| 1 |
684 |
jeremybenn |
/* Loop invariant motion.
|
| 2 |
|
|
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2010
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GCC.
|
| 6 |
|
|
|
| 7 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
| 8 |
|
|
under the terms of the GNU General Public License as published by the
|
| 9 |
|
|
Free Software Foundation; either version 3, or (at your option) any
|
| 10 |
|
|
later version.
|
| 11 |
|
|
|
| 12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
| 13 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 15 |
|
|
for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
#include "config.h"
|
| 22 |
|
|
#include "system.h"
|
| 23 |
|
|
#include "coretypes.h"
|
| 24 |
|
|
#include "tm.h"
|
| 25 |
|
|
#include "tree.h"
|
| 26 |
|
|
#include "tm_p.h"
|
| 27 |
|
|
#include "basic-block.h"
|
| 28 |
|
|
#include "output.h"
|
| 29 |
|
|
#include "tree-pretty-print.h"
|
| 30 |
|
|
#include "gimple-pretty-print.h"
|
| 31 |
|
|
#include "tree-flow.h"
|
| 32 |
|
|
#include "tree-dump.h"
|
| 33 |
|
|
#include "timevar.h"
|
| 34 |
|
|
#include "cfgloop.h"
|
| 35 |
|
|
#include "domwalk.h"
|
| 36 |
|
|
#include "params.h"
|
| 37 |
|
|
#include "tree-pass.h"
|
| 38 |
|
|
#include "flags.h"
|
| 39 |
|
|
#include "hashtab.h"
|
| 40 |
|
|
#include "tree-affine.h"
|
| 41 |
|
|
#include "pointer-set.h"
|
| 42 |
|
|
#include "tree-ssa-propagate.h"
|
| 43 |
|
|
|
| 44 |
|
|
/* TODO: Support for predicated code motion. I.e.
|
| 45 |
|
|
|
| 46 |
|
|
while (1)
|
| 47 |
|
|
{
|
| 48 |
|
|
if (cond)
|
| 49 |
|
|
{
|
| 50 |
|
|
a = inv;
|
| 51 |
|
|
something;
|
| 52 |
|
|
}
|
| 53 |
|
|
}
|
| 54 |
|
|
|
| 55 |
|
|
Where COND and INV are is invariants, but evaluating INV may trap or be
|
| 56 |
|
|
invalid from some other reason if !COND. This may be transformed to
|
| 57 |
|
|
|
| 58 |
|
|
if (cond)
|
| 59 |
|
|
a = inv;
|
| 60 |
|
|
while (1)
|
| 61 |
|
|
{
|
| 62 |
|
|
if (cond)
|
| 63 |
|
|
something;
|
| 64 |
|
|
} */
|
| 65 |
|
|
|
| 66 |
|
|
/* A type for the list of statements that have to be moved in order to be able
|
| 67 |
|
|
to hoist an invariant computation. */
|
| 68 |
|
|
|
| 69 |
|
|
struct depend
|
| 70 |
|
|
{
|
| 71 |
|
|
gimple stmt;
|
| 72 |
|
|
struct depend *next;
|
| 73 |
|
|
};
|
| 74 |
|
|
|
| 75 |
|
|
/* The auxiliary data kept for each statement. */
|
| 76 |
|
|
|
| 77 |
|
|
struct lim_aux_data
|
| 78 |
|
|
{
|
| 79 |
|
|
struct loop *max_loop; /* The outermost loop in that the statement
|
| 80 |
|
|
is invariant. */
|
| 81 |
|
|
|
| 82 |
|
|
struct loop *tgt_loop; /* The loop out of that we want to move the
|
| 83 |
|
|
invariant. */
|
| 84 |
|
|
|
| 85 |
|
|
struct loop *always_executed_in;
|
| 86 |
|
|
/* The outermost loop for that we are sure
|
| 87 |
|
|
the statement is executed if the loop
|
| 88 |
|
|
is entered. */
|
| 89 |
|
|
|
| 90 |
|
|
unsigned cost; /* Cost of the computation performed by the
|
| 91 |
|
|
statement. */
|
| 92 |
|
|
|
| 93 |
|
|
struct depend *depends; /* List of statements that must be also hoisted
|
| 94 |
|
|
out of the loop when this statement is
|
| 95 |
|
|
hoisted; i.e. those that define the operands
|
| 96 |
|
|
of the statement and are inside of the
|
| 97 |
|
|
MAX_LOOP loop. */
|
| 98 |
|
|
};
|
| 99 |
|
|
|
| 100 |
|
|
/* Maps statements to their lim_aux_data. */
|
| 101 |
|
|
|
| 102 |
|
|
static struct pointer_map_t *lim_aux_data_map;
|
| 103 |
|
|
|
| 104 |
|
|
/* Description of a memory reference location. */
|
| 105 |
|
|
|
| 106 |
|
|
typedef struct mem_ref_loc
|
| 107 |
|
|
{
|
| 108 |
|
|
tree *ref; /* The reference itself. */
|
| 109 |
|
|
gimple stmt; /* The statement in that it occurs. */
|
| 110 |
|
|
} *mem_ref_loc_p;
|
| 111 |
|
|
|
| 112 |
|
|
DEF_VEC_P(mem_ref_loc_p);
|
| 113 |
|
|
DEF_VEC_ALLOC_P(mem_ref_loc_p, heap);
|
| 114 |
|
|
|
| 115 |
|
|
/* The list of memory reference locations in a loop. */
|
| 116 |
|
|
|
| 117 |
|
|
typedef struct mem_ref_locs
|
| 118 |
|
|
{
|
| 119 |
|
|
VEC (mem_ref_loc_p, heap) *locs;
|
| 120 |
|
|
} *mem_ref_locs_p;
|
| 121 |
|
|
|
| 122 |
|
|
DEF_VEC_P(mem_ref_locs_p);
|
| 123 |
|
|
DEF_VEC_ALLOC_P(mem_ref_locs_p, heap);
|
| 124 |
|
|
|
| 125 |
|
|
/* Description of a memory reference. */
|
| 126 |
|
|
|
| 127 |
|
|
typedef struct mem_ref
|
| 128 |
|
|
{
|
| 129 |
|
|
tree mem; /* The memory itself. */
|
| 130 |
|
|
unsigned id; /* ID assigned to the memory reference
|
| 131 |
|
|
(its index in memory_accesses.refs_list) */
|
| 132 |
|
|
hashval_t hash; /* Its hash value. */
|
| 133 |
|
|
bitmap stored; /* The set of loops in that this memory location
|
| 134 |
|
|
is stored to. */
|
| 135 |
|
|
VEC (mem_ref_locs_p, heap) *accesses_in_loop;
|
| 136 |
|
|
/* The locations of the accesses. Vector
|
| 137 |
|
|
indexed by the loop number. */
|
| 138 |
|
|
|
| 139 |
|
|
/* The following sets are computed on demand. We keep both set and
|
| 140 |
|
|
its complement, so that we know whether the information was
|
| 141 |
|
|
already computed or not. */
|
| 142 |
|
|
bitmap indep_loop; /* The set of loops in that the memory
|
| 143 |
|
|
reference is independent, meaning:
|
| 144 |
|
|
If it is stored in the loop, this store
|
| 145 |
|
|
is independent on all other loads and
|
| 146 |
|
|
stores.
|
| 147 |
|
|
If it is only loaded, then it is independent
|
| 148 |
|
|
on all stores in the loop. */
|
| 149 |
|
|
bitmap dep_loop; /* The complement of INDEP_LOOP. */
|
| 150 |
|
|
|
| 151 |
|
|
bitmap indep_ref; /* The set of memory references on that
|
| 152 |
|
|
this reference is independent. */
|
| 153 |
|
|
bitmap dep_ref; /* The complement of INDEP_REF. */
|
| 154 |
|
|
} *mem_ref_p;
|
| 155 |
|
|
|
| 156 |
|
|
DEF_VEC_P(mem_ref_p);
|
| 157 |
|
|
DEF_VEC_ALLOC_P(mem_ref_p, heap);
|
| 158 |
|
|
|
| 159 |
|
|
DEF_VEC_P(bitmap);
|
| 160 |
|
|
DEF_VEC_ALLOC_P(bitmap, heap);
|
| 161 |
|
|
|
| 162 |
|
|
DEF_VEC_P(htab_t);
|
| 163 |
|
|
DEF_VEC_ALLOC_P(htab_t, heap);
|
| 164 |
|
|
|
| 165 |
|
|
/* Description of memory accesses in loops. */
|
| 166 |
|
|
|
| 167 |
|
|
static struct
|
| 168 |
|
|
{
|
| 169 |
|
|
/* The hash table of memory references accessed in loops. */
|
| 170 |
|
|
htab_t refs;
|
| 171 |
|
|
|
| 172 |
|
|
/* The list of memory references. */
|
| 173 |
|
|
VEC (mem_ref_p, heap) *refs_list;
|
| 174 |
|
|
|
| 175 |
|
|
/* The set of memory references accessed in each loop. */
|
| 176 |
|
|
VEC (bitmap, heap) *refs_in_loop;
|
| 177 |
|
|
|
| 178 |
|
|
/* The set of memory references accessed in each loop, including
|
| 179 |
|
|
subloops. */
|
| 180 |
|
|
VEC (bitmap, heap) *all_refs_in_loop;
|
| 181 |
|
|
|
| 182 |
|
|
/* The set of memory references stored in each loop, including
|
| 183 |
|
|
subloops. */
|
| 184 |
|
|
VEC (bitmap, heap) *all_refs_stored_in_loop;
|
| 185 |
|
|
|
| 186 |
|
|
/* Cache for expanding memory addresses. */
|
| 187 |
|
|
struct pointer_map_t *ttae_cache;
|
| 188 |
|
|
} memory_accesses;
|
| 189 |
|
|
|
| 190 |
|
|
static bool ref_indep_loop_p (struct loop *, mem_ref_p);
|
| 191 |
|
|
|
| 192 |
|
|
/* Minimum cost of an expensive expression. */
|
| 193 |
|
|
#define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
|
| 194 |
|
|
|
| 195 |
|
|
/* The outermost loop for which execution of the header guarantees that the
|
| 196 |
|
|
block will be executed. */
|
| 197 |
|
|
#define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
|
| 198 |
|
|
#define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
|
| 199 |
|
|
|
| 200 |
|
|
/* Whether the reference was analyzable. */
|
| 201 |
|
|
#define MEM_ANALYZABLE(REF) ((REF)->mem != error_mark_node)
|
| 202 |
|
|
|
| 203 |
|
|
static struct lim_aux_data *
|
| 204 |
|
|
init_lim_data (gimple stmt)
|
| 205 |
|
|
{
|
| 206 |
|
|
void **p = pointer_map_insert (lim_aux_data_map, stmt);
|
| 207 |
|
|
|
| 208 |
|
|
*p = XCNEW (struct lim_aux_data);
|
| 209 |
|
|
return (struct lim_aux_data *) *p;
|
| 210 |
|
|
}
|
| 211 |
|
|
|
| 212 |
|
|
static struct lim_aux_data *
|
| 213 |
|
|
get_lim_data (gimple stmt)
|
| 214 |
|
|
{
|
| 215 |
|
|
void **p = pointer_map_contains (lim_aux_data_map, stmt);
|
| 216 |
|
|
if (!p)
|
| 217 |
|
|
return NULL;
|
| 218 |
|
|
|
| 219 |
|
|
return (struct lim_aux_data *) *p;
|
| 220 |
|
|
}
|
| 221 |
|
|
|
| 222 |
|
|
/* Releases the memory occupied by DATA. */
|
| 223 |
|
|
|
| 224 |
|
|
static void
|
| 225 |
|
|
free_lim_aux_data (struct lim_aux_data *data)
|
| 226 |
|
|
{
|
| 227 |
|
|
struct depend *dep, *next;
|
| 228 |
|
|
|
| 229 |
|
|
for (dep = data->depends; dep; dep = next)
|
| 230 |
|
|
{
|
| 231 |
|
|
next = dep->next;
|
| 232 |
|
|
free (dep);
|
| 233 |
|
|
}
|
| 234 |
|
|
free (data);
|
| 235 |
|
|
}
|
| 236 |
|
|
|
| 237 |
|
|
static void
|
| 238 |
|
|
clear_lim_data (gimple stmt)
|
| 239 |
|
|
{
|
| 240 |
|
|
void **p = pointer_map_contains (lim_aux_data_map, stmt);
|
| 241 |
|
|
if (!p)
|
| 242 |
|
|
return;
|
| 243 |
|
|
|
| 244 |
|
|
free_lim_aux_data ((struct lim_aux_data *) *p);
|
| 245 |
|
|
*p = NULL;
|
| 246 |
|
|
}
|
| 247 |
|
|
|
| 248 |
|
|
/* Calls CBCK for each index in memory reference ADDR_P. There are two
|
| 249 |
|
|
kinds situations handled; in each of these cases, the memory reference
|
| 250 |
|
|
and DATA are passed to the callback:
|
| 251 |
|
|
|
| 252 |
|
|
Access to an array: ARRAY_{RANGE_}REF (base, index). In this case we also
|
| 253 |
|
|
pass the pointer to the index to the callback.
|
| 254 |
|
|
|
| 255 |
|
|
Pointer dereference: INDIRECT_REF (addr). In this case we also pass the
|
| 256 |
|
|
pointer to addr to the callback.
|
| 257 |
|
|
|
| 258 |
|
|
If the callback returns false, the whole search stops and false is returned.
|
| 259 |
|
|
Otherwise the function returns true after traversing through the whole
|
| 260 |
|
|
reference *ADDR_P. */
|
| 261 |
|
|
|
| 262 |
|
|
bool
|
| 263 |
|
|
for_each_index (tree *addr_p, bool (*cbck) (tree, tree *, void *), void *data)
|
| 264 |
|
|
{
|
| 265 |
|
|
tree *nxt, *idx;
|
| 266 |
|
|
|
| 267 |
|
|
for (; ; addr_p = nxt)
|
| 268 |
|
|
{
|
| 269 |
|
|
switch (TREE_CODE (*addr_p))
|
| 270 |
|
|
{
|
| 271 |
|
|
case SSA_NAME:
|
| 272 |
|
|
return cbck (*addr_p, addr_p, data);
|
| 273 |
|
|
|
| 274 |
|
|
case MEM_REF:
|
| 275 |
|
|
nxt = &TREE_OPERAND (*addr_p, 0);
|
| 276 |
|
|
return cbck (*addr_p, nxt, data);
|
| 277 |
|
|
|
| 278 |
|
|
case BIT_FIELD_REF:
|
| 279 |
|
|
case VIEW_CONVERT_EXPR:
|
| 280 |
|
|
case REALPART_EXPR:
|
| 281 |
|
|
case IMAGPART_EXPR:
|
| 282 |
|
|
nxt = &TREE_OPERAND (*addr_p, 0);
|
| 283 |
|
|
break;
|
| 284 |
|
|
|
| 285 |
|
|
case COMPONENT_REF:
|
| 286 |
|
|
/* If the component has varying offset, it behaves like index
|
| 287 |
|
|
as well. */
|
| 288 |
|
|
idx = &TREE_OPERAND (*addr_p, 2);
|
| 289 |
|
|
if (*idx
|
| 290 |
|
|
&& !cbck (*addr_p, idx, data))
|
| 291 |
|
|
return false;
|
| 292 |
|
|
|
| 293 |
|
|
nxt = &TREE_OPERAND (*addr_p, 0);
|
| 294 |
|
|
break;
|
| 295 |
|
|
|
| 296 |
|
|
case ARRAY_REF:
|
| 297 |
|
|
case ARRAY_RANGE_REF:
|
| 298 |
|
|
nxt = &TREE_OPERAND (*addr_p, 0);
|
| 299 |
|
|
if (!cbck (*addr_p, &TREE_OPERAND (*addr_p, 1), data))
|
| 300 |
|
|
return false;
|
| 301 |
|
|
break;
|
| 302 |
|
|
|
| 303 |
|
|
case VAR_DECL:
|
| 304 |
|
|
case PARM_DECL:
|
| 305 |
|
|
case STRING_CST:
|
| 306 |
|
|
case RESULT_DECL:
|
| 307 |
|
|
case VECTOR_CST:
|
| 308 |
|
|
case COMPLEX_CST:
|
| 309 |
|
|
case INTEGER_CST:
|
| 310 |
|
|
case REAL_CST:
|
| 311 |
|
|
case FIXED_CST:
|
| 312 |
|
|
case CONSTRUCTOR:
|
| 313 |
|
|
return true;
|
| 314 |
|
|
|
| 315 |
|
|
case ADDR_EXPR:
|
| 316 |
|
|
gcc_assert (is_gimple_min_invariant (*addr_p));
|
| 317 |
|
|
return true;
|
| 318 |
|
|
|
| 319 |
|
|
case TARGET_MEM_REF:
|
| 320 |
|
|
idx = &TMR_BASE (*addr_p);
|
| 321 |
|
|
if (*idx
|
| 322 |
|
|
&& !cbck (*addr_p, idx, data))
|
| 323 |
|
|
return false;
|
| 324 |
|
|
idx = &TMR_INDEX (*addr_p);
|
| 325 |
|
|
if (*idx
|
| 326 |
|
|
&& !cbck (*addr_p, idx, data))
|
| 327 |
|
|
return false;
|
| 328 |
|
|
idx = &TMR_INDEX2 (*addr_p);
|
| 329 |
|
|
if (*idx
|
| 330 |
|
|
&& !cbck (*addr_p, idx, data))
|
| 331 |
|
|
return false;
|
| 332 |
|
|
return true;
|
| 333 |
|
|
|
| 334 |
|
|
default:
|
| 335 |
|
|
gcc_unreachable ();
|
| 336 |
|
|
}
|
| 337 |
|
|
}
|
| 338 |
|
|
}
|
| 339 |
|
|
|
| 340 |
|
|
/* If it is possible to hoist the statement STMT unconditionally,
|
| 341 |
|
|
returns MOVE_POSSIBLE.
|
| 342 |
|
|
If it is possible to hoist the statement STMT, but we must avoid making
|
| 343 |
|
|
it executed if it would not be executed in the original program (e.g.
|
| 344 |
|
|
because it may trap), return MOVE_PRESERVE_EXECUTION.
|
| 345 |
|
|
Otherwise return MOVE_IMPOSSIBLE. */
|
| 346 |
|
|
|
| 347 |
|
|
enum move_pos
|
| 348 |
|
|
movement_possibility (gimple stmt)
|
| 349 |
|
|
{
|
| 350 |
|
|
tree lhs;
|
| 351 |
|
|
enum move_pos ret = MOVE_POSSIBLE;
|
| 352 |
|
|
|
| 353 |
|
|
if (flag_unswitch_loops
|
| 354 |
|
|
&& gimple_code (stmt) == GIMPLE_COND)
|
| 355 |
|
|
{
|
| 356 |
|
|
/* If we perform unswitching, force the operands of the invariant
|
| 357 |
|
|
condition to be moved out of the loop. */
|
| 358 |
|
|
return MOVE_POSSIBLE;
|
| 359 |
|
|
}
|
| 360 |
|
|
|
| 361 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI
|
| 362 |
|
|
&& gimple_phi_num_args (stmt) <= 2
|
| 363 |
|
|
&& is_gimple_reg (gimple_phi_result (stmt))
|
| 364 |
|
|
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
|
| 365 |
|
|
return MOVE_POSSIBLE;
|
| 366 |
|
|
|
| 367 |
|
|
if (gimple_get_lhs (stmt) == NULL_TREE)
|
| 368 |
|
|
return MOVE_IMPOSSIBLE;
|
| 369 |
|
|
|
| 370 |
|
|
if (gimple_vdef (stmt))
|
| 371 |
|
|
return MOVE_IMPOSSIBLE;
|
| 372 |
|
|
|
| 373 |
|
|
if (stmt_ends_bb_p (stmt)
|
| 374 |
|
|
|| gimple_has_volatile_ops (stmt)
|
| 375 |
|
|
|| gimple_has_side_effects (stmt)
|
| 376 |
|
|
|| stmt_could_throw_p (stmt))
|
| 377 |
|
|
return MOVE_IMPOSSIBLE;
|
| 378 |
|
|
|
| 379 |
|
|
if (is_gimple_call (stmt))
|
| 380 |
|
|
{
|
| 381 |
|
|
/* While pure or const call is guaranteed to have no side effects, we
|
| 382 |
|
|
cannot move it arbitrarily. Consider code like
|
| 383 |
|
|
|
| 384 |
|
|
char *s = something ();
|
| 385 |
|
|
|
| 386 |
|
|
while (1)
|
| 387 |
|
|
{
|
| 388 |
|
|
if (s)
|
| 389 |
|
|
t = strlen (s);
|
| 390 |
|
|
else
|
| 391 |
|
|
t = 0;
|
| 392 |
|
|
}
|
| 393 |
|
|
|
| 394 |
|
|
Here the strlen call cannot be moved out of the loop, even though
|
| 395 |
|
|
s is invariant. In addition to possibly creating a call with
|
| 396 |
|
|
invalid arguments, moving out a function call that is not executed
|
| 397 |
|
|
may cause performance regressions in case the call is costly and
|
| 398 |
|
|
not executed at all. */
|
| 399 |
|
|
ret = MOVE_PRESERVE_EXECUTION;
|
| 400 |
|
|
lhs = gimple_call_lhs (stmt);
|
| 401 |
|
|
}
|
| 402 |
|
|
else if (is_gimple_assign (stmt))
|
| 403 |
|
|
lhs = gimple_assign_lhs (stmt);
|
| 404 |
|
|
else
|
| 405 |
|
|
return MOVE_IMPOSSIBLE;
|
| 406 |
|
|
|
| 407 |
|
|
if (TREE_CODE (lhs) == SSA_NAME
|
| 408 |
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
|
| 409 |
|
|
return MOVE_IMPOSSIBLE;
|
| 410 |
|
|
|
| 411 |
|
|
if (TREE_CODE (lhs) != SSA_NAME
|
| 412 |
|
|
|| gimple_could_trap_p (stmt))
|
| 413 |
|
|
return MOVE_PRESERVE_EXECUTION;
|
| 414 |
|
|
|
| 415 |
|
|
/* Non local loads in a transaction cannot be hoisted out. Well,
|
| 416 |
|
|
unless the load happens on every path out of the loop, but we
|
| 417 |
|
|
don't take this into account yet. */
|
| 418 |
|
|
if (flag_tm
|
| 419 |
|
|
&& gimple_in_transaction (stmt)
|
| 420 |
|
|
&& gimple_assign_single_p (stmt))
|
| 421 |
|
|
{
|
| 422 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
| 423 |
|
|
if (DECL_P (rhs) && is_global_var (rhs))
|
| 424 |
|
|
{
|
| 425 |
|
|
if (dump_file)
|
| 426 |
|
|
{
|
| 427 |
|
|
fprintf (dump_file, "Cannot hoist conditional load of ");
|
| 428 |
|
|
print_generic_expr (dump_file, rhs, TDF_SLIM);
|
| 429 |
|
|
fprintf (dump_file, " because it is in a transaction.\n");
|
| 430 |
|
|
}
|
| 431 |
|
|
return MOVE_IMPOSSIBLE;
|
| 432 |
|
|
}
|
| 433 |
|
|
}
|
| 434 |
|
|
|
| 435 |
|
|
return ret;
|
| 436 |
|
|
}
|
| 437 |
|
|
|
| 438 |
|
|
/* Suppose that operand DEF is used inside the LOOP. Returns the outermost
|
| 439 |
|
|
loop to that we could move the expression using DEF if it did not have
|
| 440 |
|
|
other operands, i.e. the outermost loop enclosing LOOP in that the value
|
| 441 |
|
|
of DEF is invariant. */
|
| 442 |
|
|
|
| 443 |
|
|
static struct loop *
|
| 444 |
|
|
outermost_invariant_loop (tree def, struct loop *loop)
|
| 445 |
|
|
{
|
| 446 |
|
|
gimple def_stmt;
|
| 447 |
|
|
basic_block def_bb;
|
| 448 |
|
|
struct loop *max_loop;
|
| 449 |
|
|
struct lim_aux_data *lim_data;
|
| 450 |
|
|
|
| 451 |
|
|
if (!def)
|
| 452 |
|
|
return superloop_at_depth (loop, 1);
|
| 453 |
|
|
|
| 454 |
|
|
if (TREE_CODE (def) != SSA_NAME)
|
| 455 |
|
|
{
|
| 456 |
|
|
gcc_assert (is_gimple_min_invariant (def));
|
| 457 |
|
|
return superloop_at_depth (loop, 1);
|
| 458 |
|
|
}
|
| 459 |
|
|
|
| 460 |
|
|
def_stmt = SSA_NAME_DEF_STMT (def);
|
| 461 |
|
|
def_bb = gimple_bb (def_stmt);
|
| 462 |
|
|
if (!def_bb)
|
| 463 |
|
|
return superloop_at_depth (loop, 1);
|
| 464 |
|
|
|
| 465 |
|
|
max_loop = find_common_loop (loop, def_bb->loop_father);
|
| 466 |
|
|
|
| 467 |
|
|
lim_data = get_lim_data (def_stmt);
|
| 468 |
|
|
if (lim_data != NULL && lim_data->max_loop != NULL)
|
| 469 |
|
|
max_loop = find_common_loop (max_loop,
|
| 470 |
|
|
loop_outer (lim_data->max_loop));
|
| 471 |
|
|
if (max_loop == loop)
|
| 472 |
|
|
return NULL;
|
| 473 |
|
|
max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
|
| 474 |
|
|
|
| 475 |
|
|
return max_loop;
|
| 476 |
|
|
}
|
| 477 |
|
|
|
| 478 |
|
|
/* DATA is a structure containing information associated with a statement
|
| 479 |
|
|
inside LOOP. DEF is one of the operands of this statement.
|
| 480 |
|
|
|
| 481 |
|
|
Find the outermost loop enclosing LOOP in that value of DEF is invariant
|
| 482 |
|
|
and record this in DATA->max_loop field. If DEF itself is defined inside
|
| 483 |
|
|
this loop as well (i.e. we need to hoist it out of the loop if we want
|
| 484 |
|
|
to hoist the statement represented by DATA), record the statement in that
|
| 485 |
|
|
DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
|
| 486 |
|
|
add the cost of the computation of DEF to the DATA->cost.
|
| 487 |
|
|
|
| 488 |
|
|
If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
|
| 489 |
|
|
|
| 490 |
|
|
static bool
|
| 491 |
|
|
add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
|
| 492 |
|
|
bool add_cost)
|
| 493 |
|
|
{
|
| 494 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (def);
|
| 495 |
|
|
basic_block def_bb = gimple_bb (def_stmt);
|
| 496 |
|
|
struct loop *max_loop;
|
| 497 |
|
|
struct depend *dep;
|
| 498 |
|
|
struct lim_aux_data *def_data;
|
| 499 |
|
|
|
| 500 |
|
|
if (!def_bb)
|
| 501 |
|
|
return true;
|
| 502 |
|
|
|
| 503 |
|
|
max_loop = outermost_invariant_loop (def, loop);
|
| 504 |
|
|
if (!max_loop)
|
| 505 |
|
|
return false;
|
| 506 |
|
|
|
| 507 |
|
|
if (flow_loop_nested_p (data->max_loop, max_loop))
|
| 508 |
|
|
data->max_loop = max_loop;
|
| 509 |
|
|
|
| 510 |
|
|
def_data = get_lim_data (def_stmt);
|
| 511 |
|
|
if (!def_data)
|
| 512 |
|
|
return true;
|
| 513 |
|
|
|
| 514 |
|
|
if (add_cost
|
| 515 |
|
|
/* Only add the cost if the statement defining DEF is inside LOOP,
|
| 516 |
|
|
i.e. if it is likely that by moving the invariants dependent
|
| 517 |
|
|
on it, we will be able to avoid creating a new register for
|
| 518 |
|
|
it (since it will be only used in these dependent invariants). */
|
| 519 |
|
|
&& def_bb->loop_father == loop)
|
| 520 |
|
|
data->cost += def_data->cost;
|
| 521 |
|
|
|
| 522 |
|
|
dep = XNEW (struct depend);
|
| 523 |
|
|
dep->stmt = def_stmt;
|
| 524 |
|
|
dep->next = data->depends;
|
| 525 |
|
|
data->depends = dep;
|
| 526 |
|
|
|
| 527 |
|
|
return true;
|
| 528 |
|
|
}
|
| 529 |
|
|
|
| 530 |
|
|
/* Returns an estimate for a cost of statement STMT. The values here
|
| 531 |
|
|
are just ad-hoc constants, similar to costs for inlining. */
|
| 532 |
|
|
|
| 533 |
|
|
static unsigned
|
| 534 |
|
|
stmt_cost (gimple stmt)
|
| 535 |
|
|
{
|
| 536 |
|
|
/* Always try to create possibilities for unswitching. */
|
| 537 |
|
|
if (gimple_code (stmt) == GIMPLE_COND
|
| 538 |
|
|
|| gimple_code (stmt) == GIMPLE_PHI)
|
| 539 |
|
|
return LIM_EXPENSIVE;
|
| 540 |
|
|
|
| 541 |
|
|
/* We should be hoisting calls if possible. */
|
| 542 |
|
|
if (is_gimple_call (stmt))
|
| 543 |
|
|
{
|
| 544 |
|
|
tree fndecl;
|
| 545 |
|
|
|
| 546 |
|
|
/* Unless the call is a builtin_constant_p; this always folds to a
|
| 547 |
|
|
constant, so moving it is useless. */
|
| 548 |
|
|
fndecl = gimple_call_fndecl (stmt);
|
| 549 |
|
|
if (fndecl
|
| 550 |
|
|
&& DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
|
| 551 |
|
|
&& DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
|
| 552 |
|
|
return 0;
|
| 553 |
|
|
|
| 554 |
|
|
return LIM_EXPENSIVE;
|
| 555 |
|
|
}
|
| 556 |
|
|
|
| 557 |
|
|
/* Hoisting memory references out should almost surely be a win. */
|
| 558 |
|
|
if (gimple_references_memory_p (stmt))
|
| 559 |
|
|
return LIM_EXPENSIVE;
|
| 560 |
|
|
|
| 561 |
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
| 562 |
|
|
return 1;
|
| 563 |
|
|
|
| 564 |
|
|
switch (gimple_assign_rhs_code (stmt))
|
| 565 |
|
|
{
|
| 566 |
|
|
case MULT_EXPR:
|
| 567 |
|
|
case WIDEN_MULT_EXPR:
|
| 568 |
|
|
case WIDEN_MULT_PLUS_EXPR:
|
| 569 |
|
|
case WIDEN_MULT_MINUS_EXPR:
|
| 570 |
|
|
case DOT_PROD_EXPR:
|
| 571 |
|
|
case FMA_EXPR:
|
| 572 |
|
|
case TRUNC_DIV_EXPR:
|
| 573 |
|
|
case CEIL_DIV_EXPR:
|
| 574 |
|
|
case FLOOR_DIV_EXPR:
|
| 575 |
|
|
case ROUND_DIV_EXPR:
|
| 576 |
|
|
case EXACT_DIV_EXPR:
|
| 577 |
|
|
case CEIL_MOD_EXPR:
|
| 578 |
|
|
case FLOOR_MOD_EXPR:
|
| 579 |
|
|
case ROUND_MOD_EXPR:
|
| 580 |
|
|
case TRUNC_MOD_EXPR:
|
| 581 |
|
|
case RDIV_EXPR:
|
| 582 |
|
|
/* Division and multiplication are usually expensive. */
|
| 583 |
|
|
return LIM_EXPENSIVE;
|
| 584 |
|
|
|
| 585 |
|
|
case LSHIFT_EXPR:
|
| 586 |
|
|
case RSHIFT_EXPR:
|
| 587 |
|
|
case WIDEN_LSHIFT_EXPR:
|
| 588 |
|
|
case LROTATE_EXPR:
|
| 589 |
|
|
case RROTATE_EXPR:
|
| 590 |
|
|
/* Shifts and rotates are usually expensive. */
|
| 591 |
|
|
return LIM_EXPENSIVE;
|
| 592 |
|
|
|
| 593 |
|
|
case CONSTRUCTOR:
|
| 594 |
|
|
/* Make vector construction cost proportional to the number
|
| 595 |
|
|
of elements. */
|
| 596 |
|
|
return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
|
| 597 |
|
|
|
| 598 |
|
|
case SSA_NAME:
|
| 599 |
|
|
case PAREN_EXPR:
|
| 600 |
|
|
/* Whether or not something is wrapped inside a PAREN_EXPR
|
| 601 |
|
|
should not change move cost. Nor should an intermediate
|
| 602 |
|
|
unpropagated SSA name copy. */
|
| 603 |
|
|
return 0;
|
| 604 |
|
|
|
| 605 |
|
|
default:
|
| 606 |
|
|
return 1;
|
| 607 |
|
|
}
|
| 608 |
|
|
}
|
| 609 |
|
|
|
| 610 |
|
|
/* Finds the outermost loop between OUTER and LOOP in that the memory reference
|
| 611 |
|
|
REF is independent. If REF is not independent in LOOP, NULL is returned
|
| 612 |
|
|
instead. */
|
| 613 |
|
|
|
| 614 |
|
|
static struct loop *
|
| 615 |
|
|
outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref)
|
| 616 |
|
|
{
|
| 617 |
|
|
struct loop *aloop;
|
| 618 |
|
|
|
| 619 |
|
|
if (bitmap_bit_p (ref->stored, loop->num))
|
| 620 |
|
|
return NULL;
|
| 621 |
|
|
|
| 622 |
|
|
for (aloop = outer;
|
| 623 |
|
|
aloop != loop;
|
| 624 |
|
|
aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
|
| 625 |
|
|
if (!bitmap_bit_p (ref->stored, aloop->num)
|
| 626 |
|
|
&& ref_indep_loop_p (aloop, ref))
|
| 627 |
|
|
return aloop;
|
| 628 |
|
|
|
| 629 |
|
|
if (ref_indep_loop_p (loop, ref))
|
| 630 |
|
|
return loop;
|
| 631 |
|
|
else
|
| 632 |
|
|
return NULL;
|
| 633 |
|
|
}
|
| 634 |
|
|
|
| 635 |
|
|
/* If there is a simple load or store to a memory reference in STMT, returns
|
| 636 |
|
|
the location of the memory reference, and sets IS_STORE according to whether
|
| 637 |
|
|
it is a store or load. Otherwise, returns NULL. */
|
| 638 |
|
|
|
| 639 |
|
|
static tree *
|
| 640 |
|
|
simple_mem_ref_in_stmt (gimple stmt, bool *is_store)
|
| 641 |
|
|
{
|
| 642 |
|
|
tree *lhs;
|
| 643 |
|
|
enum tree_code code;
|
| 644 |
|
|
|
| 645 |
|
|
/* Recognize MEM = (SSA_NAME | invariant) and SSA_NAME = MEM patterns. */
|
| 646 |
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
| 647 |
|
|
return NULL;
|
| 648 |
|
|
|
| 649 |
|
|
code = gimple_assign_rhs_code (stmt);
|
| 650 |
|
|
|
| 651 |
|
|
lhs = gimple_assign_lhs_ptr (stmt);
|
| 652 |
|
|
|
| 653 |
|
|
if (TREE_CODE (*lhs) == SSA_NAME)
|
| 654 |
|
|
{
|
| 655 |
|
|
if (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS
|
| 656 |
|
|
|| !is_gimple_addressable (gimple_assign_rhs1 (stmt)))
|
| 657 |
|
|
return NULL;
|
| 658 |
|
|
|
| 659 |
|
|
*is_store = false;
|
| 660 |
|
|
return gimple_assign_rhs1_ptr (stmt);
|
| 661 |
|
|
}
|
| 662 |
|
|
else if (code == SSA_NAME
|
| 663 |
|
|
|| (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
|
| 664 |
|
|
&& is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
|
| 665 |
|
|
{
|
| 666 |
|
|
*is_store = true;
|
| 667 |
|
|
return lhs;
|
| 668 |
|
|
}
|
| 669 |
|
|
else
|
| 670 |
|
|
return NULL;
|
| 671 |
|
|
}
|
| 672 |
|
|
|
| 673 |
|
|
/* Returns the memory reference contained in STMT. */
|
| 674 |
|
|
|
| 675 |
|
|
static mem_ref_p
|
| 676 |
|
|
mem_ref_in_stmt (gimple stmt)
|
| 677 |
|
|
{
|
| 678 |
|
|
bool store;
|
| 679 |
|
|
tree *mem = simple_mem_ref_in_stmt (stmt, &store);
|
| 680 |
|
|
hashval_t hash;
|
| 681 |
|
|
mem_ref_p ref;
|
| 682 |
|
|
|
| 683 |
|
|
if (!mem)
|
| 684 |
|
|
return NULL;
|
| 685 |
|
|
gcc_assert (!store);
|
| 686 |
|
|
|
| 687 |
|
|
hash = iterative_hash_expr (*mem, 0);
|
| 688 |
|
|
ref = (mem_ref_p) htab_find_with_hash (memory_accesses.refs, *mem, hash);
|
| 689 |
|
|
|
| 690 |
|
|
gcc_assert (ref != NULL);
|
| 691 |
|
|
return ref;
|
| 692 |
|
|
}
|
| 693 |
|
|
|
| 694 |
|
|
/* From a controlling predicate in DOM determine the arguments from
|
| 695 |
|
|
the PHI node PHI that are chosen if the predicate evaluates to
|
| 696 |
|
|
true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
|
| 697 |
|
|
they are non-NULL. Returns true if the arguments can be determined,
|
| 698 |
|
|
else return false. */
|
| 699 |
|
|
|
| 700 |
|
|
static bool
|
| 701 |
|
|
extract_true_false_args_from_phi (basic_block dom, gimple phi,
|
| 702 |
|
|
tree *true_arg_p, tree *false_arg_p)
|
| 703 |
|
|
{
|
| 704 |
|
|
basic_block bb = gimple_bb (phi);
|
| 705 |
|
|
edge true_edge, false_edge, tem;
|
| 706 |
|
|
tree arg0 = NULL_TREE, arg1 = NULL_TREE;
|
| 707 |
|
|
|
| 708 |
|
|
/* We have to verify that one edge into the PHI node is dominated
|
| 709 |
|
|
by the true edge of the predicate block and the other edge
|
| 710 |
|
|
dominated by the false edge. This ensures that the PHI argument
|
| 711 |
|
|
we are going to take is completely determined by the path we
|
| 712 |
|
|
take from the predicate block.
|
| 713 |
|
|
We can only use BB dominance checks below if the destination of
|
| 714 |
|
|
the true/false edges are dominated by their edge, thus only
|
| 715 |
|
|
have a single predecessor. */
|
| 716 |
|
|
extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
|
| 717 |
|
|
tem = EDGE_PRED (bb, 0);
|
| 718 |
|
|
if (tem == true_edge
|
| 719 |
|
|
|| (single_pred_p (true_edge->dest)
|
| 720 |
|
|
&& (tem->src == true_edge->dest
|
| 721 |
|
|
|| dominated_by_p (CDI_DOMINATORS,
|
| 722 |
|
|
tem->src, true_edge->dest))))
|
| 723 |
|
|
arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
|
| 724 |
|
|
else if (tem == false_edge
|
| 725 |
|
|
|| (single_pred_p (false_edge->dest)
|
| 726 |
|
|
&& (tem->src == false_edge->dest
|
| 727 |
|
|
|| dominated_by_p (CDI_DOMINATORS,
|
| 728 |
|
|
tem->src, false_edge->dest))))
|
| 729 |
|
|
arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
|
| 730 |
|
|
else
|
| 731 |
|
|
return false;
|
| 732 |
|
|
tem = EDGE_PRED (bb, 1);
|
| 733 |
|
|
if (tem == true_edge
|
| 734 |
|
|
|| (single_pred_p (true_edge->dest)
|
| 735 |
|
|
&& (tem->src == true_edge->dest
|
| 736 |
|
|
|| dominated_by_p (CDI_DOMINATORS,
|
| 737 |
|
|
tem->src, true_edge->dest))))
|
| 738 |
|
|
arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
|
| 739 |
|
|
else if (tem == false_edge
|
| 740 |
|
|
|| (single_pred_p (false_edge->dest)
|
| 741 |
|
|
&& (tem->src == false_edge->dest
|
| 742 |
|
|
|| dominated_by_p (CDI_DOMINATORS,
|
| 743 |
|
|
tem->src, false_edge->dest))))
|
| 744 |
|
|
arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
|
| 745 |
|
|
else
|
| 746 |
|
|
return false;
|
| 747 |
|
|
if (!arg0 || !arg1)
|
| 748 |
|
|
return false;
|
| 749 |
|
|
|
| 750 |
|
|
if (true_arg_p)
|
| 751 |
|
|
*true_arg_p = arg0;
|
| 752 |
|
|
if (false_arg_p)
|
| 753 |
|
|
*false_arg_p = arg1;
|
| 754 |
|
|
|
| 755 |
|
|
return true;
|
| 756 |
|
|
}
|
| 757 |
|
|
|
| 758 |
|
|
/* Determine the outermost loop to that it is possible to hoist a statement
|
| 759 |
|
|
STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
|
| 760 |
|
|
the outermost loop in that the value computed by STMT is invariant.
|
| 761 |
|
|
If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
|
| 762 |
|
|
we preserve the fact whether STMT is executed. It also fills other related
|
| 763 |
|
|
information to LIM_DATA (STMT).
|
| 764 |
|
|
|
| 765 |
|
|
The function returns false if STMT cannot be hoisted outside of the loop it
|
| 766 |
|
|
is defined in, and true otherwise. */
|
| 767 |
|
|
|
| 768 |
|
|
static bool
|
| 769 |
|
|
determine_max_movement (gimple stmt, bool must_preserve_exec)
|
| 770 |
|
|
{
|
| 771 |
|
|
basic_block bb = gimple_bb (stmt);
|
| 772 |
|
|
struct loop *loop = bb->loop_father;
|
| 773 |
|
|
struct loop *level;
|
| 774 |
|
|
struct lim_aux_data *lim_data = get_lim_data (stmt);
|
| 775 |
|
|
tree val;
|
| 776 |
|
|
ssa_op_iter iter;
|
| 777 |
|
|
|
| 778 |
|
|
if (must_preserve_exec)
|
| 779 |
|
|
level = ALWAYS_EXECUTED_IN (bb);
|
| 780 |
|
|
else
|
| 781 |
|
|
level = superloop_at_depth (loop, 1);
|
| 782 |
|
|
lim_data->max_loop = level;
|
| 783 |
|
|
|
| 784 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
| 785 |
|
|
{
|
| 786 |
|
|
use_operand_p use_p;
|
| 787 |
|
|
unsigned min_cost = UINT_MAX;
|
| 788 |
|
|
unsigned total_cost = 0;
|
| 789 |
|
|
struct lim_aux_data *def_data;
|
| 790 |
|
|
|
| 791 |
|
|
/* We will end up promoting dependencies to be unconditionally
|
| 792 |
|
|
evaluated. For this reason the PHI cost (and thus the
|
| 793 |
|
|
cost we remove from the loop by doing the invariant motion)
|
| 794 |
|
|
is that of the cheapest PHI argument dependency chain. */
|
| 795 |
|
|
FOR_EACH_PHI_ARG (use_p, stmt, iter, SSA_OP_USE)
|
| 796 |
|
|
{
|
| 797 |
|
|
val = USE_FROM_PTR (use_p);
|
| 798 |
|
|
if (TREE_CODE (val) != SSA_NAME)
|
| 799 |
|
|
continue;
|
| 800 |
|
|
if (!add_dependency (val, lim_data, loop, false))
|
| 801 |
|
|
return false;
|
| 802 |
|
|
def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
|
| 803 |
|
|
if (def_data)
|
| 804 |
|
|
{
|
| 805 |
|
|
min_cost = MIN (min_cost, def_data->cost);
|
| 806 |
|
|
total_cost += def_data->cost;
|
| 807 |
|
|
}
|
| 808 |
|
|
}
|
| 809 |
|
|
|
| 810 |
|
|
lim_data->cost += min_cost;
|
| 811 |
|
|
|
| 812 |
|
|
if (gimple_phi_num_args (stmt) > 1)
|
| 813 |
|
|
{
|
| 814 |
|
|
basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
|
| 815 |
|
|
gimple cond;
|
| 816 |
|
|
if (gsi_end_p (gsi_last_bb (dom)))
|
| 817 |
|
|
return false;
|
| 818 |
|
|
cond = gsi_stmt (gsi_last_bb (dom));
|
| 819 |
|
|
if (gimple_code (cond) != GIMPLE_COND)
|
| 820 |
|
|
return false;
|
| 821 |
|
|
/* Verify that this is an extended form of a diamond and
|
| 822 |
|
|
the PHI arguments are completely controlled by the
|
| 823 |
|
|
predicate in DOM. */
|
| 824 |
|
|
if (!extract_true_false_args_from_phi (dom, stmt, NULL, NULL))
|
| 825 |
|
|
return false;
|
| 826 |
|
|
|
| 827 |
|
|
/* Fold in dependencies and cost of the condition. */
|
| 828 |
|
|
FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
|
| 829 |
|
|
{
|
| 830 |
|
|
if (!add_dependency (val, lim_data, loop, false))
|
| 831 |
|
|
return false;
|
| 832 |
|
|
def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
|
| 833 |
|
|
if (def_data)
|
| 834 |
|
|
total_cost += def_data->cost;
|
| 835 |
|
|
}
|
| 836 |
|
|
|
| 837 |
|
|
/* We want to avoid unconditionally executing very expensive
|
| 838 |
|
|
operations. As costs for our dependencies cannot be
|
| 839 |
|
|
negative just claim we are not invariand for this case.
|
| 840 |
|
|
We also are not sure whether the control-flow inside the
|
| 841 |
|
|
loop will vanish. */
|
| 842 |
|
|
if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
|
| 843 |
|
|
&& !(min_cost != 0
|
| 844 |
|
|
&& total_cost / min_cost <= 2))
|
| 845 |
|
|
return false;
|
| 846 |
|
|
|
| 847 |
|
|
/* Assume that the control-flow in the loop will vanish.
|
| 848 |
|
|
??? We should verify this and not artificially increase
|
| 849 |
|
|
the cost if that is not the case. */
|
| 850 |
|
|
lim_data->cost += stmt_cost (stmt);
|
| 851 |
|
|
}
|
| 852 |
|
|
|
| 853 |
|
|
return true;
|
| 854 |
|
|
}
|
| 855 |
|
|
else
|
| 856 |
|
|
FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
|
| 857 |
|
|
if (!add_dependency (val, lim_data, loop, true))
|
| 858 |
|
|
return false;
|
| 859 |
|
|
|
| 860 |
|
|
if (gimple_vuse (stmt))
|
| 861 |
|
|
{
|
| 862 |
|
|
mem_ref_p ref = mem_ref_in_stmt (stmt);
|
| 863 |
|
|
|
| 864 |
|
|
if (ref)
|
| 865 |
|
|
{
|
| 866 |
|
|
lim_data->max_loop
|
| 867 |
|
|
= outermost_indep_loop (lim_data->max_loop, loop, ref);
|
| 868 |
|
|
if (!lim_data->max_loop)
|
| 869 |
|
|
return false;
|
| 870 |
|
|
}
|
| 871 |
|
|
else
|
| 872 |
|
|
{
|
| 873 |
|
|
if ((val = gimple_vuse (stmt)) != NULL_TREE)
|
| 874 |
|
|
{
|
| 875 |
|
|
if (!add_dependency (val, lim_data, loop, false))
|
| 876 |
|
|
return false;
|
| 877 |
|
|
}
|
| 878 |
|
|
}
|
| 879 |
|
|
}
|
| 880 |
|
|
|
| 881 |
|
|
lim_data->cost += stmt_cost (stmt);
|
| 882 |
|
|
|
| 883 |
|
|
return true;
|
| 884 |
|
|
}
|
| 885 |
|
|
|
| 886 |
|
|
/* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
|
| 887 |
|
|
and that one of the operands of this statement is computed by STMT.
|
| 888 |
|
|
Ensure that STMT (together with all the statements that define its
|
| 889 |
|
|
operands) is hoisted at least out of the loop LEVEL. */
|
| 890 |
|
|
|
| 891 |
|
|
static void
|
| 892 |
|
|
set_level (gimple stmt, struct loop *orig_loop, struct loop *level)
|
| 893 |
|
|
{
|
| 894 |
|
|
struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
|
| 895 |
|
|
struct depend *dep;
|
| 896 |
|
|
struct lim_aux_data *lim_data;
|
| 897 |
|
|
|
| 898 |
|
|
stmt_loop = find_common_loop (orig_loop, stmt_loop);
|
| 899 |
|
|
lim_data = get_lim_data (stmt);
|
| 900 |
|
|
if (lim_data != NULL && lim_data->tgt_loop != NULL)
|
| 901 |
|
|
stmt_loop = find_common_loop (stmt_loop,
|
| 902 |
|
|
loop_outer (lim_data->tgt_loop));
|
| 903 |
|
|
if (flow_loop_nested_p (stmt_loop, level))
|
| 904 |
|
|
return;
|
| 905 |
|
|
|
| 906 |
|
|
gcc_assert (level == lim_data->max_loop
|
| 907 |
|
|
|| flow_loop_nested_p (lim_data->max_loop, level));
|
| 908 |
|
|
|
| 909 |
|
|
lim_data->tgt_loop = level;
|
| 910 |
|
|
for (dep = lim_data->depends; dep; dep = dep->next)
|
| 911 |
|
|
set_level (dep->stmt, orig_loop, level);
|
| 912 |
|
|
}
|
| 913 |
|
|
|
| 914 |
|
|
/* Determines an outermost loop from that we want to hoist the statement STMT.
|
| 915 |
|
|
For now we chose the outermost possible loop. TODO -- use profiling
|
| 916 |
|
|
information to set it more sanely. */
|
| 917 |
|
|
|
| 918 |
|
|
static void
|
| 919 |
|
|
set_profitable_level (gimple stmt)
|
| 920 |
|
|
{
|
| 921 |
|
|
set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
|
| 922 |
|
|
}
|
| 923 |
|
|
|
| 924 |
|
|
/* Returns true if STMT is a call that has side effects. */
|
| 925 |
|
|
|
| 926 |
|
|
static bool
|
| 927 |
|
|
nonpure_call_p (gimple stmt)
|
| 928 |
|
|
{
|
| 929 |
|
|
if (gimple_code (stmt) != GIMPLE_CALL)
|
| 930 |
|
|
return false;
|
| 931 |
|
|
|
| 932 |
|
|
return gimple_has_side_effects (stmt);
|
| 933 |
|
|
}
|
| 934 |
|
|
|
| 935 |
|
|
/* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
|
| 936 |
|
|
|
| 937 |
|
|
static gimple
|
| 938 |
|
|
rewrite_reciprocal (gimple_stmt_iterator *bsi)
|
| 939 |
|
|
{
|
| 940 |
|
|
gimple stmt, stmt1, stmt2;
|
| 941 |
|
|
tree var, name, lhs, type;
|
| 942 |
|
|
tree real_one;
|
| 943 |
|
|
gimple_stmt_iterator gsi;
|
| 944 |
|
|
|
| 945 |
|
|
stmt = gsi_stmt (*bsi);
|
| 946 |
|
|
lhs = gimple_assign_lhs (stmt);
|
| 947 |
|
|
type = TREE_TYPE (lhs);
|
| 948 |
|
|
|
| 949 |
|
|
var = create_tmp_var (type, "reciptmp");
|
| 950 |
|
|
add_referenced_var (var);
|
| 951 |
|
|
DECL_GIMPLE_REG_P (var) = 1;
|
| 952 |
|
|
|
| 953 |
|
|
real_one = build_one_cst (type);
|
| 954 |
|
|
|
| 955 |
|
|
stmt1 = gimple_build_assign_with_ops (RDIV_EXPR,
|
| 956 |
|
|
var, real_one, gimple_assign_rhs2 (stmt));
|
| 957 |
|
|
name = make_ssa_name (var, stmt1);
|
| 958 |
|
|
gimple_assign_set_lhs (stmt1, name);
|
| 959 |
|
|
|
| 960 |
|
|
stmt2 = gimple_build_assign_with_ops (MULT_EXPR, lhs, name,
|
| 961 |
|
|
gimple_assign_rhs1 (stmt));
|
| 962 |
|
|
|
| 963 |
|
|
/* Replace division stmt with reciprocal and multiply stmts.
|
| 964 |
|
|
The multiply stmt is not invariant, so update iterator
|
| 965 |
|
|
and avoid rescanning. */
|
| 966 |
|
|
gsi = *bsi;
|
| 967 |
|
|
gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
|
| 968 |
|
|
gsi_replace (&gsi, stmt2, true);
|
| 969 |
|
|
|
| 970 |
|
|
/* Continue processing with invariant reciprocal statement. */
|
| 971 |
|
|
return stmt1;
|
| 972 |
|
|
}
|
| 973 |
|
|
|
| 974 |
|
|
/* Check if the pattern at *BSI is a bittest of the form
|
| 975 |
|
|
(A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
|
| 976 |
|
|
|
| 977 |
|
|
static gimple
|
| 978 |
|
|
rewrite_bittest (gimple_stmt_iterator *bsi)
|
| 979 |
|
|
{
|
| 980 |
|
|
gimple stmt, use_stmt, stmt1, stmt2;
|
| 981 |
|
|
tree lhs, var, name, t, a, b;
|
| 982 |
|
|
use_operand_p use;
|
| 983 |
|
|
|
| 984 |
|
|
stmt = gsi_stmt (*bsi);
|
| 985 |
|
|
lhs = gimple_assign_lhs (stmt);
|
| 986 |
|
|
|
| 987 |
|
|
/* Verify that the single use of lhs is a comparison against zero. */
|
| 988 |
|
|
if (TREE_CODE (lhs) != SSA_NAME
|
| 989 |
|
|
|| !single_imm_use (lhs, &use, &use_stmt)
|
| 990 |
|
|
|| gimple_code (use_stmt) != GIMPLE_COND)
|
| 991 |
|
|
return stmt;
|
| 992 |
|
|
if (gimple_cond_lhs (use_stmt) != lhs
|
| 993 |
|
|
|| (gimple_cond_code (use_stmt) != NE_EXPR
|
| 994 |
|
|
&& gimple_cond_code (use_stmt) != EQ_EXPR)
|
| 995 |
|
|
|| !integer_zerop (gimple_cond_rhs (use_stmt)))
|
| 996 |
|
|
return stmt;
|
| 997 |
|
|
|
| 998 |
|
|
/* Get at the operands of the shift. The rhs is TMP1 & 1. */
|
| 999 |
|
|
stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
|
| 1000 |
|
|
if (gimple_code (stmt1) != GIMPLE_ASSIGN)
|
| 1001 |
|
|
return stmt;
|
| 1002 |
|
|
|
| 1003 |
|
|
/* There is a conversion in between possibly inserted by fold. */
|
| 1004 |
|
|
if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
|
| 1005 |
|
|
{
|
| 1006 |
|
|
t = gimple_assign_rhs1 (stmt1);
|
| 1007 |
|
|
if (TREE_CODE (t) != SSA_NAME
|
| 1008 |
|
|
|| !has_single_use (t))
|
| 1009 |
|
|
return stmt;
|
| 1010 |
|
|
stmt1 = SSA_NAME_DEF_STMT (t);
|
| 1011 |
|
|
if (gimple_code (stmt1) != GIMPLE_ASSIGN)
|
| 1012 |
|
|
return stmt;
|
| 1013 |
|
|
}
|
| 1014 |
|
|
|
| 1015 |
|
|
/* Verify that B is loop invariant but A is not. Verify that with
|
| 1016 |
|
|
all the stmt walking we are still in the same loop. */
|
| 1017 |
|
|
if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
|
| 1018 |
|
|
|| loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
|
| 1019 |
|
|
return stmt;
|
| 1020 |
|
|
|
| 1021 |
|
|
a = gimple_assign_rhs1 (stmt1);
|
| 1022 |
|
|
b = gimple_assign_rhs2 (stmt1);
|
| 1023 |
|
|
|
| 1024 |
|
|
if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
|
| 1025 |
|
|
&& outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
|
| 1026 |
|
|
{
|
| 1027 |
|
|
gimple_stmt_iterator rsi;
|
| 1028 |
|
|
|
| 1029 |
|
|
/* 1 << B */
|
| 1030 |
|
|
var = create_tmp_var (TREE_TYPE (a), "shifttmp");
|
| 1031 |
|
|
add_referenced_var (var);
|
| 1032 |
|
|
t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
|
| 1033 |
|
|
build_int_cst (TREE_TYPE (a), 1), b);
|
| 1034 |
|
|
stmt1 = gimple_build_assign (var, t);
|
| 1035 |
|
|
name = make_ssa_name (var, stmt1);
|
| 1036 |
|
|
gimple_assign_set_lhs (stmt1, name);
|
| 1037 |
|
|
|
| 1038 |
|
|
/* A & (1 << B) */
|
| 1039 |
|
|
t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
|
| 1040 |
|
|
stmt2 = gimple_build_assign (var, t);
|
| 1041 |
|
|
name = make_ssa_name (var, stmt2);
|
| 1042 |
|
|
gimple_assign_set_lhs (stmt2, name);
|
| 1043 |
|
|
|
| 1044 |
|
|
/* Replace the SSA_NAME we compare against zero. Adjust
|
| 1045 |
|
|
the type of zero accordingly. */
|
| 1046 |
|
|
SET_USE (use, name);
|
| 1047 |
|
|
gimple_cond_set_rhs (use_stmt, build_int_cst_type (TREE_TYPE (name), 0));
|
| 1048 |
|
|
|
| 1049 |
|
|
/* Don't use gsi_replace here, none of the new assignments sets
|
| 1050 |
|
|
the variable originally set in stmt. Move bsi to stmt1, and
|
| 1051 |
|
|
then remove the original stmt, so that we get a chance to
|
| 1052 |
|
|
retain debug info for it. */
|
| 1053 |
|
|
rsi = *bsi;
|
| 1054 |
|
|
gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
|
| 1055 |
|
|
gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
|
| 1056 |
|
|
gsi_remove (&rsi, true);
|
| 1057 |
|
|
|
| 1058 |
|
|
return stmt1;
|
| 1059 |
|
|
}
|
| 1060 |
|
|
|
| 1061 |
|
|
return stmt;
|
| 1062 |
|
|
}
|
| 1063 |
|
|
|
| 1064 |
|
|
|
| 1065 |
|
|
/* Determine the outermost loops in that statements in basic block BB are
|
| 1066 |
|
|
invariant, and record them to the LIM_DATA associated with the statements.
|
| 1067 |
|
|
Callback for walk_dominator_tree. */
|
| 1068 |
|
|
|
| 1069 |
|
|
static void
|
| 1070 |
|
|
determine_invariantness_stmt (struct dom_walk_data *dw_data ATTRIBUTE_UNUSED,
|
| 1071 |
|
|
basic_block bb)
|
| 1072 |
|
|
{
|
| 1073 |
|
|
enum move_pos pos;
|
| 1074 |
|
|
gimple_stmt_iterator bsi;
|
| 1075 |
|
|
gimple stmt;
|
| 1076 |
|
|
bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
|
| 1077 |
|
|
struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
|
| 1078 |
|
|
struct lim_aux_data *lim_data;
|
| 1079 |
|
|
|
| 1080 |
|
|
if (!loop_outer (bb->loop_father))
|
| 1081 |
|
|
return;
|
| 1082 |
|
|
|
| 1083 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1084 |
|
|
fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
|
| 1085 |
|
|
bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
|
| 1086 |
|
|
|
| 1087 |
|
|
/* Look at PHI nodes, but only if there is at most two.
|
| 1088 |
|
|
??? We could relax this further by post-processing the inserted
|
| 1089 |
|
|
code and transforming adjacent cond-exprs with the same predicate
|
| 1090 |
|
|
to control flow again. */
|
| 1091 |
|
|
bsi = gsi_start_phis (bb);
|
| 1092 |
|
|
if (!gsi_end_p (bsi)
|
| 1093 |
|
|
&& ((gsi_next (&bsi), gsi_end_p (bsi))
|
| 1094 |
|
|
|| (gsi_next (&bsi), gsi_end_p (bsi))))
|
| 1095 |
|
|
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
| 1096 |
|
|
{
|
| 1097 |
|
|
stmt = gsi_stmt (bsi);
|
| 1098 |
|
|
|
| 1099 |
|
|
pos = movement_possibility (stmt);
|
| 1100 |
|
|
if (pos == MOVE_IMPOSSIBLE)
|
| 1101 |
|
|
continue;
|
| 1102 |
|
|
|
| 1103 |
|
|
lim_data = init_lim_data (stmt);
|
| 1104 |
|
|
lim_data->always_executed_in = outermost;
|
| 1105 |
|
|
|
| 1106 |
|
|
if (!determine_max_movement (stmt, false))
|
| 1107 |
|
|
{
|
| 1108 |
|
|
lim_data->max_loop = NULL;
|
| 1109 |
|
|
continue;
|
| 1110 |
|
|
}
|
| 1111 |
|
|
|
| 1112 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1113 |
|
|
{
|
| 1114 |
|
|
print_gimple_stmt (dump_file, stmt, 2, 0);
|
| 1115 |
|
|
fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
|
| 1116 |
|
|
loop_depth (lim_data->max_loop),
|
| 1117 |
|
|
lim_data->cost);
|
| 1118 |
|
|
}
|
| 1119 |
|
|
|
| 1120 |
|
|
if (lim_data->cost >= LIM_EXPENSIVE)
|
| 1121 |
|
|
set_profitable_level (stmt);
|
| 1122 |
|
|
}
|
| 1123 |
|
|
|
| 1124 |
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
| 1125 |
|
|
{
|
| 1126 |
|
|
stmt = gsi_stmt (bsi);
|
| 1127 |
|
|
|
| 1128 |
|
|
pos = movement_possibility (stmt);
|
| 1129 |
|
|
if (pos == MOVE_IMPOSSIBLE)
|
| 1130 |
|
|
{
|
| 1131 |
|
|
if (nonpure_call_p (stmt))
|
| 1132 |
|
|
{
|
| 1133 |
|
|
maybe_never = true;
|
| 1134 |
|
|
outermost = NULL;
|
| 1135 |
|
|
}
|
| 1136 |
|
|
/* Make sure to note always_executed_in for stores to make
|
| 1137 |
|
|
store-motion work. */
|
| 1138 |
|
|
else if (stmt_makes_single_store (stmt))
|
| 1139 |
|
|
{
|
| 1140 |
|
|
struct lim_aux_data *lim_data = init_lim_data (stmt);
|
| 1141 |
|
|
lim_data->always_executed_in = outermost;
|
| 1142 |
|
|
}
|
| 1143 |
|
|
continue;
|
| 1144 |
|
|
}
|
| 1145 |
|
|
|
| 1146 |
|
|
if (is_gimple_assign (stmt)
|
| 1147 |
|
|
&& (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
|
| 1148 |
|
|
== GIMPLE_BINARY_RHS))
|
| 1149 |
|
|
{
|
| 1150 |
|
|
tree op0 = gimple_assign_rhs1 (stmt);
|
| 1151 |
|
|
tree op1 = gimple_assign_rhs2 (stmt);
|
| 1152 |
|
|
struct loop *ol1 = outermost_invariant_loop (op1,
|
| 1153 |
|
|
loop_containing_stmt (stmt));
|
| 1154 |
|
|
|
| 1155 |
|
|
/* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
|
| 1156 |
|
|
to be hoisted out of loop, saving expensive divide. */
|
| 1157 |
|
|
if (pos == MOVE_POSSIBLE
|
| 1158 |
|
|
&& gimple_assign_rhs_code (stmt) == RDIV_EXPR
|
| 1159 |
|
|
&& flag_unsafe_math_optimizations
|
| 1160 |
|
|
&& !flag_trapping_math
|
| 1161 |
|
|
&& ol1 != NULL
|
| 1162 |
|
|
&& outermost_invariant_loop (op0, ol1) == NULL)
|
| 1163 |
|
|
stmt = rewrite_reciprocal (&bsi);
|
| 1164 |
|
|
|
| 1165 |
|
|
/* If the shift count is invariant, convert (A >> B) & 1 to
|
| 1166 |
|
|
A & (1 << B) allowing the bit mask to be hoisted out of the loop
|
| 1167 |
|
|
saving an expensive shift. */
|
| 1168 |
|
|
if (pos == MOVE_POSSIBLE
|
| 1169 |
|
|
&& gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
|
| 1170 |
|
|
&& integer_onep (op1)
|
| 1171 |
|
|
&& TREE_CODE (op0) == SSA_NAME
|
| 1172 |
|
|
&& has_single_use (op0))
|
| 1173 |
|
|
stmt = rewrite_bittest (&bsi);
|
| 1174 |
|
|
}
|
| 1175 |
|
|
|
| 1176 |
|
|
lim_data = init_lim_data (stmt);
|
| 1177 |
|
|
lim_data->always_executed_in = outermost;
|
| 1178 |
|
|
|
| 1179 |
|
|
if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
|
| 1180 |
|
|
continue;
|
| 1181 |
|
|
|
| 1182 |
|
|
if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
|
| 1183 |
|
|
{
|
| 1184 |
|
|
lim_data->max_loop = NULL;
|
| 1185 |
|
|
continue;
|
| 1186 |
|
|
}
|
| 1187 |
|
|
|
| 1188 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1189 |
|
|
{
|
| 1190 |
|
|
print_gimple_stmt (dump_file, stmt, 2, 0);
|
| 1191 |
|
|
fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
|
| 1192 |
|
|
loop_depth (lim_data->max_loop),
|
| 1193 |
|
|
lim_data->cost);
|
| 1194 |
|
|
}
|
| 1195 |
|
|
|
| 1196 |
|
|
if (lim_data->cost >= LIM_EXPENSIVE)
|
| 1197 |
|
|
set_profitable_level (stmt);
|
| 1198 |
|
|
}
|
| 1199 |
|
|
}
|
| 1200 |
|
|
|
| 1201 |
|
|
/* For each statement determines the outermost loop in that it is invariant,
|
| 1202 |
|
|
statements on whose motion it depends and the cost of the computation.
|
| 1203 |
|
|
This information is stored to the LIM_DATA structure associated with
|
| 1204 |
|
|
each statement. */
|
| 1205 |
|
|
|
| 1206 |
|
|
static void
|
| 1207 |
|
|
determine_invariantness (void)
|
| 1208 |
|
|
{
|
| 1209 |
|
|
struct dom_walk_data walk_data;
|
| 1210 |
|
|
|
| 1211 |
|
|
memset (&walk_data, 0, sizeof (struct dom_walk_data));
|
| 1212 |
|
|
walk_data.dom_direction = CDI_DOMINATORS;
|
| 1213 |
|
|
walk_data.before_dom_children = determine_invariantness_stmt;
|
| 1214 |
|
|
|
| 1215 |
|
|
init_walk_dominator_tree (&walk_data);
|
| 1216 |
|
|
walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
|
| 1217 |
|
|
fini_walk_dominator_tree (&walk_data);
|
| 1218 |
|
|
}
|
| 1219 |
|
|
|
| 1220 |
|
|
/* Hoist the statements in basic block BB out of the loops prescribed by
|
| 1221 |
|
|
data stored in LIM_DATA structures associated with each statement. Callback
|
| 1222 |
|
|
for walk_dominator_tree. */
|
| 1223 |
|
|
|
| 1224 |
|
|
static void
|
| 1225 |
|
|
move_computations_stmt (struct dom_walk_data *dw_data,
|
| 1226 |
|
|
basic_block bb)
|
| 1227 |
|
|
{
|
| 1228 |
|
|
struct loop *level;
|
| 1229 |
|
|
gimple_stmt_iterator bsi;
|
| 1230 |
|
|
gimple stmt;
|
| 1231 |
|
|
unsigned cost = 0;
|
| 1232 |
|
|
struct lim_aux_data *lim_data;
|
| 1233 |
|
|
|
| 1234 |
|
|
if (!loop_outer (bb->loop_father))
|
| 1235 |
|
|
return;
|
| 1236 |
|
|
|
| 1237 |
|
|
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
|
| 1238 |
|
|
{
|
| 1239 |
|
|
gimple new_stmt;
|
| 1240 |
|
|
stmt = gsi_stmt (bsi);
|
| 1241 |
|
|
|
| 1242 |
|
|
lim_data = get_lim_data (stmt);
|
| 1243 |
|
|
if (lim_data == NULL)
|
| 1244 |
|
|
{
|
| 1245 |
|
|
gsi_next (&bsi);
|
| 1246 |
|
|
continue;
|
| 1247 |
|
|
}
|
| 1248 |
|
|
|
| 1249 |
|
|
cost = lim_data->cost;
|
| 1250 |
|
|
level = lim_data->tgt_loop;
|
| 1251 |
|
|
clear_lim_data (stmt);
|
| 1252 |
|
|
|
| 1253 |
|
|
if (!level)
|
| 1254 |
|
|
{
|
| 1255 |
|
|
gsi_next (&bsi);
|
| 1256 |
|
|
continue;
|
| 1257 |
|
|
}
|
| 1258 |
|
|
|
| 1259 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1260 |
|
|
{
|
| 1261 |
|
|
fprintf (dump_file, "Moving PHI node\n");
|
| 1262 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
| 1263 |
|
|
fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
|
| 1264 |
|
|
cost, level->num);
|
| 1265 |
|
|
}
|
| 1266 |
|
|
|
| 1267 |
|
|
if (gimple_phi_num_args (stmt) == 1)
|
| 1268 |
|
|
{
|
| 1269 |
|
|
tree arg = PHI_ARG_DEF (stmt, 0);
|
| 1270 |
|
|
new_stmt = gimple_build_assign_with_ops (TREE_CODE (arg),
|
| 1271 |
|
|
gimple_phi_result (stmt),
|
| 1272 |
|
|
arg, NULL_TREE);
|
| 1273 |
|
|
SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
|
| 1274 |
|
|
}
|
| 1275 |
|
|
else
|
| 1276 |
|
|
{
|
| 1277 |
|
|
basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
|
| 1278 |
|
|
gimple cond = gsi_stmt (gsi_last_bb (dom));
|
| 1279 |
|
|
tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
|
| 1280 |
|
|
/* Get the PHI arguments corresponding to the true and false
|
| 1281 |
|
|
edges of COND. */
|
| 1282 |
|
|
extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
|
| 1283 |
|
|
gcc_assert (arg0 && arg1);
|
| 1284 |
|
|
t = build2 (gimple_cond_code (cond), boolean_type_node,
|
| 1285 |
|
|
gimple_cond_lhs (cond), gimple_cond_rhs (cond));
|
| 1286 |
|
|
new_stmt = gimple_build_assign_with_ops3 (COND_EXPR,
|
| 1287 |
|
|
gimple_phi_result (stmt),
|
| 1288 |
|
|
t, arg0, arg1);
|
| 1289 |
|
|
SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
|
| 1290 |
|
|
*((unsigned int *)(dw_data->global_data)) |= TODO_cleanup_cfg;
|
| 1291 |
|
|
}
|
| 1292 |
|
|
gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
|
| 1293 |
|
|
remove_phi_node (&bsi, false);
|
| 1294 |
|
|
}
|
| 1295 |
|
|
|
| 1296 |
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
|
| 1297 |
|
|
{
|
| 1298 |
|
|
stmt = gsi_stmt (bsi);
|
| 1299 |
|
|
|
| 1300 |
|
|
lim_data = get_lim_data (stmt);
|
| 1301 |
|
|
if (lim_data == NULL)
|
| 1302 |
|
|
{
|
| 1303 |
|
|
gsi_next (&bsi);
|
| 1304 |
|
|
continue;
|
| 1305 |
|
|
}
|
| 1306 |
|
|
|
| 1307 |
|
|
cost = lim_data->cost;
|
| 1308 |
|
|
level = lim_data->tgt_loop;
|
| 1309 |
|
|
clear_lim_data (stmt);
|
| 1310 |
|
|
|
| 1311 |
|
|
if (!level)
|
| 1312 |
|
|
{
|
| 1313 |
|
|
gsi_next (&bsi);
|
| 1314 |
|
|
continue;
|
| 1315 |
|
|
}
|
| 1316 |
|
|
|
| 1317 |
|
|
/* We do not really want to move conditionals out of the loop; we just
|
| 1318 |
|
|
placed it here to force its operands to be moved if necessary. */
|
| 1319 |
|
|
if (gimple_code (stmt) == GIMPLE_COND)
|
| 1320 |
|
|
continue;
|
| 1321 |
|
|
|
| 1322 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1323 |
|
|
{
|
| 1324 |
|
|
fprintf (dump_file, "Moving statement\n");
|
| 1325 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
| 1326 |
|
|
fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
|
| 1327 |
|
|
cost, level->num);
|
| 1328 |
|
|
}
|
| 1329 |
|
|
|
| 1330 |
|
|
mark_virtual_ops_for_renaming (stmt);
|
| 1331 |
|
|
gsi_insert_on_edge (loop_preheader_edge (level), stmt);
|
| 1332 |
|
|
gsi_remove (&bsi, false);
|
| 1333 |
|
|
}
|
| 1334 |
|
|
}
|
| 1335 |
|
|
|
| 1336 |
|
|
/* Hoist the statements out of the loops prescribed by data stored in
|
| 1337 |
|
|
LIM_DATA structures associated with each statement.*/
|
| 1338 |
|
|
|
| 1339 |
|
|
static unsigned int
|
| 1340 |
|
|
move_computations (void)
|
| 1341 |
|
|
{
|
| 1342 |
|
|
struct dom_walk_data walk_data;
|
| 1343 |
|
|
unsigned int todo = 0;
|
| 1344 |
|
|
|
| 1345 |
|
|
memset (&walk_data, 0, sizeof (struct dom_walk_data));
|
| 1346 |
|
|
walk_data.global_data = &todo;
|
| 1347 |
|
|
walk_data.dom_direction = CDI_DOMINATORS;
|
| 1348 |
|
|
walk_data.before_dom_children = move_computations_stmt;
|
| 1349 |
|
|
|
| 1350 |
|
|
init_walk_dominator_tree (&walk_data);
|
| 1351 |
|
|
walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
|
| 1352 |
|
|
fini_walk_dominator_tree (&walk_data);
|
| 1353 |
|
|
|
| 1354 |
|
|
gsi_commit_edge_inserts ();
|
| 1355 |
|
|
if (need_ssa_update_p (cfun))
|
| 1356 |
|
|
rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
|
| 1357 |
|
|
|
| 1358 |
|
|
return todo;
|
| 1359 |
|
|
}
|
| 1360 |
|
|
|
| 1361 |
|
|
/* Checks whether the statement defining variable *INDEX can be hoisted
|
| 1362 |
|
|
out of the loop passed in DATA. Callback for for_each_index. */
|
| 1363 |
|
|
|
| 1364 |
|
|
static bool
|
| 1365 |
|
|
may_move_till (tree ref, tree *index, void *data)
|
| 1366 |
|
|
{
|
| 1367 |
|
|
struct loop *loop = (struct loop *) data, *max_loop;
|
| 1368 |
|
|
|
| 1369 |
|
|
/* If REF is an array reference, check also that the step and the lower
|
| 1370 |
|
|
bound is invariant in LOOP. */
|
| 1371 |
|
|
if (TREE_CODE (ref) == ARRAY_REF)
|
| 1372 |
|
|
{
|
| 1373 |
|
|
tree step = TREE_OPERAND (ref, 3);
|
| 1374 |
|
|
tree lbound = TREE_OPERAND (ref, 2);
|
| 1375 |
|
|
|
| 1376 |
|
|
max_loop = outermost_invariant_loop (step, loop);
|
| 1377 |
|
|
if (!max_loop)
|
| 1378 |
|
|
return false;
|
| 1379 |
|
|
|
| 1380 |
|
|
max_loop = outermost_invariant_loop (lbound, loop);
|
| 1381 |
|
|
if (!max_loop)
|
| 1382 |
|
|
return false;
|
| 1383 |
|
|
}
|
| 1384 |
|
|
|
| 1385 |
|
|
max_loop = outermost_invariant_loop (*index, loop);
|
| 1386 |
|
|
if (!max_loop)
|
| 1387 |
|
|
return false;
|
| 1388 |
|
|
|
| 1389 |
|
|
return true;
|
| 1390 |
|
|
}
|
| 1391 |
|
|
|
| 1392 |
|
|
/* If OP is SSA NAME, force the statement that defines it to be
|
| 1393 |
|
|
moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
|
| 1394 |
|
|
|
| 1395 |
|
|
static void
|
| 1396 |
|
|
force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
|
| 1397 |
|
|
{
|
| 1398 |
|
|
gimple stmt;
|
| 1399 |
|
|
|
| 1400 |
|
|
if (!op
|
| 1401 |
|
|
|| is_gimple_min_invariant (op))
|
| 1402 |
|
|
return;
|
| 1403 |
|
|
|
| 1404 |
|
|
gcc_assert (TREE_CODE (op) == SSA_NAME);
|
| 1405 |
|
|
|
| 1406 |
|
|
stmt = SSA_NAME_DEF_STMT (op);
|
| 1407 |
|
|
if (gimple_nop_p (stmt))
|
| 1408 |
|
|
return;
|
| 1409 |
|
|
|
| 1410 |
|
|
set_level (stmt, orig_loop, loop);
|
| 1411 |
|
|
}
|
| 1412 |
|
|
|
| 1413 |
|
|
/* Forces statement defining invariants in REF (and *INDEX) to be moved out of
|
| 1414 |
|
|
the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
|
| 1415 |
|
|
for_each_index. */
|
| 1416 |
|
|
|
| 1417 |
|
|
struct fmt_data
|
| 1418 |
|
|
{
|
| 1419 |
|
|
struct loop *loop;
|
| 1420 |
|
|
struct loop *orig_loop;
|
| 1421 |
|
|
};
|
| 1422 |
|
|
|
| 1423 |
|
|
static bool
|
| 1424 |
|
|
force_move_till (tree ref, tree *index, void *data)
|
| 1425 |
|
|
{
|
| 1426 |
|
|
struct fmt_data *fmt_data = (struct fmt_data *) data;
|
| 1427 |
|
|
|
| 1428 |
|
|
if (TREE_CODE (ref) == ARRAY_REF)
|
| 1429 |
|
|
{
|
| 1430 |
|
|
tree step = TREE_OPERAND (ref, 3);
|
| 1431 |
|
|
tree lbound = TREE_OPERAND (ref, 2);
|
| 1432 |
|
|
|
| 1433 |
|
|
force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
|
| 1434 |
|
|
force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
|
| 1435 |
|
|
}
|
| 1436 |
|
|
|
| 1437 |
|
|
force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
|
| 1438 |
|
|
|
| 1439 |
|
|
return true;
|
| 1440 |
|
|
}
|
| 1441 |
|
|
|
| 1442 |
|
|
/* A hash function for struct mem_ref object OBJ. */
|
| 1443 |
|
|
|
| 1444 |
|
|
static hashval_t
|
| 1445 |
|
|
memref_hash (const void *obj)
|
| 1446 |
|
|
{
|
| 1447 |
|
|
const struct mem_ref *const mem = (const struct mem_ref *) obj;
|
| 1448 |
|
|
|
| 1449 |
|
|
return mem->hash;
|
| 1450 |
|
|
}
|
| 1451 |
|
|
|
| 1452 |
|
|
/* An equality function for struct mem_ref object OBJ1 with
|
| 1453 |
|
|
memory reference OBJ2. */
|
| 1454 |
|
|
|
| 1455 |
|
|
static int
|
| 1456 |
|
|
memref_eq (const void *obj1, const void *obj2)
|
| 1457 |
|
|
{
|
| 1458 |
|
|
const struct mem_ref *const mem1 = (const struct mem_ref *) obj1;
|
| 1459 |
|
|
|
| 1460 |
|
|
return operand_equal_p (mem1->mem, (const_tree) obj2, 0);
|
| 1461 |
|
|
}
|
| 1462 |
|
|
|
| 1463 |
|
|
/* Releases list of memory reference locations ACCS. */
|
| 1464 |
|
|
|
| 1465 |
|
|
static void
|
| 1466 |
|
|
free_mem_ref_locs (mem_ref_locs_p accs)
|
| 1467 |
|
|
{
|
| 1468 |
|
|
unsigned i;
|
| 1469 |
|
|
mem_ref_loc_p loc;
|
| 1470 |
|
|
|
| 1471 |
|
|
if (!accs)
|
| 1472 |
|
|
return;
|
| 1473 |
|
|
|
| 1474 |
|
|
FOR_EACH_VEC_ELT (mem_ref_loc_p, accs->locs, i, loc)
|
| 1475 |
|
|
free (loc);
|
| 1476 |
|
|
VEC_free (mem_ref_loc_p, heap, accs->locs);
|
| 1477 |
|
|
free (accs);
|
| 1478 |
|
|
}
|
| 1479 |
|
|
|
| 1480 |
|
|
/* A function to free the mem_ref object OBJ. */
|
| 1481 |
|
|
|
| 1482 |
|
|
static void
|
| 1483 |
|
|
memref_free (void *obj)
|
| 1484 |
|
|
{
|
| 1485 |
|
|
struct mem_ref *const mem = (struct mem_ref *) obj;
|
| 1486 |
|
|
unsigned i;
|
| 1487 |
|
|
mem_ref_locs_p accs;
|
| 1488 |
|
|
|
| 1489 |
|
|
BITMAP_FREE (mem->stored);
|
| 1490 |
|
|
BITMAP_FREE (mem->indep_loop);
|
| 1491 |
|
|
BITMAP_FREE (mem->dep_loop);
|
| 1492 |
|
|
BITMAP_FREE (mem->indep_ref);
|
| 1493 |
|
|
BITMAP_FREE (mem->dep_ref);
|
| 1494 |
|
|
|
| 1495 |
|
|
FOR_EACH_VEC_ELT (mem_ref_locs_p, mem->accesses_in_loop, i, accs)
|
| 1496 |
|
|
free_mem_ref_locs (accs);
|
| 1497 |
|
|
VEC_free (mem_ref_locs_p, heap, mem->accesses_in_loop);
|
| 1498 |
|
|
|
| 1499 |
|
|
free (mem);
|
| 1500 |
|
|
}
|
| 1501 |
|
|
|
| 1502 |
|
|
/* Allocates and returns a memory reference description for MEM whose hash
|
| 1503 |
|
|
value is HASH and id is ID. */
|
| 1504 |
|
|
|
| 1505 |
|
|
static mem_ref_p
|
| 1506 |
|
|
mem_ref_alloc (tree mem, unsigned hash, unsigned id)
|
| 1507 |
|
|
{
|
| 1508 |
|
|
mem_ref_p ref = XNEW (struct mem_ref);
|
| 1509 |
|
|
ref->mem = mem;
|
| 1510 |
|
|
ref->id = id;
|
| 1511 |
|
|
ref->hash = hash;
|
| 1512 |
|
|
ref->stored = BITMAP_ALLOC (NULL);
|
| 1513 |
|
|
ref->indep_loop = BITMAP_ALLOC (NULL);
|
| 1514 |
|
|
ref->dep_loop = BITMAP_ALLOC (NULL);
|
| 1515 |
|
|
ref->indep_ref = BITMAP_ALLOC (NULL);
|
| 1516 |
|
|
ref->dep_ref = BITMAP_ALLOC (NULL);
|
| 1517 |
|
|
ref->accesses_in_loop = NULL;
|
| 1518 |
|
|
|
| 1519 |
|
|
return ref;
|
| 1520 |
|
|
}
|
| 1521 |
|
|
|
| 1522 |
|
|
/* Allocates and returns the new list of locations. */
|
| 1523 |
|
|
|
| 1524 |
|
|
static mem_ref_locs_p
|
| 1525 |
|
|
mem_ref_locs_alloc (void)
|
| 1526 |
|
|
{
|
| 1527 |
|
|
mem_ref_locs_p accs = XNEW (struct mem_ref_locs);
|
| 1528 |
|
|
accs->locs = NULL;
|
| 1529 |
|
|
return accs;
|
| 1530 |
|
|
}
|
| 1531 |
|
|
|
| 1532 |
|
|
/* Records memory reference location *LOC in LOOP to the memory reference
|
| 1533 |
|
|
description REF. The reference occurs in statement STMT. */
|
| 1534 |
|
|
|
| 1535 |
|
|
static void
|
| 1536 |
|
|
record_mem_ref_loc (mem_ref_p ref, struct loop *loop, gimple stmt, tree *loc)
|
| 1537 |
|
|
{
|
| 1538 |
|
|
mem_ref_loc_p aref = XNEW (struct mem_ref_loc);
|
| 1539 |
|
|
mem_ref_locs_p accs;
|
| 1540 |
|
|
bitmap ril = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
|
| 1541 |
|
|
|
| 1542 |
|
|
if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop)
|
| 1543 |
|
|
<= (unsigned) loop->num)
|
| 1544 |
|
|
VEC_safe_grow_cleared (mem_ref_locs_p, heap, ref->accesses_in_loop,
|
| 1545 |
|
|
loop->num + 1);
|
| 1546 |
|
|
accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num);
|
| 1547 |
|
|
if (!accs)
|
| 1548 |
|
|
{
|
| 1549 |
|
|
accs = mem_ref_locs_alloc ();
|
| 1550 |
|
|
VEC_replace (mem_ref_locs_p, ref->accesses_in_loop, loop->num, accs);
|
| 1551 |
|
|
}
|
| 1552 |
|
|
|
| 1553 |
|
|
aref->stmt = stmt;
|
| 1554 |
|
|
aref->ref = loc;
|
| 1555 |
|
|
|
| 1556 |
|
|
VEC_safe_push (mem_ref_loc_p, heap, accs->locs, aref);
|
| 1557 |
|
|
bitmap_set_bit (ril, ref->id);
|
| 1558 |
|
|
}
|
| 1559 |
|
|
|
| 1560 |
|
|
/* Marks reference REF as stored in LOOP. */
|
| 1561 |
|
|
|
| 1562 |
|
|
static void
|
| 1563 |
|
|
mark_ref_stored (mem_ref_p ref, struct loop *loop)
|
| 1564 |
|
|
{
|
| 1565 |
|
|
for (;
|
| 1566 |
|
|
loop != current_loops->tree_root
|
| 1567 |
|
|
&& !bitmap_bit_p (ref->stored, loop->num);
|
| 1568 |
|
|
loop = loop_outer (loop))
|
| 1569 |
|
|
bitmap_set_bit (ref->stored, loop->num);
|
| 1570 |
|
|
}
|
| 1571 |
|
|
|
| 1572 |
|
|
/* Gathers memory references in statement STMT in LOOP, storing the
|
| 1573 |
|
|
information about them in the memory_accesses structure. Marks
|
| 1574 |
|
|
the vops accessed through unrecognized statements there as
|
| 1575 |
|
|
well. */
|
| 1576 |
|
|
|
| 1577 |
|
|
static void
|
| 1578 |
|
|
gather_mem_refs_stmt (struct loop *loop, gimple stmt)
|
| 1579 |
|
|
{
|
| 1580 |
|
|
tree *mem = NULL;
|
| 1581 |
|
|
hashval_t hash;
|
| 1582 |
|
|
PTR *slot;
|
| 1583 |
|
|
mem_ref_p ref;
|
| 1584 |
|
|
bool is_stored;
|
| 1585 |
|
|
unsigned id;
|
| 1586 |
|
|
|
| 1587 |
|
|
if (!gimple_vuse (stmt))
|
| 1588 |
|
|
return;
|
| 1589 |
|
|
|
| 1590 |
|
|
mem = simple_mem_ref_in_stmt (stmt, &is_stored);
|
| 1591 |
|
|
if (!mem)
|
| 1592 |
|
|
{
|
| 1593 |
|
|
id = VEC_length (mem_ref_p, memory_accesses.refs_list);
|
| 1594 |
|
|
ref = mem_ref_alloc (error_mark_node, 0, id);
|
| 1595 |
|
|
VEC_safe_push (mem_ref_p, heap, memory_accesses.refs_list, ref);
|
| 1596 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1597 |
|
|
{
|
| 1598 |
|
|
fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
|
| 1599 |
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
| 1600 |
|
|
}
|
| 1601 |
|
|
if (gimple_vdef (stmt))
|
| 1602 |
|
|
mark_ref_stored (ref, loop);
|
| 1603 |
|
|
record_mem_ref_loc (ref, loop, stmt, mem);
|
| 1604 |
|
|
return;
|
| 1605 |
|
|
}
|
| 1606 |
|
|
|
| 1607 |
|
|
hash = iterative_hash_expr (*mem, 0);
|
| 1608 |
|
|
slot = htab_find_slot_with_hash (memory_accesses.refs, *mem, hash, INSERT);
|
| 1609 |
|
|
|
| 1610 |
|
|
if (*slot)
|
| 1611 |
|
|
{
|
| 1612 |
|
|
ref = (mem_ref_p) *slot;
|
| 1613 |
|
|
id = ref->id;
|
| 1614 |
|
|
}
|
| 1615 |
|
|
else
|
| 1616 |
|
|
{
|
| 1617 |
|
|
id = VEC_length (mem_ref_p, memory_accesses.refs_list);
|
| 1618 |
|
|
ref = mem_ref_alloc (*mem, hash, id);
|
| 1619 |
|
|
VEC_safe_push (mem_ref_p, heap, memory_accesses.refs_list, ref);
|
| 1620 |
|
|
*slot = ref;
|
| 1621 |
|
|
|
| 1622 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1623 |
|
|
{
|
| 1624 |
|
|
fprintf (dump_file, "Memory reference %u: ", id);
|
| 1625 |
|
|
print_generic_expr (dump_file, ref->mem, TDF_SLIM);
|
| 1626 |
|
|
fprintf (dump_file, "\n");
|
| 1627 |
|
|
}
|
| 1628 |
|
|
}
|
| 1629 |
|
|
if (is_stored)
|
| 1630 |
|
|
mark_ref_stored (ref, loop);
|
| 1631 |
|
|
|
| 1632 |
|
|
record_mem_ref_loc (ref, loop, stmt, mem);
|
| 1633 |
|
|
return;
|
| 1634 |
|
|
}
|
| 1635 |
|
|
|
| 1636 |
|
|
/* Gathers memory references in loops. */
|
| 1637 |
|
|
|
| 1638 |
|
|
static void
|
| 1639 |
|
|
gather_mem_refs_in_loops (void)
|
| 1640 |
|
|
{
|
| 1641 |
|
|
gimple_stmt_iterator bsi;
|
| 1642 |
|
|
basic_block bb;
|
| 1643 |
|
|
struct loop *loop;
|
| 1644 |
|
|
loop_iterator li;
|
| 1645 |
|
|
bitmap lrefs, alrefs, alrefso;
|
| 1646 |
|
|
|
| 1647 |
|
|
FOR_EACH_BB (bb)
|
| 1648 |
|
|
{
|
| 1649 |
|
|
loop = bb->loop_father;
|
| 1650 |
|
|
if (loop == current_loops->tree_root)
|
| 1651 |
|
|
continue;
|
| 1652 |
|
|
|
| 1653 |
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
| 1654 |
|
|
gather_mem_refs_stmt (loop, gsi_stmt (bsi));
|
| 1655 |
|
|
}
|
| 1656 |
|
|
|
| 1657 |
|
|
/* Propagate the information about accessed memory references up
|
| 1658 |
|
|
the loop hierarchy. */
|
| 1659 |
|
|
FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
|
| 1660 |
|
|
{
|
| 1661 |
|
|
lrefs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
|
| 1662 |
|
|
alrefs = VEC_index (bitmap, memory_accesses.all_refs_in_loop, loop->num);
|
| 1663 |
|
|
bitmap_ior_into (alrefs, lrefs);
|
| 1664 |
|
|
|
| 1665 |
|
|
if (loop_outer (loop) == current_loops->tree_root)
|
| 1666 |
|
|
continue;
|
| 1667 |
|
|
|
| 1668 |
|
|
alrefso = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
|
| 1669 |
|
|
loop_outer (loop)->num);
|
| 1670 |
|
|
bitmap_ior_into (alrefso, alrefs);
|
| 1671 |
|
|
}
|
| 1672 |
|
|
}
|
| 1673 |
|
|
|
| 1674 |
|
|
/* Create a mapping from virtual operands to references that touch them
|
| 1675 |
|
|
in LOOP. */
|
| 1676 |
|
|
|
| 1677 |
|
|
static void
|
| 1678 |
|
|
create_vop_ref_mapping_loop (struct loop *loop)
|
| 1679 |
|
|
{
|
| 1680 |
|
|
bitmap refs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
|
| 1681 |
|
|
struct loop *sloop;
|
| 1682 |
|
|
bitmap_iterator bi;
|
| 1683 |
|
|
unsigned i;
|
| 1684 |
|
|
mem_ref_p ref;
|
| 1685 |
|
|
|
| 1686 |
|
|
EXECUTE_IF_SET_IN_BITMAP (refs, 0, i, bi)
|
| 1687 |
|
|
{
|
| 1688 |
|
|
ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
|
| 1689 |
|
|
for (sloop = loop; sloop != current_loops->tree_root;
|
| 1690 |
|
|
sloop = loop_outer (sloop))
|
| 1691 |
|
|
if (bitmap_bit_p (ref->stored, loop->num))
|
| 1692 |
|
|
{
|
| 1693 |
|
|
bitmap refs_stored
|
| 1694 |
|
|
= VEC_index (bitmap, memory_accesses.all_refs_stored_in_loop,
|
| 1695 |
|
|
sloop->num);
|
| 1696 |
|
|
bitmap_set_bit (refs_stored, ref->id);
|
| 1697 |
|
|
}
|
| 1698 |
|
|
}
|
| 1699 |
|
|
}
|
| 1700 |
|
|
|
| 1701 |
|
|
/* For each non-clobbered virtual operand and each loop, record the memory
|
| 1702 |
|
|
references in this loop that touch the operand. */
|
| 1703 |
|
|
|
| 1704 |
|
|
static void
|
| 1705 |
|
|
create_vop_ref_mapping (void)
|
| 1706 |
|
|
{
|
| 1707 |
|
|
loop_iterator li;
|
| 1708 |
|
|
struct loop *loop;
|
| 1709 |
|
|
|
| 1710 |
|
|
FOR_EACH_LOOP (li, loop, 0)
|
| 1711 |
|
|
{
|
| 1712 |
|
|
create_vop_ref_mapping_loop (loop);
|
| 1713 |
|
|
}
|
| 1714 |
|
|
}
|
| 1715 |
|
|
|
| 1716 |
|
|
/* Gathers information about memory accesses in the loops. */
|
| 1717 |
|
|
|
| 1718 |
|
|
static void
|
| 1719 |
|
|
analyze_memory_references (void)
|
| 1720 |
|
|
{
|
| 1721 |
|
|
unsigned i;
|
| 1722 |
|
|
bitmap empty;
|
| 1723 |
|
|
|
| 1724 |
|
|
memory_accesses.refs
|
| 1725 |
|
|
= htab_create (100, memref_hash, memref_eq, memref_free);
|
| 1726 |
|
|
memory_accesses.refs_list = NULL;
|
| 1727 |
|
|
memory_accesses.refs_in_loop = VEC_alloc (bitmap, heap,
|
| 1728 |
|
|
number_of_loops ());
|
| 1729 |
|
|
memory_accesses.all_refs_in_loop = VEC_alloc (bitmap, heap,
|
| 1730 |
|
|
number_of_loops ());
|
| 1731 |
|
|
memory_accesses.all_refs_stored_in_loop = VEC_alloc (bitmap, heap,
|
| 1732 |
|
|
number_of_loops ());
|
| 1733 |
|
|
|
| 1734 |
|
|
for (i = 0; i < number_of_loops (); i++)
|
| 1735 |
|
|
{
|
| 1736 |
|
|
empty = BITMAP_ALLOC (NULL);
|
| 1737 |
|
|
VEC_quick_push (bitmap, memory_accesses.refs_in_loop, empty);
|
| 1738 |
|
|
empty = BITMAP_ALLOC (NULL);
|
| 1739 |
|
|
VEC_quick_push (bitmap, memory_accesses.all_refs_in_loop, empty);
|
| 1740 |
|
|
empty = BITMAP_ALLOC (NULL);
|
| 1741 |
|
|
VEC_quick_push (bitmap, memory_accesses.all_refs_stored_in_loop, empty);
|
| 1742 |
|
|
}
|
| 1743 |
|
|
|
| 1744 |
|
|
memory_accesses.ttae_cache = NULL;
|
| 1745 |
|
|
|
| 1746 |
|
|
gather_mem_refs_in_loops ();
|
| 1747 |
|
|
create_vop_ref_mapping ();
|
| 1748 |
|
|
}
|
| 1749 |
|
|
|
| 1750 |
|
|
/* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
|
| 1751 |
|
|
tree_to_aff_combination_expand. */
|
| 1752 |
|
|
|
| 1753 |
|
|
static bool
|
| 1754 |
|
|
mem_refs_may_alias_p (tree mem1, tree mem2, struct pointer_map_t **ttae_cache)
|
| 1755 |
|
|
{
|
| 1756 |
|
|
/* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
|
| 1757 |
|
|
object and their offset differ in such a way that the locations cannot
|
| 1758 |
|
|
overlap, then they cannot alias. */
|
| 1759 |
|
|
double_int size1, size2;
|
| 1760 |
|
|
aff_tree off1, off2;
|
| 1761 |
|
|
|
| 1762 |
|
|
/* Perform basic offset and type-based disambiguation. */
|
| 1763 |
|
|
if (!refs_may_alias_p (mem1, mem2))
|
| 1764 |
|
|
return false;
|
| 1765 |
|
|
|
| 1766 |
|
|
/* The expansion of addresses may be a bit expensive, thus we only do
|
| 1767 |
|
|
the check at -O2 and higher optimization levels. */
|
| 1768 |
|
|
if (optimize < 2)
|
| 1769 |
|
|
return true;
|
| 1770 |
|
|
|
| 1771 |
|
|
get_inner_reference_aff (mem1, &off1, &size1);
|
| 1772 |
|
|
get_inner_reference_aff (mem2, &off2, &size2);
|
| 1773 |
|
|
aff_combination_expand (&off1, ttae_cache);
|
| 1774 |
|
|
aff_combination_expand (&off2, ttae_cache);
|
| 1775 |
|
|
aff_combination_scale (&off1, double_int_minus_one);
|
| 1776 |
|
|
aff_combination_add (&off2, &off1);
|
| 1777 |
|
|
|
| 1778 |
|
|
if (aff_comb_cannot_overlap_p (&off2, size1, size2))
|
| 1779 |
|
|
return false;
|
| 1780 |
|
|
|
| 1781 |
|
|
return true;
|
| 1782 |
|
|
}
|
| 1783 |
|
|
|
| 1784 |
|
|
/* Rewrites location LOC by TMP_VAR. */
|
| 1785 |
|
|
|
| 1786 |
|
|
static void
|
| 1787 |
|
|
rewrite_mem_ref_loc (mem_ref_loc_p loc, tree tmp_var)
|
| 1788 |
|
|
{
|
| 1789 |
|
|
mark_virtual_ops_for_renaming (loc->stmt);
|
| 1790 |
|
|
*loc->ref = tmp_var;
|
| 1791 |
|
|
update_stmt (loc->stmt);
|
| 1792 |
|
|
}
|
| 1793 |
|
|
|
| 1794 |
|
|
/* Adds all locations of REF in LOOP and its subloops to LOCS. */
|
| 1795 |
|
|
|
| 1796 |
|
|
static void
|
| 1797 |
|
|
get_all_locs_in_loop (struct loop *loop, mem_ref_p ref,
|
| 1798 |
|
|
VEC (mem_ref_loc_p, heap) **locs)
|
| 1799 |
|
|
{
|
| 1800 |
|
|
mem_ref_locs_p accs;
|
| 1801 |
|
|
unsigned i;
|
| 1802 |
|
|
mem_ref_loc_p loc;
|
| 1803 |
|
|
bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
|
| 1804 |
|
|
loop->num);
|
| 1805 |
|
|
struct loop *subloop;
|
| 1806 |
|
|
|
| 1807 |
|
|
if (!bitmap_bit_p (refs, ref->id))
|
| 1808 |
|
|
return;
|
| 1809 |
|
|
|
| 1810 |
|
|
if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop)
|
| 1811 |
|
|
> (unsigned) loop->num)
|
| 1812 |
|
|
{
|
| 1813 |
|
|
accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num);
|
| 1814 |
|
|
if (accs)
|
| 1815 |
|
|
{
|
| 1816 |
|
|
FOR_EACH_VEC_ELT (mem_ref_loc_p, accs->locs, i, loc)
|
| 1817 |
|
|
VEC_safe_push (mem_ref_loc_p, heap, *locs, loc);
|
| 1818 |
|
|
}
|
| 1819 |
|
|
}
|
| 1820 |
|
|
|
| 1821 |
|
|
for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
|
| 1822 |
|
|
get_all_locs_in_loop (subloop, ref, locs);
|
| 1823 |
|
|
}
|
| 1824 |
|
|
|
| 1825 |
|
|
/* Rewrites all references to REF in LOOP by variable TMP_VAR. */
|
| 1826 |
|
|
|
| 1827 |
|
|
static void
|
| 1828 |
|
|
rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var)
|
| 1829 |
|
|
{
|
| 1830 |
|
|
unsigned i;
|
| 1831 |
|
|
mem_ref_loc_p loc;
|
| 1832 |
|
|
VEC (mem_ref_loc_p, heap) *locs = NULL;
|
| 1833 |
|
|
|
| 1834 |
|
|
get_all_locs_in_loop (loop, ref, &locs);
|
| 1835 |
|
|
FOR_EACH_VEC_ELT (mem_ref_loc_p, locs, i, loc)
|
| 1836 |
|
|
rewrite_mem_ref_loc (loc, tmp_var);
|
| 1837 |
|
|
VEC_free (mem_ref_loc_p, heap, locs);
|
| 1838 |
|
|
}
|
| 1839 |
|
|
|
| 1840 |
|
|
/* The name and the length of the currently generated variable
|
| 1841 |
|
|
for lsm. */
|
| 1842 |
|
|
#define MAX_LSM_NAME_LENGTH 40
|
| 1843 |
|
|
static char lsm_tmp_name[MAX_LSM_NAME_LENGTH + 1];
|
| 1844 |
|
|
static int lsm_tmp_name_length;
|
| 1845 |
|
|
|
| 1846 |
|
|
/* Adds S to lsm_tmp_name. */
|
| 1847 |
|
|
|
| 1848 |
|
|
static void
|
| 1849 |
|
|
lsm_tmp_name_add (const char *s)
|
| 1850 |
|
|
{
|
| 1851 |
|
|
int l = strlen (s) + lsm_tmp_name_length;
|
| 1852 |
|
|
if (l > MAX_LSM_NAME_LENGTH)
|
| 1853 |
|
|
return;
|
| 1854 |
|
|
|
| 1855 |
|
|
strcpy (lsm_tmp_name + lsm_tmp_name_length, s);
|
| 1856 |
|
|
lsm_tmp_name_length = l;
|
| 1857 |
|
|
}
|
| 1858 |
|
|
|
| 1859 |
|
|
/* Stores the name for temporary variable that replaces REF to
|
| 1860 |
|
|
lsm_tmp_name. */
|
| 1861 |
|
|
|
| 1862 |
|
|
static void
|
| 1863 |
|
|
gen_lsm_tmp_name (tree ref)
|
| 1864 |
|
|
{
|
| 1865 |
|
|
const char *name;
|
| 1866 |
|
|
|
| 1867 |
|
|
switch (TREE_CODE (ref))
|
| 1868 |
|
|
{
|
| 1869 |
|
|
case MEM_REF:
|
| 1870 |
|
|
case TARGET_MEM_REF:
|
| 1871 |
|
|
gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
|
| 1872 |
|
|
lsm_tmp_name_add ("_");
|
| 1873 |
|
|
break;
|
| 1874 |
|
|
|
| 1875 |
|
|
case ADDR_EXPR:
|
| 1876 |
|
|
gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
|
| 1877 |
|
|
break;
|
| 1878 |
|
|
|
| 1879 |
|
|
case BIT_FIELD_REF:
|
| 1880 |
|
|
case VIEW_CONVERT_EXPR:
|
| 1881 |
|
|
case ARRAY_RANGE_REF:
|
| 1882 |
|
|
gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
|
| 1883 |
|
|
break;
|
| 1884 |
|
|
|
| 1885 |
|
|
case REALPART_EXPR:
|
| 1886 |
|
|
gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
|
| 1887 |
|
|
lsm_tmp_name_add ("_RE");
|
| 1888 |
|
|
break;
|
| 1889 |
|
|
|
| 1890 |
|
|
case IMAGPART_EXPR:
|
| 1891 |
|
|
gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
|
| 1892 |
|
|
lsm_tmp_name_add ("_IM");
|
| 1893 |
|
|
break;
|
| 1894 |
|
|
|
| 1895 |
|
|
case COMPONENT_REF:
|
| 1896 |
|
|
gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
|
| 1897 |
|
|
lsm_tmp_name_add ("_");
|
| 1898 |
|
|
name = get_name (TREE_OPERAND (ref, 1));
|
| 1899 |
|
|
if (!name)
|
| 1900 |
|
|
name = "F";
|
| 1901 |
|
|
lsm_tmp_name_add (name);
|
| 1902 |
|
|
break;
|
| 1903 |
|
|
|
| 1904 |
|
|
case ARRAY_REF:
|
| 1905 |
|
|
gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
|
| 1906 |
|
|
lsm_tmp_name_add ("_I");
|
| 1907 |
|
|
break;
|
| 1908 |
|
|
|
| 1909 |
|
|
case SSA_NAME:
|
| 1910 |
|
|
ref = SSA_NAME_VAR (ref);
|
| 1911 |
|
|
/* Fallthru. */
|
| 1912 |
|
|
|
| 1913 |
|
|
case VAR_DECL:
|
| 1914 |
|
|
case PARM_DECL:
|
| 1915 |
|
|
name = get_name (ref);
|
| 1916 |
|
|
if (!name)
|
| 1917 |
|
|
name = "D";
|
| 1918 |
|
|
lsm_tmp_name_add (name);
|
| 1919 |
|
|
break;
|
| 1920 |
|
|
|
| 1921 |
|
|
case STRING_CST:
|
| 1922 |
|
|
lsm_tmp_name_add ("S");
|
| 1923 |
|
|
break;
|
| 1924 |
|
|
|
| 1925 |
|
|
case RESULT_DECL:
|
| 1926 |
|
|
lsm_tmp_name_add ("R");
|
| 1927 |
|
|
break;
|
| 1928 |
|
|
|
| 1929 |
|
|
case INTEGER_CST:
|
| 1930 |
|
|
/* Nothing. */
|
| 1931 |
|
|
break;
|
| 1932 |
|
|
|
| 1933 |
|
|
default:
|
| 1934 |
|
|
gcc_unreachable ();
|
| 1935 |
|
|
}
|
| 1936 |
|
|
}
|
| 1937 |
|
|
|
| 1938 |
|
|
/* Determines name for temporary variable that replaces REF.
|
| 1939 |
|
|
The name is accumulated into the lsm_tmp_name variable.
|
| 1940 |
|
|
N is added to the name of the temporary. */
|
| 1941 |
|
|
|
| 1942 |
|
|
char *
|
| 1943 |
|
|
get_lsm_tmp_name (tree ref, unsigned n)
|
| 1944 |
|
|
{
|
| 1945 |
|
|
char ns[2];
|
| 1946 |
|
|
|
| 1947 |
|
|
lsm_tmp_name_length = 0;
|
| 1948 |
|
|
gen_lsm_tmp_name (ref);
|
| 1949 |
|
|
lsm_tmp_name_add ("_lsm");
|
| 1950 |
|
|
if (n < 10)
|
| 1951 |
|
|
{
|
| 1952 |
|
|
ns[0] = '0' + n;
|
| 1953 |
|
|
ns[1] = 0;
|
| 1954 |
|
|
lsm_tmp_name_add (ns);
|
| 1955 |
|
|
}
|
| 1956 |
|
|
return lsm_tmp_name;
|
| 1957 |
|
|
}
|
| 1958 |
|
|
|
| 1959 |
|
|
/* Executes store motion of memory reference REF from LOOP.
|
| 1960 |
|
|
Exits from the LOOP are stored in EXITS. The initialization of the
|
| 1961 |
|
|
temporary variable is put to the preheader of the loop, and assignments
|
| 1962 |
|
|
to the reference from the temporary variable are emitted to exits. */
|
| 1963 |
|
|
|
| 1964 |
|
|
static void
|
| 1965 |
|
|
execute_sm (struct loop *loop, VEC (edge, heap) *exits, mem_ref_p ref)
|
| 1966 |
|
|
{
|
| 1967 |
|
|
tree tmp_var;
|
| 1968 |
|
|
unsigned i;
|
| 1969 |
|
|
gimple load, store;
|
| 1970 |
|
|
struct fmt_data fmt_data;
|
| 1971 |
|
|
edge ex;
|
| 1972 |
|
|
struct lim_aux_data *lim_data;
|
| 1973 |
|
|
|
| 1974 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1975 |
|
|
{
|
| 1976 |
|
|
fprintf (dump_file, "Executing store motion of ");
|
| 1977 |
|
|
print_generic_expr (dump_file, ref->mem, 0);
|
| 1978 |
|
|
fprintf (dump_file, " from loop %d\n", loop->num);
|
| 1979 |
|
|
}
|
| 1980 |
|
|
|
| 1981 |
|
|
tmp_var = make_rename_temp (TREE_TYPE (ref->mem),
|
| 1982 |
|
|
get_lsm_tmp_name (ref->mem, ~0));
|
| 1983 |
|
|
|
| 1984 |
|
|
fmt_data.loop = loop;
|
| 1985 |
|
|
fmt_data.orig_loop = loop;
|
| 1986 |
|
|
for_each_index (&ref->mem, force_move_till, &fmt_data);
|
| 1987 |
|
|
|
| 1988 |
|
|
rewrite_mem_refs (loop, ref, tmp_var);
|
| 1989 |
|
|
|
| 1990 |
|
|
/* Emit the load & stores. */
|
| 1991 |
|
|
load = gimple_build_assign (tmp_var, unshare_expr (ref->mem));
|
| 1992 |
|
|
lim_data = init_lim_data (load);
|
| 1993 |
|
|
lim_data->max_loop = loop;
|
| 1994 |
|
|
lim_data->tgt_loop = loop;
|
| 1995 |
|
|
|
| 1996 |
|
|
/* Put this into the latch, so that we are sure it will be processed after
|
| 1997 |
|
|
all dependencies. */
|
| 1998 |
|
|
gsi_insert_on_edge (loop_latch_edge (loop), load);
|
| 1999 |
|
|
|
| 2000 |
|
|
FOR_EACH_VEC_ELT (edge, exits, i, ex)
|
| 2001 |
|
|
{
|
| 2002 |
|
|
store = gimple_build_assign (unshare_expr (ref->mem), tmp_var);
|
| 2003 |
|
|
gsi_insert_on_edge (ex, store);
|
| 2004 |
|
|
}
|
| 2005 |
|
|
}
|
| 2006 |
|
|
|
| 2007 |
|
|
/* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
|
| 2008 |
|
|
edges of the LOOP. */
|
| 2009 |
|
|
|
| 2010 |
|
|
static void
|
| 2011 |
|
|
hoist_memory_references (struct loop *loop, bitmap mem_refs,
|
| 2012 |
|
|
VEC (edge, heap) *exits)
|
| 2013 |
|
|
{
|
| 2014 |
|
|
mem_ref_p ref;
|
| 2015 |
|
|
unsigned i;
|
| 2016 |
|
|
bitmap_iterator bi;
|
| 2017 |
|
|
|
| 2018 |
|
|
EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
|
| 2019 |
|
|
{
|
| 2020 |
|
|
ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
|
| 2021 |
|
|
execute_sm (loop, exits, ref);
|
| 2022 |
|
|
}
|
| 2023 |
|
|
}
|
| 2024 |
|
|
|
| 2025 |
|
|
/* Returns true if REF is always accessed in LOOP. If STORED_P is true
|
| 2026 |
|
|
make sure REF is always stored to in LOOP. */
|
| 2027 |
|
|
|
| 2028 |
|
|
static bool
|
| 2029 |
|
|
ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p)
|
| 2030 |
|
|
{
|
| 2031 |
|
|
VEC (mem_ref_loc_p, heap) *locs = NULL;
|
| 2032 |
|
|
unsigned i;
|
| 2033 |
|
|
mem_ref_loc_p loc;
|
| 2034 |
|
|
bool ret = false;
|
| 2035 |
|
|
struct loop *must_exec;
|
| 2036 |
|
|
tree base;
|
| 2037 |
|
|
|
| 2038 |
|
|
base = get_base_address (ref->mem);
|
| 2039 |
|
|
if (INDIRECT_REF_P (base)
|
| 2040 |
|
|
|| TREE_CODE (base) == MEM_REF)
|
| 2041 |
|
|
base = TREE_OPERAND (base, 0);
|
| 2042 |
|
|
|
| 2043 |
|
|
get_all_locs_in_loop (loop, ref, &locs);
|
| 2044 |
|
|
FOR_EACH_VEC_ELT (mem_ref_loc_p, locs, i, loc)
|
| 2045 |
|
|
{
|
| 2046 |
|
|
if (!get_lim_data (loc->stmt))
|
| 2047 |
|
|
continue;
|
| 2048 |
|
|
|
| 2049 |
|
|
/* If we require an always executed store make sure the statement
|
| 2050 |
|
|
stores to the reference. */
|
| 2051 |
|
|
if (stored_p)
|
| 2052 |
|
|
{
|
| 2053 |
|
|
tree lhs;
|
| 2054 |
|
|
if (!gimple_get_lhs (loc->stmt))
|
| 2055 |
|
|
continue;
|
| 2056 |
|
|
lhs = get_base_address (gimple_get_lhs (loc->stmt));
|
| 2057 |
|
|
if (!lhs)
|
| 2058 |
|
|
continue;
|
| 2059 |
|
|
if (INDIRECT_REF_P (lhs)
|
| 2060 |
|
|
|| TREE_CODE (lhs) == MEM_REF)
|
| 2061 |
|
|
lhs = TREE_OPERAND (lhs, 0);
|
| 2062 |
|
|
if (lhs != base)
|
| 2063 |
|
|
continue;
|
| 2064 |
|
|
}
|
| 2065 |
|
|
|
| 2066 |
|
|
must_exec = get_lim_data (loc->stmt)->always_executed_in;
|
| 2067 |
|
|
if (!must_exec)
|
| 2068 |
|
|
continue;
|
| 2069 |
|
|
|
| 2070 |
|
|
if (must_exec == loop
|
| 2071 |
|
|
|| flow_loop_nested_p (must_exec, loop))
|
| 2072 |
|
|
{
|
| 2073 |
|
|
ret = true;
|
| 2074 |
|
|
break;
|
| 2075 |
|
|
}
|
| 2076 |
|
|
}
|
| 2077 |
|
|
VEC_free (mem_ref_loc_p, heap, locs);
|
| 2078 |
|
|
|
| 2079 |
|
|
return ret;
|
| 2080 |
|
|
}
|
| 2081 |
|
|
|
| 2082 |
|
|
/* Returns true if REF1 and REF2 are independent. */
|
| 2083 |
|
|
|
| 2084 |
|
|
static bool
|
| 2085 |
|
|
refs_independent_p (mem_ref_p ref1, mem_ref_p ref2)
|
| 2086 |
|
|
{
|
| 2087 |
|
|
if (ref1 == ref2
|
| 2088 |
|
|
|| bitmap_bit_p (ref1->indep_ref, ref2->id))
|
| 2089 |
|
|
return true;
|
| 2090 |
|
|
if (bitmap_bit_p (ref1->dep_ref, ref2->id))
|
| 2091 |
|
|
return false;
|
| 2092 |
|
|
if (!MEM_ANALYZABLE (ref1)
|
| 2093 |
|
|
|| !MEM_ANALYZABLE (ref2))
|
| 2094 |
|
|
return false;
|
| 2095 |
|
|
|
| 2096 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2097 |
|
|
fprintf (dump_file, "Querying dependency of refs %u and %u: ",
|
| 2098 |
|
|
ref1->id, ref2->id);
|
| 2099 |
|
|
|
| 2100 |
|
|
if (mem_refs_may_alias_p (ref1->mem, ref2->mem,
|
| 2101 |
|
|
&memory_accesses.ttae_cache))
|
| 2102 |
|
|
{
|
| 2103 |
|
|
bitmap_set_bit (ref1->dep_ref, ref2->id);
|
| 2104 |
|
|
bitmap_set_bit (ref2->dep_ref, ref1->id);
|
| 2105 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2106 |
|
|
fprintf (dump_file, "dependent.\n");
|
| 2107 |
|
|
return false;
|
| 2108 |
|
|
}
|
| 2109 |
|
|
else
|
| 2110 |
|
|
{
|
| 2111 |
|
|
bitmap_set_bit (ref1->indep_ref, ref2->id);
|
| 2112 |
|
|
bitmap_set_bit (ref2->indep_ref, ref1->id);
|
| 2113 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2114 |
|
|
fprintf (dump_file, "independent.\n");
|
| 2115 |
|
|
return true;
|
| 2116 |
|
|
}
|
| 2117 |
|
|
}
|
| 2118 |
|
|
|
| 2119 |
|
|
/* Records the information whether REF is independent in LOOP (according
|
| 2120 |
|
|
to INDEP). */
|
| 2121 |
|
|
|
| 2122 |
|
|
static void
|
| 2123 |
|
|
record_indep_loop (struct loop *loop, mem_ref_p ref, bool indep)
|
| 2124 |
|
|
{
|
| 2125 |
|
|
if (indep)
|
| 2126 |
|
|
bitmap_set_bit (ref->indep_loop, loop->num);
|
| 2127 |
|
|
else
|
| 2128 |
|
|
bitmap_set_bit (ref->dep_loop, loop->num);
|
| 2129 |
|
|
}
|
| 2130 |
|
|
|
| 2131 |
|
|
/* Returns true if REF is independent on all other memory references in
|
| 2132 |
|
|
LOOP. */
|
| 2133 |
|
|
|
| 2134 |
|
|
static bool
|
| 2135 |
|
|
ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref)
|
| 2136 |
|
|
{
|
| 2137 |
|
|
bitmap refs_to_check;
|
| 2138 |
|
|
unsigned i;
|
| 2139 |
|
|
bitmap_iterator bi;
|
| 2140 |
|
|
bool ret = true, stored = bitmap_bit_p (ref->stored, loop->num);
|
| 2141 |
|
|
mem_ref_p aref;
|
| 2142 |
|
|
|
| 2143 |
|
|
if (stored)
|
| 2144 |
|
|
refs_to_check = VEC_index (bitmap,
|
| 2145 |
|
|
memory_accesses.all_refs_in_loop, loop->num);
|
| 2146 |
|
|
else
|
| 2147 |
|
|
refs_to_check = VEC_index (bitmap,
|
| 2148 |
|
|
memory_accesses.all_refs_stored_in_loop,
|
| 2149 |
|
|
loop->num);
|
| 2150 |
|
|
|
| 2151 |
|
|
EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
|
| 2152 |
|
|
{
|
| 2153 |
|
|
aref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
|
| 2154 |
|
|
if (!MEM_ANALYZABLE (aref)
|
| 2155 |
|
|
|| !refs_independent_p (ref, aref))
|
| 2156 |
|
|
{
|
| 2157 |
|
|
ret = false;
|
| 2158 |
|
|
record_indep_loop (loop, aref, false);
|
| 2159 |
|
|
break;
|
| 2160 |
|
|
}
|
| 2161 |
|
|
}
|
| 2162 |
|
|
|
| 2163 |
|
|
return ret;
|
| 2164 |
|
|
}
|
| 2165 |
|
|
|
| 2166 |
|
|
/* Returns true if REF is independent on all other memory references in
|
| 2167 |
|
|
LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
|
| 2168 |
|
|
|
| 2169 |
|
|
static bool
|
| 2170 |
|
|
ref_indep_loop_p (struct loop *loop, mem_ref_p ref)
|
| 2171 |
|
|
{
|
| 2172 |
|
|
bool ret;
|
| 2173 |
|
|
|
| 2174 |
|
|
if (bitmap_bit_p (ref->indep_loop, loop->num))
|
| 2175 |
|
|
return true;
|
| 2176 |
|
|
if (bitmap_bit_p (ref->dep_loop, loop->num))
|
| 2177 |
|
|
return false;
|
| 2178 |
|
|
|
| 2179 |
|
|
ret = ref_indep_loop_p_1 (loop, ref);
|
| 2180 |
|
|
|
| 2181 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2182 |
|
|
fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
|
| 2183 |
|
|
ref->id, loop->num, ret ? "independent" : "dependent");
|
| 2184 |
|
|
|
| 2185 |
|
|
record_indep_loop (loop, ref, ret);
|
| 2186 |
|
|
|
| 2187 |
|
|
return ret;
|
| 2188 |
|
|
}
|
| 2189 |
|
|
|
| 2190 |
|
|
/* Returns true if we can perform store motion of REF from LOOP. */
|
| 2191 |
|
|
|
| 2192 |
|
|
static bool
|
| 2193 |
|
|
can_sm_ref_p (struct loop *loop, mem_ref_p ref)
|
| 2194 |
|
|
{
|
| 2195 |
|
|
tree base;
|
| 2196 |
|
|
|
| 2197 |
|
|
/* Can't hoist unanalyzable refs. */
|
| 2198 |
|
|
if (!MEM_ANALYZABLE (ref))
|
| 2199 |
|
|
return false;
|
| 2200 |
|
|
|
| 2201 |
|
|
/* Unless the reference is stored in the loop, there is nothing to do. */
|
| 2202 |
|
|
if (!bitmap_bit_p (ref->stored, loop->num))
|
| 2203 |
|
|
return false;
|
| 2204 |
|
|
|
| 2205 |
|
|
/* It should be movable. */
|
| 2206 |
|
|
if (!is_gimple_reg_type (TREE_TYPE (ref->mem))
|
| 2207 |
|
|
|| TREE_THIS_VOLATILE (ref->mem)
|
| 2208 |
|
|
|| !for_each_index (&ref->mem, may_move_till, loop))
|
| 2209 |
|
|
return false;
|
| 2210 |
|
|
|
| 2211 |
|
|
/* If it can throw fail, we do not properly update EH info. */
|
| 2212 |
|
|
if (tree_could_throw_p (ref->mem))
|
| 2213 |
|
|
return false;
|
| 2214 |
|
|
|
| 2215 |
|
|
/* If it can trap, it must be always executed in LOOP.
|
| 2216 |
|
|
Readonly memory locations may trap when storing to them, but
|
| 2217 |
|
|
tree_could_trap_p is a predicate for rvalues, so check that
|
| 2218 |
|
|
explicitly. */
|
| 2219 |
|
|
base = get_base_address (ref->mem);
|
| 2220 |
|
|
if ((tree_could_trap_p (ref->mem)
|
| 2221 |
|
|
|| (DECL_P (base) && TREE_READONLY (base)))
|
| 2222 |
|
|
&& !ref_always_accessed_p (loop, ref, true))
|
| 2223 |
|
|
return false;
|
| 2224 |
|
|
|
| 2225 |
|
|
/* And it must be independent on all other memory references
|
| 2226 |
|
|
in LOOP. */
|
| 2227 |
|
|
if (!ref_indep_loop_p (loop, ref))
|
| 2228 |
|
|
return false;
|
| 2229 |
|
|
|
| 2230 |
|
|
return true;
|
| 2231 |
|
|
}
|
| 2232 |
|
|
|
| 2233 |
|
|
/* Marks the references in LOOP for that store motion should be performed
|
| 2234 |
|
|
in REFS_TO_SM. SM_EXECUTED is the set of references for that store
|
| 2235 |
|
|
motion was performed in one of the outer loops. */
|
| 2236 |
|
|
|
| 2237 |
|
|
static void
|
| 2238 |
|
|
find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
|
| 2239 |
|
|
{
|
| 2240 |
|
|
bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
|
| 2241 |
|
|
loop->num);
|
| 2242 |
|
|
unsigned i;
|
| 2243 |
|
|
bitmap_iterator bi;
|
| 2244 |
|
|
mem_ref_p ref;
|
| 2245 |
|
|
|
| 2246 |
|
|
EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
|
| 2247 |
|
|
{
|
| 2248 |
|
|
ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
|
| 2249 |
|
|
if (can_sm_ref_p (loop, ref))
|
| 2250 |
|
|
bitmap_set_bit (refs_to_sm, i);
|
| 2251 |
|
|
}
|
| 2252 |
|
|
}
|
| 2253 |
|
|
|
| 2254 |
|
|
/* Checks whether LOOP (with exits stored in EXITS array) is suitable
|
| 2255 |
|
|
for a store motion optimization (i.e. whether we can insert statement
|
| 2256 |
|
|
on its exits). */
|
| 2257 |
|
|
|
| 2258 |
|
|
static bool
|
| 2259 |
|
|
loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
|
| 2260 |
|
|
VEC (edge, heap) *exits)
|
| 2261 |
|
|
{
|
| 2262 |
|
|
unsigned i;
|
| 2263 |
|
|
edge ex;
|
| 2264 |
|
|
|
| 2265 |
|
|
FOR_EACH_VEC_ELT (edge, exits, i, ex)
|
| 2266 |
|
|
if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
|
| 2267 |
|
|
return false;
|
| 2268 |
|
|
|
| 2269 |
|
|
return true;
|
| 2270 |
|
|
}
|
| 2271 |
|
|
|
| 2272 |
|
|
/* Try to perform store motion for all memory references modified inside
|
| 2273 |
|
|
LOOP. SM_EXECUTED is the bitmap of the memory references for that
|
| 2274 |
|
|
store motion was executed in one of the outer loops. */
|
| 2275 |
|
|
|
| 2276 |
|
|
static void
|
| 2277 |
|
|
store_motion_loop (struct loop *loop, bitmap sm_executed)
|
| 2278 |
|
|
{
|
| 2279 |
|
|
VEC (edge, heap) *exits = get_loop_exit_edges (loop);
|
| 2280 |
|
|
struct loop *subloop;
|
| 2281 |
|
|
bitmap sm_in_loop = BITMAP_ALLOC (NULL);
|
| 2282 |
|
|
|
| 2283 |
|
|
if (loop_suitable_for_sm (loop, exits))
|
| 2284 |
|
|
{
|
| 2285 |
|
|
find_refs_for_sm (loop, sm_executed, sm_in_loop);
|
| 2286 |
|
|
hoist_memory_references (loop, sm_in_loop, exits);
|
| 2287 |
|
|
}
|
| 2288 |
|
|
VEC_free (edge, heap, exits);
|
| 2289 |
|
|
|
| 2290 |
|
|
bitmap_ior_into (sm_executed, sm_in_loop);
|
| 2291 |
|
|
for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
|
| 2292 |
|
|
store_motion_loop (subloop, sm_executed);
|
| 2293 |
|
|
bitmap_and_compl_into (sm_executed, sm_in_loop);
|
| 2294 |
|
|
BITMAP_FREE (sm_in_loop);
|
| 2295 |
|
|
}
|
| 2296 |
|
|
|
| 2297 |
|
|
/* Try to perform store motion for all memory references modified inside
|
| 2298 |
|
|
loops. */
|
| 2299 |
|
|
|
| 2300 |
|
|
static void
|
| 2301 |
|
|
store_motion (void)
|
| 2302 |
|
|
{
|
| 2303 |
|
|
struct loop *loop;
|
| 2304 |
|
|
bitmap sm_executed = BITMAP_ALLOC (NULL);
|
| 2305 |
|
|
|
| 2306 |
|
|
for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
|
| 2307 |
|
|
store_motion_loop (loop, sm_executed);
|
| 2308 |
|
|
|
| 2309 |
|
|
BITMAP_FREE (sm_executed);
|
| 2310 |
|
|
gsi_commit_edge_inserts ();
|
| 2311 |
|
|
}
|
| 2312 |
|
|
|
| 2313 |
|
|
/* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
|
| 2314 |
|
|
for each such basic block bb records the outermost loop for that execution
|
| 2315 |
|
|
of its header implies execution of bb. CONTAINS_CALL is the bitmap of
|
| 2316 |
|
|
blocks that contain a nonpure call. */
|
| 2317 |
|
|
|
| 2318 |
|
|
static void
|
| 2319 |
|
|
fill_always_executed_in (struct loop *loop, sbitmap contains_call)
|
| 2320 |
|
|
{
|
| 2321 |
|
|
basic_block bb = NULL, *bbs, last = NULL;
|
| 2322 |
|
|
unsigned i;
|
| 2323 |
|
|
edge e;
|
| 2324 |
|
|
struct loop *inn_loop = loop;
|
| 2325 |
|
|
|
| 2326 |
|
|
if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
|
| 2327 |
|
|
{
|
| 2328 |
|
|
bbs = get_loop_body_in_dom_order (loop);
|
| 2329 |
|
|
|
| 2330 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
| 2331 |
|
|
{
|
| 2332 |
|
|
edge_iterator ei;
|
| 2333 |
|
|
bb = bbs[i];
|
| 2334 |
|
|
|
| 2335 |
|
|
if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
|
| 2336 |
|
|
last = bb;
|
| 2337 |
|
|
|
| 2338 |
|
|
if (TEST_BIT (contains_call, bb->index))
|
| 2339 |
|
|
break;
|
| 2340 |
|
|
|
| 2341 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 2342 |
|
|
if (!flow_bb_inside_loop_p (loop, e->dest))
|
| 2343 |
|
|
break;
|
| 2344 |
|
|
if (e)
|
| 2345 |
|
|
break;
|
| 2346 |
|
|
|
| 2347 |
|
|
/* A loop might be infinite (TODO use simple loop analysis
|
| 2348 |
|
|
to disprove this if possible). */
|
| 2349 |
|
|
if (bb->flags & BB_IRREDUCIBLE_LOOP)
|
| 2350 |
|
|
break;
|
| 2351 |
|
|
|
| 2352 |
|
|
if (!flow_bb_inside_loop_p (inn_loop, bb))
|
| 2353 |
|
|
break;
|
| 2354 |
|
|
|
| 2355 |
|
|
if (bb->loop_father->header == bb)
|
| 2356 |
|
|
{
|
| 2357 |
|
|
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
|
| 2358 |
|
|
break;
|
| 2359 |
|
|
|
| 2360 |
|
|
/* In a loop that is always entered we may proceed anyway.
|
| 2361 |
|
|
But record that we entered it and stop once we leave it. */
|
| 2362 |
|
|
inn_loop = bb->loop_father;
|
| 2363 |
|
|
}
|
| 2364 |
|
|
}
|
| 2365 |
|
|
|
| 2366 |
|
|
while (1)
|
| 2367 |
|
|
{
|
| 2368 |
|
|
SET_ALWAYS_EXECUTED_IN (last, loop);
|
| 2369 |
|
|
if (last == loop->header)
|
| 2370 |
|
|
break;
|
| 2371 |
|
|
last = get_immediate_dominator (CDI_DOMINATORS, last);
|
| 2372 |
|
|
}
|
| 2373 |
|
|
|
| 2374 |
|
|
free (bbs);
|
| 2375 |
|
|
}
|
| 2376 |
|
|
|
| 2377 |
|
|
for (loop = loop->inner; loop; loop = loop->next)
|
| 2378 |
|
|
fill_always_executed_in (loop, contains_call);
|
| 2379 |
|
|
}
|
| 2380 |
|
|
|
| 2381 |
|
|
/* Compute the global information needed by the loop invariant motion pass. */
|
| 2382 |
|
|
|
| 2383 |
|
|
static void
|
| 2384 |
|
|
tree_ssa_lim_initialize (void)
|
| 2385 |
|
|
{
|
| 2386 |
|
|
sbitmap contains_call = sbitmap_alloc (last_basic_block);
|
| 2387 |
|
|
gimple_stmt_iterator bsi;
|
| 2388 |
|
|
struct loop *loop;
|
| 2389 |
|
|
basic_block bb;
|
| 2390 |
|
|
|
| 2391 |
|
|
sbitmap_zero (contains_call);
|
| 2392 |
|
|
FOR_EACH_BB (bb)
|
| 2393 |
|
|
{
|
| 2394 |
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
| 2395 |
|
|
{
|
| 2396 |
|
|
if (nonpure_call_p (gsi_stmt (bsi)))
|
| 2397 |
|
|
break;
|
| 2398 |
|
|
}
|
| 2399 |
|
|
|
| 2400 |
|
|
if (!gsi_end_p (bsi))
|
| 2401 |
|
|
SET_BIT (contains_call, bb->index);
|
| 2402 |
|
|
}
|
| 2403 |
|
|
|
| 2404 |
|
|
for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
|
| 2405 |
|
|
fill_always_executed_in (loop, contains_call);
|
| 2406 |
|
|
|
| 2407 |
|
|
sbitmap_free (contains_call);
|
| 2408 |
|
|
|
| 2409 |
|
|
lim_aux_data_map = pointer_map_create ();
|
| 2410 |
|
|
|
| 2411 |
|
|
if (flag_tm)
|
| 2412 |
|
|
compute_transaction_bits ();
|
| 2413 |
|
|
}
|
| 2414 |
|
|
|
| 2415 |
|
|
/* Cleans up after the invariant motion pass. */
|
| 2416 |
|
|
|
| 2417 |
|
|
static void
|
| 2418 |
|
|
tree_ssa_lim_finalize (void)
|
| 2419 |
|
|
{
|
| 2420 |
|
|
basic_block bb;
|
| 2421 |
|
|
unsigned i;
|
| 2422 |
|
|
bitmap b;
|
| 2423 |
|
|
|
| 2424 |
|
|
FOR_EACH_BB (bb)
|
| 2425 |
|
|
SET_ALWAYS_EXECUTED_IN (bb, NULL);
|
| 2426 |
|
|
|
| 2427 |
|
|
pointer_map_destroy (lim_aux_data_map);
|
| 2428 |
|
|
|
| 2429 |
|
|
VEC_free (mem_ref_p, heap, memory_accesses.refs_list);
|
| 2430 |
|
|
htab_delete (memory_accesses.refs);
|
| 2431 |
|
|
|
| 2432 |
|
|
FOR_EACH_VEC_ELT (bitmap, memory_accesses.refs_in_loop, i, b)
|
| 2433 |
|
|
BITMAP_FREE (b);
|
| 2434 |
|
|
VEC_free (bitmap, heap, memory_accesses.refs_in_loop);
|
| 2435 |
|
|
|
| 2436 |
|
|
FOR_EACH_VEC_ELT (bitmap, memory_accesses.all_refs_in_loop, i, b)
|
| 2437 |
|
|
BITMAP_FREE (b);
|
| 2438 |
|
|
VEC_free (bitmap, heap, memory_accesses.all_refs_in_loop);
|
| 2439 |
|
|
|
| 2440 |
|
|
FOR_EACH_VEC_ELT (bitmap, memory_accesses.all_refs_stored_in_loop, i, b)
|
| 2441 |
|
|
BITMAP_FREE (b);
|
| 2442 |
|
|
VEC_free (bitmap, heap, memory_accesses.all_refs_stored_in_loop);
|
| 2443 |
|
|
|
| 2444 |
|
|
if (memory_accesses.ttae_cache)
|
| 2445 |
|
|
pointer_map_destroy (memory_accesses.ttae_cache);
|
| 2446 |
|
|
}
|
| 2447 |
|
|
|
| 2448 |
|
|
/* Moves invariants from loops. Only "expensive" invariants are moved out --
|
| 2449 |
|
|
i.e. those that are likely to be win regardless of the register pressure. */
|
| 2450 |
|
|
|
| 2451 |
|
|
unsigned int
|
| 2452 |
|
|
tree_ssa_lim (void)
|
| 2453 |
|
|
{
|
| 2454 |
|
|
unsigned int todo;
|
| 2455 |
|
|
|
| 2456 |
|
|
tree_ssa_lim_initialize ();
|
| 2457 |
|
|
|
| 2458 |
|
|
/* Gathers information about memory accesses in the loops. */
|
| 2459 |
|
|
analyze_memory_references ();
|
| 2460 |
|
|
|
| 2461 |
|
|
/* For each statement determine the outermost loop in that it is
|
| 2462 |
|
|
invariant and cost for computing the invariant. */
|
| 2463 |
|
|
determine_invariantness ();
|
| 2464 |
|
|
|
| 2465 |
|
|
/* Execute store motion. Force the necessary invariants to be moved
|
| 2466 |
|
|
out of the loops as well. */
|
| 2467 |
|
|
store_motion ();
|
| 2468 |
|
|
|
| 2469 |
|
|
/* Move the expressions that are expensive enough. */
|
| 2470 |
|
|
todo = move_computations ();
|
| 2471 |
|
|
|
| 2472 |
|
|
tree_ssa_lim_finalize ();
|
| 2473 |
|
|
|
| 2474 |
|
|
return todo;
|
| 2475 |
|
|
}
|