| 1 |
684 |
jeremybenn |
/* Code sinking for trees
|
| 2 |
|
|
Copyright (C) 2001, 2002, 2003, 2004, 2007, 2008, 2009, 2010
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
Contributed by Daniel Berlin <dan@dberlin.org>
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GCC.
|
| 7 |
|
|
|
| 8 |
|
|
GCC is free software; you can redistribute it and/or modify
|
| 9 |
|
|
it under the terms of the GNU General Public License as published by
|
| 10 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
| 11 |
|
|
any later version.
|
| 12 |
|
|
|
| 13 |
|
|
GCC is distributed in the hope that it will be useful,
|
| 14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 16 |
|
|
GNU General Public License for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 20 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
#include "config.h"
|
| 23 |
|
|
#include "system.h"
|
| 24 |
|
|
#include "coretypes.h"
|
| 25 |
|
|
#include "tm.h"
|
| 26 |
|
|
#include "tree.h"
|
| 27 |
|
|
#include "basic-block.h"
|
| 28 |
|
|
#include "gimple-pretty-print.h"
|
| 29 |
|
|
#include "tree-inline.h"
|
| 30 |
|
|
#include "tree-flow.h"
|
| 31 |
|
|
#include "gimple.h"
|
| 32 |
|
|
#include "tree-dump.h"
|
| 33 |
|
|
#include "timevar.h"
|
| 34 |
|
|
#include "fibheap.h"
|
| 35 |
|
|
#include "hashtab.h"
|
| 36 |
|
|
#include "tree-iterator.h"
|
| 37 |
|
|
#include "alloc-pool.h"
|
| 38 |
|
|
#include "tree-pass.h"
|
| 39 |
|
|
#include "flags.h"
|
| 40 |
|
|
#include "bitmap.h"
|
| 41 |
|
|
#include "langhooks.h"
|
| 42 |
|
|
#include "cfgloop.h"
|
| 43 |
|
|
#include "params.h"
|
| 44 |
|
|
|
| 45 |
|
|
/* TODO:
|
| 46 |
|
|
1. Sinking store only using scalar promotion (IE without moving the RHS):
|
| 47 |
|
|
|
| 48 |
|
|
*q = p;
|
| 49 |
|
|
p = p + 1;
|
| 50 |
|
|
if (something)
|
| 51 |
|
|
*q = <not p>;
|
| 52 |
|
|
else
|
| 53 |
|
|
y = *q;
|
| 54 |
|
|
|
| 55 |
|
|
|
| 56 |
|
|
should become
|
| 57 |
|
|
sinktemp = p;
|
| 58 |
|
|
p = p + 1;
|
| 59 |
|
|
if (something)
|
| 60 |
|
|
*q = <not p>;
|
| 61 |
|
|
else
|
| 62 |
|
|
{
|
| 63 |
|
|
*q = sinktemp;
|
| 64 |
|
|
y = *q
|
| 65 |
|
|
}
|
| 66 |
|
|
Store copy propagation will take care of the store elimination above.
|
| 67 |
|
|
|
| 68 |
|
|
|
| 69 |
|
|
2. Sinking using Partial Dead Code Elimination. */
|
| 70 |
|
|
|
| 71 |
|
|
|
| 72 |
|
|
static struct
|
| 73 |
|
|
{
|
| 74 |
|
|
/* The number of statements sunk down the flowgraph by code sinking. */
|
| 75 |
|
|
int sunk;
|
| 76 |
|
|
|
| 77 |
|
|
} sink_stats;
|
| 78 |
|
|
|
| 79 |
|
|
|
| 80 |
|
|
/* Given a PHI, and one of its arguments (DEF), find the edge for
|
| 81 |
|
|
that argument and return it. If the argument occurs twice in the PHI node,
|
| 82 |
|
|
we return NULL. */
|
| 83 |
|
|
|
| 84 |
|
|
static basic_block
|
| 85 |
|
|
find_bb_for_arg (gimple phi, tree def)
|
| 86 |
|
|
{
|
| 87 |
|
|
size_t i;
|
| 88 |
|
|
bool foundone = false;
|
| 89 |
|
|
basic_block result = NULL;
|
| 90 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
| 91 |
|
|
if (PHI_ARG_DEF (phi, i) == def)
|
| 92 |
|
|
{
|
| 93 |
|
|
if (foundone)
|
| 94 |
|
|
return NULL;
|
| 95 |
|
|
foundone = true;
|
| 96 |
|
|
result = gimple_phi_arg_edge (phi, i)->src;
|
| 97 |
|
|
}
|
| 98 |
|
|
return result;
|
| 99 |
|
|
}
|
| 100 |
|
|
|
| 101 |
|
|
/* When the first immediate use is in a statement, then return true if all
|
| 102 |
|
|
immediate uses in IMM are in the same statement.
|
| 103 |
|
|
We could also do the case where the first immediate use is in a phi node,
|
| 104 |
|
|
and all the other uses are in phis in the same basic block, but this
|
| 105 |
|
|
requires some expensive checking later (you have to make sure no def/vdef
|
| 106 |
|
|
in the statement occurs for multiple edges in the various phi nodes it's
|
| 107 |
|
|
used in, so that you only have one place you can sink it to. */
|
| 108 |
|
|
|
| 109 |
|
|
static bool
|
| 110 |
|
|
all_immediate_uses_same_place (gimple stmt)
|
| 111 |
|
|
{
|
| 112 |
|
|
gimple firstuse = NULL;
|
| 113 |
|
|
ssa_op_iter op_iter;
|
| 114 |
|
|
imm_use_iterator imm_iter;
|
| 115 |
|
|
use_operand_p use_p;
|
| 116 |
|
|
tree var;
|
| 117 |
|
|
|
| 118 |
|
|
FOR_EACH_SSA_TREE_OPERAND (var, stmt, op_iter, SSA_OP_ALL_DEFS)
|
| 119 |
|
|
{
|
| 120 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
|
| 121 |
|
|
{
|
| 122 |
|
|
if (is_gimple_debug (USE_STMT (use_p)))
|
| 123 |
|
|
continue;
|
| 124 |
|
|
if (firstuse == NULL)
|
| 125 |
|
|
firstuse = USE_STMT (use_p);
|
| 126 |
|
|
else
|
| 127 |
|
|
if (firstuse != USE_STMT (use_p))
|
| 128 |
|
|
return false;
|
| 129 |
|
|
}
|
| 130 |
|
|
}
|
| 131 |
|
|
|
| 132 |
|
|
return true;
|
| 133 |
|
|
}
|
| 134 |
|
|
|
| 135 |
|
|
/* Some global stores don't necessarily have VDEF's of global variables,
|
| 136 |
|
|
but we still must avoid moving them around. */
|
| 137 |
|
|
|
| 138 |
|
|
bool
|
| 139 |
|
|
is_hidden_global_store (gimple stmt)
|
| 140 |
|
|
{
|
| 141 |
|
|
/* Check virtual definitions. If we get here, the only virtual
|
| 142 |
|
|
definitions we should see are those generated by assignment or call
|
| 143 |
|
|
statements. */
|
| 144 |
|
|
if (gimple_vdef (stmt))
|
| 145 |
|
|
{
|
| 146 |
|
|
tree lhs;
|
| 147 |
|
|
|
| 148 |
|
|
gcc_assert (is_gimple_assign (stmt) || is_gimple_call (stmt));
|
| 149 |
|
|
|
| 150 |
|
|
/* Note that we must not check the individual virtual operands
|
| 151 |
|
|
here. In particular, if this is an aliased store, we could
|
| 152 |
|
|
end up with something like the following (SSA notation
|
| 153 |
|
|
redacted for brevity):
|
| 154 |
|
|
|
| 155 |
|
|
foo (int *p, int i)
|
| 156 |
|
|
{
|
| 157 |
|
|
int x;
|
| 158 |
|
|
p_1 = (i_2 > 3) ? &x : p;
|
| 159 |
|
|
|
| 160 |
|
|
# x_4 = VDEF <x_3>
|
| 161 |
|
|
*p_1 = 5;
|
| 162 |
|
|
|
| 163 |
|
|
return 2;
|
| 164 |
|
|
}
|
| 165 |
|
|
|
| 166 |
|
|
Notice that the store to '*p_1' should be preserved, if we
|
| 167 |
|
|
were to check the virtual definitions in that store, we would
|
| 168 |
|
|
not mark it needed. This is because 'x' is not a global
|
| 169 |
|
|
variable.
|
| 170 |
|
|
|
| 171 |
|
|
Therefore, we check the base address of the LHS. If the
|
| 172 |
|
|
address is a pointer, we check if its name tag or symbol tag is
|
| 173 |
|
|
a global variable. Otherwise, we check if the base variable
|
| 174 |
|
|
is a global. */
|
| 175 |
|
|
lhs = gimple_get_lhs (stmt);
|
| 176 |
|
|
|
| 177 |
|
|
if (REFERENCE_CLASS_P (lhs))
|
| 178 |
|
|
lhs = get_base_address (lhs);
|
| 179 |
|
|
|
| 180 |
|
|
if (lhs == NULL_TREE)
|
| 181 |
|
|
{
|
| 182 |
|
|
/* If LHS is NULL, it means that we couldn't get the base
|
| 183 |
|
|
address of the reference. In which case, we should not
|
| 184 |
|
|
move this store. */
|
| 185 |
|
|
return true;
|
| 186 |
|
|
}
|
| 187 |
|
|
else if (DECL_P (lhs))
|
| 188 |
|
|
{
|
| 189 |
|
|
/* If the store is to a global symbol, we need to keep it. */
|
| 190 |
|
|
if (is_global_var (lhs))
|
| 191 |
|
|
return true;
|
| 192 |
|
|
|
| 193 |
|
|
}
|
| 194 |
|
|
else if (INDIRECT_REF_P (lhs)
|
| 195 |
|
|
|| TREE_CODE (lhs) == MEM_REF
|
| 196 |
|
|
|| TREE_CODE (lhs) == TARGET_MEM_REF)
|
| 197 |
|
|
return ptr_deref_may_alias_global_p (TREE_OPERAND (lhs, 0));
|
| 198 |
|
|
else if (CONSTANT_CLASS_P (lhs))
|
| 199 |
|
|
return true;
|
| 200 |
|
|
else
|
| 201 |
|
|
gcc_unreachable ();
|
| 202 |
|
|
}
|
| 203 |
|
|
|
| 204 |
|
|
return false;
|
| 205 |
|
|
}
|
| 206 |
|
|
|
| 207 |
|
|
/* Find the nearest common dominator of all of the immediate uses in IMM. */
|
| 208 |
|
|
|
| 209 |
|
|
static basic_block
|
| 210 |
|
|
nearest_common_dominator_of_uses (gimple stmt, bool *debug_stmts)
|
| 211 |
|
|
{
|
| 212 |
|
|
bitmap blocks = BITMAP_ALLOC (NULL);
|
| 213 |
|
|
basic_block commondom;
|
| 214 |
|
|
unsigned int j;
|
| 215 |
|
|
bitmap_iterator bi;
|
| 216 |
|
|
ssa_op_iter op_iter;
|
| 217 |
|
|
imm_use_iterator imm_iter;
|
| 218 |
|
|
use_operand_p use_p;
|
| 219 |
|
|
tree var;
|
| 220 |
|
|
|
| 221 |
|
|
bitmap_clear (blocks);
|
| 222 |
|
|
FOR_EACH_SSA_TREE_OPERAND (var, stmt, op_iter, SSA_OP_ALL_DEFS)
|
| 223 |
|
|
{
|
| 224 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
|
| 225 |
|
|
{
|
| 226 |
|
|
gimple usestmt = USE_STMT (use_p);
|
| 227 |
|
|
basic_block useblock;
|
| 228 |
|
|
|
| 229 |
|
|
if (gimple_code (usestmt) == GIMPLE_PHI)
|
| 230 |
|
|
{
|
| 231 |
|
|
int idx = PHI_ARG_INDEX_FROM_USE (use_p);
|
| 232 |
|
|
|
| 233 |
|
|
useblock = gimple_phi_arg_edge (usestmt, idx)->src;
|
| 234 |
|
|
}
|
| 235 |
|
|
else if (is_gimple_debug (usestmt))
|
| 236 |
|
|
{
|
| 237 |
|
|
*debug_stmts = true;
|
| 238 |
|
|
continue;
|
| 239 |
|
|
}
|
| 240 |
|
|
else
|
| 241 |
|
|
{
|
| 242 |
|
|
useblock = gimple_bb (usestmt);
|
| 243 |
|
|
}
|
| 244 |
|
|
|
| 245 |
|
|
/* Short circuit. Nothing dominates the entry block. */
|
| 246 |
|
|
if (useblock == ENTRY_BLOCK_PTR)
|
| 247 |
|
|
{
|
| 248 |
|
|
BITMAP_FREE (blocks);
|
| 249 |
|
|
return NULL;
|
| 250 |
|
|
}
|
| 251 |
|
|
bitmap_set_bit (blocks, useblock->index);
|
| 252 |
|
|
}
|
| 253 |
|
|
}
|
| 254 |
|
|
commondom = BASIC_BLOCK (bitmap_first_set_bit (blocks));
|
| 255 |
|
|
EXECUTE_IF_SET_IN_BITMAP (blocks, 0, j, bi)
|
| 256 |
|
|
commondom = nearest_common_dominator (CDI_DOMINATORS, commondom,
|
| 257 |
|
|
BASIC_BLOCK (j));
|
| 258 |
|
|
BITMAP_FREE (blocks);
|
| 259 |
|
|
return commondom;
|
| 260 |
|
|
}
|
| 261 |
|
|
|
| 262 |
|
|
/* Given EARLY_BB and LATE_BB, two blocks in a path through the dominator
|
| 263 |
|
|
tree, return the best basic block between them (inclusive) to place
|
| 264 |
|
|
statements.
|
| 265 |
|
|
|
| 266 |
|
|
We want the most control dependent block in the shallowest loop nest.
|
| 267 |
|
|
|
| 268 |
|
|
If the resulting block is in a shallower loop nest, then use it. Else
|
| 269 |
|
|
only use the resulting block if it has significantly lower execution
|
| 270 |
|
|
frequency than EARLY_BB to avoid gratutious statement movement. We
|
| 271 |
|
|
consider statements with VOPS more desirable to move.
|
| 272 |
|
|
|
| 273 |
|
|
This pass would obviously benefit from PDO as it utilizes block
|
| 274 |
|
|
frequencies. It would also benefit from recomputing frequencies
|
| 275 |
|
|
if profile data is not available since frequencies often get out
|
| 276 |
|
|
of sync with reality. */
|
| 277 |
|
|
|
| 278 |
|
|
static basic_block
|
| 279 |
|
|
select_best_block (basic_block early_bb,
|
| 280 |
|
|
basic_block late_bb,
|
| 281 |
|
|
gimple stmt)
|
| 282 |
|
|
{
|
| 283 |
|
|
basic_block best_bb = late_bb;
|
| 284 |
|
|
basic_block temp_bb = late_bb;
|
| 285 |
|
|
int threshold;
|
| 286 |
|
|
|
| 287 |
|
|
while (temp_bb != early_bb)
|
| 288 |
|
|
{
|
| 289 |
|
|
/* If we've moved into a lower loop nest, then that becomes
|
| 290 |
|
|
our best block. */
|
| 291 |
|
|
if (temp_bb->loop_depth < best_bb->loop_depth)
|
| 292 |
|
|
best_bb = temp_bb;
|
| 293 |
|
|
|
| 294 |
|
|
/* Walk up the dominator tree, hopefully we'll find a shallower
|
| 295 |
|
|
loop nest. */
|
| 296 |
|
|
temp_bb = get_immediate_dominator (CDI_DOMINATORS, temp_bb);
|
| 297 |
|
|
}
|
| 298 |
|
|
|
| 299 |
|
|
/* If we found a shallower loop nest, then we always consider that
|
| 300 |
|
|
a win. This will always give us the most control dependent block
|
| 301 |
|
|
within that loop nest. */
|
| 302 |
|
|
if (best_bb->loop_depth < early_bb->loop_depth)
|
| 303 |
|
|
return best_bb;
|
| 304 |
|
|
|
| 305 |
|
|
/* Get the sinking threshold. If the statement to be moved has memory
|
| 306 |
|
|
operands, then increase the threshold by 7% as those are even more
|
| 307 |
|
|
profitable to avoid, clamping at 100%. */
|
| 308 |
|
|
threshold = PARAM_VALUE (PARAM_SINK_FREQUENCY_THRESHOLD);
|
| 309 |
|
|
if (gimple_vuse (stmt) || gimple_vdef (stmt))
|
| 310 |
|
|
{
|
| 311 |
|
|
threshold += 7;
|
| 312 |
|
|
if (threshold > 100)
|
| 313 |
|
|
threshold = 100;
|
| 314 |
|
|
}
|
| 315 |
|
|
|
| 316 |
|
|
/* If BEST_BB is at the same nesting level, then require it to have
|
| 317 |
|
|
significantly lower execution frequency to avoid gratutious movement. */
|
| 318 |
|
|
if (best_bb->loop_depth == early_bb->loop_depth
|
| 319 |
|
|
&& best_bb->frequency < (early_bb->frequency * threshold / 100.0))
|
| 320 |
|
|
return best_bb;
|
| 321 |
|
|
|
| 322 |
|
|
/* No better block found, so return EARLY_BB, which happens to be the
|
| 323 |
|
|
statement's original block. */
|
| 324 |
|
|
return early_bb;
|
| 325 |
|
|
}
|
| 326 |
|
|
|
| 327 |
|
|
/* Given a statement (STMT) and the basic block it is currently in (FROMBB),
|
| 328 |
|
|
determine the location to sink the statement to, if any.
|
| 329 |
|
|
Returns true if there is such location; in that case, TOGSI points to the
|
| 330 |
|
|
statement before that STMT should be moved. */
|
| 331 |
|
|
|
| 332 |
|
|
static bool
|
| 333 |
|
|
statement_sink_location (gimple stmt, basic_block frombb,
|
| 334 |
|
|
gimple_stmt_iterator *togsi)
|
| 335 |
|
|
{
|
| 336 |
|
|
gimple use;
|
| 337 |
|
|
use_operand_p one_use = NULL_USE_OPERAND_P;
|
| 338 |
|
|
basic_block sinkbb;
|
| 339 |
|
|
use_operand_p use_p;
|
| 340 |
|
|
def_operand_p def_p;
|
| 341 |
|
|
ssa_op_iter iter;
|
| 342 |
|
|
imm_use_iterator imm_iter;
|
| 343 |
|
|
|
| 344 |
|
|
/* We only can sink assignments. */
|
| 345 |
|
|
if (!is_gimple_assign (stmt))
|
| 346 |
|
|
return false;
|
| 347 |
|
|
|
| 348 |
|
|
/* We only can sink stmts with a single definition. */
|
| 349 |
|
|
def_p = single_ssa_def_operand (stmt, SSA_OP_ALL_DEFS);
|
| 350 |
|
|
if (def_p == NULL_DEF_OPERAND_P)
|
| 351 |
|
|
return false;
|
| 352 |
|
|
|
| 353 |
|
|
/* Return if there are no immediate uses of this stmt. */
|
| 354 |
|
|
if (has_zero_uses (DEF_FROM_PTR (def_p)))
|
| 355 |
|
|
return false;
|
| 356 |
|
|
|
| 357 |
|
|
/* There are a few classes of things we can't or don't move, some because we
|
| 358 |
|
|
don't have code to handle it, some because it's not profitable and some
|
| 359 |
|
|
because it's not legal.
|
| 360 |
|
|
|
| 361 |
|
|
We can't sink things that may be global stores, at least not without
|
| 362 |
|
|
calculating a lot more information, because we may cause it to no longer
|
| 363 |
|
|
be seen by an external routine that needs it depending on where it gets
|
| 364 |
|
|
moved to.
|
| 365 |
|
|
|
| 366 |
|
|
We don't want to sink loads from memory.
|
| 367 |
|
|
|
| 368 |
|
|
We can't sink statements that end basic blocks without splitting the
|
| 369 |
|
|
incoming edge for the sink location to place it there.
|
| 370 |
|
|
|
| 371 |
|
|
We can't sink statements that have volatile operands.
|
| 372 |
|
|
|
| 373 |
|
|
We don't want to sink dead code, so anything with 0 immediate uses is not
|
| 374 |
|
|
sunk.
|
| 375 |
|
|
|
| 376 |
|
|
Don't sink BLKmode assignments if current function has any local explicit
|
| 377 |
|
|
register variables, as BLKmode assignments may involve memcpy or memset
|
| 378 |
|
|
calls or, on some targets, inline expansion thereof that sometimes need
|
| 379 |
|
|
to use specific hard registers.
|
| 380 |
|
|
|
| 381 |
|
|
*/
|
| 382 |
|
|
if (stmt_ends_bb_p (stmt)
|
| 383 |
|
|
|| gimple_has_side_effects (stmt)
|
| 384 |
|
|
|| gimple_has_volatile_ops (stmt)
|
| 385 |
|
|
|| (gimple_vuse (stmt) && !gimple_vdef (stmt))
|
| 386 |
|
|
|| (cfun->has_local_explicit_reg_vars
|
| 387 |
|
|
&& TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt))) == BLKmode))
|
| 388 |
|
|
return false;
|
| 389 |
|
|
|
| 390 |
|
|
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (DEF_FROM_PTR (def_p)))
|
| 391 |
|
|
return false;
|
| 392 |
|
|
|
| 393 |
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
|
| 394 |
|
|
{
|
| 395 |
|
|
tree use = USE_FROM_PTR (use_p);
|
| 396 |
|
|
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use))
|
| 397 |
|
|
return false;
|
| 398 |
|
|
}
|
| 399 |
|
|
|
| 400 |
|
|
use = NULL;
|
| 401 |
|
|
|
| 402 |
|
|
/* If stmt is a store the one and only use needs to be the VOP
|
| 403 |
|
|
merging PHI node. */
|
| 404 |
|
|
if (gimple_vdef (stmt))
|
| 405 |
|
|
{
|
| 406 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
|
| 407 |
|
|
{
|
| 408 |
|
|
gimple use_stmt = USE_STMT (use_p);
|
| 409 |
|
|
|
| 410 |
|
|
/* A killing definition is not a use. */
|
| 411 |
|
|
if (gimple_assign_single_p (use_stmt)
|
| 412 |
|
|
&& gimple_vdef (use_stmt)
|
| 413 |
|
|
&& operand_equal_p (gimple_assign_lhs (stmt),
|
| 414 |
|
|
gimple_assign_lhs (use_stmt), 0))
|
| 415 |
|
|
continue;
|
| 416 |
|
|
|
| 417 |
|
|
if (gimple_code (use_stmt) != GIMPLE_PHI)
|
| 418 |
|
|
return false;
|
| 419 |
|
|
|
| 420 |
|
|
if (use
|
| 421 |
|
|
&& use != use_stmt)
|
| 422 |
|
|
return false;
|
| 423 |
|
|
|
| 424 |
|
|
use = use_stmt;
|
| 425 |
|
|
}
|
| 426 |
|
|
if (!use)
|
| 427 |
|
|
return false;
|
| 428 |
|
|
}
|
| 429 |
|
|
/* If all the immediate uses are not in the same place, find the nearest
|
| 430 |
|
|
common dominator of all the immediate uses. For PHI nodes, we have to
|
| 431 |
|
|
find the nearest common dominator of all of the predecessor blocks, since
|
| 432 |
|
|
that is where insertion would have to take place. */
|
| 433 |
|
|
else if (!all_immediate_uses_same_place (stmt))
|
| 434 |
|
|
{
|
| 435 |
|
|
bool debug_stmts = false;
|
| 436 |
|
|
basic_block commondom = nearest_common_dominator_of_uses (stmt,
|
| 437 |
|
|
&debug_stmts);
|
| 438 |
|
|
|
| 439 |
|
|
if (commondom == frombb)
|
| 440 |
|
|
return false;
|
| 441 |
|
|
|
| 442 |
|
|
/* Our common dominator has to be dominated by frombb in order to be a
|
| 443 |
|
|
trivially safe place to put this statement, since it has multiple
|
| 444 |
|
|
uses. */
|
| 445 |
|
|
if (!dominated_by_p (CDI_DOMINATORS, commondom, frombb))
|
| 446 |
|
|
return false;
|
| 447 |
|
|
|
| 448 |
|
|
commondom = select_best_block (frombb, commondom, stmt);
|
| 449 |
|
|
|
| 450 |
|
|
if (commondom == frombb)
|
| 451 |
|
|
return false;
|
| 452 |
|
|
|
| 453 |
|
|
*togsi = gsi_after_labels (commondom);
|
| 454 |
|
|
|
| 455 |
|
|
return true;
|
| 456 |
|
|
}
|
| 457 |
|
|
else
|
| 458 |
|
|
{
|
| 459 |
|
|
FOR_EACH_IMM_USE_FAST (one_use, imm_iter, DEF_FROM_PTR (def_p))
|
| 460 |
|
|
{
|
| 461 |
|
|
if (is_gimple_debug (USE_STMT (one_use)))
|
| 462 |
|
|
continue;
|
| 463 |
|
|
break;
|
| 464 |
|
|
}
|
| 465 |
|
|
use = USE_STMT (one_use);
|
| 466 |
|
|
|
| 467 |
|
|
if (gimple_code (use) != GIMPLE_PHI)
|
| 468 |
|
|
{
|
| 469 |
|
|
sinkbb = gimple_bb (use);
|
| 470 |
|
|
sinkbb = select_best_block (frombb, gimple_bb (use), stmt);
|
| 471 |
|
|
|
| 472 |
|
|
if (sinkbb == frombb)
|
| 473 |
|
|
return false;
|
| 474 |
|
|
|
| 475 |
|
|
*togsi = gsi_for_stmt (use);
|
| 476 |
|
|
|
| 477 |
|
|
return true;
|
| 478 |
|
|
}
|
| 479 |
|
|
}
|
| 480 |
|
|
|
| 481 |
|
|
sinkbb = find_bb_for_arg (use, DEF_FROM_PTR (def_p));
|
| 482 |
|
|
|
| 483 |
|
|
/* This can happen if there are multiple uses in a PHI. */
|
| 484 |
|
|
if (!sinkbb)
|
| 485 |
|
|
return false;
|
| 486 |
|
|
|
| 487 |
|
|
sinkbb = select_best_block (frombb, sinkbb, stmt);
|
| 488 |
|
|
if (!sinkbb || sinkbb == frombb)
|
| 489 |
|
|
return false;
|
| 490 |
|
|
|
| 491 |
|
|
/* If the latch block is empty, don't make it non-empty by sinking
|
| 492 |
|
|
something into it. */
|
| 493 |
|
|
if (sinkbb == frombb->loop_father->latch
|
| 494 |
|
|
&& empty_block_p (sinkbb))
|
| 495 |
|
|
return false;
|
| 496 |
|
|
|
| 497 |
|
|
*togsi = gsi_after_labels (sinkbb);
|
| 498 |
|
|
|
| 499 |
|
|
return true;
|
| 500 |
|
|
}
|
| 501 |
|
|
|
| 502 |
|
|
/* Perform code sinking on BB */
|
| 503 |
|
|
|
| 504 |
|
|
static void
|
| 505 |
|
|
sink_code_in_bb (basic_block bb)
|
| 506 |
|
|
{
|
| 507 |
|
|
basic_block son;
|
| 508 |
|
|
gimple_stmt_iterator gsi;
|
| 509 |
|
|
edge_iterator ei;
|
| 510 |
|
|
edge e;
|
| 511 |
|
|
bool last = true;
|
| 512 |
|
|
|
| 513 |
|
|
/* If this block doesn't dominate anything, there can't be any place to sink
|
| 514 |
|
|
the statements to. */
|
| 515 |
|
|
if (first_dom_son (CDI_DOMINATORS, bb) == NULL)
|
| 516 |
|
|
goto earlyout;
|
| 517 |
|
|
|
| 518 |
|
|
/* We can't move things across abnormal edges, so don't try. */
|
| 519 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 520 |
|
|
if (e->flags & EDGE_ABNORMAL)
|
| 521 |
|
|
goto earlyout;
|
| 522 |
|
|
|
| 523 |
|
|
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
|
| 524 |
|
|
{
|
| 525 |
|
|
gimple stmt = gsi_stmt (gsi);
|
| 526 |
|
|
gimple_stmt_iterator togsi;
|
| 527 |
|
|
|
| 528 |
|
|
if (!statement_sink_location (stmt, bb, &togsi))
|
| 529 |
|
|
{
|
| 530 |
|
|
if (!gsi_end_p (gsi))
|
| 531 |
|
|
gsi_prev (&gsi);
|
| 532 |
|
|
last = false;
|
| 533 |
|
|
continue;
|
| 534 |
|
|
}
|
| 535 |
|
|
if (dump_file)
|
| 536 |
|
|
{
|
| 537 |
|
|
fprintf (dump_file, "Sinking ");
|
| 538 |
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS);
|
| 539 |
|
|
fprintf (dump_file, " from bb %d to bb %d\n",
|
| 540 |
|
|
bb->index, (gsi_bb (togsi))->index);
|
| 541 |
|
|
}
|
| 542 |
|
|
|
| 543 |
|
|
/* Update virtual operands of statements in the path we
|
| 544 |
|
|
do not sink to. */
|
| 545 |
|
|
if (gimple_vdef (stmt))
|
| 546 |
|
|
{
|
| 547 |
|
|
imm_use_iterator iter;
|
| 548 |
|
|
use_operand_p use_p;
|
| 549 |
|
|
gimple vuse_stmt;
|
| 550 |
|
|
|
| 551 |
|
|
FOR_EACH_IMM_USE_STMT (vuse_stmt, iter, gimple_vdef (stmt))
|
| 552 |
|
|
if (gimple_code (vuse_stmt) != GIMPLE_PHI)
|
| 553 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
|
| 554 |
|
|
SET_USE (use_p, gimple_vuse (stmt));
|
| 555 |
|
|
}
|
| 556 |
|
|
|
| 557 |
|
|
/* If this is the end of the basic block, we need to insert at the end
|
| 558 |
|
|
of the basic block. */
|
| 559 |
|
|
if (gsi_end_p (togsi))
|
| 560 |
|
|
gsi_move_to_bb_end (&gsi, gsi_bb (togsi));
|
| 561 |
|
|
else
|
| 562 |
|
|
gsi_move_before (&gsi, &togsi);
|
| 563 |
|
|
|
| 564 |
|
|
sink_stats.sunk++;
|
| 565 |
|
|
|
| 566 |
|
|
/* If we've just removed the last statement of the BB, the
|
| 567 |
|
|
gsi_end_p() test below would fail, but gsi_prev() would have
|
| 568 |
|
|
succeeded, and we want it to succeed. So we keep track of
|
| 569 |
|
|
whether we're at the last statement and pick up the new last
|
| 570 |
|
|
statement. */
|
| 571 |
|
|
if (last)
|
| 572 |
|
|
{
|
| 573 |
|
|
gsi = gsi_last_bb (bb);
|
| 574 |
|
|
continue;
|
| 575 |
|
|
}
|
| 576 |
|
|
|
| 577 |
|
|
last = false;
|
| 578 |
|
|
if (!gsi_end_p (gsi))
|
| 579 |
|
|
gsi_prev (&gsi);
|
| 580 |
|
|
|
| 581 |
|
|
}
|
| 582 |
|
|
earlyout:
|
| 583 |
|
|
for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
|
| 584 |
|
|
son;
|
| 585 |
|
|
son = next_dom_son (CDI_POST_DOMINATORS, son))
|
| 586 |
|
|
{
|
| 587 |
|
|
sink_code_in_bb (son);
|
| 588 |
|
|
}
|
| 589 |
|
|
}
|
| 590 |
|
|
|
| 591 |
|
|
/* Perform code sinking.
|
| 592 |
|
|
This moves code down the flowgraph when we know it would be
|
| 593 |
|
|
profitable to do so, or it wouldn't increase the number of
|
| 594 |
|
|
executions of the statement.
|
| 595 |
|
|
|
| 596 |
|
|
IE given
|
| 597 |
|
|
|
| 598 |
|
|
a_1 = b + c;
|
| 599 |
|
|
if (<something>)
|
| 600 |
|
|
{
|
| 601 |
|
|
}
|
| 602 |
|
|
else
|
| 603 |
|
|
{
|
| 604 |
|
|
foo (&b, &c);
|
| 605 |
|
|
a_5 = b + c;
|
| 606 |
|
|
}
|
| 607 |
|
|
a_6 = PHI (a_5, a_1);
|
| 608 |
|
|
USE a_6.
|
| 609 |
|
|
|
| 610 |
|
|
we'll transform this into:
|
| 611 |
|
|
|
| 612 |
|
|
if (<something>)
|
| 613 |
|
|
{
|
| 614 |
|
|
a_1 = b + c;
|
| 615 |
|
|
}
|
| 616 |
|
|
else
|
| 617 |
|
|
{
|
| 618 |
|
|
foo (&b, &c);
|
| 619 |
|
|
a_5 = b + c;
|
| 620 |
|
|
}
|
| 621 |
|
|
a_6 = PHI (a_5, a_1);
|
| 622 |
|
|
USE a_6.
|
| 623 |
|
|
|
| 624 |
|
|
Note that this reduces the number of computations of a = b + c to 1
|
| 625 |
|
|
when we take the else edge, instead of 2.
|
| 626 |
|
|
*/
|
| 627 |
|
|
static void
|
| 628 |
|
|
execute_sink_code (void)
|
| 629 |
|
|
{
|
| 630 |
|
|
loop_optimizer_init (LOOPS_NORMAL);
|
| 631 |
|
|
|
| 632 |
|
|
connect_infinite_loops_to_exit ();
|
| 633 |
|
|
memset (&sink_stats, 0, sizeof (sink_stats));
|
| 634 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
| 635 |
|
|
calculate_dominance_info (CDI_POST_DOMINATORS);
|
| 636 |
|
|
sink_code_in_bb (EXIT_BLOCK_PTR);
|
| 637 |
|
|
statistics_counter_event (cfun, "Sunk statements", sink_stats.sunk);
|
| 638 |
|
|
free_dominance_info (CDI_POST_DOMINATORS);
|
| 639 |
|
|
remove_fake_exit_edges ();
|
| 640 |
|
|
loop_optimizer_finalize ();
|
| 641 |
|
|
}
|
| 642 |
|
|
|
| 643 |
|
|
/* Gate and execute functions for PRE. */
|
| 644 |
|
|
|
| 645 |
|
|
static unsigned int
|
| 646 |
|
|
do_sink (void)
|
| 647 |
|
|
{
|
| 648 |
|
|
execute_sink_code ();
|
| 649 |
|
|
return 0;
|
| 650 |
|
|
}
|
| 651 |
|
|
|
| 652 |
|
|
static bool
|
| 653 |
|
|
gate_sink (void)
|
| 654 |
|
|
{
|
| 655 |
|
|
return flag_tree_sink != 0;
|
| 656 |
|
|
}
|
| 657 |
|
|
|
| 658 |
|
|
struct gimple_opt_pass pass_sink_code =
|
| 659 |
|
|
{
|
| 660 |
|
|
{
|
| 661 |
|
|
GIMPLE_PASS,
|
| 662 |
|
|
"sink", /* name */
|
| 663 |
|
|
gate_sink, /* gate */
|
| 664 |
|
|
do_sink, /* execute */
|
| 665 |
|
|
NULL, /* sub */
|
| 666 |
|
|
NULL, /* next */
|
| 667 |
|
|
0, /* static_pass_number */
|
| 668 |
|
|
TV_TREE_SINK, /* tv_id */
|
| 669 |
|
|
PROP_no_crit_edges | PROP_cfg
|
| 670 |
|
|
| PROP_ssa, /* properties_required */
|
| 671 |
|
|
0, /* properties_provided */
|
| 672 |
|
|
0, /* properties_destroyed */
|
| 673 |
|
|
0, /* todo_flags_start */
|
| 674 |
|
|
TODO_update_ssa
|
| 675 |
|
|
| TODO_verify_ssa
|
| 676 |
|
|
| TODO_verify_flow
|
| 677 |
|
|
| TODO_ggc_collect /* todo_flags_finish */
|
| 678 |
|
|
}
|
| 679 |
|
|
};
|