign_lhs (stmt) != p)
|
1390 |
|
|
break;
|
1391 |
|
|
code = gimple_assign_rhs_code (stmt);
|
1392 |
|
|
if (code == POINTER_PLUS_EXPR)
|
1393 |
|
|
{
|
1394 |
|
|
if (TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
|
1395 |
|
|
break;
|
1396 |
|
|
off = size_binop (PLUS_EXPR, off, gimple_assign_rhs2 (stmt));
|
1397 |
|
|
p = gimple_assign_rhs1 (stmt);
|
1398 |
|
|
}
|
1399 |
|
|
else if (code == ADDR_EXPR || code == NOP_EXPR)
|
1400 |
|
|
p = gimple_assign_rhs1 (stmt);
|
1401 |
|
|
else
|
1402 |
|
|
break;
|
1403 |
|
|
}
|
1404 |
|
|
while (1);
|
1405 |
|
|
cnt[i] = j;
|
1406 |
|
|
}
|
1407 |
|
|
|
1408 |
|
|
for (i = 0; i < cnt[0]; i++)
|
1409 |
|
|
for (j = 0; j < cnt[1]; j++)
|
1410 |
|
|
if (exps[0][i] == exps[1][j])
|
1411 |
|
|
return size_binop (MINUS_EXPR, offs[0][i], offs[1][j]);
|
1412 |
|
|
|
1413 |
|
|
return NULL_TREE;
|
1414 |
|
|
}
|
1415 |
|
|
|
1416 |
|
|
/* *GSI_P is a GIMPLE_CALL to a builtin function.
|
1417 |
|
|
Optimize
|
1418 |
|
|
memcpy (p, "abcd", 4);
|
1419 |
|
|
memset (p + 4, ' ', 3);
|
1420 |
|
|
into
|
1421 |
|
|
memcpy (p, "abcd ", 7);
|
1422 |
|
|
call if the latter can be stored by pieces during expansion. */
|
1423 |
|
|
|
1424 |
|
|
static bool
|
1425 |
|
|
simplify_builtin_call (gimple_stmt_iterator *gsi_p, tree callee2)
|
1426 |
|
|
{
|
1427 |
|
|
gimple stmt1, stmt2 = gsi_stmt (*gsi_p);
|
1428 |
|
|
tree vuse = gimple_vuse (stmt2);
|
1429 |
|
|
if (vuse == NULL)
|
1430 |
|
|
return false;
|
1431 |
|
|
stmt1 = SSA_NAME_DEF_STMT (vuse);
|
1432 |
|
|
|
1433 |
|
|
switch (DECL_FUNCTION_CODE (callee2))
|
1434 |
|
|
{
|
1435 |
|
|
case BUILT_IN_MEMSET:
|
1436 |
|
|
if (gimple_call_num_args (stmt2) != 3
|
1437 |
|
|
|| gimple_call_lhs (stmt2)
|
1438 |
|
|
|| CHAR_BIT != 8
|
1439 |
|
|
|| BITS_PER_UNIT != 8)
|
1440 |
|
|
break;
|
1441 |
|
|
else
|
1442 |
|
|
{
|
1443 |
|
|
tree callee1;
|
1444 |
|
|
tree ptr1, src1, str1, off1, len1, lhs1;
|
1445 |
|
|
tree ptr2 = gimple_call_arg (stmt2, 0);
|
1446 |
|
|
tree val2 = gimple_call_arg (stmt2, 1);
|
1447 |
|
|
tree len2 = gimple_call_arg (stmt2, 2);
|
1448 |
|
|
tree diff, vdef, new_str_cst;
|
1449 |
|
|
gimple use_stmt;
|
1450 |
|
|
unsigned int ptr1_align;
|
1451 |
|
|
unsigned HOST_WIDE_INT src_len;
|
1452 |
|
|
char *src_buf;
|
1453 |
|
|
use_operand_p use_p;
|
1454 |
|
|
|
1455 |
|
|
if (!host_integerp (val2, 0)
|
1456 |
|
|
|| !host_integerp (len2, 1))
|
1457 |
|
|
break;
|
1458 |
|
|
if (is_gimple_call (stmt1))
|
1459 |
|
|
{
|
1460 |
|
|
/* If first stmt is a call, it needs to be memcpy
|
1461 |
|
|
or mempcpy, with string literal as second argument and
|
1462 |
|
|
constant length. */
|
1463 |
|
|
callee1 = gimple_call_fndecl (stmt1);
|
1464 |
|
|
if (callee1 == NULL_TREE
|
1465 |
|
|
|| DECL_BUILT_IN_CLASS (callee1) != BUILT_IN_NORMAL
|
1466 |
|
|
|| gimple_call_num_args (stmt1) != 3)
|
1467 |
|
|
break;
|
1468 |
|
|
if (DECL_FUNCTION_CODE (callee1) != BUILT_IN_MEMCPY
|
1469 |
|
|
&& DECL_FUNCTION_CODE (callee1) != BUILT_IN_MEMPCPY)
|
1470 |
|
|
break;
|
1471 |
|
|
ptr1 = gimple_call_arg (stmt1, 0);
|
1472 |
|
|
src1 = gimple_call_arg (stmt1, 1);
|
1473 |
|
|
len1 = gimple_call_arg (stmt1, 2);
|
1474 |
|
|
lhs1 = gimple_call_lhs (stmt1);
|
1475 |
|
|
if (!host_integerp (len1, 1))
|
1476 |
|
|
break;
|
1477 |
|
|
str1 = string_constant (src1, &off1);
|
1478 |
|
|
if (str1 == NULL_TREE)
|
1479 |
|
|
break;
|
1480 |
|
|
if (!host_integerp (off1, 1)
|
1481 |
|
|
|| compare_tree_int (off1, TREE_STRING_LENGTH (str1) - 1) > 0
|
1482 |
|
|
|| compare_tree_int (len1, TREE_STRING_LENGTH (str1)
|
1483 |
|
|
- tree_low_cst (off1, 1)) > 0
|
1484 |
|
|
|| TREE_CODE (TREE_TYPE (str1)) != ARRAY_TYPE
|
1485 |
|
|
|| TYPE_MODE (TREE_TYPE (TREE_TYPE (str1)))
|
1486 |
|
|
!= TYPE_MODE (char_type_node))
|
1487 |
|
|
break;
|
1488 |
|
|
}
|
1489 |
|
|
else if (gimple_assign_single_p (stmt1))
|
1490 |
|
|
{
|
1491 |
|
|
/* Otherwise look for length 1 memcpy optimized into
|
1492 |
|
|
assignment. */
|
1493 |
|
|
ptr1 = gimple_assign_lhs (stmt1);
|
1494 |
|
|
src1 = gimple_assign_rhs1 (stmt1);
|
1495 |
|
|
if (TREE_CODE (ptr1) != MEM_REF
|
1496 |
|
|
|| TYPE_MODE (TREE_TYPE (ptr1)) != TYPE_MODE (char_type_node)
|
1497 |
|
|
|| !host_integerp (src1, 0))
|
1498 |
|
|
break;
|
1499 |
|
|
ptr1 = build_fold_addr_expr (ptr1);
|
1500 |
|
|
callee1 = NULL_TREE;
|
1501 |
|
|
len1 = size_one_node;
|
1502 |
|
|
lhs1 = NULL_TREE;
|
1503 |
|
|
off1 = size_zero_node;
|
1504 |
|
|
str1 = NULL_TREE;
|
1505 |
|
|
}
|
1506 |
|
|
else
|
1507 |
|
|
break;
|
1508 |
|
|
|
1509 |
|
|
diff = constant_pointer_difference (ptr1, ptr2);
|
1510 |
|
|
if (diff == NULL && lhs1 != NULL)
|
1511 |
|
|
{
|
1512 |
|
|
diff = constant_pointer_difference (lhs1, ptr2);
|
1513 |
|
|
if (DECL_FUNCTION_CODE (callee1) == BUILT_IN_MEMPCPY
|
1514 |
|
|
&& diff != NULL)
|
1515 |
|
|
diff = size_binop (PLUS_EXPR, diff,
|
1516 |
|
|
fold_convert (sizetype, len1));
|
1517 |
|
|
}
|
1518 |
|
|
/* If the difference between the second and first destination pointer
|
1519 |
|
|
is not constant, or is bigger than memcpy length, bail out. */
|
1520 |
|
|
if (diff == NULL
|
1521 |
|
|
|| !host_integerp (diff, 1)
|
1522 |
|
|
|| tree_int_cst_lt (len1, diff))
|
1523 |
|
|
break;
|
1524 |
|
|
|
1525 |
|
|
/* Use maximum of difference plus memset length and memcpy length
|
1526 |
|
|
as the new memcpy length, if it is too big, bail out. */
|
1527 |
|
|
src_len = tree_low_cst (diff, 1);
|
1528 |
|
|
src_len += tree_low_cst (len2, 1);
|
1529 |
|
|
if (src_len < (unsigned HOST_WIDE_INT) tree_low_cst (len1, 1))
|
1530 |
|
|
src_len = tree_low_cst (len1, 1);
|
1531 |
|
|
if (src_len > 1024)
|
1532 |
|
|
break;
|
1533 |
|
|
|
1534 |
|
|
/* If mempcpy value is used elsewhere, bail out, as mempcpy
|
1535 |
|
|
with bigger length will return different result. */
|
1536 |
|
|
if (lhs1 != NULL_TREE
|
1537 |
|
|
&& DECL_FUNCTION_CODE (callee1) == BUILT_IN_MEMPCPY
|
1538 |
|
|
&& (TREE_CODE (lhs1) != SSA_NAME
|
1539 |
|
|
|| !single_imm_use (lhs1, &use_p, &use_stmt)
|
1540 |
|
|
|| use_stmt != stmt2))
|
1541 |
|
|
break;
|
1542 |
|
|
|
1543 |
|
|
/* If anything reads memory in between memcpy and memset
|
1544 |
|
|
call, the modified memcpy call might change it. */
|
1545 |
|
|
vdef = gimple_vdef (stmt1);
|
1546 |
|
|
if (vdef != NULL
|
1547 |
|
|
&& (!single_imm_use (vdef, &use_p, &use_stmt)
|
1548 |
|
|
|| use_stmt != stmt2))
|
1549 |
|
|
break;
|
1550 |
|
|
|
1551 |
|
|
ptr1_align = get_pointer_alignment (ptr1);
|
1552 |
|
|
/* Construct the new source string literal. */
|
1553 |
|
|
src_buf = XALLOCAVEC (char, src_len + 1);
|
1554 |
|
|
if (callee1)
|
1555 |
|
|
memcpy (src_buf,
|
1556 |
|
|
TREE_STRING_POINTER (str1) + tree_low_cst (off1, 1),
|
1557 |
|
|
tree_low_cst (len1, 1));
|
1558 |
|
|
else
|
1559 |
|
|
src_buf[0] = tree_low_cst (src1, 0);
|
1560 |
|
|
memset (src_buf + tree_low_cst (diff, 1),
|
1561 |
|
|
tree_low_cst (val2, 1), tree_low_cst (len2, 1));
|
1562 |
|
|
src_buf[src_len] = '\0';
|
1563 |
|
|
/* Neither builtin_strncpy_read_str nor builtin_memcpy_read_str
|
1564 |
|
|
handle embedded '\0's. */
|
1565 |
|
|
if (strlen (src_buf) != src_len)
|
1566 |
|
|
break;
|
1567 |
|
|
rtl_profile_for_bb (gimple_bb (stmt2));
|
1568 |
|
|
/* If the new memcpy wouldn't be emitted by storing the literal
|
1569 |
|
|
by pieces, this optimization might enlarge .rodata too much,
|
1570 |
|
|
as commonly used string literals couldn't be shared any
|
1571 |
|
|
longer. */
|
1572 |
|
|
if (!can_store_by_pieces (src_len,
|
1573 |
|
|
builtin_strncpy_read_str,
|
1574 |
|
|
src_buf, ptr1_align, false))
|
1575 |
|
|
break;
|
1576 |
|
|
|
1577 |
|
|
new_str_cst = build_string_literal (src_len, src_buf);
|
1578 |
|
|
if (callee1)
|
1579 |
|
|
{
|
1580 |
|
|
/* If STMT1 is a mem{,p}cpy call, adjust it and remove
|
1581 |
|
|
memset call. */
|
1582 |
|
|
if (lhs1 && DECL_FUNCTION_CODE (callee1) == BUILT_IN_MEMPCPY)
|
1583 |
|
|
gimple_call_set_lhs (stmt1, NULL_TREE);
|
1584 |
|
|
gimple_call_set_arg (stmt1, 1, new_str_cst);
|
1585 |
|
|
gimple_call_set_arg (stmt1, 2,
|
1586 |
|
|
build_int_cst (TREE_TYPE (len1), src_len));
|
1587 |
|
|
update_stmt (stmt1);
|
1588 |
|
|
unlink_stmt_vdef (stmt2);
|
1589 |
|
|
gsi_remove (gsi_p, true);
|
1590 |
|
|
release_defs (stmt2);
|
1591 |
|
|
if (lhs1 && DECL_FUNCTION_CODE (callee1) == BUILT_IN_MEMPCPY)
|
1592 |
|
|
release_ssa_name (lhs1);
|
1593 |
|
|
return true;
|
1594 |
|
|
}
|
1595 |
|
|
else
|
1596 |
|
|
{
|
1597 |
|
|
/* Otherwise, if STMT1 is length 1 memcpy optimized into
|
1598 |
|
|
assignment, remove STMT1 and change memset call into
|
1599 |
|
|
memcpy call. */
|
1600 |
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (stmt1);
|
1601 |
|
|
|
1602 |
|
|
if (!is_gimple_val (ptr1))
|
1603 |
|
|
ptr1 = force_gimple_operand_gsi (gsi_p, ptr1, true, NULL_TREE,
|
1604 |
|
|
true, GSI_SAME_STMT);
|
1605 |
|
|
gimple_call_set_fndecl (stmt2,
|
1606 |
|
|
builtin_decl_explicit (BUILT_IN_MEMCPY));
|
1607 |
|
|
gimple_call_set_arg (stmt2, 0, ptr1);
|
1608 |
|
|
gimple_call_set_arg (stmt2, 1, new_str_cst);
|
1609 |
|
|
gimple_call_set_arg (stmt2, 2,
|
1610 |
|
|
build_int_cst (TREE_TYPE (len2), src_len));
|
1611 |
|
|
unlink_stmt_vdef (stmt1);
|
1612 |
|
|
gsi_remove (&gsi, true);
|
1613 |
|
|
release_defs (stmt1);
|
1614 |
|
|
update_stmt (stmt2);
|
1615 |
|
|
return false;
|
1616 |
|
|
}
|
1617 |
|
|
}
|
1618 |
|
|
break;
|
1619 |
|
|
default:
|
1620 |
|
|
break;
|
1621 |
|
|
}
|
1622 |
|
|
return false;
|
1623 |
|
|
}
|
1624 |
|
|
|
1625 |
|
|
/* Checks if expression has type of one-bit precision, or is a known
|
1626 |
|
|
truth-valued expression. */
|
1627 |
|
|
static bool
|
1628 |
|
|
truth_valued_ssa_name (tree name)
|
1629 |
|
|
{
|
1630 |
|
|
gimple def;
|
1631 |
|
|
tree type = TREE_TYPE (name);
|
1632 |
|
|
|
1633 |
|
|
if (!INTEGRAL_TYPE_P (type))
|
1634 |
|
|
return false;
|
1635 |
|
|
/* Don't check here for BOOLEAN_TYPE as the precision isn't
|
1636 |
|
|
necessarily one and so ~X is not equal to !X. */
|
1637 |
|
|
if (TYPE_PRECISION (type) == 1)
|
1638 |
|
|
return true;
|
1639 |
|
|
def = SSA_NAME_DEF_STMT (name);
|
1640 |
|
|
if (is_gimple_assign (def))
|
1641 |
|
|
return truth_value_p (gimple_assign_rhs_code (def));
|
1642 |
|
|
return false;
|
1643 |
|
|
}
|
1644 |
|
|
|
1645 |
|
|
/* Helper routine for simplify_bitwise_binary_1 function.
|
1646 |
|
|
Return for the SSA name NAME the expression X if it mets condition
|
1647 |
|
|
NAME = !X. Otherwise return NULL_TREE.
|
1648 |
|
|
Detected patterns for NAME = !X are:
|
1649 |
|
|
!X and X == 0 for X with integral type.
|
1650 |
|
|
X ^ 1, X != 1,or ~X for X with integral type with precision of one. */
|
1651 |
|
|
static tree
|
1652 |
|
|
lookup_logical_inverted_value (tree name)
|
1653 |
|
|
{
|
1654 |
|
|
tree op1, op2;
|
1655 |
|
|
enum tree_code code;
|
1656 |
|
|
gimple def;
|
1657 |
|
|
|
1658 |
|
|
/* If name has none-intergal type, or isn't a SSA_NAME, then
|
1659 |
|
|
return. */
|
1660 |
|
|
if (TREE_CODE (name) != SSA_NAME
|
1661 |
|
|
|| !INTEGRAL_TYPE_P (TREE_TYPE (name)))
|
1662 |
|
|
return NULL_TREE;
|
1663 |
|
|
def = SSA_NAME_DEF_STMT (name);
|
1664 |
|
|
if (!is_gimple_assign (def))
|
1665 |
|
|
return NULL_TREE;
|
1666 |
|
|
|
1667 |
|
|
code = gimple_assign_rhs_code (def);
|
1668 |
|
|
op1 = gimple_assign_rhs1 (def);
|
1669 |
|
|
op2 = NULL_TREE;
|
1670 |
|
|
|
1671 |
|
|
/* Get for EQ_EXPR or BIT_XOR_EXPR operation the second operand.
|
1672 |
|
|
If CODE isn't an EQ_EXPR, BIT_XOR_EXPR, or BIT_NOT_EXPR, then return. */
|
1673 |
|
|
if (code == EQ_EXPR || code == NE_EXPR
|
1674 |
|
|
|| code == BIT_XOR_EXPR)
|
1675 |
|
|
op2 = gimple_assign_rhs2 (def);
|
1676 |
|
|
|
1677 |
|
|
switch (code)
|
1678 |
|
|
{
|
1679 |
|
|
case BIT_NOT_EXPR:
|
1680 |
|
|
if (truth_valued_ssa_name (name))
|
1681 |
|
|
return op1;
|
1682 |
|
|
break;
|
1683 |
|
|
case EQ_EXPR:
|
1684 |
|
|
/* Check if we have X == 0 and X has an integral type. */
|
1685 |
|
|
if (!INTEGRAL_TYPE_P (TREE_TYPE (op1)))
|
1686 |
|
|
break;
|
1687 |
|
|
if (integer_zerop (op2))
|
1688 |
|
|
return op1;
|
1689 |
|
|
break;
|
1690 |
|
|
case NE_EXPR:
|
1691 |
|
|
/* Check if we have X != 1 and X is a truth-valued. */
|
1692 |
|
|
if (!INTEGRAL_TYPE_P (TREE_TYPE (op1)))
|
1693 |
|
|
break;
|
1694 |
|
|
if (integer_onep (op2) && truth_valued_ssa_name (op1))
|
1695 |
|
|
return op1;
|
1696 |
|
|
break;
|
1697 |
|
|
case BIT_XOR_EXPR:
|
1698 |
|
|
/* Check if we have X ^ 1 and X is truth valued. */
|
1699 |
|
|
if (integer_onep (op2) && truth_valued_ssa_name (op1))
|
1700 |
|
|
return op1;
|
1701 |
|
|
break;
|
1702 |
|
|
default:
|
1703 |
|
|
break;
|
1704 |
|
|
}
|
1705 |
|
|
|
1706 |
|
|
return NULL_TREE;
|
1707 |
|
|
}
|
1708 |
|
|
|
1709 |
|
|
/* Optimize ARG1 CODE ARG2 to a constant for bitwise binary
|
1710 |
|
|
operations CODE, if one operand has the logically inverted
|
1711 |
|
|
value of the other. */
|
1712 |
|
|
static tree
|
1713 |
|
|
simplify_bitwise_binary_1 (enum tree_code code, tree type,
|
1714 |
|
|
tree arg1, tree arg2)
|
1715 |
|
|
{
|
1716 |
|
|
tree anot;
|
1717 |
|
|
|
1718 |
|
|
/* If CODE isn't a bitwise binary operation, return NULL_TREE. */
|
1719 |
|
|
if (code != BIT_AND_EXPR && code != BIT_IOR_EXPR
|
1720 |
|
|
&& code != BIT_XOR_EXPR)
|
1721 |
|
|
return NULL_TREE;
|
1722 |
|
|
|
1723 |
|
|
/* First check if operands ARG1 and ARG2 are equal. If so
|
1724 |
|
|
return NULL_TREE as this optimization is handled fold_stmt. */
|
1725 |
|
|
if (arg1 == arg2)
|
1726 |
|
|
return NULL_TREE;
|
1727 |
|
|
/* See if we have in arguments logical-not patterns. */
|
1728 |
|
|
if (((anot = lookup_logical_inverted_value (arg1)) == NULL_TREE
|
1729 |
|
|
|| anot != arg2)
|
1730 |
|
|
&& ((anot = lookup_logical_inverted_value (arg2)) == NULL_TREE
|
1731 |
|
|
|| anot != arg1))
|
1732 |
|
|
return NULL_TREE;
|
1733 |
|
|
|
1734 |
|
|
/* X & !X -> 0. */
|
1735 |
|
|
if (code == BIT_AND_EXPR)
|
1736 |
|
|
return fold_convert (type, integer_zero_node);
|
1737 |
|
|
/* X | !X -> 1 and X ^ !X -> 1, if X is truth-valued. */
|
1738 |
|
|
if (truth_valued_ssa_name (anot))
|
1739 |
|
|
return fold_convert (type, integer_one_node);
|
1740 |
|
|
|
1741 |
|
|
/* ??? Otherwise result is (X != 0 ? X : 1). not handled. */
|
1742 |
|
|
return NULL_TREE;
|
1743 |
|
|
}
|
1744 |
|
|
|
1745 |
|
|
/* Simplify bitwise binary operations.
|
1746 |
|
|
Return true if a transformation applied, otherwise return false. */
|
1747 |
|
|
|
1748 |
|
|
static bool
|
1749 |
|
|
simplify_bitwise_binary (gimple_stmt_iterator *gsi)
|
1750 |
|
|
{
|
1751 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
1752 |
|
|
tree arg1 = gimple_assign_rhs1 (stmt);
|
1753 |
|
|
tree arg2 = gimple_assign_rhs2 (stmt);
|
1754 |
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
1755 |
|
|
tree res;
|
1756 |
|
|
gimple def1 = NULL, def2 = NULL;
|
1757 |
|
|
tree def1_arg1, def2_arg1;
|
1758 |
|
|
enum tree_code def1_code, def2_code;
|
1759 |
|
|
|
1760 |
|
|
def1_code = TREE_CODE (arg1);
|
1761 |
|
|
def1_arg1 = arg1;
|
1762 |
|
|
if (TREE_CODE (arg1) == SSA_NAME)
|
1763 |
|
|
{
|
1764 |
|
|
def1 = SSA_NAME_DEF_STMT (arg1);
|
1765 |
|
|
if (is_gimple_assign (def1))
|
1766 |
|
|
{
|
1767 |
|
|
def1_code = gimple_assign_rhs_code (def1);
|
1768 |
|
|
def1_arg1 = gimple_assign_rhs1 (def1);
|
1769 |
|
|
}
|
1770 |
|
|
}
|
1771 |
|
|
|
1772 |
|
|
def2_code = TREE_CODE (arg2);
|
1773 |
|
|
def2_arg1 = arg2;
|
1774 |
|
|
if (TREE_CODE (arg2) == SSA_NAME)
|
1775 |
|
|
{
|
1776 |
|
|
def2 = SSA_NAME_DEF_STMT (arg2);
|
1777 |
|
|
if (is_gimple_assign (def2))
|
1778 |
|
|
{
|
1779 |
|
|
def2_code = gimple_assign_rhs_code (def2);
|
1780 |
|
|
def2_arg1 = gimple_assign_rhs1 (def2);
|
1781 |
|
|
}
|
1782 |
|
|
}
|
1783 |
|
|
|
1784 |
|
|
/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST)). */
|
1785 |
|
|
if (TREE_CODE (arg2) == INTEGER_CST
|
1786 |
|
|
&& CONVERT_EXPR_CODE_P (def1_code)
|
1787 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (def1_arg1))
|
1788 |
|
|
&& int_fits_type_p (arg2, TREE_TYPE (def1_arg1)))
|
1789 |
|
|
{
|
1790 |
|
|
gimple newop;
|
1791 |
|
|
tree tem = create_tmp_reg (TREE_TYPE (def1_arg1), NULL);
|
1792 |
|
|
newop =
|
1793 |
|
|
gimple_build_assign_with_ops (code, tem, def1_arg1,
|
1794 |
|
|
fold_convert_loc (gimple_location (stmt),
|
1795 |
|
|
TREE_TYPE (def1_arg1),
|
1796 |
|
|
arg2));
|
1797 |
|
|
tem = make_ssa_name (tem, newop);
|
1798 |
|
|
gimple_assign_set_lhs (newop, tem);
|
1799 |
|
|
gimple_set_location (newop, gimple_location (stmt));
|
1800 |
|
|
gsi_insert_before (gsi, newop, GSI_SAME_STMT);
|
1801 |
|
|
gimple_assign_set_rhs_with_ops_1 (gsi, NOP_EXPR,
|
1802 |
|
|
tem, NULL_TREE, NULL_TREE);
|
1803 |
|
|
update_stmt (gsi_stmt (*gsi));
|
1804 |
|
|
return true;
|
1805 |
|
|
}
|
1806 |
|
|
|
1807 |
|
|
/* For bitwise binary operations apply operand conversions to the
|
1808 |
|
|
binary operation result instead of to the operands. This allows
|
1809 |
|
|
to combine successive conversions and bitwise binary operations. */
|
1810 |
|
|
if (CONVERT_EXPR_CODE_P (def1_code)
|
1811 |
|
|
&& CONVERT_EXPR_CODE_P (def2_code)
|
1812 |
|
|
&& types_compatible_p (TREE_TYPE (def1_arg1), TREE_TYPE (def2_arg1))
|
1813 |
|
|
/* Make sure that the conversion widens the operands, or has same
|
1814 |
|
|
precision, or that it changes the operation to a bitfield
|
1815 |
|
|
precision. */
|
1816 |
|
|
&& ((TYPE_PRECISION (TREE_TYPE (def1_arg1))
|
1817 |
|
|
<= TYPE_PRECISION (TREE_TYPE (arg1)))
|
1818 |
|
|
|| (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (arg1)))
|
1819 |
|
|
!= MODE_INT)
|
1820 |
|
|
|| (TYPE_PRECISION (TREE_TYPE (arg1))
|
1821 |
|
|
!= GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg1))))))
|
1822 |
|
|
{
|
1823 |
|
|
gimple newop;
|
1824 |
|
|
tree tem = create_tmp_reg (TREE_TYPE (def1_arg1),
|
1825 |
|
|
NULL);
|
1826 |
|
|
newop = gimple_build_assign_with_ops (code, tem, def1_arg1, def2_arg1);
|
1827 |
|
|
tem = make_ssa_name (tem, newop);
|
1828 |
|
|
gimple_assign_set_lhs (newop, tem);
|
1829 |
|
|
gimple_set_location (newop, gimple_location (stmt));
|
1830 |
|
|
gsi_insert_before (gsi, newop, GSI_SAME_STMT);
|
1831 |
|
|
gimple_assign_set_rhs_with_ops_1 (gsi, NOP_EXPR,
|
1832 |
|
|
tem, NULL_TREE, NULL_TREE);
|
1833 |
|
|
update_stmt (gsi_stmt (*gsi));
|
1834 |
|
|
return true;
|
1835 |
|
|
}
|
1836 |
|
|
|
1837 |
|
|
/* (a | CST1) & CST2 -> (a & CST2) | (CST1 & CST2). */
|
1838 |
|
|
if (code == BIT_AND_EXPR
|
1839 |
|
|
&& def1_code == BIT_IOR_EXPR
|
1840 |
|
|
&& TREE_CODE (arg2) == INTEGER_CST
|
1841 |
|
|
&& TREE_CODE (gimple_assign_rhs2 (def1)) == INTEGER_CST)
|
1842 |
|
|
{
|
1843 |
|
|
tree cst = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg2),
|
1844 |
|
|
arg2, gimple_assign_rhs2 (def1));
|
1845 |
|
|
tree tem;
|
1846 |
|
|
gimple newop;
|
1847 |
|
|
if (integer_zerop (cst))
|
1848 |
|
|
{
|
1849 |
|
|
gimple_assign_set_rhs1 (stmt, def1_arg1);
|
1850 |
|
|
update_stmt (stmt);
|
1851 |
|
|
return true;
|
1852 |
|
|
}
|
1853 |
|
|
tem = create_tmp_reg (TREE_TYPE (arg2), NULL);
|
1854 |
|
|
newop = gimple_build_assign_with_ops (BIT_AND_EXPR,
|
1855 |
|
|
tem, def1_arg1, arg2);
|
1856 |
|
|
tem = make_ssa_name (tem, newop);
|
1857 |
|
|
gimple_assign_set_lhs (newop, tem);
|
1858 |
|
|
gimple_set_location (newop, gimple_location (stmt));
|
1859 |
|
|
/* Make sure to re-process the new stmt as it's walking upwards. */
|
1860 |
|
|
gsi_insert_before (gsi, newop, GSI_NEW_STMT);
|
1861 |
|
|
gimple_assign_set_rhs1 (stmt, tem);
|
1862 |
|
|
gimple_assign_set_rhs2 (stmt, cst);
|
1863 |
|
|
gimple_assign_set_rhs_code (stmt, BIT_IOR_EXPR);
|
1864 |
|
|
update_stmt (stmt);
|
1865 |
|
|
return true;
|
1866 |
|
|
}
|
1867 |
|
|
|
1868 |
|
|
/* Combine successive equal operations with constants. */
|
1869 |
|
|
if ((code == BIT_AND_EXPR
|
1870 |
|
|
|| code == BIT_IOR_EXPR
|
1871 |
|
|
|| code == BIT_XOR_EXPR)
|
1872 |
|
|
&& def1_code == code
|
1873 |
|
|
&& TREE_CODE (arg2) == INTEGER_CST
|
1874 |
|
|
&& TREE_CODE (gimple_assign_rhs2 (def1)) == INTEGER_CST)
|
1875 |
|
|
{
|
1876 |
|
|
tree cst = fold_build2 (code, TREE_TYPE (arg2),
|
1877 |
|
|
arg2, gimple_assign_rhs2 (def1));
|
1878 |
|
|
gimple_assign_set_rhs1 (stmt, def1_arg1);
|
1879 |
|
|
gimple_assign_set_rhs2 (stmt, cst);
|
1880 |
|
|
update_stmt (stmt);
|
1881 |
|
|
return true;
|
1882 |
|
|
}
|
1883 |
|
|
|
1884 |
|
|
/* Canonicalize X ^ ~0 to ~X. */
|
1885 |
|
|
if (code == BIT_XOR_EXPR
|
1886 |
|
|
&& TREE_CODE (arg2) == INTEGER_CST
|
1887 |
|
|
&& integer_all_onesp (arg2))
|
1888 |
|
|
{
|
1889 |
|
|
gimple_assign_set_rhs_with_ops (gsi, BIT_NOT_EXPR, arg1, NULL_TREE);
|
1890 |
|
|
gcc_assert (gsi_stmt (*gsi) == stmt);
|
1891 |
|
|
update_stmt (stmt);
|
1892 |
|
|
return true;
|
1893 |
|
|
}
|
1894 |
|
|
|
1895 |
|
|
/* Try simple folding for X op !X, and X op X. */
|
1896 |
|
|
res = simplify_bitwise_binary_1 (code, TREE_TYPE (arg1), arg1, arg2);
|
1897 |
|
|
if (res != NULL_TREE)
|
1898 |
|
|
{
|
1899 |
|
|
gimple_assign_set_rhs_from_tree (gsi, res);
|
1900 |
|
|
update_stmt (gsi_stmt (*gsi));
|
1901 |
|
|
return true;
|
1902 |
|
|
}
|
1903 |
|
|
|
1904 |
|
|
return false;
|
1905 |
|
|
}
|
1906 |
|
|
|
1907 |
|
|
|
1908 |
|
|
/* Perform re-associations of the plus or minus statement STMT that are
|
1909 |
|
|
always permitted. Returns true if the CFG was changed. */
|
1910 |
|
|
|
1911 |
|
|
static bool
|
1912 |
|
|
associate_plusminus (gimple_stmt_iterator *gsi)
|
1913 |
|
|
{
|
1914 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
1915 |
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
1916 |
|
|
tree rhs2 = gimple_assign_rhs2 (stmt);
|
1917 |
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
1918 |
|
|
bool changed;
|
1919 |
|
|
|
1920 |
|
|
/* We can't reassociate at all for saturating types. */
|
1921 |
|
|
if (TYPE_SATURATING (TREE_TYPE (rhs1)))
|
1922 |
|
|
return false;
|
1923 |
|
|
|
1924 |
|
|
/* First contract negates. */
|
1925 |
|
|
do
|
1926 |
|
|
{
|
1927 |
|
|
changed = false;
|
1928 |
|
|
|
1929 |
|
|
/* A +- (-B) -> A -+ B. */
|
1930 |
|
|
if (TREE_CODE (rhs2) == SSA_NAME)
|
1931 |
|
|
{
|
1932 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (rhs2);
|
1933 |
|
|
if (is_gimple_assign (def_stmt)
|
1934 |
|
|
&& gimple_assign_rhs_code (def_stmt) == NEGATE_EXPR
|
1935 |
|
|
&& can_propagate_from (def_stmt))
|
1936 |
|
|
{
|
1937 |
|
|
code = (code == MINUS_EXPR) ? PLUS_EXPR : MINUS_EXPR;
|
1938 |
|
|
gimple_assign_set_rhs_code (stmt, code);
|
1939 |
|
|
rhs2 = gimple_assign_rhs1 (def_stmt);
|
1940 |
|
|
gimple_assign_set_rhs2 (stmt, rhs2);
|
1941 |
|
|
gimple_set_modified (stmt, true);
|
1942 |
|
|
changed = true;
|
1943 |
|
|
}
|
1944 |
|
|
}
|
1945 |
|
|
|
1946 |
|
|
/* (-A) + B -> B - A. */
|
1947 |
|
|
if (TREE_CODE (rhs1) == SSA_NAME
|
1948 |
|
|
&& code == PLUS_EXPR)
|
1949 |
|
|
{
|
1950 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (rhs1);
|
1951 |
|
|
if (is_gimple_assign (def_stmt)
|
1952 |
|
|
&& gimple_assign_rhs_code (def_stmt) == NEGATE_EXPR
|
1953 |
|
|
&& can_propagate_from (def_stmt))
|
1954 |
|
|
{
|
1955 |
|
|
code = MINUS_EXPR;
|
1956 |
|
|
gimple_assign_set_rhs_code (stmt, code);
|
1957 |
|
|
rhs1 = rhs2;
|
1958 |
|
|
gimple_assign_set_rhs1 (stmt, rhs1);
|
1959 |
|
|
rhs2 = gimple_assign_rhs1 (def_stmt);
|
1960 |
|
|
gimple_assign_set_rhs2 (stmt, rhs2);
|
1961 |
|
|
gimple_set_modified (stmt, true);
|
1962 |
|
|
changed = true;
|
1963 |
|
|
}
|
1964 |
|
|
}
|
1965 |
|
|
}
|
1966 |
|
|
while (changed);
|
1967 |
|
|
|
1968 |
|
|
/* We can't reassociate floating-point or fixed-point plus or minus
|
1969 |
|
|
because of saturation to +-Inf. */
|
1970 |
|
|
if (FLOAT_TYPE_P (TREE_TYPE (rhs1))
|
1971 |
|
|
|| FIXED_POINT_TYPE_P (TREE_TYPE (rhs1)))
|
1972 |
|
|
goto out;
|
1973 |
|
|
|
1974 |
|
|
/* Second match patterns that allow contracting a plus-minus pair
|
1975 |
|
|
irrespective of overflow issues.
|
1976 |
|
|
|
1977 |
|
|
(A +- B) - A -> +- B
|
1978 |
|
|
(A +- B) -+ B -> A
|
1979 |
|
|
(CST +- A) +- CST -> CST +- A
|
1980 |
|
|
(A + CST) +- CST -> A + CST
|
1981 |
|
|
~A + A -> -1
|
1982 |
|
|
~A + 1 -> -A
|
1983 |
|
|
A - (A +- B) -> -+ B
|
1984 |
|
|
A +- (B +- A) -> +- B
|
1985 |
|
|
CST +- (CST +- A) -> CST +- A
|
1986 |
|
|
CST +- (A +- CST) -> CST +- A
|
1987 |
|
|
A + ~A -> -1
|
1988 |
|
|
|
1989 |
|
|
via commutating the addition and contracting operations to zero
|
1990 |
|
|
by reassociation. */
|
1991 |
|
|
|
1992 |
|
|
if (TREE_CODE (rhs1) == SSA_NAME)
|
1993 |
|
|
{
|
1994 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (rhs1);
|
1995 |
|
|
if (is_gimple_assign (def_stmt) && can_propagate_from (def_stmt))
|
1996 |
|
|
{
|
1997 |
|
|
enum tree_code def_code = gimple_assign_rhs_code (def_stmt);
|
1998 |
|
|
if (def_code == PLUS_EXPR
|
1999 |
|
|
|| def_code == MINUS_EXPR)
|
2000 |
|
|
{
|
2001 |
|
|
tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
|
2002 |
|
|
tree def_rhs2 = gimple_assign_rhs2 (def_stmt);
|
2003 |
|
|
if (operand_equal_p (def_rhs1, rhs2, 0)
|
2004 |
|
|
&& code == MINUS_EXPR)
|
2005 |
|
|
{
|
2006 |
|
|
/* (A +- B) - A -> +- B. */
|
2007 |
|
|
code = ((def_code == PLUS_EXPR)
|
2008 |
|
|
? TREE_CODE (def_rhs2) : NEGATE_EXPR);
|
2009 |
|
|
rhs1 = def_rhs2;
|
2010 |
|
|
rhs2 = NULL_TREE;
|
2011 |
|
|
gimple_assign_set_rhs_with_ops (gsi, code, rhs1, NULL_TREE);
|
2012 |
|
|
gcc_assert (gsi_stmt (*gsi) == stmt);
|
2013 |
|
|
gimple_set_modified (stmt, true);
|
2014 |
|
|
}
|
2015 |
|
|
else if (operand_equal_p (def_rhs2, rhs2, 0)
|
2016 |
|
|
&& code != def_code)
|
2017 |
|
|
{
|
2018 |
|
|
/* (A +- B) -+ B -> A. */
|
2019 |
|
|
code = TREE_CODE (def_rhs1);
|
2020 |
|
|
rhs1 = def_rhs1;
|
2021 |
|
|
rhs2 = NULL_TREE;
|
2022 |
|
|
gimple_assign_set_rhs_with_ops (gsi, code, rhs1, NULL_TREE);
|
2023 |
|
|
gcc_assert (gsi_stmt (*gsi) == stmt);
|
2024 |
|
|
gimple_set_modified (stmt, true);
|
2025 |
|
|
}
|
2026 |
|
|
else if (TREE_CODE (rhs2) == INTEGER_CST
|
2027 |
|
|
&& TREE_CODE (def_rhs1) == INTEGER_CST)
|
2028 |
|
|
{
|
2029 |
|
|
/* (CST +- A) +- CST -> CST +- A. */
|
2030 |
|
|
tree cst = fold_binary (code, TREE_TYPE (rhs1),
|
2031 |
|
|
def_rhs1, rhs2);
|
2032 |
|
|
if (cst && !TREE_OVERFLOW (cst))
|
2033 |
|
|
{
|
2034 |
|
|
code = def_code;
|
2035 |
|
|
gimple_assign_set_rhs_code (stmt, code);
|
2036 |
|
|
rhs1 = cst;
|
2037 |
|
|
gimple_assign_set_rhs1 (stmt, rhs1);
|
2038 |
|
|
rhs2 = def_rhs2;
|
2039 |
|
|
gimple_assign_set_rhs2 (stmt, rhs2);
|
2040 |
|
|
gimple_set_modified (stmt, true);
|
2041 |
|
|
}
|
2042 |
|
|
}
|
2043 |
|
|
else if (TREE_CODE (rhs2) == INTEGER_CST
|
2044 |
|
|
&& TREE_CODE (def_rhs2) == INTEGER_CST
|
2045 |
|
|
&& def_code == PLUS_EXPR)
|
2046 |
|
|
{
|
2047 |
|
|
/* (A + CST) +- CST -> A + CST. */
|
2048 |
|
|
tree cst = fold_binary (code, TREE_TYPE (rhs1),
|
2049 |
|
|
def_rhs2, rhs2);
|
2050 |
|
|
if (cst && !TREE_OVERFLOW (cst))
|
2051 |
|
|
{
|
2052 |
|
|
code = PLUS_EXPR;
|
2053 |
|
|
gimple_assign_set_rhs_code (stmt, code);
|
2054 |
|
|
rhs1 = def_rhs1;
|
2055 |
|
|
gimple_assign_set_rhs1 (stmt, rhs1);
|
2056 |
|
|
rhs2 = cst;
|
2057 |
|
|
gimple_assign_set_rhs2 (stmt, rhs2);
|
2058 |
|
|
gimple_set_modified (stmt, true);
|
2059 |
|
|
}
|
2060 |
|
|
}
|
2061 |
|
|
}
|
2062 |
|
|
else if (def_code == BIT_NOT_EXPR
|
2063 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
|
2064 |
|
|
{
|
2065 |
|
|
tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
|
2066 |
|
|
if (code == PLUS_EXPR
|
2067 |
|
|
&& operand_equal_p (def_rhs1, rhs2, 0))
|
2068 |
|
|
{
|
2069 |
|
|
/* ~A + A -> -1. */
|
2070 |
|
|
code = INTEGER_CST;
|
2071 |
|
|
rhs1 = build_int_cst_type (TREE_TYPE (rhs2), -1);
|
2072 |
|
|
rhs2 = NULL_TREE;
|
2073 |
|
|
gimple_assign_set_rhs_with_ops (gsi, code, rhs1, NULL_TREE);
|
2074 |
|
|
gcc_assert (gsi_stmt (*gsi) == stmt);
|
2075 |
|
|
gimple_set_modified (stmt, true);
|
2076 |
|
|
}
|
2077 |
|
|
else if (code == PLUS_EXPR
|
2078 |
|
|
&& integer_onep (rhs1))
|
2079 |
|
|
{
|
2080 |
|
|
/* ~A + 1 -> -A. */
|
2081 |
|
|
code = NEGATE_EXPR;
|
2082 |
|
|
rhs1 = def_rhs1;
|
2083 |
|
|
rhs2 = NULL_TREE;
|
2084 |
|
|
gimple_assign_set_rhs_with_ops (gsi, code, rhs1, NULL_TREE);
|
2085 |
|
|
gcc_assert (gsi_stmt (*gsi) == stmt);
|
2086 |
|
|
gimple_set_modified (stmt, true);
|
2087 |
|
|
}
|
2088 |
|
|
}
|
2089 |
|
|
}
|
2090 |
|
|
}
|
2091 |
|
|
|
2092 |
|
|
if (rhs2 && TREE_CODE (rhs2) == SSA_NAME)
|
2093 |
|
|
{
|
2094 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (rhs2);
|
2095 |
|
|
if (is_gimple_assign (def_stmt) && can_propagate_from (def_stmt))
|
2096 |
|
|
{
|
2097 |
|
|
enum tree_code def_code = gimple_assign_rhs_code (def_stmt);
|
2098 |
|
|
if (def_code == PLUS_EXPR
|
2099 |
|
|
|| def_code == MINUS_EXPR)
|
2100 |
|
|
{
|
2101 |
|
|
tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
|
2102 |
|
|
tree def_rhs2 = gimple_assign_rhs2 (def_stmt);
|
2103 |
|
|
if (operand_equal_p (def_rhs1, rhs1, 0)
|
2104 |
|
|
&& code == MINUS_EXPR)
|
2105 |
|
|
{
|
2106 |
|
|
/* A - (A +- B) -> -+ B. */
|
2107 |
|
|
code = ((def_code == PLUS_EXPR)
|
2108 |
|
|
? NEGATE_EXPR : TREE_CODE (def_rhs2));
|
2109 |
|
|
rhs1 = def_rhs2;
|
2110 |
|
|
rhs2 = NULL_TREE;
|
2111 |
|
|
gimple_assign_set_rhs_with_ops (gsi, code, rhs1, NULL_TREE);
|
2112 |
|
|
gcc_assert (gsi_stmt (*gsi) == stmt);
|
2113 |
|
|
gimple_set_modified (stmt, true);
|
2114 |
|
|
}
|
2115 |
|
|
else if (operand_equal_p (def_rhs2, rhs1, 0)
|
2116 |
|
|
&& code != def_code)
|
2117 |
|
|
{
|
2118 |
|
|
/* A +- (B +- A) -> +- B. */
|
2119 |
|
|
code = ((code == PLUS_EXPR)
|
2120 |
|
|
? TREE_CODE (def_rhs1) : NEGATE_EXPR);
|
2121 |
|
|
rhs1 = def_rhs1;
|
2122 |
|
|
rhs2 = NULL_TREE;
|
2123 |
|
|
gimple_assign_set_rhs_with_ops (gsi, code, rhs1, NULL_TREE);
|
2124 |
|
|
gcc_assert (gsi_stmt (*gsi) == stmt);
|
2125 |
|
|
gimple_set_modified (stmt, true);
|
2126 |
|
|
}
|
2127 |
|
|
else if (TREE_CODE (rhs1) == INTEGER_CST
|
2128 |
|
|
&& TREE_CODE (def_rhs1) == INTEGER_CST)
|
2129 |
|
|
{
|
2130 |
|
|
/* CST +- (CST +- A) -> CST +- A. */
|
2131 |
|
|
tree cst = fold_binary (code, TREE_TYPE (rhs2),
|
2132 |
|
|
rhs1, def_rhs1);
|
2133 |
|
|
if (cst && !TREE_OVERFLOW (cst))
|
2134 |
|
|
{
|
2135 |
|
|
code = (code == def_code ? PLUS_EXPR : MINUS_EXPR);
|
2136 |
|
|
gimple_assign_set_rhs_code (stmt, code);
|
2137 |
|
|
rhs1 = cst;
|
2138 |
|
|
gimple_assign_set_rhs1 (stmt, rhs1);
|
2139 |
|
|
rhs2 = def_rhs2;
|
2140 |
|
|
gimple_assign_set_rhs2 (stmt, rhs2);
|
2141 |
|
|
gimple_set_modified (stmt, true);
|
2142 |
|
|
}
|
2143 |
|
|
}
|
2144 |
|
|
else if (TREE_CODE (rhs1) == INTEGER_CST
|
2145 |
|
|
&& TREE_CODE (def_rhs2) == INTEGER_CST)
|
2146 |
|
|
{
|
2147 |
|
|
/* CST +- (A +- CST) -> CST +- A. */
|
2148 |
|
|
tree cst = fold_binary (def_code == code
|
2149 |
|
|
? PLUS_EXPR : MINUS_EXPR,
|
2150 |
|
|
TREE_TYPE (rhs2),
|
2151 |
|
|
rhs1, def_rhs2);
|
2152 |
|
|
if (cst && !TREE_OVERFLOW (cst))
|
2153 |
|
|
{
|
2154 |
|
|
rhs1 = cst;
|
2155 |
|
|
gimple_assign_set_rhs1 (stmt, rhs1);
|
2156 |
|
|
rhs2 = def_rhs1;
|
2157 |
|
|
gimple_assign_set_rhs2 (stmt, rhs2);
|
2158 |
|
|
gimple_set_modified (stmt, true);
|
2159 |
|
|
}
|
2160 |
|
|
}
|
2161 |
|
|
}
|
2162 |
|
|
else if (def_code == BIT_NOT_EXPR
|
2163 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs2)))
|
2164 |
|
|
{
|
2165 |
|
|
tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
|
2166 |
|
|
if (code == PLUS_EXPR
|
2167 |
|
|
&& operand_equal_p (def_rhs1, rhs1, 0))
|
2168 |
|
|
{
|
2169 |
|
|
/* A + ~A -> -1. */
|
2170 |
|
|
code = INTEGER_CST;
|
2171 |
|
|
rhs1 = build_int_cst_type (TREE_TYPE (rhs1), -1);
|
2172 |
|
|
rhs2 = NULL_TREE;
|
2173 |
|
|
gimple_assign_set_rhs_with_ops (gsi, code, rhs1, NULL_TREE);
|
2174 |
|
|
gcc_assert (gsi_stmt (*gsi) == stmt);
|
2175 |
|
|
gimple_set_modified (stmt, true);
|
2176 |
|
|
}
|
2177 |
|
|
}
|
2178 |
|
|
}
|
2179 |
|
|
}
|
2180 |
|
|
|
2181 |
|
|
out:
|
2182 |
|
|
if (gimple_modified_p (stmt))
|
2183 |
|
|
{
|
2184 |
|
|
fold_stmt_inplace (gsi);
|
2185 |
|
|
update_stmt (stmt);
|
2186 |
|
|
if (maybe_clean_or_replace_eh_stmt (stmt, stmt)
|
2187 |
|
|
&& gimple_purge_dead_eh_edges (gimple_bb (stmt)))
|
2188 |
|
|
return true;
|
2189 |
|
|
}
|
2190 |
|
|
|
2191 |
|
|
return false;
|
2192 |
|
|
}
|
2193 |
|
|
|
2194 |
|
|
/* Combine two conversions in a row for the second conversion at *GSI.
|
2195 |
|
|
Returns 1 if there were any changes made, 2 if cfg-cleanup needs to
|
2196 |
|
|
run. Else it returns 0. */
|
2197 |
|
|
|
2198 |
|
|
static int
|
2199 |
|
|
combine_conversions (gimple_stmt_iterator *gsi)
|
2200 |
|
|
{
|
2201 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
2202 |
|
|
gimple def_stmt;
|
2203 |
|
|
tree op0, lhs;
|
2204 |
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
2205 |
|
|
|
2206 |
|
|
gcc_checking_assert (CONVERT_EXPR_CODE_P (code)
|
2207 |
|
|
|| code == FLOAT_EXPR
|
2208 |
|
|
|| code == FIX_TRUNC_EXPR);
|
2209 |
|
|
|
2210 |
|
|
lhs = gimple_assign_lhs (stmt);
|
2211 |
|
|
op0 = gimple_assign_rhs1 (stmt);
|
2212 |
|
|
if (useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0)))
|
2213 |
|
|
{
|
2214 |
|
|
gimple_assign_set_rhs_code (stmt, TREE_CODE (op0));
|
2215 |
|
|
return 1;
|
2216 |
|
|
}
|
2217 |
|
|
|
2218 |
|
|
if (TREE_CODE (op0) != SSA_NAME)
|
2219 |
|
|
return 0;
|
2220 |
|
|
|
2221 |
|
|
def_stmt = SSA_NAME_DEF_STMT (op0);
|
2222 |
|
|
if (!is_gimple_assign (def_stmt))
|
2223 |
|
|
return 0;
|
2224 |
|
|
|
2225 |
|
|
if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
|
2226 |
|
|
{
|
2227 |
|
|
tree defop0 = gimple_assign_rhs1 (def_stmt);
|
2228 |
|
|
tree type = TREE_TYPE (lhs);
|
2229 |
|
|
tree inside_type = TREE_TYPE (defop0);
|
2230 |
|
|
tree inter_type = TREE_TYPE (op0);
|
2231 |
|
|
int inside_int = INTEGRAL_TYPE_P (inside_type);
|
2232 |
|
|
int inside_ptr = POINTER_TYPE_P (inside_type);
|
2233 |
|
|
int inside_float = FLOAT_TYPE_P (inside_type);
|
2234 |
|
|
int inside_vec = TREE_CODE (inside_type) == VECTOR_TYPE;
|
2235 |
|
|
unsigned int inside_prec = TYPE_PRECISION (inside_type);
|
2236 |
|
|
int inside_unsignedp = TYPE_UNSIGNED (inside_type);
|
2237 |
|
|
int inter_int = INTEGRAL_TYPE_P (inter_type);
|
2238 |
|
|
int inter_ptr = POINTER_TYPE_P (inter_type);
|
2239 |
|
|
int inter_float = FLOAT_TYPE_P (inter_type);
|
2240 |
|
|
int inter_vec = TREE_CODE (inter_type) == VECTOR_TYPE;
|
2241 |
|
|
unsigned int inter_prec = TYPE_PRECISION (inter_type);
|
2242 |
|
|
int inter_unsignedp = TYPE_UNSIGNED (inter_type);
|
2243 |
|
|
int final_int = INTEGRAL_TYPE_P (type);
|
2244 |
|
|
int final_ptr = POINTER_TYPE_P (type);
|
2245 |
|
|
int final_float = FLOAT_TYPE_P (type);
|
2246 |
|
|
int final_vec = TREE_CODE (type) == VECTOR_TYPE;
|
2247 |
|
|
unsigned int final_prec = TYPE_PRECISION (type);
|
2248 |
|
|
int final_unsignedp = TYPE_UNSIGNED (type);
|
2249 |
|
|
|
2250 |
|
|
/* In addition to the cases of two conversions in a row
|
2251 |
|
|
handled below, if we are converting something to its own
|
2252 |
|
|
type via an object of identical or wider precision, neither
|
2253 |
|
|
conversion is needed. */
|
2254 |
|
|
if (useless_type_conversion_p (type, inside_type)
|
2255 |
|
|
&& (((inter_int || inter_ptr) && final_int)
|
2256 |
|
|
|| (inter_float && final_float))
|
2257 |
|
|
&& inter_prec >= final_prec)
|
2258 |
|
|
{
|
2259 |
|
|
gimple_assign_set_rhs1 (stmt, unshare_expr (defop0));
|
2260 |
|
|
gimple_assign_set_rhs_code (stmt, TREE_CODE (defop0));
|
2261 |
|
|
update_stmt (stmt);
|
2262 |
|
|
return remove_prop_source_from_use (op0) ? 2 : 1;
|
2263 |
|
|
}
|
2264 |
|
|
|
2265 |
|
|
/* Likewise, if the intermediate and initial types are either both
|
2266 |
|
|
float or both integer, we don't need the middle conversion if the
|
2267 |
|
|
former is wider than the latter and doesn't change the signedness
|
2268 |
|
|
(for integers). Avoid this if the final type is a pointer since
|
2269 |
|
|
then we sometimes need the middle conversion. Likewise if the
|
2270 |
|
|
final type has a precision not equal to the size of its mode. */
|
2271 |
|
|
if (((inter_int && inside_int)
|
2272 |
|
|
|| (inter_float && inside_float)
|
2273 |
|
|
|| (inter_vec && inside_vec))
|
2274 |
|
|
&& inter_prec >= inside_prec
|
2275 |
|
|
&& (inter_float || inter_vec
|
2276 |
|
|
|| inter_unsignedp == inside_unsignedp)
|
2277 |
|
|
&& ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
|
2278 |
|
|
&& TYPE_MODE (type) == TYPE_MODE (inter_type))
|
2279 |
|
|
&& ! final_ptr
|
2280 |
|
|
&& (! final_vec || inter_prec == inside_prec))
|
2281 |
|
|
{
|
2282 |
|
|
gimple_assign_set_rhs1 (stmt, defop0);
|
2283 |
|
|
update_stmt (stmt);
|
2284 |
|
|
return remove_prop_source_from_use (op0) ? 2 : 1;
|
2285 |
|
|
}
|
2286 |
|
|
|
2287 |
|
|
/* If we have a sign-extension of a zero-extended value, we can
|
2288 |
|
|
replace that by a single zero-extension. */
|
2289 |
|
|
if (inside_int && inter_int && final_int
|
2290 |
|
|
&& inside_prec < inter_prec && inter_prec < final_prec
|
2291 |
|
|
&& inside_unsignedp && !inter_unsignedp)
|
2292 |
|
|
{
|
2293 |
|
|
gimple_assign_set_rhs1 (stmt, defop0);
|
2294 |
|
|
update_stmt (stmt);
|
2295 |
|
|
return remove_prop_source_from_use (op0) ? 2 : 1;
|
2296 |
|
|
}
|
2297 |
|
|
|
2298 |
|
|
/* Two conversions in a row are not needed unless:
|
2299 |
|
|
- some conversion is floating-point (overstrict for now), or
|
2300 |
|
|
- some conversion is a vector (overstrict for now), or
|
2301 |
|
|
- the intermediate type is narrower than both initial and
|
2302 |
|
|
final, or
|
2303 |
|
|
- the intermediate type and innermost type differ in signedness,
|
2304 |
|
|
and the outermost type is wider than the intermediate, or
|
2305 |
|
|
- the initial type is a pointer type and the precisions of the
|
2306 |
|
|
intermediate and final types differ, or
|
2307 |
|
|
- the final type is a pointer type and the precisions of the
|
2308 |
|
|
initial and intermediate types differ. */
|
2309 |
|
|
if (! inside_float && ! inter_float && ! final_float
|
2310 |
|
|
&& ! inside_vec && ! inter_vec && ! final_vec
|
2311 |
|
|
&& (inter_prec >= inside_prec || inter_prec >= final_prec)
|
2312 |
|
|
&& ! (inside_int && inter_int
|
2313 |
|
|
&& inter_unsignedp != inside_unsignedp
|
2314 |
|
|
&& inter_prec < final_prec)
|
2315 |
|
|
&& ((inter_unsignedp && inter_prec > inside_prec)
|
2316 |
|
|
== (final_unsignedp && final_prec > inter_prec))
|
2317 |
|
|
&& ! (inside_ptr && inter_prec != final_prec)
|
2318 |
|
|
&& ! (final_ptr && inside_prec != inter_prec)
|
2319 |
|
|
&& ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
|
2320 |
|
|
&& TYPE_MODE (type) == TYPE_MODE (inter_type)))
|
2321 |
|
|
{
|
2322 |
|
|
gimple_assign_set_rhs1 (stmt, defop0);
|
2323 |
|
|
update_stmt (stmt);
|
2324 |
|
|
return remove_prop_source_from_use (op0) ? 2 : 1;
|
2325 |
|
|
}
|
2326 |
|
|
|
2327 |
|
|
/* A truncation to an unsigned type should be canonicalized as
|
2328 |
|
|
bitwise and of a mask. */
|
2329 |
|
|
if (final_int && inter_int && inside_int
|
2330 |
|
|
&& final_prec == inside_prec
|
2331 |
|
|
&& final_prec > inter_prec
|
2332 |
|
|
&& inter_unsignedp)
|
2333 |
|
|
{
|
2334 |
|
|
tree tem;
|
2335 |
|
|
tem = fold_build2 (BIT_AND_EXPR, inside_type,
|
2336 |
|
|
defop0,
|
2337 |
|
|
double_int_to_tree
|
2338 |
|
|
(inside_type, double_int_mask (inter_prec)));
|
2339 |
|
|
if (!useless_type_conversion_p (type, inside_type))
|
2340 |
|
|
{
|
2341 |
|
|
tem = force_gimple_operand_gsi (gsi, tem, true, NULL_TREE, true,
|
2342 |
|
|
GSI_SAME_STMT);
|
2343 |
|
|
gimple_assign_set_rhs1 (stmt, tem);
|
2344 |
|
|
}
|
2345 |
|
|
else
|
2346 |
|
|
gimple_assign_set_rhs_from_tree (gsi, tem);
|
2347 |
|
|
update_stmt (gsi_stmt (*gsi));
|
2348 |
|
|
return 1;
|
2349 |
|
|
}
|
2350 |
|
|
}
|
2351 |
|
|
|
2352 |
|
|
return 0;
|
2353 |
|
|
}
|
2354 |
|
|
|
2355 |
|
|
/* Main entry point for the forward propagation and statement combine
|
2356 |
|
|
optimizer. */
|
2357 |
|
|
|
2358 |
|
|
static unsigned int
|
2359 |
|
|
ssa_forward_propagate_and_combine (void)
|
2360 |
|
|
{
|
2361 |
|
|
basic_block bb;
|
2362 |
|
|
unsigned int todoflags = 0;
|
2363 |
|
|
|
2364 |
|
|
cfg_changed = false;
|
2365 |
|
|
|
2366 |
|
|
FOR_EACH_BB (bb)
|
2367 |
|
|
{
|
2368 |
|
|
gimple_stmt_iterator gsi, prev;
|
2369 |
|
|
bool prev_initialized;
|
2370 |
|
|
|
2371 |
|
|
/* Apply forward propagation to all stmts in the basic-block.
|
2372 |
|
|
Note we update GSI within the loop as necessary. */
|
2373 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
|
2374 |
|
|
{
|
2375 |
|
|
gimple stmt = gsi_stmt (gsi);
|
2376 |
|
|
tree lhs, rhs;
|
2377 |
|
|
enum tree_code code;
|
2378 |
|
|
|
2379 |
|
|
if (!is_gimple_assign (stmt))
|
2380 |
|
|
{
|
2381 |
|
|
gsi_next (&gsi);
|
2382 |
|
|
continue;
|
2383 |
|
|
}
|
2384 |
|
|
|
2385 |
|
|
lhs = gimple_assign_lhs (stmt);
|
2386 |
|
|
rhs = gimple_assign_rhs1 (stmt);
|
2387 |
|
|
code = gimple_assign_rhs_code (stmt);
|
2388 |
|
|
if (TREE_CODE (lhs) != SSA_NAME
|
2389 |
|
|
|| has_zero_uses (lhs))
|
2390 |
|
|
{
|
2391 |
|
|
gsi_next (&gsi);
|
2392 |
|
|
continue;
|
2393 |
|
|
}
|
2394 |
|
|
|
2395 |
|
|
/* If this statement sets an SSA_NAME to an address,
|
2396 |
|
|
try to propagate the address into the uses of the SSA_NAME. */
|
2397 |
|
|
if (code == ADDR_EXPR
|
2398 |
|
|
/* Handle pointer conversions on invariant addresses
|
2399 |
|
|
as well, as this is valid gimple. */
|
2400 |
|
|
|| (CONVERT_EXPR_CODE_P (code)
|
2401 |
|
|
&& TREE_CODE (rhs) == ADDR_EXPR
|
2402 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (lhs))))
|
2403 |
|
|
{
|
2404 |
|
|
tree base = get_base_address (TREE_OPERAND (rhs, 0));
|
2405 |
|
|
if ((!base
|
2406 |
|
|
|| !DECL_P (base)
|
2407 |
|
|
|| decl_address_invariant_p (base))
|
2408 |
|
|
&& !stmt_references_abnormal_ssa_name (stmt)
|
2409 |
|
|
&& forward_propagate_addr_expr (lhs, rhs))
|
2410 |
|
|
{
|
2411 |
|
|
release_defs (stmt);
|
2412 |
|
|
todoflags |= TODO_remove_unused_locals;
|
2413 |
|
|
gsi_remove (&gsi, true);
|
2414 |
|
|
}
|
2415 |
|
|
else
|
2416 |
|
|
gsi_next (&gsi);
|
2417 |
|
|
}
|
2418 |
|
|
else if (code == POINTER_PLUS_EXPR)
|
2419 |
|
|
{
|
2420 |
|
|
tree off = gimple_assign_rhs2 (stmt);
|
2421 |
|
|
if (TREE_CODE (off) == INTEGER_CST
|
2422 |
|
|
&& can_propagate_from (stmt)
|
2423 |
|
|
&& !simple_iv_increment_p (stmt)
|
2424 |
|
|
/* ??? Better adjust the interface to that function
|
2425 |
|
|
instead of building new trees here. */
|
2426 |
|
|
&& forward_propagate_addr_expr
|
2427 |
|
|
(lhs,
|
2428 |
|
|
build1_loc (gimple_location (stmt),
|
2429 |
|
|
ADDR_EXPR, TREE_TYPE (rhs),
|
2430 |
|
|
fold_build2 (MEM_REF,
|
2431 |
|
|
TREE_TYPE (TREE_TYPE (rhs)),
|
2432 |
|
|
rhs,
|
2433 |
|
|
fold_convert (ptr_type_node,
|
2434 |
|
|
off)))))
|
2435 |
|
|
{
|
2436 |
|
|
release_defs (stmt);
|
2437 |
|
|
todoflags |= TODO_remove_unused_locals;
|
2438 |
|
|
gsi_remove (&gsi, true);
|
2439 |
|
|
}
|
2440 |
|
|
else if (is_gimple_min_invariant (rhs))
|
2441 |
|
|
{
|
2442 |
|
|
/* Make sure to fold &a[0] + off_1 here. */
|
2443 |
|
|
fold_stmt_inplace (&gsi);
|
2444 |
|
|
update_stmt (stmt);
|
2445 |
|
|
if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR)
|
2446 |
|
|
gsi_next (&gsi);
|
2447 |
|
|
}
|
2448 |
|
|
else
|
2449 |
|
|
gsi_next (&gsi);
|
2450 |
|
|
}
|
2451 |
|
|
else if (TREE_CODE_CLASS (code) == tcc_comparison)
|
2452 |
|
|
{
|
2453 |
|
|
if (forward_propagate_comparison (stmt))
|
2454 |
|
|
cfg_changed = true;
|
2455 |
|
|
gsi_next (&gsi);
|
2456 |
|
|
}
|
2457 |
|
|
else
|
2458 |
|
|
gsi_next (&gsi);
|
2459 |
|
|
}
|
2460 |
|
|
|
2461 |
|
|
/* Combine stmts with the stmts defining their operands.
|
2462 |
|
|
Note we update GSI within the loop as necessary. */
|
2463 |
|
|
prev_initialized = false;
|
2464 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
|
2465 |
|
|
{
|
2466 |
|
|
gimple stmt = gsi_stmt (gsi);
|
2467 |
|
|
bool changed = false;
|
2468 |
|
|
|
2469 |
|
|
switch (gimple_code (stmt))
|
2470 |
|
|
{
|
2471 |
|
|
case GIMPLE_ASSIGN:
|
2472 |
|
|
{
|
2473 |
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
2474 |
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
2475 |
|
|
|
2476 |
|
|
if ((code == BIT_NOT_EXPR
|
2477 |
|
|
|| code == NEGATE_EXPR)
|
2478 |
|
|
&& TREE_CODE (rhs1) == SSA_NAME)
|
2479 |
|
|
changed = simplify_not_neg_expr (&gsi);
|
2480 |
|
|
else if (code == COND_EXPR)
|
2481 |
|
|
{
|
2482 |
|
|
/* In this case the entire COND_EXPR is in rhs1. */
|
2483 |
|
|
changed |= forward_propagate_into_cond (&gsi);
|
2484 |
|
|
stmt = gsi_stmt (gsi);
|
2485 |
|
|
}
|
2486 |
|
|
else if (TREE_CODE_CLASS (code) == tcc_comparison)
|
2487 |
|
|
{
|
2488 |
|
|
int did_something;
|
2489 |
|
|
did_something = forward_propagate_into_comparison (&gsi);
|
2490 |
|
|
if (did_something == 2)
|
2491 |
|
|
cfg_changed = true;
|
2492 |
|
|
changed = did_something != 0;
|
2493 |
|
|
}
|
2494 |
|
|
else if (code == BIT_AND_EXPR
|
2495 |
|
|
|| code == BIT_IOR_EXPR
|
2496 |
|
|
|| code == BIT_XOR_EXPR)
|
2497 |
|
|
changed = simplify_bitwise_binary (&gsi);
|
2498 |
|
|
else if (code == PLUS_EXPR
|
2499 |
|
|
|| code == MINUS_EXPR)
|
2500 |
|
|
changed = associate_plusminus (&gsi);
|
2501 |
|
|
else if (CONVERT_EXPR_CODE_P (code)
|
2502 |
|
|
|| code == FLOAT_EXPR
|
2503 |
|
|
|| code == FIX_TRUNC_EXPR)
|
2504 |
|
|
{
|
2505 |
|
|
int did_something = combine_conversions (&gsi);
|
2506 |
|
|
if (did_something == 2)
|
2507 |
|
|
cfg_changed = true;
|
2508 |
|
|
changed = did_something != 0;
|
2509 |
|
|
}
|
2510 |
|
|
break;
|
2511 |
|
|
}
|
2512 |
|
|
|
2513 |
|
|
case GIMPLE_SWITCH:
|
2514 |
|
|
changed = simplify_gimple_switch (stmt);
|
2515 |
|
|
break;
|
2516 |
|
|
|
2517 |
|
|
case GIMPLE_COND:
|
2518 |
|
|
{
|
2519 |
|
|
int did_something;
|
2520 |
|
|
did_something = forward_propagate_into_gimple_cond (stmt);
|
2521 |
|
|
if (did_something == 2)
|
2522 |
|
|
cfg_changed = true;
|
2523 |
|
|
changed = did_something != 0;
|
2524 |
|
|
break;
|
2525 |
|
|
}
|
2526 |
|
|
|
2527 |
|
|
case GIMPLE_CALL:
|
2528 |
|
|
{
|
2529 |
|
|
tree callee = gimple_call_fndecl (stmt);
|
2530 |
|
|
if (callee != NULL_TREE
|
2531 |
|
|
&& DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
|
2532 |
|
|
changed = simplify_builtin_call (&gsi, callee);
|
2533 |
|
|
break;
|
2534 |
|
|
}
|
2535 |
|
|
|
2536 |
|
|
default:;
|
2537 |
|
|
}
|
2538 |
|
|
|
2539 |
|
|
if (changed)
|
2540 |
|
|
{
|
2541 |
|
|
/* If the stmt changed then re-visit it and the statements
|
2542 |
|
|
inserted before it. */
|
2543 |
|
|
if (!prev_initialized)
|
2544 |
|
|
gsi = gsi_start_bb (bb);
|
2545 |
|
|
else
|
2546 |
|
|
{
|
2547 |
|
|
gsi = prev;
|
2548 |
|
|
gsi_next (&gsi);
|
2549 |
|
|
}
|
2550 |
|
|
}
|
2551 |
|
|
else
|
2552 |
|
|
{
|
2553 |
|
|
prev = gsi;
|
2554 |
|
|
prev_initialized = true;
|
2555 |
|
|
gsi_next (&gsi);
|
2556 |
|
|
}
|
2557 |
|
|
}
|
2558 |
|
|
}
|
2559 |
|
|
|
2560 |
|
|
if (cfg_changed)
|
2561 |
|
|
todoflags |= TODO_cleanup_cfg;
|
2562 |
|
|
|
2563 |
|
|
return todoflags;
|
2564 |
|
|
}
|
2565 |
|
|
|
2566 |
|
|
|
2567 |
|
|
static bool
|
2568 |
|
|
gate_forwprop (void)
|
2569 |
|
|
{
|
2570 |
|
|
return flag_tree_forwprop;
|
2571 |
|
|
}
|
2572 |
|
|
|
2573 |
|
|
struct gimple_opt_pass pass_forwprop =
|
2574 |
|
|
{
|
2575 |
|
|
{
|
2576 |
|
|
GIMPLE_PASS,
|
2577 |
|
|
"forwprop", /* name */
|
2578 |
|
|
gate_forwprop, /* gate */
|
2579 |
|
|
ssa_forward_propagate_and_combine, /* execute */
|
2580 |
|
|
NULL, /* sub */
|
2581 |
|
|
NULL, /* next */
|
2582 |
|
|
0, /* static_pass_number */
|
2583 |
|
|
TV_TREE_FORWPROP, /* tv_id */
|
2584 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
2585 |
|
|
0, /* properties_provided */
|
2586 |
|
|
0, /* properties_destroyed */
|
2587 |
|
|
0, /* todo_flags_start */
|
2588 |
|
|
TODO_ggc_collect
|
2589 |
|
|
| TODO_update_ssa
|
2590 |
|
|
| TODO_verify_ssa /* todo_flags_finish */
|
2591 |
|
|
}
|
2592 |
|
|
};
|