| 1 |
684 |
jeremybenn |
/* Tree based points-to analysis
|
| 2 |
|
|
Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
Contributed by Daniel Berlin <dberlin@dberlin.org>
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GCC.
|
| 7 |
|
|
|
| 8 |
|
|
GCC is free software; you can redistribute it and/or modify
|
| 9 |
|
|
under the terms of the GNU General Public License as published by
|
| 10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
| 11 |
|
|
(at your option) any later version.
|
| 12 |
|
|
|
| 13 |
|
|
GCC is distributed in the hope that it will be useful,
|
| 14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 16 |
|
|
GNU General Public License for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 20 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
#include "config.h"
|
| 23 |
|
|
#include "system.h"
|
| 24 |
|
|
#include "coretypes.h"
|
| 25 |
|
|
#include "tm.h"
|
| 26 |
|
|
#include "ggc.h"
|
| 27 |
|
|
#include "obstack.h"
|
| 28 |
|
|
#include "bitmap.h"
|
| 29 |
|
|
#include "flags.h"
|
| 30 |
|
|
#include "basic-block.h"
|
| 31 |
|
|
#include "output.h"
|
| 32 |
|
|
#include "tree.h"
|
| 33 |
|
|
#include "tree-flow.h"
|
| 34 |
|
|
#include "tree-inline.h"
|
| 35 |
|
|
#include "diagnostic-core.h"
|
| 36 |
|
|
#include "gimple.h"
|
| 37 |
|
|
#include "hashtab.h"
|
| 38 |
|
|
#include "function.h"
|
| 39 |
|
|
#include "cgraph.h"
|
| 40 |
|
|
#include "tree-pass.h"
|
| 41 |
|
|
#include "timevar.h"
|
| 42 |
|
|
#include "alloc-pool.h"
|
| 43 |
|
|
#include "splay-tree.h"
|
| 44 |
|
|
#include "params.h"
|
| 45 |
|
|
#include "cgraph.h"
|
| 46 |
|
|
#include "alias.h"
|
| 47 |
|
|
#include "pointer-set.h"
|
| 48 |
|
|
|
| 49 |
|
|
/* The idea behind this analyzer is to generate set constraints from the
|
| 50 |
|
|
program, then solve the resulting constraints in order to generate the
|
| 51 |
|
|
points-to sets.
|
| 52 |
|
|
|
| 53 |
|
|
Set constraints are a way of modeling program analysis problems that
|
| 54 |
|
|
involve sets. They consist of an inclusion constraint language,
|
| 55 |
|
|
describing the variables (each variable is a set) and operations that
|
| 56 |
|
|
are involved on the variables, and a set of rules that derive facts
|
| 57 |
|
|
from these operations. To solve a system of set constraints, you derive
|
| 58 |
|
|
all possible facts under the rules, which gives you the correct sets
|
| 59 |
|
|
as a consequence.
|
| 60 |
|
|
|
| 61 |
|
|
See "Efficient Field-sensitive pointer analysis for C" by "David
|
| 62 |
|
|
J. Pearce and Paul H. J. Kelly and Chris Hankin, at
|
| 63 |
|
|
http://citeseer.ist.psu.edu/pearce04efficient.html
|
| 64 |
|
|
|
| 65 |
|
|
Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
|
| 66 |
|
|
of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
|
| 67 |
|
|
http://citeseer.ist.psu.edu/heintze01ultrafast.html
|
| 68 |
|
|
|
| 69 |
|
|
There are three types of real constraint expressions, DEREF,
|
| 70 |
|
|
ADDRESSOF, and SCALAR. Each constraint expression consists
|
| 71 |
|
|
of a constraint type, a variable, and an offset.
|
| 72 |
|
|
|
| 73 |
|
|
SCALAR is a constraint expression type used to represent x, whether
|
| 74 |
|
|
it appears on the LHS or the RHS of a statement.
|
| 75 |
|
|
DEREF is a constraint expression type used to represent *x, whether
|
| 76 |
|
|
it appears on the LHS or the RHS of a statement.
|
| 77 |
|
|
ADDRESSOF is a constraint expression used to represent &x, whether
|
| 78 |
|
|
it appears on the LHS or the RHS of a statement.
|
| 79 |
|
|
|
| 80 |
|
|
Each pointer variable in the program is assigned an integer id, and
|
| 81 |
|
|
each field of a structure variable is assigned an integer id as well.
|
| 82 |
|
|
|
| 83 |
|
|
Structure variables are linked to their list of fields through a "next
|
| 84 |
|
|
field" in each variable that points to the next field in offset
|
| 85 |
|
|
order.
|
| 86 |
|
|
Each variable for a structure field has
|
| 87 |
|
|
|
| 88 |
|
|
1. "size", that tells the size in bits of that field.
|
| 89 |
|
|
2. "fullsize, that tells the size in bits of the entire structure.
|
| 90 |
|
|
3. "offset", that tells the offset in bits from the beginning of the
|
| 91 |
|
|
structure to this field.
|
| 92 |
|
|
|
| 93 |
|
|
Thus,
|
| 94 |
|
|
struct f
|
| 95 |
|
|
{
|
| 96 |
|
|
int a;
|
| 97 |
|
|
int b;
|
| 98 |
|
|
} foo;
|
| 99 |
|
|
int *bar;
|
| 100 |
|
|
|
| 101 |
|
|
looks like
|
| 102 |
|
|
|
| 103 |
|
|
foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
|
| 104 |
|
|
foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
|
| 105 |
|
|
bar -> id 3, size 32, offset 0, fullsize 32, next NULL
|
| 106 |
|
|
|
| 107 |
|
|
|
| 108 |
|
|
In order to solve the system of set constraints, the following is
|
| 109 |
|
|
done:
|
| 110 |
|
|
|
| 111 |
|
|
1. Each constraint variable x has a solution set associated with it,
|
| 112 |
|
|
Sol(x).
|
| 113 |
|
|
|
| 114 |
|
|
2. Constraints are separated into direct, copy, and complex.
|
| 115 |
|
|
Direct constraints are ADDRESSOF constraints that require no extra
|
| 116 |
|
|
processing, such as P = &Q
|
| 117 |
|
|
Copy constraints are those of the form P = Q.
|
| 118 |
|
|
Complex constraints are all the constraints involving dereferences
|
| 119 |
|
|
and offsets (including offsetted copies).
|
| 120 |
|
|
|
| 121 |
|
|
3. All direct constraints of the form P = &Q are processed, such
|
| 122 |
|
|
that Q is added to Sol(P)
|
| 123 |
|
|
|
| 124 |
|
|
4. All complex constraints for a given constraint variable are stored in a
|
| 125 |
|
|
linked list attached to that variable's node.
|
| 126 |
|
|
|
| 127 |
|
|
5. A directed graph is built out of the copy constraints. Each
|
| 128 |
|
|
constraint variable is a node in the graph, and an edge from
|
| 129 |
|
|
Q to P is added for each copy constraint of the form P = Q
|
| 130 |
|
|
|
| 131 |
|
|
6. The graph is then walked, and solution sets are
|
| 132 |
|
|
propagated along the copy edges, such that an edge from Q to P
|
| 133 |
|
|
causes Sol(P) <- Sol(P) union Sol(Q).
|
| 134 |
|
|
|
| 135 |
|
|
7. As we visit each node, all complex constraints associated with
|
| 136 |
|
|
that node are processed by adding appropriate copy edges to the graph, or the
|
| 137 |
|
|
appropriate variables to the solution set.
|
| 138 |
|
|
|
| 139 |
|
|
8. The process of walking the graph is iterated until no solution
|
| 140 |
|
|
sets change.
|
| 141 |
|
|
|
| 142 |
|
|
Prior to walking the graph in steps 6 and 7, We perform static
|
| 143 |
|
|
cycle elimination on the constraint graph, as well
|
| 144 |
|
|
as off-line variable substitution.
|
| 145 |
|
|
|
| 146 |
|
|
TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
|
| 147 |
|
|
on and turned into anything), but isn't. You can just see what offset
|
| 148 |
|
|
inside the pointed-to struct it's going to access.
|
| 149 |
|
|
|
| 150 |
|
|
TODO: Constant bounded arrays can be handled as if they were structs of the
|
| 151 |
|
|
same number of elements.
|
| 152 |
|
|
|
| 153 |
|
|
TODO: Modeling heap and incoming pointers becomes much better if we
|
| 154 |
|
|
add fields to them as we discover them, which we could do.
|
| 155 |
|
|
|
| 156 |
|
|
TODO: We could handle unions, but to be honest, it's probably not
|
| 157 |
|
|
worth the pain or slowdown. */
|
| 158 |
|
|
|
| 159 |
|
|
/* IPA-PTA optimizations possible.
|
| 160 |
|
|
|
| 161 |
|
|
When the indirect function called is ANYTHING we can add disambiguation
|
| 162 |
|
|
based on the function signatures (or simply the parameter count which
|
| 163 |
|
|
is the varinfo size). We also do not need to consider functions that
|
| 164 |
|
|
do not have their address taken.
|
| 165 |
|
|
|
| 166 |
|
|
The is_global_var bit which marks escape points is overly conservative
|
| 167 |
|
|
in IPA mode. Split it to is_escape_point and is_global_var - only
|
| 168 |
|
|
externally visible globals are escape points in IPA mode. This is
|
| 169 |
|
|
also needed to fix the pt_solution_includes_global predicate
|
| 170 |
|
|
(and thus ptr_deref_may_alias_global_p).
|
| 171 |
|
|
|
| 172 |
|
|
The way we introduce DECL_PT_UID to avoid fixing up all points-to
|
| 173 |
|
|
sets in the translation unit when we copy a DECL during inlining
|
| 174 |
|
|
pessimizes precision. The advantage is that the DECL_PT_UID keeps
|
| 175 |
|
|
compile-time and memory usage overhead low - the points-to sets
|
| 176 |
|
|
do not grow or get unshared as they would during a fixup phase.
|
| 177 |
|
|
An alternative solution is to delay IPA PTA until after all
|
| 178 |
|
|
inlining transformations have been applied.
|
| 179 |
|
|
|
| 180 |
|
|
The way we propagate clobber/use information isn't optimized.
|
| 181 |
|
|
It should use a new complex constraint that properly filters
|
| 182 |
|
|
out local variables of the callee (though that would make
|
| 183 |
|
|
the sets invalid after inlining). OTOH we might as well
|
| 184 |
|
|
admit defeat to WHOPR and simply do all the clobber/use analysis
|
| 185 |
|
|
and propagation after PTA finished but before we threw away
|
| 186 |
|
|
points-to information for memory variables. WHOPR and PTA
|
| 187 |
|
|
do not play along well anyway - the whole constraint solving
|
| 188 |
|
|
would need to be done in WPA phase and it will be very interesting
|
| 189 |
|
|
to apply the results to local SSA names during LTRANS phase.
|
| 190 |
|
|
|
| 191 |
|
|
We probably should compute a per-function unit-ESCAPE solution
|
| 192 |
|
|
propagating it simply like the clobber / uses solutions. The
|
| 193 |
|
|
solution can go alongside the non-IPA espaced solution and be
|
| 194 |
|
|
used to query which vars escape the unit through a function.
|
| 195 |
|
|
|
| 196 |
|
|
We never put function decls in points-to sets so we do not
|
| 197 |
|
|
keep the set of called functions for indirect calls.
|
| 198 |
|
|
|
| 199 |
|
|
And probably more. */
|
| 200 |
|
|
|
| 201 |
|
|
static bool use_field_sensitive = true;
|
| 202 |
|
|
static int in_ipa_mode = 0;
|
| 203 |
|
|
|
| 204 |
|
|
/* Used for predecessor bitmaps. */
|
| 205 |
|
|
static bitmap_obstack predbitmap_obstack;
|
| 206 |
|
|
|
| 207 |
|
|
/* Used for points-to sets. */
|
| 208 |
|
|
static bitmap_obstack pta_obstack;
|
| 209 |
|
|
|
| 210 |
|
|
/* Used for oldsolution members of variables. */
|
| 211 |
|
|
static bitmap_obstack oldpta_obstack;
|
| 212 |
|
|
|
| 213 |
|
|
/* Used for per-solver-iteration bitmaps. */
|
| 214 |
|
|
static bitmap_obstack iteration_obstack;
|
| 215 |
|
|
|
| 216 |
|
|
static unsigned int create_variable_info_for (tree, const char *);
|
| 217 |
|
|
typedef struct constraint_graph *constraint_graph_t;
|
| 218 |
|
|
static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);
|
| 219 |
|
|
|
| 220 |
|
|
struct constraint;
|
| 221 |
|
|
typedef struct constraint *constraint_t;
|
| 222 |
|
|
|
| 223 |
|
|
DEF_VEC_P(constraint_t);
|
| 224 |
|
|
DEF_VEC_ALLOC_P(constraint_t,heap);
|
| 225 |
|
|
|
| 226 |
|
|
#define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
|
| 227 |
|
|
if (a) \
|
| 228 |
|
|
EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
|
| 229 |
|
|
|
| 230 |
|
|
static struct constraint_stats
|
| 231 |
|
|
{
|
| 232 |
|
|
unsigned int total_vars;
|
| 233 |
|
|
unsigned int nonpointer_vars;
|
| 234 |
|
|
unsigned int unified_vars_static;
|
| 235 |
|
|
unsigned int unified_vars_dynamic;
|
| 236 |
|
|
unsigned int iterations;
|
| 237 |
|
|
unsigned int num_edges;
|
| 238 |
|
|
unsigned int num_implicit_edges;
|
| 239 |
|
|
unsigned int points_to_sets_created;
|
| 240 |
|
|
} stats;
|
| 241 |
|
|
|
| 242 |
|
|
struct variable_info
|
| 243 |
|
|
{
|
| 244 |
|
|
/* ID of this variable */
|
| 245 |
|
|
unsigned int id;
|
| 246 |
|
|
|
| 247 |
|
|
/* True if this is a variable created by the constraint analysis, such as
|
| 248 |
|
|
heap variables and constraints we had to break up. */
|
| 249 |
|
|
unsigned int is_artificial_var : 1;
|
| 250 |
|
|
|
| 251 |
|
|
/* True if this is a special variable whose solution set should not be
|
| 252 |
|
|
changed. */
|
| 253 |
|
|
unsigned int is_special_var : 1;
|
| 254 |
|
|
|
| 255 |
|
|
/* True for variables whose size is not known or variable. */
|
| 256 |
|
|
unsigned int is_unknown_size_var : 1;
|
| 257 |
|
|
|
| 258 |
|
|
/* True for (sub-)fields that represent a whole variable. */
|
| 259 |
|
|
unsigned int is_full_var : 1;
|
| 260 |
|
|
|
| 261 |
|
|
/* True if this is a heap variable. */
|
| 262 |
|
|
unsigned int is_heap_var : 1;
|
| 263 |
|
|
|
| 264 |
|
|
/* True if this field may contain pointers. */
|
| 265 |
|
|
unsigned int may_have_pointers : 1;
|
| 266 |
|
|
|
| 267 |
|
|
/* True if this field has only restrict qualified pointers. */
|
| 268 |
|
|
unsigned int only_restrict_pointers : 1;
|
| 269 |
|
|
|
| 270 |
|
|
/* True if this represents a global variable. */
|
| 271 |
|
|
unsigned int is_global_var : 1;
|
| 272 |
|
|
|
| 273 |
|
|
/* True if this represents a IPA function info. */
|
| 274 |
|
|
unsigned int is_fn_info : 1;
|
| 275 |
|
|
|
| 276 |
|
|
/* A link to the variable for the next field in this structure. */
|
| 277 |
|
|
struct variable_info *next;
|
| 278 |
|
|
|
| 279 |
|
|
/* Offset of this variable, in bits, from the base variable */
|
| 280 |
|
|
unsigned HOST_WIDE_INT offset;
|
| 281 |
|
|
|
| 282 |
|
|
/* Size of the variable, in bits. */
|
| 283 |
|
|
unsigned HOST_WIDE_INT size;
|
| 284 |
|
|
|
| 285 |
|
|
/* Full size of the base variable, in bits. */
|
| 286 |
|
|
unsigned HOST_WIDE_INT fullsize;
|
| 287 |
|
|
|
| 288 |
|
|
/* Name of this variable */
|
| 289 |
|
|
const char *name;
|
| 290 |
|
|
|
| 291 |
|
|
/* Tree that this variable is associated with. */
|
| 292 |
|
|
tree decl;
|
| 293 |
|
|
|
| 294 |
|
|
/* Points-to set for this variable. */
|
| 295 |
|
|
bitmap solution;
|
| 296 |
|
|
|
| 297 |
|
|
/* Old points-to set for this variable. */
|
| 298 |
|
|
bitmap oldsolution;
|
| 299 |
|
|
};
|
| 300 |
|
|
typedef struct variable_info *varinfo_t;
|
| 301 |
|
|
|
| 302 |
|
|
static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
|
| 303 |
|
|
static varinfo_t first_or_preceding_vi_for_offset (varinfo_t,
|
| 304 |
|
|
unsigned HOST_WIDE_INT);
|
| 305 |
|
|
static varinfo_t lookup_vi_for_tree (tree);
|
| 306 |
|
|
static inline bool type_can_have_subvars (const_tree);
|
| 307 |
|
|
|
| 308 |
|
|
/* Pool of variable info structures. */
|
| 309 |
|
|
static alloc_pool variable_info_pool;
|
| 310 |
|
|
|
| 311 |
|
|
DEF_VEC_P(varinfo_t);
|
| 312 |
|
|
|
| 313 |
|
|
DEF_VEC_ALLOC_P(varinfo_t, heap);
|
| 314 |
|
|
|
| 315 |
|
|
/* Table of variable info structures for constraint variables.
|
| 316 |
|
|
Indexed directly by variable info id. */
|
| 317 |
|
|
static VEC(varinfo_t,heap) *varmap;
|
| 318 |
|
|
|
| 319 |
|
|
/* Return the varmap element N */
|
| 320 |
|
|
|
| 321 |
|
|
static inline varinfo_t
|
| 322 |
|
|
get_varinfo (unsigned int n)
|
| 323 |
|
|
{
|
| 324 |
|
|
return VEC_index (varinfo_t, varmap, n);
|
| 325 |
|
|
}
|
| 326 |
|
|
|
| 327 |
|
|
/* Static IDs for the special variables. */
|
| 328 |
|
|
enum { nothing_id = 0, anything_id = 1, readonly_id = 2,
|
| 329 |
|
|
escaped_id = 3, nonlocal_id = 4,
|
| 330 |
|
|
storedanything_id = 5, integer_id = 6 };
|
| 331 |
|
|
|
| 332 |
|
|
/* Return a new variable info structure consisting for a variable
|
| 333 |
|
|
named NAME, and using constraint graph node NODE. Append it
|
| 334 |
|
|
to the vector of variable info structures. */
|
| 335 |
|
|
|
| 336 |
|
|
static varinfo_t
|
| 337 |
|
|
new_var_info (tree t, const char *name)
|
| 338 |
|
|
{
|
| 339 |
|
|
unsigned index = VEC_length (varinfo_t, varmap);
|
| 340 |
|
|
varinfo_t ret = (varinfo_t) pool_alloc (variable_info_pool);
|
| 341 |
|
|
|
| 342 |
|
|
ret->id = index;
|
| 343 |
|
|
ret->name = name;
|
| 344 |
|
|
ret->decl = t;
|
| 345 |
|
|
/* Vars without decl are artificial and do not have sub-variables. */
|
| 346 |
|
|
ret->is_artificial_var = (t == NULL_TREE);
|
| 347 |
|
|
ret->is_special_var = false;
|
| 348 |
|
|
ret->is_unknown_size_var = false;
|
| 349 |
|
|
ret->is_full_var = (t == NULL_TREE);
|
| 350 |
|
|
ret->is_heap_var = false;
|
| 351 |
|
|
ret->may_have_pointers = true;
|
| 352 |
|
|
ret->only_restrict_pointers = false;
|
| 353 |
|
|
ret->is_global_var = (t == NULL_TREE);
|
| 354 |
|
|
ret->is_fn_info = false;
|
| 355 |
|
|
if (t && DECL_P (t))
|
| 356 |
|
|
ret->is_global_var = (is_global_var (t)
|
| 357 |
|
|
/* We have to treat even local register variables
|
| 358 |
|
|
as escape points. */
|
| 359 |
|
|
|| (TREE_CODE (t) == VAR_DECL
|
| 360 |
|
|
&& DECL_HARD_REGISTER (t)));
|
| 361 |
|
|
ret->solution = BITMAP_ALLOC (&pta_obstack);
|
| 362 |
|
|
ret->oldsolution = NULL;
|
| 363 |
|
|
ret->next = NULL;
|
| 364 |
|
|
|
| 365 |
|
|
stats.total_vars++;
|
| 366 |
|
|
|
| 367 |
|
|
VEC_safe_push (varinfo_t, heap, varmap, ret);
|
| 368 |
|
|
|
| 369 |
|
|
return ret;
|
| 370 |
|
|
}
|
| 371 |
|
|
|
| 372 |
|
|
|
| 373 |
|
|
/* A map mapping call statements to per-stmt variables for uses
|
| 374 |
|
|
and clobbers specific to the call. */
|
| 375 |
|
|
struct pointer_map_t *call_stmt_vars;
|
| 376 |
|
|
|
| 377 |
|
|
/* Lookup or create the variable for the call statement CALL. */
|
| 378 |
|
|
|
| 379 |
|
|
static varinfo_t
|
| 380 |
|
|
get_call_vi (gimple call)
|
| 381 |
|
|
{
|
| 382 |
|
|
void **slot_p;
|
| 383 |
|
|
varinfo_t vi, vi2;
|
| 384 |
|
|
|
| 385 |
|
|
slot_p = pointer_map_insert (call_stmt_vars, call);
|
| 386 |
|
|
if (*slot_p)
|
| 387 |
|
|
return (varinfo_t) *slot_p;
|
| 388 |
|
|
|
| 389 |
|
|
vi = new_var_info (NULL_TREE, "CALLUSED");
|
| 390 |
|
|
vi->offset = 0;
|
| 391 |
|
|
vi->size = 1;
|
| 392 |
|
|
vi->fullsize = 2;
|
| 393 |
|
|
vi->is_full_var = true;
|
| 394 |
|
|
|
| 395 |
|
|
vi->next = vi2 = new_var_info (NULL_TREE, "CALLCLOBBERED");
|
| 396 |
|
|
vi2->offset = 1;
|
| 397 |
|
|
vi2->size = 1;
|
| 398 |
|
|
vi2->fullsize = 2;
|
| 399 |
|
|
vi2->is_full_var = true;
|
| 400 |
|
|
|
| 401 |
|
|
*slot_p = (void *) vi;
|
| 402 |
|
|
return vi;
|
| 403 |
|
|
}
|
| 404 |
|
|
|
| 405 |
|
|
/* Lookup the variable for the call statement CALL representing
|
| 406 |
|
|
the uses. Returns NULL if there is nothing special about this call. */
|
| 407 |
|
|
|
| 408 |
|
|
static varinfo_t
|
| 409 |
|
|
lookup_call_use_vi (gimple call)
|
| 410 |
|
|
{
|
| 411 |
|
|
void **slot_p;
|
| 412 |
|
|
|
| 413 |
|
|
slot_p = pointer_map_contains (call_stmt_vars, call);
|
| 414 |
|
|
if (slot_p)
|
| 415 |
|
|
return (varinfo_t) *slot_p;
|
| 416 |
|
|
|
| 417 |
|
|
return NULL;
|
| 418 |
|
|
}
|
| 419 |
|
|
|
| 420 |
|
|
/* Lookup the variable for the call statement CALL representing
|
| 421 |
|
|
the clobbers. Returns NULL if there is nothing special about this call. */
|
| 422 |
|
|
|
| 423 |
|
|
static varinfo_t
|
| 424 |
|
|
lookup_call_clobber_vi (gimple call)
|
| 425 |
|
|
{
|
| 426 |
|
|
varinfo_t uses = lookup_call_use_vi (call);
|
| 427 |
|
|
if (!uses)
|
| 428 |
|
|
return NULL;
|
| 429 |
|
|
|
| 430 |
|
|
return uses->next;
|
| 431 |
|
|
}
|
| 432 |
|
|
|
| 433 |
|
|
/* Lookup or create the variable for the call statement CALL representing
|
| 434 |
|
|
the uses. */
|
| 435 |
|
|
|
| 436 |
|
|
static varinfo_t
|
| 437 |
|
|
get_call_use_vi (gimple call)
|
| 438 |
|
|
{
|
| 439 |
|
|
return get_call_vi (call);
|
| 440 |
|
|
}
|
| 441 |
|
|
|
| 442 |
|
|
/* Lookup or create the variable for the call statement CALL representing
|
| 443 |
|
|
the clobbers. */
|
| 444 |
|
|
|
| 445 |
|
|
static varinfo_t ATTRIBUTE_UNUSED
|
| 446 |
|
|
get_call_clobber_vi (gimple call)
|
| 447 |
|
|
{
|
| 448 |
|
|
return get_call_vi (call)->next;
|
| 449 |
|
|
}
|
| 450 |
|
|
|
| 451 |
|
|
|
| 452 |
|
|
typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;
|
| 453 |
|
|
|
| 454 |
|
|
/* An expression that appears in a constraint. */
|
| 455 |
|
|
|
| 456 |
|
|
struct constraint_expr
|
| 457 |
|
|
{
|
| 458 |
|
|
/* Constraint type. */
|
| 459 |
|
|
constraint_expr_type type;
|
| 460 |
|
|
|
| 461 |
|
|
/* Variable we are referring to in the constraint. */
|
| 462 |
|
|
unsigned int var;
|
| 463 |
|
|
|
| 464 |
|
|
/* Offset, in bits, of this constraint from the beginning of
|
| 465 |
|
|
variables it ends up referring to.
|
| 466 |
|
|
|
| 467 |
|
|
IOW, in a deref constraint, we would deref, get the result set,
|
| 468 |
|
|
then add OFFSET to each member. */
|
| 469 |
|
|
HOST_WIDE_INT offset;
|
| 470 |
|
|
};
|
| 471 |
|
|
|
| 472 |
|
|
/* Use 0x8000... as special unknown offset. */
|
| 473 |
|
|
#define UNKNOWN_OFFSET ((HOST_WIDE_INT)-1 << (HOST_BITS_PER_WIDE_INT-1))
|
| 474 |
|
|
|
| 475 |
|
|
typedef struct constraint_expr ce_s;
|
| 476 |
|
|
DEF_VEC_O(ce_s);
|
| 477 |
|
|
DEF_VEC_ALLOC_O(ce_s, heap);
|
| 478 |
|
|
static void get_constraint_for_1 (tree, VEC(ce_s, heap) **, bool, bool);
|
| 479 |
|
|
static void get_constraint_for (tree, VEC(ce_s, heap) **);
|
| 480 |
|
|
static void get_constraint_for_rhs (tree, VEC(ce_s, heap) **);
|
| 481 |
|
|
static void do_deref (VEC (ce_s, heap) **);
|
| 482 |
|
|
|
| 483 |
|
|
/* Our set constraints are made up of two constraint expressions, one
|
| 484 |
|
|
LHS, and one RHS.
|
| 485 |
|
|
|
| 486 |
|
|
As described in the introduction, our set constraints each represent an
|
| 487 |
|
|
operation between set valued variables.
|
| 488 |
|
|
*/
|
| 489 |
|
|
struct constraint
|
| 490 |
|
|
{
|
| 491 |
|
|
struct constraint_expr lhs;
|
| 492 |
|
|
struct constraint_expr rhs;
|
| 493 |
|
|
};
|
| 494 |
|
|
|
| 495 |
|
|
/* List of constraints that we use to build the constraint graph from. */
|
| 496 |
|
|
|
| 497 |
|
|
static VEC(constraint_t,heap) *constraints;
|
| 498 |
|
|
static alloc_pool constraint_pool;
|
| 499 |
|
|
|
| 500 |
|
|
/* The constraint graph is represented as an array of bitmaps
|
| 501 |
|
|
containing successor nodes. */
|
| 502 |
|
|
|
| 503 |
|
|
struct constraint_graph
|
| 504 |
|
|
{
|
| 505 |
|
|
/* Size of this graph, which may be different than the number of
|
| 506 |
|
|
nodes in the variable map. */
|
| 507 |
|
|
unsigned int size;
|
| 508 |
|
|
|
| 509 |
|
|
/* Explicit successors of each node. */
|
| 510 |
|
|
bitmap *succs;
|
| 511 |
|
|
|
| 512 |
|
|
/* Implicit predecessors of each node (Used for variable
|
| 513 |
|
|
substitution). */
|
| 514 |
|
|
bitmap *implicit_preds;
|
| 515 |
|
|
|
| 516 |
|
|
/* Explicit predecessors of each node (Used for variable substitution). */
|
| 517 |
|
|
bitmap *preds;
|
| 518 |
|
|
|
| 519 |
|
|
/* Indirect cycle representatives, or -1 if the node has no indirect
|
| 520 |
|
|
cycles. */
|
| 521 |
|
|
int *indirect_cycles;
|
| 522 |
|
|
|
| 523 |
|
|
/* Representative node for a node. rep[a] == a unless the node has
|
| 524 |
|
|
been unified. */
|
| 525 |
|
|
unsigned int *rep;
|
| 526 |
|
|
|
| 527 |
|
|
/* Equivalence class representative for a label. This is used for
|
| 528 |
|
|
variable substitution. */
|
| 529 |
|
|
int *eq_rep;
|
| 530 |
|
|
|
| 531 |
|
|
/* Pointer equivalence label for a node. All nodes with the same
|
| 532 |
|
|
pointer equivalence label can be unified together at some point
|
| 533 |
|
|
(either during constraint optimization or after the constraint
|
| 534 |
|
|
graph is built). */
|
| 535 |
|
|
unsigned int *pe;
|
| 536 |
|
|
|
| 537 |
|
|
/* Pointer equivalence representative for a label. This is used to
|
| 538 |
|
|
handle nodes that are pointer equivalent but not location
|
| 539 |
|
|
equivalent. We can unite these once the addressof constraints
|
| 540 |
|
|
are transformed into initial points-to sets. */
|
| 541 |
|
|
int *pe_rep;
|
| 542 |
|
|
|
| 543 |
|
|
/* Pointer equivalence label for each node, used during variable
|
| 544 |
|
|
substitution. */
|
| 545 |
|
|
unsigned int *pointer_label;
|
| 546 |
|
|
|
| 547 |
|
|
/* Location equivalence label for each node, used during location
|
| 548 |
|
|
equivalence finding. */
|
| 549 |
|
|
unsigned int *loc_label;
|
| 550 |
|
|
|
| 551 |
|
|
/* Pointed-by set for each node, used during location equivalence
|
| 552 |
|
|
finding. This is pointed-by rather than pointed-to, because it
|
| 553 |
|
|
is constructed using the predecessor graph. */
|
| 554 |
|
|
bitmap *pointed_by;
|
| 555 |
|
|
|
| 556 |
|
|
/* Points to sets for pointer equivalence. This is *not* the actual
|
| 557 |
|
|
points-to sets for nodes. */
|
| 558 |
|
|
bitmap *points_to;
|
| 559 |
|
|
|
| 560 |
|
|
/* Bitmap of nodes where the bit is set if the node is a direct
|
| 561 |
|
|
node. Used for variable substitution. */
|
| 562 |
|
|
sbitmap direct_nodes;
|
| 563 |
|
|
|
| 564 |
|
|
/* Bitmap of nodes where the bit is set if the node is address
|
| 565 |
|
|
taken. Used for variable substitution. */
|
| 566 |
|
|
bitmap address_taken;
|
| 567 |
|
|
|
| 568 |
|
|
/* Vector of complex constraints for each graph node. Complex
|
| 569 |
|
|
constraints are those involving dereferences or offsets that are
|
| 570 |
|
|
not 0. */
|
| 571 |
|
|
VEC(constraint_t,heap) **complex;
|
| 572 |
|
|
};
|
| 573 |
|
|
|
| 574 |
|
|
static constraint_graph_t graph;
|
| 575 |
|
|
|
| 576 |
|
|
/* During variable substitution and the offline version of indirect
|
| 577 |
|
|
cycle finding, we create nodes to represent dereferences and
|
| 578 |
|
|
address taken constraints. These represent where these start and
|
| 579 |
|
|
end. */
|
| 580 |
|
|
#define FIRST_REF_NODE (VEC_length (varinfo_t, varmap))
|
| 581 |
|
|
#define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
|
| 582 |
|
|
|
| 583 |
|
|
/* Return the representative node for NODE, if NODE has been unioned
|
| 584 |
|
|
with another NODE.
|
| 585 |
|
|
This function performs path compression along the way to finding
|
| 586 |
|
|
the representative. */
|
| 587 |
|
|
|
| 588 |
|
|
static unsigned int
|
| 589 |
|
|
find (unsigned int node)
|
| 590 |
|
|
{
|
| 591 |
|
|
gcc_assert (node < graph->size);
|
| 592 |
|
|
if (graph->rep[node] != node)
|
| 593 |
|
|
return graph->rep[node] = find (graph->rep[node]);
|
| 594 |
|
|
return node;
|
| 595 |
|
|
}
|
| 596 |
|
|
|
| 597 |
|
|
/* Union the TO and FROM nodes to the TO nodes.
|
| 598 |
|
|
Note that at some point in the future, we may want to do
|
| 599 |
|
|
union-by-rank, in which case we are going to have to return the
|
| 600 |
|
|
node we unified to. */
|
| 601 |
|
|
|
| 602 |
|
|
static bool
|
| 603 |
|
|
unite (unsigned int to, unsigned int from)
|
| 604 |
|
|
{
|
| 605 |
|
|
gcc_assert (to < graph->size && from < graph->size);
|
| 606 |
|
|
if (to != from && graph->rep[from] != to)
|
| 607 |
|
|
{
|
| 608 |
|
|
graph->rep[from] = to;
|
| 609 |
|
|
return true;
|
| 610 |
|
|
}
|
| 611 |
|
|
return false;
|
| 612 |
|
|
}
|
| 613 |
|
|
|
| 614 |
|
|
/* Create a new constraint consisting of LHS and RHS expressions. */
|
| 615 |
|
|
|
| 616 |
|
|
static constraint_t
|
| 617 |
|
|
new_constraint (const struct constraint_expr lhs,
|
| 618 |
|
|
const struct constraint_expr rhs)
|
| 619 |
|
|
{
|
| 620 |
|
|
constraint_t ret = (constraint_t) pool_alloc (constraint_pool);
|
| 621 |
|
|
ret->lhs = lhs;
|
| 622 |
|
|
ret->rhs = rhs;
|
| 623 |
|
|
return ret;
|
| 624 |
|
|
}
|
| 625 |
|
|
|
| 626 |
|
|
/* Print out constraint C to FILE. */
|
| 627 |
|
|
|
| 628 |
|
|
static void
|
| 629 |
|
|
dump_constraint (FILE *file, constraint_t c)
|
| 630 |
|
|
{
|
| 631 |
|
|
if (c->lhs.type == ADDRESSOF)
|
| 632 |
|
|
fprintf (file, "&");
|
| 633 |
|
|
else if (c->lhs.type == DEREF)
|
| 634 |
|
|
fprintf (file, "*");
|
| 635 |
|
|
fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
|
| 636 |
|
|
if (c->lhs.offset == UNKNOWN_OFFSET)
|
| 637 |
|
|
fprintf (file, " + UNKNOWN");
|
| 638 |
|
|
else if (c->lhs.offset != 0)
|
| 639 |
|
|
fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
|
| 640 |
|
|
fprintf (file, " = ");
|
| 641 |
|
|
if (c->rhs.type == ADDRESSOF)
|
| 642 |
|
|
fprintf (file, "&");
|
| 643 |
|
|
else if (c->rhs.type == DEREF)
|
| 644 |
|
|
fprintf (file, "*");
|
| 645 |
|
|
fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
|
| 646 |
|
|
if (c->rhs.offset == UNKNOWN_OFFSET)
|
| 647 |
|
|
fprintf (file, " + UNKNOWN");
|
| 648 |
|
|
else if (c->rhs.offset != 0)
|
| 649 |
|
|
fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
|
| 650 |
|
|
}
|
| 651 |
|
|
|
| 652 |
|
|
|
| 653 |
|
|
void debug_constraint (constraint_t);
|
| 654 |
|
|
void debug_constraints (void);
|
| 655 |
|
|
void debug_constraint_graph (void);
|
| 656 |
|
|
void debug_solution_for_var (unsigned int);
|
| 657 |
|
|
void debug_sa_points_to_info (void);
|
| 658 |
|
|
|
| 659 |
|
|
/* Print out constraint C to stderr. */
|
| 660 |
|
|
|
| 661 |
|
|
DEBUG_FUNCTION void
|
| 662 |
|
|
debug_constraint (constraint_t c)
|
| 663 |
|
|
{
|
| 664 |
|
|
dump_constraint (stderr, c);
|
| 665 |
|
|
fprintf (stderr, "\n");
|
| 666 |
|
|
}
|
| 667 |
|
|
|
| 668 |
|
|
/* Print out all constraints to FILE */
|
| 669 |
|
|
|
| 670 |
|
|
static void
|
| 671 |
|
|
dump_constraints (FILE *file, int from)
|
| 672 |
|
|
{
|
| 673 |
|
|
int i;
|
| 674 |
|
|
constraint_t c;
|
| 675 |
|
|
for (i = from; VEC_iterate (constraint_t, constraints, i, c); i++)
|
| 676 |
|
|
if (c)
|
| 677 |
|
|
{
|
| 678 |
|
|
dump_constraint (file, c);
|
| 679 |
|
|
fprintf (file, "\n");
|
| 680 |
|
|
}
|
| 681 |
|
|
}
|
| 682 |
|
|
|
| 683 |
|
|
/* Print out all constraints to stderr. */
|
| 684 |
|
|
|
| 685 |
|
|
DEBUG_FUNCTION void
|
| 686 |
|
|
debug_constraints (void)
|
| 687 |
|
|
{
|
| 688 |
|
|
dump_constraints (stderr, 0);
|
| 689 |
|
|
}
|
| 690 |
|
|
|
| 691 |
|
|
/* Print the constraint graph in dot format. */
|
| 692 |
|
|
|
| 693 |
|
|
static void
|
| 694 |
|
|
dump_constraint_graph (FILE *file)
|
| 695 |
|
|
{
|
| 696 |
|
|
unsigned int i;
|
| 697 |
|
|
|
| 698 |
|
|
/* Only print the graph if it has already been initialized: */
|
| 699 |
|
|
if (!graph)
|
| 700 |
|
|
return;
|
| 701 |
|
|
|
| 702 |
|
|
/* Prints the header of the dot file: */
|
| 703 |
|
|
fprintf (file, "strict digraph {\n");
|
| 704 |
|
|
fprintf (file, " node [\n shape = box\n ]\n");
|
| 705 |
|
|
fprintf (file, " edge [\n fontsize = \"12\"\n ]\n");
|
| 706 |
|
|
fprintf (file, "\n // List of nodes and complex constraints in "
|
| 707 |
|
|
"the constraint graph:\n");
|
| 708 |
|
|
|
| 709 |
|
|
/* The next lines print the nodes in the graph together with the
|
| 710 |
|
|
complex constraints attached to them. */
|
| 711 |
|
|
for (i = 0; i < graph->size; i++)
|
| 712 |
|
|
{
|
| 713 |
|
|
if (find (i) != i)
|
| 714 |
|
|
continue;
|
| 715 |
|
|
if (i < FIRST_REF_NODE)
|
| 716 |
|
|
fprintf (file, "\"%s\"", get_varinfo (i)->name);
|
| 717 |
|
|
else
|
| 718 |
|
|
fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
|
| 719 |
|
|
if (graph->complex[i])
|
| 720 |
|
|
{
|
| 721 |
|
|
unsigned j;
|
| 722 |
|
|
constraint_t c;
|
| 723 |
|
|
fprintf (file, " [label=\"\\N\\n");
|
| 724 |
|
|
for (j = 0; VEC_iterate (constraint_t, graph->complex[i], j, c); ++j)
|
| 725 |
|
|
{
|
| 726 |
|
|
dump_constraint (file, c);
|
| 727 |
|
|
fprintf (file, "\\l");
|
| 728 |
|
|
}
|
| 729 |
|
|
fprintf (file, "\"]");
|
| 730 |
|
|
}
|
| 731 |
|
|
fprintf (file, ";\n");
|
| 732 |
|
|
}
|
| 733 |
|
|
|
| 734 |
|
|
/* Go over the edges. */
|
| 735 |
|
|
fprintf (file, "\n // Edges in the constraint graph:\n");
|
| 736 |
|
|
for (i = 0; i < graph->size; i++)
|
| 737 |
|
|
{
|
| 738 |
|
|
unsigned j;
|
| 739 |
|
|
bitmap_iterator bi;
|
| 740 |
|
|
if (find (i) != i)
|
| 741 |
|
|
continue;
|
| 742 |
|
|
EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i], 0, j, bi)
|
| 743 |
|
|
{
|
| 744 |
|
|
unsigned to = find (j);
|
| 745 |
|
|
if (i == to)
|
| 746 |
|
|
continue;
|
| 747 |
|
|
if (i < FIRST_REF_NODE)
|
| 748 |
|
|
fprintf (file, "\"%s\"", get_varinfo (i)->name);
|
| 749 |
|
|
else
|
| 750 |
|
|
fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
|
| 751 |
|
|
fprintf (file, " -> ");
|
| 752 |
|
|
if (to < FIRST_REF_NODE)
|
| 753 |
|
|
fprintf (file, "\"%s\"", get_varinfo (to)->name);
|
| 754 |
|
|
else
|
| 755 |
|
|
fprintf (file, "\"*%s\"", get_varinfo (to - FIRST_REF_NODE)->name);
|
| 756 |
|
|
fprintf (file, ";\n");
|
| 757 |
|
|
}
|
| 758 |
|
|
}
|
| 759 |
|
|
|
| 760 |
|
|
/* Prints the tail of the dot file. */
|
| 761 |
|
|
fprintf (file, "}\n");
|
| 762 |
|
|
}
|
| 763 |
|
|
|
| 764 |
|
|
/* Print out the constraint graph to stderr. */
|
| 765 |
|
|
|
| 766 |
|
|
DEBUG_FUNCTION void
|
| 767 |
|
|
debug_constraint_graph (void)
|
| 768 |
|
|
{
|
| 769 |
|
|
dump_constraint_graph (stderr);
|
| 770 |
|
|
}
|
| 771 |
|
|
|
| 772 |
|
|
/* SOLVER FUNCTIONS
|
| 773 |
|
|
|
| 774 |
|
|
The solver is a simple worklist solver, that works on the following
|
| 775 |
|
|
algorithm:
|
| 776 |
|
|
|
| 777 |
|
|
sbitmap changed_nodes = all zeroes;
|
| 778 |
|
|
changed_count = 0;
|
| 779 |
|
|
For each node that is not already collapsed:
|
| 780 |
|
|
changed_count++;
|
| 781 |
|
|
set bit in changed nodes
|
| 782 |
|
|
|
| 783 |
|
|
while (changed_count > 0)
|
| 784 |
|
|
{
|
| 785 |
|
|
compute topological ordering for constraint graph
|
| 786 |
|
|
|
| 787 |
|
|
find and collapse cycles in the constraint graph (updating
|
| 788 |
|
|
changed if necessary)
|
| 789 |
|
|
|
| 790 |
|
|
for each node (n) in the graph in topological order:
|
| 791 |
|
|
changed_count--;
|
| 792 |
|
|
|
| 793 |
|
|
Process each complex constraint associated with the node,
|
| 794 |
|
|
updating changed if necessary.
|
| 795 |
|
|
|
| 796 |
|
|
For each outgoing edge from n, propagate the solution from n to
|
| 797 |
|
|
the destination of the edge, updating changed as necessary.
|
| 798 |
|
|
|
| 799 |
|
|
} */
|
| 800 |
|
|
|
| 801 |
|
|
/* Return true if two constraint expressions A and B are equal. */
|
| 802 |
|
|
|
| 803 |
|
|
static bool
|
| 804 |
|
|
constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
|
| 805 |
|
|
{
|
| 806 |
|
|
return a.type == b.type && a.var == b.var && a.offset == b.offset;
|
| 807 |
|
|
}
|
| 808 |
|
|
|
| 809 |
|
|
/* Return true if constraint expression A is less than constraint expression
|
| 810 |
|
|
B. This is just arbitrary, but consistent, in order to give them an
|
| 811 |
|
|
ordering. */
|
| 812 |
|
|
|
| 813 |
|
|
static bool
|
| 814 |
|
|
constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
|
| 815 |
|
|
{
|
| 816 |
|
|
if (a.type == b.type)
|
| 817 |
|
|
{
|
| 818 |
|
|
if (a.var == b.var)
|
| 819 |
|
|
return a.offset < b.offset;
|
| 820 |
|
|
else
|
| 821 |
|
|
return a.var < b.var;
|
| 822 |
|
|
}
|
| 823 |
|
|
else
|
| 824 |
|
|
return a.type < b.type;
|
| 825 |
|
|
}
|
| 826 |
|
|
|
| 827 |
|
|
/* Return true if constraint A is less than constraint B. This is just
|
| 828 |
|
|
arbitrary, but consistent, in order to give them an ordering. */
|
| 829 |
|
|
|
| 830 |
|
|
static bool
|
| 831 |
|
|
constraint_less (const constraint_t a, const constraint_t b)
|
| 832 |
|
|
{
|
| 833 |
|
|
if (constraint_expr_less (a->lhs, b->lhs))
|
| 834 |
|
|
return true;
|
| 835 |
|
|
else if (constraint_expr_less (b->lhs, a->lhs))
|
| 836 |
|
|
return false;
|
| 837 |
|
|
else
|
| 838 |
|
|
return constraint_expr_less (a->rhs, b->rhs);
|
| 839 |
|
|
}
|
| 840 |
|
|
|
| 841 |
|
|
/* Return true if two constraints A and B are equal. */
|
| 842 |
|
|
|
| 843 |
|
|
static bool
|
| 844 |
|
|
constraint_equal (struct constraint a, struct constraint b)
|
| 845 |
|
|
{
|
| 846 |
|
|
return constraint_expr_equal (a.lhs, b.lhs)
|
| 847 |
|
|
&& constraint_expr_equal (a.rhs, b.rhs);
|
| 848 |
|
|
}
|
| 849 |
|
|
|
| 850 |
|
|
|
| 851 |
|
|
/* Find a constraint LOOKFOR in the sorted constraint vector VEC */
|
| 852 |
|
|
|
| 853 |
|
|
static constraint_t
|
| 854 |
|
|
constraint_vec_find (VEC(constraint_t,heap) *vec,
|
| 855 |
|
|
struct constraint lookfor)
|
| 856 |
|
|
{
|
| 857 |
|
|
unsigned int place;
|
| 858 |
|
|
constraint_t found;
|
| 859 |
|
|
|
| 860 |
|
|
if (vec == NULL)
|
| 861 |
|
|
return NULL;
|
| 862 |
|
|
|
| 863 |
|
|
place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
|
| 864 |
|
|
if (place >= VEC_length (constraint_t, vec))
|
| 865 |
|
|
return NULL;
|
| 866 |
|
|
found = VEC_index (constraint_t, vec, place);
|
| 867 |
|
|
if (!constraint_equal (*found, lookfor))
|
| 868 |
|
|
return NULL;
|
| 869 |
|
|
return found;
|
| 870 |
|
|
}
|
| 871 |
|
|
|
| 872 |
|
|
/* Union two constraint vectors, TO and FROM. Put the result in TO. */
|
| 873 |
|
|
|
| 874 |
|
|
static void
|
| 875 |
|
|
constraint_set_union (VEC(constraint_t,heap) **to,
|
| 876 |
|
|
VEC(constraint_t,heap) **from)
|
| 877 |
|
|
{
|
| 878 |
|
|
int i;
|
| 879 |
|
|
constraint_t c;
|
| 880 |
|
|
|
| 881 |
|
|
FOR_EACH_VEC_ELT (constraint_t, *from, i, c)
|
| 882 |
|
|
{
|
| 883 |
|
|
if (constraint_vec_find (*to, *c) == NULL)
|
| 884 |
|
|
{
|
| 885 |
|
|
unsigned int place = VEC_lower_bound (constraint_t, *to, c,
|
| 886 |
|
|
constraint_less);
|
| 887 |
|
|
VEC_safe_insert (constraint_t, heap, *to, place, c);
|
| 888 |
|
|
}
|
| 889 |
|
|
}
|
| 890 |
|
|
}
|
| 891 |
|
|
|
| 892 |
|
|
/* Expands the solution in SET to all sub-fields of variables included.
|
| 893 |
|
|
Union the expanded result into RESULT. */
|
| 894 |
|
|
|
| 895 |
|
|
static void
|
| 896 |
|
|
solution_set_expand (bitmap result, bitmap set)
|
| 897 |
|
|
{
|
| 898 |
|
|
bitmap_iterator bi;
|
| 899 |
|
|
bitmap vars = NULL;
|
| 900 |
|
|
unsigned j;
|
| 901 |
|
|
|
| 902 |
|
|
/* In a first pass record all variables we need to add all
|
| 903 |
|
|
sub-fields off. This avoids quadratic behavior. */
|
| 904 |
|
|
EXECUTE_IF_SET_IN_BITMAP (set, 0, j, bi)
|
| 905 |
|
|
{
|
| 906 |
|
|
varinfo_t v = get_varinfo (j);
|
| 907 |
|
|
if (v->is_artificial_var
|
| 908 |
|
|
|| v->is_full_var)
|
| 909 |
|
|
continue;
|
| 910 |
|
|
v = lookup_vi_for_tree (v->decl);
|
| 911 |
|
|
if (vars == NULL)
|
| 912 |
|
|
vars = BITMAP_ALLOC (NULL);
|
| 913 |
|
|
bitmap_set_bit (vars, v->id);
|
| 914 |
|
|
}
|
| 915 |
|
|
|
| 916 |
|
|
/* In the second pass now do the addition to the solution and
|
| 917 |
|
|
to speed up solving add it to the delta as well. */
|
| 918 |
|
|
if (vars != NULL)
|
| 919 |
|
|
{
|
| 920 |
|
|
EXECUTE_IF_SET_IN_BITMAP (vars, 0, j, bi)
|
| 921 |
|
|
{
|
| 922 |
|
|
varinfo_t v = get_varinfo (j);
|
| 923 |
|
|
for (; v != NULL; v = v->next)
|
| 924 |
|
|
bitmap_set_bit (result, v->id);
|
| 925 |
|
|
}
|
| 926 |
|
|
BITMAP_FREE (vars);
|
| 927 |
|
|
}
|
| 928 |
|
|
}
|
| 929 |
|
|
|
| 930 |
|
|
/* Take a solution set SET, add OFFSET to each member of the set, and
|
| 931 |
|
|
overwrite SET with the result when done. */
|
| 932 |
|
|
|
| 933 |
|
|
static void
|
| 934 |
|
|
solution_set_add (bitmap set, HOST_WIDE_INT offset)
|
| 935 |
|
|
{
|
| 936 |
|
|
bitmap result = BITMAP_ALLOC (&iteration_obstack);
|
| 937 |
|
|
unsigned int i;
|
| 938 |
|
|
bitmap_iterator bi;
|
| 939 |
|
|
|
| 940 |
|
|
/* If the offset is unknown we have to expand the solution to
|
| 941 |
|
|
all subfields. */
|
| 942 |
|
|
if (offset == UNKNOWN_OFFSET)
|
| 943 |
|
|
{
|
| 944 |
|
|
solution_set_expand (set, set);
|
| 945 |
|
|
return;
|
| 946 |
|
|
}
|
| 947 |
|
|
|
| 948 |
|
|
EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
|
| 949 |
|
|
{
|
| 950 |
|
|
varinfo_t vi = get_varinfo (i);
|
| 951 |
|
|
|
| 952 |
|
|
/* If this is a variable with just one field just set its bit
|
| 953 |
|
|
in the result. */
|
| 954 |
|
|
if (vi->is_artificial_var
|
| 955 |
|
|
|| vi->is_unknown_size_var
|
| 956 |
|
|
|| vi->is_full_var)
|
| 957 |
|
|
bitmap_set_bit (result, i);
|
| 958 |
|
|
else
|
| 959 |
|
|
{
|
| 960 |
|
|
unsigned HOST_WIDE_INT fieldoffset = vi->offset + offset;
|
| 961 |
|
|
|
| 962 |
|
|
/* If the offset makes the pointer point to before the
|
| 963 |
|
|
variable use offset zero for the field lookup. */
|
| 964 |
|
|
if (offset < 0
|
| 965 |
|
|
&& fieldoffset > vi->offset)
|
| 966 |
|
|
fieldoffset = 0;
|
| 967 |
|
|
|
| 968 |
|
|
if (offset != 0)
|
| 969 |
|
|
vi = first_or_preceding_vi_for_offset (vi, fieldoffset);
|
| 970 |
|
|
|
| 971 |
|
|
bitmap_set_bit (result, vi->id);
|
| 972 |
|
|
/* If the result is not exactly at fieldoffset include the next
|
| 973 |
|
|
field as well. See get_constraint_for_ptr_offset for more
|
| 974 |
|
|
rationale. */
|
| 975 |
|
|
if (vi->offset != fieldoffset
|
| 976 |
|
|
&& vi->next != NULL)
|
| 977 |
|
|
bitmap_set_bit (result, vi->next->id);
|
| 978 |
|
|
}
|
| 979 |
|
|
}
|
| 980 |
|
|
|
| 981 |
|
|
bitmap_copy (set, result);
|
| 982 |
|
|
BITMAP_FREE (result);
|
| 983 |
|
|
}
|
| 984 |
|
|
|
| 985 |
|
|
/* Union solution sets TO and FROM, and add INC to each member of FROM in the
|
| 986 |
|
|
process. */
|
| 987 |
|
|
|
| 988 |
|
|
static bool
|
| 989 |
|
|
set_union_with_increment (bitmap to, bitmap from, HOST_WIDE_INT inc)
|
| 990 |
|
|
{
|
| 991 |
|
|
if (inc == 0)
|
| 992 |
|
|
return bitmap_ior_into (to, from);
|
| 993 |
|
|
else
|
| 994 |
|
|
{
|
| 995 |
|
|
bitmap tmp;
|
| 996 |
|
|
bool res;
|
| 997 |
|
|
|
| 998 |
|
|
tmp = BITMAP_ALLOC (&iteration_obstack);
|
| 999 |
|
|
bitmap_copy (tmp, from);
|
| 1000 |
|
|
solution_set_add (tmp, inc);
|
| 1001 |
|
|
res = bitmap_ior_into (to, tmp);
|
| 1002 |
|
|
BITMAP_FREE (tmp);
|
| 1003 |
|
|
return res;
|
| 1004 |
|
|
}
|
| 1005 |
|
|
}
|
| 1006 |
|
|
|
| 1007 |
|
|
/* Insert constraint C into the list of complex constraints for graph
|
| 1008 |
|
|
node VAR. */
|
| 1009 |
|
|
|
| 1010 |
|
|
static void
|
| 1011 |
|
|
insert_into_complex (constraint_graph_t graph,
|
| 1012 |
|
|
unsigned int var, constraint_t c)
|
| 1013 |
|
|
{
|
| 1014 |
|
|
VEC (constraint_t, heap) *complex = graph->complex[var];
|
| 1015 |
|
|
unsigned int place = VEC_lower_bound (constraint_t, complex, c,
|
| 1016 |
|
|
constraint_less);
|
| 1017 |
|
|
|
| 1018 |
|
|
/* Only insert constraints that do not already exist. */
|
| 1019 |
|
|
if (place >= VEC_length (constraint_t, complex)
|
| 1020 |
|
|
|| !constraint_equal (*c, *VEC_index (constraint_t, complex, place)))
|
| 1021 |
|
|
VEC_safe_insert (constraint_t, heap, graph->complex[var], place, c);
|
| 1022 |
|
|
}
|
| 1023 |
|
|
|
| 1024 |
|
|
|
| 1025 |
|
|
/* Condense two variable nodes into a single variable node, by moving
|
| 1026 |
|
|
all associated info from SRC to TO. */
|
| 1027 |
|
|
|
| 1028 |
|
|
static void
|
| 1029 |
|
|
merge_node_constraints (constraint_graph_t graph, unsigned int to,
|
| 1030 |
|
|
unsigned int from)
|
| 1031 |
|
|
{
|
| 1032 |
|
|
unsigned int i;
|
| 1033 |
|
|
constraint_t c;
|
| 1034 |
|
|
|
| 1035 |
|
|
gcc_assert (find (from) == to);
|
| 1036 |
|
|
|
| 1037 |
|
|
/* Move all complex constraints from src node into to node */
|
| 1038 |
|
|
FOR_EACH_VEC_ELT (constraint_t, graph->complex[from], i, c)
|
| 1039 |
|
|
{
|
| 1040 |
|
|
/* In complex constraints for node src, we may have either
|
| 1041 |
|
|
a = *src, and *src = a, or an offseted constraint which are
|
| 1042 |
|
|
always added to the rhs node's constraints. */
|
| 1043 |
|
|
|
| 1044 |
|
|
if (c->rhs.type == DEREF)
|
| 1045 |
|
|
c->rhs.var = to;
|
| 1046 |
|
|
else if (c->lhs.type == DEREF)
|
| 1047 |
|
|
c->lhs.var = to;
|
| 1048 |
|
|
else
|
| 1049 |
|
|
c->rhs.var = to;
|
| 1050 |
|
|
}
|
| 1051 |
|
|
constraint_set_union (&graph->complex[to], &graph->complex[from]);
|
| 1052 |
|
|
VEC_free (constraint_t, heap, graph->complex[from]);
|
| 1053 |
|
|
graph->complex[from] = NULL;
|
| 1054 |
|
|
}
|
| 1055 |
|
|
|
| 1056 |
|
|
|
| 1057 |
|
|
/* Remove edges involving NODE from GRAPH. */
|
| 1058 |
|
|
|
| 1059 |
|
|
static void
|
| 1060 |
|
|
clear_edges_for_node (constraint_graph_t graph, unsigned int node)
|
| 1061 |
|
|
{
|
| 1062 |
|
|
if (graph->succs[node])
|
| 1063 |
|
|
BITMAP_FREE (graph->succs[node]);
|
| 1064 |
|
|
}
|
| 1065 |
|
|
|
| 1066 |
|
|
/* Merge GRAPH nodes FROM and TO into node TO. */
|
| 1067 |
|
|
|
| 1068 |
|
|
static void
|
| 1069 |
|
|
merge_graph_nodes (constraint_graph_t graph, unsigned int to,
|
| 1070 |
|
|
unsigned int from)
|
| 1071 |
|
|
{
|
| 1072 |
|
|
if (graph->indirect_cycles[from] != -1)
|
| 1073 |
|
|
{
|
| 1074 |
|
|
/* If we have indirect cycles with the from node, and we have
|
| 1075 |
|
|
none on the to node, the to node has indirect cycles from the
|
| 1076 |
|
|
from node now that they are unified.
|
| 1077 |
|
|
If indirect cycles exist on both, unify the nodes that they
|
| 1078 |
|
|
are in a cycle with, since we know they are in a cycle with
|
| 1079 |
|
|
each other. */
|
| 1080 |
|
|
if (graph->indirect_cycles[to] == -1)
|
| 1081 |
|
|
graph->indirect_cycles[to] = graph->indirect_cycles[from];
|
| 1082 |
|
|
}
|
| 1083 |
|
|
|
| 1084 |
|
|
/* Merge all the successor edges. */
|
| 1085 |
|
|
if (graph->succs[from])
|
| 1086 |
|
|
{
|
| 1087 |
|
|
if (!graph->succs[to])
|
| 1088 |
|
|
graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
|
| 1089 |
|
|
bitmap_ior_into (graph->succs[to],
|
| 1090 |
|
|
graph->succs[from]);
|
| 1091 |
|
|
}
|
| 1092 |
|
|
|
| 1093 |
|
|
clear_edges_for_node (graph, from);
|
| 1094 |
|
|
}
|
| 1095 |
|
|
|
| 1096 |
|
|
|
| 1097 |
|
|
/* Add an indirect graph edge to GRAPH, going from TO to FROM if
|
| 1098 |
|
|
it doesn't exist in the graph already. */
|
| 1099 |
|
|
|
| 1100 |
|
|
static void
|
| 1101 |
|
|
add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
|
| 1102 |
|
|
unsigned int from)
|
| 1103 |
|
|
{
|
| 1104 |
|
|
if (to == from)
|
| 1105 |
|
|
return;
|
| 1106 |
|
|
|
| 1107 |
|
|
if (!graph->implicit_preds[to])
|
| 1108 |
|
|
graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
|
| 1109 |
|
|
|
| 1110 |
|
|
if (bitmap_set_bit (graph->implicit_preds[to], from))
|
| 1111 |
|
|
stats.num_implicit_edges++;
|
| 1112 |
|
|
}
|
| 1113 |
|
|
|
| 1114 |
|
|
/* Add a predecessor graph edge to GRAPH, going from TO to FROM if
|
| 1115 |
|
|
it doesn't exist in the graph already.
|
| 1116 |
|
|
Return false if the edge already existed, true otherwise. */
|
| 1117 |
|
|
|
| 1118 |
|
|
static void
|
| 1119 |
|
|
add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
|
| 1120 |
|
|
unsigned int from)
|
| 1121 |
|
|
{
|
| 1122 |
|
|
if (!graph->preds[to])
|
| 1123 |
|
|
graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
|
| 1124 |
|
|
bitmap_set_bit (graph->preds[to], from);
|
| 1125 |
|
|
}
|
| 1126 |
|
|
|
| 1127 |
|
|
/* Add a graph edge to GRAPH, going from FROM to TO if
|
| 1128 |
|
|
it doesn't exist in the graph already.
|
| 1129 |
|
|
Return false if the edge already existed, true otherwise. */
|
| 1130 |
|
|
|
| 1131 |
|
|
static bool
|
| 1132 |
|
|
add_graph_edge (constraint_graph_t graph, unsigned int to,
|
| 1133 |
|
|
unsigned int from)
|
| 1134 |
|
|
{
|
| 1135 |
|
|
if (to == from)
|
| 1136 |
|
|
{
|
| 1137 |
|
|
return false;
|
| 1138 |
|
|
}
|
| 1139 |
|
|
else
|
| 1140 |
|
|
{
|
| 1141 |
|
|
bool r = false;
|
| 1142 |
|
|
|
| 1143 |
|
|
if (!graph->succs[from])
|
| 1144 |
|
|
graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
|
| 1145 |
|
|
if (bitmap_set_bit (graph->succs[from], to))
|
| 1146 |
|
|
{
|
| 1147 |
|
|
r = true;
|
| 1148 |
|
|
if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
|
| 1149 |
|
|
stats.num_edges++;
|
| 1150 |
|
|
}
|
| 1151 |
|
|
return r;
|
| 1152 |
|
|
}
|
| 1153 |
|
|
}
|
| 1154 |
|
|
|
| 1155 |
|
|
|
| 1156 |
|
|
/* Return true if {DEST.SRC} is an existing graph edge in GRAPH. */
|
| 1157 |
|
|
|
| 1158 |
|
|
static bool
|
| 1159 |
|
|
valid_graph_edge (constraint_graph_t graph, unsigned int src,
|
| 1160 |
|
|
unsigned int dest)
|
| 1161 |
|
|
{
|
| 1162 |
|
|
return (graph->succs[dest]
|
| 1163 |
|
|
&& bitmap_bit_p (graph->succs[dest], src));
|
| 1164 |
|
|
}
|
| 1165 |
|
|
|
| 1166 |
|
|
/* Initialize the constraint graph structure to contain SIZE nodes. */
|
| 1167 |
|
|
|
| 1168 |
|
|
static void
|
| 1169 |
|
|
init_graph (unsigned int size)
|
| 1170 |
|
|
{
|
| 1171 |
|
|
unsigned int j;
|
| 1172 |
|
|
|
| 1173 |
|
|
graph = XCNEW (struct constraint_graph);
|
| 1174 |
|
|
graph->size = size;
|
| 1175 |
|
|
graph->succs = XCNEWVEC (bitmap, graph->size);
|
| 1176 |
|
|
graph->indirect_cycles = XNEWVEC (int, graph->size);
|
| 1177 |
|
|
graph->rep = XNEWVEC (unsigned int, graph->size);
|
| 1178 |
|
|
graph->complex = XCNEWVEC (VEC(constraint_t, heap) *, size);
|
| 1179 |
|
|
graph->pe = XCNEWVEC (unsigned int, graph->size);
|
| 1180 |
|
|
graph->pe_rep = XNEWVEC (int, graph->size);
|
| 1181 |
|
|
|
| 1182 |
|
|
for (j = 0; j < graph->size; j++)
|
| 1183 |
|
|
{
|
| 1184 |
|
|
graph->rep[j] = j;
|
| 1185 |
|
|
graph->pe_rep[j] = -1;
|
| 1186 |
|
|
graph->indirect_cycles[j] = -1;
|
| 1187 |
|
|
}
|
| 1188 |
|
|
}
|
| 1189 |
|
|
|
| 1190 |
|
|
/* Build the constraint graph, adding only predecessor edges right now. */
|
| 1191 |
|
|
|
| 1192 |
|
|
static void
|
| 1193 |
|
|
build_pred_graph (void)
|
| 1194 |
|
|
{
|
| 1195 |
|
|
int i;
|
| 1196 |
|
|
constraint_t c;
|
| 1197 |
|
|
unsigned int j;
|
| 1198 |
|
|
|
| 1199 |
|
|
graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
|
| 1200 |
|
|
graph->preds = XCNEWVEC (bitmap, graph->size);
|
| 1201 |
|
|
graph->pointer_label = XCNEWVEC (unsigned int, graph->size);
|
| 1202 |
|
|
graph->loc_label = XCNEWVEC (unsigned int, graph->size);
|
| 1203 |
|
|
graph->pointed_by = XCNEWVEC (bitmap, graph->size);
|
| 1204 |
|
|
graph->points_to = XCNEWVEC (bitmap, graph->size);
|
| 1205 |
|
|
graph->eq_rep = XNEWVEC (int, graph->size);
|
| 1206 |
|
|
graph->direct_nodes = sbitmap_alloc (graph->size);
|
| 1207 |
|
|
graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack);
|
| 1208 |
|
|
sbitmap_zero (graph->direct_nodes);
|
| 1209 |
|
|
|
| 1210 |
|
|
for (j = 0; j < FIRST_REF_NODE; j++)
|
| 1211 |
|
|
{
|
| 1212 |
|
|
if (!get_varinfo (j)->is_special_var)
|
| 1213 |
|
|
SET_BIT (graph->direct_nodes, j);
|
| 1214 |
|
|
}
|
| 1215 |
|
|
|
| 1216 |
|
|
for (j = 0; j < graph->size; j++)
|
| 1217 |
|
|
graph->eq_rep[j] = -1;
|
| 1218 |
|
|
|
| 1219 |
|
|
for (j = 0; j < VEC_length (varinfo_t, varmap); j++)
|
| 1220 |
|
|
graph->indirect_cycles[j] = -1;
|
| 1221 |
|
|
|
| 1222 |
|
|
FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
|
| 1223 |
|
|
{
|
| 1224 |
|
|
struct constraint_expr lhs = c->lhs;
|
| 1225 |
|
|
struct constraint_expr rhs = c->rhs;
|
| 1226 |
|
|
unsigned int lhsvar = lhs.var;
|
| 1227 |
|
|
unsigned int rhsvar = rhs.var;
|
| 1228 |
|
|
|
| 1229 |
|
|
if (lhs.type == DEREF)
|
| 1230 |
|
|
{
|
| 1231 |
|
|
/* *x = y. */
|
| 1232 |
|
|
if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
|
| 1233 |
|
|
add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
|
| 1234 |
|
|
}
|
| 1235 |
|
|
else if (rhs.type == DEREF)
|
| 1236 |
|
|
{
|
| 1237 |
|
|
/* x = *y */
|
| 1238 |
|
|
if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
|
| 1239 |
|
|
add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
|
| 1240 |
|
|
else
|
| 1241 |
|
|
RESET_BIT (graph->direct_nodes, lhsvar);
|
| 1242 |
|
|
}
|
| 1243 |
|
|
else if (rhs.type == ADDRESSOF)
|
| 1244 |
|
|
{
|
| 1245 |
|
|
varinfo_t v;
|
| 1246 |
|
|
|
| 1247 |
|
|
/* x = &y */
|
| 1248 |
|
|
if (graph->points_to[lhsvar] == NULL)
|
| 1249 |
|
|
graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
|
| 1250 |
|
|
bitmap_set_bit (graph->points_to[lhsvar], rhsvar);
|
| 1251 |
|
|
|
| 1252 |
|
|
if (graph->pointed_by[rhsvar] == NULL)
|
| 1253 |
|
|
graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
|
| 1254 |
|
|
bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar);
|
| 1255 |
|
|
|
| 1256 |
|
|
/* Implicitly, *x = y */
|
| 1257 |
|
|
add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
|
| 1258 |
|
|
|
| 1259 |
|
|
/* All related variables are no longer direct nodes. */
|
| 1260 |
|
|
RESET_BIT (graph->direct_nodes, rhsvar);
|
| 1261 |
|
|
v = get_varinfo (rhsvar);
|
| 1262 |
|
|
if (!v->is_full_var)
|
| 1263 |
|
|
{
|
| 1264 |
|
|
v = lookup_vi_for_tree (v->decl);
|
| 1265 |
|
|
do
|
| 1266 |
|
|
{
|
| 1267 |
|
|
RESET_BIT (graph->direct_nodes, v->id);
|
| 1268 |
|
|
v = v->next;
|
| 1269 |
|
|
}
|
| 1270 |
|
|
while (v != NULL);
|
| 1271 |
|
|
}
|
| 1272 |
|
|
bitmap_set_bit (graph->address_taken, rhsvar);
|
| 1273 |
|
|
}
|
| 1274 |
|
|
else if (lhsvar > anything_id
|
| 1275 |
|
|
&& lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
|
| 1276 |
|
|
{
|
| 1277 |
|
|
/* x = y */
|
| 1278 |
|
|
add_pred_graph_edge (graph, lhsvar, rhsvar);
|
| 1279 |
|
|
/* Implicitly, *x = *y */
|
| 1280 |
|
|
add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
|
| 1281 |
|
|
FIRST_REF_NODE + rhsvar);
|
| 1282 |
|
|
}
|
| 1283 |
|
|
else if (lhs.offset != 0 || rhs.offset != 0)
|
| 1284 |
|
|
{
|
| 1285 |
|
|
if (rhs.offset != 0)
|
| 1286 |
|
|
RESET_BIT (graph->direct_nodes, lhs.var);
|
| 1287 |
|
|
else if (lhs.offset != 0)
|
| 1288 |
|
|
RESET_BIT (graph->direct_nodes, rhs.var);
|
| 1289 |
|
|
}
|
| 1290 |
|
|
}
|
| 1291 |
|
|
}
|
| 1292 |
|
|
|
| 1293 |
|
|
/* Build the constraint graph, adding successor edges. */
|
| 1294 |
|
|
|
| 1295 |
|
|
static void
|
| 1296 |
|
|
build_succ_graph (void)
|
| 1297 |
|
|
{
|
| 1298 |
|
|
unsigned i, t;
|
| 1299 |
|
|
constraint_t c;
|
| 1300 |
|
|
|
| 1301 |
|
|
FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
|
| 1302 |
|
|
{
|
| 1303 |
|
|
struct constraint_expr lhs;
|
| 1304 |
|
|
struct constraint_expr rhs;
|
| 1305 |
|
|
unsigned int lhsvar;
|
| 1306 |
|
|
unsigned int rhsvar;
|
| 1307 |
|
|
|
| 1308 |
|
|
if (!c)
|
| 1309 |
|
|
continue;
|
| 1310 |
|
|
|
| 1311 |
|
|
lhs = c->lhs;
|
| 1312 |
|
|
rhs = c->rhs;
|
| 1313 |
|
|
lhsvar = find (lhs.var);
|
| 1314 |
|
|
rhsvar = find (rhs.var);
|
| 1315 |
|
|
|
| 1316 |
|
|
if (lhs.type == DEREF)
|
| 1317 |
|
|
{
|
| 1318 |
|
|
if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
|
| 1319 |
|
|
add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
|
| 1320 |
|
|
}
|
| 1321 |
|
|
else if (rhs.type == DEREF)
|
| 1322 |
|
|
{
|
| 1323 |
|
|
if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
|
| 1324 |
|
|
add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
|
| 1325 |
|
|
}
|
| 1326 |
|
|
else if (rhs.type == ADDRESSOF)
|
| 1327 |
|
|
{
|
| 1328 |
|
|
/* x = &y */
|
| 1329 |
|
|
gcc_assert (find (rhs.var) == rhs.var);
|
| 1330 |
|
|
bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
|
| 1331 |
|
|
}
|
| 1332 |
|
|
else if (lhsvar > anything_id
|
| 1333 |
|
|
&& lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
|
| 1334 |
|
|
{
|
| 1335 |
|
|
add_graph_edge (graph, lhsvar, rhsvar);
|
| 1336 |
|
|
}
|
| 1337 |
|
|
}
|
| 1338 |
|
|
|
| 1339 |
|
|
/* Add edges from STOREDANYTHING to all non-direct nodes that can
|
| 1340 |
|
|
receive pointers. */
|
| 1341 |
|
|
t = find (storedanything_id);
|
| 1342 |
|
|
for (i = integer_id + 1; i < FIRST_REF_NODE; ++i)
|
| 1343 |
|
|
{
|
| 1344 |
|
|
if (!TEST_BIT (graph->direct_nodes, i)
|
| 1345 |
|
|
&& get_varinfo (i)->may_have_pointers)
|
| 1346 |
|
|
add_graph_edge (graph, find (i), t);
|
| 1347 |
|
|
}
|
| 1348 |
|
|
|
| 1349 |
|
|
/* Everything stored to ANYTHING also potentially escapes. */
|
| 1350 |
|
|
add_graph_edge (graph, find (escaped_id), t);
|
| 1351 |
|
|
}
|
| 1352 |
|
|
|
| 1353 |
|
|
|
| 1354 |
|
|
/* Changed variables on the last iteration. */
|
| 1355 |
|
|
static bitmap changed;
|
| 1356 |
|
|
|
| 1357 |
|
|
/* Strongly Connected Component visitation info. */
|
| 1358 |
|
|
|
| 1359 |
|
|
struct scc_info
|
| 1360 |
|
|
{
|
| 1361 |
|
|
sbitmap visited;
|
| 1362 |
|
|
sbitmap deleted;
|
| 1363 |
|
|
unsigned int *dfs;
|
| 1364 |
|
|
unsigned int *node_mapping;
|
| 1365 |
|
|
int current_index;
|
| 1366 |
|
|
VEC(unsigned,heap) *scc_stack;
|
| 1367 |
|
|
};
|
| 1368 |
|
|
|
| 1369 |
|
|
|
| 1370 |
|
|
/* Recursive routine to find strongly connected components in GRAPH.
|
| 1371 |
|
|
SI is the SCC info to store the information in, and N is the id of current
|
| 1372 |
|
|
graph node we are processing.
|
| 1373 |
|
|
|
| 1374 |
|
|
This is Tarjan's strongly connected component finding algorithm, as
|
| 1375 |
|
|
modified by Nuutila to keep only non-root nodes on the stack.
|
| 1376 |
|
|
The algorithm can be found in "On finding the strongly connected
|
| 1377 |
|
|
connected components in a directed graph" by Esko Nuutila and Eljas
|
| 1378 |
|
|
Soisalon-Soininen, in Information Processing Letters volume 49,
|
| 1379 |
|
|
number 1, pages 9-14. */
|
| 1380 |
|
|
|
| 1381 |
|
|
static void
|
| 1382 |
|
|
scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
|
| 1383 |
|
|
{
|
| 1384 |
|
|
unsigned int i;
|
| 1385 |
|
|
bitmap_iterator bi;
|
| 1386 |
|
|
unsigned int my_dfs;
|
| 1387 |
|
|
|
| 1388 |
|
|
SET_BIT (si->visited, n);
|
| 1389 |
|
|
si->dfs[n] = si->current_index ++;
|
| 1390 |
|
|
my_dfs = si->dfs[n];
|
| 1391 |
|
|
|
| 1392 |
|
|
/* Visit all the successors. */
|
| 1393 |
|
|
EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
|
| 1394 |
|
|
{
|
| 1395 |
|
|
unsigned int w;
|
| 1396 |
|
|
|
| 1397 |
|
|
if (i > LAST_REF_NODE)
|
| 1398 |
|
|
break;
|
| 1399 |
|
|
|
| 1400 |
|
|
w = find (i);
|
| 1401 |
|
|
if (TEST_BIT (si->deleted, w))
|
| 1402 |
|
|
continue;
|
| 1403 |
|
|
|
| 1404 |
|
|
if (!TEST_BIT (si->visited, w))
|
| 1405 |
|
|
scc_visit (graph, si, w);
|
| 1406 |
|
|
{
|
| 1407 |
|
|
unsigned int t = find (w);
|
| 1408 |
|
|
unsigned int nnode = find (n);
|
| 1409 |
|
|
gcc_assert (nnode == n);
|
| 1410 |
|
|
|
| 1411 |
|
|
if (si->dfs[t] < si->dfs[nnode])
|
| 1412 |
|
|
si->dfs[n] = si->dfs[t];
|
| 1413 |
|
|
}
|
| 1414 |
|
|
}
|
| 1415 |
|
|
|
| 1416 |
|
|
/* See if any components have been identified. */
|
| 1417 |
|
|
if (si->dfs[n] == my_dfs)
|
| 1418 |
|
|
{
|
| 1419 |
|
|
if (VEC_length (unsigned, si->scc_stack) > 0
|
| 1420 |
|
|
&& si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
|
| 1421 |
|
|
{
|
| 1422 |
|
|
bitmap scc = BITMAP_ALLOC (NULL);
|
| 1423 |
|
|
unsigned int lowest_node;
|
| 1424 |
|
|
bitmap_iterator bi;
|
| 1425 |
|
|
|
| 1426 |
|
|
bitmap_set_bit (scc, n);
|
| 1427 |
|
|
|
| 1428 |
|
|
while (VEC_length (unsigned, si->scc_stack) != 0
|
| 1429 |
|
|
&& si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
|
| 1430 |
|
|
{
|
| 1431 |
|
|
unsigned int w = VEC_pop (unsigned, si->scc_stack);
|
| 1432 |
|
|
|
| 1433 |
|
|
bitmap_set_bit (scc, w);
|
| 1434 |
|
|
}
|
| 1435 |
|
|
|
| 1436 |
|
|
lowest_node = bitmap_first_set_bit (scc);
|
| 1437 |
|
|
gcc_assert (lowest_node < FIRST_REF_NODE);
|
| 1438 |
|
|
|
| 1439 |
|
|
/* Collapse the SCC nodes into a single node, and mark the
|
| 1440 |
|
|
indirect cycles. */
|
| 1441 |
|
|
EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
|
| 1442 |
|
|
{
|
| 1443 |
|
|
if (i < FIRST_REF_NODE)
|
| 1444 |
|
|
{
|
| 1445 |
|
|
if (unite (lowest_node, i))
|
| 1446 |
|
|
unify_nodes (graph, lowest_node, i, false);
|
| 1447 |
|
|
}
|
| 1448 |
|
|
else
|
| 1449 |
|
|
{
|
| 1450 |
|
|
unite (lowest_node, i);
|
| 1451 |
|
|
graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
|
| 1452 |
|
|
}
|
| 1453 |
|
|
}
|
| 1454 |
|
|
}
|
| 1455 |
|
|
SET_BIT (si->deleted, n);
|
| 1456 |
|
|
}
|
| 1457 |
|
|
else
|
| 1458 |
|
|
VEC_safe_push (unsigned, heap, si->scc_stack, n);
|
| 1459 |
|
|
}
|
| 1460 |
|
|
|
| 1461 |
|
|
/* Unify node FROM into node TO, updating the changed count if
|
| 1462 |
|
|
necessary when UPDATE_CHANGED is true. */
|
| 1463 |
|
|
|
| 1464 |
|
|
static void
|
| 1465 |
|
|
unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
|
| 1466 |
|
|
bool update_changed)
|
| 1467 |
|
|
{
|
| 1468 |
|
|
|
| 1469 |
|
|
gcc_assert (to != from && find (to) == to);
|
| 1470 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1471 |
|
|
fprintf (dump_file, "Unifying %s to %s\n",
|
| 1472 |
|
|
get_varinfo (from)->name,
|
| 1473 |
|
|
get_varinfo (to)->name);
|
| 1474 |
|
|
|
| 1475 |
|
|
if (update_changed)
|
| 1476 |
|
|
stats.unified_vars_dynamic++;
|
| 1477 |
|
|
else
|
| 1478 |
|
|
stats.unified_vars_static++;
|
| 1479 |
|
|
|
| 1480 |
|
|
merge_graph_nodes (graph, to, from);
|
| 1481 |
|
|
merge_node_constraints (graph, to, from);
|
| 1482 |
|
|
|
| 1483 |
|
|
/* Mark TO as changed if FROM was changed. If TO was already marked
|
| 1484 |
|
|
as changed, decrease the changed count. */
|
| 1485 |
|
|
|
| 1486 |
|
|
if (update_changed
|
| 1487 |
|
|
&& bitmap_bit_p (changed, from))
|
| 1488 |
|
|
{
|
| 1489 |
|
|
bitmap_clear_bit (changed, from);
|
| 1490 |
|
|
bitmap_set_bit (changed, to);
|
| 1491 |
|
|
}
|
| 1492 |
|
|
if (get_varinfo (from)->solution)
|
| 1493 |
|
|
{
|
| 1494 |
|
|
/* If the solution changes because of the merging, we need to mark
|
| 1495 |
|
|
the variable as changed. */
|
| 1496 |
|
|
if (bitmap_ior_into (get_varinfo (to)->solution,
|
| 1497 |
|
|
get_varinfo (from)->solution))
|
| 1498 |
|
|
{
|
| 1499 |
|
|
if (update_changed)
|
| 1500 |
|
|
bitmap_set_bit (changed, to);
|
| 1501 |
|
|
}
|
| 1502 |
|
|
|
| 1503 |
|
|
BITMAP_FREE (get_varinfo (from)->solution);
|
| 1504 |
|
|
if (get_varinfo (from)->oldsolution)
|
| 1505 |
|
|
BITMAP_FREE (get_varinfo (from)->oldsolution);
|
| 1506 |
|
|
|
| 1507 |
|
|
if (stats.iterations > 0
|
| 1508 |
|
|
&& get_varinfo (to)->oldsolution)
|
| 1509 |
|
|
BITMAP_FREE (get_varinfo (to)->oldsolution);
|
| 1510 |
|
|
}
|
| 1511 |
|
|
if (valid_graph_edge (graph, to, to))
|
| 1512 |
|
|
{
|
| 1513 |
|
|
if (graph->succs[to])
|
| 1514 |
|
|
bitmap_clear_bit (graph->succs[to], to);
|
| 1515 |
|
|
}
|
| 1516 |
|
|
}
|
| 1517 |
|
|
|
| 1518 |
|
|
/* Information needed to compute the topological ordering of a graph. */
|
| 1519 |
|
|
|
| 1520 |
|
|
struct topo_info
|
| 1521 |
|
|
{
|
| 1522 |
|
|
/* sbitmap of visited nodes. */
|
| 1523 |
|
|
sbitmap visited;
|
| 1524 |
|
|
/* Array that stores the topological order of the graph, *in
|
| 1525 |
|
|
reverse*. */
|
| 1526 |
|
|
VEC(unsigned,heap) *topo_order;
|
| 1527 |
|
|
};
|
| 1528 |
|
|
|
| 1529 |
|
|
|
| 1530 |
|
|
/* Initialize and return a topological info structure. */
|
| 1531 |
|
|
|
| 1532 |
|
|
static struct topo_info *
|
| 1533 |
|
|
init_topo_info (void)
|
| 1534 |
|
|
{
|
| 1535 |
|
|
size_t size = graph->size;
|
| 1536 |
|
|
struct topo_info *ti = XNEW (struct topo_info);
|
| 1537 |
|
|
ti->visited = sbitmap_alloc (size);
|
| 1538 |
|
|
sbitmap_zero (ti->visited);
|
| 1539 |
|
|
ti->topo_order = VEC_alloc (unsigned, heap, 1);
|
| 1540 |
|
|
return ti;
|
| 1541 |
|
|
}
|
| 1542 |
|
|
|
| 1543 |
|
|
|
| 1544 |
|
|
/* Free the topological sort info pointed to by TI. */
|
| 1545 |
|
|
|
| 1546 |
|
|
static void
|
| 1547 |
|
|
free_topo_info (struct topo_info *ti)
|
| 1548 |
|
|
{
|
| 1549 |
|
|
sbitmap_free (ti->visited);
|
| 1550 |
|
|
VEC_free (unsigned, heap, ti->topo_order);
|
| 1551 |
|
|
free (ti);
|
| 1552 |
|
|
}
|
| 1553 |
|
|
|
| 1554 |
|
|
/* Visit the graph in topological order, and store the order in the
|
| 1555 |
|
|
topo_info structure. */
|
| 1556 |
|
|
|
| 1557 |
|
|
static void
|
| 1558 |
|
|
topo_visit (constraint_graph_t graph, struct topo_info *ti,
|
| 1559 |
|
|
unsigned int n)
|
| 1560 |
|
|
{
|
| 1561 |
|
|
bitmap_iterator bi;
|
| 1562 |
|
|
unsigned int j;
|
| 1563 |
|
|
|
| 1564 |
|
|
SET_BIT (ti->visited, n);
|
| 1565 |
|
|
|
| 1566 |
|
|
if (graph->succs[n])
|
| 1567 |
|
|
EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
|
| 1568 |
|
|
{
|
| 1569 |
|
|
if (!TEST_BIT (ti->visited, j))
|
| 1570 |
|
|
topo_visit (graph, ti, j);
|
| 1571 |
|
|
}
|
| 1572 |
|
|
|
| 1573 |
|
|
VEC_safe_push (unsigned, heap, ti->topo_order, n);
|
| 1574 |
|
|
}
|
| 1575 |
|
|
|
| 1576 |
|
|
/* Process a constraint C that represents x = *(y + off), using DELTA as the
|
| 1577 |
|
|
starting solution for y. */
|
| 1578 |
|
|
|
| 1579 |
|
|
static void
|
| 1580 |
|
|
do_sd_constraint (constraint_graph_t graph, constraint_t c,
|
| 1581 |
|
|
bitmap delta)
|
| 1582 |
|
|
{
|
| 1583 |
|
|
unsigned int lhs = c->lhs.var;
|
| 1584 |
|
|
bool flag = false;
|
| 1585 |
|
|
bitmap sol = get_varinfo (lhs)->solution;
|
| 1586 |
|
|
unsigned int j;
|
| 1587 |
|
|
bitmap_iterator bi;
|
| 1588 |
|
|
HOST_WIDE_INT roffset = c->rhs.offset;
|
| 1589 |
|
|
|
| 1590 |
|
|
/* Our IL does not allow this. */
|
| 1591 |
|
|
gcc_assert (c->lhs.offset == 0);
|
| 1592 |
|
|
|
| 1593 |
|
|
/* If the solution of Y contains anything it is good enough to transfer
|
| 1594 |
|
|
this to the LHS. */
|
| 1595 |
|
|
if (bitmap_bit_p (delta, anything_id))
|
| 1596 |
|
|
{
|
| 1597 |
|
|
flag |= bitmap_set_bit (sol, anything_id);
|
| 1598 |
|
|
goto done;
|
| 1599 |
|
|
}
|
| 1600 |
|
|
|
| 1601 |
|
|
/* If we do not know at with offset the rhs is dereferenced compute
|
| 1602 |
|
|
the reachability set of DELTA, conservatively assuming it is
|
| 1603 |
|
|
dereferenced at all valid offsets. */
|
| 1604 |
|
|
if (roffset == UNKNOWN_OFFSET)
|
| 1605 |
|
|
{
|
| 1606 |
|
|
solution_set_expand (delta, delta);
|
| 1607 |
|
|
/* No further offset processing is necessary. */
|
| 1608 |
|
|
roffset = 0;
|
| 1609 |
|
|
}
|
| 1610 |
|
|
|
| 1611 |
|
|
/* For each variable j in delta (Sol(y)), add
|
| 1612 |
|
|
an edge in the graph from j to x, and union Sol(j) into Sol(x). */
|
| 1613 |
|
|
EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
|
| 1614 |
|
|
{
|
| 1615 |
|
|
varinfo_t v = get_varinfo (j);
|
| 1616 |
|
|
HOST_WIDE_INT fieldoffset = v->offset + roffset;
|
| 1617 |
|
|
unsigned int t;
|
| 1618 |
|
|
|
| 1619 |
|
|
if (v->is_full_var)
|
| 1620 |
|
|
fieldoffset = v->offset;
|
| 1621 |
|
|
else if (roffset != 0)
|
| 1622 |
|
|
v = first_vi_for_offset (v, fieldoffset);
|
| 1623 |
|
|
/* If the access is outside of the variable we can ignore it. */
|
| 1624 |
|
|
if (!v)
|
| 1625 |
|
|
continue;
|
| 1626 |
|
|
|
| 1627 |
|
|
do
|
| 1628 |
|
|
{
|
| 1629 |
|
|
t = find (v->id);
|
| 1630 |
|
|
|
| 1631 |
|
|
/* Adding edges from the special vars is pointless.
|
| 1632 |
|
|
They don't have sets that can change. */
|
| 1633 |
|
|
if (get_varinfo (t)->is_special_var)
|
| 1634 |
|
|
flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
|
| 1635 |
|
|
/* Merging the solution from ESCAPED needlessly increases
|
| 1636 |
|
|
the set. Use ESCAPED as representative instead. */
|
| 1637 |
|
|
else if (v->id == escaped_id)
|
| 1638 |
|
|
flag |= bitmap_set_bit (sol, escaped_id);
|
| 1639 |
|
|
else if (v->may_have_pointers
|
| 1640 |
|
|
&& add_graph_edge (graph, lhs, t))
|
| 1641 |
|
|
flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
|
| 1642 |
|
|
|
| 1643 |
|
|
/* If the variable is not exactly at the requested offset
|
| 1644 |
|
|
we have to include the next one. */
|
| 1645 |
|
|
if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
|
| 1646 |
|
|
|| v->next == NULL)
|
| 1647 |
|
|
break;
|
| 1648 |
|
|
|
| 1649 |
|
|
v = v->next;
|
| 1650 |
|
|
fieldoffset = v->offset;
|
| 1651 |
|
|
}
|
| 1652 |
|
|
while (1);
|
| 1653 |
|
|
}
|
| 1654 |
|
|
|
| 1655 |
|
|
done:
|
| 1656 |
|
|
/* If the LHS solution changed, mark the var as changed. */
|
| 1657 |
|
|
if (flag)
|
| 1658 |
|
|
{
|
| 1659 |
|
|
get_varinfo (lhs)->solution = sol;
|
| 1660 |
|
|
bitmap_set_bit (changed, lhs);
|
| 1661 |
|
|
}
|
| 1662 |
|
|
}
|
| 1663 |
|
|
|
| 1664 |
|
|
/* Process a constraint C that represents *(x + off) = y using DELTA
|
| 1665 |
|
|
as the starting solution for x. */
|
| 1666 |
|
|
|
| 1667 |
|
|
static void
|
| 1668 |
|
|
do_ds_constraint (constraint_t c, bitmap delta)
|
| 1669 |
|
|
{
|
| 1670 |
|
|
unsigned int rhs = c->rhs.var;
|
| 1671 |
|
|
bitmap sol = get_varinfo (rhs)->solution;
|
| 1672 |
|
|
unsigned int j;
|
| 1673 |
|
|
bitmap_iterator bi;
|
| 1674 |
|
|
HOST_WIDE_INT loff = c->lhs.offset;
|
| 1675 |
|
|
bool escaped_p = false;
|
| 1676 |
|
|
|
| 1677 |
|
|
/* Our IL does not allow this. */
|
| 1678 |
|
|
gcc_assert (c->rhs.offset == 0);
|
| 1679 |
|
|
|
| 1680 |
|
|
/* If the solution of y contains ANYTHING simply use the ANYTHING
|
| 1681 |
|
|
solution. This avoids needlessly increasing the points-to sets. */
|
| 1682 |
|
|
if (bitmap_bit_p (sol, anything_id))
|
| 1683 |
|
|
sol = get_varinfo (find (anything_id))->solution;
|
| 1684 |
|
|
|
| 1685 |
|
|
/* If the solution for x contains ANYTHING we have to merge the
|
| 1686 |
|
|
solution of y into all pointer variables which we do via
|
| 1687 |
|
|
STOREDANYTHING. */
|
| 1688 |
|
|
if (bitmap_bit_p (delta, anything_id))
|
| 1689 |
|
|
{
|
| 1690 |
|
|
unsigned t = find (storedanything_id);
|
| 1691 |
|
|
if (add_graph_edge (graph, t, rhs))
|
| 1692 |
|
|
{
|
| 1693 |
|
|
if (bitmap_ior_into (get_varinfo (t)->solution, sol))
|
| 1694 |
|
|
bitmap_set_bit (changed, t);
|
| 1695 |
|
|
}
|
| 1696 |
|
|
return;
|
| 1697 |
|
|
}
|
| 1698 |
|
|
|
| 1699 |
|
|
/* If we do not know at with offset the rhs is dereferenced compute
|
| 1700 |
|
|
the reachability set of DELTA, conservatively assuming it is
|
| 1701 |
|
|
dereferenced at all valid offsets. */
|
| 1702 |
|
|
if (loff == UNKNOWN_OFFSET)
|
| 1703 |
|
|
{
|
| 1704 |
|
|
solution_set_expand (delta, delta);
|
| 1705 |
|
|
loff = 0;
|
| 1706 |
|
|
}
|
| 1707 |
|
|
|
| 1708 |
|
|
/* For each member j of delta (Sol(x)), add an edge from y to j and
|
| 1709 |
|
|
union Sol(y) into Sol(j) */
|
| 1710 |
|
|
EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
|
| 1711 |
|
|
{
|
| 1712 |
|
|
varinfo_t v = get_varinfo (j);
|
| 1713 |
|
|
unsigned int t;
|
| 1714 |
|
|
HOST_WIDE_INT fieldoffset = v->offset + loff;
|
| 1715 |
|
|
|
| 1716 |
|
|
if (v->is_full_var)
|
| 1717 |
|
|
fieldoffset = v->offset;
|
| 1718 |
|
|
else if (loff != 0)
|
| 1719 |
|
|
v = first_vi_for_offset (v, fieldoffset);
|
| 1720 |
|
|
/* If the access is outside of the variable we can ignore it. */
|
| 1721 |
|
|
if (!v)
|
| 1722 |
|
|
continue;
|
| 1723 |
|
|
|
| 1724 |
|
|
do
|
| 1725 |
|
|
{
|
| 1726 |
|
|
if (v->may_have_pointers)
|
| 1727 |
|
|
{
|
| 1728 |
|
|
/* If v is a global variable then this is an escape point. */
|
| 1729 |
|
|
if (v->is_global_var
|
| 1730 |
|
|
&& !escaped_p)
|
| 1731 |
|
|
{
|
| 1732 |
|
|
t = find (escaped_id);
|
| 1733 |
|
|
if (add_graph_edge (graph, t, rhs)
|
| 1734 |
|
|
&& bitmap_ior_into (get_varinfo (t)->solution, sol))
|
| 1735 |
|
|
bitmap_set_bit (changed, t);
|
| 1736 |
|
|
/* Enough to let rhs escape once. */
|
| 1737 |
|
|
escaped_p = true;
|
| 1738 |
|
|
}
|
| 1739 |
|
|
|
| 1740 |
|
|
if (v->is_special_var)
|
| 1741 |
|
|
break;
|
| 1742 |
|
|
|
| 1743 |
|
|
t = find (v->id);
|
| 1744 |
|
|
if (add_graph_edge (graph, t, rhs)
|
| 1745 |
|
|
&& bitmap_ior_into (get_varinfo (t)->solution, sol))
|
| 1746 |
|
|
bitmap_set_bit (changed, t);
|
| 1747 |
|
|
}
|
| 1748 |
|
|
|
| 1749 |
|
|
/* If the variable is not exactly at the requested offset
|
| 1750 |
|
|
we have to include the next one. */
|
| 1751 |
|
|
if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
|
| 1752 |
|
|
|| v->next == NULL)
|
| 1753 |
|
|
break;
|
| 1754 |
|
|
|
| 1755 |
|
|
v = v->next;
|
| 1756 |
|
|
fieldoffset = v->offset;
|
| 1757 |
|
|
}
|
| 1758 |
|
|
while (1);
|
| 1759 |
|
|
}
|
| 1760 |
|
|
}
|
| 1761 |
|
|
|
| 1762 |
|
|
/* Handle a non-simple (simple meaning requires no iteration),
|
| 1763 |
|
|
constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
|
| 1764 |
|
|
|
| 1765 |
|
|
static void
|
| 1766 |
|
|
do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
|
| 1767 |
|
|
{
|
| 1768 |
|
|
if (c->lhs.type == DEREF)
|
| 1769 |
|
|
{
|
| 1770 |
|
|
if (c->rhs.type == ADDRESSOF)
|
| 1771 |
|
|
{
|
| 1772 |
|
|
gcc_unreachable();
|
| 1773 |
|
|
}
|
| 1774 |
|
|
else
|
| 1775 |
|
|
{
|
| 1776 |
|
|
/* *x = y */
|
| 1777 |
|
|
do_ds_constraint (c, delta);
|
| 1778 |
|
|
}
|
| 1779 |
|
|
}
|
| 1780 |
|
|
else if (c->rhs.type == DEREF)
|
| 1781 |
|
|
{
|
| 1782 |
|
|
/* x = *y */
|
| 1783 |
|
|
if (!(get_varinfo (c->lhs.var)->is_special_var))
|
| 1784 |
|
|
do_sd_constraint (graph, c, delta);
|
| 1785 |
|
|
}
|
| 1786 |
|
|
else
|
| 1787 |
|
|
{
|
| 1788 |
|
|
bitmap tmp;
|
| 1789 |
|
|
bitmap solution;
|
| 1790 |
|
|
bool flag = false;
|
| 1791 |
|
|
|
| 1792 |
|
|
gcc_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR);
|
| 1793 |
|
|
solution = get_varinfo (c->rhs.var)->solution;
|
| 1794 |
|
|
tmp = get_varinfo (c->lhs.var)->solution;
|
| 1795 |
|
|
|
| 1796 |
|
|
flag = set_union_with_increment (tmp, solution, c->rhs.offset);
|
| 1797 |
|
|
|
| 1798 |
|
|
if (flag)
|
| 1799 |
|
|
{
|
| 1800 |
|
|
get_varinfo (c->lhs.var)->solution = tmp;
|
| 1801 |
|
|
bitmap_set_bit (changed, c->lhs.var);
|
| 1802 |
|
|
}
|
| 1803 |
|
|
}
|
| 1804 |
|
|
}
|
| 1805 |
|
|
|
| 1806 |
|
|
/* Initialize and return a new SCC info structure. */
|
| 1807 |
|
|
|
| 1808 |
|
|
static struct scc_info *
|
| 1809 |
|
|
init_scc_info (size_t size)
|
| 1810 |
|
|
{
|
| 1811 |
|
|
struct scc_info *si = XNEW (struct scc_info);
|
| 1812 |
|
|
size_t i;
|
| 1813 |
|
|
|
| 1814 |
|
|
si->current_index = 0;
|
| 1815 |
|
|
si->visited = sbitmap_alloc (size);
|
| 1816 |
|
|
sbitmap_zero (si->visited);
|
| 1817 |
|
|
si->deleted = sbitmap_alloc (size);
|
| 1818 |
|
|
sbitmap_zero (si->deleted);
|
| 1819 |
|
|
si->node_mapping = XNEWVEC (unsigned int, size);
|
| 1820 |
|
|
si->dfs = XCNEWVEC (unsigned int, size);
|
| 1821 |
|
|
|
| 1822 |
|
|
for (i = 0; i < size; i++)
|
| 1823 |
|
|
si->node_mapping[i] = i;
|
| 1824 |
|
|
|
| 1825 |
|
|
si->scc_stack = VEC_alloc (unsigned, heap, 1);
|
| 1826 |
|
|
return si;
|
| 1827 |
|
|
}
|
| 1828 |
|
|
|
| 1829 |
|
|
/* Free an SCC info structure pointed to by SI */
|
| 1830 |
|
|
|
| 1831 |
|
|
static void
|
| 1832 |
|
|
free_scc_info (struct scc_info *si)
|
| 1833 |
|
|
{
|
| 1834 |
|
|
sbitmap_free (si->visited);
|
| 1835 |
|
|
sbitmap_free (si->deleted);
|
| 1836 |
|
|
free (si->node_mapping);
|
| 1837 |
|
|
free (si->dfs);
|
| 1838 |
|
|
VEC_free (unsigned, heap, si->scc_stack);
|
| 1839 |
|
|
free (si);
|
| 1840 |
|
|
}
|
| 1841 |
|
|
|
| 1842 |
|
|
|
| 1843 |
|
|
/* Find indirect cycles in GRAPH that occur, using strongly connected
|
| 1844 |
|
|
components, and note them in the indirect cycles map.
|
| 1845 |
|
|
|
| 1846 |
|
|
This technique comes from Ben Hardekopf and Calvin Lin,
|
| 1847 |
|
|
"It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
|
| 1848 |
|
|
Lines of Code", submitted to PLDI 2007. */
|
| 1849 |
|
|
|
| 1850 |
|
|
static void
|
| 1851 |
|
|
find_indirect_cycles (constraint_graph_t graph)
|
| 1852 |
|
|
{
|
| 1853 |
|
|
unsigned int i;
|
| 1854 |
|
|
unsigned int size = graph->size;
|
| 1855 |
|
|
struct scc_info *si = init_scc_info (size);
|
| 1856 |
|
|
|
| 1857 |
|
|
for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
|
| 1858 |
|
|
if (!TEST_BIT (si->visited, i) && find (i) == i)
|
| 1859 |
|
|
scc_visit (graph, si, i);
|
| 1860 |
|
|
|
| 1861 |
|
|
free_scc_info (si);
|
| 1862 |
|
|
}
|
| 1863 |
|
|
|
| 1864 |
|
|
/* Compute a topological ordering for GRAPH, and store the result in the
|
| 1865 |
|
|
topo_info structure TI. */
|
| 1866 |
|
|
|
| 1867 |
|
|
static void
|
| 1868 |
|
|
compute_topo_order (constraint_graph_t graph,
|
| 1869 |
|
|
struct topo_info *ti)
|
| 1870 |
|
|
{
|
| 1871 |
|
|
unsigned int i;
|
| 1872 |
|
|
unsigned int size = graph->size;
|
| 1873 |
|
|
|
| 1874 |
|
|
for (i = 0; i != size; ++i)
|
| 1875 |
|
|
if (!TEST_BIT (ti->visited, i) && find (i) == i)
|
| 1876 |
|
|
topo_visit (graph, ti, i);
|
| 1877 |
|
|
}
|
| 1878 |
|
|
|
| 1879 |
|
|
/* Structure used to for hash value numbering of pointer equivalence
|
| 1880 |
|
|
classes. */
|
| 1881 |
|
|
|
| 1882 |
|
|
typedef struct equiv_class_label
|
| 1883 |
|
|
{
|
| 1884 |
|
|
hashval_t hashcode;
|
| 1885 |
|
|
unsigned int equivalence_class;
|
| 1886 |
|
|
bitmap labels;
|
| 1887 |
|
|
} *equiv_class_label_t;
|
| 1888 |
|
|
typedef const struct equiv_class_label *const_equiv_class_label_t;
|
| 1889 |
|
|
|
| 1890 |
|
|
/* A hashtable for mapping a bitmap of labels->pointer equivalence
|
| 1891 |
|
|
classes. */
|
| 1892 |
|
|
static htab_t pointer_equiv_class_table;
|
| 1893 |
|
|
|
| 1894 |
|
|
/* A hashtable for mapping a bitmap of labels->location equivalence
|
| 1895 |
|
|
classes. */
|
| 1896 |
|
|
static htab_t location_equiv_class_table;
|
| 1897 |
|
|
|
| 1898 |
|
|
/* Hash function for a equiv_class_label_t */
|
| 1899 |
|
|
|
| 1900 |
|
|
static hashval_t
|
| 1901 |
|
|
equiv_class_label_hash (const void *p)
|
| 1902 |
|
|
{
|
| 1903 |
|
|
const_equiv_class_label_t const ecl = (const_equiv_class_label_t) p;
|
| 1904 |
|
|
return ecl->hashcode;
|
| 1905 |
|
|
}
|
| 1906 |
|
|
|
| 1907 |
|
|
/* Equality function for two equiv_class_label_t's. */
|
| 1908 |
|
|
|
| 1909 |
|
|
static int
|
| 1910 |
|
|
equiv_class_label_eq (const void *p1, const void *p2)
|
| 1911 |
|
|
{
|
| 1912 |
|
|
const_equiv_class_label_t const eql1 = (const_equiv_class_label_t) p1;
|
| 1913 |
|
|
const_equiv_class_label_t const eql2 = (const_equiv_class_label_t) p2;
|
| 1914 |
|
|
return (eql1->hashcode == eql2->hashcode
|
| 1915 |
|
|
&& bitmap_equal_p (eql1->labels, eql2->labels));
|
| 1916 |
|
|
}
|
| 1917 |
|
|
|
| 1918 |
|
|
/* Lookup a equivalence class in TABLE by the bitmap of LABELS it
|
| 1919 |
|
|
contains. */
|
| 1920 |
|
|
|
| 1921 |
|
|
static unsigned int
|
| 1922 |
|
|
equiv_class_lookup (htab_t table, bitmap labels)
|
| 1923 |
|
|
{
|
| 1924 |
|
|
void **slot;
|
| 1925 |
|
|
struct equiv_class_label ecl;
|
| 1926 |
|
|
|
| 1927 |
|
|
ecl.labels = labels;
|
| 1928 |
|
|
ecl.hashcode = bitmap_hash (labels);
|
| 1929 |
|
|
|
| 1930 |
|
|
slot = htab_find_slot_with_hash (table, &ecl,
|
| 1931 |
|
|
ecl.hashcode, NO_INSERT);
|
| 1932 |
|
|
if (!slot)
|
| 1933 |
|
|
return 0;
|
| 1934 |
|
|
else
|
| 1935 |
|
|
return ((equiv_class_label_t) *slot)->equivalence_class;
|
| 1936 |
|
|
}
|
| 1937 |
|
|
|
| 1938 |
|
|
|
| 1939 |
|
|
/* Add an equivalence class named EQUIVALENCE_CLASS with labels LABELS
|
| 1940 |
|
|
to TABLE. */
|
| 1941 |
|
|
|
| 1942 |
|
|
static void
|
| 1943 |
|
|
equiv_class_add (htab_t table, unsigned int equivalence_class,
|
| 1944 |
|
|
bitmap labels)
|
| 1945 |
|
|
{
|
| 1946 |
|
|
void **slot;
|
| 1947 |
|
|
equiv_class_label_t ecl = XNEW (struct equiv_class_label);
|
| 1948 |
|
|
|
| 1949 |
|
|
ecl->labels = labels;
|
| 1950 |
|
|
ecl->equivalence_class = equivalence_class;
|
| 1951 |
|
|
ecl->hashcode = bitmap_hash (labels);
|
| 1952 |
|
|
|
| 1953 |
|
|
slot = htab_find_slot_with_hash (table, ecl,
|
| 1954 |
|
|
ecl->hashcode, INSERT);
|
| 1955 |
|
|
gcc_assert (!*slot);
|
| 1956 |
|
|
*slot = (void *) ecl;
|
| 1957 |
|
|
}
|
| 1958 |
|
|
|
| 1959 |
|
|
/* Perform offline variable substitution.
|
| 1960 |
|
|
|
| 1961 |
|
|
This is a worst case quadratic time way of identifying variables
|
| 1962 |
|
|
that must have equivalent points-to sets, including those caused by
|
| 1963 |
|
|
static cycles, and single entry subgraphs, in the constraint graph.
|
| 1964 |
|
|
|
| 1965 |
|
|
The technique is described in "Exploiting Pointer and Location
|
| 1966 |
|
|
Equivalence to Optimize Pointer Analysis. In the 14th International
|
| 1967 |
|
|
Static Analysis Symposium (SAS), August 2007." It is known as the
|
| 1968 |
|
|
"HU" algorithm, and is equivalent to value numbering the collapsed
|
| 1969 |
|
|
constraint graph including evaluating unions.
|
| 1970 |
|
|
|
| 1971 |
|
|
The general method of finding equivalence classes is as follows:
|
| 1972 |
|
|
Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
|
| 1973 |
|
|
Initialize all non-REF nodes to be direct nodes.
|
| 1974 |
|
|
For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
|
| 1975 |
|
|
variable}
|
| 1976 |
|
|
For each constraint containing the dereference, we also do the same
|
| 1977 |
|
|
thing.
|
| 1978 |
|
|
|
| 1979 |
|
|
We then compute SCC's in the graph and unify nodes in the same SCC,
|
| 1980 |
|
|
including pts sets.
|
| 1981 |
|
|
|
| 1982 |
|
|
For each non-collapsed node x:
|
| 1983 |
|
|
Visit all unvisited explicit incoming edges.
|
| 1984 |
|
|
Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
|
| 1985 |
|
|
where y->x.
|
| 1986 |
|
|
Lookup the equivalence class for pts(x).
|
| 1987 |
|
|
If we found one, equivalence_class(x) = found class.
|
| 1988 |
|
|
Otherwise, equivalence_class(x) = new class, and new_class is
|
| 1989 |
|
|
added to the lookup table.
|
| 1990 |
|
|
|
| 1991 |
|
|
All direct nodes with the same equivalence class can be replaced
|
| 1992 |
|
|
with a single representative node.
|
| 1993 |
|
|
All unlabeled nodes (label == 0) are not pointers and all edges
|
| 1994 |
|
|
involving them can be eliminated.
|
| 1995 |
|
|
We perform these optimizations during rewrite_constraints
|
| 1996 |
|
|
|
| 1997 |
|
|
In addition to pointer equivalence class finding, we also perform
|
| 1998 |
|
|
location equivalence class finding. This is the set of variables
|
| 1999 |
|
|
that always appear together in points-to sets. We use this to
|
| 2000 |
|
|
compress the size of the points-to sets. */
|
| 2001 |
|
|
|
| 2002 |
|
|
/* Current maximum pointer equivalence class id. */
|
| 2003 |
|
|
static int pointer_equiv_class;
|
| 2004 |
|
|
|
| 2005 |
|
|
/* Current maximum location equivalence class id. */
|
| 2006 |
|
|
static int location_equiv_class;
|
| 2007 |
|
|
|
| 2008 |
|
|
/* Recursive routine to find strongly connected components in GRAPH,
|
| 2009 |
|
|
and label it's nodes with DFS numbers. */
|
| 2010 |
|
|
|
| 2011 |
|
|
static void
|
| 2012 |
|
|
condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
|
| 2013 |
|
|
{
|
| 2014 |
|
|
unsigned int i;
|
| 2015 |
|
|
bitmap_iterator bi;
|
| 2016 |
|
|
unsigned int my_dfs;
|
| 2017 |
|
|
|
| 2018 |
|
|
gcc_assert (si->node_mapping[n] == n);
|
| 2019 |
|
|
SET_BIT (si->visited, n);
|
| 2020 |
|
|
si->dfs[n] = si->current_index ++;
|
| 2021 |
|
|
my_dfs = si->dfs[n];
|
| 2022 |
|
|
|
| 2023 |
|
|
/* Visit all the successors. */
|
| 2024 |
|
|
EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
|
| 2025 |
|
|
{
|
| 2026 |
|
|
unsigned int w = si->node_mapping[i];
|
| 2027 |
|
|
|
| 2028 |
|
|
if (TEST_BIT (si->deleted, w))
|
| 2029 |
|
|
continue;
|
| 2030 |
|
|
|
| 2031 |
|
|
if (!TEST_BIT (si->visited, w))
|
| 2032 |
|
|
condense_visit (graph, si, w);
|
| 2033 |
|
|
{
|
| 2034 |
|
|
unsigned int t = si->node_mapping[w];
|
| 2035 |
|
|
unsigned int nnode = si->node_mapping[n];
|
| 2036 |
|
|
gcc_assert (nnode == n);
|
| 2037 |
|
|
|
| 2038 |
|
|
if (si->dfs[t] < si->dfs[nnode])
|
| 2039 |
|
|
si->dfs[n] = si->dfs[t];
|
| 2040 |
|
|
}
|
| 2041 |
|
|
}
|
| 2042 |
|
|
|
| 2043 |
|
|
/* Visit all the implicit predecessors. */
|
| 2044 |
|
|
EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
|
| 2045 |
|
|
{
|
| 2046 |
|
|
unsigned int w = si->node_mapping[i];
|
| 2047 |
|
|
|
| 2048 |
|
|
if (TEST_BIT (si->deleted, w))
|
| 2049 |
|
|
continue;
|
| 2050 |
|
|
|
| 2051 |
|
|
if (!TEST_BIT (si->visited, w))
|
| 2052 |
|
|
condense_visit (graph, si, w);
|
| 2053 |
|
|
{
|
| 2054 |
|
|
unsigned int t = si->node_mapping[w];
|
| 2055 |
|
|
unsigned int nnode = si->node_mapping[n];
|
| 2056 |
|
|
gcc_assert (nnode == n);
|
| 2057 |
|
|
|
| 2058 |
|
|
if (si->dfs[t] < si->dfs[nnode])
|
| 2059 |
|
|
si->dfs[n] = si->dfs[t];
|
| 2060 |
|
|
}
|
| 2061 |
|
|
}
|
| 2062 |
|
|
|
| 2063 |
|
|
/* See if any components have been identified. */
|
| 2064 |
|
|
if (si->dfs[n] == my_dfs)
|
| 2065 |
|
|
{
|
| 2066 |
|
|
while (VEC_length (unsigned, si->scc_stack) != 0
|
| 2067 |
|
|
&& si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
|
| 2068 |
|
|
{
|
| 2069 |
|
|
unsigned int w = VEC_pop (unsigned, si->scc_stack);
|
| 2070 |
|
|
si->node_mapping[w] = n;
|
| 2071 |
|
|
|
| 2072 |
|
|
if (!TEST_BIT (graph->direct_nodes, w))
|
| 2073 |
|
|
RESET_BIT (graph->direct_nodes, n);
|
| 2074 |
|
|
|
| 2075 |
|
|
/* Unify our nodes. */
|
| 2076 |
|
|
if (graph->preds[w])
|
| 2077 |
|
|
{
|
| 2078 |
|
|
if (!graph->preds[n])
|
| 2079 |
|
|
graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
|
| 2080 |
|
|
bitmap_ior_into (graph->preds[n], graph->preds[w]);
|
| 2081 |
|
|
}
|
| 2082 |
|
|
if (graph->implicit_preds[w])
|
| 2083 |
|
|
{
|
| 2084 |
|
|
if (!graph->implicit_preds[n])
|
| 2085 |
|
|
graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
|
| 2086 |
|
|
bitmap_ior_into (graph->implicit_preds[n],
|
| 2087 |
|
|
graph->implicit_preds[w]);
|
| 2088 |
|
|
}
|
| 2089 |
|
|
if (graph->points_to[w])
|
| 2090 |
|
|
{
|
| 2091 |
|
|
if (!graph->points_to[n])
|
| 2092 |
|
|
graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
|
| 2093 |
|
|
bitmap_ior_into (graph->points_to[n],
|
| 2094 |
|
|
graph->points_to[w]);
|
| 2095 |
|
|
}
|
| 2096 |
|
|
}
|
| 2097 |
|
|
SET_BIT (si->deleted, n);
|
| 2098 |
|
|
}
|
| 2099 |
|
|
else
|
| 2100 |
|
|
VEC_safe_push (unsigned, heap, si->scc_stack, n);
|
| 2101 |
|
|
}
|
| 2102 |
|
|
|
| 2103 |
|
|
/* Label pointer equivalences. */
|
| 2104 |
|
|
|
| 2105 |
|
|
static void
|
| 2106 |
|
|
label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
|
| 2107 |
|
|
{
|
| 2108 |
|
|
unsigned int i;
|
| 2109 |
|
|
bitmap_iterator bi;
|
| 2110 |
|
|
SET_BIT (si->visited, n);
|
| 2111 |
|
|
|
| 2112 |
|
|
if (!graph->points_to[n])
|
| 2113 |
|
|
graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
|
| 2114 |
|
|
|
| 2115 |
|
|
/* Label and union our incoming edges's points to sets. */
|
| 2116 |
|
|
EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
|
| 2117 |
|
|
{
|
| 2118 |
|
|
unsigned int w = si->node_mapping[i];
|
| 2119 |
|
|
if (!TEST_BIT (si->visited, w))
|
| 2120 |
|
|
label_visit (graph, si, w);
|
| 2121 |
|
|
|
| 2122 |
|
|
/* Skip unused edges */
|
| 2123 |
|
|
if (w == n || graph->pointer_label[w] == 0)
|
| 2124 |
|
|
continue;
|
| 2125 |
|
|
|
| 2126 |
|
|
if (graph->points_to[w])
|
| 2127 |
|
|
bitmap_ior_into(graph->points_to[n], graph->points_to[w]);
|
| 2128 |
|
|
}
|
| 2129 |
|
|
/* Indirect nodes get fresh variables. */
|
| 2130 |
|
|
if (!TEST_BIT (graph->direct_nodes, n))
|
| 2131 |
|
|
bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n);
|
| 2132 |
|
|
|
| 2133 |
|
|
if (!bitmap_empty_p (graph->points_to[n]))
|
| 2134 |
|
|
{
|
| 2135 |
|
|
unsigned int label = equiv_class_lookup (pointer_equiv_class_table,
|
| 2136 |
|
|
graph->points_to[n]);
|
| 2137 |
|
|
if (!label)
|
| 2138 |
|
|
{
|
| 2139 |
|
|
label = pointer_equiv_class++;
|
| 2140 |
|
|
equiv_class_add (pointer_equiv_class_table,
|
| 2141 |
|
|
label, graph->points_to[n]);
|
| 2142 |
|
|
}
|
| 2143 |
|
|
graph->pointer_label[n] = label;
|
| 2144 |
|
|
}
|
| 2145 |
|
|
}
|
| 2146 |
|
|
|
| 2147 |
|
|
/* Perform offline variable substitution, discovering equivalence
|
| 2148 |
|
|
classes, and eliminating non-pointer variables. */
|
| 2149 |
|
|
|
| 2150 |
|
|
static struct scc_info *
|
| 2151 |
|
|
perform_var_substitution (constraint_graph_t graph)
|
| 2152 |
|
|
{
|
| 2153 |
|
|
unsigned int i;
|
| 2154 |
|
|
unsigned int size = graph->size;
|
| 2155 |
|
|
struct scc_info *si = init_scc_info (size);
|
| 2156 |
|
|
|
| 2157 |
|
|
bitmap_obstack_initialize (&iteration_obstack);
|
| 2158 |
|
|
pointer_equiv_class_table = htab_create (511, equiv_class_label_hash,
|
| 2159 |
|
|
equiv_class_label_eq, free);
|
| 2160 |
|
|
location_equiv_class_table = htab_create (511, equiv_class_label_hash,
|
| 2161 |
|
|
equiv_class_label_eq, free);
|
| 2162 |
|
|
pointer_equiv_class = 1;
|
| 2163 |
|
|
location_equiv_class = 1;
|
| 2164 |
|
|
|
| 2165 |
|
|
/* Condense the nodes, which means to find SCC's, count incoming
|
| 2166 |
|
|
predecessors, and unite nodes in SCC's. */
|
| 2167 |
|
|
for (i = 0; i < FIRST_REF_NODE; i++)
|
| 2168 |
|
|
if (!TEST_BIT (si->visited, si->node_mapping[i]))
|
| 2169 |
|
|
condense_visit (graph, si, si->node_mapping[i]);
|
| 2170 |
|
|
|
| 2171 |
|
|
sbitmap_zero (si->visited);
|
| 2172 |
|
|
/* Actually the label the nodes for pointer equivalences */
|
| 2173 |
|
|
for (i = 0; i < FIRST_REF_NODE; i++)
|
| 2174 |
|
|
if (!TEST_BIT (si->visited, si->node_mapping[i]))
|
| 2175 |
|
|
label_visit (graph, si, si->node_mapping[i]);
|
| 2176 |
|
|
|
| 2177 |
|
|
/* Calculate location equivalence labels. */
|
| 2178 |
|
|
for (i = 0; i < FIRST_REF_NODE; i++)
|
| 2179 |
|
|
{
|
| 2180 |
|
|
bitmap pointed_by;
|
| 2181 |
|
|
bitmap_iterator bi;
|
| 2182 |
|
|
unsigned int j;
|
| 2183 |
|
|
unsigned int label;
|
| 2184 |
|
|
|
| 2185 |
|
|
if (!graph->pointed_by[i])
|
| 2186 |
|
|
continue;
|
| 2187 |
|
|
pointed_by = BITMAP_ALLOC (&iteration_obstack);
|
| 2188 |
|
|
|
| 2189 |
|
|
/* Translate the pointed-by mapping for pointer equivalence
|
| 2190 |
|
|
labels. */
|
| 2191 |
|
|
EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi)
|
| 2192 |
|
|
{
|
| 2193 |
|
|
bitmap_set_bit (pointed_by,
|
| 2194 |
|
|
graph->pointer_label[si->node_mapping[j]]);
|
| 2195 |
|
|
}
|
| 2196 |
|
|
/* The original pointed_by is now dead. */
|
| 2197 |
|
|
BITMAP_FREE (graph->pointed_by[i]);
|
| 2198 |
|
|
|
| 2199 |
|
|
/* Look up the location equivalence label if one exists, or make
|
| 2200 |
|
|
one otherwise. */
|
| 2201 |
|
|
label = equiv_class_lookup (location_equiv_class_table,
|
| 2202 |
|
|
pointed_by);
|
| 2203 |
|
|
if (label == 0)
|
| 2204 |
|
|
{
|
| 2205 |
|
|
label = location_equiv_class++;
|
| 2206 |
|
|
equiv_class_add (location_equiv_class_table,
|
| 2207 |
|
|
label, pointed_by);
|
| 2208 |
|
|
}
|
| 2209 |
|
|
else
|
| 2210 |
|
|
{
|
| 2211 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2212 |
|
|
fprintf (dump_file, "Found location equivalence for node %s\n",
|
| 2213 |
|
|
get_varinfo (i)->name);
|
| 2214 |
|
|
BITMAP_FREE (pointed_by);
|
| 2215 |
|
|
}
|
| 2216 |
|
|
graph->loc_label[i] = label;
|
| 2217 |
|
|
|
| 2218 |
|
|
}
|
| 2219 |
|
|
|
| 2220 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2221 |
|
|
for (i = 0; i < FIRST_REF_NODE; i++)
|
| 2222 |
|
|
{
|
| 2223 |
|
|
bool direct_node = TEST_BIT (graph->direct_nodes, i);
|
| 2224 |
|
|
fprintf (dump_file,
|
| 2225 |
|
|
"Equivalence classes for %s node id %d:%s are pointer: %d"
|
| 2226 |
|
|
", location:%d\n",
|
| 2227 |
|
|
direct_node ? "Direct node" : "Indirect node", i,
|
| 2228 |
|
|
get_varinfo (i)->name,
|
| 2229 |
|
|
graph->pointer_label[si->node_mapping[i]],
|
| 2230 |
|
|
graph->loc_label[si->node_mapping[i]]);
|
| 2231 |
|
|
}
|
| 2232 |
|
|
|
| 2233 |
|
|
/* Quickly eliminate our non-pointer variables. */
|
| 2234 |
|
|
|
| 2235 |
|
|
for (i = 0; i < FIRST_REF_NODE; i++)
|
| 2236 |
|
|
{
|
| 2237 |
|
|
unsigned int node = si->node_mapping[i];
|
| 2238 |
|
|
|
| 2239 |
|
|
if (graph->pointer_label[node] == 0)
|
| 2240 |
|
|
{
|
| 2241 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2242 |
|
|
fprintf (dump_file,
|
| 2243 |
|
|
"%s is a non-pointer variable, eliminating edges.\n",
|
| 2244 |
|
|
get_varinfo (node)->name);
|
| 2245 |
|
|
stats.nonpointer_vars++;
|
| 2246 |
|
|
clear_edges_for_node (graph, node);
|
| 2247 |
|
|
}
|
| 2248 |
|
|
}
|
| 2249 |
|
|
|
| 2250 |
|
|
return si;
|
| 2251 |
|
|
}
|
| 2252 |
|
|
|
| 2253 |
|
|
/* Free information that was only necessary for variable
|
| 2254 |
|
|
substitution. */
|
| 2255 |
|
|
|
| 2256 |
|
|
static void
|
| 2257 |
|
|
free_var_substitution_info (struct scc_info *si)
|
| 2258 |
|
|
{
|
| 2259 |
|
|
free_scc_info (si);
|
| 2260 |
|
|
free (graph->pointer_label);
|
| 2261 |
|
|
free (graph->loc_label);
|
| 2262 |
|
|
free (graph->pointed_by);
|
| 2263 |
|
|
free (graph->points_to);
|
| 2264 |
|
|
free (graph->eq_rep);
|
| 2265 |
|
|
sbitmap_free (graph->direct_nodes);
|
| 2266 |
|
|
htab_delete (pointer_equiv_class_table);
|
| 2267 |
|
|
htab_delete (location_equiv_class_table);
|
| 2268 |
|
|
bitmap_obstack_release (&iteration_obstack);
|
| 2269 |
|
|
}
|
| 2270 |
|
|
|
| 2271 |
|
|
/* Return an existing node that is equivalent to NODE, which has
|
| 2272 |
|
|
equivalence class LABEL, if one exists. Return NODE otherwise. */
|
| 2273 |
|
|
|
| 2274 |
|
|
static unsigned int
|
| 2275 |
|
|
find_equivalent_node (constraint_graph_t graph,
|
| 2276 |
|
|
unsigned int node, unsigned int label)
|
| 2277 |
|
|
{
|
| 2278 |
|
|
/* If the address version of this variable is unused, we can
|
| 2279 |
|
|
substitute it for anything else with the same label.
|
| 2280 |
|
|
Otherwise, we know the pointers are equivalent, but not the
|
| 2281 |
|
|
locations, and we can unite them later. */
|
| 2282 |
|
|
|
| 2283 |
|
|
if (!bitmap_bit_p (graph->address_taken, node))
|
| 2284 |
|
|
{
|
| 2285 |
|
|
gcc_assert (label < graph->size);
|
| 2286 |
|
|
|
| 2287 |
|
|
if (graph->eq_rep[label] != -1)
|
| 2288 |
|
|
{
|
| 2289 |
|
|
/* Unify the two variables since we know they are equivalent. */
|
| 2290 |
|
|
if (unite (graph->eq_rep[label], node))
|
| 2291 |
|
|
unify_nodes (graph, graph->eq_rep[label], node, false);
|
| 2292 |
|
|
return graph->eq_rep[label];
|
| 2293 |
|
|
}
|
| 2294 |
|
|
else
|
| 2295 |
|
|
{
|
| 2296 |
|
|
graph->eq_rep[label] = node;
|
| 2297 |
|
|
graph->pe_rep[label] = node;
|
| 2298 |
|
|
}
|
| 2299 |
|
|
}
|
| 2300 |
|
|
else
|
| 2301 |
|
|
{
|
| 2302 |
|
|
gcc_assert (label < graph->size);
|
| 2303 |
|
|
graph->pe[node] = label;
|
| 2304 |
|
|
if (graph->pe_rep[label] == -1)
|
| 2305 |
|
|
graph->pe_rep[label] = node;
|
| 2306 |
|
|
}
|
| 2307 |
|
|
|
| 2308 |
|
|
return node;
|
| 2309 |
|
|
}
|
| 2310 |
|
|
|
| 2311 |
|
|
/* Unite pointer equivalent but not location equivalent nodes in
|
| 2312 |
|
|
GRAPH. This may only be performed once variable substitution is
|
| 2313 |
|
|
finished. */
|
| 2314 |
|
|
|
| 2315 |
|
|
static void
|
| 2316 |
|
|
unite_pointer_equivalences (constraint_graph_t graph)
|
| 2317 |
|
|
{
|
| 2318 |
|
|
unsigned int i;
|
| 2319 |
|
|
|
| 2320 |
|
|
/* Go through the pointer equivalences and unite them to their
|
| 2321 |
|
|
representative, if they aren't already. */
|
| 2322 |
|
|
for (i = 0; i < FIRST_REF_NODE; i++)
|
| 2323 |
|
|
{
|
| 2324 |
|
|
unsigned int label = graph->pe[i];
|
| 2325 |
|
|
if (label)
|
| 2326 |
|
|
{
|
| 2327 |
|
|
int label_rep = graph->pe_rep[label];
|
| 2328 |
|
|
|
| 2329 |
|
|
if (label_rep == -1)
|
| 2330 |
|
|
continue;
|
| 2331 |
|
|
|
| 2332 |
|
|
label_rep = find (label_rep);
|
| 2333 |
|
|
if (label_rep >= 0 && unite (label_rep, find (i)))
|
| 2334 |
|
|
unify_nodes (graph, label_rep, i, false);
|
| 2335 |
|
|
}
|
| 2336 |
|
|
}
|
| 2337 |
|
|
}
|
| 2338 |
|
|
|
| 2339 |
|
|
/* Move complex constraints to the GRAPH nodes they belong to. */
|
| 2340 |
|
|
|
| 2341 |
|
|
static void
|
| 2342 |
|
|
move_complex_constraints (constraint_graph_t graph)
|
| 2343 |
|
|
{
|
| 2344 |
|
|
int i;
|
| 2345 |
|
|
constraint_t c;
|
| 2346 |
|
|
|
| 2347 |
|
|
FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
|
| 2348 |
|
|
{
|
| 2349 |
|
|
if (c)
|
| 2350 |
|
|
{
|
| 2351 |
|
|
struct constraint_expr lhs = c->lhs;
|
| 2352 |
|
|
struct constraint_expr rhs = c->rhs;
|
| 2353 |
|
|
|
| 2354 |
|
|
if (lhs.type == DEREF)
|
| 2355 |
|
|
{
|
| 2356 |
|
|
insert_into_complex (graph, lhs.var, c);
|
| 2357 |
|
|
}
|
| 2358 |
|
|
else if (rhs.type == DEREF)
|
| 2359 |
|
|
{
|
| 2360 |
|
|
if (!(get_varinfo (lhs.var)->is_special_var))
|
| 2361 |
|
|
insert_into_complex (graph, rhs.var, c);
|
| 2362 |
|
|
}
|
| 2363 |
|
|
else if (rhs.type != ADDRESSOF && lhs.var > anything_id
|
| 2364 |
|
|
&& (lhs.offset != 0 || rhs.offset != 0))
|
| 2365 |
|
|
{
|
| 2366 |
|
|
insert_into_complex (graph, rhs.var, c);
|
| 2367 |
|
|
}
|
| 2368 |
|
|
}
|
| 2369 |
|
|
}
|
| 2370 |
|
|
}
|
| 2371 |
|
|
|
| 2372 |
|
|
|
| 2373 |
|
|
/* Optimize and rewrite complex constraints while performing
|
| 2374 |
|
|
collapsing of equivalent nodes. SI is the SCC_INFO that is the
|
| 2375 |
|
|
result of perform_variable_substitution. */
|
| 2376 |
|
|
|
| 2377 |
|
|
static void
|
| 2378 |
|
|
rewrite_constraints (constraint_graph_t graph,
|
| 2379 |
|
|
struct scc_info *si)
|
| 2380 |
|
|
{
|
| 2381 |
|
|
int i;
|
| 2382 |
|
|
unsigned int j;
|
| 2383 |
|
|
constraint_t c;
|
| 2384 |
|
|
|
| 2385 |
|
|
for (j = 0; j < graph->size; j++)
|
| 2386 |
|
|
gcc_assert (find (j) == j);
|
| 2387 |
|
|
|
| 2388 |
|
|
FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
|
| 2389 |
|
|
{
|
| 2390 |
|
|
struct constraint_expr lhs = c->lhs;
|
| 2391 |
|
|
struct constraint_expr rhs = c->rhs;
|
| 2392 |
|
|
unsigned int lhsvar = find (lhs.var);
|
| 2393 |
|
|
unsigned int rhsvar = find (rhs.var);
|
| 2394 |
|
|
unsigned int lhsnode, rhsnode;
|
| 2395 |
|
|
unsigned int lhslabel, rhslabel;
|
| 2396 |
|
|
|
| 2397 |
|
|
lhsnode = si->node_mapping[lhsvar];
|
| 2398 |
|
|
rhsnode = si->node_mapping[rhsvar];
|
| 2399 |
|
|
lhslabel = graph->pointer_label[lhsnode];
|
| 2400 |
|
|
rhslabel = graph->pointer_label[rhsnode];
|
| 2401 |
|
|
|
| 2402 |
|
|
/* See if it is really a non-pointer variable, and if so, ignore
|
| 2403 |
|
|
the constraint. */
|
| 2404 |
|
|
if (lhslabel == 0)
|
| 2405 |
|
|
{
|
| 2406 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2407 |
|
|
{
|
| 2408 |
|
|
|
| 2409 |
|
|
fprintf (dump_file, "%s is a non-pointer variable,"
|
| 2410 |
|
|
"ignoring constraint:",
|
| 2411 |
|
|
get_varinfo (lhs.var)->name);
|
| 2412 |
|
|
dump_constraint (dump_file, c);
|
| 2413 |
|
|
fprintf (dump_file, "\n");
|
| 2414 |
|
|
}
|
| 2415 |
|
|
VEC_replace (constraint_t, constraints, i, NULL);
|
| 2416 |
|
|
continue;
|
| 2417 |
|
|
}
|
| 2418 |
|
|
|
| 2419 |
|
|
if (rhslabel == 0)
|
| 2420 |
|
|
{
|
| 2421 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2422 |
|
|
{
|
| 2423 |
|
|
|
| 2424 |
|
|
fprintf (dump_file, "%s is a non-pointer variable,"
|
| 2425 |
|
|
"ignoring constraint:",
|
| 2426 |
|
|
get_varinfo (rhs.var)->name);
|
| 2427 |
|
|
dump_constraint (dump_file, c);
|
| 2428 |
|
|
fprintf (dump_file, "\n");
|
| 2429 |
|
|
}
|
| 2430 |
|
|
VEC_replace (constraint_t, constraints, i, NULL);
|
| 2431 |
|
|
continue;
|
| 2432 |
|
|
}
|
| 2433 |
|
|
|
| 2434 |
|
|
lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
|
| 2435 |
|
|
rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
|
| 2436 |
|
|
c->lhs.var = lhsvar;
|
| 2437 |
|
|
c->rhs.var = rhsvar;
|
| 2438 |
|
|
|
| 2439 |
|
|
}
|
| 2440 |
|
|
}
|
| 2441 |
|
|
|
| 2442 |
|
|
/* Eliminate indirect cycles involving NODE. Return true if NODE was
|
| 2443 |
|
|
part of an SCC, false otherwise. */
|
| 2444 |
|
|
|
| 2445 |
|
|
static bool
|
| 2446 |
|
|
eliminate_indirect_cycles (unsigned int node)
|
| 2447 |
|
|
{
|
| 2448 |
|
|
if (graph->indirect_cycles[node] != -1
|
| 2449 |
|
|
&& !bitmap_empty_p (get_varinfo (node)->solution))
|
| 2450 |
|
|
{
|
| 2451 |
|
|
unsigned int i;
|
| 2452 |
|
|
VEC(unsigned,heap) *queue = NULL;
|
| 2453 |
|
|
int queuepos;
|
| 2454 |
|
|
unsigned int to = find (graph->indirect_cycles[node]);
|
| 2455 |
|
|
bitmap_iterator bi;
|
| 2456 |
|
|
|
| 2457 |
|
|
/* We can't touch the solution set and call unify_nodes
|
| 2458 |
|
|
at the same time, because unify_nodes is going to do
|
| 2459 |
|
|
bitmap unions into it. */
|
| 2460 |
|
|
|
| 2461 |
|
|
EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
|
| 2462 |
|
|
{
|
| 2463 |
|
|
if (find (i) == i && i != to)
|
| 2464 |
|
|
{
|
| 2465 |
|
|
if (unite (to, i))
|
| 2466 |
|
|
VEC_safe_push (unsigned, heap, queue, i);
|
| 2467 |
|
|
}
|
| 2468 |
|
|
}
|
| 2469 |
|
|
|
| 2470 |
|
|
for (queuepos = 0;
|
| 2471 |
|
|
VEC_iterate (unsigned, queue, queuepos, i);
|
| 2472 |
|
|
queuepos++)
|
| 2473 |
|
|
{
|
| 2474 |
|
|
unify_nodes (graph, to, i, true);
|
| 2475 |
|
|
}
|
| 2476 |
|
|
VEC_free (unsigned, heap, queue);
|
| 2477 |
|
|
return true;
|
| 2478 |
|
|
}
|
| 2479 |
|
|
return false;
|
| 2480 |
|
|
}
|
| 2481 |
|
|
|
| 2482 |
|
|
/* Solve the constraint graph GRAPH using our worklist solver.
|
| 2483 |
|
|
This is based on the PW* family of solvers from the "Efficient Field
|
| 2484 |
|
|
Sensitive Pointer Analysis for C" paper.
|
| 2485 |
|
|
It works by iterating over all the graph nodes, processing the complex
|
| 2486 |
|
|
constraints and propagating the copy constraints, until everything stops
|
| 2487 |
|
|
changed. This corresponds to steps 6-8 in the solving list given above. */
|
| 2488 |
|
|
|
| 2489 |
|
|
static void
|
| 2490 |
|
|
solve_graph (constraint_graph_t graph)
|
| 2491 |
|
|
{
|
| 2492 |
|
|
unsigned int size = graph->size;
|
| 2493 |
|
|
unsigned int i;
|
| 2494 |
|
|
bitmap pts;
|
| 2495 |
|
|
|
| 2496 |
|
|
changed = BITMAP_ALLOC (NULL);
|
| 2497 |
|
|
|
| 2498 |
|
|
/* Mark all initial non-collapsed nodes as changed. */
|
| 2499 |
|
|
for (i = 0; i < size; i++)
|
| 2500 |
|
|
{
|
| 2501 |
|
|
varinfo_t ivi = get_varinfo (i);
|
| 2502 |
|
|
if (find (i) == i && !bitmap_empty_p (ivi->solution)
|
| 2503 |
|
|
&& ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
|
| 2504 |
|
|
|| VEC_length (constraint_t, graph->complex[i]) > 0))
|
| 2505 |
|
|
bitmap_set_bit (changed, i);
|
| 2506 |
|
|
}
|
| 2507 |
|
|
|
| 2508 |
|
|
/* Allocate a bitmap to be used to store the changed bits. */
|
| 2509 |
|
|
pts = BITMAP_ALLOC (&pta_obstack);
|
| 2510 |
|
|
|
| 2511 |
|
|
while (!bitmap_empty_p (changed))
|
| 2512 |
|
|
{
|
| 2513 |
|
|
unsigned int i;
|
| 2514 |
|
|
struct topo_info *ti = init_topo_info ();
|
| 2515 |
|
|
stats.iterations++;
|
| 2516 |
|
|
|
| 2517 |
|
|
bitmap_obstack_initialize (&iteration_obstack);
|
| 2518 |
|
|
|
| 2519 |
|
|
compute_topo_order (graph, ti);
|
| 2520 |
|
|
|
| 2521 |
|
|
while (VEC_length (unsigned, ti->topo_order) != 0)
|
| 2522 |
|
|
{
|
| 2523 |
|
|
|
| 2524 |
|
|
i = VEC_pop (unsigned, ti->topo_order);
|
| 2525 |
|
|
|
| 2526 |
|
|
/* If this variable is not a representative, skip it. */
|
| 2527 |
|
|
if (find (i) != i)
|
| 2528 |
|
|
continue;
|
| 2529 |
|
|
|
| 2530 |
|
|
/* In certain indirect cycle cases, we may merge this
|
| 2531 |
|
|
variable to another. */
|
| 2532 |
|
|
if (eliminate_indirect_cycles (i) && find (i) != i)
|
| 2533 |
|
|
continue;
|
| 2534 |
|
|
|
| 2535 |
|
|
/* If the node has changed, we need to process the
|
| 2536 |
|
|
complex constraints and outgoing edges again. */
|
| 2537 |
|
|
if (bitmap_clear_bit (changed, i))
|
| 2538 |
|
|
{
|
| 2539 |
|
|
unsigned int j;
|
| 2540 |
|
|
constraint_t c;
|
| 2541 |
|
|
bitmap solution;
|
| 2542 |
|
|
VEC(constraint_t,heap) *complex = graph->complex[i];
|
| 2543 |
|
|
varinfo_t vi = get_varinfo (i);
|
| 2544 |
|
|
bool solution_empty;
|
| 2545 |
|
|
|
| 2546 |
|
|
/* Compute the changed set of solution bits. */
|
| 2547 |
|
|
if (vi->oldsolution)
|
| 2548 |
|
|
bitmap_and_compl (pts, vi->solution, vi->oldsolution);
|
| 2549 |
|
|
else
|
| 2550 |
|
|
bitmap_copy (pts, vi->solution);
|
| 2551 |
|
|
|
| 2552 |
|
|
if (bitmap_empty_p (pts))
|
| 2553 |
|
|
continue;
|
| 2554 |
|
|
|
| 2555 |
|
|
if (vi->oldsolution)
|
| 2556 |
|
|
bitmap_ior_into (vi->oldsolution, pts);
|
| 2557 |
|
|
else
|
| 2558 |
|
|
{
|
| 2559 |
|
|
vi->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
|
| 2560 |
|
|
bitmap_copy (vi->oldsolution, pts);
|
| 2561 |
|
|
}
|
| 2562 |
|
|
|
| 2563 |
|
|
solution = vi->solution;
|
| 2564 |
|
|
solution_empty = bitmap_empty_p (solution);
|
| 2565 |
|
|
|
| 2566 |
|
|
/* Process the complex constraints */
|
| 2567 |
|
|
FOR_EACH_VEC_ELT (constraint_t, complex, j, c)
|
| 2568 |
|
|
{
|
| 2569 |
|
|
/* XXX: This is going to unsort the constraints in
|
| 2570 |
|
|
some cases, which will occasionally add duplicate
|
| 2571 |
|
|
constraints during unification. This does not
|
| 2572 |
|
|
affect correctness. */
|
| 2573 |
|
|
c->lhs.var = find (c->lhs.var);
|
| 2574 |
|
|
c->rhs.var = find (c->rhs.var);
|
| 2575 |
|
|
|
| 2576 |
|
|
/* The only complex constraint that can change our
|
| 2577 |
|
|
solution to non-empty, given an empty solution,
|
| 2578 |
|
|
is a constraint where the lhs side is receiving
|
| 2579 |
|
|
some set from elsewhere. */
|
| 2580 |
|
|
if (!solution_empty || c->lhs.type != DEREF)
|
| 2581 |
|
|
do_complex_constraint (graph, c, pts);
|
| 2582 |
|
|
}
|
| 2583 |
|
|
|
| 2584 |
|
|
solution_empty = bitmap_empty_p (solution);
|
| 2585 |
|
|
|
| 2586 |
|
|
if (!solution_empty)
|
| 2587 |
|
|
{
|
| 2588 |
|
|
bitmap_iterator bi;
|
| 2589 |
|
|
unsigned eff_escaped_id = find (escaped_id);
|
| 2590 |
|
|
|
| 2591 |
|
|
/* Propagate solution to all successors. */
|
| 2592 |
|
|
EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
|
| 2593 |
|
|
0, j, bi)
|
| 2594 |
|
|
{
|
| 2595 |
|
|
bitmap tmp;
|
| 2596 |
|
|
bool flag;
|
| 2597 |
|
|
|
| 2598 |
|
|
unsigned int to = find (j);
|
| 2599 |
|
|
tmp = get_varinfo (to)->solution;
|
| 2600 |
|
|
flag = false;
|
| 2601 |
|
|
|
| 2602 |
|
|
/* Don't try to propagate to ourselves. */
|
| 2603 |
|
|
if (to == i)
|
| 2604 |
|
|
continue;
|
| 2605 |
|
|
|
| 2606 |
|
|
/* If we propagate from ESCAPED use ESCAPED as
|
| 2607 |
|
|
placeholder. */
|
| 2608 |
|
|
if (i == eff_escaped_id)
|
| 2609 |
|
|
flag = bitmap_set_bit (tmp, escaped_id);
|
| 2610 |
|
|
else
|
| 2611 |
|
|
flag = set_union_with_increment (tmp, pts, 0);
|
| 2612 |
|
|
|
| 2613 |
|
|
if (flag)
|
| 2614 |
|
|
{
|
| 2615 |
|
|
get_varinfo (to)->solution = tmp;
|
| 2616 |
|
|
bitmap_set_bit (changed, to);
|
| 2617 |
|
|
}
|
| 2618 |
|
|
}
|
| 2619 |
|
|
}
|
| 2620 |
|
|
}
|
| 2621 |
|
|
}
|
| 2622 |
|
|
free_topo_info (ti);
|
| 2623 |
|
|
bitmap_obstack_release (&iteration_obstack);
|
| 2624 |
|
|
}
|
| 2625 |
|
|
|
| 2626 |
|
|
BITMAP_FREE (pts);
|
| 2627 |
|
|
BITMAP_FREE (changed);
|
| 2628 |
|
|
bitmap_obstack_release (&oldpta_obstack);
|
| 2629 |
|
|
}
|
| 2630 |
|
|
|
| 2631 |
|
|
/* Map from trees to variable infos. */
|
| 2632 |
|
|
static struct pointer_map_t *vi_for_tree;
|
| 2633 |
|
|
|
| 2634 |
|
|
|
| 2635 |
|
|
/* Insert ID as the variable id for tree T in the vi_for_tree map. */
|
| 2636 |
|
|
|
| 2637 |
|
|
static void
|
| 2638 |
|
|
insert_vi_for_tree (tree t, varinfo_t vi)
|
| 2639 |
|
|
{
|
| 2640 |
|
|
void **slot = pointer_map_insert (vi_for_tree, t);
|
| 2641 |
|
|
gcc_assert (vi);
|
| 2642 |
|
|
gcc_assert (*slot == NULL);
|
| 2643 |
|
|
*slot = vi;
|
| 2644 |
|
|
}
|
| 2645 |
|
|
|
| 2646 |
|
|
/* Find the variable info for tree T in VI_FOR_TREE. If T does not
|
| 2647 |
|
|
exist in the map, return NULL, otherwise, return the varinfo we found. */
|
| 2648 |
|
|
|
| 2649 |
|
|
static varinfo_t
|
| 2650 |
|
|
lookup_vi_for_tree (tree t)
|
| 2651 |
|
|
{
|
| 2652 |
|
|
void **slot = pointer_map_contains (vi_for_tree, t);
|
| 2653 |
|
|
if (slot == NULL)
|
| 2654 |
|
|
return NULL;
|
| 2655 |
|
|
|
| 2656 |
|
|
return (varinfo_t) *slot;
|
| 2657 |
|
|
}
|
| 2658 |
|
|
|
| 2659 |
|
|
/* Return a printable name for DECL */
|
| 2660 |
|
|
|
| 2661 |
|
|
static const char *
|
| 2662 |
|
|
alias_get_name (tree decl)
|
| 2663 |
|
|
{
|
| 2664 |
|
|
const char *res;
|
| 2665 |
|
|
char *temp;
|
| 2666 |
|
|
int num_printed = 0;
|
| 2667 |
|
|
|
| 2668 |
|
|
if (DECL_ASSEMBLER_NAME_SET_P (decl))
|
| 2669 |
|
|
res = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
|
| 2670 |
|
|
else
|
| 2671 |
|
|
res= get_name (decl);
|
| 2672 |
|
|
if (res != NULL)
|
| 2673 |
|
|
return res;
|
| 2674 |
|
|
|
| 2675 |
|
|
res = "NULL";
|
| 2676 |
|
|
if (!dump_file)
|
| 2677 |
|
|
return res;
|
| 2678 |
|
|
|
| 2679 |
|
|
if (TREE_CODE (decl) == SSA_NAME)
|
| 2680 |
|
|
{
|
| 2681 |
|
|
num_printed = asprintf (&temp, "%s_%u",
|
| 2682 |
|
|
alias_get_name (SSA_NAME_VAR (decl)),
|
| 2683 |
|
|
SSA_NAME_VERSION (decl));
|
| 2684 |
|
|
}
|
| 2685 |
|
|
else if (DECL_P (decl))
|
| 2686 |
|
|
{
|
| 2687 |
|
|
num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
|
| 2688 |
|
|
}
|
| 2689 |
|
|
if (num_printed > 0)
|
| 2690 |
|
|
{
|
| 2691 |
|
|
res = ggc_strdup (temp);
|
| 2692 |
|
|
free (temp);
|
| 2693 |
|
|
}
|
| 2694 |
|
|
return res;
|
| 2695 |
|
|
}
|
| 2696 |
|
|
|
| 2697 |
|
|
/* Find the variable id for tree T in the map.
|
| 2698 |
|
|
If T doesn't exist in the map, create an entry for it and return it. */
|
| 2699 |
|
|
|
| 2700 |
|
|
static varinfo_t
|
| 2701 |
|
|
get_vi_for_tree (tree t)
|
| 2702 |
|
|
{
|
| 2703 |
|
|
void **slot = pointer_map_contains (vi_for_tree, t);
|
| 2704 |
|
|
if (slot == NULL)
|
| 2705 |
|
|
return get_varinfo (create_variable_info_for (t, alias_get_name (t)));
|
| 2706 |
|
|
|
| 2707 |
|
|
return (varinfo_t) *slot;
|
| 2708 |
|
|
}
|
| 2709 |
|
|
|
| 2710 |
|
|
/* Get a scalar constraint expression for a new temporary variable. */
|
| 2711 |
|
|
|
| 2712 |
|
|
static struct constraint_expr
|
| 2713 |
|
|
new_scalar_tmp_constraint_exp (const char *name)
|
| 2714 |
|
|
{
|
| 2715 |
|
|
struct constraint_expr tmp;
|
| 2716 |
|
|
varinfo_t vi;
|
| 2717 |
|
|
|
| 2718 |
|
|
vi = new_var_info (NULL_TREE, name);
|
| 2719 |
|
|
vi->offset = 0;
|
| 2720 |
|
|
vi->size = -1;
|
| 2721 |
|
|
vi->fullsize = -1;
|
| 2722 |
|
|
vi->is_full_var = 1;
|
| 2723 |
|
|
|
| 2724 |
|
|
tmp.var = vi->id;
|
| 2725 |
|
|
tmp.type = SCALAR;
|
| 2726 |
|
|
tmp.offset = 0;
|
| 2727 |
|
|
|
| 2728 |
|
|
return tmp;
|
| 2729 |
|
|
}
|
| 2730 |
|
|
|
| 2731 |
|
|
/* Get a constraint expression vector from an SSA_VAR_P node.
|
| 2732 |
|
|
If address_p is true, the result will be taken its address of. */
|
| 2733 |
|
|
|
| 2734 |
|
|
static void
|
| 2735 |
|
|
get_constraint_for_ssa_var (tree t, VEC(ce_s, heap) **results, bool address_p)
|
| 2736 |
|
|
{
|
| 2737 |
|
|
struct constraint_expr cexpr;
|
| 2738 |
|
|
varinfo_t vi;
|
| 2739 |
|
|
|
| 2740 |
|
|
/* We allow FUNCTION_DECLs here even though it doesn't make much sense. */
|
| 2741 |
|
|
gcc_assert (SSA_VAR_P (t) || DECL_P (t));
|
| 2742 |
|
|
|
| 2743 |
|
|
/* For parameters, get at the points-to set for the actual parm
|
| 2744 |
|
|
decl. */
|
| 2745 |
|
|
if (TREE_CODE (t) == SSA_NAME
|
| 2746 |
|
|
&& (TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
|
| 2747 |
|
|
|| TREE_CODE (SSA_NAME_VAR (t)) == RESULT_DECL)
|
| 2748 |
|
|
&& SSA_NAME_IS_DEFAULT_DEF (t))
|
| 2749 |
|
|
{
|
| 2750 |
|
|
get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p);
|
| 2751 |
|
|
return;
|
| 2752 |
|
|
}
|
| 2753 |
|
|
|
| 2754 |
|
|
/* For global variables resort to the alias target. */
|
| 2755 |
|
|
if (TREE_CODE (t) == VAR_DECL
|
| 2756 |
|
|
&& (TREE_STATIC (t) || DECL_EXTERNAL (t)))
|
| 2757 |
|
|
{
|
| 2758 |
|
|
struct varpool_node *node = varpool_get_node (t);
|
| 2759 |
|
|
if (node && node->alias)
|
| 2760 |
|
|
{
|
| 2761 |
|
|
node = varpool_variable_node (node, NULL);
|
| 2762 |
|
|
t = node->decl;
|
| 2763 |
|
|
}
|
| 2764 |
|
|
}
|
| 2765 |
|
|
|
| 2766 |
|
|
vi = get_vi_for_tree (t);
|
| 2767 |
|
|
cexpr.var = vi->id;
|
| 2768 |
|
|
cexpr.type = SCALAR;
|
| 2769 |
|
|
cexpr.offset = 0;
|
| 2770 |
|
|
/* If we determine the result is "anything", and we know this is readonly,
|
| 2771 |
|
|
say it points to readonly memory instead. */
|
| 2772 |
|
|
if (cexpr.var == anything_id && TREE_READONLY (t))
|
| 2773 |
|
|
{
|
| 2774 |
|
|
gcc_unreachable ();
|
| 2775 |
|
|
cexpr.type = ADDRESSOF;
|
| 2776 |
|
|
cexpr.var = readonly_id;
|
| 2777 |
|
|
}
|
| 2778 |
|
|
|
| 2779 |
|
|
/* If we are not taking the address of the constraint expr, add all
|
| 2780 |
|
|
sub-fiels of the variable as well. */
|
| 2781 |
|
|
if (!address_p
|
| 2782 |
|
|
&& !vi->is_full_var)
|
| 2783 |
|
|
{
|
| 2784 |
|
|
for (; vi; vi = vi->next)
|
| 2785 |
|
|
{
|
| 2786 |
|
|
cexpr.var = vi->id;
|
| 2787 |
|
|
VEC_safe_push (ce_s, heap, *results, &cexpr);
|
| 2788 |
|
|
}
|
| 2789 |
|
|
return;
|
| 2790 |
|
|
}
|
| 2791 |
|
|
|
| 2792 |
|
|
VEC_safe_push (ce_s, heap, *results, &cexpr);
|
| 2793 |
|
|
}
|
| 2794 |
|
|
|
| 2795 |
|
|
/* Process constraint T, performing various simplifications and then
|
| 2796 |
|
|
adding it to our list of overall constraints. */
|
| 2797 |
|
|
|
| 2798 |
|
|
static void
|
| 2799 |
|
|
process_constraint (constraint_t t)
|
| 2800 |
|
|
{
|
| 2801 |
|
|
struct constraint_expr rhs = t->rhs;
|
| 2802 |
|
|
struct constraint_expr lhs = t->lhs;
|
| 2803 |
|
|
|
| 2804 |
|
|
gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
|
| 2805 |
|
|
gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));
|
| 2806 |
|
|
|
| 2807 |
|
|
/* If we didn't get any useful constraint from the lhs we get
|
| 2808 |
|
|
&ANYTHING as fallback from get_constraint_for. Deal with
|
| 2809 |
|
|
it here by turning it into *ANYTHING. */
|
| 2810 |
|
|
if (lhs.type == ADDRESSOF
|
| 2811 |
|
|
&& lhs.var == anything_id)
|
| 2812 |
|
|
lhs.type = DEREF;
|
| 2813 |
|
|
|
| 2814 |
|
|
/* ADDRESSOF on the lhs is invalid. */
|
| 2815 |
|
|
gcc_assert (lhs.type != ADDRESSOF);
|
| 2816 |
|
|
|
| 2817 |
|
|
/* We shouldn't add constraints from things that cannot have pointers.
|
| 2818 |
|
|
It's not completely trivial to avoid in the callers, so do it here. */
|
| 2819 |
|
|
if (rhs.type != ADDRESSOF
|
| 2820 |
|
|
&& !get_varinfo (rhs.var)->may_have_pointers)
|
| 2821 |
|
|
return;
|
| 2822 |
|
|
|
| 2823 |
|
|
/* Likewise adding to the solution of a non-pointer var isn't useful. */
|
| 2824 |
|
|
if (!get_varinfo (lhs.var)->may_have_pointers)
|
| 2825 |
|
|
return;
|
| 2826 |
|
|
|
| 2827 |
|
|
/* This can happen in our IR with things like n->a = *p */
|
| 2828 |
|
|
if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
|
| 2829 |
|
|
{
|
| 2830 |
|
|
/* Split into tmp = *rhs, *lhs = tmp */
|
| 2831 |
|
|
struct constraint_expr tmplhs;
|
| 2832 |
|
|
tmplhs = new_scalar_tmp_constraint_exp ("doubledereftmp");
|
| 2833 |
|
|
process_constraint (new_constraint (tmplhs, rhs));
|
| 2834 |
|
|
process_constraint (new_constraint (lhs, tmplhs));
|
| 2835 |
|
|
}
|
| 2836 |
|
|
else if (rhs.type == ADDRESSOF && lhs.type == DEREF)
|
| 2837 |
|
|
{
|
| 2838 |
|
|
/* Split into tmp = &rhs, *lhs = tmp */
|
| 2839 |
|
|
struct constraint_expr tmplhs;
|
| 2840 |
|
|
tmplhs = new_scalar_tmp_constraint_exp ("derefaddrtmp");
|
| 2841 |
|
|
process_constraint (new_constraint (tmplhs, rhs));
|
| 2842 |
|
|
process_constraint (new_constraint (lhs, tmplhs));
|
| 2843 |
|
|
}
|
| 2844 |
|
|
else
|
| 2845 |
|
|
{
|
| 2846 |
|
|
gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
|
| 2847 |
|
|
VEC_safe_push (constraint_t, heap, constraints, t);
|
| 2848 |
|
|
}
|
| 2849 |
|
|
}
|
| 2850 |
|
|
|
| 2851 |
|
|
|
| 2852 |
|
|
/* Return the position, in bits, of FIELD_DECL from the beginning of its
|
| 2853 |
|
|
structure. */
|
| 2854 |
|
|
|
| 2855 |
|
|
static HOST_WIDE_INT
|
| 2856 |
|
|
bitpos_of_field (const tree fdecl)
|
| 2857 |
|
|
{
|
| 2858 |
|
|
if (!host_integerp (DECL_FIELD_OFFSET (fdecl), 0)
|
| 2859 |
|
|
|| !host_integerp (DECL_FIELD_BIT_OFFSET (fdecl), 0))
|
| 2860 |
|
|
return -1;
|
| 2861 |
|
|
|
| 2862 |
|
|
return (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (fdecl)) * BITS_PER_UNIT
|
| 2863 |
|
|
+ TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (fdecl)));
|
| 2864 |
|
|
}
|
| 2865 |
|
|
|
| 2866 |
|
|
|
| 2867 |
|
|
/* Get constraint expressions for offsetting PTR by OFFSET. Stores the
|
| 2868 |
|
|
resulting constraint expressions in *RESULTS. */
|
| 2869 |
|
|
|
| 2870 |
|
|
static void
|
| 2871 |
|
|
get_constraint_for_ptr_offset (tree ptr, tree offset,
|
| 2872 |
|
|
VEC (ce_s, heap) **results)
|
| 2873 |
|
|
{
|
| 2874 |
|
|
struct constraint_expr c;
|
| 2875 |
|
|
unsigned int j, n;
|
| 2876 |
|
|
HOST_WIDE_INT rhsoffset;
|
| 2877 |
|
|
|
| 2878 |
|
|
/* If we do not do field-sensitive PTA adding offsets to pointers
|
| 2879 |
|
|
does not change the points-to solution. */
|
| 2880 |
|
|
if (!use_field_sensitive)
|
| 2881 |
|
|
{
|
| 2882 |
|
|
get_constraint_for_rhs (ptr, results);
|
| 2883 |
|
|
return;
|
| 2884 |
|
|
}
|
| 2885 |
|
|
|
| 2886 |
|
|
/* If the offset is not a non-negative integer constant that fits
|
| 2887 |
|
|
in a HOST_WIDE_INT, we have to fall back to a conservative
|
| 2888 |
|
|
solution which includes all sub-fields of all pointed-to
|
| 2889 |
|
|
variables of ptr. */
|
| 2890 |
|
|
if (offset == NULL_TREE
|
| 2891 |
|
|
|| TREE_CODE (offset) != INTEGER_CST)
|
| 2892 |
|
|
rhsoffset = UNKNOWN_OFFSET;
|
| 2893 |
|
|
else
|
| 2894 |
|
|
{
|
| 2895 |
|
|
/* Sign-extend the offset. */
|
| 2896 |
|
|
double_int soffset
|
| 2897 |
|
|
= double_int_sext (tree_to_double_int (offset),
|
| 2898 |
|
|
TYPE_PRECISION (TREE_TYPE (offset)));
|
| 2899 |
|
|
if (!double_int_fits_in_shwi_p (soffset))
|
| 2900 |
|
|
rhsoffset = UNKNOWN_OFFSET;
|
| 2901 |
|
|
else
|
| 2902 |
|
|
{
|
| 2903 |
|
|
/* Make sure the bit-offset also fits. */
|
| 2904 |
|
|
HOST_WIDE_INT rhsunitoffset = soffset.low;
|
| 2905 |
|
|
rhsoffset = rhsunitoffset * BITS_PER_UNIT;
|
| 2906 |
|
|
if (rhsunitoffset != rhsoffset / BITS_PER_UNIT)
|
| 2907 |
|
|
rhsoffset = UNKNOWN_OFFSET;
|
| 2908 |
|
|
}
|
| 2909 |
|
|
}
|
| 2910 |
|
|
|
| 2911 |
|
|
get_constraint_for_rhs (ptr, results);
|
| 2912 |
|
|
if (rhsoffset == 0)
|
| 2913 |
|
|
return;
|
| 2914 |
|
|
|
| 2915 |
|
|
/* As we are eventually appending to the solution do not use
|
| 2916 |
|
|
VEC_iterate here. */
|
| 2917 |
|
|
n = VEC_length (ce_s, *results);
|
| 2918 |
|
|
for (j = 0; j < n; j++)
|
| 2919 |
|
|
{
|
| 2920 |
|
|
varinfo_t curr;
|
| 2921 |
|
|
c = *VEC_index (ce_s, *results, j);
|
| 2922 |
|
|
curr = get_varinfo (c.var);
|
| 2923 |
|
|
|
| 2924 |
|
|
if (c.type == ADDRESSOF
|
| 2925 |
|
|
/* If this varinfo represents a full variable just use it. */
|
| 2926 |
|
|
&& curr->is_full_var)
|
| 2927 |
|
|
c.offset = 0;
|
| 2928 |
|
|
else if (c.type == ADDRESSOF
|
| 2929 |
|
|
/* If we do not know the offset add all subfields. */
|
| 2930 |
|
|
&& rhsoffset == UNKNOWN_OFFSET)
|
| 2931 |
|
|
{
|
| 2932 |
|
|
varinfo_t temp = lookup_vi_for_tree (curr->decl);
|
| 2933 |
|
|
do
|
| 2934 |
|
|
{
|
| 2935 |
|
|
struct constraint_expr c2;
|
| 2936 |
|
|
c2.var = temp->id;
|
| 2937 |
|
|
c2.type = ADDRESSOF;
|
| 2938 |
|
|
c2.offset = 0;
|
| 2939 |
|
|
if (c2.var != c.var)
|
| 2940 |
|
|
VEC_safe_push (ce_s, heap, *results, &c2);
|
| 2941 |
|
|
temp = temp->next;
|
| 2942 |
|
|
}
|
| 2943 |
|
|
while (temp);
|
| 2944 |
|
|
}
|
| 2945 |
|
|
else if (c.type == ADDRESSOF)
|
| 2946 |
|
|
{
|
| 2947 |
|
|
varinfo_t temp;
|
| 2948 |
|
|
unsigned HOST_WIDE_INT offset = curr->offset + rhsoffset;
|
| 2949 |
|
|
|
| 2950 |
|
|
/* Search the sub-field which overlaps with the
|
| 2951 |
|
|
pointed-to offset. If the result is outside of the variable
|
| 2952 |
|
|
we have to provide a conservative result, as the variable is
|
| 2953 |
|
|
still reachable from the resulting pointer (even though it
|
| 2954 |
|
|
technically cannot point to anything). The last and first
|
| 2955 |
|
|
sub-fields are such conservative results.
|
| 2956 |
|
|
??? If we always had a sub-field for &object + 1 then
|
| 2957 |
|
|
we could represent this in a more precise way. */
|
| 2958 |
|
|
if (rhsoffset < 0
|
| 2959 |
|
|
&& curr->offset < offset)
|
| 2960 |
|
|
offset = 0;
|
| 2961 |
|
|
temp = first_or_preceding_vi_for_offset (curr, offset);
|
| 2962 |
|
|
|
| 2963 |
|
|
/* If the found variable is not exactly at the pointed to
|
| 2964 |
|
|
result, we have to include the next variable in the
|
| 2965 |
|
|
solution as well. Otherwise two increments by offset / 2
|
| 2966 |
|
|
do not result in the same or a conservative superset
|
| 2967 |
|
|
solution. */
|
| 2968 |
|
|
if (temp->offset != offset
|
| 2969 |
|
|
&& temp->next != NULL)
|
| 2970 |
|
|
{
|
| 2971 |
|
|
struct constraint_expr c2;
|
| 2972 |
|
|
c2.var = temp->next->id;
|
| 2973 |
|
|
c2.type = ADDRESSOF;
|
| 2974 |
|
|
c2.offset = 0;
|
| 2975 |
|
|
VEC_safe_push (ce_s, heap, *results, &c2);
|
| 2976 |
|
|
}
|
| 2977 |
|
|
c.var = temp->id;
|
| 2978 |
|
|
c.offset = 0;
|
| 2979 |
|
|
}
|
| 2980 |
|
|
else
|
| 2981 |
|
|
c.offset = rhsoffset;
|
| 2982 |
|
|
|
| 2983 |
|
|
VEC_replace (ce_s, *results, j, &c);
|
| 2984 |
|
|
}
|
| 2985 |
|
|
}
|
| 2986 |
|
|
|
| 2987 |
|
|
|
| 2988 |
|
|
/* Given a COMPONENT_REF T, return the constraint_expr vector for it.
|
| 2989 |
|
|
If address_p is true the result will be taken its address of.
|
| 2990 |
|
|
If lhs_p is true then the constraint expression is assumed to be used
|
| 2991 |
|
|
as the lhs. */
|
| 2992 |
|
|
|
| 2993 |
|
|
static void
|
| 2994 |
|
|
get_constraint_for_component_ref (tree t, VEC(ce_s, heap) **results,
|
| 2995 |
|
|
bool address_p, bool lhs_p)
|
| 2996 |
|
|
{
|
| 2997 |
|
|
tree orig_t = t;
|
| 2998 |
|
|
HOST_WIDE_INT bitsize = -1;
|
| 2999 |
|
|
HOST_WIDE_INT bitmaxsize = -1;
|
| 3000 |
|
|
HOST_WIDE_INT bitpos;
|
| 3001 |
|
|
tree forzero;
|
| 3002 |
|
|
struct constraint_expr *result;
|
| 3003 |
|
|
|
| 3004 |
|
|
/* Some people like to do cute things like take the address of
|
| 3005 |
|
|
&0->a.b */
|
| 3006 |
|
|
forzero = t;
|
| 3007 |
|
|
while (handled_component_p (forzero)
|
| 3008 |
|
|
|| INDIRECT_REF_P (forzero)
|
| 3009 |
|
|
|| TREE_CODE (forzero) == MEM_REF)
|
| 3010 |
|
|
forzero = TREE_OPERAND (forzero, 0);
|
| 3011 |
|
|
|
| 3012 |
|
|
if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
|
| 3013 |
|
|
{
|
| 3014 |
|
|
struct constraint_expr temp;
|
| 3015 |
|
|
|
| 3016 |
|
|
temp.offset = 0;
|
| 3017 |
|
|
temp.var = integer_id;
|
| 3018 |
|
|
temp.type = SCALAR;
|
| 3019 |
|
|
VEC_safe_push (ce_s, heap, *results, &temp);
|
| 3020 |
|
|
return;
|
| 3021 |
|
|
}
|
| 3022 |
|
|
|
| 3023 |
|
|
/* Handle type-punning through unions. If we are extracting a pointer
|
| 3024 |
|
|
from a union via a possibly type-punning access that pointer
|
| 3025 |
|
|
points to anything, similar to a conversion of an integer to
|
| 3026 |
|
|
a pointer. */
|
| 3027 |
|
|
if (!lhs_p)
|
| 3028 |
|
|
{
|
| 3029 |
|
|
tree u;
|
| 3030 |
|
|
for (u = t;
|
| 3031 |
|
|
TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
|
| 3032 |
|
|
u = TREE_OPERAND (u, 0))
|
| 3033 |
|
|
if (TREE_CODE (u) == COMPONENT_REF
|
| 3034 |
|
|
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
|
| 3035 |
|
|
{
|
| 3036 |
|
|
struct constraint_expr temp;
|
| 3037 |
|
|
|
| 3038 |
|
|
temp.offset = 0;
|
| 3039 |
|
|
temp.var = anything_id;
|
| 3040 |
|
|
temp.type = ADDRESSOF;
|
| 3041 |
|
|
VEC_safe_push (ce_s, heap, *results, &temp);
|
| 3042 |
|
|
return;
|
| 3043 |
|
|
}
|
| 3044 |
|
|
}
|
| 3045 |
|
|
|
| 3046 |
|
|
t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);
|
| 3047 |
|
|
|
| 3048 |
|
|
/* Pretend to take the address of the base, we'll take care of
|
| 3049 |
|
|
adding the required subset of sub-fields below. */
|
| 3050 |
|
|
get_constraint_for_1 (t, results, true, lhs_p);
|
| 3051 |
|
|
gcc_assert (VEC_length (ce_s, *results) == 1);
|
| 3052 |
|
|
result = VEC_last (ce_s, *results);
|
| 3053 |
|
|
|
| 3054 |
|
|
if (result->type == SCALAR
|
| 3055 |
|
|
&& get_varinfo (result->var)->is_full_var)
|
| 3056 |
|
|
/* For single-field vars do not bother about the offset. */
|
| 3057 |
|
|
result->offset = 0;
|
| 3058 |
|
|
else if (result->type == SCALAR)
|
| 3059 |
|
|
{
|
| 3060 |
|
|
/* In languages like C, you can access one past the end of an
|
| 3061 |
|
|
array. You aren't allowed to dereference it, so we can
|
| 3062 |
|
|
ignore this constraint. When we handle pointer subtraction,
|
| 3063 |
|
|
we may have to do something cute here. */
|
| 3064 |
|
|
|
| 3065 |
|
|
if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result->var)->fullsize
|
| 3066 |
|
|
&& bitmaxsize != 0)
|
| 3067 |
|
|
{
|
| 3068 |
|
|
/* It's also not true that the constraint will actually start at the
|
| 3069 |
|
|
right offset, it may start in some padding. We only care about
|
| 3070 |
|
|
setting the constraint to the first actual field it touches, so
|
| 3071 |
|
|
walk to find it. */
|
| 3072 |
|
|
struct constraint_expr cexpr = *result;
|
| 3073 |
|
|
varinfo_t curr;
|
| 3074 |
|
|
VEC_pop (ce_s, *results);
|
| 3075 |
|
|
cexpr.offset = 0;
|
| 3076 |
|
|
for (curr = get_varinfo (cexpr.var); curr; curr = curr->next)
|
| 3077 |
|
|
{
|
| 3078 |
|
|
if (ranges_overlap_p (curr->offset, curr->size,
|
| 3079 |
|
|
bitpos, bitmaxsize))
|
| 3080 |
|
|
{
|
| 3081 |
|
|
cexpr.var = curr->id;
|
| 3082 |
|
|
VEC_safe_push (ce_s, heap, *results, &cexpr);
|
| 3083 |
|
|
if (address_p)
|
| 3084 |
|
|
break;
|
| 3085 |
|
|
}
|
| 3086 |
|
|
}
|
| 3087 |
|
|
/* If we are going to take the address of this field then
|
| 3088 |
|
|
to be able to compute reachability correctly add at least
|
| 3089 |
|
|
the last field of the variable. */
|
| 3090 |
|
|
if (address_p
|
| 3091 |
|
|
&& VEC_length (ce_s, *results) == 0)
|
| 3092 |
|
|
{
|
| 3093 |
|
|
curr = get_varinfo (cexpr.var);
|
| 3094 |
|
|
while (curr->next != NULL)
|
| 3095 |
|
|
curr = curr->next;
|
| 3096 |
|
|
cexpr.var = curr->id;
|
| 3097 |
|
|
VEC_safe_push (ce_s, heap, *results, &cexpr);
|
| 3098 |
|
|
}
|
| 3099 |
|
|
else if (VEC_length (ce_s, *results) == 0)
|
| 3100 |
|
|
/* Assert that we found *some* field there. The user couldn't be
|
| 3101 |
|
|
accessing *only* padding. */
|
| 3102 |
|
|
/* Still the user could access one past the end of an array
|
| 3103 |
|
|
embedded in a struct resulting in accessing *only* padding. */
|
| 3104 |
|
|
/* Or accessing only padding via type-punning to a type
|
| 3105 |
|
|
that has a filed just in padding space. */
|
| 3106 |
|
|
{
|
| 3107 |
|
|
cexpr.type = SCALAR;
|
| 3108 |
|
|
cexpr.var = anything_id;
|
| 3109 |
|
|
cexpr.offset = 0;
|
| 3110 |
|
|
VEC_safe_push (ce_s, heap, *results, &cexpr);
|
| 3111 |
|
|
}
|
| 3112 |
|
|
}
|
| 3113 |
|
|
else if (bitmaxsize == 0)
|
| 3114 |
|
|
{
|
| 3115 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 3116 |
|
|
fprintf (dump_file, "Access to zero-sized part of variable,"
|
| 3117 |
|
|
"ignoring\n");
|
| 3118 |
|
|
}
|
| 3119 |
|
|
else
|
| 3120 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 3121 |
|
|
fprintf (dump_file, "Access to past the end of variable, ignoring\n");
|
| 3122 |
|
|
}
|
| 3123 |
|
|
else if (result->type == DEREF)
|
| 3124 |
|
|
{
|
| 3125 |
|
|
/* If we do not know exactly where the access goes say so. Note
|
| 3126 |
|
|
that only for non-structure accesses we know that we access
|
| 3127 |
|
|
at most one subfiled of any variable. */
|
| 3128 |
|
|
if (bitpos == -1
|
| 3129 |
|
|
|| bitsize != bitmaxsize
|
| 3130 |
|
|
|| AGGREGATE_TYPE_P (TREE_TYPE (orig_t))
|
| 3131 |
|
|
|| result->offset == UNKNOWN_OFFSET)
|
| 3132 |
|
|
result->offset = UNKNOWN_OFFSET;
|
| 3133 |
|
|
else
|
| 3134 |
|
|
result->offset += bitpos;
|
| 3135 |
|
|
}
|
| 3136 |
|
|
else if (result->type == ADDRESSOF)
|
| 3137 |
|
|
{
|
| 3138 |
|
|
/* We can end up here for component references on a
|
| 3139 |
|
|
VIEW_CONVERT_EXPR <>(&foobar). */
|
| 3140 |
|
|
result->type = SCALAR;
|
| 3141 |
|
|
result->var = anything_id;
|
| 3142 |
|
|
result->offset = 0;
|
| 3143 |
|
|
}
|
| 3144 |
|
|
else
|
| 3145 |
|
|
gcc_unreachable ();
|
| 3146 |
|
|
}
|
| 3147 |
|
|
|
| 3148 |
|
|
|
| 3149 |
|
|
/* Dereference the constraint expression CONS, and return the result.
|
| 3150 |
|
|
DEREF (ADDRESSOF) = SCALAR
|
| 3151 |
|
|
DEREF (SCALAR) = DEREF
|
| 3152 |
|
|
DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
|
| 3153 |
|
|
This is needed so that we can handle dereferencing DEREF constraints. */
|
| 3154 |
|
|
|
| 3155 |
|
|
static void
|
| 3156 |
|
|
do_deref (VEC (ce_s, heap) **constraints)
|
| 3157 |
|
|
{
|
| 3158 |
|
|
struct constraint_expr *c;
|
| 3159 |
|
|
unsigned int i = 0;
|
| 3160 |
|
|
|
| 3161 |
|
|
FOR_EACH_VEC_ELT (ce_s, *constraints, i, c)
|
| 3162 |
|
|
{
|
| 3163 |
|
|
if (c->type == SCALAR)
|
| 3164 |
|
|
c->type = DEREF;
|
| 3165 |
|
|
else if (c->type == ADDRESSOF)
|
| 3166 |
|
|
c->type = SCALAR;
|
| 3167 |
|
|
else if (c->type == DEREF)
|
| 3168 |
|
|
{
|
| 3169 |
|
|
struct constraint_expr tmplhs;
|
| 3170 |
|
|
tmplhs = new_scalar_tmp_constraint_exp ("dereftmp");
|
| 3171 |
|
|
process_constraint (new_constraint (tmplhs, *c));
|
| 3172 |
|
|
c->var = tmplhs.var;
|
| 3173 |
|
|
}
|
| 3174 |
|
|
else
|
| 3175 |
|
|
gcc_unreachable ();
|
| 3176 |
|
|
}
|
| 3177 |
|
|
}
|
| 3178 |
|
|
|
| 3179 |
|
|
/* Given a tree T, return the constraint expression for taking the
|
| 3180 |
|
|
address of it. */
|
| 3181 |
|
|
|
| 3182 |
|
|
static void
|
| 3183 |
|
|
get_constraint_for_address_of (tree t, VEC (ce_s, heap) **results)
|
| 3184 |
|
|
{
|
| 3185 |
|
|
struct constraint_expr *c;
|
| 3186 |
|
|
unsigned int i;
|
| 3187 |
|
|
|
| 3188 |
|
|
get_constraint_for_1 (t, results, true, true);
|
| 3189 |
|
|
|
| 3190 |
|
|
FOR_EACH_VEC_ELT (ce_s, *results, i, c)
|
| 3191 |
|
|
{
|
| 3192 |
|
|
if (c->type == DEREF)
|
| 3193 |
|
|
c->type = SCALAR;
|
| 3194 |
|
|
else
|
| 3195 |
|
|
c->type = ADDRESSOF;
|
| 3196 |
|
|
}
|
| 3197 |
|
|
}
|
| 3198 |
|
|
|
| 3199 |
|
|
/* Given a tree T, return the constraint expression for it. */
|
| 3200 |
|
|
|
| 3201 |
|
|
static void
|
| 3202 |
|
|
get_constraint_for_1 (tree t, VEC (ce_s, heap) **results, bool address_p,
|
| 3203 |
|
|
bool lhs_p)
|
| 3204 |
|
|
{
|
| 3205 |
|
|
struct constraint_expr temp;
|
| 3206 |
|
|
|
| 3207 |
|
|
/* x = integer is all glommed to a single variable, which doesn't
|
| 3208 |
|
|
point to anything by itself. That is, of course, unless it is an
|
| 3209 |
|
|
integer constant being treated as a pointer, in which case, we
|
| 3210 |
|
|
will return that this is really the addressof anything. This
|
| 3211 |
|
|
happens below, since it will fall into the default case. The only
|
| 3212 |
|
|
case we know something about an integer treated like a pointer is
|
| 3213 |
|
|
when it is the NULL pointer, and then we just say it points to
|
| 3214 |
|
|
NULL.
|
| 3215 |
|
|
|
| 3216 |
|
|
Do not do that if -fno-delete-null-pointer-checks though, because
|
| 3217 |
|
|
in that case *NULL does not fail, so it _should_ alias *anything.
|
| 3218 |
|
|
It is not worth adding a new option or renaming the existing one,
|
| 3219 |
|
|
since this case is relatively obscure. */
|
| 3220 |
|
|
if ((TREE_CODE (t) == INTEGER_CST
|
| 3221 |
|
|
&& integer_zerop (t))
|
| 3222 |
|
|
/* The only valid CONSTRUCTORs in gimple with pointer typed
|
| 3223 |
|
|
elements are zero-initializer. But in IPA mode we also
|
| 3224 |
|
|
process global initializers, so verify at least. */
|
| 3225 |
|
|
|| (TREE_CODE (t) == CONSTRUCTOR
|
| 3226 |
|
|
&& CONSTRUCTOR_NELTS (t) == 0))
|
| 3227 |
|
|
{
|
| 3228 |
|
|
if (flag_delete_null_pointer_checks)
|
| 3229 |
|
|
temp.var = nothing_id;
|
| 3230 |
|
|
else
|
| 3231 |
|
|
temp.var = nonlocal_id;
|
| 3232 |
|
|
temp.type = ADDRESSOF;
|
| 3233 |
|
|
temp.offset = 0;
|
| 3234 |
|
|
VEC_safe_push (ce_s, heap, *results, &temp);
|
| 3235 |
|
|
return;
|
| 3236 |
|
|
}
|
| 3237 |
|
|
|
| 3238 |
|
|
/* String constants are read-only. */
|
| 3239 |
|
|
if (TREE_CODE (t) == STRING_CST)
|
| 3240 |
|
|
{
|
| 3241 |
|
|
temp.var = readonly_id;
|
| 3242 |
|
|
temp.type = SCALAR;
|
| 3243 |
|
|
temp.offset = 0;
|
| 3244 |
|
|
VEC_safe_push (ce_s, heap, *results, &temp);
|
| 3245 |
|
|
return;
|
| 3246 |
|
|
}
|
| 3247 |
|
|
|
| 3248 |
|
|
switch (TREE_CODE_CLASS (TREE_CODE (t)))
|
| 3249 |
|
|
{
|
| 3250 |
|
|
case tcc_expression:
|
| 3251 |
|
|
{
|
| 3252 |
|
|
switch (TREE_CODE (t))
|
| 3253 |
|
|
{
|
| 3254 |
|
|
case ADDR_EXPR:
|
| 3255 |
|
|
get_constraint_for_address_of (TREE_OPERAND (t, 0), results);
|
| 3256 |
|
|
return;
|
| 3257 |
|
|
default:;
|
| 3258 |
|
|
}
|
| 3259 |
|
|
break;
|
| 3260 |
|
|
}
|
| 3261 |
|
|
case tcc_reference:
|
| 3262 |
|
|
{
|
| 3263 |
|
|
switch (TREE_CODE (t))
|
| 3264 |
|
|
{
|
| 3265 |
|
|
case MEM_REF:
|
| 3266 |
|
|
{
|
| 3267 |
|
|
struct constraint_expr cs;
|
| 3268 |
|
|
varinfo_t vi, curr;
|
| 3269 |
|
|
get_constraint_for_ptr_offset (TREE_OPERAND (t, 0),
|
| 3270 |
|
|
TREE_OPERAND (t, 1), results);
|
| 3271 |
|
|
do_deref (results);
|
| 3272 |
|
|
|
| 3273 |
|
|
/* If we are not taking the address then make sure to process
|
| 3274 |
|
|
all subvariables we might access. */
|
| 3275 |
|
|
if (address_p)
|
| 3276 |
|
|
return;
|
| 3277 |
|
|
|
| 3278 |
|
|
cs = *VEC_last (ce_s, *results);
|
| 3279 |
|
|
if (cs.type == DEREF
|
| 3280 |
|
|
&& type_can_have_subvars (TREE_TYPE (t)))
|
| 3281 |
|
|
{
|
| 3282 |
|
|
/* For dereferences this means we have to defer it
|
| 3283 |
|
|
to solving time. */
|
| 3284 |
|
|
VEC_last (ce_s, *results)->offset = UNKNOWN_OFFSET;
|
| 3285 |
|
|
return;
|
| 3286 |
|
|
}
|
| 3287 |
|
|
if (cs.type != SCALAR)
|
| 3288 |
|
|
return;
|
| 3289 |
|
|
|
| 3290 |
|
|
vi = get_varinfo (cs.var);
|
| 3291 |
|
|
curr = vi->next;
|
| 3292 |
|
|
if (!vi->is_full_var
|
| 3293 |
|
|
&& curr)
|
| 3294 |
|
|
{
|
| 3295 |
|
|
unsigned HOST_WIDE_INT size;
|
| 3296 |
|
|
if (host_integerp (TYPE_SIZE (TREE_TYPE (t)), 1))
|
| 3297 |
|
|
size = TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (t)));
|
| 3298 |
|
|
else
|
| 3299 |
|
|
size = -1;
|
| 3300 |
|
|
for (; curr; curr = curr->next)
|
| 3301 |
|
|
{
|
| 3302 |
|
|
if (curr->offset - vi->offset < size)
|
| 3303 |
|
|
{
|
| 3304 |
|
|
cs.var = curr->id;
|
| 3305 |
|
|
VEC_safe_push (ce_s, heap, *results, &cs);
|
| 3306 |
|
|
}
|
| 3307 |
|
|
else
|
| 3308 |
|
|
break;
|
| 3309 |
|
|
}
|
| 3310 |
|
|
}
|
| 3311 |
|
|
return;
|
| 3312 |
|
|
}
|
| 3313 |
|
|
case ARRAY_REF:
|
| 3314 |
|
|
case ARRAY_RANGE_REF:
|
| 3315 |
|
|
case COMPONENT_REF:
|
| 3316 |
|
|
get_constraint_for_component_ref (t, results, address_p, lhs_p);
|
| 3317 |
|
|
return;
|
| 3318 |
|
|
case VIEW_CONVERT_EXPR:
|
| 3319 |
|
|
get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p,
|
| 3320 |
|
|
lhs_p);
|
| 3321 |
|
|
return;
|
| 3322 |
|
|
/* We are missing handling for TARGET_MEM_REF here. */
|
| 3323 |
|
|
default:;
|
| 3324 |
|
|
}
|
| 3325 |
|
|
break;
|
| 3326 |
|
|
}
|
| 3327 |
|
|
case tcc_exceptional:
|
| 3328 |
|
|
{
|
| 3329 |
|
|
switch (TREE_CODE (t))
|
| 3330 |
|
|
{
|
| 3331 |
|
|
case SSA_NAME:
|
| 3332 |
|
|
{
|
| 3333 |
|
|
get_constraint_for_ssa_var (t, results, address_p);
|
| 3334 |
|
|
return;
|
| 3335 |
|
|
}
|
| 3336 |
|
|
case CONSTRUCTOR:
|
| 3337 |
|
|
{
|
| 3338 |
|
|
unsigned int i;
|
| 3339 |
|
|
tree val;
|
| 3340 |
|
|
VEC (ce_s, heap) *tmp = NULL;
|
| 3341 |
|
|
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
|
| 3342 |
|
|
{
|
| 3343 |
|
|
struct constraint_expr *rhsp;
|
| 3344 |
|
|
unsigned j;
|
| 3345 |
|
|
get_constraint_for_1 (val, &tmp, address_p, lhs_p);
|
| 3346 |
|
|
FOR_EACH_VEC_ELT (ce_s, tmp, j, rhsp)
|
| 3347 |
|
|
VEC_safe_push (ce_s, heap, *results, rhsp);
|
| 3348 |
|
|
VEC_truncate (ce_s, tmp, 0);
|
| 3349 |
|
|
}
|
| 3350 |
|
|
VEC_free (ce_s, heap, tmp);
|
| 3351 |
|
|
/* We do not know whether the constructor was complete,
|
| 3352 |
|
|
so technically we have to add &NOTHING or &ANYTHING
|
| 3353 |
|
|
like we do for an empty constructor as well. */
|
| 3354 |
|
|
return;
|
| 3355 |
|
|
}
|
| 3356 |
|
|
default:;
|
| 3357 |
|
|
}
|
| 3358 |
|
|
break;
|
| 3359 |
|
|
}
|
| 3360 |
|
|
case tcc_declaration:
|
| 3361 |
|
|
{
|
| 3362 |
|
|
get_constraint_for_ssa_var (t, results, address_p);
|
| 3363 |
|
|
return;
|
| 3364 |
|
|
}
|
| 3365 |
|
|
case tcc_constant:
|
| 3366 |
|
|
{
|
| 3367 |
|
|
/* We cannot refer to automatic variables through constants. */
|
| 3368 |
|
|
temp.type = ADDRESSOF;
|
| 3369 |
|
|
temp.var = nonlocal_id;
|
| 3370 |
|
|
temp.offset = 0;
|
| 3371 |
|
|
VEC_safe_push (ce_s, heap, *results, &temp);
|
| 3372 |
|
|
return;
|
| 3373 |
|
|
}
|
| 3374 |
|
|
default:;
|
| 3375 |
|
|
}
|
| 3376 |
|
|
|
| 3377 |
|
|
/* The default fallback is a constraint from anything. */
|
| 3378 |
|
|
temp.type = ADDRESSOF;
|
| 3379 |
|
|
temp.var = anything_id;
|
| 3380 |
|
|
temp.offset = 0;
|
| 3381 |
|
|
VEC_safe_push (ce_s, heap, *results, &temp);
|
| 3382 |
|
|
}
|
| 3383 |
|
|
|
| 3384 |
|
|
/* Given a gimple tree T, return the constraint expression vector for it. */
|
| 3385 |
|
|
|
| 3386 |
|
|
static void
|
| 3387 |
|
|
get_constraint_for (tree t, VEC (ce_s, heap) **results)
|
| 3388 |
|
|
{
|
| 3389 |
|
|
gcc_assert (VEC_length (ce_s, *results) == 0);
|
| 3390 |
|
|
|
| 3391 |
|
|
get_constraint_for_1 (t, results, false, true);
|
| 3392 |
|
|
}
|
| 3393 |
|
|
|
| 3394 |
|
|
/* Given a gimple tree T, return the constraint expression vector for it
|
| 3395 |
|
|
to be used as the rhs of a constraint. */
|
| 3396 |
|
|
|
| 3397 |
|
|
static void
|
| 3398 |
|
|
get_constraint_for_rhs (tree t, VEC (ce_s, heap) **results)
|
| 3399 |
|
|
{
|
| 3400 |
|
|
gcc_assert (VEC_length (ce_s, *results) == 0);
|
| 3401 |
|
|
|
| 3402 |
|
|
get_constraint_for_1 (t, results, false, false);
|
| 3403 |
|
|
}
|
| 3404 |
|
|
|
| 3405 |
|
|
|
| 3406 |
|
|
/* Efficiently generates constraints from all entries in *RHSC to all
|
| 3407 |
|
|
entries in *LHSC. */
|
| 3408 |
|
|
|
| 3409 |
|
|
static void
|
| 3410 |
|
|
process_all_all_constraints (VEC (ce_s, heap) *lhsc, VEC (ce_s, heap) *rhsc)
|
| 3411 |
|
|
{
|
| 3412 |
|
|
struct constraint_expr *lhsp, *rhsp;
|
| 3413 |
|
|
unsigned i, j;
|
| 3414 |
|
|
|
| 3415 |
|
|
if (VEC_length (ce_s, lhsc) <= 1
|
| 3416 |
|
|
|| VEC_length (ce_s, rhsc) <= 1)
|
| 3417 |
|
|
{
|
| 3418 |
|
|
FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
|
| 3419 |
|
|
FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
|
| 3420 |
|
|
process_constraint (new_constraint (*lhsp, *rhsp));
|
| 3421 |
|
|
}
|
| 3422 |
|
|
else
|
| 3423 |
|
|
{
|
| 3424 |
|
|
struct constraint_expr tmp;
|
| 3425 |
|
|
tmp = new_scalar_tmp_constraint_exp ("allalltmp");
|
| 3426 |
|
|
FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
|
| 3427 |
|
|
process_constraint (new_constraint (tmp, *rhsp));
|
| 3428 |
|
|
FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
|
| 3429 |
|
|
process_constraint (new_constraint (*lhsp, tmp));
|
| 3430 |
|
|
}
|
| 3431 |
|
|
}
|
| 3432 |
|
|
|
| 3433 |
|
|
/* Handle aggregate copies by expanding into copies of the respective
|
| 3434 |
|
|
fields of the structures. */
|
| 3435 |
|
|
|
| 3436 |
|
|
static void
|
| 3437 |
|
|
do_structure_copy (tree lhsop, tree rhsop)
|
| 3438 |
|
|
{
|
| 3439 |
|
|
struct constraint_expr *lhsp, *rhsp;
|
| 3440 |
|
|
VEC (ce_s, heap) *lhsc = NULL, *rhsc = NULL;
|
| 3441 |
|
|
unsigned j;
|
| 3442 |
|
|
|
| 3443 |
|
|
get_constraint_for (lhsop, &lhsc);
|
| 3444 |
|
|
get_constraint_for_rhs (rhsop, &rhsc);
|
| 3445 |
|
|
lhsp = VEC_index (ce_s, lhsc, 0);
|
| 3446 |
|
|
rhsp = VEC_index (ce_s, rhsc, 0);
|
| 3447 |
|
|
if (lhsp->type == DEREF
|
| 3448 |
|
|
|| (lhsp->type == ADDRESSOF && lhsp->var == anything_id)
|
| 3449 |
|
|
|| rhsp->type == DEREF)
|
| 3450 |
|
|
{
|
| 3451 |
|
|
if (lhsp->type == DEREF)
|
| 3452 |
|
|
{
|
| 3453 |
|
|
gcc_assert (VEC_length (ce_s, lhsc) == 1);
|
| 3454 |
|
|
lhsp->offset = UNKNOWN_OFFSET;
|
| 3455 |
|
|
}
|
| 3456 |
|
|
if (rhsp->type == DEREF)
|
| 3457 |
|
|
{
|
| 3458 |
|
|
gcc_assert (VEC_length (ce_s, rhsc) == 1);
|
| 3459 |
|
|
rhsp->offset = UNKNOWN_OFFSET;
|
| 3460 |
|
|
}
|
| 3461 |
|
|
process_all_all_constraints (lhsc, rhsc);
|
| 3462 |
|
|
}
|
| 3463 |
|
|
else if (lhsp->type == SCALAR
|
| 3464 |
|
|
&& (rhsp->type == SCALAR
|
| 3465 |
|
|
|| rhsp->type == ADDRESSOF))
|
| 3466 |
|
|
{
|
| 3467 |
|
|
HOST_WIDE_INT lhssize, lhsmaxsize, lhsoffset;
|
| 3468 |
|
|
HOST_WIDE_INT rhssize, rhsmaxsize, rhsoffset;
|
| 3469 |
|
|
unsigned k = 0;
|
| 3470 |
|
|
get_ref_base_and_extent (lhsop, &lhsoffset, &lhssize, &lhsmaxsize);
|
| 3471 |
|
|
get_ref_base_and_extent (rhsop, &rhsoffset, &rhssize, &rhsmaxsize);
|
| 3472 |
|
|
for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp);)
|
| 3473 |
|
|
{
|
| 3474 |
|
|
varinfo_t lhsv, rhsv;
|
| 3475 |
|
|
rhsp = VEC_index (ce_s, rhsc, k);
|
| 3476 |
|
|
lhsv = get_varinfo (lhsp->var);
|
| 3477 |
|
|
rhsv = get_varinfo (rhsp->var);
|
| 3478 |
|
|
if (lhsv->may_have_pointers
|
| 3479 |
|
|
&& (lhsv->is_full_var
|
| 3480 |
|
|
|| rhsv->is_full_var
|
| 3481 |
|
|
|| ranges_overlap_p (lhsv->offset + rhsoffset, lhsv->size,
|
| 3482 |
|
|
rhsv->offset + lhsoffset, rhsv->size)))
|
| 3483 |
|
|
process_constraint (new_constraint (*lhsp, *rhsp));
|
| 3484 |
|
|
if (!rhsv->is_full_var
|
| 3485 |
|
|
&& (lhsv->is_full_var
|
| 3486 |
|
|
|| (lhsv->offset + rhsoffset + lhsv->size
|
| 3487 |
|
|
> rhsv->offset + lhsoffset + rhsv->size)))
|
| 3488 |
|
|
{
|
| 3489 |
|
|
++k;
|
| 3490 |
|
|
if (k >= VEC_length (ce_s, rhsc))
|
| 3491 |
|
|
break;
|
| 3492 |
|
|
}
|
| 3493 |
|
|
else
|
| 3494 |
|
|
++j;
|
| 3495 |
|
|
}
|
| 3496 |
|
|
}
|
| 3497 |
|
|
else
|
| 3498 |
|
|
gcc_unreachable ();
|
| 3499 |
|
|
|
| 3500 |
|
|
VEC_free (ce_s, heap, lhsc);
|
| 3501 |
|
|
VEC_free (ce_s, heap, rhsc);
|
| 3502 |
|
|
}
|
| 3503 |
|
|
|
| 3504 |
|
|
/* Create constraints ID = { rhsc }. */
|
| 3505 |
|
|
|
| 3506 |
|
|
static void
|
| 3507 |
|
|
make_constraints_to (unsigned id, VEC(ce_s, heap) *rhsc)
|
| 3508 |
|
|
{
|
| 3509 |
|
|
struct constraint_expr *c;
|
| 3510 |
|
|
struct constraint_expr includes;
|
| 3511 |
|
|
unsigned int j;
|
| 3512 |
|
|
|
| 3513 |
|
|
includes.var = id;
|
| 3514 |
|
|
includes.offset = 0;
|
| 3515 |
|
|
includes.type = SCALAR;
|
| 3516 |
|
|
|
| 3517 |
|
|
FOR_EACH_VEC_ELT (ce_s, rhsc, j, c)
|
| 3518 |
|
|
process_constraint (new_constraint (includes, *c));
|
| 3519 |
|
|
}
|
| 3520 |
|
|
|
| 3521 |
|
|
/* Create a constraint ID = OP. */
|
| 3522 |
|
|
|
| 3523 |
|
|
static void
|
| 3524 |
|
|
make_constraint_to (unsigned id, tree op)
|
| 3525 |
|
|
{
|
| 3526 |
|
|
VEC(ce_s, heap) *rhsc = NULL;
|
| 3527 |
|
|
get_constraint_for_rhs (op, &rhsc);
|
| 3528 |
|
|
make_constraints_to (id, rhsc);
|
| 3529 |
|
|
VEC_free (ce_s, heap, rhsc);
|
| 3530 |
|
|
}
|
| 3531 |
|
|
|
| 3532 |
|
|
/* Create a constraint ID = &FROM. */
|
| 3533 |
|
|
|
| 3534 |
|
|
static void
|
| 3535 |
|
|
make_constraint_from (varinfo_t vi, int from)
|
| 3536 |
|
|
{
|
| 3537 |
|
|
struct constraint_expr lhs, rhs;
|
| 3538 |
|
|
|
| 3539 |
|
|
lhs.var = vi->id;
|
| 3540 |
|
|
lhs.offset = 0;
|
| 3541 |
|
|
lhs.type = SCALAR;
|
| 3542 |
|
|
|
| 3543 |
|
|
rhs.var = from;
|
| 3544 |
|
|
rhs.offset = 0;
|
| 3545 |
|
|
rhs.type = ADDRESSOF;
|
| 3546 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
| 3547 |
|
|
}
|
| 3548 |
|
|
|
| 3549 |
|
|
/* Create a constraint ID = FROM. */
|
| 3550 |
|
|
|
| 3551 |
|
|
static void
|
| 3552 |
|
|
make_copy_constraint (varinfo_t vi, int from)
|
| 3553 |
|
|
{
|
| 3554 |
|
|
struct constraint_expr lhs, rhs;
|
| 3555 |
|
|
|
| 3556 |
|
|
lhs.var = vi->id;
|
| 3557 |
|
|
lhs.offset = 0;
|
| 3558 |
|
|
lhs.type = SCALAR;
|
| 3559 |
|
|
|
| 3560 |
|
|
rhs.var = from;
|
| 3561 |
|
|
rhs.offset = 0;
|
| 3562 |
|
|
rhs.type = SCALAR;
|
| 3563 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
| 3564 |
|
|
}
|
| 3565 |
|
|
|
| 3566 |
|
|
/* Make constraints necessary to make OP escape. */
|
| 3567 |
|
|
|
| 3568 |
|
|
static void
|
| 3569 |
|
|
make_escape_constraint (tree op)
|
| 3570 |
|
|
{
|
| 3571 |
|
|
make_constraint_to (escaped_id, op);
|
| 3572 |
|
|
}
|
| 3573 |
|
|
|
| 3574 |
|
|
/* Add constraints to that the solution of VI is transitively closed. */
|
| 3575 |
|
|
|
| 3576 |
|
|
static void
|
| 3577 |
|
|
make_transitive_closure_constraints (varinfo_t vi)
|
| 3578 |
|
|
{
|
| 3579 |
|
|
struct constraint_expr lhs, rhs;
|
| 3580 |
|
|
|
| 3581 |
|
|
/* VAR = *VAR; */
|
| 3582 |
|
|
lhs.type = SCALAR;
|
| 3583 |
|
|
lhs.var = vi->id;
|
| 3584 |
|
|
lhs.offset = 0;
|
| 3585 |
|
|
rhs.type = DEREF;
|
| 3586 |
|
|
rhs.var = vi->id;
|
| 3587 |
|
|
rhs.offset = 0;
|
| 3588 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
| 3589 |
|
|
|
| 3590 |
|
|
/* VAR = VAR + UNKNOWN; */
|
| 3591 |
|
|
lhs.type = SCALAR;
|
| 3592 |
|
|
lhs.var = vi->id;
|
| 3593 |
|
|
lhs.offset = 0;
|
| 3594 |
|
|
rhs.type = SCALAR;
|
| 3595 |
|
|
rhs.var = vi->id;
|
| 3596 |
|
|
rhs.offset = UNKNOWN_OFFSET;
|
| 3597 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
| 3598 |
|
|
}
|
| 3599 |
|
|
|
| 3600 |
|
|
/* Temporary storage for fake var decls. */
|
| 3601 |
|
|
struct obstack fake_var_decl_obstack;
|
| 3602 |
|
|
|
| 3603 |
|
|
/* Build a fake VAR_DECL acting as referrer to a DECL_UID. */
|
| 3604 |
|
|
|
| 3605 |
|
|
static tree
|
| 3606 |
|
|
build_fake_var_decl (tree type)
|
| 3607 |
|
|
{
|
| 3608 |
|
|
tree decl = (tree) XOBNEW (&fake_var_decl_obstack, struct tree_var_decl);
|
| 3609 |
|
|
memset (decl, 0, sizeof (struct tree_var_decl));
|
| 3610 |
|
|
TREE_SET_CODE (decl, VAR_DECL);
|
| 3611 |
|
|
TREE_TYPE (decl) = type;
|
| 3612 |
|
|
DECL_UID (decl) = allocate_decl_uid ();
|
| 3613 |
|
|
SET_DECL_PT_UID (decl, -1);
|
| 3614 |
|
|
layout_decl (decl, 0);
|
| 3615 |
|
|
return decl;
|
| 3616 |
|
|
}
|
| 3617 |
|
|
|
| 3618 |
|
|
/* Create a new artificial heap variable with NAME.
|
| 3619 |
|
|
Return the created variable. */
|
| 3620 |
|
|
|
| 3621 |
|
|
static varinfo_t
|
| 3622 |
|
|
make_heapvar (const char *name)
|
| 3623 |
|
|
{
|
| 3624 |
|
|
varinfo_t vi;
|
| 3625 |
|
|
tree heapvar;
|
| 3626 |
|
|
|
| 3627 |
|
|
heapvar = build_fake_var_decl (ptr_type_node);
|
| 3628 |
|
|
DECL_EXTERNAL (heapvar) = 1;
|
| 3629 |
|
|
|
| 3630 |
|
|
vi = new_var_info (heapvar, name);
|
| 3631 |
|
|
vi->is_artificial_var = true;
|
| 3632 |
|
|
vi->is_heap_var = true;
|
| 3633 |
|
|
vi->is_unknown_size_var = true;
|
| 3634 |
|
|
vi->offset = 0;
|
| 3635 |
|
|
vi->fullsize = ~0;
|
| 3636 |
|
|
vi->size = ~0;
|
| 3637 |
|
|
vi->is_full_var = true;
|
| 3638 |
|
|
insert_vi_for_tree (heapvar, vi);
|
| 3639 |
|
|
|
| 3640 |
|
|
return vi;
|
| 3641 |
|
|
}
|
| 3642 |
|
|
|
| 3643 |
|
|
/* Create a new artificial heap variable with NAME and make a
|
| 3644 |
|
|
constraint from it to LHS. Set flags according to a tag used
|
| 3645 |
|
|
for tracking restrict pointers. */
|
| 3646 |
|
|
|
| 3647 |
|
|
static varinfo_t
|
| 3648 |
|
|
make_constraint_from_restrict (varinfo_t lhs, const char *name)
|
| 3649 |
|
|
{
|
| 3650 |
|
|
varinfo_t vi = make_heapvar (name);
|
| 3651 |
|
|
vi->is_global_var = 1;
|
| 3652 |
|
|
vi->may_have_pointers = 1;
|
| 3653 |
|
|
make_constraint_from (lhs, vi->id);
|
| 3654 |
|
|
return vi;
|
| 3655 |
|
|
}
|
| 3656 |
|
|
|
| 3657 |
|
|
/* Create a new artificial heap variable with NAME and make a
|
| 3658 |
|
|
constraint from it to LHS. Set flags according to a tag used
|
| 3659 |
|
|
for tracking restrict pointers and make the artificial heap
|
| 3660 |
|
|
point to global memory. */
|
| 3661 |
|
|
|
| 3662 |
|
|
static varinfo_t
|
| 3663 |
|
|
make_constraint_from_global_restrict (varinfo_t lhs, const char *name)
|
| 3664 |
|
|
{
|
| 3665 |
|
|
varinfo_t vi = make_constraint_from_restrict (lhs, name);
|
| 3666 |
|
|
make_copy_constraint (vi, nonlocal_id);
|
| 3667 |
|
|
return vi;
|
| 3668 |
|
|
}
|
| 3669 |
|
|
|
| 3670 |
|
|
/* In IPA mode there are varinfos for different aspects of reach
|
| 3671 |
|
|
function designator. One for the points-to set of the return
|
| 3672 |
|
|
value, one for the variables that are clobbered by the function,
|
| 3673 |
|
|
one for its uses and one for each parameter (including a single
|
| 3674 |
|
|
glob for remaining variadic arguments). */
|
| 3675 |
|
|
|
| 3676 |
|
|
enum { fi_clobbers = 1, fi_uses = 2,
|
| 3677 |
|
|
fi_static_chain = 3, fi_result = 4, fi_parm_base = 5 };
|
| 3678 |
|
|
|
| 3679 |
|
|
/* Get a constraint for the requested part of a function designator FI
|
| 3680 |
|
|
when operating in IPA mode. */
|
| 3681 |
|
|
|
| 3682 |
|
|
static struct constraint_expr
|
| 3683 |
|
|
get_function_part_constraint (varinfo_t fi, unsigned part)
|
| 3684 |
|
|
{
|
| 3685 |
|
|
struct constraint_expr c;
|
| 3686 |
|
|
|
| 3687 |
|
|
gcc_assert (in_ipa_mode);
|
| 3688 |
|
|
|
| 3689 |
|
|
if (fi->id == anything_id)
|
| 3690 |
|
|
{
|
| 3691 |
|
|
/* ??? We probably should have a ANYFN special variable. */
|
| 3692 |
|
|
c.var = anything_id;
|
| 3693 |
|
|
c.offset = 0;
|
| 3694 |
|
|
c.type = SCALAR;
|
| 3695 |
|
|
}
|
| 3696 |
|
|
else if (TREE_CODE (fi->decl) == FUNCTION_DECL)
|
| 3697 |
|
|
{
|
| 3698 |
|
|
varinfo_t ai = first_vi_for_offset (fi, part);
|
| 3699 |
|
|
if (ai)
|
| 3700 |
|
|
c.var = ai->id;
|
| 3701 |
|
|
else
|
| 3702 |
|
|
c.var = anything_id;
|
| 3703 |
|
|
c.offset = 0;
|
| 3704 |
|
|
c.type = SCALAR;
|
| 3705 |
|
|
}
|
| 3706 |
|
|
else
|
| 3707 |
|
|
{
|
| 3708 |
|
|
c.var = fi->id;
|
| 3709 |
|
|
c.offset = part;
|
| 3710 |
|
|
c.type = DEREF;
|
| 3711 |
|
|
}
|
| 3712 |
|
|
|
| 3713 |
|
|
return c;
|
| 3714 |
|
|
}
|
| 3715 |
|
|
|
| 3716 |
|
|
/* For non-IPA mode, generate constraints necessary for a call on the
|
| 3717 |
|
|
RHS. */
|
| 3718 |
|
|
|
| 3719 |
|
|
static void
|
| 3720 |
|
|
handle_rhs_call (gimple stmt, VEC(ce_s, heap) **results)
|
| 3721 |
|
|
{
|
| 3722 |
|
|
struct constraint_expr rhsc;
|
| 3723 |
|
|
unsigned i;
|
| 3724 |
|
|
bool returns_uses = false;
|
| 3725 |
|
|
|
| 3726 |
|
|
for (i = 0; i < gimple_call_num_args (stmt); ++i)
|
| 3727 |
|
|
{
|
| 3728 |
|
|
tree arg = gimple_call_arg (stmt, i);
|
| 3729 |
|
|
int flags = gimple_call_arg_flags (stmt, i);
|
| 3730 |
|
|
|
| 3731 |
|
|
/* If the argument is not used we can ignore it. */
|
| 3732 |
|
|
if (flags & EAF_UNUSED)
|
| 3733 |
|
|
continue;
|
| 3734 |
|
|
|
| 3735 |
|
|
/* As we compute ESCAPED context-insensitive we do not gain
|
| 3736 |
|
|
any precision with just EAF_NOCLOBBER but not EAF_NOESCAPE
|
| 3737 |
|
|
set. The argument would still get clobbered through the
|
| 3738 |
|
|
escape solution.
|
| 3739 |
|
|
??? We might get away with less (and more precise) constraints
|
| 3740 |
|
|
if using a temporary for transitively closing things. */
|
| 3741 |
|
|
if ((flags & EAF_NOCLOBBER)
|
| 3742 |
|
|
&& (flags & EAF_NOESCAPE))
|
| 3743 |
|
|
{
|
| 3744 |
|
|
varinfo_t uses = get_call_use_vi (stmt);
|
| 3745 |
|
|
if (!(flags & EAF_DIRECT))
|
| 3746 |
|
|
make_transitive_closure_constraints (uses);
|
| 3747 |
|
|
make_constraint_to (uses->id, arg);
|
| 3748 |
|
|
returns_uses = true;
|
| 3749 |
|
|
}
|
| 3750 |
|
|
else if (flags & EAF_NOESCAPE)
|
| 3751 |
|
|
{
|
| 3752 |
|
|
varinfo_t uses = get_call_use_vi (stmt);
|
| 3753 |
|
|
varinfo_t clobbers = get_call_clobber_vi (stmt);
|
| 3754 |
|
|
if (!(flags & EAF_DIRECT))
|
| 3755 |
|
|
{
|
| 3756 |
|
|
make_transitive_closure_constraints (uses);
|
| 3757 |
|
|
make_transitive_closure_constraints (clobbers);
|
| 3758 |
|
|
}
|
| 3759 |
|
|
make_constraint_to (uses->id, arg);
|
| 3760 |
|
|
make_constraint_to (clobbers->id, arg);
|
| 3761 |
|
|
returns_uses = true;
|
| 3762 |
|
|
}
|
| 3763 |
|
|
else
|
| 3764 |
|
|
make_escape_constraint (arg);
|
| 3765 |
|
|
}
|
| 3766 |
|
|
|
| 3767 |
|
|
/* If we added to the calls uses solution make sure we account for
|
| 3768 |
|
|
pointers to it to be returned. */
|
| 3769 |
|
|
if (returns_uses)
|
| 3770 |
|
|
{
|
| 3771 |
|
|
rhsc.var = get_call_use_vi (stmt)->id;
|
| 3772 |
|
|
rhsc.offset = 0;
|
| 3773 |
|
|
rhsc.type = SCALAR;
|
| 3774 |
|
|
VEC_safe_push (ce_s, heap, *results, &rhsc);
|
| 3775 |
|
|
}
|
| 3776 |
|
|
|
| 3777 |
|
|
/* The static chain escapes as well. */
|
| 3778 |
|
|
if (gimple_call_chain (stmt))
|
| 3779 |
|
|
make_escape_constraint (gimple_call_chain (stmt));
|
| 3780 |
|
|
|
| 3781 |
|
|
/* And if we applied NRV the address of the return slot escapes as well. */
|
| 3782 |
|
|
if (gimple_call_return_slot_opt_p (stmt)
|
| 3783 |
|
|
&& gimple_call_lhs (stmt) != NULL_TREE
|
| 3784 |
|
|
&& TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
|
| 3785 |
|
|
{
|
| 3786 |
|
|
VEC(ce_s, heap) *tmpc = NULL;
|
| 3787 |
|
|
struct constraint_expr lhsc, *c;
|
| 3788 |
|
|
get_constraint_for_address_of (gimple_call_lhs (stmt), &tmpc);
|
| 3789 |
|
|
lhsc.var = escaped_id;
|
| 3790 |
|
|
lhsc.offset = 0;
|
| 3791 |
|
|
lhsc.type = SCALAR;
|
| 3792 |
|
|
FOR_EACH_VEC_ELT (ce_s, tmpc, i, c)
|
| 3793 |
|
|
process_constraint (new_constraint (lhsc, *c));
|
| 3794 |
|
|
VEC_free(ce_s, heap, tmpc);
|
| 3795 |
|
|
}
|
| 3796 |
|
|
|
| 3797 |
|
|
/* Regular functions return nonlocal memory. */
|
| 3798 |
|
|
rhsc.var = nonlocal_id;
|
| 3799 |
|
|
rhsc.offset = 0;
|
| 3800 |
|
|
rhsc.type = SCALAR;
|
| 3801 |
|
|
VEC_safe_push (ce_s, heap, *results, &rhsc);
|
| 3802 |
|
|
}
|
| 3803 |
|
|
|
| 3804 |
|
|
/* For non-IPA mode, generate constraints necessary for a call
|
| 3805 |
|
|
that returns a pointer and assigns it to LHS. This simply makes
|
| 3806 |
|
|
the LHS point to global and escaped variables. */
|
| 3807 |
|
|
|
| 3808 |
|
|
static void
|
| 3809 |
|
|
handle_lhs_call (gimple stmt, tree lhs, int flags, VEC(ce_s, heap) *rhsc,
|
| 3810 |
|
|
tree fndecl)
|
| 3811 |
|
|
{
|
| 3812 |
|
|
VEC(ce_s, heap) *lhsc = NULL;
|
| 3813 |
|
|
|
| 3814 |
|
|
get_constraint_for (lhs, &lhsc);
|
| 3815 |
|
|
/* If the store is to a global decl make sure to
|
| 3816 |
|
|
add proper escape constraints. */
|
| 3817 |
|
|
lhs = get_base_address (lhs);
|
| 3818 |
|
|
if (lhs
|
| 3819 |
|
|
&& DECL_P (lhs)
|
| 3820 |
|
|
&& is_global_var (lhs))
|
| 3821 |
|
|
{
|
| 3822 |
|
|
struct constraint_expr tmpc;
|
| 3823 |
|
|
tmpc.var = escaped_id;
|
| 3824 |
|
|
tmpc.offset = 0;
|
| 3825 |
|
|
tmpc.type = SCALAR;
|
| 3826 |
|
|
VEC_safe_push (ce_s, heap, lhsc, &tmpc);
|
| 3827 |
|
|
}
|
| 3828 |
|
|
|
| 3829 |
|
|
/* If the call returns an argument unmodified override the rhs
|
| 3830 |
|
|
constraints. */
|
| 3831 |
|
|
flags = gimple_call_return_flags (stmt);
|
| 3832 |
|
|
if (flags & ERF_RETURNS_ARG
|
| 3833 |
|
|
&& (flags & ERF_RETURN_ARG_MASK) < gimple_call_num_args (stmt))
|
| 3834 |
|
|
{
|
| 3835 |
|
|
tree arg;
|
| 3836 |
|
|
rhsc = NULL;
|
| 3837 |
|
|
arg = gimple_call_arg (stmt, flags & ERF_RETURN_ARG_MASK);
|
| 3838 |
|
|
get_constraint_for (arg, &rhsc);
|
| 3839 |
|
|
process_all_all_constraints (lhsc, rhsc);
|
| 3840 |
|
|
VEC_free (ce_s, heap, rhsc);
|
| 3841 |
|
|
}
|
| 3842 |
|
|
else if (flags & ERF_NOALIAS)
|
| 3843 |
|
|
{
|
| 3844 |
|
|
varinfo_t vi;
|
| 3845 |
|
|
struct constraint_expr tmpc;
|
| 3846 |
|
|
rhsc = NULL;
|
| 3847 |
|
|
vi = make_heapvar ("HEAP");
|
| 3848 |
|
|
/* We delay marking allocated storage global until we know if
|
| 3849 |
|
|
it escapes. */
|
| 3850 |
|
|
DECL_EXTERNAL (vi->decl) = 0;
|
| 3851 |
|
|
vi->is_global_var = 0;
|
| 3852 |
|
|
/* If this is not a real malloc call assume the memory was
|
| 3853 |
|
|
initialized and thus may point to global memory. All
|
| 3854 |
|
|
builtin functions with the malloc attribute behave in a sane way. */
|
| 3855 |
|
|
if (!fndecl
|
| 3856 |
|
|
|| DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
|
| 3857 |
|
|
make_constraint_from (vi, nonlocal_id);
|
| 3858 |
|
|
tmpc.var = vi->id;
|
| 3859 |
|
|
tmpc.offset = 0;
|
| 3860 |
|
|
tmpc.type = ADDRESSOF;
|
| 3861 |
|
|
VEC_safe_push (ce_s, heap, rhsc, &tmpc);
|
| 3862 |
|
|
}
|
| 3863 |
|
|
|
| 3864 |
|
|
process_all_all_constraints (lhsc, rhsc);
|
| 3865 |
|
|
|
| 3866 |
|
|
VEC_free (ce_s, heap, lhsc);
|
| 3867 |
|
|
}
|
| 3868 |
|
|
|
| 3869 |
|
|
/* For non-IPA mode, generate constraints necessary for a call of a
|
| 3870 |
|
|
const function that returns a pointer in the statement STMT. */
|
| 3871 |
|
|
|
| 3872 |
|
|
static void
|
| 3873 |
|
|
handle_const_call (gimple stmt, VEC(ce_s, heap) **results)
|
| 3874 |
|
|
{
|
| 3875 |
|
|
struct constraint_expr rhsc;
|
| 3876 |
|
|
unsigned int k;
|
| 3877 |
|
|
|
| 3878 |
|
|
/* Treat nested const functions the same as pure functions as far
|
| 3879 |
|
|
as the static chain is concerned. */
|
| 3880 |
|
|
if (gimple_call_chain (stmt))
|
| 3881 |
|
|
{
|
| 3882 |
|
|
varinfo_t uses = get_call_use_vi (stmt);
|
| 3883 |
|
|
make_transitive_closure_constraints (uses);
|
| 3884 |
|
|
make_constraint_to (uses->id, gimple_call_chain (stmt));
|
| 3885 |
|
|
rhsc.var = uses->id;
|
| 3886 |
|
|
rhsc.offset = 0;
|
| 3887 |
|
|
rhsc.type = SCALAR;
|
| 3888 |
|
|
VEC_safe_push (ce_s, heap, *results, &rhsc);
|
| 3889 |
|
|
}
|
| 3890 |
|
|
|
| 3891 |
|
|
/* May return arguments. */
|
| 3892 |
|
|
for (k = 0; k < gimple_call_num_args (stmt); ++k)
|
| 3893 |
|
|
{
|
| 3894 |
|
|
tree arg = gimple_call_arg (stmt, k);
|
| 3895 |
|
|
VEC(ce_s, heap) *argc = NULL;
|
| 3896 |
|
|
unsigned i;
|
| 3897 |
|
|
struct constraint_expr *argp;
|
| 3898 |
|
|
get_constraint_for_rhs (arg, &argc);
|
| 3899 |
|
|
FOR_EACH_VEC_ELT (ce_s, argc, i, argp)
|
| 3900 |
|
|
VEC_safe_push (ce_s, heap, *results, argp);
|
| 3901 |
|
|
VEC_free(ce_s, heap, argc);
|
| 3902 |
|
|
}
|
| 3903 |
|
|
|
| 3904 |
|
|
/* May return addresses of globals. */
|
| 3905 |
|
|
rhsc.var = nonlocal_id;
|
| 3906 |
|
|
rhsc.offset = 0;
|
| 3907 |
|
|
rhsc.type = ADDRESSOF;
|
| 3908 |
|
|
VEC_safe_push (ce_s, heap, *results, &rhsc);
|
| 3909 |
|
|
}
|
| 3910 |
|
|
|
| 3911 |
|
|
/* For non-IPA mode, generate constraints necessary for a call to a
|
| 3912 |
|
|
pure function in statement STMT. */
|
| 3913 |
|
|
|
| 3914 |
|
|
static void
|
| 3915 |
|
|
handle_pure_call (gimple stmt, VEC(ce_s, heap) **results)
|
| 3916 |
|
|
{
|
| 3917 |
|
|
struct constraint_expr rhsc;
|
| 3918 |
|
|
unsigned i;
|
| 3919 |
|
|
varinfo_t uses = NULL;
|
| 3920 |
|
|
|
| 3921 |
|
|
/* Memory reached from pointer arguments is call-used. */
|
| 3922 |
|
|
for (i = 0; i < gimple_call_num_args (stmt); ++i)
|
| 3923 |
|
|
{
|
| 3924 |
|
|
tree arg = gimple_call_arg (stmt, i);
|
| 3925 |
|
|
if (!uses)
|
| 3926 |
|
|
{
|
| 3927 |
|
|
uses = get_call_use_vi (stmt);
|
| 3928 |
|
|
make_transitive_closure_constraints (uses);
|
| 3929 |
|
|
}
|
| 3930 |
|
|
make_constraint_to (uses->id, arg);
|
| 3931 |
|
|
}
|
| 3932 |
|
|
|
| 3933 |
|
|
/* The static chain is used as well. */
|
| 3934 |
|
|
if (gimple_call_chain (stmt))
|
| 3935 |
|
|
{
|
| 3936 |
|
|
if (!uses)
|
| 3937 |
|
|
{
|
| 3938 |
|
|
uses = get_call_use_vi (stmt);
|
| 3939 |
|
|
make_transitive_closure_constraints (uses);
|
| 3940 |
|
|
}
|
| 3941 |
|
|
make_constraint_to (uses->id, gimple_call_chain (stmt));
|
| 3942 |
|
|
}
|
| 3943 |
|
|
|
| 3944 |
|
|
/* Pure functions may return call-used and nonlocal memory. */
|
| 3945 |
|
|
if (uses)
|
| 3946 |
|
|
{
|
| 3947 |
|
|
rhsc.var = uses->id;
|
| 3948 |
|
|
rhsc.offset = 0;
|
| 3949 |
|
|
rhsc.type = SCALAR;
|
| 3950 |
|
|
VEC_safe_push (ce_s, heap, *results, &rhsc);
|
| 3951 |
|
|
}
|
| 3952 |
|
|
rhsc.var = nonlocal_id;
|
| 3953 |
|
|
rhsc.offset = 0;
|
| 3954 |
|
|
rhsc.type = SCALAR;
|
| 3955 |
|
|
VEC_safe_push (ce_s, heap, *results, &rhsc);
|
| 3956 |
|
|
}
|
| 3957 |
|
|
|
| 3958 |
|
|
|
| 3959 |
|
|
/* Return the varinfo for the callee of CALL. */
|
| 3960 |
|
|
|
| 3961 |
|
|
static varinfo_t
|
| 3962 |
|
|
get_fi_for_callee (gimple call)
|
| 3963 |
|
|
{
|
| 3964 |
|
|
tree decl, fn = gimple_call_fn (call);
|
| 3965 |
|
|
|
| 3966 |
|
|
if (fn && TREE_CODE (fn) == OBJ_TYPE_REF)
|
| 3967 |
|
|
fn = OBJ_TYPE_REF_EXPR (fn);
|
| 3968 |
|
|
|
| 3969 |
|
|
/* If we can directly resolve the function being called, do so.
|
| 3970 |
|
|
Otherwise, it must be some sort of indirect expression that
|
| 3971 |
|
|
we should still be able to handle. */
|
| 3972 |
|
|
decl = gimple_call_addr_fndecl (fn);
|
| 3973 |
|
|
if (decl)
|
| 3974 |
|
|
return get_vi_for_tree (decl);
|
| 3975 |
|
|
|
| 3976 |
|
|
/* If the function is anything other than a SSA name pointer we have no
|
| 3977 |
|
|
clue and should be getting ANYFN (well, ANYTHING for now). */
|
| 3978 |
|
|
if (!fn || TREE_CODE (fn) != SSA_NAME)
|
| 3979 |
|
|
return get_varinfo (anything_id);
|
| 3980 |
|
|
|
| 3981 |
|
|
if ((TREE_CODE (SSA_NAME_VAR (fn)) == PARM_DECL
|
| 3982 |
|
|
|| TREE_CODE (SSA_NAME_VAR (fn)) == RESULT_DECL)
|
| 3983 |
|
|
&& SSA_NAME_IS_DEFAULT_DEF (fn))
|
| 3984 |
|
|
fn = SSA_NAME_VAR (fn);
|
| 3985 |
|
|
|
| 3986 |
|
|
return get_vi_for_tree (fn);
|
| 3987 |
|
|
}
|
| 3988 |
|
|
|
| 3989 |
|
|
/* Create constraints for the builtin call T. Return true if the call
|
| 3990 |
|
|
was handled, otherwise false. */
|
| 3991 |
|
|
|
| 3992 |
|
|
static bool
|
| 3993 |
|
|
find_func_aliases_for_builtin_call (gimple t)
|
| 3994 |
|
|
{
|
| 3995 |
|
|
tree fndecl = gimple_call_fndecl (t);
|
| 3996 |
|
|
VEC(ce_s, heap) *lhsc = NULL;
|
| 3997 |
|
|
VEC(ce_s, heap) *rhsc = NULL;
|
| 3998 |
|
|
varinfo_t fi;
|
| 3999 |
|
|
|
| 4000 |
|
|
if (fndecl != NULL_TREE
|
| 4001 |
|
|
&& DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
|
| 4002 |
|
|
/* ??? All builtins that are handled here need to be handled
|
| 4003 |
|
|
in the alias-oracle query functions explicitly! */
|
| 4004 |
|
|
switch (DECL_FUNCTION_CODE (fndecl))
|
| 4005 |
|
|
{
|
| 4006 |
|
|
/* All the following functions return a pointer to the same object
|
| 4007 |
|
|
as their first argument points to. The functions do not add
|
| 4008 |
|
|
to the ESCAPED solution. The functions make the first argument
|
| 4009 |
|
|
pointed to memory point to what the second argument pointed to
|
| 4010 |
|
|
memory points to. */
|
| 4011 |
|
|
case BUILT_IN_STRCPY:
|
| 4012 |
|
|
case BUILT_IN_STRNCPY:
|
| 4013 |
|
|
case BUILT_IN_BCOPY:
|
| 4014 |
|
|
case BUILT_IN_MEMCPY:
|
| 4015 |
|
|
case BUILT_IN_MEMMOVE:
|
| 4016 |
|
|
case BUILT_IN_MEMPCPY:
|
| 4017 |
|
|
case BUILT_IN_STPCPY:
|
| 4018 |
|
|
case BUILT_IN_STPNCPY:
|
| 4019 |
|
|
case BUILT_IN_STRCAT:
|
| 4020 |
|
|
case BUILT_IN_STRNCAT:
|
| 4021 |
|
|
case BUILT_IN_STRCPY_CHK:
|
| 4022 |
|
|
case BUILT_IN_STRNCPY_CHK:
|
| 4023 |
|
|
case BUILT_IN_MEMCPY_CHK:
|
| 4024 |
|
|
case BUILT_IN_MEMMOVE_CHK:
|
| 4025 |
|
|
case BUILT_IN_MEMPCPY_CHK:
|
| 4026 |
|
|
case BUILT_IN_STPCPY_CHK:
|
| 4027 |
|
|
case BUILT_IN_STPNCPY_CHK:
|
| 4028 |
|
|
case BUILT_IN_STRCAT_CHK:
|
| 4029 |
|
|
case BUILT_IN_STRNCAT_CHK:
|
| 4030 |
|
|
case BUILT_IN_TM_MEMCPY:
|
| 4031 |
|
|
case BUILT_IN_TM_MEMMOVE:
|
| 4032 |
|
|
{
|
| 4033 |
|
|
tree res = gimple_call_lhs (t);
|
| 4034 |
|
|
tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
|
| 4035 |
|
|
== BUILT_IN_BCOPY ? 1 : 0));
|
| 4036 |
|
|
tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
|
| 4037 |
|
|
== BUILT_IN_BCOPY ? 0 : 1));
|
| 4038 |
|
|
if (res != NULL_TREE)
|
| 4039 |
|
|
{
|
| 4040 |
|
|
get_constraint_for (res, &lhsc);
|
| 4041 |
|
|
if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY
|
| 4042 |
|
|
|| DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY
|
| 4043 |
|
|
|| DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY
|
| 4044 |
|
|
|| DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY_CHK
|
| 4045 |
|
|
|| DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY_CHK
|
| 4046 |
|
|
|| DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY_CHK)
|
| 4047 |
|
|
get_constraint_for_ptr_offset (dest, NULL_TREE, &rhsc);
|
| 4048 |
|
|
else
|
| 4049 |
|
|
get_constraint_for (dest, &rhsc);
|
| 4050 |
|
|
process_all_all_constraints (lhsc, rhsc);
|
| 4051 |
|
|
VEC_free (ce_s, heap, lhsc);
|
| 4052 |
|
|
VEC_free (ce_s, heap, rhsc);
|
| 4053 |
|
|
}
|
| 4054 |
|
|
get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
|
| 4055 |
|
|
get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
|
| 4056 |
|
|
do_deref (&lhsc);
|
| 4057 |
|
|
do_deref (&rhsc);
|
| 4058 |
|
|
process_all_all_constraints (lhsc, rhsc);
|
| 4059 |
|
|
VEC_free (ce_s, heap, lhsc);
|
| 4060 |
|
|
VEC_free (ce_s, heap, rhsc);
|
| 4061 |
|
|
return true;
|
| 4062 |
|
|
}
|
| 4063 |
|
|
case BUILT_IN_MEMSET:
|
| 4064 |
|
|
case BUILT_IN_MEMSET_CHK:
|
| 4065 |
|
|
case BUILT_IN_TM_MEMSET:
|
| 4066 |
|
|
{
|
| 4067 |
|
|
tree res = gimple_call_lhs (t);
|
| 4068 |
|
|
tree dest = gimple_call_arg (t, 0);
|
| 4069 |
|
|
unsigned i;
|
| 4070 |
|
|
ce_s *lhsp;
|
| 4071 |
|
|
struct constraint_expr ac;
|
| 4072 |
|
|
if (res != NULL_TREE)
|
| 4073 |
|
|
{
|
| 4074 |
|
|
get_constraint_for (res, &lhsc);
|
| 4075 |
|
|
get_constraint_for (dest, &rhsc);
|
| 4076 |
|
|
process_all_all_constraints (lhsc, rhsc);
|
| 4077 |
|
|
VEC_free (ce_s, heap, lhsc);
|
| 4078 |
|
|
VEC_free (ce_s, heap, rhsc);
|
| 4079 |
|
|
}
|
| 4080 |
|
|
get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
|
| 4081 |
|
|
do_deref (&lhsc);
|
| 4082 |
|
|
if (flag_delete_null_pointer_checks
|
| 4083 |
|
|
&& integer_zerop (gimple_call_arg (t, 1)))
|
| 4084 |
|
|
{
|
| 4085 |
|
|
ac.type = ADDRESSOF;
|
| 4086 |
|
|
ac.var = nothing_id;
|
| 4087 |
|
|
}
|
| 4088 |
|
|
else
|
| 4089 |
|
|
{
|
| 4090 |
|
|
ac.type = SCALAR;
|
| 4091 |
|
|
ac.var = integer_id;
|
| 4092 |
|
|
}
|
| 4093 |
|
|
ac.offset = 0;
|
| 4094 |
|
|
FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
|
| 4095 |
|
|
process_constraint (new_constraint (*lhsp, ac));
|
| 4096 |
|
|
VEC_free (ce_s, heap, lhsc);
|
| 4097 |
|
|
return true;
|
| 4098 |
|
|
}
|
| 4099 |
|
|
case BUILT_IN_ASSUME_ALIGNED:
|
| 4100 |
|
|
{
|
| 4101 |
|
|
tree res = gimple_call_lhs (t);
|
| 4102 |
|
|
tree dest = gimple_call_arg (t, 0);
|
| 4103 |
|
|
if (res != NULL_TREE)
|
| 4104 |
|
|
{
|
| 4105 |
|
|
get_constraint_for (res, &lhsc);
|
| 4106 |
|
|
get_constraint_for (dest, &rhsc);
|
| 4107 |
|
|
process_all_all_constraints (lhsc, rhsc);
|
| 4108 |
|
|
VEC_free (ce_s, heap, lhsc);
|
| 4109 |
|
|
VEC_free (ce_s, heap, rhsc);
|
| 4110 |
|
|
}
|
| 4111 |
|
|
return true;
|
| 4112 |
|
|
}
|
| 4113 |
|
|
/* All the following functions do not return pointers, do not
|
| 4114 |
|
|
modify the points-to sets of memory reachable from their
|
| 4115 |
|
|
arguments and do not add to the ESCAPED solution. */
|
| 4116 |
|
|
case BUILT_IN_SINCOS:
|
| 4117 |
|
|
case BUILT_IN_SINCOSF:
|
| 4118 |
|
|
case BUILT_IN_SINCOSL:
|
| 4119 |
|
|
case BUILT_IN_FREXP:
|
| 4120 |
|
|
case BUILT_IN_FREXPF:
|
| 4121 |
|
|
case BUILT_IN_FREXPL:
|
| 4122 |
|
|
case BUILT_IN_GAMMA_R:
|
| 4123 |
|
|
case BUILT_IN_GAMMAF_R:
|
| 4124 |
|
|
case BUILT_IN_GAMMAL_R:
|
| 4125 |
|
|
case BUILT_IN_LGAMMA_R:
|
| 4126 |
|
|
case BUILT_IN_LGAMMAF_R:
|
| 4127 |
|
|
case BUILT_IN_LGAMMAL_R:
|
| 4128 |
|
|
case BUILT_IN_MODF:
|
| 4129 |
|
|
case BUILT_IN_MODFF:
|
| 4130 |
|
|
case BUILT_IN_MODFL:
|
| 4131 |
|
|
case BUILT_IN_REMQUO:
|
| 4132 |
|
|
case BUILT_IN_REMQUOF:
|
| 4133 |
|
|
case BUILT_IN_REMQUOL:
|
| 4134 |
|
|
case BUILT_IN_FREE:
|
| 4135 |
|
|
return true;
|
| 4136 |
|
|
case BUILT_IN_STRDUP:
|
| 4137 |
|
|
case BUILT_IN_STRNDUP:
|
| 4138 |
|
|
if (gimple_call_lhs (t))
|
| 4139 |
|
|
{
|
| 4140 |
|
|
handle_lhs_call (t, gimple_call_lhs (t), gimple_call_flags (t),
|
| 4141 |
|
|
NULL, fndecl);
|
| 4142 |
|
|
get_constraint_for_ptr_offset (gimple_call_lhs (t),
|
| 4143 |
|
|
NULL_TREE, &lhsc);
|
| 4144 |
|
|
get_constraint_for_ptr_offset (gimple_call_arg (t, 0),
|
| 4145 |
|
|
NULL_TREE, &rhsc);
|
| 4146 |
|
|
do_deref (&lhsc);
|
| 4147 |
|
|
do_deref (&rhsc);
|
| 4148 |
|
|
process_all_all_constraints (lhsc, rhsc);
|
| 4149 |
|
|
VEC_free (ce_s, heap, lhsc);
|
| 4150 |
|
|
VEC_free (ce_s, heap, rhsc);
|
| 4151 |
|
|
return true;
|
| 4152 |
|
|
}
|
| 4153 |
|
|
break;
|
| 4154 |
|
|
/* Trampolines are special - they set up passing the static
|
| 4155 |
|
|
frame. */
|
| 4156 |
|
|
case BUILT_IN_INIT_TRAMPOLINE:
|
| 4157 |
|
|
{
|
| 4158 |
|
|
tree tramp = gimple_call_arg (t, 0);
|
| 4159 |
|
|
tree nfunc = gimple_call_arg (t, 1);
|
| 4160 |
|
|
tree frame = gimple_call_arg (t, 2);
|
| 4161 |
|
|
unsigned i;
|
| 4162 |
|
|
struct constraint_expr lhs, *rhsp;
|
| 4163 |
|
|
if (in_ipa_mode)
|
| 4164 |
|
|
{
|
| 4165 |
|
|
varinfo_t nfi = NULL;
|
| 4166 |
|
|
gcc_assert (TREE_CODE (nfunc) == ADDR_EXPR);
|
| 4167 |
|
|
nfi = lookup_vi_for_tree (TREE_OPERAND (nfunc, 0));
|
| 4168 |
|
|
if (nfi)
|
| 4169 |
|
|
{
|
| 4170 |
|
|
lhs = get_function_part_constraint (nfi, fi_static_chain);
|
| 4171 |
|
|
get_constraint_for (frame, &rhsc);
|
| 4172 |
|
|
FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
|
| 4173 |
|
|
process_constraint (new_constraint (lhs, *rhsp));
|
| 4174 |
|
|
VEC_free (ce_s, heap, rhsc);
|
| 4175 |
|
|
|
| 4176 |
|
|
/* Make the frame point to the function for
|
| 4177 |
|
|
the trampoline adjustment call. */
|
| 4178 |
|
|
get_constraint_for (tramp, &lhsc);
|
| 4179 |
|
|
do_deref (&lhsc);
|
| 4180 |
|
|
get_constraint_for (nfunc, &rhsc);
|
| 4181 |
|
|
process_all_all_constraints (lhsc, rhsc);
|
| 4182 |
|
|
VEC_free (ce_s, heap, rhsc);
|
| 4183 |
|
|
VEC_free (ce_s, heap, lhsc);
|
| 4184 |
|
|
|
| 4185 |
|
|
return true;
|
| 4186 |
|
|
}
|
| 4187 |
|
|
}
|
| 4188 |
|
|
/* Else fallthru to generic handling which will let
|
| 4189 |
|
|
the frame escape. */
|
| 4190 |
|
|
break;
|
| 4191 |
|
|
}
|
| 4192 |
|
|
case BUILT_IN_ADJUST_TRAMPOLINE:
|
| 4193 |
|
|
{
|
| 4194 |
|
|
tree tramp = gimple_call_arg (t, 0);
|
| 4195 |
|
|
tree res = gimple_call_lhs (t);
|
| 4196 |
|
|
if (in_ipa_mode && res)
|
| 4197 |
|
|
{
|
| 4198 |
|
|
get_constraint_for (res, &lhsc);
|
| 4199 |
|
|
get_constraint_for (tramp, &rhsc);
|
| 4200 |
|
|
do_deref (&rhsc);
|
| 4201 |
|
|
process_all_all_constraints (lhsc, rhsc);
|
| 4202 |
|
|
VEC_free (ce_s, heap, rhsc);
|
| 4203 |
|
|
VEC_free (ce_s, heap, lhsc);
|
| 4204 |
|
|
}
|
| 4205 |
|
|
return true;
|
| 4206 |
|
|
}
|
| 4207 |
|
|
CASE_BUILT_IN_TM_STORE (1):
|
| 4208 |
|
|
CASE_BUILT_IN_TM_STORE (2):
|
| 4209 |
|
|
CASE_BUILT_IN_TM_STORE (4):
|
| 4210 |
|
|
CASE_BUILT_IN_TM_STORE (8):
|
| 4211 |
|
|
CASE_BUILT_IN_TM_STORE (FLOAT):
|
| 4212 |
|
|
CASE_BUILT_IN_TM_STORE (DOUBLE):
|
| 4213 |
|
|
CASE_BUILT_IN_TM_STORE (LDOUBLE):
|
| 4214 |
|
|
CASE_BUILT_IN_TM_STORE (M64):
|
| 4215 |
|
|
CASE_BUILT_IN_TM_STORE (M128):
|
| 4216 |
|
|
CASE_BUILT_IN_TM_STORE (M256):
|
| 4217 |
|
|
{
|
| 4218 |
|
|
tree addr = gimple_call_arg (t, 0);
|
| 4219 |
|
|
tree src = gimple_call_arg (t, 1);
|
| 4220 |
|
|
|
| 4221 |
|
|
get_constraint_for (addr, &lhsc);
|
| 4222 |
|
|
do_deref (&lhsc);
|
| 4223 |
|
|
get_constraint_for (src, &rhsc);
|
| 4224 |
|
|
process_all_all_constraints (lhsc, rhsc);
|
| 4225 |
|
|
VEC_free (ce_s, heap, lhsc);
|
| 4226 |
|
|
VEC_free (ce_s, heap, rhsc);
|
| 4227 |
|
|
return true;
|
| 4228 |
|
|
}
|
| 4229 |
|
|
CASE_BUILT_IN_TM_LOAD (1):
|
| 4230 |
|
|
CASE_BUILT_IN_TM_LOAD (2):
|
| 4231 |
|
|
CASE_BUILT_IN_TM_LOAD (4):
|
| 4232 |
|
|
CASE_BUILT_IN_TM_LOAD (8):
|
| 4233 |
|
|
CASE_BUILT_IN_TM_LOAD (FLOAT):
|
| 4234 |
|
|
CASE_BUILT_IN_TM_LOAD (DOUBLE):
|
| 4235 |
|
|
CASE_BUILT_IN_TM_LOAD (LDOUBLE):
|
| 4236 |
|
|
CASE_BUILT_IN_TM_LOAD (M64):
|
| 4237 |
|
|
CASE_BUILT_IN_TM_LOAD (M128):
|
| 4238 |
|
|
CASE_BUILT_IN_TM_LOAD (M256):
|
| 4239 |
|
|
{
|
| 4240 |
|
|
tree dest = gimple_call_lhs (t);
|
| 4241 |
|
|
tree addr = gimple_call_arg (t, 0);
|
| 4242 |
|
|
|
| 4243 |
|
|
get_constraint_for (dest, &lhsc);
|
| 4244 |
|
|
get_constraint_for (addr, &rhsc);
|
| 4245 |
|
|
do_deref (&rhsc);
|
| 4246 |
|
|
process_all_all_constraints (lhsc, rhsc);
|
| 4247 |
|
|
VEC_free (ce_s, heap, lhsc);
|
| 4248 |
|
|
VEC_free (ce_s, heap, rhsc);
|
| 4249 |
|
|
return true;
|
| 4250 |
|
|
}
|
| 4251 |
|
|
/* Variadic argument handling needs to be handled in IPA
|
| 4252 |
|
|
mode as well. */
|
| 4253 |
|
|
case BUILT_IN_VA_START:
|
| 4254 |
|
|
{
|
| 4255 |
|
|
tree valist = gimple_call_arg (t, 0);
|
| 4256 |
|
|
struct constraint_expr rhs, *lhsp;
|
| 4257 |
|
|
unsigned i;
|
| 4258 |
|
|
get_constraint_for (valist, &lhsc);
|
| 4259 |
|
|
do_deref (&lhsc);
|
| 4260 |
|
|
/* The va_list gets access to pointers in variadic
|
| 4261 |
|
|
arguments. Which we know in the case of IPA analysis
|
| 4262 |
|
|
and otherwise are just all nonlocal variables. */
|
| 4263 |
|
|
if (in_ipa_mode)
|
| 4264 |
|
|
{
|
| 4265 |
|
|
fi = lookup_vi_for_tree (cfun->decl);
|
| 4266 |
|
|
rhs = get_function_part_constraint (fi, ~0);
|
| 4267 |
|
|
rhs.type = ADDRESSOF;
|
| 4268 |
|
|
}
|
| 4269 |
|
|
else
|
| 4270 |
|
|
{
|
| 4271 |
|
|
rhs.var = nonlocal_id;
|
| 4272 |
|
|
rhs.type = ADDRESSOF;
|
| 4273 |
|
|
rhs.offset = 0;
|
| 4274 |
|
|
}
|
| 4275 |
|
|
FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
|
| 4276 |
|
|
process_constraint (new_constraint (*lhsp, rhs));
|
| 4277 |
|
|
VEC_free (ce_s, heap, lhsc);
|
| 4278 |
|
|
/* va_list is clobbered. */
|
| 4279 |
|
|
make_constraint_to (get_call_clobber_vi (t)->id, valist);
|
| 4280 |
|
|
return true;
|
| 4281 |
|
|
}
|
| 4282 |
|
|
/* va_end doesn't have any effect that matters. */
|
| 4283 |
|
|
case BUILT_IN_VA_END:
|
| 4284 |
|
|
return true;
|
| 4285 |
|
|
/* Alternate return. Simply give up for now. */
|
| 4286 |
|
|
case BUILT_IN_RETURN:
|
| 4287 |
|
|
{
|
| 4288 |
|
|
fi = NULL;
|
| 4289 |
|
|
if (!in_ipa_mode
|
| 4290 |
|
|
|| !(fi = get_vi_for_tree (cfun->decl)))
|
| 4291 |
|
|
make_constraint_from (get_varinfo (escaped_id), anything_id);
|
| 4292 |
|
|
else if (in_ipa_mode
|
| 4293 |
|
|
&& fi != NULL)
|
| 4294 |
|
|
{
|
| 4295 |
|
|
struct constraint_expr lhs, rhs;
|
| 4296 |
|
|
lhs = get_function_part_constraint (fi, fi_result);
|
| 4297 |
|
|
rhs.var = anything_id;
|
| 4298 |
|
|
rhs.offset = 0;
|
| 4299 |
|
|
rhs.type = SCALAR;
|
| 4300 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
| 4301 |
|
|
}
|
| 4302 |
|
|
return true;
|
| 4303 |
|
|
}
|
| 4304 |
|
|
/* printf-style functions may have hooks to set pointers to
|
| 4305 |
|
|
point to somewhere into the generated string. Leave them
|
| 4306 |
|
|
for a later excercise... */
|
| 4307 |
|
|
default:
|
| 4308 |
|
|
/* Fallthru to general call handling. */;
|
| 4309 |
|
|
}
|
| 4310 |
|
|
|
| 4311 |
|
|
return false;
|
| 4312 |
|
|
}
|
| 4313 |
|
|
|
| 4314 |
|
|
/* Create constraints for the call T. */
|
| 4315 |
|
|
|
| 4316 |
|
|
static void
|
| 4317 |
|
|
find_func_aliases_for_call (gimple t)
|
| 4318 |
|
|
{
|
| 4319 |
|
|
tree fndecl = gimple_call_fndecl (t);
|
| 4320 |
|
|
VEC(ce_s, heap) *lhsc = NULL;
|
| 4321 |
|
|
VEC(ce_s, heap) *rhsc = NULL;
|
| 4322 |
|
|
varinfo_t fi;
|
| 4323 |
|
|
|
| 4324 |
|
|
if (fndecl != NULL_TREE
|
| 4325 |
|
|
&& DECL_BUILT_IN (fndecl)
|
| 4326 |
|
|
&& find_func_aliases_for_builtin_call (t))
|
| 4327 |
|
|
return;
|
| 4328 |
|
|
|
| 4329 |
|
|
fi = get_fi_for_callee (t);
|
| 4330 |
|
|
if (!in_ipa_mode
|
| 4331 |
|
|
|| (fndecl && !fi->is_fn_info))
|
| 4332 |
|
|
{
|
| 4333 |
|
|
VEC(ce_s, heap) *rhsc = NULL;
|
| 4334 |
|
|
int flags = gimple_call_flags (t);
|
| 4335 |
|
|
|
| 4336 |
|
|
/* Const functions can return their arguments and addresses
|
| 4337 |
|
|
of global memory but not of escaped memory. */
|
| 4338 |
|
|
if (flags & (ECF_CONST|ECF_NOVOPS))
|
| 4339 |
|
|
{
|
| 4340 |
|
|
if (gimple_call_lhs (t))
|
| 4341 |
|
|
handle_const_call (t, &rhsc);
|
| 4342 |
|
|
}
|
| 4343 |
|
|
/* Pure functions can return addresses in and of memory
|
| 4344 |
|
|
reachable from their arguments, but they are not an escape
|
| 4345 |
|
|
point for reachable memory of their arguments. */
|
| 4346 |
|
|
else if (flags & (ECF_PURE|ECF_LOOPING_CONST_OR_PURE))
|
| 4347 |
|
|
handle_pure_call (t, &rhsc);
|
| 4348 |
|
|
else
|
| 4349 |
|
|
handle_rhs_call (t, &rhsc);
|
| 4350 |
|
|
if (gimple_call_lhs (t))
|
| 4351 |
|
|
handle_lhs_call (t, gimple_call_lhs (t), flags, rhsc, fndecl);
|
| 4352 |
|
|
VEC_free (ce_s, heap, rhsc);
|
| 4353 |
|
|
}
|
| 4354 |
|
|
else
|
| 4355 |
|
|
{
|
| 4356 |
|
|
tree lhsop;
|
| 4357 |
|
|
unsigned j;
|
| 4358 |
|
|
|
| 4359 |
|
|
/* Assign all the passed arguments to the appropriate incoming
|
| 4360 |
|
|
parameters of the function. */
|
| 4361 |
|
|
for (j = 0; j < gimple_call_num_args (t); j++)
|
| 4362 |
|
|
{
|
| 4363 |
|
|
struct constraint_expr lhs ;
|
| 4364 |
|
|
struct constraint_expr *rhsp;
|
| 4365 |
|
|
tree arg = gimple_call_arg (t, j);
|
| 4366 |
|
|
|
| 4367 |
|
|
get_constraint_for_rhs (arg, &rhsc);
|
| 4368 |
|
|
lhs = get_function_part_constraint (fi, fi_parm_base + j);
|
| 4369 |
|
|
while (VEC_length (ce_s, rhsc) != 0)
|
| 4370 |
|
|
{
|
| 4371 |
|
|
rhsp = VEC_last (ce_s, rhsc);
|
| 4372 |
|
|
process_constraint (new_constraint (lhs, *rhsp));
|
| 4373 |
|
|
VEC_pop (ce_s, rhsc);
|
| 4374 |
|
|
}
|
| 4375 |
|
|
}
|
| 4376 |
|
|
|
| 4377 |
|
|
/* If we are returning a value, assign it to the result. */
|
| 4378 |
|
|
lhsop = gimple_call_lhs (t);
|
| 4379 |
|
|
if (lhsop)
|
| 4380 |
|
|
{
|
| 4381 |
|
|
struct constraint_expr rhs;
|
| 4382 |
|
|
struct constraint_expr *lhsp;
|
| 4383 |
|
|
|
| 4384 |
|
|
get_constraint_for (lhsop, &lhsc);
|
| 4385 |
|
|
rhs = get_function_part_constraint (fi, fi_result);
|
| 4386 |
|
|
if (fndecl
|
| 4387 |
|
|
&& DECL_RESULT (fndecl)
|
| 4388 |
|
|
&& DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
|
| 4389 |
|
|
{
|
| 4390 |
|
|
VEC(ce_s, heap) *tem = NULL;
|
| 4391 |
|
|
VEC_safe_push (ce_s, heap, tem, &rhs);
|
| 4392 |
|
|
do_deref (&tem);
|
| 4393 |
|
|
rhs = *VEC_index (ce_s, tem, 0);
|
| 4394 |
|
|
VEC_free(ce_s, heap, tem);
|
| 4395 |
|
|
}
|
| 4396 |
|
|
FOR_EACH_VEC_ELT (ce_s, lhsc, j, lhsp)
|
| 4397 |
|
|
process_constraint (new_constraint (*lhsp, rhs));
|
| 4398 |
|
|
}
|
| 4399 |
|
|
|
| 4400 |
|
|
/* If we pass the result decl by reference, honor that. */
|
| 4401 |
|
|
if (lhsop
|
| 4402 |
|
|
&& fndecl
|
| 4403 |
|
|
&& DECL_RESULT (fndecl)
|
| 4404 |
|
|
&& DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
|
| 4405 |
|
|
{
|
| 4406 |
|
|
struct constraint_expr lhs;
|
| 4407 |
|
|
struct constraint_expr *rhsp;
|
| 4408 |
|
|
|
| 4409 |
|
|
get_constraint_for_address_of (lhsop, &rhsc);
|
| 4410 |
|
|
lhs = get_function_part_constraint (fi, fi_result);
|
| 4411 |
|
|
FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
|
| 4412 |
|
|
process_constraint (new_constraint (lhs, *rhsp));
|
| 4413 |
|
|
VEC_free (ce_s, heap, rhsc);
|
| 4414 |
|
|
}
|
| 4415 |
|
|
|
| 4416 |
|
|
/* If we use a static chain, pass it along. */
|
| 4417 |
|
|
if (gimple_call_chain (t))
|
| 4418 |
|
|
{
|
| 4419 |
|
|
struct constraint_expr lhs;
|
| 4420 |
|
|
struct constraint_expr *rhsp;
|
| 4421 |
|
|
|
| 4422 |
|
|
get_constraint_for (gimple_call_chain (t), &rhsc);
|
| 4423 |
|
|
lhs = get_function_part_constraint (fi, fi_static_chain);
|
| 4424 |
|
|
FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
|
| 4425 |
|
|
process_constraint (new_constraint (lhs, *rhsp));
|
| 4426 |
|
|
}
|
| 4427 |
|
|
}
|
| 4428 |
|
|
}
|
| 4429 |
|
|
|
| 4430 |
|
|
/* Walk statement T setting up aliasing constraints according to the
|
| 4431 |
|
|
references found in T. This function is the main part of the
|
| 4432 |
|
|
constraint builder. AI points to auxiliary alias information used
|
| 4433 |
|
|
when building alias sets and computing alias grouping heuristics. */
|
| 4434 |
|
|
|
| 4435 |
|
|
static void
|
| 4436 |
|
|
find_func_aliases (gimple origt)
|
| 4437 |
|
|
{
|
| 4438 |
|
|
gimple t = origt;
|
| 4439 |
|
|
VEC(ce_s, heap) *lhsc = NULL;
|
| 4440 |
|
|
VEC(ce_s, heap) *rhsc = NULL;
|
| 4441 |
|
|
struct constraint_expr *c;
|
| 4442 |
|
|
varinfo_t fi;
|
| 4443 |
|
|
|
| 4444 |
|
|
/* Now build constraints expressions. */
|
| 4445 |
|
|
if (gimple_code (t) == GIMPLE_PHI)
|
| 4446 |
|
|
{
|
| 4447 |
|
|
size_t i;
|
| 4448 |
|
|
unsigned int j;
|
| 4449 |
|
|
|
| 4450 |
|
|
/* For a phi node, assign all the arguments to
|
| 4451 |
|
|
the result. */
|
| 4452 |
|
|
get_constraint_for (gimple_phi_result (t), &lhsc);
|
| 4453 |
|
|
for (i = 0; i < gimple_phi_num_args (t); i++)
|
| 4454 |
|
|
{
|
| 4455 |
|
|
tree strippedrhs = PHI_ARG_DEF (t, i);
|
| 4456 |
|
|
|
| 4457 |
|
|
STRIP_NOPS (strippedrhs);
|
| 4458 |
|
|
get_constraint_for_rhs (gimple_phi_arg_def (t, i), &rhsc);
|
| 4459 |
|
|
|
| 4460 |
|
|
FOR_EACH_VEC_ELT (ce_s, lhsc, j, c)
|
| 4461 |
|
|
{
|
| 4462 |
|
|
struct constraint_expr *c2;
|
| 4463 |
|
|
while (VEC_length (ce_s, rhsc) > 0)
|
| 4464 |
|
|
{
|
| 4465 |
|
|
c2 = VEC_last (ce_s, rhsc);
|
| 4466 |
|
|
process_constraint (new_constraint (*c, *c2));
|
| 4467 |
|
|
VEC_pop (ce_s, rhsc);
|
| 4468 |
|
|
}
|
| 4469 |
|
|
}
|
| 4470 |
|
|
}
|
| 4471 |
|
|
}
|
| 4472 |
|
|
/* In IPA mode, we need to generate constraints to pass call
|
| 4473 |
|
|
arguments through their calls. There are two cases,
|
| 4474 |
|
|
either a GIMPLE_CALL returning a value, or just a plain
|
| 4475 |
|
|
GIMPLE_CALL when we are not.
|
| 4476 |
|
|
|
| 4477 |
|
|
In non-ipa mode, we need to generate constraints for each
|
| 4478 |
|
|
pointer passed by address. */
|
| 4479 |
|
|
else if (is_gimple_call (t))
|
| 4480 |
|
|
find_func_aliases_for_call (t);
|
| 4481 |
|
|
|
| 4482 |
|
|
/* Otherwise, just a regular assignment statement. Only care about
|
| 4483 |
|
|
operations with pointer result, others are dealt with as escape
|
| 4484 |
|
|
points if they have pointer operands. */
|
| 4485 |
|
|
else if (is_gimple_assign (t))
|
| 4486 |
|
|
{
|
| 4487 |
|
|
/* Otherwise, just a regular assignment statement. */
|
| 4488 |
|
|
tree lhsop = gimple_assign_lhs (t);
|
| 4489 |
|
|
tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL;
|
| 4490 |
|
|
|
| 4491 |
|
|
if (rhsop && TREE_CLOBBER_P (rhsop))
|
| 4492 |
|
|
/* Ignore clobbers, they don't actually store anything into
|
| 4493 |
|
|
the LHS. */
|
| 4494 |
|
|
;
|
| 4495 |
|
|
else if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop)))
|
| 4496 |
|
|
do_structure_copy (lhsop, rhsop);
|
| 4497 |
|
|
else
|
| 4498 |
|
|
{
|
| 4499 |
|
|
enum tree_code code = gimple_assign_rhs_code (t);
|
| 4500 |
|
|
|
| 4501 |
|
|
get_constraint_for (lhsop, &lhsc);
|
| 4502 |
|
|
|
| 4503 |
|
|
if (code == POINTER_PLUS_EXPR)
|
| 4504 |
|
|
get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
|
| 4505 |
|
|
gimple_assign_rhs2 (t), &rhsc);
|
| 4506 |
|
|
else if (code == BIT_AND_EXPR
|
| 4507 |
|
|
&& TREE_CODE (gimple_assign_rhs2 (t)) == INTEGER_CST)
|
| 4508 |
|
|
{
|
| 4509 |
|
|
/* Aligning a pointer via a BIT_AND_EXPR is offsetting
|
| 4510 |
|
|
the pointer. Handle it by offsetting it by UNKNOWN. */
|
| 4511 |
|
|
get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
|
| 4512 |
|
|
NULL_TREE, &rhsc);
|
| 4513 |
|
|
}
|
| 4514 |
|
|
else if ((CONVERT_EXPR_CODE_P (code)
|
| 4515 |
|
|
&& !(POINTER_TYPE_P (gimple_expr_type (t))
|
| 4516 |
|
|
&& !POINTER_TYPE_P (TREE_TYPE (rhsop))))
|
| 4517 |
|
|
|| gimple_assign_single_p (t))
|
| 4518 |
|
|
get_constraint_for_rhs (rhsop, &rhsc);
|
| 4519 |
|
|
else if (truth_value_p (code))
|
| 4520 |
|
|
/* Truth value results are not pointer (parts). Or at least
|
| 4521 |
|
|
very very unreasonable obfuscation of a part. */
|
| 4522 |
|
|
;
|
| 4523 |
|
|
else
|
| 4524 |
|
|
{
|
| 4525 |
|
|
/* All other operations are merges. */
|
| 4526 |
|
|
VEC (ce_s, heap) *tmp = NULL;
|
| 4527 |
|
|
struct constraint_expr *rhsp;
|
| 4528 |
|
|
unsigned i, j;
|
| 4529 |
|
|
get_constraint_for_rhs (gimple_assign_rhs1 (t), &rhsc);
|
| 4530 |
|
|
for (i = 2; i < gimple_num_ops (t); ++i)
|
| 4531 |
|
|
{
|
| 4532 |
|
|
get_constraint_for_rhs (gimple_op (t, i), &tmp);
|
| 4533 |
|
|
FOR_EACH_VEC_ELT (ce_s, tmp, j, rhsp)
|
| 4534 |
|
|
VEC_safe_push (ce_s, heap, rhsc, rhsp);
|
| 4535 |
|
|
VEC_truncate (ce_s, tmp, 0);
|
| 4536 |
|
|
}
|
| 4537 |
|
|
VEC_free (ce_s, heap, tmp);
|
| 4538 |
|
|
}
|
| 4539 |
|
|
process_all_all_constraints (lhsc, rhsc);
|
| 4540 |
|
|
}
|
| 4541 |
|
|
/* If there is a store to a global variable the rhs escapes. */
|
| 4542 |
|
|
if ((lhsop = get_base_address (lhsop)) != NULL_TREE
|
| 4543 |
|
|
&& DECL_P (lhsop)
|
| 4544 |
|
|
&& is_global_var (lhsop)
|
| 4545 |
|
|
&& (!in_ipa_mode
|
| 4546 |
|
|
|| DECL_EXTERNAL (lhsop) || TREE_PUBLIC (lhsop)))
|
| 4547 |
|
|
make_escape_constraint (rhsop);
|
| 4548 |
|
|
}
|
| 4549 |
|
|
/* Handle escapes through return. */
|
| 4550 |
|
|
else if (gimple_code (t) == GIMPLE_RETURN
|
| 4551 |
|
|
&& gimple_return_retval (t) != NULL_TREE)
|
| 4552 |
|
|
{
|
| 4553 |
|
|
fi = NULL;
|
| 4554 |
|
|
if (!in_ipa_mode
|
| 4555 |
|
|
|| !(fi = get_vi_for_tree (cfun->decl)))
|
| 4556 |
|
|
make_escape_constraint (gimple_return_retval (t));
|
| 4557 |
|
|
else if (in_ipa_mode
|
| 4558 |
|
|
&& fi != NULL)
|
| 4559 |
|
|
{
|
| 4560 |
|
|
struct constraint_expr lhs ;
|
| 4561 |
|
|
struct constraint_expr *rhsp;
|
| 4562 |
|
|
unsigned i;
|
| 4563 |
|
|
|
| 4564 |
|
|
lhs = get_function_part_constraint (fi, fi_result);
|
| 4565 |
|
|
get_constraint_for_rhs (gimple_return_retval (t), &rhsc);
|
| 4566 |
|
|
FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
|
| 4567 |
|
|
process_constraint (new_constraint (lhs, *rhsp));
|
| 4568 |
|
|
}
|
| 4569 |
|
|
}
|
| 4570 |
|
|
/* Handle asms conservatively by adding escape constraints to everything. */
|
| 4571 |
|
|
else if (gimple_code (t) == GIMPLE_ASM)
|
| 4572 |
|
|
{
|
| 4573 |
|
|
unsigned i, noutputs;
|
| 4574 |
|
|
const char **oconstraints;
|
| 4575 |
|
|
const char *constraint;
|
| 4576 |
|
|
bool allows_mem, allows_reg, is_inout;
|
| 4577 |
|
|
|
| 4578 |
|
|
noutputs = gimple_asm_noutputs (t);
|
| 4579 |
|
|
oconstraints = XALLOCAVEC (const char *, noutputs);
|
| 4580 |
|
|
|
| 4581 |
|
|
for (i = 0; i < noutputs; ++i)
|
| 4582 |
|
|
{
|
| 4583 |
|
|
tree link = gimple_asm_output_op (t, i);
|
| 4584 |
|
|
tree op = TREE_VALUE (link);
|
| 4585 |
|
|
|
| 4586 |
|
|
constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
|
| 4587 |
|
|
oconstraints[i] = constraint;
|
| 4588 |
|
|
parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
|
| 4589 |
|
|
&allows_reg, &is_inout);
|
| 4590 |
|
|
|
| 4591 |
|
|
/* A memory constraint makes the address of the operand escape. */
|
| 4592 |
|
|
if (!allows_reg && allows_mem)
|
| 4593 |
|
|
make_escape_constraint (build_fold_addr_expr (op));
|
| 4594 |
|
|
|
| 4595 |
|
|
/* The asm may read global memory, so outputs may point to
|
| 4596 |
|
|
any global memory. */
|
| 4597 |
|
|
if (op)
|
| 4598 |
|
|
{
|
| 4599 |
|
|
VEC(ce_s, heap) *lhsc = NULL;
|
| 4600 |
|
|
struct constraint_expr rhsc, *lhsp;
|
| 4601 |
|
|
unsigned j;
|
| 4602 |
|
|
get_constraint_for (op, &lhsc);
|
| 4603 |
|
|
rhsc.var = nonlocal_id;
|
| 4604 |
|
|
rhsc.offset = 0;
|
| 4605 |
|
|
rhsc.type = SCALAR;
|
| 4606 |
|
|
FOR_EACH_VEC_ELT (ce_s, lhsc, j, lhsp)
|
| 4607 |
|
|
process_constraint (new_constraint (*lhsp, rhsc));
|
| 4608 |
|
|
VEC_free (ce_s, heap, lhsc);
|
| 4609 |
|
|
}
|
| 4610 |
|
|
}
|
| 4611 |
|
|
for (i = 0; i < gimple_asm_ninputs (t); ++i)
|
| 4612 |
|
|
{
|
| 4613 |
|
|
tree link = gimple_asm_input_op (t, i);
|
| 4614 |
|
|
tree op = TREE_VALUE (link);
|
| 4615 |
|
|
|
| 4616 |
|
|
constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
|
| 4617 |
|
|
|
| 4618 |
|
|
parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints,
|
| 4619 |
|
|
&allows_mem, &allows_reg);
|
| 4620 |
|
|
|
| 4621 |
|
|
/* A memory constraint makes the address of the operand escape. */
|
| 4622 |
|
|
if (!allows_reg && allows_mem)
|
| 4623 |
|
|
make_escape_constraint (build_fold_addr_expr (op));
|
| 4624 |
|
|
/* Strictly we'd only need the constraint to ESCAPED if
|
| 4625 |
|
|
the asm clobbers memory, otherwise using something
|
| 4626 |
|
|
along the lines of per-call clobbers/uses would be enough. */
|
| 4627 |
|
|
else if (op)
|
| 4628 |
|
|
make_escape_constraint (op);
|
| 4629 |
|
|
}
|
| 4630 |
|
|
}
|
| 4631 |
|
|
|
| 4632 |
|
|
VEC_free (ce_s, heap, rhsc);
|
| 4633 |
|
|
VEC_free (ce_s, heap, lhsc);
|
| 4634 |
|
|
}
|
| 4635 |
|
|
|
| 4636 |
|
|
|
| 4637 |
|
|
/* Create a constraint adding to the clobber set of FI the memory
|
| 4638 |
|
|
pointed to by PTR. */
|
| 4639 |
|
|
|
| 4640 |
|
|
static void
|
| 4641 |
|
|
process_ipa_clobber (varinfo_t fi, tree ptr)
|
| 4642 |
|
|
{
|
| 4643 |
|
|
VEC(ce_s, heap) *ptrc = NULL;
|
| 4644 |
|
|
struct constraint_expr *c, lhs;
|
| 4645 |
|
|
unsigned i;
|
| 4646 |
|
|
get_constraint_for_rhs (ptr, &ptrc);
|
| 4647 |
|
|
lhs = get_function_part_constraint (fi, fi_clobbers);
|
| 4648 |
|
|
FOR_EACH_VEC_ELT (ce_s, ptrc, i, c)
|
| 4649 |
|
|
process_constraint (new_constraint (lhs, *c));
|
| 4650 |
|
|
VEC_free (ce_s, heap, ptrc);
|
| 4651 |
|
|
}
|
| 4652 |
|
|
|
| 4653 |
|
|
/* Walk statement T setting up clobber and use constraints according to the
|
| 4654 |
|
|
references found in T. This function is a main part of the
|
| 4655 |
|
|
IPA constraint builder. */
|
| 4656 |
|
|
|
| 4657 |
|
|
static void
|
| 4658 |
|
|
find_func_clobbers (gimple origt)
|
| 4659 |
|
|
{
|
| 4660 |
|
|
gimple t = origt;
|
| 4661 |
|
|
VEC(ce_s, heap) *lhsc = NULL;
|
| 4662 |
|
|
VEC(ce_s, heap) *rhsc = NULL;
|
| 4663 |
|
|
varinfo_t fi;
|
| 4664 |
|
|
|
| 4665 |
|
|
/* Add constraints for clobbered/used in IPA mode.
|
| 4666 |
|
|
We are not interested in what automatic variables are clobbered
|
| 4667 |
|
|
or used as we only use the information in the caller to which
|
| 4668 |
|
|
they do not escape. */
|
| 4669 |
|
|
gcc_assert (in_ipa_mode);
|
| 4670 |
|
|
|
| 4671 |
|
|
/* If the stmt refers to memory in any way it better had a VUSE. */
|
| 4672 |
|
|
if (gimple_vuse (t) == NULL_TREE)
|
| 4673 |
|
|
return;
|
| 4674 |
|
|
|
| 4675 |
|
|
/* We'd better have function information for the current function. */
|
| 4676 |
|
|
fi = lookup_vi_for_tree (cfun->decl);
|
| 4677 |
|
|
gcc_assert (fi != NULL);
|
| 4678 |
|
|
|
| 4679 |
|
|
/* Account for stores in assignments and calls. */
|
| 4680 |
|
|
if (gimple_vdef (t) != NULL_TREE
|
| 4681 |
|
|
&& gimple_has_lhs (t))
|
| 4682 |
|
|
{
|
| 4683 |
|
|
tree lhs = gimple_get_lhs (t);
|
| 4684 |
|
|
tree tem = lhs;
|
| 4685 |
|
|
while (handled_component_p (tem))
|
| 4686 |
|
|
tem = TREE_OPERAND (tem, 0);
|
| 4687 |
|
|
if ((DECL_P (tem)
|
| 4688 |
|
|
&& !auto_var_in_fn_p (tem, cfun->decl))
|
| 4689 |
|
|
|| INDIRECT_REF_P (tem)
|
| 4690 |
|
|
|| (TREE_CODE (tem) == MEM_REF
|
| 4691 |
|
|
&& !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
|
| 4692 |
|
|
&& auto_var_in_fn_p
|
| 4693 |
|
|
(TREE_OPERAND (TREE_OPERAND (tem, 0), 0), cfun->decl))))
|
| 4694 |
|
|
{
|
| 4695 |
|
|
struct constraint_expr lhsc, *rhsp;
|
| 4696 |
|
|
unsigned i;
|
| 4697 |
|
|
lhsc = get_function_part_constraint (fi, fi_clobbers);
|
| 4698 |
|
|
get_constraint_for_address_of (lhs, &rhsc);
|
| 4699 |
|
|
FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
|
| 4700 |
|
|
process_constraint (new_constraint (lhsc, *rhsp));
|
| 4701 |
|
|
VEC_free (ce_s, heap, rhsc);
|
| 4702 |
|
|
}
|
| 4703 |
|
|
}
|
| 4704 |
|
|
|
| 4705 |
|
|
/* Account for uses in assigments and returns. */
|
| 4706 |
|
|
if (gimple_assign_single_p (t)
|
| 4707 |
|
|
|| (gimple_code (t) == GIMPLE_RETURN
|
| 4708 |
|
|
&& gimple_return_retval (t) != NULL_TREE))
|
| 4709 |
|
|
{
|
| 4710 |
|
|
tree rhs = (gimple_assign_single_p (t)
|
| 4711 |
|
|
? gimple_assign_rhs1 (t) : gimple_return_retval (t));
|
| 4712 |
|
|
tree tem = rhs;
|
| 4713 |
|
|
while (handled_component_p (tem))
|
| 4714 |
|
|
tem = TREE_OPERAND (tem, 0);
|
| 4715 |
|
|
if ((DECL_P (tem)
|
| 4716 |
|
|
&& !auto_var_in_fn_p (tem, cfun->decl))
|
| 4717 |
|
|
|| INDIRECT_REF_P (tem)
|
| 4718 |
|
|
|| (TREE_CODE (tem) == MEM_REF
|
| 4719 |
|
|
&& !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
|
| 4720 |
|
|
&& auto_var_in_fn_p
|
| 4721 |
|
|
(TREE_OPERAND (TREE_OPERAND (tem, 0), 0), cfun->decl))))
|
| 4722 |
|
|
{
|
| 4723 |
|
|
struct constraint_expr lhs, *rhsp;
|
| 4724 |
|
|
unsigned i;
|
| 4725 |
|
|
lhs = get_function_part_constraint (fi, fi_uses);
|
| 4726 |
|
|
get_constraint_for_address_of (rhs, &rhsc);
|
| 4727 |
|
|
FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
|
| 4728 |
|
|
process_constraint (new_constraint (lhs, *rhsp));
|
| 4729 |
|
|
VEC_free (ce_s, heap, rhsc);
|
| 4730 |
|
|
}
|
| 4731 |
|
|
}
|
| 4732 |
|
|
|
| 4733 |
|
|
if (is_gimple_call (t))
|
| 4734 |
|
|
{
|
| 4735 |
|
|
varinfo_t cfi = NULL;
|
| 4736 |
|
|
tree decl = gimple_call_fndecl (t);
|
| 4737 |
|
|
struct constraint_expr lhs, rhs;
|
| 4738 |
|
|
unsigned i, j;
|
| 4739 |
|
|
|
| 4740 |
|
|
/* For builtins we do not have separate function info. For those
|
| 4741 |
|
|
we do not generate escapes for we have to generate clobbers/uses. */
|
| 4742 |
|
|
if (decl
|
| 4743 |
|
|
&& DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
|
| 4744 |
|
|
switch (DECL_FUNCTION_CODE (decl))
|
| 4745 |
|
|
{
|
| 4746 |
|
|
/* The following functions use and clobber memory pointed to
|
| 4747 |
|
|
by their arguments. */
|
| 4748 |
|
|
case BUILT_IN_STRCPY:
|
| 4749 |
|
|
case BUILT_IN_STRNCPY:
|
| 4750 |
|
|
case BUILT_IN_BCOPY:
|
| 4751 |
|
|
case BUILT_IN_MEMCPY:
|
| 4752 |
|
|
case BUILT_IN_MEMMOVE:
|
| 4753 |
|
|
case BUILT_IN_MEMPCPY:
|
| 4754 |
|
|
case BUILT_IN_STPCPY:
|
| 4755 |
|
|
case BUILT_IN_STPNCPY:
|
| 4756 |
|
|
case BUILT_IN_STRCAT:
|
| 4757 |
|
|
case BUILT_IN_STRNCAT:
|
| 4758 |
|
|
case BUILT_IN_STRCPY_CHK:
|
| 4759 |
|
|
case BUILT_IN_STRNCPY_CHK:
|
| 4760 |
|
|
case BUILT_IN_MEMCPY_CHK:
|
| 4761 |
|
|
case BUILT_IN_MEMMOVE_CHK:
|
| 4762 |
|
|
case BUILT_IN_MEMPCPY_CHK:
|
| 4763 |
|
|
case BUILT_IN_STPCPY_CHK:
|
| 4764 |
|
|
case BUILT_IN_STPNCPY_CHK:
|
| 4765 |
|
|
case BUILT_IN_STRCAT_CHK:
|
| 4766 |
|
|
case BUILT_IN_STRNCAT_CHK:
|
| 4767 |
|
|
{
|
| 4768 |
|
|
tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
|
| 4769 |
|
|
== BUILT_IN_BCOPY ? 1 : 0));
|
| 4770 |
|
|
tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
|
| 4771 |
|
|
== BUILT_IN_BCOPY ? 0 : 1));
|
| 4772 |
|
|
unsigned i;
|
| 4773 |
|
|
struct constraint_expr *rhsp, *lhsp;
|
| 4774 |
|
|
get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
|
| 4775 |
|
|
lhs = get_function_part_constraint (fi, fi_clobbers);
|
| 4776 |
|
|
FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
|
| 4777 |
|
|
process_constraint (new_constraint (lhs, *lhsp));
|
| 4778 |
|
|
VEC_free (ce_s, heap, lhsc);
|
| 4779 |
|
|
get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
|
| 4780 |
|
|
lhs = get_function_part_constraint (fi, fi_uses);
|
| 4781 |
|
|
FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
|
| 4782 |
|
|
process_constraint (new_constraint (lhs, *rhsp));
|
| 4783 |
|
|
VEC_free (ce_s, heap, rhsc);
|
| 4784 |
|
|
return;
|
| 4785 |
|
|
}
|
| 4786 |
|
|
/* The following function clobbers memory pointed to by
|
| 4787 |
|
|
its argument. */
|
| 4788 |
|
|
case BUILT_IN_MEMSET:
|
| 4789 |
|
|
case BUILT_IN_MEMSET_CHK:
|
| 4790 |
|
|
{
|
| 4791 |
|
|
tree dest = gimple_call_arg (t, 0);
|
| 4792 |
|
|
unsigned i;
|
| 4793 |
|
|
ce_s *lhsp;
|
| 4794 |
|
|
get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
|
| 4795 |
|
|
lhs = get_function_part_constraint (fi, fi_clobbers);
|
| 4796 |
|
|
FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
|
| 4797 |
|
|
process_constraint (new_constraint (lhs, *lhsp));
|
| 4798 |
|
|
VEC_free (ce_s, heap, lhsc);
|
| 4799 |
|
|
return;
|
| 4800 |
|
|
}
|
| 4801 |
|
|
/* The following functions clobber their second and third
|
| 4802 |
|
|
arguments. */
|
| 4803 |
|
|
case BUILT_IN_SINCOS:
|
| 4804 |
|
|
case BUILT_IN_SINCOSF:
|
| 4805 |
|
|
case BUILT_IN_SINCOSL:
|
| 4806 |
|
|
{
|
| 4807 |
|
|
process_ipa_clobber (fi, gimple_call_arg (t, 1));
|
| 4808 |
|
|
process_ipa_clobber (fi, gimple_call_arg (t, 2));
|
| 4809 |
|
|
return;
|
| 4810 |
|
|
}
|
| 4811 |
|
|
/* The following functions clobber their second argument. */
|
| 4812 |
|
|
case BUILT_IN_FREXP:
|
| 4813 |
|
|
case BUILT_IN_FREXPF:
|
| 4814 |
|
|
case BUILT_IN_FREXPL:
|
| 4815 |
|
|
case BUILT_IN_LGAMMA_R:
|
| 4816 |
|
|
case BUILT_IN_LGAMMAF_R:
|
| 4817 |
|
|
case BUILT_IN_LGAMMAL_R:
|
| 4818 |
|
|
case BUILT_IN_GAMMA_R:
|
| 4819 |
|
|
case BUILT_IN_GAMMAF_R:
|
| 4820 |
|
|
case BUILT_IN_GAMMAL_R:
|
| 4821 |
|
|
case BUILT_IN_MODF:
|
| 4822 |
|
|
case BUILT_IN_MODFF:
|
| 4823 |
|
|
case BUILT_IN_MODFL:
|
| 4824 |
|
|
{
|
| 4825 |
|
|
process_ipa_clobber (fi, gimple_call_arg (t, 1));
|
| 4826 |
|
|
return;
|
| 4827 |
|
|
}
|
| 4828 |
|
|
/* The following functions clobber their third argument. */
|
| 4829 |
|
|
case BUILT_IN_REMQUO:
|
| 4830 |
|
|
case BUILT_IN_REMQUOF:
|
| 4831 |
|
|
case BUILT_IN_REMQUOL:
|
| 4832 |
|
|
{
|
| 4833 |
|
|
process_ipa_clobber (fi, gimple_call_arg (t, 2));
|
| 4834 |
|
|
return;
|
| 4835 |
|
|
}
|
| 4836 |
|
|
/* The following functions neither read nor clobber memory. */
|
| 4837 |
|
|
case BUILT_IN_ASSUME_ALIGNED:
|
| 4838 |
|
|
case BUILT_IN_FREE:
|
| 4839 |
|
|
return;
|
| 4840 |
|
|
/* Trampolines are of no interest to us. */
|
| 4841 |
|
|
case BUILT_IN_INIT_TRAMPOLINE:
|
| 4842 |
|
|
case BUILT_IN_ADJUST_TRAMPOLINE:
|
| 4843 |
|
|
return;
|
| 4844 |
|
|
case BUILT_IN_VA_START:
|
| 4845 |
|
|
case BUILT_IN_VA_END:
|
| 4846 |
|
|
return;
|
| 4847 |
|
|
/* printf-style functions may have hooks to set pointers to
|
| 4848 |
|
|
point to somewhere into the generated string. Leave them
|
| 4849 |
|
|
for a later excercise... */
|
| 4850 |
|
|
default:
|
| 4851 |
|
|
/* Fallthru to general call handling. */;
|
| 4852 |
|
|
}
|
| 4853 |
|
|
|
| 4854 |
|
|
/* Parameters passed by value are used. */
|
| 4855 |
|
|
lhs = get_function_part_constraint (fi, fi_uses);
|
| 4856 |
|
|
for (i = 0; i < gimple_call_num_args (t); i++)
|
| 4857 |
|
|
{
|
| 4858 |
|
|
struct constraint_expr *rhsp;
|
| 4859 |
|
|
tree arg = gimple_call_arg (t, i);
|
| 4860 |
|
|
|
| 4861 |
|
|
if (TREE_CODE (arg) == SSA_NAME
|
| 4862 |
|
|
|| is_gimple_min_invariant (arg))
|
| 4863 |
|
|
continue;
|
| 4864 |
|
|
|
| 4865 |
|
|
get_constraint_for_address_of (arg, &rhsc);
|
| 4866 |
|
|
FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
|
| 4867 |
|
|
process_constraint (new_constraint (lhs, *rhsp));
|
| 4868 |
|
|
VEC_free (ce_s, heap, rhsc);
|
| 4869 |
|
|
}
|
| 4870 |
|
|
|
| 4871 |
|
|
/* Build constraints for propagating clobbers/uses along the
|
| 4872 |
|
|
callgraph edges. */
|
| 4873 |
|
|
cfi = get_fi_for_callee (t);
|
| 4874 |
|
|
if (cfi->id == anything_id)
|
| 4875 |
|
|
{
|
| 4876 |
|
|
if (gimple_vdef (t))
|
| 4877 |
|
|
make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
|
| 4878 |
|
|
anything_id);
|
| 4879 |
|
|
make_constraint_from (first_vi_for_offset (fi, fi_uses),
|
| 4880 |
|
|
anything_id);
|
| 4881 |
|
|
return;
|
| 4882 |
|
|
}
|
| 4883 |
|
|
|
| 4884 |
|
|
/* For callees without function info (that's external functions),
|
| 4885 |
|
|
ESCAPED is clobbered and used. */
|
| 4886 |
|
|
if (gimple_call_fndecl (t)
|
| 4887 |
|
|
&& !cfi->is_fn_info)
|
| 4888 |
|
|
{
|
| 4889 |
|
|
varinfo_t vi;
|
| 4890 |
|
|
|
| 4891 |
|
|
if (gimple_vdef (t))
|
| 4892 |
|
|
make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
|
| 4893 |
|
|
escaped_id);
|
| 4894 |
|
|
make_copy_constraint (first_vi_for_offset (fi, fi_uses), escaped_id);
|
| 4895 |
|
|
|
| 4896 |
|
|
/* Also honor the call statement use/clobber info. */
|
| 4897 |
|
|
if ((vi = lookup_call_clobber_vi (t)) != NULL)
|
| 4898 |
|
|
make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
|
| 4899 |
|
|
vi->id);
|
| 4900 |
|
|
if ((vi = lookup_call_use_vi (t)) != NULL)
|
| 4901 |
|
|
make_copy_constraint (first_vi_for_offset (fi, fi_uses),
|
| 4902 |
|
|
vi->id);
|
| 4903 |
|
|
return;
|
| 4904 |
|
|
}
|
| 4905 |
|
|
|
| 4906 |
|
|
/* Otherwise the caller clobbers and uses what the callee does.
|
| 4907 |
|
|
??? This should use a new complex constraint that filters
|
| 4908 |
|
|
local variables of the callee. */
|
| 4909 |
|
|
if (gimple_vdef (t))
|
| 4910 |
|
|
{
|
| 4911 |
|
|
lhs = get_function_part_constraint (fi, fi_clobbers);
|
| 4912 |
|
|
rhs = get_function_part_constraint (cfi, fi_clobbers);
|
| 4913 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
| 4914 |
|
|
}
|
| 4915 |
|
|
lhs = get_function_part_constraint (fi, fi_uses);
|
| 4916 |
|
|
rhs = get_function_part_constraint (cfi, fi_uses);
|
| 4917 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
| 4918 |
|
|
}
|
| 4919 |
|
|
else if (gimple_code (t) == GIMPLE_ASM)
|
| 4920 |
|
|
{
|
| 4921 |
|
|
/* ??? Ick. We can do better. */
|
| 4922 |
|
|
if (gimple_vdef (t))
|
| 4923 |
|
|
make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
|
| 4924 |
|
|
anything_id);
|
| 4925 |
|
|
make_constraint_from (first_vi_for_offset (fi, fi_uses),
|
| 4926 |
|
|
anything_id);
|
| 4927 |
|
|
}
|
| 4928 |
|
|
|
| 4929 |
|
|
VEC_free (ce_s, heap, rhsc);
|
| 4930 |
|
|
}
|
| 4931 |
|
|
|
| 4932 |
|
|
|
| 4933 |
|
|
/* Find the first varinfo in the same variable as START that overlaps with
|
| 4934 |
|
|
OFFSET. Return NULL if we can't find one. */
|
| 4935 |
|
|
|
| 4936 |
|
|
static varinfo_t
|
| 4937 |
|
|
first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
|
| 4938 |
|
|
{
|
| 4939 |
|
|
/* If the offset is outside of the variable, bail out. */
|
| 4940 |
|
|
if (offset >= start->fullsize)
|
| 4941 |
|
|
return NULL;
|
| 4942 |
|
|
|
| 4943 |
|
|
/* If we cannot reach offset from start, lookup the first field
|
| 4944 |
|
|
and start from there. */
|
| 4945 |
|
|
if (start->offset > offset)
|
| 4946 |
|
|
start = lookup_vi_for_tree (start->decl);
|
| 4947 |
|
|
|
| 4948 |
|
|
while (start)
|
| 4949 |
|
|
{
|
| 4950 |
|
|
/* We may not find a variable in the field list with the actual
|
| 4951 |
|
|
offset when when we have glommed a structure to a variable.
|
| 4952 |
|
|
In that case, however, offset should still be within the size
|
| 4953 |
|
|
of the variable. */
|
| 4954 |
|
|
if (offset >= start->offset
|
| 4955 |
|
|
&& (offset - start->offset) < start->size)
|
| 4956 |
|
|
return start;
|
| 4957 |
|
|
|
| 4958 |
|
|
start= start->next;
|
| 4959 |
|
|
}
|
| 4960 |
|
|
|
| 4961 |
|
|
return NULL;
|
| 4962 |
|
|
}
|
| 4963 |
|
|
|
| 4964 |
|
|
/* Find the first varinfo in the same variable as START that overlaps with
|
| 4965 |
|
|
OFFSET. If there is no such varinfo the varinfo directly preceding
|
| 4966 |
|
|
OFFSET is returned. */
|
| 4967 |
|
|
|
| 4968 |
|
|
static varinfo_t
|
| 4969 |
|
|
first_or_preceding_vi_for_offset (varinfo_t start,
|
| 4970 |
|
|
unsigned HOST_WIDE_INT offset)
|
| 4971 |
|
|
{
|
| 4972 |
|
|
/* If we cannot reach offset from start, lookup the first field
|
| 4973 |
|
|
and start from there. */
|
| 4974 |
|
|
if (start->offset > offset)
|
| 4975 |
|
|
start = lookup_vi_for_tree (start->decl);
|
| 4976 |
|
|
|
| 4977 |
|
|
/* We may not find a variable in the field list with the actual
|
| 4978 |
|
|
offset when when we have glommed a structure to a variable.
|
| 4979 |
|
|
In that case, however, offset should still be within the size
|
| 4980 |
|
|
of the variable.
|
| 4981 |
|
|
If we got beyond the offset we look for return the field
|
| 4982 |
|
|
directly preceding offset which may be the last field. */
|
| 4983 |
|
|
while (start->next
|
| 4984 |
|
|
&& offset >= start->offset
|
| 4985 |
|
|
&& !((offset - start->offset) < start->size))
|
| 4986 |
|
|
start = start->next;
|
| 4987 |
|
|
|
| 4988 |
|
|
return start;
|
| 4989 |
|
|
}
|
| 4990 |
|
|
|
| 4991 |
|
|
|
| 4992 |
|
|
/* This structure is used during pushing fields onto the fieldstack
|
| 4993 |
|
|
to track the offset of the field, since bitpos_of_field gives it
|
| 4994 |
|
|
relative to its immediate containing type, and we want it relative
|
| 4995 |
|
|
to the ultimate containing object. */
|
| 4996 |
|
|
|
| 4997 |
|
|
struct fieldoff
|
| 4998 |
|
|
{
|
| 4999 |
|
|
/* Offset from the base of the base containing object to this field. */
|
| 5000 |
|
|
HOST_WIDE_INT offset;
|
| 5001 |
|
|
|
| 5002 |
|
|
/* Size, in bits, of the field. */
|
| 5003 |
|
|
unsigned HOST_WIDE_INT size;
|
| 5004 |
|
|
|
| 5005 |
|
|
unsigned has_unknown_size : 1;
|
| 5006 |
|
|
|
| 5007 |
|
|
unsigned must_have_pointers : 1;
|
| 5008 |
|
|
|
| 5009 |
|
|
unsigned may_have_pointers : 1;
|
| 5010 |
|
|
|
| 5011 |
|
|
unsigned only_restrict_pointers : 1;
|
| 5012 |
|
|
};
|
| 5013 |
|
|
typedef struct fieldoff fieldoff_s;
|
| 5014 |
|
|
|
| 5015 |
|
|
DEF_VEC_O(fieldoff_s);
|
| 5016 |
|
|
DEF_VEC_ALLOC_O(fieldoff_s,heap);
|
| 5017 |
|
|
|
| 5018 |
|
|
/* qsort comparison function for two fieldoff's PA and PB */
|
| 5019 |
|
|
|
| 5020 |
|
|
static int
|
| 5021 |
|
|
fieldoff_compare (const void *pa, const void *pb)
|
| 5022 |
|
|
{
|
| 5023 |
|
|
const fieldoff_s *foa = (const fieldoff_s *)pa;
|
| 5024 |
|
|
const fieldoff_s *fob = (const fieldoff_s *)pb;
|
| 5025 |
|
|
unsigned HOST_WIDE_INT foasize, fobsize;
|
| 5026 |
|
|
|
| 5027 |
|
|
if (foa->offset < fob->offset)
|
| 5028 |
|
|
return -1;
|
| 5029 |
|
|
else if (foa->offset > fob->offset)
|
| 5030 |
|
|
return 1;
|
| 5031 |
|
|
|
| 5032 |
|
|
foasize = foa->size;
|
| 5033 |
|
|
fobsize = fob->size;
|
| 5034 |
|
|
if (foasize < fobsize)
|
| 5035 |
|
|
return -1;
|
| 5036 |
|
|
else if (foasize > fobsize)
|
| 5037 |
|
|
return 1;
|
| 5038 |
|
|
return 0;
|
| 5039 |
|
|
}
|
| 5040 |
|
|
|
| 5041 |
|
|
/* Sort a fieldstack according to the field offset and sizes. */
|
| 5042 |
|
|
static void
|
| 5043 |
|
|
sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
|
| 5044 |
|
|
{
|
| 5045 |
|
|
VEC_qsort (fieldoff_s, fieldstack, fieldoff_compare);
|
| 5046 |
|
|
}
|
| 5047 |
|
|
|
| 5048 |
|
|
/* Return true if T is a type that can have subvars. */
|
| 5049 |
|
|
|
| 5050 |
|
|
static inline bool
|
| 5051 |
|
|
type_can_have_subvars (const_tree t)
|
| 5052 |
|
|
{
|
| 5053 |
|
|
/* Aggregates without overlapping fields can have subvars. */
|
| 5054 |
|
|
return TREE_CODE (t) == RECORD_TYPE;
|
| 5055 |
|
|
}
|
| 5056 |
|
|
|
| 5057 |
|
|
/* Return true if V is a tree that we can have subvars for.
|
| 5058 |
|
|
Normally, this is any aggregate type. Also complex
|
| 5059 |
|
|
types which are not gimple registers can have subvars. */
|
| 5060 |
|
|
|
| 5061 |
|
|
static inline bool
|
| 5062 |
|
|
var_can_have_subvars (const_tree v)
|
| 5063 |
|
|
{
|
| 5064 |
|
|
/* Volatile variables should never have subvars. */
|
| 5065 |
|
|
if (TREE_THIS_VOLATILE (v))
|
| 5066 |
|
|
return false;
|
| 5067 |
|
|
|
| 5068 |
|
|
/* Non decls or memory tags can never have subvars. */
|
| 5069 |
|
|
if (!DECL_P (v))
|
| 5070 |
|
|
return false;
|
| 5071 |
|
|
|
| 5072 |
|
|
return type_can_have_subvars (TREE_TYPE (v));
|
| 5073 |
|
|
}
|
| 5074 |
|
|
|
| 5075 |
|
|
/* Return true if T is a type that does contain pointers. */
|
| 5076 |
|
|
|
| 5077 |
|
|
static bool
|
| 5078 |
|
|
type_must_have_pointers (tree type)
|
| 5079 |
|
|
{
|
| 5080 |
|
|
if (POINTER_TYPE_P (type))
|
| 5081 |
|
|
return true;
|
| 5082 |
|
|
|
| 5083 |
|
|
if (TREE_CODE (type) == ARRAY_TYPE)
|
| 5084 |
|
|
return type_must_have_pointers (TREE_TYPE (type));
|
| 5085 |
|
|
|
| 5086 |
|
|
/* A function or method can have pointers as arguments, so track
|
| 5087 |
|
|
those separately. */
|
| 5088 |
|
|
if (TREE_CODE (type) == FUNCTION_TYPE
|
| 5089 |
|
|
|| TREE_CODE (type) == METHOD_TYPE)
|
| 5090 |
|
|
return true;
|
| 5091 |
|
|
|
| 5092 |
|
|
return false;
|
| 5093 |
|
|
}
|
| 5094 |
|
|
|
| 5095 |
|
|
static bool
|
| 5096 |
|
|
field_must_have_pointers (tree t)
|
| 5097 |
|
|
{
|
| 5098 |
|
|
return type_must_have_pointers (TREE_TYPE (t));
|
| 5099 |
|
|
}
|
| 5100 |
|
|
|
| 5101 |
|
|
/* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
|
| 5102 |
|
|
the fields of TYPE onto fieldstack, recording their offsets along
|
| 5103 |
|
|
the way.
|
| 5104 |
|
|
|
| 5105 |
|
|
OFFSET is used to keep track of the offset in this entire
|
| 5106 |
|
|
structure, rather than just the immediately containing structure.
|
| 5107 |
|
|
Returns false if the caller is supposed to handle the field we
|
| 5108 |
|
|
recursed for. */
|
| 5109 |
|
|
|
| 5110 |
|
|
static bool
|
| 5111 |
|
|
push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
|
| 5112 |
|
|
HOST_WIDE_INT offset)
|
| 5113 |
|
|
{
|
| 5114 |
|
|
tree field;
|
| 5115 |
|
|
bool empty_p = true;
|
| 5116 |
|
|
|
| 5117 |
|
|
if (TREE_CODE (type) != RECORD_TYPE)
|
| 5118 |
|
|
return false;
|
| 5119 |
|
|
|
| 5120 |
|
|
/* If the vector of fields is growing too big, bail out early.
|
| 5121 |
|
|
Callers check for VEC_length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
|
| 5122 |
|
|
sure this fails. */
|
| 5123 |
|
|
if (VEC_length (fieldoff_s, *fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
|
| 5124 |
|
|
return false;
|
| 5125 |
|
|
|
| 5126 |
|
|
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
|
| 5127 |
|
|
if (TREE_CODE (field) == FIELD_DECL)
|
| 5128 |
|
|
{
|
| 5129 |
|
|
bool push = false;
|
| 5130 |
|
|
HOST_WIDE_INT foff = bitpos_of_field (field);
|
| 5131 |
|
|
|
| 5132 |
|
|
if (!var_can_have_subvars (field)
|
| 5133 |
|
|
|| TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
|
| 5134 |
|
|
|| TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
|
| 5135 |
|
|
push = true;
|
| 5136 |
|
|
else if (!push_fields_onto_fieldstack
|
| 5137 |
|
|
(TREE_TYPE (field), fieldstack, offset + foff)
|
| 5138 |
|
|
&& (DECL_SIZE (field)
|
| 5139 |
|
|
&& !integer_zerop (DECL_SIZE (field))))
|
| 5140 |
|
|
/* Empty structures may have actual size, like in C++. So
|
| 5141 |
|
|
see if we didn't push any subfields and the size is
|
| 5142 |
|
|
nonzero, push the field onto the stack. */
|
| 5143 |
|
|
push = true;
|
| 5144 |
|
|
|
| 5145 |
|
|
if (push)
|
| 5146 |
|
|
{
|
| 5147 |
|
|
fieldoff_s *pair = NULL;
|
| 5148 |
|
|
bool has_unknown_size = false;
|
| 5149 |
|
|
bool must_have_pointers_p;
|
| 5150 |
|
|
|
| 5151 |
|
|
if (!VEC_empty (fieldoff_s, *fieldstack))
|
| 5152 |
|
|
pair = VEC_last (fieldoff_s, *fieldstack);
|
| 5153 |
|
|
|
| 5154 |
|
|
/* If there isn't anything at offset zero, create sth. */
|
| 5155 |
|
|
if (!pair
|
| 5156 |
|
|
&& offset + foff != 0)
|
| 5157 |
|
|
{
|
| 5158 |
|
|
pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
|
| 5159 |
|
|
pair->offset = 0;
|
| 5160 |
|
|
pair->size = offset + foff;
|
| 5161 |
|
|
pair->has_unknown_size = false;
|
| 5162 |
|
|
pair->must_have_pointers = false;
|
| 5163 |
|
|
pair->may_have_pointers = false;
|
| 5164 |
|
|
pair->only_restrict_pointers = false;
|
| 5165 |
|
|
}
|
| 5166 |
|
|
|
| 5167 |
|
|
if (!DECL_SIZE (field)
|
| 5168 |
|
|
|| !host_integerp (DECL_SIZE (field), 1))
|
| 5169 |
|
|
has_unknown_size = true;
|
| 5170 |
|
|
|
| 5171 |
|
|
/* If adjacent fields do not contain pointers merge them. */
|
| 5172 |
|
|
must_have_pointers_p = field_must_have_pointers (field);
|
| 5173 |
|
|
if (pair
|
| 5174 |
|
|
&& !has_unknown_size
|
| 5175 |
|
|
&& !must_have_pointers_p
|
| 5176 |
|
|
&& !pair->must_have_pointers
|
| 5177 |
|
|
&& !pair->has_unknown_size
|
| 5178 |
|
|
&& pair->offset + (HOST_WIDE_INT)pair->size == offset + foff)
|
| 5179 |
|
|
{
|
| 5180 |
|
|
pair->size += TREE_INT_CST_LOW (DECL_SIZE (field));
|
| 5181 |
|
|
}
|
| 5182 |
|
|
else
|
| 5183 |
|
|
{
|
| 5184 |
|
|
pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
|
| 5185 |
|
|
pair->offset = offset + foff;
|
| 5186 |
|
|
pair->has_unknown_size = has_unknown_size;
|
| 5187 |
|
|
if (!has_unknown_size)
|
| 5188 |
|
|
pair->size = TREE_INT_CST_LOW (DECL_SIZE (field));
|
| 5189 |
|
|
else
|
| 5190 |
|
|
pair->size = -1;
|
| 5191 |
|
|
pair->must_have_pointers = must_have_pointers_p;
|
| 5192 |
|
|
pair->may_have_pointers = true;
|
| 5193 |
|
|
pair->only_restrict_pointers
|
| 5194 |
|
|
= (!has_unknown_size
|
| 5195 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (field))
|
| 5196 |
|
|
&& TYPE_RESTRICT (TREE_TYPE (field)));
|
| 5197 |
|
|
}
|
| 5198 |
|
|
}
|
| 5199 |
|
|
|
| 5200 |
|
|
empty_p = false;
|
| 5201 |
|
|
}
|
| 5202 |
|
|
|
| 5203 |
|
|
return !empty_p;
|
| 5204 |
|
|
}
|
| 5205 |
|
|
|
| 5206 |
|
|
/* Count the number of arguments DECL has, and set IS_VARARGS to true
|
| 5207 |
|
|
if it is a varargs function. */
|
| 5208 |
|
|
|
| 5209 |
|
|
static unsigned int
|
| 5210 |
|
|
count_num_arguments (tree decl, bool *is_varargs)
|
| 5211 |
|
|
{
|
| 5212 |
|
|
unsigned int num = 0;
|
| 5213 |
|
|
tree t;
|
| 5214 |
|
|
|
| 5215 |
|
|
/* Capture named arguments for K&R functions. They do not
|
| 5216 |
|
|
have a prototype and thus no TYPE_ARG_TYPES. */
|
| 5217 |
|
|
for (t = DECL_ARGUMENTS (decl); t; t = DECL_CHAIN (t))
|
| 5218 |
|
|
++num;
|
| 5219 |
|
|
|
| 5220 |
|
|
/* Check if the function has variadic arguments. */
|
| 5221 |
|
|
for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t))
|
| 5222 |
|
|
if (TREE_VALUE (t) == void_type_node)
|
| 5223 |
|
|
break;
|
| 5224 |
|
|
if (!t)
|
| 5225 |
|
|
*is_varargs = true;
|
| 5226 |
|
|
|
| 5227 |
|
|
return num;
|
| 5228 |
|
|
}
|
| 5229 |
|
|
|
| 5230 |
|
|
/* Creation function node for DECL, using NAME, and return the index
|
| 5231 |
|
|
of the variable we've created for the function. */
|
| 5232 |
|
|
|
| 5233 |
|
|
static varinfo_t
|
| 5234 |
|
|
create_function_info_for (tree decl, const char *name)
|
| 5235 |
|
|
{
|
| 5236 |
|
|
struct function *fn = DECL_STRUCT_FUNCTION (decl);
|
| 5237 |
|
|
varinfo_t vi, prev_vi;
|
| 5238 |
|
|
tree arg;
|
| 5239 |
|
|
unsigned int i;
|
| 5240 |
|
|
bool is_varargs = false;
|
| 5241 |
|
|
unsigned int num_args = count_num_arguments (decl, &is_varargs);
|
| 5242 |
|
|
|
| 5243 |
|
|
/* Create the variable info. */
|
| 5244 |
|
|
|
| 5245 |
|
|
vi = new_var_info (decl, name);
|
| 5246 |
|
|
vi->offset = 0;
|
| 5247 |
|
|
vi->size = 1;
|
| 5248 |
|
|
vi->fullsize = fi_parm_base + num_args;
|
| 5249 |
|
|
vi->is_fn_info = 1;
|
| 5250 |
|
|
vi->may_have_pointers = false;
|
| 5251 |
|
|
if (is_varargs)
|
| 5252 |
|
|
vi->fullsize = ~0;
|
| 5253 |
|
|
insert_vi_for_tree (vi->decl, vi);
|
| 5254 |
|
|
|
| 5255 |
|
|
prev_vi = vi;
|
| 5256 |
|
|
|
| 5257 |
|
|
/* Create a variable for things the function clobbers and one for
|
| 5258 |
|
|
things the function uses. */
|
| 5259 |
|
|
{
|
| 5260 |
|
|
varinfo_t clobbervi, usevi;
|
| 5261 |
|
|
const char *newname;
|
| 5262 |
|
|
char *tempname;
|
| 5263 |
|
|
|
| 5264 |
|
|
asprintf (&tempname, "%s.clobber", name);
|
| 5265 |
|
|
newname = ggc_strdup (tempname);
|
| 5266 |
|
|
free (tempname);
|
| 5267 |
|
|
|
| 5268 |
|
|
clobbervi = new_var_info (NULL, newname);
|
| 5269 |
|
|
clobbervi->offset = fi_clobbers;
|
| 5270 |
|
|
clobbervi->size = 1;
|
| 5271 |
|
|
clobbervi->fullsize = vi->fullsize;
|
| 5272 |
|
|
clobbervi->is_full_var = true;
|
| 5273 |
|
|
clobbervi->is_global_var = false;
|
| 5274 |
|
|
gcc_assert (prev_vi->offset < clobbervi->offset);
|
| 5275 |
|
|
prev_vi->next = clobbervi;
|
| 5276 |
|
|
prev_vi = clobbervi;
|
| 5277 |
|
|
|
| 5278 |
|
|
asprintf (&tempname, "%s.use", name);
|
| 5279 |
|
|
newname = ggc_strdup (tempname);
|
| 5280 |
|
|
free (tempname);
|
| 5281 |
|
|
|
| 5282 |
|
|
usevi = new_var_info (NULL, newname);
|
| 5283 |
|
|
usevi->offset = fi_uses;
|
| 5284 |
|
|
usevi->size = 1;
|
| 5285 |
|
|
usevi->fullsize = vi->fullsize;
|
| 5286 |
|
|
usevi->is_full_var = true;
|
| 5287 |
|
|
usevi->is_global_var = false;
|
| 5288 |
|
|
gcc_assert (prev_vi->offset < usevi->offset);
|
| 5289 |
|
|
prev_vi->next = usevi;
|
| 5290 |
|
|
prev_vi = usevi;
|
| 5291 |
|
|
}
|
| 5292 |
|
|
|
| 5293 |
|
|
/* And one for the static chain. */
|
| 5294 |
|
|
if (fn->static_chain_decl != NULL_TREE)
|
| 5295 |
|
|
{
|
| 5296 |
|
|
varinfo_t chainvi;
|
| 5297 |
|
|
const char *newname;
|
| 5298 |
|
|
char *tempname;
|
| 5299 |
|
|
|
| 5300 |
|
|
asprintf (&tempname, "%s.chain", name);
|
| 5301 |
|
|
newname = ggc_strdup (tempname);
|
| 5302 |
|
|
free (tempname);
|
| 5303 |
|
|
|
| 5304 |
|
|
chainvi = new_var_info (fn->static_chain_decl, newname);
|
| 5305 |
|
|
chainvi->offset = fi_static_chain;
|
| 5306 |
|
|
chainvi->size = 1;
|
| 5307 |
|
|
chainvi->fullsize = vi->fullsize;
|
| 5308 |
|
|
chainvi->is_full_var = true;
|
| 5309 |
|
|
chainvi->is_global_var = false;
|
| 5310 |
|
|
gcc_assert (prev_vi->offset < chainvi->offset);
|
| 5311 |
|
|
prev_vi->next = chainvi;
|
| 5312 |
|
|
prev_vi = chainvi;
|
| 5313 |
|
|
insert_vi_for_tree (fn->static_chain_decl, chainvi);
|
| 5314 |
|
|
}
|
| 5315 |
|
|
|
| 5316 |
|
|
/* Create a variable for the return var. */
|
| 5317 |
|
|
if (DECL_RESULT (decl) != NULL
|
| 5318 |
|
|
|| !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
|
| 5319 |
|
|
{
|
| 5320 |
|
|
varinfo_t resultvi;
|
| 5321 |
|
|
const char *newname;
|
| 5322 |
|
|
char *tempname;
|
| 5323 |
|
|
tree resultdecl = decl;
|
| 5324 |
|
|
|
| 5325 |
|
|
if (DECL_RESULT (decl))
|
| 5326 |
|
|
resultdecl = DECL_RESULT (decl);
|
| 5327 |
|
|
|
| 5328 |
|
|
asprintf (&tempname, "%s.result", name);
|
| 5329 |
|
|
newname = ggc_strdup (tempname);
|
| 5330 |
|
|
free (tempname);
|
| 5331 |
|
|
|
| 5332 |
|
|
resultvi = new_var_info (resultdecl, newname);
|
| 5333 |
|
|
resultvi->offset = fi_result;
|
| 5334 |
|
|
resultvi->size = 1;
|
| 5335 |
|
|
resultvi->fullsize = vi->fullsize;
|
| 5336 |
|
|
resultvi->is_full_var = true;
|
| 5337 |
|
|
if (DECL_RESULT (decl))
|
| 5338 |
|
|
resultvi->may_have_pointers = true;
|
| 5339 |
|
|
gcc_assert (prev_vi->offset < resultvi->offset);
|
| 5340 |
|
|
prev_vi->next = resultvi;
|
| 5341 |
|
|
prev_vi = resultvi;
|
| 5342 |
|
|
if (DECL_RESULT (decl))
|
| 5343 |
|
|
insert_vi_for_tree (DECL_RESULT (decl), resultvi);
|
| 5344 |
|
|
}
|
| 5345 |
|
|
|
| 5346 |
|
|
/* Set up variables for each argument. */
|
| 5347 |
|
|
arg = DECL_ARGUMENTS (decl);
|
| 5348 |
|
|
for (i = 0; i < num_args; i++)
|
| 5349 |
|
|
{
|
| 5350 |
|
|
varinfo_t argvi;
|
| 5351 |
|
|
const char *newname;
|
| 5352 |
|
|
char *tempname;
|
| 5353 |
|
|
tree argdecl = decl;
|
| 5354 |
|
|
|
| 5355 |
|
|
if (arg)
|
| 5356 |
|
|
argdecl = arg;
|
| 5357 |
|
|
|
| 5358 |
|
|
asprintf (&tempname, "%s.arg%d", name, i);
|
| 5359 |
|
|
newname = ggc_strdup (tempname);
|
| 5360 |
|
|
free (tempname);
|
| 5361 |
|
|
|
| 5362 |
|
|
argvi = new_var_info (argdecl, newname);
|
| 5363 |
|
|
argvi->offset = fi_parm_base + i;
|
| 5364 |
|
|
argvi->size = 1;
|
| 5365 |
|
|
argvi->is_full_var = true;
|
| 5366 |
|
|
argvi->fullsize = vi->fullsize;
|
| 5367 |
|
|
if (arg)
|
| 5368 |
|
|
argvi->may_have_pointers = true;
|
| 5369 |
|
|
gcc_assert (prev_vi->offset < argvi->offset);
|
| 5370 |
|
|
prev_vi->next = argvi;
|
| 5371 |
|
|
prev_vi = argvi;
|
| 5372 |
|
|
if (arg)
|
| 5373 |
|
|
{
|
| 5374 |
|
|
insert_vi_for_tree (arg, argvi);
|
| 5375 |
|
|
arg = DECL_CHAIN (arg);
|
| 5376 |
|
|
}
|
| 5377 |
|
|
}
|
| 5378 |
|
|
|
| 5379 |
|
|
/* Add one representative for all further args. */
|
| 5380 |
|
|
if (is_varargs)
|
| 5381 |
|
|
{
|
| 5382 |
|
|
varinfo_t argvi;
|
| 5383 |
|
|
const char *newname;
|
| 5384 |
|
|
char *tempname;
|
| 5385 |
|
|
tree decl;
|
| 5386 |
|
|
|
| 5387 |
|
|
asprintf (&tempname, "%s.varargs", name);
|
| 5388 |
|
|
newname = ggc_strdup (tempname);
|
| 5389 |
|
|
free (tempname);
|
| 5390 |
|
|
|
| 5391 |
|
|
/* We need sth that can be pointed to for va_start. */
|
| 5392 |
|
|
decl = build_fake_var_decl (ptr_type_node);
|
| 5393 |
|
|
|
| 5394 |
|
|
argvi = new_var_info (decl, newname);
|
| 5395 |
|
|
argvi->offset = fi_parm_base + num_args;
|
| 5396 |
|
|
argvi->size = ~0;
|
| 5397 |
|
|
argvi->is_full_var = true;
|
| 5398 |
|
|
argvi->is_heap_var = true;
|
| 5399 |
|
|
argvi->fullsize = vi->fullsize;
|
| 5400 |
|
|
gcc_assert (prev_vi->offset < argvi->offset);
|
| 5401 |
|
|
prev_vi->next = argvi;
|
| 5402 |
|
|
prev_vi = argvi;
|
| 5403 |
|
|
}
|
| 5404 |
|
|
|
| 5405 |
|
|
return vi;
|
| 5406 |
|
|
}
|
| 5407 |
|
|
|
| 5408 |
|
|
|
| 5409 |
|
|
/* Return true if FIELDSTACK contains fields that overlap.
|
| 5410 |
|
|
FIELDSTACK is assumed to be sorted by offset. */
|
| 5411 |
|
|
|
| 5412 |
|
|
static bool
|
| 5413 |
|
|
check_for_overlaps (VEC (fieldoff_s,heap) *fieldstack)
|
| 5414 |
|
|
{
|
| 5415 |
|
|
fieldoff_s *fo = NULL;
|
| 5416 |
|
|
unsigned int i;
|
| 5417 |
|
|
HOST_WIDE_INT lastoffset = -1;
|
| 5418 |
|
|
|
| 5419 |
|
|
FOR_EACH_VEC_ELT (fieldoff_s, fieldstack, i, fo)
|
| 5420 |
|
|
{
|
| 5421 |
|
|
if (fo->offset == lastoffset)
|
| 5422 |
|
|
return true;
|
| 5423 |
|
|
lastoffset = fo->offset;
|
| 5424 |
|
|
}
|
| 5425 |
|
|
return false;
|
| 5426 |
|
|
}
|
| 5427 |
|
|
|
| 5428 |
|
|
/* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
|
| 5429 |
|
|
This will also create any varinfo structures necessary for fields
|
| 5430 |
|
|
of DECL. */
|
| 5431 |
|
|
|
| 5432 |
|
|
static varinfo_t
|
| 5433 |
|
|
create_variable_info_for_1 (tree decl, const char *name)
|
| 5434 |
|
|
{
|
| 5435 |
|
|
varinfo_t vi, newvi;
|
| 5436 |
|
|
tree decl_type = TREE_TYPE (decl);
|
| 5437 |
|
|
tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type);
|
| 5438 |
|
|
VEC (fieldoff_s,heap) *fieldstack = NULL;
|
| 5439 |
|
|
fieldoff_s *fo;
|
| 5440 |
|
|
unsigned int i;
|
| 5441 |
|
|
|
| 5442 |
|
|
if (!declsize
|
| 5443 |
|
|
|| !host_integerp (declsize, 1))
|
| 5444 |
|
|
{
|
| 5445 |
|
|
vi = new_var_info (decl, name);
|
| 5446 |
|
|
vi->offset = 0;
|
| 5447 |
|
|
vi->size = ~0;
|
| 5448 |
|
|
vi->fullsize = ~0;
|
| 5449 |
|
|
vi->is_unknown_size_var = true;
|
| 5450 |
|
|
vi->is_full_var = true;
|
| 5451 |
|
|
vi->may_have_pointers = true;
|
| 5452 |
|
|
return vi;
|
| 5453 |
|
|
}
|
| 5454 |
|
|
|
| 5455 |
|
|
/* Collect field information. */
|
| 5456 |
|
|
if (use_field_sensitive
|
| 5457 |
|
|
&& var_can_have_subvars (decl)
|
| 5458 |
|
|
/* ??? Force us to not use subfields for global initializers
|
| 5459 |
|
|
in IPA mode. Else we'd have to parse arbitrary initializers. */
|
| 5460 |
|
|
&& !(in_ipa_mode
|
| 5461 |
|
|
&& is_global_var (decl)
|
| 5462 |
|
|
&& DECL_INITIAL (decl)))
|
| 5463 |
|
|
{
|
| 5464 |
|
|
fieldoff_s *fo = NULL;
|
| 5465 |
|
|
bool notokay = false;
|
| 5466 |
|
|
unsigned int i;
|
| 5467 |
|
|
|
| 5468 |
|
|
push_fields_onto_fieldstack (decl_type, &fieldstack, 0);
|
| 5469 |
|
|
|
| 5470 |
|
|
for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
|
| 5471 |
|
|
if (fo->has_unknown_size
|
| 5472 |
|
|
|| fo->offset < 0)
|
| 5473 |
|
|
{
|
| 5474 |
|
|
notokay = true;
|
| 5475 |
|
|
break;
|
| 5476 |
|
|
}
|
| 5477 |
|
|
|
| 5478 |
|
|
/* We can't sort them if we have a field with a variable sized type,
|
| 5479 |
|
|
which will make notokay = true. In that case, we are going to return
|
| 5480 |
|
|
without creating varinfos for the fields anyway, so sorting them is a
|
| 5481 |
|
|
waste to boot. */
|
| 5482 |
|
|
if (!notokay)
|
| 5483 |
|
|
{
|
| 5484 |
|
|
sort_fieldstack (fieldstack);
|
| 5485 |
|
|
/* Due to some C++ FE issues, like PR 22488, we might end up
|
| 5486 |
|
|
what appear to be overlapping fields even though they,
|
| 5487 |
|
|
in reality, do not overlap. Until the C++ FE is fixed,
|
| 5488 |
|
|
we will simply disable field-sensitivity for these cases. */
|
| 5489 |
|
|
notokay = check_for_overlaps (fieldstack);
|
| 5490 |
|
|
}
|
| 5491 |
|
|
|
| 5492 |
|
|
if (notokay)
|
| 5493 |
|
|
VEC_free (fieldoff_s, heap, fieldstack);
|
| 5494 |
|
|
}
|
| 5495 |
|
|
|
| 5496 |
|
|
/* If we didn't end up collecting sub-variables create a full
|
| 5497 |
|
|
variable for the decl. */
|
| 5498 |
|
|
if (VEC_length (fieldoff_s, fieldstack) <= 1
|
| 5499 |
|
|
|| VEC_length (fieldoff_s, fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
|
| 5500 |
|
|
{
|
| 5501 |
|
|
vi = new_var_info (decl, name);
|
| 5502 |
|
|
vi->offset = 0;
|
| 5503 |
|
|
vi->may_have_pointers = true;
|
| 5504 |
|
|
vi->fullsize = TREE_INT_CST_LOW (declsize);
|
| 5505 |
|
|
vi->size = vi->fullsize;
|
| 5506 |
|
|
vi->is_full_var = true;
|
| 5507 |
|
|
VEC_free (fieldoff_s, heap, fieldstack);
|
| 5508 |
|
|
return vi;
|
| 5509 |
|
|
}
|
| 5510 |
|
|
|
| 5511 |
|
|
vi = new_var_info (decl, name);
|
| 5512 |
|
|
vi->fullsize = TREE_INT_CST_LOW (declsize);
|
| 5513 |
|
|
for (i = 0, newvi = vi;
|
| 5514 |
|
|
VEC_iterate (fieldoff_s, fieldstack, i, fo);
|
| 5515 |
|
|
++i, newvi = newvi->next)
|
| 5516 |
|
|
{
|
| 5517 |
|
|
const char *newname = "NULL";
|
| 5518 |
|
|
char *tempname;
|
| 5519 |
|
|
|
| 5520 |
|
|
if (dump_file)
|
| 5521 |
|
|
{
|
| 5522 |
|
|
asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC
|
| 5523 |
|
|
"+" HOST_WIDE_INT_PRINT_DEC, name, fo->offset, fo->size);
|
| 5524 |
|
|
newname = ggc_strdup (tempname);
|
| 5525 |
|
|
free (tempname);
|
| 5526 |
|
|
}
|
| 5527 |
|
|
newvi->name = newname;
|
| 5528 |
|
|
newvi->offset = fo->offset;
|
| 5529 |
|
|
newvi->size = fo->size;
|
| 5530 |
|
|
newvi->fullsize = vi->fullsize;
|
| 5531 |
|
|
newvi->may_have_pointers = fo->may_have_pointers;
|
| 5532 |
|
|
newvi->only_restrict_pointers = fo->only_restrict_pointers;
|
| 5533 |
|
|
if (i + 1 < VEC_length (fieldoff_s, fieldstack))
|
| 5534 |
|
|
newvi->next = new_var_info (decl, name);
|
| 5535 |
|
|
}
|
| 5536 |
|
|
|
| 5537 |
|
|
VEC_free (fieldoff_s, heap, fieldstack);
|
| 5538 |
|
|
|
| 5539 |
|
|
return vi;
|
| 5540 |
|
|
}
|
| 5541 |
|
|
|
| 5542 |
|
|
static unsigned int
|
| 5543 |
|
|
create_variable_info_for (tree decl, const char *name)
|
| 5544 |
|
|
{
|
| 5545 |
|
|
varinfo_t vi = create_variable_info_for_1 (decl, name);
|
| 5546 |
|
|
unsigned int id = vi->id;
|
| 5547 |
|
|
|
| 5548 |
|
|
insert_vi_for_tree (decl, vi);
|
| 5549 |
|
|
|
| 5550 |
|
|
if (TREE_CODE (decl) != VAR_DECL)
|
| 5551 |
|
|
return id;
|
| 5552 |
|
|
|
| 5553 |
|
|
/* Create initial constraints for globals. */
|
| 5554 |
|
|
for (; vi; vi = vi->next)
|
| 5555 |
|
|
{
|
| 5556 |
|
|
if (!vi->may_have_pointers
|
| 5557 |
|
|
|| !vi->is_global_var)
|
| 5558 |
|
|
continue;
|
| 5559 |
|
|
|
| 5560 |
|
|
/* Mark global restrict qualified pointers. */
|
| 5561 |
|
|
if ((POINTER_TYPE_P (TREE_TYPE (decl))
|
| 5562 |
|
|
&& TYPE_RESTRICT (TREE_TYPE (decl)))
|
| 5563 |
|
|
|| vi->only_restrict_pointers)
|
| 5564 |
|
|
{
|
| 5565 |
|
|
make_constraint_from_global_restrict (vi, "GLOBAL_RESTRICT");
|
| 5566 |
|
|
continue;
|
| 5567 |
|
|
}
|
| 5568 |
|
|
|
| 5569 |
|
|
/* In non-IPA mode the initializer from nonlocal is all we need. */
|
| 5570 |
|
|
if (!in_ipa_mode
|
| 5571 |
|
|
|| DECL_HARD_REGISTER (decl))
|
| 5572 |
|
|
make_copy_constraint (vi, nonlocal_id);
|
| 5573 |
|
|
|
| 5574 |
|
|
/* In IPA mode parse the initializer and generate proper constraints
|
| 5575 |
|
|
for it. */
|
| 5576 |
|
|
else
|
| 5577 |
|
|
{
|
| 5578 |
|
|
struct varpool_node *vnode = varpool_get_node (decl);
|
| 5579 |
|
|
|
| 5580 |
|
|
/* For escaped variables initialize them from nonlocal. */
|
| 5581 |
|
|
if (!varpool_all_refs_explicit_p (vnode))
|
| 5582 |
|
|
make_copy_constraint (vi, nonlocal_id);
|
| 5583 |
|
|
|
| 5584 |
|
|
/* If this is a global variable with an initializer and we are in
|
| 5585 |
|
|
IPA mode generate constraints for it. */
|
| 5586 |
|
|
if (DECL_INITIAL (decl))
|
| 5587 |
|
|
{
|
| 5588 |
|
|
VEC (ce_s, heap) *rhsc = NULL;
|
| 5589 |
|
|
struct constraint_expr lhs, *rhsp;
|
| 5590 |
|
|
unsigned i;
|
| 5591 |
|
|
get_constraint_for_rhs (DECL_INITIAL (decl), &rhsc);
|
| 5592 |
|
|
lhs.var = vi->id;
|
| 5593 |
|
|
lhs.offset = 0;
|
| 5594 |
|
|
lhs.type = SCALAR;
|
| 5595 |
|
|
FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
|
| 5596 |
|
|
process_constraint (new_constraint (lhs, *rhsp));
|
| 5597 |
|
|
/* If this is a variable that escapes from the unit
|
| 5598 |
|
|
the initializer escapes as well. */
|
| 5599 |
|
|
if (!varpool_all_refs_explicit_p (vnode))
|
| 5600 |
|
|
{
|
| 5601 |
|
|
lhs.var = escaped_id;
|
| 5602 |
|
|
lhs.offset = 0;
|
| 5603 |
|
|
lhs.type = SCALAR;
|
| 5604 |
|
|
FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
|
| 5605 |
|
|
process_constraint (new_constraint (lhs, *rhsp));
|
| 5606 |
|
|
}
|
| 5607 |
|
|
VEC_free (ce_s, heap, rhsc);
|
| 5608 |
|
|
}
|
| 5609 |
|
|
}
|
| 5610 |
|
|
}
|
| 5611 |
|
|
|
| 5612 |
|
|
return id;
|
| 5613 |
|
|
}
|
| 5614 |
|
|
|
| 5615 |
|
|
/* Print out the points-to solution for VAR to FILE. */
|
| 5616 |
|
|
|
| 5617 |
|
|
static void
|
| 5618 |
|
|
dump_solution_for_var (FILE *file, unsigned int var)
|
| 5619 |
|
|
{
|
| 5620 |
|
|
varinfo_t vi = get_varinfo (var);
|
| 5621 |
|
|
unsigned int i;
|
| 5622 |
|
|
bitmap_iterator bi;
|
| 5623 |
|
|
|
| 5624 |
|
|
/* Dump the solution for unified vars anyway, this avoids difficulties
|
| 5625 |
|
|
in scanning dumps in the testsuite. */
|
| 5626 |
|
|
fprintf (file, "%s = { ", vi->name);
|
| 5627 |
|
|
vi = get_varinfo (find (var));
|
| 5628 |
|
|
EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
|
| 5629 |
|
|
fprintf (file, "%s ", get_varinfo (i)->name);
|
| 5630 |
|
|
fprintf (file, "}");
|
| 5631 |
|
|
|
| 5632 |
|
|
/* But note when the variable was unified. */
|
| 5633 |
|
|
if (vi->id != var)
|
| 5634 |
|
|
fprintf (file, " same as %s", vi->name);
|
| 5635 |
|
|
|
| 5636 |
|
|
fprintf (file, "\n");
|
| 5637 |
|
|
}
|
| 5638 |
|
|
|
| 5639 |
|
|
/* Print the points-to solution for VAR to stdout. */
|
| 5640 |
|
|
|
| 5641 |
|
|
DEBUG_FUNCTION void
|
| 5642 |
|
|
debug_solution_for_var (unsigned int var)
|
| 5643 |
|
|
{
|
| 5644 |
|
|
dump_solution_for_var (stdout, var);
|
| 5645 |
|
|
}
|
| 5646 |
|
|
|
| 5647 |
|
|
/* Create varinfo structures for all of the variables in the
|
| 5648 |
|
|
function for intraprocedural mode. */
|
| 5649 |
|
|
|
| 5650 |
|
|
static void
|
| 5651 |
|
|
intra_create_variable_infos (void)
|
| 5652 |
|
|
{
|
| 5653 |
|
|
tree t;
|
| 5654 |
|
|
|
| 5655 |
|
|
/* For each incoming pointer argument arg, create the constraint ARG
|
| 5656 |
|
|
= NONLOCAL or a dummy variable if it is a restrict qualified
|
| 5657 |
|
|
passed-by-reference argument. */
|
| 5658 |
|
|
for (t = DECL_ARGUMENTS (current_function_decl); t; t = DECL_CHAIN (t))
|
| 5659 |
|
|
{
|
| 5660 |
|
|
varinfo_t p = get_vi_for_tree (t);
|
| 5661 |
|
|
|
| 5662 |
|
|
/* For restrict qualified pointers to objects passed by
|
| 5663 |
|
|
reference build a real representative for the pointed-to object.
|
| 5664 |
|
|
Treat restrict qualified references the same. */
|
| 5665 |
|
|
if (TYPE_RESTRICT (TREE_TYPE (t))
|
| 5666 |
|
|
&& ((DECL_BY_REFERENCE (t) && POINTER_TYPE_P (TREE_TYPE (t)))
|
| 5667 |
|
|
|| TREE_CODE (TREE_TYPE (t)) == REFERENCE_TYPE)
|
| 5668 |
|
|
&& !type_contains_placeholder_p (TREE_TYPE (TREE_TYPE (t))))
|
| 5669 |
|
|
{
|
| 5670 |
|
|
struct constraint_expr lhsc, rhsc;
|
| 5671 |
|
|
varinfo_t vi;
|
| 5672 |
|
|
tree heapvar = build_fake_var_decl (TREE_TYPE (TREE_TYPE (t)));
|
| 5673 |
|
|
DECL_EXTERNAL (heapvar) = 1;
|
| 5674 |
|
|
vi = create_variable_info_for_1 (heapvar, "PARM_NOALIAS");
|
| 5675 |
|
|
insert_vi_for_tree (heapvar, vi);
|
| 5676 |
|
|
lhsc.var = p->id;
|
| 5677 |
|
|
lhsc.type = SCALAR;
|
| 5678 |
|
|
lhsc.offset = 0;
|
| 5679 |
|
|
rhsc.var = vi->id;
|
| 5680 |
|
|
rhsc.type = ADDRESSOF;
|
| 5681 |
|
|
rhsc.offset = 0;
|
| 5682 |
|
|
process_constraint (new_constraint (lhsc, rhsc));
|
| 5683 |
|
|
for (; vi; vi = vi->next)
|
| 5684 |
|
|
if (vi->may_have_pointers)
|
| 5685 |
|
|
{
|
| 5686 |
|
|
if (vi->only_restrict_pointers)
|
| 5687 |
|
|
make_constraint_from_global_restrict (vi, "GLOBAL_RESTRICT");
|
| 5688 |
|
|
else
|
| 5689 |
|
|
make_copy_constraint (vi, nonlocal_id);
|
| 5690 |
|
|
}
|
| 5691 |
|
|
continue;
|
| 5692 |
|
|
}
|
| 5693 |
|
|
|
| 5694 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (t))
|
| 5695 |
|
|
&& TYPE_RESTRICT (TREE_TYPE (t)))
|
| 5696 |
|
|
make_constraint_from_global_restrict (p, "PARM_RESTRICT");
|
| 5697 |
|
|
else
|
| 5698 |
|
|
{
|
| 5699 |
|
|
for (; p; p = p->next)
|
| 5700 |
|
|
{
|
| 5701 |
|
|
if (p->only_restrict_pointers)
|
| 5702 |
|
|
make_constraint_from_global_restrict (p, "PARM_RESTRICT");
|
| 5703 |
|
|
else if (p->may_have_pointers)
|
| 5704 |
|
|
make_constraint_from (p, nonlocal_id);
|
| 5705 |
|
|
}
|
| 5706 |
|
|
}
|
| 5707 |
|
|
}
|
| 5708 |
|
|
|
| 5709 |
|
|
/* Add a constraint for a result decl that is passed by reference. */
|
| 5710 |
|
|
if (DECL_RESULT (cfun->decl)
|
| 5711 |
|
|
&& DECL_BY_REFERENCE (DECL_RESULT (cfun->decl)))
|
| 5712 |
|
|
{
|
| 5713 |
|
|
varinfo_t p, result_vi = get_vi_for_tree (DECL_RESULT (cfun->decl));
|
| 5714 |
|
|
|
| 5715 |
|
|
for (p = result_vi; p; p = p->next)
|
| 5716 |
|
|
make_constraint_from (p, nonlocal_id);
|
| 5717 |
|
|
}
|
| 5718 |
|
|
|
| 5719 |
|
|
/* Add a constraint for the incoming static chain parameter. */
|
| 5720 |
|
|
if (cfun->static_chain_decl != NULL_TREE)
|
| 5721 |
|
|
{
|
| 5722 |
|
|
varinfo_t p, chain_vi = get_vi_for_tree (cfun->static_chain_decl);
|
| 5723 |
|
|
|
| 5724 |
|
|
for (p = chain_vi; p; p = p->next)
|
| 5725 |
|
|
make_constraint_from (p, nonlocal_id);
|
| 5726 |
|
|
}
|
| 5727 |
|
|
}
|
| 5728 |
|
|
|
| 5729 |
|
|
/* Structure used to put solution bitmaps in a hashtable so they can
|
| 5730 |
|
|
be shared among variables with the same points-to set. */
|
| 5731 |
|
|
|
| 5732 |
|
|
typedef struct shared_bitmap_info
|
| 5733 |
|
|
{
|
| 5734 |
|
|
bitmap pt_vars;
|
| 5735 |
|
|
hashval_t hashcode;
|
| 5736 |
|
|
} *shared_bitmap_info_t;
|
| 5737 |
|
|
typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;
|
| 5738 |
|
|
|
| 5739 |
|
|
static htab_t shared_bitmap_table;
|
| 5740 |
|
|
|
| 5741 |
|
|
/* Hash function for a shared_bitmap_info_t */
|
| 5742 |
|
|
|
| 5743 |
|
|
static hashval_t
|
| 5744 |
|
|
shared_bitmap_hash (const void *p)
|
| 5745 |
|
|
{
|
| 5746 |
|
|
const_shared_bitmap_info_t const bi = (const_shared_bitmap_info_t) p;
|
| 5747 |
|
|
return bi->hashcode;
|
| 5748 |
|
|
}
|
| 5749 |
|
|
|
| 5750 |
|
|
/* Equality function for two shared_bitmap_info_t's. */
|
| 5751 |
|
|
|
| 5752 |
|
|
static int
|
| 5753 |
|
|
shared_bitmap_eq (const void *p1, const void *p2)
|
| 5754 |
|
|
{
|
| 5755 |
|
|
const_shared_bitmap_info_t const sbi1 = (const_shared_bitmap_info_t) p1;
|
| 5756 |
|
|
const_shared_bitmap_info_t const sbi2 = (const_shared_bitmap_info_t) p2;
|
| 5757 |
|
|
return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
|
| 5758 |
|
|
}
|
| 5759 |
|
|
|
| 5760 |
|
|
/* Lookup a bitmap in the shared bitmap hashtable, and return an already
|
| 5761 |
|
|
existing instance if there is one, NULL otherwise. */
|
| 5762 |
|
|
|
| 5763 |
|
|
static bitmap
|
| 5764 |
|
|
shared_bitmap_lookup (bitmap pt_vars)
|
| 5765 |
|
|
{
|
| 5766 |
|
|
void **slot;
|
| 5767 |
|
|
struct shared_bitmap_info sbi;
|
| 5768 |
|
|
|
| 5769 |
|
|
sbi.pt_vars = pt_vars;
|
| 5770 |
|
|
sbi.hashcode = bitmap_hash (pt_vars);
|
| 5771 |
|
|
|
| 5772 |
|
|
slot = htab_find_slot_with_hash (shared_bitmap_table, &sbi,
|
| 5773 |
|
|
sbi.hashcode, NO_INSERT);
|
| 5774 |
|
|
if (!slot)
|
| 5775 |
|
|
return NULL;
|
| 5776 |
|
|
else
|
| 5777 |
|
|
return ((shared_bitmap_info_t) *slot)->pt_vars;
|
| 5778 |
|
|
}
|
| 5779 |
|
|
|
| 5780 |
|
|
|
| 5781 |
|
|
/* Add a bitmap to the shared bitmap hashtable. */
|
| 5782 |
|
|
|
| 5783 |
|
|
static void
|
| 5784 |
|
|
shared_bitmap_add (bitmap pt_vars)
|
| 5785 |
|
|
{
|
| 5786 |
|
|
void **slot;
|
| 5787 |
|
|
shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);
|
| 5788 |
|
|
|
| 5789 |
|
|
sbi->pt_vars = pt_vars;
|
| 5790 |
|
|
sbi->hashcode = bitmap_hash (pt_vars);
|
| 5791 |
|
|
|
| 5792 |
|
|
slot = htab_find_slot_with_hash (shared_bitmap_table, sbi,
|
| 5793 |
|
|
sbi->hashcode, INSERT);
|
| 5794 |
|
|
gcc_assert (!*slot);
|
| 5795 |
|
|
*slot = (void *) sbi;
|
| 5796 |
|
|
}
|
| 5797 |
|
|
|
| 5798 |
|
|
|
| 5799 |
|
|
/* Set bits in INTO corresponding to the variable uids in solution set FROM. */
|
| 5800 |
|
|
|
| 5801 |
|
|
static void
|
| 5802 |
|
|
set_uids_in_ptset (bitmap into, bitmap from, struct pt_solution *pt)
|
| 5803 |
|
|
{
|
| 5804 |
|
|
unsigned int i;
|
| 5805 |
|
|
bitmap_iterator bi;
|
| 5806 |
|
|
|
| 5807 |
|
|
EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
|
| 5808 |
|
|
{
|
| 5809 |
|
|
varinfo_t vi = get_varinfo (i);
|
| 5810 |
|
|
|
| 5811 |
|
|
/* The only artificial variables that are allowed in a may-alias
|
| 5812 |
|
|
set are heap variables. */
|
| 5813 |
|
|
if (vi->is_artificial_var && !vi->is_heap_var)
|
| 5814 |
|
|
continue;
|
| 5815 |
|
|
|
| 5816 |
|
|
if (TREE_CODE (vi->decl) == VAR_DECL
|
| 5817 |
|
|
|| TREE_CODE (vi->decl) == PARM_DECL
|
| 5818 |
|
|
|| TREE_CODE (vi->decl) == RESULT_DECL)
|
| 5819 |
|
|
{
|
| 5820 |
|
|
/* If we are in IPA mode we will not recompute points-to
|
| 5821 |
|
|
sets after inlining so make sure they stay valid. */
|
| 5822 |
|
|
if (in_ipa_mode
|
| 5823 |
|
|
&& !DECL_PT_UID_SET_P (vi->decl))
|
| 5824 |
|
|
SET_DECL_PT_UID (vi->decl, DECL_UID (vi->decl));
|
| 5825 |
|
|
|
| 5826 |
|
|
/* Add the decl to the points-to set. Note that the points-to
|
| 5827 |
|
|
set contains global variables. */
|
| 5828 |
|
|
bitmap_set_bit (into, DECL_PT_UID (vi->decl));
|
| 5829 |
|
|
if (vi->is_global_var)
|
| 5830 |
|
|
pt->vars_contains_global = true;
|
| 5831 |
|
|
}
|
| 5832 |
|
|
}
|
| 5833 |
|
|
}
|
| 5834 |
|
|
|
| 5835 |
|
|
|
| 5836 |
|
|
/* Compute the points-to solution *PT for the variable VI. */
|
| 5837 |
|
|
|
| 5838 |
|
|
static void
|
| 5839 |
|
|
find_what_var_points_to (varinfo_t orig_vi, struct pt_solution *pt)
|
| 5840 |
|
|
{
|
| 5841 |
|
|
unsigned int i;
|
| 5842 |
|
|
bitmap_iterator bi;
|
| 5843 |
|
|
bitmap finished_solution;
|
| 5844 |
|
|
bitmap result;
|
| 5845 |
|
|
varinfo_t vi;
|
| 5846 |
|
|
|
| 5847 |
|
|
memset (pt, 0, sizeof (struct pt_solution));
|
| 5848 |
|
|
|
| 5849 |
|
|
/* This variable may have been collapsed, let's get the real
|
| 5850 |
|
|
variable. */
|
| 5851 |
|
|
vi = get_varinfo (find (orig_vi->id));
|
| 5852 |
|
|
|
| 5853 |
|
|
/* Translate artificial variables into SSA_NAME_PTR_INFO
|
| 5854 |
|
|
attributes. */
|
| 5855 |
|
|
EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
|
| 5856 |
|
|
{
|
| 5857 |
|
|
varinfo_t vi = get_varinfo (i);
|
| 5858 |
|
|
|
| 5859 |
|
|
if (vi->is_artificial_var)
|
| 5860 |
|
|
{
|
| 5861 |
|
|
if (vi->id == nothing_id)
|
| 5862 |
|
|
pt->null = 1;
|
| 5863 |
|
|
else if (vi->id == escaped_id)
|
| 5864 |
|
|
{
|
| 5865 |
|
|
if (in_ipa_mode)
|
| 5866 |
|
|
pt->ipa_escaped = 1;
|
| 5867 |
|
|
else
|
| 5868 |
|
|
pt->escaped = 1;
|
| 5869 |
|
|
}
|
| 5870 |
|
|
else if (vi->id == nonlocal_id)
|
| 5871 |
|
|
pt->nonlocal = 1;
|
| 5872 |
|
|
else if (vi->is_heap_var)
|
| 5873 |
|
|
/* We represent heapvars in the points-to set properly. */
|
| 5874 |
|
|
;
|
| 5875 |
|
|
else if (vi->id == readonly_id)
|
| 5876 |
|
|
/* Nobody cares. */
|
| 5877 |
|
|
;
|
| 5878 |
|
|
else if (vi->id == anything_id
|
| 5879 |
|
|
|| vi->id == integer_id)
|
| 5880 |
|
|
pt->anything = 1;
|
| 5881 |
|
|
}
|
| 5882 |
|
|
}
|
| 5883 |
|
|
|
| 5884 |
|
|
/* Instead of doing extra work, simply do not create
|
| 5885 |
|
|
elaborate points-to information for pt_anything pointers. */
|
| 5886 |
|
|
if (pt->anything)
|
| 5887 |
|
|
return;
|
| 5888 |
|
|
|
| 5889 |
|
|
/* Share the final set of variables when possible. */
|
| 5890 |
|
|
finished_solution = BITMAP_GGC_ALLOC ();
|
| 5891 |
|
|
stats.points_to_sets_created++;
|
| 5892 |
|
|
|
| 5893 |
|
|
set_uids_in_ptset (finished_solution, vi->solution, pt);
|
| 5894 |
|
|
result = shared_bitmap_lookup (finished_solution);
|
| 5895 |
|
|
if (!result)
|
| 5896 |
|
|
{
|
| 5897 |
|
|
shared_bitmap_add (finished_solution);
|
| 5898 |
|
|
pt->vars = finished_solution;
|
| 5899 |
|
|
}
|
| 5900 |
|
|
else
|
| 5901 |
|
|
{
|
| 5902 |
|
|
pt->vars = result;
|
| 5903 |
|
|
bitmap_clear (finished_solution);
|
| 5904 |
|
|
}
|
| 5905 |
|
|
}
|
| 5906 |
|
|
|
| 5907 |
|
|
/* Given a pointer variable P, fill in its points-to set. */
|
| 5908 |
|
|
|
| 5909 |
|
|
static void
|
| 5910 |
|
|
find_what_p_points_to (tree p)
|
| 5911 |
|
|
{
|
| 5912 |
|
|
struct ptr_info_def *pi;
|
| 5913 |
|
|
tree lookup_p = p;
|
| 5914 |
|
|
varinfo_t vi;
|
| 5915 |
|
|
|
| 5916 |
|
|
/* For parameters, get at the points-to set for the actual parm
|
| 5917 |
|
|
decl. */
|
| 5918 |
|
|
if (TREE_CODE (p) == SSA_NAME
|
| 5919 |
|
|
&& (TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
|
| 5920 |
|
|
|| TREE_CODE (SSA_NAME_VAR (p)) == RESULT_DECL)
|
| 5921 |
|
|
&& SSA_NAME_IS_DEFAULT_DEF (p))
|
| 5922 |
|
|
lookup_p = SSA_NAME_VAR (p);
|
| 5923 |
|
|
|
| 5924 |
|
|
vi = lookup_vi_for_tree (lookup_p);
|
| 5925 |
|
|
if (!vi)
|
| 5926 |
|
|
return;
|
| 5927 |
|
|
|
| 5928 |
|
|
pi = get_ptr_info (p);
|
| 5929 |
|
|
find_what_var_points_to (vi, &pi->pt);
|
| 5930 |
|
|
}
|
| 5931 |
|
|
|
| 5932 |
|
|
|
| 5933 |
|
|
/* Query statistics for points-to solutions. */
|
| 5934 |
|
|
|
| 5935 |
|
|
static struct {
|
| 5936 |
|
|
unsigned HOST_WIDE_INT pt_solution_includes_may_alias;
|
| 5937 |
|
|
unsigned HOST_WIDE_INT pt_solution_includes_no_alias;
|
| 5938 |
|
|
unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias;
|
| 5939 |
|
|
unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias;
|
| 5940 |
|
|
} pta_stats;
|
| 5941 |
|
|
|
| 5942 |
|
|
void
|
| 5943 |
|
|
dump_pta_stats (FILE *s)
|
| 5944 |
|
|
{
|
| 5945 |
|
|
fprintf (s, "\nPTA query stats:\n");
|
| 5946 |
|
|
fprintf (s, " pt_solution_includes: "
|
| 5947 |
|
|
HOST_WIDE_INT_PRINT_DEC" disambiguations, "
|
| 5948 |
|
|
HOST_WIDE_INT_PRINT_DEC" queries\n",
|
| 5949 |
|
|
pta_stats.pt_solution_includes_no_alias,
|
| 5950 |
|
|
pta_stats.pt_solution_includes_no_alias
|
| 5951 |
|
|
+ pta_stats.pt_solution_includes_may_alias);
|
| 5952 |
|
|
fprintf (s, " pt_solutions_intersect: "
|
| 5953 |
|
|
HOST_WIDE_INT_PRINT_DEC" disambiguations, "
|
| 5954 |
|
|
HOST_WIDE_INT_PRINT_DEC" queries\n",
|
| 5955 |
|
|
pta_stats.pt_solutions_intersect_no_alias,
|
| 5956 |
|
|
pta_stats.pt_solutions_intersect_no_alias
|
| 5957 |
|
|
+ pta_stats.pt_solutions_intersect_may_alias);
|
| 5958 |
|
|
}
|
| 5959 |
|
|
|
| 5960 |
|
|
|
| 5961 |
|
|
/* Reset the points-to solution *PT to a conservative default
|
| 5962 |
|
|
(point to anything). */
|
| 5963 |
|
|
|
| 5964 |
|
|
void
|
| 5965 |
|
|
pt_solution_reset (struct pt_solution *pt)
|
| 5966 |
|
|
{
|
| 5967 |
|
|
memset (pt, 0, sizeof (struct pt_solution));
|
| 5968 |
|
|
pt->anything = true;
|
| 5969 |
|
|
}
|
| 5970 |
|
|
|
| 5971 |
|
|
/* Set the points-to solution *PT to point only to the variables
|
| 5972 |
|
|
in VARS. VARS_CONTAINS_GLOBAL specifies whether that contains
|
| 5973 |
|
|
global variables and VARS_CONTAINS_RESTRICT specifies whether
|
| 5974 |
|
|
it contains restrict tag variables. */
|
| 5975 |
|
|
|
| 5976 |
|
|
void
|
| 5977 |
|
|
pt_solution_set (struct pt_solution *pt, bitmap vars, bool vars_contains_global)
|
| 5978 |
|
|
{
|
| 5979 |
|
|
memset (pt, 0, sizeof (struct pt_solution));
|
| 5980 |
|
|
pt->vars = vars;
|
| 5981 |
|
|
pt->vars_contains_global = vars_contains_global;
|
| 5982 |
|
|
}
|
| 5983 |
|
|
|
| 5984 |
|
|
/* Set the points-to solution *PT to point only to the variable VAR. */
|
| 5985 |
|
|
|
| 5986 |
|
|
void
|
| 5987 |
|
|
pt_solution_set_var (struct pt_solution *pt, tree var)
|
| 5988 |
|
|
{
|
| 5989 |
|
|
memset (pt, 0, sizeof (struct pt_solution));
|
| 5990 |
|
|
pt->vars = BITMAP_GGC_ALLOC ();
|
| 5991 |
|
|
bitmap_set_bit (pt->vars, DECL_PT_UID (var));
|
| 5992 |
|
|
pt->vars_contains_global = is_global_var (var);
|
| 5993 |
|
|
}
|
| 5994 |
|
|
|
| 5995 |
|
|
/* Computes the union of the points-to solutions *DEST and *SRC and
|
| 5996 |
|
|
stores the result in *DEST. This changes the points-to bitmap
|
| 5997 |
|
|
of *DEST and thus may not be used if that might be shared.
|
| 5998 |
|
|
The points-to bitmap of *SRC and *DEST will not be shared after
|
| 5999 |
|
|
this function if they were not before. */
|
| 6000 |
|
|
|
| 6001 |
|
|
static void
|
| 6002 |
|
|
pt_solution_ior_into (struct pt_solution *dest, struct pt_solution *src)
|
| 6003 |
|
|
{
|
| 6004 |
|
|
dest->anything |= src->anything;
|
| 6005 |
|
|
if (dest->anything)
|
| 6006 |
|
|
{
|
| 6007 |
|
|
pt_solution_reset (dest);
|
| 6008 |
|
|
return;
|
| 6009 |
|
|
}
|
| 6010 |
|
|
|
| 6011 |
|
|
dest->nonlocal |= src->nonlocal;
|
| 6012 |
|
|
dest->escaped |= src->escaped;
|
| 6013 |
|
|
dest->ipa_escaped |= src->ipa_escaped;
|
| 6014 |
|
|
dest->null |= src->null;
|
| 6015 |
|
|
dest->vars_contains_global |= src->vars_contains_global;
|
| 6016 |
|
|
if (!src->vars)
|
| 6017 |
|
|
return;
|
| 6018 |
|
|
|
| 6019 |
|
|
if (!dest->vars)
|
| 6020 |
|
|
dest->vars = BITMAP_GGC_ALLOC ();
|
| 6021 |
|
|
bitmap_ior_into (dest->vars, src->vars);
|
| 6022 |
|
|
}
|
| 6023 |
|
|
|
| 6024 |
|
|
/* Return true if the points-to solution *PT is empty. */
|
| 6025 |
|
|
|
| 6026 |
|
|
bool
|
| 6027 |
|
|
pt_solution_empty_p (struct pt_solution *pt)
|
| 6028 |
|
|
{
|
| 6029 |
|
|
if (pt->anything
|
| 6030 |
|
|
|| pt->nonlocal)
|
| 6031 |
|
|
return false;
|
| 6032 |
|
|
|
| 6033 |
|
|
if (pt->vars
|
| 6034 |
|
|
&& !bitmap_empty_p (pt->vars))
|
| 6035 |
|
|
return false;
|
| 6036 |
|
|
|
| 6037 |
|
|
/* If the solution includes ESCAPED, check if that is empty. */
|
| 6038 |
|
|
if (pt->escaped
|
| 6039 |
|
|
&& !pt_solution_empty_p (&cfun->gimple_df->escaped))
|
| 6040 |
|
|
return false;
|
| 6041 |
|
|
|
| 6042 |
|
|
/* If the solution includes ESCAPED, check if that is empty. */
|
| 6043 |
|
|
if (pt->ipa_escaped
|
| 6044 |
|
|
&& !pt_solution_empty_p (&ipa_escaped_pt))
|
| 6045 |
|
|
return false;
|
| 6046 |
|
|
|
| 6047 |
|
|
return true;
|
| 6048 |
|
|
}
|
| 6049 |
|
|
|
| 6050 |
|
|
/* Return true if the points-to solution *PT only point to a single var, and
|
| 6051 |
|
|
return the var uid in *UID. */
|
| 6052 |
|
|
|
| 6053 |
|
|
bool
|
| 6054 |
|
|
pt_solution_singleton_p (struct pt_solution *pt, unsigned *uid)
|
| 6055 |
|
|
{
|
| 6056 |
|
|
if (pt->anything || pt->nonlocal || pt->escaped || pt->ipa_escaped
|
| 6057 |
|
|
|| pt->null || pt->vars == NULL
|
| 6058 |
|
|
|| !bitmap_single_bit_set_p (pt->vars))
|
| 6059 |
|
|
return false;
|
| 6060 |
|
|
|
| 6061 |
|
|
*uid = bitmap_first_set_bit (pt->vars);
|
| 6062 |
|
|
return true;
|
| 6063 |
|
|
}
|
| 6064 |
|
|
|
| 6065 |
|
|
/* Return true if the points-to solution *PT includes global memory. */
|
| 6066 |
|
|
|
| 6067 |
|
|
bool
|
| 6068 |
|
|
pt_solution_includes_global (struct pt_solution *pt)
|
| 6069 |
|
|
{
|
| 6070 |
|
|
if (pt->anything
|
| 6071 |
|
|
|| pt->nonlocal
|
| 6072 |
|
|
|| pt->vars_contains_global)
|
| 6073 |
|
|
return true;
|
| 6074 |
|
|
|
| 6075 |
|
|
if (pt->escaped)
|
| 6076 |
|
|
return pt_solution_includes_global (&cfun->gimple_df->escaped);
|
| 6077 |
|
|
|
| 6078 |
|
|
if (pt->ipa_escaped)
|
| 6079 |
|
|
return pt_solution_includes_global (&ipa_escaped_pt);
|
| 6080 |
|
|
|
| 6081 |
|
|
/* ??? This predicate is not correct for the IPA-PTA solution
|
| 6082 |
|
|
as we do not properly distinguish between unit escape points
|
| 6083 |
|
|
and global variables. */
|
| 6084 |
|
|
if (cfun->gimple_df->ipa_pta)
|
| 6085 |
|
|
return true;
|
| 6086 |
|
|
|
| 6087 |
|
|
return false;
|
| 6088 |
|
|
}
|
| 6089 |
|
|
|
| 6090 |
|
|
/* Return true if the points-to solution *PT includes the variable
|
| 6091 |
|
|
declaration DECL. */
|
| 6092 |
|
|
|
| 6093 |
|
|
static bool
|
| 6094 |
|
|
pt_solution_includes_1 (struct pt_solution *pt, const_tree decl)
|
| 6095 |
|
|
{
|
| 6096 |
|
|
if (pt->anything)
|
| 6097 |
|
|
return true;
|
| 6098 |
|
|
|
| 6099 |
|
|
if (pt->nonlocal
|
| 6100 |
|
|
&& is_global_var (decl))
|
| 6101 |
|
|
return true;
|
| 6102 |
|
|
|
| 6103 |
|
|
if (pt->vars
|
| 6104 |
|
|
&& bitmap_bit_p (pt->vars, DECL_PT_UID (decl)))
|
| 6105 |
|
|
return true;
|
| 6106 |
|
|
|
| 6107 |
|
|
/* If the solution includes ESCAPED, check it. */
|
| 6108 |
|
|
if (pt->escaped
|
| 6109 |
|
|
&& pt_solution_includes_1 (&cfun->gimple_df->escaped, decl))
|
| 6110 |
|
|
return true;
|
| 6111 |
|
|
|
| 6112 |
|
|
/* If the solution includes ESCAPED, check it. */
|
| 6113 |
|
|
if (pt->ipa_escaped
|
| 6114 |
|
|
&& pt_solution_includes_1 (&ipa_escaped_pt, decl))
|
| 6115 |
|
|
return true;
|
| 6116 |
|
|
|
| 6117 |
|
|
return false;
|
| 6118 |
|
|
}
|
| 6119 |
|
|
|
| 6120 |
|
|
bool
|
| 6121 |
|
|
pt_solution_includes (struct pt_solution *pt, const_tree decl)
|
| 6122 |
|
|
{
|
| 6123 |
|
|
bool res = pt_solution_includes_1 (pt, decl);
|
| 6124 |
|
|
if (res)
|
| 6125 |
|
|
++pta_stats.pt_solution_includes_may_alias;
|
| 6126 |
|
|
else
|
| 6127 |
|
|
++pta_stats.pt_solution_includes_no_alias;
|
| 6128 |
|
|
return res;
|
| 6129 |
|
|
}
|
| 6130 |
|
|
|
| 6131 |
|
|
/* Return true if both points-to solutions PT1 and PT2 have a non-empty
|
| 6132 |
|
|
intersection. */
|
| 6133 |
|
|
|
| 6134 |
|
|
static bool
|
| 6135 |
|
|
pt_solutions_intersect_1 (struct pt_solution *pt1, struct pt_solution *pt2)
|
| 6136 |
|
|
{
|
| 6137 |
|
|
if (pt1->anything || pt2->anything)
|
| 6138 |
|
|
return true;
|
| 6139 |
|
|
|
| 6140 |
|
|
/* If either points to unknown global memory and the other points to
|
| 6141 |
|
|
any global memory they alias. */
|
| 6142 |
|
|
if ((pt1->nonlocal
|
| 6143 |
|
|
&& (pt2->nonlocal
|
| 6144 |
|
|
|| pt2->vars_contains_global))
|
| 6145 |
|
|
|| (pt2->nonlocal
|
| 6146 |
|
|
&& pt1->vars_contains_global))
|
| 6147 |
|
|
return true;
|
| 6148 |
|
|
|
| 6149 |
|
|
/* Check the escaped solution if required. */
|
| 6150 |
|
|
if ((pt1->escaped || pt2->escaped)
|
| 6151 |
|
|
&& !pt_solution_empty_p (&cfun->gimple_df->escaped))
|
| 6152 |
|
|
{
|
| 6153 |
|
|
/* If both point to escaped memory and that solution
|
| 6154 |
|
|
is not empty they alias. */
|
| 6155 |
|
|
if (pt1->escaped && pt2->escaped)
|
| 6156 |
|
|
return true;
|
| 6157 |
|
|
|
| 6158 |
|
|
/* If either points to escaped memory see if the escaped solution
|
| 6159 |
|
|
intersects with the other. */
|
| 6160 |
|
|
if ((pt1->escaped
|
| 6161 |
|
|
&& pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt2))
|
| 6162 |
|
|
|| (pt2->escaped
|
| 6163 |
|
|
&& pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt1)))
|
| 6164 |
|
|
return true;
|
| 6165 |
|
|
}
|
| 6166 |
|
|
|
| 6167 |
|
|
/* Check the escaped solution if required.
|
| 6168 |
|
|
??? Do we need to check the local against the IPA escaped sets? */
|
| 6169 |
|
|
if ((pt1->ipa_escaped || pt2->ipa_escaped)
|
| 6170 |
|
|
&& !pt_solution_empty_p (&ipa_escaped_pt))
|
| 6171 |
|
|
{
|
| 6172 |
|
|
/* If both point to escaped memory and that solution
|
| 6173 |
|
|
is not empty they alias. */
|
| 6174 |
|
|
if (pt1->ipa_escaped && pt2->ipa_escaped)
|
| 6175 |
|
|
return true;
|
| 6176 |
|
|
|
| 6177 |
|
|
/* If either points to escaped memory see if the escaped solution
|
| 6178 |
|
|
intersects with the other. */
|
| 6179 |
|
|
if ((pt1->ipa_escaped
|
| 6180 |
|
|
&& pt_solutions_intersect_1 (&ipa_escaped_pt, pt2))
|
| 6181 |
|
|
|| (pt2->ipa_escaped
|
| 6182 |
|
|
&& pt_solutions_intersect_1 (&ipa_escaped_pt, pt1)))
|
| 6183 |
|
|
return true;
|
| 6184 |
|
|
}
|
| 6185 |
|
|
|
| 6186 |
|
|
/* Now both pointers alias if their points-to solution intersects. */
|
| 6187 |
|
|
return (pt1->vars
|
| 6188 |
|
|
&& pt2->vars
|
| 6189 |
|
|
&& bitmap_intersect_p (pt1->vars, pt2->vars));
|
| 6190 |
|
|
}
|
| 6191 |
|
|
|
| 6192 |
|
|
bool
|
| 6193 |
|
|
pt_solutions_intersect (struct pt_solution *pt1, struct pt_solution *pt2)
|
| 6194 |
|
|
{
|
| 6195 |
|
|
bool res = pt_solutions_intersect_1 (pt1, pt2);
|
| 6196 |
|
|
if (res)
|
| 6197 |
|
|
++pta_stats.pt_solutions_intersect_may_alias;
|
| 6198 |
|
|
else
|
| 6199 |
|
|
++pta_stats.pt_solutions_intersect_no_alias;
|
| 6200 |
|
|
return res;
|
| 6201 |
|
|
}
|
| 6202 |
|
|
|
| 6203 |
|
|
|
| 6204 |
|
|
/* Dump points-to information to OUTFILE. */
|
| 6205 |
|
|
|
| 6206 |
|
|
static void
|
| 6207 |
|
|
dump_sa_points_to_info (FILE *outfile)
|
| 6208 |
|
|
{
|
| 6209 |
|
|
unsigned int i;
|
| 6210 |
|
|
|
| 6211 |
|
|
fprintf (outfile, "\nPoints-to sets\n\n");
|
| 6212 |
|
|
|
| 6213 |
|
|
if (dump_flags & TDF_STATS)
|
| 6214 |
|
|
{
|
| 6215 |
|
|
fprintf (outfile, "Stats:\n");
|
| 6216 |
|
|
fprintf (outfile, "Total vars: %d\n", stats.total_vars);
|
| 6217 |
|
|
fprintf (outfile, "Non-pointer vars: %d\n",
|
| 6218 |
|
|
stats.nonpointer_vars);
|
| 6219 |
|
|
fprintf (outfile, "Statically unified vars: %d\n",
|
| 6220 |
|
|
stats.unified_vars_static);
|
| 6221 |
|
|
fprintf (outfile, "Dynamically unified vars: %d\n",
|
| 6222 |
|
|
stats.unified_vars_dynamic);
|
| 6223 |
|
|
fprintf (outfile, "Iterations: %d\n", stats.iterations);
|
| 6224 |
|
|
fprintf (outfile, "Number of edges: %d\n", stats.num_edges);
|
| 6225 |
|
|
fprintf (outfile, "Number of implicit edges: %d\n",
|
| 6226 |
|
|
stats.num_implicit_edges);
|
| 6227 |
|
|
}
|
| 6228 |
|
|
|
| 6229 |
|
|
for (i = 0; i < VEC_length (varinfo_t, varmap); i++)
|
| 6230 |
|
|
{
|
| 6231 |
|
|
varinfo_t vi = get_varinfo (i);
|
| 6232 |
|
|
if (!vi->may_have_pointers)
|
| 6233 |
|
|
continue;
|
| 6234 |
|
|
dump_solution_for_var (outfile, i);
|
| 6235 |
|
|
}
|
| 6236 |
|
|
}
|
| 6237 |
|
|
|
| 6238 |
|
|
|
| 6239 |
|
|
/* Debug points-to information to stderr. */
|
| 6240 |
|
|
|
| 6241 |
|
|
DEBUG_FUNCTION void
|
| 6242 |
|
|
debug_sa_points_to_info (void)
|
| 6243 |
|
|
{
|
| 6244 |
|
|
dump_sa_points_to_info (stderr);
|
| 6245 |
|
|
}
|
| 6246 |
|
|
|
| 6247 |
|
|
|
| 6248 |
|
|
/* Initialize the always-existing constraint variables for NULL
|
| 6249 |
|
|
ANYTHING, READONLY, and INTEGER */
|
| 6250 |
|
|
|
| 6251 |
|
|
static void
|
| 6252 |
|
|
init_base_vars (void)
|
| 6253 |
|
|
{
|
| 6254 |
|
|
struct constraint_expr lhs, rhs;
|
| 6255 |
|
|
varinfo_t var_anything;
|
| 6256 |
|
|
varinfo_t var_nothing;
|
| 6257 |
|
|
varinfo_t var_readonly;
|
| 6258 |
|
|
varinfo_t var_escaped;
|
| 6259 |
|
|
varinfo_t var_nonlocal;
|
| 6260 |
|
|
varinfo_t var_storedanything;
|
| 6261 |
|
|
varinfo_t var_integer;
|
| 6262 |
|
|
|
| 6263 |
|
|
/* Create the NULL variable, used to represent that a variable points
|
| 6264 |
|
|
to NULL. */
|
| 6265 |
|
|
var_nothing = new_var_info (NULL_TREE, "NULL");
|
| 6266 |
|
|
gcc_assert (var_nothing->id == nothing_id);
|
| 6267 |
|
|
var_nothing->is_artificial_var = 1;
|
| 6268 |
|
|
var_nothing->offset = 0;
|
| 6269 |
|
|
var_nothing->size = ~0;
|
| 6270 |
|
|
var_nothing->fullsize = ~0;
|
| 6271 |
|
|
var_nothing->is_special_var = 1;
|
| 6272 |
|
|
var_nothing->may_have_pointers = 0;
|
| 6273 |
|
|
var_nothing->is_global_var = 0;
|
| 6274 |
|
|
|
| 6275 |
|
|
/* Create the ANYTHING variable, used to represent that a variable
|
| 6276 |
|
|
points to some unknown piece of memory. */
|
| 6277 |
|
|
var_anything = new_var_info (NULL_TREE, "ANYTHING");
|
| 6278 |
|
|
gcc_assert (var_anything->id == anything_id);
|
| 6279 |
|
|
var_anything->is_artificial_var = 1;
|
| 6280 |
|
|
var_anything->size = ~0;
|
| 6281 |
|
|
var_anything->offset = 0;
|
| 6282 |
|
|
var_anything->next = NULL;
|
| 6283 |
|
|
var_anything->fullsize = ~0;
|
| 6284 |
|
|
var_anything->is_special_var = 1;
|
| 6285 |
|
|
|
| 6286 |
|
|
/* Anything points to anything. This makes deref constraints just
|
| 6287 |
|
|
work in the presence of linked list and other p = *p type loops,
|
| 6288 |
|
|
by saying that *ANYTHING = ANYTHING. */
|
| 6289 |
|
|
lhs.type = SCALAR;
|
| 6290 |
|
|
lhs.var = anything_id;
|
| 6291 |
|
|
lhs.offset = 0;
|
| 6292 |
|
|
rhs.type = ADDRESSOF;
|
| 6293 |
|
|
rhs.var = anything_id;
|
| 6294 |
|
|
rhs.offset = 0;
|
| 6295 |
|
|
|
| 6296 |
|
|
/* This specifically does not use process_constraint because
|
| 6297 |
|
|
process_constraint ignores all anything = anything constraints, since all
|
| 6298 |
|
|
but this one are redundant. */
|
| 6299 |
|
|
VEC_safe_push (constraint_t, heap, constraints, new_constraint (lhs, rhs));
|
| 6300 |
|
|
|
| 6301 |
|
|
/* Create the READONLY variable, used to represent that a variable
|
| 6302 |
|
|
points to readonly memory. */
|
| 6303 |
|
|
var_readonly = new_var_info (NULL_TREE, "READONLY");
|
| 6304 |
|
|
gcc_assert (var_readonly->id == readonly_id);
|
| 6305 |
|
|
var_readonly->is_artificial_var = 1;
|
| 6306 |
|
|
var_readonly->offset = 0;
|
| 6307 |
|
|
var_readonly->size = ~0;
|
| 6308 |
|
|
var_readonly->fullsize = ~0;
|
| 6309 |
|
|
var_readonly->next = NULL;
|
| 6310 |
|
|
var_readonly->is_special_var = 1;
|
| 6311 |
|
|
|
| 6312 |
|
|
/* readonly memory points to anything, in order to make deref
|
| 6313 |
|
|
easier. In reality, it points to anything the particular
|
| 6314 |
|
|
readonly variable can point to, but we don't track this
|
| 6315 |
|
|
separately. */
|
| 6316 |
|
|
lhs.type = SCALAR;
|
| 6317 |
|
|
lhs.var = readonly_id;
|
| 6318 |
|
|
lhs.offset = 0;
|
| 6319 |
|
|
rhs.type = ADDRESSOF;
|
| 6320 |
|
|
rhs.var = readonly_id; /* FIXME */
|
| 6321 |
|
|
rhs.offset = 0;
|
| 6322 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
| 6323 |
|
|
|
| 6324 |
|
|
/* Create the ESCAPED variable, used to represent the set of escaped
|
| 6325 |
|
|
memory. */
|
| 6326 |
|
|
var_escaped = new_var_info (NULL_TREE, "ESCAPED");
|
| 6327 |
|
|
gcc_assert (var_escaped->id == escaped_id);
|
| 6328 |
|
|
var_escaped->is_artificial_var = 1;
|
| 6329 |
|
|
var_escaped->offset = 0;
|
| 6330 |
|
|
var_escaped->size = ~0;
|
| 6331 |
|
|
var_escaped->fullsize = ~0;
|
| 6332 |
|
|
var_escaped->is_special_var = 0;
|
| 6333 |
|
|
|
| 6334 |
|
|
/* Create the NONLOCAL variable, used to represent the set of nonlocal
|
| 6335 |
|
|
memory. */
|
| 6336 |
|
|
var_nonlocal = new_var_info (NULL_TREE, "NONLOCAL");
|
| 6337 |
|
|
gcc_assert (var_nonlocal->id == nonlocal_id);
|
| 6338 |
|
|
var_nonlocal->is_artificial_var = 1;
|
| 6339 |
|
|
var_nonlocal->offset = 0;
|
| 6340 |
|
|
var_nonlocal->size = ~0;
|
| 6341 |
|
|
var_nonlocal->fullsize = ~0;
|
| 6342 |
|
|
var_nonlocal->is_special_var = 1;
|
| 6343 |
|
|
|
| 6344 |
|
|
/* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc. */
|
| 6345 |
|
|
lhs.type = SCALAR;
|
| 6346 |
|
|
lhs.var = escaped_id;
|
| 6347 |
|
|
lhs.offset = 0;
|
| 6348 |
|
|
rhs.type = DEREF;
|
| 6349 |
|
|
rhs.var = escaped_id;
|
| 6350 |
|
|
rhs.offset = 0;
|
| 6351 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
| 6352 |
|
|
|
| 6353 |
|
|
/* ESCAPED = ESCAPED + UNKNOWN_OFFSET, because if a sub-field escapes the
|
| 6354 |
|
|
whole variable escapes. */
|
| 6355 |
|
|
lhs.type = SCALAR;
|
| 6356 |
|
|
lhs.var = escaped_id;
|
| 6357 |
|
|
lhs.offset = 0;
|
| 6358 |
|
|
rhs.type = SCALAR;
|
| 6359 |
|
|
rhs.var = escaped_id;
|
| 6360 |
|
|
rhs.offset = UNKNOWN_OFFSET;
|
| 6361 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
| 6362 |
|
|
|
| 6363 |
|
|
/* *ESCAPED = NONLOCAL. This is true because we have to assume
|
| 6364 |
|
|
everything pointed to by escaped points to what global memory can
|
| 6365 |
|
|
point to. */
|
| 6366 |
|
|
lhs.type = DEREF;
|
| 6367 |
|
|
lhs.var = escaped_id;
|
| 6368 |
|
|
lhs.offset = 0;
|
| 6369 |
|
|
rhs.type = SCALAR;
|
| 6370 |
|
|
rhs.var = nonlocal_id;
|
| 6371 |
|
|
rhs.offset = 0;
|
| 6372 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
| 6373 |
|
|
|
| 6374 |
|
|
/* NONLOCAL = &NONLOCAL, NONLOCAL = &ESCAPED. This is true because
|
| 6375 |
|
|
global memory may point to global memory and escaped memory. */
|
| 6376 |
|
|
lhs.type = SCALAR;
|
| 6377 |
|
|
lhs.var = nonlocal_id;
|
| 6378 |
|
|
lhs.offset = 0;
|
| 6379 |
|
|
rhs.type = ADDRESSOF;
|
| 6380 |
|
|
rhs.var = nonlocal_id;
|
| 6381 |
|
|
rhs.offset = 0;
|
| 6382 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
| 6383 |
|
|
rhs.type = ADDRESSOF;
|
| 6384 |
|
|
rhs.var = escaped_id;
|
| 6385 |
|
|
rhs.offset = 0;
|
| 6386 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
| 6387 |
|
|
|
| 6388 |
|
|
/* Create the STOREDANYTHING variable, used to represent the set of
|
| 6389 |
|
|
variables stored to *ANYTHING. */
|
| 6390 |
|
|
var_storedanything = new_var_info (NULL_TREE, "STOREDANYTHING");
|
| 6391 |
|
|
gcc_assert (var_storedanything->id == storedanything_id);
|
| 6392 |
|
|
var_storedanything->is_artificial_var = 1;
|
| 6393 |
|
|
var_storedanything->offset = 0;
|
| 6394 |
|
|
var_storedanything->size = ~0;
|
| 6395 |
|
|
var_storedanything->fullsize = ~0;
|
| 6396 |
|
|
var_storedanything->is_special_var = 0;
|
| 6397 |
|
|
|
| 6398 |
|
|
/* Create the INTEGER variable, used to represent that a variable points
|
| 6399 |
|
|
to what an INTEGER "points to". */
|
| 6400 |
|
|
var_integer = new_var_info (NULL_TREE, "INTEGER");
|
| 6401 |
|
|
gcc_assert (var_integer->id == integer_id);
|
| 6402 |
|
|
var_integer->is_artificial_var = 1;
|
| 6403 |
|
|
var_integer->size = ~0;
|
| 6404 |
|
|
var_integer->fullsize = ~0;
|
| 6405 |
|
|
var_integer->offset = 0;
|
| 6406 |
|
|
var_integer->next = NULL;
|
| 6407 |
|
|
var_integer->is_special_var = 1;
|
| 6408 |
|
|
|
| 6409 |
|
|
/* INTEGER = ANYTHING, because we don't know where a dereference of
|
| 6410 |
|
|
a random integer will point to. */
|
| 6411 |
|
|
lhs.type = SCALAR;
|
| 6412 |
|
|
lhs.var = integer_id;
|
| 6413 |
|
|
lhs.offset = 0;
|
| 6414 |
|
|
rhs.type = ADDRESSOF;
|
| 6415 |
|
|
rhs.var = anything_id;
|
| 6416 |
|
|
rhs.offset = 0;
|
| 6417 |
|
|
process_constraint (new_constraint (lhs, rhs));
|
| 6418 |
|
|
}
|
| 6419 |
|
|
|
| 6420 |
|
|
/* Initialize things necessary to perform PTA */
|
| 6421 |
|
|
|
| 6422 |
|
|
static void
|
| 6423 |
|
|
init_alias_vars (void)
|
| 6424 |
|
|
{
|
| 6425 |
|
|
use_field_sensitive = (MAX_FIELDS_FOR_FIELD_SENSITIVE > 1);
|
| 6426 |
|
|
|
| 6427 |
|
|
bitmap_obstack_initialize (&pta_obstack);
|
| 6428 |
|
|
bitmap_obstack_initialize (&oldpta_obstack);
|
| 6429 |
|
|
bitmap_obstack_initialize (&predbitmap_obstack);
|
| 6430 |
|
|
|
| 6431 |
|
|
constraint_pool = create_alloc_pool ("Constraint pool",
|
| 6432 |
|
|
sizeof (struct constraint), 30);
|
| 6433 |
|
|
variable_info_pool = create_alloc_pool ("Variable info pool",
|
| 6434 |
|
|
sizeof (struct variable_info), 30);
|
| 6435 |
|
|
constraints = VEC_alloc (constraint_t, heap, 8);
|
| 6436 |
|
|
varmap = VEC_alloc (varinfo_t, heap, 8);
|
| 6437 |
|
|
vi_for_tree = pointer_map_create ();
|
| 6438 |
|
|
call_stmt_vars = pointer_map_create ();
|
| 6439 |
|
|
|
| 6440 |
|
|
memset (&stats, 0, sizeof (stats));
|
| 6441 |
|
|
shared_bitmap_table = htab_create (511, shared_bitmap_hash,
|
| 6442 |
|
|
shared_bitmap_eq, free);
|
| 6443 |
|
|
init_base_vars ();
|
| 6444 |
|
|
|
| 6445 |
|
|
gcc_obstack_init (&fake_var_decl_obstack);
|
| 6446 |
|
|
}
|
| 6447 |
|
|
|
| 6448 |
|
|
/* Remove the REF and ADDRESS edges from GRAPH, as well as all the
|
| 6449 |
|
|
predecessor edges. */
|
| 6450 |
|
|
|
| 6451 |
|
|
static void
|
| 6452 |
|
|
remove_preds_and_fake_succs (constraint_graph_t graph)
|
| 6453 |
|
|
{
|
| 6454 |
|
|
unsigned int i;
|
| 6455 |
|
|
|
| 6456 |
|
|
/* Clear the implicit ref and address nodes from the successor
|
| 6457 |
|
|
lists. */
|
| 6458 |
|
|
for (i = 0; i < FIRST_REF_NODE; i++)
|
| 6459 |
|
|
{
|
| 6460 |
|
|
if (graph->succs[i])
|
| 6461 |
|
|
bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
|
| 6462 |
|
|
FIRST_REF_NODE * 2);
|
| 6463 |
|
|
}
|
| 6464 |
|
|
|
| 6465 |
|
|
/* Free the successor list for the non-ref nodes. */
|
| 6466 |
|
|
for (i = FIRST_REF_NODE; i < graph->size; i++)
|
| 6467 |
|
|
{
|
| 6468 |
|
|
if (graph->succs[i])
|
| 6469 |
|
|
BITMAP_FREE (graph->succs[i]);
|
| 6470 |
|
|
}
|
| 6471 |
|
|
|
| 6472 |
|
|
/* Now reallocate the size of the successor list as, and blow away
|
| 6473 |
|
|
the predecessor bitmaps. */
|
| 6474 |
|
|
graph->size = VEC_length (varinfo_t, varmap);
|
| 6475 |
|
|
graph->succs = XRESIZEVEC (bitmap, graph->succs, graph->size);
|
| 6476 |
|
|
|
| 6477 |
|
|
free (graph->implicit_preds);
|
| 6478 |
|
|
graph->implicit_preds = NULL;
|
| 6479 |
|
|
free (graph->preds);
|
| 6480 |
|
|
graph->preds = NULL;
|
| 6481 |
|
|
bitmap_obstack_release (&predbitmap_obstack);
|
| 6482 |
|
|
}
|
| 6483 |
|
|
|
| 6484 |
|
|
/* Solve the constraint set. */
|
| 6485 |
|
|
|
| 6486 |
|
|
static void
|
| 6487 |
|
|
solve_constraints (void)
|
| 6488 |
|
|
{
|
| 6489 |
|
|
struct scc_info *si;
|
| 6490 |
|
|
|
| 6491 |
|
|
if (dump_file)
|
| 6492 |
|
|
fprintf (dump_file,
|
| 6493 |
|
|
"\nCollapsing static cycles and doing variable "
|
| 6494 |
|
|
"substitution\n");
|
| 6495 |
|
|
|
| 6496 |
|
|
init_graph (VEC_length (varinfo_t, varmap) * 2);
|
| 6497 |
|
|
|
| 6498 |
|
|
if (dump_file)
|
| 6499 |
|
|
fprintf (dump_file, "Building predecessor graph\n");
|
| 6500 |
|
|
build_pred_graph ();
|
| 6501 |
|
|
|
| 6502 |
|
|
if (dump_file)
|
| 6503 |
|
|
fprintf (dump_file, "Detecting pointer and location "
|
| 6504 |
|
|
"equivalences\n");
|
| 6505 |
|
|
si = perform_var_substitution (graph);
|
| 6506 |
|
|
|
| 6507 |
|
|
if (dump_file)
|
| 6508 |
|
|
fprintf (dump_file, "Rewriting constraints and unifying "
|
| 6509 |
|
|
"variables\n");
|
| 6510 |
|
|
rewrite_constraints (graph, si);
|
| 6511 |
|
|
|
| 6512 |
|
|
build_succ_graph ();
|
| 6513 |
|
|
|
| 6514 |
|
|
free_var_substitution_info (si);
|
| 6515 |
|
|
|
| 6516 |
|
|
/* Attach complex constraints to graph nodes. */
|
| 6517 |
|
|
move_complex_constraints (graph);
|
| 6518 |
|
|
|
| 6519 |
|
|
if (dump_file)
|
| 6520 |
|
|
fprintf (dump_file, "Uniting pointer but not location equivalent "
|
| 6521 |
|
|
"variables\n");
|
| 6522 |
|
|
unite_pointer_equivalences (graph);
|
| 6523 |
|
|
|
| 6524 |
|
|
if (dump_file)
|
| 6525 |
|
|
fprintf (dump_file, "Finding indirect cycles\n");
|
| 6526 |
|
|
find_indirect_cycles (graph);
|
| 6527 |
|
|
|
| 6528 |
|
|
/* Implicit nodes and predecessors are no longer necessary at this
|
| 6529 |
|
|
point. */
|
| 6530 |
|
|
remove_preds_and_fake_succs (graph);
|
| 6531 |
|
|
|
| 6532 |
|
|
if (dump_file && (dump_flags & TDF_GRAPH))
|
| 6533 |
|
|
{
|
| 6534 |
|
|
fprintf (dump_file, "\n\n// The constraint graph before solve-graph "
|
| 6535 |
|
|
"in dot format:\n");
|
| 6536 |
|
|
dump_constraint_graph (dump_file);
|
| 6537 |
|
|
fprintf (dump_file, "\n\n");
|
| 6538 |
|
|
}
|
| 6539 |
|
|
|
| 6540 |
|
|
if (dump_file)
|
| 6541 |
|
|
fprintf (dump_file, "Solving graph\n");
|
| 6542 |
|
|
|
| 6543 |
|
|
solve_graph (graph);
|
| 6544 |
|
|
|
| 6545 |
|
|
if (dump_file && (dump_flags & TDF_GRAPH))
|
| 6546 |
|
|
{
|
| 6547 |
|
|
fprintf (dump_file, "\n\n// The constraint graph after solve-graph "
|
| 6548 |
|
|
"in dot format:\n");
|
| 6549 |
|
|
dump_constraint_graph (dump_file);
|
| 6550 |
|
|
fprintf (dump_file, "\n\n");
|
| 6551 |
|
|
}
|
| 6552 |
|
|
|
| 6553 |
|
|
if (dump_file)
|
| 6554 |
|
|
dump_sa_points_to_info (dump_file);
|
| 6555 |
|
|
}
|
| 6556 |
|
|
|
| 6557 |
|
|
/* Create points-to sets for the current function. See the comments
|
| 6558 |
|
|
at the start of the file for an algorithmic overview. */
|
| 6559 |
|
|
|
| 6560 |
|
|
static void
|
| 6561 |
|
|
compute_points_to_sets (void)
|
| 6562 |
|
|
{
|
| 6563 |
|
|
basic_block bb;
|
| 6564 |
|
|
unsigned i;
|
| 6565 |
|
|
varinfo_t vi;
|
| 6566 |
|
|
|
| 6567 |
|
|
timevar_push (TV_TREE_PTA);
|
| 6568 |
|
|
|
| 6569 |
|
|
init_alias_vars ();
|
| 6570 |
|
|
|
| 6571 |
|
|
intra_create_variable_infos ();
|
| 6572 |
|
|
|
| 6573 |
|
|
/* Now walk all statements and build the constraint set. */
|
| 6574 |
|
|
FOR_EACH_BB (bb)
|
| 6575 |
|
|
{
|
| 6576 |
|
|
gimple_stmt_iterator gsi;
|
| 6577 |
|
|
|
| 6578 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 6579 |
|
|
{
|
| 6580 |
|
|
gimple phi = gsi_stmt (gsi);
|
| 6581 |
|
|
|
| 6582 |
|
|
if (is_gimple_reg (gimple_phi_result (phi)))
|
| 6583 |
|
|
find_func_aliases (phi);
|
| 6584 |
|
|
}
|
| 6585 |
|
|
|
| 6586 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 6587 |
|
|
{
|
| 6588 |
|
|
gimple stmt = gsi_stmt (gsi);
|
| 6589 |
|
|
|
| 6590 |
|
|
find_func_aliases (stmt);
|
| 6591 |
|
|
}
|
| 6592 |
|
|
}
|
| 6593 |
|
|
|
| 6594 |
|
|
if (dump_file)
|
| 6595 |
|
|
{
|
| 6596 |
|
|
fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
|
| 6597 |
|
|
dump_constraints (dump_file, 0);
|
| 6598 |
|
|
}
|
| 6599 |
|
|
|
| 6600 |
|
|
/* From the constraints compute the points-to sets. */
|
| 6601 |
|
|
solve_constraints ();
|
| 6602 |
|
|
|
| 6603 |
|
|
/* Compute the points-to set for ESCAPED used for call-clobber analysis. */
|
| 6604 |
|
|
find_what_var_points_to (get_varinfo (escaped_id),
|
| 6605 |
|
|
&cfun->gimple_df->escaped);
|
| 6606 |
|
|
|
| 6607 |
|
|
/* Make sure the ESCAPED solution (which is used as placeholder in
|
| 6608 |
|
|
other solutions) does not reference itself. This simplifies
|
| 6609 |
|
|
points-to solution queries. */
|
| 6610 |
|
|
cfun->gimple_df->escaped.escaped = 0;
|
| 6611 |
|
|
|
| 6612 |
|
|
/* Mark escaped HEAP variables as global. */
|
| 6613 |
|
|
FOR_EACH_VEC_ELT (varinfo_t, varmap, i, vi)
|
| 6614 |
|
|
if (vi->is_heap_var
|
| 6615 |
|
|
&& !vi->is_global_var)
|
| 6616 |
|
|
DECL_EXTERNAL (vi->decl) = vi->is_global_var
|
| 6617 |
|
|
= pt_solution_includes (&cfun->gimple_df->escaped, vi->decl);
|
| 6618 |
|
|
|
| 6619 |
|
|
/* Compute the points-to sets for pointer SSA_NAMEs. */
|
| 6620 |
|
|
for (i = 0; i < num_ssa_names; ++i)
|
| 6621 |
|
|
{
|
| 6622 |
|
|
tree ptr = ssa_name (i);
|
| 6623 |
|
|
if (ptr
|
| 6624 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (ptr)))
|
| 6625 |
|
|
find_what_p_points_to (ptr);
|
| 6626 |
|
|
}
|
| 6627 |
|
|
|
| 6628 |
|
|
/* Compute the call-used/clobbered sets. */
|
| 6629 |
|
|
FOR_EACH_BB (bb)
|
| 6630 |
|
|
{
|
| 6631 |
|
|
gimple_stmt_iterator gsi;
|
| 6632 |
|
|
|
| 6633 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 6634 |
|
|
{
|
| 6635 |
|
|
gimple stmt = gsi_stmt (gsi);
|
| 6636 |
|
|
struct pt_solution *pt;
|
| 6637 |
|
|
if (!is_gimple_call (stmt))
|
| 6638 |
|
|
continue;
|
| 6639 |
|
|
|
| 6640 |
|
|
pt = gimple_call_use_set (stmt);
|
| 6641 |
|
|
if (gimple_call_flags (stmt) & ECF_CONST)
|
| 6642 |
|
|
memset (pt, 0, sizeof (struct pt_solution));
|
| 6643 |
|
|
else if ((vi = lookup_call_use_vi (stmt)) != NULL)
|
| 6644 |
|
|
{
|
| 6645 |
|
|
find_what_var_points_to (vi, pt);
|
| 6646 |
|
|
/* Escaped (and thus nonlocal) variables are always
|
| 6647 |
|
|
implicitly used by calls. */
|
| 6648 |
|
|
/* ??? ESCAPED can be empty even though NONLOCAL
|
| 6649 |
|
|
always escaped. */
|
| 6650 |
|
|
pt->nonlocal = 1;
|
| 6651 |
|
|
pt->escaped = 1;
|
| 6652 |
|
|
}
|
| 6653 |
|
|
else
|
| 6654 |
|
|
{
|
| 6655 |
|
|
/* If there is nothing special about this call then
|
| 6656 |
|
|
we have made everything that is used also escape. */
|
| 6657 |
|
|
*pt = cfun->gimple_df->escaped;
|
| 6658 |
|
|
pt->nonlocal = 1;
|
| 6659 |
|
|
}
|
| 6660 |
|
|
|
| 6661 |
|
|
pt = gimple_call_clobber_set (stmt);
|
| 6662 |
|
|
if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
|
| 6663 |
|
|
memset (pt, 0, sizeof (struct pt_solution));
|
| 6664 |
|
|
else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
|
| 6665 |
|
|
{
|
| 6666 |
|
|
find_what_var_points_to (vi, pt);
|
| 6667 |
|
|
/* Escaped (and thus nonlocal) variables are always
|
| 6668 |
|
|
implicitly clobbered by calls. */
|
| 6669 |
|
|
/* ??? ESCAPED can be empty even though NONLOCAL
|
| 6670 |
|
|
always escaped. */
|
| 6671 |
|
|
pt->nonlocal = 1;
|
| 6672 |
|
|
pt->escaped = 1;
|
| 6673 |
|
|
}
|
| 6674 |
|
|
else
|
| 6675 |
|
|
{
|
| 6676 |
|
|
/* If there is nothing special about this call then
|
| 6677 |
|
|
we have made everything that is used also escape. */
|
| 6678 |
|
|
*pt = cfun->gimple_df->escaped;
|
| 6679 |
|
|
pt->nonlocal = 1;
|
| 6680 |
|
|
}
|
| 6681 |
|
|
}
|
| 6682 |
|
|
}
|
| 6683 |
|
|
|
| 6684 |
|
|
timevar_pop (TV_TREE_PTA);
|
| 6685 |
|
|
}
|
| 6686 |
|
|
|
| 6687 |
|
|
|
| 6688 |
|
|
/* Delete created points-to sets. */
|
| 6689 |
|
|
|
| 6690 |
|
|
static void
|
| 6691 |
|
|
delete_points_to_sets (void)
|
| 6692 |
|
|
{
|
| 6693 |
|
|
unsigned int i;
|
| 6694 |
|
|
|
| 6695 |
|
|
htab_delete (shared_bitmap_table);
|
| 6696 |
|
|
if (dump_file && (dump_flags & TDF_STATS))
|
| 6697 |
|
|
fprintf (dump_file, "Points to sets created:%d\n",
|
| 6698 |
|
|
stats.points_to_sets_created);
|
| 6699 |
|
|
|
| 6700 |
|
|
pointer_map_destroy (vi_for_tree);
|
| 6701 |
|
|
pointer_map_destroy (call_stmt_vars);
|
| 6702 |
|
|
bitmap_obstack_release (&pta_obstack);
|
| 6703 |
|
|
VEC_free (constraint_t, heap, constraints);
|
| 6704 |
|
|
|
| 6705 |
|
|
for (i = 0; i < graph->size; i++)
|
| 6706 |
|
|
VEC_free (constraint_t, heap, graph->complex[i]);
|
| 6707 |
|
|
free (graph->complex);
|
| 6708 |
|
|
|
| 6709 |
|
|
free (graph->rep);
|
| 6710 |
|
|
free (graph->succs);
|
| 6711 |
|
|
free (graph->pe);
|
| 6712 |
|
|
free (graph->pe_rep);
|
| 6713 |
|
|
free (graph->indirect_cycles);
|
| 6714 |
|
|
free (graph);
|
| 6715 |
|
|
|
| 6716 |
|
|
VEC_free (varinfo_t, heap, varmap);
|
| 6717 |
|
|
free_alloc_pool (variable_info_pool);
|
| 6718 |
|
|
free_alloc_pool (constraint_pool);
|
| 6719 |
|
|
|
| 6720 |
|
|
obstack_free (&fake_var_decl_obstack, NULL);
|
| 6721 |
|
|
}
|
| 6722 |
|
|
|
| 6723 |
|
|
|
| 6724 |
|
|
/* Compute points-to information for every SSA_NAME pointer in the
|
| 6725 |
|
|
current function and compute the transitive closure of escaped
|
| 6726 |
|
|
variables to re-initialize the call-clobber states of local variables. */
|
| 6727 |
|
|
|
| 6728 |
|
|
unsigned int
|
| 6729 |
|
|
compute_may_aliases (void)
|
| 6730 |
|
|
{
|
| 6731 |
|
|
if (cfun->gimple_df->ipa_pta)
|
| 6732 |
|
|
{
|
| 6733 |
|
|
if (dump_file)
|
| 6734 |
|
|
{
|
| 6735 |
|
|
fprintf (dump_file, "\nNot re-computing points-to information "
|
| 6736 |
|
|
"because IPA points-to information is available.\n\n");
|
| 6737 |
|
|
|
| 6738 |
|
|
/* But still dump what we have remaining it. */
|
| 6739 |
|
|
dump_alias_info (dump_file);
|
| 6740 |
|
|
|
| 6741 |
|
|
if (dump_flags & TDF_DETAILS)
|
| 6742 |
|
|
dump_referenced_vars (dump_file);
|
| 6743 |
|
|
}
|
| 6744 |
|
|
|
| 6745 |
|
|
return 0;
|
| 6746 |
|
|
}
|
| 6747 |
|
|
|
| 6748 |
|
|
/* For each pointer P_i, determine the sets of variables that P_i may
|
| 6749 |
|
|
point-to. Compute the reachability set of escaped and call-used
|
| 6750 |
|
|
variables. */
|
| 6751 |
|
|
compute_points_to_sets ();
|
| 6752 |
|
|
|
| 6753 |
|
|
/* Debugging dumps. */
|
| 6754 |
|
|
if (dump_file)
|
| 6755 |
|
|
{
|
| 6756 |
|
|
dump_alias_info (dump_file);
|
| 6757 |
|
|
|
| 6758 |
|
|
if (dump_flags & TDF_DETAILS)
|
| 6759 |
|
|
dump_referenced_vars (dump_file);
|
| 6760 |
|
|
}
|
| 6761 |
|
|
|
| 6762 |
|
|
/* Deallocate memory used by aliasing data structures and the internal
|
| 6763 |
|
|
points-to solution. */
|
| 6764 |
|
|
delete_points_to_sets ();
|
| 6765 |
|
|
|
| 6766 |
|
|
gcc_assert (!need_ssa_update_p (cfun));
|
| 6767 |
|
|
|
| 6768 |
|
|
return 0;
|
| 6769 |
|
|
}
|
| 6770 |
|
|
|
| 6771 |
|
|
static bool
|
| 6772 |
|
|
gate_tree_pta (void)
|
| 6773 |
|
|
{
|
| 6774 |
|
|
return flag_tree_pta;
|
| 6775 |
|
|
}
|
| 6776 |
|
|
|
| 6777 |
|
|
/* A dummy pass to cause points-to information to be computed via
|
| 6778 |
|
|
TODO_rebuild_alias. */
|
| 6779 |
|
|
|
| 6780 |
|
|
struct gimple_opt_pass pass_build_alias =
|
| 6781 |
|
|
{
|
| 6782 |
|
|
{
|
| 6783 |
|
|
GIMPLE_PASS,
|
| 6784 |
|
|
"alias", /* name */
|
| 6785 |
|
|
gate_tree_pta, /* gate */
|
| 6786 |
|
|
NULL, /* execute */
|
| 6787 |
|
|
NULL, /* sub */
|
| 6788 |
|
|
NULL, /* next */
|
| 6789 |
|
|
0, /* static_pass_number */
|
| 6790 |
|
|
TV_NONE, /* tv_id */
|
| 6791 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
| 6792 |
|
|
0, /* properties_provided */
|
| 6793 |
|
|
0, /* properties_destroyed */
|
| 6794 |
|
|
0, /* todo_flags_start */
|
| 6795 |
|
|
TODO_rebuild_alias /* todo_flags_finish */
|
| 6796 |
|
|
}
|
| 6797 |
|
|
};
|
| 6798 |
|
|
|
| 6799 |
|
|
/* A dummy pass to cause points-to information to be computed via
|
| 6800 |
|
|
TODO_rebuild_alias. */
|
| 6801 |
|
|
|
| 6802 |
|
|
struct gimple_opt_pass pass_build_ealias =
|
| 6803 |
|
|
{
|
| 6804 |
|
|
{
|
| 6805 |
|
|
GIMPLE_PASS,
|
| 6806 |
|
|
"ealias", /* name */
|
| 6807 |
|
|
gate_tree_pta, /* gate */
|
| 6808 |
|
|
NULL, /* execute */
|
| 6809 |
|
|
NULL, /* sub */
|
| 6810 |
|
|
NULL, /* next */
|
| 6811 |
|
|
0, /* static_pass_number */
|
| 6812 |
|
|
TV_NONE, /* tv_id */
|
| 6813 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
| 6814 |
|
|
0, /* properties_provided */
|
| 6815 |
|
|
0, /* properties_destroyed */
|
| 6816 |
|
|
0, /* todo_flags_start */
|
| 6817 |
|
|
TODO_rebuild_alias /* todo_flags_finish */
|
| 6818 |
|
|
}
|
| 6819 |
|
|
};
|
| 6820 |
|
|
|
| 6821 |
|
|
|
| 6822 |
|
|
/* Return true if we should execute IPA PTA. */
|
| 6823 |
|
|
static bool
|
| 6824 |
|
|
gate_ipa_pta (void)
|
| 6825 |
|
|
{
|
| 6826 |
|
|
return (optimize
|
| 6827 |
|
|
&& flag_ipa_pta
|
| 6828 |
|
|
/* Don't bother doing anything if the program has errors. */
|
| 6829 |
|
|
&& !seen_error ());
|
| 6830 |
|
|
}
|
| 6831 |
|
|
|
| 6832 |
|
|
/* IPA PTA solutions for ESCAPED. */
|
| 6833 |
|
|
struct pt_solution ipa_escaped_pt
|
| 6834 |
|
|
= { true, false, false, false, false, false, NULL };
|
| 6835 |
|
|
|
| 6836 |
|
|
/* Associate node with varinfo DATA. Worker for
|
| 6837 |
|
|
cgraph_for_node_and_aliases. */
|
| 6838 |
|
|
static bool
|
| 6839 |
|
|
associate_varinfo_to_alias (struct cgraph_node *node, void *data)
|
| 6840 |
|
|
{
|
| 6841 |
|
|
if (node->alias || node->thunk.thunk_p)
|
| 6842 |
|
|
insert_vi_for_tree (node->decl, (varinfo_t)data);
|
| 6843 |
|
|
return false;
|
| 6844 |
|
|
}
|
| 6845 |
|
|
|
| 6846 |
|
|
/* Execute the driver for IPA PTA. */
|
| 6847 |
|
|
static unsigned int
|
| 6848 |
|
|
ipa_pta_execute (void)
|
| 6849 |
|
|
{
|
| 6850 |
|
|
struct cgraph_node *node;
|
| 6851 |
|
|
struct varpool_node *var;
|
| 6852 |
|
|
int from;
|
| 6853 |
|
|
|
| 6854 |
|
|
in_ipa_mode = 1;
|
| 6855 |
|
|
|
| 6856 |
|
|
init_alias_vars ();
|
| 6857 |
|
|
|
| 6858 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 6859 |
|
|
{
|
| 6860 |
|
|
dump_cgraph (dump_file);
|
| 6861 |
|
|
fprintf (dump_file, "\n");
|
| 6862 |
|
|
}
|
| 6863 |
|
|
|
| 6864 |
|
|
/* Build the constraints. */
|
| 6865 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
| 6866 |
|
|
{
|
| 6867 |
|
|
varinfo_t vi;
|
| 6868 |
|
|
/* Nodes without a body are not interesting. Especially do not
|
| 6869 |
|
|
visit clones at this point for now - we get duplicate decls
|
| 6870 |
|
|
there for inline clones at least. */
|
| 6871 |
|
|
if (!cgraph_function_with_gimple_body_p (node))
|
| 6872 |
|
|
continue;
|
| 6873 |
|
|
|
| 6874 |
|
|
gcc_assert (!node->clone_of);
|
| 6875 |
|
|
|
| 6876 |
|
|
vi = create_function_info_for (node->decl,
|
| 6877 |
|
|
alias_get_name (node->decl));
|
| 6878 |
|
|
cgraph_for_node_and_aliases (node, associate_varinfo_to_alias, vi, true);
|
| 6879 |
|
|
}
|
| 6880 |
|
|
|
| 6881 |
|
|
/* Create constraints for global variables and their initializers. */
|
| 6882 |
|
|
for (var = varpool_nodes; var; var = var->next)
|
| 6883 |
|
|
{
|
| 6884 |
|
|
if (var->alias)
|
| 6885 |
|
|
continue;
|
| 6886 |
|
|
|
| 6887 |
|
|
get_vi_for_tree (var->decl);
|
| 6888 |
|
|
}
|
| 6889 |
|
|
|
| 6890 |
|
|
if (dump_file)
|
| 6891 |
|
|
{
|
| 6892 |
|
|
fprintf (dump_file,
|
| 6893 |
|
|
"Generating constraints for global initializers\n\n");
|
| 6894 |
|
|
dump_constraints (dump_file, 0);
|
| 6895 |
|
|
fprintf (dump_file, "\n");
|
| 6896 |
|
|
}
|
| 6897 |
|
|
from = VEC_length (constraint_t, constraints);
|
| 6898 |
|
|
|
| 6899 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
| 6900 |
|
|
{
|
| 6901 |
|
|
struct function *func;
|
| 6902 |
|
|
basic_block bb;
|
| 6903 |
|
|
tree old_func_decl;
|
| 6904 |
|
|
|
| 6905 |
|
|
/* Nodes without a body are not interesting. */
|
| 6906 |
|
|
if (!cgraph_function_with_gimple_body_p (node))
|
| 6907 |
|
|
continue;
|
| 6908 |
|
|
|
| 6909 |
|
|
if (dump_file)
|
| 6910 |
|
|
{
|
| 6911 |
|
|
fprintf (dump_file,
|
| 6912 |
|
|
"Generating constraints for %s", cgraph_node_name (node));
|
| 6913 |
|
|
if (DECL_ASSEMBLER_NAME_SET_P (node->decl))
|
| 6914 |
|
|
fprintf (dump_file, " (%s)",
|
| 6915 |
|
|
IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (node->decl)));
|
| 6916 |
|
|
fprintf (dump_file, "\n");
|
| 6917 |
|
|
}
|
| 6918 |
|
|
|
| 6919 |
|
|
func = DECL_STRUCT_FUNCTION (node->decl);
|
| 6920 |
|
|
old_func_decl = current_function_decl;
|
| 6921 |
|
|
push_cfun (func);
|
| 6922 |
|
|
current_function_decl = node->decl;
|
| 6923 |
|
|
|
| 6924 |
|
|
/* For externally visible or attribute used annotated functions use
|
| 6925 |
|
|
local constraints for their arguments.
|
| 6926 |
|
|
For local functions we see all callers and thus do not need initial
|
| 6927 |
|
|
constraints for parameters. */
|
| 6928 |
|
|
if (node->reachable_from_other_partition
|
| 6929 |
|
|
|| node->local.externally_visible
|
| 6930 |
|
|
|| node->needed)
|
| 6931 |
|
|
{
|
| 6932 |
|
|
intra_create_variable_infos ();
|
| 6933 |
|
|
|
| 6934 |
|
|
/* We also need to make function return values escape. Nothing
|
| 6935 |
|
|
escapes by returning from main though. */
|
| 6936 |
|
|
if (!MAIN_NAME_P (DECL_NAME (node->decl)))
|
| 6937 |
|
|
{
|
| 6938 |
|
|
varinfo_t fi, rvi;
|
| 6939 |
|
|
fi = lookup_vi_for_tree (node->decl);
|
| 6940 |
|
|
rvi = first_vi_for_offset (fi, fi_result);
|
| 6941 |
|
|
if (rvi && rvi->offset == fi_result)
|
| 6942 |
|
|
{
|
| 6943 |
|
|
struct constraint_expr includes;
|
| 6944 |
|
|
struct constraint_expr var;
|
| 6945 |
|
|
includes.var = escaped_id;
|
| 6946 |
|
|
includes.offset = 0;
|
| 6947 |
|
|
includes.type = SCALAR;
|
| 6948 |
|
|
var.var = rvi->id;
|
| 6949 |
|
|
var.offset = 0;
|
| 6950 |
|
|
var.type = SCALAR;
|
| 6951 |
|
|
process_constraint (new_constraint (includes, var));
|
| 6952 |
|
|
}
|
| 6953 |
|
|
}
|
| 6954 |
|
|
}
|
| 6955 |
|
|
|
| 6956 |
|
|
/* Build constriants for the function body. */
|
| 6957 |
|
|
FOR_EACH_BB_FN (bb, func)
|
| 6958 |
|
|
{
|
| 6959 |
|
|
gimple_stmt_iterator gsi;
|
| 6960 |
|
|
|
| 6961 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
|
| 6962 |
|
|
gsi_next (&gsi))
|
| 6963 |
|
|
{
|
| 6964 |
|
|
gimple phi = gsi_stmt (gsi);
|
| 6965 |
|
|
|
| 6966 |
|
|
if (is_gimple_reg (gimple_phi_result (phi)))
|
| 6967 |
|
|
find_func_aliases (phi);
|
| 6968 |
|
|
}
|
| 6969 |
|
|
|
| 6970 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 6971 |
|
|
{
|
| 6972 |
|
|
gimple stmt = gsi_stmt (gsi);
|
| 6973 |
|
|
|
| 6974 |
|
|
find_func_aliases (stmt);
|
| 6975 |
|
|
find_func_clobbers (stmt);
|
| 6976 |
|
|
}
|
| 6977 |
|
|
}
|
| 6978 |
|
|
|
| 6979 |
|
|
current_function_decl = old_func_decl;
|
| 6980 |
|
|
pop_cfun ();
|
| 6981 |
|
|
|
| 6982 |
|
|
if (dump_file)
|
| 6983 |
|
|
{
|
| 6984 |
|
|
fprintf (dump_file, "\n");
|
| 6985 |
|
|
dump_constraints (dump_file, from);
|
| 6986 |
|
|
fprintf (dump_file, "\n");
|
| 6987 |
|
|
}
|
| 6988 |
|
|
from = VEC_length (constraint_t, constraints);
|
| 6989 |
|
|
}
|
| 6990 |
|
|
|
| 6991 |
|
|
/* From the constraints compute the points-to sets. */
|
| 6992 |
|
|
solve_constraints ();
|
| 6993 |
|
|
|
| 6994 |
|
|
/* Compute the global points-to sets for ESCAPED.
|
| 6995 |
|
|
??? Note that the computed escape set is not correct
|
| 6996 |
|
|
for the whole unit as we fail to consider graph edges to
|
| 6997 |
|
|
externally visible functions. */
|
| 6998 |
|
|
find_what_var_points_to (get_varinfo (escaped_id), &ipa_escaped_pt);
|
| 6999 |
|
|
|
| 7000 |
|
|
/* Make sure the ESCAPED solution (which is used as placeholder in
|
| 7001 |
|
|
other solutions) does not reference itself. This simplifies
|
| 7002 |
|
|
points-to solution queries. */
|
| 7003 |
|
|
ipa_escaped_pt.ipa_escaped = 0;
|
| 7004 |
|
|
|
| 7005 |
|
|
/* Assign the points-to sets to the SSA names in the unit. */
|
| 7006 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
| 7007 |
|
|
{
|
| 7008 |
|
|
tree ptr;
|
| 7009 |
|
|
struct function *fn;
|
| 7010 |
|
|
unsigned i;
|
| 7011 |
|
|
varinfo_t fi;
|
| 7012 |
|
|
basic_block bb;
|
| 7013 |
|
|
struct pt_solution uses, clobbers;
|
| 7014 |
|
|
struct cgraph_edge *e;
|
| 7015 |
|
|
|
| 7016 |
|
|
/* Nodes without a body are not interesting. */
|
| 7017 |
|
|
if (!cgraph_function_with_gimple_body_p (node))
|
| 7018 |
|
|
continue;
|
| 7019 |
|
|
|
| 7020 |
|
|
fn = DECL_STRUCT_FUNCTION (node->decl);
|
| 7021 |
|
|
|
| 7022 |
|
|
/* Compute the points-to sets for pointer SSA_NAMEs. */
|
| 7023 |
|
|
FOR_EACH_VEC_ELT (tree, fn->gimple_df->ssa_names, i, ptr)
|
| 7024 |
|
|
{
|
| 7025 |
|
|
if (ptr
|
| 7026 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (ptr)))
|
| 7027 |
|
|
find_what_p_points_to (ptr);
|
| 7028 |
|
|
}
|
| 7029 |
|
|
|
| 7030 |
|
|
/* Compute the call-use and call-clobber sets for all direct calls. */
|
| 7031 |
|
|
fi = lookup_vi_for_tree (node->decl);
|
| 7032 |
|
|
gcc_assert (fi->is_fn_info);
|
| 7033 |
|
|
find_what_var_points_to (first_vi_for_offset (fi, fi_clobbers),
|
| 7034 |
|
|
&clobbers);
|
| 7035 |
|
|
find_what_var_points_to (first_vi_for_offset (fi, fi_uses), &uses);
|
| 7036 |
|
|
for (e = node->callers; e; e = e->next_caller)
|
| 7037 |
|
|
{
|
| 7038 |
|
|
if (!e->call_stmt)
|
| 7039 |
|
|
continue;
|
| 7040 |
|
|
|
| 7041 |
|
|
*gimple_call_clobber_set (e->call_stmt) = clobbers;
|
| 7042 |
|
|
*gimple_call_use_set (e->call_stmt) = uses;
|
| 7043 |
|
|
}
|
| 7044 |
|
|
|
| 7045 |
|
|
/* Compute the call-use and call-clobber sets for indirect calls
|
| 7046 |
|
|
and calls to external functions. */
|
| 7047 |
|
|
FOR_EACH_BB_FN (bb, fn)
|
| 7048 |
|
|
{
|
| 7049 |
|
|
gimple_stmt_iterator gsi;
|
| 7050 |
|
|
|
| 7051 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 7052 |
|
|
{
|
| 7053 |
|
|
gimple stmt = gsi_stmt (gsi);
|
| 7054 |
|
|
struct pt_solution *pt;
|
| 7055 |
|
|
varinfo_t vi;
|
| 7056 |
|
|
tree decl;
|
| 7057 |
|
|
|
| 7058 |
|
|
if (!is_gimple_call (stmt))
|
| 7059 |
|
|
continue;
|
| 7060 |
|
|
|
| 7061 |
|
|
/* Handle direct calls to external functions. */
|
| 7062 |
|
|
decl = gimple_call_fndecl (stmt);
|
| 7063 |
|
|
if (decl
|
| 7064 |
|
|
&& (!(fi = lookup_vi_for_tree (decl))
|
| 7065 |
|
|
|| !fi->is_fn_info))
|
| 7066 |
|
|
{
|
| 7067 |
|
|
pt = gimple_call_use_set (stmt);
|
| 7068 |
|
|
if (gimple_call_flags (stmt) & ECF_CONST)
|
| 7069 |
|
|
memset (pt, 0, sizeof (struct pt_solution));
|
| 7070 |
|
|
else if ((vi = lookup_call_use_vi (stmt)) != NULL)
|
| 7071 |
|
|
{
|
| 7072 |
|
|
find_what_var_points_to (vi, pt);
|
| 7073 |
|
|
/* Escaped (and thus nonlocal) variables are always
|
| 7074 |
|
|
implicitly used by calls. */
|
| 7075 |
|
|
/* ??? ESCAPED can be empty even though NONLOCAL
|
| 7076 |
|
|
always escaped. */
|
| 7077 |
|
|
pt->nonlocal = 1;
|
| 7078 |
|
|
pt->ipa_escaped = 1;
|
| 7079 |
|
|
}
|
| 7080 |
|
|
else
|
| 7081 |
|
|
{
|
| 7082 |
|
|
/* If there is nothing special about this call then
|
| 7083 |
|
|
we have made everything that is used also escape. */
|
| 7084 |
|
|
*pt = ipa_escaped_pt;
|
| 7085 |
|
|
pt->nonlocal = 1;
|
| 7086 |
|
|
}
|
| 7087 |
|
|
|
| 7088 |
|
|
pt = gimple_call_clobber_set (stmt);
|
| 7089 |
|
|
if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
|
| 7090 |
|
|
memset (pt, 0, sizeof (struct pt_solution));
|
| 7091 |
|
|
else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
|
| 7092 |
|
|
{
|
| 7093 |
|
|
find_what_var_points_to (vi, pt);
|
| 7094 |
|
|
/* Escaped (and thus nonlocal) variables are always
|
| 7095 |
|
|
implicitly clobbered by calls. */
|
| 7096 |
|
|
/* ??? ESCAPED can be empty even though NONLOCAL
|
| 7097 |
|
|
always escaped. */
|
| 7098 |
|
|
pt->nonlocal = 1;
|
| 7099 |
|
|
pt->ipa_escaped = 1;
|
| 7100 |
|
|
}
|
| 7101 |
|
|
else
|
| 7102 |
|
|
{
|
| 7103 |
|
|
/* If there is nothing special about this call then
|
| 7104 |
|
|
we have made everything that is used also escape. */
|
| 7105 |
|
|
*pt = ipa_escaped_pt;
|
| 7106 |
|
|
pt->nonlocal = 1;
|
| 7107 |
|
|
}
|
| 7108 |
|
|
}
|
| 7109 |
|
|
|
| 7110 |
|
|
/* Handle indirect calls. */
|
| 7111 |
|
|
if (!decl
|
| 7112 |
|
|
&& (fi = get_fi_for_callee (stmt)))
|
| 7113 |
|
|
{
|
| 7114 |
|
|
/* We need to accumulate all clobbers/uses of all possible
|
| 7115 |
|
|
callees. */
|
| 7116 |
|
|
fi = get_varinfo (find (fi->id));
|
| 7117 |
|
|
/* If we cannot constrain the set of functions we'll end up
|
| 7118 |
|
|
calling we end up using/clobbering everything. */
|
| 7119 |
|
|
if (bitmap_bit_p (fi->solution, anything_id)
|
| 7120 |
|
|
|| bitmap_bit_p (fi->solution, nonlocal_id)
|
| 7121 |
|
|
|| bitmap_bit_p (fi->solution, escaped_id))
|
| 7122 |
|
|
{
|
| 7123 |
|
|
pt_solution_reset (gimple_call_clobber_set (stmt));
|
| 7124 |
|
|
pt_solution_reset (gimple_call_use_set (stmt));
|
| 7125 |
|
|
}
|
| 7126 |
|
|
else
|
| 7127 |
|
|
{
|
| 7128 |
|
|
bitmap_iterator bi;
|
| 7129 |
|
|
unsigned i;
|
| 7130 |
|
|
struct pt_solution *uses, *clobbers;
|
| 7131 |
|
|
|
| 7132 |
|
|
uses = gimple_call_use_set (stmt);
|
| 7133 |
|
|
clobbers = gimple_call_clobber_set (stmt);
|
| 7134 |
|
|
memset (uses, 0, sizeof (struct pt_solution));
|
| 7135 |
|
|
memset (clobbers, 0, sizeof (struct pt_solution));
|
| 7136 |
|
|
EXECUTE_IF_SET_IN_BITMAP (fi->solution, 0, i, bi)
|
| 7137 |
|
|
{
|
| 7138 |
|
|
struct pt_solution sol;
|
| 7139 |
|
|
|
| 7140 |
|
|
vi = get_varinfo (i);
|
| 7141 |
|
|
if (!vi->is_fn_info)
|
| 7142 |
|
|
{
|
| 7143 |
|
|
/* ??? We could be more precise here? */
|
| 7144 |
|
|
uses->nonlocal = 1;
|
| 7145 |
|
|
uses->ipa_escaped = 1;
|
| 7146 |
|
|
clobbers->nonlocal = 1;
|
| 7147 |
|
|
clobbers->ipa_escaped = 1;
|
| 7148 |
|
|
continue;
|
| 7149 |
|
|
}
|
| 7150 |
|
|
|
| 7151 |
|
|
if (!uses->anything)
|
| 7152 |
|
|
{
|
| 7153 |
|
|
find_what_var_points_to
|
| 7154 |
|
|
(first_vi_for_offset (vi, fi_uses), &sol);
|
| 7155 |
|
|
pt_solution_ior_into (uses, &sol);
|
| 7156 |
|
|
}
|
| 7157 |
|
|
if (!clobbers->anything)
|
| 7158 |
|
|
{
|
| 7159 |
|
|
find_what_var_points_to
|
| 7160 |
|
|
(first_vi_for_offset (vi, fi_clobbers), &sol);
|
| 7161 |
|
|
pt_solution_ior_into (clobbers, &sol);
|
| 7162 |
|
|
}
|
| 7163 |
|
|
}
|
| 7164 |
|
|
}
|
| 7165 |
|
|
}
|
| 7166 |
|
|
}
|
| 7167 |
|
|
}
|
| 7168 |
|
|
|
| 7169 |
|
|
fn->gimple_df->ipa_pta = true;
|
| 7170 |
|
|
}
|
| 7171 |
|
|
|
| 7172 |
|
|
delete_points_to_sets ();
|
| 7173 |
|
|
|
| 7174 |
|
|
in_ipa_mode = 0;
|
| 7175 |
|
|
|
| 7176 |
|
|
return 0;
|
| 7177 |
|
|
}
|
| 7178 |
|
|
|
| 7179 |
|
|
struct simple_ipa_opt_pass pass_ipa_pta =
|
| 7180 |
|
|
{
|
| 7181 |
|
|
{
|
| 7182 |
|
|
SIMPLE_IPA_PASS,
|
| 7183 |
|
|
"pta", /* name */
|
| 7184 |
|
|
gate_ipa_pta, /* gate */
|
| 7185 |
|
|
ipa_pta_execute, /* execute */
|
| 7186 |
|
|
NULL, /* sub */
|
| 7187 |
|
|
NULL, /* next */
|
| 7188 |
|
|
0, /* static_pass_number */
|
| 7189 |
|
|
TV_IPA_PTA, /* tv_id */
|
| 7190 |
|
|
0, /* properties_required */
|
| 7191 |
|
|
0, /* properties_provided */
|
| 7192 |
|
|
0, /* properties_destroyed */
|
| 7193 |
|
|
0, /* todo_flags_start */
|
| 7194 |
|
|
TODO_update_ssa /* todo_flags_finish */
|
| 7195 |
|
|
}
|
| 7196 |
|
|
};
|