1 |
684 |
jeremybenn |
/* Functions to determine/estimate number of iterations of a loop.
|
2 |
|
|
Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
8 |
|
|
under the terms of the GNU General Public License as published by the
|
9 |
|
|
Free Software Foundation; either version 3, or (at your option) any
|
10 |
|
|
later version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
13 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
15 |
|
|
for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "config.h"
|
22 |
|
|
#include "system.h"
|
23 |
|
|
#include "coretypes.h"
|
24 |
|
|
#include "tm.h"
|
25 |
|
|
#include "tree.h"
|
26 |
|
|
#include "tm_p.h"
|
27 |
|
|
#include "basic-block.h"
|
28 |
|
|
#include "output.h"
|
29 |
|
|
#include "tree-pretty-print.h"
|
30 |
|
|
#include "gimple-pretty-print.h"
|
31 |
|
|
#include "intl.h"
|
32 |
|
|
#include "tree-flow.h"
|
33 |
|
|
#include "tree-dump.h"
|
34 |
|
|
#include "cfgloop.h"
|
35 |
|
|
#include "tree-pass.h"
|
36 |
|
|
#include "ggc.h"
|
37 |
|
|
#include "tree-chrec.h"
|
38 |
|
|
#include "tree-scalar-evolution.h"
|
39 |
|
|
#include "tree-data-ref.h"
|
40 |
|
|
#include "params.h"
|
41 |
|
|
#include "flags.h"
|
42 |
|
|
#include "diagnostic-core.h"
|
43 |
|
|
#include "tree-inline.h"
|
44 |
|
|
#include "gmp.h"
|
45 |
|
|
|
46 |
|
|
#define SWAP(X, Y) do { affine_iv *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
|
47 |
|
|
|
48 |
|
|
/* The maximum number of dominator BBs we search for conditions
|
49 |
|
|
of loop header copies we use for simplifying a conditional
|
50 |
|
|
expression. */
|
51 |
|
|
#define MAX_DOMINATORS_TO_WALK 8
|
52 |
|
|
|
53 |
|
|
/*
|
54 |
|
|
|
55 |
|
|
Analysis of number of iterations of an affine exit test.
|
56 |
|
|
|
57 |
|
|
*/
|
58 |
|
|
|
59 |
|
|
/* Bounds on some value, BELOW <= X <= UP. */
|
60 |
|
|
|
61 |
|
|
typedef struct
|
62 |
|
|
{
|
63 |
|
|
mpz_t below, up;
|
64 |
|
|
} bounds;
|
65 |
|
|
|
66 |
|
|
|
67 |
|
|
/* Splits expression EXPR to a variable part VAR and constant OFFSET. */
|
68 |
|
|
|
69 |
|
|
static void
|
70 |
|
|
split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
|
71 |
|
|
{
|
72 |
|
|
tree type = TREE_TYPE (expr);
|
73 |
|
|
tree op0, op1;
|
74 |
|
|
double_int off;
|
75 |
|
|
bool negate = false;
|
76 |
|
|
|
77 |
|
|
*var = expr;
|
78 |
|
|
mpz_set_ui (offset, 0);
|
79 |
|
|
|
80 |
|
|
switch (TREE_CODE (expr))
|
81 |
|
|
{
|
82 |
|
|
case MINUS_EXPR:
|
83 |
|
|
negate = true;
|
84 |
|
|
/* Fallthru. */
|
85 |
|
|
|
86 |
|
|
case PLUS_EXPR:
|
87 |
|
|
case POINTER_PLUS_EXPR:
|
88 |
|
|
op0 = TREE_OPERAND (expr, 0);
|
89 |
|
|
op1 = TREE_OPERAND (expr, 1);
|
90 |
|
|
|
91 |
|
|
if (TREE_CODE (op1) != INTEGER_CST)
|
92 |
|
|
break;
|
93 |
|
|
|
94 |
|
|
*var = op0;
|
95 |
|
|
/* Always sign extend the offset. */
|
96 |
|
|
off = tree_to_double_int (op1);
|
97 |
|
|
off = double_int_sext (off, TYPE_PRECISION (type));
|
98 |
|
|
mpz_set_double_int (offset, off, false);
|
99 |
|
|
if (negate)
|
100 |
|
|
mpz_neg (offset, offset);
|
101 |
|
|
break;
|
102 |
|
|
|
103 |
|
|
case INTEGER_CST:
|
104 |
|
|
*var = build_int_cst_type (type, 0);
|
105 |
|
|
off = tree_to_double_int (expr);
|
106 |
|
|
mpz_set_double_int (offset, off, TYPE_UNSIGNED (type));
|
107 |
|
|
break;
|
108 |
|
|
|
109 |
|
|
default:
|
110 |
|
|
break;
|
111 |
|
|
}
|
112 |
|
|
}
|
113 |
|
|
|
114 |
|
|
/* Stores estimate on the minimum/maximum value of the expression VAR + OFF
|
115 |
|
|
in TYPE to MIN and MAX. */
|
116 |
|
|
|
117 |
|
|
static void
|
118 |
|
|
determine_value_range (tree type, tree var, mpz_t off,
|
119 |
|
|
mpz_t min, mpz_t max)
|
120 |
|
|
{
|
121 |
|
|
/* If the expression is a constant, we know its value exactly. */
|
122 |
|
|
if (integer_zerop (var))
|
123 |
|
|
{
|
124 |
|
|
mpz_set (min, off);
|
125 |
|
|
mpz_set (max, off);
|
126 |
|
|
return;
|
127 |
|
|
}
|
128 |
|
|
|
129 |
|
|
/* If the computation may wrap, we know nothing about the value, except for
|
130 |
|
|
the range of the type. */
|
131 |
|
|
get_type_static_bounds (type, min, max);
|
132 |
|
|
if (!nowrap_type_p (type))
|
133 |
|
|
return;
|
134 |
|
|
|
135 |
|
|
/* Since the addition of OFF does not wrap, if OFF is positive, then we may
|
136 |
|
|
add it to MIN, otherwise to MAX. */
|
137 |
|
|
if (mpz_sgn (off) < 0)
|
138 |
|
|
mpz_add (max, max, off);
|
139 |
|
|
else
|
140 |
|
|
mpz_add (min, min, off);
|
141 |
|
|
}
|
142 |
|
|
|
143 |
|
|
/* Stores the bounds on the difference of the values of the expressions
|
144 |
|
|
(var + X) and (var + Y), computed in TYPE, to BNDS. */
|
145 |
|
|
|
146 |
|
|
static void
|
147 |
|
|
bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
|
148 |
|
|
bounds *bnds)
|
149 |
|
|
{
|
150 |
|
|
int rel = mpz_cmp (x, y);
|
151 |
|
|
bool may_wrap = !nowrap_type_p (type);
|
152 |
|
|
mpz_t m;
|
153 |
|
|
|
154 |
|
|
/* If X == Y, then the expressions are always equal.
|
155 |
|
|
If X > Y, there are the following possibilities:
|
156 |
|
|
a) neither of var + X and var + Y overflow or underflow, or both of
|
157 |
|
|
them do. Then their difference is X - Y.
|
158 |
|
|
b) var + X overflows, and var + Y does not. Then the values of the
|
159 |
|
|
expressions are var + X - M and var + Y, where M is the range of
|
160 |
|
|
the type, and their difference is X - Y - M.
|
161 |
|
|
c) var + Y underflows and var + X does not. Their difference again
|
162 |
|
|
is M - X + Y.
|
163 |
|
|
Therefore, if the arithmetics in type does not overflow, then the
|
164 |
|
|
bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
|
165 |
|
|
Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
|
166 |
|
|
(X - Y, X - Y + M). */
|
167 |
|
|
|
168 |
|
|
if (rel == 0)
|
169 |
|
|
{
|
170 |
|
|
mpz_set_ui (bnds->below, 0);
|
171 |
|
|
mpz_set_ui (bnds->up, 0);
|
172 |
|
|
return;
|
173 |
|
|
}
|
174 |
|
|
|
175 |
|
|
mpz_init (m);
|
176 |
|
|
mpz_set_double_int (m, double_int_mask (TYPE_PRECISION (type)), true);
|
177 |
|
|
mpz_add_ui (m, m, 1);
|
178 |
|
|
mpz_sub (bnds->up, x, y);
|
179 |
|
|
mpz_set (bnds->below, bnds->up);
|
180 |
|
|
|
181 |
|
|
if (may_wrap)
|
182 |
|
|
{
|
183 |
|
|
if (rel > 0)
|
184 |
|
|
mpz_sub (bnds->below, bnds->below, m);
|
185 |
|
|
else
|
186 |
|
|
mpz_add (bnds->up, bnds->up, m);
|
187 |
|
|
}
|
188 |
|
|
|
189 |
|
|
mpz_clear (m);
|
190 |
|
|
}
|
191 |
|
|
|
192 |
|
|
/* From condition C0 CMP C1 derives information regarding the
|
193 |
|
|
difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
|
194 |
|
|
and stores it to BNDS. */
|
195 |
|
|
|
196 |
|
|
static void
|
197 |
|
|
refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
|
198 |
|
|
tree vary, mpz_t offy,
|
199 |
|
|
tree c0, enum tree_code cmp, tree c1,
|
200 |
|
|
bounds *bnds)
|
201 |
|
|
{
|
202 |
|
|
tree varc0, varc1, tmp, ctype;
|
203 |
|
|
mpz_t offc0, offc1, loffx, loffy, bnd;
|
204 |
|
|
bool lbound = false;
|
205 |
|
|
bool no_wrap = nowrap_type_p (type);
|
206 |
|
|
bool x_ok, y_ok;
|
207 |
|
|
|
208 |
|
|
switch (cmp)
|
209 |
|
|
{
|
210 |
|
|
case LT_EXPR:
|
211 |
|
|
case LE_EXPR:
|
212 |
|
|
case GT_EXPR:
|
213 |
|
|
case GE_EXPR:
|
214 |
|
|
STRIP_SIGN_NOPS (c0);
|
215 |
|
|
STRIP_SIGN_NOPS (c1);
|
216 |
|
|
ctype = TREE_TYPE (c0);
|
217 |
|
|
if (!useless_type_conversion_p (ctype, type))
|
218 |
|
|
return;
|
219 |
|
|
|
220 |
|
|
break;
|
221 |
|
|
|
222 |
|
|
case EQ_EXPR:
|
223 |
|
|
/* We could derive quite precise information from EQ_EXPR, however, such
|
224 |
|
|
a guard is unlikely to appear, so we do not bother with handling
|
225 |
|
|
it. */
|
226 |
|
|
return;
|
227 |
|
|
|
228 |
|
|
case NE_EXPR:
|
229 |
|
|
/* NE_EXPR comparisons do not contain much of useful information, except for
|
230 |
|
|
special case of comparing with the bounds of the type. */
|
231 |
|
|
if (TREE_CODE (c1) != INTEGER_CST
|
232 |
|
|
|| !INTEGRAL_TYPE_P (type))
|
233 |
|
|
return;
|
234 |
|
|
|
235 |
|
|
/* Ensure that the condition speaks about an expression in the same type
|
236 |
|
|
as X and Y. */
|
237 |
|
|
ctype = TREE_TYPE (c0);
|
238 |
|
|
if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
|
239 |
|
|
return;
|
240 |
|
|
c0 = fold_convert (type, c0);
|
241 |
|
|
c1 = fold_convert (type, c1);
|
242 |
|
|
|
243 |
|
|
if (TYPE_MIN_VALUE (type)
|
244 |
|
|
&& operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
|
245 |
|
|
{
|
246 |
|
|
cmp = GT_EXPR;
|
247 |
|
|
break;
|
248 |
|
|
}
|
249 |
|
|
if (TYPE_MAX_VALUE (type)
|
250 |
|
|
&& operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
|
251 |
|
|
{
|
252 |
|
|
cmp = LT_EXPR;
|
253 |
|
|
break;
|
254 |
|
|
}
|
255 |
|
|
|
256 |
|
|
return;
|
257 |
|
|
default:
|
258 |
|
|
return;
|
259 |
|
|
}
|
260 |
|
|
|
261 |
|
|
mpz_init (offc0);
|
262 |
|
|
mpz_init (offc1);
|
263 |
|
|
split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
|
264 |
|
|
split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
|
265 |
|
|
|
266 |
|
|
/* We are only interested in comparisons of expressions based on VARX and
|
267 |
|
|
VARY. TODO -- we might also be able to derive some bounds from
|
268 |
|
|
expressions containing just one of the variables. */
|
269 |
|
|
|
270 |
|
|
if (operand_equal_p (varx, varc1, 0))
|
271 |
|
|
{
|
272 |
|
|
tmp = varc0; varc0 = varc1; varc1 = tmp;
|
273 |
|
|
mpz_swap (offc0, offc1);
|
274 |
|
|
cmp = swap_tree_comparison (cmp);
|
275 |
|
|
}
|
276 |
|
|
|
277 |
|
|
if (!operand_equal_p (varx, varc0, 0)
|
278 |
|
|
|| !operand_equal_p (vary, varc1, 0))
|
279 |
|
|
goto end;
|
280 |
|
|
|
281 |
|
|
mpz_init_set (loffx, offx);
|
282 |
|
|
mpz_init_set (loffy, offy);
|
283 |
|
|
|
284 |
|
|
if (cmp == GT_EXPR || cmp == GE_EXPR)
|
285 |
|
|
{
|
286 |
|
|
tmp = varx; varx = vary; vary = tmp;
|
287 |
|
|
mpz_swap (offc0, offc1);
|
288 |
|
|
mpz_swap (loffx, loffy);
|
289 |
|
|
cmp = swap_tree_comparison (cmp);
|
290 |
|
|
lbound = true;
|
291 |
|
|
}
|
292 |
|
|
|
293 |
|
|
/* If there is no overflow, the condition implies that
|
294 |
|
|
|
295 |
|
|
(VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
|
296 |
|
|
|
297 |
|
|
The overflows and underflows may complicate things a bit; each
|
298 |
|
|
overflow decreases the appropriate offset by M, and underflow
|
299 |
|
|
increases it by M. The above inequality would not necessarily be
|
300 |
|
|
true if
|
301 |
|
|
|
302 |
|
|
-- VARX + OFFX underflows and VARX + OFFC0 does not, or
|
303 |
|
|
VARX + OFFC0 overflows, but VARX + OFFX does not.
|
304 |
|
|
This may only happen if OFFX < OFFC0.
|
305 |
|
|
-- VARY + OFFY overflows and VARY + OFFC1 does not, or
|
306 |
|
|
VARY + OFFC1 underflows and VARY + OFFY does not.
|
307 |
|
|
This may only happen if OFFY > OFFC1. */
|
308 |
|
|
|
309 |
|
|
if (no_wrap)
|
310 |
|
|
{
|
311 |
|
|
x_ok = true;
|
312 |
|
|
y_ok = true;
|
313 |
|
|
}
|
314 |
|
|
else
|
315 |
|
|
{
|
316 |
|
|
x_ok = (integer_zerop (varx)
|
317 |
|
|
|| mpz_cmp (loffx, offc0) >= 0);
|
318 |
|
|
y_ok = (integer_zerop (vary)
|
319 |
|
|
|| mpz_cmp (loffy, offc1) <= 0);
|
320 |
|
|
}
|
321 |
|
|
|
322 |
|
|
if (x_ok && y_ok)
|
323 |
|
|
{
|
324 |
|
|
mpz_init (bnd);
|
325 |
|
|
mpz_sub (bnd, loffx, loffy);
|
326 |
|
|
mpz_add (bnd, bnd, offc1);
|
327 |
|
|
mpz_sub (bnd, bnd, offc0);
|
328 |
|
|
|
329 |
|
|
if (cmp == LT_EXPR)
|
330 |
|
|
mpz_sub_ui (bnd, bnd, 1);
|
331 |
|
|
|
332 |
|
|
if (lbound)
|
333 |
|
|
{
|
334 |
|
|
mpz_neg (bnd, bnd);
|
335 |
|
|
if (mpz_cmp (bnds->below, bnd) < 0)
|
336 |
|
|
mpz_set (bnds->below, bnd);
|
337 |
|
|
}
|
338 |
|
|
else
|
339 |
|
|
{
|
340 |
|
|
if (mpz_cmp (bnd, bnds->up) < 0)
|
341 |
|
|
mpz_set (bnds->up, bnd);
|
342 |
|
|
}
|
343 |
|
|
mpz_clear (bnd);
|
344 |
|
|
}
|
345 |
|
|
|
346 |
|
|
mpz_clear (loffx);
|
347 |
|
|
mpz_clear (loffy);
|
348 |
|
|
end:
|
349 |
|
|
mpz_clear (offc0);
|
350 |
|
|
mpz_clear (offc1);
|
351 |
|
|
}
|
352 |
|
|
|
353 |
|
|
/* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
|
354 |
|
|
The subtraction is considered to be performed in arbitrary precision,
|
355 |
|
|
without overflows.
|
356 |
|
|
|
357 |
|
|
We do not attempt to be too clever regarding the value ranges of X and
|
358 |
|
|
Y; most of the time, they are just integers or ssa names offsetted by
|
359 |
|
|
integer. However, we try to use the information contained in the
|
360 |
|
|
comparisons before the loop (usually created by loop header copying). */
|
361 |
|
|
|
362 |
|
|
static void
|
363 |
|
|
bound_difference (struct loop *loop, tree x, tree y, bounds *bnds)
|
364 |
|
|
{
|
365 |
|
|
tree type = TREE_TYPE (x);
|
366 |
|
|
tree varx, vary;
|
367 |
|
|
mpz_t offx, offy;
|
368 |
|
|
mpz_t minx, maxx, miny, maxy;
|
369 |
|
|
int cnt = 0;
|
370 |
|
|
edge e;
|
371 |
|
|
basic_block bb;
|
372 |
|
|
tree c0, c1;
|
373 |
|
|
gimple cond;
|
374 |
|
|
enum tree_code cmp;
|
375 |
|
|
|
376 |
|
|
/* Get rid of unnecessary casts, but preserve the value of
|
377 |
|
|
the expressions. */
|
378 |
|
|
STRIP_SIGN_NOPS (x);
|
379 |
|
|
STRIP_SIGN_NOPS (y);
|
380 |
|
|
|
381 |
|
|
mpz_init (bnds->below);
|
382 |
|
|
mpz_init (bnds->up);
|
383 |
|
|
mpz_init (offx);
|
384 |
|
|
mpz_init (offy);
|
385 |
|
|
split_to_var_and_offset (x, &varx, offx);
|
386 |
|
|
split_to_var_and_offset (y, &vary, offy);
|
387 |
|
|
|
388 |
|
|
if (!integer_zerop (varx)
|
389 |
|
|
&& operand_equal_p (varx, vary, 0))
|
390 |
|
|
{
|
391 |
|
|
/* Special case VARX == VARY -- we just need to compare the
|
392 |
|
|
offsets. The matters are a bit more complicated in the
|
393 |
|
|
case addition of offsets may wrap. */
|
394 |
|
|
bound_difference_of_offsetted_base (type, offx, offy, bnds);
|
395 |
|
|
}
|
396 |
|
|
else
|
397 |
|
|
{
|
398 |
|
|
/* Otherwise, use the value ranges to determine the initial
|
399 |
|
|
estimates on below and up. */
|
400 |
|
|
mpz_init (minx);
|
401 |
|
|
mpz_init (maxx);
|
402 |
|
|
mpz_init (miny);
|
403 |
|
|
mpz_init (maxy);
|
404 |
|
|
determine_value_range (type, varx, offx, minx, maxx);
|
405 |
|
|
determine_value_range (type, vary, offy, miny, maxy);
|
406 |
|
|
|
407 |
|
|
mpz_sub (bnds->below, minx, maxy);
|
408 |
|
|
mpz_sub (bnds->up, maxx, miny);
|
409 |
|
|
mpz_clear (minx);
|
410 |
|
|
mpz_clear (maxx);
|
411 |
|
|
mpz_clear (miny);
|
412 |
|
|
mpz_clear (maxy);
|
413 |
|
|
}
|
414 |
|
|
|
415 |
|
|
/* If both X and Y are constants, we cannot get any more precise. */
|
416 |
|
|
if (integer_zerop (varx) && integer_zerop (vary))
|
417 |
|
|
goto end;
|
418 |
|
|
|
419 |
|
|
/* Now walk the dominators of the loop header and use the entry
|
420 |
|
|
guards to refine the estimates. */
|
421 |
|
|
for (bb = loop->header;
|
422 |
|
|
bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
|
423 |
|
|
bb = get_immediate_dominator (CDI_DOMINATORS, bb))
|
424 |
|
|
{
|
425 |
|
|
if (!single_pred_p (bb))
|
426 |
|
|
continue;
|
427 |
|
|
e = single_pred_edge (bb);
|
428 |
|
|
|
429 |
|
|
if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
|
430 |
|
|
continue;
|
431 |
|
|
|
432 |
|
|
cond = last_stmt (e->src);
|
433 |
|
|
c0 = gimple_cond_lhs (cond);
|
434 |
|
|
cmp = gimple_cond_code (cond);
|
435 |
|
|
c1 = gimple_cond_rhs (cond);
|
436 |
|
|
|
437 |
|
|
if (e->flags & EDGE_FALSE_VALUE)
|
438 |
|
|
cmp = invert_tree_comparison (cmp, false);
|
439 |
|
|
|
440 |
|
|
refine_bounds_using_guard (type, varx, offx, vary, offy,
|
441 |
|
|
c0, cmp, c1, bnds);
|
442 |
|
|
++cnt;
|
443 |
|
|
}
|
444 |
|
|
|
445 |
|
|
end:
|
446 |
|
|
mpz_clear (offx);
|
447 |
|
|
mpz_clear (offy);
|
448 |
|
|
}
|
449 |
|
|
|
450 |
|
|
/* Update the bounds in BNDS that restrict the value of X to the bounds
|
451 |
|
|
that restrict the value of X + DELTA. X can be obtained as a
|
452 |
|
|
difference of two values in TYPE. */
|
453 |
|
|
|
454 |
|
|
static void
|
455 |
|
|
bounds_add (bounds *bnds, double_int delta, tree type)
|
456 |
|
|
{
|
457 |
|
|
mpz_t mdelta, max;
|
458 |
|
|
|
459 |
|
|
mpz_init (mdelta);
|
460 |
|
|
mpz_set_double_int (mdelta, delta, false);
|
461 |
|
|
|
462 |
|
|
mpz_init (max);
|
463 |
|
|
mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)), true);
|
464 |
|
|
|
465 |
|
|
mpz_add (bnds->up, bnds->up, mdelta);
|
466 |
|
|
mpz_add (bnds->below, bnds->below, mdelta);
|
467 |
|
|
|
468 |
|
|
if (mpz_cmp (bnds->up, max) > 0)
|
469 |
|
|
mpz_set (bnds->up, max);
|
470 |
|
|
|
471 |
|
|
mpz_neg (max, max);
|
472 |
|
|
if (mpz_cmp (bnds->below, max) < 0)
|
473 |
|
|
mpz_set (bnds->below, max);
|
474 |
|
|
|
475 |
|
|
mpz_clear (mdelta);
|
476 |
|
|
mpz_clear (max);
|
477 |
|
|
}
|
478 |
|
|
|
479 |
|
|
/* Update the bounds in BNDS that restrict the value of X to the bounds
|
480 |
|
|
that restrict the value of -X. */
|
481 |
|
|
|
482 |
|
|
static void
|
483 |
|
|
bounds_negate (bounds *bnds)
|
484 |
|
|
{
|
485 |
|
|
mpz_t tmp;
|
486 |
|
|
|
487 |
|
|
mpz_init_set (tmp, bnds->up);
|
488 |
|
|
mpz_neg (bnds->up, bnds->below);
|
489 |
|
|
mpz_neg (bnds->below, tmp);
|
490 |
|
|
mpz_clear (tmp);
|
491 |
|
|
}
|
492 |
|
|
|
493 |
|
|
/* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
|
494 |
|
|
|
495 |
|
|
static tree
|
496 |
|
|
inverse (tree x, tree mask)
|
497 |
|
|
{
|
498 |
|
|
tree type = TREE_TYPE (x);
|
499 |
|
|
tree rslt;
|
500 |
|
|
unsigned ctr = tree_floor_log2 (mask);
|
501 |
|
|
|
502 |
|
|
if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
|
503 |
|
|
{
|
504 |
|
|
unsigned HOST_WIDE_INT ix;
|
505 |
|
|
unsigned HOST_WIDE_INT imask;
|
506 |
|
|
unsigned HOST_WIDE_INT irslt = 1;
|
507 |
|
|
|
508 |
|
|
gcc_assert (cst_and_fits_in_hwi (x));
|
509 |
|
|
gcc_assert (cst_and_fits_in_hwi (mask));
|
510 |
|
|
|
511 |
|
|
ix = int_cst_value (x);
|
512 |
|
|
imask = int_cst_value (mask);
|
513 |
|
|
|
514 |
|
|
for (; ctr; ctr--)
|
515 |
|
|
{
|
516 |
|
|
irslt *= ix;
|
517 |
|
|
ix *= ix;
|
518 |
|
|
}
|
519 |
|
|
irslt &= imask;
|
520 |
|
|
|
521 |
|
|
rslt = build_int_cst_type (type, irslt);
|
522 |
|
|
}
|
523 |
|
|
else
|
524 |
|
|
{
|
525 |
|
|
rslt = build_int_cst (type, 1);
|
526 |
|
|
for (; ctr; ctr--)
|
527 |
|
|
{
|
528 |
|
|
rslt = int_const_binop (MULT_EXPR, rslt, x);
|
529 |
|
|
x = int_const_binop (MULT_EXPR, x, x);
|
530 |
|
|
}
|
531 |
|
|
rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
|
532 |
|
|
}
|
533 |
|
|
|
534 |
|
|
return rslt;
|
535 |
|
|
}
|
536 |
|
|
|
537 |
|
|
/* Derives the upper bound BND on the number of executions of loop with exit
|
538 |
|
|
condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
|
539 |
|
|
the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
|
540 |
|
|
that the loop ends through this exit, i.e., the induction variable ever
|
541 |
|
|
reaches the value of C.
|
542 |
|
|
|
543 |
|
|
The value C is equal to final - base, where final and base are the final and
|
544 |
|
|
initial value of the actual induction variable in the analysed loop. BNDS
|
545 |
|
|
bounds the value of this difference when computed in signed type with
|
546 |
|
|
unbounded range, while the computation of C is performed in an unsigned
|
547 |
|
|
type with the range matching the range of the type of the induction variable.
|
548 |
|
|
In particular, BNDS.up contains an upper bound on C in the following cases:
|
549 |
|
|
-- if the iv must reach its final value without overflow, i.e., if
|
550 |
|
|
NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
|
551 |
|
|
-- if final >= base, which we know to hold when BNDS.below >= 0. */
|
552 |
|
|
|
553 |
|
|
static void
|
554 |
|
|
number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
|
555 |
|
|
bounds *bnds, bool exit_must_be_taken)
|
556 |
|
|
{
|
557 |
|
|
double_int max;
|
558 |
|
|
mpz_t d;
|
559 |
|
|
bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
|
560 |
|
|
|| mpz_sgn (bnds->below) >= 0);
|
561 |
|
|
|
562 |
|
|
if (multiple_of_p (TREE_TYPE (c), c, s))
|
563 |
|
|
{
|
564 |
|
|
/* If C is an exact multiple of S, then its value will be reached before
|
565 |
|
|
the induction variable overflows (unless the loop is exited in some
|
566 |
|
|
other way before). Note that the actual induction variable in the
|
567 |
|
|
loop (which ranges from base to final instead of from 0 to C) may
|
568 |
|
|
overflow, in which case BNDS.up will not be giving a correct upper
|
569 |
|
|
bound on C; thus, BNDS_U_VALID had to be computed in advance. */
|
570 |
|
|
no_overflow = true;
|
571 |
|
|
exit_must_be_taken = true;
|
572 |
|
|
}
|
573 |
|
|
|
574 |
|
|
/* If the induction variable can overflow, the number of iterations is at
|
575 |
|
|
most the period of the control variable (or infinite, but in that case
|
576 |
|
|
the whole # of iterations analysis will fail). */
|
577 |
|
|
if (!no_overflow)
|
578 |
|
|
{
|
579 |
|
|
max = double_int_mask (TYPE_PRECISION (TREE_TYPE (c))
|
580 |
|
|
- tree_low_cst (num_ending_zeros (s), 1));
|
581 |
|
|
mpz_set_double_int (bnd, max, true);
|
582 |
|
|
return;
|
583 |
|
|
}
|
584 |
|
|
|
585 |
|
|
/* Now we know that the induction variable does not overflow, so the loop
|
586 |
|
|
iterates at most (range of type / S) times. */
|
587 |
|
|
mpz_set_double_int (bnd, double_int_mask (TYPE_PRECISION (TREE_TYPE (c))),
|
588 |
|
|
true);
|
589 |
|
|
|
590 |
|
|
/* If the induction variable is guaranteed to reach the value of C before
|
591 |
|
|
overflow, ... */
|
592 |
|
|
if (exit_must_be_taken)
|
593 |
|
|
{
|
594 |
|
|
/* ... then we can strenghten this to C / S, and possibly we can use
|
595 |
|
|
the upper bound on C given by BNDS. */
|
596 |
|
|
if (TREE_CODE (c) == INTEGER_CST)
|
597 |
|
|
mpz_set_double_int (bnd, tree_to_double_int (c), true);
|
598 |
|
|
else if (bnds_u_valid)
|
599 |
|
|
mpz_set (bnd, bnds->up);
|
600 |
|
|
}
|
601 |
|
|
|
602 |
|
|
mpz_init (d);
|
603 |
|
|
mpz_set_double_int (d, tree_to_double_int (s), true);
|
604 |
|
|
mpz_fdiv_q (bnd, bnd, d);
|
605 |
|
|
mpz_clear (d);
|
606 |
|
|
}
|
607 |
|
|
|
608 |
|
|
/* Determines number of iterations of loop whose ending condition
|
609 |
|
|
is IV <> FINAL. TYPE is the type of the iv. The number of
|
610 |
|
|
iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
|
611 |
|
|
we know that the exit must be taken eventually, i.e., that the IV
|
612 |
|
|
ever reaches the value FINAL (we derived this earlier, and possibly set
|
613 |
|
|
NITER->assumptions to make sure this is the case). BNDS contains the
|
614 |
|
|
bounds on the difference FINAL - IV->base. */
|
615 |
|
|
|
616 |
|
|
static bool
|
617 |
|
|
number_of_iterations_ne (tree type, affine_iv *iv, tree final,
|
618 |
|
|
struct tree_niter_desc *niter, bool exit_must_be_taken,
|
619 |
|
|
bounds *bnds)
|
620 |
|
|
{
|
621 |
|
|
tree niter_type = unsigned_type_for (type);
|
622 |
|
|
tree s, c, d, bits, assumption, tmp, bound;
|
623 |
|
|
mpz_t max;
|
624 |
|
|
|
625 |
|
|
niter->control = *iv;
|
626 |
|
|
niter->bound = final;
|
627 |
|
|
niter->cmp = NE_EXPR;
|
628 |
|
|
|
629 |
|
|
/* Rearrange the terms so that we get inequality S * i <> C, with S
|
630 |
|
|
positive. Also cast everything to the unsigned type. If IV does
|
631 |
|
|
not overflow, BNDS bounds the value of C. Also, this is the
|
632 |
|
|
case if the computation |FINAL - IV->base| does not overflow, i.e.,
|
633 |
|
|
if BNDS->below in the result is nonnegative. */
|
634 |
|
|
if (tree_int_cst_sign_bit (iv->step))
|
635 |
|
|
{
|
636 |
|
|
s = fold_convert (niter_type,
|
637 |
|
|
fold_build1 (NEGATE_EXPR, type, iv->step));
|
638 |
|
|
c = fold_build2 (MINUS_EXPR, niter_type,
|
639 |
|
|
fold_convert (niter_type, iv->base),
|
640 |
|
|
fold_convert (niter_type, final));
|
641 |
|
|
bounds_negate (bnds);
|
642 |
|
|
}
|
643 |
|
|
else
|
644 |
|
|
{
|
645 |
|
|
s = fold_convert (niter_type, iv->step);
|
646 |
|
|
c = fold_build2 (MINUS_EXPR, niter_type,
|
647 |
|
|
fold_convert (niter_type, final),
|
648 |
|
|
fold_convert (niter_type, iv->base));
|
649 |
|
|
}
|
650 |
|
|
|
651 |
|
|
mpz_init (max);
|
652 |
|
|
number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
|
653 |
|
|
exit_must_be_taken);
|
654 |
|
|
niter->max = mpz_get_double_int (niter_type, max, false);
|
655 |
|
|
mpz_clear (max);
|
656 |
|
|
|
657 |
|
|
/* First the trivial cases -- when the step is 1. */
|
658 |
|
|
if (integer_onep (s))
|
659 |
|
|
{
|
660 |
|
|
niter->niter = c;
|
661 |
|
|
return true;
|
662 |
|
|
}
|
663 |
|
|
|
664 |
|
|
/* Let nsd (step, size of mode) = d. If d does not divide c, the loop
|
665 |
|
|
is infinite. Otherwise, the number of iterations is
|
666 |
|
|
(inverse(s/d) * (c/d)) mod (size of mode/d). */
|
667 |
|
|
bits = num_ending_zeros (s);
|
668 |
|
|
bound = build_low_bits_mask (niter_type,
|
669 |
|
|
(TYPE_PRECISION (niter_type)
|
670 |
|
|
- tree_low_cst (bits, 1)));
|
671 |
|
|
|
672 |
|
|
d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
|
673 |
|
|
build_int_cst (niter_type, 1), bits);
|
674 |
|
|
s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
|
675 |
|
|
|
676 |
|
|
if (!exit_must_be_taken)
|
677 |
|
|
{
|
678 |
|
|
/* If we cannot assume that the exit is taken eventually, record the
|
679 |
|
|
assumptions for divisibility of c. */
|
680 |
|
|
assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
|
681 |
|
|
assumption = fold_build2 (EQ_EXPR, boolean_type_node,
|
682 |
|
|
assumption, build_int_cst (niter_type, 0));
|
683 |
|
|
if (!integer_nonzerop (assumption))
|
684 |
|
|
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
685 |
|
|
niter->assumptions, assumption);
|
686 |
|
|
}
|
687 |
|
|
|
688 |
|
|
c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
|
689 |
|
|
tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
|
690 |
|
|
niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
|
691 |
|
|
return true;
|
692 |
|
|
}
|
693 |
|
|
|
694 |
|
|
/* Checks whether we can determine the final value of the control variable
|
695 |
|
|
of the loop with ending condition IV0 < IV1 (computed in TYPE).
|
696 |
|
|
DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
|
697 |
|
|
of the step. The assumptions necessary to ensure that the computation
|
698 |
|
|
of the final value does not overflow are recorded in NITER. If we
|
699 |
|
|
find the final value, we adjust DELTA and return TRUE. Otherwise
|
700 |
|
|
we return false. BNDS bounds the value of IV1->base - IV0->base,
|
701 |
|
|
and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
|
702 |
|
|
true if we know that the exit must be taken eventually. */
|
703 |
|
|
|
704 |
|
|
static bool
|
705 |
|
|
number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
|
706 |
|
|
struct tree_niter_desc *niter,
|
707 |
|
|
tree *delta, tree step,
|
708 |
|
|
bool exit_must_be_taken, bounds *bnds)
|
709 |
|
|
{
|
710 |
|
|
tree niter_type = TREE_TYPE (step);
|
711 |
|
|
tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
|
712 |
|
|
tree tmod;
|
713 |
|
|
mpz_t mmod;
|
714 |
|
|
tree assumption = boolean_true_node, bound, noloop;
|
715 |
|
|
bool ret = false, fv_comp_no_overflow;
|
716 |
|
|
tree type1 = type;
|
717 |
|
|
if (POINTER_TYPE_P (type))
|
718 |
|
|
type1 = sizetype;
|
719 |
|
|
|
720 |
|
|
if (TREE_CODE (mod) != INTEGER_CST)
|
721 |
|
|
return false;
|
722 |
|
|
if (integer_nonzerop (mod))
|
723 |
|
|
mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
|
724 |
|
|
tmod = fold_convert (type1, mod);
|
725 |
|
|
|
726 |
|
|
mpz_init (mmod);
|
727 |
|
|
mpz_set_double_int (mmod, tree_to_double_int (mod), true);
|
728 |
|
|
mpz_neg (mmod, mmod);
|
729 |
|
|
|
730 |
|
|
/* If the induction variable does not overflow and the exit is taken,
|
731 |
|
|
then the computation of the final value does not overflow. This is
|
732 |
|
|
also obviously the case if the new final value is equal to the
|
733 |
|
|
current one. Finally, we postulate this for pointer type variables,
|
734 |
|
|
as the code cannot rely on the object to that the pointer points being
|
735 |
|
|
placed at the end of the address space (and more pragmatically,
|
736 |
|
|
TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
|
737 |
|
|
if (integer_zerop (mod) || POINTER_TYPE_P (type))
|
738 |
|
|
fv_comp_no_overflow = true;
|
739 |
|
|
else if (!exit_must_be_taken)
|
740 |
|
|
fv_comp_no_overflow = false;
|
741 |
|
|
else
|
742 |
|
|
fv_comp_no_overflow =
|
743 |
|
|
(iv0->no_overflow && integer_nonzerop (iv0->step))
|
744 |
|
|
|| (iv1->no_overflow && integer_nonzerop (iv1->step));
|
745 |
|
|
|
746 |
|
|
if (integer_nonzerop (iv0->step))
|
747 |
|
|
{
|
748 |
|
|
/* The final value of the iv is iv1->base + MOD, assuming that this
|
749 |
|
|
computation does not overflow, and that
|
750 |
|
|
iv0->base <= iv1->base + MOD. */
|
751 |
|
|
if (!fv_comp_no_overflow)
|
752 |
|
|
{
|
753 |
|
|
bound = fold_build2 (MINUS_EXPR, type1,
|
754 |
|
|
TYPE_MAX_VALUE (type1), tmod);
|
755 |
|
|
assumption = fold_build2 (LE_EXPR, boolean_type_node,
|
756 |
|
|
iv1->base, bound);
|
757 |
|
|
if (integer_zerop (assumption))
|
758 |
|
|
goto end;
|
759 |
|
|
}
|
760 |
|
|
if (mpz_cmp (mmod, bnds->below) < 0)
|
761 |
|
|
noloop = boolean_false_node;
|
762 |
|
|
else if (POINTER_TYPE_P (type))
|
763 |
|
|
noloop = fold_build2 (GT_EXPR, boolean_type_node,
|
764 |
|
|
iv0->base,
|
765 |
|
|
fold_build_pointer_plus (iv1->base, tmod));
|
766 |
|
|
else
|
767 |
|
|
noloop = fold_build2 (GT_EXPR, boolean_type_node,
|
768 |
|
|
iv0->base,
|
769 |
|
|
fold_build2 (PLUS_EXPR, type1,
|
770 |
|
|
iv1->base, tmod));
|
771 |
|
|
}
|
772 |
|
|
else
|
773 |
|
|
{
|
774 |
|
|
/* The final value of the iv is iv0->base - MOD, assuming that this
|
775 |
|
|
computation does not overflow, and that
|
776 |
|
|
iv0->base - MOD <= iv1->base. */
|
777 |
|
|
if (!fv_comp_no_overflow)
|
778 |
|
|
{
|
779 |
|
|
bound = fold_build2 (PLUS_EXPR, type1,
|
780 |
|
|
TYPE_MIN_VALUE (type1), tmod);
|
781 |
|
|
assumption = fold_build2 (GE_EXPR, boolean_type_node,
|
782 |
|
|
iv0->base, bound);
|
783 |
|
|
if (integer_zerop (assumption))
|
784 |
|
|
goto end;
|
785 |
|
|
}
|
786 |
|
|
if (mpz_cmp (mmod, bnds->below) < 0)
|
787 |
|
|
noloop = boolean_false_node;
|
788 |
|
|
else if (POINTER_TYPE_P (type))
|
789 |
|
|
noloop = fold_build2 (GT_EXPR, boolean_type_node,
|
790 |
|
|
fold_build_pointer_plus (iv0->base,
|
791 |
|
|
fold_build1 (NEGATE_EXPR,
|
792 |
|
|
type1, tmod)),
|
793 |
|
|
iv1->base);
|
794 |
|
|
else
|
795 |
|
|
noloop = fold_build2 (GT_EXPR, boolean_type_node,
|
796 |
|
|
fold_build2 (MINUS_EXPR, type1,
|
797 |
|
|
iv0->base, tmod),
|
798 |
|
|
iv1->base);
|
799 |
|
|
}
|
800 |
|
|
|
801 |
|
|
if (!integer_nonzerop (assumption))
|
802 |
|
|
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
803 |
|
|
niter->assumptions,
|
804 |
|
|
assumption);
|
805 |
|
|
if (!integer_zerop (noloop))
|
806 |
|
|
niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
|
807 |
|
|
niter->may_be_zero,
|
808 |
|
|
noloop);
|
809 |
|
|
bounds_add (bnds, tree_to_double_int (mod), type);
|
810 |
|
|
*delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
|
811 |
|
|
|
812 |
|
|
ret = true;
|
813 |
|
|
end:
|
814 |
|
|
mpz_clear (mmod);
|
815 |
|
|
return ret;
|
816 |
|
|
}
|
817 |
|
|
|
818 |
|
|
/* Add assertions to NITER that ensure that the control variable of the loop
|
819 |
|
|
with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
|
820 |
|
|
are TYPE. Returns false if we can prove that there is an overflow, true
|
821 |
|
|
otherwise. STEP is the absolute value of the step. */
|
822 |
|
|
|
823 |
|
|
static bool
|
824 |
|
|
assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
|
825 |
|
|
struct tree_niter_desc *niter, tree step)
|
826 |
|
|
{
|
827 |
|
|
tree bound, d, assumption, diff;
|
828 |
|
|
tree niter_type = TREE_TYPE (step);
|
829 |
|
|
|
830 |
|
|
if (integer_nonzerop (iv0->step))
|
831 |
|
|
{
|
832 |
|
|
/* for (i = iv0->base; i < iv1->base; i += iv0->step) */
|
833 |
|
|
if (iv0->no_overflow)
|
834 |
|
|
return true;
|
835 |
|
|
|
836 |
|
|
/* If iv0->base is a constant, we can determine the last value before
|
837 |
|
|
overflow precisely; otherwise we conservatively assume
|
838 |
|
|
MAX - STEP + 1. */
|
839 |
|
|
|
840 |
|
|
if (TREE_CODE (iv0->base) == INTEGER_CST)
|
841 |
|
|
{
|
842 |
|
|
d = fold_build2 (MINUS_EXPR, niter_type,
|
843 |
|
|
fold_convert (niter_type, TYPE_MAX_VALUE (type)),
|
844 |
|
|
fold_convert (niter_type, iv0->base));
|
845 |
|
|
diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
|
846 |
|
|
}
|
847 |
|
|
else
|
848 |
|
|
diff = fold_build2 (MINUS_EXPR, niter_type, step,
|
849 |
|
|
build_int_cst (niter_type, 1));
|
850 |
|
|
bound = fold_build2 (MINUS_EXPR, type,
|
851 |
|
|
TYPE_MAX_VALUE (type), fold_convert (type, diff));
|
852 |
|
|
assumption = fold_build2 (LE_EXPR, boolean_type_node,
|
853 |
|
|
iv1->base, bound);
|
854 |
|
|
}
|
855 |
|
|
else
|
856 |
|
|
{
|
857 |
|
|
/* for (i = iv1->base; i > iv0->base; i += iv1->step) */
|
858 |
|
|
if (iv1->no_overflow)
|
859 |
|
|
return true;
|
860 |
|
|
|
861 |
|
|
if (TREE_CODE (iv1->base) == INTEGER_CST)
|
862 |
|
|
{
|
863 |
|
|
d = fold_build2 (MINUS_EXPR, niter_type,
|
864 |
|
|
fold_convert (niter_type, iv1->base),
|
865 |
|
|
fold_convert (niter_type, TYPE_MIN_VALUE (type)));
|
866 |
|
|
diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
|
867 |
|
|
}
|
868 |
|
|
else
|
869 |
|
|
diff = fold_build2 (MINUS_EXPR, niter_type, step,
|
870 |
|
|
build_int_cst (niter_type, 1));
|
871 |
|
|
bound = fold_build2 (PLUS_EXPR, type,
|
872 |
|
|
TYPE_MIN_VALUE (type), fold_convert (type, diff));
|
873 |
|
|
assumption = fold_build2 (GE_EXPR, boolean_type_node,
|
874 |
|
|
iv0->base, bound);
|
875 |
|
|
}
|
876 |
|
|
|
877 |
|
|
if (integer_zerop (assumption))
|
878 |
|
|
return false;
|
879 |
|
|
if (!integer_nonzerop (assumption))
|
880 |
|
|
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
881 |
|
|
niter->assumptions, assumption);
|
882 |
|
|
|
883 |
|
|
iv0->no_overflow = true;
|
884 |
|
|
iv1->no_overflow = true;
|
885 |
|
|
return true;
|
886 |
|
|
}
|
887 |
|
|
|
888 |
|
|
/* Add an assumption to NITER that a loop whose ending condition
|
889 |
|
|
is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
|
890 |
|
|
bounds the value of IV1->base - IV0->base. */
|
891 |
|
|
|
892 |
|
|
static void
|
893 |
|
|
assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
|
894 |
|
|
struct tree_niter_desc *niter, bounds *bnds)
|
895 |
|
|
{
|
896 |
|
|
tree assumption = boolean_true_node, bound, diff;
|
897 |
|
|
tree mbz, mbzl, mbzr, type1;
|
898 |
|
|
bool rolls_p, no_overflow_p;
|
899 |
|
|
double_int dstep;
|
900 |
|
|
mpz_t mstep, max;
|
901 |
|
|
|
902 |
|
|
/* We are going to compute the number of iterations as
|
903 |
|
|
(iv1->base - iv0->base + step - 1) / step, computed in the unsigned
|
904 |
|
|
variant of TYPE. This formula only works if
|
905 |
|
|
|
906 |
|
|
-step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
|
907 |
|
|
|
908 |
|
|
(where MAX is the maximum value of the unsigned variant of TYPE, and
|
909 |
|
|
the computations in this formula are performed in full precision,
|
910 |
|
|
i.e., without overflows).
|
911 |
|
|
|
912 |
|
|
Usually, for loops with exit condition iv0->base + step * i < iv1->base,
|
913 |
|
|
we have a condition of the form iv0->base - step < iv1->base before the loop,
|
914 |
|
|
and for loops iv0->base < iv1->base - step * i the condition
|
915 |
|
|
iv0->base < iv1->base + step, due to loop header copying, which enable us
|
916 |
|
|
to prove the lower bound.
|
917 |
|
|
|
918 |
|
|
The upper bound is more complicated. Unless the expressions for initial
|
919 |
|
|
and final value themselves contain enough information, we usually cannot
|
920 |
|
|
derive it from the context. */
|
921 |
|
|
|
922 |
|
|
/* First check whether the answer does not follow from the bounds we gathered
|
923 |
|
|
before. */
|
924 |
|
|
if (integer_nonzerop (iv0->step))
|
925 |
|
|
dstep = tree_to_double_int (iv0->step);
|
926 |
|
|
else
|
927 |
|
|
{
|
928 |
|
|
dstep = double_int_sext (tree_to_double_int (iv1->step),
|
929 |
|
|
TYPE_PRECISION (type));
|
930 |
|
|
dstep = double_int_neg (dstep);
|
931 |
|
|
}
|
932 |
|
|
|
933 |
|
|
mpz_init (mstep);
|
934 |
|
|
mpz_set_double_int (mstep, dstep, true);
|
935 |
|
|
mpz_neg (mstep, mstep);
|
936 |
|
|
mpz_add_ui (mstep, mstep, 1);
|
937 |
|
|
|
938 |
|
|
rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
|
939 |
|
|
|
940 |
|
|
mpz_init (max);
|
941 |
|
|
mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)), true);
|
942 |
|
|
mpz_add (max, max, mstep);
|
943 |
|
|
no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
|
944 |
|
|
/* For pointers, only values lying inside a single object
|
945 |
|
|
can be compared or manipulated by pointer arithmetics.
|
946 |
|
|
Gcc in general does not allow or handle objects larger
|
947 |
|
|
than half of the address space, hence the upper bound
|
948 |
|
|
is satisfied for pointers. */
|
949 |
|
|
|| POINTER_TYPE_P (type));
|
950 |
|
|
mpz_clear (mstep);
|
951 |
|
|
mpz_clear (max);
|
952 |
|
|
|
953 |
|
|
if (rolls_p && no_overflow_p)
|
954 |
|
|
return;
|
955 |
|
|
|
956 |
|
|
type1 = type;
|
957 |
|
|
if (POINTER_TYPE_P (type))
|
958 |
|
|
type1 = sizetype;
|
959 |
|
|
|
960 |
|
|
/* Now the hard part; we must formulate the assumption(s) as expressions, and
|
961 |
|
|
we must be careful not to introduce overflow. */
|
962 |
|
|
|
963 |
|
|
if (integer_nonzerop (iv0->step))
|
964 |
|
|
{
|
965 |
|
|
diff = fold_build2 (MINUS_EXPR, type1,
|
966 |
|
|
iv0->step, build_int_cst (type1, 1));
|
967 |
|
|
|
968 |
|
|
/* We need to know that iv0->base >= MIN + iv0->step - 1. Since
|
969 |
|
|
|
970 |
|
|
pointers. */
|
971 |
|
|
if (!POINTER_TYPE_P (type))
|
972 |
|
|
{
|
973 |
|
|
bound = fold_build2 (PLUS_EXPR, type1,
|
974 |
|
|
TYPE_MIN_VALUE (type), diff);
|
975 |
|
|
assumption = fold_build2 (GE_EXPR, boolean_type_node,
|
976 |
|
|
iv0->base, bound);
|
977 |
|
|
}
|
978 |
|
|
|
979 |
|
|
/* And then we can compute iv0->base - diff, and compare it with
|
980 |
|
|
iv1->base. */
|
981 |
|
|
mbzl = fold_build2 (MINUS_EXPR, type1,
|
982 |
|
|
fold_convert (type1, iv0->base), diff);
|
983 |
|
|
mbzr = fold_convert (type1, iv1->base);
|
984 |
|
|
}
|
985 |
|
|
else
|
986 |
|
|
{
|
987 |
|
|
diff = fold_build2 (PLUS_EXPR, type1,
|
988 |
|
|
iv1->step, build_int_cst (type1, 1));
|
989 |
|
|
|
990 |
|
|
if (!POINTER_TYPE_P (type))
|
991 |
|
|
{
|
992 |
|
|
bound = fold_build2 (PLUS_EXPR, type1,
|
993 |
|
|
TYPE_MAX_VALUE (type), diff);
|
994 |
|
|
assumption = fold_build2 (LE_EXPR, boolean_type_node,
|
995 |
|
|
iv1->base, bound);
|
996 |
|
|
}
|
997 |
|
|
|
998 |
|
|
mbzl = fold_convert (type1, iv0->base);
|
999 |
|
|
mbzr = fold_build2 (MINUS_EXPR, type1,
|
1000 |
|
|
fold_convert (type1, iv1->base), diff);
|
1001 |
|
|
}
|
1002 |
|
|
|
1003 |
|
|
if (!integer_nonzerop (assumption))
|
1004 |
|
|
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
1005 |
|
|
niter->assumptions, assumption);
|
1006 |
|
|
if (!rolls_p)
|
1007 |
|
|
{
|
1008 |
|
|
mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
|
1009 |
|
|
niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
|
1010 |
|
|
niter->may_be_zero, mbz);
|
1011 |
|
|
}
|
1012 |
|
|
}
|
1013 |
|
|
|
1014 |
|
|
/* Determines number of iterations of loop whose ending condition
|
1015 |
|
|
is IV0 < IV1. TYPE is the type of the iv. The number of
|
1016 |
|
|
iterations is stored to NITER. BNDS bounds the difference
|
1017 |
|
|
IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
|
1018 |
|
|
that the exit must be taken eventually. */
|
1019 |
|
|
|
1020 |
|
|
static bool
|
1021 |
|
|
number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
|
1022 |
|
|
struct tree_niter_desc *niter,
|
1023 |
|
|
bool exit_must_be_taken, bounds *bnds)
|
1024 |
|
|
{
|
1025 |
|
|
tree niter_type = unsigned_type_for (type);
|
1026 |
|
|
tree delta, step, s;
|
1027 |
|
|
mpz_t mstep, tmp;
|
1028 |
|
|
|
1029 |
|
|
if (integer_nonzerop (iv0->step))
|
1030 |
|
|
{
|
1031 |
|
|
niter->control = *iv0;
|
1032 |
|
|
niter->cmp = LT_EXPR;
|
1033 |
|
|
niter->bound = iv1->base;
|
1034 |
|
|
}
|
1035 |
|
|
else
|
1036 |
|
|
{
|
1037 |
|
|
niter->control = *iv1;
|
1038 |
|
|
niter->cmp = GT_EXPR;
|
1039 |
|
|
niter->bound = iv0->base;
|
1040 |
|
|
}
|
1041 |
|
|
|
1042 |
|
|
delta = fold_build2 (MINUS_EXPR, niter_type,
|
1043 |
|
|
fold_convert (niter_type, iv1->base),
|
1044 |
|
|
fold_convert (niter_type, iv0->base));
|
1045 |
|
|
|
1046 |
|
|
/* First handle the special case that the step is +-1. */
|
1047 |
|
|
if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
|
1048 |
|
|
|| (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
|
1049 |
|
|
{
|
1050 |
|
|
/* for (i = iv0->base; i < iv1->base; i++)
|
1051 |
|
|
|
1052 |
|
|
or
|
1053 |
|
|
|
1054 |
|
|
for (i = iv1->base; i > iv0->base; i--).
|
1055 |
|
|
|
1056 |
|
|
In both cases # of iterations is iv1->base - iv0->base, assuming that
|
1057 |
|
|
iv1->base >= iv0->base.
|
1058 |
|
|
|
1059 |
|
|
First try to derive a lower bound on the value of
|
1060 |
|
|
iv1->base - iv0->base, computed in full precision. If the difference
|
1061 |
|
|
is nonnegative, we are done, otherwise we must record the
|
1062 |
|
|
condition. */
|
1063 |
|
|
|
1064 |
|
|
if (mpz_sgn (bnds->below) < 0)
|
1065 |
|
|
niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
|
1066 |
|
|
iv1->base, iv0->base);
|
1067 |
|
|
niter->niter = delta;
|
1068 |
|
|
niter->max = mpz_get_double_int (niter_type, bnds->up, false);
|
1069 |
|
|
return true;
|
1070 |
|
|
}
|
1071 |
|
|
|
1072 |
|
|
if (integer_nonzerop (iv0->step))
|
1073 |
|
|
step = fold_convert (niter_type, iv0->step);
|
1074 |
|
|
else
|
1075 |
|
|
step = fold_convert (niter_type,
|
1076 |
|
|
fold_build1 (NEGATE_EXPR, type, iv1->step));
|
1077 |
|
|
|
1078 |
|
|
/* If we can determine the final value of the control iv exactly, we can
|
1079 |
|
|
transform the condition to != comparison. In particular, this will be
|
1080 |
|
|
the case if DELTA is constant. */
|
1081 |
|
|
if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
|
1082 |
|
|
exit_must_be_taken, bnds))
|
1083 |
|
|
{
|
1084 |
|
|
affine_iv zps;
|
1085 |
|
|
|
1086 |
|
|
zps.base = build_int_cst (niter_type, 0);
|
1087 |
|
|
zps.step = step;
|
1088 |
|
|
/* number_of_iterations_lt_to_ne will add assumptions that ensure that
|
1089 |
|
|
zps does not overflow. */
|
1090 |
|
|
zps.no_overflow = true;
|
1091 |
|
|
|
1092 |
|
|
return number_of_iterations_ne (type, &zps, delta, niter, true, bnds);
|
1093 |
|
|
}
|
1094 |
|
|
|
1095 |
|
|
/* Make sure that the control iv does not overflow. */
|
1096 |
|
|
if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
|
1097 |
|
|
return false;
|
1098 |
|
|
|
1099 |
|
|
/* We determine the number of iterations as (delta + step - 1) / step. For
|
1100 |
|
|
this to work, we must know that iv1->base >= iv0->base - step + 1,
|
1101 |
|
|
otherwise the loop does not roll. */
|
1102 |
|
|
assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
|
1103 |
|
|
|
1104 |
|
|
s = fold_build2 (MINUS_EXPR, niter_type,
|
1105 |
|
|
step, build_int_cst (niter_type, 1));
|
1106 |
|
|
delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
|
1107 |
|
|
niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
|
1108 |
|
|
|
1109 |
|
|
mpz_init (mstep);
|
1110 |
|
|
mpz_init (tmp);
|
1111 |
|
|
mpz_set_double_int (mstep, tree_to_double_int (step), true);
|
1112 |
|
|
mpz_add (tmp, bnds->up, mstep);
|
1113 |
|
|
mpz_sub_ui (tmp, tmp, 1);
|
1114 |
|
|
mpz_fdiv_q (tmp, tmp, mstep);
|
1115 |
|
|
niter->max = mpz_get_double_int (niter_type, tmp, false);
|
1116 |
|
|
mpz_clear (mstep);
|
1117 |
|
|
mpz_clear (tmp);
|
1118 |
|
|
|
1119 |
|
|
return true;
|
1120 |
|
|
}
|
1121 |
|
|
|
1122 |
|
|
/* Determines number of iterations of loop whose ending condition
|
1123 |
|
|
is IV0 <= IV1. TYPE is the type of the iv. The number of
|
1124 |
|
|
iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
|
1125 |
|
|
we know that this condition must eventually become false (we derived this
|
1126 |
|
|
earlier, and possibly set NITER->assumptions to make sure this
|
1127 |
|
|
is the case). BNDS bounds the difference IV1->base - IV0->base. */
|
1128 |
|
|
|
1129 |
|
|
static bool
|
1130 |
|
|
number_of_iterations_le (tree type, affine_iv *iv0, affine_iv *iv1,
|
1131 |
|
|
struct tree_niter_desc *niter, bool exit_must_be_taken,
|
1132 |
|
|
bounds *bnds)
|
1133 |
|
|
{
|
1134 |
|
|
tree assumption;
|
1135 |
|
|
tree type1 = type;
|
1136 |
|
|
if (POINTER_TYPE_P (type))
|
1137 |
|
|
type1 = sizetype;
|
1138 |
|
|
|
1139 |
|
|
/* Say that IV0 is the control variable. Then IV0 <= IV1 iff
|
1140 |
|
|
IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
|
1141 |
|
|
value of the type. This we must know anyway, since if it is
|
1142 |
|
|
equal to this value, the loop rolls forever. We do not check
|
1143 |
|
|
this condition for pointer type ivs, as the code cannot rely on
|
1144 |
|
|
the object to that the pointer points being placed at the end of
|
1145 |
|
|
the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
|
1146 |
|
|
not defined for pointers). */
|
1147 |
|
|
|
1148 |
|
|
if (!exit_must_be_taken && !POINTER_TYPE_P (type))
|
1149 |
|
|
{
|
1150 |
|
|
if (integer_nonzerop (iv0->step))
|
1151 |
|
|
assumption = fold_build2 (NE_EXPR, boolean_type_node,
|
1152 |
|
|
iv1->base, TYPE_MAX_VALUE (type));
|
1153 |
|
|
else
|
1154 |
|
|
assumption = fold_build2 (NE_EXPR, boolean_type_node,
|
1155 |
|
|
iv0->base, TYPE_MIN_VALUE (type));
|
1156 |
|
|
|
1157 |
|
|
if (integer_zerop (assumption))
|
1158 |
|
|
return false;
|
1159 |
|
|
if (!integer_nonzerop (assumption))
|
1160 |
|
|
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
1161 |
|
|
niter->assumptions, assumption);
|
1162 |
|
|
}
|
1163 |
|
|
|
1164 |
|
|
if (integer_nonzerop (iv0->step))
|
1165 |
|
|
{
|
1166 |
|
|
if (POINTER_TYPE_P (type))
|
1167 |
|
|
iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
|
1168 |
|
|
else
|
1169 |
|
|
iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
|
1170 |
|
|
build_int_cst (type1, 1));
|
1171 |
|
|
}
|
1172 |
|
|
else if (POINTER_TYPE_P (type))
|
1173 |
|
|
iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
|
1174 |
|
|
else
|
1175 |
|
|
iv0->base = fold_build2 (MINUS_EXPR, type1,
|
1176 |
|
|
iv0->base, build_int_cst (type1, 1));
|
1177 |
|
|
|
1178 |
|
|
bounds_add (bnds, double_int_one, type1);
|
1179 |
|
|
|
1180 |
|
|
return number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
|
1181 |
|
|
bnds);
|
1182 |
|
|
}
|
1183 |
|
|
|
1184 |
|
|
/* Dumps description of affine induction variable IV to FILE. */
|
1185 |
|
|
|
1186 |
|
|
static void
|
1187 |
|
|
dump_affine_iv (FILE *file, affine_iv *iv)
|
1188 |
|
|
{
|
1189 |
|
|
if (!integer_zerop (iv->step))
|
1190 |
|
|
fprintf (file, "[");
|
1191 |
|
|
|
1192 |
|
|
print_generic_expr (dump_file, iv->base, TDF_SLIM);
|
1193 |
|
|
|
1194 |
|
|
if (!integer_zerop (iv->step))
|
1195 |
|
|
{
|
1196 |
|
|
fprintf (file, ", + , ");
|
1197 |
|
|
print_generic_expr (dump_file, iv->step, TDF_SLIM);
|
1198 |
|
|
fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
|
1199 |
|
|
}
|
1200 |
|
|
}
|
1201 |
|
|
|
1202 |
|
|
/* Determine the number of iterations according to condition (for staying
|
1203 |
|
|
inside loop) which compares two induction variables using comparison
|
1204 |
|
|
operator CODE. The induction variable on left side of the comparison
|
1205 |
|
|
is IV0, the right-hand side is IV1. Both induction variables must have
|
1206 |
|
|
type TYPE, which must be an integer or pointer type. The steps of the
|
1207 |
|
|
ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
|
1208 |
|
|
|
1209 |
|
|
LOOP is the loop whose number of iterations we are determining.
|
1210 |
|
|
|
1211 |
|
|
ONLY_EXIT is true if we are sure this is the only way the loop could be
|
1212 |
|
|
exited (including possibly non-returning function calls, exceptions, etc.)
|
1213 |
|
|
-- in this case we can use the information whether the control induction
|
1214 |
|
|
variables can overflow or not in a more efficient way.
|
1215 |
|
|
|
1216 |
|
|
The results (number of iterations and assumptions as described in
|
1217 |
|
|
comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
|
1218 |
|
|
Returns false if it fails to determine number of iterations, true if it
|
1219 |
|
|
was determined (possibly with some assumptions). */
|
1220 |
|
|
|
1221 |
|
|
static bool
|
1222 |
|
|
number_of_iterations_cond (struct loop *loop,
|
1223 |
|
|
tree type, affine_iv *iv0, enum tree_code code,
|
1224 |
|
|
affine_iv *iv1, struct tree_niter_desc *niter,
|
1225 |
|
|
bool only_exit)
|
1226 |
|
|
{
|
1227 |
|
|
bool exit_must_be_taken = false, ret;
|
1228 |
|
|
bounds bnds;
|
1229 |
|
|
|
1230 |
|
|
/* The meaning of these assumptions is this:
|
1231 |
|
|
if !assumptions
|
1232 |
|
|
then the rest of information does not have to be valid
|
1233 |
|
|
if may_be_zero then the loop does not roll, even if
|
1234 |
|
|
niter != 0. */
|
1235 |
|
|
niter->assumptions = boolean_true_node;
|
1236 |
|
|
niter->may_be_zero = boolean_false_node;
|
1237 |
|
|
niter->niter = NULL_TREE;
|
1238 |
|
|
niter->max = double_int_zero;
|
1239 |
|
|
|
1240 |
|
|
niter->bound = NULL_TREE;
|
1241 |
|
|
niter->cmp = ERROR_MARK;
|
1242 |
|
|
|
1243 |
|
|
/* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
|
1244 |
|
|
the control variable is on lhs. */
|
1245 |
|
|
if (code == GE_EXPR || code == GT_EXPR
|
1246 |
|
|
|| (code == NE_EXPR && integer_zerop (iv0->step)))
|
1247 |
|
|
{
|
1248 |
|
|
SWAP (iv0, iv1);
|
1249 |
|
|
code = swap_tree_comparison (code);
|
1250 |
|
|
}
|
1251 |
|
|
|
1252 |
|
|
if (POINTER_TYPE_P (type))
|
1253 |
|
|
{
|
1254 |
|
|
/* Comparison of pointers is undefined unless both iv0 and iv1 point
|
1255 |
|
|
to the same object. If they do, the control variable cannot wrap
|
1256 |
|
|
(as wrap around the bounds of memory will never return a pointer
|
1257 |
|
|
that would be guaranteed to point to the same object, even if we
|
1258 |
|
|
avoid undefined behavior by casting to size_t and back). */
|
1259 |
|
|
iv0->no_overflow = true;
|
1260 |
|
|
iv1->no_overflow = true;
|
1261 |
|
|
}
|
1262 |
|
|
|
1263 |
|
|
/* If the control induction variable does not overflow and the only exit
|
1264 |
|
|
from the loop is the one that we analyze, we know it must be taken
|
1265 |
|
|
eventually. */
|
1266 |
|
|
if (only_exit)
|
1267 |
|
|
{
|
1268 |
|
|
if (!integer_zerop (iv0->step) && iv0->no_overflow)
|
1269 |
|
|
exit_must_be_taken = true;
|
1270 |
|
|
else if (!integer_zerop (iv1->step) && iv1->no_overflow)
|
1271 |
|
|
exit_must_be_taken = true;
|
1272 |
|
|
}
|
1273 |
|
|
|
1274 |
|
|
/* We can handle the case when neither of the sides of the comparison is
|
1275 |
|
|
invariant, provided that the test is NE_EXPR. This rarely occurs in
|
1276 |
|
|
practice, but it is simple enough to manage. */
|
1277 |
|
|
if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
|
1278 |
|
|
{
|
1279 |
|
|
if (code != NE_EXPR)
|
1280 |
|
|
return false;
|
1281 |
|
|
|
1282 |
|
|
iv0->step = fold_binary_to_constant (MINUS_EXPR, type,
|
1283 |
|
|
iv0->step, iv1->step);
|
1284 |
|
|
iv0->no_overflow = false;
|
1285 |
|
|
iv1->step = build_int_cst (type, 0);
|
1286 |
|
|
iv1->no_overflow = true;
|
1287 |
|
|
}
|
1288 |
|
|
|
1289 |
|
|
/* If the result of the comparison is a constant, the loop is weird. More
|
1290 |
|
|
precise handling would be possible, but the situation is not common enough
|
1291 |
|
|
to waste time on it. */
|
1292 |
|
|
if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
|
1293 |
|
|
return false;
|
1294 |
|
|
|
1295 |
|
|
/* Ignore loops of while (i-- < 10) type. */
|
1296 |
|
|
if (code != NE_EXPR)
|
1297 |
|
|
{
|
1298 |
|
|
if (iv0->step && tree_int_cst_sign_bit (iv0->step))
|
1299 |
|
|
return false;
|
1300 |
|
|
|
1301 |
|
|
if (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
|
1302 |
|
|
return false;
|
1303 |
|
|
}
|
1304 |
|
|
|
1305 |
|
|
/* If the loop exits immediately, there is nothing to do. */
|
1306 |
|
|
if (integer_zerop (fold_build2 (code, boolean_type_node, iv0->base, iv1->base)))
|
1307 |
|
|
{
|
1308 |
|
|
niter->niter = build_int_cst (unsigned_type_for (type), 0);
|
1309 |
|
|
niter->max = double_int_zero;
|
1310 |
|
|
return true;
|
1311 |
|
|
}
|
1312 |
|
|
|
1313 |
|
|
/* OK, now we know we have a senseful loop. Handle several cases, depending
|
1314 |
|
|
on what comparison operator is used. */
|
1315 |
|
|
bound_difference (loop, iv1->base, iv0->base, &bnds);
|
1316 |
|
|
|
1317 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1318 |
|
|
{
|
1319 |
|
|
fprintf (dump_file,
|
1320 |
|
|
"Analyzing # of iterations of loop %d\n", loop->num);
|
1321 |
|
|
|
1322 |
|
|
fprintf (dump_file, " exit condition ");
|
1323 |
|
|
dump_affine_iv (dump_file, iv0);
|
1324 |
|
|
fprintf (dump_file, " %s ",
|
1325 |
|
|
code == NE_EXPR ? "!="
|
1326 |
|
|
: code == LT_EXPR ? "<"
|
1327 |
|
|
: "<=");
|
1328 |
|
|
dump_affine_iv (dump_file, iv1);
|
1329 |
|
|
fprintf (dump_file, "\n");
|
1330 |
|
|
|
1331 |
|
|
fprintf (dump_file, " bounds on difference of bases: ");
|
1332 |
|
|
mpz_out_str (dump_file, 10, bnds.below);
|
1333 |
|
|
fprintf (dump_file, " ... ");
|
1334 |
|
|
mpz_out_str (dump_file, 10, bnds.up);
|
1335 |
|
|
fprintf (dump_file, "\n");
|
1336 |
|
|
}
|
1337 |
|
|
|
1338 |
|
|
switch (code)
|
1339 |
|
|
{
|
1340 |
|
|
case NE_EXPR:
|
1341 |
|
|
gcc_assert (integer_zerop (iv1->step));
|
1342 |
|
|
ret = number_of_iterations_ne (type, iv0, iv1->base, niter,
|
1343 |
|
|
exit_must_be_taken, &bnds);
|
1344 |
|
|
break;
|
1345 |
|
|
|
1346 |
|
|
case LT_EXPR:
|
1347 |
|
|
ret = number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
|
1348 |
|
|
&bnds);
|
1349 |
|
|
break;
|
1350 |
|
|
|
1351 |
|
|
case LE_EXPR:
|
1352 |
|
|
ret = number_of_iterations_le (type, iv0, iv1, niter, exit_must_be_taken,
|
1353 |
|
|
&bnds);
|
1354 |
|
|
break;
|
1355 |
|
|
|
1356 |
|
|
default:
|
1357 |
|
|
gcc_unreachable ();
|
1358 |
|
|
}
|
1359 |
|
|
|
1360 |
|
|
mpz_clear (bnds.up);
|
1361 |
|
|
mpz_clear (bnds.below);
|
1362 |
|
|
|
1363 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1364 |
|
|
{
|
1365 |
|
|
if (ret)
|
1366 |
|
|
{
|
1367 |
|
|
fprintf (dump_file, " result:\n");
|
1368 |
|
|
if (!integer_nonzerop (niter->assumptions))
|
1369 |
|
|
{
|
1370 |
|
|
fprintf (dump_file, " under assumptions ");
|
1371 |
|
|
print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
|
1372 |
|
|
fprintf (dump_file, "\n");
|
1373 |
|
|
}
|
1374 |
|
|
|
1375 |
|
|
if (!integer_zerop (niter->may_be_zero))
|
1376 |
|
|
{
|
1377 |
|
|
fprintf (dump_file, " zero if ");
|
1378 |
|
|
print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
|
1379 |
|
|
fprintf (dump_file, "\n");
|
1380 |
|
|
}
|
1381 |
|
|
|
1382 |
|
|
fprintf (dump_file, " # of iterations ");
|
1383 |
|
|
print_generic_expr (dump_file, niter->niter, TDF_SLIM);
|
1384 |
|
|
fprintf (dump_file, ", bounded by ");
|
1385 |
|
|
dump_double_int (dump_file, niter->max, true);
|
1386 |
|
|
fprintf (dump_file, "\n");
|
1387 |
|
|
}
|
1388 |
|
|
else
|
1389 |
|
|
fprintf (dump_file, " failed\n\n");
|
1390 |
|
|
}
|
1391 |
|
|
return ret;
|
1392 |
|
|
}
|
1393 |
|
|
|
1394 |
|
|
/* Substitute NEW for OLD in EXPR and fold the result. */
|
1395 |
|
|
|
1396 |
|
|
static tree
|
1397 |
|
|
simplify_replace_tree (tree expr, tree old, tree new_tree)
|
1398 |
|
|
{
|
1399 |
|
|
unsigned i, n;
|
1400 |
|
|
tree ret = NULL_TREE, e, se;
|
1401 |
|
|
|
1402 |
|
|
if (!expr)
|
1403 |
|
|
return NULL_TREE;
|
1404 |
|
|
|
1405 |
|
|
/* Do not bother to replace constants. */
|
1406 |
|
|
if (CONSTANT_CLASS_P (old))
|
1407 |
|
|
return expr;
|
1408 |
|
|
|
1409 |
|
|
if (expr == old
|
1410 |
|
|
|| operand_equal_p (expr, old, 0))
|
1411 |
|
|
return unshare_expr (new_tree);
|
1412 |
|
|
|
1413 |
|
|
if (!EXPR_P (expr))
|
1414 |
|
|
return expr;
|
1415 |
|
|
|
1416 |
|
|
n = TREE_OPERAND_LENGTH (expr);
|
1417 |
|
|
for (i = 0; i < n; i++)
|
1418 |
|
|
{
|
1419 |
|
|
e = TREE_OPERAND (expr, i);
|
1420 |
|
|
se = simplify_replace_tree (e, old, new_tree);
|
1421 |
|
|
if (e == se)
|
1422 |
|
|
continue;
|
1423 |
|
|
|
1424 |
|
|
if (!ret)
|
1425 |
|
|
ret = copy_node (expr);
|
1426 |
|
|
|
1427 |
|
|
TREE_OPERAND (ret, i) = se;
|
1428 |
|
|
}
|
1429 |
|
|
|
1430 |
|
|
return (ret ? fold (ret) : expr);
|
1431 |
|
|
}
|
1432 |
|
|
|
1433 |
|
|
/* Expand definitions of ssa names in EXPR as long as they are simple
|
1434 |
|
|
enough, and return the new expression. */
|
1435 |
|
|
|
1436 |
|
|
tree
|
1437 |
|
|
expand_simple_operations (tree expr)
|
1438 |
|
|
{
|
1439 |
|
|
unsigned i, n;
|
1440 |
|
|
tree ret = NULL_TREE, e, ee, e1;
|
1441 |
|
|
enum tree_code code;
|
1442 |
|
|
gimple stmt;
|
1443 |
|
|
|
1444 |
|
|
if (expr == NULL_TREE)
|
1445 |
|
|
return expr;
|
1446 |
|
|
|
1447 |
|
|
if (is_gimple_min_invariant (expr))
|
1448 |
|
|
return expr;
|
1449 |
|
|
|
1450 |
|
|
code = TREE_CODE (expr);
|
1451 |
|
|
if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
|
1452 |
|
|
{
|
1453 |
|
|
n = TREE_OPERAND_LENGTH (expr);
|
1454 |
|
|
for (i = 0; i < n; i++)
|
1455 |
|
|
{
|
1456 |
|
|
e = TREE_OPERAND (expr, i);
|
1457 |
|
|
ee = expand_simple_operations (e);
|
1458 |
|
|
if (e == ee)
|
1459 |
|
|
continue;
|
1460 |
|
|
|
1461 |
|
|
if (!ret)
|
1462 |
|
|
ret = copy_node (expr);
|
1463 |
|
|
|
1464 |
|
|
TREE_OPERAND (ret, i) = ee;
|
1465 |
|
|
}
|
1466 |
|
|
|
1467 |
|
|
if (!ret)
|
1468 |
|
|
return expr;
|
1469 |
|
|
|
1470 |
|
|
fold_defer_overflow_warnings ();
|
1471 |
|
|
ret = fold (ret);
|
1472 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
1473 |
|
|
return ret;
|
1474 |
|
|
}
|
1475 |
|
|
|
1476 |
|
|
if (TREE_CODE (expr) != SSA_NAME)
|
1477 |
|
|
return expr;
|
1478 |
|
|
|
1479 |
|
|
stmt = SSA_NAME_DEF_STMT (expr);
|
1480 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
1481 |
|
|
{
|
1482 |
|
|
basic_block src, dest;
|
1483 |
|
|
|
1484 |
|
|
if (gimple_phi_num_args (stmt) != 1)
|
1485 |
|
|
return expr;
|
1486 |
|
|
e = PHI_ARG_DEF (stmt, 0);
|
1487 |
|
|
|
1488 |
|
|
/* Avoid propagating through loop exit phi nodes, which
|
1489 |
|
|
could break loop-closed SSA form restrictions. */
|
1490 |
|
|
dest = gimple_bb (stmt);
|
1491 |
|
|
src = single_pred (dest);
|
1492 |
|
|
if (TREE_CODE (e) == SSA_NAME
|
1493 |
|
|
&& src->loop_father != dest->loop_father)
|
1494 |
|
|
return expr;
|
1495 |
|
|
|
1496 |
|
|
return expand_simple_operations (e);
|
1497 |
|
|
}
|
1498 |
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
1499 |
|
|
return expr;
|
1500 |
|
|
|
1501 |
|
|
e = gimple_assign_rhs1 (stmt);
|
1502 |
|
|
code = gimple_assign_rhs_code (stmt);
|
1503 |
|
|
if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
|
1504 |
|
|
{
|
1505 |
|
|
if (is_gimple_min_invariant (e))
|
1506 |
|
|
return e;
|
1507 |
|
|
|
1508 |
|
|
if (code == SSA_NAME)
|
1509 |
|
|
return expand_simple_operations (e);
|
1510 |
|
|
|
1511 |
|
|
return expr;
|
1512 |
|
|
}
|
1513 |
|
|
|
1514 |
|
|
switch (code)
|
1515 |
|
|
{
|
1516 |
|
|
CASE_CONVERT:
|
1517 |
|
|
/* Casts are simple. */
|
1518 |
|
|
ee = expand_simple_operations (e);
|
1519 |
|
|
return fold_build1 (code, TREE_TYPE (expr), ee);
|
1520 |
|
|
|
1521 |
|
|
case PLUS_EXPR:
|
1522 |
|
|
case MINUS_EXPR:
|
1523 |
|
|
case POINTER_PLUS_EXPR:
|
1524 |
|
|
/* And increments and decrements by a constant are simple. */
|
1525 |
|
|
e1 = gimple_assign_rhs2 (stmt);
|
1526 |
|
|
if (!is_gimple_min_invariant (e1))
|
1527 |
|
|
return expr;
|
1528 |
|
|
|
1529 |
|
|
ee = expand_simple_operations (e);
|
1530 |
|
|
return fold_build2 (code, TREE_TYPE (expr), ee, e1);
|
1531 |
|
|
|
1532 |
|
|
default:
|
1533 |
|
|
return expr;
|
1534 |
|
|
}
|
1535 |
|
|
}
|
1536 |
|
|
|
1537 |
|
|
/* Tries to simplify EXPR using the condition COND. Returns the simplified
|
1538 |
|
|
expression (or EXPR unchanged, if no simplification was possible). */
|
1539 |
|
|
|
1540 |
|
|
static tree
|
1541 |
|
|
tree_simplify_using_condition_1 (tree cond, tree expr)
|
1542 |
|
|
{
|
1543 |
|
|
bool changed;
|
1544 |
|
|
tree e, te, e0, e1, e2, notcond;
|
1545 |
|
|
enum tree_code code = TREE_CODE (expr);
|
1546 |
|
|
|
1547 |
|
|
if (code == INTEGER_CST)
|
1548 |
|
|
return expr;
|
1549 |
|
|
|
1550 |
|
|
if (code == TRUTH_OR_EXPR
|
1551 |
|
|
|| code == TRUTH_AND_EXPR
|
1552 |
|
|
|| code == COND_EXPR)
|
1553 |
|
|
{
|
1554 |
|
|
changed = false;
|
1555 |
|
|
|
1556 |
|
|
e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
|
1557 |
|
|
if (TREE_OPERAND (expr, 0) != e0)
|
1558 |
|
|
changed = true;
|
1559 |
|
|
|
1560 |
|
|
e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
|
1561 |
|
|
if (TREE_OPERAND (expr, 1) != e1)
|
1562 |
|
|
changed = true;
|
1563 |
|
|
|
1564 |
|
|
if (code == COND_EXPR)
|
1565 |
|
|
{
|
1566 |
|
|
e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
|
1567 |
|
|
if (TREE_OPERAND (expr, 2) != e2)
|
1568 |
|
|
changed = true;
|
1569 |
|
|
}
|
1570 |
|
|
else
|
1571 |
|
|
e2 = NULL_TREE;
|
1572 |
|
|
|
1573 |
|
|
if (changed)
|
1574 |
|
|
{
|
1575 |
|
|
if (code == COND_EXPR)
|
1576 |
|
|
expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
|
1577 |
|
|
else
|
1578 |
|
|
expr = fold_build2 (code, boolean_type_node, e0, e1);
|
1579 |
|
|
}
|
1580 |
|
|
|
1581 |
|
|
return expr;
|
1582 |
|
|
}
|
1583 |
|
|
|
1584 |
|
|
/* In case COND is equality, we may be able to simplify EXPR by copy/constant
|
1585 |
|
|
propagation, and vice versa. Fold does not handle this, since it is
|
1586 |
|
|
considered too expensive. */
|
1587 |
|
|
if (TREE_CODE (cond) == EQ_EXPR)
|
1588 |
|
|
{
|
1589 |
|
|
e0 = TREE_OPERAND (cond, 0);
|
1590 |
|
|
e1 = TREE_OPERAND (cond, 1);
|
1591 |
|
|
|
1592 |
|
|
/* We know that e0 == e1. Check whether we cannot simplify expr
|
1593 |
|
|
using this fact. */
|
1594 |
|
|
e = simplify_replace_tree (expr, e0, e1);
|
1595 |
|
|
if (integer_zerop (e) || integer_nonzerop (e))
|
1596 |
|
|
return e;
|
1597 |
|
|
|
1598 |
|
|
e = simplify_replace_tree (expr, e1, e0);
|
1599 |
|
|
if (integer_zerop (e) || integer_nonzerop (e))
|
1600 |
|
|
return e;
|
1601 |
|
|
}
|
1602 |
|
|
if (TREE_CODE (expr) == EQ_EXPR)
|
1603 |
|
|
{
|
1604 |
|
|
e0 = TREE_OPERAND (expr, 0);
|
1605 |
|
|
e1 = TREE_OPERAND (expr, 1);
|
1606 |
|
|
|
1607 |
|
|
/* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
|
1608 |
|
|
e = simplify_replace_tree (cond, e0, e1);
|
1609 |
|
|
if (integer_zerop (e))
|
1610 |
|
|
return e;
|
1611 |
|
|
e = simplify_replace_tree (cond, e1, e0);
|
1612 |
|
|
if (integer_zerop (e))
|
1613 |
|
|
return e;
|
1614 |
|
|
}
|
1615 |
|
|
if (TREE_CODE (expr) == NE_EXPR)
|
1616 |
|
|
{
|
1617 |
|
|
e0 = TREE_OPERAND (expr, 0);
|
1618 |
|
|
e1 = TREE_OPERAND (expr, 1);
|
1619 |
|
|
|
1620 |
|
|
/* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
|
1621 |
|
|
e = simplify_replace_tree (cond, e0, e1);
|
1622 |
|
|
if (integer_zerop (e))
|
1623 |
|
|
return boolean_true_node;
|
1624 |
|
|
e = simplify_replace_tree (cond, e1, e0);
|
1625 |
|
|
if (integer_zerop (e))
|
1626 |
|
|
return boolean_true_node;
|
1627 |
|
|
}
|
1628 |
|
|
|
1629 |
|
|
te = expand_simple_operations (expr);
|
1630 |
|
|
|
1631 |
|
|
/* Check whether COND ==> EXPR. */
|
1632 |
|
|
notcond = invert_truthvalue (cond);
|
1633 |
|
|
e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, te);
|
1634 |
|
|
if (e && integer_nonzerop (e))
|
1635 |
|
|
return e;
|
1636 |
|
|
|
1637 |
|
|
/* Check whether COND ==> not EXPR. */
|
1638 |
|
|
e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, te);
|
1639 |
|
|
if (e && integer_zerop (e))
|
1640 |
|
|
return e;
|
1641 |
|
|
|
1642 |
|
|
return expr;
|
1643 |
|
|
}
|
1644 |
|
|
|
1645 |
|
|
/* Tries to simplify EXPR using the condition COND. Returns the simplified
|
1646 |
|
|
expression (or EXPR unchanged, if no simplification was possible).
|
1647 |
|
|
Wrapper around tree_simplify_using_condition_1 that ensures that chains
|
1648 |
|
|
of simple operations in definitions of ssa names in COND are expanded,
|
1649 |
|
|
so that things like casts or incrementing the value of the bound before
|
1650 |
|
|
the loop do not cause us to fail. */
|
1651 |
|
|
|
1652 |
|
|
static tree
|
1653 |
|
|
tree_simplify_using_condition (tree cond, tree expr)
|
1654 |
|
|
{
|
1655 |
|
|
cond = expand_simple_operations (cond);
|
1656 |
|
|
|
1657 |
|
|
return tree_simplify_using_condition_1 (cond, expr);
|
1658 |
|
|
}
|
1659 |
|
|
|
1660 |
|
|
/* Tries to simplify EXPR using the conditions on entry to LOOP.
|
1661 |
|
|
Returns the simplified expression (or EXPR unchanged, if no
|
1662 |
|
|
simplification was possible).*/
|
1663 |
|
|
|
1664 |
|
|
static tree
|
1665 |
|
|
simplify_using_initial_conditions (struct loop *loop, tree expr)
|
1666 |
|
|
{
|
1667 |
|
|
edge e;
|
1668 |
|
|
basic_block bb;
|
1669 |
|
|
gimple stmt;
|
1670 |
|
|
tree cond;
|
1671 |
|
|
int cnt = 0;
|
1672 |
|
|
|
1673 |
|
|
if (TREE_CODE (expr) == INTEGER_CST)
|
1674 |
|
|
return expr;
|
1675 |
|
|
|
1676 |
|
|
/* Limit walking the dominators to avoid quadraticness in
|
1677 |
|
|
the number of BBs times the number of loops in degenerate
|
1678 |
|
|
cases. */
|
1679 |
|
|
for (bb = loop->header;
|
1680 |
|
|
bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
|
1681 |
|
|
bb = get_immediate_dominator (CDI_DOMINATORS, bb))
|
1682 |
|
|
{
|
1683 |
|
|
if (!single_pred_p (bb))
|
1684 |
|
|
continue;
|
1685 |
|
|
e = single_pred_edge (bb);
|
1686 |
|
|
|
1687 |
|
|
if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
|
1688 |
|
|
continue;
|
1689 |
|
|
|
1690 |
|
|
stmt = last_stmt (e->src);
|
1691 |
|
|
cond = fold_build2 (gimple_cond_code (stmt),
|
1692 |
|
|
boolean_type_node,
|
1693 |
|
|
gimple_cond_lhs (stmt),
|
1694 |
|
|
gimple_cond_rhs (stmt));
|
1695 |
|
|
if (e->flags & EDGE_FALSE_VALUE)
|
1696 |
|
|
cond = invert_truthvalue (cond);
|
1697 |
|
|
expr = tree_simplify_using_condition (cond, expr);
|
1698 |
|
|
++cnt;
|
1699 |
|
|
}
|
1700 |
|
|
|
1701 |
|
|
return expr;
|
1702 |
|
|
}
|
1703 |
|
|
|
1704 |
|
|
/* Tries to simplify EXPR using the evolutions of the loop invariants
|
1705 |
|
|
in the superloops of LOOP. Returns the simplified expression
|
1706 |
|
|
(or EXPR unchanged, if no simplification was possible). */
|
1707 |
|
|
|
1708 |
|
|
static tree
|
1709 |
|
|
simplify_using_outer_evolutions (struct loop *loop, tree expr)
|
1710 |
|
|
{
|
1711 |
|
|
enum tree_code code = TREE_CODE (expr);
|
1712 |
|
|
bool changed;
|
1713 |
|
|
tree e, e0, e1, e2;
|
1714 |
|
|
|
1715 |
|
|
if (is_gimple_min_invariant (expr))
|
1716 |
|
|
return expr;
|
1717 |
|
|
|
1718 |
|
|
if (code == TRUTH_OR_EXPR
|
1719 |
|
|
|| code == TRUTH_AND_EXPR
|
1720 |
|
|
|| code == COND_EXPR)
|
1721 |
|
|
{
|
1722 |
|
|
changed = false;
|
1723 |
|
|
|
1724 |
|
|
e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
|
1725 |
|
|
if (TREE_OPERAND (expr, 0) != e0)
|
1726 |
|
|
changed = true;
|
1727 |
|
|
|
1728 |
|
|
e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
|
1729 |
|
|
if (TREE_OPERAND (expr, 1) != e1)
|
1730 |
|
|
changed = true;
|
1731 |
|
|
|
1732 |
|
|
if (code == COND_EXPR)
|
1733 |
|
|
{
|
1734 |
|
|
e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
|
1735 |
|
|
if (TREE_OPERAND (expr, 2) != e2)
|
1736 |
|
|
changed = true;
|
1737 |
|
|
}
|
1738 |
|
|
else
|
1739 |
|
|
e2 = NULL_TREE;
|
1740 |
|
|
|
1741 |
|
|
if (changed)
|
1742 |
|
|
{
|
1743 |
|
|
if (code == COND_EXPR)
|
1744 |
|
|
expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
|
1745 |
|
|
else
|
1746 |
|
|
expr = fold_build2 (code, boolean_type_node, e0, e1);
|
1747 |
|
|
}
|
1748 |
|
|
|
1749 |
|
|
return expr;
|
1750 |
|
|
}
|
1751 |
|
|
|
1752 |
|
|
e = instantiate_parameters (loop, expr);
|
1753 |
|
|
if (is_gimple_min_invariant (e))
|
1754 |
|
|
return e;
|
1755 |
|
|
|
1756 |
|
|
return expr;
|
1757 |
|
|
}
|
1758 |
|
|
|
1759 |
|
|
/* Returns true if EXIT is the only possible exit from LOOP. */
|
1760 |
|
|
|
1761 |
|
|
bool
|
1762 |
|
|
loop_only_exit_p (const struct loop *loop, const_edge exit)
|
1763 |
|
|
{
|
1764 |
|
|
basic_block *body;
|
1765 |
|
|
gimple_stmt_iterator bsi;
|
1766 |
|
|
unsigned i;
|
1767 |
|
|
gimple call;
|
1768 |
|
|
|
1769 |
|
|
if (exit != single_exit (loop))
|
1770 |
|
|
return false;
|
1771 |
|
|
|
1772 |
|
|
body = get_loop_body (loop);
|
1773 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
1774 |
|
|
{
|
1775 |
|
|
for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
|
1776 |
|
|
{
|
1777 |
|
|
call = gsi_stmt (bsi);
|
1778 |
|
|
if (gimple_code (call) != GIMPLE_CALL)
|
1779 |
|
|
continue;
|
1780 |
|
|
|
1781 |
|
|
if (gimple_has_side_effects (call))
|
1782 |
|
|
{
|
1783 |
|
|
free (body);
|
1784 |
|
|
return false;
|
1785 |
|
|
}
|
1786 |
|
|
}
|
1787 |
|
|
}
|
1788 |
|
|
|
1789 |
|
|
free (body);
|
1790 |
|
|
return true;
|
1791 |
|
|
}
|
1792 |
|
|
|
1793 |
|
|
/* Stores description of number of iterations of LOOP derived from
|
1794 |
|
|
EXIT (an exit edge of the LOOP) in NITER. Returns true if some
|
1795 |
|
|
useful information could be derived (and fields of NITER has
|
1796 |
|
|
meaning described in comments at struct tree_niter_desc
|
1797 |
|
|
declaration), false otherwise. If WARN is true and
|
1798 |
|
|
-Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
|
1799 |
|
|
potentially unsafe assumptions. */
|
1800 |
|
|
|
1801 |
|
|
bool
|
1802 |
|
|
number_of_iterations_exit (struct loop *loop, edge exit,
|
1803 |
|
|
struct tree_niter_desc *niter,
|
1804 |
|
|
bool warn)
|
1805 |
|
|
{
|
1806 |
|
|
gimple stmt;
|
1807 |
|
|
tree type;
|
1808 |
|
|
tree op0, op1;
|
1809 |
|
|
enum tree_code code;
|
1810 |
|
|
affine_iv iv0, iv1;
|
1811 |
|
|
|
1812 |
|
|
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
|
1813 |
|
|
return false;
|
1814 |
|
|
|
1815 |
|
|
niter->assumptions = boolean_false_node;
|
1816 |
|
|
stmt = last_stmt (exit->src);
|
1817 |
|
|
if (!stmt || gimple_code (stmt) != GIMPLE_COND)
|
1818 |
|
|
return false;
|
1819 |
|
|
|
1820 |
|
|
/* We want the condition for staying inside loop. */
|
1821 |
|
|
code = gimple_cond_code (stmt);
|
1822 |
|
|
if (exit->flags & EDGE_TRUE_VALUE)
|
1823 |
|
|
code = invert_tree_comparison (code, false);
|
1824 |
|
|
|
1825 |
|
|
switch (code)
|
1826 |
|
|
{
|
1827 |
|
|
case GT_EXPR:
|
1828 |
|
|
case GE_EXPR:
|
1829 |
|
|
case NE_EXPR:
|
1830 |
|
|
case LT_EXPR:
|
1831 |
|
|
case LE_EXPR:
|
1832 |
|
|
break;
|
1833 |
|
|
|
1834 |
|
|
default:
|
1835 |
|
|
return false;
|
1836 |
|
|
}
|
1837 |
|
|
|
1838 |
|
|
op0 = gimple_cond_lhs (stmt);
|
1839 |
|
|
op1 = gimple_cond_rhs (stmt);
|
1840 |
|
|
type = TREE_TYPE (op0);
|
1841 |
|
|
|
1842 |
|
|
if (TREE_CODE (type) != INTEGER_TYPE
|
1843 |
|
|
&& !POINTER_TYPE_P (type))
|
1844 |
|
|
return false;
|
1845 |
|
|
|
1846 |
|
|
if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, false))
|
1847 |
|
|
return false;
|
1848 |
|
|
if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, false))
|
1849 |
|
|
return false;
|
1850 |
|
|
|
1851 |
|
|
/* We don't want to see undefined signed overflow warnings while
|
1852 |
|
|
computing the number of iterations. */
|
1853 |
|
|
fold_defer_overflow_warnings ();
|
1854 |
|
|
|
1855 |
|
|
iv0.base = expand_simple_operations (iv0.base);
|
1856 |
|
|
iv1.base = expand_simple_operations (iv1.base);
|
1857 |
|
|
if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
|
1858 |
|
|
loop_only_exit_p (loop, exit)))
|
1859 |
|
|
{
|
1860 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
1861 |
|
|
return false;
|
1862 |
|
|
}
|
1863 |
|
|
|
1864 |
|
|
if (optimize >= 3)
|
1865 |
|
|
{
|
1866 |
|
|
niter->assumptions = simplify_using_outer_evolutions (loop,
|
1867 |
|
|
niter->assumptions);
|
1868 |
|
|
niter->may_be_zero = simplify_using_outer_evolutions (loop,
|
1869 |
|
|
niter->may_be_zero);
|
1870 |
|
|
niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
|
1871 |
|
|
}
|
1872 |
|
|
|
1873 |
|
|
niter->assumptions
|
1874 |
|
|
= simplify_using_initial_conditions (loop,
|
1875 |
|
|
niter->assumptions);
|
1876 |
|
|
niter->may_be_zero
|
1877 |
|
|
= simplify_using_initial_conditions (loop,
|
1878 |
|
|
niter->may_be_zero);
|
1879 |
|
|
|
1880 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
1881 |
|
|
|
1882 |
|
|
if (integer_onep (niter->assumptions))
|
1883 |
|
|
return true;
|
1884 |
|
|
|
1885 |
|
|
/* With -funsafe-loop-optimizations we assume that nothing bad can happen.
|
1886 |
|
|
But if we can prove that there is overflow or some other source of weird
|
1887 |
|
|
behavior, ignore the loop even with -funsafe-loop-optimizations. */
|
1888 |
|
|
if (integer_zerop (niter->assumptions) || !single_exit (loop))
|
1889 |
|
|
return false;
|
1890 |
|
|
|
1891 |
|
|
if (flag_unsafe_loop_optimizations)
|
1892 |
|
|
niter->assumptions = boolean_true_node;
|
1893 |
|
|
|
1894 |
|
|
if (warn)
|
1895 |
|
|
{
|
1896 |
|
|
const char *wording;
|
1897 |
|
|
location_t loc = gimple_location (stmt);
|
1898 |
|
|
|
1899 |
|
|
/* We can provide a more specific warning if one of the operator is
|
1900 |
|
|
constant and the other advances by +1 or -1. */
|
1901 |
|
|
if (!integer_zerop (iv1.step)
|
1902 |
|
|
? (integer_zerop (iv0.step)
|
1903 |
|
|
&& (integer_onep (iv1.step) || integer_all_onesp (iv1.step)))
|
1904 |
|
|
: (integer_onep (iv0.step) || integer_all_onesp (iv0.step)))
|
1905 |
|
|
wording =
|
1906 |
|
|
flag_unsafe_loop_optimizations
|
1907 |
|
|
? N_("assuming that the loop is not infinite")
|
1908 |
|
|
: N_("cannot optimize possibly infinite loops");
|
1909 |
|
|
else
|
1910 |
|
|
wording =
|
1911 |
|
|
flag_unsafe_loop_optimizations
|
1912 |
|
|
? N_("assuming that the loop counter does not overflow")
|
1913 |
|
|
: N_("cannot optimize loop, the loop counter may overflow");
|
1914 |
|
|
|
1915 |
|
|
warning_at ((LOCATION_LINE (loc) > 0) ? loc : input_location,
|
1916 |
|
|
OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
|
1917 |
|
|
}
|
1918 |
|
|
|
1919 |
|
|
return flag_unsafe_loop_optimizations;
|
1920 |
|
|
}
|
1921 |
|
|
|
1922 |
|
|
/* Try to determine the number of iterations of LOOP. If we succeed,
|
1923 |
|
|
expression giving number of iterations is returned and *EXIT is
|
1924 |
|
|
set to the edge from that the information is obtained. Otherwise
|
1925 |
|
|
chrec_dont_know is returned. */
|
1926 |
|
|
|
1927 |
|
|
tree
|
1928 |
|
|
find_loop_niter (struct loop *loop, edge *exit)
|
1929 |
|
|
{
|
1930 |
|
|
unsigned i;
|
1931 |
|
|
VEC (edge, heap) *exits = get_loop_exit_edges (loop);
|
1932 |
|
|
edge ex;
|
1933 |
|
|
tree niter = NULL_TREE, aniter;
|
1934 |
|
|
struct tree_niter_desc desc;
|
1935 |
|
|
|
1936 |
|
|
*exit = NULL;
|
1937 |
|
|
FOR_EACH_VEC_ELT (edge, exits, i, ex)
|
1938 |
|
|
{
|
1939 |
|
|
if (!just_once_each_iteration_p (loop, ex->src))
|
1940 |
|
|
continue;
|
1941 |
|
|
|
1942 |
|
|
if (!number_of_iterations_exit (loop, ex, &desc, false))
|
1943 |
|
|
continue;
|
1944 |
|
|
|
1945 |
|
|
if (integer_nonzerop (desc.may_be_zero))
|
1946 |
|
|
{
|
1947 |
|
|
/* We exit in the first iteration through this exit.
|
1948 |
|
|
We won't find anything better. */
|
1949 |
|
|
niter = build_int_cst (unsigned_type_node, 0);
|
1950 |
|
|
*exit = ex;
|
1951 |
|
|
break;
|
1952 |
|
|
}
|
1953 |
|
|
|
1954 |
|
|
if (!integer_zerop (desc.may_be_zero))
|
1955 |
|
|
continue;
|
1956 |
|
|
|
1957 |
|
|
aniter = desc.niter;
|
1958 |
|
|
|
1959 |
|
|
if (!niter)
|
1960 |
|
|
{
|
1961 |
|
|
/* Nothing recorded yet. */
|
1962 |
|
|
niter = aniter;
|
1963 |
|
|
*exit = ex;
|
1964 |
|
|
continue;
|
1965 |
|
|
}
|
1966 |
|
|
|
1967 |
|
|
/* Prefer constants, the lower the better. */
|
1968 |
|
|
if (TREE_CODE (aniter) != INTEGER_CST)
|
1969 |
|
|
continue;
|
1970 |
|
|
|
1971 |
|
|
if (TREE_CODE (niter) != INTEGER_CST)
|
1972 |
|
|
{
|
1973 |
|
|
niter = aniter;
|
1974 |
|
|
*exit = ex;
|
1975 |
|
|
continue;
|
1976 |
|
|
}
|
1977 |
|
|
|
1978 |
|
|
if (tree_int_cst_lt (aniter, niter))
|
1979 |
|
|
{
|
1980 |
|
|
niter = aniter;
|
1981 |
|
|
*exit = ex;
|
1982 |
|
|
continue;
|
1983 |
|
|
}
|
1984 |
|
|
}
|
1985 |
|
|
VEC_free (edge, heap, exits);
|
1986 |
|
|
|
1987 |
|
|
return niter ? niter : chrec_dont_know;
|
1988 |
|
|
}
|
1989 |
|
|
|
1990 |
|
|
/* Return true if loop is known to have bounded number of iterations. */
|
1991 |
|
|
|
1992 |
|
|
bool
|
1993 |
|
|
finite_loop_p (struct loop *loop)
|
1994 |
|
|
{
|
1995 |
|
|
unsigned i;
|
1996 |
|
|
VEC (edge, heap) *exits;
|
1997 |
|
|
edge ex;
|
1998 |
|
|
struct tree_niter_desc desc;
|
1999 |
|
|
bool finite = false;
|
2000 |
|
|
int flags;
|
2001 |
|
|
|
2002 |
|
|
if (flag_unsafe_loop_optimizations)
|
2003 |
|
|
return true;
|
2004 |
|
|
flags = flags_from_decl_or_type (current_function_decl);
|
2005 |
|
|
if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
|
2006 |
|
|
{
|
2007 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2008 |
|
|
fprintf (dump_file, "Found loop %i to be finite: it is within pure or const function.\n",
|
2009 |
|
|
loop->num);
|
2010 |
|
|
return true;
|
2011 |
|
|
}
|
2012 |
|
|
|
2013 |
|
|
exits = get_loop_exit_edges (loop);
|
2014 |
|
|
FOR_EACH_VEC_ELT (edge, exits, i, ex)
|
2015 |
|
|
{
|
2016 |
|
|
if (!just_once_each_iteration_p (loop, ex->src))
|
2017 |
|
|
continue;
|
2018 |
|
|
|
2019 |
|
|
if (number_of_iterations_exit (loop, ex, &desc, false))
|
2020 |
|
|
{
|
2021 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2022 |
|
|
{
|
2023 |
|
|
fprintf (dump_file, "Found loop %i to be finite: iterating ", loop->num);
|
2024 |
|
|
print_generic_expr (dump_file, desc.niter, TDF_SLIM);
|
2025 |
|
|
fprintf (dump_file, " times\n");
|
2026 |
|
|
}
|
2027 |
|
|
finite = true;
|
2028 |
|
|
break;
|
2029 |
|
|
}
|
2030 |
|
|
}
|
2031 |
|
|
VEC_free (edge, heap, exits);
|
2032 |
|
|
return finite;
|
2033 |
|
|
}
|
2034 |
|
|
|
2035 |
|
|
/*
|
2036 |
|
|
|
2037 |
|
|
Analysis of a number of iterations of a loop by a brute-force evaluation.
|
2038 |
|
|
|
2039 |
|
|
*/
|
2040 |
|
|
|
2041 |
|
|
/* Bound on the number of iterations we try to evaluate. */
|
2042 |
|
|
|
2043 |
|
|
#define MAX_ITERATIONS_TO_TRACK \
|
2044 |
|
|
((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
|
2045 |
|
|
|
2046 |
|
|
/* Returns the loop phi node of LOOP such that ssa name X is derived from its
|
2047 |
|
|
result by a chain of operations such that all but exactly one of their
|
2048 |
|
|
operands are constants. */
|
2049 |
|
|
|
2050 |
|
|
static gimple
|
2051 |
|
|
chain_of_csts_start (struct loop *loop, tree x)
|
2052 |
|
|
{
|
2053 |
|
|
gimple stmt = SSA_NAME_DEF_STMT (x);
|
2054 |
|
|
tree use;
|
2055 |
|
|
basic_block bb = gimple_bb (stmt);
|
2056 |
|
|
enum tree_code code;
|
2057 |
|
|
|
2058 |
|
|
if (!bb
|
2059 |
|
|
|| !flow_bb_inside_loop_p (loop, bb))
|
2060 |
|
|
return NULL;
|
2061 |
|
|
|
2062 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
2063 |
|
|
{
|
2064 |
|
|
if (bb == loop->header)
|
2065 |
|
|
return stmt;
|
2066 |
|
|
|
2067 |
|
|
return NULL;
|
2068 |
|
|
}
|
2069 |
|
|
|
2070 |
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
2071 |
|
|
return NULL;
|
2072 |
|
|
|
2073 |
|
|
code = gimple_assign_rhs_code (stmt);
|
2074 |
|
|
if (gimple_references_memory_p (stmt)
|
2075 |
|
|
|| TREE_CODE_CLASS (code) == tcc_reference
|
2076 |
|
|
|| (code == ADDR_EXPR
|
2077 |
|
|
&& !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
|
2078 |
|
|
return NULL;
|
2079 |
|
|
|
2080 |
|
|
use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
|
2081 |
|
|
if (use == NULL_TREE)
|
2082 |
|
|
return NULL;
|
2083 |
|
|
|
2084 |
|
|
return chain_of_csts_start (loop, use);
|
2085 |
|
|
}
|
2086 |
|
|
|
2087 |
|
|
/* Determines whether the expression X is derived from a result of a phi node
|
2088 |
|
|
in header of LOOP such that
|
2089 |
|
|
|
2090 |
|
|
* the derivation of X consists only from operations with constants
|
2091 |
|
|
* the initial value of the phi node is constant
|
2092 |
|
|
* the value of the phi node in the next iteration can be derived from the
|
2093 |
|
|
value in the current iteration by a chain of operations with constants.
|
2094 |
|
|
|
2095 |
|
|
If such phi node exists, it is returned, otherwise NULL is returned. */
|
2096 |
|
|
|
2097 |
|
|
static gimple
|
2098 |
|
|
get_base_for (struct loop *loop, tree x)
|
2099 |
|
|
{
|
2100 |
|
|
gimple phi;
|
2101 |
|
|
tree init, next;
|
2102 |
|
|
|
2103 |
|
|
if (is_gimple_min_invariant (x))
|
2104 |
|
|
return NULL;
|
2105 |
|
|
|
2106 |
|
|
phi = chain_of_csts_start (loop, x);
|
2107 |
|
|
if (!phi)
|
2108 |
|
|
return NULL;
|
2109 |
|
|
|
2110 |
|
|
init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
|
2111 |
|
|
next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
|
2112 |
|
|
|
2113 |
|
|
if (TREE_CODE (next) != SSA_NAME)
|
2114 |
|
|
return NULL;
|
2115 |
|
|
|
2116 |
|
|
if (!is_gimple_min_invariant (init))
|
2117 |
|
|
return NULL;
|
2118 |
|
|
|
2119 |
|
|
if (chain_of_csts_start (loop, next) != phi)
|
2120 |
|
|
return NULL;
|
2121 |
|
|
|
2122 |
|
|
return phi;
|
2123 |
|
|
}
|
2124 |
|
|
|
2125 |
|
|
/* Given an expression X, then
|
2126 |
|
|
|
2127 |
|
|
* if X is NULL_TREE, we return the constant BASE.
|
2128 |
|
|
* otherwise X is a SSA name, whose value in the considered loop is derived
|
2129 |
|
|
by a chain of operations with constant from a result of a phi node in
|
2130 |
|
|
the header of the loop. Then we return value of X when the value of the
|
2131 |
|
|
result of this phi node is given by the constant BASE. */
|
2132 |
|
|
|
2133 |
|
|
static tree
|
2134 |
|
|
get_val_for (tree x, tree base)
|
2135 |
|
|
{
|
2136 |
|
|
gimple stmt;
|
2137 |
|
|
|
2138 |
|
|
gcc_assert (is_gimple_min_invariant (base));
|
2139 |
|
|
|
2140 |
|
|
if (!x)
|
2141 |
|
|
return base;
|
2142 |
|
|
|
2143 |
|
|
stmt = SSA_NAME_DEF_STMT (x);
|
2144 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
2145 |
|
|
return base;
|
2146 |
|
|
|
2147 |
|
|
gcc_assert (is_gimple_assign (stmt));
|
2148 |
|
|
|
2149 |
|
|
/* STMT must be either an assignment of a single SSA name or an
|
2150 |
|
|
expression involving an SSA name and a constant. Try to fold that
|
2151 |
|
|
expression using the value for the SSA name. */
|
2152 |
|
|
if (gimple_assign_ssa_name_copy_p (stmt))
|
2153 |
|
|
return get_val_for (gimple_assign_rhs1 (stmt), base);
|
2154 |
|
|
else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
|
2155 |
|
|
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
|
2156 |
|
|
{
|
2157 |
|
|
return fold_build1 (gimple_assign_rhs_code (stmt),
|
2158 |
|
|
gimple_expr_type (stmt),
|
2159 |
|
|
get_val_for (gimple_assign_rhs1 (stmt), base));
|
2160 |
|
|
}
|
2161 |
|
|
else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
|
2162 |
|
|
{
|
2163 |
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
2164 |
|
|
tree rhs2 = gimple_assign_rhs2 (stmt);
|
2165 |
|
|
if (TREE_CODE (rhs1) == SSA_NAME)
|
2166 |
|
|
rhs1 = get_val_for (rhs1, base);
|
2167 |
|
|
else if (TREE_CODE (rhs2) == SSA_NAME)
|
2168 |
|
|
rhs2 = get_val_for (rhs2, base);
|
2169 |
|
|
else
|
2170 |
|
|
gcc_unreachable ();
|
2171 |
|
|
return fold_build2 (gimple_assign_rhs_code (stmt),
|
2172 |
|
|
gimple_expr_type (stmt), rhs1, rhs2);
|
2173 |
|
|
}
|
2174 |
|
|
else
|
2175 |
|
|
gcc_unreachable ();
|
2176 |
|
|
}
|
2177 |
|
|
|
2178 |
|
|
|
2179 |
|
|
/* Tries to count the number of iterations of LOOP till it exits by EXIT
|
2180 |
|
|
by brute force -- i.e. by determining the value of the operands of the
|
2181 |
|
|
condition at EXIT in first few iterations of the loop (assuming that
|
2182 |
|
|
these values are constant) and determining the first one in that the
|
2183 |
|
|
condition is not satisfied. Returns the constant giving the number
|
2184 |
|
|
of the iterations of LOOP if successful, chrec_dont_know otherwise. */
|
2185 |
|
|
|
2186 |
|
|
tree
|
2187 |
|
|
loop_niter_by_eval (struct loop *loop, edge exit)
|
2188 |
|
|
{
|
2189 |
|
|
tree acnd;
|
2190 |
|
|
tree op[2], val[2], next[2], aval[2];
|
2191 |
|
|
gimple phi, cond;
|
2192 |
|
|
unsigned i, j;
|
2193 |
|
|
enum tree_code cmp;
|
2194 |
|
|
|
2195 |
|
|
cond = last_stmt (exit->src);
|
2196 |
|
|
if (!cond || gimple_code (cond) != GIMPLE_COND)
|
2197 |
|
|
return chrec_dont_know;
|
2198 |
|
|
|
2199 |
|
|
cmp = gimple_cond_code (cond);
|
2200 |
|
|
if (exit->flags & EDGE_TRUE_VALUE)
|
2201 |
|
|
cmp = invert_tree_comparison (cmp, false);
|
2202 |
|
|
|
2203 |
|
|
switch (cmp)
|
2204 |
|
|
{
|
2205 |
|
|
case EQ_EXPR:
|
2206 |
|
|
case NE_EXPR:
|
2207 |
|
|
case GT_EXPR:
|
2208 |
|
|
case GE_EXPR:
|
2209 |
|
|
case LT_EXPR:
|
2210 |
|
|
case LE_EXPR:
|
2211 |
|
|
op[0] = gimple_cond_lhs (cond);
|
2212 |
|
|
op[1] = gimple_cond_rhs (cond);
|
2213 |
|
|
break;
|
2214 |
|
|
|
2215 |
|
|
default:
|
2216 |
|
|
return chrec_dont_know;
|
2217 |
|
|
}
|
2218 |
|
|
|
2219 |
|
|
for (j = 0; j < 2; j++)
|
2220 |
|
|
{
|
2221 |
|
|
if (is_gimple_min_invariant (op[j]))
|
2222 |
|
|
{
|
2223 |
|
|
val[j] = op[j];
|
2224 |
|
|
next[j] = NULL_TREE;
|
2225 |
|
|
op[j] = NULL_TREE;
|
2226 |
|
|
}
|
2227 |
|
|
else
|
2228 |
|
|
{
|
2229 |
|
|
phi = get_base_for (loop, op[j]);
|
2230 |
|
|
if (!phi)
|
2231 |
|
|
return chrec_dont_know;
|
2232 |
|
|
val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
|
2233 |
|
|
next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
|
2234 |
|
|
}
|
2235 |
|
|
}
|
2236 |
|
|
|
2237 |
|
|
/* Don't issue signed overflow warnings. */
|
2238 |
|
|
fold_defer_overflow_warnings ();
|
2239 |
|
|
|
2240 |
|
|
for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
|
2241 |
|
|
{
|
2242 |
|
|
for (j = 0; j < 2; j++)
|
2243 |
|
|
aval[j] = get_val_for (op[j], val[j]);
|
2244 |
|
|
|
2245 |
|
|
acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
|
2246 |
|
|
if (acnd && integer_zerop (acnd))
|
2247 |
|
|
{
|
2248 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
2249 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2250 |
|
|
fprintf (dump_file,
|
2251 |
|
|
"Proved that loop %d iterates %d times using brute force.\n",
|
2252 |
|
|
loop->num, i);
|
2253 |
|
|
return build_int_cst (unsigned_type_node, i);
|
2254 |
|
|
}
|
2255 |
|
|
|
2256 |
|
|
for (j = 0; j < 2; j++)
|
2257 |
|
|
{
|
2258 |
|
|
val[j] = get_val_for (next[j], val[j]);
|
2259 |
|
|
if (!is_gimple_min_invariant (val[j]))
|
2260 |
|
|
{
|
2261 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
2262 |
|
|
return chrec_dont_know;
|
2263 |
|
|
}
|
2264 |
|
|
}
|
2265 |
|
|
}
|
2266 |
|
|
|
2267 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
2268 |
|
|
|
2269 |
|
|
return chrec_dont_know;
|
2270 |
|
|
}
|
2271 |
|
|
|
2272 |
|
|
/* Finds the exit of the LOOP by that the loop exits after a constant
|
2273 |
|
|
number of iterations and stores the exit edge to *EXIT. The constant
|
2274 |
|
|
giving the number of iterations of LOOP is returned. The number of
|
2275 |
|
|
iterations is determined using loop_niter_by_eval (i.e. by brute force
|
2276 |
|
|
evaluation). If we are unable to find the exit for that loop_niter_by_eval
|
2277 |
|
|
determines the number of iterations, chrec_dont_know is returned. */
|
2278 |
|
|
|
2279 |
|
|
tree
|
2280 |
|
|
find_loop_niter_by_eval (struct loop *loop, edge *exit)
|
2281 |
|
|
{
|
2282 |
|
|
unsigned i;
|
2283 |
|
|
VEC (edge, heap) *exits = get_loop_exit_edges (loop);
|
2284 |
|
|
edge ex;
|
2285 |
|
|
tree niter = NULL_TREE, aniter;
|
2286 |
|
|
|
2287 |
|
|
*exit = NULL;
|
2288 |
|
|
|
2289 |
|
|
/* Loops with multiple exits are expensive to handle and less important. */
|
2290 |
|
|
if (!flag_expensive_optimizations
|
2291 |
|
|
&& VEC_length (edge, exits) > 1)
|
2292 |
|
|
return chrec_dont_know;
|
2293 |
|
|
|
2294 |
|
|
FOR_EACH_VEC_ELT (edge, exits, i, ex)
|
2295 |
|
|
{
|
2296 |
|
|
if (!just_once_each_iteration_p (loop, ex->src))
|
2297 |
|
|
continue;
|
2298 |
|
|
|
2299 |
|
|
aniter = loop_niter_by_eval (loop, ex);
|
2300 |
|
|
if (chrec_contains_undetermined (aniter))
|
2301 |
|
|
continue;
|
2302 |
|
|
|
2303 |
|
|
if (niter
|
2304 |
|
|
&& !tree_int_cst_lt (aniter, niter))
|
2305 |
|
|
continue;
|
2306 |
|
|
|
2307 |
|
|
niter = aniter;
|
2308 |
|
|
*exit = ex;
|
2309 |
|
|
}
|
2310 |
|
|
VEC_free (edge, heap, exits);
|
2311 |
|
|
|
2312 |
|
|
return niter ? niter : chrec_dont_know;
|
2313 |
|
|
}
|
2314 |
|
|
|
2315 |
|
|
/*
|
2316 |
|
|
|
2317 |
|
|
Analysis of upper bounds on number of iterations of a loop.
|
2318 |
|
|
|
2319 |
|
|
*/
|
2320 |
|
|
|
2321 |
|
|
static double_int derive_constant_upper_bound_ops (tree, tree,
|
2322 |
|
|
enum tree_code, tree);
|
2323 |
|
|
|
2324 |
|
|
/* Returns a constant upper bound on the value of the right-hand side of
|
2325 |
|
|
an assignment statement STMT. */
|
2326 |
|
|
|
2327 |
|
|
static double_int
|
2328 |
|
|
derive_constant_upper_bound_assign (gimple stmt)
|
2329 |
|
|
{
|
2330 |
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
2331 |
|
|
tree op0 = gimple_assign_rhs1 (stmt);
|
2332 |
|
|
tree op1 = gimple_assign_rhs2 (stmt);
|
2333 |
|
|
|
2334 |
|
|
return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
|
2335 |
|
|
op0, code, op1);
|
2336 |
|
|
}
|
2337 |
|
|
|
2338 |
|
|
/* Returns a constant upper bound on the value of expression VAL. VAL
|
2339 |
|
|
is considered to be unsigned. If its type is signed, its value must
|
2340 |
|
|
be nonnegative. */
|
2341 |
|
|
|
2342 |
|
|
static double_int
|
2343 |
|
|
derive_constant_upper_bound (tree val)
|
2344 |
|
|
{
|
2345 |
|
|
enum tree_code code;
|
2346 |
|
|
tree op0, op1;
|
2347 |
|
|
|
2348 |
|
|
extract_ops_from_tree (val, &code, &op0, &op1);
|
2349 |
|
|
return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
|
2350 |
|
|
}
|
2351 |
|
|
|
2352 |
|
|
/* Returns a constant upper bound on the value of expression OP0 CODE OP1,
|
2353 |
|
|
whose type is TYPE. The expression is considered to be unsigned. If
|
2354 |
|
|
its type is signed, its value must be nonnegative. */
|
2355 |
|
|
|
2356 |
|
|
static double_int
|
2357 |
|
|
derive_constant_upper_bound_ops (tree type, tree op0,
|
2358 |
|
|
enum tree_code code, tree op1)
|
2359 |
|
|
{
|
2360 |
|
|
tree subtype, maxt;
|
2361 |
|
|
double_int bnd, max, mmax, cst;
|
2362 |
|
|
gimple stmt;
|
2363 |
|
|
|
2364 |
|
|
if (INTEGRAL_TYPE_P (type))
|
2365 |
|
|
maxt = TYPE_MAX_VALUE (type);
|
2366 |
|
|
else
|
2367 |
|
|
maxt = upper_bound_in_type (type, type);
|
2368 |
|
|
|
2369 |
|
|
max = tree_to_double_int (maxt);
|
2370 |
|
|
|
2371 |
|
|
switch (code)
|
2372 |
|
|
{
|
2373 |
|
|
case INTEGER_CST:
|
2374 |
|
|
return tree_to_double_int (op0);
|
2375 |
|
|
|
2376 |
|
|
CASE_CONVERT:
|
2377 |
|
|
subtype = TREE_TYPE (op0);
|
2378 |
|
|
if (!TYPE_UNSIGNED (subtype)
|
2379 |
|
|
/* If TYPE is also signed, the fact that VAL is nonnegative implies
|
2380 |
|
|
that OP0 is nonnegative. */
|
2381 |
|
|
&& TYPE_UNSIGNED (type)
|
2382 |
|
|
&& !tree_expr_nonnegative_p (op0))
|
2383 |
|
|
{
|
2384 |
|
|
/* If we cannot prove that the casted expression is nonnegative,
|
2385 |
|
|
we cannot establish more useful upper bound than the precision
|
2386 |
|
|
of the type gives us. */
|
2387 |
|
|
return max;
|
2388 |
|
|
}
|
2389 |
|
|
|
2390 |
|
|
/* We now know that op0 is an nonnegative value. Try deriving an upper
|
2391 |
|
|
bound for it. */
|
2392 |
|
|
bnd = derive_constant_upper_bound (op0);
|
2393 |
|
|
|
2394 |
|
|
/* If the bound does not fit in TYPE, max. value of TYPE could be
|
2395 |
|
|
attained. */
|
2396 |
|
|
if (double_int_ucmp (max, bnd) < 0)
|
2397 |
|
|
return max;
|
2398 |
|
|
|
2399 |
|
|
return bnd;
|
2400 |
|
|
|
2401 |
|
|
case PLUS_EXPR:
|
2402 |
|
|
case POINTER_PLUS_EXPR:
|
2403 |
|
|
case MINUS_EXPR:
|
2404 |
|
|
if (TREE_CODE (op1) != INTEGER_CST
|
2405 |
|
|
|| !tree_expr_nonnegative_p (op0))
|
2406 |
|
|
return max;
|
2407 |
|
|
|
2408 |
|
|
/* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
|
2409 |
|
|
choose the most logical way how to treat this constant regardless
|
2410 |
|
|
of the signedness of the type. */
|
2411 |
|
|
cst = tree_to_double_int (op1);
|
2412 |
|
|
cst = double_int_sext (cst, TYPE_PRECISION (type));
|
2413 |
|
|
if (code != MINUS_EXPR)
|
2414 |
|
|
cst = double_int_neg (cst);
|
2415 |
|
|
|
2416 |
|
|
bnd = derive_constant_upper_bound (op0);
|
2417 |
|
|
|
2418 |
|
|
if (double_int_negative_p (cst))
|
2419 |
|
|
{
|
2420 |
|
|
cst = double_int_neg (cst);
|
2421 |
|
|
/* Avoid CST == 0x80000... */
|
2422 |
|
|
if (double_int_negative_p (cst))
|
2423 |
|
|
return max;;
|
2424 |
|
|
|
2425 |
|
|
/* OP0 + CST. We need to check that
|
2426 |
|
|
BND <= MAX (type) - CST. */
|
2427 |
|
|
|
2428 |
|
|
mmax = double_int_sub (max, cst);
|
2429 |
|
|
if (double_int_ucmp (bnd, mmax) > 0)
|
2430 |
|
|
return max;
|
2431 |
|
|
|
2432 |
|
|
return double_int_add (bnd, cst);
|
2433 |
|
|
}
|
2434 |
|
|
else
|
2435 |
|
|
{
|
2436 |
|
|
/* OP0 - CST, where CST >= 0.
|
2437 |
|
|
|
2438 |
|
|
If TYPE is signed, we have already verified that OP0 >= 0, and we
|
2439 |
|
|
know that the result is nonnegative. This implies that
|
2440 |
|
|
VAL <= BND - CST.
|
2441 |
|
|
|
2442 |
|
|
If TYPE is unsigned, we must additionally know that OP0 >= CST,
|
2443 |
|
|
otherwise the operation underflows.
|
2444 |
|
|
*/
|
2445 |
|
|
|
2446 |
|
|
/* This should only happen if the type is unsigned; however, for
|
2447 |
|
|
buggy programs that use overflowing signed arithmetics even with
|
2448 |
|
|
-fno-wrapv, this condition may also be true for signed values. */
|
2449 |
|
|
if (double_int_ucmp (bnd, cst) < 0)
|
2450 |
|
|
return max;
|
2451 |
|
|
|
2452 |
|
|
if (TYPE_UNSIGNED (type))
|
2453 |
|
|
{
|
2454 |
|
|
tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
|
2455 |
|
|
double_int_to_tree (type, cst));
|
2456 |
|
|
if (!tem || integer_nonzerop (tem))
|
2457 |
|
|
return max;
|
2458 |
|
|
}
|
2459 |
|
|
|
2460 |
|
|
bnd = double_int_sub (bnd, cst);
|
2461 |
|
|
}
|
2462 |
|
|
|
2463 |
|
|
return bnd;
|
2464 |
|
|
|
2465 |
|
|
case FLOOR_DIV_EXPR:
|
2466 |
|
|
case EXACT_DIV_EXPR:
|
2467 |
|
|
if (TREE_CODE (op1) != INTEGER_CST
|
2468 |
|
|
|| tree_int_cst_sign_bit (op1))
|
2469 |
|
|
return max;
|
2470 |
|
|
|
2471 |
|
|
bnd = derive_constant_upper_bound (op0);
|
2472 |
|
|
return double_int_udiv (bnd, tree_to_double_int (op1), FLOOR_DIV_EXPR);
|
2473 |
|
|
|
2474 |
|
|
case BIT_AND_EXPR:
|
2475 |
|
|
if (TREE_CODE (op1) != INTEGER_CST
|
2476 |
|
|
|| tree_int_cst_sign_bit (op1))
|
2477 |
|
|
return max;
|
2478 |
|
|
return tree_to_double_int (op1);
|
2479 |
|
|
|
2480 |
|
|
case SSA_NAME:
|
2481 |
|
|
stmt = SSA_NAME_DEF_STMT (op0);
|
2482 |
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN
|
2483 |
|
|
|| gimple_assign_lhs (stmt) != op0)
|
2484 |
|
|
return max;
|
2485 |
|
|
return derive_constant_upper_bound_assign (stmt);
|
2486 |
|
|
|
2487 |
|
|
default:
|
2488 |
|
|
return max;
|
2489 |
|
|
}
|
2490 |
|
|
}
|
2491 |
|
|
|
2492 |
|
|
/* Records that every statement in LOOP is executed I_BOUND times.
|
2493 |
|
|
REALISTIC is true if I_BOUND is expected to be close to the real number
|
2494 |
|
|
of iterations. UPPER is true if we are sure the loop iterates at most
|
2495 |
|
|
I_BOUND times. */
|
2496 |
|
|
|
2497 |
|
|
static void
|
2498 |
|
|
record_niter_bound (struct loop *loop, double_int i_bound, bool realistic,
|
2499 |
|
|
bool upper)
|
2500 |
|
|
{
|
2501 |
|
|
/* Update the bounds only when there is no previous estimation, or when the current
|
2502 |
|
|
estimation is smaller. */
|
2503 |
|
|
if (upper
|
2504 |
|
|
&& (!loop->any_upper_bound
|
2505 |
|
|
|| double_int_ucmp (i_bound, loop->nb_iterations_upper_bound) < 0))
|
2506 |
|
|
{
|
2507 |
|
|
loop->any_upper_bound = true;
|
2508 |
|
|
loop->nb_iterations_upper_bound = i_bound;
|
2509 |
|
|
}
|
2510 |
|
|
if (realistic
|
2511 |
|
|
&& (!loop->any_estimate
|
2512 |
|
|
|| double_int_ucmp (i_bound, loop->nb_iterations_estimate) < 0))
|
2513 |
|
|
{
|
2514 |
|
|
loop->any_estimate = true;
|
2515 |
|
|
loop->nb_iterations_estimate = i_bound;
|
2516 |
|
|
}
|
2517 |
|
|
}
|
2518 |
|
|
|
2519 |
|
|
/* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
|
2520 |
|
|
is true if the loop is exited immediately after STMT, and this exit
|
2521 |
|
|
is taken at last when the STMT is executed BOUND + 1 times.
|
2522 |
|
|
REALISTIC is true if BOUND is expected to be close to the real number
|
2523 |
|
|
of iterations. UPPER is true if we are sure the loop iterates at most
|
2524 |
|
|
BOUND times. I_BOUND is an unsigned double_int upper estimate on BOUND. */
|
2525 |
|
|
|
2526 |
|
|
static void
|
2527 |
|
|
record_estimate (struct loop *loop, tree bound, double_int i_bound,
|
2528 |
|
|
gimple at_stmt, bool is_exit, bool realistic, bool upper)
|
2529 |
|
|
{
|
2530 |
|
|
double_int delta;
|
2531 |
|
|
edge exit;
|
2532 |
|
|
|
2533 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2534 |
|
|
{
|
2535 |
|
|
fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
|
2536 |
|
|
print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
|
2537 |
|
|
fprintf (dump_file, " is %sexecuted at most ",
|
2538 |
|
|
upper ? "" : "probably ");
|
2539 |
|
|
print_generic_expr (dump_file, bound, TDF_SLIM);
|
2540 |
|
|
fprintf (dump_file, " (bounded by ");
|
2541 |
|
|
dump_double_int (dump_file, i_bound, true);
|
2542 |
|
|
fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
|
2543 |
|
|
}
|
2544 |
|
|
|
2545 |
|
|
/* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
|
2546 |
|
|
real number of iterations. */
|
2547 |
|
|
if (TREE_CODE (bound) != INTEGER_CST)
|
2548 |
|
|
realistic = false;
|
2549 |
|
|
if (!upper && !realistic)
|
2550 |
|
|
return;
|
2551 |
|
|
|
2552 |
|
|
/* If we have a guaranteed upper bound, record it in the appropriate
|
2553 |
|
|
list. */
|
2554 |
|
|
if (upper)
|
2555 |
|
|
{
|
2556 |
|
|
struct nb_iter_bound *elt = ggc_alloc_nb_iter_bound ();
|
2557 |
|
|
|
2558 |
|
|
elt->bound = i_bound;
|
2559 |
|
|
elt->stmt = at_stmt;
|
2560 |
|
|
elt->is_exit = is_exit;
|
2561 |
|
|
elt->next = loop->bounds;
|
2562 |
|
|
loop->bounds = elt;
|
2563 |
|
|
}
|
2564 |
|
|
|
2565 |
|
|
/* Update the number of iteration estimates according to the bound.
|
2566 |
|
|
If at_stmt is an exit or dominates the single exit from the loop,
|
2567 |
|
|
then the loop latch is executed at most BOUND times, otherwise
|
2568 |
|
|
it can be executed BOUND + 1 times. */
|
2569 |
|
|
exit = single_exit (loop);
|
2570 |
|
|
if (is_exit
|
2571 |
|
|
|| (exit != NULL
|
2572 |
|
|
&& dominated_by_p (CDI_DOMINATORS,
|
2573 |
|
|
exit->src, gimple_bb (at_stmt))))
|
2574 |
|
|
delta = double_int_zero;
|
2575 |
|
|
else
|
2576 |
|
|
delta = double_int_one;
|
2577 |
|
|
i_bound = double_int_add (i_bound, delta);
|
2578 |
|
|
|
2579 |
|
|
/* If an overflow occurred, ignore the result. */
|
2580 |
|
|
if (double_int_ucmp (i_bound, delta) < 0)
|
2581 |
|
|
return;
|
2582 |
|
|
|
2583 |
|
|
record_niter_bound (loop, i_bound, realistic, upper);
|
2584 |
|
|
}
|
2585 |
|
|
|
2586 |
|
|
/* Record the estimate on number of iterations of LOOP based on the fact that
|
2587 |
|
|
the induction variable BASE + STEP * i evaluated in STMT does not wrap and
|
2588 |
|
|
its values belong to the range <LOW, HIGH>. REALISTIC is true if the
|
2589 |
|
|
estimated number of iterations is expected to be close to the real one.
|
2590 |
|
|
UPPER is true if we are sure the induction variable does not wrap. */
|
2591 |
|
|
|
2592 |
|
|
static void
|
2593 |
|
|
record_nonwrapping_iv (struct loop *loop, tree base, tree step, gimple stmt,
|
2594 |
|
|
tree low, tree high, bool realistic, bool upper)
|
2595 |
|
|
{
|
2596 |
|
|
tree niter_bound, extreme, delta;
|
2597 |
|
|
tree type = TREE_TYPE (base), unsigned_type;
|
2598 |
|
|
double_int max;
|
2599 |
|
|
|
2600 |
|
|
if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
|
2601 |
|
|
return;
|
2602 |
|
|
|
2603 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2604 |
|
|
{
|
2605 |
|
|
fprintf (dump_file, "Induction variable (");
|
2606 |
|
|
print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
|
2607 |
|
|
fprintf (dump_file, ") ");
|
2608 |
|
|
print_generic_expr (dump_file, base, TDF_SLIM);
|
2609 |
|
|
fprintf (dump_file, " + ");
|
2610 |
|
|
print_generic_expr (dump_file, step, TDF_SLIM);
|
2611 |
|
|
fprintf (dump_file, " * iteration does not wrap in statement ");
|
2612 |
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
2613 |
|
|
fprintf (dump_file, " in loop %d.\n", loop->num);
|
2614 |
|
|
}
|
2615 |
|
|
|
2616 |
|
|
unsigned_type = unsigned_type_for (type);
|
2617 |
|
|
base = fold_convert (unsigned_type, base);
|
2618 |
|
|
step = fold_convert (unsigned_type, step);
|
2619 |
|
|
|
2620 |
|
|
if (tree_int_cst_sign_bit (step))
|
2621 |
|
|
{
|
2622 |
|
|
extreme = fold_convert (unsigned_type, low);
|
2623 |
|
|
if (TREE_CODE (base) != INTEGER_CST)
|
2624 |
|
|
base = fold_convert (unsigned_type, high);
|
2625 |
|
|
delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
|
2626 |
|
|
step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
|
2627 |
|
|
}
|
2628 |
|
|
else
|
2629 |
|
|
{
|
2630 |
|
|
extreme = fold_convert (unsigned_type, high);
|
2631 |
|
|
if (TREE_CODE (base) != INTEGER_CST)
|
2632 |
|
|
base = fold_convert (unsigned_type, low);
|
2633 |
|
|
delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
|
2634 |
|
|
}
|
2635 |
|
|
|
2636 |
|
|
/* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
|
2637 |
|
|
would get out of the range. */
|
2638 |
|
|
niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
|
2639 |
|
|
max = derive_constant_upper_bound (niter_bound);
|
2640 |
|
|
record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
|
2641 |
|
|
}
|
2642 |
|
|
|
2643 |
|
|
/* Returns true if REF is a reference to an array at the end of a dynamically
|
2644 |
|
|
allocated structure. If this is the case, the array may be allocated larger
|
2645 |
|
|
than its upper bound implies. */
|
2646 |
|
|
|
2647 |
|
|
bool
|
2648 |
|
|
array_at_struct_end_p (tree ref)
|
2649 |
|
|
{
|
2650 |
|
|
tree base = get_base_address (ref);
|
2651 |
|
|
tree parent, field;
|
2652 |
|
|
|
2653 |
|
|
/* Unless the reference is through a pointer, the size of the array matches
|
2654 |
|
|
its declaration. */
|
2655 |
|
|
if (!base || (!INDIRECT_REF_P (base) && TREE_CODE (base) != MEM_REF))
|
2656 |
|
|
return false;
|
2657 |
|
|
|
2658 |
|
|
for (;handled_component_p (ref); ref = parent)
|
2659 |
|
|
{
|
2660 |
|
|
parent = TREE_OPERAND (ref, 0);
|
2661 |
|
|
|
2662 |
|
|
if (TREE_CODE (ref) == COMPONENT_REF)
|
2663 |
|
|
{
|
2664 |
|
|
/* All fields of a union are at its end. */
|
2665 |
|
|
if (TREE_CODE (TREE_TYPE (parent)) == UNION_TYPE)
|
2666 |
|
|
continue;
|
2667 |
|
|
|
2668 |
|
|
/* Unless the field is at the end of the struct, we are done. */
|
2669 |
|
|
field = TREE_OPERAND (ref, 1);
|
2670 |
|
|
if (DECL_CHAIN (field))
|
2671 |
|
|
return false;
|
2672 |
|
|
}
|
2673 |
|
|
|
2674 |
|
|
/* The other options are ARRAY_REF, ARRAY_RANGE_REF, VIEW_CONVERT_EXPR.
|
2675 |
|
|
In all these cases, we might be accessing the last element, and
|
2676 |
|
|
although in practice this will probably never happen, it is legal for
|
2677 |
|
|
the indices of this last element to exceed the bounds of the array.
|
2678 |
|
|
Therefore, continue checking. */
|
2679 |
|
|
}
|
2680 |
|
|
|
2681 |
|
|
return true;
|
2682 |
|
|
}
|
2683 |
|
|
|
2684 |
|
|
/* Determine information about number of iterations a LOOP from the index
|
2685 |
|
|
IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
|
2686 |
|
|
guaranteed to be executed in every iteration of LOOP. Callback for
|
2687 |
|
|
for_each_index. */
|
2688 |
|
|
|
2689 |
|
|
struct ilb_data
|
2690 |
|
|
{
|
2691 |
|
|
struct loop *loop;
|
2692 |
|
|
gimple stmt;
|
2693 |
|
|
bool reliable;
|
2694 |
|
|
};
|
2695 |
|
|
|
2696 |
|
|
static bool
|
2697 |
|
|
idx_infer_loop_bounds (tree base, tree *idx, void *dta)
|
2698 |
|
|
{
|
2699 |
|
|
struct ilb_data *data = (struct ilb_data *) dta;
|
2700 |
|
|
tree ev, init, step;
|
2701 |
|
|
tree low, high, type, next;
|
2702 |
|
|
bool sign, upper = data->reliable, at_end = false;
|
2703 |
|
|
struct loop *loop = data->loop;
|
2704 |
|
|
|
2705 |
|
|
if (TREE_CODE (base) != ARRAY_REF)
|
2706 |
|
|
return true;
|
2707 |
|
|
|
2708 |
|
|
/* For arrays at the end of the structure, we are not guaranteed that they
|
2709 |
|
|
do not really extend over their declared size. However, for arrays of
|
2710 |
|
|
size greater than one, this is unlikely to be intended. */
|
2711 |
|
|
if (array_at_struct_end_p (base))
|
2712 |
|
|
{
|
2713 |
|
|
at_end = true;
|
2714 |
|
|
upper = false;
|
2715 |
|
|
}
|
2716 |
|
|
|
2717 |
|
|
ev = instantiate_parameters (loop, analyze_scalar_evolution (loop, *idx));
|
2718 |
|
|
init = initial_condition (ev);
|
2719 |
|
|
step = evolution_part_in_loop_num (ev, loop->num);
|
2720 |
|
|
|
2721 |
|
|
if (!init
|
2722 |
|
|
|| !step
|
2723 |
|
|
|| TREE_CODE (step) != INTEGER_CST
|
2724 |
|
|
|| integer_zerop (step)
|
2725 |
|
|
|| tree_contains_chrecs (init, NULL)
|
2726 |
|
|
|| chrec_contains_symbols_defined_in_loop (init, loop->num))
|
2727 |
|
|
return true;
|
2728 |
|
|
|
2729 |
|
|
low = array_ref_low_bound (base);
|
2730 |
|
|
high = array_ref_up_bound (base);
|
2731 |
|
|
|
2732 |
|
|
/* The case of nonconstant bounds could be handled, but it would be
|
2733 |
|
|
complicated. */
|
2734 |
|
|
if (TREE_CODE (low) != INTEGER_CST
|
2735 |
|
|
|| !high
|
2736 |
|
|
|| TREE_CODE (high) != INTEGER_CST)
|
2737 |
|
|
return true;
|
2738 |
|
|
sign = tree_int_cst_sign_bit (step);
|
2739 |
|
|
type = TREE_TYPE (step);
|
2740 |
|
|
|
2741 |
|
|
/* The array of length 1 at the end of a structure most likely extends
|
2742 |
|
|
beyond its bounds. */
|
2743 |
|
|
if (at_end
|
2744 |
|
|
&& operand_equal_p (low, high, 0))
|
2745 |
|
|
return true;
|
2746 |
|
|
|
2747 |
|
|
/* In case the relevant bound of the array does not fit in type, or
|
2748 |
|
|
it does, but bound + step (in type) still belongs into the range of the
|
2749 |
|
|
array, the index may wrap and still stay within the range of the array
|
2750 |
|
|
(consider e.g. if the array is indexed by the full range of
|
2751 |
|
|
unsigned char).
|
2752 |
|
|
|
2753 |
|
|
To make things simpler, we require both bounds to fit into type, although
|
2754 |
|
|
there are cases where this would not be strictly necessary. */
|
2755 |
|
|
if (!int_fits_type_p (high, type)
|
2756 |
|
|
|| !int_fits_type_p (low, type))
|
2757 |
|
|
return true;
|
2758 |
|
|
low = fold_convert (type, low);
|
2759 |
|
|
high = fold_convert (type, high);
|
2760 |
|
|
|
2761 |
|
|
if (sign)
|
2762 |
|
|
next = fold_binary (PLUS_EXPR, type, low, step);
|
2763 |
|
|
else
|
2764 |
|
|
next = fold_binary (PLUS_EXPR, type, high, step);
|
2765 |
|
|
|
2766 |
|
|
if (tree_int_cst_compare (low, next) <= 0
|
2767 |
|
|
&& tree_int_cst_compare (next, high) <= 0)
|
2768 |
|
|
return true;
|
2769 |
|
|
|
2770 |
|
|
record_nonwrapping_iv (loop, init, step, data->stmt, low, high, true, upper);
|
2771 |
|
|
return true;
|
2772 |
|
|
}
|
2773 |
|
|
|
2774 |
|
|
/* Determine information about number of iterations a LOOP from the bounds
|
2775 |
|
|
of arrays in the data reference REF accessed in STMT. RELIABLE is true if
|
2776 |
|
|
STMT is guaranteed to be executed in every iteration of LOOP.*/
|
2777 |
|
|
|
2778 |
|
|
static void
|
2779 |
|
|
infer_loop_bounds_from_ref (struct loop *loop, gimple stmt, tree ref,
|
2780 |
|
|
bool reliable)
|
2781 |
|
|
{
|
2782 |
|
|
struct ilb_data data;
|
2783 |
|
|
|
2784 |
|
|
data.loop = loop;
|
2785 |
|
|
data.stmt = stmt;
|
2786 |
|
|
data.reliable = reliable;
|
2787 |
|
|
for_each_index (&ref, idx_infer_loop_bounds, &data);
|
2788 |
|
|
}
|
2789 |
|
|
|
2790 |
|
|
/* Determine information about number of iterations of a LOOP from the way
|
2791 |
|
|
arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
|
2792 |
|
|
executed in every iteration of LOOP. */
|
2793 |
|
|
|
2794 |
|
|
static void
|
2795 |
|
|
infer_loop_bounds_from_array (struct loop *loop, gimple stmt, bool reliable)
|
2796 |
|
|
{
|
2797 |
|
|
if (is_gimple_assign (stmt))
|
2798 |
|
|
{
|
2799 |
|
|
tree op0 = gimple_assign_lhs (stmt);
|
2800 |
|
|
tree op1 = gimple_assign_rhs1 (stmt);
|
2801 |
|
|
|
2802 |
|
|
/* For each memory access, analyze its access function
|
2803 |
|
|
and record a bound on the loop iteration domain. */
|
2804 |
|
|
if (REFERENCE_CLASS_P (op0))
|
2805 |
|
|
infer_loop_bounds_from_ref (loop, stmt, op0, reliable);
|
2806 |
|
|
|
2807 |
|
|
if (REFERENCE_CLASS_P (op1))
|
2808 |
|
|
infer_loop_bounds_from_ref (loop, stmt, op1, reliable);
|
2809 |
|
|
}
|
2810 |
|
|
else if (is_gimple_call (stmt))
|
2811 |
|
|
{
|
2812 |
|
|
tree arg, lhs;
|
2813 |
|
|
unsigned i, n = gimple_call_num_args (stmt);
|
2814 |
|
|
|
2815 |
|
|
lhs = gimple_call_lhs (stmt);
|
2816 |
|
|
if (lhs && REFERENCE_CLASS_P (lhs))
|
2817 |
|
|
infer_loop_bounds_from_ref (loop, stmt, lhs, reliable);
|
2818 |
|
|
|
2819 |
|
|
for (i = 0; i < n; i++)
|
2820 |
|
|
{
|
2821 |
|
|
arg = gimple_call_arg (stmt, i);
|
2822 |
|
|
if (REFERENCE_CLASS_P (arg))
|
2823 |
|
|
infer_loop_bounds_from_ref (loop, stmt, arg, reliable);
|
2824 |
|
|
}
|
2825 |
|
|
}
|
2826 |
|
|
}
|
2827 |
|
|
|
2828 |
|
|
/* Determine information about number of iterations of a LOOP from the fact
|
2829 |
|
|
that pointer arithmetics in STMT does not overflow. */
|
2830 |
|
|
|
2831 |
|
|
static void
|
2832 |
|
|
infer_loop_bounds_from_pointer_arith (struct loop *loop, gimple stmt)
|
2833 |
|
|
{
|
2834 |
|
|
tree def, base, step, scev, type, low, high;
|
2835 |
|
|
tree var, ptr;
|
2836 |
|
|
|
2837 |
|
|
if (!is_gimple_assign (stmt)
|
2838 |
|
|
|| gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
|
2839 |
|
|
return;
|
2840 |
|
|
|
2841 |
|
|
def = gimple_assign_lhs (stmt);
|
2842 |
|
|
if (TREE_CODE (def) != SSA_NAME)
|
2843 |
|
|
return;
|
2844 |
|
|
|
2845 |
|
|
type = TREE_TYPE (def);
|
2846 |
|
|
if (!nowrap_type_p (type))
|
2847 |
|
|
return;
|
2848 |
|
|
|
2849 |
|
|
ptr = gimple_assign_rhs1 (stmt);
|
2850 |
|
|
if (!expr_invariant_in_loop_p (loop, ptr))
|
2851 |
|
|
return;
|
2852 |
|
|
|
2853 |
|
|
var = gimple_assign_rhs2 (stmt);
|
2854 |
|
|
if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
|
2855 |
|
|
return;
|
2856 |
|
|
|
2857 |
|
|
scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
|
2858 |
|
|
if (chrec_contains_undetermined (scev))
|
2859 |
|
|
return;
|
2860 |
|
|
|
2861 |
|
|
base = initial_condition_in_loop_num (scev, loop->num);
|
2862 |
|
|
step = evolution_part_in_loop_num (scev, loop->num);
|
2863 |
|
|
|
2864 |
|
|
if (!base || !step
|
2865 |
|
|
|| TREE_CODE (step) != INTEGER_CST
|
2866 |
|
|
|| tree_contains_chrecs (base, NULL)
|
2867 |
|
|
|| chrec_contains_symbols_defined_in_loop (base, loop->num))
|
2868 |
|
|
return;
|
2869 |
|
|
|
2870 |
|
|
low = lower_bound_in_type (type, type);
|
2871 |
|
|
high = upper_bound_in_type (type, type);
|
2872 |
|
|
|
2873 |
|
|
/* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
|
2874 |
|
|
produce a NULL pointer. The contrary would mean NULL points to an object,
|
2875 |
|
|
while NULL is supposed to compare unequal with the address of all objects.
|
2876 |
|
|
Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
|
2877 |
|
|
NULL pointer since that would mean wrapping, which we assume here not to
|
2878 |
|
|
happen. So, we can exclude NULL from the valid range of pointer
|
2879 |
|
|
arithmetic. */
|
2880 |
|
|
if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
|
2881 |
|
|
low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));
|
2882 |
|
|
|
2883 |
|
|
record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
|
2884 |
|
|
}
|
2885 |
|
|
|
2886 |
|
|
/* Determine information about number of iterations of a LOOP from the fact
|
2887 |
|
|
that signed arithmetics in STMT does not overflow. */
|
2888 |
|
|
|
2889 |
|
|
static void
|
2890 |
|
|
infer_loop_bounds_from_signedness (struct loop *loop, gimple stmt)
|
2891 |
|
|
{
|
2892 |
|
|
tree def, base, step, scev, type, low, high;
|
2893 |
|
|
|
2894 |
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
2895 |
|
|
return;
|
2896 |
|
|
|
2897 |
|
|
def = gimple_assign_lhs (stmt);
|
2898 |
|
|
|
2899 |
|
|
if (TREE_CODE (def) != SSA_NAME)
|
2900 |
|
|
return;
|
2901 |
|
|
|
2902 |
|
|
type = TREE_TYPE (def);
|
2903 |
|
|
if (!INTEGRAL_TYPE_P (type)
|
2904 |
|
|
|| !TYPE_OVERFLOW_UNDEFINED (type))
|
2905 |
|
|
return;
|
2906 |
|
|
|
2907 |
|
|
scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
|
2908 |
|
|
if (chrec_contains_undetermined (scev))
|
2909 |
|
|
return;
|
2910 |
|
|
|
2911 |
|
|
base = initial_condition_in_loop_num (scev, loop->num);
|
2912 |
|
|
step = evolution_part_in_loop_num (scev, loop->num);
|
2913 |
|
|
|
2914 |
|
|
if (!base || !step
|
2915 |
|
|
|| TREE_CODE (step) != INTEGER_CST
|
2916 |
|
|
|| tree_contains_chrecs (base, NULL)
|
2917 |
|
|
|| chrec_contains_symbols_defined_in_loop (base, loop->num))
|
2918 |
|
|
return;
|
2919 |
|
|
|
2920 |
|
|
low = lower_bound_in_type (type, type);
|
2921 |
|
|
high = upper_bound_in_type (type, type);
|
2922 |
|
|
|
2923 |
|
|
record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
|
2924 |
|
|
}
|
2925 |
|
|
|
2926 |
|
|
/* The following analyzers are extracting informations on the bounds
|
2927 |
|
|
of LOOP from the following undefined behaviors:
|
2928 |
|
|
|
2929 |
|
|
- data references should not access elements over the statically
|
2930 |
|
|
allocated size,
|
2931 |
|
|
|
2932 |
|
|
- signed variables should not overflow when flag_wrapv is not set.
|
2933 |
|
|
*/
|
2934 |
|
|
|
2935 |
|
|
static void
|
2936 |
|
|
infer_loop_bounds_from_undefined (struct loop *loop)
|
2937 |
|
|
{
|
2938 |
|
|
unsigned i;
|
2939 |
|
|
basic_block *bbs;
|
2940 |
|
|
gimple_stmt_iterator bsi;
|
2941 |
|
|
basic_block bb;
|
2942 |
|
|
bool reliable;
|
2943 |
|
|
|
2944 |
|
|
bbs = get_loop_body (loop);
|
2945 |
|
|
|
2946 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
2947 |
|
|
{
|
2948 |
|
|
bb = bbs[i];
|
2949 |
|
|
|
2950 |
|
|
/* If BB is not executed in each iteration of the loop, we cannot
|
2951 |
|
|
use the operations in it to infer reliable upper bound on the
|
2952 |
|
|
# of iterations of the loop. However, we can use it as a guess. */
|
2953 |
|
|
reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
|
2954 |
|
|
|
2955 |
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
2956 |
|
|
{
|
2957 |
|
|
gimple stmt = gsi_stmt (bsi);
|
2958 |
|
|
|
2959 |
|
|
infer_loop_bounds_from_array (loop, stmt, reliable);
|
2960 |
|
|
|
2961 |
|
|
if (reliable)
|
2962 |
|
|
{
|
2963 |
|
|
infer_loop_bounds_from_signedness (loop, stmt);
|
2964 |
|
|
infer_loop_bounds_from_pointer_arith (loop, stmt);
|
2965 |
|
|
}
|
2966 |
|
|
}
|
2967 |
|
|
|
2968 |
|
|
}
|
2969 |
|
|
|
2970 |
|
|
free (bbs);
|
2971 |
|
|
}
|
2972 |
|
|
|
2973 |
|
|
/* Converts VAL to double_int. */
|
2974 |
|
|
|
2975 |
|
|
static double_int
|
2976 |
|
|
gcov_type_to_double_int (gcov_type val)
|
2977 |
|
|
{
|
2978 |
|
|
double_int ret;
|
2979 |
|
|
|
2980 |
|
|
ret.low = (unsigned HOST_WIDE_INT) val;
|
2981 |
|
|
/* If HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_WIDEST_INT, avoid shifting by
|
2982 |
|
|
the size of type. */
|
2983 |
|
|
val >>= HOST_BITS_PER_WIDE_INT - 1;
|
2984 |
|
|
val >>= 1;
|
2985 |
|
|
ret.high = (unsigned HOST_WIDE_INT) val;
|
2986 |
|
|
|
2987 |
|
|
return ret;
|
2988 |
|
|
}
|
2989 |
|
|
|
2990 |
|
|
/* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
|
2991 |
|
|
is true also use estimates derived from undefined behavior. */
|
2992 |
|
|
|
2993 |
|
|
void
|
2994 |
|
|
estimate_numbers_of_iterations_loop (struct loop *loop, bool use_undefined_p)
|
2995 |
|
|
{
|
2996 |
|
|
VEC (edge, heap) *exits;
|
2997 |
|
|
tree niter, type;
|
2998 |
|
|
unsigned i;
|
2999 |
|
|
struct tree_niter_desc niter_desc;
|
3000 |
|
|
edge ex;
|
3001 |
|
|
double_int bound;
|
3002 |
|
|
|
3003 |
|
|
/* Give up if we already have tried to compute an estimation. */
|
3004 |
|
|
if (loop->estimate_state != EST_NOT_COMPUTED)
|
3005 |
|
|
return;
|
3006 |
|
|
loop->estimate_state = EST_AVAILABLE;
|
3007 |
|
|
loop->any_upper_bound = false;
|
3008 |
|
|
loop->any_estimate = false;
|
3009 |
|
|
|
3010 |
|
|
exits = get_loop_exit_edges (loop);
|
3011 |
|
|
FOR_EACH_VEC_ELT (edge, exits, i, ex)
|
3012 |
|
|
{
|
3013 |
|
|
if (!number_of_iterations_exit (loop, ex, &niter_desc, false))
|
3014 |
|
|
continue;
|
3015 |
|
|
|
3016 |
|
|
niter = niter_desc.niter;
|
3017 |
|
|
type = TREE_TYPE (niter);
|
3018 |
|
|
if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
|
3019 |
|
|
niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
|
3020 |
|
|
build_int_cst (type, 0),
|
3021 |
|
|
niter);
|
3022 |
|
|
record_estimate (loop, niter, niter_desc.max,
|
3023 |
|
|
last_stmt (ex->src),
|
3024 |
|
|
true, true, true);
|
3025 |
|
|
}
|
3026 |
|
|
VEC_free (edge, heap, exits);
|
3027 |
|
|
|
3028 |
|
|
if (use_undefined_p)
|
3029 |
|
|
infer_loop_bounds_from_undefined (loop);
|
3030 |
|
|
|
3031 |
|
|
/* If we have a measured profile, use it to estimate the number of
|
3032 |
|
|
iterations. */
|
3033 |
|
|
if (loop->header->count != 0)
|
3034 |
|
|
{
|
3035 |
|
|
gcov_type nit = expected_loop_iterations_unbounded (loop) + 1;
|
3036 |
|
|
bound = gcov_type_to_double_int (nit);
|
3037 |
|
|
record_niter_bound (loop, bound, true, false);
|
3038 |
|
|
}
|
3039 |
|
|
|
3040 |
|
|
/* If an upper bound is smaller than the realistic estimate of the
|
3041 |
|
|
number of iterations, use the upper bound instead. */
|
3042 |
|
|
if (loop->any_upper_bound
|
3043 |
|
|
&& loop->any_estimate
|
3044 |
|
|
&& double_int_ucmp (loop->nb_iterations_upper_bound,
|
3045 |
|
|
loop->nb_iterations_estimate) < 0)
|
3046 |
|
|
loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
|
3047 |
|
|
}
|
3048 |
|
|
|
3049 |
|
|
/* Sets NIT to the estimated number of executions of the latch of the
|
3050 |
|
|
LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
|
3051 |
|
|
large as the number of iterations. If we have no reliable estimate,
|
3052 |
|
|
the function returns false, otherwise returns true. */
|
3053 |
|
|
|
3054 |
|
|
bool
|
3055 |
|
|
estimated_loop_iterations (struct loop *loop, bool conservative,
|
3056 |
|
|
double_int *nit)
|
3057 |
|
|
{
|
3058 |
|
|
estimate_numbers_of_iterations_loop (loop, true);
|
3059 |
|
|
if (conservative)
|
3060 |
|
|
{
|
3061 |
|
|
if (!loop->any_upper_bound)
|
3062 |
|
|
return false;
|
3063 |
|
|
|
3064 |
|
|
*nit = loop->nb_iterations_upper_bound;
|
3065 |
|
|
}
|
3066 |
|
|
else
|
3067 |
|
|
{
|
3068 |
|
|
if (!loop->any_estimate)
|
3069 |
|
|
return false;
|
3070 |
|
|
|
3071 |
|
|
*nit = loop->nb_iterations_estimate;
|
3072 |
|
|
}
|
3073 |
|
|
|
3074 |
|
|
return true;
|
3075 |
|
|
}
|
3076 |
|
|
|
3077 |
|
|
/* Similar to estimated_loop_iterations, but returns the estimate only
|
3078 |
|
|
if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
|
3079 |
|
|
on the number of iterations of LOOP could not be derived, returns -1. */
|
3080 |
|
|
|
3081 |
|
|
HOST_WIDE_INT
|
3082 |
|
|
estimated_loop_iterations_int (struct loop *loop, bool conservative)
|
3083 |
|
|
{
|
3084 |
|
|
double_int nit;
|
3085 |
|
|
HOST_WIDE_INT hwi_nit;
|
3086 |
|
|
|
3087 |
|
|
if (!estimated_loop_iterations (loop, conservative, &nit))
|
3088 |
|
|
return -1;
|
3089 |
|
|
|
3090 |
|
|
if (!double_int_fits_in_shwi_p (nit))
|
3091 |
|
|
return -1;
|
3092 |
|
|
hwi_nit = double_int_to_shwi (nit);
|
3093 |
|
|
|
3094 |
|
|
return hwi_nit < 0 ? -1 : hwi_nit;
|
3095 |
|
|
}
|
3096 |
|
|
|
3097 |
|
|
/* Returns an upper bound on the number of executions of statements
|
3098 |
|
|
in the LOOP. For statements before the loop exit, this exceeds
|
3099 |
|
|
the number of execution of the latch by one. */
|
3100 |
|
|
|
3101 |
|
|
HOST_WIDE_INT
|
3102 |
|
|
max_stmt_executions_int (struct loop *loop, bool conservative)
|
3103 |
|
|
{
|
3104 |
|
|
HOST_WIDE_INT nit = estimated_loop_iterations_int (loop, conservative);
|
3105 |
|
|
HOST_WIDE_INT snit;
|
3106 |
|
|
|
3107 |
|
|
if (nit == -1)
|
3108 |
|
|
return -1;
|
3109 |
|
|
|
3110 |
|
|
snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
|
3111 |
|
|
|
3112 |
|
|
/* If the computation overflows, return -1. */
|
3113 |
|
|
return snit < 0 ? -1 : snit;
|
3114 |
|
|
}
|
3115 |
|
|
|
3116 |
|
|
/* Sets NIT to the estimated number of executions of the latch of the
|
3117 |
|
|
LOOP, plus one. If CONSERVATIVE is true, we must be sure that NIT is at
|
3118 |
|
|
least as large as the number of iterations. If we have no reliable
|
3119 |
|
|
estimate, the function returns false, otherwise returns true. */
|
3120 |
|
|
|
3121 |
|
|
bool
|
3122 |
|
|
max_stmt_executions (struct loop *loop, bool conservative, double_int *nit)
|
3123 |
|
|
{
|
3124 |
|
|
double_int nit_minus_one;
|
3125 |
|
|
|
3126 |
|
|
if (!estimated_loop_iterations (loop, conservative, nit))
|
3127 |
|
|
return false;
|
3128 |
|
|
|
3129 |
|
|
nit_minus_one = *nit;
|
3130 |
|
|
|
3131 |
|
|
*nit = double_int_add (*nit, double_int_one);
|
3132 |
|
|
|
3133 |
|
|
return double_int_ucmp (*nit, nit_minus_one) > 0;
|
3134 |
|
|
}
|
3135 |
|
|
|
3136 |
|
|
/* Records estimates on numbers of iterations of loops. */
|
3137 |
|
|
|
3138 |
|
|
void
|
3139 |
|
|
estimate_numbers_of_iterations (bool use_undefined_p)
|
3140 |
|
|
{
|
3141 |
|
|
loop_iterator li;
|
3142 |
|
|
struct loop *loop;
|
3143 |
|
|
|
3144 |
|
|
/* We don't want to issue signed overflow warnings while getting
|
3145 |
|
|
loop iteration estimates. */
|
3146 |
|
|
fold_defer_overflow_warnings ();
|
3147 |
|
|
|
3148 |
|
|
FOR_EACH_LOOP (li, loop, 0)
|
3149 |
|
|
{
|
3150 |
|
|
estimate_numbers_of_iterations_loop (loop, use_undefined_p);
|
3151 |
|
|
}
|
3152 |
|
|
|
3153 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
3154 |
|
|
}
|
3155 |
|
|
|
3156 |
|
|
/* Returns true if statement S1 dominates statement S2. */
|
3157 |
|
|
|
3158 |
|
|
bool
|
3159 |
|
|
stmt_dominates_stmt_p (gimple s1, gimple s2)
|
3160 |
|
|
{
|
3161 |
|
|
basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
|
3162 |
|
|
|
3163 |
|
|
if (!bb1
|
3164 |
|
|
|| s1 == s2)
|
3165 |
|
|
return true;
|
3166 |
|
|
|
3167 |
|
|
if (bb1 == bb2)
|
3168 |
|
|
{
|
3169 |
|
|
gimple_stmt_iterator bsi;
|
3170 |
|
|
|
3171 |
|
|
if (gimple_code (s2) == GIMPLE_PHI)
|
3172 |
|
|
return false;
|
3173 |
|
|
|
3174 |
|
|
if (gimple_code (s1) == GIMPLE_PHI)
|
3175 |
|
|
return true;
|
3176 |
|
|
|
3177 |
|
|
for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
|
3178 |
|
|
if (gsi_stmt (bsi) == s1)
|
3179 |
|
|
return true;
|
3180 |
|
|
|
3181 |
|
|
return false;
|
3182 |
|
|
}
|
3183 |
|
|
|
3184 |
|
|
return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
|
3185 |
|
|
}
|
3186 |
|
|
|
3187 |
|
|
/* Returns true when we can prove that the number of executions of
|
3188 |
|
|
STMT in the loop is at most NITER, according to the bound on
|
3189 |
|
|
the number of executions of the statement NITER_BOUND->stmt recorded in
|
3190 |
|
|
NITER_BOUND. If STMT is NULL, we must prove this bound for all
|
3191 |
|
|
statements in the loop. */
|
3192 |
|
|
|
3193 |
|
|
static bool
|
3194 |
|
|
n_of_executions_at_most (gimple stmt,
|
3195 |
|
|
struct nb_iter_bound *niter_bound,
|
3196 |
|
|
tree niter)
|
3197 |
|
|
{
|
3198 |
|
|
double_int bound = niter_bound->bound;
|
3199 |
|
|
tree nit_type = TREE_TYPE (niter), e;
|
3200 |
|
|
enum tree_code cmp;
|
3201 |
|
|
|
3202 |
|
|
gcc_assert (TYPE_UNSIGNED (nit_type));
|
3203 |
|
|
|
3204 |
|
|
/* If the bound does not even fit into NIT_TYPE, it cannot tell us that
|
3205 |
|
|
the number of iterations is small. */
|
3206 |
|
|
if (!double_int_fits_to_tree_p (nit_type, bound))
|
3207 |
|
|
return false;
|
3208 |
|
|
|
3209 |
|
|
/* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
|
3210 |
|
|
times. This means that:
|
3211 |
|
|
|
3212 |
|
|
-- if NITER_BOUND->is_exit is true, then everything before
|
3213 |
|
|
NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
|
3214 |
|
|
times, and everything after it at most NITER_BOUND->bound times.
|
3215 |
|
|
|
3216 |
|
|
-- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
|
3217 |
|
|
is executed, then NITER_BOUND->stmt is executed as well in the same
|
3218 |
|
|
iteration (we conclude that if both statements belong to the same
|
3219 |
|
|
basic block, or if STMT is after NITER_BOUND->stmt), then STMT
|
3220 |
|
|
is executed at most NITER_BOUND->bound + 1 times. Otherwise STMT is
|
3221 |
|
|
executed at most NITER_BOUND->bound + 2 times. */
|
3222 |
|
|
|
3223 |
|
|
if (niter_bound->is_exit)
|
3224 |
|
|
{
|
3225 |
|
|
if (stmt
|
3226 |
|
|
&& stmt != niter_bound->stmt
|
3227 |
|
|
&& stmt_dominates_stmt_p (niter_bound->stmt, stmt))
|
3228 |
|
|
cmp = GE_EXPR;
|
3229 |
|
|
else
|
3230 |
|
|
cmp = GT_EXPR;
|
3231 |
|
|
}
|
3232 |
|
|
else
|
3233 |
|
|
{
|
3234 |
|
|
if (!stmt
|
3235 |
|
|
|| (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
|
3236 |
|
|
&& !stmt_dominates_stmt_p (niter_bound->stmt, stmt)))
|
3237 |
|
|
{
|
3238 |
|
|
bound = double_int_add (bound, double_int_one);
|
3239 |
|
|
if (double_int_zero_p (bound)
|
3240 |
|
|
|| !double_int_fits_to_tree_p (nit_type, bound))
|
3241 |
|
|
return false;
|
3242 |
|
|
}
|
3243 |
|
|
cmp = GT_EXPR;
|
3244 |
|
|
}
|
3245 |
|
|
|
3246 |
|
|
e = fold_binary (cmp, boolean_type_node,
|
3247 |
|
|
niter, double_int_to_tree (nit_type, bound));
|
3248 |
|
|
return e && integer_nonzerop (e);
|
3249 |
|
|
}
|
3250 |
|
|
|
3251 |
|
|
/* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
|
3252 |
|
|
|
3253 |
|
|
bool
|
3254 |
|
|
nowrap_type_p (tree type)
|
3255 |
|
|
{
|
3256 |
|
|
if (INTEGRAL_TYPE_P (type)
|
3257 |
|
|
&& TYPE_OVERFLOW_UNDEFINED (type))
|
3258 |
|
|
return true;
|
3259 |
|
|
|
3260 |
|
|
if (POINTER_TYPE_P (type))
|
3261 |
|
|
return true;
|
3262 |
|
|
|
3263 |
|
|
return false;
|
3264 |
|
|
}
|
3265 |
|
|
|
3266 |
|
|
/* Return false only when the induction variable BASE + STEP * I is
|
3267 |
|
|
known to not overflow: i.e. when the number of iterations is small
|
3268 |
|
|
enough with respect to the step and initial condition in order to
|
3269 |
|
|
keep the evolution confined in TYPEs bounds. Return true when the
|
3270 |
|
|
iv is known to overflow or when the property is not computable.
|
3271 |
|
|
|
3272 |
|
|
USE_OVERFLOW_SEMANTICS is true if this function should assume that
|
3273 |
|
|
the rules for overflow of the given language apply (e.g., that signed
|
3274 |
|
|
arithmetics in C does not overflow). */
|
3275 |
|
|
|
3276 |
|
|
bool
|
3277 |
|
|
scev_probably_wraps_p (tree base, tree step,
|
3278 |
|
|
gimple at_stmt, struct loop *loop,
|
3279 |
|
|
bool use_overflow_semantics)
|
3280 |
|
|
{
|
3281 |
|
|
struct nb_iter_bound *bound;
|
3282 |
|
|
tree delta, step_abs;
|
3283 |
|
|
tree unsigned_type, valid_niter;
|
3284 |
|
|
tree type = TREE_TYPE (step);
|
3285 |
|
|
|
3286 |
|
|
/* FIXME: We really need something like
|
3287 |
|
|
http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
|
3288 |
|
|
|
3289 |
|
|
We used to test for the following situation that frequently appears
|
3290 |
|
|
during address arithmetics:
|
3291 |
|
|
|
3292 |
|
|
D.1621_13 = (long unsigned intD.4) D.1620_12;
|
3293 |
|
|
D.1622_14 = D.1621_13 * 8;
|
3294 |
|
|
D.1623_15 = (doubleD.29 *) D.1622_14;
|
3295 |
|
|
|
3296 |
|
|
And derived that the sequence corresponding to D_14
|
3297 |
|
|
can be proved to not wrap because it is used for computing a
|
3298 |
|
|
memory access; however, this is not really the case -- for example,
|
3299 |
|
|
if D_12 = (unsigned char) [254,+,1], then D_14 has values
|
3300 |
|
|
2032, 2040, 0, 8, ..., but the code is still legal. */
|
3301 |
|
|
|
3302 |
|
|
if (chrec_contains_undetermined (base)
|
3303 |
|
|
|| chrec_contains_undetermined (step))
|
3304 |
|
|
return true;
|
3305 |
|
|
|
3306 |
|
|
if (integer_zerop (step))
|
3307 |
|
|
return false;
|
3308 |
|
|
|
3309 |
|
|
/* If we can use the fact that signed and pointer arithmetics does not
|
3310 |
|
|
wrap, we are done. */
|
3311 |
|
|
if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
|
3312 |
|
|
return false;
|
3313 |
|
|
|
3314 |
|
|
/* To be able to use estimates on number of iterations of the loop,
|
3315 |
|
|
we must have an upper bound on the absolute value of the step. */
|
3316 |
|
|
if (TREE_CODE (step) != INTEGER_CST)
|
3317 |
|
|
return true;
|
3318 |
|
|
|
3319 |
|
|
/* Don't issue signed overflow warnings. */
|
3320 |
|
|
fold_defer_overflow_warnings ();
|
3321 |
|
|
|
3322 |
|
|
/* Otherwise, compute the number of iterations before we reach the
|
3323 |
|
|
bound of the type, and verify that the loop is exited before this
|
3324 |
|
|
occurs. */
|
3325 |
|
|
unsigned_type = unsigned_type_for (type);
|
3326 |
|
|
base = fold_convert (unsigned_type, base);
|
3327 |
|
|
|
3328 |
|
|
if (tree_int_cst_sign_bit (step))
|
3329 |
|
|
{
|
3330 |
|
|
tree extreme = fold_convert (unsigned_type,
|
3331 |
|
|
lower_bound_in_type (type, type));
|
3332 |
|
|
delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
|
3333 |
|
|
step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
|
3334 |
|
|
fold_convert (unsigned_type, step));
|
3335 |
|
|
}
|
3336 |
|
|
else
|
3337 |
|
|
{
|
3338 |
|
|
tree extreme = fold_convert (unsigned_type,
|
3339 |
|
|
upper_bound_in_type (type, type));
|
3340 |
|
|
delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
|
3341 |
|
|
step_abs = fold_convert (unsigned_type, step);
|
3342 |
|
|
}
|
3343 |
|
|
|
3344 |
|
|
valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
|
3345 |
|
|
|
3346 |
|
|
estimate_numbers_of_iterations_loop (loop, true);
|
3347 |
|
|
for (bound = loop->bounds; bound; bound = bound->next)
|
3348 |
|
|
{
|
3349 |
|
|
if (n_of_executions_at_most (at_stmt, bound, valid_niter))
|
3350 |
|
|
{
|
3351 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
3352 |
|
|
return false;
|
3353 |
|
|
}
|
3354 |
|
|
}
|
3355 |
|
|
|
3356 |
|
|
fold_undefer_and_ignore_overflow_warnings ();
|
3357 |
|
|
|
3358 |
|
|
/* At this point we still don't have a proof that the iv does not
|
3359 |
|
|
overflow: give up. */
|
3360 |
|
|
return true;
|
3361 |
|
|
}
|
3362 |
|
|
|
3363 |
|
|
/* Frees the information on upper bounds on numbers of iterations of LOOP. */
|
3364 |
|
|
|
3365 |
|
|
void
|
3366 |
|
|
free_numbers_of_iterations_estimates_loop (struct loop *loop)
|
3367 |
|
|
{
|
3368 |
|
|
struct nb_iter_bound *bound, *next;
|
3369 |
|
|
|
3370 |
|
|
loop->nb_iterations = NULL;
|
3371 |
|
|
loop->estimate_state = EST_NOT_COMPUTED;
|
3372 |
|
|
for (bound = loop->bounds; bound; bound = next)
|
3373 |
|
|
{
|
3374 |
|
|
next = bound->next;
|
3375 |
|
|
ggc_free (bound);
|
3376 |
|
|
}
|
3377 |
|
|
|
3378 |
|
|
loop->bounds = NULL;
|
3379 |
|
|
}
|
3380 |
|
|
|
3381 |
|
|
/* Frees the information on upper bounds on numbers of iterations of loops. */
|
3382 |
|
|
|
3383 |
|
|
void
|
3384 |
|
|
free_numbers_of_iterations_estimates (void)
|
3385 |
|
|
{
|
3386 |
|
|
loop_iterator li;
|
3387 |
|
|
struct loop *loop;
|
3388 |
|
|
|
3389 |
|
|
FOR_EACH_LOOP (li, loop, 0)
|
3390 |
|
|
{
|
3391 |
|
|
free_numbers_of_iterations_estimates_loop (loop);
|
3392 |
|
|
}
|
3393 |
|
|
}
|
3394 |
|
|
|
3395 |
|
|
/* Substitute value VAL for ssa name NAME inside expressions held
|
3396 |
|
|
at LOOP. */
|
3397 |
|
|
|
3398 |
|
|
void
|
3399 |
|
|
substitute_in_loop_info (struct loop *loop, tree name, tree val)
|
3400 |
|
|
{
|
3401 |
|
|
loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);
|
3402 |
|
|
}
|