| 1 |
684 |
jeremybenn |
/* Functions to determine/estimate number of iterations of a loop.
|
| 2 |
|
|
Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GCC.
|
| 6 |
|
|
|
| 7 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
| 8 |
|
|
under the terms of the GNU General Public License as published by the
|
| 9 |
|
|
Free Software Foundation; either version 3, or (at your option) any
|
| 10 |
|
|
later version.
|
| 11 |
|
|
|
| 12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
| 13 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 15 |
|
|
for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
#include "config.h"
|
| 22 |
|
|
#include "system.h"
|
| 23 |
|
|
#include "coretypes.h"
|
| 24 |
|
|
#include "tm.h"
|
| 25 |
|
|
#include "tree.h"
|
| 26 |
|
|
#include "tm_p.h"
|
| 27 |
|
|
#include "basic-block.h"
|
| 28 |
|
|
#include "output.h"
|
| 29 |
|
|
#include "tree-pretty-print.h"
|
| 30 |
|
|
#include "gimple-pretty-print.h"
|
| 31 |
|
|
#include "intl.h"
|
| 32 |
|
|
#include "tree-flow.h"
|
| 33 |
|
|
#include "tree-dump.h"
|
| 34 |
|
|
#include "cfgloop.h"
|
| 35 |
|
|
#include "tree-pass.h"
|
| 36 |
|
|
#include "ggc.h"
|
| 37 |
|
|
#include "tree-chrec.h"
|
| 38 |
|
|
#include "tree-scalar-evolution.h"
|
| 39 |
|
|
#include "tree-data-ref.h"
|
| 40 |
|
|
#include "params.h"
|
| 41 |
|
|
#include "flags.h"
|
| 42 |
|
|
#include "diagnostic-core.h"
|
| 43 |
|
|
#include "tree-inline.h"
|
| 44 |
|
|
#include "gmp.h"
|
| 45 |
|
|
|
| 46 |
|
|
#define SWAP(X, Y) do { affine_iv *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
|
| 47 |
|
|
|
| 48 |
|
|
/* The maximum number of dominator BBs we search for conditions
|
| 49 |
|
|
of loop header copies we use for simplifying a conditional
|
| 50 |
|
|
expression. */
|
| 51 |
|
|
#define MAX_DOMINATORS_TO_WALK 8
|
| 52 |
|
|
|
| 53 |
|
|
/*
|
| 54 |
|
|
|
| 55 |
|
|
Analysis of number of iterations of an affine exit test.
|
| 56 |
|
|
|
| 57 |
|
|
*/
|
| 58 |
|
|
|
| 59 |
|
|
/* Bounds on some value, BELOW <= X <= UP. */
|
| 60 |
|
|
|
| 61 |
|
|
typedef struct
|
| 62 |
|
|
{
|
| 63 |
|
|
mpz_t below, up;
|
| 64 |
|
|
} bounds;
|
| 65 |
|
|
|
| 66 |
|
|
|
| 67 |
|
|
/* Splits expression EXPR to a variable part VAR and constant OFFSET. */
|
| 68 |
|
|
|
| 69 |
|
|
static void
|
| 70 |
|
|
split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
|
| 71 |
|
|
{
|
| 72 |
|
|
tree type = TREE_TYPE (expr);
|
| 73 |
|
|
tree op0, op1;
|
| 74 |
|
|
double_int off;
|
| 75 |
|
|
bool negate = false;
|
| 76 |
|
|
|
| 77 |
|
|
*var = expr;
|
| 78 |
|
|
mpz_set_ui (offset, 0);
|
| 79 |
|
|
|
| 80 |
|
|
switch (TREE_CODE (expr))
|
| 81 |
|
|
{
|
| 82 |
|
|
case MINUS_EXPR:
|
| 83 |
|
|
negate = true;
|
| 84 |
|
|
/* Fallthru. */
|
| 85 |
|
|
|
| 86 |
|
|
case PLUS_EXPR:
|
| 87 |
|
|
case POINTER_PLUS_EXPR:
|
| 88 |
|
|
op0 = TREE_OPERAND (expr, 0);
|
| 89 |
|
|
op1 = TREE_OPERAND (expr, 1);
|
| 90 |
|
|
|
| 91 |
|
|
if (TREE_CODE (op1) != INTEGER_CST)
|
| 92 |
|
|
break;
|
| 93 |
|
|
|
| 94 |
|
|
*var = op0;
|
| 95 |
|
|
/* Always sign extend the offset. */
|
| 96 |
|
|
off = tree_to_double_int (op1);
|
| 97 |
|
|
off = double_int_sext (off, TYPE_PRECISION (type));
|
| 98 |
|
|
mpz_set_double_int (offset, off, false);
|
| 99 |
|
|
if (negate)
|
| 100 |
|
|
mpz_neg (offset, offset);
|
| 101 |
|
|
break;
|
| 102 |
|
|
|
| 103 |
|
|
case INTEGER_CST:
|
| 104 |
|
|
*var = build_int_cst_type (type, 0);
|
| 105 |
|
|
off = tree_to_double_int (expr);
|
| 106 |
|
|
mpz_set_double_int (offset, off, TYPE_UNSIGNED (type));
|
| 107 |
|
|
break;
|
| 108 |
|
|
|
| 109 |
|
|
default:
|
| 110 |
|
|
break;
|
| 111 |
|
|
}
|
| 112 |
|
|
}
|
| 113 |
|
|
|
| 114 |
|
|
/* Stores estimate on the minimum/maximum value of the expression VAR + OFF
|
| 115 |
|
|
in TYPE to MIN and MAX. */
|
| 116 |
|
|
|
| 117 |
|
|
static void
|
| 118 |
|
|
determine_value_range (tree type, tree var, mpz_t off,
|
| 119 |
|
|
mpz_t min, mpz_t max)
|
| 120 |
|
|
{
|
| 121 |
|
|
/* If the expression is a constant, we know its value exactly. */
|
| 122 |
|
|
if (integer_zerop (var))
|
| 123 |
|
|
{
|
| 124 |
|
|
mpz_set (min, off);
|
| 125 |
|
|
mpz_set (max, off);
|
| 126 |
|
|
return;
|
| 127 |
|
|
}
|
| 128 |
|
|
|
| 129 |
|
|
/* If the computation may wrap, we know nothing about the value, except for
|
| 130 |
|
|
the range of the type. */
|
| 131 |
|
|
get_type_static_bounds (type, min, max);
|
| 132 |
|
|
if (!nowrap_type_p (type))
|
| 133 |
|
|
return;
|
| 134 |
|
|
|
| 135 |
|
|
/* Since the addition of OFF does not wrap, if OFF is positive, then we may
|
| 136 |
|
|
add it to MIN, otherwise to MAX. */
|
| 137 |
|
|
if (mpz_sgn (off) < 0)
|
| 138 |
|
|
mpz_add (max, max, off);
|
| 139 |
|
|
else
|
| 140 |
|
|
mpz_add (min, min, off);
|
| 141 |
|
|
}
|
| 142 |
|
|
|
| 143 |
|
|
/* Stores the bounds on the difference of the values of the expressions
|
| 144 |
|
|
(var + X) and (var + Y), computed in TYPE, to BNDS. */
|
| 145 |
|
|
|
| 146 |
|
|
static void
|
| 147 |
|
|
bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
|
| 148 |
|
|
bounds *bnds)
|
| 149 |
|
|
{
|
| 150 |
|
|
int rel = mpz_cmp (x, y);
|
| 151 |
|
|
bool may_wrap = !nowrap_type_p (type);
|
| 152 |
|
|
mpz_t m;
|
| 153 |
|
|
|
| 154 |
|
|
/* If X == Y, then the expressions are always equal.
|
| 155 |
|
|
If X > Y, there are the following possibilities:
|
| 156 |
|
|
a) neither of var + X and var + Y overflow or underflow, or both of
|
| 157 |
|
|
them do. Then their difference is X - Y.
|
| 158 |
|
|
b) var + X overflows, and var + Y does not. Then the values of the
|
| 159 |
|
|
expressions are var + X - M and var + Y, where M is the range of
|
| 160 |
|
|
the type, and their difference is X - Y - M.
|
| 161 |
|
|
c) var + Y underflows and var + X does not. Their difference again
|
| 162 |
|
|
is M - X + Y.
|
| 163 |
|
|
Therefore, if the arithmetics in type does not overflow, then the
|
| 164 |
|
|
bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
|
| 165 |
|
|
Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
|
| 166 |
|
|
(X - Y, X - Y + M). */
|
| 167 |
|
|
|
| 168 |
|
|
if (rel == 0)
|
| 169 |
|
|
{
|
| 170 |
|
|
mpz_set_ui (bnds->below, 0);
|
| 171 |
|
|
mpz_set_ui (bnds->up, 0);
|
| 172 |
|
|
return;
|
| 173 |
|
|
}
|
| 174 |
|
|
|
| 175 |
|
|
mpz_init (m);
|
| 176 |
|
|
mpz_set_double_int (m, double_int_mask (TYPE_PRECISION (type)), true);
|
| 177 |
|
|
mpz_add_ui (m, m, 1);
|
| 178 |
|
|
mpz_sub (bnds->up, x, y);
|
| 179 |
|
|
mpz_set (bnds->below, bnds->up);
|
| 180 |
|
|
|
| 181 |
|
|
if (may_wrap)
|
| 182 |
|
|
{
|
| 183 |
|
|
if (rel > 0)
|
| 184 |
|
|
mpz_sub (bnds->below, bnds->below, m);
|
| 185 |
|
|
else
|
| 186 |
|
|
mpz_add (bnds->up, bnds->up, m);
|
| 187 |
|
|
}
|
| 188 |
|
|
|
| 189 |
|
|
mpz_clear (m);
|
| 190 |
|
|
}
|
| 191 |
|
|
|
| 192 |
|
|
/* From condition C0 CMP C1 derives information regarding the
|
| 193 |
|
|
difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
|
| 194 |
|
|
and stores it to BNDS. */
|
| 195 |
|
|
|
| 196 |
|
|
static void
|
| 197 |
|
|
refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
|
| 198 |
|
|
tree vary, mpz_t offy,
|
| 199 |
|
|
tree c0, enum tree_code cmp, tree c1,
|
| 200 |
|
|
bounds *bnds)
|
| 201 |
|
|
{
|
| 202 |
|
|
tree varc0, varc1, tmp, ctype;
|
| 203 |
|
|
mpz_t offc0, offc1, loffx, loffy, bnd;
|
| 204 |
|
|
bool lbound = false;
|
| 205 |
|
|
bool no_wrap = nowrap_type_p (type);
|
| 206 |
|
|
bool x_ok, y_ok;
|
| 207 |
|
|
|
| 208 |
|
|
switch (cmp)
|
| 209 |
|
|
{
|
| 210 |
|
|
case LT_EXPR:
|
| 211 |
|
|
case LE_EXPR:
|
| 212 |
|
|
case GT_EXPR:
|
| 213 |
|
|
case GE_EXPR:
|
| 214 |
|
|
STRIP_SIGN_NOPS (c0);
|
| 215 |
|
|
STRIP_SIGN_NOPS (c1);
|
| 216 |
|
|
ctype = TREE_TYPE (c0);
|
| 217 |
|
|
if (!useless_type_conversion_p (ctype, type))
|
| 218 |
|
|
return;
|
| 219 |
|
|
|
| 220 |
|
|
break;
|
| 221 |
|
|
|
| 222 |
|
|
case EQ_EXPR:
|
| 223 |
|
|
/* We could derive quite precise information from EQ_EXPR, however, such
|
| 224 |
|
|
a guard is unlikely to appear, so we do not bother with handling
|
| 225 |
|
|
it. */
|
| 226 |
|
|
return;
|
| 227 |
|
|
|
| 228 |
|
|
case NE_EXPR:
|
| 229 |
|
|
/* NE_EXPR comparisons do not contain much of useful information, except for
|
| 230 |
|
|
special case of comparing with the bounds of the type. */
|
| 231 |
|
|
if (TREE_CODE (c1) != INTEGER_CST
|
| 232 |
|
|
|| !INTEGRAL_TYPE_P (type))
|
| 233 |
|
|
return;
|
| 234 |
|
|
|
| 235 |
|
|
/* Ensure that the condition speaks about an expression in the same type
|
| 236 |
|
|
as X and Y. */
|
| 237 |
|
|
ctype = TREE_TYPE (c0);
|
| 238 |
|
|
if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
|
| 239 |
|
|
return;
|
| 240 |
|
|
c0 = fold_convert (type, c0);
|
| 241 |
|
|
c1 = fold_convert (type, c1);
|
| 242 |
|
|
|
| 243 |
|
|
if (TYPE_MIN_VALUE (type)
|
| 244 |
|
|
&& operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
|
| 245 |
|
|
{
|
| 246 |
|
|
cmp = GT_EXPR;
|
| 247 |
|
|
break;
|
| 248 |
|
|
}
|
| 249 |
|
|
if (TYPE_MAX_VALUE (type)
|
| 250 |
|
|
&& operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
|
| 251 |
|
|
{
|
| 252 |
|
|
cmp = LT_EXPR;
|
| 253 |
|
|
break;
|
| 254 |
|
|
}
|
| 255 |
|
|
|
| 256 |
|
|
return;
|
| 257 |
|
|
default:
|
| 258 |
|
|
return;
|
| 259 |
|
|
}
|
| 260 |
|
|
|
| 261 |
|
|
mpz_init (offc0);
|
| 262 |
|
|
mpz_init (offc1);
|
| 263 |
|
|
split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
|
| 264 |
|
|
split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
|
| 265 |
|
|
|
| 266 |
|
|
/* We are only interested in comparisons of expressions based on VARX and
|
| 267 |
|
|
VARY. TODO -- we might also be able to derive some bounds from
|
| 268 |
|
|
expressions containing just one of the variables. */
|
| 269 |
|
|
|
| 270 |
|
|
if (operand_equal_p (varx, varc1, 0))
|
| 271 |
|
|
{
|
| 272 |
|
|
tmp = varc0; varc0 = varc1; varc1 = tmp;
|
| 273 |
|
|
mpz_swap (offc0, offc1);
|
| 274 |
|
|
cmp = swap_tree_comparison (cmp);
|
| 275 |
|
|
}
|
| 276 |
|
|
|
| 277 |
|
|
if (!operand_equal_p (varx, varc0, 0)
|
| 278 |
|
|
|| !operand_equal_p (vary, varc1, 0))
|
| 279 |
|
|
goto end;
|
| 280 |
|
|
|
| 281 |
|
|
mpz_init_set (loffx, offx);
|
| 282 |
|
|
mpz_init_set (loffy, offy);
|
| 283 |
|
|
|
| 284 |
|
|
if (cmp == GT_EXPR || cmp == GE_EXPR)
|
| 285 |
|
|
{
|
| 286 |
|
|
tmp = varx; varx = vary; vary = tmp;
|
| 287 |
|
|
mpz_swap (offc0, offc1);
|
| 288 |
|
|
mpz_swap (loffx, loffy);
|
| 289 |
|
|
cmp = swap_tree_comparison (cmp);
|
| 290 |
|
|
lbound = true;
|
| 291 |
|
|
}
|
| 292 |
|
|
|
| 293 |
|
|
/* If there is no overflow, the condition implies that
|
| 294 |
|
|
|
| 295 |
|
|
(VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
|
| 296 |
|
|
|
| 297 |
|
|
The overflows and underflows may complicate things a bit; each
|
| 298 |
|
|
overflow decreases the appropriate offset by M, and underflow
|
| 299 |
|
|
increases it by M. The above inequality would not necessarily be
|
| 300 |
|
|
true if
|
| 301 |
|
|
|
| 302 |
|
|
-- VARX + OFFX underflows and VARX + OFFC0 does not, or
|
| 303 |
|
|
VARX + OFFC0 overflows, but VARX + OFFX does not.
|
| 304 |
|
|
This may only happen if OFFX < OFFC0.
|
| 305 |
|
|
-- VARY + OFFY overflows and VARY + OFFC1 does not, or
|
| 306 |
|
|
VARY + OFFC1 underflows and VARY + OFFY does not.
|
| 307 |
|
|
This may only happen if OFFY > OFFC1. */
|
| 308 |
|
|
|
| 309 |
|
|
if (no_wrap)
|
| 310 |
|
|
{
|
| 311 |
|
|
x_ok = true;
|
| 312 |
|
|
y_ok = true;
|
| 313 |
|
|
}
|
| 314 |
|
|
else
|
| 315 |
|
|
{
|
| 316 |
|
|
x_ok = (integer_zerop (varx)
|
| 317 |
|
|
|| mpz_cmp (loffx, offc0) >= 0);
|
| 318 |
|
|
y_ok = (integer_zerop (vary)
|
| 319 |
|
|
|| mpz_cmp (loffy, offc1) <= 0);
|
| 320 |
|
|
}
|
| 321 |
|
|
|
| 322 |
|
|
if (x_ok && y_ok)
|
| 323 |
|
|
{
|
| 324 |
|
|
mpz_init (bnd);
|
| 325 |
|
|
mpz_sub (bnd, loffx, loffy);
|
| 326 |
|
|
mpz_add (bnd, bnd, offc1);
|
| 327 |
|
|
mpz_sub (bnd, bnd, offc0);
|
| 328 |
|
|
|
| 329 |
|
|
if (cmp == LT_EXPR)
|
| 330 |
|
|
mpz_sub_ui (bnd, bnd, 1);
|
| 331 |
|
|
|
| 332 |
|
|
if (lbound)
|
| 333 |
|
|
{
|
| 334 |
|
|
mpz_neg (bnd, bnd);
|
| 335 |
|
|
if (mpz_cmp (bnds->below, bnd) < 0)
|
| 336 |
|
|
mpz_set (bnds->below, bnd);
|
| 337 |
|
|
}
|
| 338 |
|
|
else
|
| 339 |
|
|
{
|
| 340 |
|
|
if (mpz_cmp (bnd, bnds->up) < 0)
|
| 341 |
|
|
mpz_set (bnds->up, bnd);
|
| 342 |
|
|
}
|
| 343 |
|
|
mpz_clear (bnd);
|
| 344 |
|
|
}
|
| 345 |
|
|
|
| 346 |
|
|
mpz_clear (loffx);
|
| 347 |
|
|
mpz_clear (loffy);
|
| 348 |
|
|
end:
|
| 349 |
|
|
mpz_clear (offc0);
|
| 350 |
|
|
mpz_clear (offc1);
|
| 351 |
|
|
}
|
| 352 |
|
|
|
| 353 |
|
|
/* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
|
| 354 |
|
|
The subtraction is considered to be performed in arbitrary precision,
|
| 355 |
|
|
without overflows.
|
| 356 |
|
|
|
| 357 |
|
|
We do not attempt to be too clever regarding the value ranges of X and
|
| 358 |
|
|
Y; most of the time, they are just integers or ssa names offsetted by
|
| 359 |
|
|
integer. However, we try to use the information contained in the
|
| 360 |
|
|
comparisons before the loop (usually created by loop header copying). */
|
| 361 |
|
|
|
| 362 |
|
|
static void
|
| 363 |
|
|
bound_difference (struct loop *loop, tree x, tree y, bounds *bnds)
|
| 364 |
|
|
{
|
| 365 |
|
|
tree type = TREE_TYPE (x);
|
| 366 |
|
|
tree varx, vary;
|
| 367 |
|
|
mpz_t offx, offy;
|
| 368 |
|
|
mpz_t minx, maxx, miny, maxy;
|
| 369 |
|
|
int cnt = 0;
|
| 370 |
|
|
edge e;
|
| 371 |
|
|
basic_block bb;
|
| 372 |
|
|
tree c0, c1;
|
| 373 |
|
|
gimple cond;
|
| 374 |
|
|
enum tree_code cmp;
|
| 375 |
|
|
|
| 376 |
|
|
/* Get rid of unnecessary casts, but preserve the value of
|
| 377 |
|
|
the expressions. */
|
| 378 |
|
|
STRIP_SIGN_NOPS (x);
|
| 379 |
|
|
STRIP_SIGN_NOPS (y);
|
| 380 |
|
|
|
| 381 |
|
|
mpz_init (bnds->below);
|
| 382 |
|
|
mpz_init (bnds->up);
|
| 383 |
|
|
mpz_init (offx);
|
| 384 |
|
|
mpz_init (offy);
|
| 385 |
|
|
split_to_var_and_offset (x, &varx, offx);
|
| 386 |
|
|
split_to_var_and_offset (y, &vary, offy);
|
| 387 |
|
|
|
| 388 |
|
|
if (!integer_zerop (varx)
|
| 389 |
|
|
&& operand_equal_p (varx, vary, 0))
|
| 390 |
|
|
{
|
| 391 |
|
|
/* Special case VARX == VARY -- we just need to compare the
|
| 392 |
|
|
offsets. The matters are a bit more complicated in the
|
| 393 |
|
|
case addition of offsets may wrap. */
|
| 394 |
|
|
bound_difference_of_offsetted_base (type, offx, offy, bnds);
|
| 395 |
|
|
}
|
| 396 |
|
|
else
|
| 397 |
|
|
{
|
| 398 |
|
|
/* Otherwise, use the value ranges to determine the initial
|
| 399 |
|
|
estimates on below and up. */
|
| 400 |
|
|
mpz_init (minx);
|
| 401 |
|
|
mpz_init (maxx);
|
| 402 |
|
|
mpz_init (miny);
|
| 403 |
|
|
mpz_init (maxy);
|
| 404 |
|
|
determine_value_range (type, varx, offx, minx, maxx);
|
| 405 |
|
|
determine_value_range (type, vary, offy, miny, maxy);
|
| 406 |
|
|
|
| 407 |
|
|
mpz_sub (bnds->below, minx, maxy);
|
| 408 |
|
|
mpz_sub (bnds->up, maxx, miny);
|
| 409 |
|
|
mpz_clear (minx);
|
| 410 |
|
|
mpz_clear (maxx);
|
| 411 |
|
|
mpz_clear (miny);
|
| 412 |
|
|
mpz_clear (maxy);
|
| 413 |
|
|
}
|
| 414 |
|
|
|
| 415 |
|
|
/* If both X and Y are constants, we cannot get any more precise. */
|
| 416 |
|
|
if (integer_zerop (varx) && integer_zerop (vary))
|
| 417 |
|
|
goto end;
|
| 418 |
|
|
|
| 419 |
|
|
/* Now walk the dominators of the loop header and use the entry
|
| 420 |
|
|
guards to refine the estimates. */
|
| 421 |
|
|
for (bb = loop->header;
|
| 422 |
|
|
bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
|
| 423 |
|
|
bb = get_immediate_dominator (CDI_DOMINATORS, bb))
|
| 424 |
|
|
{
|
| 425 |
|
|
if (!single_pred_p (bb))
|
| 426 |
|
|
continue;
|
| 427 |
|
|
e = single_pred_edge (bb);
|
| 428 |
|
|
|
| 429 |
|
|
if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
|
| 430 |
|
|
continue;
|
| 431 |
|
|
|
| 432 |
|
|
cond = last_stmt (e->src);
|
| 433 |
|
|
c0 = gimple_cond_lhs (cond);
|
| 434 |
|
|
cmp = gimple_cond_code (cond);
|
| 435 |
|
|
c1 = gimple_cond_rhs (cond);
|
| 436 |
|
|
|
| 437 |
|
|
if (e->flags & EDGE_FALSE_VALUE)
|
| 438 |
|
|
cmp = invert_tree_comparison (cmp, false);
|
| 439 |
|
|
|
| 440 |
|
|
refine_bounds_using_guard (type, varx, offx, vary, offy,
|
| 441 |
|
|
c0, cmp, c1, bnds);
|
| 442 |
|
|
++cnt;
|
| 443 |
|
|
}
|
| 444 |
|
|
|
| 445 |
|
|
end:
|
| 446 |
|
|
mpz_clear (offx);
|
| 447 |
|
|
mpz_clear (offy);
|
| 448 |
|
|
}
|
| 449 |
|
|
|
| 450 |
|
|
/* Update the bounds in BNDS that restrict the value of X to the bounds
|
| 451 |
|
|
that restrict the value of X + DELTA. X can be obtained as a
|
| 452 |
|
|
difference of two values in TYPE. */
|
| 453 |
|
|
|
| 454 |
|
|
static void
|
| 455 |
|
|
bounds_add (bounds *bnds, double_int delta, tree type)
|
| 456 |
|
|
{
|
| 457 |
|
|
mpz_t mdelta, max;
|
| 458 |
|
|
|
| 459 |
|
|
mpz_init (mdelta);
|
| 460 |
|
|
mpz_set_double_int (mdelta, delta, false);
|
| 461 |
|
|
|
| 462 |
|
|
mpz_init (max);
|
| 463 |
|
|
mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)), true);
|
| 464 |
|
|
|
| 465 |
|
|
mpz_add (bnds->up, bnds->up, mdelta);
|
| 466 |
|
|
mpz_add (bnds->below, bnds->below, mdelta);
|
| 467 |
|
|
|
| 468 |
|
|
if (mpz_cmp (bnds->up, max) > 0)
|
| 469 |
|
|
mpz_set (bnds->up, max);
|
| 470 |
|
|
|
| 471 |
|
|
mpz_neg (max, max);
|
| 472 |
|
|
if (mpz_cmp (bnds->below, max) < 0)
|
| 473 |
|
|
mpz_set (bnds->below, max);
|
| 474 |
|
|
|
| 475 |
|
|
mpz_clear (mdelta);
|
| 476 |
|
|
mpz_clear (max);
|
| 477 |
|
|
}
|
| 478 |
|
|
|
| 479 |
|
|
/* Update the bounds in BNDS that restrict the value of X to the bounds
|
| 480 |
|
|
that restrict the value of -X. */
|
| 481 |
|
|
|
| 482 |
|
|
static void
|
| 483 |
|
|
bounds_negate (bounds *bnds)
|
| 484 |
|
|
{
|
| 485 |
|
|
mpz_t tmp;
|
| 486 |
|
|
|
| 487 |
|
|
mpz_init_set (tmp, bnds->up);
|
| 488 |
|
|
mpz_neg (bnds->up, bnds->below);
|
| 489 |
|
|
mpz_neg (bnds->below, tmp);
|
| 490 |
|
|
mpz_clear (tmp);
|
| 491 |
|
|
}
|
| 492 |
|
|
|
| 493 |
|
|
/* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
|
| 494 |
|
|
|
| 495 |
|
|
static tree
|
| 496 |
|
|
inverse (tree x, tree mask)
|
| 497 |
|
|
{
|
| 498 |
|
|
tree type = TREE_TYPE (x);
|
| 499 |
|
|
tree rslt;
|
| 500 |
|
|
unsigned ctr = tree_floor_log2 (mask);
|
| 501 |
|
|
|
| 502 |
|
|
if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
|
| 503 |
|
|
{
|
| 504 |
|
|
unsigned HOST_WIDE_INT ix;
|
| 505 |
|
|
unsigned HOST_WIDE_INT imask;
|
| 506 |
|
|
unsigned HOST_WIDE_INT irslt = 1;
|
| 507 |
|
|
|
| 508 |
|
|
gcc_assert (cst_and_fits_in_hwi (x));
|
| 509 |
|
|
gcc_assert (cst_and_fits_in_hwi (mask));
|
| 510 |
|
|
|
| 511 |
|
|
ix = int_cst_value (x);
|
| 512 |
|
|
imask = int_cst_value (mask);
|
| 513 |
|
|
|
| 514 |
|
|
for (; ctr; ctr--)
|
| 515 |
|
|
{
|
| 516 |
|
|
irslt *= ix;
|
| 517 |
|
|
ix *= ix;
|
| 518 |
|
|
}
|
| 519 |
|
|
irslt &= imask;
|
| 520 |
|
|
|
| 521 |
|
|
rslt = build_int_cst_type (type, irslt);
|
| 522 |
|
|
}
|
| 523 |
|
|
else
|
| 524 |
|
|
{
|
| 525 |
|
|
rslt = build_int_cst (type, 1);
|
| 526 |
|
|
for (; ctr; ctr--)
|
| 527 |
|
|
{
|
| 528 |
|
|
rslt = int_const_binop (MULT_EXPR, rslt, x);
|
| 529 |
|
|
x = int_const_binop (MULT_EXPR, x, x);
|
| 530 |
|
|
}
|
| 531 |
|
|
rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
|
| 532 |
|
|
}
|
| 533 |
|
|
|
| 534 |
|
|
return rslt;
|
| 535 |
|
|
}
|
| 536 |
|
|
|
| 537 |
|
|
/* Derives the upper bound BND on the number of executions of loop with exit
|
| 538 |
|
|
condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
|
| 539 |
|
|
the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
|
| 540 |
|
|
that the loop ends through this exit, i.e., the induction variable ever
|
| 541 |
|
|
reaches the value of C.
|
| 542 |
|
|
|
| 543 |
|
|
The value C is equal to final - base, where final and base are the final and
|
| 544 |
|
|
initial value of the actual induction variable in the analysed loop. BNDS
|
| 545 |
|
|
bounds the value of this difference when computed in signed type with
|
| 546 |
|
|
unbounded range, while the computation of C is performed in an unsigned
|
| 547 |
|
|
type with the range matching the range of the type of the induction variable.
|
| 548 |
|
|
In particular, BNDS.up contains an upper bound on C in the following cases:
|
| 549 |
|
|
-- if the iv must reach its final value without overflow, i.e., if
|
| 550 |
|
|
NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
|
| 551 |
|
|
-- if final >= base, which we know to hold when BNDS.below >= 0. */
|
| 552 |
|
|
|
| 553 |
|
|
static void
|
| 554 |
|
|
number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
|
| 555 |
|
|
bounds *bnds, bool exit_must_be_taken)
|
| 556 |
|
|
{
|
| 557 |
|
|
double_int max;
|
| 558 |
|
|
mpz_t d;
|
| 559 |
|
|
bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
|
| 560 |
|
|
|| mpz_sgn (bnds->below) >= 0);
|
| 561 |
|
|
|
| 562 |
|
|
if (multiple_of_p (TREE_TYPE (c), c, s))
|
| 563 |
|
|
{
|
| 564 |
|
|
/* If C is an exact multiple of S, then its value will be reached before
|
| 565 |
|
|
the induction variable overflows (unless the loop is exited in some
|
| 566 |
|
|
other way before). Note that the actual induction variable in the
|
| 567 |
|
|
loop (which ranges from base to final instead of from 0 to C) may
|
| 568 |
|
|
overflow, in which case BNDS.up will not be giving a correct upper
|
| 569 |
|
|
bound on C; thus, BNDS_U_VALID had to be computed in advance. */
|
| 570 |
|
|
no_overflow = true;
|
| 571 |
|
|
exit_must_be_taken = true;
|
| 572 |
|
|
}
|
| 573 |
|
|
|
| 574 |
|
|
/* If the induction variable can overflow, the number of iterations is at
|
| 575 |
|
|
most the period of the control variable (or infinite, but in that case
|
| 576 |
|
|
the whole # of iterations analysis will fail). */
|
| 577 |
|
|
if (!no_overflow)
|
| 578 |
|
|
{
|
| 579 |
|
|
max = double_int_mask (TYPE_PRECISION (TREE_TYPE (c))
|
| 580 |
|
|
- tree_low_cst (num_ending_zeros (s), 1));
|
| 581 |
|
|
mpz_set_double_int (bnd, max, true);
|
| 582 |
|
|
return;
|
| 583 |
|
|
}
|
| 584 |
|
|
|
| 585 |
|
|
/* Now we know that the induction variable does not overflow, so the loop
|
| 586 |
|
|
iterates at most (range of type / S) times. */
|
| 587 |
|
|
mpz_set_double_int (bnd, double_int_mask (TYPE_PRECISION (TREE_TYPE (c))),
|
| 588 |
|
|
true);
|
| 589 |
|
|
|
| 590 |
|
|
/* If the induction variable is guaranteed to reach the value of C before
|
| 591 |
|
|
overflow, ... */
|
| 592 |
|
|
if (exit_must_be_taken)
|
| 593 |
|
|
{
|
| 594 |
|
|
/* ... then we can strenghten this to C / S, and possibly we can use
|
| 595 |
|
|
the upper bound on C given by BNDS. */
|
| 596 |
|
|
if (TREE_CODE (c) == INTEGER_CST)
|
| 597 |
|
|
mpz_set_double_int (bnd, tree_to_double_int (c), true);
|
| 598 |
|
|
else if (bnds_u_valid)
|
| 599 |
|
|
mpz_set (bnd, bnds->up);
|
| 600 |
|
|
}
|
| 601 |
|
|
|
| 602 |
|
|
mpz_init (d);
|
| 603 |
|
|
mpz_set_double_int (d, tree_to_double_int (s), true);
|
| 604 |
|
|
mpz_fdiv_q (bnd, bnd, d);
|
| 605 |
|
|
mpz_clear (d);
|
| 606 |
|
|
}
|
| 607 |
|
|
|
| 608 |
|
|
/* Determines number of iterations of loop whose ending condition
|
| 609 |
|
|
is IV <> FINAL. TYPE is the type of the iv. The number of
|
| 610 |
|
|
iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
|
| 611 |
|
|
we know that the exit must be taken eventually, i.e., that the IV
|
| 612 |
|
|
ever reaches the value FINAL (we derived this earlier, and possibly set
|
| 613 |
|
|
NITER->assumptions to make sure this is the case). BNDS contains the
|
| 614 |
|
|
bounds on the difference FINAL - IV->base. */
|
| 615 |
|
|
|
| 616 |
|
|
static bool
|
| 617 |
|
|
number_of_iterations_ne (tree type, affine_iv *iv, tree final,
|
| 618 |
|
|
struct tree_niter_desc *niter, bool exit_must_be_taken,
|
| 619 |
|
|
bounds *bnds)
|
| 620 |
|
|
{
|
| 621 |
|
|
tree niter_type = unsigned_type_for (type);
|
| 622 |
|
|
tree s, c, d, bits, assumption, tmp, bound;
|
| 623 |
|
|
mpz_t max;
|
| 624 |
|
|
|
| 625 |
|
|
niter->control = *iv;
|
| 626 |
|
|
niter->bound = final;
|
| 627 |
|
|
niter->cmp = NE_EXPR;
|
| 628 |
|
|
|
| 629 |
|
|
/* Rearrange the terms so that we get inequality S * i <> C, with S
|
| 630 |
|
|
positive. Also cast everything to the unsigned type. If IV does
|
| 631 |
|
|
not overflow, BNDS bounds the value of C. Also, this is the
|
| 632 |
|
|
case if the computation |FINAL - IV->base| does not overflow, i.e.,
|
| 633 |
|
|
if BNDS->below in the result is nonnegative. */
|
| 634 |
|
|
if (tree_int_cst_sign_bit (iv->step))
|
| 635 |
|
|
{
|
| 636 |
|
|
s = fold_convert (niter_type,
|
| 637 |
|
|
fold_build1 (NEGATE_EXPR, type, iv->step));
|
| 638 |
|
|
c = fold_build2 (MINUS_EXPR, niter_type,
|
| 639 |
|
|
fold_convert (niter_type, iv->base),
|
| 640 |
|
|
fold_convert (niter_type, final));
|
| 641 |
|
|
bounds_negate (bnds);
|
| 642 |
|
|
}
|
| 643 |
|
|
else
|
| 644 |
|
|
{
|
| 645 |
|
|
s = fold_convert (niter_type, iv->step);
|
| 646 |
|
|
c = fold_build2 (MINUS_EXPR, niter_type,
|
| 647 |
|
|
fold_convert (niter_type, final),
|
| 648 |
|
|
fold_convert (niter_type, iv->base));
|
| 649 |
|
|
}
|
| 650 |
|
|
|
| 651 |
|
|
mpz_init (max);
|
| 652 |
|
|
number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
|
| 653 |
|
|
exit_must_be_taken);
|
| 654 |
|
|
niter->max = mpz_get_double_int (niter_type, max, false);
|
| 655 |
|
|
mpz_clear (max);
|
| 656 |
|
|
|
| 657 |
|
|
/* First the trivial cases -- when the step is 1. */
|
| 658 |
|
|
if (integer_onep (s))
|
| 659 |
|
|
{
|
| 660 |
|
|
niter->niter = c;
|
| 661 |
|
|
return true;
|
| 662 |
|
|
}
|
| 663 |
|
|
|
| 664 |
|
|
/* Let nsd (step, size of mode) = d. If d does not divide c, the loop
|
| 665 |
|
|
is infinite. Otherwise, the number of iterations is
|
| 666 |
|
|
(inverse(s/d) * (c/d)) mod (size of mode/d). */
|
| 667 |
|
|
bits = num_ending_zeros (s);
|
| 668 |
|
|
bound = build_low_bits_mask (niter_type,
|
| 669 |
|
|
(TYPE_PRECISION (niter_type)
|
| 670 |
|
|
- tree_low_cst (bits, 1)));
|
| 671 |
|
|
|
| 672 |
|
|
d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
|
| 673 |
|
|
build_int_cst (niter_type, 1), bits);
|
| 674 |
|
|
s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
|
| 675 |
|
|
|
| 676 |
|
|
if (!exit_must_be_taken)
|
| 677 |
|
|
{
|
| 678 |
|
|
/* If we cannot assume that the exit is taken eventually, record the
|
| 679 |
|
|
assumptions for divisibility of c. */
|
| 680 |
|
|
assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
|
| 681 |
|
|
assumption = fold_build2 (EQ_EXPR, boolean_type_node,
|
| 682 |
|
|
assumption, build_int_cst (niter_type, 0));
|
| 683 |
|
|
if (!integer_nonzerop (assumption))
|
| 684 |
|
|
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
| 685 |
|
|
niter->assumptions, assumption);
|
| 686 |
|
|
}
|
| 687 |
|
|
|
| 688 |
|
|
c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
|
| 689 |
|
|
tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
|
| 690 |
|
|
niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
|
| 691 |
|
|
return true;
|
| 692 |
|
|
}
|
| 693 |
|
|
|
| 694 |
|
|
/* Checks whether we can determine the final value of the control variable
|
| 695 |
|
|
of the loop with ending condition IV0 < IV1 (computed in TYPE).
|
| 696 |
|
|
DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
|
| 697 |
|
|
of the step. The assumptions necessary to ensure that the computation
|
| 698 |
|
|
of the final value does not overflow are recorded in NITER. If we
|
| 699 |
|
|
find the final value, we adjust DELTA and return TRUE. Otherwise
|
| 700 |
|
|
we return false. BNDS bounds the value of IV1->base - IV0->base,
|
| 701 |
|
|
and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
|
| 702 |
|
|
true if we know that the exit must be taken eventually. */
|
| 703 |
|
|
|
| 704 |
|
|
static bool
|
| 705 |
|
|
number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
|
| 706 |
|
|
struct tree_niter_desc *niter,
|
| 707 |
|
|
tree *delta, tree step,
|
| 708 |
|
|
bool exit_must_be_taken, bounds *bnds)
|
| 709 |
|
|
{
|
| 710 |
|
|
tree niter_type = TREE_TYPE (step);
|
| 711 |
|
|
tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
|
| 712 |
|
|
tree tmod;
|
| 713 |
|
|
mpz_t mmod;
|
| 714 |
|
|
tree assumption = boolean_true_node, bound, noloop;
|
| 715 |
|
|
bool ret = false, fv_comp_no_overflow;
|
| 716 |
|
|
tree type1 = type;
|
| 717 |
|
|
if (POINTER_TYPE_P (type))
|
| 718 |
|
|
type1 = sizetype;
|
| 719 |
|
|
|
| 720 |
|
|
if (TREE_CODE (mod) != INTEGER_CST)
|
| 721 |
|
|
return false;
|
| 722 |
|
|
if (integer_nonzerop (mod))
|
| 723 |
|
|
mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
|
| 724 |
|
|
tmod = fold_convert (type1, mod);
|
| 725 |
|
|
|
| 726 |
|
|
mpz_init (mmod);
|
| 727 |
|
|
mpz_set_double_int (mmod, tree_to_double_int (mod), true);
|
| 728 |
|
|
mpz_neg (mmod, mmod);
|
| 729 |
|
|
|
| 730 |
|
|
/* If the induction variable does not overflow and the exit is taken,
|
| 731 |
|
|
then the computation of the final value does not overflow. This is
|
| 732 |
|
|
also obviously the case if the new final value is equal to the
|
| 733 |
|
|
current one. Finally, we postulate this for pointer type variables,
|
| 734 |
|
|
as the code cannot rely on the object to that the pointer points being
|
| 735 |
|
|
placed at the end of the address space (and more pragmatically,
|
| 736 |
|
|
TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
|
| 737 |
|
|
if (integer_zerop (mod) || POINTER_TYPE_P (type))
|
| 738 |
|
|
fv_comp_no_overflow = true;
|
| 739 |
|
|
else if (!exit_must_be_taken)
|
| 740 |
|
|
fv_comp_no_overflow = false;
|
| 741 |
|
|
else
|
| 742 |
|
|
fv_comp_no_overflow =
|
| 743 |
|
|
(iv0->no_overflow && integer_nonzerop (iv0->step))
|
| 744 |
|
|
|| (iv1->no_overflow && integer_nonzerop (iv1->step));
|
| 745 |
|
|
|
| 746 |
|
|
if (integer_nonzerop (iv0->step))
|
| 747 |
|
|
{
|
| 748 |
|
|
/* The final value of the iv is iv1->base + MOD, assuming that this
|
| 749 |
|
|
computation does not overflow, and that
|
| 750 |
|
|
iv0->base <= iv1->base + MOD. */
|
| 751 |
|
|
if (!fv_comp_no_overflow)
|
| 752 |
|
|
{
|
| 753 |
|
|
bound = fold_build2 (MINUS_EXPR, type1,
|
| 754 |
|
|
TYPE_MAX_VALUE (type1), tmod);
|
| 755 |
|
|
assumption = fold_build2 (LE_EXPR, boolean_type_node,
|
| 756 |
|
|
iv1->base, bound);
|
| 757 |
|
|
if (integer_zerop (assumption))
|
| 758 |
|
|
goto end;
|
| 759 |
|
|
}
|
| 760 |
|
|
if (mpz_cmp (mmod, bnds->below) < 0)
|
| 761 |
|
|
noloop = boolean_false_node;
|
| 762 |
|
|
else if (POINTER_TYPE_P (type))
|
| 763 |
|
|
noloop = fold_build2 (GT_EXPR, boolean_type_node,
|
| 764 |
|
|
iv0->base,
|
| 765 |
|
|
fold_build_pointer_plus (iv1->base, tmod));
|
| 766 |
|
|
else
|
| 767 |
|
|
noloop = fold_build2 (GT_EXPR, boolean_type_node,
|
| 768 |
|
|
iv0->base,
|
| 769 |
|
|
fold_build2 (PLUS_EXPR, type1,
|
| 770 |
|
|
iv1->base, tmod));
|
| 771 |
|
|
}
|
| 772 |
|
|
else
|
| 773 |
|
|
{
|
| 774 |
|
|
/* The final value of the iv is iv0->base - MOD, assuming that this
|
| 775 |
|
|
computation does not overflow, and that
|
| 776 |
|
|
iv0->base - MOD <= iv1->base. */
|
| 777 |
|
|
if (!fv_comp_no_overflow)
|
| 778 |
|
|
{
|
| 779 |
|
|
bound = fold_build2 (PLUS_EXPR, type1,
|
| 780 |
|
|
TYPE_MIN_VALUE (type1), tmod);
|
| 781 |
|
|
assumption = fold_build2 (GE_EXPR, boolean_type_node,
|
| 782 |
|
|
iv0->base, bound);
|
| 783 |
|
|
if (integer_zerop (assumption))
|
| 784 |
|
|
goto end;
|
| 785 |
|
|
}
|
| 786 |
|
|
if (mpz_cmp (mmod, bnds->below) < 0)
|
| 787 |
|
|
noloop = boolean_false_node;
|
| 788 |
|
|
else if (POINTER_TYPE_P (type))
|
| 789 |
|
|
noloop = fold_build2 (GT_EXPR, boolean_type_node,
|
| 790 |
|
|
fold_build_pointer_plus (iv0->base,
|
| 791 |
|
|
fold_build1 (NEGATE_EXPR,
|
| 792 |
|
|
type1, tmod)),
|
| 793 |
|
|
iv1->base);
|
| 794 |
|
|
else
|
| 795 |
|
|
noloop = fold_build2 (GT_EXPR, boolean_type_node,
|
| 796 |
|
|
fold_build2 (MINUS_EXPR, type1,
|
| 797 |
|
|
iv0->base, tmod),
|
| 798 |
|
|
iv1->base);
|
| 799 |
|
|
}
|
| 800 |
|
|
|
| 801 |
|
|
if (!integer_nonzerop (assumption))
|
| 802 |
|
|
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
| 803 |
|
|
niter->assumptions,
|
| 804 |
|
|
assumption);
|
| 805 |
|
|
if (!integer_zerop (noloop))
|
| 806 |
|
|
niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
|
| 807 |
|
|
niter->may_be_zero,
|
| 808 |
|
|
noloop);
|
| 809 |
|
|
bounds_add (bnds, tree_to_double_int (mod), type);
|
| 810 |
|
|
*delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
|
| 811 |
|
|
|
| 812 |
|
|
ret = true;
|
| 813 |
|
|
end:
|
| 814 |
|
|
mpz_clear (mmod);
|
| 815 |
|
|
return ret;
|
| 816 |
|
|
}
|
| 817 |
|
|
|
| 818 |
|
|
/* Add assertions to NITER that ensure that the control variable of the loop
|
| 819 |
|
|
with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
|
| 820 |
|
|
are TYPE. Returns false if we can prove that there is an overflow, true
|
| 821 |
|
|
otherwise. STEP is the absolute value of the step. */
|
| 822 |
|
|
|
| 823 |
|
|
static bool
|
| 824 |
|
|
assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
|
| 825 |
|
|
struct tree_niter_desc *niter, tree step)
|
| 826 |
|
|
{
|
| 827 |
|
|
tree bound, d, assumption, diff;
|
| 828 |
|
|
tree niter_type = TREE_TYPE (step);
|
| 829 |
|
|
|
| 830 |
|
|
if (integer_nonzerop (iv0->step))
|
| 831 |
|
|
{
|
| 832 |
|
|
/* for (i = iv0->base; i < iv1->base; i += iv0->step) */
|
| 833 |
|
|
if (iv0->no_overflow)
|
| 834 |
|
|
return true;
|
| 835 |
|
|
|
| 836 |
|
|
/* If iv0->base is a constant, we can determine the last value before
|
| 837 |
|
|
overflow precisely; otherwise we conservatively assume
|
| 838 |
|
|
MAX - STEP + 1. */
|
| 839 |
|
|
|
| 840 |
|
|
if (TREE_CODE (iv0->base) == INTEGER_CST)
|
| 841 |
|
|
{
|
| 842 |
|
|
d = fold_build2 (MINUS_EXPR, niter_type,
|
| 843 |
|
|
fold_convert (niter_type, TYPE_MAX_VALUE (type)),
|
| 844 |
|
|
fold_convert (niter_type, iv0->base));
|
| 845 |
|
|
diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
|
| 846 |
|
|
}
|
| 847 |
|
|
else
|
| 848 |
|
|
diff = fold_build2 (MINUS_EXPR, niter_type, step,
|
| 849 |
|
|
build_int_cst (niter_type, 1));
|
| 850 |
|
|
bound = fold_build2 (MINUS_EXPR, type,
|
| 851 |
|
|
TYPE_MAX_VALUE (type), fold_convert (type, diff));
|
| 852 |
|
|
assumption = fold_build2 (LE_EXPR, boolean_type_node,
|
| 853 |
|
|
iv1->base, bound);
|
| 854 |
|
|
}
|
| 855 |
|
|
else
|
| 856 |
|
|
{
|
| 857 |
|
|
/* for (i = iv1->base; i > iv0->base; i += iv1->step) */
|
| 858 |
|
|
if (iv1->no_overflow)
|
| 859 |
|
|
return true;
|
| 860 |
|
|
|
| 861 |
|
|
if (TREE_CODE (iv1->base) == INTEGER_CST)
|
| 862 |
|
|
{
|
| 863 |
|
|
d = fold_build2 (MINUS_EXPR, niter_type,
|
| 864 |
|
|
fold_convert (niter_type, iv1->base),
|
| 865 |
|
|
fold_convert (niter_type, TYPE_MIN_VALUE (type)));
|
| 866 |
|
|
diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
|
| 867 |
|
|
}
|
| 868 |
|
|
else
|
| 869 |
|
|
diff = fold_build2 (MINUS_EXPR, niter_type, step,
|
| 870 |
|
|
build_int_cst (niter_type, 1));
|
| 871 |
|
|
bound = fold_build2 (PLUS_EXPR, type,
|
| 872 |
|
|
TYPE_MIN_VALUE (type), fold_convert (type, diff));
|
| 873 |
|
|
assumption = fold_build2 (GE_EXPR, boolean_type_node,
|
| 874 |
|
|
iv0->base, bound);
|
| 875 |
|
|
}
|
| 876 |
|
|
|
| 877 |
|
|
if (integer_zerop (assumption))
|
| 878 |
|
|
return false;
|
| 879 |
|
|
if (!integer_nonzerop (assumption))
|
| 880 |
|
|
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
| 881 |
|
|
niter->assumptions, assumption);
|
| 882 |
|
|
|
| 883 |
|
|
iv0->no_overflow = true;
|
| 884 |
|
|
iv1->no_overflow = true;
|
| 885 |
|
|
return true;
|
| 886 |
|
|
}
|
| 887 |
|
|
|
| 888 |
|
|
/* Add an assumption to NITER that a loop whose ending condition
|
| 889 |
|
|
is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
|
| 890 |
|
|
bounds the value of IV1->base - IV0->base. */
|
| 891 |
|
|
|
| 892 |
|
|
static void
|
| 893 |
|
|
assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
|
| 894 |
|
|
struct tree_niter_desc *niter, bounds *bnds)
|
| 895 |
|
|
{
|
| 896 |
|
|
tree assumption = boolean_true_node, bound, diff;
|
| 897 |
|
|
tree mbz, mbzl, mbzr, type1;
|
| 898 |
|
|
bool rolls_p, no_overflow_p;
|
| 899 |
|
|
double_int dstep;
|
| 900 |
|
|
mpz_t mstep, max;
|
| 901 |
|
|
|
| 902 |
|
|
/* We are going to compute the number of iterations as
|
| 903 |
|
|
(iv1->base - iv0->base + step - 1) / step, computed in the unsigned
|
| 904 |
|
|
variant of TYPE. This formula only works if
|
| 905 |
|
|
|
| 906 |
|
|
-step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
|
| 907 |
|
|
|
| 908 |
|
|
(where MAX is the maximum value of the unsigned variant of TYPE, and
|
| 909 |
|
|
the computations in this formula are performed in full precision,
|
| 910 |
|
|
i.e., without overflows).
|
| 911 |
|
|
|
| 912 |
|
|
Usually, for loops with exit condition iv0->base + step * i < iv1->base,
|
| 913 |
|
|
we have a condition of the form iv0->base - step < iv1->base before the loop,
|
| 914 |
|
|
and for loops iv0->base < iv1->base - step * i the condition
|
| 915 |
|
|
iv0->base < iv1->base + step, due to loop header copying, which enable us
|
| 916 |
|
|
to prove the lower bound.
|
| 917 |
|
|
|
| 918 |
|
|
The upper bound is more complicated. Unless the expressions for initial
|
| 919 |
|
|
and final value themselves contain enough information, we usually cannot
|
| 920 |
|
|
derive it from the context. */
|
| 921 |
|
|
|
| 922 |
|
|
/* First check whether the answer does not follow from the bounds we gathered
|
| 923 |
|
|
before. */
|
| 924 |
|
|
if (integer_nonzerop (iv0->step))
|
| 925 |
|
|
dstep = tree_to_double_int (iv0->step);
|
| 926 |
|
|
else
|
| 927 |
|
|
{
|
| 928 |
|
|
dstep = double_int_sext (tree_to_double_int (iv1->step),
|
| 929 |
|
|
TYPE_PRECISION (type));
|
| 930 |
|
|
dstep = double_int_neg (dstep);
|
| 931 |
|
|
}
|
| 932 |
|
|
|
| 933 |
|
|
mpz_init (mstep);
|
| 934 |
|
|
mpz_set_double_int (mstep, dstep, true);
|
| 935 |
|
|
mpz_neg (mstep, mstep);
|
| 936 |
|
|
mpz_add_ui (mstep, mstep, 1);
|
| 937 |
|
|
|
| 938 |
|
|
rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
|
| 939 |
|
|
|
| 940 |
|
|
mpz_init (max);
|
| 941 |
|
|
mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)), true);
|
| 942 |
|
|
mpz_add (max, max, mstep);
|
| 943 |
|
|
no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
|
| 944 |
|
|
/* For pointers, only values lying inside a single object
|
| 945 |
|
|
can be compared or manipulated by pointer arithmetics.
|
| 946 |
|
|
Gcc in general does not allow or handle objects larger
|
| 947 |
|
|
than half of the address space, hence the upper bound
|
| 948 |
|
|
is satisfied for pointers. */
|
| 949 |
|
|
|| POINTER_TYPE_P (type));
|
| 950 |
|
|
mpz_clear (mstep);
|
| 951 |
|
|
mpz_clear (max);
|
| 952 |
|
|
|
| 953 |
|
|
if (rolls_p && no_overflow_p)
|
| 954 |
|
|
return;
|
| 955 |
|
|
|
| 956 |
|
|
type1 = type;
|
| 957 |
|
|
if (POINTER_TYPE_P (type))
|
| 958 |
|
|
type1 = sizetype;
|
| 959 |
|
|
|
| 960 |
|
|
/* Now the hard part; we must formulate the assumption(s) as expressions, and
|
| 961 |
|
|
we must be careful not to introduce overflow. */
|
| 962 |
|
|
|
| 963 |
|
|
if (integer_nonzerop (iv0->step))
|
| 964 |
|
|
{
|
| 965 |
|
|
diff = fold_build2 (MINUS_EXPR, type1,
|
| 966 |
|
|
iv0->step, build_int_cst (type1, 1));
|
| 967 |
|
|
|
| 968 |
|
|
/* We need to know that iv0->base >= MIN + iv0->step - 1. Since
|
| 969 |
|
|
|
| 970 |
|
|
pointers. */
|
| 971 |
|
|
if (!POINTER_TYPE_P (type))
|
| 972 |
|
|
{
|
| 973 |
|
|
bound = fold_build2 (PLUS_EXPR, type1,
|
| 974 |
|
|
TYPE_MIN_VALUE (type), diff);
|
| 975 |
|
|
assumption = fold_build2 (GE_EXPR, boolean_type_node,
|
| 976 |
|
|
iv0->base, bound);
|
| 977 |
|
|
}
|
| 978 |
|
|
|
| 979 |
|
|
/* And then we can compute iv0->base - diff, and compare it with
|
| 980 |
|
|
iv1->base. */
|
| 981 |
|
|
mbzl = fold_build2 (MINUS_EXPR, type1,
|
| 982 |
|
|
fold_convert (type1, iv0->base), diff);
|
| 983 |
|
|
mbzr = fold_convert (type1, iv1->base);
|
| 984 |
|
|
}
|
| 985 |
|
|
else
|
| 986 |
|
|
{
|
| 987 |
|
|
diff = fold_build2 (PLUS_EXPR, type1,
|
| 988 |
|
|
iv1->step, build_int_cst (type1, 1));
|
| 989 |
|
|
|
| 990 |
|
|
if (!POINTER_TYPE_P (type))
|
| 991 |
|
|
{
|
| 992 |
|
|
bound = fold_build2 (PLUS_EXPR, type1,
|
| 993 |
|
|
TYPE_MAX_VALUE (type), diff);
|
| 994 |
|
|
assumption = fold_build2 (LE_EXPR, boolean_type_node,
|
| 995 |
|
|
iv1->base, bound);
|
| 996 |
|
|
}
|
| 997 |
|
|
|
| 998 |
|
|
mbzl = fold_convert (type1, iv0->base);
|
| 999 |
|
|
mbzr = fold_build2 (MINUS_EXPR, type1,
|
| 1000 |
|
|
fold_convert (type1, iv1->base), diff);
|
| 1001 |
|
|
}
|
| 1002 |
|
|
|
| 1003 |
|
|
if (!integer_nonzerop (assumption))
|
| 1004 |
|
|
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
| 1005 |
|
|
niter->assumptions, assumption);
|
| 1006 |
|
|
if (!rolls_p)
|
| 1007 |
|
|
{
|
| 1008 |
|
|
mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
|
| 1009 |
|
|
niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
|
| 1010 |
|
|
niter->may_be_zero, mbz);
|
| 1011 |
|
|
}
|
| 1012 |
|
|
}
|
| 1013 |
|
|
|
| 1014 |
|
|
/* Determines number of iterations of loop whose ending condition
|
| 1015 |
|
|
is IV0 < IV1. TYPE is the type of the iv. The number of
|
| 1016 |
|
|
iterations is stored to NITER. BNDS bounds the difference
|
| 1017 |
|
|
IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
|
| 1018 |
|
|
that the exit must be taken eventually. */
|
| 1019 |
|
|
|
| 1020 |
|
|
static bool
|
| 1021 |
|
|
number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
|
| 1022 |
|
|
struct tree_niter_desc *niter,
|
| 1023 |
|
|
bool exit_must_be_taken, bounds *bnds)
|
| 1024 |
|
|
{
|
| 1025 |
|
|
tree niter_type = unsigned_type_for (type);
|
| 1026 |
|
|
tree delta, step, s;
|
| 1027 |
|
|
mpz_t mstep, tmp;
|
| 1028 |
|
|
|
| 1029 |
|
|
if (integer_nonzerop (iv0->step))
|
| 1030 |
|
|
{
|
| 1031 |
|
|
niter->control = *iv0;
|
| 1032 |
|
|
niter->cmp = LT_EXPR;
|
| 1033 |
|
|
niter->bound = iv1->base;
|
| 1034 |
|
|
}
|
| 1035 |
|
|
else
|
| 1036 |
|
|
{
|
| 1037 |
|
|
niter->control = *iv1;
|
| 1038 |
|
|
niter->cmp = GT_EXPR;
|
| 1039 |
|
|
niter->bound = iv0->base;
|
| 1040 |
|
|
}
|
| 1041 |
|
|
|
| 1042 |
|
|
delta = fold_build2 (MINUS_EXPR, niter_type,
|
| 1043 |
|
|
fold_convert (niter_type, iv1->base),
|
| 1044 |
|
|
fold_convert (niter_type, iv0->base));
|
| 1045 |
|
|
|
| 1046 |
|
|
/* First handle the special case that the step is +-1. */
|
| 1047 |
|
|
if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
|
| 1048 |
|
|
|| (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
|
| 1049 |
|
|
{
|
| 1050 |
|
|
/* for (i = iv0->base; i < iv1->base; i++)
|
| 1051 |
|
|
|
| 1052 |
|
|
or
|
| 1053 |
|
|
|
| 1054 |
|
|
for (i = iv1->base; i > iv0->base; i--).
|
| 1055 |
|
|
|
| 1056 |
|
|
In both cases # of iterations is iv1->base - iv0->base, assuming that
|
| 1057 |
|
|
iv1->base >= iv0->base.
|
| 1058 |
|
|
|
| 1059 |
|
|
First try to derive a lower bound on the value of
|
| 1060 |
|
|
iv1->base - iv0->base, computed in full precision. If the difference
|
| 1061 |
|
|
is nonnegative, we are done, otherwise we must record the
|
| 1062 |
|
|
condition. */
|
| 1063 |
|
|
|
| 1064 |
|
|
if (mpz_sgn (bnds->below) < 0)
|
| 1065 |
|
|
niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
|
| 1066 |
|
|
iv1->base, iv0->base);
|
| 1067 |
|
|
niter->niter = delta;
|
| 1068 |
|
|
niter->max = mpz_get_double_int (niter_type, bnds->up, false);
|
| 1069 |
|
|
return true;
|
| 1070 |
|
|
}
|
| 1071 |
|
|
|
| 1072 |
|
|
if (integer_nonzerop (iv0->step))
|
| 1073 |
|
|
step = fold_convert (niter_type, iv0->step);
|
| 1074 |
|
|
else
|
| 1075 |
|
|
step = fold_convert (niter_type,
|
| 1076 |
|
|
fold_build1 (NEGATE_EXPR, type, iv1->step));
|
| 1077 |
|
|
|
| 1078 |
|
|
/* If we can determine the final value of the control iv exactly, we can
|
| 1079 |
|
|
transform the condition to != comparison. In particular, this will be
|
| 1080 |
|
|
the case if DELTA is constant. */
|
| 1081 |
|
|
if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
|
| 1082 |
|
|
exit_must_be_taken, bnds))
|
| 1083 |
|
|
{
|
| 1084 |
|
|
affine_iv zps;
|
| 1085 |
|
|
|
| 1086 |
|
|
zps.base = build_int_cst (niter_type, 0);
|
| 1087 |
|
|
zps.step = step;
|
| 1088 |
|
|
/* number_of_iterations_lt_to_ne will add assumptions that ensure that
|
| 1089 |
|
|
zps does not overflow. */
|
| 1090 |
|
|
zps.no_overflow = true;
|
| 1091 |
|
|
|
| 1092 |
|
|
return number_of_iterations_ne (type, &zps, delta, niter, true, bnds);
|
| 1093 |
|
|
}
|
| 1094 |
|
|
|
| 1095 |
|
|
/* Make sure that the control iv does not overflow. */
|
| 1096 |
|
|
if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
|
| 1097 |
|
|
return false;
|
| 1098 |
|
|
|
| 1099 |
|
|
/* We determine the number of iterations as (delta + step - 1) / step. For
|
| 1100 |
|
|
this to work, we must know that iv1->base >= iv0->base - step + 1,
|
| 1101 |
|
|
otherwise the loop does not roll. */
|
| 1102 |
|
|
assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
|
| 1103 |
|
|
|
| 1104 |
|
|
s = fold_build2 (MINUS_EXPR, niter_type,
|
| 1105 |
|
|
step, build_int_cst (niter_type, 1));
|
| 1106 |
|
|
delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
|
| 1107 |
|
|
niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
|
| 1108 |
|
|
|
| 1109 |
|
|
mpz_init (mstep);
|
| 1110 |
|
|
mpz_init (tmp);
|
| 1111 |
|
|
mpz_set_double_int (mstep, tree_to_double_int (step), true);
|
| 1112 |
|
|
mpz_add (tmp, bnds->up, mstep);
|
| 1113 |
|
|
mpz_sub_ui (tmp, tmp, 1);
|
| 1114 |
|
|
mpz_fdiv_q (tmp, tmp, mstep);
|
| 1115 |
|
|
niter->max = mpz_get_double_int (niter_type, tmp, false);
|
| 1116 |
|
|
mpz_clear (mstep);
|
| 1117 |
|
|
mpz_clear (tmp);
|
| 1118 |
|
|
|
| 1119 |
|
|
return true;
|
| 1120 |
|
|
}
|
| 1121 |
|
|
|
| 1122 |
|
|
/* Determines number of iterations of loop whose ending condition
|
| 1123 |
|
|
is IV0 <= IV1. TYPE is the type of the iv. The number of
|
| 1124 |
|
|
iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
|
| 1125 |
|
|
we know that this condition must eventually become false (we derived this
|
| 1126 |
|
|
earlier, and possibly set NITER->assumptions to make sure this
|
| 1127 |
|
|
is the case). BNDS bounds the difference IV1->base - IV0->base. */
|
| 1128 |
|
|
|
| 1129 |
|
|
static bool
|
| 1130 |
|
|
number_of_iterations_le (tree type, affine_iv *iv0, affine_iv *iv1,
|
| 1131 |
|
|
struct tree_niter_desc *niter, bool exit_must_be_taken,
|
| 1132 |
|
|
bounds *bnds)
|
| 1133 |
|
|
{
|
| 1134 |
|
|
tree assumption;
|
| 1135 |
|
|
tree type1 = type;
|
| 1136 |
|
|
if (POINTER_TYPE_P (type))
|
| 1137 |
|
|
type1 = sizetype;
|
| 1138 |
|
|
|
| 1139 |
|
|
/* Say that IV0 is the control variable. Then IV0 <= IV1 iff
|
| 1140 |
|
|
IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
|
| 1141 |
|
|
value of the type. This we must know anyway, since if it is
|
| 1142 |
|
|
equal to this value, the loop rolls forever. We do not check
|
| 1143 |
|
|
this condition for pointer type ivs, as the code cannot rely on
|
| 1144 |
|
|
the object to that the pointer points being placed at the end of
|
| 1145 |
|
|
the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
|
| 1146 |
|
|
not defined for pointers). */
|
| 1147 |
|
|
|
| 1148 |
|
|
if (!exit_must_be_taken && !POINTER_TYPE_P (type))
|
| 1149 |
|
|
{
|
| 1150 |
|
|
if (integer_nonzerop (iv0->step))
|
| 1151 |
|
|
assumption = fold_build2 (NE_EXPR, boolean_type_node,
|
| 1152 |
|
|
iv1->base, TYPE_MAX_VALUE (type));
|
| 1153 |
|
|
else
|
| 1154 |
|
|
assumption = fold_build2 (NE_EXPR, boolean_type_node,
|
| 1155 |
|
|
iv0->base, TYPE_MIN_VALUE (type));
|
| 1156 |
|
|
|
| 1157 |
|
|
if (integer_zerop (assumption))
|
| 1158 |
|
|
return false;
|
| 1159 |
|
|
if (!integer_nonzerop (assumption))
|
| 1160 |
|
|
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
| 1161 |
|
|
niter->assumptions, assumption);
|
| 1162 |
|
|
}
|
| 1163 |
|
|
|
| 1164 |
|
|
if (integer_nonzerop (iv0->step))
|
| 1165 |
|
|
{
|
| 1166 |
|
|
if (POINTER_TYPE_P (type))
|
| 1167 |
|
|
iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
|
| 1168 |
|
|
else
|
| 1169 |
|
|
iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
|
| 1170 |
|
|
build_int_cst (type1, 1));
|
| 1171 |
|
|
}
|
| 1172 |
|
|
else if (POINTER_TYPE_P (type))
|
| 1173 |
|
|
iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
|
| 1174 |
|
|
else
|
| 1175 |
|
|
iv0->base = fold_build2 (MINUS_EXPR, type1,
|
| 1176 |
|
|
iv0->base, build_int_cst (type1, 1));
|
| 1177 |
|
|
|
| 1178 |
|
|
bounds_add (bnds, double_int_one, type1);
|
| 1179 |
|
|
|
| 1180 |
|
|
return number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
|
| 1181 |
|
|
bnds);
|
| 1182 |
|
|
}
|
| 1183 |
|
|
|
| 1184 |
|
|
/* Dumps description of affine induction variable IV to FILE. */
|
| 1185 |
|
|
|
| 1186 |
|
|
static void
|
| 1187 |
|
|
dump_affine_iv (FILE *file, affine_iv *iv)
|
| 1188 |
|
|
{
|
| 1189 |
|
|
if (!integer_zerop (iv->step))
|
| 1190 |
|
|
fprintf (file, "[");
|
| 1191 |
|
|
|
| 1192 |
|
|
print_generic_expr (dump_file, iv->base, TDF_SLIM);
|
| 1193 |
|
|
|
| 1194 |
|
|
if (!integer_zerop (iv->step))
|
| 1195 |
|
|
{
|
| 1196 |
|
|
fprintf (file, ", + , ");
|
| 1197 |
|
|
print_generic_expr (dump_file, iv->step, TDF_SLIM);
|
| 1198 |
|
|
fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
|
| 1199 |
|
|
}
|
| 1200 |
|
|
}
|
| 1201 |
|
|
|
| 1202 |
|
|
/* Determine the number of iterations according to condition (for staying
|
| 1203 |
|
|
inside loop) which compares two induction variables using comparison
|
| 1204 |
|
|
operator CODE. The induction variable on left side of the comparison
|
| 1205 |
|
|
is IV0, the right-hand side is IV1. Both induction variables must have
|
| 1206 |
|
|
type TYPE, which must be an integer or pointer type. The steps of the
|
| 1207 |
|
|
ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
|
| 1208 |
|
|
|
| 1209 |
|
|
LOOP is the loop whose number of iterations we are determining.
|
| 1210 |
|
|
|
| 1211 |
|
|
ONLY_EXIT is true if we are sure this is the only way the loop could be
|
| 1212 |
|
|
exited (including possibly non-returning function calls, exceptions, etc.)
|
| 1213 |
|
|
-- in this case we can use the information whether the control induction
|
| 1214 |
|
|
variables can overflow or not in a more efficient way.
|
| 1215 |
|
|
|
| 1216 |
|
|
The results (number of iterations and assumptions as described in
|
| 1217 |
|
|
comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
|
| 1218 |
|
|
Returns false if it fails to determine number of iterations, true if it
|
| 1219 |
|
|
was determined (possibly with some assumptions). */
|
| 1220 |
|
|
|
| 1221 |
|
|
static bool
|
| 1222 |
|
|
number_of_iterations_cond (struct loop *loop,
|
| 1223 |
|
|
tree type, affine_iv *iv0, enum tree_code code,
|
| 1224 |
|
|
affine_iv *iv1, struct tree_niter_desc *niter,
|
| 1225 |
|
|
bool only_exit)
|
| 1226 |
|
|
{
|
| 1227 |
|
|
bool exit_must_be_taken = false, ret;
|
| 1228 |
|
|
bounds bnds;
|
| 1229 |
|
|
|
| 1230 |
|
|
/* The meaning of these assumptions is this:
|
| 1231 |
|
|
if !assumptions
|
| 1232 |
|
|
then the rest of information does not have to be valid
|
| 1233 |
|
|
if may_be_zero then the loop does not roll, even if
|
| 1234 |
|
|
niter != 0. */
|
| 1235 |
|
|
niter->assumptions = boolean_true_node;
|
| 1236 |
|
|
niter->may_be_zero = boolean_false_node;
|
| 1237 |
|
|
niter->niter = NULL_TREE;
|
| 1238 |
|
|
niter->max = double_int_zero;
|
| 1239 |
|
|
|
| 1240 |
|
|
niter->bound = NULL_TREE;
|
| 1241 |
|
|
niter->cmp = ERROR_MARK;
|
| 1242 |
|
|
|
| 1243 |
|
|
/* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
|
| 1244 |
|
|
the control variable is on lhs. */
|
| 1245 |
|
|
if (code == GE_EXPR || code == GT_EXPR
|
| 1246 |
|
|
|| (code == NE_EXPR && integer_zerop (iv0->step)))
|
| 1247 |
|
|
{
|
| 1248 |
|
|
SWAP (iv0, iv1);
|
| 1249 |
|
|
code = swap_tree_comparison (code);
|
| 1250 |
|
|
}
|
| 1251 |
|
|
|
| 1252 |
|
|
if (POINTER_TYPE_P (type))
|
| 1253 |
|
|
{
|
| 1254 |
|
|
/* Comparison of pointers is undefined unless both iv0 and iv1 point
|
| 1255 |
|
|
to the same object. If they do, the control variable cannot wrap
|
| 1256 |
|
|
(as wrap around the bounds of memory will never return a pointer
|
| 1257 |
|
|
that would be guaranteed to point to the same object, even if we
|
| 1258 |
|
|
avoid undefined behavior by casting to size_t and back). */
|
| 1259 |
|
|
iv0->no_overflow = true;
|
| 1260 |
|
|
iv1->no_overflow = true;
|
| 1261 |
|
|
}
|
| 1262 |
|
|
|
| 1263 |
|
|
/* If the control induction variable does not overflow and the only exit
|
| 1264 |
|
|
from the loop is the one that we analyze, we know it must be taken
|
| 1265 |
|
|
eventually. */
|
| 1266 |
|
|
if (only_exit)
|
| 1267 |
|
|
{
|
| 1268 |
|
|
if (!integer_zerop (iv0->step) && iv0->no_overflow)
|
| 1269 |
|
|
exit_must_be_taken = true;
|
| 1270 |
|
|
else if (!integer_zerop (iv1->step) && iv1->no_overflow)
|
| 1271 |
|
|
exit_must_be_taken = true;
|
| 1272 |
|
|
}
|
| 1273 |
|
|
|
| 1274 |
|
|
/* We can handle the case when neither of the sides of the comparison is
|
| 1275 |
|
|
invariant, provided that the test is NE_EXPR. This rarely occurs in
|
| 1276 |
|
|
practice, but it is simple enough to manage. */
|
| 1277 |
|
|
if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
|
| 1278 |
|
|
{
|
| 1279 |
|
|
if (code != NE_EXPR)
|
| 1280 |
|
|
return false;
|
| 1281 |
|
|
|
| 1282 |
|
|
iv0->step = fold_binary_to_constant (MINUS_EXPR, type,
|
| 1283 |
|
|
iv0->step, iv1->step);
|
| 1284 |
|
|
iv0->no_overflow = false;
|
| 1285 |
|
|
iv1->step = build_int_cst (type, 0);
|
| 1286 |
|
|
iv1->no_overflow = true;
|
| 1287 |
|
|
}
|
| 1288 |
|
|
|
| 1289 |
|
|
/* If the result of the comparison is a constant, the loop is weird. More
|
| 1290 |
|
|
precise handling would be possible, but the situation is not common enough
|
| 1291 |
|
|
to waste time on it. */
|
| 1292 |
|
|
if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
|
| 1293 |
|
|
return false;
|
| 1294 |
|
|
|
| 1295 |
|
|
/* Ignore loops of while (i-- < 10) type. */
|
| 1296 |
|
|
if (code != NE_EXPR)
|
| 1297 |
|
|
{
|
| 1298 |
|
|
if (iv0->step && tree_int_cst_sign_bit (iv0->step))
|
| 1299 |
|
|
return false;
|
| 1300 |
|
|
|
| 1301 |
|
|
if (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
|
| 1302 |
|
|
return false;
|
| 1303 |
|
|
}
|
| 1304 |
|
|
|
| 1305 |
|
|
/* If the loop exits immediately, there is nothing to do. */
|
| 1306 |
|
|
if (integer_zerop (fold_build2 (code, boolean_type_node, iv0->base, iv1->base)))
|
| 1307 |
|
|
{
|
| 1308 |
|
|
niter->niter = build_int_cst (unsigned_type_for (type), 0);
|
| 1309 |
|
|
niter->max = double_int_zero;
|
| 1310 |
|
|
return true;
|
| 1311 |
|
|
}
|
| 1312 |
|
|
|
| 1313 |
|
|
/* OK, now we know we have a senseful loop. Handle several cases, depending
|
| 1314 |
|
|
on what comparison operator is used. */
|
| 1315 |
|
|
bound_difference (loop, iv1->base, iv0->base, &bnds);
|
| 1316 |
|
|
|
| 1317 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1318 |
|
|
{
|
| 1319 |
|
|
fprintf (dump_file,
|
| 1320 |
|
|
"Analyzing # of iterations of loop %d\n", loop->num);
|
| 1321 |
|
|
|
| 1322 |
|
|
fprintf (dump_file, " exit condition ");
|
| 1323 |
|
|
dump_affine_iv (dump_file, iv0);
|
| 1324 |
|
|
fprintf (dump_file, " %s ",
|
| 1325 |
|
|
code == NE_EXPR ? "!="
|
| 1326 |
|
|
: code == LT_EXPR ? "<"
|
| 1327 |
|
|
: "<=");
|
| 1328 |
|
|
dump_affine_iv (dump_file, iv1);
|
| 1329 |
|
|
fprintf (dump_file, "\n");
|
| 1330 |
|
|
|
| 1331 |
|
|
fprintf (dump_file, " bounds on difference of bases: ");
|
| 1332 |
|
|
mpz_out_str (dump_file, 10, bnds.below);
|
| 1333 |
|
|
fprintf (dump_file, " ... ");
|
| 1334 |
|
|
mpz_out_str (dump_file, 10, bnds.up);
|
| 1335 |
|
|
fprintf (dump_file, "\n");
|
| 1336 |
|
|
}
|
| 1337 |
|
|
|
| 1338 |
|
|
switch (code)
|
| 1339 |
|
|
{
|
| 1340 |
|
|
case NE_EXPR:
|
| 1341 |
|
|
gcc_assert (integer_zerop (iv1->step));
|
| 1342 |
|
|
ret = number_of_iterations_ne (type, iv0, iv1->base, niter,
|
| 1343 |
|
|
exit_must_be_taken, &bnds);
|
| 1344 |
|
|
break;
|
| 1345 |
|
|
|
| 1346 |
|
|
case LT_EXPR:
|
| 1347 |
|
|
ret = number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
|
| 1348 |
|
|
&bnds);
|
| 1349 |
|
|
break;
|
| 1350 |
|
|
|
| 1351 |
|
|
case LE_EXPR:
|
| 1352 |
|
|
ret = number_of_iterations_le (type, iv0, iv1, niter, exit_must_be_taken,
|
| 1353 |
|
|
&bnds);
|
| 1354 |
|
|
break;
|
| 1355 |
|
|
|
| 1356 |
|
|
default:
|
| 1357 |
|
|
gcc_unreachable ();
|
| 1358 |
|
|
}
|
| 1359 |
|
|
|
| 1360 |
|
|
mpz_clear (bnds.up);
|
| 1361 |
|
|
mpz_clear (bnds.below);
|
| 1362 |
|
|
|
| 1363 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1364 |
|
|
{
|
| 1365 |
|
|
if (ret)
|
| 1366 |
|
|
{
|
| 1367 |
|
|
fprintf (dump_file, " result:\n");
|
| 1368 |
|
|
if (!integer_nonzerop (niter->assumptions))
|
| 1369 |
|
|
{
|
| 1370 |
|
|
fprintf (dump_file, " under assumptions ");
|
| 1371 |
|
|
print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
|
| 1372 |
|
|
fprintf (dump_file, "\n");
|
| 1373 |
|
|
}
|
| 1374 |
|
|
|
| 1375 |
|
|
if (!integer_zerop (niter->may_be_zero))
|
| 1376 |
|
|
{
|
| 1377 |
|
|
fprintf (dump_file, " zero if ");
|
| 1378 |
|
|
print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
|
| 1379 |
|
|
fprintf (dump_file, "\n");
|
| 1380 |
|
|
}
|
| 1381 |
|
|
|
| 1382 |
|
|
fprintf (dump_file, " # of iterations ");
|
| 1383 |
|
|
print_generic_expr (dump_file, niter->niter, TDF_SLIM);
|
| 1384 |
|
|
fprintf (dump_file, ", bounded by ");
|
| 1385 |
|
|
dump_double_int (dump_file, niter->max, true);
|
| 1386 |
|
|
fprintf (dump_file, "\n");
|
| 1387 |
|
|
}
|
| 1388 |
|
|
else
|
| 1389 |
|
|
fprintf (dump_file, " failed\n\n");
|
| 1390 |
|
|
}
|
| 1391 |
|
|
return ret;
|
| 1392 |
|
|
}
|
| 1393 |
|
|
|
| 1394 |
|
|
/* Substitute NEW for OLD in EXPR and fold the result. */
|
| 1395 |
|
|
|
| 1396 |
|
|
static tree
|
| 1397 |
|
|
simplify_replace_tree (tree expr, tree old, tree new_tree)
|
| 1398 |
|
|
{
|
| 1399 |
|
|
unsigned i, n;
|
| 1400 |
|
|
tree ret = NULL_TREE, e, se;
|
| 1401 |
|
|
|
| 1402 |
|
|
if (!expr)
|
| 1403 |
|
|
return NULL_TREE;
|
| 1404 |
|
|
|
| 1405 |
|
|
/* Do not bother to replace constants. */
|
| 1406 |
|
|
if (CONSTANT_CLASS_P (old))
|
| 1407 |
|
|
return expr;
|
| 1408 |
|
|
|
| 1409 |
|
|
if (expr == old
|
| 1410 |
|
|
|| operand_equal_p (expr, old, 0))
|
| 1411 |
|
|
return unshare_expr (new_tree);
|
| 1412 |
|
|
|
| 1413 |
|
|
if (!EXPR_P (expr))
|
| 1414 |
|
|
return expr;
|
| 1415 |
|
|
|
| 1416 |
|
|
n = TREE_OPERAND_LENGTH (expr);
|
| 1417 |
|
|
for (i = 0; i < n; i++)
|
| 1418 |
|
|
{
|
| 1419 |
|
|
e = TREE_OPERAND (expr, i);
|
| 1420 |
|
|
se = simplify_replace_tree (e, old, new_tree);
|
| 1421 |
|
|
if (e == se)
|
| 1422 |
|
|
continue;
|
| 1423 |
|
|
|
| 1424 |
|
|
if (!ret)
|
| 1425 |
|
|
ret = copy_node (expr);
|
| 1426 |
|
|
|
| 1427 |
|
|
TREE_OPERAND (ret, i) = se;
|
| 1428 |
|
|
}
|
| 1429 |
|
|
|
| 1430 |
|
|
return (ret ? fold (ret) : expr);
|
| 1431 |
|
|
}
|
| 1432 |
|
|
|
| 1433 |
|
|
/* Expand definitions of ssa names in EXPR as long as they are simple
|
| 1434 |
|
|
enough, and return the new expression. */
|
| 1435 |
|
|
|
| 1436 |
|
|
tree
|
| 1437 |
|
|
expand_simple_operations (tree expr)
|
| 1438 |
|
|
{
|
| 1439 |
|
|
unsigned i, n;
|
| 1440 |
|
|
tree ret = NULL_TREE, e, ee, e1;
|
| 1441 |
|
|
enum tree_code code;
|
| 1442 |
|
|
gimple stmt;
|
| 1443 |
|
|
|
| 1444 |
|
|
if (expr == NULL_TREE)
|
| 1445 |
|
|
return expr;
|
| 1446 |
|
|
|
| 1447 |
|
|
if (is_gimple_min_invariant (expr))
|
| 1448 |
|
|
return expr;
|
| 1449 |
|
|
|
| 1450 |
|
|
code = TREE_CODE (expr);
|
| 1451 |
|
|
if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
|
| 1452 |
|
|
{
|
| 1453 |
|
|
n = TREE_OPERAND_LENGTH (expr);
|
| 1454 |
|
|
for (i = 0; i < n; i++)
|
| 1455 |
|
|
{
|
| 1456 |
|
|
e = TREE_OPERAND (expr, i);
|
| 1457 |
|
|
ee = expand_simple_operations (e);
|
| 1458 |
|
|
if (e == ee)
|
| 1459 |
|
|
continue;
|
| 1460 |
|
|
|
| 1461 |
|
|
if (!ret)
|
| 1462 |
|
|
ret = copy_node (expr);
|
| 1463 |
|
|
|
| 1464 |
|
|
TREE_OPERAND (ret, i) = ee;
|
| 1465 |
|
|
}
|
| 1466 |
|
|
|
| 1467 |
|
|
if (!ret)
|
| 1468 |
|
|
return expr;
|
| 1469 |
|
|
|
| 1470 |
|
|
fold_defer_overflow_warnings ();
|
| 1471 |
|
|
ret = fold (ret);
|
| 1472 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
| 1473 |
|
|
return ret;
|
| 1474 |
|
|
}
|
| 1475 |
|
|
|
| 1476 |
|
|
if (TREE_CODE (expr) != SSA_NAME)
|
| 1477 |
|
|
return expr;
|
| 1478 |
|
|
|
| 1479 |
|
|
stmt = SSA_NAME_DEF_STMT (expr);
|
| 1480 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
| 1481 |
|
|
{
|
| 1482 |
|
|
basic_block src, dest;
|
| 1483 |
|
|
|
| 1484 |
|
|
if (gimple_phi_num_args (stmt) != 1)
|
| 1485 |
|
|
return expr;
|
| 1486 |
|
|
e = PHI_ARG_DEF (stmt, 0);
|
| 1487 |
|
|
|
| 1488 |
|
|
/* Avoid propagating through loop exit phi nodes, which
|
| 1489 |
|
|
could break loop-closed SSA form restrictions. */
|
| 1490 |
|
|
dest = gimple_bb (stmt);
|
| 1491 |
|
|
src = single_pred (dest);
|
| 1492 |
|
|
if (TREE_CODE (e) == SSA_NAME
|
| 1493 |
|
|
&& src->loop_father != dest->loop_father)
|
| 1494 |
|
|
return expr;
|
| 1495 |
|
|
|
| 1496 |
|
|
return expand_simple_operations (e);
|
| 1497 |
|
|
}
|
| 1498 |
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
| 1499 |
|
|
return expr;
|
| 1500 |
|
|
|
| 1501 |
|
|
e = gimple_assign_rhs1 (stmt);
|
| 1502 |
|
|
code = gimple_assign_rhs_code (stmt);
|
| 1503 |
|
|
if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
|
| 1504 |
|
|
{
|
| 1505 |
|
|
if (is_gimple_min_invariant (e))
|
| 1506 |
|
|
return e;
|
| 1507 |
|
|
|
| 1508 |
|
|
if (code == SSA_NAME)
|
| 1509 |
|
|
return expand_simple_operations (e);
|
| 1510 |
|
|
|
| 1511 |
|
|
return expr;
|
| 1512 |
|
|
}
|
| 1513 |
|
|
|
| 1514 |
|
|
switch (code)
|
| 1515 |
|
|
{
|
| 1516 |
|
|
CASE_CONVERT:
|
| 1517 |
|
|
/* Casts are simple. */
|
| 1518 |
|
|
ee = expand_simple_operations (e);
|
| 1519 |
|
|
return fold_build1 (code, TREE_TYPE (expr), ee);
|
| 1520 |
|
|
|
| 1521 |
|
|
case PLUS_EXPR:
|
| 1522 |
|
|
case MINUS_EXPR:
|
| 1523 |
|
|
case POINTER_PLUS_EXPR:
|
| 1524 |
|
|
/* And increments and decrements by a constant are simple. */
|
| 1525 |
|
|
e1 = gimple_assign_rhs2 (stmt);
|
| 1526 |
|
|
if (!is_gimple_min_invariant (e1))
|
| 1527 |
|
|
return expr;
|
| 1528 |
|
|
|
| 1529 |
|
|
ee = expand_simple_operations (e);
|
| 1530 |
|
|
return fold_build2 (code, TREE_TYPE (expr), ee, e1);
|
| 1531 |
|
|
|
| 1532 |
|
|
default:
|
| 1533 |
|
|
return expr;
|
| 1534 |
|
|
}
|
| 1535 |
|
|
}
|
| 1536 |
|
|
|
| 1537 |
|
|
/* Tries to simplify EXPR using the condition COND. Returns the simplified
|
| 1538 |
|
|
expression (or EXPR unchanged, if no simplification was possible). */
|
| 1539 |
|
|
|
| 1540 |
|
|
static tree
|
| 1541 |
|
|
tree_simplify_using_condition_1 (tree cond, tree expr)
|
| 1542 |
|
|
{
|
| 1543 |
|
|
bool changed;
|
| 1544 |
|
|
tree e, te, e0, e1, e2, notcond;
|
| 1545 |
|
|
enum tree_code code = TREE_CODE (expr);
|
| 1546 |
|
|
|
| 1547 |
|
|
if (code == INTEGER_CST)
|
| 1548 |
|
|
return expr;
|
| 1549 |
|
|
|
| 1550 |
|
|
if (code == TRUTH_OR_EXPR
|
| 1551 |
|
|
|| code == TRUTH_AND_EXPR
|
| 1552 |
|
|
|| code == COND_EXPR)
|
| 1553 |
|
|
{
|
| 1554 |
|
|
changed = false;
|
| 1555 |
|
|
|
| 1556 |
|
|
e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
|
| 1557 |
|
|
if (TREE_OPERAND (expr, 0) != e0)
|
| 1558 |
|
|
changed = true;
|
| 1559 |
|
|
|
| 1560 |
|
|
e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
|
| 1561 |
|
|
if (TREE_OPERAND (expr, 1) != e1)
|
| 1562 |
|
|
changed = true;
|
| 1563 |
|
|
|
| 1564 |
|
|
if (code == COND_EXPR)
|
| 1565 |
|
|
{
|
| 1566 |
|
|
e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
|
| 1567 |
|
|
if (TREE_OPERAND (expr, 2) != e2)
|
| 1568 |
|
|
changed = true;
|
| 1569 |
|
|
}
|
| 1570 |
|
|
else
|
| 1571 |
|
|
e2 = NULL_TREE;
|
| 1572 |
|
|
|
| 1573 |
|
|
if (changed)
|
| 1574 |
|
|
{
|
| 1575 |
|
|
if (code == COND_EXPR)
|
| 1576 |
|
|
expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
|
| 1577 |
|
|
else
|
| 1578 |
|
|
expr = fold_build2 (code, boolean_type_node, e0, e1);
|
| 1579 |
|
|
}
|
| 1580 |
|
|
|
| 1581 |
|
|
return expr;
|
| 1582 |
|
|
}
|
| 1583 |
|
|
|
| 1584 |
|
|
/* In case COND is equality, we may be able to simplify EXPR by copy/constant
|
| 1585 |
|
|
propagation, and vice versa. Fold does not handle this, since it is
|
| 1586 |
|
|
considered too expensive. */
|
| 1587 |
|
|
if (TREE_CODE (cond) == EQ_EXPR)
|
| 1588 |
|
|
{
|
| 1589 |
|
|
e0 = TREE_OPERAND (cond, 0);
|
| 1590 |
|
|
e1 = TREE_OPERAND (cond, 1);
|
| 1591 |
|
|
|
| 1592 |
|
|
/* We know that e0 == e1. Check whether we cannot simplify expr
|
| 1593 |
|
|
using this fact. */
|
| 1594 |
|
|
e = simplify_replace_tree (expr, e0, e1);
|
| 1595 |
|
|
if (integer_zerop (e) || integer_nonzerop (e))
|
| 1596 |
|
|
return e;
|
| 1597 |
|
|
|
| 1598 |
|
|
e = simplify_replace_tree (expr, e1, e0);
|
| 1599 |
|
|
if (integer_zerop (e) || integer_nonzerop (e))
|
| 1600 |
|
|
return e;
|
| 1601 |
|
|
}
|
| 1602 |
|
|
if (TREE_CODE (expr) == EQ_EXPR)
|
| 1603 |
|
|
{
|
| 1604 |
|
|
e0 = TREE_OPERAND (expr, 0);
|
| 1605 |
|
|
e1 = TREE_OPERAND (expr, 1);
|
| 1606 |
|
|
|
| 1607 |
|
|
/* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
|
| 1608 |
|
|
e = simplify_replace_tree (cond, e0, e1);
|
| 1609 |
|
|
if (integer_zerop (e))
|
| 1610 |
|
|
return e;
|
| 1611 |
|
|
e = simplify_replace_tree (cond, e1, e0);
|
| 1612 |
|
|
if (integer_zerop (e))
|
| 1613 |
|
|
return e;
|
| 1614 |
|
|
}
|
| 1615 |
|
|
if (TREE_CODE (expr) == NE_EXPR)
|
| 1616 |
|
|
{
|
| 1617 |
|
|
e0 = TREE_OPERAND (expr, 0);
|
| 1618 |
|
|
e1 = TREE_OPERAND (expr, 1);
|
| 1619 |
|
|
|
| 1620 |
|
|
/* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
|
| 1621 |
|
|
e = simplify_replace_tree (cond, e0, e1);
|
| 1622 |
|
|
if (integer_zerop (e))
|
| 1623 |
|
|
return boolean_true_node;
|
| 1624 |
|
|
e = simplify_replace_tree (cond, e1, e0);
|
| 1625 |
|
|
if (integer_zerop (e))
|
| 1626 |
|
|
return boolean_true_node;
|
| 1627 |
|
|
}
|
| 1628 |
|
|
|
| 1629 |
|
|
te = expand_simple_operations (expr);
|
| 1630 |
|
|
|
| 1631 |
|
|
/* Check whether COND ==> EXPR. */
|
| 1632 |
|
|
notcond = invert_truthvalue (cond);
|
| 1633 |
|
|
e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, te);
|
| 1634 |
|
|
if (e && integer_nonzerop (e))
|
| 1635 |
|
|
return e;
|
| 1636 |
|
|
|
| 1637 |
|
|
/* Check whether COND ==> not EXPR. */
|
| 1638 |
|
|
e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, te);
|
| 1639 |
|
|
if (e && integer_zerop (e))
|
| 1640 |
|
|
return e;
|
| 1641 |
|
|
|
| 1642 |
|
|
return expr;
|
| 1643 |
|
|
}
|
| 1644 |
|
|
|
| 1645 |
|
|
/* Tries to simplify EXPR using the condition COND. Returns the simplified
|
| 1646 |
|
|
expression (or EXPR unchanged, if no simplification was possible).
|
| 1647 |
|
|
Wrapper around tree_simplify_using_condition_1 that ensures that chains
|
| 1648 |
|
|
of simple operations in definitions of ssa names in COND are expanded,
|
| 1649 |
|
|
so that things like casts or incrementing the value of the bound before
|
| 1650 |
|
|
the loop do not cause us to fail. */
|
| 1651 |
|
|
|
| 1652 |
|
|
static tree
|
| 1653 |
|
|
tree_simplify_using_condition (tree cond, tree expr)
|
| 1654 |
|
|
{
|
| 1655 |
|
|
cond = expand_simple_operations (cond);
|
| 1656 |
|
|
|
| 1657 |
|
|
return tree_simplify_using_condition_1 (cond, expr);
|
| 1658 |
|
|
}
|
| 1659 |
|
|
|
| 1660 |
|
|
/* Tries to simplify EXPR using the conditions on entry to LOOP.
|
| 1661 |
|
|
Returns the simplified expression (or EXPR unchanged, if no
|
| 1662 |
|
|
simplification was possible).*/
|
| 1663 |
|
|
|
| 1664 |
|
|
static tree
|
| 1665 |
|
|
simplify_using_initial_conditions (struct loop *loop, tree expr)
|
| 1666 |
|
|
{
|
| 1667 |
|
|
edge e;
|
| 1668 |
|
|
basic_block bb;
|
| 1669 |
|
|
gimple stmt;
|
| 1670 |
|
|
tree cond;
|
| 1671 |
|
|
int cnt = 0;
|
| 1672 |
|
|
|
| 1673 |
|
|
if (TREE_CODE (expr) == INTEGER_CST)
|
| 1674 |
|
|
return expr;
|
| 1675 |
|
|
|
| 1676 |
|
|
/* Limit walking the dominators to avoid quadraticness in
|
| 1677 |
|
|
the number of BBs times the number of loops in degenerate
|
| 1678 |
|
|
cases. */
|
| 1679 |
|
|
for (bb = loop->header;
|
| 1680 |
|
|
bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
|
| 1681 |
|
|
bb = get_immediate_dominator (CDI_DOMINATORS, bb))
|
| 1682 |
|
|
{
|
| 1683 |
|
|
if (!single_pred_p (bb))
|
| 1684 |
|
|
continue;
|
| 1685 |
|
|
e = single_pred_edge (bb);
|
| 1686 |
|
|
|
| 1687 |
|
|
if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
|
| 1688 |
|
|
continue;
|
| 1689 |
|
|
|
| 1690 |
|
|
stmt = last_stmt (e->src);
|
| 1691 |
|
|
cond = fold_build2 (gimple_cond_code (stmt),
|
| 1692 |
|
|
boolean_type_node,
|
| 1693 |
|
|
gimple_cond_lhs (stmt),
|
| 1694 |
|
|
gimple_cond_rhs (stmt));
|
| 1695 |
|
|
if (e->flags & EDGE_FALSE_VALUE)
|
| 1696 |
|
|
cond = invert_truthvalue (cond);
|
| 1697 |
|
|
expr = tree_simplify_using_condition (cond, expr);
|
| 1698 |
|
|
++cnt;
|
| 1699 |
|
|
}
|
| 1700 |
|
|
|
| 1701 |
|
|
return expr;
|
| 1702 |
|
|
}
|
| 1703 |
|
|
|
| 1704 |
|
|
/* Tries to simplify EXPR using the evolutions of the loop invariants
|
| 1705 |
|
|
in the superloops of LOOP. Returns the simplified expression
|
| 1706 |
|
|
(or EXPR unchanged, if no simplification was possible). */
|
| 1707 |
|
|
|
| 1708 |
|
|
static tree
|
| 1709 |
|
|
simplify_using_outer_evolutions (struct loop *loop, tree expr)
|
| 1710 |
|
|
{
|
| 1711 |
|
|
enum tree_code code = TREE_CODE (expr);
|
| 1712 |
|
|
bool changed;
|
| 1713 |
|
|
tree e, e0, e1, e2;
|
| 1714 |
|
|
|
| 1715 |
|
|
if (is_gimple_min_invariant (expr))
|
| 1716 |
|
|
return expr;
|
| 1717 |
|
|
|
| 1718 |
|
|
if (code == TRUTH_OR_EXPR
|
| 1719 |
|
|
|| code == TRUTH_AND_EXPR
|
| 1720 |
|
|
|| code == COND_EXPR)
|
| 1721 |
|
|
{
|
| 1722 |
|
|
changed = false;
|
| 1723 |
|
|
|
| 1724 |
|
|
e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
|
| 1725 |
|
|
if (TREE_OPERAND (expr, 0) != e0)
|
| 1726 |
|
|
changed = true;
|
| 1727 |
|
|
|
| 1728 |
|
|
e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
|
| 1729 |
|
|
if (TREE_OPERAND (expr, 1) != e1)
|
| 1730 |
|
|
changed = true;
|
| 1731 |
|
|
|
| 1732 |
|
|
if (code == COND_EXPR)
|
| 1733 |
|
|
{
|
| 1734 |
|
|
e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
|
| 1735 |
|
|
if (TREE_OPERAND (expr, 2) != e2)
|
| 1736 |
|
|
changed = true;
|
| 1737 |
|
|
}
|
| 1738 |
|
|
else
|
| 1739 |
|
|
e2 = NULL_TREE;
|
| 1740 |
|
|
|
| 1741 |
|
|
if (changed)
|
| 1742 |
|
|
{
|
| 1743 |
|
|
if (code == COND_EXPR)
|
| 1744 |
|
|
expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
|
| 1745 |
|
|
else
|
| 1746 |
|
|
expr = fold_build2 (code, boolean_type_node, e0, e1);
|
| 1747 |
|
|
}
|
| 1748 |
|
|
|
| 1749 |
|
|
return expr;
|
| 1750 |
|
|
}
|
| 1751 |
|
|
|
| 1752 |
|
|
e = instantiate_parameters (loop, expr);
|
| 1753 |
|
|
if (is_gimple_min_invariant (e))
|
| 1754 |
|
|
return e;
|
| 1755 |
|
|
|
| 1756 |
|
|
return expr;
|
| 1757 |
|
|
}
|
| 1758 |
|
|
|
| 1759 |
|
|
/* Returns true if EXIT is the only possible exit from LOOP. */
|
| 1760 |
|
|
|
| 1761 |
|
|
bool
|
| 1762 |
|
|
loop_only_exit_p (const struct loop *loop, const_edge exit)
|
| 1763 |
|
|
{
|
| 1764 |
|
|
basic_block *body;
|
| 1765 |
|
|
gimple_stmt_iterator bsi;
|
| 1766 |
|
|
unsigned i;
|
| 1767 |
|
|
gimple call;
|
| 1768 |
|
|
|
| 1769 |
|
|
if (exit != single_exit (loop))
|
| 1770 |
|
|
return false;
|
| 1771 |
|
|
|
| 1772 |
|
|
body = get_loop_body (loop);
|
| 1773 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
| 1774 |
|
|
{
|
| 1775 |
|
|
for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
|
| 1776 |
|
|
{
|
| 1777 |
|
|
call = gsi_stmt (bsi);
|
| 1778 |
|
|
if (gimple_code (call) != GIMPLE_CALL)
|
| 1779 |
|
|
continue;
|
| 1780 |
|
|
|
| 1781 |
|
|
if (gimple_has_side_effects (call))
|
| 1782 |
|
|
{
|
| 1783 |
|
|
free (body);
|
| 1784 |
|
|
return false;
|
| 1785 |
|
|
}
|
| 1786 |
|
|
}
|
| 1787 |
|
|
}
|
| 1788 |
|
|
|
| 1789 |
|
|
free (body);
|
| 1790 |
|
|
return true;
|
| 1791 |
|
|
}
|
| 1792 |
|
|
|
| 1793 |
|
|
/* Stores description of number of iterations of LOOP derived from
|
| 1794 |
|
|
EXIT (an exit edge of the LOOP) in NITER. Returns true if some
|
| 1795 |
|
|
useful information could be derived (and fields of NITER has
|
| 1796 |
|
|
meaning described in comments at struct tree_niter_desc
|
| 1797 |
|
|
declaration), false otherwise. If WARN is true and
|
| 1798 |
|
|
-Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
|
| 1799 |
|
|
potentially unsafe assumptions. */
|
| 1800 |
|
|
|
| 1801 |
|
|
bool
|
| 1802 |
|
|
number_of_iterations_exit (struct loop *loop, edge exit,
|
| 1803 |
|
|
struct tree_niter_desc *niter,
|
| 1804 |
|
|
bool warn)
|
| 1805 |
|
|
{
|
| 1806 |
|
|
gimple stmt;
|
| 1807 |
|
|
tree type;
|
| 1808 |
|
|
tree op0, op1;
|
| 1809 |
|
|
enum tree_code code;
|
| 1810 |
|
|
affine_iv iv0, iv1;
|
| 1811 |
|
|
|
| 1812 |
|
|
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
|
| 1813 |
|
|
return false;
|
| 1814 |
|
|
|
| 1815 |
|
|
niter->assumptions = boolean_false_node;
|
| 1816 |
|
|
stmt = last_stmt (exit->src);
|
| 1817 |
|
|
if (!stmt || gimple_code (stmt) != GIMPLE_COND)
|
| 1818 |
|
|
return false;
|
| 1819 |
|
|
|
| 1820 |
|
|
/* We want the condition for staying inside loop. */
|
| 1821 |
|
|
code = gimple_cond_code (stmt);
|
| 1822 |
|
|
if (exit->flags & EDGE_TRUE_VALUE)
|
| 1823 |
|
|
code = invert_tree_comparison (code, false);
|
| 1824 |
|
|
|
| 1825 |
|
|
switch (code)
|
| 1826 |
|
|
{
|
| 1827 |
|
|
case GT_EXPR:
|
| 1828 |
|
|
case GE_EXPR:
|
| 1829 |
|
|
case NE_EXPR:
|
| 1830 |
|
|
case LT_EXPR:
|
| 1831 |
|
|
case LE_EXPR:
|
| 1832 |
|
|
break;
|
| 1833 |
|
|
|
| 1834 |
|
|
default:
|
| 1835 |
|
|
return false;
|
| 1836 |
|
|
}
|
| 1837 |
|
|
|
| 1838 |
|
|
op0 = gimple_cond_lhs (stmt);
|
| 1839 |
|
|
op1 = gimple_cond_rhs (stmt);
|
| 1840 |
|
|
type = TREE_TYPE (op0);
|
| 1841 |
|
|
|
| 1842 |
|
|
if (TREE_CODE (type) != INTEGER_TYPE
|
| 1843 |
|
|
&& !POINTER_TYPE_P (type))
|
| 1844 |
|
|
return false;
|
| 1845 |
|
|
|
| 1846 |
|
|
if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, false))
|
| 1847 |
|
|
return false;
|
| 1848 |
|
|
if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, false))
|
| 1849 |
|
|
return false;
|
| 1850 |
|
|
|
| 1851 |
|
|
/* We don't want to see undefined signed overflow warnings while
|
| 1852 |
|
|
computing the number of iterations. */
|
| 1853 |
|
|
fold_defer_overflow_warnings ();
|
| 1854 |
|
|
|
| 1855 |
|
|
iv0.base = expand_simple_operations (iv0.base);
|
| 1856 |
|
|
iv1.base = expand_simple_operations (iv1.base);
|
| 1857 |
|
|
if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
|
| 1858 |
|
|
loop_only_exit_p (loop, exit)))
|
| 1859 |
|
|
{
|
| 1860 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
| 1861 |
|
|
return false;
|
| 1862 |
|
|
}
|
| 1863 |
|
|
|
| 1864 |
|
|
if (optimize >= 3)
|
| 1865 |
|
|
{
|
| 1866 |
|
|
niter->assumptions = simplify_using_outer_evolutions (loop,
|
| 1867 |
|
|
niter->assumptions);
|
| 1868 |
|
|
niter->may_be_zero = simplify_using_outer_evolutions (loop,
|
| 1869 |
|
|
niter->may_be_zero);
|
| 1870 |
|
|
niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
|
| 1871 |
|
|
}
|
| 1872 |
|
|
|
| 1873 |
|
|
niter->assumptions
|
| 1874 |
|
|
= simplify_using_initial_conditions (loop,
|
| 1875 |
|
|
niter->assumptions);
|
| 1876 |
|
|
niter->may_be_zero
|
| 1877 |
|
|
= simplify_using_initial_conditions (loop,
|
| 1878 |
|
|
niter->may_be_zero);
|
| 1879 |
|
|
|
| 1880 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
| 1881 |
|
|
|
| 1882 |
|
|
if (integer_onep (niter->assumptions))
|
| 1883 |
|
|
return true;
|
| 1884 |
|
|
|
| 1885 |
|
|
/* With -funsafe-loop-optimizations we assume that nothing bad can happen.
|
| 1886 |
|
|
But if we can prove that there is overflow or some other source of weird
|
| 1887 |
|
|
behavior, ignore the loop even with -funsafe-loop-optimizations. */
|
| 1888 |
|
|
if (integer_zerop (niter->assumptions) || !single_exit (loop))
|
| 1889 |
|
|
return false;
|
| 1890 |
|
|
|
| 1891 |
|
|
if (flag_unsafe_loop_optimizations)
|
| 1892 |
|
|
niter->assumptions = boolean_true_node;
|
| 1893 |
|
|
|
| 1894 |
|
|
if (warn)
|
| 1895 |
|
|
{
|
| 1896 |
|
|
const char *wording;
|
| 1897 |
|
|
location_t loc = gimple_location (stmt);
|
| 1898 |
|
|
|
| 1899 |
|
|
/* We can provide a more specific warning if one of the operator is
|
| 1900 |
|
|
constant and the other advances by +1 or -1. */
|
| 1901 |
|
|
if (!integer_zerop (iv1.step)
|
| 1902 |
|
|
? (integer_zerop (iv0.step)
|
| 1903 |
|
|
&& (integer_onep (iv1.step) || integer_all_onesp (iv1.step)))
|
| 1904 |
|
|
: (integer_onep (iv0.step) || integer_all_onesp (iv0.step)))
|
| 1905 |
|
|
wording =
|
| 1906 |
|
|
flag_unsafe_loop_optimizations
|
| 1907 |
|
|
? N_("assuming that the loop is not infinite")
|
| 1908 |
|
|
: N_("cannot optimize possibly infinite loops");
|
| 1909 |
|
|
else
|
| 1910 |
|
|
wording =
|
| 1911 |
|
|
flag_unsafe_loop_optimizations
|
| 1912 |
|
|
? N_("assuming that the loop counter does not overflow")
|
| 1913 |
|
|
: N_("cannot optimize loop, the loop counter may overflow");
|
| 1914 |
|
|
|
| 1915 |
|
|
warning_at ((LOCATION_LINE (loc) > 0) ? loc : input_location,
|
| 1916 |
|
|
OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
|
| 1917 |
|
|
}
|
| 1918 |
|
|
|
| 1919 |
|
|
return flag_unsafe_loop_optimizations;
|
| 1920 |
|
|
}
|
| 1921 |
|
|
|
| 1922 |
|
|
/* Try to determine the number of iterations of LOOP. If we succeed,
|
| 1923 |
|
|
expression giving number of iterations is returned and *EXIT is
|
| 1924 |
|
|
set to the edge from that the information is obtained. Otherwise
|
| 1925 |
|
|
chrec_dont_know is returned. */
|
| 1926 |
|
|
|
| 1927 |
|
|
tree
|
| 1928 |
|
|
find_loop_niter (struct loop *loop, edge *exit)
|
| 1929 |
|
|
{
|
| 1930 |
|
|
unsigned i;
|
| 1931 |
|
|
VEC (edge, heap) *exits = get_loop_exit_edges (loop);
|
| 1932 |
|
|
edge ex;
|
| 1933 |
|
|
tree niter = NULL_TREE, aniter;
|
| 1934 |
|
|
struct tree_niter_desc desc;
|
| 1935 |
|
|
|
| 1936 |
|
|
*exit = NULL;
|
| 1937 |
|
|
FOR_EACH_VEC_ELT (edge, exits, i, ex)
|
| 1938 |
|
|
{
|
| 1939 |
|
|
if (!just_once_each_iteration_p (loop, ex->src))
|
| 1940 |
|
|
continue;
|
| 1941 |
|
|
|
| 1942 |
|
|
if (!number_of_iterations_exit (loop, ex, &desc, false))
|
| 1943 |
|
|
continue;
|
| 1944 |
|
|
|
| 1945 |
|
|
if (integer_nonzerop (desc.may_be_zero))
|
| 1946 |
|
|
{
|
| 1947 |
|
|
/* We exit in the first iteration through this exit.
|
| 1948 |
|
|
We won't find anything better. */
|
| 1949 |
|
|
niter = build_int_cst (unsigned_type_node, 0);
|
| 1950 |
|
|
*exit = ex;
|
| 1951 |
|
|
break;
|
| 1952 |
|
|
}
|
| 1953 |
|
|
|
| 1954 |
|
|
if (!integer_zerop (desc.may_be_zero))
|
| 1955 |
|
|
continue;
|
| 1956 |
|
|
|
| 1957 |
|
|
aniter = desc.niter;
|
| 1958 |
|
|
|
| 1959 |
|
|
if (!niter)
|
| 1960 |
|
|
{
|
| 1961 |
|
|
/* Nothing recorded yet. */
|
| 1962 |
|
|
niter = aniter;
|
| 1963 |
|
|
*exit = ex;
|
| 1964 |
|
|
continue;
|
| 1965 |
|
|
}
|
| 1966 |
|
|
|
| 1967 |
|
|
/* Prefer constants, the lower the better. */
|
| 1968 |
|
|
if (TREE_CODE (aniter) != INTEGER_CST)
|
| 1969 |
|
|
continue;
|
| 1970 |
|
|
|
| 1971 |
|
|
if (TREE_CODE (niter) != INTEGER_CST)
|
| 1972 |
|
|
{
|
| 1973 |
|
|
niter = aniter;
|
| 1974 |
|
|
*exit = ex;
|
| 1975 |
|
|
continue;
|
| 1976 |
|
|
}
|
| 1977 |
|
|
|
| 1978 |
|
|
if (tree_int_cst_lt (aniter, niter))
|
| 1979 |
|
|
{
|
| 1980 |
|
|
niter = aniter;
|
| 1981 |
|
|
*exit = ex;
|
| 1982 |
|
|
continue;
|
| 1983 |
|
|
}
|
| 1984 |
|
|
}
|
| 1985 |
|
|
VEC_free (edge, heap, exits);
|
| 1986 |
|
|
|
| 1987 |
|
|
return niter ? niter : chrec_dont_know;
|
| 1988 |
|
|
}
|
| 1989 |
|
|
|
| 1990 |
|
|
/* Return true if loop is known to have bounded number of iterations. */
|
| 1991 |
|
|
|
| 1992 |
|
|
bool
|
| 1993 |
|
|
finite_loop_p (struct loop *loop)
|
| 1994 |
|
|
{
|
| 1995 |
|
|
unsigned i;
|
| 1996 |
|
|
VEC (edge, heap) *exits;
|
| 1997 |
|
|
edge ex;
|
| 1998 |
|
|
struct tree_niter_desc desc;
|
| 1999 |
|
|
bool finite = false;
|
| 2000 |
|
|
int flags;
|
| 2001 |
|
|
|
| 2002 |
|
|
if (flag_unsafe_loop_optimizations)
|
| 2003 |
|
|
return true;
|
| 2004 |
|
|
flags = flags_from_decl_or_type (current_function_decl);
|
| 2005 |
|
|
if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
|
| 2006 |
|
|
{
|
| 2007 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2008 |
|
|
fprintf (dump_file, "Found loop %i to be finite: it is within pure or const function.\n",
|
| 2009 |
|
|
loop->num);
|
| 2010 |
|
|
return true;
|
| 2011 |
|
|
}
|
| 2012 |
|
|
|
| 2013 |
|
|
exits = get_loop_exit_edges (loop);
|
| 2014 |
|
|
FOR_EACH_VEC_ELT (edge, exits, i, ex)
|
| 2015 |
|
|
{
|
| 2016 |
|
|
if (!just_once_each_iteration_p (loop, ex->src))
|
| 2017 |
|
|
continue;
|
| 2018 |
|
|
|
| 2019 |
|
|
if (number_of_iterations_exit (loop, ex, &desc, false))
|
| 2020 |
|
|
{
|
| 2021 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2022 |
|
|
{
|
| 2023 |
|
|
fprintf (dump_file, "Found loop %i to be finite: iterating ", loop->num);
|
| 2024 |
|
|
print_generic_expr (dump_file, desc.niter, TDF_SLIM);
|
| 2025 |
|
|
fprintf (dump_file, " times\n");
|
| 2026 |
|
|
}
|
| 2027 |
|
|
finite = true;
|
| 2028 |
|
|
break;
|
| 2029 |
|
|
}
|
| 2030 |
|
|
}
|
| 2031 |
|
|
VEC_free (edge, heap, exits);
|
| 2032 |
|
|
return finite;
|
| 2033 |
|
|
}
|
| 2034 |
|
|
|
| 2035 |
|
|
/*
|
| 2036 |
|
|
|
| 2037 |
|
|
Analysis of a number of iterations of a loop by a brute-force evaluation.
|
| 2038 |
|
|
|
| 2039 |
|
|
*/
|
| 2040 |
|
|
|
| 2041 |
|
|
/* Bound on the number of iterations we try to evaluate. */
|
| 2042 |
|
|
|
| 2043 |
|
|
#define MAX_ITERATIONS_TO_TRACK \
|
| 2044 |
|
|
((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
|
| 2045 |
|
|
|
| 2046 |
|
|
/* Returns the loop phi node of LOOP such that ssa name X is derived from its
|
| 2047 |
|
|
result by a chain of operations such that all but exactly one of their
|
| 2048 |
|
|
operands are constants. */
|
| 2049 |
|
|
|
| 2050 |
|
|
static gimple
|
| 2051 |
|
|
chain_of_csts_start (struct loop *loop, tree x)
|
| 2052 |
|
|
{
|
| 2053 |
|
|
gimple stmt = SSA_NAME_DEF_STMT (x);
|
| 2054 |
|
|
tree use;
|
| 2055 |
|
|
basic_block bb = gimple_bb (stmt);
|
| 2056 |
|
|
enum tree_code code;
|
| 2057 |
|
|
|
| 2058 |
|
|
if (!bb
|
| 2059 |
|
|
|| !flow_bb_inside_loop_p (loop, bb))
|
| 2060 |
|
|
return NULL;
|
| 2061 |
|
|
|
| 2062 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
| 2063 |
|
|
{
|
| 2064 |
|
|
if (bb == loop->header)
|
| 2065 |
|
|
return stmt;
|
| 2066 |
|
|
|
| 2067 |
|
|
return NULL;
|
| 2068 |
|
|
}
|
| 2069 |
|
|
|
| 2070 |
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
| 2071 |
|
|
return NULL;
|
| 2072 |
|
|
|
| 2073 |
|
|
code = gimple_assign_rhs_code (stmt);
|
| 2074 |
|
|
if (gimple_references_memory_p (stmt)
|
| 2075 |
|
|
|| TREE_CODE_CLASS (code) == tcc_reference
|
| 2076 |
|
|
|| (code == ADDR_EXPR
|
| 2077 |
|
|
&& !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
|
| 2078 |
|
|
return NULL;
|
| 2079 |
|
|
|
| 2080 |
|
|
use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
|
| 2081 |
|
|
if (use == NULL_TREE)
|
| 2082 |
|
|
return NULL;
|
| 2083 |
|
|
|
| 2084 |
|
|
return chain_of_csts_start (loop, use);
|
| 2085 |
|
|
}
|
| 2086 |
|
|
|
| 2087 |
|
|
/* Determines whether the expression X is derived from a result of a phi node
|
| 2088 |
|
|
in header of LOOP such that
|
| 2089 |
|
|
|
| 2090 |
|
|
* the derivation of X consists only from operations with constants
|
| 2091 |
|
|
* the initial value of the phi node is constant
|
| 2092 |
|
|
* the value of the phi node in the next iteration can be derived from the
|
| 2093 |
|
|
value in the current iteration by a chain of operations with constants.
|
| 2094 |
|
|
|
| 2095 |
|
|
If such phi node exists, it is returned, otherwise NULL is returned. */
|
| 2096 |
|
|
|
| 2097 |
|
|
static gimple
|
| 2098 |
|
|
get_base_for (struct loop *loop, tree x)
|
| 2099 |
|
|
{
|
| 2100 |
|
|
gimple phi;
|
| 2101 |
|
|
tree init, next;
|
| 2102 |
|
|
|
| 2103 |
|
|
if (is_gimple_min_invariant (x))
|
| 2104 |
|
|
return NULL;
|
| 2105 |
|
|
|
| 2106 |
|
|
phi = chain_of_csts_start (loop, x);
|
| 2107 |
|
|
if (!phi)
|
| 2108 |
|
|
return NULL;
|
| 2109 |
|
|
|
| 2110 |
|
|
init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
|
| 2111 |
|
|
next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
|
| 2112 |
|
|
|
| 2113 |
|
|
if (TREE_CODE (next) != SSA_NAME)
|
| 2114 |
|
|
return NULL;
|
| 2115 |
|
|
|
| 2116 |
|
|
if (!is_gimple_min_invariant (init))
|
| 2117 |
|
|
return NULL;
|
| 2118 |
|
|
|
| 2119 |
|
|
if (chain_of_csts_start (loop, next) != phi)
|
| 2120 |
|
|
return NULL;
|
| 2121 |
|
|
|
| 2122 |
|
|
return phi;
|
| 2123 |
|
|
}
|
| 2124 |
|
|
|
| 2125 |
|
|
/* Given an expression X, then
|
| 2126 |
|
|
|
| 2127 |
|
|
* if X is NULL_TREE, we return the constant BASE.
|
| 2128 |
|
|
* otherwise X is a SSA name, whose value in the considered loop is derived
|
| 2129 |
|
|
by a chain of operations with constant from a result of a phi node in
|
| 2130 |
|
|
the header of the loop. Then we return value of X when the value of the
|
| 2131 |
|
|
result of this phi node is given by the constant BASE. */
|
| 2132 |
|
|
|
| 2133 |
|
|
static tree
|
| 2134 |
|
|
get_val_for (tree x, tree base)
|
| 2135 |
|
|
{
|
| 2136 |
|
|
gimple stmt;
|
| 2137 |
|
|
|
| 2138 |
|
|
gcc_assert (is_gimple_min_invariant (base));
|
| 2139 |
|
|
|
| 2140 |
|
|
if (!x)
|
| 2141 |
|
|
return base;
|
| 2142 |
|
|
|
| 2143 |
|
|
stmt = SSA_NAME_DEF_STMT (x);
|
| 2144 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
| 2145 |
|
|
return base;
|
| 2146 |
|
|
|
| 2147 |
|
|
gcc_assert (is_gimple_assign (stmt));
|
| 2148 |
|
|
|
| 2149 |
|
|
/* STMT must be either an assignment of a single SSA name or an
|
| 2150 |
|
|
expression involving an SSA name and a constant. Try to fold that
|
| 2151 |
|
|
expression using the value for the SSA name. */
|
| 2152 |
|
|
if (gimple_assign_ssa_name_copy_p (stmt))
|
| 2153 |
|
|
return get_val_for (gimple_assign_rhs1 (stmt), base);
|
| 2154 |
|
|
else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
|
| 2155 |
|
|
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
|
| 2156 |
|
|
{
|
| 2157 |
|
|
return fold_build1 (gimple_assign_rhs_code (stmt),
|
| 2158 |
|
|
gimple_expr_type (stmt),
|
| 2159 |
|
|
get_val_for (gimple_assign_rhs1 (stmt), base));
|
| 2160 |
|
|
}
|
| 2161 |
|
|
else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
|
| 2162 |
|
|
{
|
| 2163 |
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
| 2164 |
|
|
tree rhs2 = gimple_assign_rhs2 (stmt);
|
| 2165 |
|
|
if (TREE_CODE (rhs1) == SSA_NAME)
|
| 2166 |
|
|
rhs1 = get_val_for (rhs1, base);
|
| 2167 |
|
|
else if (TREE_CODE (rhs2) == SSA_NAME)
|
| 2168 |
|
|
rhs2 = get_val_for (rhs2, base);
|
| 2169 |
|
|
else
|
| 2170 |
|
|
gcc_unreachable ();
|
| 2171 |
|
|
return fold_build2 (gimple_assign_rhs_code (stmt),
|
| 2172 |
|
|
gimple_expr_type (stmt), rhs1, rhs2);
|
| 2173 |
|
|
}
|
| 2174 |
|
|
else
|
| 2175 |
|
|
gcc_unreachable ();
|
| 2176 |
|
|
}
|
| 2177 |
|
|
|
| 2178 |
|
|
|
| 2179 |
|
|
/* Tries to count the number of iterations of LOOP till it exits by EXIT
|
| 2180 |
|
|
by brute force -- i.e. by determining the value of the operands of the
|
| 2181 |
|
|
condition at EXIT in first few iterations of the loop (assuming that
|
| 2182 |
|
|
these values are constant) and determining the first one in that the
|
| 2183 |
|
|
condition is not satisfied. Returns the constant giving the number
|
| 2184 |
|
|
of the iterations of LOOP if successful, chrec_dont_know otherwise. */
|
| 2185 |
|
|
|
| 2186 |
|
|
tree
|
| 2187 |
|
|
loop_niter_by_eval (struct loop *loop, edge exit)
|
| 2188 |
|
|
{
|
| 2189 |
|
|
tree acnd;
|
| 2190 |
|
|
tree op[2], val[2], next[2], aval[2];
|
| 2191 |
|
|
gimple phi, cond;
|
| 2192 |
|
|
unsigned i, j;
|
| 2193 |
|
|
enum tree_code cmp;
|
| 2194 |
|
|
|
| 2195 |
|
|
cond = last_stmt (exit->src);
|
| 2196 |
|
|
if (!cond || gimple_code (cond) != GIMPLE_COND)
|
| 2197 |
|
|
return chrec_dont_know;
|
| 2198 |
|
|
|
| 2199 |
|
|
cmp = gimple_cond_code (cond);
|
| 2200 |
|
|
if (exit->flags & EDGE_TRUE_VALUE)
|
| 2201 |
|
|
cmp = invert_tree_comparison (cmp, false);
|
| 2202 |
|
|
|
| 2203 |
|
|
switch (cmp)
|
| 2204 |
|
|
{
|
| 2205 |
|
|
case EQ_EXPR:
|
| 2206 |
|
|
case NE_EXPR:
|
| 2207 |
|
|
case GT_EXPR:
|
| 2208 |
|
|
case GE_EXPR:
|
| 2209 |
|
|
case LT_EXPR:
|
| 2210 |
|
|
case LE_EXPR:
|
| 2211 |
|
|
op[0] = gimple_cond_lhs (cond);
|
| 2212 |
|
|
op[1] = gimple_cond_rhs (cond);
|
| 2213 |
|
|
break;
|
| 2214 |
|
|
|
| 2215 |
|
|
default:
|
| 2216 |
|
|
return chrec_dont_know;
|
| 2217 |
|
|
}
|
| 2218 |
|
|
|
| 2219 |
|
|
for (j = 0; j < 2; j++)
|
| 2220 |
|
|
{
|
| 2221 |
|
|
if (is_gimple_min_invariant (op[j]))
|
| 2222 |
|
|
{
|
| 2223 |
|
|
val[j] = op[j];
|
| 2224 |
|
|
next[j] = NULL_TREE;
|
| 2225 |
|
|
op[j] = NULL_TREE;
|
| 2226 |
|
|
}
|
| 2227 |
|
|
else
|
| 2228 |
|
|
{
|
| 2229 |
|
|
phi = get_base_for (loop, op[j]);
|
| 2230 |
|
|
if (!phi)
|
| 2231 |
|
|
return chrec_dont_know;
|
| 2232 |
|
|
val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
|
| 2233 |
|
|
next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
|
| 2234 |
|
|
}
|
| 2235 |
|
|
}
|
| 2236 |
|
|
|
| 2237 |
|
|
/* Don't issue signed overflow warnings. */
|
| 2238 |
|
|
fold_defer_overflow_warnings ();
|
| 2239 |
|
|
|
| 2240 |
|
|
for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
|
| 2241 |
|
|
{
|
| 2242 |
|
|
for (j = 0; j < 2; j++)
|
| 2243 |
|
|
aval[j] = get_val_for (op[j], val[j]);
|
| 2244 |
|
|
|
| 2245 |
|
|
acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
|
| 2246 |
|
|
if (acnd && integer_zerop (acnd))
|
| 2247 |
|
|
{
|
| 2248 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
| 2249 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2250 |
|
|
fprintf (dump_file,
|
| 2251 |
|
|
"Proved that loop %d iterates %d times using brute force.\n",
|
| 2252 |
|
|
loop->num, i);
|
| 2253 |
|
|
return build_int_cst (unsigned_type_node, i);
|
| 2254 |
|
|
}
|
| 2255 |
|
|
|
| 2256 |
|
|
for (j = 0; j < 2; j++)
|
| 2257 |
|
|
{
|
| 2258 |
|
|
val[j] = get_val_for (next[j], val[j]);
|
| 2259 |
|
|
if (!is_gimple_min_invariant (val[j]))
|
| 2260 |
|
|
{
|
| 2261 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
| 2262 |
|
|
return chrec_dont_know;
|
| 2263 |
|
|
}
|
| 2264 |
|
|
}
|
| 2265 |
|
|
}
|
| 2266 |
|
|
|
| 2267 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
| 2268 |
|
|
|
| 2269 |
|
|
return chrec_dont_know;
|
| 2270 |
|
|
}
|
| 2271 |
|
|
|
| 2272 |
|
|
/* Finds the exit of the LOOP by that the loop exits after a constant
|
| 2273 |
|
|
number of iterations and stores the exit edge to *EXIT. The constant
|
| 2274 |
|
|
giving the number of iterations of LOOP is returned. The number of
|
| 2275 |
|
|
iterations is determined using loop_niter_by_eval (i.e. by brute force
|
| 2276 |
|
|
evaluation). If we are unable to find the exit for that loop_niter_by_eval
|
| 2277 |
|
|
determines the number of iterations, chrec_dont_know is returned. */
|
| 2278 |
|
|
|
| 2279 |
|
|
tree
|
| 2280 |
|
|
find_loop_niter_by_eval (struct loop *loop, edge *exit)
|
| 2281 |
|
|
{
|
| 2282 |
|
|
unsigned i;
|
| 2283 |
|
|
VEC (edge, heap) *exits = get_loop_exit_edges (loop);
|
| 2284 |
|
|
edge ex;
|
| 2285 |
|
|
tree niter = NULL_TREE, aniter;
|
| 2286 |
|
|
|
| 2287 |
|
|
*exit = NULL;
|
| 2288 |
|
|
|
| 2289 |
|
|
/* Loops with multiple exits are expensive to handle and less important. */
|
| 2290 |
|
|
if (!flag_expensive_optimizations
|
| 2291 |
|
|
&& VEC_length (edge, exits) > 1)
|
| 2292 |
|
|
return chrec_dont_know;
|
| 2293 |
|
|
|
| 2294 |
|
|
FOR_EACH_VEC_ELT (edge, exits, i, ex)
|
| 2295 |
|
|
{
|
| 2296 |
|
|
if (!just_once_each_iteration_p (loop, ex->src))
|
| 2297 |
|
|
continue;
|
| 2298 |
|
|
|
| 2299 |
|
|
aniter = loop_niter_by_eval (loop, ex);
|
| 2300 |
|
|
if (chrec_contains_undetermined (aniter))
|
| 2301 |
|
|
continue;
|
| 2302 |
|
|
|
| 2303 |
|
|
if (niter
|
| 2304 |
|
|
&& !tree_int_cst_lt (aniter, niter))
|
| 2305 |
|
|
continue;
|
| 2306 |
|
|
|
| 2307 |
|
|
niter = aniter;
|
| 2308 |
|
|
*exit = ex;
|
| 2309 |
|
|
}
|
| 2310 |
|
|
VEC_free (edge, heap, exits);
|
| 2311 |
|
|
|
| 2312 |
|
|
return niter ? niter : chrec_dont_know;
|
| 2313 |
|
|
}
|
| 2314 |
|
|
|
| 2315 |
|
|
/*
|
| 2316 |
|
|
|
| 2317 |
|
|
Analysis of upper bounds on number of iterations of a loop.
|
| 2318 |
|
|
|
| 2319 |
|
|
*/
|
| 2320 |
|
|
|
| 2321 |
|
|
static double_int derive_constant_upper_bound_ops (tree, tree,
|
| 2322 |
|
|
enum tree_code, tree);
|
| 2323 |
|
|
|
| 2324 |
|
|
/* Returns a constant upper bound on the value of the right-hand side of
|
| 2325 |
|
|
an assignment statement STMT. */
|
| 2326 |
|
|
|
| 2327 |
|
|
static double_int
|
| 2328 |
|
|
derive_constant_upper_bound_assign (gimple stmt)
|
| 2329 |
|
|
{
|
| 2330 |
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
| 2331 |
|
|
tree op0 = gimple_assign_rhs1 (stmt);
|
| 2332 |
|
|
tree op1 = gimple_assign_rhs2 (stmt);
|
| 2333 |
|
|
|
| 2334 |
|
|
return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
|
| 2335 |
|
|
op0, code, op1);
|
| 2336 |
|
|
}
|
| 2337 |
|
|
|
| 2338 |
|
|
/* Returns a constant upper bound on the value of expression VAL. VAL
|
| 2339 |
|
|
is considered to be unsigned. If its type is signed, its value must
|
| 2340 |
|
|
be nonnegative. */
|
| 2341 |
|
|
|
| 2342 |
|
|
static double_int
|
| 2343 |
|
|
derive_constant_upper_bound (tree val)
|
| 2344 |
|
|
{
|
| 2345 |
|
|
enum tree_code code;
|
| 2346 |
|
|
tree op0, op1;
|
| 2347 |
|
|
|
| 2348 |
|
|
extract_ops_from_tree (val, &code, &op0, &op1);
|
| 2349 |
|
|
return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
|
| 2350 |
|
|
}
|
| 2351 |
|
|
|
| 2352 |
|
|
/* Returns a constant upper bound on the value of expression OP0 CODE OP1,
|
| 2353 |
|
|
whose type is TYPE. The expression is considered to be unsigned. If
|
| 2354 |
|
|
its type is signed, its value must be nonnegative. */
|
| 2355 |
|
|
|
| 2356 |
|
|
static double_int
|
| 2357 |
|
|
derive_constant_upper_bound_ops (tree type, tree op0,
|
| 2358 |
|
|
enum tree_code code, tree op1)
|
| 2359 |
|
|
{
|
| 2360 |
|
|
tree subtype, maxt;
|
| 2361 |
|
|
double_int bnd, max, mmax, cst;
|
| 2362 |
|
|
gimple stmt;
|
| 2363 |
|
|
|
| 2364 |
|
|
if (INTEGRAL_TYPE_P (type))
|
| 2365 |
|
|
maxt = TYPE_MAX_VALUE (type);
|
| 2366 |
|
|
else
|
| 2367 |
|
|
maxt = upper_bound_in_type (type, type);
|
| 2368 |
|
|
|
| 2369 |
|
|
max = tree_to_double_int (maxt);
|
| 2370 |
|
|
|
| 2371 |
|
|
switch (code)
|
| 2372 |
|
|
{
|
| 2373 |
|
|
case INTEGER_CST:
|
| 2374 |
|
|
return tree_to_double_int (op0);
|
| 2375 |
|
|
|
| 2376 |
|
|
CASE_CONVERT:
|
| 2377 |
|
|
subtype = TREE_TYPE (op0);
|
| 2378 |
|
|
if (!TYPE_UNSIGNED (subtype)
|
| 2379 |
|
|
/* If TYPE is also signed, the fact that VAL is nonnegative implies
|
| 2380 |
|
|
that OP0 is nonnegative. */
|
| 2381 |
|
|
&& TYPE_UNSIGNED (type)
|
| 2382 |
|
|
&& !tree_expr_nonnegative_p (op0))
|
| 2383 |
|
|
{
|
| 2384 |
|
|
/* If we cannot prove that the casted expression is nonnegative,
|
| 2385 |
|
|
we cannot establish more useful upper bound than the precision
|
| 2386 |
|
|
of the type gives us. */
|
| 2387 |
|
|
return max;
|
| 2388 |
|
|
}
|
| 2389 |
|
|
|
| 2390 |
|
|
/* We now know that op0 is an nonnegative value. Try deriving an upper
|
| 2391 |
|
|
bound for it. */
|
| 2392 |
|
|
bnd = derive_constant_upper_bound (op0);
|
| 2393 |
|
|
|
| 2394 |
|
|
/* If the bound does not fit in TYPE, max. value of TYPE could be
|
| 2395 |
|
|
attained. */
|
| 2396 |
|
|
if (double_int_ucmp (max, bnd) < 0)
|
| 2397 |
|
|
return max;
|
| 2398 |
|
|
|
| 2399 |
|
|
return bnd;
|
| 2400 |
|
|
|
| 2401 |
|
|
case PLUS_EXPR:
|
| 2402 |
|
|
case POINTER_PLUS_EXPR:
|
| 2403 |
|
|
case MINUS_EXPR:
|
| 2404 |
|
|
if (TREE_CODE (op1) != INTEGER_CST
|
| 2405 |
|
|
|| !tree_expr_nonnegative_p (op0))
|
| 2406 |
|
|
return max;
|
| 2407 |
|
|
|
| 2408 |
|
|
/* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
|
| 2409 |
|
|
choose the most logical way how to treat this constant regardless
|
| 2410 |
|
|
of the signedness of the type. */
|
| 2411 |
|
|
cst = tree_to_double_int (op1);
|
| 2412 |
|
|
cst = double_int_sext (cst, TYPE_PRECISION (type));
|
| 2413 |
|
|
if (code != MINUS_EXPR)
|
| 2414 |
|
|
cst = double_int_neg (cst);
|
| 2415 |
|
|
|
| 2416 |
|
|
bnd = derive_constant_upper_bound (op0);
|
| 2417 |
|
|
|
| 2418 |
|
|
if (double_int_negative_p (cst))
|
| 2419 |
|
|
{
|
| 2420 |
|
|
cst = double_int_neg (cst);
|
| 2421 |
|
|
/* Avoid CST == 0x80000... */
|
| 2422 |
|
|
if (double_int_negative_p (cst))
|
| 2423 |
|
|
return max;;
|
| 2424 |
|
|
|
| 2425 |
|
|
/* OP0 + CST. We need to check that
|
| 2426 |
|
|
BND <= MAX (type) - CST. */
|
| 2427 |
|
|
|
| 2428 |
|
|
mmax = double_int_sub (max, cst);
|
| 2429 |
|
|
if (double_int_ucmp (bnd, mmax) > 0)
|
| 2430 |
|
|
return max;
|
| 2431 |
|
|
|
| 2432 |
|
|
return double_int_add (bnd, cst);
|
| 2433 |
|
|
}
|
| 2434 |
|
|
else
|
| 2435 |
|
|
{
|
| 2436 |
|
|
/* OP0 - CST, where CST >= 0.
|
| 2437 |
|
|
|
| 2438 |
|
|
If TYPE is signed, we have already verified that OP0 >= 0, and we
|
| 2439 |
|
|
know that the result is nonnegative. This implies that
|
| 2440 |
|
|
VAL <= BND - CST.
|
| 2441 |
|
|
|
| 2442 |
|
|
If TYPE is unsigned, we must additionally know that OP0 >= CST,
|
| 2443 |
|
|
otherwise the operation underflows.
|
| 2444 |
|
|
*/
|
| 2445 |
|
|
|
| 2446 |
|
|
/* This should only happen if the type is unsigned; however, for
|
| 2447 |
|
|
buggy programs that use overflowing signed arithmetics even with
|
| 2448 |
|
|
-fno-wrapv, this condition may also be true for signed values. */
|
| 2449 |
|
|
if (double_int_ucmp (bnd, cst) < 0)
|
| 2450 |
|
|
return max;
|
| 2451 |
|
|
|
| 2452 |
|
|
if (TYPE_UNSIGNED (type))
|
| 2453 |
|
|
{
|
| 2454 |
|
|
tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
|
| 2455 |
|
|
double_int_to_tree (type, cst));
|
| 2456 |
|
|
if (!tem || integer_nonzerop (tem))
|
| 2457 |
|
|
return max;
|
| 2458 |
|
|
}
|
| 2459 |
|
|
|
| 2460 |
|
|
bnd = double_int_sub (bnd, cst);
|
| 2461 |
|
|
}
|
| 2462 |
|
|
|
| 2463 |
|
|
return bnd;
|
| 2464 |
|
|
|
| 2465 |
|
|
case FLOOR_DIV_EXPR:
|
| 2466 |
|
|
case EXACT_DIV_EXPR:
|
| 2467 |
|
|
if (TREE_CODE (op1) != INTEGER_CST
|
| 2468 |
|
|
|| tree_int_cst_sign_bit (op1))
|
| 2469 |
|
|
return max;
|
| 2470 |
|
|
|
| 2471 |
|
|
bnd = derive_constant_upper_bound (op0);
|
| 2472 |
|
|
return double_int_udiv (bnd, tree_to_double_int (op1), FLOOR_DIV_EXPR);
|
| 2473 |
|
|
|
| 2474 |
|
|
case BIT_AND_EXPR:
|
| 2475 |
|
|
if (TREE_CODE (op1) != INTEGER_CST
|
| 2476 |
|
|
|| tree_int_cst_sign_bit (op1))
|
| 2477 |
|
|
return max;
|
| 2478 |
|
|
return tree_to_double_int (op1);
|
| 2479 |
|
|
|
| 2480 |
|
|
case SSA_NAME:
|
| 2481 |
|
|
stmt = SSA_NAME_DEF_STMT (op0);
|
| 2482 |
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN
|
| 2483 |
|
|
|| gimple_assign_lhs (stmt) != op0)
|
| 2484 |
|
|
return max;
|
| 2485 |
|
|
return derive_constant_upper_bound_assign (stmt);
|
| 2486 |
|
|
|
| 2487 |
|
|
default:
|
| 2488 |
|
|
return max;
|
| 2489 |
|
|
}
|
| 2490 |
|
|
}
|
| 2491 |
|
|
|
| 2492 |
|
|
/* Records that every statement in LOOP is executed I_BOUND times.
|
| 2493 |
|
|
REALISTIC is true if I_BOUND is expected to be close to the real number
|
| 2494 |
|
|
of iterations. UPPER is true if we are sure the loop iterates at most
|
| 2495 |
|
|
I_BOUND times. */
|
| 2496 |
|
|
|
| 2497 |
|
|
static void
|
| 2498 |
|
|
record_niter_bound (struct loop *loop, double_int i_bound, bool realistic,
|
| 2499 |
|
|
bool upper)
|
| 2500 |
|
|
{
|
| 2501 |
|
|
/* Update the bounds only when there is no previous estimation, or when the current
|
| 2502 |
|
|
estimation is smaller. */
|
| 2503 |
|
|
if (upper
|
| 2504 |
|
|
&& (!loop->any_upper_bound
|
| 2505 |
|
|
|| double_int_ucmp (i_bound, loop->nb_iterations_upper_bound) < 0))
|
| 2506 |
|
|
{
|
| 2507 |
|
|
loop->any_upper_bound = true;
|
| 2508 |
|
|
loop->nb_iterations_upper_bound = i_bound;
|
| 2509 |
|
|
}
|
| 2510 |
|
|
if (realistic
|
| 2511 |
|
|
&& (!loop->any_estimate
|
| 2512 |
|
|
|| double_int_ucmp (i_bound, loop->nb_iterations_estimate) < 0))
|
| 2513 |
|
|
{
|
| 2514 |
|
|
loop->any_estimate = true;
|
| 2515 |
|
|
loop->nb_iterations_estimate = i_bound;
|
| 2516 |
|
|
}
|
| 2517 |
|
|
}
|
| 2518 |
|
|
|
| 2519 |
|
|
/* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
|
| 2520 |
|
|
is true if the loop is exited immediately after STMT, and this exit
|
| 2521 |
|
|
is taken at last when the STMT is executed BOUND + 1 times.
|
| 2522 |
|
|
REALISTIC is true if BOUND is expected to be close to the real number
|
| 2523 |
|
|
of iterations. UPPER is true if we are sure the loop iterates at most
|
| 2524 |
|
|
BOUND times. I_BOUND is an unsigned double_int upper estimate on BOUND. */
|
| 2525 |
|
|
|
| 2526 |
|
|
static void
|
| 2527 |
|
|
record_estimate (struct loop *loop, tree bound, double_int i_bound,
|
| 2528 |
|
|
gimple at_stmt, bool is_exit, bool realistic, bool upper)
|
| 2529 |
|
|
{
|
| 2530 |
|
|
double_int delta;
|
| 2531 |
|
|
edge exit;
|
| 2532 |
|
|
|
| 2533 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2534 |
|
|
{
|
| 2535 |
|
|
fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
|
| 2536 |
|
|
print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
|
| 2537 |
|
|
fprintf (dump_file, " is %sexecuted at most ",
|
| 2538 |
|
|
upper ? "" : "probably ");
|
| 2539 |
|
|
print_generic_expr (dump_file, bound, TDF_SLIM);
|
| 2540 |
|
|
fprintf (dump_file, " (bounded by ");
|
| 2541 |
|
|
dump_double_int (dump_file, i_bound, true);
|
| 2542 |
|
|
fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
|
| 2543 |
|
|
}
|
| 2544 |
|
|
|
| 2545 |
|
|
/* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
|
| 2546 |
|
|
real number of iterations. */
|
| 2547 |
|
|
if (TREE_CODE (bound) != INTEGER_CST)
|
| 2548 |
|
|
realistic = false;
|
| 2549 |
|
|
if (!upper && !realistic)
|
| 2550 |
|
|
return;
|
| 2551 |
|
|
|
| 2552 |
|
|
/* If we have a guaranteed upper bound, record it in the appropriate
|
| 2553 |
|
|
list. */
|
| 2554 |
|
|
if (upper)
|
| 2555 |
|
|
{
|
| 2556 |
|
|
struct nb_iter_bound *elt = ggc_alloc_nb_iter_bound ();
|
| 2557 |
|
|
|
| 2558 |
|
|
elt->bound = i_bound;
|
| 2559 |
|
|
elt->stmt = at_stmt;
|
| 2560 |
|
|
elt->is_exit = is_exit;
|
| 2561 |
|
|
elt->next = loop->bounds;
|
| 2562 |
|
|
loop->bounds = elt;
|
| 2563 |
|
|
}
|
| 2564 |
|
|
|
| 2565 |
|
|
/* Update the number of iteration estimates according to the bound.
|
| 2566 |
|
|
If at_stmt is an exit or dominates the single exit from the loop,
|
| 2567 |
|
|
then the loop latch is executed at most BOUND times, otherwise
|
| 2568 |
|
|
it can be executed BOUND + 1 times. */
|
| 2569 |
|
|
exit = single_exit (loop);
|
| 2570 |
|
|
if (is_exit
|
| 2571 |
|
|
|| (exit != NULL
|
| 2572 |
|
|
&& dominated_by_p (CDI_DOMINATORS,
|
| 2573 |
|
|
exit->src, gimple_bb (at_stmt))))
|
| 2574 |
|
|
delta = double_int_zero;
|
| 2575 |
|
|
else
|
| 2576 |
|
|
delta = double_int_one;
|
| 2577 |
|
|
i_bound = double_int_add (i_bound, delta);
|
| 2578 |
|
|
|
| 2579 |
|
|
/* If an overflow occurred, ignore the result. */
|
| 2580 |
|
|
if (double_int_ucmp (i_bound, delta) < 0)
|
| 2581 |
|
|
return;
|
| 2582 |
|
|
|
| 2583 |
|
|
record_niter_bound (loop, i_bound, realistic, upper);
|
| 2584 |
|
|
}
|
| 2585 |
|
|
|
| 2586 |
|
|
/* Record the estimate on number of iterations of LOOP based on the fact that
|
| 2587 |
|
|
the induction variable BASE + STEP * i evaluated in STMT does not wrap and
|
| 2588 |
|
|
its values belong to the range <LOW, HIGH>. REALISTIC is true if the
|
| 2589 |
|
|
estimated number of iterations is expected to be close to the real one.
|
| 2590 |
|
|
UPPER is true if we are sure the induction variable does not wrap. */
|
| 2591 |
|
|
|
| 2592 |
|
|
static void
|
| 2593 |
|
|
record_nonwrapping_iv (struct loop *loop, tree base, tree step, gimple stmt,
|
| 2594 |
|
|
tree low, tree high, bool realistic, bool upper)
|
| 2595 |
|
|
{
|
| 2596 |
|
|
tree niter_bound, extreme, delta;
|
| 2597 |
|
|
tree type = TREE_TYPE (base), unsigned_type;
|
| 2598 |
|
|
double_int max;
|
| 2599 |
|
|
|
| 2600 |
|
|
if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
|
| 2601 |
|
|
return;
|
| 2602 |
|
|
|
| 2603 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2604 |
|
|
{
|
| 2605 |
|
|
fprintf (dump_file, "Induction variable (");
|
| 2606 |
|
|
print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
|
| 2607 |
|
|
fprintf (dump_file, ") ");
|
| 2608 |
|
|
print_generic_expr (dump_file, base, TDF_SLIM);
|
| 2609 |
|
|
fprintf (dump_file, " + ");
|
| 2610 |
|
|
print_generic_expr (dump_file, step, TDF_SLIM);
|
| 2611 |
|
|
fprintf (dump_file, " * iteration does not wrap in statement ");
|
| 2612 |
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
| 2613 |
|
|
fprintf (dump_file, " in loop %d.\n", loop->num);
|
| 2614 |
|
|
}
|
| 2615 |
|
|
|
| 2616 |
|
|
unsigned_type = unsigned_type_for (type);
|
| 2617 |
|
|
base = fold_convert (unsigned_type, base);
|
| 2618 |
|
|
step = fold_convert (unsigned_type, step);
|
| 2619 |
|
|
|
| 2620 |
|
|
if (tree_int_cst_sign_bit (step))
|
| 2621 |
|
|
{
|
| 2622 |
|
|
extreme = fold_convert (unsigned_type, low);
|
| 2623 |
|
|
if (TREE_CODE (base) != INTEGER_CST)
|
| 2624 |
|
|
base = fold_convert (unsigned_type, high);
|
| 2625 |
|
|
delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
|
| 2626 |
|
|
step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
|
| 2627 |
|
|
}
|
| 2628 |
|
|
else
|
| 2629 |
|
|
{
|
| 2630 |
|
|
extreme = fold_convert (unsigned_type, high);
|
| 2631 |
|
|
if (TREE_CODE (base) != INTEGER_CST)
|
| 2632 |
|
|
base = fold_convert (unsigned_type, low);
|
| 2633 |
|
|
delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
|
| 2634 |
|
|
}
|
| 2635 |
|
|
|
| 2636 |
|
|
/* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
|
| 2637 |
|
|
would get out of the range. */
|
| 2638 |
|
|
niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
|
| 2639 |
|
|
max = derive_constant_upper_bound (niter_bound);
|
| 2640 |
|
|
record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
|
| 2641 |
|
|
}
|
| 2642 |
|
|
|
| 2643 |
|
|
/* Returns true if REF is a reference to an array at the end of a dynamically
|
| 2644 |
|
|
allocated structure. If this is the case, the array may be allocated larger
|
| 2645 |
|
|
than its upper bound implies. */
|
| 2646 |
|
|
|
| 2647 |
|
|
bool
|
| 2648 |
|
|
array_at_struct_end_p (tree ref)
|
| 2649 |
|
|
{
|
| 2650 |
|
|
tree base = get_base_address (ref);
|
| 2651 |
|
|
tree parent, field;
|
| 2652 |
|
|
|
| 2653 |
|
|
/* Unless the reference is through a pointer, the size of the array matches
|
| 2654 |
|
|
its declaration. */
|
| 2655 |
|
|
if (!base || (!INDIRECT_REF_P (base) && TREE_CODE (base) != MEM_REF))
|
| 2656 |
|
|
return false;
|
| 2657 |
|
|
|
| 2658 |
|
|
for (;handled_component_p (ref); ref = parent)
|
| 2659 |
|
|
{
|
| 2660 |
|
|
parent = TREE_OPERAND (ref, 0);
|
| 2661 |
|
|
|
| 2662 |
|
|
if (TREE_CODE (ref) == COMPONENT_REF)
|
| 2663 |
|
|
{
|
| 2664 |
|
|
/* All fields of a union are at its end. */
|
| 2665 |
|
|
if (TREE_CODE (TREE_TYPE (parent)) == UNION_TYPE)
|
| 2666 |
|
|
continue;
|
| 2667 |
|
|
|
| 2668 |
|
|
/* Unless the field is at the end of the struct, we are done. */
|
| 2669 |
|
|
field = TREE_OPERAND (ref, 1);
|
| 2670 |
|
|
if (DECL_CHAIN (field))
|
| 2671 |
|
|
return false;
|
| 2672 |
|
|
}
|
| 2673 |
|
|
|
| 2674 |
|
|
/* The other options are ARRAY_REF, ARRAY_RANGE_REF, VIEW_CONVERT_EXPR.
|
| 2675 |
|
|
In all these cases, we might be accessing the last element, and
|
| 2676 |
|
|
although in practice this will probably never happen, it is legal for
|
| 2677 |
|
|
the indices of this last element to exceed the bounds of the array.
|
| 2678 |
|
|
Therefore, continue checking. */
|
| 2679 |
|
|
}
|
| 2680 |
|
|
|
| 2681 |
|
|
return true;
|
| 2682 |
|
|
}
|
| 2683 |
|
|
|
| 2684 |
|
|
/* Determine information about number of iterations a LOOP from the index
|
| 2685 |
|
|
IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
|
| 2686 |
|
|
guaranteed to be executed in every iteration of LOOP. Callback for
|
| 2687 |
|
|
for_each_index. */
|
| 2688 |
|
|
|
| 2689 |
|
|
struct ilb_data
|
| 2690 |
|
|
{
|
| 2691 |
|
|
struct loop *loop;
|
| 2692 |
|
|
gimple stmt;
|
| 2693 |
|
|
bool reliable;
|
| 2694 |
|
|
};
|
| 2695 |
|
|
|
| 2696 |
|
|
static bool
|
| 2697 |
|
|
idx_infer_loop_bounds (tree base, tree *idx, void *dta)
|
| 2698 |
|
|
{
|
| 2699 |
|
|
struct ilb_data *data = (struct ilb_data *) dta;
|
| 2700 |
|
|
tree ev, init, step;
|
| 2701 |
|
|
tree low, high, type, next;
|
| 2702 |
|
|
bool sign, upper = data->reliable, at_end = false;
|
| 2703 |
|
|
struct loop *loop = data->loop;
|
| 2704 |
|
|
|
| 2705 |
|
|
if (TREE_CODE (base) != ARRAY_REF)
|
| 2706 |
|
|
return true;
|
| 2707 |
|
|
|
| 2708 |
|
|
/* For arrays at the end of the structure, we are not guaranteed that they
|
| 2709 |
|
|
do not really extend over their declared size. However, for arrays of
|
| 2710 |
|
|
size greater than one, this is unlikely to be intended. */
|
| 2711 |
|
|
if (array_at_struct_end_p (base))
|
| 2712 |
|
|
{
|
| 2713 |
|
|
at_end = true;
|
| 2714 |
|
|
upper = false;
|
| 2715 |
|
|
}
|
| 2716 |
|
|
|
| 2717 |
|
|
ev = instantiate_parameters (loop, analyze_scalar_evolution (loop, *idx));
|
| 2718 |
|
|
init = initial_condition (ev);
|
| 2719 |
|
|
step = evolution_part_in_loop_num (ev, loop->num);
|
| 2720 |
|
|
|
| 2721 |
|
|
if (!init
|
| 2722 |
|
|
|| !step
|
| 2723 |
|
|
|| TREE_CODE (step) != INTEGER_CST
|
| 2724 |
|
|
|| integer_zerop (step)
|
| 2725 |
|
|
|| tree_contains_chrecs (init, NULL)
|
| 2726 |
|
|
|| chrec_contains_symbols_defined_in_loop (init, loop->num))
|
| 2727 |
|
|
return true;
|
| 2728 |
|
|
|
| 2729 |
|
|
low = array_ref_low_bound (base);
|
| 2730 |
|
|
high = array_ref_up_bound (base);
|
| 2731 |
|
|
|
| 2732 |
|
|
/* The case of nonconstant bounds could be handled, but it would be
|
| 2733 |
|
|
complicated. */
|
| 2734 |
|
|
if (TREE_CODE (low) != INTEGER_CST
|
| 2735 |
|
|
|| !high
|
| 2736 |
|
|
|| TREE_CODE (high) != INTEGER_CST)
|
| 2737 |
|
|
return true;
|
| 2738 |
|
|
sign = tree_int_cst_sign_bit (step);
|
| 2739 |
|
|
type = TREE_TYPE (step);
|
| 2740 |
|
|
|
| 2741 |
|
|
/* The array of length 1 at the end of a structure most likely extends
|
| 2742 |
|
|
beyond its bounds. */
|
| 2743 |
|
|
if (at_end
|
| 2744 |
|
|
&& operand_equal_p (low, high, 0))
|
| 2745 |
|
|
return true;
|
| 2746 |
|
|
|
| 2747 |
|
|
/* In case the relevant bound of the array does not fit in type, or
|
| 2748 |
|
|
it does, but bound + step (in type) still belongs into the range of the
|
| 2749 |
|
|
array, the index may wrap and still stay within the range of the array
|
| 2750 |
|
|
(consider e.g. if the array is indexed by the full range of
|
| 2751 |
|
|
unsigned char).
|
| 2752 |
|
|
|
| 2753 |
|
|
To make things simpler, we require both bounds to fit into type, although
|
| 2754 |
|
|
there are cases where this would not be strictly necessary. */
|
| 2755 |
|
|
if (!int_fits_type_p (high, type)
|
| 2756 |
|
|
|| !int_fits_type_p (low, type))
|
| 2757 |
|
|
return true;
|
| 2758 |
|
|
low = fold_convert (type, low);
|
| 2759 |
|
|
high = fold_convert (type, high);
|
| 2760 |
|
|
|
| 2761 |
|
|
if (sign)
|
| 2762 |
|
|
next = fold_binary (PLUS_EXPR, type, low, step);
|
| 2763 |
|
|
else
|
| 2764 |
|
|
next = fold_binary (PLUS_EXPR, type, high, step);
|
| 2765 |
|
|
|
| 2766 |
|
|
if (tree_int_cst_compare (low, next) <= 0
|
| 2767 |
|
|
&& tree_int_cst_compare (next, high) <= 0)
|
| 2768 |
|
|
return true;
|
| 2769 |
|
|
|
| 2770 |
|
|
record_nonwrapping_iv (loop, init, step, data->stmt, low, high, true, upper);
|
| 2771 |
|
|
return true;
|
| 2772 |
|
|
}
|
| 2773 |
|
|
|
| 2774 |
|
|
/* Determine information about number of iterations a LOOP from the bounds
|
| 2775 |
|
|
of arrays in the data reference REF accessed in STMT. RELIABLE is true if
|
| 2776 |
|
|
STMT is guaranteed to be executed in every iteration of LOOP.*/
|
| 2777 |
|
|
|
| 2778 |
|
|
static void
|
| 2779 |
|
|
infer_loop_bounds_from_ref (struct loop *loop, gimple stmt, tree ref,
|
| 2780 |
|
|
bool reliable)
|
| 2781 |
|
|
{
|
| 2782 |
|
|
struct ilb_data data;
|
| 2783 |
|
|
|
| 2784 |
|
|
data.loop = loop;
|
| 2785 |
|
|
data.stmt = stmt;
|
| 2786 |
|
|
data.reliable = reliable;
|
| 2787 |
|
|
for_each_index (&ref, idx_infer_loop_bounds, &data);
|
| 2788 |
|
|
}
|
| 2789 |
|
|
|
| 2790 |
|
|
/* Determine information about number of iterations of a LOOP from the way
|
| 2791 |
|
|
arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
|
| 2792 |
|
|
executed in every iteration of LOOP. */
|
| 2793 |
|
|
|
| 2794 |
|
|
static void
|
| 2795 |
|
|
infer_loop_bounds_from_array (struct loop *loop, gimple stmt, bool reliable)
|
| 2796 |
|
|
{
|
| 2797 |
|
|
if (is_gimple_assign (stmt))
|
| 2798 |
|
|
{
|
| 2799 |
|
|
tree op0 = gimple_assign_lhs (stmt);
|
| 2800 |
|
|
tree op1 = gimple_assign_rhs1 (stmt);
|
| 2801 |
|
|
|
| 2802 |
|
|
/* For each memory access, analyze its access function
|
| 2803 |
|
|
and record a bound on the loop iteration domain. */
|
| 2804 |
|
|
if (REFERENCE_CLASS_P (op0))
|
| 2805 |
|
|
infer_loop_bounds_from_ref (loop, stmt, op0, reliable);
|
| 2806 |
|
|
|
| 2807 |
|
|
if (REFERENCE_CLASS_P (op1))
|
| 2808 |
|
|
infer_loop_bounds_from_ref (loop, stmt, op1, reliable);
|
| 2809 |
|
|
}
|
| 2810 |
|
|
else if (is_gimple_call (stmt))
|
| 2811 |
|
|
{
|
| 2812 |
|
|
tree arg, lhs;
|
| 2813 |
|
|
unsigned i, n = gimple_call_num_args (stmt);
|
| 2814 |
|
|
|
| 2815 |
|
|
lhs = gimple_call_lhs (stmt);
|
| 2816 |
|
|
if (lhs && REFERENCE_CLASS_P (lhs))
|
| 2817 |
|
|
infer_loop_bounds_from_ref (loop, stmt, lhs, reliable);
|
| 2818 |
|
|
|
| 2819 |
|
|
for (i = 0; i < n; i++)
|
| 2820 |
|
|
{
|
| 2821 |
|
|
arg = gimple_call_arg (stmt, i);
|
| 2822 |
|
|
if (REFERENCE_CLASS_P (arg))
|
| 2823 |
|
|
infer_loop_bounds_from_ref (loop, stmt, arg, reliable);
|
| 2824 |
|
|
}
|
| 2825 |
|
|
}
|
| 2826 |
|
|
}
|
| 2827 |
|
|
|
| 2828 |
|
|
/* Determine information about number of iterations of a LOOP from the fact
|
| 2829 |
|
|
that pointer arithmetics in STMT does not overflow. */
|
| 2830 |
|
|
|
| 2831 |
|
|
static void
|
| 2832 |
|
|
infer_loop_bounds_from_pointer_arith (struct loop *loop, gimple stmt)
|
| 2833 |
|
|
{
|
| 2834 |
|
|
tree def, base, step, scev, type, low, high;
|
| 2835 |
|
|
tree var, ptr;
|
| 2836 |
|
|
|
| 2837 |
|
|
if (!is_gimple_assign (stmt)
|
| 2838 |
|
|
|| gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
|
| 2839 |
|
|
return;
|
| 2840 |
|
|
|
| 2841 |
|
|
def = gimple_assign_lhs (stmt);
|
| 2842 |
|
|
if (TREE_CODE (def) != SSA_NAME)
|
| 2843 |
|
|
return;
|
| 2844 |
|
|
|
| 2845 |
|
|
type = TREE_TYPE (def);
|
| 2846 |
|
|
if (!nowrap_type_p (type))
|
| 2847 |
|
|
return;
|
| 2848 |
|
|
|
| 2849 |
|
|
ptr = gimple_assign_rhs1 (stmt);
|
| 2850 |
|
|
if (!expr_invariant_in_loop_p (loop, ptr))
|
| 2851 |
|
|
return;
|
| 2852 |
|
|
|
| 2853 |
|
|
var = gimple_assign_rhs2 (stmt);
|
| 2854 |
|
|
if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
|
| 2855 |
|
|
return;
|
| 2856 |
|
|
|
| 2857 |
|
|
scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
|
| 2858 |
|
|
if (chrec_contains_undetermined (scev))
|
| 2859 |
|
|
return;
|
| 2860 |
|
|
|
| 2861 |
|
|
base = initial_condition_in_loop_num (scev, loop->num);
|
| 2862 |
|
|
step = evolution_part_in_loop_num (scev, loop->num);
|
| 2863 |
|
|
|
| 2864 |
|
|
if (!base || !step
|
| 2865 |
|
|
|| TREE_CODE (step) != INTEGER_CST
|
| 2866 |
|
|
|| tree_contains_chrecs (base, NULL)
|
| 2867 |
|
|
|| chrec_contains_symbols_defined_in_loop (base, loop->num))
|
| 2868 |
|
|
return;
|
| 2869 |
|
|
|
| 2870 |
|
|
low = lower_bound_in_type (type, type);
|
| 2871 |
|
|
high = upper_bound_in_type (type, type);
|
| 2872 |
|
|
|
| 2873 |
|
|
/* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
|
| 2874 |
|
|
produce a NULL pointer. The contrary would mean NULL points to an object,
|
| 2875 |
|
|
while NULL is supposed to compare unequal with the address of all objects.
|
| 2876 |
|
|
Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
|
| 2877 |
|
|
NULL pointer since that would mean wrapping, which we assume here not to
|
| 2878 |
|
|
happen. So, we can exclude NULL from the valid range of pointer
|
| 2879 |
|
|
arithmetic. */
|
| 2880 |
|
|
if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
|
| 2881 |
|
|
low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));
|
| 2882 |
|
|
|
| 2883 |
|
|
record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
|
| 2884 |
|
|
}
|
| 2885 |
|
|
|
| 2886 |
|
|
/* Determine information about number of iterations of a LOOP from the fact
|
| 2887 |
|
|
that signed arithmetics in STMT does not overflow. */
|
| 2888 |
|
|
|
| 2889 |
|
|
static void
|
| 2890 |
|
|
infer_loop_bounds_from_signedness (struct loop *loop, gimple stmt)
|
| 2891 |
|
|
{
|
| 2892 |
|
|
tree def, base, step, scev, type, low, high;
|
| 2893 |
|
|
|
| 2894 |
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
| 2895 |
|
|
return;
|
| 2896 |
|
|
|
| 2897 |
|
|
def = gimple_assign_lhs (stmt);
|
| 2898 |
|
|
|
| 2899 |
|
|
if (TREE_CODE (def) != SSA_NAME)
|
| 2900 |
|
|
return;
|
| 2901 |
|
|
|
| 2902 |
|
|
type = TREE_TYPE (def);
|
| 2903 |
|
|
if (!INTEGRAL_TYPE_P (type)
|
| 2904 |
|
|
|| !TYPE_OVERFLOW_UNDEFINED (type))
|
| 2905 |
|
|
return;
|
| 2906 |
|
|
|
| 2907 |
|
|
scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
|
| 2908 |
|
|
if (chrec_contains_undetermined (scev))
|
| 2909 |
|
|
return;
|
| 2910 |
|
|
|
| 2911 |
|
|
base = initial_condition_in_loop_num (scev, loop->num);
|
| 2912 |
|
|
step = evolution_part_in_loop_num (scev, loop->num);
|
| 2913 |
|
|
|
| 2914 |
|
|
if (!base || !step
|
| 2915 |
|
|
|| TREE_CODE (step) != INTEGER_CST
|
| 2916 |
|
|
|| tree_contains_chrecs (base, NULL)
|
| 2917 |
|
|
|| chrec_contains_symbols_defined_in_loop (base, loop->num))
|
| 2918 |
|
|
return;
|
| 2919 |
|
|
|
| 2920 |
|
|
low = lower_bound_in_type (type, type);
|
| 2921 |
|
|
high = upper_bound_in_type (type, type);
|
| 2922 |
|
|
|
| 2923 |
|
|
record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
|
| 2924 |
|
|
}
|
| 2925 |
|
|
|
| 2926 |
|
|
/* The following analyzers are extracting informations on the bounds
|
| 2927 |
|
|
of LOOP from the following undefined behaviors:
|
| 2928 |
|
|
|
| 2929 |
|
|
- data references should not access elements over the statically
|
| 2930 |
|
|
allocated size,
|
| 2931 |
|
|
|
| 2932 |
|
|
- signed variables should not overflow when flag_wrapv is not set.
|
| 2933 |
|
|
*/
|
| 2934 |
|
|
|
| 2935 |
|
|
static void
|
| 2936 |
|
|
infer_loop_bounds_from_undefined (struct loop *loop)
|
| 2937 |
|
|
{
|
| 2938 |
|
|
unsigned i;
|
| 2939 |
|
|
basic_block *bbs;
|
| 2940 |
|
|
gimple_stmt_iterator bsi;
|
| 2941 |
|
|
basic_block bb;
|
| 2942 |
|
|
bool reliable;
|
| 2943 |
|
|
|
| 2944 |
|
|
bbs = get_loop_body (loop);
|
| 2945 |
|
|
|
| 2946 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
| 2947 |
|
|
{
|
| 2948 |
|
|
bb = bbs[i];
|
| 2949 |
|
|
|
| 2950 |
|
|
/* If BB is not executed in each iteration of the loop, we cannot
|
| 2951 |
|
|
use the operations in it to infer reliable upper bound on the
|
| 2952 |
|
|
# of iterations of the loop. However, we can use it as a guess. */
|
| 2953 |
|
|
reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
|
| 2954 |
|
|
|
| 2955 |
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
| 2956 |
|
|
{
|
| 2957 |
|
|
gimple stmt = gsi_stmt (bsi);
|
| 2958 |
|
|
|
| 2959 |
|
|
infer_loop_bounds_from_array (loop, stmt, reliable);
|
| 2960 |
|
|
|
| 2961 |
|
|
if (reliable)
|
| 2962 |
|
|
{
|
| 2963 |
|
|
infer_loop_bounds_from_signedness (loop, stmt);
|
| 2964 |
|
|
infer_loop_bounds_from_pointer_arith (loop, stmt);
|
| 2965 |
|
|
}
|
| 2966 |
|
|
}
|
| 2967 |
|
|
|
| 2968 |
|
|
}
|
| 2969 |
|
|
|
| 2970 |
|
|
free (bbs);
|
| 2971 |
|
|
}
|
| 2972 |
|
|
|
| 2973 |
|
|
/* Converts VAL to double_int. */
|
| 2974 |
|
|
|
| 2975 |
|
|
static double_int
|
| 2976 |
|
|
gcov_type_to_double_int (gcov_type val)
|
| 2977 |
|
|
{
|
| 2978 |
|
|
double_int ret;
|
| 2979 |
|
|
|
| 2980 |
|
|
ret.low = (unsigned HOST_WIDE_INT) val;
|
| 2981 |
|
|
/* If HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_WIDEST_INT, avoid shifting by
|
| 2982 |
|
|
the size of type. */
|
| 2983 |
|
|
val >>= HOST_BITS_PER_WIDE_INT - 1;
|
| 2984 |
|
|
val >>= 1;
|
| 2985 |
|
|
ret.high = (unsigned HOST_WIDE_INT) val;
|
| 2986 |
|
|
|
| 2987 |
|
|
return ret;
|
| 2988 |
|
|
}
|
| 2989 |
|
|
|
| 2990 |
|
|
/* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
|
| 2991 |
|
|
is true also use estimates derived from undefined behavior. */
|
| 2992 |
|
|
|
| 2993 |
|
|
void
|
| 2994 |
|
|
estimate_numbers_of_iterations_loop (struct loop *loop, bool use_undefined_p)
|
| 2995 |
|
|
{
|
| 2996 |
|
|
VEC (edge, heap) *exits;
|
| 2997 |
|
|
tree niter, type;
|
| 2998 |
|
|
unsigned i;
|
| 2999 |
|
|
struct tree_niter_desc niter_desc;
|
| 3000 |
|
|
edge ex;
|
| 3001 |
|
|
double_int bound;
|
| 3002 |
|
|
|
| 3003 |
|
|
/* Give up if we already have tried to compute an estimation. */
|
| 3004 |
|
|
if (loop->estimate_state != EST_NOT_COMPUTED)
|
| 3005 |
|
|
return;
|
| 3006 |
|
|
loop->estimate_state = EST_AVAILABLE;
|
| 3007 |
|
|
loop->any_upper_bound = false;
|
| 3008 |
|
|
loop->any_estimate = false;
|
| 3009 |
|
|
|
| 3010 |
|
|
exits = get_loop_exit_edges (loop);
|
| 3011 |
|
|
FOR_EACH_VEC_ELT (edge, exits, i, ex)
|
| 3012 |
|
|
{
|
| 3013 |
|
|
if (!number_of_iterations_exit (loop, ex, &niter_desc, false))
|
| 3014 |
|
|
continue;
|
| 3015 |
|
|
|
| 3016 |
|
|
niter = niter_desc.niter;
|
| 3017 |
|
|
type = TREE_TYPE (niter);
|
| 3018 |
|
|
if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
|
| 3019 |
|
|
niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
|
| 3020 |
|
|
build_int_cst (type, 0),
|
| 3021 |
|
|
niter);
|
| 3022 |
|
|
record_estimate (loop, niter, niter_desc.max,
|
| 3023 |
|
|
last_stmt (ex->src),
|
| 3024 |
|
|
true, true, true);
|
| 3025 |
|
|
}
|
| 3026 |
|
|
VEC_free (edge, heap, exits);
|
| 3027 |
|
|
|
| 3028 |
|
|
if (use_undefined_p)
|
| 3029 |
|
|
infer_loop_bounds_from_undefined (loop);
|
| 3030 |
|
|
|
| 3031 |
|
|
/* If we have a measured profile, use it to estimate the number of
|
| 3032 |
|
|
iterations. */
|
| 3033 |
|
|
if (loop->header->count != 0)
|
| 3034 |
|
|
{
|
| 3035 |
|
|
gcov_type nit = expected_loop_iterations_unbounded (loop) + 1;
|
| 3036 |
|
|
bound = gcov_type_to_double_int (nit);
|
| 3037 |
|
|
record_niter_bound (loop, bound, true, false);
|
| 3038 |
|
|
}
|
| 3039 |
|
|
|
| 3040 |
|
|
/* If an upper bound is smaller than the realistic estimate of the
|
| 3041 |
|
|
number of iterations, use the upper bound instead. */
|
| 3042 |
|
|
if (loop->any_upper_bound
|
| 3043 |
|
|
&& loop->any_estimate
|
| 3044 |
|
|
&& double_int_ucmp (loop->nb_iterations_upper_bound,
|
| 3045 |
|
|
loop->nb_iterations_estimate) < 0)
|
| 3046 |
|
|
loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
|
| 3047 |
|
|
}
|
| 3048 |
|
|
|
| 3049 |
|
|
/* Sets NIT to the estimated number of executions of the latch of the
|
| 3050 |
|
|
LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
|
| 3051 |
|
|
large as the number of iterations. If we have no reliable estimate,
|
| 3052 |
|
|
the function returns false, otherwise returns true. */
|
| 3053 |
|
|
|
| 3054 |
|
|
bool
|
| 3055 |
|
|
estimated_loop_iterations (struct loop *loop, bool conservative,
|
| 3056 |
|
|
double_int *nit)
|
| 3057 |
|
|
{
|
| 3058 |
|
|
estimate_numbers_of_iterations_loop (loop, true);
|
| 3059 |
|
|
if (conservative)
|
| 3060 |
|
|
{
|
| 3061 |
|
|
if (!loop->any_upper_bound)
|
| 3062 |
|
|
return false;
|
| 3063 |
|
|
|
| 3064 |
|
|
*nit = loop->nb_iterations_upper_bound;
|
| 3065 |
|
|
}
|
| 3066 |
|
|
else
|
| 3067 |
|
|
{
|
| 3068 |
|
|
if (!loop->any_estimate)
|
| 3069 |
|
|
return false;
|
| 3070 |
|
|
|
| 3071 |
|
|
*nit = loop->nb_iterations_estimate;
|
| 3072 |
|
|
}
|
| 3073 |
|
|
|
| 3074 |
|
|
return true;
|
| 3075 |
|
|
}
|
| 3076 |
|
|
|
| 3077 |
|
|
/* Similar to estimated_loop_iterations, but returns the estimate only
|
| 3078 |
|
|
if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
|
| 3079 |
|
|
on the number of iterations of LOOP could not be derived, returns -1. */
|
| 3080 |
|
|
|
| 3081 |
|
|
HOST_WIDE_INT
|
| 3082 |
|
|
estimated_loop_iterations_int (struct loop *loop, bool conservative)
|
| 3083 |
|
|
{
|
| 3084 |
|
|
double_int nit;
|
| 3085 |
|
|
HOST_WIDE_INT hwi_nit;
|
| 3086 |
|
|
|
| 3087 |
|
|
if (!estimated_loop_iterations (loop, conservative, &nit))
|
| 3088 |
|
|
return -1;
|
| 3089 |
|
|
|
| 3090 |
|
|
if (!double_int_fits_in_shwi_p (nit))
|
| 3091 |
|
|
return -1;
|
| 3092 |
|
|
hwi_nit = double_int_to_shwi (nit);
|
| 3093 |
|
|
|
| 3094 |
|
|
return hwi_nit < 0 ? -1 : hwi_nit;
|
| 3095 |
|
|
}
|
| 3096 |
|
|
|
| 3097 |
|
|
/* Returns an upper bound on the number of executions of statements
|
| 3098 |
|
|
in the LOOP. For statements before the loop exit, this exceeds
|
| 3099 |
|
|
the number of execution of the latch by one. */
|
| 3100 |
|
|
|
| 3101 |
|
|
HOST_WIDE_INT
|
| 3102 |
|
|
max_stmt_executions_int (struct loop *loop, bool conservative)
|
| 3103 |
|
|
{
|
| 3104 |
|
|
HOST_WIDE_INT nit = estimated_loop_iterations_int (loop, conservative);
|
| 3105 |
|
|
HOST_WIDE_INT snit;
|
| 3106 |
|
|
|
| 3107 |
|
|
if (nit == -1)
|
| 3108 |
|
|
return -1;
|
| 3109 |
|
|
|
| 3110 |
|
|
snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
|
| 3111 |
|
|
|
| 3112 |
|
|
/* If the computation overflows, return -1. */
|
| 3113 |
|
|
return snit < 0 ? -1 : snit;
|
| 3114 |
|
|
}
|
| 3115 |
|
|
|
| 3116 |
|
|
/* Sets NIT to the estimated number of executions of the latch of the
|
| 3117 |
|
|
LOOP, plus one. If CONSERVATIVE is true, we must be sure that NIT is at
|
| 3118 |
|
|
least as large as the number of iterations. If we have no reliable
|
| 3119 |
|
|
estimate, the function returns false, otherwise returns true. */
|
| 3120 |
|
|
|
| 3121 |
|
|
bool
|
| 3122 |
|
|
max_stmt_executions (struct loop *loop, bool conservative, double_int *nit)
|
| 3123 |
|
|
{
|
| 3124 |
|
|
double_int nit_minus_one;
|
| 3125 |
|
|
|
| 3126 |
|
|
if (!estimated_loop_iterations (loop, conservative, nit))
|
| 3127 |
|
|
return false;
|
| 3128 |
|
|
|
| 3129 |
|
|
nit_minus_one = *nit;
|
| 3130 |
|
|
|
| 3131 |
|
|
*nit = double_int_add (*nit, double_int_one);
|
| 3132 |
|
|
|
| 3133 |
|
|
return double_int_ucmp (*nit, nit_minus_one) > 0;
|
| 3134 |
|
|
}
|
| 3135 |
|
|
|
| 3136 |
|
|
/* Records estimates on numbers of iterations of loops. */
|
| 3137 |
|
|
|
| 3138 |
|
|
void
|
| 3139 |
|
|
estimate_numbers_of_iterations (bool use_undefined_p)
|
| 3140 |
|
|
{
|
| 3141 |
|
|
loop_iterator li;
|
| 3142 |
|
|
struct loop *loop;
|
| 3143 |
|
|
|
| 3144 |
|
|
/* We don't want to issue signed overflow warnings while getting
|
| 3145 |
|
|
loop iteration estimates. */
|
| 3146 |
|
|
fold_defer_overflow_warnings ();
|
| 3147 |
|
|
|
| 3148 |
|
|
FOR_EACH_LOOP (li, loop, 0)
|
| 3149 |
|
|
{
|
| 3150 |
|
|
estimate_numbers_of_iterations_loop (loop, use_undefined_p);
|
| 3151 |
|
|
}
|
| 3152 |
|
|
|
| 3153 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
| 3154 |
|
|
}
|
| 3155 |
|
|
|
| 3156 |
|
|
/* Returns true if statement S1 dominates statement S2. */
|
| 3157 |
|
|
|
| 3158 |
|
|
bool
|
| 3159 |
|
|
stmt_dominates_stmt_p (gimple s1, gimple s2)
|
| 3160 |
|
|
{
|
| 3161 |
|
|
basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
|
| 3162 |
|
|
|
| 3163 |
|
|
if (!bb1
|
| 3164 |
|
|
|| s1 == s2)
|
| 3165 |
|
|
return true;
|
| 3166 |
|
|
|
| 3167 |
|
|
if (bb1 == bb2)
|
| 3168 |
|
|
{
|
| 3169 |
|
|
gimple_stmt_iterator bsi;
|
| 3170 |
|
|
|
| 3171 |
|
|
if (gimple_code (s2) == GIMPLE_PHI)
|
| 3172 |
|
|
return false;
|
| 3173 |
|
|
|
| 3174 |
|
|
if (gimple_code (s1) == GIMPLE_PHI)
|
| 3175 |
|
|
return true;
|
| 3176 |
|
|
|
| 3177 |
|
|
for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
|
| 3178 |
|
|
if (gsi_stmt (bsi) == s1)
|
| 3179 |
|
|
return true;
|
| 3180 |
|
|
|
| 3181 |
|
|
return false;
|
| 3182 |
|
|
}
|
| 3183 |
|
|
|
| 3184 |
|
|
return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
|
| 3185 |
|
|
}
|
| 3186 |
|
|
|
| 3187 |
|
|
/* Returns true when we can prove that the number of executions of
|
| 3188 |
|
|
STMT in the loop is at most NITER, according to the bound on
|
| 3189 |
|
|
the number of executions of the statement NITER_BOUND->stmt recorded in
|
| 3190 |
|
|
NITER_BOUND. If STMT is NULL, we must prove this bound for all
|
| 3191 |
|
|
statements in the loop. */
|
| 3192 |
|
|
|
| 3193 |
|
|
static bool
|
| 3194 |
|
|
n_of_executions_at_most (gimple stmt,
|
| 3195 |
|
|
struct nb_iter_bound *niter_bound,
|
| 3196 |
|
|
tree niter)
|
| 3197 |
|
|
{
|
| 3198 |
|
|
double_int bound = niter_bound->bound;
|
| 3199 |
|
|
tree nit_type = TREE_TYPE (niter), e;
|
| 3200 |
|
|
enum tree_code cmp;
|
| 3201 |
|
|
|
| 3202 |
|
|
gcc_assert (TYPE_UNSIGNED (nit_type));
|
| 3203 |
|
|
|
| 3204 |
|
|
/* If the bound does not even fit into NIT_TYPE, it cannot tell us that
|
| 3205 |
|
|
the number of iterations is small. */
|
| 3206 |
|
|
if (!double_int_fits_to_tree_p (nit_type, bound))
|
| 3207 |
|
|
return false;
|
| 3208 |
|
|
|
| 3209 |
|
|
/* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
|
| 3210 |
|
|
times. This means that:
|
| 3211 |
|
|
|
| 3212 |
|
|
-- if NITER_BOUND->is_exit is true, then everything before
|
| 3213 |
|
|
NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
|
| 3214 |
|
|
times, and everything after it at most NITER_BOUND->bound times.
|
| 3215 |
|
|
|
| 3216 |
|
|
-- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
|
| 3217 |
|
|
is executed, then NITER_BOUND->stmt is executed as well in the same
|
| 3218 |
|
|
iteration (we conclude that if both statements belong to the same
|
| 3219 |
|
|
basic block, or if STMT is after NITER_BOUND->stmt), then STMT
|
| 3220 |
|
|
is executed at most NITER_BOUND->bound + 1 times. Otherwise STMT is
|
| 3221 |
|
|
executed at most NITER_BOUND->bound + 2 times. */
|
| 3222 |
|
|
|
| 3223 |
|
|
if (niter_bound->is_exit)
|
| 3224 |
|
|
{
|
| 3225 |
|
|
if (stmt
|
| 3226 |
|
|
&& stmt != niter_bound->stmt
|
| 3227 |
|
|
&& stmt_dominates_stmt_p (niter_bound->stmt, stmt))
|
| 3228 |
|
|
cmp = GE_EXPR;
|
| 3229 |
|
|
else
|
| 3230 |
|
|
cmp = GT_EXPR;
|
| 3231 |
|
|
}
|
| 3232 |
|
|
else
|
| 3233 |
|
|
{
|
| 3234 |
|
|
if (!stmt
|
| 3235 |
|
|
|| (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
|
| 3236 |
|
|
&& !stmt_dominates_stmt_p (niter_bound->stmt, stmt)))
|
| 3237 |
|
|
{
|
| 3238 |
|
|
bound = double_int_add (bound, double_int_one);
|
| 3239 |
|
|
if (double_int_zero_p (bound)
|
| 3240 |
|
|
|| !double_int_fits_to_tree_p (nit_type, bound))
|
| 3241 |
|
|
return false;
|
| 3242 |
|
|
}
|
| 3243 |
|
|
cmp = GT_EXPR;
|
| 3244 |
|
|
}
|
| 3245 |
|
|
|
| 3246 |
|
|
e = fold_binary (cmp, boolean_type_node,
|
| 3247 |
|
|
niter, double_int_to_tree (nit_type, bound));
|
| 3248 |
|
|
return e && integer_nonzerop (e);
|
| 3249 |
|
|
}
|
| 3250 |
|
|
|
| 3251 |
|
|
/* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
|
| 3252 |
|
|
|
| 3253 |
|
|
bool
|
| 3254 |
|
|
nowrap_type_p (tree type)
|
| 3255 |
|
|
{
|
| 3256 |
|
|
if (INTEGRAL_TYPE_P (type)
|
| 3257 |
|
|
&& TYPE_OVERFLOW_UNDEFINED (type))
|
| 3258 |
|
|
return true;
|
| 3259 |
|
|
|
| 3260 |
|
|
if (POINTER_TYPE_P (type))
|
| 3261 |
|
|
return true;
|
| 3262 |
|
|
|
| 3263 |
|
|
return false;
|
| 3264 |
|
|
}
|
| 3265 |
|
|
|
| 3266 |
|
|
/* Return false only when the induction variable BASE + STEP * I is
|
| 3267 |
|
|
known to not overflow: i.e. when the number of iterations is small
|
| 3268 |
|
|
enough with respect to the step and initial condition in order to
|
| 3269 |
|
|
keep the evolution confined in TYPEs bounds. Return true when the
|
| 3270 |
|
|
iv is known to overflow or when the property is not computable.
|
| 3271 |
|
|
|
| 3272 |
|
|
USE_OVERFLOW_SEMANTICS is true if this function should assume that
|
| 3273 |
|
|
the rules for overflow of the given language apply (e.g., that signed
|
| 3274 |
|
|
arithmetics in C does not overflow). */
|
| 3275 |
|
|
|
| 3276 |
|
|
bool
|
| 3277 |
|
|
scev_probably_wraps_p (tree base, tree step,
|
| 3278 |
|
|
gimple at_stmt, struct loop *loop,
|
| 3279 |
|
|
bool use_overflow_semantics)
|
| 3280 |
|
|
{
|
| 3281 |
|
|
struct nb_iter_bound *bound;
|
| 3282 |
|
|
tree delta, step_abs;
|
| 3283 |
|
|
tree unsigned_type, valid_niter;
|
| 3284 |
|
|
tree type = TREE_TYPE (step);
|
| 3285 |
|
|
|
| 3286 |
|
|
/* FIXME: We really need something like
|
| 3287 |
|
|
http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
|
| 3288 |
|
|
|
| 3289 |
|
|
We used to test for the following situation that frequently appears
|
| 3290 |
|
|
during address arithmetics:
|
| 3291 |
|
|
|
| 3292 |
|
|
D.1621_13 = (long unsigned intD.4) D.1620_12;
|
| 3293 |
|
|
D.1622_14 = D.1621_13 * 8;
|
| 3294 |
|
|
D.1623_15 = (doubleD.29 *) D.1622_14;
|
| 3295 |
|
|
|
| 3296 |
|
|
And derived that the sequence corresponding to D_14
|
| 3297 |
|
|
can be proved to not wrap because it is used for computing a
|
| 3298 |
|
|
memory access; however, this is not really the case -- for example,
|
| 3299 |
|
|
if D_12 = (unsigned char) [254,+,1], then D_14 has values
|
| 3300 |
|
|
2032, 2040, 0, 8, ..., but the code is still legal. */
|
| 3301 |
|
|
|
| 3302 |
|
|
if (chrec_contains_undetermined (base)
|
| 3303 |
|
|
|| chrec_contains_undetermined (step))
|
| 3304 |
|
|
return true;
|
| 3305 |
|
|
|
| 3306 |
|
|
if (integer_zerop (step))
|
| 3307 |
|
|
return false;
|
| 3308 |
|
|
|
| 3309 |
|
|
/* If we can use the fact that signed and pointer arithmetics does not
|
| 3310 |
|
|
wrap, we are done. */
|
| 3311 |
|
|
if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
|
| 3312 |
|
|
return false;
|
| 3313 |
|
|
|
| 3314 |
|
|
/* To be able to use estimates on number of iterations of the loop,
|
| 3315 |
|
|
we must have an upper bound on the absolute value of the step. */
|
| 3316 |
|
|
if (TREE_CODE (step) != INTEGER_CST)
|
| 3317 |
|
|
return true;
|
| 3318 |
|
|
|
| 3319 |
|
|
/* Don't issue signed overflow warnings. */
|
| 3320 |
|
|
fold_defer_overflow_warnings ();
|
| 3321 |
|
|
|
| 3322 |
|
|
/* Otherwise, compute the number of iterations before we reach the
|
| 3323 |
|
|
bound of the type, and verify that the loop is exited before this
|
| 3324 |
|
|
occurs. */
|
| 3325 |
|
|
unsigned_type = unsigned_type_for (type);
|
| 3326 |
|
|
base = fold_convert (unsigned_type, base);
|
| 3327 |
|
|
|
| 3328 |
|
|
if (tree_int_cst_sign_bit (step))
|
| 3329 |
|
|
{
|
| 3330 |
|
|
tree extreme = fold_convert (unsigned_type,
|
| 3331 |
|
|
lower_bound_in_type (type, type));
|
| 3332 |
|
|
delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
|
| 3333 |
|
|
step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
|
| 3334 |
|
|
fold_convert (unsigned_type, step));
|
| 3335 |
|
|
}
|
| 3336 |
|
|
else
|
| 3337 |
|
|
{
|
| 3338 |
|
|
tree extreme = fold_convert (unsigned_type,
|
| 3339 |
|
|
upper_bound_in_type (type, type));
|
| 3340 |
|
|
delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
|
| 3341 |
|
|
step_abs = fold_convert (unsigned_type, step);
|
| 3342 |
|
|
}
|
| 3343 |
|
|
|
| 3344 |
|
|
valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
|
| 3345 |
|
|
|
| 3346 |
|
|
estimate_numbers_of_iterations_loop (loop, true);
|
| 3347 |
|
|
for (bound = loop->bounds; bound; bound = bound->next)
|
| 3348 |
|
|
{
|
| 3349 |
|
|
if (n_of_executions_at_most (at_stmt, bound, valid_niter))
|
| 3350 |
|
|
{
|
| 3351 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
| 3352 |
|
|
return false;
|
| 3353 |
|
|
}
|
| 3354 |
|
|
}
|
| 3355 |
|
|
|
| 3356 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
| 3357 |
|
|
|
| 3358 |
|
|
/* At this point we still don't have a proof that the iv does not
|
| 3359 |
|
|
overflow: give up. */
|
| 3360 |
|
|
return true;
|
| 3361 |
|
|
}
|
| 3362 |
|
|
|
| 3363 |
|
|
/* Frees the information on upper bounds on numbers of iterations of LOOP. */
|
| 3364 |
|
|
|
| 3365 |
|
|
void
|
| 3366 |
|
|
free_numbers_of_iterations_estimates_loop (struct loop *loop)
|
| 3367 |
|
|
{
|
| 3368 |
|
|
struct nb_iter_bound *bound, *next;
|
| 3369 |
|
|
|
| 3370 |
|
|
loop->nb_iterations = NULL;
|
| 3371 |
|
|
loop->estimate_state = EST_NOT_COMPUTED;
|
| 3372 |
|
|
for (bound = loop->bounds; bound; bound = next)
|
| 3373 |
|
|
{
|
| 3374 |
|
|
next = bound->next;
|
| 3375 |
|
|
ggc_free (bound);
|
| 3376 |
|
|
}
|
| 3377 |
|
|
|
| 3378 |
|
|
loop->bounds = NULL;
|
| 3379 |
|
|
}
|
| 3380 |
|
|
|
| 3381 |
|
|
/* Frees the information on upper bounds on numbers of iterations of loops. */
|
| 3382 |
|
|
|
| 3383 |
|
|
void
|
| 3384 |
|
|
free_numbers_of_iterations_estimates (void)
|
| 3385 |
|
|
{
|
| 3386 |
|
|
loop_iterator li;
|
| 3387 |
|
|
struct loop *loop;
|
| 3388 |
|
|
|
| 3389 |
|
|
FOR_EACH_LOOP (li, loop, 0)
|
| 3390 |
|
|
{
|
| 3391 |
|
|
free_numbers_of_iterations_estimates_loop (loop);
|
| 3392 |
|
|
}
|
| 3393 |
|
|
}
|
| 3394 |
|
|
|
| 3395 |
|
|
/* Substitute value VAL for ssa name NAME inside expressions held
|
| 3396 |
|
|
at LOOP. */
|
| 3397 |
|
|
|
| 3398 |
|
|
void
|
| 3399 |
|
|
substitute_in_loop_info (struct loop *loop, tree name, tree val)
|
| 3400 |
|
|
{
|
| 3401 |
|
|
loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);
|
| 3402 |
|
|
}
|