| 1 |
684 |
jeremybenn |
/* Reassociation for trees.
|
| 2 |
|
|
Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
Contributed by Daniel Berlin <dan@dberlin.org>
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GCC.
|
| 7 |
|
|
|
| 8 |
|
|
GCC is free software; you can redistribute it and/or modify
|
| 9 |
|
|
it under the terms of the GNU General Public License as published by
|
| 10 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
| 11 |
|
|
any later version.
|
| 12 |
|
|
|
| 13 |
|
|
GCC is distributed in the hope that it will be useful,
|
| 14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 16 |
|
|
GNU General Public License for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 20 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
#include "config.h"
|
| 23 |
|
|
#include "system.h"
|
| 24 |
|
|
#include "coretypes.h"
|
| 25 |
|
|
#include "tm.h"
|
| 26 |
|
|
#include "tree.h"
|
| 27 |
|
|
#include "basic-block.h"
|
| 28 |
|
|
#include "tree-pretty-print.h"
|
| 29 |
|
|
#include "gimple-pretty-print.h"
|
| 30 |
|
|
#include "tree-inline.h"
|
| 31 |
|
|
#include "tree-flow.h"
|
| 32 |
|
|
#include "gimple.h"
|
| 33 |
|
|
#include "tree-dump.h"
|
| 34 |
|
|
#include "timevar.h"
|
| 35 |
|
|
#include "tree-iterator.h"
|
| 36 |
|
|
#include "tree-pass.h"
|
| 37 |
|
|
#include "alloc-pool.h"
|
| 38 |
|
|
#include "vec.h"
|
| 39 |
|
|
#include "langhooks.h"
|
| 40 |
|
|
#include "pointer-set.h"
|
| 41 |
|
|
#include "cfgloop.h"
|
| 42 |
|
|
#include "flags.h"
|
| 43 |
|
|
#include "target.h"
|
| 44 |
|
|
#include "params.h"
|
| 45 |
|
|
#include "diagnostic-core.h"
|
| 46 |
|
|
|
| 47 |
|
|
/* This is a simple global reassociation pass. It is, in part, based
|
| 48 |
|
|
on the LLVM pass of the same name (They do some things more/less
|
| 49 |
|
|
than we do, in different orders, etc).
|
| 50 |
|
|
|
| 51 |
|
|
It consists of five steps:
|
| 52 |
|
|
|
| 53 |
|
|
1. Breaking up subtract operations into addition + negate, where
|
| 54 |
|
|
it would promote the reassociation of adds.
|
| 55 |
|
|
|
| 56 |
|
|
2. Left linearization of the expression trees, so that (A+B)+(C+D)
|
| 57 |
|
|
becomes (((A+B)+C)+D), which is easier for us to rewrite later.
|
| 58 |
|
|
During linearization, we place the operands of the binary
|
| 59 |
|
|
expressions into a vector of operand_entry_t
|
| 60 |
|
|
|
| 61 |
|
|
3. Optimization of the operand lists, eliminating things like a +
|
| 62 |
|
|
-a, a & a, etc.
|
| 63 |
|
|
|
| 64 |
|
|
4. Rewrite the expression trees we linearized and optimized so
|
| 65 |
|
|
they are in proper rank order.
|
| 66 |
|
|
|
| 67 |
|
|
5. Repropagate negates, as nothing else will clean it up ATM.
|
| 68 |
|
|
|
| 69 |
|
|
A bit of theory on #4, since nobody seems to write anything down
|
| 70 |
|
|
about why it makes sense to do it the way they do it:
|
| 71 |
|
|
|
| 72 |
|
|
We could do this much nicer theoretically, but don't (for reasons
|
| 73 |
|
|
explained after how to do it theoretically nice :P).
|
| 74 |
|
|
|
| 75 |
|
|
In order to promote the most redundancy elimination, you want
|
| 76 |
|
|
binary expressions whose operands are the same rank (or
|
| 77 |
|
|
preferably, the same value) exposed to the redundancy eliminator,
|
| 78 |
|
|
for possible elimination.
|
| 79 |
|
|
|
| 80 |
|
|
So the way to do this if we really cared, is to build the new op
|
| 81 |
|
|
tree from the leaves to the roots, merging as you go, and putting the
|
| 82 |
|
|
new op on the end of the worklist, until you are left with one
|
| 83 |
|
|
thing on the worklist.
|
| 84 |
|
|
|
| 85 |
|
|
IE if you have to rewrite the following set of operands (listed with
|
| 86 |
|
|
rank in parentheses), with opcode PLUS_EXPR:
|
| 87 |
|
|
|
| 88 |
|
|
a (1), b (1), c (1), d (2), e (2)
|
| 89 |
|
|
|
| 90 |
|
|
|
| 91 |
|
|
We start with our merge worklist empty, and the ops list with all of
|
| 92 |
|
|
those on it.
|
| 93 |
|
|
|
| 94 |
|
|
You want to first merge all leaves of the same rank, as much as
|
| 95 |
|
|
possible.
|
| 96 |
|
|
|
| 97 |
|
|
So first build a binary op of
|
| 98 |
|
|
|
| 99 |
|
|
mergetmp = a + b, and put "mergetmp" on the merge worklist.
|
| 100 |
|
|
|
| 101 |
|
|
Because there is no three operand form of PLUS_EXPR, c is not going to
|
| 102 |
|
|
be exposed to redundancy elimination as a rank 1 operand.
|
| 103 |
|
|
|
| 104 |
|
|
So you might as well throw it on the merge worklist (you could also
|
| 105 |
|
|
consider it to now be a rank two operand, and merge it with d and e,
|
| 106 |
|
|
but in this case, you then have evicted e from a binary op. So at
|
| 107 |
|
|
least in this situation, you can't win.)
|
| 108 |
|
|
|
| 109 |
|
|
Then build a binary op of d + e
|
| 110 |
|
|
mergetmp2 = d + e
|
| 111 |
|
|
|
| 112 |
|
|
and put mergetmp2 on the merge worklist.
|
| 113 |
|
|
|
| 114 |
|
|
so merge worklist = {mergetmp, c, mergetmp2}
|
| 115 |
|
|
|
| 116 |
|
|
Continue building binary ops of these operations until you have only
|
| 117 |
|
|
one operation left on the worklist.
|
| 118 |
|
|
|
| 119 |
|
|
So we have
|
| 120 |
|
|
|
| 121 |
|
|
build binary op
|
| 122 |
|
|
mergetmp3 = mergetmp + c
|
| 123 |
|
|
|
| 124 |
|
|
worklist = {mergetmp2, mergetmp3}
|
| 125 |
|
|
|
| 126 |
|
|
mergetmp4 = mergetmp2 + mergetmp3
|
| 127 |
|
|
|
| 128 |
|
|
worklist = {mergetmp4}
|
| 129 |
|
|
|
| 130 |
|
|
because we have one operation left, we can now just set the original
|
| 131 |
|
|
statement equal to the result of that operation.
|
| 132 |
|
|
|
| 133 |
|
|
This will at least expose a + b and d + e to redundancy elimination
|
| 134 |
|
|
as binary operations.
|
| 135 |
|
|
|
| 136 |
|
|
For extra points, you can reuse the old statements to build the
|
| 137 |
|
|
mergetmps, since you shouldn't run out.
|
| 138 |
|
|
|
| 139 |
|
|
So why don't we do this?
|
| 140 |
|
|
|
| 141 |
|
|
Because it's expensive, and rarely will help. Most trees we are
|
| 142 |
|
|
reassociating have 3 or less ops. If they have 2 ops, they already
|
| 143 |
|
|
will be written into a nice single binary op. If you have 3 ops, a
|
| 144 |
|
|
single simple check suffices to tell you whether the first two are of the
|
| 145 |
|
|
same rank. If so, you know to order it
|
| 146 |
|
|
|
| 147 |
|
|
mergetmp = op1 + op2
|
| 148 |
|
|
newstmt = mergetmp + op3
|
| 149 |
|
|
|
| 150 |
|
|
instead of
|
| 151 |
|
|
mergetmp = op2 + op3
|
| 152 |
|
|
newstmt = mergetmp + op1
|
| 153 |
|
|
|
| 154 |
|
|
If all three are of the same rank, you can't expose them all in a
|
| 155 |
|
|
single binary operator anyway, so the above is *still* the best you
|
| 156 |
|
|
can do.
|
| 157 |
|
|
|
| 158 |
|
|
Thus, this is what we do. When we have three ops left, we check to see
|
| 159 |
|
|
what order to put them in, and call it a day. As a nod to vector sum
|
| 160 |
|
|
reduction, we check if any of the ops are really a phi node that is a
|
| 161 |
|
|
destructive update for the associating op, and keep the destructive
|
| 162 |
|
|
update together for vector sum reduction recognition. */
|
| 163 |
|
|
|
| 164 |
|
|
|
| 165 |
|
|
/* Statistics */
|
| 166 |
|
|
static struct
|
| 167 |
|
|
{
|
| 168 |
|
|
int linearized;
|
| 169 |
|
|
int constants_eliminated;
|
| 170 |
|
|
int ops_eliminated;
|
| 171 |
|
|
int rewritten;
|
| 172 |
|
|
} reassociate_stats;
|
| 173 |
|
|
|
| 174 |
|
|
/* Operator, rank pair. */
|
| 175 |
|
|
typedef struct operand_entry
|
| 176 |
|
|
{
|
| 177 |
|
|
unsigned int rank;
|
| 178 |
|
|
int id;
|
| 179 |
|
|
tree op;
|
| 180 |
|
|
} *operand_entry_t;
|
| 181 |
|
|
|
| 182 |
|
|
static alloc_pool operand_entry_pool;
|
| 183 |
|
|
|
| 184 |
|
|
/* This is used to assign a unique ID to each struct operand_entry
|
| 185 |
|
|
so that qsort results are identical on different hosts. */
|
| 186 |
|
|
static int next_operand_entry_id;
|
| 187 |
|
|
|
| 188 |
|
|
/* Starting rank number for a given basic block, so that we can rank
|
| 189 |
|
|
operations using unmovable instructions in that BB based on the bb
|
| 190 |
|
|
depth. */
|
| 191 |
|
|
static long *bb_rank;
|
| 192 |
|
|
|
| 193 |
|
|
/* Operand->rank hashtable. */
|
| 194 |
|
|
static struct pointer_map_t *operand_rank;
|
| 195 |
|
|
|
| 196 |
|
|
/* Forward decls. */
|
| 197 |
|
|
static long get_rank (tree);
|
| 198 |
|
|
|
| 199 |
|
|
|
| 200 |
|
|
/* Bias amount for loop-carried phis. We want this to be larger than
|
| 201 |
|
|
the depth of any reassociation tree we can see, but not larger than
|
| 202 |
|
|
the rank difference between two blocks. */
|
| 203 |
|
|
#define PHI_LOOP_BIAS (1 << 15)
|
| 204 |
|
|
|
| 205 |
|
|
/* Rank assigned to a phi statement. If STMT is a loop-carried phi of
|
| 206 |
|
|
an innermost loop, and the phi has only a single use which is inside
|
| 207 |
|
|
the loop, then the rank is the block rank of the loop latch plus an
|
| 208 |
|
|
extra bias for the loop-carried dependence. This causes expressions
|
| 209 |
|
|
calculated into an accumulator variable to be independent for each
|
| 210 |
|
|
iteration of the loop. If STMT is some other phi, the rank is the
|
| 211 |
|
|
block rank of its containing block. */
|
| 212 |
|
|
static long
|
| 213 |
|
|
phi_rank (gimple stmt)
|
| 214 |
|
|
{
|
| 215 |
|
|
basic_block bb = gimple_bb (stmt);
|
| 216 |
|
|
struct loop *father = bb->loop_father;
|
| 217 |
|
|
tree res;
|
| 218 |
|
|
unsigned i;
|
| 219 |
|
|
use_operand_p use;
|
| 220 |
|
|
gimple use_stmt;
|
| 221 |
|
|
|
| 222 |
|
|
/* We only care about real loops (those with a latch). */
|
| 223 |
|
|
if (!father->latch)
|
| 224 |
|
|
return bb_rank[bb->index];
|
| 225 |
|
|
|
| 226 |
|
|
/* Interesting phis must be in headers of innermost loops. */
|
| 227 |
|
|
if (bb != father->header
|
| 228 |
|
|
|| father->inner)
|
| 229 |
|
|
return bb_rank[bb->index];
|
| 230 |
|
|
|
| 231 |
|
|
/* Ignore virtual SSA_NAMEs. */
|
| 232 |
|
|
res = gimple_phi_result (stmt);
|
| 233 |
|
|
if (!is_gimple_reg (SSA_NAME_VAR (res)))
|
| 234 |
|
|
return bb_rank[bb->index];
|
| 235 |
|
|
|
| 236 |
|
|
/* The phi definition must have a single use, and that use must be
|
| 237 |
|
|
within the loop. Otherwise this isn't an accumulator pattern. */
|
| 238 |
|
|
if (!single_imm_use (res, &use, &use_stmt)
|
| 239 |
|
|
|| gimple_bb (use_stmt)->loop_father != father)
|
| 240 |
|
|
return bb_rank[bb->index];
|
| 241 |
|
|
|
| 242 |
|
|
/* Look for phi arguments from within the loop. If found, bias this phi. */
|
| 243 |
|
|
for (i = 0; i < gimple_phi_num_args (stmt); i++)
|
| 244 |
|
|
{
|
| 245 |
|
|
tree arg = gimple_phi_arg_def (stmt, i);
|
| 246 |
|
|
if (TREE_CODE (arg) == SSA_NAME
|
| 247 |
|
|
&& !SSA_NAME_IS_DEFAULT_DEF (arg))
|
| 248 |
|
|
{
|
| 249 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (arg);
|
| 250 |
|
|
if (gimple_bb (def_stmt)->loop_father == father)
|
| 251 |
|
|
return bb_rank[father->latch->index] + PHI_LOOP_BIAS;
|
| 252 |
|
|
}
|
| 253 |
|
|
}
|
| 254 |
|
|
|
| 255 |
|
|
/* Must be an uninteresting phi. */
|
| 256 |
|
|
return bb_rank[bb->index];
|
| 257 |
|
|
}
|
| 258 |
|
|
|
| 259 |
|
|
/* If EXP is an SSA_NAME defined by a PHI statement that represents a
|
| 260 |
|
|
loop-carried dependence of an innermost loop, return TRUE; else
|
| 261 |
|
|
return FALSE. */
|
| 262 |
|
|
static bool
|
| 263 |
|
|
loop_carried_phi (tree exp)
|
| 264 |
|
|
{
|
| 265 |
|
|
gimple phi_stmt;
|
| 266 |
|
|
long block_rank;
|
| 267 |
|
|
|
| 268 |
|
|
if (TREE_CODE (exp) != SSA_NAME
|
| 269 |
|
|
|| SSA_NAME_IS_DEFAULT_DEF (exp))
|
| 270 |
|
|
return false;
|
| 271 |
|
|
|
| 272 |
|
|
phi_stmt = SSA_NAME_DEF_STMT (exp);
|
| 273 |
|
|
|
| 274 |
|
|
if (gimple_code (SSA_NAME_DEF_STMT (exp)) != GIMPLE_PHI)
|
| 275 |
|
|
return false;
|
| 276 |
|
|
|
| 277 |
|
|
/* Non-loop-carried phis have block rank. Loop-carried phis have
|
| 278 |
|
|
an additional bias added in. If this phi doesn't have block rank,
|
| 279 |
|
|
it's biased and should not be propagated. */
|
| 280 |
|
|
block_rank = bb_rank[gimple_bb (phi_stmt)->index];
|
| 281 |
|
|
|
| 282 |
|
|
if (phi_rank (phi_stmt) != block_rank)
|
| 283 |
|
|
return true;
|
| 284 |
|
|
|
| 285 |
|
|
return false;
|
| 286 |
|
|
}
|
| 287 |
|
|
|
| 288 |
|
|
/* Return the maximum of RANK and the rank that should be propagated
|
| 289 |
|
|
from expression OP. For most operands, this is just the rank of OP.
|
| 290 |
|
|
For loop-carried phis, the value is zero to avoid undoing the bias
|
| 291 |
|
|
in favor of the phi. */
|
| 292 |
|
|
static long
|
| 293 |
|
|
propagate_rank (long rank, tree op)
|
| 294 |
|
|
{
|
| 295 |
|
|
long op_rank;
|
| 296 |
|
|
|
| 297 |
|
|
if (loop_carried_phi (op))
|
| 298 |
|
|
return rank;
|
| 299 |
|
|
|
| 300 |
|
|
op_rank = get_rank (op);
|
| 301 |
|
|
|
| 302 |
|
|
return MAX (rank, op_rank);
|
| 303 |
|
|
}
|
| 304 |
|
|
|
| 305 |
|
|
/* Look up the operand rank structure for expression E. */
|
| 306 |
|
|
|
| 307 |
|
|
static inline long
|
| 308 |
|
|
find_operand_rank (tree e)
|
| 309 |
|
|
{
|
| 310 |
|
|
void **slot = pointer_map_contains (operand_rank, e);
|
| 311 |
|
|
return slot ? (long) (intptr_t) *slot : -1;
|
| 312 |
|
|
}
|
| 313 |
|
|
|
| 314 |
|
|
/* Insert {E,RANK} into the operand rank hashtable. */
|
| 315 |
|
|
|
| 316 |
|
|
static inline void
|
| 317 |
|
|
insert_operand_rank (tree e, long rank)
|
| 318 |
|
|
{
|
| 319 |
|
|
void **slot;
|
| 320 |
|
|
gcc_assert (rank > 0);
|
| 321 |
|
|
slot = pointer_map_insert (operand_rank, e);
|
| 322 |
|
|
gcc_assert (!*slot);
|
| 323 |
|
|
*slot = (void *) (intptr_t) rank;
|
| 324 |
|
|
}
|
| 325 |
|
|
|
| 326 |
|
|
/* Given an expression E, return the rank of the expression. */
|
| 327 |
|
|
|
| 328 |
|
|
static long
|
| 329 |
|
|
get_rank (tree e)
|
| 330 |
|
|
{
|
| 331 |
|
|
/* Constants have rank 0. */
|
| 332 |
|
|
if (is_gimple_min_invariant (e))
|
| 333 |
|
|
return 0;
|
| 334 |
|
|
|
| 335 |
|
|
/* SSA_NAME's have the rank of the expression they are the result
|
| 336 |
|
|
of.
|
| 337 |
|
|
For globals and uninitialized values, the rank is 0.
|
| 338 |
|
|
For function arguments, use the pre-setup rank.
|
| 339 |
|
|
For PHI nodes, stores, asm statements, etc, we use the rank of
|
| 340 |
|
|
the BB.
|
| 341 |
|
|
For simple operations, the rank is the maximum rank of any of
|
| 342 |
|
|
its operands, or the bb_rank, whichever is less.
|
| 343 |
|
|
I make no claims that this is optimal, however, it gives good
|
| 344 |
|
|
results. */
|
| 345 |
|
|
|
| 346 |
|
|
/* We make an exception to the normal ranking system to break
|
| 347 |
|
|
dependences of accumulator variables in loops. Suppose we
|
| 348 |
|
|
have a simple one-block loop containing:
|
| 349 |
|
|
|
| 350 |
|
|
x_1 = phi(x_0, x_2)
|
| 351 |
|
|
b = a + x_1
|
| 352 |
|
|
c = b + d
|
| 353 |
|
|
x_2 = c + e
|
| 354 |
|
|
|
| 355 |
|
|
As shown, each iteration of the calculation into x is fully
|
| 356 |
|
|
dependent upon the iteration before it. We would prefer to
|
| 357 |
|
|
see this in the form:
|
| 358 |
|
|
|
| 359 |
|
|
x_1 = phi(x_0, x_2)
|
| 360 |
|
|
b = a + d
|
| 361 |
|
|
c = b + e
|
| 362 |
|
|
x_2 = c + x_1
|
| 363 |
|
|
|
| 364 |
|
|
If the loop is unrolled, the calculations of b and c from
|
| 365 |
|
|
different iterations can be interleaved.
|
| 366 |
|
|
|
| 367 |
|
|
To obtain this result during reassociation, we bias the rank
|
| 368 |
|
|
of the phi definition x_1 upward, when it is recognized as an
|
| 369 |
|
|
accumulator pattern. The artificial rank causes it to be
|
| 370 |
|
|
added last, providing the desired independence. */
|
| 371 |
|
|
|
| 372 |
|
|
if (TREE_CODE (e) == SSA_NAME)
|
| 373 |
|
|
{
|
| 374 |
|
|
gimple stmt;
|
| 375 |
|
|
long rank;
|
| 376 |
|
|
int i, n;
|
| 377 |
|
|
tree op;
|
| 378 |
|
|
|
| 379 |
|
|
if (TREE_CODE (SSA_NAME_VAR (e)) == PARM_DECL
|
| 380 |
|
|
&& SSA_NAME_IS_DEFAULT_DEF (e))
|
| 381 |
|
|
return find_operand_rank (e);
|
| 382 |
|
|
|
| 383 |
|
|
stmt = SSA_NAME_DEF_STMT (e);
|
| 384 |
|
|
if (gimple_bb (stmt) == NULL)
|
| 385 |
|
|
return 0;
|
| 386 |
|
|
|
| 387 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
| 388 |
|
|
return phi_rank (stmt);
|
| 389 |
|
|
|
| 390 |
|
|
if (!is_gimple_assign (stmt)
|
| 391 |
|
|
|| gimple_vdef (stmt))
|
| 392 |
|
|
return bb_rank[gimple_bb (stmt)->index];
|
| 393 |
|
|
|
| 394 |
|
|
/* If we already have a rank for this expression, use that. */
|
| 395 |
|
|
rank = find_operand_rank (e);
|
| 396 |
|
|
if (rank != -1)
|
| 397 |
|
|
return rank;
|
| 398 |
|
|
|
| 399 |
|
|
/* Otherwise, find the maximum rank for the operands. As an
|
| 400 |
|
|
exception, remove the bias from loop-carried phis when propagating
|
| 401 |
|
|
the rank so that dependent operations are not also biased. */
|
| 402 |
|
|
rank = 0;
|
| 403 |
|
|
if (gimple_assign_single_p (stmt))
|
| 404 |
|
|
{
|
| 405 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
| 406 |
|
|
n = TREE_OPERAND_LENGTH (rhs);
|
| 407 |
|
|
if (n == 0)
|
| 408 |
|
|
rank = propagate_rank (rank, rhs);
|
| 409 |
|
|
else
|
| 410 |
|
|
{
|
| 411 |
|
|
for (i = 0; i < n; i++)
|
| 412 |
|
|
{
|
| 413 |
|
|
op = TREE_OPERAND (rhs, i);
|
| 414 |
|
|
|
| 415 |
|
|
if (op != NULL_TREE)
|
| 416 |
|
|
rank = propagate_rank (rank, op);
|
| 417 |
|
|
}
|
| 418 |
|
|
}
|
| 419 |
|
|
}
|
| 420 |
|
|
else
|
| 421 |
|
|
{
|
| 422 |
|
|
n = gimple_num_ops (stmt);
|
| 423 |
|
|
for (i = 1; i < n; i++)
|
| 424 |
|
|
{
|
| 425 |
|
|
op = gimple_op (stmt, i);
|
| 426 |
|
|
gcc_assert (op);
|
| 427 |
|
|
rank = propagate_rank (rank, op);
|
| 428 |
|
|
}
|
| 429 |
|
|
}
|
| 430 |
|
|
|
| 431 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 432 |
|
|
{
|
| 433 |
|
|
fprintf (dump_file, "Rank for ");
|
| 434 |
|
|
print_generic_expr (dump_file, e, 0);
|
| 435 |
|
|
fprintf (dump_file, " is %ld\n", (rank + 1));
|
| 436 |
|
|
}
|
| 437 |
|
|
|
| 438 |
|
|
/* Note the rank in the hashtable so we don't recompute it. */
|
| 439 |
|
|
insert_operand_rank (e, (rank + 1));
|
| 440 |
|
|
return (rank + 1);
|
| 441 |
|
|
}
|
| 442 |
|
|
|
| 443 |
|
|
/* Globals, etc, are rank 0 */
|
| 444 |
|
|
return 0;
|
| 445 |
|
|
}
|
| 446 |
|
|
|
| 447 |
|
|
DEF_VEC_P(operand_entry_t);
|
| 448 |
|
|
DEF_VEC_ALLOC_P(operand_entry_t, heap);
|
| 449 |
|
|
|
| 450 |
|
|
/* We want integer ones to end up last no matter what, since they are
|
| 451 |
|
|
the ones we can do the most with. */
|
| 452 |
|
|
#define INTEGER_CONST_TYPE 1 << 3
|
| 453 |
|
|
#define FLOAT_CONST_TYPE 1 << 2
|
| 454 |
|
|
#define OTHER_CONST_TYPE 1 << 1
|
| 455 |
|
|
|
| 456 |
|
|
/* Classify an invariant tree into integer, float, or other, so that
|
| 457 |
|
|
we can sort them to be near other constants of the same type. */
|
| 458 |
|
|
static inline int
|
| 459 |
|
|
constant_type (tree t)
|
| 460 |
|
|
{
|
| 461 |
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
|
| 462 |
|
|
return INTEGER_CONST_TYPE;
|
| 463 |
|
|
else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (t)))
|
| 464 |
|
|
return FLOAT_CONST_TYPE;
|
| 465 |
|
|
else
|
| 466 |
|
|
return OTHER_CONST_TYPE;
|
| 467 |
|
|
}
|
| 468 |
|
|
|
| 469 |
|
|
/* qsort comparison function to sort operand entries PA and PB by rank
|
| 470 |
|
|
so that the sorted array is ordered by rank in decreasing order. */
|
| 471 |
|
|
static int
|
| 472 |
|
|
sort_by_operand_rank (const void *pa, const void *pb)
|
| 473 |
|
|
{
|
| 474 |
|
|
const operand_entry_t oea = *(const operand_entry_t *)pa;
|
| 475 |
|
|
const operand_entry_t oeb = *(const operand_entry_t *)pb;
|
| 476 |
|
|
|
| 477 |
|
|
/* It's nicer for optimize_expression if constants that are likely
|
| 478 |
|
|
to fold when added/multiplied//whatever are put next to each
|
| 479 |
|
|
other. Since all constants have rank 0, order them by type. */
|
| 480 |
|
|
if (oeb->rank == 0 && oea->rank == 0)
|
| 481 |
|
|
{
|
| 482 |
|
|
if (constant_type (oeb->op) != constant_type (oea->op))
|
| 483 |
|
|
return constant_type (oeb->op) - constant_type (oea->op);
|
| 484 |
|
|
else
|
| 485 |
|
|
/* To make sorting result stable, we use unique IDs to determine
|
| 486 |
|
|
order. */
|
| 487 |
|
|
return oeb->id - oea->id;
|
| 488 |
|
|
}
|
| 489 |
|
|
|
| 490 |
|
|
/* Lastly, make sure the versions that are the same go next to each
|
| 491 |
|
|
other. We use SSA_NAME_VERSION because it's stable. */
|
| 492 |
|
|
if ((oeb->rank - oea->rank == 0)
|
| 493 |
|
|
&& TREE_CODE (oea->op) == SSA_NAME
|
| 494 |
|
|
&& TREE_CODE (oeb->op) == SSA_NAME)
|
| 495 |
|
|
{
|
| 496 |
|
|
if (SSA_NAME_VERSION (oeb->op) != SSA_NAME_VERSION (oea->op))
|
| 497 |
|
|
return SSA_NAME_VERSION (oeb->op) - SSA_NAME_VERSION (oea->op);
|
| 498 |
|
|
else
|
| 499 |
|
|
return oeb->id - oea->id;
|
| 500 |
|
|
}
|
| 501 |
|
|
|
| 502 |
|
|
if (oeb->rank != oea->rank)
|
| 503 |
|
|
return oeb->rank - oea->rank;
|
| 504 |
|
|
else
|
| 505 |
|
|
return oeb->id - oea->id;
|
| 506 |
|
|
}
|
| 507 |
|
|
|
| 508 |
|
|
/* Add an operand entry to *OPS for the tree operand OP. */
|
| 509 |
|
|
|
| 510 |
|
|
static void
|
| 511 |
|
|
add_to_ops_vec (VEC(operand_entry_t, heap) **ops, tree op)
|
| 512 |
|
|
{
|
| 513 |
|
|
operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
|
| 514 |
|
|
|
| 515 |
|
|
oe->op = op;
|
| 516 |
|
|
oe->rank = get_rank (op);
|
| 517 |
|
|
oe->id = next_operand_entry_id++;
|
| 518 |
|
|
VEC_safe_push (operand_entry_t, heap, *ops, oe);
|
| 519 |
|
|
}
|
| 520 |
|
|
|
| 521 |
|
|
/* Return true if STMT is reassociable operation containing a binary
|
| 522 |
|
|
operation with tree code CODE, and is inside LOOP. */
|
| 523 |
|
|
|
| 524 |
|
|
static bool
|
| 525 |
|
|
is_reassociable_op (gimple stmt, enum tree_code code, struct loop *loop)
|
| 526 |
|
|
{
|
| 527 |
|
|
basic_block bb = gimple_bb (stmt);
|
| 528 |
|
|
|
| 529 |
|
|
if (gimple_bb (stmt) == NULL)
|
| 530 |
|
|
return false;
|
| 531 |
|
|
|
| 532 |
|
|
if (!flow_bb_inside_loop_p (loop, bb))
|
| 533 |
|
|
return false;
|
| 534 |
|
|
|
| 535 |
|
|
if (is_gimple_assign (stmt)
|
| 536 |
|
|
&& gimple_assign_rhs_code (stmt) == code
|
| 537 |
|
|
&& has_single_use (gimple_assign_lhs (stmt)))
|
| 538 |
|
|
return true;
|
| 539 |
|
|
|
| 540 |
|
|
return false;
|
| 541 |
|
|
}
|
| 542 |
|
|
|
| 543 |
|
|
|
| 544 |
|
|
/* Given NAME, if NAME is defined by a unary operation OPCODE, return the
|
| 545 |
|
|
operand of the negate operation. Otherwise, return NULL. */
|
| 546 |
|
|
|
| 547 |
|
|
static tree
|
| 548 |
|
|
get_unary_op (tree name, enum tree_code opcode)
|
| 549 |
|
|
{
|
| 550 |
|
|
gimple stmt = SSA_NAME_DEF_STMT (name);
|
| 551 |
|
|
|
| 552 |
|
|
if (!is_gimple_assign (stmt))
|
| 553 |
|
|
return NULL_TREE;
|
| 554 |
|
|
|
| 555 |
|
|
if (gimple_assign_rhs_code (stmt) == opcode)
|
| 556 |
|
|
return gimple_assign_rhs1 (stmt);
|
| 557 |
|
|
return NULL_TREE;
|
| 558 |
|
|
}
|
| 559 |
|
|
|
| 560 |
|
|
/* If CURR and LAST are a pair of ops that OPCODE allows us to
|
| 561 |
|
|
eliminate through equivalences, do so, remove them from OPS, and
|
| 562 |
|
|
return true. Otherwise, return false. */
|
| 563 |
|
|
|
| 564 |
|
|
static bool
|
| 565 |
|
|
eliminate_duplicate_pair (enum tree_code opcode,
|
| 566 |
|
|
VEC (operand_entry_t, heap) **ops,
|
| 567 |
|
|
bool *all_done,
|
| 568 |
|
|
unsigned int i,
|
| 569 |
|
|
operand_entry_t curr,
|
| 570 |
|
|
operand_entry_t last)
|
| 571 |
|
|
{
|
| 572 |
|
|
|
| 573 |
|
|
/* If we have two of the same op, and the opcode is & |, min, or max,
|
| 574 |
|
|
we can eliminate one of them.
|
| 575 |
|
|
If we have two of the same op, and the opcode is ^, we can
|
| 576 |
|
|
eliminate both of them. */
|
| 577 |
|
|
|
| 578 |
|
|
if (last && last->op == curr->op)
|
| 579 |
|
|
{
|
| 580 |
|
|
switch (opcode)
|
| 581 |
|
|
{
|
| 582 |
|
|
case MAX_EXPR:
|
| 583 |
|
|
case MIN_EXPR:
|
| 584 |
|
|
case BIT_IOR_EXPR:
|
| 585 |
|
|
case BIT_AND_EXPR:
|
| 586 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 587 |
|
|
{
|
| 588 |
|
|
fprintf (dump_file, "Equivalence: ");
|
| 589 |
|
|
print_generic_expr (dump_file, curr->op, 0);
|
| 590 |
|
|
fprintf (dump_file, " [&|minmax] ");
|
| 591 |
|
|
print_generic_expr (dump_file, last->op, 0);
|
| 592 |
|
|
fprintf (dump_file, " -> ");
|
| 593 |
|
|
print_generic_stmt (dump_file, last->op, 0);
|
| 594 |
|
|
}
|
| 595 |
|
|
|
| 596 |
|
|
VEC_ordered_remove (operand_entry_t, *ops, i);
|
| 597 |
|
|
reassociate_stats.ops_eliminated ++;
|
| 598 |
|
|
|
| 599 |
|
|
return true;
|
| 600 |
|
|
|
| 601 |
|
|
case BIT_XOR_EXPR:
|
| 602 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 603 |
|
|
{
|
| 604 |
|
|
fprintf (dump_file, "Equivalence: ");
|
| 605 |
|
|
print_generic_expr (dump_file, curr->op, 0);
|
| 606 |
|
|
fprintf (dump_file, " ^ ");
|
| 607 |
|
|
print_generic_expr (dump_file, last->op, 0);
|
| 608 |
|
|
fprintf (dump_file, " -> nothing\n");
|
| 609 |
|
|
}
|
| 610 |
|
|
|
| 611 |
|
|
reassociate_stats.ops_eliminated += 2;
|
| 612 |
|
|
|
| 613 |
|
|
if (VEC_length (operand_entry_t, *ops) == 2)
|
| 614 |
|
|
{
|
| 615 |
|
|
VEC_free (operand_entry_t, heap, *ops);
|
| 616 |
|
|
*ops = NULL;
|
| 617 |
|
|
add_to_ops_vec (ops, build_zero_cst (TREE_TYPE (last->op)));
|
| 618 |
|
|
*all_done = true;
|
| 619 |
|
|
}
|
| 620 |
|
|
else
|
| 621 |
|
|
{
|
| 622 |
|
|
VEC_ordered_remove (operand_entry_t, *ops, i-1);
|
| 623 |
|
|
VEC_ordered_remove (operand_entry_t, *ops, i-1);
|
| 624 |
|
|
}
|
| 625 |
|
|
|
| 626 |
|
|
return true;
|
| 627 |
|
|
|
| 628 |
|
|
default:
|
| 629 |
|
|
break;
|
| 630 |
|
|
}
|
| 631 |
|
|
}
|
| 632 |
|
|
return false;
|
| 633 |
|
|
}
|
| 634 |
|
|
|
| 635 |
|
|
static VEC(tree, heap) *plus_negates;
|
| 636 |
|
|
|
| 637 |
|
|
/* If OPCODE is PLUS_EXPR, CURR->OP is a negate expression or a bitwise not
|
| 638 |
|
|
expression, look in OPS for a corresponding positive operation to cancel
|
| 639 |
|
|
it out. If we find one, remove the other from OPS, replace
|
| 640 |
|
|
OPS[CURRINDEX] with 0 or -1, respectively, and return true. Otherwise,
|
| 641 |
|
|
return false. */
|
| 642 |
|
|
|
| 643 |
|
|
static bool
|
| 644 |
|
|
eliminate_plus_minus_pair (enum tree_code opcode,
|
| 645 |
|
|
VEC (operand_entry_t, heap) **ops,
|
| 646 |
|
|
unsigned int currindex,
|
| 647 |
|
|
operand_entry_t curr)
|
| 648 |
|
|
{
|
| 649 |
|
|
tree negateop;
|
| 650 |
|
|
tree notop;
|
| 651 |
|
|
unsigned int i;
|
| 652 |
|
|
operand_entry_t oe;
|
| 653 |
|
|
|
| 654 |
|
|
if (opcode != PLUS_EXPR || TREE_CODE (curr->op) != SSA_NAME)
|
| 655 |
|
|
return false;
|
| 656 |
|
|
|
| 657 |
|
|
negateop = get_unary_op (curr->op, NEGATE_EXPR);
|
| 658 |
|
|
notop = get_unary_op (curr->op, BIT_NOT_EXPR);
|
| 659 |
|
|
if (negateop == NULL_TREE && notop == NULL_TREE)
|
| 660 |
|
|
return false;
|
| 661 |
|
|
|
| 662 |
|
|
/* Any non-negated version will have a rank that is one less than
|
| 663 |
|
|
the current rank. So once we hit those ranks, if we don't find
|
| 664 |
|
|
one, we can stop. */
|
| 665 |
|
|
|
| 666 |
|
|
for (i = currindex + 1;
|
| 667 |
|
|
VEC_iterate (operand_entry_t, *ops, i, oe)
|
| 668 |
|
|
&& oe->rank >= curr->rank - 1 ;
|
| 669 |
|
|
i++)
|
| 670 |
|
|
{
|
| 671 |
|
|
if (oe->op == negateop)
|
| 672 |
|
|
{
|
| 673 |
|
|
|
| 674 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 675 |
|
|
{
|
| 676 |
|
|
fprintf (dump_file, "Equivalence: ");
|
| 677 |
|
|
print_generic_expr (dump_file, negateop, 0);
|
| 678 |
|
|
fprintf (dump_file, " + -");
|
| 679 |
|
|
print_generic_expr (dump_file, oe->op, 0);
|
| 680 |
|
|
fprintf (dump_file, " -> 0\n");
|
| 681 |
|
|
}
|
| 682 |
|
|
|
| 683 |
|
|
VEC_ordered_remove (operand_entry_t, *ops, i);
|
| 684 |
|
|
add_to_ops_vec (ops, build_zero_cst (TREE_TYPE (oe->op)));
|
| 685 |
|
|
VEC_ordered_remove (operand_entry_t, *ops, currindex);
|
| 686 |
|
|
reassociate_stats.ops_eliminated ++;
|
| 687 |
|
|
|
| 688 |
|
|
return true;
|
| 689 |
|
|
}
|
| 690 |
|
|
else if (oe->op == notop)
|
| 691 |
|
|
{
|
| 692 |
|
|
tree op_type = TREE_TYPE (oe->op);
|
| 693 |
|
|
|
| 694 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 695 |
|
|
{
|
| 696 |
|
|
fprintf (dump_file, "Equivalence: ");
|
| 697 |
|
|
print_generic_expr (dump_file, notop, 0);
|
| 698 |
|
|
fprintf (dump_file, " + ~");
|
| 699 |
|
|
print_generic_expr (dump_file, oe->op, 0);
|
| 700 |
|
|
fprintf (dump_file, " -> -1\n");
|
| 701 |
|
|
}
|
| 702 |
|
|
|
| 703 |
|
|
VEC_ordered_remove (operand_entry_t, *ops, i);
|
| 704 |
|
|
add_to_ops_vec (ops, build_int_cst_type (op_type, -1));
|
| 705 |
|
|
VEC_ordered_remove (operand_entry_t, *ops, currindex);
|
| 706 |
|
|
reassociate_stats.ops_eliminated ++;
|
| 707 |
|
|
|
| 708 |
|
|
return true;
|
| 709 |
|
|
}
|
| 710 |
|
|
}
|
| 711 |
|
|
|
| 712 |
|
|
/* CURR->OP is a negate expr in a plus expr: save it for later
|
| 713 |
|
|
inspection in repropagate_negates(). */
|
| 714 |
|
|
if (negateop != NULL_TREE)
|
| 715 |
|
|
VEC_safe_push (tree, heap, plus_negates, curr->op);
|
| 716 |
|
|
|
| 717 |
|
|
return false;
|
| 718 |
|
|
}
|
| 719 |
|
|
|
| 720 |
|
|
/* If OPCODE is BIT_IOR_EXPR, BIT_AND_EXPR, and, CURR->OP is really a
|
| 721 |
|
|
bitwise not expression, look in OPS for a corresponding operand to
|
| 722 |
|
|
cancel it out. If we find one, remove the other from OPS, replace
|
| 723 |
|
|
OPS[CURRINDEX] with 0, and return true. Otherwise, return
|
| 724 |
|
|
false. */
|
| 725 |
|
|
|
| 726 |
|
|
static bool
|
| 727 |
|
|
eliminate_not_pairs (enum tree_code opcode,
|
| 728 |
|
|
VEC (operand_entry_t, heap) **ops,
|
| 729 |
|
|
unsigned int currindex,
|
| 730 |
|
|
operand_entry_t curr)
|
| 731 |
|
|
{
|
| 732 |
|
|
tree notop;
|
| 733 |
|
|
unsigned int i;
|
| 734 |
|
|
operand_entry_t oe;
|
| 735 |
|
|
|
| 736 |
|
|
if ((opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
|
| 737 |
|
|
|| TREE_CODE (curr->op) != SSA_NAME)
|
| 738 |
|
|
return false;
|
| 739 |
|
|
|
| 740 |
|
|
notop = get_unary_op (curr->op, BIT_NOT_EXPR);
|
| 741 |
|
|
if (notop == NULL_TREE)
|
| 742 |
|
|
return false;
|
| 743 |
|
|
|
| 744 |
|
|
/* Any non-not version will have a rank that is one less than
|
| 745 |
|
|
the current rank. So once we hit those ranks, if we don't find
|
| 746 |
|
|
one, we can stop. */
|
| 747 |
|
|
|
| 748 |
|
|
for (i = currindex + 1;
|
| 749 |
|
|
VEC_iterate (operand_entry_t, *ops, i, oe)
|
| 750 |
|
|
&& oe->rank >= curr->rank - 1;
|
| 751 |
|
|
i++)
|
| 752 |
|
|
{
|
| 753 |
|
|
if (oe->op == notop)
|
| 754 |
|
|
{
|
| 755 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 756 |
|
|
{
|
| 757 |
|
|
fprintf (dump_file, "Equivalence: ");
|
| 758 |
|
|
print_generic_expr (dump_file, notop, 0);
|
| 759 |
|
|
if (opcode == BIT_AND_EXPR)
|
| 760 |
|
|
fprintf (dump_file, " & ~");
|
| 761 |
|
|
else if (opcode == BIT_IOR_EXPR)
|
| 762 |
|
|
fprintf (dump_file, " | ~");
|
| 763 |
|
|
print_generic_expr (dump_file, oe->op, 0);
|
| 764 |
|
|
if (opcode == BIT_AND_EXPR)
|
| 765 |
|
|
fprintf (dump_file, " -> 0\n");
|
| 766 |
|
|
else if (opcode == BIT_IOR_EXPR)
|
| 767 |
|
|
fprintf (dump_file, " -> -1\n");
|
| 768 |
|
|
}
|
| 769 |
|
|
|
| 770 |
|
|
if (opcode == BIT_AND_EXPR)
|
| 771 |
|
|
oe->op = build_zero_cst (TREE_TYPE (oe->op));
|
| 772 |
|
|
else if (opcode == BIT_IOR_EXPR)
|
| 773 |
|
|
oe->op = build_low_bits_mask (TREE_TYPE (oe->op),
|
| 774 |
|
|
TYPE_PRECISION (TREE_TYPE (oe->op)));
|
| 775 |
|
|
|
| 776 |
|
|
reassociate_stats.ops_eliminated
|
| 777 |
|
|
+= VEC_length (operand_entry_t, *ops) - 1;
|
| 778 |
|
|
VEC_free (operand_entry_t, heap, *ops);
|
| 779 |
|
|
*ops = NULL;
|
| 780 |
|
|
VEC_safe_push (operand_entry_t, heap, *ops, oe);
|
| 781 |
|
|
return true;
|
| 782 |
|
|
}
|
| 783 |
|
|
}
|
| 784 |
|
|
|
| 785 |
|
|
return false;
|
| 786 |
|
|
}
|
| 787 |
|
|
|
| 788 |
|
|
/* Use constant value that may be present in OPS to try to eliminate
|
| 789 |
|
|
operands. Note that this function is only really used when we've
|
| 790 |
|
|
eliminated ops for other reasons, or merged constants. Across
|
| 791 |
|
|
single statements, fold already does all of this, plus more. There
|
| 792 |
|
|
is little point in duplicating logic, so I've only included the
|
| 793 |
|
|
identities that I could ever construct testcases to trigger. */
|
| 794 |
|
|
|
| 795 |
|
|
static void
|
| 796 |
|
|
eliminate_using_constants (enum tree_code opcode,
|
| 797 |
|
|
VEC(operand_entry_t, heap) **ops)
|
| 798 |
|
|
{
|
| 799 |
|
|
operand_entry_t oelast = VEC_last (operand_entry_t, *ops);
|
| 800 |
|
|
tree type = TREE_TYPE (oelast->op);
|
| 801 |
|
|
|
| 802 |
|
|
if (oelast->rank == 0
|
| 803 |
|
|
&& (INTEGRAL_TYPE_P (type) || FLOAT_TYPE_P (type)))
|
| 804 |
|
|
{
|
| 805 |
|
|
switch (opcode)
|
| 806 |
|
|
{
|
| 807 |
|
|
case BIT_AND_EXPR:
|
| 808 |
|
|
if (integer_zerop (oelast->op))
|
| 809 |
|
|
{
|
| 810 |
|
|
if (VEC_length (operand_entry_t, *ops) != 1)
|
| 811 |
|
|
{
|
| 812 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 813 |
|
|
fprintf (dump_file, "Found & 0, removing all other ops\n");
|
| 814 |
|
|
|
| 815 |
|
|
reassociate_stats.ops_eliminated
|
| 816 |
|
|
+= VEC_length (operand_entry_t, *ops) - 1;
|
| 817 |
|
|
|
| 818 |
|
|
VEC_free (operand_entry_t, heap, *ops);
|
| 819 |
|
|
*ops = NULL;
|
| 820 |
|
|
VEC_safe_push (operand_entry_t, heap, *ops, oelast);
|
| 821 |
|
|
return;
|
| 822 |
|
|
}
|
| 823 |
|
|
}
|
| 824 |
|
|
else if (integer_all_onesp (oelast->op))
|
| 825 |
|
|
{
|
| 826 |
|
|
if (VEC_length (operand_entry_t, *ops) != 1)
|
| 827 |
|
|
{
|
| 828 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 829 |
|
|
fprintf (dump_file, "Found & -1, removing\n");
|
| 830 |
|
|
VEC_pop (operand_entry_t, *ops);
|
| 831 |
|
|
reassociate_stats.ops_eliminated++;
|
| 832 |
|
|
}
|
| 833 |
|
|
}
|
| 834 |
|
|
break;
|
| 835 |
|
|
case BIT_IOR_EXPR:
|
| 836 |
|
|
if (integer_all_onesp (oelast->op))
|
| 837 |
|
|
{
|
| 838 |
|
|
if (VEC_length (operand_entry_t, *ops) != 1)
|
| 839 |
|
|
{
|
| 840 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 841 |
|
|
fprintf (dump_file, "Found | -1, removing all other ops\n");
|
| 842 |
|
|
|
| 843 |
|
|
reassociate_stats.ops_eliminated
|
| 844 |
|
|
+= VEC_length (operand_entry_t, *ops) - 1;
|
| 845 |
|
|
|
| 846 |
|
|
VEC_free (operand_entry_t, heap, *ops);
|
| 847 |
|
|
*ops = NULL;
|
| 848 |
|
|
VEC_safe_push (operand_entry_t, heap, *ops, oelast);
|
| 849 |
|
|
return;
|
| 850 |
|
|
}
|
| 851 |
|
|
}
|
| 852 |
|
|
else if (integer_zerop (oelast->op))
|
| 853 |
|
|
{
|
| 854 |
|
|
if (VEC_length (operand_entry_t, *ops) != 1)
|
| 855 |
|
|
{
|
| 856 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 857 |
|
|
fprintf (dump_file, "Found | 0, removing\n");
|
| 858 |
|
|
VEC_pop (operand_entry_t, *ops);
|
| 859 |
|
|
reassociate_stats.ops_eliminated++;
|
| 860 |
|
|
}
|
| 861 |
|
|
}
|
| 862 |
|
|
break;
|
| 863 |
|
|
case MULT_EXPR:
|
| 864 |
|
|
if (integer_zerop (oelast->op)
|
| 865 |
|
|
|| (FLOAT_TYPE_P (type)
|
| 866 |
|
|
&& !HONOR_NANS (TYPE_MODE (type))
|
| 867 |
|
|
&& !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
|
| 868 |
|
|
&& real_zerop (oelast->op)))
|
| 869 |
|
|
{
|
| 870 |
|
|
if (VEC_length (operand_entry_t, *ops) != 1)
|
| 871 |
|
|
{
|
| 872 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 873 |
|
|
fprintf (dump_file, "Found * 0, removing all other ops\n");
|
| 874 |
|
|
|
| 875 |
|
|
reassociate_stats.ops_eliminated
|
| 876 |
|
|
+= VEC_length (operand_entry_t, *ops) - 1;
|
| 877 |
|
|
VEC_free (operand_entry_t, heap, *ops);
|
| 878 |
|
|
*ops = NULL;
|
| 879 |
|
|
VEC_safe_push (operand_entry_t, heap, *ops, oelast);
|
| 880 |
|
|
return;
|
| 881 |
|
|
}
|
| 882 |
|
|
}
|
| 883 |
|
|
else if (integer_onep (oelast->op)
|
| 884 |
|
|
|| (FLOAT_TYPE_P (type)
|
| 885 |
|
|
&& !HONOR_SNANS (TYPE_MODE (type))
|
| 886 |
|
|
&& real_onep (oelast->op)))
|
| 887 |
|
|
{
|
| 888 |
|
|
if (VEC_length (operand_entry_t, *ops) != 1)
|
| 889 |
|
|
{
|
| 890 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 891 |
|
|
fprintf (dump_file, "Found * 1, removing\n");
|
| 892 |
|
|
VEC_pop (operand_entry_t, *ops);
|
| 893 |
|
|
reassociate_stats.ops_eliminated++;
|
| 894 |
|
|
return;
|
| 895 |
|
|
}
|
| 896 |
|
|
}
|
| 897 |
|
|
break;
|
| 898 |
|
|
case BIT_XOR_EXPR:
|
| 899 |
|
|
case PLUS_EXPR:
|
| 900 |
|
|
case MINUS_EXPR:
|
| 901 |
|
|
if (integer_zerop (oelast->op)
|
| 902 |
|
|
|| (FLOAT_TYPE_P (type)
|
| 903 |
|
|
&& (opcode == PLUS_EXPR || opcode == MINUS_EXPR)
|
| 904 |
|
|
&& fold_real_zero_addition_p (type, oelast->op,
|
| 905 |
|
|
opcode == MINUS_EXPR)))
|
| 906 |
|
|
{
|
| 907 |
|
|
if (VEC_length (operand_entry_t, *ops) != 1)
|
| 908 |
|
|
{
|
| 909 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 910 |
|
|
fprintf (dump_file, "Found [|^+] 0, removing\n");
|
| 911 |
|
|
VEC_pop (operand_entry_t, *ops);
|
| 912 |
|
|
reassociate_stats.ops_eliminated++;
|
| 913 |
|
|
return;
|
| 914 |
|
|
}
|
| 915 |
|
|
}
|
| 916 |
|
|
break;
|
| 917 |
|
|
default:
|
| 918 |
|
|
break;
|
| 919 |
|
|
}
|
| 920 |
|
|
}
|
| 921 |
|
|
}
|
| 922 |
|
|
|
| 923 |
|
|
|
| 924 |
|
|
static void linearize_expr_tree (VEC(operand_entry_t, heap) **, gimple,
|
| 925 |
|
|
bool, bool);
|
| 926 |
|
|
|
| 927 |
|
|
/* Structure for tracking and counting operands. */
|
| 928 |
|
|
typedef struct oecount_s {
|
| 929 |
|
|
int cnt;
|
| 930 |
|
|
int id;
|
| 931 |
|
|
enum tree_code oecode;
|
| 932 |
|
|
tree op;
|
| 933 |
|
|
} oecount;
|
| 934 |
|
|
|
| 935 |
|
|
DEF_VEC_O(oecount);
|
| 936 |
|
|
DEF_VEC_ALLOC_O(oecount,heap);
|
| 937 |
|
|
|
| 938 |
|
|
/* The heap for the oecount hashtable and the sorted list of operands. */
|
| 939 |
|
|
static VEC (oecount, heap) *cvec;
|
| 940 |
|
|
|
| 941 |
|
|
/* Hash function for oecount. */
|
| 942 |
|
|
|
| 943 |
|
|
static hashval_t
|
| 944 |
|
|
oecount_hash (const void *p)
|
| 945 |
|
|
{
|
| 946 |
|
|
const oecount *c = VEC_index (oecount, cvec, (size_t)p - 42);
|
| 947 |
|
|
return htab_hash_pointer (c->op) ^ (hashval_t)c->oecode;
|
| 948 |
|
|
}
|
| 949 |
|
|
|
| 950 |
|
|
/* Comparison function for oecount. */
|
| 951 |
|
|
|
| 952 |
|
|
static int
|
| 953 |
|
|
oecount_eq (const void *p1, const void *p2)
|
| 954 |
|
|
{
|
| 955 |
|
|
const oecount *c1 = VEC_index (oecount, cvec, (size_t)p1 - 42);
|
| 956 |
|
|
const oecount *c2 = VEC_index (oecount, cvec, (size_t)p2 - 42);
|
| 957 |
|
|
return (c1->oecode == c2->oecode
|
| 958 |
|
|
&& c1->op == c2->op);
|
| 959 |
|
|
}
|
| 960 |
|
|
|
| 961 |
|
|
/* Comparison function for qsort sorting oecount elements by count. */
|
| 962 |
|
|
|
| 963 |
|
|
static int
|
| 964 |
|
|
oecount_cmp (const void *p1, const void *p2)
|
| 965 |
|
|
{
|
| 966 |
|
|
const oecount *c1 = (const oecount *)p1;
|
| 967 |
|
|
const oecount *c2 = (const oecount *)p2;
|
| 968 |
|
|
if (c1->cnt != c2->cnt)
|
| 969 |
|
|
return c1->cnt - c2->cnt;
|
| 970 |
|
|
else
|
| 971 |
|
|
/* If counts are identical, use unique IDs to stabilize qsort. */
|
| 972 |
|
|
return c1->id - c2->id;
|
| 973 |
|
|
}
|
| 974 |
|
|
|
| 975 |
|
|
/* Walks the linear chain with result *DEF searching for an operation
|
| 976 |
|
|
with operand OP and code OPCODE removing that from the chain. *DEF
|
| 977 |
|
|
is updated if there is only one operand but no operation left. */
|
| 978 |
|
|
|
| 979 |
|
|
static void
|
| 980 |
|
|
zero_one_operation (tree *def, enum tree_code opcode, tree op)
|
| 981 |
|
|
{
|
| 982 |
|
|
gimple stmt = SSA_NAME_DEF_STMT (*def);
|
| 983 |
|
|
|
| 984 |
|
|
do
|
| 985 |
|
|
{
|
| 986 |
|
|
tree name = gimple_assign_rhs1 (stmt);
|
| 987 |
|
|
|
| 988 |
|
|
/* If this is the operation we look for and one of the operands
|
| 989 |
|
|
is ours simply propagate the other operand into the stmts
|
| 990 |
|
|
single use. */
|
| 991 |
|
|
if (gimple_assign_rhs_code (stmt) == opcode
|
| 992 |
|
|
&& (name == op
|
| 993 |
|
|
|| gimple_assign_rhs2 (stmt) == op))
|
| 994 |
|
|
{
|
| 995 |
|
|
gimple use_stmt;
|
| 996 |
|
|
use_operand_p use;
|
| 997 |
|
|
gimple_stmt_iterator gsi;
|
| 998 |
|
|
if (name == op)
|
| 999 |
|
|
name = gimple_assign_rhs2 (stmt);
|
| 1000 |
|
|
gcc_assert (has_single_use (gimple_assign_lhs (stmt)));
|
| 1001 |
|
|
single_imm_use (gimple_assign_lhs (stmt), &use, &use_stmt);
|
| 1002 |
|
|
if (gimple_assign_lhs (stmt) == *def)
|
| 1003 |
|
|
*def = name;
|
| 1004 |
|
|
SET_USE (use, name);
|
| 1005 |
|
|
if (TREE_CODE (name) != SSA_NAME)
|
| 1006 |
|
|
update_stmt (use_stmt);
|
| 1007 |
|
|
gsi = gsi_for_stmt (stmt);
|
| 1008 |
|
|
gsi_remove (&gsi, true);
|
| 1009 |
|
|
release_defs (stmt);
|
| 1010 |
|
|
return;
|
| 1011 |
|
|
}
|
| 1012 |
|
|
|
| 1013 |
|
|
/* Continue walking the chain. */
|
| 1014 |
|
|
gcc_assert (name != op
|
| 1015 |
|
|
&& TREE_CODE (name) == SSA_NAME);
|
| 1016 |
|
|
stmt = SSA_NAME_DEF_STMT (name);
|
| 1017 |
|
|
}
|
| 1018 |
|
|
while (1);
|
| 1019 |
|
|
}
|
| 1020 |
|
|
|
| 1021 |
|
|
/* Builds one statement performing OP1 OPCODE OP2 using TMPVAR for
|
| 1022 |
|
|
the result. Places the statement after the definition of either
|
| 1023 |
|
|
OP1 or OP2. Returns the new statement. */
|
| 1024 |
|
|
|
| 1025 |
|
|
static gimple
|
| 1026 |
|
|
build_and_add_sum (tree tmpvar, tree op1, tree op2, enum tree_code opcode)
|
| 1027 |
|
|
{
|
| 1028 |
|
|
gimple op1def = NULL, op2def = NULL;
|
| 1029 |
|
|
gimple_stmt_iterator gsi;
|
| 1030 |
|
|
tree op;
|
| 1031 |
|
|
gimple sum;
|
| 1032 |
|
|
|
| 1033 |
|
|
/* Create the addition statement. */
|
| 1034 |
|
|
sum = gimple_build_assign_with_ops (opcode, tmpvar, op1, op2);
|
| 1035 |
|
|
op = make_ssa_name (tmpvar, sum);
|
| 1036 |
|
|
gimple_assign_set_lhs (sum, op);
|
| 1037 |
|
|
|
| 1038 |
|
|
/* Find an insertion place and insert. */
|
| 1039 |
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
| 1040 |
|
|
op1def = SSA_NAME_DEF_STMT (op1);
|
| 1041 |
|
|
if (TREE_CODE (op2) == SSA_NAME)
|
| 1042 |
|
|
op2def = SSA_NAME_DEF_STMT (op2);
|
| 1043 |
|
|
if ((!op1def || gimple_nop_p (op1def))
|
| 1044 |
|
|
&& (!op2def || gimple_nop_p (op2def)))
|
| 1045 |
|
|
{
|
| 1046 |
|
|
gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
|
| 1047 |
|
|
gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
|
| 1048 |
|
|
}
|
| 1049 |
|
|
else if ((!op1def || gimple_nop_p (op1def))
|
| 1050 |
|
|
|| (op2def && !gimple_nop_p (op2def)
|
| 1051 |
|
|
&& stmt_dominates_stmt_p (op1def, op2def)))
|
| 1052 |
|
|
{
|
| 1053 |
|
|
if (gimple_code (op2def) == GIMPLE_PHI)
|
| 1054 |
|
|
{
|
| 1055 |
|
|
gsi = gsi_after_labels (gimple_bb (op2def));
|
| 1056 |
|
|
gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
|
| 1057 |
|
|
}
|
| 1058 |
|
|
else
|
| 1059 |
|
|
{
|
| 1060 |
|
|
if (!stmt_ends_bb_p (op2def))
|
| 1061 |
|
|
{
|
| 1062 |
|
|
gsi = gsi_for_stmt (op2def);
|
| 1063 |
|
|
gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
|
| 1064 |
|
|
}
|
| 1065 |
|
|
else
|
| 1066 |
|
|
{
|
| 1067 |
|
|
edge e;
|
| 1068 |
|
|
edge_iterator ei;
|
| 1069 |
|
|
|
| 1070 |
|
|
FOR_EACH_EDGE (e, ei, gimple_bb (op2def)->succs)
|
| 1071 |
|
|
if (e->flags & EDGE_FALLTHRU)
|
| 1072 |
|
|
gsi_insert_on_edge_immediate (e, sum);
|
| 1073 |
|
|
}
|
| 1074 |
|
|
}
|
| 1075 |
|
|
}
|
| 1076 |
|
|
else
|
| 1077 |
|
|
{
|
| 1078 |
|
|
if (gimple_code (op1def) == GIMPLE_PHI)
|
| 1079 |
|
|
{
|
| 1080 |
|
|
gsi = gsi_after_labels (gimple_bb (op1def));
|
| 1081 |
|
|
gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
|
| 1082 |
|
|
}
|
| 1083 |
|
|
else
|
| 1084 |
|
|
{
|
| 1085 |
|
|
if (!stmt_ends_bb_p (op1def))
|
| 1086 |
|
|
{
|
| 1087 |
|
|
gsi = gsi_for_stmt (op1def);
|
| 1088 |
|
|
gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
|
| 1089 |
|
|
}
|
| 1090 |
|
|
else
|
| 1091 |
|
|
{
|
| 1092 |
|
|
edge e;
|
| 1093 |
|
|
edge_iterator ei;
|
| 1094 |
|
|
|
| 1095 |
|
|
FOR_EACH_EDGE (e, ei, gimple_bb (op1def)->succs)
|
| 1096 |
|
|
if (e->flags & EDGE_FALLTHRU)
|
| 1097 |
|
|
gsi_insert_on_edge_immediate (e, sum);
|
| 1098 |
|
|
}
|
| 1099 |
|
|
}
|
| 1100 |
|
|
}
|
| 1101 |
|
|
update_stmt (sum);
|
| 1102 |
|
|
|
| 1103 |
|
|
return sum;
|
| 1104 |
|
|
}
|
| 1105 |
|
|
|
| 1106 |
|
|
/* Perform un-distribution of divisions and multiplications.
|
| 1107 |
|
|
A * X + B * X is transformed into (A + B) * X and A / X + B / X
|
| 1108 |
|
|
to (A + B) / X for real X.
|
| 1109 |
|
|
|
| 1110 |
|
|
The algorithm is organized as follows.
|
| 1111 |
|
|
|
| 1112 |
|
|
- First we walk the addition chain *OPS looking for summands that
|
| 1113 |
|
|
are defined by a multiplication or a real division. This results
|
| 1114 |
|
|
in the candidates bitmap with relevant indices into *OPS.
|
| 1115 |
|
|
|
| 1116 |
|
|
- Second we build the chains of multiplications or divisions for
|
| 1117 |
|
|
these candidates, counting the number of occurences of (operand, code)
|
| 1118 |
|
|
pairs in all of the candidates chains.
|
| 1119 |
|
|
|
| 1120 |
|
|
- Third we sort the (operand, code) pairs by number of occurence and
|
| 1121 |
|
|
process them starting with the pair with the most uses.
|
| 1122 |
|
|
|
| 1123 |
|
|
* For each such pair we walk the candidates again to build a
|
| 1124 |
|
|
second candidate bitmap noting all multiplication/division chains
|
| 1125 |
|
|
that have at least one occurence of (operand, code).
|
| 1126 |
|
|
|
| 1127 |
|
|
* We build an alternate addition chain only covering these
|
| 1128 |
|
|
candidates with one (operand, code) operation removed from their
|
| 1129 |
|
|
multiplication/division chain.
|
| 1130 |
|
|
|
| 1131 |
|
|
* The first candidate gets replaced by the alternate addition chain
|
| 1132 |
|
|
multiplied/divided by the operand.
|
| 1133 |
|
|
|
| 1134 |
|
|
* All candidate chains get disabled for further processing and
|
| 1135 |
|
|
processing of (operand, code) pairs continues.
|
| 1136 |
|
|
|
| 1137 |
|
|
The alternate addition chains built are re-processed by the main
|
| 1138 |
|
|
reassociation algorithm which allows optimizing a * x * y + b * y * x
|
| 1139 |
|
|
to (a + b ) * x * y in one invocation of the reassociation pass. */
|
| 1140 |
|
|
|
| 1141 |
|
|
static bool
|
| 1142 |
|
|
undistribute_ops_list (enum tree_code opcode,
|
| 1143 |
|
|
VEC (operand_entry_t, heap) **ops, struct loop *loop)
|
| 1144 |
|
|
{
|
| 1145 |
|
|
unsigned int length = VEC_length (operand_entry_t, *ops);
|
| 1146 |
|
|
operand_entry_t oe1;
|
| 1147 |
|
|
unsigned i, j;
|
| 1148 |
|
|
sbitmap candidates, candidates2;
|
| 1149 |
|
|
unsigned nr_candidates, nr_candidates2;
|
| 1150 |
|
|
sbitmap_iterator sbi0;
|
| 1151 |
|
|
VEC (operand_entry_t, heap) **subops;
|
| 1152 |
|
|
htab_t ctable;
|
| 1153 |
|
|
bool changed = false;
|
| 1154 |
|
|
int next_oecount_id = 0;
|
| 1155 |
|
|
|
| 1156 |
|
|
if (length <= 1
|
| 1157 |
|
|
|| opcode != PLUS_EXPR)
|
| 1158 |
|
|
return false;
|
| 1159 |
|
|
|
| 1160 |
|
|
/* Build a list of candidates to process. */
|
| 1161 |
|
|
candidates = sbitmap_alloc (length);
|
| 1162 |
|
|
sbitmap_zero (candidates);
|
| 1163 |
|
|
nr_candidates = 0;
|
| 1164 |
|
|
FOR_EACH_VEC_ELT (operand_entry_t, *ops, i, oe1)
|
| 1165 |
|
|
{
|
| 1166 |
|
|
enum tree_code dcode;
|
| 1167 |
|
|
gimple oe1def;
|
| 1168 |
|
|
|
| 1169 |
|
|
if (TREE_CODE (oe1->op) != SSA_NAME)
|
| 1170 |
|
|
continue;
|
| 1171 |
|
|
oe1def = SSA_NAME_DEF_STMT (oe1->op);
|
| 1172 |
|
|
if (!is_gimple_assign (oe1def))
|
| 1173 |
|
|
continue;
|
| 1174 |
|
|
dcode = gimple_assign_rhs_code (oe1def);
|
| 1175 |
|
|
if ((dcode != MULT_EXPR
|
| 1176 |
|
|
&& dcode != RDIV_EXPR)
|
| 1177 |
|
|
|| !is_reassociable_op (oe1def, dcode, loop))
|
| 1178 |
|
|
continue;
|
| 1179 |
|
|
|
| 1180 |
|
|
SET_BIT (candidates, i);
|
| 1181 |
|
|
nr_candidates++;
|
| 1182 |
|
|
}
|
| 1183 |
|
|
|
| 1184 |
|
|
if (nr_candidates < 2)
|
| 1185 |
|
|
{
|
| 1186 |
|
|
sbitmap_free (candidates);
|
| 1187 |
|
|
return false;
|
| 1188 |
|
|
}
|
| 1189 |
|
|
|
| 1190 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1191 |
|
|
{
|
| 1192 |
|
|
fprintf (dump_file, "searching for un-distribute opportunities ");
|
| 1193 |
|
|
print_generic_expr (dump_file,
|
| 1194 |
|
|
VEC_index (operand_entry_t, *ops,
|
| 1195 |
|
|
sbitmap_first_set_bit (candidates))->op, 0);
|
| 1196 |
|
|
fprintf (dump_file, " %d\n", nr_candidates);
|
| 1197 |
|
|
}
|
| 1198 |
|
|
|
| 1199 |
|
|
/* Build linearized sub-operand lists and the counting table. */
|
| 1200 |
|
|
cvec = NULL;
|
| 1201 |
|
|
ctable = htab_create (15, oecount_hash, oecount_eq, NULL);
|
| 1202 |
|
|
subops = XCNEWVEC (VEC (operand_entry_t, heap) *,
|
| 1203 |
|
|
VEC_length (operand_entry_t, *ops));
|
| 1204 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0)
|
| 1205 |
|
|
{
|
| 1206 |
|
|
gimple oedef;
|
| 1207 |
|
|
enum tree_code oecode;
|
| 1208 |
|
|
unsigned j;
|
| 1209 |
|
|
|
| 1210 |
|
|
oedef = SSA_NAME_DEF_STMT (VEC_index (operand_entry_t, *ops, i)->op);
|
| 1211 |
|
|
oecode = gimple_assign_rhs_code (oedef);
|
| 1212 |
|
|
linearize_expr_tree (&subops[i], oedef,
|
| 1213 |
|
|
associative_tree_code (oecode), false);
|
| 1214 |
|
|
|
| 1215 |
|
|
FOR_EACH_VEC_ELT (operand_entry_t, subops[i], j, oe1)
|
| 1216 |
|
|
{
|
| 1217 |
|
|
oecount c;
|
| 1218 |
|
|
void **slot;
|
| 1219 |
|
|
size_t idx;
|
| 1220 |
|
|
c.oecode = oecode;
|
| 1221 |
|
|
c.cnt = 1;
|
| 1222 |
|
|
c.id = next_oecount_id++;
|
| 1223 |
|
|
c.op = oe1->op;
|
| 1224 |
|
|
VEC_safe_push (oecount, heap, cvec, &c);
|
| 1225 |
|
|
idx = VEC_length (oecount, cvec) + 41;
|
| 1226 |
|
|
slot = htab_find_slot (ctable, (void *)idx, INSERT);
|
| 1227 |
|
|
if (!*slot)
|
| 1228 |
|
|
{
|
| 1229 |
|
|
*slot = (void *)idx;
|
| 1230 |
|
|
}
|
| 1231 |
|
|
else
|
| 1232 |
|
|
{
|
| 1233 |
|
|
VEC_pop (oecount, cvec);
|
| 1234 |
|
|
VEC_index (oecount, cvec, (size_t)*slot - 42)->cnt++;
|
| 1235 |
|
|
}
|
| 1236 |
|
|
}
|
| 1237 |
|
|
}
|
| 1238 |
|
|
htab_delete (ctable);
|
| 1239 |
|
|
|
| 1240 |
|
|
/* Sort the counting table. */
|
| 1241 |
|
|
VEC_qsort (oecount, cvec, oecount_cmp);
|
| 1242 |
|
|
|
| 1243 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1244 |
|
|
{
|
| 1245 |
|
|
oecount *c;
|
| 1246 |
|
|
fprintf (dump_file, "Candidates:\n");
|
| 1247 |
|
|
FOR_EACH_VEC_ELT (oecount, cvec, j, c)
|
| 1248 |
|
|
{
|
| 1249 |
|
|
fprintf (dump_file, " %u %s: ", c->cnt,
|
| 1250 |
|
|
c->oecode == MULT_EXPR
|
| 1251 |
|
|
? "*" : c->oecode == RDIV_EXPR ? "/" : "?");
|
| 1252 |
|
|
print_generic_expr (dump_file, c->op, 0);
|
| 1253 |
|
|
fprintf (dump_file, "\n");
|
| 1254 |
|
|
}
|
| 1255 |
|
|
}
|
| 1256 |
|
|
|
| 1257 |
|
|
/* Process the (operand, code) pairs in order of most occurence. */
|
| 1258 |
|
|
candidates2 = sbitmap_alloc (length);
|
| 1259 |
|
|
while (!VEC_empty (oecount, cvec))
|
| 1260 |
|
|
{
|
| 1261 |
|
|
oecount *c = VEC_last (oecount, cvec);
|
| 1262 |
|
|
if (c->cnt < 2)
|
| 1263 |
|
|
break;
|
| 1264 |
|
|
|
| 1265 |
|
|
/* Now collect the operands in the outer chain that contain
|
| 1266 |
|
|
the common operand in their inner chain. */
|
| 1267 |
|
|
sbitmap_zero (candidates2);
|
| 1268 |
|
|
nr_candidates2 = 0;
|
| 1269 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0)
|
| 1270 |
|
|
{
|
| 1271 |
|
|
gimple oedef;
|
| 1272 |
|
|
enum tree_code oecode;
|
| 1273 |
|
|
unsigned j;
|
| 1274 |
|
|
tree op = VEC_index (operand_entry_t, *ops, i)->op;
|
| 1275 |
|
|
|
| 1276 |
|
|
/* If we undistributed in this chain already this may be
|
| 1277 |
|
|
a constant. */
|
| 1278 |
|
|
if (TREE_CODE (op) != SSA_NAME)
|
| 1279 |
|
|
continue;
|
| 1280 |
|
|
|
| 1281 |
|
|
oedef = SSA_NAME_DEF_STMT (op);
|
| 1282 |
|
|
oecode = gimple_assign_rhs_code (oedef);
|
| 1283 |
|
|
if (oecode != c->oecode)
|
| 1284 |
|
|
continue;
|
| 1285 |
|
|
|
| 1286 |
|
|
FOR_EACH_VEC_ELT (operand_entry_t, subops[i], j, oe1)
|
| 1287 |
|
|
{
|
| 1288 |
|
|
if (oe1->op == c->op)
|
| 1289 |
|
|
{
|
| 1290 |
|
|
SET_BIT (candidates2, i);
|
| 1291 |
|
|
++nr_candidates2;
|
| 1292 |
|
|
break;
|
| 1293 |
|
|
}
|
| 1294 |
|
|
}
|
| 1295 |
|
|
}
|
| 1296 |
|
|
|
| 1297 |
|
|
if (nr_candidates2 >= 2)
|
| 1298 |
|
|
{
|
| 1299 |
|
|
operand_entry_t oe1, oe2;
|
| 1300 |
|
|
tree tmpvar;
|
| 1301 |
|
|
gimple prod;
|
| 1302 |
|
|
int first = sbitmap_first_set_bit (candidates2);
|
| 1303 |
|
|
|
| 1304 |
|
|
/* Build the new addition chain. */
|
| 1305 |
|
|
oe1 = VEC_index (operand_entry_t, *ops, first);
|
| 1306 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1307 |
|
|
{
|
| 1308 |
|
|
fprintf (dump_file, "Building (");
|
| 1309 |
|
|
print_generic_expr (dump_file, oe1->op, 0);
|
| 1310 |
|
|
}
|
| 1311 |
|
|
tmpvar = create_tmp_reg (TREE_TYPE (oe1->op), NULL);
|
| 1312 |
|
|
add_referenced_var (tmpvar);
|
| 1313 |
|
|
zero_one_operation (&oe1->op, c->oecode, c->op);
|
| 1314 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (candidates2, first+1, i, sbi0)
|
| 1315 |
|
|
{
|
| 1316 |
|
|
gimple sum;
|
| 1317 |
|
|
oe2 = VEC_index (operand_entry_t, *ops, i);
|
| 1318 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1319 |
|
|
{
|
| 1320 |
|
|
fprintf (dump_file, " + ");
|
| 1321 |
|
|
print_generic_expr (dump_file, oe2->op, 0);
|
| 1322 |
|
|
}
|
| 1323 |
|
|
zero_one_operation (&oe2->op, c->oecode, c->op);
|
| 1324 |
|
|
sum = build_and_add_sum (tmpvar, oe1->op, oe2->op, opcode);
|
| 1325 |
|
|
oe2->op = build_zero_cst (TREE_TYPE (oe2->op));
|
| 1326 |
|
|
oe2->rank = 0;
|
| 1327 |
|
|
oe1->op = gimple_get_lhs (sum);
|
| 1328 |
|
|
}
|
| 1329 |
|
|
|
| 1330 |
|
|
/* Apply the multiplication/division. */
|
| 1331 |
|
|
prod = build_and_add_sum (tmpvar, oe1->op, c->op, c->oecode);
|
| 1332 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1333 |
|
|
{
|
| 1334 |
|
|
fprintf (dump_file, ") %s ", c->oecode == MULT_EXPR ? "*" : "/");
|
| 1335 |
|
|
print_generic_expr (dump_file, c->op, 0);
|
| 1336 |
|
|
fprintf (dump_file, "\n");
|
| 1337 |
|
|
}
|
| 1338 |
|
|
|
| 1339 |
|
|
/* Record it in the addition chain and disable further
|
| 1340 |
|
|
undistribution with this op. */
|
| 1341 |
|
|
oe1->op = gimple_assign_lhs (prod);
|
| 1342 |
|
|
oe1->rank = get_rank (oe1->op);
|
| 1343 |
|
|
VEC_free (operand_entry_t, heap, subops[first]);
|
| 1344 |
|
|
|
| 1345 |
|
|
changed = true;
|
| 1346 |
|
|
}
|
| 1347 |
|
|
|
| 1348 |
|
|
VEC_pop (oecount, cvec);
|
| 1349 |
|
|
}
|
| 1350 |
|
|
|
| 1351 |
|
|
for (i = 0; i < VEC_length (operand_entry_t, *ops); ++i)
|
| 1352 |
|
|
VEC_free (operand_entry_t, heap, subops[i]);
|
| 1353 |
|
|
free (subops);
|
| 1354 |
|
|
VEC_free (oecount, heap, cvec);
|
| 1355 |
|
|
sbitmap_free (candidates);
|
| 1356 |
|
|
sbitmap_free (candidates2);
|
| 1357 |
|
|
|
| 1358 |
|
|
return changed;
|
| 1359 |
|
|
}
|
| 1360 |
|
|
|
| 1361 |
|
|
/* If OPCODE is BIT_IOR_EXPR or BIT_AND_EXPR and CURR is a comparison
|
| 1362 |
|
|
expression, examine the other OPS to see if any of them are comparisons
|
| 1363 |
|
|
of the same values, which we may be able to combine or eliminate.
|
| 1364 |
|
|
For example, we can rewrite (a < b) | (a == b) as (a <= b). */
|
| 1365 |
|
|
|
| 1366 |
|
|
static bool
|
| 1367 |
|
|
eliminate_redundant_comparison (enum tree_code opcode,
|
| 1368 |
|
|
VEC (operand_entry_t, heap) **ops,
|
| 1369 |
|
|
unsigned int currindex,
|
| 1370 |
|
|
operand_entry_t curr)
|
| 1371 |
|
|
{
|
| 1372 |
|
|
tree op1, op2;
|
| 1373 |
|
|
enum tree_code lcode, rcode;
|
| 1374 |
|
|
gimple def1, def2;
|
| 1375 |
|
|
int i;
|
| 1376 |
|
|
operand_entry_t oe;
|
| 1377 |
|
|
|
| 1378 |
|
|
if (opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
|
| 1379 |
|
|
return false;
|
| 1380 |
|
|
|
| 1381 |
|
|
/* Check that CURR is a comparison. */
|
| 1382 |
|
|
if (TREE_CODE (curr->op) != SSA_NAME)
|
| 1383 |
|
|
return false;
|
| 1384 |
|
|
def1 = SSA_NAME_DEF_STMT (curr->op);
|
| 1385 |
|
|
if (!is_gimple_assign (def1))
|
| 1386 |
|
|
return false;
|
| 1387 |
|
|
lcode = gimple_assign_rhs_code (def1);
|
| 1388 |
|
|
if (TREE_CODE_CLASS (lcode) != tcc_comparison)
|
| 1389 |
|
|
return false;
|
| 1390 |
|
|
op1 = gimple_assign_rhs1 (def1);
|
| 1391 |
|
|
op2 = gimple_assign_rhs2 (def1);
|
| 1392 |
|
|
|
| 1393 |
|
|
/* Now look for a similar comparison in the remaining OPS. */
|
| 1394 |
|
|
for (i = currindex + 1;
|
| 1395 |
|
|
VEC_iterate (operand_entry_t, *ops, i, oe);
|
| 1396 |
|
|
i++)
|
| 1397 |
|
|
{
|
| 1398 |
|
|
tree t;
|
| 1399 |
|
|
|
| 1400 |
|
|
if (TREE_CODE (oe->op) != SSA_NAME)
|
| 1401 |
|
|
continue;
|
| 1402 |
|
|
def2 = SSA_NAME_DEF_STMT (oe->op);
|
| 1403 |
|
|
if (!is_gimple_assign (def2))
|
| 1404 |
|
|
continue;
|
| 1405 |
|
|
rcode = gimple_assign_rhs_code (def2);
|
| 1406 |
|
|
if (TREE_CODE_CLASS (rcode) != tcc_comparison)
|
| 1407 |
|
|
continue;
|
| 1408 |
|
|
|
| 1409 |
|
|
/* If we got here, we have a match. See if we can combine the
|
| 1410 |
|
|
two comparisons. */
|
| 1411 |
|
|
if (opcode == BIT_IOR_EXPR)
|
| 1412 |
|
|
t = maybe_fold_or_comparisons (lcode, op1, op2,
|
| 1413 |
|
|
rcode, gimple_assign_rhs1 (def2),
|
| 1414 |
|
|
gimple_assign_rhs2 (def2));
|
| 1415 |
|
|
else
|
| 1416 |
|
|
t = maybe_fold_and_comparisons (lcode, op1, op2,
|
| 1417 |
|
|
rcode, gimple_assign_rhs1 (def2),
|
| 1418 |
|
|
gimple_assign_rhs2 (def2));
|
| 1419 |
|
|
if (!t)
|
| 1420 |
|
|
continue;
|
| 1421 |
|
|
|
| 1422 |
|
|
/* maybe_fold_and_comparisons and maybe_fold_or_comparisons
|
| 1423 |
|
|
always give us a boolean_type_node value back. If the original
|
| 1424 |
|
|
BIT_AND_EXPR or BIT_IOR_EXPR was of a wider integer type,
|
| 1425 |
|
|
we need to convert. */
|
| 1426 |
|
|
if (!useless_type_conversion_p (TREE_TYPE (curr->op), TREE_TYPE (t)))
|
| 1427 |
|
|
t = fold_convert (TREE_TYPE (curr->op), t);
|
| 1428 |
|
|
|
| 1429 |
|
|
if (TREE_CODE (t) != INTEGER_CST
|
| 1430 |
|
|
&& !operand_equal_p (t, curr->op, 0))
|
| 1431 |
|
|
{
|
| 1432 |
|
|
enum tree_code subcode;
|
| 1433 |
|
|
tree newop1, newop2;
|
| 1434 |
|
|
if (!COMPARISON_CLASS_P (t))
|
| 1435 |
|
|
continue;
|
| 1436 |
|
|
extract_ops_from_tree (t, &subcode, &newop1, &newop2);
|
| 1437 |
|
|
STRIP_USELESS_TYPE_CONVERSION (newop1);
|
| 1438 |
|
|
STRIP_USELESS_TYPE_CONVERSION (newop2);
|
| 1439 |
|
|
if (!is_gimple_val (newop1) || !is_gimple_val (newop2))
|
| 1440 |
|
|
continue;
|
| 1441 |
|
|
}
|
| 1442 |
|
|
|
| 1443 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1444 |
|
|
{
|
| 1445 |
|
|
fprintf (dump_file, "Equivalence: ");
|
| 1446 |
|
|
print_generic_expr (dump_file, curr->op, 0);
|
| 1447 |
|
|
fprintf (dump_file, " %s ", op_symbol_code (opcode));
|
| 1448 |
|
|
print_generic_expr (dump_file, oe->op, 0);
|
| 1449 |
|
|
fprintf (dump_file, " -> ");
|
| 1450 |
|
|
print_generic_expr (dump_file, t, 0);
|
| 1451 |
|
|
fprintf (dump_file, "\n");
|
| 1452 |
|
|
}
|
| 1453 |
|
|
|
| 1454 |
|
|
/* Now we can delete oe, as it has been subsumed by the new combined
|
| 1455 |
|
|
expression t. */
|
| 1456 |
|
|
VEC_ordered_remove (operand_entry_t, *ops, i);
|
| 1457 |
|
|
reassociate_stats.ops_eliminated ++;
|
| 1458 |
|
|
|
| 1459 |
|
|
/* If t is the same as curr->op, we're done. Otherwise we must
|
| 1460 |
|
|
replace curr->op with t. Special case is if we got a constant
|
| 1461 |
|
|
back, in which case we add it to the end instead of in place of
|
| 1462 |
|
|
the current entry. */
|
| 1463 |
|
|
if (TREE_CODE (t) == INTEGER_CST)
|
| 1464 |
|
|
{
|
| 1465 |
|
|
VEC_ordered_remove (operand_entry_t, *ops, currindex);
|
| 1466 |
|
|
add_to_ops_vec (ops, t);
|
| 1467 |
|
|
}
|
| 1468 |
|
|
else if (!operand_equal_p (t, curr->op, 0))
|
| 1469 |
|
|
{
|
| 1470 |
|
|
tree tmpvar;
|
| 1471 |
|
|
gimple sum;
|
| 1472 |
|
|
enum tree_code subcode;
|
| 1473 |
|
|
tree newop1;
|
| 1474 |
|
|
tree newop2;
|
| 1475 |
|
|
gcc_assert (COMPARISON_CLASS_P (t));
|
| 1476 |
|
|
tmpvar = create_tmp_var (TREE_TYPE (t), NULL);
|
| 1477 |
|
|
add_referenced_var (tmpvar);
|
| 1478 |
|
|
extract_ops_from_tree (t, &subcode, &newop1, &newop2);
|
| 1479 |
|
|
STRIP_USELESS_TYPE_CONVERSION (newop1);
|
| 1480 |
|
|
STRIP_USELESS_TYPE_CONVERSION (newop2);
|
| 1481 |
|
|
gcc_checking_assert (is_gimple_val (newop1)
|
| 1482 |
|
|
&& is_gimple_val (newop2));
|
| 1483 |
|
|
sum = build_and_add_sum (tmpvar, newop1, newop2, subcode);
|
| 1484 |
|
|
curr->op = gimple_get_lhs (sum);
|
| 1485 |
|
|
}
|
| 1486 |
|
|
return true;
|
| 1487 |
|
|
}
|
| 1488 |
|
|
|
| 1489 |
|
|
return false;
|
| 1490 |
|
|
}
|
| 1491 |
|
|
|
| 1492 |
|
|
/* Perform various identities and other optimizations on the list of
|
| 1493 |
|
|
operand entries, stored in OPS. The tree code for the binary
|
| 1494 |
|
|
operation between all the operands is OPCODE. */
|
| 1495 |
|
|
|
| 1496 |
|
|
static void
|
| 1497 |
|
|
optimize_ops_list (enum tree_code opcode,
|
| 1498 |
|
|
VEC (operand_entry_t, heap) **ops)
|
| 1499 |
|
|
{
|
| 1500 |
|
|
unsigned int length = VEC_length (operand_entry_t, *ops);
|
| 1501 |
|
|
unsigned int i;
|
| 1502 |
|
|
operand_entry_t oe;
|
| 1503 |
|
|
operand_entry_t oelast = NULL;
|
| 1504 |
|
|
bool iterate = false;
|
| 1505 |
|
|
|
| 1506 |
|
|
if (length == 1)
|
| 1507 |
|
|
return;
|
| 1508 |
|
|
|
| 1509 |
|
|
oelast = VEC_last (operand_entry_t, *ops);
|
| 1510 |
|
|
|
| 1511 |
|
|
/* If the last two are constants, pop the constants off, merge them
|
| 1512 |
|
|
and try the next two. */
|
| 1513 |
|
|
if (oelast->rank == 0 && is_gimple_min_invariant (oelast->op))
|
| 1514 |
|
|
{
|
| 1515 |
|
|
operand_entry_t oelm1 = VEC_index (operand_entry_t, *ops, length - 2);
|
| 1516 |
|
|
|
| 1517 |
|
|
if (oelm1->rank == 0
|
| 1518 |
|
|
&& is_gimple_min_invariant (oelm1->op)
|
| 1519 |
|
|
&& useless_type_conversion_p (TREE_TYPE (oelm1->op),
|
| 1520 |
|
|
TREE_TYPE (oelast->op)))
|
| 1521 |
|
|
{
|
| 1522 |
|
|
tree folded = fold_binary (opcode, TREE_TYPE (oelm1->op),
|
| 1523 |
|
|
oelm1->op, oelast->op);
|
| 1524 |
|
|
|
| 1525 |
|
|
if (folded && is_gimple_min_invariant (folded))
|
| 1526 |
|
|
{
|
| 1527 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1528 |
|
|
fprintf (dump_file, "Merging constants\n");
|
| 1529 |
|
|
|
| 1530 |
|
|
VEC_pop (operand_entry_t, *ops);
|
| 1531 |
|
|
VEC_pop (operand_entry_t, *ops);
|
| 1532 |
|
|
|
| 1533 |
|
|
add_to_ops_vec (ops, folded);
|
| 1534 |
|
|
reassociate_stats.constants_eliminated++;
|
| 1535 |
|
|
|
| 1536 |
|
|
optimize_ops_list (opcode, ops);
|
| 1537 |
|
|
return;
|
| 1538 |
|
|
}
|
| 1539 |
|
|
}
|
| 1540 |
|
|
}
|
| 1541 |
|
|
|
| 1542 |
|
|
eliminate_using_constants (opcode, ops);
|
| 1543 |
|
|
oelast = NULL;
|
| 1544 |
|
|
|
| 1545 |
|
|
for (i = 0; VEC_iterate (operand_entry_t, *ops, i, oe);)
|
| 1546 |
|
|
{
|
| 1547 |
|
|
bool done = false;
|
| 1548 |
|
|
|
| 1549 |
|
|
if (eliminate_not_pairs (opcode, ops, i, oe))
|
| 1550 |
|
|
return;
|
| 1551 |
|
|
if (eliminate_duplicate_pair (opcode, ops, &done, i, oe, oelast)
|
| 1552 |
|
|
|| (!done && eliminate_plus_minus_pair (opcode, ops, i, oe))
|
| 1553 |
|
|
|| (!done && eliminate_redundant_comparison (opcode, ops, i, oe)))
|
| 1554 |
|
|
{
|
| 1555 |
|
|
if (done)
|
| 1556 |
|
|
return;
|
| 1557 |
|
|
iterate = true;
|
| 1558 |
|
|
oelast = NULL;
|
| 1559 |
|
|
continue;
|
| 1560 |
|
|
}
|
| 1561 |
|
|
oelast = oe;
|
| 1562 |
|
|
i++;
|
| 1563 |
|
|
}
|
| 1564 |
|
|
|
| 1565 |
|
|
length = VEC_length (operand_entry_t, *ops);
|
| 1566 |
|
|
oelast = VEC_last (operand_entry_t, *ops);
|
| 1567 |
|
|
|
| 1568 |
|
|
if (iterate)
|
| 1569 |
|
|
optimize_ops_list (opcode, ops);
|
| 1570 |
|
|
}
|
| 1571 |
|
|
|
| 1572 |
|
|
/* The following functions are subroutines to optimize_range_tests and allow
|
| 1573 |
|
|
it to try to change a logical combination of comparisons into a range
|
| 1574 |
|
|
test.
|
| 1575 |
|
|
|
| 1576 |
|
|
For example, both
|
| 1577 |
|
|
X == 2 || X == 5 || X == 3 || X == 4
|
| 1578 |
|
|
and
|
| 1579 |
|
|
X >= 2 && X <= 5
|
| 1580 |
|
|
are converted to
|
| 1581 |
|
|
(unsigned) (X - 2) <= 3
|
| 1582 |
|
|
|
| 1583 |
|
|
For more information see comments above fold_test_range in fold-const.c,
|
| 1584 |
|
|
this implementation is for GIMPLE. */
|
| 1585 |
|
|
|
| 1586 |
|
|
struct range_entry
|
| 1587 |
|
|
{
|
| 1588 |
|
|
tree exp;
|
| 1589 |
|
|
tree low;
|
| 1590 |
|
|
tree high;
|
| 1591 |
|
|
bool in_p;
|
| 1592 |
|
|
bool strict_overflow_p;
|
| 1593 |
|
|
unsigned int idx, next;
|
| 1594 |
|
|
};
|
| 1595 |
|
|
|
| 1596 |
|
|
/* This is similar to make_range in fold-const.c, but on top of
|
| 1597 |
|
|
GIMPLE instead of trees. */
|
| 1598 |
|
|
|
| 1599 |
|
|
static void
|
| 1600 |
|
|
init_range_entry (struct range_entry *r, tree exp)
|
| 1601 |
|
|
{
|
| 1602 |
|
|
int in_p;
|
| 1603 |
|
|
tree low, high;
|
| 1604 |
|
|
bool is_bool, strict_overflow_p;
|
| 1605 |
|
|
|
| 1606 |
|
|
r->exp = NULL_TREE;
|
| 1607 |
|
|
r->in_p = false;
|
| 1608 |
|
|
r->strict_overflow_p = false;
|
| 1609 |
|
|
r->low = NULL_TREE;
|
| 1610 |
|
|
r->high = NULL_TREE;
|
| 1611 |
|
|
if (TREE_CODE (exp) != SSA_NAME || !INTEGRAL_TYPE_P (TREE_TYPE (exp)))
|
| 1612 |
|
|
return;
|
| 1613 |
|
|
|
| 1614 |
|
|
/* Start with simply saying "EXP != 0" and then look at the code of EXP
|
| 1615 |
|
|
and see if we can refine the range. Some of the cases below may not
|
| 1616 |
|
|
happen, but it doesn't seem worth worrying about this. We "continue"
|
| 1617 |
|
|
the outer loop when we've changed something; otherwise we "break"
|
| 1618 |
|
|
the switch, which will "break" the while. */
|
| 1619 |
|
|
low = build_int_cst (TREE_TYPE (exp), 0);
|
| 1620 |
|
|
high = low;
|
| 1621 |
|
|
in_p = 0;
|
| 1622 |
|
|
strict_overflow_p = false;
|
| 1623 |
|
|
is_bool = false;
|
| 1624 |
|
|
if (TYPE_PRECISION (TREE_TYPE (exp)) == 1)
|
| 1625 |
|
|
{
|
| 1626 |
|
|
if (TYPE_UNSIGNED (TREE_TYPE (exp)))
|
| 1627 |
|
|
is_bool = true;
|
| 1628 |
|
|
else
|
| 1629 |
|
|
return;
|
| 1630 |
|
|
}
|
| 1631 |
|
|
else if (TREE_CODE (TREE_TYPE (exp)) == BOOLEAN_TYPE)
|
| 1632 |
|
|
is_bool = true;
|
| 1633 |
|
|
|
| 1634 |
|
|
while (1)
|
| 1635 |
|
|
{
|
| 1636 |
|
|
gimple stmt;
|
| 1637 |
|
|
enum tree_code code;
|
| 1638 |
|
|
tree arg0, arg1, exp_type;
|
| 1639 |
|
|
tree nexp;
|
| 1640 |
|
|
location_t loc;
|
| 1641 |
|
|
|
| 1642 |
|
|
if (TREE_CODE (exp) != SSA_NAME)
|
| 1643 |
|
|
break;
|
| 1644 |
|
|
|
| 1645 |
|
|
stmt = SSA_NAME_DEF_STMT (exp);
|
| 1646 |
|
|
if (!is_gimple_assign (stmt))
|
| 1647 |
|
|
break;
|
| 1648 |
|
|
|
| 1649 |
|
|
code = gimple_assign_rhs_code (stmt);
|
| 1650 |
|
|
arg0 = gimple_assign_rhs1 (stmt);
|
| 1651 |
|
|
if (TREE_CODE (arg0) != SSA_NAME)
|
| 1652 |
|
|
break;
|
| 1653 |
|
|
arg1 = gimple_assign_rhs2 (stmt);
|
| 1654 |
|
|
exp_type = TREE_TYPE (exp);
|
| 1655 |
|
|
loc = gimple_location (stmt);
|
| 1656 |
|
|
switch (code)
|
| 1657 |
|
|
{
|
| 1658 |
|
|
case BIT_NOT_EXPR:
|
| 1659 |
|
|
if (TREE_CODE (TREE_TYPE (exp)) == BOOLEAN_TYPE)
|
| 1660 |
|
|
{
|
| 1661 |
|
|
in_p = !in_p;
|
| 1662 |
|
|
exp = arg0;
|
| 1663 |
|
|
continue;
|
| 1664 |
|
|
}
|
| 1665 |
|
|
break;
|
| 1666 |
|
|
case SSA_NAME:
|
| 1667 |
|
|
exp = arg0;
|
| 1668 |
|
|
continue;
|
| 1669 |
|
|
CASE_CONVERT:
|
| 1670 |
|
|
if (is_bool)
|
| 1671 |
|
|
goto do_default;
|
| 1672 |
|
|
if (TYPE_PRECISION (TREE_TYPE (arg0)) == 1)
|
| 1673 |
|
|
{
|
| 1674 |
|
|
if (TYPE_UNSIGNED (TREE_TYPE (arg0)))
|
| 1675 |
|
|
is_bool = true;
|
| 1676 |
|
|
else
|
| 1677 |
|
|
return;
|
| 1678 |
|
|
}
|
| 1679 |
|
|
else if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE)
|
| 1680 |
|
|
is_bool = true;
|
| 1681 |
|
|
goto do_default;
|
| 1682 |
|
|
case EQ_EXPR:
|
| 1683 |
|
|
case NE_EXPR:
|
| 1684 |
|
|
case LT_EXPR:
|
| 1685 |
|
|
case LE_EXPR:
|
| 1686 |
|
|
case GE_EXPR:
|
| 1687 |
|
|
case GT_EXPR:
|
| 1688 |
|
|
is_bool = true;
|
| 1689 |
|
|
/* FALLTHRU */
|
| 1690 |
|
|
default:
|
| 1691 |
|
|
if (!is_bool)
|
| 1692 |
|
|
return;
|
| 1693 |
|
|
do_default:
|
| 1694 |
|
|
nexp = make_range_step (loc, code, arg0, arg1, exp_type,
|
| 1695 |
|
|
&low, &high, &in_p,
|
| 1696 |
|
|
&strict_overflow_p);
|
| 1697 |
|
|
if (nexp != NULL_TREE)
|
| 1698 |
|
|
{
|
| 1699 |
|
|
exp = nexp;
|
| 1700 |
|
|
gcc_assert (TREE_CODE (exp) == SSA_NAME);
|
| 1701 |
|
|
continue;
|
| 1702 |
|
|
}
|
| 1703 |
|
|
break;
|
| 1704 |
|
|
}
|
| 1705 |
|
|
break;
|
| 1706 |
|
|
}
|
| 1707 |
|
|
if (is_bool)
|
| 1708 |
|
|
{
|
| 1709 |
|
|
r->exp = exp;
|
| 1710 |
|
|
r->in_p = in_p;
|
| 1711 |
|
|
r->low = low;
|
| 1712 |
|
|
r->high = high;
|
| 1713 |
|
|
r->strict_overflow_p = strict_overflow_p;
|
| 1714 |
|
|
}
|
| 1715 |
|
|
}
|
| 1716 |
|
|
|
| 1717 |
|
|
/* Comparison function for qsort. Sort entries
|
| 1718 |
|
|
without SSA_NAME exp first, then with SSA_NAMEs sorted
|
| 1719 |
|
|
by increasing SSA_NAME_VERSION, and for the same SSA_NAMEs
|
| 1720 |
|
|
by increasing ->low and if ->low is the same, by increasing
|
| 1721 |
|
|
->high. ->low == NULL_TREE means minimum, ->high == NULL_TREE
|
| 1722 |
|
|
maximum. */
|
| 1723 |
|
|
|
| 1724 |
|
|
static int
|
| 1725 |
|
|
range_entry_cmp (const void *a, const void *b)
|
| 1726 |
|
|
{
|
| 1727 |
|
|
const struct range_entry *p = (const struct range_entry *) a;
|
| 1728 |
|
|
const struct range_entry *q = (const struct range_entry *) b;
|
| 1729 |
|
|
|
| 1730 |
|
|
if (p->exp != NULL_TREE && TREE_CODE (p->exp) == SSA_NAME)
|
| 1731 |
|
|
{
|
| 1732 |
|
|
if (q->exp != NULL_TREE && TREE_CODE (q->exp) == SSA_NAME)
|
| 1733 |
|
|
{
|
| 1734 |
|
|
/* Group range_entries for the same SSA_NAME together. */
|
| 1735 |
|
|
if (SSA_NAME_VERSION (p->exp) < SSA_NAME_VERSION (q->exp))
|
| 1736 |
|
|
return -1;
|
| 1737 |
|
|
else if (SSA_NAME_VERSION (p->exp) > SSA_NAME_VERSION (q->exp))
|
| 1738 |
|
|
return 1;
|
| 1739 |
|
|
/* If ->low is different, NULL low goes first, then by
|
| 1740 |
|
|
ascending low. */
|
| 1741 |
|
|
if (p->low != NULL_TREE)
|
| 1742 |
|
|
{
|
| 1743 |
|
|
if (q->low != NULL_TREE)
|
| 1744 |
|
|
{
|
| 1745 |
|
|
tree tem = fold_binary (LT_EXPR, boolean_type_node,
|
| 1746 |
|
|
p->low, q->low);
|
| 1747 |
|
|
if (tem && integer_onep (tem))
|
| 1748 |
|
|
return -1;
|
| 1749 |
|
|
tem = fold_binary (GT_EXPR, boolean_type_node,
|
| 1750 |
|
|
p->low, q->low);
|
| 1751 |
|
|
if (tem && integer_onep (tem))
|
| 1752 |
|
|
return 1;
|
| 1753 |
|
|
}
|
| 1754 |
|
|
else
|
| 1755 |
|
|
return 1;
|
| 1756 |
|
|
}
|
| 1757 |
|
|
else if (q->low != NULL_TREE)
|
| 1758 |
|
|
return -1;
|
| 1759 |
|
|
/* If ->high is different, NULL high goes last, before that by
|
| 1760 |
|
|
ascending high. */
|
| 1761 |
|
|
if (p->high != NULL_TREE)
|
| 1762 |
|
|
{
|
| 1763 |
|
|
if (q->high != NULL_TREE)
|
| 1764 |
|
|
{
|
| 1765 |
|
|
tree tem = fold_binary (LT_EXPR, boolean_type_node,
|
| 1766 |
|
|
p->high, q->high);
|
| 1767 |
|
|
if (tem && integer_onep (tem))
|
| 1768 |
|
|
return -1;
|
| 1769 |
|
|
tem = fold_binary (GT_EXPR, boolean_type_node,
|
| 1770 |
|
|
p->high, q->high);
|
| 1771 |
|
|
if (tem && integer_onep (tem))
|
| 1772 |
|
|
return 1;
|
| 1773 |
|
|
}
|
| 1774 |
|
|
else
|
| 1775 |
|
|
return -1;
|
| 1776 |
|
|
}
|
| 1777 |
|
|
else if (p->high != NULL_TREE)
|
| 1778 |
|
|
return 1;
|
| 1779 |
|
|
/* If both ranges are the same, sort below by ascending idx. */
|
| 1780 |
|
|
}
|
| 1781 |
|
|
else
|
| 1782 |
|
|
return 1;
|
| 1783 |
|
|
}
|
| 1784 |
|
|
else if (q->exp != NULL_TREE && TREE_CODE (q->exp) == SSA_NAME)
|
| 1785 |
|
|
return -1;
|
| 1786 |
|
|
|
| 1787 |
|
|
if (p->idx < q->idx)
|
| 1788 |
|
|
return -1;
|
| 1789 |
|
|
else
|
| 1790 |
|
|
{
|
| 1791 |
|
|
gcc_checking_assert (p->idx > q->idx);
|
| 1792 |
|
|
return 1;
|
| 1793 |
|
|
}
|
| 1794 |
|
|
}
|
| 1795 |
|
|
|
| 1796 |
|
|
/* Helper routine of optimize_range_test.
|
| 1797 |
|
|
[EXP, IN_P, LOW, HIGH, STRICT_OVERFLOW_P] is a merged range for
|
| 1798 |
|
|
RANGE and OTHERRANGE through OTHERRANGE + COUNT - 1 ranges,
|
| 1799 |
|
|
OPCODE and OPS are arguments of optimize_range_tests. Return
|
| 1800 |
|
|
true if the range merge has been successful. */
|
| 1801 |
|
|
|
| 1802 |
|
|
static bool
|
| 1803 |
|
|
update_range_test (struct range_entry *range, struct range_entry *otherrange,
|
| 1804 |
|
|
unsigned int count, enum tree_code opcode,
|
| 1805 |
|
|
VEC (operand_entry_t, heap) **ops, tree exp, bool in_p,
|
| 1806 |
|
|
tree low, tree high, bool strict_overflow_p)
|
| 1807 |
|
|
{
|
| 1808 |
|
|
tree op = VEC_index (operand_entry_t, *ops, range->idx)->op;
|
| 1809 |
|
|
location_t loc = gimple_location (SSA_NAME_DEF_STMT (op));
|
| 1810 |
|
|
tree tem = build_range_check (loc, TREE_TYPE (op), exp, in_p, low, high);
|
| 1811 |
|
|
enum warn_strict_overflow_code wc = WARN_STRICT_OVERFLOW_COMPARISON;
|
| 1812 |
|
|
gimple_stmt_iterator gsi;
|
| 1813 |
|
|
|
| 1814 |
|
|
if (tem == NULL_TREE)
|
| 1815 |
|
|
return false;
|
| 1816 |
|
|
|
| 1817 |
|
|
if (strict_overflow_p && issue_strict_overflow_warning (wc))
|
| 1818 |
|
|
warning_at (loc, OPT_Wstrict_overflow,
|
| 1819 |
|
|
"assuming signed overflow does not occur "
|
| 1820 |
|
|
"when simplifying range test");
|
| 1821 |
|
|
|
| 1822 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1823 |
|
|
{
|
| 1824 |
|
|
struct range_entry *r;
|
| 1825 |
|
|
fprintf (dump_file, "Optimizing range tests ");
|
| 1826 |
|
|
print_generic_expr (dump_file, range->exp, 0);
|
| 1827 |
|
|
fprintf (dump_file, " %c[", range->in_p ? '+' : '-');
|
| 1828 |
|
|
print_generic_expr (dump_file, range->low, 0);
|
| 1829 |
|
|
fprintf (dump_file, ", ");
|
| 1830 |
|
|
print_generic_expr (dump_file, range->high, 0);
|
| 1831 |
|
|
fprintf (dump_file, "]");
|
| 1832 |
|
|
for (r = otherrange; r < otherrange + count; r++)
|
| 1833 |
|
|
{
|
| 1834 |
|
|
fprintf (dump_file, " and %c[", r->in_p ? '+' : '-');
|
| 1835 |
|
|
print_generic_expr (dump_file, r->low, 0);
|
| 1836 |
|
|
fprintf (dump_file, ", ");
|
| 1837 |
|
|
print_generic_expr (dump_file, r->high, 0);
|
| 1838 |
|
|
fprintf (dump_file, "]");
|
| 1839 |
|
|
}
|
| 1840 |
|
|
fprintf (dump_file, "\n into ");
|
| 1841 |
|
|
print_generic_expr (dump_file, tem, 0);
|
| 1842 |
|
|
fprintf (dump_file, "\n");
|
| 1843 |
|
|
}
|
| 1844 |
|
|
|
| 1845 |
|
|
if (opcode == BIT_IOR_EXPR)
|
| 1846 |
|
|
tem = invert_truthvalue_loc (loc, tem);
|
| 1847 |
|
|
|
| 1848 |
|
|
tem = fold_convert_loc (loc, TREE_TYPE (op), tem);
|
| 1849 |
|
|
gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (op));
|
| 1850 |
|
|
tem = force_gimple_operand_gsi (&gsi, tem, true, NULL_TREE, true,
|
| 1851 |
|
|
GSI_SAME_STMT);
|
| 1852 |
|
|
|
| 1853 |
|
|
VEC_index (operand_entry_t, *ops, range->idx)->op = tem;
|
| 1854 |
|
|
range->exp = exp;
|
| 1855 |
|
|
range->low = low;
|
| 1856 |
|
|
range->high = high;
|
| 1857 |
|
|
range->in_p = in_p;
|
| 1858 |
|
|
range->strict_overflow_p = false;
|
| 1859 |
|
|
|
| 1860 |
|
|
for (range = otherrange; range < otherrange + count; range++)
|
| 1861 |
|
|
{
|
| 1862 |
|
|
VEC_index (operand_entry_t, *ops, range->idx)->op = error_mark_node;
|
| 1863 |
|
|
range->exp = NULL_TREE;
|
| 1864 |
|
|
}
|
| 1865 |
|
|
return true;
|
| 1866 |
|
|
}
|
| 1867 |
|
|
|
| 1868 |
|
|
/* Optimize range tests, similarly how fold_range_test optimizes
|
| 1869 |
|
|
it on trees. The tree code for the binary
|
| 1870 |
|
|
operation between all the operands is OPCODE. */
|
| 1871 |
|
|
|
| 1872 |
|
|
static void
|
| 1873 |
|
|
optimize_range_tests (enum tree_code opcode,
|
| 1874 |
|
|
VEC (operand_entry_t, heap) **ops)
|
| 1875 |
|
|
{
|
| 1876 |
|
|
unsigned int length = VEC_length (operand_entry_t, *ops), i, j, first;
|
| 1877 |
|
|
operand_entry_t oe;
|
| 1878 |
|
|
struct range_entry *ranges;
|
| 1879 |
|
|
bool any_changes = false;
|
| 1880 |
|
|
|
| 1881 |
|
|
if (length == 1)
|
| 1882 |
|
|
return;
|
| 1883 |
|
|
|
| 1884 |
|
|
ranges = XNEWVEC (struct range_entry, length);
|
| 1885 |
|
|
for (i = 0; i < length; i++)
|
| 1886 |
|
|
{
|
| 1887 |
|
|
ranges[i].idx = i;
|
| 1888 |
|
|
init_range_entry (ranges + i, VEC_index (operand_entry_t, *ops, i)->op);
|
| 1889 |
|
|
/* For | invert it now, we will invert it again before emitting
|
| 1890 |
|
|
the optimized expression. */
|
| 1891 |
|
|
if (opcode == BIT_IOR_EXPR)
|
| 1892 |
|
|
ranges[i].in_p = !ranges[i].in_p;
|
| 1893 |
|
|
}
|
| 1894 |
|
|
|
| 1895 |
|
|
qsort (ranges, length, sizeof (*ranges), range_entry_cmp);
|
| 1896 |
|
|
for (i = 0; i < length; i++)
|
| 1897 |
|
|
if (ranges[i].exp != NULL_TREE && TREE_CODE (ranges[i].exp) == SSA_NAME)
|
| 1898 |
|
|
break;
|
| 1899 |
|
|
|
| 1900 |
|
|
/* Try to merge ranges. */
|
| 1901 |
|
|
for (first = i; i < length; i++)
|
| 1902 |
|
|
{
|
| 1903 |
|
|
tree low = ranges[i].low;
|
| 1904 |
|
|
tree high = ranges[i].high;
|
| 1905 |
|
|
int in_p = ranges[i].in_p;
|
| 1906 |
|
|
bool strict_overflow_p = ranges[i].strict_overflow_p;
|
| 1907 |
|
|
int update_fail_count = 0;
|
| 1908 |
|
|
|
| 1909 |
|
|
for (j = i + 1; j < length; j++)
|
| 1910 |
|
|
{
|
| 1911 |
|
|
if (ranges[i].exp != ranges[j].exp)
|
| 1912 |
|
|
break;
|
| 1913 |
|
|
if (!merge_ranges (&in_p, &low, &high, in_p, low, high,
|
| 1914 |
|
|
ranges[j].in_p, ranges[j].low, ranges[j].high))
|
| 1915 |
|
|
break;
|
| 1916 |
|
|
strict_overflow_p |= ranges[j].strict_overflow_p;
|
| 1917 |
|
|
}
|
| 1918 |
|
|
|
| 1919 |
|
|
if (j == i + 1)
|
| 1920 |
|
|
continue;
|
| 1921 |
|
|
|
| 1922 |
|
|
if (update_range_test (ranges + i, ranges + i + 1, j - i - 1, opcode,
|
| 1923 |
|
|
ops, ranges[i].exp, in_p, low, high,
|
| 1924 |
|
|
strict_overflow_p))
|
| 1925 |
|
|
{
|
| 1926 |
|
|
i = j - 1;
|
| 1927 |
|
|
any_changes = true;
|
| 1928 |
|
|
}
|
| 1929 |
|
|
/* Avoid quadratic complexity if all merge_ranges calls would succeed,
|
| 1930 |
|
|
while update_range_test would fail. */
|
| 1931 |
|
|
else if (update_fail_count == 64)
|
| 1932 |
|
|
i = j - 1;
|
| 1933 |
|
|
else
|
| 1934 |
|
|
++update_fail_count;
|
| 1935 |
|
|
}
|
| 1936 |
|
|
|
| 1937 |
|
|
/* Optimize X == CST1 || X == CST2
|
| 1938 |
|
|
if popcount (CST1 ^ CST2) == 1 into
|
| 1939 |
|
|
(X & ~(CST1 ^ CST2)) == (CST1 & ~(CST1 ^ CST2)).
|
| 1940 |
|
|
Similarly for ranges. E.g.
|
| 1941 |
|
|
X != 2 && X != 3 && X != 10 && X != 11
|
| 1942 |
|
|
will be transformed by the above loop into
|
| 1943 |
|
|
(X - 2U) <= 1U && (X - 10U) <= 1U
|
| 1944 |
|
|
and this loop can transform that into
|
| 1945 |
|
|
((X & ~8) - 2U) <= 1U. */
|
| 1946 |
|
|
for (i = first; i < length; i++)
|
| 1947 |
|
|
{
|
| 1948 |
|
|
tree lowi, highi, lowj, highj, type, lowxor, highxor, tem, exp;
|
| 1949 |
|
|
|
| 1950 |
|
|
if (ranges[i].exp == NULL_TREE || ranges[i].in_p)
|
| 1951 |
|
|
continue;
|
| 1952 |
|
|
type = TREE_TYPE (ranges[i].exp);
|
| 1953 |
|
|
if (!INTEGRAL_TYPE_P (type))
|
| 1954 |
|
|
continue;
|
| 1955 |
|
|
lowi = ranges[i].low;
|
| 1956 |
|
|
if (lowi == NULL_TREE)
|
| 1957 |
|
|
lowi = TYPE_MIN_VALUE (type);
|
| 1958 |
|
|
highi = ranges[i].high;
|
| 1959 |
|
|
if (highi == NULL_TREE)
|
| 1960 |
|
|
continue;
|
| 1961 |
|
|
for (j = i + 1; j < length && j < i + 64; j++)
|
| 1962 |
|
|
{
|
| 1963 |
|
|
if (ranges[j].exp == NULL_TREE)
|
| 1964 |
|
|
continue;
|
| 1965 |
|
|
if (ranges[i].exp != ranges[j].exp)
|
| 1966 |
|
|
break;
|
| 1967 |
|
|
if (ranges[j].in_p)
|
| 1968 |
|
|
continue;
|
| 1969 |
|
|
lowj = ranges[j].low;
|
| 1970 |
|
|
if (lowj == NULL_TREE)
|
| 1971 |
|
|
continue;
|
| 1972 |
|
|
highj = ranges[j].high;
|
| 1973 |
|
|
if (highj == NULL_TREE)
|
| 1974 |
|
|
highj = TYPE_MAX_VALUE (type);
|
| 1975 |
|
|
tem = fold_binary (GT_EXPR, boolean_type_node,
|
| 1976 |
|
|
lowj, highi);
|
| 1977 |
|
|
if (tem == NULL_TREE || !integer_onep (tem))
|
| 1978 |
|
|
continue;
|
| 1979 |
|
|
lowxor = fold_binary (BIT_XOR_EXPR, type, lowi, lowj);
|
| 1980 |
|
|
if (lowxor == NULL_TREE || TREE_CODE (lowxor) != INTEGER_CST)
|
| 1981 |
|
|
continue;
|
| 1982 |
|
|
gcc_checking_assert (!integer_zerop (lowxor));
|
| 1983 |
|
|
tem = fold_binary (MINUS_EXPR, type, lowxor,
|
| 1984 |
|
|
build_int_cst (type, 1));
|
| 1985 |
|
|
if (tem == NULL_TREE)
|
| 1986 |
|
|
continue;
|
| 1987 |
|
|
tem = fold_binary (BIT_AND_EXPR, type, lowxor, tem);
|
| 1988 |
|
|
if (tem == NULL_TREE || !integer_zerop (tem))
|
| 1989 |
|
|
continue;
|
| 1990 |
|
|
highxor = fold_binary (BIT_XOR_EXPR, type, highi, highj);
|
| 1991 |
|
|
if (!tree_int_cst_equal (lowxor, highxor))
|
| 1992 |
|
|
continue;
|
| 1993 |
|
|
tem = fold_build1 (BIT_NOT_EXPR, type, lowxor);
|
| 1994 |
|
|
exp = fold_build2 (BIT_AND_EXPR, type, ranges[i].exp, tem);
|
| 1995 |
|
|
lowj = fold_build2 (BIT_AND_EXPR, type, lowi, tem);
|
| 1996 |
|
|
highj = fold_build2 (BIT_AND_EXPR, type, highi, tem);
|
| 1997 |
|
|
if (update_range_test (ranges + i, ranges + j, 1, opcode, ops, exp,
|
| 1998 |
|
|
ranges[i].in_p, lowj, highj,
|
| 1999 |
|
|
ranges[i].strict_overflow_p
|
| 2000 |
|
|
|| ranges[j].strict_overflow_p))
|
| 2001 |
|
|
{
|
| 2002 |
|
|
any_changes = true;
|
| 2003 |
|
|
break;
|
| 2004 |
|
|
}
|
| 2005 |
|
|
}
|
| 2006 |
|
|
}
|
| 2007 |
|
|
|
| 2008 |
|
|
if (any_changes)
|
| 2009 |
|
|
{
|
| 2010 |
|
|
j = 0;
|
| 2011 |
|
|
FOR_EACH_VEC_ELT (operand_entry_t, *ops, i, oe)
|
| 2012 |
|
|
{
|
| 2013 |
|
|
if (oe->op == error_mark_node)
|
| 2014 |
|
|
continue;
|
| 2015 |
|
|
else if (i != j)
|
| 2016 |
|
|
VEC_replace (operand_entry_t, *ops, j, oe);
|
| 2017 |
|
|
j++;
|
| 2018 |
|
|
}
|
| 2019 |
|
|
VEC_truncate (operand_entry_t, *ops, j);
|
| 2020 |
|
|
}
|
| 2021 |
|
|
|
| 2022 |
|
|
XDELETEVEC (ranges);
|
| 2023 |
|
|
}
|
| 2024 |
|
|
|
| 2025 |
|
|
/* Return true if OPERAND is defined by a PHI node which uses the LHS
|
| 2026 |
|
|
of STMT in it's operands. This is also known as a "destructive
|
| 2027 |
|
|
update" operation. */
|
| 2028 |
|
|
|
| 2029 |
|
|
static bool
|
| 2030 |
|
|
is_phi_for_stmt (gimple stmt, tree operand)
|
| 2031 |
|
|
{
|
| 2032 |
|
|
gimple def_stmt;
|
| 2033 |
|
|
tree lhs;
|
| 2034 |
|
|
use_operand_p arg_p;
|
| 2035 |
|
|
ssa_op_iter i;
|
| 2036 |
|
|
|
| 2037 |
|
|
if (TREE_CODE (operand) != SSA_NAME)
|
| 2038 |
|
|
return false;
|
| 2039 |
|
|
|
| 2040 |
|
|
lhs = gimple_assign_lhs (stmt);
|
| 2041 |
|
|
|
| 2042 |
|
|
def_stmt = SSA_NAME_DEF_STMT (operand);
|
| 2043 |
|
|
if (gimple_code (def_stmt) != GIMPLE_PHI)
|
| 2044 |
|
|
return false;
|
| 2045 |
|
|
|
| 2046 |
|
|
FOR_EACH_PHI_ARG (arg_p, def_stmt, i, SSA_OP_USE)
|
| 2047 |
|
|
if (lhs == USE_FROM_PTR (arg_p))
|
| 2048 |
|
|
return true;
|
| 2049 |
|
|
return false;
|
| 2050 |
|
|
}
|
| 2051 |
|
|
|
| 2052 |
|
|
/* Remove def stmt of VAR if VAR has zero uses and recurse
|
| 2053 |
|
|
on rhs1 operand if so. */
|
| 2054 |
|
|
|
| 2055 |
|
|
static void
|
| 2056 |
|
|
remove_visited_stmt_chain (tree var)
|
| 2057 |
|
|
{
|
| 2058 |
|
|
gimple stmt;
|
| 2059 |
|
|
gimple_stmt_iterator gsi;
|
| 2060 |
|
|
|
| 2061 |
|
|
while (1)
|
| 2062 |
|
|
{
|
| 2063 |
|
|
if (TREE_CODE (var) != SSA_NAME || !has_zero_uses (var))
|
| 2064 |
|
|
return;
|
| 2065 |
|
|
stmt = SSA_NAME_DEF_STMT (var);
|
| 2066 |
|
|
if (!is_gimple_assign (stmt)
|
| 2067 |
|
|
|| !gimple_visited_p (stmt))
|
| 2068 |
|
|
return;
|
| 2069 |
|
|
var = gimple_assign_rhs1 (stmt);
|
| 2070 |
|
|
gsi = gsi_for_stmt (stmt);
|
| 2071 |
|
|
gsi_remove (&gsi, true);
|
| 2072 |
|
|
release_defs (stmt);
|
| 2073 |
|
|
}
|
| 2074 |
|
|
}
|
| 2075 |
|
|
|
| 2076 |
|
|
/* This function checks three consequtive operands in
|
| 2077 |
|
|
passed operands vector OPS starting from OPINDEX and
|
| 2078 |
|
|
swaps two operands if it is profitable for binary operation
|
| 2079 |
|
|
consuming OPINDEX + 1 abnd OPINDEX + 2 operands.
|
| 2080 |
|
|
|
| 2081 |
|
|
We pair ops with the same rank if possible.
|
| 2082 |
|
|
|
| 2083 |
|
|
The alternative we try is to see if STMT is a destructive
|
| 2084 |
|
|
update style statement, which is like:
|
| 2085 |
|
|
b = phi (a, ...)
|
| 2086 |
|
|
a = c + b;
|
| 2087 |
|
|
In that case, we want to use the destructive update form to
|
| 2088 |
|
|
expose the possible vectorizer sum reduction opportunity.
|
| 2089 |
|
|
In that case, the third operand will be the phi node. This
|
| 2090 |
|
|
check is not performed if STMT is null.
|
| 2091 |
|
|
|
| 2092 |
|
|
We could, of course, try to be better as noted above, and do a
|
| 2093 |
|
|
lot of work to try to find these opportunities in >3 operand
|
| 2094 |
|
|
cases, but it is unlikely to be worth it. */
|
| 2095 |
|
|
|
| 2096 |
|
|
static void
|
| 2097 |
|
|
swap_ops_for_binary_stmt (VEC(operand_entry_t, heap) * ops,
|
| 2098 |
|
|
unsigned int opindex, gimple stmt)
|
| 2099 |
|
|
{
|
| 2100 |
|
|
operand_entry_t oe1, oe2, oe3;
|
| 2101 |
|
|
|
| 2102 |
|
|
oe1 = VEC_index (operand_entry_t, ops, opindex);
|
| 2103 |
|
|
oe2 = VEC_index (operand_entry_t, ops, opindex + 1);
|
| 2104 |
|
|
oe3 = VEC_index (operand_entry_t, ops, opindex + 2);
|
| 2105 |
|
|
|
| 2106 |
|
|
if ((oe1->rank == oe2->rank
|
| 2107 |
|
|
&& oe2->rank != oe3->rank)
|
| 2108 |
|
|
|| (stmt && is_phi_for_stmt (stmt, oe3->op)
|
| 2109 |
|
|
&& !is_phi_for_stmt (stmt, oe1->op)
|
| 2110 |
|
|
&& !is_phi_for_stmt (stmt, oe2->op)))
|
| 2111 |
|
|
{
|
| 2112 |
|
|
struct operand_entry temp = *oe3;
|
| 2113 |
|
|
oe3->op = oe1->op;
|
| 2114 |
|
|
oe3->rank = oe1->rank;
|
| 2115 |
|
|
oe1->op = temp.op;
|
| 2116 |
|
|
oe1->rank= temp.rank;
|
| 2117 |
|
|
}
|
| 2118 |
|
|
else if ((oe1->rank == oe3->rank
|
| 2119 |
|
|
&& oe2->rank != oe3->rank)
|
| 2120 |
|
|
|| (stmt && is_phi_for_stmt (stmt, oe2->op)
|
| 2121 |
|
|
&& !is_phi_for_stmt (stmt, oe1->op)
|
| 2122 |
|
|
&& !is_phi_for_stmt (stmt, oe3->op)))
|
| 2123 |
|
|
{
|
| 2124 |
|
|
struct operand_entry temp = *oe2;
|
| 2125 |
|
|
oe2->op = oe1->op;
|
| 2126 |
|
|
oe2->rank = oe1->rank;
|
| 2127 |
|
|
oe1->op = temp.op;
|
| 2128 |
|
|
oe1->rank= temp.rank;
|
| 2129 |
|
|
}
|
| 2130 |
|
|
}
|
| 2131 |
|
|
|
| 2132 |
|
|
/* Recursively rewrite our linearized statements so that the operators
|
| 2133 |
|
|
match those in OPS[OPINDEX], putting the computation in rank
|
| 2134 |
|
|
order. */
|
| 2135 |
|
|
|
| 2136 |
|
|
static void
|
| 2137 |
|
|
rewrite_expr_tree (gimple stmt, unsigned int opindex,
|
| 2138 |
|
|
VEC(operand_entry_t, heap) * ops, bool moved)
|
| 2139 |
|
|
{
|
| 2140 |
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
| 2141 |
|
|
tree rhs2 = gimple_assign_rhs2 (stmt);
|
| 2142 |
|
|
operand_entry_t oe;
|
| 2143 |
|
|
|
| 2144 |
|
|
/* If we have three operands left, then we want to make sure the ones
|
| 2145 |
|
|
that get the double binary op are chosen wisely. */
|
| 2146 |
|
|
if (opindex + 3 == VEC_length (operand_entry_t, ops))
|
| 2147 |
|
|
swap_ops_for_binary_stmt (ops, opindex, stmt);
|
| 2148 |
|
|
|
| 2149 |
|
|
/* The final recursion case for this function is that you have
|
| 2150 |
|
|
exactly two operations left.
|
| 2151 |
|
|
If we had one exactly one op in the entire list to start with, we
|
| 2152 |
|
|
would have never called this function, and the tail recursion
|
| 2153 |
|
|
rewrites them one at a time. */
|
| 2154 |
|
|
if (opindex + 2 == VEC_length (operand_entry_t, ops))
|
| 2155 |
|
|
{
|
| 2156 |
|
|
operand_entry_t oe1, oe2;
|
| 2157 |
|
|
|
| 2158 |
|
|
oe1 = VEC_index (operand_entry_t, ops, opindex);
|
| 2159 |
|
|
oe2 = VEC_index (operand_entry_t, ops, opindex + 1);
|
| 2160 |
|
|
|
| 2161 |
|
|
if (rhs1 != oe1->op || rhs2 != oe2->op)
|
| 2162 |
|
|
{
|
| 2163 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2164 |
|
|
{
|
| 2165 |
|
|
fprintf (dump_file, "Transforming ");
|
| 2166 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
| 2167 |
|
|
}
|
| 2168 |
|
|
|
| 2169 |
|
|
gimple_assign_set_rhs1 (stmt, oe1->op);
|
| 2170 |
|
|
gimple_assign_set_rhs2 (stmt, oe2->op);
|
| 2171 |
|
|
update_stmt (stmt);
|
| 2172 |
|
|
if (rhs1 != oe1->op && rhs1 != oe2->op)
|
| 2173 |
|
|
remove_visited_stmt_chain (rhs1);
|
| 2174 |
|
|
|
| 2175 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2176 |
|
|
{
|
| 2177 |
|
|
fprintf (dump_file, " into ");
|
| 2178 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
| 2179 |
|
|
}
|
| 2180 |
|
|
|
| 2181 |
|
|
}
|
| 2182 |
|
|
return;
|
| 2183 |
|
|
}
|
| 2184 |
|
|
|
| 2185 |
|
|
/* If we hit here, we should have 3 or more ops left. */
|
| 2186 |
|
|
gcc_assert (opindex + 2 < VEC_length (operand_entry_t, ops));
|
| 2187 |
|
|
|
| 2188 |
|
|
/* Rewrite the next operator. */
|
| 2189 |
|
|
oe = VEC_index (operand_entry_t, ops, opindex);
|
| 2190 |
|
|
|
| 2191 |
|
|
if (oe->op != rhs2)
|
| 2192 |
|
|
{
|
| 2193 |
|
|
if (!moved)
|
| 2194 |
|
|
{
|
| 2195 |
|
|
gimple_stmt_iterator gsinow, gsirhs1;
|
| 2196 |
|
|
gimple stmt1 = stmt, stmt2;
|
| 2197 |
|
|
unsigned int count;
|
| 2198 |
|
|
|
| 2199 |
|
|
gsinow = gsi_for_stmt (stmt);
|
| 2200 |
|
|
count = VEC_length (operand_entry_t, ops) - opindex - 2;
|
| 2201 |
|
|
while (count-- != 0)
|
| 2202 |
|
|
{
|
| 2203 |
|
|
stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt1));
|
| 2204 |
|
|
gsirhs1 = gsi_for_stmt (stmt2);
|
| 2205 |
|
|
gsi_move_before (&gsirhs1, &gsinow);
|
| 2206 |
|
|
gsi_prev (&gsinow);
|
| 2207 |
|
|
stmt1 = stmt2;
|
| 2208 |
|
|
}
|
| 2209 |
|
|
moved = true;
|
| 2210 |
|
|
}
|
| 2211 |
|
|
|
| 2212 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2213 |
|
|
{
|
| 2214 |
|
|
fprintf (dump_file, "Transforming ");
|
| 2215 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
| 2216 |
|
|
}
|
| 2217 |
|
|
|
| 2218 |
|
|
gimple_assign_set_rhs2 (stmt, oe->op);
|
| 2219 |
|
|
update_stmt (stmt);
|
| 2220 |
|
|
|
| 2221 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2222 |
|
|
{
|
| 2223 |
|
|
fprintf (dump_file, " into ");
|
| 2224 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
| 2225 |
|
|
}
|
| 2226 |
|
|
}
|
| 2227 |
|
|
/* Recurse on the LHS of the binary operator, which is guaranteed to
|
| 2228 |
|
|
be the non-leaf side. */
|
| 2229 |
|
|
rewrite_expr_tree (SSA_NAME_DEF_STMT (rhs1), opindex + 1, ops, moved);
|
| 2230 |
|
|
}
|
| 2231 |
|
|
|
| 2232 |
|
|
/* Find out how many cycles we need to compute statements chain.
|
| 2233 |
|
|
OPS_NUM holds number os statements in a chain. CPU_WIDTH is a
|
| 2234 |
|
|
maximum number of independent statements we may execute per cycle. */
|
| 2235 |
|
|
|
| 2236 |
|
|
static int
|
| 2237 |
|
|
get_required_cycles (int ops_num, int cpu_width)
|
| 2238 |
|
|
{
|
| 2239 |
|
|
int res;
|
| 2240 |
|
|
int elog;
|
| 2241 |
|
|
unsigned int rest;
|
| 2242 |
|
|
|
| 2243 |
|
|
/* While we have more than 2 * cpu_width operands
|
| 2244 |
|
|
we may reduce number of operands by cpu_width
|
| 2245 |
|
|
per cycle. */
|
| 2246 |
|
|
res = ops_num / (2 * cpu_width);
|
| 2247 |
|
|
|
| 2248 |
|
|
/* Remained operands count may be reduced twice per cycle
|
| 2249 |
|
|
until we have only one operand. */
|
| 2250 |
|
|
rest = (unsigned)(ops_num - res * cpu_width);
|
| 2251 |
|
|
elog = exact_log2 (rest);
|
| 2252 |
|
|
if (elog >= 0)
|
| 2253 |
|
|
res += elog;
|
| 2254 |
|
|
else
|
| 2255 |
|
|
res += floor_log2 (rest) + 1;
|
| 2256 |
|
|
|
| 2257 |
|
|
return res;
|
| 2258 |
|
|
}
|
| 2259 |
|
|
|
| 2260 |
|
|
/* Returns an optimal number of registers to use for computation of
|
| 2261 |
|
|
given statements. */
|
| 2262 |
|
|
|
| 2263 |
|
|
static int
|
| 2264 |
|
|
get_reassociation_width (int ops_num, enum tree_code opc,
|
| 2265 |
|
|
enum machine_mode mode)
|
| 2266 |
|
|
{
|
| 2267 |
|
|
int param_width = PARAM_VALUE (PARAM_TREE_REASSOC_WIDTH);
|
| 2268 |
|
|
int width;
|
| 2269 |
|
|
int width_min;
|
| 2270 |
|
|
int cycles_best;
|
| 2271 |
|
|
|
| 2272 |
|
|
if (param_width > 0)
|
| 2273 |
|
|
width = param_width;
|
| 2274 |
|
|
else
|
| 2275 |
|
|
width = targetm.sched.reassociation_width (opc, mode);
|
| 2276 |
|
|
|
| 2277 |
|
|
if (width == 1)
|
| 2278 |
|
|
return width;
|
| 2279 |
|
|
|
| 2280 |
|
|
/* Get the minimal time required for sequence computation. */
|
| 2281 |
|
|
cycles_best = get_required_cycles (ops_num, width);
|
| 2282 |
|
|
|
| 2283 |
|
|
/* Check if we may use less width and still compute sequence for
|
| 2284 |
|
|
the same time. It will allow us to reduce registers usage.
|
| 2285 |
|
|
get_required_cycles is monotonically increasing with lower width
|
| 2286 |
|
|
so we can perform a binary search for the minimal width that still
|
| 2287 |
|
|
results in the optimal cycle count. */
|
| 2288 |
|
|
width_min = 1;
|
| 2289 |
|
|
while (width > width_min)
|
| 2290 |
|
|
{
|
| 2291 |
|
|
int width_mid = (width + width_min) / 2;
|
| 2292 |
|
|
|
| 2293 |
|
|
if (get_required_cycles (ops_num, width_mid) == cycles_best)
|
| 2294 |
|
|
width = width_mid;
|
| 2295 |
|
|
else if (width_min < width_mid)
|
| 2296 |
|
|
width_min = width_mid;
|
| 2297 |
|
|
else
|
| 2298 |
|
|
break;
|
| 2299 |
|
|
}
|
| 2300 |
|
|
|
| 2301 |
|
|
return width;
|
| 2302 |
|
|
}
|
| 2303 |
|
|
|
| 2304 |
|
|
/* Recursively rewrite our linearized statements so that the operators
|
| 2305 |
|
|
match those in OPS[OPINDEX], putting the computation in rank
|
| 2306 |
|
|
order and trying to allow operations to be executed in
|
| 2307 |
|
|
parallel. */
|
| 2308 |
|
|
|
| 2309 |
|
|
static void
|
| 2310 |
|
|
rewrite_expr_tree_parallel (gimple stmt, int width,
|
| 2311 |
|
|
VEC(operand_entry_t, heap) * ops)
|
| 2312 |
|
|
{
|
| 2313 |
|
|
enum tree_code opcode = gimple_assign_rhs_code (stmt);
|
| 2314 |
|
|
int op_num = VEC_length (operand_entry_t, ops);
|
| 2315 |
|
|
int stmt_num = op_num - 1;
|
| 2316 |
|
|
gimple *stmts = XALLOCAVEC (gimple, stmt_num);
|
| 2317 |
|
|
int op_index = op_num - 1;
|
| 2318 |
|
|
int stmt_index = 0;
|
| 2319 |
|
|
int ready_stmts_end = 0;
|
| 2320 |
|
|
int i = 0;
|
| 2321 |
|
|
tree last_rhs1 = gimple_assign_rhs1 (stmt);
|
| 2322 |
|
|
tree lhs_var;
|
| 2323 |
|
|
|
| 2324 |
|
|
/* We start expression rewriting from the top statements.
|
| 2325 |
|
|
So, in this loop we create a full list of statements
|
| 2326 |
|
|
we will work with. */
|
| 2327 |
|
|
stmts[stmt_num - 1] = stmt;
|
| 2328 |
|
|
for (i = stmt_num - 2; i >= 0; i--)
|
| 2329 |
|
|
stmts[i] = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmts[i+1]));
|
| 2330 |
|
|
|
| 2331 |
|
|
lhs_var = create_tmp_reg (TREE_TYPE (last_rhs1), NULL);
|
| 2332 |
|
|
add_referenced_var (lhs_var);
|
| 2333 |
|
|
|
| 2334 |
|
|
for (i = 0; i < stmt_num; i++)
|
| 2335 |
|
|
{
|
| 2336 |
|
|
tree op1, op2;
|
| 2337 |
|
|
|
| 2338 |
|
|
/* Determine whether we should use results of
|
| 2339 |
|
|
already handled statements or not. */
|
| 2340 |
|
|
if (ready_stmts_end == 0
|
| 2341 |
|
|
&& (i - stmt_index >= width || op_index < 1))
|
| 2342 |
|
|
ready_stmts_end = i;
|
| 2343 |
|
|
|
| 2344 |
|
|
/* Now we choose operands for the next statement. Non zero
|
| 2345 |
|
|
value in ready_stmts_end means here that we should use
|
| 2346 |
|
|
the result of already generated statements as new operand. */
|
| 2347 |
|
|
if (ready_stmts_end > 0)
|
| 2348 |
|
|
{
|
| 2349 |
|
|
op1 = gimple_assign_lhs (stmts[stmt_index++]);
|
| 2350 |
|
|
if (ready_stmts_end > stmt_index)
|
| 2351 |
|
|
op2 = gimple_assign_lhs (stmts[stmt_index++]);
|
| 2352 |
|
|
else if (op_index >= 0)
|
| 2353 |
|
|
op2 = VEC_index (operand_entry_t, ops, op_index--)->op;
|
| 2354 |
|
|
else
|
| 2355 |
|
|
{
|
| 2356 |
|
|
gcc_assert (stmt_index < i);
|
| 2357 |
|
|
op2 = gimple_assign_lhs (stmts[stmt_index++]);
|
| 2358 |
|
|
}
|
| 2359 |
|
|
|
| 2360 |
|
|
if (stmt_index >= ready_stmts_end)
|
| 2361 |
|
|
ready_stmts_end = 0;
|
| 2362 |
|
|
}
|
| 2363 |
|
|
else
|
| 2364 |
|
|
{
|
| 2365 |
|
|
if (op_index > 1)
|
| 2366 |
|
|
swap_ops_for_binary_stmt (ops, op_index - 2, NULL);
|
| 2367 |
|
|
op2 = VEC_index (operand_entry_t, ops, op_index--)->op;
|
| 2368 |
|
|
op1 = VEC_index (operand_entry_t, ops, op_index--)->op;
|
| 2369 |
|
|
}
|
| 2370 |
|
|
|
| 2371 |
|
|
/* If we emit the last statement then we should put
|
| 2372 |
|
|
operands into the last statement. It will also
|
| 2373 |
|
|
break the loop. */
|
| 2374 |
|
|
if (op_index < 0 && stmt_index == i)
|
| 2375 |
|
|
i = stmt_num - 1;
|
| 2376 |
|
|
|
| 2377 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2378 |
|
|
{
|
| 2379 |
|
|
fprintf (dump_file, "Transforming ");
|
| 2380 |
|
|
print_gimple_stmt (dump_file, stmts[i], 0, 0);
|
| 2381 |
|
|
}
|
| 2382 |
|
|
|
| 2383 |
|
|
/* We keep original statement only for the last one. All
|
| 2384 |
|
|
others are recreated. */
|
| 2385 |
|
|
if (i == stmt_num - 1)
|
| 2386 |
|
|
{
|
| 2387 |
|
|
gimple_assign_set_rhs1 (stmts[i], op1);
|
| 2388 |
|
|
gimple_assign_set_rhs2 (stmts[i], op2);
|
| 2389 |
|
|
update_stmt (stmts[i]);
|
| 2390 |
|
|
}
|
| 2391 |
|
|
else
|
| 2392 |
|
|
stmts[i] = build_and_add_sum (lhs_var, op1, op2, opcode);
|
| 2393 |
|
|
|
| 2394 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2395 |
|
|
{
|
| 2396 |
|
|
fprintf (dump_file, " into ");
|
| 2397 |
|
|
print_gimple_stmt (dump_file, stmts[i], 0, 0);
|
| 2398 |
|
|
}
|
| 2399 |
|
|
}
|
| 2400 |
|
|
|
| 2401 |
|
|
remove_visited_stmt_chain (last_rhs1);
|
| 2402 |
|
|
}
|
| 2403 |
|
|
|
| 2404 |
|
|
/* Transform STMT, which is really (A +B) + (C + D) into the left
|
| 2405 |
|
|
linear form, ((A+B)+C)+D.
|
| 2406 |
|
|
Recurse on D if necessary. */
|
| 2407 |
|
|
|
| 2408 |
|
|
static void
|
| 2409 |
|
|
linearize_expr (gimple stmt)
|
| 2410 |
|
|
{
|
| 2411 |
|
|
gimple_stmt_iterator gsinow, gsirhs;
|
| 2412 |
|
|
gimple binlhs = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
|
| 2413 |
|
|
gimple binrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
|
| 2414 |
|
|
enum tree_code rhscode = gimple_assign_rhs_code (stmt);
|
| 2415 |
|
|
gimple newbinrhs = NULL;
|
| 2416 |
|
|
struct loop *loop = loop_containing_stmt (stmt);
|
| 2417 |
|
|
|
| 2418 |
|
|
gcc_assert (is_reassociable_op (binlhs, rhscode, loop)
|
| 2419 |
|
|
&& is_reassociable_op (binrhs, rhscode, loop));
|
| 2420 |
|
|
|
| 2421 |
|
|
gsinow = gsi_for_stmt (stmt);
|
| 2422 |
|
|
gsirhs = gsi_for_stmt (binrhs);
|
| 2423 |
|
|
gsi_move_before (&gsirhs, &gsinow);
|
| 2424 |
|
|
|
| 2425 |
|
|
gimple_assign_set_rhs2 (stmt, gimple_assign_rhs1 (binrhs));
|
| 2426 |
|
|
gimple_assign_set_rhs1 (binrhs, gimple_assign_lhs (binlhs));
|
| 2427 |
|
|
gimple_assign_set_rhs1 (stmt, gimple_assign_lhs (binrhs));
|
| 2428 |
|
|
|
| 2429 |
|
|
if (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
|
| 2430 |
|
|
newbinrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
|
| 2431 |
|
|
|
| 2432 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2433 |
|
|
{
|
| 2434 |
|
|
fprintf (dump_file, "Linearized: ");
|
| 2435 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
| 2436 |
|
|
}
|
| 2437 |
|
|
|
| 2438 |
|
|
reassociate_stats.linearized++;
|
| 2439 |
|
|
update_stmt (binrhs);
|
| 2440 |
|
|
update_stmt (binlhs);
|
| 2441 |
|
|
update_stmt (stmt);
|
| 2442 |
|
|
|
| 2443 |
|
|
gimple_set_visited (stmt, true);
|
| 2444 |
|
|
gimple_set_visited (binlhs, true);
|
| 2445 |
|
|
gimple_set_visited (binrhs, true);
|
| 2446 |
|
|
|
| 2447 |
|
|
/* Tail recurse on the new rhs if it still needs reassociation. */
|
| 2448 |
|
|
if (newbinrhs && is_reassociable_op (newbinrhs, rhscode, loop))
|
| 2449 |
|
|
/* ??? This should probably be linearize_expr (newbinrhs) but I don't
|
| 2450 |
|
|
want to change the algorithm while converting to tuples. */
|
| 2451 |
|
|
linearize_expr (stmt);
|
| 2452 |
|
|
}
|
| 2453 |
|
|
|
| 2454 |
|
|
/* If LHS has a single immediate use that is a GIMPLE_ASSIGN statement, return
|
| 2455 |
|
|
it. Otherwise, return NULL. */
|
| 2456 |
|
|
|
| 2457 |
|
|
static gimple
|
| 2458 |
|
|
get_single_immediate_use (tree lhs)
|
| 2459 |
|
|
{
|
| 2460 |
|
|
use_operand_p immuse;
|
| 2461 |
|
|
gimple immusestmt;
|
| 2462 |
|
|
|
| 2463 |
|
|
if (TREE_CODE (lhs) == SSA_NAME
|
| 2464 |
|
|
&& single_imm_use (lhs, &immuse, &immusestmt)
|
| 2465 |
|
|
&& is_gimple_assign (immusestmt))
|
| 2466 |
|
|
return immusestmt;
|
| 2467 |
|
|
|
| 2468 |
|
|
return NULL;
|
| 2469 |
|
|
}
|
| 2470 |
|
|
|
| 2471 |
|
|
/* Recursively negate the value of TONEGATE, and return the SSA_NAME
|
| 2472 |
|
|
representing the negated value. Insertions of any necessary
|
| 2473 |
|
|
instructions go before GSI.
|
| 2474 |
|
|
This function is recursive in that, if you hand it "a_5" as the
|
| 2475 |
|
|
value to negate, and a_5 is defined by "a_5 = b_3 + b_4", it will
|
| 2476 |
|
|
transform b_3 + b_4 into a_5 = -b_3 + -b_4. */
|
| 2477 |
|
|
|
| 2478 |
|
|
static tree
|
| 2479 |
|
|
negate_value (tree tonegate, gimple_stmt_iterator *gsi)
|
| 2480 |
|
|
{
|
| 2481 |
|
|
gimple negatedefstmt= NULL;
|
| 2482 |
|
|
tree resultofnegate;
|
| 2483 |
|
|
|
| 2484 |
|
|
/* If we are trying to negate a name, defined by an add, negate the
|
| 2485 |
|
|
add operands instead. */
|
| 2486 |
|
|
if (TREE_CODE (tonegate) == SSA_NAME)
|
| 2487 |
|
|
negatedefstmt = SSA_NAME_DEF_STMT (tonegate);
|
| 2488 |
|
|
if (TREE_CODE (tonegate) == SSA_NAME
|
| 2489 |
|
|
&& is_gimple_assign (negatedefstmt)
|
| 2490 |
|
|
&& TREE_CODE (gimple_assign_lhs (negatedefstmt)) == SSA_NAME
|
| 2491 |
|
|
&& has_single_use (gimple_assign_lhs (negatedefstmt))
|
| 2492 |
|
|
&& gimple_assign_rhs_code (negatedefstmt) == PLUS_EXPR)
|
| 2493 |
|
|
{
|
| 2494 |
|
|
gimple_stmt_iterator gsi;
|
| 2495 |
|
|
tree rhs1 = gimple_assign_rhs1 (negatedefstmt);
|
| 2496 |
|
|
tree rhs2 = gimple_assign_rhs2 (negatedefstmt);
|
| 2497 |
|
|
|
| 2498 |
|
|
gsi = gsi_for_stmt (negatedefstmt);
|
| 2499 |
|
|
rhs1 = negate_value (rhs1, &gsi);
|
| 2500 |
|
|
gimple_assign_set_rhs1 (negatedefstmt, rhs1);
|
| 2501 |
|
|
|
| 2502 |
|
|
gsi = gsi_for_stmt (negatedefstmt);
|
| 2503 |
|
|
rhs2 = negate_value (rhs2, &gsi);
|
| 2504 |
|
|
gimple_assign_set_rhs2 (negatedefstmt, rhs2);
|
| 2505 |
|
|
|
| 2506 |
|
|
update_stmt (negatedefstmt);
|
| 2507 |
|
|
return gimple_assign_lhs (negatedefstmt);
|
| 2508 |
|
|
}
|
| 2509 |
|
|
|
| 2510 |
|
|
tonegate = fold_build1 (NEGATE_EXPR, TREE_TYPE (tonegate), tonegate);
|
| 2511 |
|
|
resultofnegate = force_gimple_operand_gsi (gsi, tonegate, true,
|
| 2512 |
|
|
NULL_TREE, true, GSI_SAME_STMT);
|
| 2513 |
|
|
return resultofnegate;
|
| 2514 |
|
|
}
|
| 2515 |
|
|
|
| 2516 |
|
|
/* Return true if we should break up the subtract in STMT into an add
|
| 2517 |
|
|
with negate. This is true when we the subtract operands are really
|
| 2518 |
|
|
adds, or the subtract itself is used in an add expression. In
|
| 2519 |
|
|
either case, breaking up the subtract into an add with negate
|
| 2520 |
|
|
exposes the adds to reassociation. */
|
| 2521 |
|
|
|
| 2522 |
|
|
static bool
|
| 2523 |
|
|
should_break_up_subtract (gimple stmt)
|
| 2524 |
|
|
{
|
| 2525 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
| 2526 |
|
|
tree binlhs = gimple_assign_rhs1 (stmt);
|
| 2527 |
|
|
tree binrhs = gimple_assign_rhs2 (stmt);
|
| 2528 |
|
|
gimple immusestmt;
|
| 2529 |
|
|
struct loop *loop = loop_containing_stmt (stmt);
|
| 2530 |
|
|
|
| 2531 |
|
|
if (TREE_CODE (binlhs) == SSA_NAME
|
| 2532 |
|
|
&& is_reassociable_op (SSA_NAME_DEF_STMT (binlhs), PLUS_EXPR, loop))
|
| 2533 |
|
|
return true;
|
| 2534 |
|
|
|
| 2535 |
|
|
if (TREE_CODE (binrhs) == SSA_NAME
|
| 2536 |
|
|
&& is_reassociable_op (SSA_NAME_DEF_STMT (binrhs), PLUS_EXPR, loop))
|
| 2537 |
|
|
return true;
|
| 2538 |
|
|
|
| 2539 |
|
|
if (TREE_CODE (lhs) == SSA_NAME
|
| 2540 |
|
|
&& (immusestmt = get_single_immediate_use (lhs))
|
| 2541 |
|
|
&& is_gimple_assign (immusestmt)
|
| 2542 |
|
|
&& (gimple_assign_rhs_code (immusestmt) == PLUS_EXPR
|
| 2543 |
|
|
|| gimple_assign_rhs_code (immusestmt) == MULT_EXPR))
|
| 2544 |
|
|
return true;
|
| 2545 |
|
|
return false;
|
| 2546 |
|
|
}
|
| 2547 |
|
|
|
| 2548 |
|
|
/* Transform STMT from A - B into A + -B. */
|
| 2549 |
|
|
|
| 2550 |
|
|
static void
|
| 2551 |
|
|
break_up_subtract (gimple stmt, gimple_stmt_iterator *gsip)
|
| 2552 |
|
|
{
|
| 2553 |
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
| 2554 |
|
|
tree rhs2 = gimple_assign_rhs2 (stmt);
|
| 2555 |
|
|
|
| 2556 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2557 |
|
|
{
|
| 2558 |
|
|
fprintf (dump_file, "Breaking up subtract ");
|
| 2559 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
| 2560 |
|
|
}
|
| 2561 |
|
|
|
| 2562 |
|
|
rhs2 = negate_value (rhs2, gsip);
|
| 2563 |
|
|
gimple_assign_set_rhs_with_ops (gsip, PLUS_EXPR, rhs1, rhs2);
|
| 2564 |
|
|
update_stmt (stmt);
|
| 2565 |
|
|
}
|
| 2566 |
|
|
|
| 2567 |
|
|
/* Recursively linearize a binary expression that is the RHS of STMT.
|
| 2568 |
|
|
Place the operands of the expression tree in the vector named OPS. */
|
| 2569 |
|
|
|
| 2570 |
|
|
static void
|
| 2571 |
|
|
linearize_expr_tree (VEC(operand_entry_t, heap) **ops, gimple stmt,
|
| 2572 |
|
|
bool is_associative, bool set_visited)
|
| 2573 |
|
|
{
|
| 2574 |
|
|
tree binlhs = gimple_assign_rhs1 (stmt);
|
| 2575 |
|
|
tree binrhs = gimple_assign_rhs2 (stmt);
|
| 2576 |
|
|
gimple binlhsdef, binrhsdef;
|
| 2577 |
|
|
bool binlhsisreassoc = false;
|
| 2578 |
|
|
bool binrhsisreassoc = false;
|
| 2579 |
|
|
enum tree_code rhscode = gimple_assign_rhs_code (stmt);
|
| 2580 |
|
|
struct loop *loop = loop_containing_stmt (stmt);
|
| 2581 |
|
|
|
| 2582 |
|
|
if (set_visited)
|
| 2583 |
|
|
gimple_set_visited (stmt, true);
|
| 2584 |
|
|
|
| 2585 |
|
|
if (TREE_CODE (binlhs) == SSA_NAME)
|
| 2586 |
|
|
{
|
| 2587 |
|
|
binlhsdef = SSA_NAME_DEF_STMT (binlhs);
|
| 2588 |
|
|
binlhsisreassoc = (is_reassociable_op (binlhsdef, rhscode, loop)
|
| 2589 |
|
|
&& !stmt_could_throw_p (binlhsdef));
|
| 2590 |
|
|
}
|
| 2591 |
|
|
|
| 2592 |
|
|
if (TREE_CODE (binrhs) == SSA_NAME)
|
| 2593 |
|
|
{
|
| 2594 |
|
|
binrhsdef = SSA_NAME_DEF_STMT (binrhs);
|
| 2595 |
|
|
binrhsisreassoc = (is_reassociable_op (binrhsdef, rhscode, loop)
|
| 2596 |
|
|
&& !stmt_could_throw_p (binrhsdef));
|
| 2597 |
|
|
}
|
| 2598 |
|
|
|
| 2599 |
|
|
/* If the LHS is not reassociable, but the RHS is, we need to swap
|
| 2600 |
|
|
them. If neither is reassociable, there is nothing we can do, so
|
| 2601 |
|
|
just put them in the ops vector. If the LHS is reassociable,
|
| 2602 |
|
|
linearize it. If both are reassociable, then linearize the RHS
|
| 2603 |
|
|
and the LHS. */
|
| 2604 |
|
|
|
| 2605 |
|
|
if (!binlhsisreassoc)
|
| 2606 |
|
|
{
|
| 2607 |
|
|
tree temp;
|
| 2608 |
|
|
|
| 2609 |
|
|
/* If this is not a associative operation like division, give up. */
|
| 2610 |
|
|
if (!is_associative)
|
| 2611 |
|
|
{
|
| 2612 |
|
|
add_to_ops_vec (ops, binrhs);
|
| 2613 |
|
|
return;
|
| 2614 |
|
|
}
|
| 2615 |
|
|
|
| 2616 |
|
|
if (!binrhsisreassoc)
|
| 2617 |
|
|
{
|
| 2618 |
|
|
add_to_ops_vec (ops, binrhs);
|
| 2619 |
|
|
add_to_ops_vec (ops, binlhs);
|
| 2620 |
|
|
return;
|
| 2621 |
|
|
}
|
| 2622 |
|
|
|
| 2623 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2624 |
|
|
{
|
| 2625 |
|
|
fprintf (dump_file, "swapping operands of ");
|
| 2626 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
| 2627 |
|
|
}
|
| 2628 |
|
|
|
| 2629 |
|
|
swap_tree_operands (stmt,
|
| 2630 |
|
|
gimple_assign_rhs1_ptr (stmt),
|
| 2631 |
|
|
gimple_assign_rhs2_ptr (stmt));
|
| 2632 |
|
|
update_stmt (stmt);
|
| 2633 |
|
|
|
| 2634 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2635 |
|
|
{
|
| 2636 |
|
|
fprintf (dump_file, " is now ");
|
| 2637 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
| 2638 |
|
|
}
|
| 2639 |
|
|
|
| 2640 |
|
|
/* We want to make it so the lhs is always the reassociative op,
|
| 2641 |
|
|
so swap. */
|
| 2642 |
|
|
temp = binlhs;
|
| 2643 |
|
|
binlhs = binrhs;
|
| 2644 |
|
|
binrhs = temp;
|
| 2645 |
|
|
}
|
| 2646 |
|
|
else if (binrhsisreassoc)
|
| 2647 |
|
|
{
|
| 2648 |
|
|
linearize_expr (stmt);
|
| 2649 |
|
|
binlhs = gimple_assign_rhs1 (stmt);
|
| 2650 |
|
|
binrhs = gimple_assign_rhs2 (stmt);
|
| 2651 |
|
|
}
|
| 2652 |
|
|
|
| 2653 |
|
|
gcc_assert (TREE_CODE (binrhs) != SSA_NAME
|
| 2654 |
|
|
|| !is_reassociable_op (SSA_NAME_DEF_STMT (binrhs),
|
| 2655 |
|
|
rhscode, loop));
|
| 2656 |
|
|
linearize_expr_tree (ops, SSA_NAME_DEF_STMT (binlhs),
|
| 2657 |
|
|
is_associative, set_visited);
|
| 2658 |
|
|
add_to_ops_vec (ops, binrhs);
|
| 2659 |
|
|
}
|
| 2660 |
|
|
|
| 2661 |
|
|
/* Repropagate the negates back into subtracts, since no other pass
|
| 2662 |
|
|
currently does it. */
|
| 2663 |
|
|
|
| 2664 |
|
|
static void
|
| 2665 |
|
|
repropagate_negates (void)
|
| 2666 |
|
|
{
|
| 2667 |
|
|
unsigned int i = 0;
|
| 2668 |
|
|
tree negate;
|
| 2669 |
|
|
|
| 2670 |
|
|
FOR_EACH_VEC_ELT (tree, plus_negates, i, negate)
|
| 2671 |
|
|
{
|
| 2672 |
|
|
gimple user = get_single_immediate_use (negate);
|
| 2673 |
|
|
|
| 2674 |
|
|
if (!user || !is_gimple_assign (user))
|
| 2675 |
|
|
continue;
|
| 2676 |
|
|
|
| 2677 |
|
|
/* The negate operand can be either operand of a PLUS_EXPR
|
| 2678 |
|
|
(it can be the LHS if the RHS is a constant for example).
|
| 2679 |
|
|
|
| 2680 |
|
|
Force the negate operand to the RHS of the PLUS_EXPR, then
|
| 2681 |
|
|
transform the PLUS_EXPR into a MINUS_EXPR. */
|
| 2682 |
|
|
if (gimple_assign_rhs_code (user) == PLUS_EXPR)
|
| 2683 |
|
|
{
|
| 2684 |
|
|
/* If the negated operand appears on the LHS of the
|
| 2685 |
|
|
PLUS_EXPR, exchange the operands of the PLUS_EXPR
|
| 2686 |
|
|
to force the negated operand to the RHS of the PLUS_EXPR. */
|
| 2687 |
|
|
if (gimple_assign_rhs1 (user) == negate)
|
| 2688 |
|
|
{
|
| 2689 |
|
|
swap_tree_operands (user,
|
| 2690 |
|
|
gimple_assign_rhs1_ptr (user),
|
| 2691 |
|
|
gimple_assign_rhs2_ptr (user));
|
| 2692 |
|
|
}
|
| 2693 |
|
|
|
| 2694 |
|
|
/* Now transform the PLUS_EXPR into a MINUS_EXPR and replace
|
| 2695 |
|
|
the RHS of the PLUS_EXPR with the operand of the NEGATE_EXPR. */
|
| 2696 |
|
|
if (gimple_assign_rhs2 (user) == negate)
|
| 2697 |
|
|
{
|
| 2698 |
|
|
tree rhs1 = gimple_assign_rhs1 (user);
|
| 2699 |
|
|
tree rhs2 = get_unary_op (negate, NEGATE_EXPR);
|
| 2700 |
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (user);
|
| 2701 |
|
|
gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, rhs1, rhs2);
|
| 2702 |
|
|
update_stmt (user);
|
| 2703 |
|
|
}
|
| 2704 |
|
|
}
|
| 2705 |
|
|
else if (gimple_assign_rhs_code (user) == MINUS_EXPR)
|
| 2706 |
|
|
{
|
| 2707 |
|
|
if (gimple_assign_rhs1 (user) == negate)
|
| 2708 |
|
|
{
|
| 2709 |
|
|
/* We have
|
| 2710 |
|
|
x = -a
|
| 2711 |
|
|
y = x - b
|
| 2712 |
|
|
which we transform into
|
| 2713 |
|
|
x = a + b
|
| 2714 |
|
|
y = -x .
|
| 2715 |
|
|
This pushes down the negate which we possibly can merge
|
| 2716 |
|
|
into some other operation, hence insert it into the
|
| 2717 |
|
|
plus_negates vector. */
|
| 2718 |
|
|
gimple feed = SSA_NAME_DEF_STMT (negate);
|
| 2719 |
|
|
tree a = gimple_assign_rhs1 (feed);
|
| 2720 |
|
|
tree rhs2 = gimple_assign_rhs2 (user);
|
| 2721 |
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (feed), gsi2;
|
| 2722 |
|
|
gimple_replace_lhs (feed, negate);
|
| 2723 |
|
|
gimple_assign_set_rhs_with_ops (&gsi, PLUS_EXPR, a, rhs2);
|
| 2724 |
|
|
update_stmt (gsi_stmt (gsi));
|
| 2725 |
|
|
gsi2 = gsi_for_stmt (user);
|
| 2726 |
|
|
gimple_assign_set_rhs_with_ops (&gsi2, NEGATE_EXPR, negate, NULL);
|
| 2727 |
|
|
update_stmt (gsi_stmt (gsi2));
|
| 2728 |
|
|
gsi_move_before (&gsi, &gsi2);
|
| 2729 |
|
|
VEC_safe_push (tree, heap, plus_negates,
|
| 2730 |
|
|
gimple_assign_lhs (gsi_stmt (gsi2)));
|
| 2731 |
|
|
}
|
| 2732 |
|
|
else
|
| 2733 |
|
|
{
|
| 2734 |
|
|
/* Transform "x = -a; y = b - x" into "y = b + a", getting
|
| 2735 |
|
|
rid of one operation. */
|
| 2736 |
|
|
gimple feed = SSA_NAME_DEF_STMT (negate);
|
| 2737 |
|
|
tree a = gimple_assign_rhs1 (feed);
|
| 2738 |
|
|
tree rhs1 = gimple_assign_rhs1 (user);
|
| 2739 |
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (user);
|
| 2740 |
|
|
gimple_assign_set_rhs_with_ops (&gsi, PLUS_EXPR, rhs1, a);
|
| 2741 |
|
|
update_stmt (gsi_stmt (gsi));
|
| 2742 |
|
|
}
|
| 2743 |
|
|
}
|
| 2744 |
|
|
}
|
| 2745 |
|
|
}
|
| 2746 |
|
|
|
| 2747 |
|
|
/* Returns true if OP is of a type for which we can do reassociation.
|
| 2748 |
|
|
That is for integral or non-saturating fixed-point types, and for
|
| 2749 |
|
|
floating point type when associative-math is enabled. */
|
| 2750 |
|
|
|
| 2751 |
|
|
static bool
|
| 2752 |
|
|
can_reassociate_p (tree op)
|
| 2753 |
|
|
{
|
| 2754 |
|
|
tree type = TREE_TYPE (op);
|
| 2755 |
|
|
if ((INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
|
| 2756 |
|
|
|| NON_SAT_FIXED_POINT_TYPE_P (type)
|
| 2757 |
|
|
|| (flag_associative_math && FLOAT_TYPE_P (type)))
|
| 2758 |
|
|
return true;
|
| 2759 |
|
|
return false;
|
| 2760 |
|
|
}
|
| 2761 |
|
|
|
| 2762 |
|
|
/* Break up subtract operations in block BB.
|
| 2763 |
|
|
|
| 2764 |
|
|
We do this top down because we don't know whether the subtract is
|
| 2765 |
|
|
part of a possible chain of reassociation except at the top.
|
| 2766 |
|
|
|
| 2767 |
|
|
IE given
|
| 2768 |
|
|
d = f + g
|
| 2769 |
|
|
c = a + e
|
| 2770 |
|
|
b = c - d
|
| 2771 |
|
|
q = b - r
|
| 2772 |
|
|
k = t - q
|
| 2773 |
|
|
|
| 2774 |
|
|
we want to break up k = t - q, but we won't until we've transformed q
|
| 2775 |
|
|
= b - r, which won't be broken up until we transform b = c - d.
|
| 2776 |
|
|
|
| 2777 |
|
|
En passant, clear the GIMPLE visited flag on every statement. */
|
| 2778 |
|
|
|
| 2779 |
|
|
static void
|
| 2780 |
|
|
break_up_subtract_bb (basic_block bb)
|
| 2781 |
|
|
{
|
| 2782 |
|
|
gimple_stmt_iterator gsi;
|
| 2783 |
|
|
basic_block son;
|
| 2784 |
|
|
|
| 2785 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 2786 |
|
|
{
|
| 2787 |
|
|
gimple stmt = gsi_stmt (gsi);
|
| 2788 |
|
|
gimple_set_visited (stmt, false);
|
| 2789 |
|
|
|
| 2790 |
|
|
if (!is_gimple_assign (stmt)
|
| 2791 |
|
|
|| !can_reassociate_p (gimple_assign_lhs (stmt)))
|
| 2792 |
|
|
continue;
|
| 2793 |
|
|
|
| 2794 |
|
|
/* Look for simple gimple subtract operations. */
|
| 2795 |
|
|
if (gimple_assign_rhs_code (stmt) == MINUS_EXPR)
|
| 2796 |
|
|
{
|
| 2797 |
|
|
if (!can_reassociate_p (gimple_assign_rhs1 (stmt))
|
| 2798 |
|
|
|| !can_reassociate_p (gimple_assign_rhs2 (stmt)))
|
| 2799 |
|
|
continue;
|
| 2800 |
|
|
|
| 2801 |
|
|
/* Check for a subtract used only in an addition. If this
|
| 2802 |
|
|
is the case, transform it into add of a negate for better
|
| 2803 |
|
|
reassociation. IE transform C = A-B into C = A + -B if C
|
| 2804 |
|
|
is only used in an addition. */
|
| 2805 |
|
|
if (should_break_up_subtract (stmt))
|
| 2806 |
|
|
break_up_subtract (stmt, &gsi);
|
| 2807 |
|
|
}
|
| 2808 |
|
|
else if (gimple_assign_rhs_code (stmt) == NEGATE_EXPR
|
| 2809 |
|
|
&& can_reassociate_p (gimple_assign_rhs1 (stmt)))
|
| 2810 |
|
|
VEC_safe_push (tree, heap, plus_negates, gimple_assign_lhs (stmt));
|
| 2811 |
|
|
}
|
| 2812 |
|
|
for (son = first_dom_son (CDI_DOMINATORS, bb);
|
| 2813 |
|
|
son;
|
| 2814 |
|
|
son = next_dom_son (CDI_DOMINATORS, son))
|
| 2815 |
|
|
break_up_subtract_bb (son);
|
| 2816 |
|
|
}
|
| 2817 |
|
|
|
| 2818 |
|
|
/* Reassociate expressions in basic block BB and its post-dominator as
|
| 2819 |
|
|
children. */
|
| 2820 |
|
|
|
| 2821 |
|
|
static void
|
| 2822 |
|
|
reassociate_bb (basic_block bb)
|
| 2823 |
|
|
{
|
| 2824 |
|
|
gimple_stmt_iterator gsi;
|
| 2825 |
|
|
basic_block son;
|
| 2826 |
|
|
|
| 2827 |
|
|
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
|
| 2828 |
|
|
{
|
| 2829 |
|
|
gimple stmt = gsi_stmt (gsi);
|
| 2830 |
|
|
|
| 2831 |
|
|
if (is_gimple_assign (stmt)
|
| 2832 |
|
|
&& !stmt_could_throw_p (stmt))
|
| 2833 |
|
|
{
|
| 2834 |
|
|
tree lhs, rhs1, rhs2;
|
| 2835 |
|
|
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
|
| 2836 |
|
|
|
| 2837 |
|
|
/* If this is not a gimple binary expression, there is
|
| 2838 |
|
|
nothing for us to do with it. */
|
| 2839 |
|
|
if (get_gimple_rhs_class (rhs_code) != GIMPLE_BINARY_RHS)
|
| 2840 |
|
|
continue;
|
| 2841 |
|
|
|
| 2842 |
|
|
/* If this was part of an already processed statement,
|
| 2843 |
|
|
we don't need to touch it again. */
|
| 2844 |
|
|
if (gimple_visited_p (stmt))
|
| 2845 |
|
|
{
|
| 2846 |
|
|
/* This statement might have become dead because of previous
|
| 2847 |
|
|
reassociations. */
|
| 2848 |
|
|
if (has_zero_uses (gimple_get_lhs (stmt)))
|
| 2849 |
|
|
{
|
| 2850 |
|
|
gsi_remove (&gsi, true);
|
| 2851 |
|
|
release_defs (stmt);
|
| 2852 |
|
|
/* We might end up removing the last stmt above which
|
| 2853 |
|
|
places the iterator to the end of the sequence.
|
| 2854 |
|
|
Reset it to the last stmt in this case which might
|
| 2855 |
|
|
be the end of the sequence as well if we removed
|
| 2856 |
|
|
the last statement of the sequence. In which case
|
| 2857 |
|
|
we need to bail out. */
|
| 2858 |
|
|
if (gsi_end_p (gsi))
|
| 2859 |
|
|
{
|
| 2860 |
|
|
gsi = gsi_last_bb (bb);
|
| 2861 |
|
|
if (gsi_end_p (gsi))
|
| 2862 |
|
|
break;
|
| 2863 |
|
|
}
|
| 2864 |
|
|
}
|
| 2865 |
|
|
continue;
|
| 2866 |
|
|
}
|
| 2867 |
|
|
|
| 2868 |
|
|
lhs = gimple_assign_lhs (stmt);
|
| 2869 |
|
|
rhs1 = gimple_assign_rhs1 (stmt);
|
| 2870 |
|
|
rhs2 = gimple_assign_rhs2 (stmt);
|
| 2871 |
|
|
|
| 2872 |
|
|
/* For non-bit or min/max operations we can't associate
|
| 2873 |
|
|
all types. Verify that here. */
|
| 2874 |
|
|
if (rhs_code != BIT_IOR_EXPR
|
| 2875 |
|
|
&& rhs_code != BIT_AND_EXPR
|
| 2876 |
|
|
&& rhs_code != BIT_XOR_EXPR
|
| 2877 |
|
|
&& rhs_code != MIN_EXPR
|
| 2878 |
|
|
&& rhs_code != MAX_EXPR
|
| 2879 |
|
|
&& (!can_reassociate_p (lhs)
|
| 2880 |
|
|
|| !can_reassociate_p (rhs1)
|
| 2881 |
|
|
|| !can_reassociate_p (rhs2)))
|
| 2882 |
|
|
continue;
|
| 2883 |
|
|
|
| 2884 |
|
|
if (associative_tree_code (rhs_code))
|
| 2885 |
|
|
{
|
| 2886 |
|
|
VEC(operand_entry_t, heap) *ops = NULL;
|
| 2887 |
|
|
|
| 2888 |
|
|
/* There may be no immediate uses left by the time we
|
| 2889 |
|
|
get here because we may have eliminated them all. */
|
| 2890 |
|
|
if (TREE_CODE (lhs) == SSA_NAME && has_zero_uses (lhs))
|
| 2891 |
|
|
continue;
|
| 2892 |
|
|
|
| 2893 |
|
|
gimple_set_visited (stmt, true);
|
| 2894 |
|
|
linearize_expr_tree (&ops, stmt, true, true);
|
| 2895 |
|
|
VEC_qsort (operand_entry_t, ops, sort_by_operand_rank);
|
| 2896 |
|
|
optimize_ops_list (rhs_code, &ops);
|
| 2897 |
|
|
if (undistribute_ops_list (rhs_code, &ops,
|
| 2898 |
|
|
loop_containing_stmt (stmt)))
|
| 2899 |
|
|
{
|
| 2900 |
|
|
VEC_qsort (operand_entry_t, ops, sort_by_operand_rank);
|
| 2901 |
|
|
optimize_ops_list (rhs_code, &ops);
|
| 2902 |
|
|
}
|
| 2903 |
|
|
|
| 2904 |
|
|
if (rhs_code == BIT_IOR_EXPR || rhs_code == BIT_AND_EXPR)
|
| 2905 |
|
|
optimize_range_tests (rhs_code, &ops);
|
| 2906 |
|
|
|
| 2907 |
|
|
if (VEC_length (operand_entry_t, ops) == 1)
|
| 2908 |
|
|
{
|
| 2909 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2910 |
|
|
{
|
| 2911 |
|
|
fprintf (dump_file, "Transforming ");
|
| 2912 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
| 2913 |
|
|
}
|
| 2914 |
|
|
|
| 2915 |
|
|
rhs1 = gimple_assign_rhs1 (stmt);
|
| 2916 |
|
|
gimple_assign_set_rhs_from_tree (&gsi,
|
| 2917 |
|
|
VEC_last (operand_entry_t,
|
| 2918 |
|
|
ops)->op);
|
| 2919 |
|
|
update_stmt (stmt);
|
| 2920 |
|
|
remove_visited_stmt_chain (rhs1);
|
| 2921 |
|
|
|
| 2922 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2923 |
|
|
{
|
| 2924 |
|
|
fprintf (dump_file, " into ");
|
| 2925 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
| 2926 |
|
|
}
|
| 2927 |
|
|
}
|
| 2928 |
|
|
else
|
| 2929 |
|
|
{
|
| 2930 |
|
|
enum machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
|
| 2931 |
|
|
int ops_num = VEC_length (operand_entry_t, ops);
|
| 2932 |
|
|
int width = get_reassociation_width (ops_num, rhs_code, mode);
|
| 2933 |
|
|
|
| 2934 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2935 |
|
|
fprintf (dump_file,
|
| 2936 |
|
|
"Width = %d was chosen for reassociation\n", width);
|
| 2937 |
|
|
|
| 2938 |
|
|
if (width > 1
|
| 2939 |
|
|
&& VEC_length (operand_entry_t, ops) > 3)
|
| 2940 |
|
|
rewrite_expr_tree_parallel (stmt, width, ops);
|
| 2941 |
|
|
else
|
| 2942 |
|
|
rewrite_expr_tree (stmt, 0, ops, false);
|
| 2943 |
|
|
}
|
| 2944 |
|
|
|
| 2945 |
|
|
VEC_free (operand_entry_t, heap, ops);
|
| 2946 |
|
|
}
|
| 2947 |
|
|
}
|
| 2948 |
|
|
}
|
| 2949 |
|
|
for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
|
| 2950 |
|
|
son;
|
| 2951 |
|
|
son = next_dom_son (CDI_POST_DOMINATORS, son))
|
| 2952 |
|
|
reassociate_bb (son);
|
| 2953 |
|
|
}
|
| 2954 |
|
|
|
| 2955 |
|
|
void dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops);
|
| 2956 |
|
|
void debug_ops_vector (VEC (operand_entry_t, heap) *ops);
|
| 2957 |
|
|
|
| 2958 |
|
|
/* Dump the operand entry vector OPS to FILE. */
|
| 2959 |
|
|
|
| 2960 |
|
|
void
|
| 2961 |
|
|
dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops)
|
| 2962 |
|
|
{
|
| 2963 |
|
|
operand_entry_t oe;
|
| 2964 |
|
|
unsigned int i;
|
| 2965 |
|
|
|
| 2966 |
|
|
FOR_EACH_VEC_ELT (operand_entry_t, ops, i, oe)
|
| 2967 |
|
|
{
|
| 2968 |
|
|
fprintf (file, "Op %d -> rank: %d, tree: ", i, oe->rank);
|
| 2969 |
|
|
print_generic_expr (file, oe->op, 0);
|
| 2970 |
|
|
}
|
| 2971 |
|
|
}
|
| 2972 |
|
|
|
| 2973 |
|
|
/* Dump the operand entry vector OPS to STDERR. */
|
| 2974 |
|
|
|
| 2975 |
|
|
DEBUG_FUNCTION void
|
| 2976 |
|
|
debug_ops_vector (VEC (operand_entry_t, heap) *ops)
|
| 2977 |
|
|
{
|
| 2978 |
|
|
dump_ops_vector (stderr, ops);
|
| 2979 |
|
|
}
|
| 2980 |
|
|
|
| 2981 |
|
|
static void
|
| 2982 |
|
|
do_reassoc (void)
|
| 2983 |
|
|
{
|
| 2984 |
|
|
break_up_subtract_bb (ENTRY_BLOCK_PTR);
|
| 2985 |
|
|
reassociate_bb (EXIT_BLOCK_PTR);
|
| 2986 |
|
|
}
|
| 2987 |
|
|
|
| 2988 |
|
|
/* Initialize the reassociation pass. */
|
| 2989 |
|
|
|
| 2990 |
|
|
static void
|
| 2991 |
|
|
init_reassoc (void)
|
| 2992 |
|
|
{
|
| 2993 |
|
|
int i;
|
| 2994 |
|
|
long rank = 2;
|
| 2995 |
|
|
tree param;
|
| 2996 |
|
|
int *bbs = XNEWVEC (int, last_basic_block + 1);
|
| 2997 |
|
|
|
| 2998 |
|
|
/* Find the loops, so that we can prevent moving calculations in
|
| 2999 |
|
|
them. */
|
| 3000 |
|
|
loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
|
| 3001 |
|
|
|
| 3002 |
|
|
memset (&reassociate_stats, 0, sizeof (reassociate_stats));
|
| 3003 |
|
|
|
| 3004 |
|
|
operand_entry_pool = create_alloc_pool ("operand entry pool",
|
| 3005 |
|
|
sizeof (struct operand_entry), 30);
|
| 3006 |
|
|
next_operand_entry_id = 0;
|
| 3007 |
|
|
|
| 3008 |
|
|
/* Reverse RPO (Reverse Post Order) will give us something where
|
| 3009 |
|
|
deeper loops come later. */
|
| 3010 |
|
|
pre_and_rev_post_order_compute (NULL, bbs, false);
|
| 3011 |
|
|
bb_rank = XCNEWVEC (long, last_basic_block + 1);
|
| 3012 |
|
|
operand_rank = pointer_map_create ();
|
| 3013 |
|
|
|
| 3014 |
|
|
/* Give each argument a distinct rank. */
|
| 3015 |
|
|
for (param = DECL_ARGUMENTS (current_function_decl);
|
| 3016 |
|
|
param;
|
| 3017 |
|
|
param = DECL_CHAIN (param))
|
| 3018 |
|
|
{
|
| 3019 |
|
|
if (gimple_default_def (cfun, param) != NULL)
|
| 3020 |
|
|
{
|
| 3021 |
|
|
tree def = gimple_default_def (cfun, param);
|
| 3022 |
|
|
insert_operand_rank (def, ++rank);
|
| 3023 |
|
|
}
|
| 3024 |
|
|
}
|
| 3025 |
|
|
|
| 3026 |
|
|
/* Give the chain decl a distinct rank. */
|
| 3027 |
|
|
if (cfun->static_chain_decl != NULL)
|
| 3028 |
|
|
{
|
| 3029 |
|
|
tree def = gimple_default_def (cfun, cfun->static_chain_decl);
|
| 3030 |
|
|
if (def != NULL)
|
| 3031 |
|
|
insert_operand_rank (def, ++rank);
|
| 3032 |
|
|
}
|
| 3033 |
|
|
|
| 3034 |
|
|
/* Set up rank for each BB */
|
| 3035 |
|
|
for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
|
| 3036 |
|
|
bb_rank[bbs[i]] = ++rank << 16;
|
| 3037 |
|
|
|
| 3038 |
|
|
free (bbs);
|
| 3039 |
|
|
calculate_dominance_info (CDI_POST_DOMINATORS);
|
| 3040 |
|
|
plus_negates = NULL;
|
| 3041 |
|
|
}
|
| 3042 |
|
|
|
| 3043 |
|
|
/* Cleanup after the reassociation pass, and print stats if
|
| 3044 |
|
|
requested. */
|
| 3045 |
|
|
|
| 3046 |
|
|
static void
|
| 3047 |
|
|
fini_reassoc (void)
|
| 3048 |
|
|
{
|
| 3049 |
|
|
statistics_counter_event (cfun, "Linearized",
|
| 3050 |
|
|
reassociate_stats.linearized);
|
| 3051 |
|
|
statistics_counter_event (cfun, "Constants eliminated",
|
| 3052 |
|
|
reassociate_stats.constants_eliminated);
|
| 3053 |
|
|
statistics_counter_event (cfun, "Ops eliminated",
|
| 3054 |
|
|
reassociate_stats.ops_eliminated);
|
| 3055 |
|
|
statistics_counter_event (cfun, "Statements rewritten",
|
| 3056 |
|
|
reassociate_stats.rewritten);
|
| 3057 |
|
|
|
| 3058 |
|
|
pointer_map_destroy (operand_rank);
|
| 3059 |
|
|
free_alloc_pool (operand_entry_pool);
|
| 3060 |
|
|
free (bb_rank);
|
| 3061 |
|
|
VEC_free (tree, heap, plus_negates);
|
| 3062 |
|
|
free_dominance_info (CDI_POST_DOMINATORS);
|
| 3063 |
|
|
loop_optimizer_finalize ();
|
| 3064 |
|
|
}
|
| 3065 |
|
|
|
| 3066 |
|
|
/* Gate and execute functions for Reassociation. */
|
| 3067 |
|
|
|
| 3068 |
|
|
static unsigned int
|
| 3069 |
|
|
execute_reassoc (void)
|
| 3070 |
|
|
{
|
| 3071 |
|
|
init_reassoc ();
|
| 3072 |
|
|
|
| 3073 |
|
|
do_reassoc ();
|
| 3074 |
|
|
repropagate_negates ();
|
| 3075 |
|
|
|
| 3076 |
|
|
fini_reassoc ();
|
| 3077 |
|
|
return 0;
|
| 3078 |
|
|
}
|
| 3079 |
|
|
|
| 3080 |
|
|
static bool
|
| 3081 |
|
|
gate_tree_ssa_reassoc (void)
|
| 3082 |
|
|
{
|
| 3083 |
|
|
return flag_tree_reassoc != 0;
|
| 3084 |
|
|
}
|
| 3085 |
|
|
|
| 3086 |
|
|
struct gimple_opt_pass pass_reassoc =
|
| 3087 |
|
|
{
|
| 3088 |
|
|
{
|
| 3089 |
|
|
GIMPLE_PASS,
|
| 3090 |
|
|
"reassoc", /* name */
|
| 3091 |
|
|
gate_tree_ssa_reassoc, /* gate */
|
| 3092 |
|
|
execute_reassoc, /* execute */
|
| 3093 |
|
|
NULL, /* sub */
|
| 3094 |
|
|
NULL, /* next */
|
| 3095 |
|
|
0, /* static_pass_number */
|
| 3096 |
|
|
TV_TREE_REASSOC, /* tv_id */
|
| 3097 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
| 3098 |
|
|
0, /* properties_provided */
|
| 3099 |
|
|
0, /* properties_destroyed */
|
| 3100 |
|
|
0, /* todo_flags_start */
|
| 3101 |
|
|
TODO_verify_ssa
|
| 3102 |
|
|
| TODO_verify_flow
|
| 3103 |
|
|
| TODO_ggc_collect /* todo_flags_finish */
|
| 3104 |
|
|
}
|
| 3105 |
|
|
};
|