1 |
684 |
jeremybenn |
/* Optimization of PHI nodes by converting them into straightline code.
|
2 |
|
|
Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
8 |
|
|
under the terms of the GNU General Public License as published by the
|
9 |
|
|
Free Software Foundation; either version 3, or (at your option) any
|
10 |
|
|
later version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
13 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
15 |
|
|
for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "config.h"
|
22 |
|
|
#include "system.h"
|
23 |
|
|
#include "coretypes.h"
|
24 |
|
|
#include "tm.h"
|
25 |
|
|
#include "ggc.h"
|
26 |
|
|
#include "tree.h"
|
27 |
|
|
#include "flags.h"
|
28 |
|
|
#include "tm_p.h"
|
29 |
|
|
#include "basic-block.h"
|
30 |
|
|
#include "timevar.h"
|
31 |
|
|
#include "tree-flow.h"
|
32 |
|
|
#include "tree-pass.h"
|
33 |
|
|
#include "tree-dump.h"
|
34 |
|
|
#include "langhooks.h"
|
35 |
|
|
#include "pointer-set.h"
|
36 |
|
|
#include "domwalk.h"
|
37 |
|
|
#include "cfgloop.h"
|
38 |
|
|
#include "tree-data-ref.h"
|
39 |
|
|
|
40 |
|
|
static unsigned int tree_ssa_phiopt (void);
|
41 |
|
|
static unsigned int tree_ssa_phiopt_worker (bool);
|
42 |
|
|
static bool conditional_replacement (basic_block, basic_block,
|
43 |
|
|
edge, edge, gimple, tree, tree);
|
44 |
|
|
static bool value_replacement (basic_block, basic_block,
|
45 |
|
|
edge, edge, gimple, tree, tree);
|
46 |
|
|
static bool minmax_replacement (basic_block, basic_block,
|
47 |
|
|
edge, edge, gimple, tree, tree);
|
48 |
|
|
static bool abs_replacement (basic_block, basic_block,
|
49 |
|
|
edge, edge, gimple, tree, tree);
|
50 |
|
|
static bool cond_store_replacement (basic_block, basic_block, edge, edge,
|
51 |
|
|
struct pointer_set_t *);
|
52 |
|
|
static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
|
53 |
|
|
static struct pointer_set_t * get_non_trapping (void);
|
54 |
|
|
static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
|
55 |
|
|
|
56 |
|
|
/* This pass tries to replaces an if-then-else block with an
|
57 |
|
|
assignment. We have four kinds of transformations. Some of these
|
58 |
|
|
transformations are also performed by the ifcvt RTL optimizer.
|
59 |
|
|
|
60 |
|
|
Conditional Replacement
|
61 |
|
|
-----------------------
|
62 |
|
|
|
63 |
|
|
This transformation, implemented in conditional_replacement,
|
64 |
|
|
replaces
|
65 |
|
|
|
66 |
|
|
bb0:
|
67 |
|
|
if (cond) goto bb2; else goto bb1;
|
68 |
|
|
bb1:
|
69 |
|
|
bb2:
|
70 |
|
|
x = PHI <0 (bb1), 1 (bb0), ...>;
|
71 |
|
|
|
72 |
|
|
with
|
73 |
|
|
|
74 |
|
|
bb0:
|
75 |
|
|
x' = cond;
|
76 |
|
|
goto bb2;
|
77 |
|
|
bb2:
|
78 |
|
|
x = PHI <x' (bb0), ...>;
|
79 |
|
|
|
80 |
|
|
We remove bb1 as it becomes unreachable. This occurs often due to
|
81 |
|
|
gimplification of conditionals.
|
82 |
|
|
|
83 |
|
|
Value Replacement
|
84 |
|
|
-----------------
|
85 |
|
|
|
86 |
|
|
This transformation, implemented in value_replacement, replaces
|
87 |
|
|
|
88 |
|
|
bb0:
|
89 |
|
|
if (a != b) goto bb2; else goto bb1;
|
90 |
|
|
bb1:
|
91 |
|
|
bb2:
|
92 |
|
|
x = PHI <a (bb1), b (bb0), ...>;
|
93 |
|
|
|
94 |
|
|
with
|
95 |
|
|
|
96 |
|
|
bb0:
|
97 |
|
|
bb2:
|
98 |
|
|
x = PHI <b (bb0), ...>;
|
99 |
|
|
|
100 |
|
|
This opportunity can sometimes occur as a result of other
|
101 |
|
|
optimizations.
|
102 |
|
|
|
103 |
|
|
ABS Replacement
|
104 |
|
|
---------------
|
105 |
|
|
|
106 |
|
|
This transformation, implemented in abs_replacement, replaces
|
107 |
|
|
|
108 |
|
|
bb0:
|
109 |
|
|
if (a >= 0) goto bb2; else goto bb1;
|
110 |
|
|
bb1:
|
111 |
|
|
x = -a;
|
112 |
|
|
bb2:
|
113 |
|
|
x = PHI <x (bb1), a (bb0), ...>;
|
114 |
|
|
|
115 |
|
|
with
|
116 |
|
|
|
117 |
|
|
bb0:
|
118 |
|
|
x' = ABS_EXPR< a >;
|
119 |
|
|
bb2:
|
120 |
|
|
x = PHI <x' (bb0), ...>;
|
121 |
|
|
|
122 |
|
|
MIN/MAX Replacement
|
123 |
|
|
-------------------
|
124 |
|
|
|
125 |
|
|
This transformation, minmax_replacement replaces
|
126 |
|
|
|
127 |
|
|
bb0:
|
128 |
|
|
if (a <= b) goto bb2; else goto bb1;
|
129 |
|
|
bb1:
|
130 |
|
|
bb2:
|
131 |
|
|
x = PHI <b (bb1), a (bb0), ...>;
|
132 |
|
|
|
133 |
|
|
with
|
134 |
|
|
|
135 |
|
|
bb0:
|
136 |
|
|
x' = MIN_EXPR (a, b)
|
137 |
|
|
bb2:
|
138 |
|
|
x = PHI <x' (bb0), ...>;
|
139 |
|
|
|
140 |
|
|
A similar transformation is done for MAX_EXPR. */
|
141 |
|
|
|
142 |
|
|
static unsigned int
|
143 |
|
|
tree_ssa_phiopt (void)
|
144 |
|
|
{
|
145 |
|
|
return tree_ssa_phiopt_worker (false);
|
146 |
|
|
}
|
147 |
|
|
|
148 |
|
|
/* This pass tries to transform conditional stores into unconditional
|
149 |
|
|
ones, enabling further simplifications with the simpler then and else
|
150 |
|
|
blocks. In particular it replaces this:
|
151 |
|
|
|
152 |
|
|
bb0:
|
153 |
|
|
if (cond) goto bb2; else goto bb1;
|
154 |
|
|
bb1:
|
155 |
|
|
*p = RHS;
|
156 |
|
|
bb2:
|
157 |
|
|
|
158 |
|
|
with
|
159 |
|
|
|
160 |
|
|
bb0:
|
161 |
|
|
if (cond) goto bb1; else goto bb2;
|
162 |
|
|
bb1:
|
163 |
|
|
condtmp' = *p;
|
164 |
|
|
bb2:
|
165 |
|
|
condtmp = PHI <RHS, condtmp'>
|
166 |
|
|
*p = condtmp;
|
167 |
|
|
|
168 |
|
|
This transformation can only be done under several constraints,
|
169 |
|
|
documented below. It also replaces:
|
170 |
|
|
|
171 |
|
|
bb0:
|
172 |
|
|
if (cond) goto bb2; else goto bb1;
|
173 |
|
|
bb1:
|
174 |
|
|
*p = RHS1;
|
175 |
|
|
goto bb3;
|
176 |
|
|
bb2:
|
177 |
|
|
*p = RHS2;
|
178 |
|
|
bb3:
|
179 |
|
|
|
180 |
|
|
with
|
181 |
|
|
|
182 |
|
|
bb0:
|
183 |
|
|
if (cond) goto bb3; else goto bb1;
|
184 |
|
|
bb1:
|
185 |
|
|
bb3:
|
186 |
|
|
condtmp = PHI <RHS1, RHS2>
|
187 |
|
|
*p = condtmp; */
|
188 |
|
|
|
189 |
|
|
static unsigned int
|
190 |
|
|
tree_ssa_cs_elim (void)
|
191 |
|
|
{
|
192 |
|
|
return tree_ssa_phiopt_worker (true);
|
193 |
|
|
}
|
194 |
|
|
|
195 |
|
|
/* For conditional store replacement we need a temporary to
|
196 |
|
|
put the old contents of the memory in. */
|
197 |
|
|
static tree condstoretemp;
|
198 |
|
|
|
199 |
|
|
/* The core routine of conditional store replacement and normal
|
200 |
|
|
phi optimizations. Both share much of the infrastructure in how
|
201 |
|
|
to match applicable basic block patterns. DO_STORE_ELIM is true
|
202 |
|
|
when we want to do conditional store replacement, false otherwise. */
|
203 |
|
|
static unsigned int
|
204 |
|
|
tree_ssa_phiopt_worker (bool do_store_elim)
|
205 |
|
|
{
|
206 |
|
|
basic_block bb;
|
207 |
|
|
basic_block *bb_order;
|
208 |
|
|
unsigned n, i;
|
209 |
|
|
bool cfgchanged = false;
|
210 |
|
|
struct pointer_set_t *nontrap = 0;
|
211 |
|
|
|
212 |
|
|
if (do_store_elim)
|
213 |
|
|
{
|
214 |
|
|
condstoretemp = NULL_TREE;
|
215 |
|
|
/* Calculate the set of non-trapping memory accesses. */
|
216 |
|
|
nontrap = get_non_trapping ();
|
217 |
|
|
}
|
218 |
|
|
|
219 |
|
|
/* Search every basic block for COND_EXPR we may be able to optimize.
|
220 |
|
|
|
221 |
|
|
We walk the blocks in order that guarantees that a block with
|
222 |
|
|
a single predecessor is processed before the predecessor.
|
223 |
|
|
This ensures that we collapse inner ifs before visiting the
|
224 |
|
|
outer ones, and also that we do not try to visit a removed
|
225 |
|
|
block. */
|
226 |
|
|
bb_order = blocks_in_phiopt_order ();
|
227 |
|
|
n = n_basic_blocks - NUM_FIXED_BLOCKS;
|
228 |
|
|
|
229 |
|
|
for (i = 0; i < n; i++)
|
230 |
|
|
{
|
231 |
|
|
gimple cond_stmt, phi;
|
232 |
|
|
basic_block bb1, bb2;
|
233 |
|
|
edge e1, e2;
|
234 |
|
|
tree arg0, arg1;
|
235 |
|
|
|
236 |
|
|
bb = bb_order[i];
|
237 |
|
|
|
238 |
|
|
cond_stmt = last_stmt (bb);
|
239 |
|
|
/* Check to see if the last statement is a GIMPLE_COND. */
|
240 |
|
|
if (!cond_stmt
|
241 |
|
|
|| gimple_code (cond_stmt) != GIMPLE_COND)
|
242 |
|
|
continue;
|
243 |
|
|
|
244 |
|
|
e1 = EDGE_SUCC (bb, 0);
|
245 |
|
|
bb1 = e1->dest;
|
246 |
|
|
e2 = EDGE_SUCC (bb, 1);
|
247 |
|
|
bb2 = e2->dest;
|
248 |
|
|
|
249 |
|
|
/* We cannot do the optimization on abnormal edges. */
|
250 |
|
|
if ((e1->flags & EDGE_ABNORMAL) != 0
|
251 |
|
|
|| (e2->flags & EDGE_ABNORMAL) != 0)
|
252 |
|
|
continue;
|
253 |
|
|
|
254 |
|
|
/* If either bb1's succ or bb2 or bb2's succ is non NULL. */
|
255 |
|
|
if (EDGE_COUNT (bb1->succs) == 0
|
256 |
|
|
|| bb2 == NULL
|
257 |
|
|
|| EDGE_COUNT (bb2->succs) == 0)
|
258 |
|
|
continue;
|
259 |
|
|
|
260 |
|
|
/* Find the bb which is the fall through to the other. */
|
261 |
|
|
if (EDGE_SUCC (bb1, 0)->dest == bb2)
|
262 |
|
|
;
|
263 |
|
|
else if (EDGE_SUCC (bb2, 0)->dest == bb1)
|
264 |
|
|
{
|
265 |
|
|
basic_block bb_tmp = bb1;
|
266 |
|
|
edge e_tmp = e1;
|
267 |
|
|
bb1 = bb2;
|
268 |
|
|
bb2 = bb_tmp;
|
269 |
|
|
e1 = e2;
|
270 |
|
|
e2 = e_tmp;
|
271 |
|
|
}
|
272 |
|
|
else if (do_store_elim
|
273 |
|
|
&& EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
|
274 |
|
|
{
|
275 |
|
|
basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
|
276 |
|
|
|
277 |
|
|
if (!single_succ_p (bb1)
|
278 |
|
|
|| (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
|
279 |
|
|
|| !single_succ_p (bb2)
|
280 |
|
|
|| (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
|
281 |
|
|
|| EDGE_COUNT (bb3->preds) != 2)
|
282 |
|
|
continue;
|
283 |
|
|
if (cond_if_else_store_replacement (bb1, bb2, bb3))
|
284 |
|
|
cfgchanged = true;
|
285 |
|
|
continue;
|
286 |
|
|
}
|
287 |
|
|
else
|
288 |
|
|
continue;
|
289 |
|
|
|
290 |
|
|
e1 = EDGE_SUCC (bb1, 0);
|
291 |
|
|
|
292 |
|
|
/* Make sure that bb1 is just a fall through. */
|
293 |
|
|
if (!single_succ_p (bb1)
|
294 |
|
|
|| (e1->flags & EDGE_FALLTHRU) == 0)
|
295 |
|
|
continue;
|
296 |
|
|
|
297 |
|
|
/* Also make sure that bb1 only have one predecessor and that it
|
298 |
|
|
is bb. */
|
299 |
|
|
if (!single_pred_p (bb1)
|
300 |
|
|
|| single_pred (bb1) != bb)
|
301 |
|
|
continue;
|
302 |
|
|
|
303 |
|
|
if (do_store_elim)
|
304 |
|
|
{
|
305 |
|
|
/* bb1 is the middle block, bb2 the join block, bb the split block,
|
306 |
|
|
e1 the fallthrough edge from bb1 to bb2. We can't do the
|
307 |
|
|
optimization if the join block has more than two predecessors. */
|
308 |
|
|
if (EDGE_COUNT (bb2->preds) > 2)
|
309 |
|
|
continue;
|
310 |
|
|
if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
|
311 |
|
|
cfgchanged = true;
|
312 |
|
|
}
|
313 |
|
|
else
|
314 |
|
|
{
|
315 |
|
|
gimple_seq phis = phi_nodes (bb2);
|
316 |
|
|
gimple_stmt_iterator gsi;
|
317 |
|
|
|
318 |
|
|
/* Check to make sure that there is only one non-virtual PHI node.
|
319 |
|
|
TODO: we could do it with more than one iff the other PHI nodes
|
320 |
|
|
have the same elements for these two edges. */
|
321 |
|
|
phi = NULL;
|
322 |
|
|
for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
|
323 |
|
|
{
|
324 |
|
|
if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
|
325 |
|
|
continue;
|
326 |
|
|
if (phi)
|
327 |
|
|
{
|
328 |
|
|
phi = NULL;
|
329 |
|
|
break;
|
330 |
|
|
}
|
331 |
|
|
phi = gsi_stmt (gsi);
|
332 |
|
|
}
|
333 |
|
|
if (!phi)
|
334 |
|
|
continue;
|
335 |
|
|
|
336 |
|
|
arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
|
337 |
|
|
arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
|
338 |
|
|
|
339 |
|
|
/* Something is wrong if we cannot find the arguments in the PHI
|
340 |
|
|
node. */
|
341 |
|
|
gcc_assert (arg0 != NULL && arg1 != NULL);
|
342 |
|
|
|
343 |
|
|
/* Do the replacement of conditional if it can be done. */
|
344 |
|
|
if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
|
345 |
|
|
cfgchanged = true;
|
346 |
|
|
else if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
|
347 |
|
|
cfgchanged = true;
|
348 |
|
|
else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
|
349 |
|
|
cfgchanged = true;
|
350 |
|
|
else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
|
351 |
|
|
cfgchanged = true;
|
352 |
|
|
}
|
353 |
|
|
}
|
354 |
|
|
|
355 |
|
|
free (bb_order);
|
356 |
|
|
|
357 |
|
|
if (do_store_elim)
|
358 |
|
|
pointer_set_destroy (nontrap);
|
359 |
|
|
/* If the CFG has changed, we should cleanup the CFG. */
|
360 |
|
|
if (cfgchanged && do_store_elim)
|
361 |
|
|
{
|
362 |
|
|
/* In cond-store replacement we have added some loads on edges
|
363 |
|
|
and new VOPS (as we moved the store, and created a load). */
|
364 |
|
|
gsi_commit_edge_inserts ();
|
365 |
|
|
return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
|
366 |
|
|
}
|
367 |
|
|
else if (cfgchanged)
|
368 |
|
|
return TODO_cleanup_cfg;
|
369 |
|
|
return 0;
|
370 |
|
|
}
|
371 |
|
|
|
372 |
|
|
/* Returns the list of basic blocks in the function in an order that guarantees
|
373 |
|
|
that if a block X has just a single predecessor Y, then Y is after X in the
|
374 |
|
|
ordering. */
|
375 |
|
|
|
376 |
|
|
basic_block *
|
377 |
|
|
blocks_in_phiopt_order (void)
|
378 |
|
|
{
|
379 |
|
|
basic_block x, y;
|
380 |
|
|
basic_block *order = XNEWVEC (basic_block, n_basic_blocks);
|
381 |
|
|
unsigned n = n_basic_blocks - NUM_FIXED_BLOCKS;
|
382 |
|
|
unsigned np, i;
|
383 |
|
|
sbitmap visited = sbitmap_alloc (last_basic_block);
|
384 |
|
|
|
385 |
|
|
#define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
|
386 |
|
|
#define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
|
387 |
|
|
|
388 |
|
|
sbitmap_zero (visited);
|
389 |
|
|
|
390 |
|
|
MARK_VISITED (ENTRY_BLOCK_PTR);
|
391 |
|
|
FOR_EACH_BB (x)
|
392 |
|
|
{
|
393 |
|
|
if (VISITED_P (x))
|
394 |
|
|
continue;
|
395 |
|
|
|
396 |
|
|
/* Walk the predecessors of x as long as they have precisely one
|
397 |
|
|
predecessor and add them to the list, so that they get stored
|
398 |
|
|
after x. */
|
399 |
|
|
for (y = x, np = 1;
|
400 |
|
|
single_pred_p (y) && !VISITED_P (single_pred (y));
|
401 |
|
|
y = single_pred (y))
|
402 |
|
|
np++;
|
403 |
|
|
for (y = x, i = n - np;
|
404 |
|
|
single_pred_p (y) && !VISITED_P (single_pred (y));
|
405 |
|
|
y = single_pred (y), i++)
|
406 |
|
|
{
|
407 |
|
|
order[i] = y;
|
408 |
|
|
MARK_VISITED (y);
|
409 |
|
|
}
|
410 |
|
|
order[i] = y;
|
411 |
|
|
MARK_VISITED (y);
|
412 |
|
|
|
413 |
|
|
gcc_assert (i == n - 1);
|
414 |
|
|
n -= np;
|
415 |
|
|
}
|
416 |
|
|
|
417 |
|
|
sbitmap_free (visited);
|
418 |
|
|
gcc_assert (n == 0);
|
419 |
|
|
return order;
|
420 |
|
|
|
421 |
|
|
#undef MARK_VISITED
|
422 |
|
|
#undef VISITED_P
|
423 |
|
|
}
|
424 |
|
|
|
425 |
|
|
|
426 |
|
|
/* Return TRUE if block BB has no executable statements, otherwise return
|
427 |
|
|
FALSE. */
|
428 |
|
|
|
429 |
|
|
bool
|
430 |
|
|
empty_block_p (basic_block bb)
|
431 |
|
|
{
|
432 |
|
|
/* BB must have no executable statements. */
|
433 |
|
|
gimple_stmt_iterator gsi = gsi_after_labels (bb);
|
434 |
|
|
if (gsi_end_p (gsi))
|
435 |
|
|
return true;
|
436 |
|
|
if (is_gimple_debug (gsi_stmt (gsi)))
|
437 |
|
|
gsi_next_nondebug (&gsi);
|
438 |
|
|
return gsi_end_p (gsi);
|
439 |
|
|
}
|
440 |
|
|
|
441 |
|
|
/* Replace PHI node element whose edge is E in block BB with variable NEW.
|
442 |
|
|
Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
|
443 |
|
|
is known to have two edges, one of which must reach BB). */
|
444 |
|
|
|
445 |
|
|
static void
|
446 |
|
|
replace_phi_edge_with_variable (basic_block cond_block,
|
447 |
|
|
edge e, gimple phi, tree new_tree)
|
448 |
|
|
{
|
449 |
|
|
basic_block bb = gimple_bb (phi);
|
450 |
|
|
basic_block block_to_remove;
|
451 |
|
|
gimple_stmt_iterator gsi;
|
452 |
|
|
|
453 |
|
|
/* Change the PHI argument to new. */
|
454 |
|
|
SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
|
455 |
|
|
|
456 |
|
|
/* Remove the empty basic block. */
|
457 |
|
|
if (EDGE_SUCC (cond_block, 0)->dest == bb)
|
458 |
|
|
{
|
459 |
|
|
EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
|
460 |
|
|
EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
|
461 |
|
|
EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
|
462 |
|
|
EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
|
463 |
|
|
|
464 |
|
|
block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
|
465 |
|
|
}
|
466 |
|
|
else
|
467 |
|
|
{
|
468 |
|
|
EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
|
469 |
|
|
EDGE_SUCC (cond_block, 1)->flags
|
470 |
|
|
&= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
|
471 |
|
|
EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
|
472 |
|
|
EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
|
473 |
|
|
|
474 |
|
|
block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
|
475 |
|
|
}
|
476 |
|
|
delete_basic_block (block_to_remove);
|
477 |
|
|
|
478 |
|
|
/* Eliminate the COND_EXPR at the end of COND_BLOCK. */
|
479 |
|
|
gsi = gsi_last_bb (cond_block);
|
480 |
|
|
gsi_remove (&gsi, true);
|
481 |
|
|
|
482 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
483 |
|
|
fprintf (dump_file,
|
484 |
|
|
"COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
|
485 |
|
|
cond_block->index,
|
486 |
|
|
bb->index);
|
487 |
|
|
}
|
488 |
|
|
|
489 |
|
|
/* The function conditional_replacement does the main work of doing the
|
490 |
|
|
conditional replacement. Return true if the replacement is done.
|
491 |
|
|
Otherwise return false.
|
492 |
|
|
BB is the basic block where the replacement is going to be done on. ARG0
|
493 |
|
|
is argument 0 from PHI. Likewise for ARG1. */
|
494 |
|
|
|
495 |
|
|
static bool
|
496 |
|
|
conditional_replacement (basic_block cond_bb, basic_block middle_bb,
|
497 |
|
|
edge e0, edge e1, gimple phi,
|
498 |
|
|
tree arg0, tree arg1)
|
499 |
|
|
{
|
500 |
|
|
tree result;
|
501 |
|
|
gimple stmt, new_stmt;
|
502 |
|
|
tree cond;
|
503 |
|
|
gimple_stmt_iterator gsi;
|
504 |
|
|
edge true_edge, false_edge;
|
505 |
|
|
tree new_var, new_var2;
|
506 |
|
|
|
507 |
|
|
/* FIXME: Gimplification of complex type is too hard for now. */
|
508 |
|
|
if (TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
|
509 |
|
|
|| TREE_CODE (TREE_TYPE (arg1)) == COMPLEX_TYPE)
|
510 |
|
|
return false;
|
511 |
|
|
|
512 |
|
|
/* The PHI arguments have the constants 0 and 1, then convert
|
513 |
|
|
it to the conditional. */
|
514 |
|
|
if ((integer_zerop (arg0) && integer_onep (arg1))
|
515 |
|
|
|| (integer_zerop (arg1) && integer_onep (arg0)))
|
516 |
|
|
;
|
517 |
|
|
else
|
518 |
|
|
return false;
|
519 |
|
|
|
520 |
|
|
if (!empty_block_p (middle_bb))
|
521 |
|
|
return false;
|
522 |
|
|
|
523 |
|
|
/* At this point we know we have a GIMPLE_COND with two successors.
|
524 |
|
|
One successor is BB, the other successor is an empty block which
|
525 |
|
|
falls through into BB.
|
526 |
|
|
|
527 |
|
|
There is a single PHI node at the join point (BB) and its arguments
|
528 |
|
|
are constants (0, 1).
|
529 |
|
|
|
530 |
|
|
So, given the condition COND, and the two PHI arguments, we can
|
531 |
|
|
rewrite this PHI into non-branching code:
|
532 |
|
|
|
533 |
|
|
dest = (COND) or dest = COND'
|
534 |
|
|
|
535 |
|
|
We use the condition as-is if the argument associated with the
|
536 |
|
|
true edge has the value one or the argument associated with the
|
537 |
|
|
false edge as the value zero. Note that those conditions are not
|
538 |
|
|
the same since only one of the outgoing edges from the GIMPLE_COND
|
539 |
|
|
will directly reach BB and thus be associated with an argument. */
|
540 |
|
|
|
541 |
|
|
stmt = last_stmt (cond_bb);
|
542 |
|
|
result = PHI_RESULT (phi);
|
543 |
|
|
|
544 |
|
|
/* To handle special cases like floating point comparison, it is easier and
|
545 |
|
|
less error-prone to build a tree and gimplify it on the fly though it is
|
546 |
|
|
less efficient. */
|
547 |
|
|
cond = fold_build2_loc (gimple_location (stmt),
|
548 |
|
|
gimple_cond_code (stmt), boolean_type_node,
|
549 |
|
|
gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
|
550 |
|
|
|
551 |
|
|
/* We need to know which is the true edge and which is the false
|
552 |
|
|
edge so that we know when to invert the condition below. */
|
553 |
|
|
extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
|
554 |
|
|
if ((e0 == true_edge && integer_zerop (arg0))
|
555 |
|
|
|| (e0 == false_edge && integer_onep (arg0))
|
556 |
|
|
|| (e1 == true_edge && integer_zerop (arg1))
|
557 |
|
|
|| (e1 == false_edge && integer_onep (arg1)))
|
558 |
|
|
cond = fold_build1_loc (gimple_location (stmt),
|
559 |
|
|
TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
|
560 |
|
|
|
561 |
|
|
/* Insert our new statements at the end of conditional block before the
|
562 |
|
|
COND_STMT. */
|
563 |
|
|
gsi = gsi_for_stmt (stmt);
|
564 |
|
|
new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
|
565 |
|
|
GSI_SAME_STMT);
|
566 |
|
|
|
567 |
|
|
if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
|
568 |
|
|
{
|
569 |
|
|
source_location locus_0, locus_1;
|
570 |
|
|
|
571 |
|
|
new_var2 = create_tmp_var (TREE_TYPE (result), NULL);
|
572 |
|
|
add_referenced_var (new_var2);
|
573 |
|
|
new_stmt = gimple_build_assign_with_ops (CONVERT_EXPR, new_var2,
|
574 |
|
|
new_var, NULL);
|
575 |
|
|
new_var2 = make_ssa_name (new_var2, new_stmt);
|
576 |
|
|
gimple_assign_set_lhs (new_stmt, new_var2);
|
577 |
|
|
gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
|
578 |
|
|
new_var = new_var2;
|
579 |
|
|
|
580 |
|
|
/* Set the locus to the first argument, unless is doesn't have one. */
|
581 |
|
|
locus_0 = gimple_phi_arg_location (phi, 0);
|
582 |
|
|
locus_1 = gimple_phi_arg_location (phi, 1);
|
583 |
|
|
if (locus_0 == UNKNOWN_LOCATION)
|
584 |
|
|
locus_0 = locus_1;
|
585 |
|
|
gimple_set_location (new_stmt, locus_0);
|
586 |
|
|
}
|
587 |
|
|
|
588 |
|
|
replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
|
589 |
|
|
|
590 |
|
|
/* Note that we optimized this PHI. */
|
591 |
|
|
return true;
|
592 |
|
|
}
|
593 |
|
|
|
594 |
|
|
/* Update *ARG which is defined in STMT so that it contains the
|
595 |
|
|
computed value if that seems profitable. Return true if the
|
596 |
|
|
statement is made dead by that rewriting. */
|
597 |
|
|
|
598 |
|
|
static bool
|
599 |
|
|
jump_function_from_stmt (tree *arg, gimple stmt)
|
600 |
|
|
{
|
601 |
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
602 |
|
|
if (code == ADDR_EXPR)
|
603 |
|
|
{
|
604 |
|
|
/* For arg = &p->i transform it to p, if possible. */
|
605 |
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
606 |
|
|
HOST_WIDE_INT offset;
|
607 |
|
|
tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
|
608 |
|
|
&offset);
|
609 |
|
|
if (tem
|
610 |
|
|
&& TREE_CODE (tem) == MEM_REF
|
611 |
|
|
&& double_int_zero_p
|
612 |
|
|
(double_int_add (mem_ref_offset (tem),
|
613 |
|
|
shwi_to_double_int (offset))))
|
614 |
|
|
{
|
615 |
|
|
*arg = TREE_OPERAND (tem, 0);
|
616 |
|
|
return true;
|
617 |
|
|
}
|
618 |
|
|
}
|
619 |
|
|
/* TODO: Much like IPA-CP jump-functions we want to handle constant
|
620 |
|
|
additions symbolically here, and we'd need to update the comparison
|
621 |
|
|
code that compares the arg + cst tuples in our caller. For now the
|
622 |
|
|
code above exactly handles the VEC_BASE pattern from vec.h. */
|
623 |
|
|
return false;
|
624 |
|
|
}
|
625 |
|
|
|
626 |
|
|
/* The function value_replacement does the main work of doing the value
|
627 |
|
|
replacement. Return true if the replacement is done. Otherwise return
|
628 |
|
|
false.
|
629 |
|
|
BB is the basic block where the replacement is going to be done on. ARG0
|
630 |
|
|
is argument 0 from the PHI. Likewise for ARG1. */
|
631 |
|
|
|
632 |
|
|
static bool
|
633 |
|
|
value_replacement (basic_block cond_bb, basic_block middle_bb,
|
634 |
|
|
edge e0, edge e1, gimple phi,
|
635 |
|
|
tree arg0, tree arg1)
|
636 |
|
|
{
|
637 |
|
|
gimple_stmt_iterator gsi;
|
638 |
|
|
gimple cond;
|
639 |
|
|
edge true_edge, false_edge;
|
640 |
|
|
enum tree_code code;
|
641 |
|
|
|
642 |
|
|
/* If the type says honor signed zeros we cannot do this
|
643 |
|
|
optimization. */
|
644 |
|
|
if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
|
645 |
|
|
return false;
|
646 |
|
|
|
647 |
|
|
/* Allow a single statement in MIDDLE_BB that defines one of the PHI
|
648 |
|
|
arguments. */
|
649 |
|
|
gsi = gsi_after_labels (middle_bb);
|
650 |
|
|
if (!gsi_end_p (gsi))
|
651 |
|
|
{
|
652 |
|
|
if (is_gimple_debug (gsi_stmt (gsi)))
|
653 |
|
|
gsi_next_nondebug (&gsi);
|
654 |
|
|
if (!gsi_end_p (gsi))
|
655 |
|
|
{
|
656 |
|
|
gimple stmt = gsi_stmt (gsi);
|
657 |
|
|
tree lhs;
|
658 |
|
|
gsi_next_nondebug (&gsi);
|
659 |
|
|
if (!gsi_end_p (gsi))
|
660 |
|
|
return false;
|
661 |
|
|
if (!is_gimple_assign (stmt))
|
662 |
|
|
return false;
|
663 |
|
|
/* Now try to adjust arg0 or arg1 according to the computation
|
664 |
|
|
in the single statement. */
|
665 |
|
|
lhs = gimple_assign_lhs (stmt);
|
666 |
|
|
if (!((lhs == arg0
|
667 |
|
|
&& jump_function_from_stmt (&arg0, stmt))
|
668 |
|
|
|| (lhs == arg1
|
669 |
|
|
&& jump_function_from_stmt (&arg1, stmt))))
|
670 |
|
|
return false;
|
671 |
|
|
}
|
672 |
|
|
}
|
673 |
|
|
|
674 |
|
|
cond = last_stmt (cond_bb);
|
675 |
|
|
code = gimple_cond_code (cond);
|
676 |
|
|
|
677 |
|
|
/* This transformation is only valid for equality comparisons. */
|
678 |
|
|
if (code != NE_EXPR && code != EQ_EXPR)
|
679 |
|
|
return false;
|
680 |
|
|
|
681 |
|
|
/* We need to know which is the true edge and which is the false
|
682 |
|
|
edge so that we know if have abs or negative abs. */
|
683 |
|
|
extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
|
684 |
|
|
|
685 |
|
|
/* At this point we know we have a COND_EXPR with two successors.
|
686 |
|
|
One successor is BB, the other successor is an empty block which
|
687 |
|
|
falls through into BB.
|
688 |
|
|
|
689 |
|
|
The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
|
690 |
|
|
|
691 |
|
|
There is a single PHI node at the join point (BB) with two arguments.
|
692 |
|
|
|
693 |
|
|
We now need to verify that the two arguments in the PHI node match
|
694 |
|
|
the two arguments to the equality comparison. */
|
695 |
|
|
|
696 |
|
|
if ((operand_equal_for_phi_arg_p (arg0, gimple_cond_lhs (cond))
|
697 |
|
|
&& operand_equal_for_phi_arg_p (arg1, gimple_cond_rhs (cond)))
|
698 |
|
|
|| (operand_equal_for_phi_arg_p (arg1, gimple_cond_lhs (cond))
|
699 |
|
|
&& operand_equal_for_phi_arg_p (arg0, gimple_cond_rhs (cond))))
|
700 |
|
|
{
|
701 |
|
|
edge e;
|
702 |
|
|
tree arg;
|
703 |
|
|
|
704 |
|
|
/* For NE_EXPR, we want to build an assignment result = arg where
|
705 |
|
|
arg is the PHI argument associated with the true edge. For
|
706 |
|
|
EQ_EXPR we want the PHI argument associated with the false edge. */
|
707 |
|
|
e = (code == NE_EXPR ? true_edge : false_edge);
|
708 |
|
|
|
709 |
|
|
/* Unfortunately, E may not reach BB (it may instead have gone to
|
710 |
|
|
OTHER_BLOCK). If that is the case, then we want the single outgoing
|
711 |
|
|
edge from OTHER_BLOCK which reaches BB and represents the desired
|
712 |
|
|
path from COND_BLOCK. */
|
713 |
|
|
if (e->dest == middle_bb)
|
714 |
|
|
e = single_succ_edge (e->dest);
|
715 |
|
|
|
716 |
|
|
/* Now we know the incoming edge to BB that has the argument for the
|
717 |
|
|
RHS of our new assignment statement. */
|
718 |
|
|
if (e0 == e)
|
719 |
|
|
arg = arg0;
|
720 |
|
|
else
|
721 |
|
|
arg = arg1;
|
722 |
|
|
|
723 |
|
|
replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
|
724 |
|
|
|
725 |
|
|
/* Note that we optimized this PHI. */
|
726 |
|
|
return true;
|
727 |
|
|
}
|
728 |
|
|
return false;
|
729 |
|
|
}
|
730 |
|
|
|
731 |
|
|
/* The function minmax_replacement does the main work of doing the minmax
|
732 |
|
|
replacement. Return true if the replacement is done. Otherwise return
|
733 |
|
|
false.
|
734 |
|
|
BB is the basic block where the replacement is going to be done on. ARG0
|
735 |
|
|
is argument 0 from the PHI. Likewise for ARG1. */
|
736 |
|
|
|
737 |
|
|
static bool
|
738 |
|
|
minmax_replacement (basic_block cond_bb, basic_block middle_bb,
|
739 |
|
|
edge e0, edge e1, gimple phi,
|
740 |
|
|
tree arg0, tree arg1)
|
741 |
|
|
{
|
742 |
|
|
tree result, type;
|
743 |
|
|
gimple cond, new_stmt;
|
744 |
|
|
edge true_edge, false_edge;
|
745 |
|
|
enum tree_code cmp, minmax, ass_code;
|
746 |
|
|
tree smaller, larger, arg_true, arg_false;
|
747 |
|
|
gimple_stmt_iterator gsi, gsi_from;
|
748 |
|
|
|
749 |
|
|
type = TREE_TYPE (PHI_RESULT (phi));
|
750 |
|
|
|
751 |
|
|
/* The optimization may be unsafe due to NaNs. */
|
752 |
|
|
if (HONOR_NANS (TYPE_MODE (type)))
|
753 |
|
|
return false;
|
754 |
|
|
|
755 |
|
|
cond = last_stmt (cond_bb);
|
756 |
|
|
cmp = gimple_cond_code (cond);
|
757 |
|
|
|
758 |
|
|
/* This transformation is only valid for order comparisons. Record which
|
759 |
|
|
operand is smaller/larger if the result of the comparison is true. */
|
760 |
|
|
if (cmp == LT_EXPR || cmp == LE_EXPR)
|
761 |
|
|
{
|
762 |
|
|
smaller = gimple_cond_lhs (cond);
|
763 |
|
|
larger = gimple_cond_rhs (cond);
|
764 |
|
|
}
|
765 |
|
|
else if (cmp == GT_EXPR || cmp == GE_EXPR)
|
766 |
|
|
{
|
767 |
|
|
smaller = gimple_cond_rhs (cond);
|
768 |
|
|
larger = gimple_cond_lhs (cond);
|
769 |
|
|
}
|
770 |
|
|
else
|
771 |
|
|
return false;
|
772 |
|
|
|
773 |
|
|
/* We need to know which is the true edge and which is the false
|
774 |
|
|
edge so that we know if have abs or negative abs. */
|
775 |
|
|
extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
|
776 |
|
|
|
777 |
|
|
/* Forward the edges over the middle basic block. */
|
778 |
|
|
if (true_edge->dest == middle_bb)
|
779 |
|
|
true_edge = EDGE_SUCC (true_edge->dest, 0);
|
780 |
|
|
if (false_edge->dest == middle_bb)
|
781 |
|
|
false_edge = EDGE_SUCC (false_edge->dest, 0);
|
782 |
|
|
|
783 |
|
|
if (true_edge == e0)
|
784 |
|
|
{
|
785 |
|
|
gcc_assert (false_edge == e1);
|
786 |
|
|
arg_true = arg0;
|
787 |
|
|
arg_false = arg1;
|
788 |
|
|
}
|
789 |
|
|
else
|
790 |
|
|
{
|
791 |
|
|
gcc_assert (false_edge == e0);
|
792 |
|
|
gcc_assert (true_edge == e1);
|
793 |
|
|
arg_true = arg1;
|
794 |
|
|
arg_false = arg0;
|
795 |
|
|
}
|
796 |
|
|
|
797 |
|
|
if (empty_block_p (middle_bb))
|
798 |
|
|
{
|
799 |
|
|
if (operand_equal_for_phi_arg_p (arg_true, smaller)
|
800 |
|
|
&& operand_equal_for_phi_arg_p (arg_false, larger))
|
801 |
|
|
{
|
802 |
|
|
/* Case
|
803 |
|
|
|
804 |
|
|
if (smaller < larger)
|
805 |
|
|
rslt = smaller;
|
806 |
|
|
else
|
807 |
|
|
rslt = larger; */
|
808 |
|
|
minmax = MIN_EXPR;
|
809 |
|
|
}
|
810 |
|
|
else if (operand_equal_for_phi_arg_p (arg_false, smaller)
|
811 |
|
|
&& operand_equal_for_phi_arg_p (arg_true, larger))
|
812 |
|
|
minmax = MAX_EXPR;
|
813 |
|
|
else
|
814 |
|
|
return false;
|
815 |
|
|
}
|
816 |
|
|
else
|
817 |
|
|
{
|
818 |
|
|
/* Recognize the following case, assuming d <= u:
|
819 |
|
|
|
820 |
|
|
if (a <= u)
|
821 |
|
|
b = MAX (a, d);
|
822 |
|
|
x = PHI <b, u>
|
823 |
|
|
|
824 |
|
|
This is equivalent to
|
825 |
|
|
|
826 |
|
|
b = MAX (a, d);
|
827 |
|
|
x = MIN (b, u); */
|
828 |
|
|
|
829 |
|
|
gimple assign = last_and_only_stmt (middle_bb);
|
830 |
|
|
tree lhs, op0, op1, bound;
|
831 |
|
|
|
832 |
|
|
if (!assign
|
833 |
|
|
|| gimple_code (assign) != GIMPLE_ASSIGN)
|
834 |
|
|
return false;
|
835 |
|
|
|
836 |
|
|
lhs = gimple_assign_lhs (assign);
|
837 |
|
|
ass_code = gimple_assign_rhs_code (assign);
|
838 |
|
|
if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
|
839 |
|
|
return false;
|
840 |
|
|
op0 = gimple_assign_rhs1 (assign);
|
841 |
|
|
op1 = gimple_assign_rhs2 (assign);
|
842 |
|
|
|
843 |
|
|
if (true_edge->src == middle_bb)
|
844 |
|
|
{
|
845 |
|
|
/* We got here if the condition is true, i.e., SMALLER < LARGER. */
|
846 |
|
|
if (!operand_equal_for_phi_arg_p (lhs, arg_true))
|
847 |
|
|
return false;
|
848 |
|
|
|
849 |
|
|
if (operand_equal_for_phi_arg_p (arg_false, larger))
|
850 |
|
|
{
|
851 |
|
|
/* Case
|
852 |
|
|
|
853 |
|
|
if (smaller < larger)
|
854 |
|
|
{
|
855 |
|
|
r' = MAX_EXPR (smaller, bound)
|
856 |
|
|
}
|
857 |
|
|
r = PHI <r', larger> --> to be turned to MIN_EXPR. */
|
858 |
|
|
if (ass_code != MAX_EXPR)
|
859 |
|
|
return false;
|
860 |
|
|
|
861 |
|
|
minmax = MIN_EXPR;
|
862 |
|
|
if (operand_equal_for_phi_arg_p (op0, smaller))
|
863 |
|
|
bound = op1;
|
864 |
|
|
else if (operand_equal_for_phi_arg_p (op1, smaller))
|
865 |
|
|
bound = op0;
|
866 |
|
|
else
|
867 |
|
|
return false;
|
868 |
|
|
|
869 |
|
|
/* We need BOUND <= LARGER. */
|
870 |
|
|
if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
|
871 |
|
|
bound, larger)))
|
872 |
|
|
return false;
|
873 |
|
|
}
|
874 |
|
|
else if (operand_equal_for_phi_arg_p (arg_false, smaller))
|
875 |
|
|
{
|
876 |
|
|
/* Case
|
877 |
|
|
|
878 |
|
|
if (smaller < larger)
|
879 |
|
|
{
|
880 |
|
|
r' = MIN_EXPR (larger, bound)
|
881 |
|
|
}
|
882 |
|
|
r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
|
883 |
|
|
if (ass_code != MIN_EXPR)
|
884 |
|
|
return false;
|
885 |
|
|
|
886 |
|
|
minmax = MAX_EXPR;
|
887 |
|
|
if (operand_equal_for_phi_arg_p (op0, larger))
|
888 |
|
|
bound = op1;
|
889 |
|
|
else if (operand_equal_for_phi_arg_p (op1, larger))
|
890 |
|
|
bound = op0;
|
891 |
|
|
else
|
892 |
|
|
return false;
|
893 |
|
|
|
894 |
|
|
/* We need BOUND >= SMALLER. */
|
895 |
|
|
if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
|
896 |
|
|
bound, smaller)))
|
897 |
|
|
return false;
|
898 |
|
|
}
|
899 |
|
|
else
|
900 |
|
|
return false;
|
901 |
|
|
}
|
902 |
|
|
else
|
903 |
|
|
{
|
904 |
|
|
/* We got here if the condition is false, i.e., SMALLER > LARGER. */
|
905 |
|
|
if (!operand_equal_for_phi_arg_p (lhs, arg_false))
|
906 |
|
|
return false;
|
907 |
|
|
|
908 |
|
|
if (operand_equal_for_phi_arg_p (arg_true, larger))
|
909 |
|
|
{
|
910 |
|
|
/* Case
|
911 |
|
|
|
912 |
|
|
if (smaller > larger)
|
913 |
|
|
{
|
914 |
|
|
r' = MIN_EXPR (smaller, bound)
|
915 |
|
|
}
|
916 |
|
|
r = PHI <r', larger> --> to be turned to MAX_EXPR. */
|
917 |
|
|
if (ass_code != MIN_EXPR)
|
918 |
|
|
return false;
|
919 |
|
|
|
920 |
|
|
minmax = MAX_EXPR;
|
921 |
|
|
if (operand_equal_for_phi_arg_p (op0, smaller))
|
922 |
|
|
bound = op1;
|
923 |
|
|
else if (operand_equal_for_phi_arg_p (op1, smaller))
|
924 |
|
|
bound = op0;
|
925 |
|
|
else
|
926 |
|
|
return false;
|
927 |
|
|
|
928 |
|
|
/* We need BOUND >= LARGER. */
|
929 |
|
|
if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
|
930 |
|
|
bound, larger)))
|
931 |
|
|
return false;
|
932 |
|
|
}
|
933 |
|
|
else if (operand_equal_for_phi_arg_p (arg_true, smaller))
|
934 |
|
|
{
|
935 |
|
|
/* Case
|
936 |
|
|
|
937 |
|
|
if (smaller > larger)
|
938 |
|
|
{
|
939 |
|
|
r' = MAX_EXPR (larger, bound)
|
940 |
|
|
}
|
941 |
|
|
r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
|
942 |
|
|
if (ass_code != MAX_EXPR)
|
943 |
|
|
return false;
|
944 |
|
|
|
945 |
|
|
minmax = MIN_EXPR;
|
946 |
|
|
if (operand_equal_for_phi_arg_p (op0, larger))
|
947 |
|
|
bound = op1;
|
948 |
|
|
else if (operand_equal_for_phi_arg_p (op1, larger))
|
949 |
|
|
bound = op0;
|
950 |
|
|
else
|
951 |
|
|
return false;
|
952 |
|
|
|
953 |
|
|
/* We need BOUND <= SMALLER. */
|
954 |
|
|
if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
|
955 |
|
|
bound, smaller)))
|
956 |
|
|
return false;
|
957 |
|
|
}
|
958 |
|
|
else
|
959 |
|
|
return false;
|
960 |
|
|
}
|
961 |
|
|
|
962 |
|
|
/* Move the statement from the middle block. */
|
963 |
|
|
gsi = gsi_last_bb (cond_bb);
|
964 |
|
|
gsi_from = gsi_last_nondebug_bb (middle_bb);
|
965 |
|
|
gsi_move_before (&gsi_from, &gsi);
|
966 |
|
|
}
|
967 |
|
|
|
968 |
|
|
/* Emit the statement to compute min/max. */
|
969 |
|
|
result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
|
970 |
|
|
new_stmt = gimple_build_assign_with_ops (minmax, result, arg0, arg1);
|
971 |
|
|
gsi = gsi_last_bb (cond_bb);
|
972 |
|
|
gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
|
973 |
|
|
|
974 |
|
|
replace_phi_edge_with_variable (cond_bb, e1, phi, result);
|
975 |
|
|
return true;
|
976 |
|
|
}
|
977 |
|
|
|
978 |
|
|
/* The function absolute_replacement does the main work of doing the absolute
|
979 |
|
|
replacement. Return true if the replacement is done. Otherwise return
|
980 |
|
|
false.
|
981 |
|
|
bb is the basic block where the replacement is going to be done on. arg0
|
982 |
|
|
is argument 0 from the phi. Likewise for arg1. */
|
983 |
|
|
|
984 |
|
|
static bool
|
985 |
|
|
abs_replacement (basic_block cond_bb, basic_block middle_bb,
|
986 |
|
|
edge e0 ATTRIBUTE_UNUSED, edge e1,
|
987 |
|
|
gimple phi, tree arg0, tree arg1)
|
988 |
|
|
{
|
989 |
|
|
tree result;
|
990 |
|
|
gimple new_stmt, cond;
|
991 |
|
|
gimple_stmt_iterator gsi;
|
992 |
|
|
edge true_edge, false_edge;
|
993 |
|
|
gimple assign;
|
994 |
|
|
edge e;
|
995 |
|
|
tree rhs, lhs;
|
996 |
|
|
bool negate;
|
997 |
|
|
enum tree_code cond_code;
|
998 |
|
|
|
999 |
|
|
/* If the type says honor signed zeros we cannot do this
|
1000 |
|
|
optimization. */
|
1001 |
|
|
if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
|
1002 |
|
|
return false;
|
1003 |
|
|
|
1004 |
|
|
/* OTHER_BLOCK must have only one executable statement which must have the
|
1005 |
|
|
form arg0 = -arg1 or arg1 = -arg0. */
|
1006 |
|
|
|
1007 |
|
|
assign = last_and_only_stmt (middle_bb);
|
1008 |
|
|
/* If we did not find the proper negation assignment, then we can not
|
1009 |
|
|
optimize. */
|
1010 |
|
|
if (assign == NULL)
|
1011 |
|
|
return false;
|
1012 |
|
|
|
1013 |
|
|
/* If we got here, then we have found the only executable statement
|
1014 |
|
|
in OTHER_BLOCK. If it is anything other than arg = -arg1 or
|
1015 |
|
|
arg1 = -arg0, then we can not optimize. */
|
1016 |
|
|
if (gimple_code (assign) != GIMPLE_ASSIGN)
|
1017 |
|
|
return false;
|
1018 |
|
|
|
1019 |
|
|
lhs = gimple_assign_lhs (assign);
|
1020 |
|
|
|
1021 |
|
|
if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
|
1022 |
|
|
return false;
|
1023 |
|
|
|
1024 |
|
|
rhs = gimple_assign_rhs1 (assign);
|
1025 |
|
|
|
1026 |
|
|
/* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
|
1027 |
|
|
if (!(lhs == arg0 && rhs == arg1)
|
1028 |
|
|
&& !(lhs == arg1 && rhs == arg0))
|
1029 |
|
|
return false;
|
1030 |
|
|
|
1031 |
|
|
cond = last_stmt (cond_bb);
|
1032 |
|
|
result = PHI_RESULT (phi);
|
1033 |
|
|
|
1034 |
|
|
/* Only relationals comparing arg[01] against zero are interesting. */
|
1035 |
|
|
cond_code = gimple_cond_code (cond);
|
1036 |
|
|
if (cond_code != GT_EXPR && cond_code != GE_EXPR
|
1037 |
|
|
&& cond_code != LT_EXPR && cond_code != LE_EXPR)
|
1038 |
|
|
return false;
|
1039 |
|
|
|
1040 |
|
|
/* Make sure the conditional is arg[01] OP y. */
|
1041 |
|
|
if (gimple_cond_lhs (cond) != rhs)
|
1042 |
|
|
return false;
|
1043 |
|
|
|
1044 |
|
|
if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
|
1045 |
|
|
? real_zerop (gimple_cond_rhs (cond))
|
1046 |
|
|
: integer_zerop (gimple_cond_rhs (cond)))
|
1047 |
|
|
;
|
1048 |
|
|
else
|
1049 |
|
|
return false;
|
1050 |
|
|
|
1051 |
|
|
/* We need to know which is the true edge and which is the false
|
1052 |
|
|
edge so that we know if have abs or negative abs. */
|
1053 |
|
|
extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
|
1054 |
|
|
|
1055 |
|
|
/* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
|
1056 |
|
|
will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
|
1057 |
|
|
the false edge goes to OTHER_BLOCK. */
|
1058 |
|
|
if (cond_code == GT_EXPR || cond_code == GE_EXPR)
|
1059 |
|
|
e = true_edge;
|
1060 |
|
|
else
|
1061 |
|
|
e = false_edge;
|
1062 |
|
|
|
1063 |
|
|
if (e->dest == middle_bb)
|
1064 |
|
|
negate = true;
|
1065 |
|
|
else
|
1066 |
|
|
negate = false;
|
1067 |
|
|
|
1068 |
|
|
result = duplicate_ssa_name (result, NULL);
|
1069 |
|
|
|
1070 |
|
|
if (negate)
|
1071 |
|
|
{
|
1072 |
|
|
tree tmp = create_tmp_var (TREE_TYPE (result), NULL);
|
1073 |
|
|
add_referenced_var (tmp);
|
1074 |
|
|
lhs = make_ssa_name (tmp, NULL);
|
1075 |
|
|
}
|
1076 |
|
|
else
|
1077 |
|
|
lhs = result;
|
1078 |
|
|
|
1079 |
|
|
/* Build the modify expression with abs expression. */
|
1080 |
|
|
new_stmt = gimple_build_assign_with_ops (ABS_EXPR, lhs, rhs, NULL);
|
1081 |
|
|
|
1082 |
|
|
gsi = gsi_last_bb (cond_bb);
|
1083 |
|
|
gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
|
1084 |
|
|
|
1085 |
|
|
if (negate)
|
1086 |
|
|
{
|
1087 |
|
|
/* Get the right GSI. We want to insert after the recently
|
1088 |
|
|
added ABS_EXPR statement (which we know is the first statement
|
1089 |
|
|
in the block. */
|
1090 |
|
|
new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, result, lhs, NULL);
|
1091 |
|
|
|
1092 |
|
|
gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
|
1093 |
|
|
}
|
1094 |
|
|
|
1095 |
|
|
replace_phi_edge_with_variable (cond_bb, e1, phi, result);
|
1096 |
|
|
|
1097 |
|
|
/* Note that we optimized this PHI. */
|
1098 |
|
|
return true;
|
1099 |
|
|
}
|
1100 |
|
|
|
1101 |
|
|
/* Auxiliary functions to determine the set of memory accesses which
|
1102 |
|
|
can't trap because they are preceded by accesses to the same memory
|
1103 |
|
|
portion. We do that for MEM_REFs, so we only need to track
|
1104 |
|
|
the SSA_NAME of the pointer indirectly referenced. The algorithm
|
1105 |
|
|
simply is a walk over all instructions in dominator order. When
|
1106 |
|
|
we see an MEM_REF we determine if we've already seen a same
|
1107 |
|
|
ref anywhere up to the root of the dominator tree. If we do the
|
1108 |
|
|
current access can't trap. If we don't see any dominating access
|
1109 |
|
|
the current access might trap, but might also make later accesses
|
1110 |
|
|
non-trapping, so we remember it. We need to be careful with loads
|
1111 |
|
|
or stores, for instance a load might not trap, while a store would,
|
1112 |
|
|
so if we see a dominating read access this doesn't mean that a later
|
1113 |
|
|
write access would not trap. Hence we also need to differentiate the
|
1114 |
|
|
type of access(es) seen.
|
1115 |
|
|
|
1116 |
|
|
??? We currently are very conservative and assume that a load might
|
1117 |
|
|
trap even if a store doesn't (write-only memory). This probably is
|
1118 |
|
|
overly conservative. */
|
1119 |
|
|
|
1120 |
|
|
/* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
|
1121 |
|
|
through it was seen, which would constitute a no-trap region for
|
1122 |
|
|
same accesses. */
|
1123 |
|
|
struct name_to_bb
|
1124 |
|
|
{
|
1125 |
|
|
tree ssa_name;
|
1126 |
|
|
basic_block bb;
|
1127 |
|
|
unsigned store : 1;
|
1128 |
|
|
};
|
1129 |
|
|
|
1130 |
|
|
/* The hash table for remembering what we've seen. */
|
1131 |
|
|
static htab_t seen_ssa_names;
|
1132 |
|
|
|
1133 |
|
|
/* The set of MEM_REFs which can't trap. */
|
1134 |
|
|
static struct pointer_set_t *nontrap_set;
|
1135 |
|
|
|
1136 |
|
|
/* The hash function, based on the pointer to the pointer SSA_NAME. */
|
1137 |
|
|
static hashval_t
|
1138 |
|
|
name_to_bb_hash (const void *p)
|
1139 |
|
|
{
|
1140 |
|
|
const_tree n = ((const struct name_to_bb *)p)->ssa_name;
|
1141 |
|
|
return htab_hash_pointer (n) ^ ((const struct name_to_bb *)p)->store;
|
1142 |
|
|
}
|
1143 |
|
|
|
1144 |
|
|
/* The equality function of *P1 and *P2. SSA_NAMEs are shared, so
|
1145 |
|
|
it's enough to simply compare them for equality. */
|
1146 |
|
|
static int
|
1147 |
|
|
name_to_bb_eq (const void *p1, const void *p2)
|
1148 |
|
|
{
|
1149 |
|
|
const struct name_to_bb *n1 = (const struct name_to_bb *)p1;
|
1150 |
|
|
const struct name_to_bb *n2 = (const struct name_to_bb *)p2;
|
1151 |
|
|
|
1152 |
|
|
return n1->ssa_name == n2->ssa_name && n1->store == n2->store;
|
1153 |
|
|
}
|
1154 |
|
|
|
1155 |
|
|
/* We see the expression EXP in basic block BB. If it's an interesting
|
1156 |
|
|
expression (an MEM_REF through an SSA_NAME) possibly insert the
|
1157 |
|
|
expression into the set NONTRAP or the hash table of seen expressions.
|
1158 |
|
|
STORE is true if this expression is on the LHS, otherwise it's on
|
1159 |
|
|
the RHS. */
|
1160 |
|
|
static void
|
1161 |
|
|
add_or_mark_expr (basic_block bb, tree exp,
|
1162 |
|
|
struct pointer_set_t *nontrap, bool store)
|
1163 |
|
|
{
|
1164 |
|
|
if (TREE_CODE (exp) == MEM_REF
|
1165 |
|
|
&& TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME)
|
1166 |
|
|
{
|
1167 |
|
|
tree name = TREE_OPERAND (exp, 0);
|
1168 |
|
|
struct name_to_bb map;
|
1169 |
|
|
void **slot;
|
1170 |
|
|
struct name_to_bb *n2bb;
|
1171 |
|
|
basic_block found_bb = 0;
|
1172 |
|
|
|
1173 |
|
|
/* Try to find the last seen MEM_REF through the same
|
1174 |
|
|
SSA_NAME, which can trap. */
|
1175 |
|
|
map.ssa_name = name;
|
1176 |
|
|
map.bb = 0;
|
1177 |
|
|
map.store = store;
|
1178 |
|
|
slot = htab_find_slot (seen_ssa_names, &map, INSERT);
|
1179 |
|
|
n2bb = (struct name_to_bb *) *slot;
|
1180 |
|
|
if (n2bb)
|
1181 |
|
|
found_bb = n2bb->bb;
|
1182 |
|
|
|
1183 |
|
|
/* If we've found a trapping MEM_REF, _and_ it dominates EXP
|
1184 |
|
|
(it's in a basic block on the path from us to the dominator root)
|
1185 |
|
|
then we can't trap. */
|
1186 |
|
|
if (found_bb && found_bb->aux == (void *)1)
|
1187 |
|
|
{
|
1188 |
|
|
pointer_set_insert (nontrap, exp);
|
1189 |
|
|
}
|
1190 |
|
|
else
|
1191 |
|
|
{
|
1192 |
|
|
/* EXP might trap, so insert it into the hash table. */
|
1193 |
|
|
if (n2bb)
|
1194 |
|
|
{
|
1195 |
|
|
n2bb->bb = bb;
|
1196 |
|
|
}
|
1197 |
|
|
else
|
1198 |
|
|
{
|
1199 |
|
|
n2bb = XNEW (struct name_to_bb);
|
1200 |
|
|
n2bb->ssa_name = name;
|
1201 |
|
|
n2bb->bb = bb;
|
1202 |
|
|
n2bb->store = store;
|
1203 |
|
|
*slot = n2bb;
|
1204 |
|
|
}
|
1205 |
|
|
}
|
1206 |
|
|
}
|
1207 |
|
|
}
|
1208 |
|
|
|
1209 |
|
|
/* Called by walk_dominator_tree, when entering the block BB. */
|
1210 |
|
|
static void
|
1211 |
|
|
nt_init_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
|
1212 |
|
|
{
|
1213 |
|
|
gimple_stmt_iterator gsi;
|
1214 |
|
|
/* Mark this BB as being on the path to dominator root. */
|
1215 |
|
|
bb->aux = (void*)1;
|
1216 |
|
|
|
1217 |
|
|
/* And walk the statements in order. */
|
1218 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
1219 |
|
|
{
|
1220 |
|
|
gimple stmt = gsi_stmt (gsi);
|
1221 |
|
|
|
1222 |
|
|
if (is_gimple_assign (stmt))
|
1223 |
|
|
{
|
1224 |
|
|
add_or_mark_expr (bb, gimple_assign_lhs (stmt), nontrap_set, true);
|
1225 |
|
|
add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), nontrap_set, false);
|
1226 |
|
|
if (get_gimple_rhs_num_ops (gimple_assign_rhs_code (stmt)) > 1)
|
1227 |
|
|
add_or_mark_expr (bb, gimple_assign_rhs2 (stmt), nontrap_set,
|
1228 |
|
|
false);
|
1229 |
|
|
}
|
1230 |
|
|
}
|
1231 |
|
|
}
|
1232 |
|
|
|
1233 |
|
|
/* Called by walk_dominator_tree, when basic block BB is exited. */
|
1234 |
|
|
static void
|
1235 |
|
|
nt_fini_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
|
1236 |
|
|
{
|
1237 |
|
|
/* This BB isn't on the path to dominator root anymore. */
|
1238 |
|
|
bb->aux = NULL;
|
1239 |
|
|
}
|
1240 |
|
|
|
1241 |
|
|
/* This is the entry point of gathering non trapping memory accesses.
|
1242 |
|
|
It will do a dominator walk over the whole function, and it will
|
1243 |
|
|
make use of the bb->aux pointers. It returns a set of trees
|
1244 |
|
|
(the MEM_REFs itself) which can't trap. */
|
1245 |
|
|
static struct pointer_set_t *
|
1246 |
|
|
get_non_trapping (void)
|
1247 |
|
|
{
|
1248 |
|
|
struct pointer_set_t *nontrap;
|
1249 |
|
|
struct dom_walk_data walk_data;
|
1250 |
|
|
|
1251 |
|
|
nontrap = pointer_set_create ();
|
1252 |
|
|
seen_ssa_names = htab_create (128, name_to_bb_hash, name_to_bb_eq,
|
1253 |
|
|
free);
|
1254 |
|
|
/* We're going to do a dominator walk, so ensure that we have
|
1255 |
|
|
dominance information. */
|
1256 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
1257 |
|
|
|
1258 |
|
|
/* Setup callbacks for the generic dominator tree walker. */
|
1259 |
|
|
nontrap_set = nontrap;
|
1260 |
|
|
walk_data.dom_direction = CDI_DOMINATORS;
|
1261 |
|
|
walk_data.initialize_block_local_data = NULL;
|
1262 |
|
|
walk_data.before_dom_children = nt_init_block;
|
1263 |
|
|
walk_data.after_dom_children = nt_fini_block;
|
1264 |
|
|
walk_data.global_data = NULL;
|
1265 |
|
|
walk_data.block_local_data_size = 0;
|
1266 |
|
|
|
1267 |
|
|
init_walk_dominator_tree (&walk_data);
|
1268 |
|
|
walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
|
1269 |
|
|
fini_walk_dominator_tree (&walk_data);
|
1270 |
|
|
htab_delete (seen_ssa_names);
|
1271 |
|
|
|
1272 |
|
|
return nontrap;
|
1273 |
|
|
}
|
1274 |
|
|
|
1275 |
|
|
/* Do the main work of conditional store replacement. We already know
|
1276 |
|
|
that the recognized pattern looks like so:
|
1277 |
|
|
|
1278 |
|
|
split:
|
1279 |
|
|
if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
|
1280 |
|
|
MIDDLE_BB:
|
1281 |
|
|
something
|
1282 |
|
|
fallthrough (edge E0)
|
1283 |
|
|
JOIN_BB:
|
1284 |
|
|
some more
|
1285 |
|
|
|
1286 |
|
|
We check that MIDDLE_BB contains only one store, that that store
|
1287 |
|
|
doesn't trap (not via NOTRAP, but via checking if an access to the same
|
1288 |
|
|
memory location dominates us) and that the store has a "simple" RHS. */
|
1289 |
|
|
|
1290 |
|
|
static bool
|
1291 |
|
|
cond_store_replacement (basic_block middle_bb, basic_block join_bb,
|
1292 |
|
|
edge e0, edge e1, struct pointer_set_t *nontrap)
|
1293 |
|
|
{
|
1294 |
|
|
gimple assign = last_and_only_stmt (middle_bb);
|
1295 |
|
|
tree lhs, rhs, name;
|
1296 |
|
|
gimple newphi, new_stmt;
|
1297 |
|
|
gimple_stmt_iterator gsi;
|
1298 |
|
|
source_location locus;
|
1299 |
|
|
|
1300 |
|
|
/* Check if middle_bb contains of only one store. */
|
1301 |
|
|
if (!assign
|
1302 |
|
|
|| !gimple_assign_single_p (assign))
|
1303 |
|
|
return false;
|
1304 |
|
|
|
1305 |
|
|
locus = gimple_location (assign);
|
1306 |
|
|
lhs = gimple_assign_lhs (assign);
|
1307 |
|
|
rhs = gimple_assign_rhs1 (assign);
|
1308 |
|
|
if (TREE_CODE (lhs) != MEM_REF
|
1309 |
|
|
|| TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
|
1310 |
|
|
|| !is_gimple_reg_type (TREE_TYPE (lhs)))
|
1311 |
|
|
return false;
|
1312 |
|
|
|
1313 |
|
|
/* Prove that we can move the store down. We could also check
|
1314 |
|
|
TREE_THIS_NOTRAP here, but in that case we also could move stores,
|
1315 |
|
|
whose value is not available readily, which we want to avoid. */
|
1316 |
|
|
if (!pointer_set_contains (nontrap, lhs))
|
1317 |
|
|
return false;
|
1318 |
|
|
|
1319 |
|
|
/* Now we've checked the constraints, so do the transformation:
|
1320 |
|
|
1) Remove the single store. */
|
1321 |
|
|
gsi = gsi_for_stmt (assign);
|
1322 |
|
|
unlink_stmt_vdef (assign);
|
1323 |
|
|
gsi_remove (&gsi, true);
|
1324 |
|
|
release_defs (assign);
|
1325 |
|
|
|
1326 |
|
|
/* 2) Create a temporary where we can store the old content
|
1327 |
|
|
of the memory touched by the store, if we need to. */
|
1328 |
|
|
if (!condstoretemp || TREE_TYPE (lhs) != TREE_TYPE (condstoretemp))
|
1329 |
|
|
condstoretemp = create_tmp_reg (TREE_TYPE (lhs), "cstore");
|
1330 |
|
|
add_referenced_var (condstoretemp);
|
1331 |
|
|
|
1332 |
|
|
/* 3) Insert a load from the memory of the store to the temporary
|
1333 |
|
|
on the edge which did not contain the store. */
|
1334 |
|
|
lhs = unshare_expr (lhs);
|
1335 |
|
|
new_stmt = gimple_build_assign (condstoretemp, lhs);
|
1336 |
|
|
name = make_ssa_name (condstoretemp, new_stmt);
|
1337 |
|
|
gimple_assign_set_lhs (new_stmt, name);
|
1338 |
|
|
gimple_set_location (new_stmt, locus);
|
1339 |
|
|
gsi_insert_on_edge (e1, new_stmt);
|
1340 |
|
|
|
1341 |
|
|
/* 4) Create a PHI node at the join block, with one argument
|
1342 |
|
|
holding the old RHS, and the other holding the temporary
|
1343 |
|
|
where we stored the old memory contents. */
|
1344 |
|
|
newphi = create_phi_node (condstoretemp, join_bb);
|
1345 |
|
|
add_phi_arg (newphi, rhs, e0, locus);
|
1346 |
|
|
add_phi_arg (newphi, name, e1, locus);
|
1347 |
|
|
|
1348 |
|
|
lhs = unshare_expr (lhs);
|
1349 |
|
|
new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
|
1350 |
|
|
|
1351 |
|
|
/* 5) Insert that PHI node. */
|
1352 |
|
|
gsi = gsi_after_labels (join_bb);
|
1353 |
|
|
if (gsi_end_p (gsi))
|
1354 |
|
|
{
|
1355 |
|
|
gsi = gsi_last_bb (join_bb);
|
1356 |
|
|
gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
|
1357 |
|
|
}
|
1358 |
|
|
else
|
1359 |
|
|
gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
|
1360 |
|
|
|
1361 |
|
|
return true;
|
1362 |
|
|
}
|
1363 |
|
|
|
1364 |
|
|
/* Do the main work of conditional store replacement. */
|
1365 |
|
|
|
1366 |
|
|
static bool
|
1367 |
|
|
cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
|
1368 |
|
|
basic_block join_bb, gimple then_assign,
|
1369 |
|
|
gimple else_assign)
|
1370 |
|
|
{
|
1371 |
|
|
tree lhs_base, lhs, then_rhs, else_rhs;
|
1372 |
|
|
source_location then_locus, else_locus;
|
1373 |
|
|
gimple_stmt_iterator gsi;
|
1374 |
|
|
gimple newphi, new_stmt;
|
1375 |
|
|
|
1376 |
|
|
if (then_assign == NULL
|
1377 |
|
|
|| !gimple_assign_single_p (then_assign)
|
1378 |
|
|
|| gimple_clobber_p (then_assign)
|
1379 |
|
|
|| else_assign == NULL
|
1380 |
|
|
|| !gimple_assign_single_p (else_assign)
|
1381 |
|
|
|| gimple_clobber_p (else_assign))
|
1382 |
|
|
return false;
|
1383 |
|
|
|
1384 |
|
|
lhs = gimple_assign_lhs (then_assign);
|
1385 |
|
|
if (!is_gimple_reg_type (TREE_TYPE (lhs))
|
1386 |
|
|
|| !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
|
1387 |
|
|
return false;
|
1388 |
|
|
|
1389 |
|
|
lhs_base = get_base_address (lhs);
|
1390 |
|
|
if (lhs_base == NULL_TREE
|
1391 |
|
|
|| (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
|
1392 |
|
|
return false;
|
1393 |
|
|
|
1394 |
|
|
then_rhs = gimple_assign_rhs1 (then_assign);
|
1395 |
|
|
else_rhs = gimple_assign_rhs1 (else_assign);
|
1396 |
|
|
then_locus = gimple_location (then_assign);
|
1397 |
|
|
else_locus = gimple_location (else_assign);
|
1398 |
|
|
|
1399 |
|
|
/* Now we've checked the constraints, so do the transformation:
|
1400 |
|
|
1) Remove the stores. */
|
1401 |
|
|
gsi = gsi_for_stmt (then_assign);
|
1402 |
|
|
unlink_stmt_vdef (then_assign);
|
1403 |
|
|
gsi_remove (&gsi, true);
|
1404 |
|
|
release_defs (then_assign);
|
1405 |
|
|
|
1406 |
|
|
gsi = gsi_for_stmt (else_assign);
|
1407 |
|
|
unlink_stmt_vdef (else_assign);
|
1408 |
|
|
gsi_remove (&gsi, true);
|
1409 |
|
|
release_defs (else_assign);
|
1410 |
|
|
|
1411 |
|
|
/* 2) Create a temporary where we can store the old content
|
1412 |
|
|
of the memory touched by the store, if we need to. */
|
1413 |
|
|
if (!condstoretemp || TREE_TYPE (lhs) != TREE_TYPE (condstoretemp))
|
1414 |
|
|
condstoretemp = create_tmp_reg (TREE_TYPE (lhs), "cstore");
|
1415 |
|
|
add_referenced_var (condstoretemp);
|
1416 |
|
|
|
1417 |
|
|
/* 3) Create a PHI node at the join block, with one argument
|
1418 |
|
|
holding the old RHS, and the other holding the temporary
|
1419 |
|
|
where we stored the old memory contents. */
|
1420 |
|
|
newphi = create_phi_node (condstoretemp, join_bb);
|
1421 |
|
|
add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
|
1422 |
|
|
add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
|
1423 |
|
|
|
1424 |
|
|
new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
|
1425 |
|
|
|
1426 |
|
|
/* 4) Insert that PHI node. */
|
1427 |
|
|
gsi = gsi_after_labels (join_bb);
|
1428 |
|
|
if (gsi_end_p (gsi))
|
1429 |
|
|
{
|
1430 |
|
|
gsi = gsi_last_bb (join_bb);
|
1431 |
|
|
gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
|
1432 |
|
|
}
|
1433 |
|
|
else
|
1434 |
|
|
gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
|
1435 |
|
|
|
1436 |
|
|
return true;
|
1437 |
|
|
}
|
1438 |
|
|
|
1439 |
|
|
/* Conditional store replacement. We already know
|
1440 |
|
|
that the recognized pattern looks like so:
|
1441 |
|
|
|
1442 |
|
|
split:
|
1443 |
|
|
if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
|
1444 |
|
|
THEN_BB:
|
1445 |
|
|
...
|
1446 |
|
|
X = Y;
|
1447 |
|
|
...
|
1448 |
|
|
goto JOIN_BB;
|
1449 |
|
|
ELSE_BB:
|
1450 |
|
|
...
|
1451 |
|
|
X = Z;
|
1452 |
|
|
...
|
1453 |
|
|
fallthrough (edge E0)
|
1454 |
|
|
JOIN_BB:
|
1455 |
|
|
some more
|
1456 |
|
|
|
1457 |
|
|
We check that it is safe to sink the store to JOIN_BB by verifying that
|
1458 |
|
|
there are no read-after-write or write-after-write dependencies in
|
1459 |
|
|
THEN_BB and ELSE_BB. */
|
1460 |
|
|
|
1461 |
|
|
static bool
|
1462 |
|
|
cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
|
1463 |
|
|
basic_block join_bb)
|
1464 |
|
|
{
|
1465 |
|
|
gimple then_assign = last_and_only_stmt (then_bb);
|
1466 |
|
|
gimple else_assign = last_and_only_stmt (else_bb);
|
1467 |
|
|
VEC (data_reference_p, heap) *then_datarefs, *else_datarefs;
|
1468 |
|
|
VEC (ddr_p, heap) *then_ddrs, *else_ddrs;
|
1469 |
|
|
gimple then_store, else_store;
|
1470 |
|
|
bool found, ok = false, res;
|
1471 |
|
|
struct data_dependence_relation *ddr;
|
1472 |
|
|
data_reference_p then_dr, else_dr;
|
1473 |
|
|
int i, j;
|
1474 |
|
|
tree then_lhs, else_lhs;
|
1475 |
|
|
VEC (gimple, heap) *then_stores, *else_stores;
|
1476 |
|
|
basic_block blocks[3];
|
1477 |
|
|
|
1478 |
|
|
if (MAX_STORES_TO_SINK == 0)
|
1479 |
|
|
return false;
|
1480 |
|
|
|
1481 |
|
|
/* Handle the case with single statement in THEN_BB and ELSE_BB. */
|
1482 |
|
|
if (then_assign && else_assign)
|
1483 |
|
|
return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
|
1484 |
|
|
then_assign, else_assign);
|
1485 |
|
|
|
1486 |
|
|
/* Find data references. */
|
1487 |
|
|
then_datarefs = VEC_alloc (data_reference_p, heap, 1);
|
1488 |
|
|
else_datarefs = VEC_alloc (data_reference_p, heap, 1);
|
1489 |
|
|
if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
|
1490 |
|
|
== chrec_dont_know)
|
1491 |
|
|
|| !VEC_length (data_reference_p, then_datarefs)
|
1492 |
|
|
|| (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
|
1493 |
|
|
== chrec_dont_know)
|
1494 |
|
|
|| !VEC_length (data_reference_p, else_datarefs))
|
1495 |
|
|
{
|
1496 |
|
|
free_data_refs (then_datarefs);
|
1497 |
|
|
free_data_refs (else_datarefs);
|
1498 |
|
|
return false;
|
1499 |
|
|
}
|
1500 |
|
|
|
1501 |
|
|
/* Find pairs of stores with equal LHS. */
|
1502 |
|
|
then_stores = VEC_alloc (gimple, heap, 1);
|
1503 |
|
|
else_stores = VEC_alloc (gimple, heap, 1);
|
1504 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, then_datarefs, i, then_dr)
|
1505 |
|
|
{
|
1506 |
|
|
if (DR_IS_READ (then_dr))
|
1507 |
|
|
continue;
|
1508 |
|
|
|
1509 |
|
|
then_store = DR_STMT (then_dr);
|
1510 |
|
|
then_lhs = gimple_get_lhs (then_store);
|
1511 |
|
|
found = false;
|
1512 |
|
|
|
1513 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, else_datarefs, j, else_dr)
|
1514 |
|
|
{
|
1515 |
|
|
if (DR_IS_READ (else_dr))
|
1516 |
|
|
continue;
|
1517 |
|
|
|
1518 |
|
|
else_store = DR_STMT (else_dr);
|
1519 |
|
|
else_lhs = gimple_get_lhs (else_store);
|
1520 |
|
|
|
1521 |
|
|
if (operand_equal_p (then_lhs, else_lhs, 0))
|
1522 |
|
|
{
|
1523 |
|
|
found = true;
|
1524 |
|
|
break;
|
1525 |
|
|
}
|
1526 |
|
|
}
|
1527 |
|
|
|
1528 |
|
|
if (!found)
|
1529 |
|
|
continue;
|
1530 |
|
|
|
1531 |
|
|
VEC_safe_push (gimple, heap, then_stores, then_store);
|
1532 |
|
|
VEC_safe_push (gimple, heap, else_stores, else_store);
|
1533 |
|
|
}
|
1534 |
|
|
|
1535 |
|
|
/* No pairs of stores found. */
|
1536 |
|
|
if (!VEC_length (gimple, then_stores)
|
1537 |
|
|
|| VEC_length (gimple, then_stores) > (unsigned) MAX_STORES_TO_SINK)
|
1538 |
|
|
{
|
1539 |
|
|
free_data_refs (then_datarefs);
|
1540 |
|
|
free_data_refs (else_datarefs);
|
1541 |
|
|
VEC_free (gimple, heap, then_stores);
|
1542 |
|
|
VEC_free (gimple, heap, else_stores);
|
1543 |
|
|
return false;
|
1544 |
|
|
}
|
1545 |
|
|
|
1546 |
|
|
/* Compute and check data dependencies in both basic blocks. */
|
1547 |
|
|
then_ddrs = VEC_alloc (ddr_p, heap, 1);
|
1548 |
|
|
else_ddrs = VEC_alloc (ddr_p, heap, 1);
|
1549 |
|
|
compute_all_dependences (then_datarefs, &then_ddrs, NULL, false);
|
1550 |
|
|
compute_all_dependences (else_datarefs, &else_ddrs, NULL, false);
|
1551 |
|
|
blocks[0] = then_bb;
|
1552 |
|
|
blocks[1] = else_bb;
|
1553 |
|
|
blocks[2] = join_bb;
|
1554 |
|
|
renumber_gimple_stmt_uids_in_blocks (blocks, 3);
|
1555 |
|
|
|
1556 |
|
|
/* Check that there are no read-after-write or write-after-write dependencies
|
1557 |
|
|
in THEN_BB. */
|
1558 |
|
|
FOR_EACH_VEC_ELT (ddr_p, then_ddrs, i, ddr)
|
1559 |
|
|
{
|
1560 |
|
|
struct data_reference *dra = DDR_A (ddr);
|
1561 |
|
|
struct data_reference *drb = DDR_B (ddr);
|
1562 |
|
|
|
1563 |
|
|
if (DDR_ARE_DEPENDENT (ddr) != chrec_known
|
1564 |
|
|
&& ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
|
1565 |
|
|
&& gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
|
1566 |
|
|
|| (DR_IS_READ (drb) && DR_IS_WRITE (dra)
|
1567 |
|
|
&& gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
|
1568 |
|
|
|| (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
|
1569 |
|
|
{
|
1570 |
|
|
free_dependence_relations (then_ddrs);
|
1571 |
|
|
free_dependence_relations (else_ddrs);
|
1572 |
|
|
free_data_refs (then_datarefs);
|
1573 |
|
|
free_data_refs (else_datarefs);
|
1574 |
|
|
VEC_free (gimple, heap, then_stores);
|
1575 |
|
|
VEC_free (gimple, heap, else_stores);
|
1576 |
|
|
return false;
|
1577 |
|
|
}
|
1578 |
|
|
}
|
1579 |
|
|
|
1580 |
|
|
/* Check that there are no read-after-write or write-after-write dependencies
|
1581 |
|
|
in ELSE_BB. */
|
1582 |
|
|
FOR_EACH_VEC_ELT (ddr_p, else_ddrs, i, ddr)
|
1583 |
|
|
{
|
1584 |
|
|
struct data_reference *dra = DDR_A (ddr);
|
1585 |
|
|
struct data_reference *drb = DDR_B (ddr);
|
1586 |
|
|
|
1587 |
|
|
if (DDR_ARE_DEPENDENT (ddr) != chrec_known
|
1588 |
|
|
&& ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
|
1589 |
|
|
&& gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
|
1590 |
|
|
|| (DR_IS_READ (drb) && DR_IS_WRITE (dra)
|
1591 |
|
|
&& gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
|
1592 |
|
|
|| (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
|
1593 |
|
|
{
|
1594 |
|
|
free_dependence_relations (then_ddrs);
|
1595 |
|
|
free_dependence_relations (else_ddrs);
|
1596 |
|
|
free_data_refs (then_datarefs);
|
1597 |
|
|
free_data_refs (else_datarefs);
|
1598 |
|
|
VEC_free (gimple, heap, then_stores);
|
1599 |
|
|
VEC_free (gimple, heap, else_stores);
|
1600 |
|
|
return false;
|
1601 |
|
|
}
|
1602 |
|
|
}
|
1603 |
|
|
|
1604 |
|
|
/* Sink stores with same LHS. */
|
1605 |
|
|
FOR_EACH_VEC_ELT (gimple, then_stores, i, then_store)
|
1606 |
|
|
{
|
1607 |
|
|
else_store = VEC_index (gimple, else_stores, i);
|
1608 |
|
|
res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
|
1609 |
|
|
then_store, else_store);
|
1610 |
|
|
ok = ok || res;
|
1611 |
|
|
}
|
1612 |
|
|
|
1613 |
|
|
free_dependence_relations (then_ddrs);
|
1614 |
|
|
free_dependence_relations (else_ddrs);
|
1615 |
|
|
free_data_refs (then_datarefs);
|
1616 |
|
|
free_data_refs (else_datarefs);
|
1617 |
|
|
VEC_free (gimple, heap, then_stores);
|
1618 |
|
|
VEC_free (gimple, heap, else_stores);
|
1619 |
|
|
|
1620 |
|
|
return ok;
|
1621 |
|
|
}
|
1622 |
|
|
|
1623 |
|
|
/* Always do these optimizations if we have SSA
|
1624 |
|
|
trees to work on. */
|
1625 |
|
|
static bool
|
1626 |
|
|
gate_phiopt (void)
|
1627 |
|
|
{
|
1628 |
|
|
return 1;
|
1629 |
|
|
}
|
1630 |
|
|
|
1631 |
|
|
struct gimple_opt_pass pass_phiopt =
|
1632 |
|
|
{
|
1633 |
|
|
{
|
1634 |
|
|
GIMPLE_PASS,
|
1635 |
|
|
"phiopt", /* name */
|
1636 |
|
|
gate_phiopt, /* gate */
|
1637 |
|
|
tree_ssa_phiopt, /* execute */
|
1638 |
|
|
NULL, /* sub */
|
1639 |
|
|
NULL, /* next */
|
1640 |
|
|
0, /* static_pass_number */
|
1641 |
|
|
TV_TREE_PHIOPT, /* tv_id */
|
1642 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
1643 |
|
|
0, /* properties_provided */
|
1644 |
|
|
0, /* properties_destroyed */
|
1645 |
|
|
0, /* todo_flags_start */
|
1646 |
|
|
TODO_ggc_collect
|
1647 |
|
|
| TODO_verify_ssa
|
1648 |
|
|
| TODO_verify_flow
|
1649 |
|
|
| TODO_verify_stmts /* todo_flags_finish */
|
1650 |
|
|
}
|
1651 |
|
|
};
|
1652 |
|
|
|
1653 |
|
|
static bool
|
1654 |
|
|
gate_cselim (void)
|
1655 |
|
|
{
|
1656 |
|
|
return flag_tree_cselim;
|
1657 |
|
|
}
|
1658 |
|
|
|
1659 |
|
|
struct gimple_opt_pass pass_cselim =
|
1660 |
|
|
{
|
1661 |
|
|
{
|
1662 |
|
|
GIMPLE_PASS,
|
1663 |
|
|
"cselim", /* name */
|
1664 |
|
|
gate_cselim, /* gate */
|
1665 |
|
|
tree_ssa_cs_elim, /* execute */
|
1666 |
|
|
NULL, /* sub */
|
1667 |
|
|
NULL, /* next */
|
1668 |
|
|
0, /* static_pass_number */
|
1669 |
|
|
TV_TREE_PHIOPT, /* tv_id */
|
1670 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
1671 |
|
|
0, /* properties_provided */
|
1672 |
|
|
0, /* properties_destroyed */
|
1673 |
|
|
0, /* todo_flags_start */
|
1674 |
|
|
TODO_ggc_collect
|
1675 |
|
|
| TODO_verify_ssa
|
1676 |
|
|
| TODO_verify_flow
|
1677 |
|
|
| TODO_verify_stmts /* todo_flags_finish */
|
1678 |
|
|
}
|
1679 |
|
|
};
|