1 |
684 |
jeremybenn |
/* SSA-PRE for trees.
|
2 |
|
|
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Daniel Berlin <dan@dberlin.org> and Steven Bosscher
|
5 |
|
|
<stevenb@suse.de>
|
6 |
|
|
|
7 |
|
|
This file is part of GCC.
|
8 |
|
|
|
9 |
|
|
GCC is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
12 |
|
|
any later version.
|
13 |
|
|
|
14 |
|
|
GCC is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with GCC; see the file COPYING3. If not see
|
21 |
|
|
<http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
#include "config.h"
|
24 |
|
|
#include "system.h"
|
25 |
|
|
#include "coretypes.h"
|
26 |
|
|
#include "tm.h"
|
27 |
|
|
#include "tree.h"
|
28 |
|
|
#include "basic-block.h"
|
29 |
|
|
#include "tree-pretty-print.h"
|
30 |
|
|
#include "gimple-pretty-print.h"
|
31 |
|
|
#include "tree-inline.h"
|
32 |
|
|
#include "tree-flow.h"
|
33 |
|
|
#include "gimple.h"
|
34 |
|
|
#include "tree-dump.h"
|
35 |
|
|
#include "timevar.h"
|
36 |
|
|
#include "fibheap.h"
|
37 |
|
|
#include "hashtab.h"
|
38 |
|
|
#include "tree-iterator.h"
|
39 |
|
|
#include "alloc-pool.h"
|
40 |
|
|
#include "obstack.h"
|
41 |
|
|
#include "tree-pass.h"
|
42 |
|
|
#include "flags.h"
|
43 |
|
|
#include "bitmap.h"
|
44 |
|
|
#include "langhooks.h"
|
45 |
|
|
#include "cfgloop.h"
|
46 |
|
|
#include "tree-ssa-sccvn.h"
|
47 |
|
|
#include "tree-scalar-evolution.h"
|
48 |
|
|
#include "params.h"
|
49 |
|
|
#include "dbgcnt.h"
|
50 |
|
|
|
51 |
|
|
/* TODO:
|
52 |
|
|
|
53 |
|
|
1. Avail sets can be shared by making an avail_find_leader that
|
54 |
|
|
walks up the dominator tree and looks in those avail sets.
|
55 |
|
|
This might affect code optimality, it's unclear right now.
|
56 |
|
|
2. Strength reduction can be performed by anticipating expressions
|
57 |
|
|
we can repair later on.
|
58 |
|
|
3. We can do back-substitution or smarter value numbering to catch
|
59 |
|
|
commutative expressions split up over multiple statements.
|
60 |
|
|
*/
|
61 |
|
|
|
62 |
|
|
/* For ease of terminology, "expression node" in the below refers to
|
63 |
|
|
every expression node but GIMPLE_ASSIGN, because GIMPLE_ASSIGNs
|
64 |
|
|
represent the actual statement containing the expressions we care about,
|
65 |
|
|
and we cache the value number by putting it in the expression. */
|
66 |
|
|
|
67 |
|
|
/* Basic algorithm
|
68 |
|
|
|
69 |
|
|
First we walk the statements to generate the AVAIL sets, the
|
70 |
|
|
EXP_GEN sets, and the tmp_gen sets. EXP_GEN sets represent the
|
71 |
|
|
generation of values/expressions by a given block. We use them
|
72 |
|
|
when computing the ANTIC sets. The AVAIL sets consist of
|
73 |
|
|
SSA_NAME's that represent values, so we know what values are
|
74 |
|
|
available in what blocks. AVAIL is a forward dataflow problem. In
|
75 |
|
|
SSA, values are never killed, so we don't need a kill set, or a
|
76 |
|
|
fixpoint iteration, in order to calculate the AVAIL sets. In
|
77 |
|
|
traditional parlance, AVAIL sets tell us the downsafety of the
|
78 |
|
|
expressions/values.
|
79 |
|
|
|
80 |
|
|
Next, we generate the ANTIC sets. These sets represent the
|
81 |
|
|
anticipatable expressions. ANTIC is a backwards dataflow
|
82 |
|
|
problem. An expression is anticipatable in a given block if it could
|
83 |
|
|
be generated in that block. This means that if we had to perform
|
84 |
|
|
an insertion in that block, of the value of that expression, we
|
85 |
|
|
could. Calculating the ANTIC sets requires phi translation of
|
86 |
|
|
expressions, because the flow goes backwards through phis. We must
|
87 |
|
|
iterate to a fixpoint of the ANTIC sets, because we have a kill
|
88 |
|
|
set. Even in SSA form, values are not live over the entire
|
89 |
|
|
function, only from their definition point onwards. So we have to
|
90 |
|
|
remove values from the ANTIC set once we go past the definition
|
91 |
|
|
point of the leaders that make them up.
|
92 |
|
|
compute_antic/compute_antic_aux performs this computation.
|
93 |
|
|
|
94 |
|
|
Third, we perform insertions to make partially redundant
|
95 |
|
|
expressions fully redundant.
|
96 |
|
|
|
97 |
|
|
An expression is partially redundant (excluding partial
|
98 |
|
|
anticipation) if:
|
99 |
|
|
|
100 |
|
|
1. It is AVAIL in some, but not all, of the predecessors of a
|
101 |
|
|
given block.
|
102 |
|
|
2. It is ANTIC in all the predecessors.
|
103 |
|
|
|
104 |
|
|
In order to make it fully redundant, we insert the expression into
|
105 |
|
|
the predecessors where it is not available, but is ANTIC.
|
106 |
|
|
|
107 |
|
|
For the partial anticipation case, we only perform insertion if it
|
108 |
|
|
is partially anticipated in some block, and fully available in all
|
109 |
|
|
of the predecessors.
|
110 |
|
|
|
111 |
|
|
insert/insert_aux/do_regular_insertion/do_partial_partial_insertion
|
112 |
|
|
performs these steps.
|
113 |
|
|
|
114 |
|
|
Fourth, we eliminate fully redundant expressions.
|
115 |
|
|
This is a simple statement walk that replaces redundant
|
116 |
|
|
calculations with the now available values. */
|
117 |
|
|
|
118 |
|
|
/* Representations of value numbers:
|
119 |
|
|
|
120 |
|
|
Value numbers are represented by a representative SSA_NAME. We
|
121 |
|
|
will create fake SSA_NAME's in situations where we need a
|
122 |
|
|
representative but do not have one (because it is a complex
|
123 |
|
|
expression). In order to facilitate storing the value numbers in
|
124 |
|
|
bitmaps, and keep the number of wasted SSA_NAME's down, we also
|
125 |
|
|
associate a value_id with each value number, and create full blown
|
126 |
|
|
ssa_name's only where we actually need them (IE in operands of
|
127 |
|
|
existing expressions).
|
128 |
|
|
|
129 |
|
|
Theoretically you could replace all the value_id's with
|
130 |
|
|
SSA_NAME_VERSION, but this would allocate a large number of
|
131 |
|
|
SSA_NAME's (which are each > 30 bytes) just to get a 4 byte number.
|
132 |
|
|
It would also require an additional indirection at each point we
|
133 |
|
|
use the value id. */
|
134 |
|
|
|
135 |
|
|
/* Representation of expressions on value numbers:
|
136 |
|
|
|
137 |
|
|
Expressions consisting of value numbers are represented the same
|
138 |
|
|
way as our VN internally represents them, with an additional
|
139 |
|
|
"pre_expr" wrapping around them in order to facilitate storing all
|
140 |
|
|
of the expressions in the same sets. */
|
141 |
|
|
|
142 |
|
|
/* Representation of sets:
|
143 |
|
|
|
144 |
|
|
The dataflow sets do not need to be sorted in any particular order
|
145 |
|
|
for the majority of their lifetime, are simply represented as two
|
146 |
|
|
bitmaps, one that keeps track of values present in the set, and one
|
147 |
|
|
that keeps track of expressions present in the set.
|
148 |
|
|
|
149 |
|
|
When we need them in topological order, we produce it on demand by
|
150 |
|
|
transforming the bitmap into an array and sorting it into topo
|
151 |
|
|
order. */
|
152 |
|
|
|
153 |
|
|
/* Type of expression, used to know which member of the PRE_EXPR union
|
154 |
|
|
is valid. */
|
155 |
|
|
|
156 |
|
|
enum pre_expr_kind
|
157 |
|
|
{
|
158 |
|
|
NAME,
|
159 |
|
|
NARY,
|
160 |
|
|
REFERENCE,
|
161 |
|
|
CONSTANT
|
162 |
|
|
};
|
163 |
|
|
|
164 |
|
|
typedef union pre_expr_union_d
|
165 |
|
|
{
|
166 |
|
|
tree name;
|
167 |
|
|
tree constant;
|
168 |
|
|
vn_nary_op_t nary;
|
169 |
|
|
vn_reference_t reference;
|
170 |
|
|
} pre_expr_union;
|
171 |
|
|
|
172 |
|
|
typedef struct pre_expr_d
|
173 |
|
|
{
|
174 |
|
|
enum pre_expr_kind kind;
|
175 |
|
|
unsigned int id;
|
176 |
|
|
pre_expr_union u;
|
177 |
|
|
} *pre_expr;
|
178 |
|
|
|
179 |
|
|
#define PRE_EXPR_NAME(e) (e)->u.name
|
180 |
|
|
#define PRE_EXPR_NARY(e) (e)->u.nary
|
181 |
|
|
#define PRE_EXPR_REFERENCE(e) (e)->u.reference
|
182 |
|
|
#define PRE_EXPR_CONSTANT(e) (e)->u.constant
|
183 |
|
|
|
184 |
|
|
static int
|
185 |
|
|
pre_expr_eq (const void *p1, const void *p2)
|
186 |
|
|
{
|
187 |
|
|
const struct pre_expr_d *e1 = (const struct pre_expr_d *) p1;
|
188 |
|
|
const struct pre_expr_d *e2 = (const struct pre_expr_d *) p2;
|
189 |
|
|
|
190 |
|
|
if (e1->kind != e2->kind)
|
191 |
|
|
return false;
|
192 |
|
|
|
193 |
|
|
switch (e1->kind)
|
194 |
|
|
{
|
195 |
|
|
case CONSTANT:
|
196 |
|
|
return vn_constant_eq_with_type (PRE_EXPR_CONSTANT (e1),
|
197 |
|
|
PRE_EXPR_CONSTANT (e2));
|
198 |
|
|
case NAME:
|
199 |
|
|
return PRE_EXPR_NAME (e1) == PRE_EXPR_NAME (e2);
|
200 |
|
|
case NARY:
|
201 |
|
|
return vn_nary_op_eq (PRE_EXPR_NARY (e1), PRE_EXPR_NARY (e2));
|
202 |
|
|
case REFERENCE:
|
203 |
|
|
return vn_reference_eq (PRE_EXPR_REFERENCE (e1),
|
204 |
|
|
PRE_EXPR_REFERENCE (e2));
|
205 |
|
|
default:
|
206 |
|
|
gcc_unreachable ();
|
207 |
|
|
}
|
208 |
|
|
}
|
209 |
|
|
|
210 |
|
|
static hashval_t
|
211 |
|
|
pre_expr_hash (const void *p1)
|
212 |
|
|
{
|
213 |
|
|
const struct pre_expr_d *e = (const struct pre_expr_d *) p1;
|
214 |
|
|
switch (e->kind)
|
215 |
|
|
{
|
216 |
|
|
case CONSTANT:
|
217 |
|
|
return vn_hash_constant_with_type (PRE_EXPR_CONSTANT (e));
|
218 |
|
|
case NAME:
|
219 |
|
|
return SSA_NAME_VERSION (PRE_EXPR_NAME (e));
|
220 |
|
|
case NARY:
|
221 |
|
|
return PRE_EXPR_NARY (e)->hashcode;
|
222 |
|
|
case REFERENCE:
|
223 |
|
|
return PRE_EXPR_REFERENCE (e)->hashcode;
|
224 |
|
|
default:
|
225 |
|
|
gcc_unreachable ();
|
226 |
|
|
}
|
227 |
|
|
}
|
228 |
|
|
|
229 |
|
|
|
230 |
|
|
/* Next global expression id number. */
|
231 |
|
|
static unsigned int next_expression_id;
|
232 |
|
|
|
233 |
|
|
/* Mapping from expression to id number we can use in bitmap sets. */
|
234 |
|
|
DEF_VEC_P (pre_expr);
|
235 |
|
|
DEF_VEC_ALLOC_P (pre_expr, heap);
|
236 |
|
|
static VEC(pre_expr, heap) *expressions;
|
237 |
|
|
static htab_t expression_to_id;
|
238 |
|
|
static VEC(unsigned, heap) *name_to_id;
|
239 |
|
|
|
240 |
|
|
/* Allocate an expression id for EXPR. */
|
241 |
|
|
|
242 |
|
|
static inline unsigned int
|
243 |
|
|
alloc_expression_id (pre_expr expr)
|
244 |
|
|
{
|
245 |
|
|
void **slot;
|
246 |
|
|
/* Make sure we won't overflow. */
|
247 |
|
|
gcc_assert (next_expression_id + 1 > next_expression_id);
|
248 |
|
|
expr->id = next_expression_id++;
|
249 |
|
|
VEC_safe_push (pre_expr, heap, expressions, expr);
|
250 |
|
|
if (expr->kind == NAME)
|
251 |
|
|
{
|
252 |
|
|
unsigned version = SSA_NAME_VERSION (PRE_EXPR_NAME (expr));
|
253 |
|
|
/* VEC_safe_grow_cleared allocates no headroom. Avoid frequent
|
254 |
|
|
re-allocations by using VEC_reserve upfront. There is no
|
255 |
|
|
VEC_quick_grow_cleared unfortunately. */
|
256 |
|
|
VEC_reserve (unsigned, heap, name_to_id, num_ssa_names);
|
257 |
|
|
VEC_safe_grow_cleared (unsigned, heap, name_to_id, num_ssa_names);
|
258 |
|
|
gcc_assert (VEC_index (unsigned, name_to_id, version) == 0);
|
259 |
|
|
VEC_replace (unsigned, name_to_id, version, expr->id);
|
260 |
|
|
}
|
261 |
|
|
else
|
262 |
|
|
{
|
263 |
|
|
slot = htab_find_slot (expression_to_id, expr, INSERT);
|
264 |
|
|
gcc_assert (!*slot);
|
265 |
|
|
*slot = expr;
|
266 |
|
|
}
|
267 |
|
|
return next_expression_id - 1;
|
268 |
|
|
}
|
269 |
|
|
|
270 |
|
|
/* Return the expression id for tree EXPR. */
|
271 |
|
|
|
272 |
|
|
static inline unsigned int
|
273 |
|
|
get_expression_id (const pre_expr expr)
|
274 |
|
|
{
|
275 |
|
|
return expr->id;
|
276 |
|
|
}
|
277 |
|
|
|
278 |
|
|
static inline unsigned int
|
279 |
|
|
lookup_expression_id (const pre_expr expr)
|
280 |
|
|
{
|
281 |
|
|
void **slot;
|
282 |
|
|
|
283 |
|
|
if (expr->kind == NAME)
|
284 |
|
|
{
|
285 |
|
|
unsigned version = SSA_NAME_VERSION (PRE_EXPR_NAME (expr));
|
286 |
|
|
if (VEC_length (unsigned, name_to_id) <= version)
|
287 |
|
|
return 0;
|
288 |
|
|
return VEC_index (unsigned, name_to_id, version);
|
289 |
|
|
}
|
290 |
|
|
else
|
291 |
|
|
{
|
292 |
|
|
slot = htab_find_slot (expression_to_id, expr, NO_INSERT);
|
293 |
|
|
if (!slot)
|
294 |
|
|
return 0;
|
295 |
|
|
return ((pre_expr)*slot)->id;
|
296 |
|
|
}
|
297 |
|
|
}
|
298 |
|
|
|
299 |
|
|
/* Return the existing expression id for EXPR, or create one if one
|
300 |
|
|
does not exist yet. */
|
301 |
|
|
|
302 |
|
|
static inline unsigned int
|
303 |
|
|
get_or_alloc_expression_id (pre_expr expr)
|
304 |
|
|
{
|
305 |
|
|
unsigned int id = lookup_expression_id (expr);
|
306 |
|
|
if (id == 0)
|
307 |
|
|
return alloc_expression_id (expr);
|
308 |
|
|
return expr->id = id;
|
309 |
|
|
}
|
310 |
|
|
|
311 |
|
|
/* Return the expression that has expression id ID */
|
312 |
|
|
|
313 |
|
|
static inline pre_expr
|
314 |
|
|
expression_for_id (unsigned int id)
|
315 |
|
|
{
|
316 |
|
|
return VEC_index (pre_expr, expressions, id);
|
317 |
|
|
}
|
318 |
|
|
|
319 |
|
|
/* Free the expression id field in all of our expressions,
|
320 |
|
|
and then destroy the expressions array. */
|
321 |
|
|
|
322 |
|
|
static void
|
323 |
|
|
clear_expression_ids (void)
|
324 |
|
|
{
|
325 |
|
|
VEC_free (pre_expr, heap, expressions);
|
326 |
|
|
}
|
327 |
|
|
|
328 |
|
|
static alloc_pool pre_expr_pool;
|
329 |
|
|
|
330 |
|
|
/* Given an SSA_NAME NAME, get or create a pre_expr to represent it. */
|
331 |
|
|
|
332 |
|
|
static pre_expr
|
333 |
|
|
get_or_alloc_expr_for_name (tree name)
|
334 |
|
|
{
|
335 |
|
|
struct pre_expr_d expr;
|
336 |
|
|
pre_expr result;
|
337 |
|
|
unsigned int result_id;
|
338 |
|
|
|
339 |
|
|
expr.kind = NAME;
|
340 |
|
|
expr.id = 0;
|
341 |
|
|
PRE_EXPR_NAME (&expr) = name;
|
342 |
|
|
result_id = lookup_expression_id (&expr);
|
343 |
|
|
if (result_id != 0)
|
344 |
|
|
return expression_for_id (result_id);
|
345 |
|
|
|
346 |
|
|
result = (pre_expr) pool_alloc (pre_expr_pool);
|
347 |
|
|
result->kind = NAME;
|
348 |
|
|
PRE_EXPR_NAME (result) = name;
|
349 |
|
|
alloc_expression_id (result);
|
350 |
|
|
return result;
|
351 |
|
|
}
|
352 |
|
|
|
353 |
|
|
static bool in_fre = false;
|
354 |
|
|
|
355 |
|
|
/* An unordered bitmap set. One bitmap tracks values, the other,
|
356 |
|
|
expressions. */
|
357 |
|
|
typedef struct bitmap_set
|
358 |
|
|
{
|
359 |
|
|
bitmap_head expressions;
|
360 |
|
|
bitmap_head values;
|
361 |
|
|
} *bitmap_set_t;
|
362 |
|
|
|
363 |
|
|
#define FOR_EACH_EXPR_ID_IN_SET(set, id, bi) \
|
364 |
|
|
EXECUTE_IF_SET_IN_BITMAP(&(set)->expressions, 0, (id), (bi))
|
365 |
|
|
|
366 |
|
|
#define FOR_EACH_VALUE_ID_IN_SET(set, id, bi) \
|
367 |
|
|
EXECUTE_IF_SET_IN_BITMAP(&(set)->values, 0, (id), (bi))
|
368 |
|
|
|
369 |
|
|
/* Mapping from value id to expressions with that value_id. */
|
370 |
|
|
DEF_VEC_P (bitmap_set_t);
|
371 |
|
|
DEF_VEC_ALLOC_P (bitmap_set_t, heap);
|
372 |
|
|
static VEC(bitmap_set_t, heap) *value_expressions;
|
373 |
|
|
|
374 |
|
|
/* Sets that we need to keep track of. */
|
375 |
|
|
typedef struct bb_bitmap_sets
|
376 |
|
|
{
|
377 |
|
|
/* The EXP_GEN set, which represents expressions/values generated in
|
378 |
|
|
a basic block. */
|
379 |
|
|
bitmap_set_t exp_gen;
|
380 |
|
|
|
381 |
|
|
/* The PHI_GEN set, which represents PHI results generated in a
|
382 |
|
|
basic block. */
|
383 |
|
|
bitmap_set_t phi_gen;
|
384 |
|
|
|
385 |
|
|
/* The TMP_GEN set, which represents results/temporaries generated
|
386 |
|
|
in a basic block. IE the LHS of an expression. */
|
387 |
|
|
bitmap_set_t tmp_gen;
|
388 |
|
|
|
389 |
|
|
/* The AVAIL_OUT set, which represents which values are available in
|
390 |
|
|
a given basic block. */
|
391 |
|
|
bitmap_set_t avail_out;
|
392 |
|
|
|
393 |
|
|
/* The ANTIC_IN set, which represents which values are anticipatable
|
394 |
|
|
in a given basic block. */
|
395 |
|
|
bitmap_set_t antic_in;
|
396 |
|
|
|
397 |
|
|
/* The PA_IN set, which represents which values are
|
398 |
|
|
partially anticipatable in a given basic block. */
|
399 |
|
|
bitmap_set_t pa_in;
|
400 |
|
|
|
401 |
|
|
/* The NEW_SETS set, which is used during insertion to augment the
|
402 |
|
|
AVAIL_OUT set of blocks with the new insertions performed during
|
403 |
|
|
the current iteration. */
|
404 |
|
|
bitmap_set_t new_sets;
|
405 |
|
|
|
406 |
|
|
/* A cache for value_dies_in_block_x. */
|
407 |
|
|
bitmap expr_dies;
|
408 |
|
|
|
409 |
|
|
/* True if we have visited this block during ANTIC calculation. */
|
410 |
|
|
unsigned int visited : 1;
|
411 |
|
|
|
412 |
|
|
/* True we have deferred processing this block during ANTIC
|
413 |
|
|
calculation until its successor is processed. */
|
414 |
|
|
unsigned int deferred : 1;
|
415 |
|
|
|
416 |
|
|
/* True when the block contains a call that might not return. */
|
417 |
|
|
unsigned int contains_may_not_return_call : 1;
|
418 |
|
|
} *bb_value_sets_t;
|
419 |
|
|
|
420 |
|
|
#define EXP_GEN(BB) ((bb_value_sets_t) ((BB)->aux))->exp_gen
|
421 |
|
|
#define PHI_GEN(BB) ((bb_value_sets_t) ((BB)->aux))->phi_gen
|
422 |
|
|
#define TMP_GEN(BB) ((bb_value_sets_t) ((BB)->aux))->tmp_gen
|
423 |
|
|
#define AVAIL_OUT(BB) ((bb_value_sets_t) ((BB)->aux))->avail_out
|
424 |
|
|
#define ANTIC_IN(BB) ((bb_value_sets_t) ((BB)->aux))->antic_in
|
425 |
|
|
#define PA_IN(BB) ((bb_value_sets_t) ((BB)->aux))->pa_in
|
426 |
|
|
#define NEW_SETS(BB) ((bb_value_sets_t) ((BB)->aux))->new_sets
|
427 |
|
|
#define EXPR_DIES(BB) ((bb_value_sets_t) ((BB)->aux))->expr_dies
|
428 |
|
|
#define BB_VISITED(BB) ((bb_value_sets_t) ((BB)->aux))->visited
|
429 |
|
|
#define BB_DEFERRED(BB) ((bb_value_sets_t) ((BB)->aux))->deferred
|
430 |
|
|
#define BB_MAY_NOTRETURN(BB) ((bb_value_sets_t) ((BB)->aux))->contains_may_not_return_call
|
431 |
|
|
|
432 |
|
|
|
433 |
|
|
/* Basic block list in postorder. */
|
434 |
|
|
static int *postorder;
|
435 |
|
|
|
436 |
|
|
/* This structure is used to keep track of statistics on what
|
437 |
|
|
optimization PRE was able to perform. */
|
438 |
|
|
static struct
|
439 |
|
|
{
|
440 |
|
|
/* The number of RHS computations eliminated by PRE. */
|
441 |
|
|
int eliminations;
|
442 |
|
|
|
443 |
|
|
/* The number of new expressions/temporaries generated by PRE. */
|
444 |
|
|
int insertions;
|
445 |
|
|
|
446 |
|
|
/* The number of inserts found due to partial anticipation */
|
447 |
|
|
int pa_insert;
|
448 |
|
|
|
449 |
|
|
/* The number of new PHI nodes added by PRE. */
|
450 |
|
|
int phis;
|
451 |
|
|
|
452 |
|
|
/* The number of values found constant. */
|
453 |
|
|
int constified;
|
454 |
|
|
|
455 |
|
|
} pre_stats;
|
456 |
|
|
|
457 |
|
|
static bool do_partial_partial;
|
458 |
|
|
static pre_expr bitmap_find_leader (bitmap_set_t, unsigned int, gimple);
|
459 |
|
|
static void bitmap_value_insert_into_set (bitmap_set_t, pre_expr);
|
460 |
|
|
static void bitmap_value_replace_in_set (bitmap_set_t, pre_expr);
|
461 |
|
|
static void bitmap_set_copy (bitmap_set_t, bitmap_set_t);
|
462 |
|
|
static bool bitmap_set_contains_value (bitmap_set_t, unsigned int);
|
463 |
|
|
static void bitmap_insert_into_set (bitmap_set_t, pre_expr);
|
464 |
|
|
static void bitmap_insert_into_set_1 (bitmap_set_t, pre_expr,
|
465 |
|
|
unsigned int, bool);
|
466 |
|
|
static bitmap_set_t bitmap_set_new (void);
|
467 |
|
|
static tree create_expression_by_pieces (basic_block, pre_expr, gimple_seq *,
|
468 |
|
|
gimple, tree);
|
469 |
|
|
static tree find_or_generate_expression (basic_block, pre_expr, gimple_seq *,
|
470 |
|
|
gimple);
|
471 |
|
|
static unsigned int get_expr_value_id (pre_expr);
|
472 |
|
|
|
473 |
|
|
/* We can add and remove elements and entries to and from sets
|
474 |
|
|
and hash tables, so we use alloc pools for them. */
|
475 |
|
|
|
476 |
|
|
static alloc_pool bitmap_set_pool;
|
477 |
|
|
static bitmap_obstack grand_bitmap_obstack;
|
478 |
|
|
|
479 |
|
|
/* To avoid adding 300 temporary variables when we only need one, we
|
480 |
|
|
only create one temporary variable, on demand, and build ssa names
|
481 |
|
|
off that. We do have to change the variable if the types don't
|
482 |
|
|
match the current variable's type. */
|
483 |
|
|
static tree pretemp;
|
484 |
|
|
static tree storetemp;
|
485 |
|
|
static tree prephitemp;
|
486 |
|
|
|
487 |
|
|
/* Set of blocks with statements that have had their EH properties changed. */
|
488 |
|
|
static bitmap need_eh_cleanup;
|
489 |
|
|
|
490 |
|
|
/* Set of blocks with statements that have had their AB properties changed. */
|
491 |
|
|
static bitmap need_ab_cleanup;
|
492 |
|
|
|
493 |
|
|
/* The phi_translate_table caches phi translations for a given
|
494 |
|
|
expression and predecessor. */
|
495 |
|
|
|
496 |
|
|
static htab_t phi_translate_table;
|
497 |
|
|
|
498 |
|
|
/* A three tuple {e, pred, v} used to cache phi translations in the
|
499 |
|
|
phi_translate_table. */
|
500 |
|
|
|
501 |
|
|
typedef struct expr_pred_trans_d
|
502 |
|
|
{
|
503 |
|
|
/* The expression. */
|
504 |
|
|
pre_expr e;
|
505 |
|
|
|
506 |
|
|
/* The predecessor block along which we translated the expression. */
|
507 |
|
|
basic_block pred;
|
508 |
|
|
|
509 |
|
|
/* The value that resulted from the translation. */
|
510 |
|
|
pre_expr v;
|
511 |
|
|
|
512 |
|
|
/* The hashcode for the expression, pred pair. This is cached for
|
513 |
|
|
speed reasons. */
|
514 |
|
|
hashval_t hashcode;
|
515 |
|
|
} *expr_pred_trans_t;
|
516 |
|
|
typedef const struct expr_pred_trans_d *const_expr_pred_trans_t;
|
517 |
|
|
|
518 |
|
|
/* Return the hash value for a phi translation table entry. */
|
519 |
|
|
|
520 |
|
|
static hashval_t
|
521 |
|
|
expr_pred_trans_hash (const void *p)
|
522 |
|
|
{
|
523 |
|
|
const_expr_pred_trans_t const ve = (const_expr_pred_trans_t) p;
|
524 |
|
|
return ve->hashcode;
|
525 |
|
|
}
|
526 |
|
|
|
527 |
|
|
/* Return true if two phi translation table entries are the same.
|
528 |
|
|
P1 and P2 should point to the expr_pred_trans_t's to be compared.*/
|
529 |
|
|
|
530 |
|
|
static int
|
531 |
|
|
expr_pred_trans_eq (const void *p1, const void *p2)
|
532 |
|
|
{
|
533 |
|
|
const_expr_pred_trans_t const ve1 = (const_expr_pred_trans_t) p1;
|
534 |
|
|
const_expr_pred_trans_t const ve2 = (const_expr_pred_trans_t) p2;
|
535 |
|
|
basic_block b1 = ve1->pred;
|
536 |
|
|
basic_block b2 = ve2->pred;
|
537 |
|
|
|
538 |
|
|
/* If they are not translations for the same basic block, they can't
|
539 |
|
|
be equal. */
|
540 |
|
|
if (b1 != b2)
|
541 |
|
|
return false;
|
542 |
|
|
return pre_expr_eq (ve1->e, ve2->e);
|
543 |
|
|
}
|
544 |
|
|
|
545 |
|
|
/* Search in the phi translation table for the translation of
|
546 |
|
|
expression E in basic block PRED.
|
547 |
|
|
Return the translated value, if found, NULL otherwise. */
|
548 |
|
|
|
549 |
|
|
static inline pre_expr
|
550 |
|
|
phi_trans_lookup (pre_expr e, basic_block pred)
|
551 |
|
|
{
|
552 |
|
|
void **slot;
|
553 |
|
|
struct expr_pred_trans_d ept;
|
554 |
|
|
|
555 |
|
|
ept.e = e;
|
556 |
|
|
ept.pred = pred;
|
557 |
|
|
ept.hashcode = iterative_hash_hashval_t (pre_expr_hash (e), pred->index);
|
558 |
|
|
slot = htab_find_slot_with_hash (phi_translate_table, &ept, ept.hashcode,
|
559 |
|
|
NO_INSERT);
|
560 |
|
|
if (!slot)
|
561 |
|
|
return NULL;
|
562 |
|
|
else
|
563 |
|
|
return ((expr_pred_trans_t) *slot)->v;
|
564 |
|
|
}
|
565 |
|
|
|
566 |
|
|
|
567 |
|
|
/* Add the tuple mapping from {expression E, basic block PRED} to
|
568 |
|
|
value V, to the phi translation table. */
|
569 |
|
|
|
570 |
|
|
static inline void
|
571 |
|
|
phi_trans_add (pre_expr e, pre_expr v, basic_block pred)
|
572 |
|
|
{
|
573 |
|
|
void **slot;
|
574 |
|
|
expr_pred_trans_t new_pair = XNEW (struct expr_pred_trans_d);
|
575 |
|
|
new_pair->e = e;
|
576 |
|
|
new_pair->pred = pred;
|
577 |
|
|
new_pair->v = v;
|
578 |
|
|
new_pair->hashcode = iterative_hash_hashval_t (pre_expr_hash (e),
|
579 |
|
|
pred->index);
|
580 |
|
|
|
581 |
|
|
slot = htab_find_slot_with_hash (phi_translate_table, new_pair,
|
582 |
|
|
new_pair->hashcode, INSERT);
|
583 |
|
|
free (*slot);
|
584 |
|
|
*slot = (void *) new_pair;
|
585 |
|
|
}
|
586 |
|
|
|
587 |
|
|
|
588 |
|
|
/* Add expression E to the expression set of value id V. */
|
589 |
|
|
|
590 |
|
|
void
|
591 |
|
|
add_to_value (unsigned int v, pre_expr e)
|
592 |
|
|
{
|
593 |
|
|
bitmap_set_t set;
|
594 |
|
|
|
595 |
|
|
gcc_assert (get_expr_value_id (e) == v);
|
596 |
|
|
|
597 |
|
|
if (v >= VEC_length (bitmap_set_t, value_expressions))
|
598 |
|
|
{
|
599 |
|
|
VEC_safe_grow_cleared (bitmap_set_t, heap, value_expressions,
|
600 |
|
|
v + 1);
|
601 |
|
|
}
|
602 |
|
|
|
603 |
|
|
set = VEC_index (bitmap_set_t, value_expressions, v);
|
604 |
|
|
if (!set)
|
605 |
|
|
{
|
606 |
|
|
set = bitmap_set_new ();
|
607 |
|
|
VEC_replace (bitmap_set_t, value_expressions, v, set);
|
608 |
|
|
}
|
609 |
|
|
|
610 |
|
|
bitmap_insert_into_set_1 (set, e, v, true);
|
611 |
|
|
}
|
612 |
|
|
|
613 |
|
|
/* Create a new bitmap set and return it. */
|
614 |
|
|
|
615 |
|
|
static bitmap_set_t
|
616 |
|
|
bitmap_set_new (void)
|
617 |
|
|
{
|
618 |
|
|
bitmap_set_t ret = (bitmap_set_t) pool_alloc (bitmap_set_pool);
|
619 |
|
|
bitmap_initialize (&ret->expressions, &grand_bitmap_obstack);
|
620 |
|
|
bitmap_initialize (&ret->values, &grand_bitmap_obstack);
|
621 |
|
|
return ret;
|
622 |
|
|
}
|
623 |
|
|
|
624 |
|
|
/* Return the value id for a PRE expression EXPR. */
|
625 |
|
|
|
626 |
|
|
static unsigned int
|
627 |
|
|
get_expr_value_id (pre_expr expr)
|
628 |
|
|
{
|
629 |
|
|
switch (expr->kind)
|
630 |
|
|
{
|
631 |
|
|
case CONSTANT:
|
632 |
|
|
{
|
633 |
|
|
unsigned int id;
|
634 |
|
|
id = get_constant_value_id (PRE_EXPR_CONSTANT (expr));
|
635 |
|
|
if (id == 0)
|
636 |
|
|
{
|
637 |
|
|
id = get_or_alloc_constant_value_id (PRE_EXPR_CONSTANT (expr));
|
638 |
|
|
add_to_value (id, expr);
|
639 |
|
|
}
|
640 |
|
|
return id;
|
641 |
|
|
}
|
642 |
|
|
case NAME:
|
643 |
|
|
return VN_INFO (PRE_EXPR_NAME (expr))->value_id;
|
644 |
|
|
case NARY:
|
645 |
|
|
return PRE_EXPR_NARY (expr)->value_id;
|
646 |
|
|
case REFERENCE:
|
647 |
|
|
return PRE_EXPR_REFERENCE (expr)->value_id;
|
648 |
|
|
default:
|
649 |
|
|
gcc_unreachable ();
|
650 |
|
|
}
|
651 |
|
|
}
|
652 |
|
|
|
653 |
|
|
/* Remove an expression EXPR from a bitmapped set. */
|
654 |
|
|
|
655 |
|
|
static void
|
656 |
|
|
bitmap_remove_from_set (bitmap_set_t set, pre_expr expr)
|
657 |
|
|
{
|
658 |
|
|
unsigned int val = get_expr_value_id (expr);
|
659 |
|
|
if (!value_id_constant_p (val))
|
660 |
|
|
{
|
661 |
|
|
bitmap_clear_bit (&set->values, val);
|
662 |
|
|
bitmap_clear_bit (&set->expressions, get_expression_id (expr));
|
663 |
|
|
}
|
664 |
|
|
}
|
665 |
|
|
|
666 |
|
|
static void
|
667 |
|
|
bitmap_insert_into_set_1 (bitmap_set_t set, pre_expr expr,
|
668 |
|
|
unsigned int val, bool allow_constants)
|
669 |
|
|
{
|
670 |
|
|
if (allow_constants || !value_id_constant_p (val))
|
671 |
|
|
{
|
672 |
|
|
/* We specifically expect this and only this function to be able to
|
673 |
|
|
insert constants into a set. */
|
674 |
|
|
bitmap_set_bit (&set->values, val);
|
675 |
|
|
bitmap_set_bit (&set->expressions, get_or_alloc_expression_id (expr));
|
676 |
|
|
}
|
677 |
|
|
}
|
678 |
|
|
|
679 |
|
|
/* Insert an expression EXPR into a bitmapped set. */
|
680 |
|
|
|
681 |
|
|
static void
|
682 |
|
|
bitmap_insert_into_set (bitmap_set_t set, pre_expr expr)
|
683 |
|
|
{
|
684 |
|
|
bitmap_insert_into_set_1 (set, expr, get_expr_value_id (expr), false);
|
685 |
|
|
}
|
686 |
|
|
|
687 |
|
|
/* Copy a bitmapped set ORIG, into bitmapped set DEST. */
|
688 |
|
|
|
689 |
|
|
static void
|
690 |
|
|
bitmap_set_copy (bitmap_set_t dest, bitmap_set_t orig)
|
691 |
|
|
{
|
692 |
|
|
bitmap_copy (&dest->expressions, &orig->expressions);
|
693 |
|
|
bitmap_copy (&dest->values, &orig->values);
|
694 |
|
|
}
|
695 |
|
|
|
696 |
|
|
|
697 |
|
|
/* Free memory used up by SET. */
|
698 |
|
|
static void
|
699 |
|
|
bitmap_set_free (bitmap_set_t set)
|
700 |
|
|
{
|
701 |
|
|
bitmap_clear (&set->expressions);
|
702 |
|
|
bitmap_clear (&set->values);
|
703 |
|
|
}
|
704 |
|
|
|
705 |
|
|
|
706 |
|
|
/* Generate an topological-ordered array of bitmap set SET. */
|
707 |
|
|
|
708 |
|
|
static VEC(pre_expr, heap) *
|
709 |
|
|
sorted_array_from_bitmap_set (bitmap_set_t set)
|
710 |
|
|
{
|
711 |
|
|
unsigned int i, j;
|
712 |
|
|
bitmap_iterator bi, bj;
|
713 |
|
|
VEC(pre_expr, heap) *result;
|
714 |
|
|
|
715 |
|
|
/* Pre-allocate roughly enough space for the array. */
|
716 |
|
|
result = VEC_alloc (pre_expr, heap, bitmap_count_bits (&set->values));
|
717 |
|
|
|
718 |
|
|
FOR_EACH_VALUE_ID_IN_SET (set, i, bi)
|
719 |
|
|
{
|
720 |
|
|
/* The number of expressions having a given value is usually
|
721 |
|
|
relatively small. Thus, rather than making a vector of all
|
722 |
|
|
the expressions and sorting it by value-id, we walk the values
|
723 |
|
|
and check in the reverse mapping that tells us what expressions
|
724 |
|
|
have a given value, to filter those in our set. As a result,
|
725 |
|
|
the expressions are inserted in value-id order, which means
|
726 |
|
|
topological order.
|
727 |
|
|
|
728 |
|
|
If this is somehow a significant lose for some cases, we can
|
729 |
|
|
choose which set to walk based on the set size. */
|
730 |
|
|
bitmap_set_t exprset = VEC_index (bitmap_set_t, value_expressions, i);
|
731 |
|
|
FOR_EACH_EXPR_ID_IN_SET (exprset, j, bj)
|
732 |
|
|
{
|
733 |
|
|
if (bitmap_bit_p (&set->expressions, j))
|
734 |
|
|
VEC_safe_push (pre_expr, heap, result, expression_for_id (j));
|
735 |
|
|
}
|
736 |
|
|
}
|
737 |
|
|
|
738 |
|
|
return result;
|
739 |
|
|
}
|
740 |
|
|
|
741 |
|
|
/* Perform bitmapped set operation DEST &= ORIG. */
|
742 |
|
|
|
743 |
|
|
static void
|
744 |
|
|
bitmap_set_and (bitmap_set_t dest, bitmap_set_t orig)
|
745 |
|
|
{
|
746 |
|
|
bitmap_iterator bi;
|
747 |
|
|
unsigned int i;
|
748 |
|
|
|
749 |
|
|
if (dest != orig)
|
750 |
|
|
{
|
751 |
|
|
bitmap_head temp;
|
752 |
|
|
bitmap_initialize (&temp, &grand_bitmap_obstack);
|
753 |
|
|
|
754 |
|
|
bitmap_and_into (&dest->values, &orig->values);
|
755 |
|
|
bitmap_copy (&temp, &dest->expressions);
|
756 |
|
|
EXECUTE_IF_SET_IN_BITMAP (&temp, 0, i, bi)
|
757 |
|
|
{
|
758 |
|
|
pre_expr expr = expression_for_id (i);
|
759 |
|
|
unsigned int value_id = get_expr_value_id (expr);
|
760 |
|
|
if (!bitmap_bit_p (&dest->values, value_id))
|
761 |
|
|
bitmap_clear_bit (&dest->expressions, i);
|
762 |
|
|
}
|
763 |
|
|
bitmap_clear (&temp);
|
764 |
|
|
}
|
765 |
|
|
}
|
766 |
|
|
|
767 |
|
|
/* Subtract all values and expressions contained in ORIG from DEST. */
|
768 |
|
|
|
769 |
|
|
static bitmap_set_t
|
770 |
|
|
bitmap_set_subtract (bitmap_set_t dest, bitmap_set_t orig)
|
771 |
|
|
{
|
772 |
|
|
bitmap_set_t result = bitmap_set_new ();
|
773 |
|
|
bitmap_iterator bi;
|
774 |
|
|
unsigned int i;
|
775 |
|
|
|
776 |
|
|
bitmap_and_compl (&result->expressions, &dest->expressions,
|
777 |
|
|
&orig->expressions);
|
778 |
|
|
|
779 |
|
|
FOR_EACH_EXPR_ID_IN_SET (result, i, bi)
|
780 |
|
|
{
|
781 |
|
|
pre_expr expr = expression_for_id (i);
|
782 |
|
|
unsigned int value_id = get_expr_value_id (expr);
|
783 |
|
|
bitmap_set_bit (&result->values, value_id);
|
784 |
|
|
}
|
785 |
|
|
|
786 |
|
|
return result;
|
787 |
|
|
}
|
788 |
|
|
|
789 |
|
|
/* Subtract all the values in bitmap set B from bitmap set A. */
|
790 |
|
|
|
791 |
|
|
static void
|
792 |
|
|
bitmap_set_subtract_values (bitmap_set_t a, bitmap_set_t b)
|
793 |
|
|
{
|
794 |
|
|
unsigned int i;
|
795 |
|
|
bitmap_iterator bi;
|
796 |
|
|
bitmap_head temp;
|
797 |
|
|
|
798 |
|
|
bitmap_initialize (&temp, &grand_bitmap_obstack);
|
799 |
|
|
|
800 |
|
|
bitmap_copy (&temp, &a->expressions);
|
801 |
|
|
EXECUTE_IF_SET_IN_BITMAP (&temp, 0, i, bi)
|
802 |
|
|
{
|
803 |
|
|
pre_expr expr = expression_for_id (i);
|
804 |
|
|
if (bitmap_set_contains_value (b, get_expr_value_id (expr)))
|
805 |
|
|
bitmap_remove_from_set (a, expr);
|
806 |
|
|
}
|
807 |
|
|
bitmap_clear (&temp);
|
808 |
|
|
}
|
809 |
|
|
|
810 |
|
|
|
811 |
|
|
/* Return true if bitmapped set SET contains the value VALUE_ID. */
|
812 |
|
|
|
813 |
|
|
static bool
|
814 |
|
|
bitmap_set_contains_value (bitmap_set_t set, unsigned int value_id)
|
815 |
|
|
{
|
816 |
|
|
if (value_id_constant_p (value_id))
|
817 |
|
|
return true;
|
818 |
|
|
|
819 |
|
|
if (!set || bitmap_empty_p (&set->expressions))
|
820 |
|
|
return false;
|
821 |
|
|
|
822 |
|
|
return bitmap_bit_p (&set->values, value_id);
|
823 |
|
|
}
|
824 |
|
|
|
825 |
|
|
static inline bool
|
826 |
|
|
bitmap_set_contains_expr (bitmap_set_t set, const pre_expr expr)
|
827 |
|
|
{
|
828 |
|
|
return bitmap_bit_p (&set->expressions, get_expression_id (expr));
|
829 |
|
|
}
|
830 |
|
|
|
831 |
|
|
/* Replace an instance of value LOOKFOR with expression EXPR in SET. */
|
832 |
|
|
|
833 |
|
|
static void
|
834 |
|
|
bitmap_set_replace_value (bitmap_set_t set, unsigned int lookfor,
|
835 |
|
|
const pre_expr expr)
|
836 |
|
|
{
|
837 |
|
|
bitmap_set_t exprset;
|
838 |
|
|
unsigned int i;
|
839 |
|
|
bitmap_iterator bi;
|
840 |
|
|
|
841 |
|
|
if (value_id_constant_p (lookfor))
|
842 |
|
|
return;
|
843 |
|
|
|
844 |
|
|
if (!bitmap_set_contains_value (set, lookfor))
|
845 |
|
|
return;
|
846 |
|
|
|
847 |
|
|
/* The number of expressions having a given value is usually
|
848 |
|
|
significantly less than the total number of expressions in SET.
|
849 |
|
|
Thus, rather than check, for each expression in SET, whether it
|
850 |
|
|
has the value LOOKFOR, we walk the reverse mapping that tells us
|
851 |
|
|
what expressions have a given value, and see if any of those
|
852 |
|
|
expressions are in our set. For large testcases, this is about
|
853 |
|
|
5-10x faster than walking the bitmap. If this is somehow a
|
854 |
|
|
significant lose for some cases, we can choose which set to walk
|
855 |
|
|
based on the set size. */
|
856 |
|
|
exprset = VEC_index (bitmap_set_t, value_expressions, lookfor);
|
857 |
|
|
FOR_EACH_EXPR_ID_IN_SET (exprset, i, bi)
|
858 |
|
|
{
|
859 |
|
|
if (bitmap_clear_bit (&set->expressions, i))
|
860 |
|
|
{
|
861 |
|
|
bitmap_set_bit (&set->expressions, get_expression_id (expr));
|
862 |
|
|
return;
|
863 |
|
|
}
|
864 |
|
|
}
|
865 |
|
|
}
|
866 |
|
|
|
867 |
|
|
/* Return true if two bitmap sets are equal. */
|
868 |
|
|
|
869 |
|
|
static bool
|
870 |
|
|
bitmap_set_equal (bitmap_set_t a, bitmap_set_t b)
|
871 |
|
|
{
|
872 |
|
|
return bitmap_equal_p (&a->values, &b->values);
|
873 |
|
|
}
|
874 |
|
|
|
875 |
|
|
/* Replace an instance of EXPR's VALUE with EXPR in SET if it exists,
|
876 |
|
|
and add it otherwise. */
|
877 |
|
|
|
878 |
|
|
static void
|
879 |
|
|
bitmap_value_replace_in_set (bitmap_set_t set, pre_expr expr)
|
880 |
|
|
{
|
881 |
|
|
unsigned int val = get_expr_value_id (expr);
|
882 |
|
|
|
883 |
|
|
if (bitmap_set_contains_value (set, val))
|
884 |
|
|
bitmap_set_replace_value (set, val, expr);
|
885 |
|
|
else
|
886 |
|
|
bitmap_insert_into_set (set, expr);
|
887 |
|
|
}
|
888 |
|
|
|
889 |
|
|
/* Insert EXPR into SET if EXPR's value is not already present in
|
890 |
|
|
SET. */
|
891 |
|
|
|
892 |
|
|
static void
|
893 |
|
|
bitmap_value_insert_into_set (bitmap_set_t set, pre_expr expr)
|
894 |
|
|
{
|
895 |
|
|
unsigned int val = get_expr_value_id (expr);
|
896 |
|
|
|
897 |
|
|
gcc_checking_assert (expr->id == get_or_alloc_expression_id (expr));
|
898 |
|
|
|
899 |
|
|
/* Constant values are always considered to be part of the set. */
|
900 |
|
|
if (value_id_constant_p (val))
|
901 |
|
|
return;
|
902 |
|
|
|
903 |
|
|
/* If the value membership changed, add the expression. */
|
904 |
|
|
if (bitmap_set_bit (&set->values, val))
|
905 |
|
|
bitmap_set_bit (&set->expressions, expr->id);
|
906 |
|
|
}
|
907 |
|
|
|
908 |
|
|
/* Print out EXPR to outfile. */
|
909 |
|
|
|
910 |
|
|
static void
|
911 |
|
|
print_pre_expr (FILE *outfile, const pre_expr expr)
|
912 |
|
|
{
|
913 |
|
|
switch (expr->kind)
|
914 |
|
|
{
|
915 |
|
|
case CONSTANT:
|
916 |
|
|
print_generic_expr (outfile, PRE_EXPR_CONSTANT (expr), 0);
|
917 |
|
|
break;
|
918 |
|
|
case NAME:
|
919 |
|
|
print_generic_expr (outfile, PRE_EXPR_NAME (expr), 0);
|
920 |
|
|
break;
|
921 |
|
|
case NARY:
|
922 |
|
|
{
|
923 |
|
|
unsigned int i;
|
924 |
|
|
vn_nary_op_t nary = PRE_EXPR_NARY (expr);
|
925 |
|
|
fprintf (outfile, "{%s,", tree_code_name [nary->opcode]);
|
926 |
|
|
for (i = 0; i < nary->length; i++)
|
927 |
|
|
{
|
928 |
|
|
print_generic_expr (outfile, nary->op[i], 0);
|
929 |
|
|
if (i != (unsigned) nary->length - 1)
|
930 |
|
|
fprintf (outfile, ",");
|
931 |
|
|
}
|
932 |
|
|
fprintf (outfile, "}");
|
933 |
|
|
}
|
934 |
|
|
break;
|
935 |
|
|
|
936 |
|
|
case REFERENCE:
|
937 |
|
|
{
|
938 |
|
|
vn_reference_op_t vro;
|
939 |
|
|
unsigned int i;
|
940 |
|
|
vn_reference_t ref = PRE_EXPR_REFERENCE (expr);
|
941 |
|
|
fprintf (outfile, "{");
|
942 |
|
|
for (i = 0;
|
943 |
|
|
VEC_iterate (vn_reference_op_s, ref->operands, i, vro);
|
944 |
|
|
i++)
|
945 |
|
|
{
|
946 |
|
|
bool closebrace = false;
|
947 |
|
|
if (vro->opcode != SSA_NAME
|
948 |
|
|
&& TREE_CODE_CLASS (vro->opcode) != tcc_declaration)
|
949 |
|
|
{
|
950 |
|
|
fprintf (outfile, "%s", tree_code_name [vro->opcode]);
|
951 |
|
|
if (vro->op0)
|
952 |
|
|
{
|
953 |
|
|
fprintf (outfile, "<");
|
954 |
|
|
closebrace = true;
|
955 |
|
|
}
|
956 |
|
|
}
|
957 |
|
|
if (vro->op0)
|
958 |
|
|
{
|
959 |
|
|
print_generic_expr (outfile, vro->op0, 0);
|
960 |
|
|
if (vro->op1)
|
961 |
|
|
{
|
962 |
|
|
fprintf (outfile, ",");
|
963 |
|
|
print_generic_expr (outfile, vro->op1, 0);
|
964 |
|
|
}
|
965 |
|
|
if (vro->op2)
|
966 |
|
|
{
|
967 |
|
|
fprintf (outfile, ",");
|
968 |
|
|
print_generic_expr (outfile, vro->op2, 0);
|
969 |
|
|
}
|
970 |
|
|
}
|
971 |
|
|
if (closebrace)
|
972 |
|
|
fprintf (outfile, ">");
|
973 |
|
|
if (i != VEC_length (vn_reference_op_s, ref->operands) - 1)
|
974 |
|
|
fprintf (outfile, ",");
|
975 |
|
|
}
|
976 |
|
|
fprintf (outfile, "}");
|
977 |
|
|
if (ref->vuse)
|
978 |
|
|
{
|
979 |
|
|
fprintf (outfile, "@");
|
980 |
|
|
print_generic_expr (outfile, ref->vuse, 0);
|
981 |
|
|
}
|
982 |
|
|
}
|
983 |
|
|
break;
|
984 |
|
|
}
|
985 |
|
|
}
|
986 |
|
|
void debug_pre_expr (pre_expr);
|
987 |
|
|
|
988 |
|
|
/* Like print_pre_expr but always prints to stderr. */
|
989 |
|
|
DEBUG_FUNCTION void
|
990 |
|
|
debug_pre_expr (pre_expr e)
|
991 |
|
|
{
|
992 |
|
|
print_pre_expr (stderr, e);
|
993 |
|
|
fprintf (stderr, "\n");
|
994 |
|
|
}
|
995 |
|
|
|
996 |
|
|
/* Print out SET to OUTFILE. */
|
997 |
|
|
|
998 |
|
|
static void
|
999 |
|
|
print_bitmap_set (FILE *outfile, bitmap_set_t set,
|
1000 |
|
|
const char *setname, int blockindex)
|
1001 |
|
|
{
|
1002 |
|
|
fprintf (outfile, "%s[%d] := { ", setname, blockindex);
|
1003 |
|
|
if (set)
|
1004 |
|
|
{
|
1005 |
|
|
bool first = true;
|
1006 |
|
|
unsigned i;
|
1007 |
|
|
bitmap_iterator bi;
|
1008 |
|
|
|
1009 |
|
|
FOR_EACH_EXPR_ID_IN_SET (set, i, bi)
|
1010 |
|
|
{
|
1011 |
|
|
const pre_expr expr = expression_for_id (i);
|
1012 |
|
|
|
1013 |
|
|
if (!first)
|
1014 |
|
|
fprintf (outfile, ", ");
|
1015 |
|
|
first = false;
|
1016 |
|
|
print_pre_expr (outfile, expr);
|
1017 |
|
|
|
1018 |
|
|
fprintf (outfile, " (%04d)", get_expr_value_id (expr));
|
1019 |
|
|
}
|
1020 |
|
|
}
|
1021 |
|
|
fprintf (outfile, " }\n");
|
1022 |
|
|
}
|
1023 |
|
|
|
1024 |
|
|
void debug_bitmap_set (bitmap_set_t);
|
1025 |
|
|
|
1026 |
|
|
DEBUG_FUNCTION void
|
1027 |
|
|
debug_bitmap_set (bitmap_set_t set)
|
1028 |
|
|
{
|
1029 |
|
|
print_bitmap_set (stderr, set, "debug", 0);
|
1030 |
|
|
}
|
1031 |
|
|
|
1032 |
|
|
/* Print out the expressions that have VAL to OUTFILE. */
|
1033 |
|
|
|
1034 |
|
|
void
|
1035 |
|
|
print_value_expressions (FILE *outfile, unsigned int val)
|
1036 |
|
|
{
|
1037 |
|
|
bitmap_set_t set = VEC_index (bitmap_set_t, value_expressions, val);
|
1038 |
|
|
if (set)
|
1039 |
|
|
{
|
1040 |
|
|
char s[10];
|
1041 |
|
|
sprintf (s, "%04d", val);
|
1042 |
|
|
print_bitmap_set (outfile, set, s, 0);
|
1043 |
|
|
}
|
1044 |
|
|
}
|
1045 |
|
|
|
1046 |
|
|
|
1047 |
|
|
DEBUG_FUNCTION void
|
1048 |
|
|
debug_value_expressions (unsigned int val)
|
1049 |
|
|
{
|
1050 |
|
|
print_value_expressions (stderr, val);
|
1051 |
|
|
}
|
1052 |
|
|
|
1053 |
|
|
/* Given a CONSTANT, allocate a new CONSTANT type PRE_EXPR to
|
1054 |
|
|
represent it. */
|
1055 |
|
|
|
1056 |
|
|
static pre_expr
|
1057 |
|
|
get_or_alloc_expr_for_constant (tree constant)
|
1058 |
|
|
{
|
1059 |
|
|
unsigned int result_id;
|
1060 |
|
|
unsigned int value_id;
|
1061 |
|
|
struct pre_expr_d expr;
|
1062 |
|
|
pre_expr newexpr;
|
1063 |
|
|
|
1064 |
|
|
expr.kind = CONSTANT;
|
1065 |
|
|
PRE_EXPR_CONSTANT (&expr) = constant;
|
1066 |
|
|
result_id = lookup_expression_id (&expr);
|
1067 |
|
|
if (result_id != 0)
|
1068 |
|
|
return expression_for_id (result_id);
|
1069 |
|
|
|
1070 |
|
|
newexpr = (pre_expr) pool_alloc (pre_expr_pool);
|
1071 |
|
|
newexpr->kind = CONSTANT;
|
1072 |
|
|
PRE_EXPR_CONSTANT (newexpr) = constant;
|
1073 |
|
|
alloc_expression_id (newexpr);
|
1074 |
|
|
value_id = get_or_alloc_constant_value_id (constant);
|
1075 |
|
|
add_to_value (value_id, newexpr);
|
1076 |
|
|
return newexpr;
|
1077 |
|
|
}
|
1078 |
|
|
|
1079 |
|
|
/* Given a value id V, find the actual tree representing the constant
|
1080 |
|
|
value if there is one, and return it. Return NULL if we can't find
|
1081 |
|
|
a constant. */
|
1082 |
|
|
|
1083 |
|
|
static tree
|
1084 |
|
|
get_constant_for_value_id (unsigned int v)
|
1085 |
|
|
{
|
1086 |
|
|
if (value_id_constant_p (v))
|
1087 |
|
|
{
|
1088 |
|
|
unsigned int i;
|
1089 |
|
|
bitmap_iterator bi;
|
1090 |
|
|
bitmap_set_t exprset = VEC_index (bitmap_set_t, value_expressions, v);
|
1091 |
|
|
|
1092 |
|
|
FOR_EACH_EXPR_ID_IN_SET (exprset, i, bi)
|
1093 |
|
|
{
|
1094 |
|
|
pre_expr expr = expression_for_id (i);
|
1095 |
|
|
if (expr->kind == CONSTANT)
|
1096 |
|
|
return PRE_EXPR_CONSTANT (expr);
|
1097 |
|
|
}
|
1098 |
|
|
}
|
1099 |
|
|
return NULL;
|
1100 |
|
|
}
|
1101 |
|
|
|
1102 |
|
|
/* Get or allocate a pre_expr for a piece of GIMPLE, and return it.
|
1103 |
|
|
Currently only supports constants and SSA_NAMES. */
|
1104 |
|
|
static pre_expr
|
1105 |
|
|
get_or_alloc_expr_for (tree t)
|
1106 |
|
|
{
|
1107 |
|
|
if (TREE_CODE (t) == SSA_NAME)
|
1108 |
|
|
return get_or_alloc_expr_for_name (t);
|
1109 |
|
|
else if (is_gimple_min_invariant (t))
|
1110 |
|
|
return get_or_alloc_expr_for_constant (t);
|
1111 |
|
|
else
|
1112 |
|
|
{
|
1113 |
|
|
/* More complex expressions can result from SCCVN expression
|
1114 |
|
|
simplification that inserts values for them. As they all
|
1115 |
|
|
do not have VOPs the get handled by the nary ops struct. */
|
1116 |
|
|
vn_nary_op_t result;
|
1117 |
|
|
unsigned int result_id;
|
1118 |
|
|
vn_nary_op_lookup (t, &result);
|
1119 |
|
|
if (result != NULL)
|
1120 |
|
|
{
|
1121 |
|
|
pre_expr e = (pre_expr) pool_alloc (pre_expr_pool);
|
1122 |
|
|
e->kind = NARY;
|
1123 |
|
|
PRE_EXPR_NARY (e) = result;
|
1124 |
|
|
result_id = lookup_expression_id (e);
|
1125 |
|
|
if (result_id != 0)
|
1126 |
|
|
{
|
1127 |
|
|
pool_free (pre_expr_pool, e);
|
1128 |
|
|
e = expression_for_id (result_id);
|
1129 |
|
|
return e;
|
1130 |
|
|
}
|
1131 |
|
|
alloc_expression_id (e);
|
1132 |
|
|
return e;
|
1133 |
|
|
}
|
1134 |
|
|
}
|
1135 |
|
|
return NULL;
|
1136 |
|
|
}
|
1137 |
|
|
|
1138 |
|
|
/* Return the folded version of T if T, when folded, is a gimple
|
1139 |
|
|
min_invariant. Otherwise, return T. */
|
1140 |
|
|
|
1141 |
|
|
static pre_expr
|
1142 |
|
|
fully_constant_expression (pre_expr e)
|
1143 |
|
|
{
|
1144 |
|
|
switch (e->kind)
|
1145 |
|
|
{
|
1146 |
|
|
case CONSTANT:
|
1147 |
|
|
return e;
|
1148 |
|
|
case NARY:
|
1149 |
|
|
{
|
1150 |
|
|
vn_nary_op_t nary = PRE_EXPR_NARY (e);
|
1151 |
|
|
switch (TREE_CODE_CLASS (nary->opcode))
|
1152 |
|
|
{
|
1153 |
|
|
case tcc_binary:
|
1154 |
|
|
case tcc_comparison:
|
1155 |
|
|
{
|
1156 |
|
|
/* We have to go from trees to pre exprs to value ids to
|
1157 |
|
|
constants. */
|
1158 |
|
|
tree naryop0 = nary->op[0];
|
1159 |
|
|
tree naryop1 = nary->op[1];
|
1160 |
|
|
tree result;
|
1161 |
|
|
if (!is_gimple_min_invariant (naryop0))
|
1162 |
|
|
{
|
1163 |
|
|
pre_expr rep0 = get_or_alloc_expr_for (naryop0);
|
1164 |
|
|
unsigned int vrep0 = get_expr_value_id (rep0);
|
1165 |
|
|
tree const0 = get_constant_for_value_id (vrep0);
|
1166 |
|
|
if (const0)
|
1167 |
|
|
naryop0 = fold_convert (TREE_TYPE (naryop0), const0);
|
1168 |
|
|
}
|
1169 |
|
|
if (!is_gimple_min_invariant (naryop1))
|
1170 |
|
|
{
|
1171 |
|
|
pre_expr rep1 = get_or_alloc_expr_for (naryop1);
|
1172 |
|
|
unsigned int vrep1 = get_expr_value_id (rep1);
|
1173 |
|
|
tree const1 = get_constant_for_value_id (vrep1);
|
1174 |
|
|
if (const1)
|
1175 |
|
|
naryop1 = fold_convert (TREE_TYPE (naryop1), const1);
|
1176 |
|
|
}
|
1177 |
|
|
result = fold_binary (nary->opcode, nary->type,
|
1178 |
|
|
naryop0, naryop1);
|
1179 |
|
|
if (result && is_gimple_min_invariant (result))
|
1180 |
|
|
return get_or_alloc_expr_for_constant (result);
|
1181 |
|
|
/* We might have simplified the expression to a
|
1182 |
|
|
SSA_NAME for example from x_1 * 1. But we cannot
|
1183 |
|
|
insert a PHI for x_1 unconditionally as x_1 might
|
1184 |
|
|
not be available readily. */
|
1185 |
|
|
return e;
|
1186 |
|
|
}
|
1187 |
|
|
case tcc_reference:
|
1188 |
|
|
if (nary->opcode != REALPART_EXPR
|
1189 |
|
|
&& nary->opcode != IMAGPART_EXPR
|
1190 |
|
|
&& nary->opcode != VIEW_CONVERT_EXPR)
|
1191 |
|
|
return e;
|
1192 |
|
|
/* Fallthrough. */
|
1193 |
|
|
case tcc_unary:
|
1194 |
|
|
{
|
1195 |
|
|
/* We have to go from trees to pre exprs to value ids to
|
1196 |
|
|
constants. */
|
1197 |
|
|
tree naryop0 = nary->op[0];
|
1198 |
|
|
tree const0, result;
|
1199 |
|
|
if (is_gimple_min_invariant (naryop0))
|
1200 |
|
|
const0 = naryop0;
|
1201 |
|
|
else
|
1202 |
|
|
{
|
1203 |
|
|
pre_expr rep0 = get_or_alloc_expr_for (naryop0);
|
1204 |
|
|
unsigned int vrep0 = get_expr_value_id (rep0);
|
1205 |
|
|
const0 = get_constant_for_value_id (vrep0);
|
1206 |
|
|
}
|
1207 |
|
|
result = NULL;
|
1208 |
|
|
if (const0)
|
1209 |
|
|
{
|
1210 |
|
|
tree type1 = TREE_TYPE (nary->op[0]);
|
1211 |
|
|
const0 = fold_convert (type1, const0);
|
1212 |
|
|
result = fold_unary (nary->opcode, nary->type, const0);
|
1213 |
|
|
}
|
1214 |
|
|
if (result && is_gimple_min_invariant (result))
|
1215 |
|
|
return get_or_alloc_expr_for_constant (result);
|
1216 |
|
|
return e;
|
1217 |
|
|
}
|
1218 |
|
|
default:
|
1219 |
|
|
return e;
|
1220 |
|
|
}
|
1221 |
|
|
}
|
1222 |
|
|
case REFERENCE:
|
1223 |
|
|
{
|
1224 |
|
|
vn_reference_t ref = PRE_EXPR_REFERENCE (e);
|
1225 |
|
|
tree folded;
|
1226 |
|
|
if ((folded = fully_constant_vn_reference_p (ref)))
|
1227 |
|
|
return get_or_alloc_expr_for_constant (folded);
|
1228 |
|
|
return e;
|
1229 |
|
|
}
|
1230 |
|
|
default:
|
1231 |
|
|
return e;
|
1232 |
|
|
}
|
1233 |
|
|
return e;
|
1234 |
|
|
}
|
1235 |
|
|
|
1236 |
|
|
/* Translate the VUSE backwards through phi nodes in PHIBLOCK, so that
|
1237 |
|
|
it has the value it would have in BLOCK. Set *SAME_VALID to true
|
1238 |
|
|
in case the new vuse doesn't change the value id of the OPERANDS. */
|
1239 |
|
|
|
1240 |
|
|
static tree
|
1241 |
|
|
translate_vuse_through_block (VEC (vn_reference_op_s, heap) *operands,
|
1242 |
|
|
alias_set_type set, tree type, tree vuse,
|
1243 |
|
|
basic_block phiblock,
|
1244 |
|
|
basic_block block, bool *same_valid)
|
1245 |
|
|
{
|
1246 |
|
|
gimple phi = SSA_NAME_DEF_STMT (vuse);
|
1247 |
|
|
ao_ref ref;
|
1248 |
|
|
edge e = NULL;
|
1249 |
|
|
bool use_oracle;
|
1250 |
|
|
|
1251 |
|
|
*same_valid = true;
|
1252 |
|
|
|
1253 |
|
|
if (gimple_bb (phi) != phiblock)
|
1254 |
|
|
return vuse;
|
1255 |
|
|
|
1256 |
|
|
use_oracle = ao_ref_init_from_vn_reference (&ref, set, type, operands);
|
1257 |
|
|
|
1258 |
|
|
/* Use the alias-oracle to find either the PHI node in this block,
|
1259 |
|
|
the first VUSE used in this block that is equivalent to vuse or
|
1260 |
|
|
the first VUSE which definition in this block kills the value. */
|
1261 |
|
|
if (gimple_code (phi) == GIMPLE_PHI)
|
1262 |
|
|
e = find_edge (block, phiblock);
|
1263 |
|
|
else if (use_oracle)
|
1264 |
|
|
while (!stmt_may_clobber_ref_p_1 (phi, &ref))
|
1265 |
|
|
{
|
1266 |
|
|
vuse = gimple_vuse (phi);
|
1267 |
|
|
phi = SSA_NAME_DEF_STMT (vuse);
|
1268 |
|
|
if (gimple_bb (phi) != phiblock)
|
1269 |
|
|
return vuse;
|
1270 |
|
|
if (gimple_code (phi) == GIMPLE_PHI)
|
1271 |
|
|
{
|
1272 |
|
|
e = find_edge (block, phiblock);
|
1273 |
|
|
break;
|
1274 |
|
|
}
|
1275 |
|
|
}
|
1276 |
|
|
else
|
1277 |
|
|
return NULL_TREE;
|
1278 |
|
|
|
1279 |
|
|
if (e)
|
1280 |
|
|
{
|
1281 |
|
|
if (use_oracle)
|
1282 |
|
|
{
|
1283 |
|
|
bitmap visited = NULL;
|
1284 |
|
|
/* Try to find a vuse that dominates this phi node by skipping
|
1285 |
|
|
non-clobbering statements. */
|
1286 |
|
|
vuse = get_continuation_for_phi (phi, &ref, &visited);
|
1287 |
|
|
if (visited)
|
1288 |
|
|
BITMAP_FREE (visited);
|
1289 |
|
|
}
|
1290 |
|
|
else
|
1291 |
|
|
vuse = NULL_TREE;
|
1292 |
|
|
if (!vuse)
|
1293 |
|
|
{
|
1294 |
|
|
/* If we didn't find any, the value ID can't stay the same,
|
1295 |
|
|
but return the translated vuse. */
|
1296 |
|
|
*same_valid = false;
|
1297 |
|
|
vuse = PHI_ARG_DEF (phi, e->dest_idx);
|
1298 |
|
|
}
|
1299 |
|
|
/* ??? We would like to return vuse here as this is the canonical
|
1300 |
|
|
upmost vdef that this reference is associated with. But during
|
1301 |
|
|
insertion of the references into the hash tables we only ever
|
1302 |
|
|
directly insert with their direct gimple_vuse, hence returning
|
1303 |
|
|
something else would make us not find the other expression. */
|
1304 |
|
|
return PHI_ARG_DEF (phi, e->dest_idx);
|
1305 |
|
|
}
|
1306 |
|
|
|
1307 |
|
|
return NULL_TREE;
|
1308 |
|
|
}
|
1309 |
|
|
|
1310 |
|
|
/* Like bitmap_find_leader, but checks for the value existing in SET1 *or*
|
1311 |
|
|
SET2. This is used to avoid making a set consisting of the union
|
1312 |
|
|
of PA_IN and ANTIC_IN during insert. */
|
1313 |
|
|
|
1314 |
|
|
static inline pre_expr
|
1315 |
|
|
find_leader_in_sets (unsigned int val, bitmap_set_t set1, bitmap_set_t set2)
|
1316 |
|
|
{
|
1317 |
|
|
pre_expr result;
|
1318 |
|
|
|
1319 |
|
|
result = bitmap_find_leader (set1, val, NULL);
|
1320 |
|
|
if (!result && set2)
|
1321 |
|
|
result = bitmap_find_leader (set2, val, NULL);
|
1322 |
|
|
return result;
|
1323 |
|
|
}
|
1324 |
|
|
|
1325 |
|
|
/* Get the tree type for our PRE expression e. */
|
1326 |
|
|
|
1327 |
|
|
static tree
|
1328 |
|
|
get_expr_type (const pre_expr e)
|
1329 |
|
|
{
|
1330 |
|
|
switch (e->kind)
|
1331 |
|
|
{
|
1332 |
|
|
case NAME:
|
1333 |
|
|
return TREE_TYPE (PRE_EXPR_NAME (e));
|
1334 |
|
|
case CONSTANT:
|
1335 |
|
|
return TREE_TYPE (PRE_EXPR_CONSTANT (e));
|
1336 |
|
|
case REFERENCE:
|
1337 |
|
|
return PRE_EXPR_REFERENCE (e)->type;
|
1338 |
|
|
case NARY:
|
1339 |
|
|
return PRE_EXPR_NARY (e)->type;
|
1340 |
|
|
}
|
1341 |
|
|
gcc_unreachable();
|
1342 |
|
|
}
|
1343 |
|
|
|
1344 |
|
|
/* Get a representative SSA_NAME for a given expression.
|
1345 |
|
|
Since all of our sub-expressions are treated as values, we require
|
1346 |
|
|
them to be SSA_NAME's for simplicity.
|
1347 |
|
|
Prior versions of GVNPRE used to use "value handles" here, so that
|
1348 |
|
|
an expression would be VH.11 + VH.10 instead of d_3 + e_6. In
|
1349 |
|
|
either case, the operands are really values (IE we do not expect
|
1350 |
|
|
them to be usable without finding leaders). */
|
1351 |
|
|
|
1352 |
|
|
static tree
|
1353 |
|
|
get_representative_for (const pre_expr e)
|
1354 |
|
|
{
|
1355 |
|
|
tree exprtype;
|
1356 |
|
|
tree name;
|
1357 |
|
|
unsigned int value_id = get_expr_value_id (e);
|
1358 |
|
|
|
1359 |
|
|
switch (e->kind)
|
1360 |
|
|
{
|
1361 |
|
|
case NAME:
|
1362 |
|
|
return PRE_EXPR_NAME (e);
|
1363 |
|
|
case CONSTANT:
|
1364 |
|
|
return PRE_EXPR_CONSTANT (e);
|
1365 |
|
|
case NARY:
|
1366 |
|
|
case REFERENCE:
|
1367 |
|
|
{
|
1368 |
|
|
/* Go through all of the expressions representing this value
|
1369 |
|
|
and pick out an SSA_NAME. */
|
1370 |
|
|
unsigned int i;
|
1371 |
|
|
bitmap_iterator bi;
|
1372 |
|
|
bitmap_set_t exprs = VEC_index (bitmap_set_t, value_expressions,
|
1373 |
|
|
value_id);
|
1374 |
|
|
FOR_EACH_EXPR_ID_IN_SET (exprs, i, bi)
|
1375 |
|
|
{
|
1376 |
|
|
pre_expr rep = expression_for_id (i);
|
1377 |
|
|
if (rep->kind == NAME)
|
1378 |
|
|
return PRE_EXPR_NAME (rep);
|
1379 |
|
|
}
|
1380 |
|
|
}
|
1381 |
|
|
break;
|
1382 |
|
|
}
|
1383 |
|
|
/* If we reached here we couldn't find an SSA_NAME. This can
|
1384 |
|
|
happen when we've discovered a value that has never appeared in
|
1385 |
|
|
the program as set to an SSA_NAME, most likely as the result of
|
1386 |
|
|
phi translation. */
|
1387 |
|
|
if (dump_file)
|
1388 |
|
|
{
|
1389 |
|
|
fprintf (dump_file,
|
1390 |
|
|
"Could not find SSA_NAME representative for expression:");
|
1391 |
|
|
print_pre_expr (dump_file, e);
|
1392 |
|
|
fprintf (dump_file, "\n");
|
1393 |
|
|
}
|
1394 |
|
|
|
1395 |
|
|
exprtype = get_expr_type (e);
|
1396 |
|
|
|
1397 |
|
|
/* Build and insert the assignment of the end result to the temporary
|
1398 |
|
|
that we will return. */
|
1399 |
|
|
if (!pretemp || exprtype != TREE_TYPE (pretemp))
|
1400 |
|
|
{
|
1401 |
|
|
pretemp = create_tmp_reg (exprtype, "pretmp");
|
1402 |
|
|
add_referenced_var (pretemp);
|
1403 |
|
|
}
|
1404 |
|
|
|
1405 |
|
|
name = make_ssa_name (pretemp, gimple_build_nop ());
|
1406 |
|
|
VN_INFO_GET (name)->value_id = value_id;
|
1407 |
|
|
if (e->kind == CONSTANT)
|
1408 |
|
|
VN_INFO (name)->valnum = PRE_EXPR_CONSTANT (e);
|
1409 |
|
|
else
|
1410 |
|
|
VN_INFO (name)->valnum = name;
|
1411 |
|
|
|
1412 |
|
|
add_to_value (value_id, get_or_alloc_expr_for_name (name));
|
1413 |
|
|
if (dump_file)
|
1414 |
|
|
{
|
1415 |
|
|
fprintf (dump_file, "Created SSA_NAME representative ");
|
1416 |
|
|
print_generic_expr (dump_file, name, 0);
|
1417 |
|
|
fprintf (dump_file, " for expression:");
|
1418 |
|
|
print_pre_expr (dump_file, e);
|
1419 |
|
|
fprintf (dump_file, "\n");
|
1420 |
|
|
}
|
1421 |
|
|
|
1422 |
|
|
return name;
|
1423 |
|
|
}
|
1424 |
|
|
|
1425 |
|
|
|
1426 |
|
|
|
1427 |
|
|
static pre_expr
|
1428 |
|
|
phi_translate (pre_expr expr, bitmap_set_t set1, bitmap_set_t set2,
|
1429 |
|
|
basic_block pred, basic_block phiblock);
|
1430 |
|
|
|
1431 |
|
|
/* Translate EXPR using phis in PHIBLOCK, so that it has the values of
|
1432 |
|
|
the phis in PRED. Return NULL if we can't find a leader for each part
|
1433 |
|
|
of the translated expression. */
|
1434 |
|
|
|
1435 |
|
|
static pre_expr
|
1436 |
|
|
phi_translate_1 (pre_expr expr, bitmap_set_t set1, bitmap_set_t set2,
|
1437 |
|
|
basic_block pred, basic_block phiblock)
|
1438 |
|
|
{
|
1439 |
|
|
switch (expr->kind)
|
1440 |
|
|
{
|
1441 |
|
|
case NARY:
|
1442 |
|
|
{
|
1443 |
|
|
unsigned int i;
|
1444 |
|
|
bool changed = false;
|
1445 |
|
|
vn_nary_op_t nary = PRE_EXPR_NARY (expr);
|
1446 |
|
|
vn_nary_op_t newnary = XALLOCAVAR (struct vn_nary_op_s,
|
1447 |
|
|
sizeof_vn_nary_op (nary->length));
|
1448 |
|
|
memcpy (newnary, nary, sizeof_vn_nary_op (nary->length));
|
1449 |
|
|
|
1450 |
|
|
for (i = 0; i < newnary->length; i++)
|
1451 |
|
|
{
|
1452 |
|
|
if (TREE_CODE (newnary->op[i]) != SSA_NAME)
|
1453 |
|
|
continue;
|
1454 |
|
|
else
|
1455 |
|
|
{
|
1456 |
|
|
pre_expr leader, result;
|
1457 |
|
|
unsigned int op_val_id = VN_INFO (newnary->op[i])->value_id;
|
1458 |
|
|
leader = find_leader_in_sets (op_val_id, set1, set2);
|
1459 |
|
|
result = phi_translate (leader, set1, set2, pred, phiblock);
|
1460 |
|
|
if (result && result != leader)
|
1461 |
|
|
{
|
1462 |
|
|
tree name = get_representative_for (result);
|
1463 |
|
|
if (!name)
|
1464 |
|
|
return NULL;
|
1465 |
|
|
newnary->op[i] = name;
|
1466 |
|
|
}
|
1467 |
|
|
else if (!result)
|
1468 |
|
|
return NULL;
|
1469 |
|
|
|
1470 |
|
|
changed |= newnary->op[i] != nary->op[i];
|
1471 |
|
|
}
|
1472 |
|
|
}
|
1473 |
|
|
if (changed)
|
1474 |
|
|
{
|
1475 |
|
|
pre_expr constant;
|
1476 |
|
|
unsigned int new_val_id;
|
1477 |
|
|
|
1478 |
|
|
tree result = vn_nary_op_lookup_pieces (newnary->length,
|
1479 |
|
|
newnary->opcode,
|
1480 |
|
|
newnary->type,
|
1481 |
|
|
&newnary->op[0],
|
1482 |
|
|
&nary);
|
1483 |
|
|
if (result && is_gimple_min_invariant (result))
|
1484 |
|
|
return get_or_alloc_expr_for_constant (result);
|
1485 |
|
|
|
1486 |
|
|
expr = (pre_expr) pool_alloc (pre_expr_pool);
|
1487 |
|
|
expr->kind = NARY;
|
1488 |
|
|
expr->id = 0;
|
1489 |
|
|
if (nary)
|
1490 |
|
|
{
|
1491 |
|
|
PRE_EXPR_NARY (expr) = nary;
|
1492 |
|
|
constant = fully_constant_expression (expr);
|
1493 |
|
|
if (constant != expr)
|
1494 |
|
|
return constant;
|
1495 |
|
|
|
1496 |
|
|
new_val_id = nary->value_id;
|
1497 |
|
|
get_or_alloc_expression_id (expr);
|
1498 |
|
|
}
|
1499 |
|
|
else
|
1500 |
|
|
{
|
1501 |
|
|
new_val_id = get_next_value_id ();
|
1502 |
|
|
VEC_safe_grow_cleared (bitmap_set_t, heap,
|
1503 |
|
|
value_expressions,
|
1504 |
|
|
get_max_value_id() + 1);
|
1505 |
|
|
nary = vn_nary_op_insert_pieces (newnary->length,
|
1506 |
|
|
newnary->opcode,
|
1507 |
|
|
newnary->type,
|
1508 |
|
|
&newnary->op[0],
|
1509 |
|
|
result, new_val_id);
|
1510 |
|
|
PRE_EXPR_NARY (expr) = nary;
|
1511 |
|
|
constant = fully_constant_expression (expr);
|
1512 |
|
|
if (constant != expr)
|
1513 |
|
|
return constant;
|
1514 |
|
|
get_or_alloc_expression_id (expr);
|
1515 |
|
|
}
|
1516 |
|
|
add_to_value (new_val_id, expr);
|
1517 |
|
|
}
|
1518 |
|
|
return expr;
|
1519 |
|
|
}
|
1520 |
|
|
break;
|
1521 |
|
|
|
1522 |
|
|
case REFERENCE:
|
1523 |
|
|
{
|
1524 |
|
|
vn_reference_t ref = PRE_EXPR_REFERENCE (expr);
|
1525 |
|
|
VEC (vn_reference_op_s, heap) *operands = ref->operands;
|
1526 |
|
|
tree vuse = ref->vuse;
|
1527 |
|
|
tree newvuse = vuse;
|
1528 |
|
|
VEC (vn_reference_op_s, heap) *newoperands = NULL;
|
1529 |
|
|
bool changed = false, same_valid = true;
|
1530 |
|
|
unsigned int i, j, n;
|
1531 |
|
|
vn_reference_op_t operand;
|
1532 |
|
|
vn_reference_t newref;
|
1533 |
|
|
|
1534 |
|
|
for (i = 0, j = 0;
|
1535 |
|
|
VEC_iterate (vn_reference_op_s, operands, i, operand); i++, j++)
|
1536 |
|
|
{
|
1537 |
|
|
pre_expr opresult;
|
1538 |
|
|
pre_expr leader;
|
1539 |
|
|
tree op[3];
|
1540 |
|
|
tree type = operand->type;
|
1541 |
|
|
vn_reference_op_s newop = *operand;
|
1542 |
|
|
op[0] = operand->op0;
|
1543 |
|
|
op[1] = operand->op1;
|
1544 |
|
|
op[2] = operand->op2;
|
1545 |
|
|
for (n = 0; n < 3; ++n)
|
1546 |
|
|
{
|
1547 |
|
|
unsigned int op_val_id;
|
1548 |
|
|
if (!op[n])
|
1549 |
|
|
continue;
|
1550 |
|
|
if (TREE_CODE (op[n]) != SSA_NAME)
|
1551 |
|
|
{
|
1552 |
|
|
/* We can't possibly insert these. */
|
1553 |
|
|
if (n != 0
|
1554 |
|
|
&& !is_gimple_min_invariant (op[n]))
|
1555 |
|
|
break;
|
1556 |
|
|
continue;
|
1557 |
|
|
}
|
1558 |
|
|
op_val_id = VN_INFO (op[n])->value_id;
|
1559 |
|
|
leader = find_leader_in_sets (op_val_id, set1, set2);
|
1560 |
|
|
if (!leader)
|
1561 |
|
|
break;
|
1562 |
|
|
/* Make sure we do not recursively translate ourselves
|
1563 |
|
|
like for translating a[n_1] with the leader for
|
1564 |
|
|
n_1 being a[n_1]. */
|
1565 |
|
|
if (get_expression_id (leader) != get_expression_id (expr))
|
1566 |
|
|
{
|
1567 |
|
|
opresult = phi_translate (leader, set1, set2,
|
1568 |
|
|
pred, phiblock);
|
1569 |
|
|
if (!opresult)
|
1570 |
|
|
break;
|
1571 |
|
|
if (opresult != leader)
|
1572 |
|
|
{
|
1573 |
|
|
tree name = get_representative_for (opresult);
|
1574 |
|
|
if (!name)
|
1575 |
|
|
break;
|
1576 |
|
|
changed |= name != op[n];
|
1577 |
|
|
op[n] = name;
|
1578 |
|
|
}
|
1579 |
|
|
}
|
1580 |
|
|
}
|
1581 |
|
|
if (n != 3)
|
1582 |
|
|
{
|
1583 |
|
|
if (newoperands)
|
1584 |
|
|
VEC_free (vn_reference_op_s, heap, newoperands);
|
1585 |
|
|
return NULL;
|
1586 |
|
|
}
|
1587 |
|
|
if (!newoperands)
|
1588 |
|
|
newoperands = VEC_copy (vn_reference_op_s, heap, operands);
|
1589 |
|
|
/* We may have changed from an SSA_NAME to a constant */
|
1590 |
|
|
if (newop.opcode == SSA_NAME && TREE_CODE (op[0]) != SSA_NAME)
|
1591 |
|
|
newop.opcode = TREE_CODE (op[0]);
|
1592 |
|
|
newop.type = type;
|
1593 |
|
|
newop.op0 = op[0];
|
1594 |
|
|
newop.op1 = op[1];
|
1595 |
|
|
newop.op2 = op[2];
|
1596 |
|
|
/* If it transforms a non-constant ARRAY_REF into a constant
|
1597 |
|
|
one, adjust the constant offset. */
|
1598 |
|
|
if (newop.opcode == ARRAY_REF
|
1599 |
|
|
&& newop.off == -1
|
1600 |
|
|
&& TREE_CODE (op[0]) == INTEGER_CST
|
1601 |
|
|
&& TREE_CODE (op[1]) == INTEGER_CST
|
1602 |
|
|
&& TREE_CODE (op[2]) == INTEGER_CST)
|
1603 |
|
|
{
|
1604 |
|
|
double_int off = tree_to_double_int (op[0]);
|
1605 |
|
|
off = double_int_add (off,
|
1606 |
|
|
double_int_neg
|
1607 |
|
|
(tree_to_double_int (op[1])));
|
1608 |
|
|
off = double_int_mul (off, tree_to_double_int (op[2]));
|
1609 |
|
|
if (double_int_fits_in_shwi_p (off))
|
1610 |
|
|
newop.off = off.low;
|
1611 |
|
|
}
|
1612 |
|
|
VEC_replace (vn_reference_op_s, newoperands, j, &newop);
|
1613 |
|
|
/* If it transforms from an SSA_NAME to an address, fold with
|
1614 |
|
|
a preceding indirect reference. */
|
1615 |
|
|
if (j > 0 && op[0] && TREE_CODE (op[0]) == ADDR_EXPR
|
1616 |
|
|
&& VEC_index (vn_reference_op_s,
|
1617 |
|
|
newoperands, j - 1)->opcode == MEM_REF)
|
1618 |
|
|
vn_reference_fold_indirect (&newoperands, &j);
|
1619 |
|
|
}
|
1620 |
|
|
if (i != VEC_length (vn_reference_op_s, operands))
|
1621 |
|
|
{
|
1622 |
|
|
if (newoperands)
|
1623 |
|
|
VEC_free (vn_reference_op_s, heap, newoperands);
|
1624 |
|
|
return NULL;
|
1625 |
|
|
}
|
1626 |
|
|
|
1627 |
|
|
if (vuse)
|
1628 |
|
|
{
|
1629 |
|
|
newvuse = translate_vuse_through_block (newoperands,
|
1630 |
|
|
ref->set, ref->type,
|
1631 |
|
|
vuse, phiblock, pred,
|
1632 |
|
|
&same_valid);
|
1633 |
|
|
if (newvuse == NULL_TREE)
|
1634 |
|
|
{
|
1635 |
|
|
VEC_free (vn_reference_op_s, heap, newoperands);
|
1636 |
|
|
return NULL;
|
1637 |
|
|
}
|
1638 |
|
|
}
|
1639 |
|
|
|
1640 |
|
|
if (changed || newvuse != vuse)
|
1641 |
|
|
{
|
1642 |
|
|
unsigned int new_val_id;
|
1643 |
|
|
pre_expr constant;
|
1644 |
|
|
bool converted = false;
|
1645 |
|
|
|
1646 |
|
|
tree result = vn_reference_lookup_pieces (newvuse, ref->set,
|
1647 |
|
|
ref->type,
|
1648 |
|
|
newoperands,
|
1649 |
|
|
&newref, VN_WALK);
|
1650 |
|
|
if (result)
|
1651 |
|
|
VEC_free (vn_reference_op_s, heap, newoperands);
|
1652 |
|
|
|
1653 |
|
|
if (result
|
1654 |
|
|
&& !useless_type_conversion_p (ref->type, TREE_TYPE (result)))
|
1655 |
|
|
{
|
1656 |
|
|
result = fold_build1 (VIEW_CONVERT_EXPR, ref->type, result);
|
1657 |
|
|
converted = true;
|
1658 |
|
|
}
|
1659 |
|
|
else if (!result && newref
|
1660 |
|
|
&& !useless_type_conversion_p (ref->type, newref->type))
|
1661 |
|
|
{
|
1662 |
|
|
VEC_free (vn_reference_op_s, heap, newoperands);
|
1663 |
|
|
return NULL;
|
1664 |
|
|
}
|
1665 |
|
|
|
1666 |
|
|
if (result && is_gimple_min_invariant (result))
|
1667 |
|
|
{
|
1668 |
|
|
gcc_assert (!newoperands);
|
1669 |
|
|
return get_or_alloc_expr_for_constant (result);
|
1670 |
|
|
}
|
1671 |
|
|
|
1672 |
|
|
expr = (pre_expr) pool_alloc (pre_expr_pool);
|
1673 |
|
|
expr->kind = REFERENCE;
|
1674 |
|
|
expr->id = 0;
|
1675 |
|
|
|
1676 |
|
|
if (converted)
|
1677 |
|
|
{
|
1678 |
|
|
vn_nary_op_t nary;
|
1679 |
|
|
tree nresult;
|
1680 |
|
|
|
1681 |
|
|
gcc_assert (CONVERT_EXPR_P (result)
|
1682 |
|
|
|| TREE_CODE (result) == VIEW_CONVERT_EXPR);
|
1683 |
|
|
|
1684 |
|
|
nresult = vn_nary_op_lookup_pieces (1, TREE_CODE (result),
|
1685 |
|
|
TREE_TYPE (result),
|
1686 |
|
|
&TREE_OPERAND (result, 0),
|
1687 |
|
|
&nary);
|
1688 |
|
|
if (nresult && is_gimple_min_invariant (nresult))
|
1689 |
|
|
return get_or_alloc_expr_for_constant (nresult);
|
1690 |
|
|
|
1691 |
|
|
expr->kind = NARY;
|
1692 |
|
|
if (nary)
|
1693 |
|
|
{
|
1694 |
|
|
PRE_EXPR_NARY (expr) = nary;
|
1695 |
|
|
constant = fully_constant_expression (expr);
|
1696 |
|
|
if (constant != expr)
|
1697 |
|
|
return constant;
|
1698 |
|
|
|
1699 |
|
|
new_val_id = nary->value_id;
|
1700 |
|
|
get_or_alloc_expression_id (expr);
|
1701 |
|
|
}
|
1702 |
|
|
else
|
1703 |
|
|
{
|
1704 |
|
|
new_val_id = get_next_value_id ();
|
1705 |
|
|
VEC_safe_grow_cleared (bitmap_set_t, heap,
|
1706 |
|
|
value_expressions,
|
1707 |
|
|
get_max_value_id() + 1);
|
1708 |
|
|
nary = vn_nary_op_insert_pieces (1, TREE_CODE (result),
|
1709 |
|
|
TREE_TYPE (result),
|
1710 |
|
|
&TREE_OPERAND (result, 0),
|
1711 |
|
|
NULL_TREE,
|
1712 |
|
|
new_val_id);
|
1713 |
|
|
PRE_EXPR_NARY (expr) = nary;
|
1714 |
|
|
constant = fully_constant_expression (expr);
|
1715 |
|
|
if (constant != expr)
|
1716 |
|
|
return constant;
|
1717 |
|
|
get_or_alloc_expression_id (expr);
|
1718 |
|
|
}
|
1719 |
|
|
}
|
1720 |
|
|
else if (newref)
|
1721 |
|
|
{
|
1722 |
|
|
PRE_EXPR_REFERENCE (expr) = newref;
|
1723 |
|
|
constant = fully_constant_expression (expr);
|
1724 |
|
|
if (constant != expr)
|
1725 |
|
|
return constant;
|
1726 |
|
|
|
1727 |
|
|
new_val_id = newref->value_id;
|
1728 |
|
|
get_or_alloc_expression_id (expr);
|
1729 |
|
|
}
|
1730 |
|
|
else
|
1731 |
|
|
{
|
1732 |
|
|
if (changed || !same_valid)
|
1733 |
|
|
{
|
1734 |
|
|
new_val_id = get_next_value_id ();
|
1735 |
|
|
VEC_safe_grow_cleared (bitmap_set_t, heap,
|
1736 |
|
|
value_expressions,
|
1737 |
|
|
get_max_value_id() + 1);
|
1738 |
|
|
}
|
1739 |
|
|
else
|
1740 |
|
|
new_val_id = ref->value_id;
|
1741 |
|
|
newref = vn_reference_insert_pieces (newvuse, ref->set,
|
1742 |
|
|
ref->type,
|
1743 |
|
|
newoperands,
|
1744 |
|
|
result, new_val_id);
|
1745 |
|
|
newoperands = NULL;
|
1746 |
|
|
PRE_EXPR_REFERENCE (expr) = newref;
|
1747 |
|
|
constant = fully_constant_expression (expr);
|
1748 |
|
|
if (constant != expr)
|
1749 |
|
|
return constant;
|
1750 |
|
|
get_or_alloc_expression_id (expr);
|
1751 |
|
|
}
|
1752 |
|
|
add_to_value (new_val_id, expr);
|
1753 |
|
|
}
|
1754 |
|
|
VEC_free (vn_reference_op_s, heap, newoperands);
|
1755 |
|
|
return expr;
|
1756 |
|
|
}
|
1757 |
|
|
break;
|
1758 |
|
|
|
1759 |
|
|
case NAME:
|
1760 |
|
|
{
|
1761 |
|
|
gimple phi = NULL;
|
1762 |
|
|
edge e;
|
1763 |
|
|
gimple def_stmt;
|
1764 |
|
|
tree name = PRE_EXPR_NAME (expr);
|
1765 |
|
|
|
1766 |
|
|
def_stmt = SSA_NAME_DEF_STMT (name);
|
1767 |
|
|
if (gimple_code (def_stmt) == GIMPLE_PHI
|
1768 |
|
|
&& gimple_bb (def_stmt) == phiblock)
|
1769 |
|
|
phi = def_stmt;
|
1770 |
|
|
else
|
1771 |
|
|
return expr;
|
1772 |
|
|
|
1773 |
|
|
e = find_edge (pred, gimple_bb (phi));
|
1774 |
|
|
if (e)
|
1775 |
|
|
{
|
1776 |
|
|
tree def = PHI_ARG_DEF (phi, e->dest_idx);
|
1777 |
|
|
pre_expr newexpr;
|
1778 |
|
|
|
1779 |
|
|
if (TREE_CODE (def) == SSA_NAME)
|
1780 |
|
|
def = VN_INFO (def)->valnum;
|
1781 |
|
|
|
1782 |
|
|
/* Handle constant. */
|
1783 |
|
|
if (is_gimple_min_invariant (def))
|
1784 |
|
|
return get_or_alloc_expr_for_constant (def);
|
1785 |
|
|
|
1786 |
|
|
if (TREE_CODE (def) == SSA_NAME && ssa_undefined_value_p (def))
|
1787 |
|
|
return NULL;
|
1788 |
|
|
|
1789 |
|
|
newexpr = get_or_alloc_expr_for_name (def);
|
1790 |
|
|
return newexpr;
|
1791 |
|
|
}
|
1792 |
|
|
}
|
1793 |
|
|
return expr;
|
1794 |
|
|
|
1795 |
|
|
default:
|
1796 |
|
|
gcc_unreachable ();
|
1797 |
|
|
}
|
1798 |
|
|
}
|
1799 |
|
|
|
1800 |
|
|
/* Wrapper around phi_translate_1 providing caching functionality. */
|
1801 |
|
|
|
1802 |
|
|
static pre_expr
|
1803 |
|
|
phi_translate (pre_expr expr, bitmap_set_t set1, bitmap_set_t set2,
|
1804 |
|
|
basic_block pred, basic_block phiblock)
|
1805 |
|
|
{
|
1806 |
|
|
pre_expr phitrans;
|
1807 |
|
|
|
1808 |
|
|
if (!expr)
|
1809 |
|
|
return NULL;
|
1810 |
|
|
|
1811 |
|
|
/* Constants contain no values that need translation. */
|
1812 |
|
|
if (expr->kind == CONSTANT)
|
1813 |
|
|
return expr;
|
1814 |
|
|
|
1815 |
|
|
if (value_id_constant_p (get_expr_value_id (expr)))
|
1816 |
|
|
return expr;
|
1817 |
|
|
|
1818 |
|
|
if (expr->kind != NAME)
|
1819 |
|
|
{
|
1820 |
|
|
phitrans = phi_trans_lookup (expr, pred);
|
1821 |
|
|
if (phitrans)
|
1822 |
|
|
return phitrans;
|
1823 |
|
|
}
|
1824 |
|
|
|
1825 |
|
|
/* Translate. */
|
1826 |
|
|
phitrans = phi_translate_1 (expr, set1, set2, pred, phiblock);
|
1827 |
|
|
|
1828 |
|
|
/* Don't add empty translations to the cache. Neither add
|
1829 |
|
|
translations of NAMEs as those are cheap to translate. */
|
1830 |
|
|
if (phitrans
|
1831 |
|
|
&& expr->kind != NAME)
|
1832 |
|
|
phi_trans_add (expr, phitrans, pred);
|
1833 |
|
|
|
1834 |
|
|
return phitrans;
|
1835 |
|
|
}
|
1836 |
|
|
|
1837 |
|
|
|
1838 |
|
|
/* For each expression in SET, translate the values through phi nodes
|
1839 |
|
|
in PHIBLOCK using edge PHIBLOCK->PRED, and store the resulting
|
1840 |
|
|
expressions in DEST. */
|
1841 |
|
|
|
1842 |
|
|
static void
|
1843 |
|
|
phi_translate_set (bitmap_set_t dest, bitmap_set_t set, basic_block pred,
|
1844 |
|
|
basic_block phiblock)
|
1845 |
|
|
{
|
1846 |
|
|
VEC (pre_expr, heap) *exprs;
|
1847 |
|
|
pre_expr expr;
|
1848 |
|
|
int i;
|
1849 |
|
|
|
1850 |
|
|
if (gimple_seq_empty_p (phi_nodes (phiblock)))
|
1851 |
|
|
{
|
1852 |
|
|
bitmap_set_copy (dest, set);
|
1853 |
|
|
return;
|
1854 |
|
|
}
|
1855 |
|
|
|
1856 |
|
|
exprs = sorted_array_from_bitmap_set (set);
|
1857 |
|
|
FOR_EACH_VEC_ELT (pre_expr, exprs, i, expr)
|
1858 |
|
|
{
|
1859 |
|
|
pre_expr translated;
|
1860 |
|
|
translated = phi_translate (expr, set, NULL, pred, phiblock);
|
1861 |
|
|
if (!translated)
|
1862 |
|
|
continue;
|
1863 |
|
|
|
1864 |
|
|
/* We might end up with multiple expressions from SET being
|
1865 |
|
|
translated to the same value. In this case we do not want
|
1866 |
|
|
to retain the NARY or REFERENCE expression but prefer a NAME
|
1867 |
|
|
which would be the leader. */
|
1868 |
|
|
if (translated->kind == NAME)
|
1869 |
|
|
bitmap_value_replace_in_set (dest, translated);
|
1870 |
|
|
else
|
1871 |
|
|
bitmap_value_insert_into_set (dest, translated);
|
1872 |
|
|
}
|
1873 |
|
|
VEC_free (pre_expr, heap, exprs);
|
1874 |
|
|
}
|
1875 |
|
|
|
1876 |
|
|
/* Find the leader for a value (i.e., the name representing that
|
1877 |
|
|
value) in a given set, and return it. If STMT is non-NULL it
|
1878 |
|
|
makes sure the defining statement for the leader dominates it.
|
1879 |
|
|
Return NULL if no leader is found. */
|
1880 |
|
|
|
1881 |
|
|
static pre_expr
|
1882 |
|
|
bitmap_find_leader (bitmap_set_t set, unsigned int val, gimple stmt)
|
1883 |
|
|
{
|
1884 |
|
|
if (value_id_constant_p (val))
|
1885 |
|
|
{
|
1886 |
|
|
unsigned int i;
|
1887 |
|
|
bitmap_iterator bi;
|
1888 |
|
|
bitmap_set_t exprset = VEC_index (bitmap_set_t, value_expressions, val);
|
1889 |
|
|
|
1890 |
|
|
FOR_EACH_EXPR_ID_IN_SET (exprset, i, bi)
|
1891 |
|
|
{
|
1892 |
|
|
pre_expr expr = expression_for_id (i);
|
1893 |
|
|
if (expr->kind == CONSTANT)
|
1894 |
|
|
return expr;
|
1895 |
|
|
}
|
1896 |
|
|
}
|
1897 |
|
|
if (bitmap_set_contains_value (set, val))
|
1898 |
|
|
{
|
1899 |
|
|
/* Rather than walk the entire bitmap of expressions, and see
|
1900 |
|
|
whether any of them has the value we are looking for, we look
|
1901 |
|
|
at the reverse mapping, which tells us the set of expressions
|
1902 |
|
|
that have a given value (IE value->expressions with that
|
1903 |
|
|
value) and see if any of those expressions are in our set.
|
1904 |
|
|
The number of expressions per value is usually significantly
|
1905 |
|
|
less than the number of expressions in the set. In fact, for
|
1906 |
|
|
large testcases, doing it this way is roughly 5-10x faster
|
1907 |
|
|
than walking the bitmap.
|
1908 |
|
|
If this is somehow a significant lose for some cases, we can
|
1909 |
|
|
choose which set to walk based on which set is smaller. */
|
1910 |
|
|
unsigned int i;
|
1911 |
|
|
bitmap_iterator bi;
|
1912 |
|
|
bitmap_set_t exprset = VEC_index (bitmap_set_t, value_expressions, val);
|
1913 |
|
|
|
1914 |
|
|
EXECUTE_IF_AND_IN_BITMAP (&exprset->expressions,
|
1915 |
|
|
&set->expressions, 0, i, bi)
|
1916 |
|
|
{
|
1917 |
|
|
pre_expr val = expression_for_id (i);
|
1918 |
|
|
/* At the point where stmt is not null, there should always
|
1919 |
|
|
be an SSA_NAME first in the list of expressions. */
|
1920 |
|
|
if (stmt)
|
1921 |
|
|
{
|
1922 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (PRE_EXPR_NAME (val));
|
1923 |
|
|
if (gimple_code (def_stmt) != GIMPLE_PHI
|
1924 |
|
|
&& gimple_bb (def_stmt) == gimple_bb (stmt)
|
1925 |
|
|
/* PRE insertions are at the end of the basic-block
|
1926 |
|
|
and have UID 0. */
|
1927 |
|
|
&& (gimple_uid (def_stmt) == 0
|
1928 |
|
|
|| gimple_uid (def_stmt) >= gimple_uid (stmt)))
|
1929 |
|
|
continue;
|
1930 |
|
|
}
|
1931 |
|
|
return val;
|
1932 |
|
|
}
|
1933 |
|
|
}
|
1934 |
|
|
return NULL;
|
1935 |
|
|
}
|
1936 |
|
|
|
1937 |
|
|
/* Determine if EXPR, a memory expression, is ANTIC_IN at the top of
|
1938 |
|
|
BLOCK by seeing if it is not killed in the block. Note that we are
|
1939 |
|
|
only determining whether there is a store that kills it. Because
|
1940 |
|
|
of the order in which clean iterates over values, we are guaranteed
|
1941 |
|
|
that altered operands will have caused us to be eliminated from the
|
1942 |
|
|
ANTIC_IN set already. */
|
1943 |
|
|
|
1944 |
|
|
static bool
|
1945 |
|
|
value_dies_in_block_x (pre_expr expr, basic_block block)
|
1946 |
|
|
{
|
1947 |
|
|
tree vuse = PRE_EXPR_REFERENCE (expr)->vuse;
|
1948 |
|
|
vn_reference_t refx = PRE_EXPR_REFERENCE (expr);
|
1949 |
|
|
gimple def;
|
1950 |
|
|
gimple_stmt_iterator gsi;
|
1951 |
|
|
unsigned id = get_expression_id (expr);
|
1952 |
|
|
bool res = false;
|
1953 |
|
|
ao_ref ref;
|
1954 |
|
|
|
1955 |
|
|
if (!vuse)
|
1956 |
|
|
return false;
|
1957 |
|
|
|
1958 |
|
|
/* Lookup a previously calculated result. */
|
1959 |
|
|
if (EXPR_DIES (block)
|
1960 |
|
|
&& bitmap_bit_p (EXPR_DIES (block), id * 2))
|
1961 |
|
|
return bitmap_bit_p (EXPR_DIES (block), id * 2 + 1);
|
1962 |
|
|
|
1963 |
|
|
/* A memory expression {e, VUSE} dies in the block if there is a
|
1964 |
|
|
statement that may clobber e. If, starting statement walk from the
|
1965 |
|
|
top of the basic block, a statement uses VUSE there can be no kill
|
1966 |
|
|
inbetween that use and the original statement that loaded {e, VUSE},
|
1967 |
|
|
so we can stop walking. */
|
1968 |
|
|
ref.base = NULL_TREE;
|
1969 |
|
|
for (gsi = gsi_start_bb (block); !gsi_end_p (gsi); gsi_next (&gsi))
|
1970 |
|
|
{
|
1971 |
|
|
tree def_vuse, def_vdef;
|
1972 |
|
|
def = gsi_stmt (gsi);
|
1973 |
|
|
def_vuse = gimple_vuse (def);
|
1974 |
|
|
def_vdef = gimple_vdef (def);
|
1975 |
|
|
|
1976 |
|
|
/* Not a memory statement. */
|
1977 |
|
|
if (!def_vuse)
|
1978 |
|
|
continue;
|
1979 |
|
|
|
1980 |
|
|
/* Not a may-def. */
|
1981 |
|
|
if (!def_vdef)
|
1982 |
|
|
{
|
1983 |
|
|
/* A load with the same VUSE, we're done. */
|
1984 |
|
|
if (def_vuse == vuse)
|
1985 |
|
|
break;
|
1986 |
|
|
|
1987 |
|
|
continue;
|
1988 |
|
|
}
|
1989 |
|
|
|
1990 |
|
|
/* Init ref only if we really need it. */
|
1991 |
|
|
if (ref.base == NULL_TREE
|
1992 |
|
|
&& !ao_ref_init_from_vn_reference (&ref, refx->set, refx->type,
|
1993 |
|
|
refx->operands))
|
1994 |
|
|
{
|
1995 |
|
|
res = true;
|
1996 |
|
|
break;
|
1997 |
|
|
}
|
1998 |
|
|
/* If the statement may clobber expr, it dies. */
|
1999 |
|
|
if (stmt_may_clobber_ref_p_1 (def, &ref))
|
2000 |
|
|
{
|
2001 |
|
|
res = true;
|
2002 |
|
|
break;
|
2003 |
|
|
}
|
2004 |
|
|
}
|
2005 |
|
|
|
2006 |
|
|
/* Remember the result. */
|
2007 |
|
|
if (!EXPR_DIES (block))
|
2008 |
|
|
EXPR_DIES (block) = BITMAP_ALLOC (&grand_bitmap_obstack);
|
2009 |
|
|
bitmap_set_bit (EXPR_DIES (block), id * 2);
|
2010 |
|
|
if (res)
|
2011 |
|
|
bitmap_set_bit (EXPR_DIES (block), id * 2 + 1);
|
2012 |
|
|
|
2013 |
|
|
return res;
|
2014 |
|
|
}
|
2015 |
|
|
|
2016 |
|
|
|
2017 |
|
|
#define union_contains_value(SET1, SET2, VAL) \
|
2018 |
|
|
(bitmap_set_contains_value ((SET1), (VAL)) \
|
2019 |
|
|
|| ((SET2) && bitmap_set_contains_value ((SET2), (VAL))))
|
2020 |
|
|
|
2021 |
|
|
/* Determine if vn_reference_op_t VRO is legal in SET1 U SET2.
|
2022 |
|
|
*/
|
2023 |
|
|
static bool
|
2024 |
|
|
vro_valid_in_sets (bitmap_set_t set1, bitmap_set_t set2,
|
2025 |
|
|
vn_reference_op_t vro)
|
2026 |
|
|
{
|
2027 |
|
|
if (vro->op0 && TREE_CODE (vro->op0) == SSA_NAME)
|
2028 |
|
|
{
|
2029 |
|
|
struct pre_expr_d temp;
|
2030 |
|
|
temp.kind = NAME;
|
2031 |
|
|
temp.id = 0;
|
2032 |
|
|
PRE_EXPR_NAME (&temp) = vro->op0;
|
2033 |
|
|
temp.id = lookup_expression_id (&temp);
|
2034 |
|
|
if (temp.id == 0)
|
2035 |
|
|
return false;
|
2036 |
|
|
if (!union_contains_value (set1, set2,
|
2037 |
|
|
get_expr_value_id (&temp)))
|
2038 |
|
|
return false;
|
2039 |
|
|
}
|
2040 |
|
|
if (vro->op1 && TREE_CODE (vro->op1) == SSA_NAME)
|
2041 |
|
|
{
|
2042 |
|
|
struct pre_expr_d temp;
|
2043 |
|
|
temp.kind = NAME;
|
2044 |
|
|
temp.id = 0;
|
2045 |
|
|
PRE_EXPR_NAME (&temp) = vro->op1;
|
2046 |
|
|
temp.id = lookup_expression_id (&temp);
|
2047 |
|
|
if (temp.id == 0)
|
2048 |
|
|
return false;
|
2049 |
|
|
if (!union_contains_value (set1, set2,
|
2050 |
|
|
get_expr_value_id (&temp)))
|
2051 |
|
|
return false;
|
2052 |
|
|
}
|
2053 |
|
|
|
2054 |
|
|
if (vro->op2 && TREE_CODE (vro->op2) == SSA_NAME)
|
2055 |
|
|
{
|
2056 |
|
|
struct pre_expr_d temp;
|
2057 |
|
|
temp.kind = NAME;
|
2058 |
|
|
temp.id = 0;
|
2059 |
|
|
PRE_EXPR_NAME (&temp) = vro->op2;
|
2060 |
|
|
temp.id = lookup_expression_id (&temp);
|
2061 |
|
|
if (temp.id == 0)
|
2062 |
|
|
return false;
|
2063 |
|
|
if (!union_contains_value (set1, set2,
|
2064 |
|
|
get_expr_value_id (&temp)))
|
2065 |
|
|
return false;
|
2066 |
|
|
}
|
2067 |
|
|
|
2068 |
|
|
return true;
|
2069 |
|
|
}
|
2070 |
|
|
|
2071 |
|
|
/* Determine if the expression EXPR is valid in SET1 U SET2.
|
2072 |
|
|
ONLY SET2 CAN BE NULL.
|
2073 |
|
|
This means that we have a leader for each part of the expression
|
2074 |
|
|
(if it consists of values), or the expression is an SSA_NAME.
|
2075 |
|
|
For loads/calls, we also see if the vuse is killed in this block. */
|
2076 |
|
|
|
2077 |
|
|
static bool
|
2078 |
|
|
valid_in_sets (bitmap_set_t set1, bitmap_set_t set2, pre_expr expr,
|
2079 |
|
|
basic_block block)
|
2080 |
|
|
{
|
2081 |
|
|
switch (expr->kind)
|
2082 |
|
|
{
|
2083 |
|
|
case NAME:
|
2084 |
|
|
return bitmap_set_contains_expr (AVAIL_OUT (block), expr);
|
2085 |
|
|
case NARY:
|
2086 |
|
|
{
|
2087 |
|
|
unsigned int i;
|
2088 |
|
|
vn_nary_op_t nary = PRE_EXPR_NARY (expr);
|
2089 |
|
|
for (i = 0; i < nary->length; i++)
|
2090 |
|
|
{
|
2091 |
|
|
if (TREE_CODE (nary->op[i]) == SSA_NAME)
|
2092 |
|
|
{
|
2093 |
|
|
struct pre_expr_d temp;
|
2094 |
|
|
temp.kind = NAME;
|
2095 |
|
|
temp.id = 0;
|
2096 |
|
|
PRE_EXPR_NAME (&temp) = nary->op[i];
|
2097 |
|
|
temp.id = lookup_expression_id (&temp);
|
2098 |
|
|
if (temp.id == 0)
|
2099 |
|
|
return false;
|
2100 |
|
|
if (!union_contains_value (set1, set2,
|
2101 |
|
|
get_expr_value_id (&temp)))
|
2102 |
|
|
return false;
|
2103 |
|
|
}
|
2104 |
|
|
}
|
2105 |
|
|
/* If the NARY may trap make sure the block does not contain
|
2106 |
|
|
a possible exit point.
|
2107 |
|
|
??? This is overly conservative if we translate AVAIL_OUT
|
2108 |
|
|
as the available expression might be after the exit point. */
|
2109 |
|
|
if (BB_MAY_NOTRETURN (block)
|
2110 |
|
|
&& vn_nary_may_trap (nary))
|
2111 |
|
|
return false;
|
2112 |
|
|
return true;
|
2113 |
|
|
}
|
2114 |
|
|
break;
|
2115 |
|
|
case REFERENCE:
|
2116 |
|
|
{
|
2117 |
|
|
vn_reference_t ref = PRE_EXPR_REFERENCE (expr);
|
2118 |
|
|
vn_reference_op_t vro;
|
2119 |
|
|
unsigned int i;
|
2120 |
|
|
|
2121 |
|
|
FOR_EACH_VEC_ELT (vn_reference_op_s, ref->operands, i, vro)
|
2122 |
|
|
{
|
2123 |
|
|
if (!vro_valid_in_sets (set1, set2, vro))
|
2124 |
|
|
return false;
|
2125 |
|
|
}
|
2126 |
|
|
if (ref->vuse)
|
2127 |
|
|
{
|
2128 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (ref->vuse);
|
2129 |
|
|
if (!gimple_nop_p (def_stmt)
|
2130 |
|
|
&& gimple_bb (def_stmt) != block
|
2131 |
|
|
&& !dominated_by_p (CDI_DOMINATORS,
|
2132 |
|
|
block, gimple_bb (def_stmt)))
|
2133 |
|
|
return false;
|
2134 |
|
|
}
|
2135 |
|
|
return !value_dies_in_block_x (expr, block);
|
2136 |
|
|
}
|
2137 |
|
|
default:
|
2138 |
|
|
gcc_unreachable ();
|
2139 |
|
|
}
|
2140 |
|
|
}
|
2141 |
|
|
|
2142 |
|
|
/* Clean the set of expressions that are no longer valid in SET1 or
|
2143 |
|
|
SET2. This means expressions that are made up of values we have no
|
2144 |
|
|
leaders for in SET1 or SET2. This version is used for partial
|
2145 |
|
|
anticipation, which means it is not valid in either ANTIC_IN or
|
2146 |
|
|
PA_IN. */
|
2147 |
|
|
|
2148 |
|
|
static void
|
2149 |
|
|
dependent_clean (bitmap_set_t set1, bitmap_set_t set2, basic_block block)
|
2150 |
|
|
{
|
2151 |
|
|
VEC (pre_expr, heap) *exprs = sorted_array_from_bitmap_set (set1);
|
2152 |
|
|
pre_expr expr;
|
2153 |
|
|
int i;
|
2154 |
|
|
|
2155 |
|
|
FOR_EACH_VEC_ELT (pre_expr, exprs, i, expr)
|
2156 |
|
|
{
|
2157 |
|
|
if (!valid_in_sets (set1, set2, expr, block))
|
2158 |
|
|
bitmap_remove_from_set (set1, expr);
|
2159 |
|
|
}
|
2160 |
|
|
VEC_free (pre_expr, heap, exprs);
|
2161 |
|
|
}
|
2162 |
|
|
|
2163 |
|
|
/* Clean the set of expressions that are no longer valid in SET. This
|
2164 |
|
|
means expressions that are made up of values we have no leaders for
|
2165 |
|
|
in SET. */
|
2166 |
|
|
|
2167 |
|
|
static void
|
2168 |
|
|
clean (bitmap_set_t set, basic_block block)
|
2169 |
|
|
{
|
2170 |
|
|
VEC (pre_expr, heap) *exprs = sorted_array_from_bitmap_set (set);
|
2171 |
|
|
pre_expr expr;
|
2172 |
|
|
int i;
|
2173 |
|
|
|
2174 |
|
|
FOR_EACH_VEC_ELT (pre_expr, exprs, i, expr)
|
2175 |
|
|
{
|
2176 |
|
|
if (!valid_in_sets (set, NULL, expr, block))
|
2177 |
|
|
bitmap_remove_from_set (set, expr);
|
2178 |
|
|
}
|
2179 |
|
|
VEC_free (pre_expr, heap, exprs);
|
2180 |
|
|
}
|
2181 |
|
|
|
2182 |
|
|
static sbitmap has_abnormal_preds;
|
2183 |
|
|
|
2184 |
|
|
/* List of blocks that may have changed during ANTIC computation and
|
2185 |
|
|
thus need to be iterated over. */
|
2186 |
|
|
|
2187 |
|
|
static sbitmap changed_blocks;
|
2188 |
|
|
|
2189 |
|
|
/* Decide whether to defer a block for a later iteration, or PHI
|
2190 |
|
|
translate SOURCE to DEST using phis in PHIBLOCK. Return false if we
|
2191 |
|
|
should defer the block, and true if we processed it. */
|
2192 |
|
|
|
2193 |
|
|
static bool
|
2194 |
|
|
defer_or_phi_translate_block (bitmap_set_t dest, bitmap_set_t source,
|
2195 |
|
|
basic_block block, basic_block phiblock)
|
2196 |
|
|
{
|
2197 |
|
|
if (!BB_VISITED (phiblock))
|
2198 |
|
|
{
|
2199 |
|
|
SET_BIT (changed_blocks, block->index);
|
2200 |
|
|
BB_VISITED (block) = 0;
|
2201 |
|
|
BB_DEFERRED (block) = 1;
|
2202 |
|
|
return false;
|
2203 |
|
|
}
|
2204 |
|
|
else
|
2205 |
|
|
phi_translate_set (dest, source, block, phiblock);
|
2206 |
|
|
return true;
|
2207 |
|
|
}
|
2208 |
|
|
|
2209 |
|
|
/* Compute the ANTIC set for BLOCK.
|
2210 |
|
|
|
2211 |
|
|
If succs(BLOCK) > 1 then
|
2212 |
|
|
ANTIC_OUT[BLOCK] = intersection of ANTIC_IN[b] for all succ(BLOCK)
|
2213 |
|
|
else if succs(BLOCK) == 1 then
|
2214 |
|
|
ANTIC_OUT[BLOCK] = phi_translate (ANTIC_IN[succ(BLOCK)])
|
2215 |
|
|
|
2216 |
|
|
ANTIC_IN[BLOCK] = clean(ANTIC_OUT[BLOCK] U EXP_GEN[BLOCK] - TMP_GEN[BLOCK])
|
2217 |
|
|
*/
|
2218 |
|
|
|
2219 |
|
|
static bool
|
2220 |
|
|
compute_antic_aux (basic_block block, bool block_has_abnormal_pred_edge)
|
2221 |
|
|
{
|
2222 |
|
|
bool changed = false;
|
2223 |
|
|
bitmap_set_t S, old, ANTIC_OUT;
|
2224 |
|
|
bitmap_iterator bi;
|
2225 |
|
|
unsigned int bii;
|
2226 |
|
|
edge e;
|
2227 |
|
|
edge_iterator ei;
|
2228 |
|
|
|
2229 |
|
|
old = ANTIC_OUT = S = NULL;
|
2230 |
|
|
BB_VISITED (block) = 1;
|
2231 |
|
|
|
2232 |
|
|
/* If any edges from predecessors are abnormal, antic_in is empty,
|
2233 |
|
|
so do nothing. */
|
2234 |
|
|
if (block_has_abnormal_pred_edge)
|
2235 |
|
|
goto maybe_dump_sets;
|
2236 |
|
|
|
2237 |
|
|
old = ANTIC_IN (block);
|
2238 |
|
|
ANTIC_OUT = bitmap_set_new ();
|
2239 |
|
|
|
2240 |
|
|
/* If the block has no successors, ANTIC_OUT is empty. */
|
2241 |
|
|
if (EDGE_COUNT (block->succs) == 0)
|
2242 |
|
|
;
|
2243 |
|
|
/* If we have one successor, we could have some phi nodes to
|
2244 |
|
|
translate through. */
|
2245 |
|
|
else if (single_succ_p (block))
|
2246 |
|
|
{
|
2247 |
|
|
basic_block succ_bb = single_succ (block);
|
2248 |
|
|
|
2249 |
|
|
/* We trade iterations of the dataflow equations for having to
|
2250 |
|
|
phi translate the maximal set, which is incredibly slow
|
2251 |
|
|
(since the maximal set often has 300+ members, even when you
|
2252 |
|
|
have a small number of blocks).
|
2253 |
|
|
Basically, we defer the computation of ANTIC for this block
|
2254 |
|
|
until we have processed it's successor, which will inevitably
|
2255 |
|
|
have a *much* smaller set of values to phi translate once
|
2256 |
|
|
clean has been run on it.
|
2257 |
|
|
The cost of doing this is that we technically perform more
|
2258 |
|
|
iterations, however, they are lower cost iterations.
|
2259 |
|
|
|
2260 |
|
|
Timings for PRE on tramp3d-v4:
|
2261 |
|
|
without maximal set fix: 11 seconds
|
2262 |
|
|
with maximal set fix/without deferring: 26 seconds
|
2263 |
|
|
with maximal set fix/with deferring: 11 seconds
|
2264 |
|
|
*/
|
2265 |
|
|
|
2266 |
|
|
if (!defer_or_phi_translate_block (ANTIC_OUT, ANTIC_IN (succ_bb),
|
2267 |
|
|
block, succ_bb))
|
2268 |
|
|
{
|
2269 |
|
|
changed = true;
|
2270 |
|
|
goto maybe_dump_sets;
|
2271 |
|
|
}
|
2272 |
|
|
}
|
2273 |
|
|
/* If we have multiple successors, we take the intersection of all of
|
2274 |
|
|
them. Note that in the case of loop exit phi nodes, we may have
|
2275 |
|
|
phis to translate through. */
|
2276 |
|
|
else
|
2277 |
|
|
{
|
2278 |
|
|
VEC(basic_block, heap) * worklist;
|
2279 |
|
|
size_t i;
|
2280 |
|
|
basic_block bprime, first = NULL;
|
2281 |
|
|
|
2282 |
|
|
worklist = VEC_alloc (basic_block, heap, EDGE_COUNT (block->succs));
|
2283 |
|
|
FOR_EACH_EDGE (e, ei, block->succs)
|
2284 |
|
|
{
|
2285 |
|
|
if (!first
|
2286 |
|
|
&& BB_VISITED (e->dest))
|
2287 |
|
|
first = e->dest;
|
2288 |
|
|
else if (BB_VISITED (e->dest))
|
2289 |
|
|
VEC_quick_push (basic_block, worklist, e->dest);
|
2290 |
|
|
}
|
2291 |
|
|
|
2292 |
|
|
/* Of multiple successors we have to have visited one already. */
|
2293 |
|
|
if (!first)
|
2294 |
|
|
{
|
2295 |
|
|
SET_BIT (changed_blocks, block->index);
|
2296 |
|
|
BB_VISITED (block) = 0;
|
2297 |
|
|
BB_DEFERRED (block) = 1;
|
2298 |
|
|
changed = true;
|
2299 |
|
|
VEC_free (basic_block, heap, worklist);
|
2300 |
|
|
goto maybe_dump_sets;
|
2301 |
|
|
}
|
2302 |
|
|
|
2303 |
|
|
if (!gimple_seq_empty_p (phi_nodes (first)))
|
2304 |
|
|
phi_translate_set (ANTIC_OUT, ANTIC_IN (first), block, first);
|
2305 |
|
|
else
|
2306 |
|
|
bitmap_set_copy (ANTIC_OUT, ANTIC_IN (first));
|
2307 |
|
|
|
2308 |
|
|
FOR_EACH_VEC_ELT (basic_block, worklist, i, bprime)
|
2309 |
|
|
{
|
2310 |
|
|
if (!gimple_seq_empty_p (phi_nodes (bprime)))
|
2311 |
|
|
{
|
2312 |
|
|
bitmap_set_t tmp = bitmap_set_new ();
|
2313 |
|
|
phi_translate_set (tmp, ANTIC_IN (bprime), block, bprime);
|
2314 |
|
|
bitmap_set_and (ANTIC_OUT, tmp);
|
2315 |
|
|
bitmap_set_free (tmp);
|
2316 |
|
|
}
|
2317 |
|
|
else
|
2318 |
|
|
bitmap_set_and (ANTIC_OUT, ANTIC_IN (bprime));
|
2319 |
|
|
}
|
2320 |
|
|
VEC_free (basic_block, heap, worklist);
|
2321 |
|
|
}
|
2322 |
|
|
|
2323 |
|
|
/* Generate ANTIC_OUT - TMP_GEN. */
|
2324 |
|
|
S = bitmap_set_subtract (ANTIC_OUT, TMP_GEN (block));
|
2325 |
|
|
|
2326 |
|
|
/* Start ANTIC_IN with EXP_GEN - TMP_GEN. */
|
2327 |
|
|
ANTIC_IN (block) = bitmap_set_subtract (EXP_GEN (block),
|
2328 |
|
|
TMP_GEN (block));
|
2329 |
|
|
|
2330 |
|
|
/* Then union in the ANTIC_OUT - TMP_GEN values,
|
2331 |
|
|
to get ANTIC_OUT U EXP_GEN - TMP_GEN */
|
2332 |
|
|
FOR_EACH_EXPR_ID_IN_SET (S, bii, bi)
|
2333 |
|
|
bitmap_value_insert_into_set (ANTIC_IN (block),
|
2334 |
|
|
expression_for_id (bii));
|
2335 |
|
|
|
2336 |
|
|
clean (ANTIC_IN (block), block);
|
2337 |
|
|
|
2338 |
|
|
if (!bitmap_set_equal (old, ANTIC_IN (block)))
|
2339 |
|
|
{
|
2340 |
|
|
changed = true;
|
2341 |
|
|
SET_BIT (changed_blocks, block->index);
|
2342 |
|
|
FOR_EACH_EDGE (e, ei, block->preds)
|
2343 |
|
|
SET_BIT (changed_blocks, e->src->index);
|
2344 |
|
|
}
|
2345 |
|
|
else
|
2346 |
|
|
RESET_BIT (changed_blocks, block->index);
|
2347 |
|
|
|
2348 |
|
|
maybe_dump_sets:
|
2349 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2350 |
|
|
{
|
2351 |
|
|
if (!BB_DEFERRED (block) || BB_VISITED (block))
|
2352 |
|
|
{
|
2353 |
|
|
if (ANTIC_OUT)
|
2354 |
|
|
print_bitmap_set (dump_file, ANTIC_OUT, "ANTIC_OUT", block->index);
|
2355 |
|
|
|
2356 |
|
|
print_bitmap_set (dump_file, ANTIC_IN (block), "ANTIC_IN",
|
2357 |
|
|
block->index);
|
2358 |
|
|
|
2359 |
|
|
if (S)
|
2360 |
|
|
print_bitmap_set (dump_file, S, "S", block->index);
|
2361 |
|
|
}
|
2362 |
|
|
else
|
2363 |
|
|
{
|
2364 |
|
|
fprintf (dump_file,
|
2365 |
|
|
"Block %d was deferred for a future iteration.\n",
|
2366 |
|
|
block->index);
|
2367 |
|
|
}
|
2368 |
|
|
}
|
2369 |
|
|
if (old)
|
2370 |
|
|
bitmap_set_free (old);
|
2371 |
|
|
if (S)
|
2372 |
|
|
bitmap_set_free (S);
|
2373 |
|
|
if (ANTIC_OUT)
|
2374 |
|
|
bitmap_set_free (ANTIC_OUT);
|
2375 |
|
|
return changed;
|
2376 |
|
|
}
|
2377 |
|
|
|
2378 |
|
|
/* Compute PARTIAL_ANTIC for BLOCK.
|
2379 |
|
|
|
2380 |
|
|
If succs(BLOCK) > 1 then
|
2381 |
|
|
PA_OUT[BLOCK] = value wise union of PA_IN[b] + all ANTIC_IN not
|
2382 |
|
|
in ANTIC_OUT for all succ(BLOCK)
|
2383 |
|
|
else if succs(BLOCK) == 1 then
|
2384 |
|
|
PA_OUT[BLOCK] = phi_translate (PA_IN[succ(BLOCK)])
|
2385 |
|
|
|
2386 |
|
|
PA_IN[BLOCK] = dependent_clean(PA_OUT[BLOCK] - TMP_GEN[BLOCK]
|
2387 |
|
|
- ANTIC_IN[BLOCK])
|
2388 |
|
|
|
2389 |
|
|
*/
|
2390 |
|
|
static bool
|
2391 |
|
|
compute_partial_antic_aux (basic_block block,
|
2392 |
|
|
bool block_has_abnormal_pred_edge)
|
2393 |
|
|
{
|
2394 |
|
|
bool changed = false;
|
2395 |
|
|
bitmap_set_t old_PA_IN;
|
2396 |
|
|
bitmap_set_t PA_OUT;
|
2397 |
|
|
edge e;
|
2398 |
|
|
edge_iterator ei;
|
2399 |
|
|
unsigned long max_pa = PARAM_VALUE (PARAM_MAX_PARTIAL_ANTIC_LENGTH);
|
2400 |
|
|
|
2401 |
|
|
old_PA_IN = PA_OUT = NULL;
|
2402 |
|
|
|
2403 |
|
|
/* If any edges from predecessors are abnormal, antic_in is empty,
|
2404 |
|
|
so do nothing. */
|
2405 |
|
|
if (block_has_abnormal_pred_edge)
|
2406 |
|
|
goto maybe_dump_sets;
|
2407 |
|
|
|
2408 |
|
|
/* If there are too many partially anticipatable values in the
|
2409 |
|
|
block, phi_translate_set can take an exponential time: stop
|
2410 |
|
|
before the translation starts. */
|
2411 |
|
|
if (max_pa
|
2412 |
|
|
&& single_succ_p (block)
|
2413 |
|
|
&& bitmap_count_bits (&PA_IN (single_succ (block))->values) > max_pa)
|
2414 |
|
|
goto maybe_dump_sets;
|
2415 |
|
|
|
2416 |
|
|
old_PA_IN = PA_IN (block);
|
2417 |
|
|
PA_OUT = bitmap_set_new ();
|
2418 |
|
|
|
2419 |
|
|
/* If the block has no successors, ANTIC_OUT is empty. */
|
2420 |
|
|
if (EDGE_COUNT (block->succs) == 0)
|
2421 |
|
|
;
|
2422 |
|
|
/* If we have one successor, we could have some phi nodes to
|
2423 |
|
|
translate through. Note that we can't phi translate across DFS
|
2424 |
|
|
back edges in partial antic, because it uses a union operation on
|
2425 |
|
|
the successors. For recurrences like IV's, we will end up
|
2426 |
|
|
generating a new value in the set on each go around (i + 3 (VH.1)
|
2427 |
|
|
VH.1 + 1 (VH.2), VH.2 + 1 (VH.3), etc), forever. */
|
2428 |
|
|
else if (single_succ_p (block))
|
2429 |
|
|
{
|
2430 |
|
|
basic_block succ = single_succ (block);
|
2431 |
|
|
if (!(single_succ_edge (block)->flags & EDGE_DFS_BACK))
|
2432 |
|
|
phi_translate_set (PA_OUT, PA_IN (succ), block, succ);
|
2433 |
|
|
}
|
2434 |
|
|
/* If we have multiple successors, we take the union of all of
|
2435 |
|
|
them. */
|
2436 |
|
|
else
|
2437 |
|
|
{
|
2438 |
|
|
VEC(basic_block, heap) * worklist;
|
2439 |
|
|
size_t i;
|
2440 |
|
|
basic_block bprime;
|
2441 |
|
|
|
2442 |
|
|
worklist = VEC_alloc (basic_block, heap, EDGE_COUNT (block->succs));
|
2443 |
|
|
FOR_EACH_EDGE (e, ei, block->succs)
|
2444 |
|
|
{
|
2445 |
|
|
if (e->flags & EDGE_DFS_BACK)
|
2446 |
|
|
continue;
|
2447 |
|
|
VEC_quick_push (basic_block, worklist, e->dest);
|
2448 |
|
|
}
|
2449 |
|
|
if (VEC_length (basic_block, worklist) > 0)
|
2450 |
|
|
{
|
2451 |
|
|
FOR_EACH_VEC_ELT (basic_block, worklist, i, bprime)
|
2452 |
|
|
{
|
2453 |
|
|
unsigned int i;
|
2454 |
|
|
bitmap_iterator bi;
|
2455 |
|
|
|
2456 |
|
|
FOR_EACH_EXPR_ID_IN_SET (ANTIC_IN (bprime), i, bi)
|
2457 |
|
|
bitmap_value_insert_into_set (PA_OUT,
|
2458 |
|
|
expression_for_id (i));
|
2459 |
|
|
if (!gimple_seq_empty_p (phi_nodes (bprime)))
|
2460 |
|
|
{
|
2461 |
|
|
bitmap_set_t pa_in = bitmap_set_new ();
|
2462 |
|
|
phi_translate_set (pa_in, PA_IN (bprime), block, bprime);
|
2463 |
|
|
FOR_EACH_EXPR_ID_IN_SET (pa_in, i, bi)
|
2464 |
|
|
bitmap_value_insert_into_set (PA_OUT,
|
2465 |
|
|
expression_for_id (i));
|
2466 |
|
|
bitmap_set_free (pa_in);
|
2467 |
|
|
}
|
2468 |
|
|
else
|
2469 |
|
|
FOR_EACH_EXPR_ID_IN_SET (PA_IN (bprime), i, bi)
|
2470 |
|
|
bitmap_value_insert_into_set (PA_OUT,
|
2471 |
|
|
expression_for_id (i));
|
2472 |
|
|
}
|
2473 |
|
|
}
|
2474 |
|
|
VEC_free (basic_block, heap, worklist);
|
2475 |
|
|
}
|
2476 |
|
|
|
2477 |
|
|
/* PA_IN starts with PA_OUT - TMP_GEN.
|
2478 |
|
|
Then we subtract things from ANTIC_IN. */
|
2479 |
|
|
PA_IN (block) = bitmap_set_subtract (PA_OUT, TMP_GEN (block));
|
2480 |
|
|
|
2481 |
|
|
/* For partial antic, we want to put back in the phi results, since
|
2482 |
|
|
we will properly avoid making them partially antic over backedges. */
|
2483 |
|
|
bitmap_ior_into (&PA_IN (block)->values, &PHI_GEN (block)->values);
|
2484 |
|
|
bitmap_ior_into (&PA_IN (block)->expressions, &PHI_GEN (block)->expressions);
|
2485 |
|
|
|
2486 |
|
|
/* PA_IN[block] = PA_IN[block] - ANTIC_IN[block] */
|
2487 |
|
|
bitmap_set_subtract_values (PA_IN (block), ANTIC_IN (block));
|
2488 |
|
|
|
2489 |
|
|
dependent_clean (PA_IN (block), ANTIC_IN (block), block);
|
2490 |
|
|
|
2491 |
|
|
if (!bitmap_set_equal (old_PA_IN, PA_IN (block)))
|
2492 |
|
|
{
|
2493 |
|
|
changed = true;
|
2494 |
|
|
SET_BIT (changed_blocks, block->index);
|
2495 |
|
|
FOR_EACH_EDGE (e, ei, block->preds)
|
2496 |
|
|
SET_BIT (changed_blocks, e->src->index);
|
2497 |
|
|
}
|
2498 |
|
|
else
|
2499 |
|
|
RESET_BIT (changed_blocks, block->index);
|
2500 |
|
|
|
2501 |
|
|
maybe_dump_sets:
|
2502 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2503 |
|
|
{
|
2504 |
|
|
if (PA_OUT)
|
2505 |
|
|
print_bitmap_set (dump_file, PA_OUT, "PA_OUT", block->index);
|
2506 |
|
|
|
2507 |
|
|
print_bitmap_set (dump_file, PA_IN (block), "PA_IN", block->index);
|
2508 |
|
|
}
|
2509 |
|
|
if (old_PA_IN)
|
2510 |
|
|
bitmap_set_free (old_PA_IN);
|
2511 |
|
|
if (PA_OUT)
|
2512 |
|
|
bitmap_set_free (PA_OUT);
|
2513 |
|
|
return changed;
|
2514 |
|
|
}
|
2515 |
|
|
|
2516 |
|
|
/* Compute ANTIC and partial ANTIC sets. */
|
2517 |
|
|
|
2518 |
|
|
static void
|
2519 |
|
|
compute_antic (void)
|
2520 |
|
|
{
|
2521 |
|
|
bool changed = true;
|
2522 |
|
|
int num_iterations = 0;
|
2523 |
|
|
basic_block block;
|
2524 |
|
|
int i;
|
2525 |
|
|
|
2526 |
|
|
/* If any predecessor edges are abnormal, we punt, so antic_in is empty.
|
2527 |
|
|
We pre-build the map of blocks with incoming abnormal edges here. */
|
2528 |
|
|
has_abnormal_preds = sbitmap_alloc (last_basic_block);
|
2529 |
|
|
sbitmap_zero (has_abnormal_preds);
|
2530 |
|
|
|
2531 |
|
|
FOR_EACH_BB (block)
|
2532 |
|
|
{
|
2533 |
|
|
edge_iterator ei;
|
2534 |
|
|
edge e;
|
2535 |
|
|
|
2536 |
|
|
FOR_EACH_EDGE (e, ei, block->preds)
|
2537 |
|
|
{
|
2538 |
|
|
e->flags &= ~EDGE_DFS_BACK;
|
2539 |
|
|
if (e->flags & EDGE_ABNORMAL)
|
2540 |
|
|
{
|
2541 |
|
|
SET_BIT (has_abnormal_preds, block->index);
|
2542 |
|
|
break;
|
2543 |
|
|
}
|
2544 |
|
|
}
|
2545 |
|
|
|
2546 |
|
|
BB_VISITED (block) = 0;
|
2547 |
|
|
BB_DEFERRED (block) = 0;
|
2548 |
|
|
|
2549 |
|
|
/* While we are here, give empty ANTIC_IN sets to each block. */
|
2550 |
|
|
ANTIC_IN (block) = bitmap_set_new ();
|
2551 |
|
|
PA_IN (block) = bitmap_set_new ();
|
2552 |
|
|
}
|
2553 |
|
|
|
2554 |
|
|
/* At the exit block we anticipate nothing. */
|
2555 |
|
|
ANTIC_IN (EXIT_BLOCK_PTR) = bitmap_set_new ();
|
2556 |
|
|
BB_VISITED (EXIT_BLOCK_PTR) = 1;
|
2557 |
|
|
PA_IN (EXIT_BLOCK_PTR) = bitmap_set_new ();
|
2558 |
|
|
|
2559 |
|
|
changed_blocks = sbitmap_alloc (last_basic_block + 1);
|
2560 |
|
|
sbitmap_ones (changed_blocks);
|
2561 |
|
|
while (changed)
|
2562 |
|
|
{
|
2563 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2564 |
|
|
fprintf (dump_file, "Starting iteration %d\n", num_iterations);
|
2565 |
|
|
/* ??? We need to clear our PHI translation cache here as the
|
2566 |
|
|
ANTIC sets shrink and we restrict valid translations to
|
2567 |
|
|
those having operands with leaders in ANTIC. Same below
|
2568 |
|
|
for PA ANTIC computation. */
|
2569 |
|
|
num_iterations++;
|
2570 |
|
|
changed = false;
|
2571 |
|
|
for (i = n_basic_blocks - NUM_FIXED_BLOCKS - 1; i >= 0; i--)
|
2572 |
|
|
{
|
2573 |
|
|
if (TEST_BIT (changed_blocks, postorder[i]))
|
2574 |
|
|
{
|
2575 |
|
|
basic_block block = BASIC_BLOCK (postorder[i]);
|
2576 |
|
|
changed |= compute_antic_aux (block,
|
2577 |
|
|
TEST_BIT (has_abnormal_preds,
|
2578 |
|
|
block->index));
|
2579 |
|
|
}
|
2580 |
|
|
}
|
2581 |
|
|
/* Theoretically possible, but *highly* unlikely. */
|
2582 |
|
|
gcc_checking_assert (num_iterations < 500);
|
2583 |
|
|
}
|
2584 |
|
|
|
2585 |
|
|
statistics_histogram_event (cfun, "compute_antic iterations",
|
2586 |
|
|
num_iterations);
|
2587 |
|
|
|
2588 |
|
|
if (do_partial_partial)
|
2589 |
|
|
{
|
2590 |
|
|
sbitmap_ones (changed_blocks);
|
2591 |
|
|
mark_dfs_back_edges ();
|
2592 |
|
|
num_iterations = 0;
|
2593 |
|
|
changed = true;
|
2594 |
|
|
while (changed)
|
2595 |
|
|
{
|
2596 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2597 |
|
|
fprintf (dump_file, "Starting iteration %d\n", num_iterations);
|
2598 |
|
|
num_iterations++;
|
2599 |
|
|
changed = false;
|
2600 |
|
|
for (i = n_basic_blocks - NUM_FIXED_BLOCKS - 1 ; i >= 0; i--)
|
2601 |
|
|
{
|
2602 |
|
|
if (TEST_BIT (changed_blocks, postorder[i]))
|
2603 |
|
|
{
|
2604 |
|
|
basic_block block = BASIC_BLOCK (postorder[i]);
|
2605 |
|
|
changed
|
2606 |
|
|
|= compute_partial_antic_aux (block,
|
2607 |
|
|
TEST_BIT (has_abnormal_preds,
|
2608 |
|
|
block->index));
|
2609 |
|
|
}
|
2610 |
|
|
}
|
2611 |
|
|
/* Theoretically possible, but *highly* unlikely. */
|
2612 |
|
|
gcc_checking_assert (num_iterations < 500);
|
2613 |
|
|
}
|
2614 |
|
|
statistics_histogram_event (cfun, "compute_partial_antic iterations",
|
2615 |
|
|
num_iterations);
|
2616 |
|
|
}
|
2617 |
|
|
sbitmap_free (has_abnormal_preds);
|
2618 |
|
|
sbitmap_free (changed_blocks);
|
2619 |
|
|
}
|
2620 |
|
|
|
2621 |
|
|
/* Return true if we can value number the call in STMT. This is true
|
2622 |
|
|
if we have a pure or constant call to a real function. */
|
2623 |
|
|
|
2624 |
|
|
static bool
|
2625 |
|
|
can_value_number_call (gimple stmt)
|
2626 |
|
|
{
|
2627 |
|
|
if (gimple_call_internal_p (stmt))
|
2628 |
|
|
return false;
|
2629 |
|
|
if (gimple_call_flags (stmt) & (ECF_PURE | ECF_CONST))
|
2630 |
|
|
return true;
|
2631 |
|
|
return false;
|
2632 |
|
|
}
|
2633 |
|
|
|
2634 |
|
|
/* Return true if OP is a tree which we can perform PRE on.
|
2635 |
|
|
This may not match the operations we can value number, but in
|
2636 |
|
|
a perfect world would. */
|
2637 |
|
|
|
2638 |
|
|
static bool
|
2639 |
|
|
can_PRE_operation (tree op)
|
2640 |
|
|
{
|
2641 |
|
|
return UNARY_CLASS_P (op)
|
2642 |
|
|
|| BINARY_CLASS_P (op)
|
2643 |
|
|
|| COMPARISON_CLASS_P (op)
|
2644 |
|
|
|| TREE_CODE (op) == MEM_REF
|
2645 |
|
|
|| TREE_CODE (op) == COMPONENT_REF
|
2646 |
|
|
|| TREE_CODE (op) == VIEW_CONVERT_EXPR
|
2647 |
|
|
|| TREE_CODE (op) == CALL_EXPR
|
2648 |
|
|
|| TREE_CODE (op) == ARRAY_REF;
|
2649 |
|
|
}
|
2650 |
|
|
|
2651 |
|
|
|
2652 |
|
|
/* Inserted expressions are placed onto this worklist, which is used
|
2653 |
|
|
for performing quick dead code elimination of insertions we made
|
2654 |
|
|
that didn't turn out to be necessary. */
|
2655 |
|
|
static bitmap inserted_exprs;
|
2656 |
|
|
|
2657 |
|
|
/* Pool allocated fake store expressions are placed onto this
|
2658 |
|
|
worklist, which, after performing dead code elimination, is walked
|
2659 |
|
|
to see which expressions need to be put into GC'able memory */
|
2660 |
|
|
static VEC(gimple, heap) *need_creation;
|
2661 |
|
|
|
2662 |
|
|
/* The actual worker for create_component_ref_by_pieces. */
|
2663 |
|
|
|
2664 |
|
|
static tree
|
2665 |
|
|
create_component_ref_by_pieces_1 (basic_block block, vn_reference_t ref,
|
2666 |
|
|
unsigned int *operand, gimple_seq *stmts,
|
2667 |
|
|
gimple domstmt)
|
2668 |
|
|
{
|
2669 |
|
|
vn_reference_op_t currop = VEC_index (vn_reference_op_s, ref->operands,
|
2670 |
|
|
*operand);
|
2671 |
|
|
tree genop;
|
2672 |
|
|
++*operand;
|
2673 |
|
|
switch (currop->opcode)
|
2674 |
|
|
{
|
2675 |
|
|
case CALL_EXPR:
|
2676 |
|
|
{
|
2677 |
|
|
tree folded, sc = NULL_TREE;
|
2678 |
|
|
unsigned int nargs = 0;
|
2679 |
|
|
tree fn, *args;
|
2680 |
|
|
if (TREE_CODE (currop->op0) == FUNCTION_DECL)
|
2681 |
|
|
fn = currop->op0;
|
2682 |
|
|
else
|
2683 |
|
|
{
|
2684 |
|
|
pre_expr op0 = get_or_alloc_expr_for (currop->op0);
|
2685 |
|
|
fn = find_or_generate_expression (block, op0, stmts, domstmt);
|
2686 |
|
|
if (!fn)
|
2687 |
|
|
return NULL_TREE;
|
2688 |
|
|
}
|
2689 |
|
|
if (currop->op1)
|
2690 |
|
|
{
|
2691 |
|
|
pre_expr scexpr = get_or_alloc_expr_for (currop->op1);
|
2692 |
|
|
sc = find_or_generate_expression (block, scexpr, stmts, domstmt);
|
2693 |
|
|
if (!sc)
|
2694 |
|
|
return NULL_TREE;
|
2695 |
|
|
}
|
2696 |
|
|
args = XNEWVEC (tree, VEC_length (vn_reference_op_s,
|
2697 |
|
|
ref->operands) - 1);
|
2698 |
|
|
while (*operand < VEC_length (vn_reference_op_s, ref->operands))
|
2699 |
|
|
{
|
2700 |
|
|
args[nargs] = create_component_ref_by_pieces_1 (block, ref,
|
2701 |
|
|
operand, stmts,
|
2702 |
|
|
domstmt);
|
2703 |
|
|
if (!args[nargs])
|
2704 |
|
|
{
|
2705 |
|
|
free (args);
|
2706 |
|
|
return NULL_TREE;
|
2707 |
|
|
}
|
2708 |
|
|
nargs++;
|
2709 |
|
|
}
|
2710 |
|
|
folded = build_call_array (currop->type,
|
2711 |
|
|
(TREE_CODE (fn) == FUNCTION_DECL
|
2712 |
|
|
? build_fold_addr_expr (fn) : fn),
|
2713 |
|
|
nargs, args);
|
2714 |
|
|
free (args);
|
2715 |
|
|
if (sc)
|
2716 |
|
|
CALL_EXPR_STATIC_CHAIN (folded) = sc;
|
2717 |
|
|
return folded;
|
2718 |
|
|
}
|
2719 |
|
|
break;
|
2720 |
|
|
case MEM_REF:
|
2721 |
|
|
{
|
2722 |
|
|
tree baseop = create_component_ref_by_pieces_1 (block, ref, operand,
|
2723 |
|
|
stmts, domstmt);
|
2724 |
|
|
tree offset = currop->op0;
|
2725 |
|
|
if (!baseop)
|
2726 |
|
|
return NULL_TREE;
|
2727 |
|
|
if (TREE_CODE (baseop) == ADDR_EXPR
|
2728 |
|
|
&& handled_component_p (TREE_OPERAND (baseop, 0)))
|
2729 |
|
|
{
|
2730 |
|
|
HOST_WIDE_INT off;
|
2731 |
|
|
tree base;
|
2732 |
|
|
base = get_addr_base_and_unit_offset (TREE_OPERAND (baseop, 0),
|
2733 |
|
|
&off);
|
2734 |
|
|
gcc_assert (base);
|
2735 |
|
|
offset = int_const_binop (PLUS_EXPR, offset,
|
2736 |
|
|
build_int_cst (TREE_TYPE (offset),
|
2737 |
|
|
off));
|
2738 |
|
|
baseop = build_fold_addr_expr (base);
|
2739 |
|
|
}
|
2740 |
|
|
return fold_build2 (MEM_REF, currop->type, baseop, offset);
|
2741 |
|
|
}
|
2742 |
|
|
break;
|
2743 |
|
|
case TARGET_MEM_REF:
|
2744 |
|
|
{
|
2745 |
|
|
pre_expr op0expr, op1expr;
|
2746 |
|
|
tree genop0 = NULL_TREE, genop1 = NULL_TREE;
|
2747 |
|
|
vn_reference_op_t nextop = VEC_index (vn_reference_op_s, ref->operands,
|
2748 |
|
|
++*operand);
|
2749 |
|
|
tree baseop = create_component_ref_by_pieces_1 (block, ref, operand,
|
2750 |
|
|
stmts, domstmt);
|
2751 |
|
|
if (!baseop)
|
2752 |
|
|
return NULL_TREE;
|
2753 |
|
|
if (currop->op0)
|
2754 |
|
|
{
|
2755 |
|
|
op0expr = get_or_alloc_expr_for (currop->op0);
|
2756 |
|
|
genop0 = find_or_generate_expression (block, op0expr,
|
2757 |
|
|
stmts, domstmt);
|
2758 |
|
|
if (!genop0)
|
2759 |
|
|
return NULL_TREE;
|
2760 |
|
|
}
|
2761 |
|
|
if (nextop->op0)
|
2762 |
|
|
{
|
2763 |
|
|
op1expr = get_or_alloc_expr_for (nextop->op0);
|
2764 |
|
|
genop1 = find_or_generate_expression (block, op1expr,
|
2765 |
|
|
stmts, domstmt);
|
2766 |
|
|
if (!genop1)
|
2767 |
|
|
return NULL_TREE;
|
2768 |
|
|
}
|
2769 |
|
|
return build5 (TARGET_MEM_REF, currop->type,
|
2770 |
|
|
baseop, currop->op2, genop0, currop->op1, genop1);
|
2771 |
|
|
}
|
2772 |
|
|
break;
|
2773 |
|
|
case ADDR_EXPR:
|
2774 |
|
|
if (currop->op0)
|
2775 |
|
|
{
|
2776 |
|
|
gcc_assert (is_gimple_min_invariant (currop->op0));
|
2777 |
|
|
return currop->op0;
|
2778 |
|
|
}
|
2779 |
|
|
/* Fallthrough. */
|
2780 |
|
|
case REALPART_EXPR:
|
2781 |
|
|
case IMAGPART_EXPR:
|
2782 |
|
|
case VIEW_CONVERT_EXPR:
|
2783 |
|
|
{
|
2784 |
|
|
tree folded;
|
2785 |
|
|
tree genop0 = create_component_ref_by_pieces_1 (block, ref,
|
2786 |
|
|
operand,
|
2787 |
|
|
stmts, domstmt);
|
2788 |
|
|
if (!genop0)
|
2789 |
|
|
return NULL_TREE;
|
2790 |
|
|
folded = fold_build1 (currop->opcode, currop->type,
|
2791 |
|
|
genop0);
|
2792 |
|
|
return folded;
|
2793 |
|
|
}
|
2794 |
|
|
break;
|
2795 |
|
|
case WITH_SIZE_EXPR:
|
2796 |
|
|
{
|
2797 |
|
|
tree genop0 = create_component_ref_by_pieces_1 (block, ref, operand,
|
2798 |
|
|
stmts, domstmt);
|
2799 |
|
|
pre_expr op1expr = get_or_alloc_expr_for (currop->op0);
|
2800 |
|
|
tree genop1;
|
2801 |
|
|
|
2802 |
|
|
if (!genop0)
|
2803 |
|
|
return NULL_TREE;
|
2804 |
|
|
|
2805 |
|
|
genop1 = find_or_generate_expression (block, op1expr, stmts, domstmt);
|
2806 |
|
|
if (!genop1)
|
2807 |
|
|
return NULL_TREE;
|
2808 |
|
|
|
2809 |
|
|
return fold_build2 (currop->opcode, currop->type, genop0, genop1);
|
2810 |
|
|
}
|
2811 |
|
|
break;
|
2812 |
|
|
case BIT_FIELD_REF:
|
2813 |
|
|
{
|
2814 |
|
|
tree folded;
|
2815 |
|
|
tree genop0 = create_component_ref_by_pieces_1 (block, ref, operand,
|
2816 |
|
|
stmts, domstmt);
|
2817 |
|
|
pre_expr op1expr = get_or_alloc_expr_for (currop->op0);
|
2818 |
|
|
pre_expr op2expr = get_or_alloc_expr_for (currop->op1);
|
2819 |
|
|
tree genop1;
|
2820 |
|
|
tree genop2;
|
2821 |
|
|
|
2822 |
|
|
if (!genop0)
|
2823 |
|
|
return NULL_TREE;
|
2824 |
|
|
genop1 = find_or_generate_expression (block, op1expr, stmts, domstmt);
|
2825 |
|
|
if (!genop1)
|
2826 |
|
|
return NULL_TREE;
|
2827 |
|
|
genop2 = find_or_generate_expression (block, op2expr, stmts, domstmt);
|
2828 |
|
|
if (!genop2)
|
2829 |
|
|
return NULL_TREE;
|
2830 |
|
|
folded = fold_build3 (BIT_FIELD_REF, currop->type, genop0, genop1,
|
2831 |
|
|
genop2);
|
2832 |
|
|
return folded;
|
2833 |
|
|
}
|
2834 |
|
|
|
2835 |
|
|
/* For array ref vn_reference_op's, operand 1 of the array ref
|
2836 |
|
|
is op0 of the reference op and operand 3 of the array ref is
|
2837 |
|
|
op1. */
|
2838 |
|
|
case ARRAY_RANGE_REF:
|
2839 |
|
|
case ARRAY_REF:
|
2840 |
|
|
{
|
2841 |
|
|
tree genop0;
|
2842 |
|
|
tree genop1 = currop->op0;
|
2843 |
|
|
pre_expr op1expr;
|
2844 |
|
|
tree genop2 = currop->op1;
|
2845 |
|
|
pre_expr op2expr;
|
2846 |
|
|
tree genop3 = currop->op2;
|
2847 |
|
|
pre_expr op3expr;
|
2848 |
|
|
genop0 = create_component_ref_by_pieces_1 (block, ref, operand,
|
2849 |
|
|
stmts, domstmt);
|
2850 |
|
|
if (!genop0)
|
2851 |
|
|
return NULL_TREE;
|
2852 |
|
|
op1expr = get_or_alloc_expr_for (genop1);
|
2853 |
|
|
genop1 = find_or_generate_expression (block, op1expr, stmts, domstmt);
|
2854 |
|
|
if (!genop1)
|
2855 |
|
|
return NULL_TREE;
|
2856 |
|
|
if (genop2)
|
2857 |
|
|
{
|
2858 |
|
|
tree domain_type = TYPE_DOMAIN (TREE_TYPE (genop0));
|
2859 |
|
|
/* Drop zero minimum index if redundant. */
|
2860 |
|
|
if (integer_zerop (genop2)
|
2861 |
|
|
&& (!domain_type
|
2862 |
|
|
|| integer_zerop (TYPE_MIN_VALUE (domain_type))))
|
2863 |
|
|
genop2 = NULL_TREE;
|
2864 |
|
|
else
|
2865 |
|
|
{
|
2866 |
|
|
op2expr = get_or_alloc_expr_for (genop2);
|
2867 |
|
|
genop2 = find_or_generate_expression (block, op2expr, stmts,
|
2868 |
|
|
domstmt);
|
2869 |
|
|
if (!genop2)
|
2870 |
|
|
return NULL_TREE;
|
2871 |
|
|
}
|
2872 |
|
|
}
|
2873 |
|
|
if (genop3)
|
2874 |
|
|
{
|
2875 |
|
|
tree elmt_type = TREE_TYPE (TREE_TYPE (genop0));
|
2876 |
|
|
/* We can't always put a size in units of the element alignment
|
2877 |
|
|
here as the element alignment may be not visible. See
|
2878 |
|
|
PR43783. Simply drop the element size for constant
|
2879 |
|
|
sizes. */
|
2880 |
|
|
if (tree_int_cst_equal (genop3, TYPE_SIZE_UNIT (elmt_type)))
|
2881 |
|
|
genop3 = NULL_TREE;
|
2882 |
|
|
else
|
2883 |
|
|
{
|
2884 |
|
|
genop3 = size_binop (EXACT_DIV_EXPR, genop3,
|
2885 |
|
|
size_int (TYPE_ALIGN_UNIT (elmt_type)));
|
2886 |
|
|
op3expr = get_or_alloc_expr_for (genop3);
|
2887 |
|
|
genop3 = find_or_generate_expression (block, op3expr, stmts,
|
2888 |
|
|
domstmt);
|
2889 |
|
|
if (!genop3)
|
2890 |
|
|
return NULL_TREE;
|
2891 |
|
|
}
|
2892 |
|
|
}
|
2893 |
|
|
return build4 (currop->opcode, currop->type, genop0, genop1,
|
2894 |
|
|
genop2, genop3);
|
2895 |
|
|
}
|
2896 |
|
|
case COMPONENT_REF:
|
2897 |
|
|
{
|
2898 |
|
|
tree op0;
|
2899 |
|
|
tree op1;
|
2900 |
|
|
tree genop2 = currop->op1;
|
2901 |
|
|
pre_expr op2expr;
|
2902 |
|
|
op0 = create_component_ref_by_pieces_1 (block, ref, operand,
|
2903 |
|
|
stmts, domstmt);
|
2904 |
|
|
if (!op0)
|
2905 |
|
|
return NULL_TREE;
|
2906 |
|
|
/* op1 should be a FIELD_DECL, which are represented by
|
2907 |
|
|
themselves. */
|
2908 |
|
|
op1 = currop->op0;
|
2909 |
|
|
if (genop2)
|
2910 |
|
|
{
|
2911 |
|
|
op2expr = get_or_alloc_expr_for (genop2);
|
2912 |
|
|
genop2 = find_or_generate_expression (block, op2expr, stmts,
|
2913 |
|
|
domstmt);
|
2914 |
|
|
if (!genop2)
|
2915 |
|
|
return NULL_TREE;
|
2916 |
|
|
}
|
2917 |
|
|
|
2918 |
|
|
return fold_build3 (COMPONENT_REF, TREE_TYPE (op1), op0, op1,
|
2919 |
|
|
genop2);
|
2920 |
|
|
}
|
2921 |
|
|
break;
|
2922 |
|
|
case SSA_NAME:
|
2923 |
|
|
{
|
2924 |
|
|
pre_expr op0expr = get_or_alloc_expr_for (currop->op0);
|
2925 |
|
|
genop = find_or_generate_expression (block, op0expr, stmts, domstmt);
|
2926 |
|
|
return genop;
|
2927 |
|
|
}
|
2928 |
|
|
case STRING_CST:
|
2929 |
|
|
case INTEGER_CST:
|
2930 |
|
|
case COMPLEX_CST:
|
2931 |
|
|
case VECTOR_CST:
|
2932 |
|
|
case REAL_CST:
|
2933 |
|
|
case CONSTRUCTOR:
|
2934 |
|
|
case VAR_DECL:
|
2935 |
|
|
case PARM_DECL:
|
2936 |
|
|
case CONST_DECL:
|
2937 |
|
|
case RESULT_DECL:
|
2938 |
|
|
case FUNCTION_DECL:
|
2939 |
|
|
return currop->op0;
|
2940 |
|
|
|
2941 |
|
|
default:
|
2942 |
|
|
gcc_unreachable ();
|
2943 |
|
|
}
|
2944 |
|
|
}
|
2945 |
|
|
|
2946 |
|
|
/* For COMPONENT_REF's and ARRAY_REF's, we can't have any intermediates for the
|
2947 |
|
|
COMPONENT_REF or MEM_REF or ARRAY_REF portion, because we'd end up with
|
2948 |
|
|
trying to rename aggregates into ssa form directly, which is a no no.
|
2949 |
|
|
|
2950 |
|
|
Thus, this routine doesn't create temporaries, it just builds a
|
2951 |
|
|
single access expression for the array, calling
|
2952 |
|
|
find_or_generate_expression to build the innermost pieces.
|
2953 |
|
|
|
2954 |
|
|
This function is a subroutine of create_expression_by_pieces, and
|
2955 |
|
|
should not be called on it's own unless you really know what you
|
2956 |
|
|
are doing. */
|
2957 |
|
|
|
2958 |
|
|
static tree
|
2959 |
|
|
create_component_ref_by_pieces (basic_block block, vn_reference_t ref,
|
2960 |
|
|
gimple_seq *stmts, gimple domstmt)
|
2961 |
|
|
{
|
2962 |
|
|
unsigned int op = 0;
|
2963 |
|
|
return create_component_ref_by_pieces_1 (block, ref, &op, stmts, domstmt);
|
2964 |
|
|
}
|
2965 |
|
|
|
2966 |
|
|
/* Find a leader for an expression, or generate one using
|
2967 |
|
|
create_expression_by_pieces if it's ANTIC but
|
2968 |
|
|
complex.
|
2969 |
|
|
BLOCK is the basic_block we are looking for leaders in.
|
2970 |
|
|
EXPR is the expression to find a leader or generate for.
|
2971 |
|
|
STMTS is the statement list to put the inserted expressions on.
|
2972 |
|
|
Returns the SSA_NAME of the LHS of the generated expression or the
|
2973 |
|
|
leader.
|
2974 |
|
|
DOMSTMT if non-NULL is a statement that should be dominated by
|
2975 |
|
|
all uses in the generated expression. If DOMSTMT is non-NULL this
|
2976 |
|
|
routine can fail and return NULL_TREE. Otherwise it will assert
|
2977 |
|
|
on failure. */
|
2978 |
|
|
|
2979 |
|
|
static tree
|
2980 |
|
|
find_or_generate_expression (basic_block block, pre_expr expr,
|
2981 |
|
|
gimple_seq *stmts, gimple domstmt)
|
2982 |
|
|
{
|
2983 |
|
|
pre_expr leader = bitmap_find_leader (AVAIL_OUT (block),
|
2984 |
|
|
get_expr_value_id (expr), domstmt);
|
2985 |
|
|
tree genop = NULL;
|
2986 |
|
|
if (leader)
|
2987 |
|
|
{
|
2988 |
|
|
if (leader->kind == NAME)
|
2989 |
|
|
genop = PRE_EXPR_NAME (leader);
|
2990 |
|
|
else if (leader->kind == CONSTANT)
|
2991 |
|
|
genop = PRE_EXPR_CONSTANT (leader);
|
2992 |
|
|
}
|
2993 |
|
|
|
2994 |
|
|
/* If it's still NULL, it must be a complex expression, so generate
|
2995 |
|
|
it recursively. Not so if inserting expressions for values generated
|
2996 |
|
|
by SCCVN. */
|
2997 |
|
|
if (genop == NULL
|
2998 |
|
|
&& !domstmt)
|
2999 |
|
|
{
|
3000 |
|
|
bitmap_set_t exprset;
|
3001 |
|
|
unsigned int lookfor = get_expr_value_id (expr);
|
3002 |
|
|
bool handled = false;
|
3003 |
|
|
bitmap_iterator bi;
|
3004 |
|
|
unsigned int i;
|
3005 |
|
|
|
3006 |
|
|
exprset = VEC_index (bitmap_set_t, value_expressions, lookfor);
|
3007 |
|
|
FOR_EACH_EXPR_ID_IN_SET (exprset, i, bi)
|
3008 |
|
|
{
|
3009 |
|
|
pre_expr temp = expression_for_id (i);
|
3010 |
|
|
if (temp->kind != NAME)
|
3011 |
|
|
{
|
3012 |
|
|
handled = true;
|
3013 |
|
|
genop = create_expression_by_pieces (block, temp, stmts,
|
3014 |
|
|
domstmt,
|
3015 |
|
|
get_expr_type (expr));
|
3016 |
|
|
break;
|
3017 |
|
|
}
|
3018 |
|
|
}
|
3019 |
|
|
if (!handled && domstmt)
|
3020 |
|
|
return NULL_TREE;
|
3021 |
|
|
|
3022 |
|
|
gcc_assert (handled);
|
3023 |
|
|
}
|
3024 |
|
|
return genop;
|
3025 |
|
|
}
|
3026 |
|
|
|
3027 |
|
|
#define NECESSARY GF_PLF_1
|
3028 |
|
|
|
3029 |
|
|
/* Create an expression in pieces, so that we can handle very complex
|
3030 |
|
|
expressions that may be ANTIC, but not necessary GIMPLE.
|
3031 |
|
|
BLOCK is the basic block the expression will be inserted into,
|
3032 |
|
|
EXPR is the expression to insert (in value form)
|
3033 |
|
|
STMTS is a statement list to append the necessary insertions into.
|
3034 |
|
|
|
3035 |
|
|
This function will die if we hit some value that shouldn't be
|
3036 |
|
|
ANTIC but is (IE there is no leader for it, or its components).
|
3037 |
|
|
This function may also generate expressions that are themselves
|
3038 |
|
|
partially or fully redundant. Those that are will be either made
|
3039 |
|
|
fully redundant during the next iteration of insert (for partially
|
3040 |
|
|
redundant ones), or eliminated by eliminate (for fully redundant
|
3041 |
|
|
ones).
|
3042 |
|
|
|
3043 |
|
|
If DOMSTMT is non-NULL then we make sure that all uses in the
|
3044 |
|
|
expressions dominate that statement. In this case the function
|
3045 |
|
|
can return NULL_TREE to signal failure. */
|
3046 |
|
|
|
3047 |
|
|
static tree
|
3048 |
|
|
create_expression_by_pieces (basic_block block, pre_expr expr,
|
3049 |
|
|
gimple_seq *stmts, gimple domstmt, tree type)
|
3050 |
|
|
{
|
3051 |
|
|
tree temp, name;
|
3052 |
|
|
tree folded;
|
3053 |
|
|
gimple_seq forced_stmts = NULL;
|
3054 |
|
|
unsigned int value_id;
|
3055 |
|
|
gimple_stmt_iterator gsi;
|
3056 |
|
|
tree exprtype = type ? type : get_expr_type (expr);
|
3057 |
|
|
pre_expr nameexpr;
|
3058 |
|
|
gimple newstmt;
|
3059 |
|
|
|
3060 |
|
|
switch (expr->kind)
|
3061 |
|
|
{
|
3062 |
|
|
/* We may hit the NAME/CONSTANT case if we have to convert types
|
3063 |
|
|
that value numbering saw through. */
|
3064 |
|
|
case NAME:
|
3065 |
|
|
folded = PRE_EXPR_NAME (expr);
|
3066 |
|
|
break;
|
3067 |
|
|
case CONSTANT:
|
3068 |
|
|
folded = PRE_EXPR_CONSTANT (expr);
|
3069 |
|
|
break;
|
3070 |
|
|
case REFERENCE:
|
3071 |
|
|
{
|
3072 |
|
|
vn_reference_t ref = PRE_EXPR_REFERENCE (expr);
|
3073 |
|
|
folded = create_component_ref_by_pieces (block, ref, stmts, domstmt);
|
3074 |
|
|
}
|
3075 |
|
|
break;
|
3076 |
|
|
case NARY:
|
3077 |
|
|
{
|
3078 |
|
|
vn_nary_op_t nary = PRE_EXPR_NARY (expr);
|
3079 |
|
|
tree genop[4];
|
3080 |
|
|
unsigned i;
|
3081 |
|
|
for (i = 0; i < nary->length; ++i)
|
3082 |
|
|
{
|
3083 |
|
|
pre_expr op = get_or_alloc_expr_for (nary->op[i]);
|
3084 |
|
|
genop[i] = find_or_generate_expression (block, op,
|
3085 |
|
|
stmts, domstmt);
|
3086 |
|
|
if (!genop[i])
|
3087 |
|
|
return NULL_TREE;
|
3088 |
|
|
/* Ensure genop[] is properly typed for POINTER_PLUS_EXPR. It
|
3089 |
|
|
may have conversions stripped. */
|
3090 |
|
|
if (nary->opcode == POINTER_PLUS_EXPR)
|
3091 |
|
|
{
|
3092 |
|
|
if (i == 0)
|
3093 |
|
|
genop[i] = fold_convert (nary->type, genop[i]);
|
3094 |
|
|
else if (i == 1)
|
3095 |
|
|
genop[i] = convert_to_ptrofftype (genop[i]);
|
3096 |
|
|
}
|
3097 |
|
|
else
|
3098 |
|
|
genop[i] = fold_convert (TREE_TYPE (nary->op[i]), genop[i]);
|
3099 |
|
|
}
|
3100 |
|
|
if (nary->opcode == CONSTRUCTOR)
|
3101 |
|
|
{
|
3102 |
|
|
VEC(constructor_elt,gc) *elts = NULL;
|
3103 |
|
|
for (i = 0; i < nary->length; ++i)
|
3104 |
|
|
CONSTRUCTOR_APPEND_ELT (elts, NULL_TREE, genop[i]);
|
3105 |
|
|
folded = build_constructor (nary->type, elts);
|
3106 |
|
|
}
|
3107 |
|
|
else
|
3108 |
|
|
{
|
3109 |
|
|
switch (nary->length)
|
3110 |
|
|
{
|
3111 |
|
|
case 1:
|
3112 |
|
|
folded = fold_build1 (nary->opcode, nary->type,
|
3113 |
|
|
genop[0]);
|
3114 |
|
|
break;
|
3115 |
|
|
case 2:
|
3116 |
|
|
folded = fold_build2 (nary->opcode, nary->type,
|
3117 |
|
|
genop[0], genop[1]);
|
3118 |
|
|
break;
|
3119 |
|
|
case 3:
|
3120 |
|
|
folded = fold_build3 (nary->opcode, nary->type,
|
3121 |
|
|
genop[0], genop[1], genop[3]);
|
3122 |
|
|
break;
|
3123 |
|
|
default:
|
3124 |
|
|
gcc_unreachable ();
|
3125 |
|
|
}
|
3126 |
|
|
}
|
3127 |
|
|
}
|
3128 |
|
|
break;
|
3129 |
|
|
default:
|
3130 |
|
|
return NULL_TREE;
|
3131 |
|
|
}
|
3132 |
|
|
|
3133 |
|
|
if (!useless_type_conversion_p (exprtype, TREE_TYPE (folded)))
|
3134 |
|
|
folded = fold_convert (exprtype, folded);
|
3135 |
|
|
|
3136 |
|
|
/* Force the generated expression to be a sequence of GIMPLE
|
3137 |
|
|
statements.
|
3138 |
|
|
We have to call unshare_expr because force_gimple_operand may
|
3139 |
|
|
modify the tree we pass to it. */
|
3140 |
|
|
folded = force_gimple_operand (unshare_expr (folded), &forced_stmts,
|
3141 |
|
|
false, NULL);
|
3142 |
|
|
|
3143 |
|
|
/* If we have any intermediate expressions to the value sets, add them
|
3144 |
|
|
to the value sets and chain them in the instruction stream. */
|
3145 |
|
|
if (forced_stmts)
|
3146 |
|
|
{
|
3147 |
|
|
gsi = gsi_start (forced_stmts);
|
3148 |
|
|
for (; !gsi_end_p (gsi); gsi_next (&gsi))
|
3149 |
|
|
{
|
3150 |
|
|
gimple stmt = gsi_stmt (gsi);
|
3151 |
|
|
tree forcedname = gimple_get_lhs (stmt);
|
3152 |
|
|
pre_expr nameexpr;
|
3153 |
|
|
|
3154 |
|
|
if (TREE_CODE (forcedname) == SSA_NAME)
|
3155 |
|
|
{
|
3156 |
|
|
bitmap_set_bit (inserted_exprs, SSA_NAME_VERSION (forcedname));
|
3157 |
|
|
VN_INFO_GET (forcedname)->valnum = forcedname;
|
3158 |
|
|
VN_INFO (forcedname)->value_id = get_next_value_id ();
|
3159 |
|
|
nameexpr = get_or_alloc_expr_for_name (forcedname);
|
3160 |
|
|
add_to_value (VN_INFO (forcedname)->value_id, nameexpr);
|
3161 |
|
|
if (!in_fre)
|
3162 |
|
|
bitmap_value_replace_in_set (NEW_SETS (block), nameexpr);
|
3163 |
|
|
bitmap_value_replace_in_set (AVAIL_OUT (block), nameexpr);
|
3164 |
|
|
}
|
3165 |
|
|
mark_symbols_for_renaming (stmt);
|
3166 |
|
|
}
|
3167 |
|
|
gimple_seq_add_seq (stmts, forced_stmts);
|
3168 |
|
|
}
|
3169 |
|
|
|
3170 |
|
|
/* Build and insert the assignment of the end result to the temporary
|
3171 |
|
|
that we will return. */
|
3172 |
|
|
if (!pretemp || exprtype != TREE_TYPE (pretemp))
|
3173 |
|
|
pretemp = create_tmp_reg (exprtype, "pretmp");
|
3174 |
|
|
|
3175 |
|
|
temp = pretemp;
|
3176 |
|
|
add_referenced_var (temp);
|
3177 |
|
|
|
3178 |
|
|
newstmt = gimple_build_assign (temp, folded);
|
3179 |
|
|
name = make_ssa_name (temp, newstmt);
|
3180 |
|
|
gimple_assign_set_lhs (newstmt, name);
|
3181 |
|
|
gimple_set_plf (newstmt, NECESSARY, false);
|
3182 |
|
|
|
3183 |
|
|
gimple_seq_add_stmt (stmts, newstmt);
|
3184 |
|
|
bitmap_set_bit (inserted_exprs, SSA_NAME_VERSION (name));
|
3185 |
|
|
|
3186 |
|
|
/* All the symbols in NEWEXPR should be put into SSA form. */
|
3187 |
|
|
mark_symbols_for_renaming (newstmt);
|
3188 |
|
|
|
3189 |
|
|
/* Fold the last statement. */
|
3190 |
|
|
gsi = gsi_last (*stmts);
|
3191 |
|
|
if (fold_stmt_inplace (&gsi))
|
3192 |
|
|
update_stmt (gsi_stmt (gsi));
|
3193 |
|
|
|
3194 |
|
|
/* Add a value number to the temporary.
|
3195 |
|
|
The value may already exist in either NEW_SETS, or AVAIL_OUT, because
|
3196 |
|
|
we are creating the expression by pieces, and this particular piece of
|
3197 |
|
|
the expression may have been represented. There is no harm in replacing
|
3198 |
|
|
here. */
|
3199 |
|
|
VN_INFO_GET (name)->valnum = name;
|
3200 |
|
|
value_id = get_expr_value_id (expr);
|
3201 |
|
|
VN_INFO (name)->value_id = value_id;
|
3202 |
|
|
nameexpr = get_or_alloc_expr_for_name (name);
|
3203 |
|
|
add_to_value (value_id, nameexpr);
|
3204 |
|
|
if (NEW_SETS (block))
|
3205 |
|
|
bitmap_value_replace_in_set (NEW_SETS (block), nameexpr);
|
3206 |
|
|
bitmap_value_replace_in_set (AVAIL_OUT (block), nameexpr);
|
3207 |
|
|
|
3208 |
|
|
pre_stats.insertions++;
|
3209 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3210 |
|
|
{
|
3211 |
|
|
fprintf (dump_file, "Inserted ");
|
3212 |
|
|
print_gimple_stmt (dump_file, newstmt, 0, 0);
|
3213 |
|
|
fprintf (dump_file, " in predecessor %d\n", block->index);
|
3214 |
|
|
}
|
3215 |
|
|
|
3216 |
|
|
return name;
|
3217 |
|
|
}
|
3218 |
|
|
|
3219 |
|
|
|
3220 |
|
|
/* Returns true if we want to inhibit the insertions of PHI nodes
|
3221 |
|
|
for the given EXPR for basic block BB (a member of a loop).
|
3222 |
|
|
We want to do this, when we fear that the induction variable we
|
3223 |
|
|
create might inhibit vectorization. */
|
3224 |
|
|
|
3225 |
|
|
static bool
|
3226 |
|
|
inhibit_phi_insertion (basic_block bb, pre_expr expr)
|
3227 |
|
|
{
|
3228 |
|
|
vn_reference_t vr = PRE_EXPR_REFERENCE (expr);
|
3229 |
|
|
VEC (vn_reference_op_s, heap) *ops = vr->operands;
|
3230 |
|
|
vn_reference_op_t op;
|
3231 |
|
|
unsigned i;
|
3232 |
|
|
|
3233 |
|
|
/* If we aren't going to vectorize we don't inhibit anything. */
|
3234 |
|
|
if (!flag_tree_vectorize)
|
3235 |
|
|
return false;
|
3236 |
|
|
|
3237 |
|
|
/* Otherwise we inhibit the insertion when the address of the
|
3238 |
|
|
memory reference is a simple induction variable. In other
|
3239 |
|
|
cases the vectorizer won't do anything anyway (either it's
|
3240 |
|
|
loop invariant or a complicated expression). */
|
3241 |
|
|
FOR_EACH_VEC_ELT (vn_reference_op_s, ops, i, op)
|
3242 |
|
|
{
|
3243 |
|
|
switch (op->opcode)
|
3244 |
|
|
{
|
3245 |
|
|
case ARRAY_REF:
|
3246 |
|
|
case ARRAY_RANGE_REF:
|
3247 |
|
|
if (TREE_CODE (op->op0) != SSA_NAME)
|
3248 |
|
|
break;
|
3249 |
|
|
/* Fallthru. */
|
3250 |
|
|
case SSA_NAME:
|
3251 |
|
|
{
|
3252 |
|
|
basic_block defbb = gimple_bb (SSA_NAME_DEF_STMT (op->op0));
|
3253 |
|
|
affine_iv iv;
|
3254 |
|
|
/* Default defs are loop invariant. */
|
3255 |
|
|
if (!defbb)
|
3256 |
|
|
break;
|
3257 |
|
|
/* Defined outside this loop, also loop invariant. */
|
3258 |
|
|
if (!flow_bb_inside_loop_p (bb->loop_father, defbb))
|
3259 |
|
|
break;
|
3260 |
|
|
/* If it's a simple induction variable inhibit insertion,
|
3261 |
|
|
the vectorizer might be interested in this one. */
|
3262 |
|
|
if (simple_iv (bb->loop_father, bb->loop_father,
|
3263 |
|
|
op->op0, &iv, true))
|
3264 |
|
|
return true;
|
3265 |
|
|
/* No simple IV, vectorizer can't do anything, hence no
|
3266 |
|
|
reason to inhibit the transformation for this operand. */
|
3267 |
|
|
break;
|
3268 |
|
|
}
|
3269 |
|
|
default:
|
3270 |
|
|
break;
|
3271 |
|
|
}
|
3272 |
|
|
}
|
3273 |
|
|
return false;
|
3274 |
|
|
}
|
3275 |
|
|
|
3276 |
|
|
/* Insert the to-be-made-available values of expression EXPRNUM for each
|
3277 |
|
|
predecessor, stored in AVAIL, into the predecessors of BLOCK, and
|
3278 |
|
|
merge the result with a phi node, given the same value number as
|
3279 |
|
|
NODE. Return true if we have inserted new stuff. */
|
3280 |
|
|
|
3281 |
|
|
static bool
|
3282 |
|
|
insert_into_preds_of_block (basic_block block, unsigned int exprnum,
|
3283 |
|
|
pre_expr *avail)
|
3284 |
|
|
{
|
3285 |
|
|
pre_expr expr = expression_for_id (exprnum);
|
3286 |
|
|
pre_expr newphi;
|
3287 |
|
|
unsigned int val = get_expr_value_id (expr);
|
3288 |
|
|
edge pred;
|
3289 |
|
|
bool insertions = false;
|
3290 |
|
|
bool nophi = false;
|
3291 |
|
|
basic_block bprime;
|
3292 |
|
|
pre_expr eprime;
|
3293 |
|
|
edge_iterator ei;
|
3294 |
|
|
tree type = get_expr_type (expr);
|
3295 |
|
|
tree temp;
|
3296 |
|
|
gimple phi;
|
3297 |
|
|
|
3298 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3299 |
|
|
{
|
3300 |
|
|
fprintf (dump_file, "Found partial redundancy for expression ");
|
3301 |
|
|
print_pre_expr (dump_file, expr);
|
3302 |
|
|
fprintf (dump_file, " (%04d)\n", val);
|
3303 |
|
|
}
|
3304 |
|
|
|
3305 |
|
|
/* Make sure we aren't creating an induction variable. */
|
3306 |
|
|
if (block->loop_depth > 0 && EDGE_COUNT (block->preds) == 2)
|
3307 |
|
|
{
|
3308 |
|
|
bool firstinsideloop = false;
|
3309 |
|
|
bool secondinsideloop = false;
|
3310 |
|
|
firstinsideloop = flow_bb_inside_loop_p (block->loop_father,
|
3311 |
|
|
EDGE_PRED (block, 0)->src);
|
3312 |
|
|
secondinsideloop = flow_bb_inside_loop_p (block->loop_father,
|
3313 |
|
|
EDGE_PRED (block, 1)->src);
|
3314 |
|
|
/* Induction variables only have one edge inside the loop. */
|
3315 |
|
|
if ((firstinsideloop ^ secondinsideloop)
|
3316 |
|
|
&& (expr->kind != REFERENCE
|
3317 |
|
|
|| inhibit_phi_insertion (block, expr)))
|
3318 |
|
|
{
|
3319 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3320 |
|
|
fprintf (dump_file, "Skipping insertion of phi for partial redundancy: Looks like an induction variable\n");
|
3321 |
|
|
nophi = true;
|
3322 |
|
|
}
|
3323 |
|
|
}
|
3324 |
|
|
|
3325 |
|
|
/* Make the necessary insertions. */
|
3326 |
|
|
FOR_EACH_EDGE (pred, ei, block->preds)
|
3327 |
|
|
{
|
3328 |
|
|
gimple_seq stmts = NULL;
|
3329 |
|
|
tree builtexpr;
|
3330 |
|
|
bprime = pred->src;
|
3331 |
|
|
eprime = avail[bprime->index];
|
3332 |
|
|
|
3333 |
|
|
if (eprime->kind != NAME && eprime->kind != CONSTANT)
|
3334 |
|
|
{
|
3335 |
|
|
builtexpr = create_expression_by_pieces (bprime,
|
3336 |
|
|
eprime,
|
3337 |
|
|
&stmts, NULL,
|
3338 |
|
|
type);
|
3339 |
|
|
gcc_assert (!(pred->flags & EDGE_ABNORMAL));
|
3340 |
|
|
gsi_insert_seq_on_edge (pred, stmts);
|
3341 |
|
|
avail[bprime->index] = get_or_alloc_expr_for_name (builtexpr);
|
3342 |
|
|
insertions = true;
|
3343 |
|
|
}
|
3344 |
|
|
else if (eprime->kind == CONSTANT)
|
3345 |
|
|
{
|
3346 |
|
|
/* Constants may not have the right type, fold_convert
|
3347 |
|
|
should give us back a constant with the right type.
|
3348 |
|
|
*/
|
3349 |
|
|
tree constant = PRE_EXPR_CONSTANT (eprime);
|
3350 |
|
|
if (!useless_type_conversion_p (type, TREE_TYPE (constant)))
|
3351 |
|
|
{
|
3352 |
|
|
tree builtexpr = fold_convert (type, constant);
|
3353 |
|
|
if (!is_gimple_min_invariant (builtexpr))
|
3354 |
|
|
{
|
3355 |
|
|
tree forcedexpr = force_gimple_operand (builtexpr,
|
3356 |
|
|
&stmts, true,
|
3357 |
|
|
NULL);
|
3358 |
|
|
if (!is_gimple_min_invariant (forcedexpr))
|
3359 |
|
|
{
|
3360 |
|
|
if (forcedexpr != builtexpr)
|
3361 |
|
|
{
|
3362 |
|
|
VN_INFO_GET (forcedexpr)->valnum = PRE_EXPR_CONSTANT (eprime);
|
3363 |
|
|
VN_INFO (forcedexpr)->value_id = get_expr_value_id (eprime);
|
3364 |
|
|
}
|
3365 |
|
|
if (stmts)
|
3366 |
|
|
{
|
3367 |
|
|
gimple_stmt_iterator gsi;
|
3368 |
|
|
gsi = gsi_start (stmts);
|
3369 |
|
|
for (; !gsi_end_p (gsi); gsi_next (&gsi))
|
3370 |
|
|
{
|
3371 |
|
|
gimple stmt = gsi_stmt (gsi);
|
3372 |
|
|
tree lhs = gimple_get_lhs (stmt);
|
3373 |
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
3374 |
|
|
bitmap_set_bit (inserted_exprs,
|
3375 |
|
|
SSA_NAME_VERSION (lhs));
|
3376 |
|
|
gimple_set_plf (stmt, NECESSARY, false);
|
3377 |
|
|
}
|
3378 |
|
|
gsi_insert_seq_on_edge (pred, stmts);
|
3379 |
|
|
}
|
3380 |
|
|
avail[bprime->index] = get_or_alloc_expr_for_name (forcedexpr);
|
3381 |
|
|
}
|
3382 |
|
|
}
|
3383 |
|
|
else
|
3384 |
|
|
avail[bprime->index] = get_or_alloc_expr_for_constant (builtexpr);
|
3385 |
|
|
}
|
3386 |
|
|
}
|
3387 |
|
|
else if (eprime->kind == NAME)
|
3388 |
|
|
{
|
3389 |
|
|
/* We may have to do a conversion because our value
|
3390 |
|
|
numbering can look through types in certain cases, but
|
3391 |
|
|
our IL requires all operands of a phi node have the same
|
3392 |
|
|
type. */
|
3393 |
|
|
tree name = PRE_EXPR_NAME (eprime);
|
3394 |
|
|
if (!useless_type_conversion_p (type, TREE_TYPE (name)))
|
3395 |
|
|
{
|
3396 |
|
|
tree builtexpr;
|
3397 |
|
|
tree forcedexpr;
|
3398 |
|
|
builtexpr = fold_convert (type, name);
|
3399 |
|
|
forcedexpr = force_gimple_operand (builtexpr,
|
3400 |
|
|
&stmts, true,
|
3401 |
|
|
NULL);
|
3402 |
|
|
|
3403 |
|
|
if (forcedexpr != name)
|
3404 |
|
|
{
|
3405 |
|
|
VN_INFO_GET (forcedexpr)->valnum = VN_INFO (name)->valnum;
|
3406 |
|
|
VN_INFO (forcedexpr)->value_id = VN_INFO (name)->value_id;
|
3407 |
|
|
}
|
3408 |
|
|
|
3409 |
|
|
if (stmts)
|
3410 |
|
|
{
|
3411 |
|
|
gimple_stmt_iterator gsi;
|
3412 |
|
|
gsi = gsi_start (stmts);
|
3413 |
|
|
for (; !gsi_end_p (gsi); gsi_next (&gsi))
|
3414 |
|
|
{
|
3415 |
|
|
gimple stmt = gsi_stmt (gsi);
|
3416 |
|
|
tree lhs = gimple_get_lhs (stmt);
|
3417 |
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
3418 |
|
|
bitmap_set_bit (inserted_exprs, SSA_NAME_VERSION (lhs));
|
3419 |
|
|
gimple_set_plf (stmt, NECESSARY, false);
|
3420 |
|
|
}
|
3421 |
|
|
gsi_insert_seq_on_edge (pred, stmts);
|
3422 |
|
|
}
|
3423 |
|
|
avail[bprime->index] = get_or_alloc_expr_for_name (forcedexpr);
|
3424 |
|
|
}
|
3425 |
|
|
}
|
3426 |
|
|
}
|
3427 |
|
|
/* If we didn't want a phi node, and we made insertions, we still have
|
3428 |
|
|
inserted new stuff, and thus return true. If we didn't want a phi node,
|
3429 |
|
|
and didn't make insertions, we haven't added anything new, so return
|
3430 |
|
|
false. */
|
3431 |
|
|
if (nophi && insertions)
|
3432 |
|
|
return true;
|
3433 |
|
|
else if (nophi && !insertions)
|
3434 |
|
|
return false;
|
3435 |
|
|
|
3436 |
|
|
/* Now build a phi for the new variable. */
|
3437 |
|
|
if (!prephitemp || TREE_TYPE (prephitemp) != type)
|
3438 |
|
|
prephitemp = create_tmp_var (type, "prephitmp");
|
3439 |
|
|
|
3440 |
|
|
temp = prephitemp;
|
3441 |
|
|
add_referenced_var (temp);
|
3442 |
|
|
|
3443 |
|
|
if (TREE_CODE (type) == COMPLEX_TYPE
|
3444 |
|
|
|| TREE_CODE (type) == VECTOR_TYPE)
|
3445 |
|
|
DECL_GIMPLE_REG_P (temp) = 1;
|
3446 |
|
|
phi = create_phi_node (temp, block);
|
3447 |
|
|
|
3448 |
|
|
gimple_set_plf (phi, NECESSARY, false);
|
3449 |
|
|
VN_INFO_GET (gimple_phi_result (phi))->valnum = gimple_phi_result (phi);
|
3450 |
|
|
VN_INFO (gimple_phi_result (phi))->value_id = val;
|
3451 |
|
|
bitmap_set_bit (inserted_exprs, SSA_NAME_VERSION (gimple_phi_result (phi)));
|
3452 |
|
|
FOR_EACH_EDGE (pred, ei, block->preds)
|
3453 |
|
|
{
|
3454 |
|
|
pre_expr ae = avail[pred->src->index];
|
3455 |
|
|
gcc_assert (get_expr_type (ae) == type
|
3456 |
|
|
|| useless_type_conversion_p (type, get_expr_type (ae)));
|
3457 |
|
|
if (ae->kind == CONSTANT)
|
3458 |
|
|
add_phi_arg (phi, PRE_EXPR_CONSTANT (ae), pred, UNKNOWN_LOCATION);
|
3459 |
|
|
else
|
3460 |
|
|
add_phi_arg (phi, PRE_EXPR_NAME (avail[pred->src->index]), pred,
|
3461 |
|
|
UNKNOWN_LOCATION);
|
3462 |
|
|
}
|
3463 |
|
|
|
3464 |
|
|
newphi = get_or_alloc_expr_for_name (gimple_phi_result (phi));
|
3465 |
|
|
add_to_value (val, newphi);
|
3466 |
|
|
|
3467 |
|
|
/* The value should *not* exist in PHI_GEN, or else we wouldn't be doing
|
3468 |
|
|
this insertion, since we test for the existence of this value in PHI_GEN
|
3469 |
|
|
before proceeding with the partial redundancy checks in insert_aux.
|
3470 |
|
|
|
3471 |
|
|
The value may exist in AVAIL_OUT, in particular, it could be represented
|
3472 |
|
|
by the expression we are trying to eliminate, in which case we want the
|
3473 |
|
|
replacement to occur. If it's not existing in AVAIL_OUT, we want it
|
3474 |
|
|
inserted there.
|
3475 |
|
|
|
3476 |
|
|
Similarly, to the PHI_GEN case, the value should not exist in NEW_SETS of
|
3477 |
|
|
this block, because if it did, it would have existed in our dominator's
|
3478 |
|
|
AVAIL_OUT, and would have been skipped due to the full redundancy check.
|
3479 |
|
|
*/
|
3480 |
|
|
|
3481 |
|
|
bitmap_insert_into_set (PHI_GEN (block), newphi);
|
3482 |
|
|
bitmap_value_replace_in_set (AVAIL_OUT (block),
|
3483 |
|
|
newphi);
|
3484 |
|
|
bitmap_insert_into_set (NEW_SETS (block),
|
3485 |
|
|
newphi);
|
3486 |
|
|
|
3487 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3488 |
|
|
{
|
3489 |
|
|
fprintf (dump_file, "Created phi ");
|
3490 |
|
|
print_gimple_stmt (dump_file, phi, 0, 0);
|
3491 |
|
|
fprintf (dump_file, " in block %d\n", block->index);
|
3492 |
|
|
}
|
3493 |
|
|
pre_stats.phis++;
|
3494 |
|
|
return true;
|
3495 |
|
|
}
|
3496 |
|
|
|
3497 |
|
|
|
3498 |
|
|
|
3499 |
|
|
/* Perform insertion of partially redundant values.
|
3500 |
|
|
For BLOCK, do the following:
|
3501 |
|
|
1. Propagate the NEW_SETS of the dominator into the current block.
|
3502 |
|
|
If the block has multiple predecessors,
|
3503 |
|
|
2a. Iterate over the ANTIC expressions for the block to see if
|
3504 |
|
|
any of them are partially redundant.
|
3505 |
|
|
2b. If so, insert them into the necessary predecessors to make
|
3506 |
|
|
the expression fully redundant.
|
3507 |
|
|
2c. Insert a new PHI merging the values of the predecessors.
|
3508 |
|
|
2d. Insert the new PHI, and the new expressions, into the
|
3509 |
|
|
NEW_SETS set.
|
3510 |
|
|
3. Recursively call ourselves on the dominator children of BLOCK.
|
3511 |
|
|
|
3512 |
|
|
Steps 1, 2a, and 3 are done by insert_aux. 2b, 2c and 2d are done by
|
3513 |
|
|
do_regular_insertion and do_partial_insertion.
|
3514 |
|
|
|
3515 |
|
|
*/
|
3516 |
|
|
|
3517 |
|
|
static bool
|
3518 |
|
|
do_regular_insertion (basic_block block, basic_block dom)
|
3519 |
|
|
{
|
3520 |
|
|
bool new_stuff = false;
|
3521 |
|
|
VEC (pre_expr, heap) *exprs = sorted_array_from_bitmap_set (ANTIC_IN (block));
|
3522 |
|
|
pre_expr expr;
|
3523 |
|
|
int i;
|
3524 |
|
|
|
3525 |
|
|
FOR_EACH_VEC_ELT (pre_expr, exprs, i, expr)
|
3526 |
|
|
{
|
3527 |
|
|
if (expr->kind != NAME)
|
3528 |
|
|
{
|
3529 |
|
|
pre_expr *avail;
|
3530 |
|
|
unsigned int val;
|
3531 |
|
|
bool by_some = false;
|
3532 |
|
|
bool cant_insert = false;
|
3533 |
|
|
bool all_same = true;
|
3534 |
|
|
pre_expr first_s = NULL;
|
3535 |
|
|
edge pred;
|
3536 |
|
|
basic_block bprime;
|
3537 |
|
|
pre_expr eprime = NULL;
|
3538 |
|
|
edge_iterator ei;
|
3539 |
|
|
pre_expr edoubleprime = NULL;
|
3540 |
|
|
bool do_insertion = false;
|
3541 |
|
|
|
3542 |
|
|
val = get_expr_value_id (expr);
|
3543 |
|
|
if (bitmap_set_contains_value (PHI_GEN (block), val))
|
3544 |
|
|
continue;
|
3545 |
|
|
if (bitmap_set_contains_value (AVAIL_OUT (dom), val))
|
3546 |
|
|
{
|
3547 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3548 |
|
|
fprintf (dump_file, "Found fully redundant value\n");
|
3549 |
|
|
continue;
|
3550 |
|
|
}
|
3551 |
|
|
|
3552 |
|
|
avail = XCNEWVEC (pre_expr, last_basic_block);
|
3553 |
|
|
FOR_EACH_EDGE (pred, ei, block->preds)
|
3554 |
|
|
{
|
3555 |
|
|
unsigned int vprime;
|
3556 |
|
|
|
3557 |
|
|
/* We should never run insertion for the exit block
|
3558 |
|
|
and so not come across fake pred edges. */
|
3559 |
|
|
gcc_assert (!(pred->flags & EDGE_FAKE));
|
3560 |
|
|
bprime = pred->src;
|
3561 |
|
|
eprime = phi_translate (expr, ANTIC_IN (block), NULL,
|
3562 |
|
|
bprime, block);
|
3563 |
|
|
|
3564 |
|
|
/* eprime will generally only be NULL if the
|
3565 |
|
|
value of the expression, translated
|
3566 |
|
|
through the PHI for this predecessor, is
|
3567 |
|
|
undefined. If that is the case, we can't
|
3568 |
|
|
make the expression fully redundant,
|
3569 |
|
|
because its value is undefined along a
|
3570 |
|
|
predecessor path. We can thus break out
|
3571 |
|
|
early because it doesn't matter what the
|
3572 |
|
|
rest of the results are. */
|
3573 |
|
|
if (eprime == NULL)
|
3574 |
|
|
{
|
3575 |
|
|
cant_insert = true;
|
3576 |
|
|
break;
|
3577 |
|
|
}
|
3578 |
|
|
|
3579 |
|
|
eprime = fully_constant_expression (eprime);
|
3580 |
|
|
vprime = get_expr_value_id (eprime);
|
3581 |
|
|
edoubleprime = bitmap_find_leader (AVAIL_OUT (bprime),
|
3582 |
|
|
vprime, NULL);
|
3583 |
|
|
if (edoubleprime == NULL)
|
3584 |
|
|
{
|
3585 |
|
|
avail[bprime->index] = eprime;
|
3586 |
|
|
all_same = false;
|
3587 |
|
|
}
|
3588 |
|
|
else
|
3589 |
|
|
{
|
3590 |
|
|
avail[bprime->index] = edoubleprime;
|
3591 |
|
|
by_some = true;
|
3592 |
|
|
/* We want to perform insertions to remove a redundancy on
|
3593 |
|
|
a path in the CFG we want to optimize for speed. */
|
3594 |
|
|
if (optimize_edge_for_speed_p (pred))
|
3595 |
|
|
do_insertion = true;
|
3596 |
|
|
if (first_s == NULL)
|
3597 |
|
|
first_s = edoubleprime;
|
3598 |
|
|
else if (!pre_expr_eq (first_s, edoubleprime))
|
3599 |
|
|
all_same = false;
|
3600 |
|
|
}
|
3601 |
|
|
}
|
3602 |
|
|
/* If we can insert it, it's not the same value
|
3603 |
|
|
already existing along every predecessor, and
|
3604 |
|
|
it's defined by some predecessor, it is
|
3605 |
|
|
partially redundant. */
|
3606 |
|
|
if (!cant_insert && !all_same && by_some)
|
3607 |
|
|
{
|
3608 |
|
|
if (!do_insertion)
|
3609 |
|
|
{
|
3610 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3611 |
|
|
{
|
3612 |
|
|
fprintf (dump_file, "Skipping partial redundancy for "
|
3613 |
|
|
"expression ");
|
3614 |
|
|
print_pre_expr (dump_file, expr);
|
3615 |
|
|
fprintf (dump_file, " (%04d), no redundancy on to be "
|
3616 |
|
|
"optimized for speed edge\n", val);
|
3617 |
|
|
}
|
3618 |
|
|
}
|
3619 |
|
|
else if (dbg_cnt (treepre_insert)
|
3620 |
|
|
&& insert_into_preds_of_block (block,
|
3621 |
|
|
get_expression_id (expr),
|
3622 |
|
|
avail))
|
3623 |
|
|
new_stuff = true;
|
3624 |
|
|
}
|
3625 |
|
|
/* If all edges produce the same value and that value is
|
3626 |
|
|
an invariant, then the PHI has the same value on all
|
3627 |
|
|
edges. Note this. */
|
3628 |
|
|
else if (!cant_insert && all_same && eprime
|
3629 |
|
|
&& (edoubleprime->kind == CONSTANT
|
3630 |
|
|
|| edoubleprime->kind == NAME)
|
3631 |
|
|
&& !value_id_constant_p (val))
|
3632 |
|
|
{
|
3633 |
|
|
unsigned int j;
|
3634 |
|
|
bitmap_iterator bi;
|
3635 |
|
|
bitmap_set_t exprset = VEC_index (bitmap_set_t,
|
3636 |
|
|
value_expressions, val);
|
3637 |
|
|
|
3638 |
|
|
unsigned int new_val = get_expr_value_id (edoubleprime);
|
3639 |
|
|
FOR_EACH_EXPR_ID_IN_SET (exprset, j, bi)
|
3640 |
|
|
{
|
3641 |
|
|
pre_expr expr = expression_for_id (j);
|
3642 |
|
|
|
3643 |
|
|
if (expr->kind == NAME)
|
3644 |
|
|
{
|
3645 |
|
|
vn_ssa_aux_t info = VN_INFO (PRE_EXPR_NAME (expr));
|
3646 |
|
|
/* Just reset the value id and valnum so it is
|
3647 |
|
|
the same as the constant we have discovered. */
|
3648 |
|
|
if (edoubleprime->kind == CONSTANT)
|
3649 |
|
|
{
|
3650 |
|
|
info->valnum = PRE_EXPR_CONSTANT (edoubleprime);
|
3651 |
|
|
pre_stats.constified++;
|
3652 |
|
|
}
|
3653 |
|
|
else
|
3654 |
|
|
info->valnum = VN_INFO (PRE_EXPR_NAME (edoubleprime))->valnum;
|
3655 |
|
|
info->value_id = new_val;
|
3656 |
|
|
}
|
3657 |
|
|
}
|
3658 |
|
|
}
|
3659 |
|
|
free (avail);
|
3660 |
|
|
}
|
3661 |
|
|
}
|
3662 |
|
|
|
3663 |
|
|
VEC_free (pre_expr, heap, exprs);
|
3664 |
|
|
return new_stuff;
|
3665 |
|
|
}
|
3666 |
|
|
|
3667 |
|
|
|
3668 |
|
|
/* Perform insertion for partially anticipatable expressions. There
|
3669 |
|
|
is only one case we will perform insertion for these. This case is
|
3670 |
|
|
if the expression is partially anticipatable, and fully available.
|
3671 |
|
|
In this case, we know that putting it earlier will enable us to
|
3672 |
|
|
remove the later computation. */
|
3673 |
|
|
|
3674 |
|
|
|
3675 |
|
|
static bool
|
3676 |
|
|
do_partial_partial_insertion (basic_block block, basic_block dom)
|
3677 |
|
|
{
|
3678 |
|
|
bool new_stuff = false;
|
3679 |
|
|
VEC (pre_expr, heap) *exprs = sorted_array_from_bitmap_set (PA_IN (block));
|
3680 |
|
|
pre_expr expr;
|
3681 |
|
|
int i;
|
3682 |
|
|
|
3683 |
|
|
FOR_EACH_VEC_ELT (pre_expr, exprs, i, expr)
|
3684 |
|
|
{
|
3685 |
|
|
if (expr->kind != NAME)
|
3686 |
|
|
{
|
3687 |
|
|
pre_expr *avail;
|
3688 |
|
|
unsigned int val;
|
3689 |
|
|
bool by_all = true;
|
3690 |
|
|
bool cant_insert = false;
|
3691 |
|
|
edge pred;
|
3692 |
|
|
basic_block bprime;
|
3693 |
|
|
pre_expr eprime = NULL;
|
3694 |
|
|
edge_iterator ei;
|
3695 |
|
|
|
3696 |
|
|
val = get_expr_value_id (expr);
|
3697 |
|
|
if (bitmap_set_contains_value (PHI_GEN (block), val))
|
3698 |
|
|
continue;
|
3699 |
|
|
if (bitmap_set_contains_value (AVAIL_OUT (dom), val))
|
3700 |
|
|
continue;
|
3701 |
|
|
|
3702 |
|
|
avail = XCNEWVEC (pre_expr, last_basic_block);
|
3703 |
|
|
FOR_EACH_EDGE (pred, ei, block->preds)
|
3704 |
|
|
{
|
3705 |
|
|
unsigned int vprime;
|
3706 |
|
|
pre_expr edoubleprime;
|
3707 |
|
|
|
3708 |
|
|
/* We should never run insertion for the exit block
|
3709 |
|
|
and so not come across fake pred edges. */
|
3710 |
|
|
gcc_assert (!(pred->flags & EDGE_FAKE));
|
3711 |
|
|
bprime = pred->src;
|
3712 |
|
|
eprime = phi_translate (expr, ANTIC_IN (block),
|
3713 |
|
|
PA_IN (block),
|
3714 |
|
|
bprime, block);
|
3715 |
|
|
|
3716 |
|
|
/* eprime will generally only be NULL if the
|
3717 |
|
|
value of the expression, translated
|
3718 |
|
|
through the PHI for this predecessor, is
|
3719 |
|
|
undefined. If that is the case, we can't
|
3720 |
|
|
make the expression fully redundant,
|
3721 |
|
|
because its value is undefined along a
|
3722 |
|
|
predecessor path. We can thus break out
|
3723 |
|
|
early because it doesn't matter what the
|
3724 |
|
|
rest of the results are. */
|
3725 |
|
|
if (eprime == NULL)
|
3726 |
|
|
{
|
3727 |
|
|
cant_insert = true;
|
3728 |
|
|
break;
|
3729 |
|
|
}
|
3730 |
|
|
|
3731 |
|
|
eprime = fully_constant_expression (eprime);
|
3732 |
|
|
vprime = get_expr_value_id (eprime);
|
3733 |
|
|
edoubleprime = bitmap_find_leader (AVAIL_OUT (bprime),
|
3734 |
|
|
vprime, NULL);
|
3735 |
|
|
if (edoubleprime == NULL)
|
3736 |
|
|
{
|
3737 |
|
|
by_all = false;
|
3738 |
|
|
break;
|
3739 |
|
|
}
|
3740 |
|
|
else
|
3741 |
|
|
avail[bprime->index] = edoubleprime;
|
3742 |
|
|
|
3743 |
|
|
}
|
3744 |
|
|
|
3745 |
|
|
/* If we can insert it, it's not the same value
|
3746 |
|
|
already existing along every predecessor, and
|
3747 |
|
|
it's defined by some predecessor, it is
|
3748 |
|
|
partially redundant. */
|
3749 |
|
|
if (!cant_insert && by_all && dbg_cnt (treepre_insert))
|
3750 |
|
|
{
|
3751 |
|
|
pre_stats.pa_insert++;
|
3752 |
|
|
if (insert_into_preds_of_block (block, get_expression_id (expr),
|
3753 |
|
|
avail))
|
3754 |
|
|
new_stuff = true;
|
3755 |
|
|
}
|
3756 |
|
|
free (avail);
|
3757 |
|
|
}
|
3758 |
|
|
}
|
3759 |
|
|
|
3760 |
|
|
VEC_free (pre_expr, heap, exprs);
|
3761 |
|
|
return new_stuff;
|
3762 |
|
|
}
|
3763 |
|
|
|
3764 |
|
|
static bool
|
3765 |
|
|
insert_aux (basic_block block)
|
3766 |
|
|
{
|
3767 |
|
|
basic_block son;
|
3768 |
|
|
bool new_stuff = false;
|
3769 |
|
|
|
3770 |
|
|
if (block)
|
3771 |
|
|
{
|
3772 |
|
|
basic_block dom;
|
3773 |
|
|
dom = get_immediate_dominator (CDI_DOMINATORS, block);
|
3774 |
|
|
if (dom)
|
3775 |
|
|
{
|
3776 |
|
|
unsigned i;
|
3777 |
|
|
bitmap_iterator bi;
|
3778 |
|
|
bitmap_set_t newset = NEW_SETS (dom);
|
3779 |
|
|
if (newset)
|
3780 |
|
|
{
|
3781 |
|
|
/* Note that we need to value_replace both NEW_SETS, and
|
3782 |
|
|
AVAIL_OUT. For both the case of NEW_SETS, the value may be
|
3783 |
|
|
represented by some non-simple expression here that we want
|
3784 |
|
|
to replace it with. */
|
3785 |
|
|
FOR_EACH_EXPR_ID_IN_SET (newset, i, bi)
|
3786 |
|
|
{
|
3787 |
|
|
pre_expr expr = expression_for_id (i);
|
3788 |
|
|
bitmap_value_replace_in_set (NEW_SETS (block), expr);
|
3789 |
|
|
bitmap_value_replace_in_set (AVAIL_OUT (block), expr);
|
3790 |
|
|
}
|
3791 |
|
|
}
|
3792 |
|
|
if (!single_pred_p (block))
|
3793 |
|
|
{
|
3794 |
|
|
new_stuff |= do_regular_insertion (block, dom);
|
3795 |
|
|
if (do_partial_partial)
|
3796 |
|
|
new_stuff |= do_partial_partial_insertion (block, dom);
|
3797 |
|
|
}
|
3798 |
|
|
}
|
3799 |
|
|
}
|
3800 |
|
|
for (son = first_dom_son (CDI_DOMINATORS, block);
|
3801 |
|
|
son;
|
3802 |
|
|
son = next_dom_son (CDI_DOMINATORS, son))
|
3803 |
|
|
{
|
3804 |
|
|
new_stuff |= insert_aux (son);
|
3805 |
|
|
}
|
3806 |
|
|
|
3807 |
|
|
return new_stuff;
|
3808 |
|
|
}
|
3809 |
|
|
|
3810 |
|
|
/* Perform insertion of partially redundant values. */
|
3811 |
|
|
|
3812 |
|
|
static void
|
3813 |
|
|
insert (void)
|
3814 |
|
|
{
|
3815 |
|
|
bool new_stuff = true;
|
3816 |
|
|
basic_block bb;
|
3817 |
|
|
int num_iterations = 0;
|
3818 |
|
|
|
3819 |
|
|
FOR_ALL_BB (bb)
|
3820 |
|
|
NEW_SETS (bb) = bitmap_set_new ();
|
3821 |
|
|
|
3822 |
|
|
while (new_stuff)
|
3823 |
|
|
{
|
3824 |
|
|
num_iterations++;
|
3825 |
|
|
new_stuff = insert_aux (ENTRY_BLOCK_PTR);
|
3826 |
|
|
}
|
3827 |
|
|
statistics_histogram_event (cfun, "insert iterations", num_iterations);
|
3828 |
|
|
}
|
3829 |
|
|
|
3830 |
|
|
|
3831 |
|
|
/* Add OP to EXP_GEN (block), and possibly to the maximal set. */
|
3832 |
|
|
|
3833 |
|
|
static void
|
3834 |
|
|
add_to_exp_gen (basic_block block, tree op)
|
3835 |
|
|
{
|
3836 |
|
|
if (!in_fre)
|
3837 |
|
|
{
|
3838 |
|
|
pre_expr result;
|
3839 |
|
|
if (TREE_CODE (op) == SSA_NAME && ssa_undefined_value_p (op))
|
3840 |
|
|
return;
|
3841 |
|
|
result = get_or_alloc_expr_for_name (op);
|
3842 |
|
|
bitmap_value_insert_into_set (EXP_GEN (block), result);
|
3843 |
|
|
}
|
3844 |
|
|
}
|
3845 |
|
|
|
3846 |
|
|
/* Create value ids for PHI in BLOCK. */
|
3847 |
|
|
|
3848 |
|
|
static void
|
3849 |
|
|
make_values_for_phi (gimple phi, basic_block block)
|
3850 |
|
|
{
|
3851 |
|
|
tree result = gimple_phi_result (phi);
|
3852 |
|
|
|
3853 |
|
|
/* We have no need for virtual phis, as they don't represent
|
3854 |
|
|
actual computations. */
|
3855 |
|
|
if (is_gimple_reg (result))
|
3856 |
|
|
{
|
3857 |
|
|
pre_expr e = get_or_alloc_expr_for_name (result);
|
3858 |
|
|
add_to_value (get_expr_value_id (e), e);
|
3859 |
|
|
bitmap_insert_into_set (PHI_GEN (block), e);
|
3860 |
|
|
bitmap_value_insert_into_set (AVAIL_OUT (block), e);
|
3861 |
|
|
if (!in_fre)
|
3862 |
|
|
{
|
3863 |
|
|
unsigned i;
|
3864 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); ++i)
|
3865 |
|
|
{
|
3866 |
|
|
tree arg = gimple_phi_arg_def (phi, i);
|
3867 |
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
3868 |
|
|
{
|
3869 |
|
|
e = get_or_alloc_expr_for_name (arg);
|
3870 |
|
|
add_to_value (get_expr_value_id (e), e);
|
3871 |
|
|
}
|
3872 |
|
|
}
|
3873 |
|
|
}
|
3874 |
|
|
}
|
3875 |
|
|
}
|
3876 |
|
|
|
3877 |
|
|
/* Compute the AVAIL set for all basic blocks.
|
3878 |
|
|
|
3879 |
|
|
This function performs value numbering of the statements in each basic
|
3880 |
|
|
block. The AVAIL sets are built from information we glean while doing
|
3881 |
|
|
this value numbering, since the AVAIL sets contain only one entry per
|
3882 |
|
|
value.
|
3883 |
|
|
|
3884 |
|
|
AVAIL_IN[BLOCK] = AVAIL_OUT[dom(BLOCK)].
|
3885 |
|
|
AVAIL_OUT[BLOCK] = AVAIL_IN[BLOCK] U PHI_GEN[BLOCK] U TMP_GEN[BLOCK]. */
|
3886 |
|
|
|
3887 |
|
|
static void
|
3888 |
|
|
compute_avail (void)
|
3889 |
|
|
{
|
3890 |
|
|
|
3891 |
|
|
basic_block block, son;
|
3892 |
|
|
basic_block *worklist;
|
3893 |
|
|
size_t sp = 0;
|
3894 |
|
|
unsigned i;
|
3895 |
|
|
|
3896 |
|
|
/* We pretend that default definitions are defined in the entry block.
|
3897 |
|
|
This includes function arguments and the static chain decl. */
|
3898 |
|
|
for (i = 1; i < num_ssa_names; ++i)
|
3899 |
|
|
{
|
3900 |
|
|
tree name = ssa_name (i);
|
3901 |
|
|
pre_expr e;
|
3902 |
|
|
if (!name
|
3903 |
|
|
|| !SSA_NAME_IS_DEFAULT_DEF (name)
|
3904 |
|
|
|| has_zero_uses (name)
|
3905 |
|
|
|| !is_gimple_reg (name))
|
3906 |
|
|
continue;
|
3907 |
|
|
|
3908 |
|
|
e = get_or_alloc_expr_for_name (name);
|
3909 |
|
|
add_to_value (get_expr_value_id (e), e);
|
3910 |
|
|
if (!in_fre)
|
3911 |
|
|
bitmap_insert_into_set (TMP_GEN (ENTRY_BLOCK_PTR), e);
|
3912 |
|
|
bitmap_value_insert_into_set (AVAIL_OUT (ENTRY_BLOCK_PTR), e);
|
3913 |
|
|
}
|
3914 |
|
|
|
3915 |
|
|
/* Allocate the worklist. */
|
3916 |
|
|
worklist = XNEWVEC (basic_block, n_basic_blocks);
|
3917 |
|
|
|
3918 |
|
|
/* Seed the algorithm by putting the dominator children of the entry
|
3919 |
|
|
block on the worklist. */
|
3920 |
|
|
for (son = first_dom_son (CDI_DOMINATORS, ENTRY_BLOCK_PTR);
|
3921 |
|
|
son;
|
3922 |
|
|
son = next_dom_son (CDI_DOMINATORS, son))
|
3923 |
|
|
worklist[sp++] = son;
|
3924 |
|
|
|
3925 |
|
|
/* Loop until the worklist is empty. */
|
3926 |
|
|
while (sp)
|
3927 |
|
|
{
|
3928 |
|
|
gimple_stmt_iterator gsi;
|
3929 |
|
|
gimple stmt;
|
3930 |
|
|
basic_block dom;
|
3931 |
|
|
unsigned int stmt_uid = 1;
|
3932 |
|
|
|
3933 |
|
|
/* Pick a block from the worklist. */
|
3934 |
|
|
block = worklist[--sp];
|
3935 |
|
|
|
3936 |
|
|
/* Initially, the set of available values in BLOCK is that of
|
3937 |
|
|
its immediate dominator. */
|
3938 |
|
|
dom = get_immediate_dominator (CDI_DOMINATORS, block);
|
3939 |
|
|
if (dom)
|
3940 |
|
|
bitmap_set_copy (AVAIL_OUT (block), AVAIL_OUT (dom));
|
3941 |
|
|
|
3942 |
|
|
/* Generate values for PHI nodes. */
|
3943 |
|
|
for (gsi = gsi_start_phis (block); !gsi_end_p (gsi); gsi_next (&gsi))
|
3944 |
|
|
make_values_for_phi (gsi_stmt (gsi), block);
|
3945 |
|
|
|
3946 |
|
|
BB_MAY_NOTRETURN (block) = 0;
|
3947 |
|
|
|
3948 |
|
|
/* Now compute value numbers and populate value sets with all
|
3949 |
|
|
the expressions computed in BLOCK. */
|
3950 |
|
|
for (gsi = gsi_start_bb (block); !gsi_end_p (gsi); gsi_next (&gsi))
|
3951 |
|
|
{
|
3952 |
|
|
ssa_op_iter iter;
|
3953 |
|
|
tree op;
|
3954 |
|
|
|
3955 |
|
|
stmt = gsi_stmt (gsi);
|
3956 |
|
|
gimple_set_uid (stmt, stmt_uid++);
|
3957 |
|
|
|
3958 |
|
|
/* Cache whether the basic-block has any non-visible side-effect
|
3959 |
|
|
or control flow.
|
3960 |
|
|
If this isn't a call or it is the last stmt in the
|
3961 |
|
|
basic-block then the CFG represents things correctly. */
|
3962 |
|
|
if (is_gimple_call (stmt)
|
3963 |
|
|
&& !stmt_ends_bb_p (stmt))
|
3964 |
|
|
{
|
3965 |
|
|
/* Non-looping const functions always return normally.
|
3966 |
|
|
Otherwise the call might not return or have side-effects
|
3967 |
|
|
that forbids hoisting possibly trapping expressions
|
3968 |
|
|
before it. */
|
3969 |
|
|
int flags = gimple_call_flags (stmt);
|
3970 |
|
|
if (!(flags & ECF_CONST)
|
3971 |
|
|
|| (flags & ECF_LOOPING_CONST_OR_PURE))
|
3972 |
|
|
BB_MAY_NOTRETURN (block) = 1;
|
3973 |
|
|
}
|
3974 |
|
|
|
3975 |
|
|
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF)
|
3976 |
|
|
{
|
3977 |
|
|
pre_expr e = get_or_alloc_expr_for_name (op);
|
3978 |
|
|
|
3979 |
|
|
add_to_value (get_expr_value_id (e), e);
|
3980 |
|
|
if (!in_fre)
|
3981 |
|
|
bitmap_insert_into_set (TMP_GEN (block), e);
|
3982 |
|
|
bitmap_value_insert_into_set (AVAIL_OUT (block), e);
|
3983 |
|
|
}
|
3984 |
|
|
|
3985 |
|
|
if (gimple_has_volatile_ops (stmt)
|
3986 |
|
|
|| stmt_could_throw_p (stmt))
|
3987 |
|
|
continue;
|
3988 |
|
|
|
3989 |
|
|
switch (gimple_code (stmt))
|
3990 |
|
|
{
|
3991 |
|
|
case GIMPLE_RETURN:
|
3992 |
|
|
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
|
3993 |
|
|
add_to_exp_gen (block, op);
|
3994 |
|
|
continue;
|
3995 |
|
|
|
3996 |
|
|
case GIMPLE_CALL:
|
3997 |
|
|
{
|
3998 |
|
|
vn_reference_t ref;
|
3999 |
|
|
unsigned int i;
|
4000 |
|
|
vn_reference_op_t vro;
|
4001 |
|
|
pre_expr result = NULL;
|
4002 |
|
|
VEC(vn_reference_op_s, heap) *ops = NULL;
|
4003 |
|
|
|
4004 |
|
|
if (!can_value_number_call (stmt))
|
4005 |
|
|
continue;
|
4006 |
|
|
|
4007 |
|
|
copy_reference_ops_from_call (stmt, &ops);
|
4008 |
|
|
vn_reference_lookup_pieces (gimple_vuse (stmt), 0,
|
4009 |
|
|
gimple_expr_type (stmt),
|
4010 |
|
|
ops, &ref, VN_NOWALK);
|
4011 |
|
|
VEC_free (vn_reference_op_s, heap, ops);
|
4012 |
|
|
if (!ref)
|
4013 |
|
|
continue;
|
4014 |
|
|
|
4015 |
|
|
for (i = 0; VEC_iterate (vn_reference_op_s,
|
4016 |
|
|
ref->operands, i,
|
4017 |
|
|
vro); i++)
|
4018 |
|
|
{
|
4019 |
|
|
if (vro->op0 && TREE_CODE (vro->op0) == SSA_NAME)
|
4020 |
|
|
add_to_exp_gen (block, vro->op0);
|
4021 |
|
|
if (vro->op1 && TREE_CODE (vro->op1) == SSA_NAME)
|
4022 |
|
|
add_to_exp_gen (block, vro->op1);
|
4023 |
|
|
if (vro->op2 && TREE_CODE (vro->op2) == SSA_NAME)
|
4024 |
|
|
add_to_exp_gen (block, vro->op2);
|
4025 |
|
|
}
|
4026 |
|
|
result = (pre_expr) pool_alloc (pre_expr_pool);
|
4027 |
|
|
result->kind = REFERENCE;
|
4028 |
|
|
result->id = 0;
|
4029 |
|
|
PRE_EXPR_REFERENCE (result) = ref;
|
4030 |
|
|
|
4031 |
|
|
get_or_alloc_expression_id (result);
|
4032 |
|
|
add_to_value (get_expr_value_id (result), result);
|
4033 |
|
|
if (!in_fre)
|
4034 |
|
|
bitmap_value_insert_into_set (EXP_GEN (block), result);
|
4035 |
|
|
continue;
|
4036 |
|
|
}
|
4037 |
|
|
|
4038 |
|
|
case GIMPLE_ASSIGN:
|
4039 |
|
|
{
|
4040 |
|
|
pre_expr result = NULL;
|
4041 |
|
|
switch (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)))
|
4042 |
|
|
{
|
4043 |
|
|
case tcc_unary:
|
4044 |
|
|
case tcc_binary:
|
4045 |
|
|
case tcc_comparison:
|
4046 |
|
|
{
|
4047 |
|
|
vn_nary_op_t nary;
|
4048 |
|
|
unsigned int i;
|
4049 |
|
|
|
4050 |
|
|
vn_nary_op_lookup_pieces (gimple_num_ops (stmt) - 1,
|
4051 |
|
|
gimple_assign_rhs_code (stmt),
|
4052 |
|
|
gimple_expr_type (stmt),
|
4053 |
|
|
gimple_assign_rhs1_ptr (stmt),
|
4054 |
|
|
&nary);
|
4055 |
|
|
|
4056 |
|
|
if (!nary)
|
4057 |
|
|
continue;
|
4058 |
|
|
|
4059 |
|
|
for (i = 0; i < nary->length; i++)
|
4060 |
|
|
if (TREE_CODE (nary->op[i]) == SSA_NAME)
|
4061 |
|
|
add_to_exp_gen (block, nary->op[i]);
|
4062 |
|
|
|
4063 |
|
|
result = (pre_expr) pool_alloc (pre_expr_pool);
|
4064 |
|
|
result->kind = NARY;
|
4065 |
|
|
result->id = 0;
|
4066 |
|
|
PRE_EXPR_NARY (result) = nary;
|
4067 |
|
|
break;
|
4068 |
|
|
}
|
4069 |
|
|
|
4070 |
|
|
case tcc_declaration:
|
4071 |
|
|
case tcc_reference:
|
4072 |
|
|
{
|
4073 |
|
|
vn_reference_t ref;
|
4074 |
|
|
unsigned int i;
|
4075 |
|
|
vn_reference_op_t vro;
|
4076 |
|
|
|
4077 |
|
|
vn_reference_lookup (gimple_assign_rhs1 (stmt),
|
4078 |
|
|
gimple_vuse (stmt),
|
4079 |
|
|
VN_WALK, &ref);
|
4080 |
|
|
if (!ref)
|
4081 |
|
|
continue;
|
4082 |
|
|
|
4083 |
|
|
for (i = 0; VEC_iterate (vn_reference_op_s,
|
4084 |
|
|
ref->operands, i,
|
4085 |
|
|
vro); i++)
|
4086 |
|
|
{
|
4087 |
|
|
if (vro->op0 && TREE_CODE (vro->op0) == SSA_NAME)
|
4088 |
|
|
add_to_exp_gen (block, vro->op0);
|
4089 |
|
|
if (vro->op1 && TREE_CODE (vro->op1) == SSA_NAME)
|
4090 |
|
|
add_to_exp_gen (block, vro->op1);
|
4091 |
|
|
if (vro->op2 && TREE_CODE (vro->op2) == SSA_NAME)
|
4092 |
|
|
add_to_exp_gen (block, vro->op2);
|
4093 |
|
|
}
|
4094 |
|
|
result = (pre_expr) pool_alloc (pre_expr_pool);
|
4095 |
|
|
result->kind = REFERENCE;
|
4096 |
|
|
result->id = 0;
|
4097 |
|
|
PRE_EXPR_REFERENCE (result) = ref;
|
4098 |
|
|
break;
|
4099 |
|
|
}
|
4100 |
|
|
|
4101 |
|
|
default:
|
4102 |
|
|
/* For any other statement that we don't
|
4103 |
|
|
recognize, simply add all referenced
|
4104 |
|
|
SSA_NAMEs to EXP_GEN. */
|
4105 |
|
|
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
|
4106 |
|
|
add_to_exp_gen (block, op);
|
4107 |
|
|
continue;
|
4108 |
|
|
}
|
4109 |
|
|
|
4110 |
|
|
get_or_alloc_expression_id (result);
|
4111 |
|
|
add_to_value (get_expr_value_id (result), result);
|
4112 |
|
|
if (!in_fre)
|
4113 |
|
|
bitmap_value_insert_into_set (EXP_GEN (block), result);
|
4114 |
|
|
|
4115 |
|
|
continue;
|
4116 |
|
|
}
|
4117 |
|
|
default:
|
4118 |
|
|
break;
|
4119 |
|
|
}
|
4120 |
|
|
}
|
4121 |
|
|
|
4122 |
|
|
/* Put the dominator children of BLOCK on the worklist of blocks
|
4123 |
|
|
to compute available sets for. */
|
4124 |
|
|
for (son = first_dom_son (CDI_DOMINATORS, block);
|
4125 |
|
|
son;
|
4126 |
|
|
son = next_dom_son (CDI_DOMINATORS, son))
|
4127 |
|
|
worklist[sp++] = son;
|
4128 |
|
|
}
|
4129 |
|
|
|
4130 |
|
|
free (worklist);
|
4131 |
|
|
}
|
4132 |
|
|
|
4133 |
|
|
/* Insert the expression for SSA_VN that SCCVN thought would be simpler
|
4134 |
|
|
than the available expressions for it. The insertion point is
|
4135 |
|
|
right before the first use in STMT. Returns the SSA_NAME that should
|
4136 |
|
|
be used for replacement. */
|
4137 |
|
|
|
4138 |
|
|
static tree
|
4139 |
|
|
do_SCCVN_insertion (gimple stmt, tree ssa_vn)
|
4140 |
|
|
{
|
4141 |
|
|
basic_block bb = gimple_bb (stmt);
|
4142 |
|
|
gimple_stmt_iterator gsi;
|
4143 |
|
|
gimple_seq stmts = NULL;
|
4144 |
|
|
tree expr;
|
4145 |
|
|
pre_expr e;
|
4146 |
|
|
|
4147 |
|
|
/* First create a value expression from the expression we want
|
4148 |
|
|
to insert and associate it with the value handle for SSA_VN. */
|
4149 |
|
|
e = get_or_alloc_expr_for (vn_get_expr_for (ssa_vn));
|
4150 |
|
|
if (e == NULL)
|
4151 |
|
|
return NULL_TREE;
|
4152 |
|
|
|
4153 |
|
|
/* Then use create_expression_by_pieces to generate a valid
|
4154 |
|
|
expression to insert at this point of the IL stream. */
|
4155 |
|
|
expr = create_expression_by_pieces (bb, e, &stmts, stmt, NULL);
|
4156 |
|
|
if (expr == NULL_TREE)
|
4157 |
|
|
return NULL_TREE;
|
4158 |
|
|
gsi = gsi_for_stmt (stmt);
|
4159 |
|
|
gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
|
4160 |
|
|
|
4161 |
|
|
return expr;
|
4162 |
|
|
}
|
4163 |
|
|
|
4164 |
|
|
/* Eliminate fully redundant computations. */
|
4165 |
|
|
|
4166 |
|
|
static unsigned int
|
4167 |
|
|
eliminate (void)
|
4168 |
|
|
{
|
4169 |
|
|
VEC (gimple, heap) *to_remove = NULL;
|
4170 |
|
|
VEC (gimple, heap) *to_update = NULL;
|
4171 |
|
|
basic_block b;
|
4172 |
|
|
unsigned int todo = 0;
|
4173 |
|
|
gimple_stmt_iterator gsi;
|
4174 |
|
|
gimple stmt;
|
4175 |
|
|
unsigned i;
|
4176 |
|
|
|
4177 |
|
|
FOR_EACH_BB (b)
|
4178 |
|
|
{
|
4179 |
|
|
for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
|
4180 |
|
|
{
|
4181 |
|
|
tree lhs = NULL_TREE;
|
4182 |
|
|
tree rhs = NULL_TREE;
|
4183 |
|
|
|
4184 |
|
|
stmt = gsi_stmt (gsi);
|
4185 |
|
|
|
4186 |
|
|
if (gimple_has_lhs (stmt))
|
4187 |
|
|
lhs = gimple_get_lhs (stmt);
|
4188 |
|
|
|
4189 |
|
|
if (gimple_assign_single_p (stmt))
|
4190 |
|
|
rhs = gimple_assign_rhs1 (stmt);
|
4191 |
|
|
|
4192 |
|
|
/* Lookup the RHS of the expression, see if we have an
|
4193 |
|
|
available computation for it. If so, replace the RHS with
|
4194 |
|
|
the available computation.
|
4195 |
|
|
|
4196 |
|
|
See PR43491.
|
4197 |
|
|
We don't replace global register variable when it is a the RHS of
|
4198 |
|
|
a single assign. We do replace local register variable since gcc
|
4199 |
|
|
does not guarantee local variable will be allocated in register. */
|
4200 |
|
|
if (gimple_has_lhs (stmt)
|
4201 |
|
|
&& TREE_CODE (lhs) == SSA_NAME
|
4202 |
|
|
&& !gimple_assign_ssa_name_copy_p (stmt)
|
4203 |
|
|
&& (!gimple_assign_single_p (stmt)
|
4204 |
|
|
|| (!is_gimple_min_invariant (rhs)
|
4205 |
|
|
&& (gimple_assign_rhs_code (stmt) != VAR_DECL
|
4206 |
|
|
|| !is_global_var (rhs)
|
4207 |
|
|
|| !DECL_HARD_REGISTER (rhs))))
|
4208 |
|
|
&& !gimple_has_volatile_ops (stmt)
|
4209 |
|
|
&& !has_zero_uses (lhs))
|
4210 |
|
|
{
|
4211 |
|
|
tree sprime = NULL;
|
4212 |
|
|
pre_expr lhsexpr = get_or_alloc_expr_for_name (lhs);
|
4213 |
|
|
pre_expr sprimeexpr;
|
4214 |
|
|
gimple orig_stmt = stmt;
|
4215 |
|
|
|
4216 |
|
|
sprimeexpr = bitmap_find_leader (AVAIL_OUT (b),
|
4217 |
|
|
get_expr_value_id (lhsexpr),
|
4218 |
|
|
NULL);
|
4219 |
|
|
|
4220 |
|
|
if (sprimeexpr)
|
4221 |
|
|
{
|
4222 |
|
|
if (sprimeexpr->kind == CONSTANT)
|
4223 |
|
|
sprime = PRE_EXPR_CONSTANT (sprimeexpr);
|
4224 |
|
|
else if (sprimeexpr->kind == NAME)
|
4225 |
|
|
sprime = PRE_EXPR_NAME (sprimeexpr);
|
4226 |
|
|
else
|
4227 |
|
|
gcc_unreachable ();
|
4228 |
|
|
}
|
4229 |
|
|
|
4230 |
|
|
/* If there is no existing leader but SCCVN knows this
|
4231 |
|
|
value is constant, use that constant. */
|
4232 |
|
|
if (!sprime && is_gimple_min_invariant (VN_INFO (lhs)->valnum))
|
4233 |
|
|
{
|
4234 |
|
|
sprime = VN_INFO (lhs)->valnum;
|
4235 |
|
|
if (!useless_type_conversion_p (TREE_TYPE (lhs),
|
4236 |
|
|
TREE_TYPE (sprime)))
|
4237 |
|
|
sprime = fold_convert (TREE_TYPE (lhs), sprime);
|
4238 |
|
|
|
4239 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
4240 |
|
|
{
|
4241 |
|
|
fprintf (dump_file, "Replaced ");
|
4242 |
|
|
print_gimple_expr (dump_file, stmt, 0, 0);
|
4243 |
|
|
fprintf (dump_file, " with ");
|
4244 |
|
|
print_generic_expr (dump_file, sprime, 0);
|
4245 |
|
|
fprintf (dump_file, " in ");
|
4246 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
4247 |
|
|
}
|
4248 |
|
|
pre_stats.eliminations++;
|
4249 |
|
|
propagate_tree_value_into_stmt (&gsi, sprime);
|
4250 |
|
|
stmt = gsi_stmt (gsi);
|
4251 |
|
|
update_stmt (stmt);
|
4252 |
|
|
|
4253 |
|
|
/* If we removed EH side-effects from the statement, clean
|
4254 |
|
|
its EH information. */
|
4255 |
|
|
if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
|
4256 |
|
|
{
|
4257 |
|
|
bitmap_set_bit (need_eh_cleanup,
|
4258 |
|
|
gimple_bb (stmt)->index);
|
4259 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
4260 |
|
|
fprintf (dump_file, " Removed EH side-effects.\n");
|
4261 |
|
|
}
|
4262 |
|
|
continue;
|
4263 |
|
|
}
|
4264 |
|
|
|
4265 |
|
|
/* If there is no existing usable leader but SCCVN thinks
|
4266 |
|
|
it has an expression it wants to use as replacement,
|
4267 |
|
|
insert that. */
|
4268 |
|
|
if (!sprime || sprime == lhs)
|
4269 |
|
|
{
|
4270 |
|
|
tree val = VN_INFO (lhs)->valnum;
|
4271 |
|
|
if (val != VN_TOP
|
4272 |
|
|
&& TREE_CODE (val) == SSA_NAME
|
4273 |
|
|
&& VN_INFO (val)->needs_insertion
|
4274 |
|
|
&& can_PRE_operation (vn_get_expr_for (val)))
|
4275 |
|
|
sprime = do_SCCVN_insertion (stmt, val);
|
4276 |
|
|
}
|
4277 |
|
|
if (sprime
|
4278 |
|
|
&& sprime != lhs
|
4279 |
|
|
&& (rhs == NULL_TREE
|
4280 |
|
|
|| TREE_CODE (rhs) != SSA_NAME
|
4281 |
|
|
|| may_propagate_copy (rhs, sprime)))
|
4282 |
|
|
{
|
4283 |
|
|
bool can_make_abnormal_goto
|
4284 |
|
|
= is_gimple_call (stmt)
|
4285 |
|
|
&& stmt_can_make_abnormal_goto (stmt);
|
4286 |
|
|
|
4287 |
|
|
gcc_assert (sprime != rhs);
|
4288 |
|
|
|
4289 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
4290 |
|
|
{
|
4291 |
|
|
fprintf (dump_file, "Replaced ");
|
4292 |
|
|
print_gimple_expr (dump_file, stmt, 0, 0);
|
4293 |
|
|
fprintf (dump_file, " with ");
|
4294 |
|
|
print_generic_expr (dump_file, sprime, 0);
|
4295 |
|
|
fprintf (dump_file, " in ");
|
4296 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
4297 |
|
|
}
|
4298 |
|
|
|
4299 |
|
|
if (TREE_CODE (sprime) == SSA_NAME)
|
4300 |
|
|
gimple_set_plf (SSA_NAME_DEF_STMT (sprime),
|
4301 |
|
|
NECESSARY, true);
|
4302 |
|
|
/* We need to make sure the new and old types actually match,
|
4303 |
|
|
which may require adding a simple cast, which fold_convert
|
4304 |
|
|
will do for us. */
|
4305 |
|
|
if ((!rhs || TREE_CODE (rhs) != SSA_NAME)
|
4306 |
|
|
&& !useless_type_conversion_p (gimple_expr_type (stmt),
|
4307 |
|
|
TREE_TYPE (sprime)))
|
4308 |
|
|
sprime = fold_convert (gimple_expr_type (stmt), sprime);
|
4309 |
|
|
|
4310 |
|
|
pre_stats.eliminations++;
|
4311 |
|
|
propagate_tree_value_into_stmt (&gsi, sprime);
|
4312 |
|
|
stmt = gsi_stmt (gsi);
|
4313 |
|
|
update_stmt (stmt);
|
4314 |
|
|
|
4315 |
|
|
/* If we removed EH side-effects from the statement, clean
|
4316 |
|
|
its EH information. */
|
4317 |
|
|
if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
|
4318 |
|
|
{
|
4319 |
|
|
bitmap_set_bit (need_eh_cleanup,
|
4320 |
|
|
gimple_bb (stmt)->index);
|
4321 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
4322 |
|
|
fprintf (dump_file, " Removed EH side-effects.\n");
|
4323 |
|
|
}
|
4324 |
|
|
|
4325 |
|
|
/* Likewise for AB side-effects. */
|
4326 |
|
|
if (can_make_abnormal_goto
|
4327 |
|
|
&& !stmt_can_make_abnormal_goto (stmt))
|
4328 |
|
|
{
|
4329 |
|
|
bitmap_set_bit (need_ab_cleanup,
|
4330 |
|
|
gimple_bb (stmt)->index);
|
4331 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
4332 |
|
|
fprintf (dump_file, " Removed AB side-effects.\n");
|
4333 |
|
|
}
|
4334 |
|
|
}
|
4335 |
|
|
}
|
4336 |
|
|
/* If the statement is a scalar store, see if the expression
|
4337 |
|
|
has the same value number as its rhs. If so, the store is
|
4338 |
|
|
dead. */
|
4339 |
|
|
else if (gimple_assign_single_p (stmt)
|
4340 |
|
|
&& !is_gimple_reg (gimple_assign_lhs (stmt))
|
4341 |
|
|
&& (TREE_CODE (rhs) == SSA_NAME
|
4342 |
|
|
|| is_gimple_min_invariant (rhs)))
|
4343 |
|
|
{
|
4344 |
|
|
tree val;
|
4345 |
|
|
val = vn_reference_lookup (gimple_assign_lhs (stmt),
|
4346 |
|
|
gimple_vuse (stmt), VN_WALK, NULL);
|
4347 |
|
|
if (TREE_CODE (rhs) == SSA_NAME)
|
4348 |
|
|
rhs = VN_INFO (rhs)->valnum;
|
4349 |
|
|
if (val
|
4350 |
|
|
&& operand_equal_p (val, rhs, 0))
|
4351 |
|
|
{
|
4352 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
4353 |
|
|
{
|
4354 |
|
|
fprintf (dump_file, "Deleted redundant store ");
|
4355 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
4356 |
|
|
}
|
4357 |
|
|
|
4358 |
|
|
/* Queue stmt for removal. */
|
4359 |
|
|
VEC_safe_push (gimple, heap, to_remove, stmt);
|
4360 |
|
|
}
|
4361 |
|
|
}
|
4362 |
|
|
/* Visit COND_EXPRs and fold the comparison with the
|
4363 |
|
|
available value-numbers. */
|
4364 |
|
|
else if (gimple_code (stmt) == GIMPLE_COND)
|
4365 |
|
|
{
|
4366 |
|
|
tree op0 = gimple_cond_lhs (stmt);
|
4367 |
|
|
tree op1 = gimple_cond_rhs (stmt);
|
4368 |
|
|
tree result;
|
4369 |
|
|
|
4370 |
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
4371 |
|
|
op0 = VN_INFO (op0)->valnum;
|
4372 |
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
4373 |
|
|
op1 = VN_INFO (op1)->valnum;
|
4374 |
|
|
result = fold_binary (gimple_cond_code (stmt), boolean_type_node,
|
4375 |
|
|
op0, op1);
|
4376 |
|
|
if (result && TREE_CODE (result) == INTEGER_CST)
|
4377 |
|
|
{
|
4378 |
|
|
if (integer_zerop (result))
|
4379 |
|
|
gimple_cond_make_false (stmt);
|
4380 |
|
|
else
|
4381 |
|
|
gimple_cond_make_true (stmt);
|
4382 |
|
|
update_stmt (stmt);
|
4383 |
|
|
todo = TODO_cleanup_cfg;
|
4384 |
|
|
}
|
4385 |
|
|
}
|
4386 |
|
|
/* Visit indirect calls and turn them into direct calls if
|
4387 |
|
|
possible. */
|
4388 |
|
|
if (is_gimple_call (stmt))
|
4389 |
|
|
{
|
4390 |
|
|
tree orig_fn = gimple_call_fn (stmt);
|
4391 |
|
|
tree fn;
|
4392 |
|
|
if (!orig_fn)
|
4393 |
|
|
continue;
|
4394 |
|
|
if (TREE_CODE (orig_fn) == SSA_NAME)
|
4395 |
|
|
fn = VN_INFO (orig_fn)->valnum;
|
4396 |
|
|
else if (TREE_CODE (orig_fn) == OBJ_TYPE_REF
|
4397 |
|
|
&& TREE_CODE (OBJ_TYPE_REF_EXPR (orig_fn)) == SSA_NAME)
|
4398 |
|
|
fn = VN_INFO (OBJ_TYPE_REF_EXPR (orig_fn))->valnum;
|
4399 |
|
|
else
|
4400 |
|
|
continue;
|
4401 |
|
|
if (gimple_call_addr_fndecl (fn) != NULL_TREE
|
4402 |
|
|
&& useless_type_conversion_p (TREE_TYPE (orig_fn),
|
4403 |
|
|
TREE_TYPE (fn)))
|
4404 |
|
|
{
|
4405 |
|
|
bool can_make_abnormal_goto
|
4406 |
|
|
= stmt_can_make_abnormal_goto (stmt);
|
4407 |
|
|
bool was_noreturn = gimple_call_noreturn_p (stmt);
|
4408 |
|
|
|
4409 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
4410 |
|
|
{
|
4411 |
|
|
fprintf (dump_file, "Replacing call target with ");
|
4412 |
|
|
print_generic_expr (dump_file, fn, 0);
|
4413 |
|
|
fprintf (dump_file, " in ");
|
4414 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
4415 |
|
|
}
|
4416 |
|
|
|
4417 |
|
|
gimple_call_set_fn (stmt, fn);
|
4418 |
|
|
VEC_safe_push (gimple, heap, to_update, stmt);
|
4419 |
|
|
|
4420 |
|
|
/* When changing a call into a noreturn call, cfg cleanup
|
4421 |
|
|
is needed to fix up the noreturn call. */
|
4422 |
|
|
if (!was_noreturn && gimple_call_noreturn_p (stmt))
|
4423 |
|
|
todo |= TODO_cleanup_cfg;
|
4424 |
|
|
|
4425 |
|
|
/* If we removed EH side-effects from the statement, clean
|
4426 |
|
|
its EH information. */
|
4427 |
|
|
if (maybe_clean_or_replace_eh_stmt (stmt, stmt))
|
4428 |
|
|
{
|
4429 |
|
|
bitmap_set_bit (need_eh_cleanup,
|
4430 |
|
|
gimple_bb (stmt)->index);
|
4431 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
4432 |
|
|
fprintf (dump_file, " Removed EH side-effects.\n");
|
4433 |
|
|
}
|
4434 |
|
|
|
4435 |
|
|
/* Likewise for AB side-effects. */
|
4436 |
|
|
if (can_make_abnormal_goto
|
4437 |
|
|
&& !stmt_can_make_abnormal_goto (stmt))
|
4438 |
|
|
{
|
4439 |
|
|
bitmap_set_bit (need_ab_cleanup,
|
4440 |
|
|
gimple_bb (stmt)->index);
|
4441 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
4442 |
|
|
fprintf (dump_file, " Removed AB side-effects.\n");
|
4443 |
|
|
}
|
4444 |
|
|
|
4445 |
|
|
/* Changing an indirect call to a direct call may
|
4446 |
|
|
have exposed different semantics. This may
|
4447 |
|
|
require an SSA update. */
|
4448 |
|
|
todo |= TODO_update_ssa_only_virtuals;
|
4449 |
|
|
}
|
4450 |
|
|
}
|
4451 |
|
|
}
|
4452 |
|
|
|
4453 |
|
|
for (gsi = gsi_start_phis (b); !gsi_end_p (gsi);)
|
4454 |
|
|
{
|
4455 |
|
|
gimple stmt, phi = gsi_stmt (gsi);
|
4456 |
|
|
tree sprime = NULL_TREE, res = PHI_RESULT (phi);
|
4457 |
|
|
pre_expr sprimeexpr, resexpr;
|
4458 |
|
|
gimple_stmt_iterator gsi2;
|
4459 |
|
|
|
4460 |
|
|
/* We want to perform redundant PHI elimination. Do so by
|
4461 |
|
|
replacing the PHI with a single copy if possible.
|
4462 |
|
|
Do not touch inserted, single-argument or virtual PHIs. */
|
4463 |
|
|
if (gimple_phi_num_args (phi) == 1
|
4464 |
|
|
|| !is_gimple_reg (res))
|
4465 |
|
|
{
|
4466 |
|
|
gsi_next (&gsi);
|
4467 |
|
|
continue;
|
4468 |
|
|
}
|
4469 |
|
|
|
4470 |
|
|
resexpr = get_or_alloc_expr_for_name (res);
|
4471 |
|
|
sprimeexpr = bitmap_find_leader (AVAIL_OUT (b),
|
4472 |
|
|
get_expr_value_id (resexpr), NULL);
|
4473 |
|
|
if (sprimeexpr)
|
4474 |
|
|
{
|
4475 |
|
|
if (sprimeexpr->kind == CONSTANT)
|
4476 |
|
|
sprime = PRE_EXPR_CONSTANT (sprimeexpr);
|
4477 |
|
|
else if (sprimeexpr->kind == NAME)
|
4478 |
|
|
sprime = PRE_EXPR_NAME (sprimeexpr);
|
4479 |
|
|
else
|
4480 |
|
|
gcc_unreachable ();
|
4481 |
|
|
}
|
4482 |
|
|
if (!sprime && is_gimple_min_invariant (VN_INFO (res)->valnum))
|
4483 |
|
|
{
|
4484 |
|
|
sprime = VN_INFO (res)->valnum;
|
4485 |
|
|
if (!useless_type_conversion_p (TREE_TYPE (res),
|
4486 |
|
|
TREE_TYPE (sprime)))
|
4487 |
|
|
sprime = fold_convert (TREE_TYPE (res), sprime);
|
4488 |
|
|
}
|
4489 |
|
|
if (!sprime
|
4490 |
|
|
|| sprime == res)
|
4491 |
|
|
{
|
4492 |
|
|
gsi_next (&gsi);
|
4493 |
|
|
continue;
|
4494 |
|
|
}
|
4495 |
|
|
|
4496 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
4497 |
|
|
{
|
4498 |
|
|
fprintf (dump_file, "Replaced redundant PHI node defining ");
|
4499 |
|
|
print_generic_expr (dump_file, res, 0);
|
4500 |
|
|
fprintf (dump_file, " with ");
|
4501 |
|
|
print_generic_expr (dump_file, sprime, 0);
|
4502 |
|
|
fprintf (dump_file, "\n");
|
4503 |
|
|
}
|
4504 |
|
|
|
4505 |
|
|
remove_phi_node (&gsi, false);
|
4506 |
|
|
|
4507 |
|
|
if (!bitmap_bit_p (inserted_exprs, SSA_NAME_VERSION (res))
|
4508 |
|
|
&& TREE_CODE (sprime) == SSA_NAME)
|
4509 |
|
|
gimple_set_plf (SSA_NAME_DEF_STMT (sprime), NECESSARY, true);
|
4510 |
|
|
|
4511 |
|
|
if (!useless_type_conversion_p (TREE_TYPE (res), TREE_TYPE (sprime)))
|
4512 |
|
|
sprime = fold_convert (TREE_TYPE (res), sprime);
|
4513 |
|
|
stmt = gimple_build_assign (res, sprime);
|
4514 |
|
|
SSA_NAME_DEF_STMT (res) = stmt;
|
4515 |
|
|
gimple_set_plf (stmt, NECESSARY, gimple_plf (phi, NECESSARY));
|
4516 |
|
|
|
4517 |
|
|
gsi2 = gsi_after_labels (b);
|
4518 |
|
|
gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT);
|
4519 |
|
|
/* Queue the copy for eventual removal. */
|
4520 |
|
|
VEC_safe_push (gimple, heap, to_remove, stmt);
|
4521 |
|
|
/* If we inserted this PHI node ourself, it's not an elimination. */
|
4522 |
|
|
if (bitmap_bit_p (inserted_exprs, SSA_NAME_VERSION (res)))
|
4523 |
|
|
pre_stats.phis--;
|
4524 |
|
|
else
|
4525 |
|
|
pre_stats.eliminations++;
|
4526 |
|
|
}
|
4527 |
|
|
}
|
4528 |
|
|
|
4529 |
|
|
/* We cannot remove stmts during BB walk, especially not release SSA
|
4530 |
|
|
names there as this confuses the VN machinery. The stmts ending
|
4531 |
|
|
up in to_remove are either stores or simple copies. */
|
4532 |
|
|
FOR_EACH_VEC_ELT (gimple, to_remove, i, stmt)
|
4533 |
|
|
{
|
4534 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
4535 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
4536 |
|
|
use_operand_p use_p;
|
4537 |
|
|
gimple use_stmt;
|
4538 |
|
|
|
4539 |
|
|
/* If there is a single use only, propagate the equivalency
|
4540 |
|
|
instead of keeping the copy. */
|
4541 |
|
|
if (TREE_CODE (lhs) == SSA_NAME
|
4542 |
|
|
&& TREE_CODE (rhs) == SSA_NAME
|
4543 |
|
|
&& single_imm_use (lhs, &use_p, &use_stmt)
|
4544 |
|
|
&& may_propagate_copy (USE_FROM_PTR (use_p), rhs))
|
4545 |
|
|
{
|
4546 |
|
|
SET_USE (use_p, rhs);
|
4547 |
|
|
update_stmt (use_stmt);
|
4548 |
|
|
if (bitmap_bit_p (inserted_exprs, SSA_NAME_VERSION (lhs))
|
4549 |
|
|
&& TREE_CODE (rhs) == SSA_NAME)
|
4550 |
|
|
gimple_set_plf (SSA_NAME_DEF_STMT (rhs), NECESSARY, true);
|
4551 |
|
|
}
|
4552 |
|
|
|
4553 |
|
|
/* If this is a store or a now unused copy, remove it. */
|
4554 |
|
|
if (TREE_CODE (lhs) != SSA_NAME
|
4555 |
|
|
|| has_zero_uses (lhs))
|
4556 |
|
|
{
|
4557 |
|
|
basic_block bb = gimple_bb (stmt);
|
4558 |
|
|
gsi = gsi_for_stmt (stmt);
|
4559 |
|
|
unlink_stmt_vdef (stmt);
|
4560 |
|
|
gsi_remove (&gsi, true);
|
4561 |
|
|
/* ??? gsi_remove doesn't tell us whether the stmt was
|
4562 |
|
|
in EH tables and thus whether we need to purge EH edges.
|
4563 |
|
|
Simply schedule the block for a cleanup. */
|
4564 |
|
|
bitmap_set_bit (need_eh_cleanup, bb->index);
|
4565 |
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
4566 |
|
|
bitmap_clear_bit (inserted_exprs, SSA_NAME_VERSION (lhs));
|
4567 |
|
|
release_defs (stmt);
|
4568 |
|
|
}
|
4569 |
|
|
}
|
4570 |
|
|
VEC_free (gimple, heap, to_remove);
|
4571 |
|
|
|
4572 |
|
|
/* We cannot update call statements with virtual operands during
|
4573 |
|
|
SSA walk. This might remove them which in turn makes our
|
4574 |
|
|
VN lattice invalid. */
|
4575 |
|
|
FOR_EACH_VEC_ELT (gimple, to_update, i, stmt)
|
4576 |
|
|
update_stmt (stmt);
|
4577 |
|
|
VEC_free (gimple, heap, to_update);
|
4578 |
|
|
|
4579 |
|
|
return todo;
|
4580 |
|
|
}
|
4581 |
|
|
|
4582 |
|
|
/* Borrow a bit of tree-ssa-dce.c for the moment.
|
4583 |
|
|
XXX: In 4.1, we should be able to just run a DCE pass after PRE, though
|
4584 |
|
|
this may be a bit faster, and we may want critical edges kept split. */
|
4585 |
|
|
|
4586 |
|
|
/* If OP's defining statement has not already been determined to be necessary,
|
4587 |
|
|
mark that statement necessary. Return the stmt, if it is newly
|
4588 |
|
|
necessary. */
|
4589 |
|
|
|
4590 |
|
|
static inline gimple
|
4591 |
|
|
mark_operand_necessary (tree op)
|
4592 |
|
|
{
|
4593 |
|
|
gimple stmt;
|
4594 |
|
|
|
4595 |
|
|
gcc_assert (op);
|
4596 |
|
|
|
4597 |
|
|
if (TREE_CODE (op) != SSA_NAME)
|
4598 |
|
|
return NULL;
|
4599 |
|
|
|
4600 |
|
|
stmt = SSA_NAME_DEF_STMT (op);
|
4601 |
|
|
gcc_assert (stmt);
|
4602 |
|
|
|
4603 |
|
|
if (gimple_plf (stmt, NECESSARY)
|
4604 |
|
|
|| gimple_nop_p (stmt))
|
4605 |
|
|
return NULL;
|
4606 |
|
|
|
4607 |
|
|
gimple_set_plf (stmt, NECESSARY, true);
|
4608 |
|
|
return stmt;
|
4609 |
|
|
}
|
4610 |
|
|
|
4611 |
|
|
/* Because we don't follow exactly the standard PRE algorithm, and decide not
|
4612 |
|
|
to insert PHI nodes sometimes, and because value numbering of casts isn't
|
4613 |
|
|
perfect, we sometimes end up inserting dead code. This simple DCE-like
|
4614 |
|
|
pass removes any insertions we made that weren't actually used. */
|
4615 |
|
|
|
4616 |
|
|
static void
|
4617 |
|
|
remove_dead_inserted_code (void)
|
4618 |
|
|
{
|
4619 |
|
|
bitmap worklist;
|
4620 |
|
|
unsigned i;
|
4621 |
|
|
bitmap_iterator bi;
|
4622 |
|
|
gimple t;
|
4623 |
|
|
|
4624 |
|
|
worklist = BITMAP_ALLOC (NULL);
|
4625 |
|
|
EXECUTE_IF_SET_IN_BITMAP (inserted_exprs, 0, i, bi)
|
4626 |
|
|
{
|
4627 |
|
|
t = SSA_NAME_DEF_STMT (ssa_name (i));
|
4628 |
|
|
if (gimple_plf (t, NECESSARY))
|
4629 |
|
|
bitmap_set_bit (worklist, i);
|
4630 |
|
|
}
|
4631 |
|
|
while (!bitmap_empty_p (worklist))
|
4632 |
|
|
{
|
4633 |
|
|
i = bitmap_first_set_bit (worklist);
|
4634 |
|
|
bitmap_clear_bit (worklist, i);
|
4635 |
|
|
t = SSA_NAME_DEF_STMT (ssa_name (i));
|
4636 |
|
|
|
4637 |
|
|
/* PHI nodes are somewhat special in that each PHI alternative has
|
4638 |
|
|
data and control dependencies. All the statements feeding the
|
4639 |
|
|
PHI node's arguments are always necessary. */
|
4640 |
|
|
if (gimple_code (t) == GIMPLE_PHI)
|
4641 |
|
|
{
|
4642 |
|
|
unsigned k;
|
4643 |
|
|
|
4644 |
|
|
for (k = 0; k < gimple_phi_num_args (t); k++)
|
4645 |
|
|
{
|
4646 |
|
|
tree arg = PHI_ARG_DEF (t, k);
|
4647 |
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
4648 |
|
|
{
|
4649 |
|
|
gimple n = mark_operand_necessary (arg);
|
4650 |
|
|
if (n)
|
4651 |
|
|
bitmap_set_bit (worklist, SSA_NAME_VERSION (arg));
|
4652 |
|
|
}
|
4653 |
|
|
}
|
4654 |
|
|
}
|
4655 |
|
|
else
|
4656 |
|
|
{
|
4657 |
|
|
/* Propagate through the operands. Examine all the USE, VUSE and
|
4658 |
|
|
VDEF operands in this statement. Mark all the statements
|
4659 |
|
|
which feed this statement's uses as necessary. */
|
4660 |
|
|
ssa_op_iter iter;
|
4661 |
|
|
tree use;
|
4662 |
|
|
|
4663 |
|
|
/* The operands of VDEF expressions are also needed as they
|
4664 |
|
|
represent potential definitions that may reach this
|
4665 |
|
|
statement (VDEF operands allow us to follow def-def
|
4666 |
|
|
links). */
|
4667 |
|
|
|
4668 |
|
|
FOR_EACH_SSA_TREE_OPERAND (use, t, iter, SSA_OP_ALL_USES)
|
4669 |
|
|
{
|
4670 |
|
|
gimple n = mark_operand_necessary (use);
|
4671 |
|
|
if (n)
|
4672 |
|
|
bitmap_set_bit (worklist, SSA_NAME_VERSION (use));
|
4673 |
|
|
}
|
4674 |
|
|
}
|
4675 |
|
|
}
|
4676 |
|
|
|
4677 |
|
|
EXECUTE_IF_SET_IN_BITMAP (inserted_exprs, 0, i, bi)
|
4678 |
|
|
{
|
4679 |
|
|
t = SSA_NAME_DEF_STMT (ssa_name (i));
|
4680 |
|
|
if (!gimple_plf (t, NECESSARY))
|
4681 |
|
|
{
|
4682 |
|
|
gimple_stmt_iterator gsi;
|
4683 |
|
|
|
4684 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
4685 |
|
|
{
|
4686 |
|
|
fprintf (dump_file, "Removing unnecessary insertion:");
|
4687 |
|
|
print_gimple_stmt (dump_file, t, 0, 0);
|
4688 |
|
|
}
|
4689 |
|
|
|
4690 |
|
|
gsi = gsi_for_stmt (t);
|
4691 |
|
|
if (gimple_code (t) == GIMPLE_PHI)
|
4692 |
|
|
remove_phi_node (&gsi, true);
|
4693 |
|
|
else
|
4694 |
|
|
{
|
4695 |
|
|
gsi_remove (&gsi, true);
|
4696 |
|
|
release_defs (t);
|
4697 |
|
|
}
|
4698 |
|
|
}
|
4699 |
|
|
}
|
4700 |
|
|
BITMAP_FREE (worklist);
|
4701 |
|
|
}
|
4702 |
|
|
|
4703 |
|
|
/* Compute a reverse post-order in *POST_ORDER. If INCLUDE_ENTRY_EXIT is
|
4704 |
|
|
true, then then ENTRY_BLOCK and EXIT_BLOCK are included. Returns
|
4705 |
|
|
the number of visited blocks. */
|
4706 |
|
|
|
4707 |
|
|
static int
|
4708 |
|
|
my_rev_post_order_compute (int *post_order, bool include_entry_exit)
|
4709 |
|
|
{
|
4710 |
|
|
edge_iterator *stack;
|
4711 |
|
|
int sp;
|
4712 |
|
|
int post_order_num = 0;
|
4713 |
|
|
sbitmap visited;
|
4714 |
|
|
|
4715 |
|
|
if (include_entry_exit)
|
4716 |
|
|
post_order[post_order_num++] = EXIT_BLOCK;
|
4717 |
|
|
|
4718 |
|
|
/* Allocate stack for back-tracking up CFG. */
|
4719 |
|
|
stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
|
4720 |
|
|
sp = 0;
|
4721 |
|
|
|
4722 |
|
|
/* Allocate bitmap to track nodes that have been visited. */
|
4723 |
|
|
visited = sbitmap_alloc (last_basic_block);
|
4724 |
|
|
|
4725 |
|
|
/* None of the nodes in the CFG have been visited yet. */
|
4726 |
|
|
sbitmap_zero (visited);
|
4727 |
|
|
|
4728 |
|
|
/* Push the last edge on to the stack. */
|
4729 |
|
|
stack[sp++] = ei_start (EXIT_BLOCK_PTR->preds);
|
4730 |
|
|
|
4731 |
|
|
while (sp)
|
4732 |
|
|
{
|
4733 |
|
|
edge_iterator ei;
|
4734 |
|
|
basic_block src;
|
4735 |
|
|
basic_block dest;
|
4736 |
|
|
|
4737 |
|
|
/* Look at the edge on the top of the stack. */
|
4738 |
|
|
ei = stack[sp - 1];
|
4739 |
|
|
src = ei_edge (ei)->src;
|
4740 |
|
|
dest = ei_edge (ei)->dest;
|
4741 |
|
|
|
4742 |
|
|
/* Check if the edge destination has been visited yet. */
|
4743 |
|
|
if (src != ENTRY_BLOCK_PTR && ! TEST_BIT (visited, src->index))
|
4744 |
|
|
{
|
4745 |
|
|
/* Mark that we have visited the destination. */
|
4746 |
|
|
SET_BIT (visited, src->index);
|
4747 |
|
|
|
4748 |
|
|
if (EDGE_COUNT (src->preds) > 0)
|
4749 |
|
|
/* Since the DEST node has been visited for the first
|
4750 |
|
|
time, check its successors. */
|
4751 |
|
|
stack[sp++] = ei_start (src->preds);
|
4752 |
|
|
else
|
4753 |
|
|
post_order[post_order_num++] = src->index;
|
4754 |
|
|
}
|
4755 |
|
|
else
|
4756 |
|
|
{
|
4757 |
|
|
if (ei_one_before_end_p (ei) && dest != EXIT_BLOCK_PTR)
|
4758 |
|
|
post_order[post_order_num++] = dest->index;
|
4759 |
|
|
|
4760 |
|
|
if (!ei_one_before_end_p (ei))
|
4761 |
|
|
ei_next (&stack[sp - 1]);
|
4762 |
|
|
else
|
4763 |
|
|
sp--;
|
4764 |
|
|
}
|
4765 |
|
|
}
|
4766 |
|
|
|
4767 |
|
|
if (include_entry_exit)
|
4768 |
|
|
post_order[post_order_num++] = ENTRY_BLOCK;
|
4769 |
|
|
|
4770 |
|
|
free (stack);
|
4771 |
|
|
sbitmap_free (visited);
|
4772 |
|
|
return post_order_num;
|
4773 |
|
|
}
|
4774 |
|
|
|
4775 |
|
|
|
4776 |
|
|
/* Initialize data structures used by PRE. */
|
4777 |
|
|
|
4778 |
|
|
static void
|
4779 |
|
|
init_pre (bool do_fre)
|
4780 |
|
|
{
|
4781 |
|
|
basic_block bb;
|
4782 |
|
|
|
4783 |
|
|
next_expression_id = 1;
|
4784 |
|
|
expressions = NULL;
|
4785 |
|
|
VEC_safe_push (pre_expr, heap, expressions, NULL);
|
4786 |
|
|
value_expressions = VEC_alloc (bitmap_set_t, heap, get_max_value_id () + 1);
|
4787 |
|
|
VEC_safe_grow_cleared (bitmap_set_t, heap, value_expressions,
|
4788 |
|
|
get_max_value_id() + 1);
|
4789 |
|
|
name_to_id = NULL;
|
4790 |
|
|
|
4791 |
|
|
in_fre = do_fre;
|
4792 |
|
|
|
4793 |
|
|
inserted_exprs = BITMAP_ALLOC (NULL);
|
4794 |
|
|
need_creation = NULL;
|
4795 |
|
|
pretemp = NULL_TREE;
|
4796 |
|
|
storetemp = NULL_TREE;
|
4797 |
|
|
prephitemp = NULL_TREE;
|
4798 |
|
|
|
4799 |
|
|
connect_infinite_loops_to_exit ();
|
4800 |
|
|
memset (&pre_stats, 0, sizeof (pre_stats));
|
4801 |
|
|
|
4802 |
|
|
|
4803 |
|
|
postorder = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS);
|
4804 |
|
|
my_rev_post_order_compute (postorder, false);
|
4805 |
|
|
|
4806 |
|
|
alloc_aux_for_blocks (sizeof (struct bb_bitmap_sets));
|
4807 |
|
|
|
4808 |
|
|
calculate_dominance_info (CDI_POST_DOMINATORS);
|
4809 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
4810 |
|
|
|
4811 |
|
|
bitmap_obstack_initialize (&grand_bitmap_obstack);
|
4812 |
|
|
phi_translate_table = htab_create (5110, expr_pred_trans_hash,
|
4813 |
|
|
expr_pred_trans_eq, free);
|
4814 |
|
|
expression_to_id = htab_create (num_ssa_names * 3,
|
4815 |
|
|
pre_expr_hash,
|
4816 |
|
|
pre_expr_eq, NULL);
|
4817 |
|
|
bitmap_set_pool = create_alloc_pool ("Bitmap sets",
|
4818 |
|
|
sizeof (struct bitmap_set), 30);
|
4819 |
|
|
pre_expr_pool = create_alloc_pool ("pre_expr nodes",
|
4820 |
|
|
sizeof (struct pre_expr_d), 30);
|
4821 |
|
|
FOR_ALL_BB (bb)
|
4822 |
|
|
{
|
4823 |
|
|
EXP_GEN (bb) = bitmap_set_new ();
|
4824 |
|
|
PHI_GEN (bb) = bitmap_set_new ();
|
4825 |
|
|
TMP_GEN (bb) = bitmap_set_new ();
|
4826 |
|
|
AVAIL_OUT (bb) = bitmap_set_new ();
|
4827 |
|
|
}
|
4828 |
|
|
|
4829 |
|
|
need_eh_cleanup = BITMAP_ALLOC (NULL);
|
4830 |
|
|
need_ab_cleanup = BITMAP_ALLOC (NULL);
|
4831 |
|
|
}
|
4832 |
|
|
|
4833 |
|
|
|
4834 |
|
|
/* Deallocate data structures used by PRE. */
|
4835 |
|
|
|
4836 |
|
|
static void
|
4837 |
|
|
fini_pre (bool do_fre)
|
4838 |
|
|
{
|
4839 |
|
|
bool do_eh_cleanup = !bitmap_empty_p (need_eh_cleanup);
|
4840 |
|
|
bool do_ab_cleanup = !bitmap_empty_p (need_ab_cleanup);
|
4841 |
|
|
|
4842 |
|
|
free (postorder);
|
4843 |
|
|
VEC_free (bitmap_set_t, heap, value_expressions);
|
4844 |
|
|
BITMAP_FREE (inserted_exprs);
|
4845 |
|
|
VEC_free (gimple, heap, need_creation);
|
4846 |
|
|
bitmap_obstack_release (&grand_bitmap_obstack);
|
4847 |
|
|
free_alloc_pool (bitmap_set_pool);
|
4848 |
|
|
free_alloc_pool (pre_expr_pool);
|
4849 |
|
|
htab_delete (phi_translate_table);
|
4850 |
|
|
htab_delete (expression_to_id);
|
4851 |
|
|
VEC_free (unsigned, heap, name_to_id);
|
4852 |
|
|
|
4853 |
|
|
free_aux_for_blocks ();
|
4854 |
|
|
|
4855 |
|
|
free_dominance_info (CDI_POST_DOMINATORS);
|
4856 |
|
|
|
4857 |
|
|
if (do_eh_cleanup)
|
4858 |
|
|
gimple_purge_all_dead_eh_edges (need_eh_cleanup);
|
4859 |
|
|
|
4860 |
|
|
if (do_ab_cleanup)
|
4861 |
|
|
gimple_purge_all_dead_abnormal_call_edges (need_ab_cleanup);
|
4862 |
|
|
|
4863 |
|
|
BITMAP_FREE (need_eh_cleanup);
|
4864 |
|
|
BITMAP_FREE (need_ab_cleanup);
|
4865 |
|
|
|
4866 |
|
|
if (do_eh_cleanup || do_ab_cleanup)
|
4867 |
|
|
cleanup_tree_cfg ();
|
4868 |
|
|
|
4869 |
|
|
if (!do_fre)
|
4870 |
|
|
loop_optimizer_finalize ();
|
4871 |
|
|
}
|
4872 |
|
|
|
4873 |
|
|
/* Main entry point to the SSA-PRE pass. DO_FRE is true if the caller
|
4874 |
|
|
only wants to do full redundancy elimination. */
|
4875 |
|
|
|
4876 |
|
|
static unsigned int
|
4877 |
|
|
execute_pre (bool do_fre)
|
4878 |
|
|
{
|
4879 |
|
|
unsigned int todo = 0;
|
4880 |
|
|
|
4881 |
|
|
do_partial_partial = optimize > 2 && optimize_function_for_speed_p (cfun);
|
4882 |
|
|
|
4883 |
|
|
/* This has to happen before SCCVN runs because
|
4884 |
|
|
loop_optimizer_init may create new phis, etc. */
|
4885 |
|
|
if (!do_fre)
|
4886 |
|
|
loop_optimizer_init (LOOPS_NORMAL);
|
4887 |
|
|
|
4888 |
|
|
if (!run_scc_vn (do_fre ? VN_WALKREWRITE : VN_WALK))
|
4889 |
|
|
{
|
4890 |
|
|
if (!do_fre)
|
4891 |
|
|
loop_optimizer_finalize ();
|
4892 |
|
|
|
4893 |
|
|
return 0;
|
4894 |
|
|
}
|
4895 |
|
|
|
4896 |
|
|
init_pre (do_fre);
|
4897 |
|
|
scev_initialize ();
|
4898 |
|
|
|
4899 |
|
|
/* Collect and value number expressions computed in each basic block. */
|
4900 |
|
|
compute_avail ();
|
4901 |
|
|
|
4902 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
4903 |
|
|
{
|
4904 |
|
|
basic_block bb;
|
4905 |
|
|
|
4906 |
|
|
FOR_ALL_BB (bb)
|
4907 |
|
|
{
|
4908 |
|
|
print_bitmap_set (dump_file, EXP_GEN (bb), "exp_gen", bb->index);
|
4909 |
|
|
print_bitmap_set (dump_file, PHI_GEN (bb), "phi_gen", bb->index);
|
4910 |
|
|
print_bitmap_set (dump_file, TMP_GEN (bb), "tmp_gen", bb->index);
|
4911 |
|
|
print_bitmap_set (dump_file, AVAIL_OUT (bb), "avail_out", bb->index);
|
4912 |
|
|
}
|
4913 |
|
|
}
|
4914 |
|
|
|
4915 |
|
|
/* Insert can get quite slow on an incredibly large number of basic
|
4916 |
|
|
blocks due to some quadratic behavior. Until this behavior is
|
4917 |
|
|
fixed, don't run it when he have an incredibly large number of
|
4918 |
|
|
bb's. If we aren't going to run insert, there is no point in
|
4919 |
|
|
computing ANTIC, either, even though it's plenty fast. */
|
4920 |
|
|
if (!do_fre && n_basic_blocks < 4000)
|
4921 |
|
|
{
|
4922 |
|
|
compute_antic ();
|
4923 |
|
|
insert ();
|
4924 |
|
|
}
|
4925 |
|
|
|
4926 |
|
|
/* Make sure to remove fake edges before committing our inserts.
|
4927 |
|
|
This makes sure we don't end up with extra critical edges that
|
4928 |
|
|
we would need to split. */
|
4929 |
|
|
remove_fake_exit_edges ();
|
4930 |
|
|
gsi_commit_edge_inserts ();
|
4931 |
|
|
|
4932 |
|
|
/* Remove all the redundant expressions. */
|
4933 |
|
|
todo |= eliminate ();
|
4934 |
|
|
|
4935 |
|
|
statistics_counter_event (cfun, "Insertions", pre_stats.insertions);
|
4936 |
|
|
statistics_counter_event (cfun, "PA inserted", pre_stats.pa_insert);
|
4937 |
|
|
statistics_counter_event (cfun, "New PHIs", pre_stats.phis);
|
4938 |
|
|
statistics_counter_event (cfun, "Eliminated", pre_stats.eliminations);
|
4939 |
|
|
statistics_counter_event (cfun, "Constified", pre_stats.constified);
|
4940 |
|
|
|
4941 |
|
|
clear_expression_ids ();
|
4942 |
|
|
if (!do_fre)
|
4943 |
|
|
{
|
4944 |
|
|
remove_dead_inserted_code ();
|
4945 |
|
|
todo |= TODO_verify_flow;
|
4946 |
|
|
}
|
4947 |
|
|
|
4948 |
|
|
scev_finalize ();
|
4949 |
|
|
fini_pre (do_fre);
|
4950 |
|
|
|
4951 |
|
|
if (!do_fre)
|
4952 |
|
|
/* TODO: tail_merge_optimize may merge all predecessors of a block, in which
|
4953 |
|
|
case we can merge the block with the remaining predecessor of the block.
|
4954 |
|
|
It should either:
|
4955 |
|
|
- call merge_blocks after each tail merge iteration
|
4956 |
|
|
- call merge_blocks after all tail merge iterations
|
4957 |
|
|
- mark TODO_cleanup_cfg when necessary
|
4958 |
|
|
- share the cfg cleanup with fini_pre. */
|
4959 |
|
|
todo |= tail_merge_optimize (todo);
|
4960 |
|
|
free_scc_vn ();
|
4961 |
|
|
|
4962 |
|
|
return todo;
|
4963 |
|
|
}
|
4964 |
|
|
|
4965 |
|
|
/* Gate and execute functions for PRE. */
|
4966 |
|
|
|
4967 |
|
|
static unsigned int
|
4968 |
|
|
do_pre (void)
|
4969 |
|
|
{
|
4970 |
|
|
return execute_pre (false);
|
4971 |
|
|
}
|
4972 |
|
|
|
4973 |
|
|
static bool
|
4974 |
|
|
gate_pre (void)
|
4975 |
|
|
{
|
4976 |
|
|
return flag_tree_pre != 0;
|
4977 |
|
|
}
|
4978 |
|
|
|
4979 |
|
|
struct gimple_opt_pass pass_pre =
|
4980 |
|
|
{
|
4981 |
|
|
{
|
4982 |
|
|
GIMPLE_PASS,
|
4983 |
|
|
"pre", /* name */
|
4984 |
|
|
gate_pre, /* gate */
|
4985 |
|
|
do_pre, /* execute */
|
4986 |
|
|
NULL, /* sub */
|
4987 |
|
|
NULL, /* next */
|
4988 |
|
|
0, /* static_pass_number */
|
4989 |
|
|
TV_TREE_PRE, /* tv_id */
|
4990 |
|
|
PROP_no_crit_edges | PROP_cfg
|
4991 |
|
|
| PROP_ssa, /* properties_required */
|
4992 |
|
|
0, /* properties_provided */
|
4993 |
|
|
0, /* properties_destroyed */
|
4994 |
|
|
TODO_rebuild_alias, /* todo_flags_start */
|
4995 |
|
|
TODO_update_ssa_only_virtuals | TODO_ggc_collect
|
4996 |
|
|
| TODO_verify_ssa /* todo_flags_finish */
|
4997 |
|
|
}
|
4998 |
|
|
};
|
4999 |
|
|
|
5000 |
|
|
|
5001 |
|
|
/* Gate and execute functions for FRE. */
|
5002 |
|
|
|
5003 |
|
|
static unsigned int
|
5004 |
|
|
execute_fre (void)
|
5005 |
|
|
{
|
5006 |
|
|
return execute_pre (true);
|
5007 |
|
|
}
|
5008 |
|
|
|
5009 |
|
|
static bool
|
5010 |
|
|
gate_fre (void)
|
5011 |
|
|
{
|
5012 |
|
|
return flag_tree_fre != 0;
|
5013 |
|
|
}
|
5014 |
|
|
|
5015 |
|
|
struct gimple_opt_pass pass_fre =
|
5016 |
|
|
{
|
5017 |
|
|
{
|
5018 |
|
|
GIMPLE_PASS,
|
5019 |
|
|
"fre", /* name */
|
5020 |
|
|
gate_fre, /* gate */
|
5021 |
|
|
execute_fre, /* execute */
|
5022 |
|
|
NULL, /* sub */
|
5023 |
|
|
NULL, /* next */
|
5024 |
|
|
0, /* static_pass_number */
|
5025 |
|
|
TV_TREE_FRE, /* tv_id */
|
5026 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
5027 |
|
|
0, /* properties_provided */
|
5028 |
|
|
0, /* properties_destroyed */
|
5029 |
|
|
0, /* todo_flags_start */
|
5030 |
|
|
TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
|
5031 |
|
|
}
|
5032 |
|
|
};
|