1 |
684 |
jeremybenn |
/* Predicate aware uninitialized variable warning.
|
2 |
|
|
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2010 Free Software
|
3 |
|
|
Foundation, Inc.
|
4 |
|
|
Contributed by Xinliang David Li <davidxl@google.com>
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
11 |
|
|
any later version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "config.h"
|
23 |
|
|
#include "system.h"
|
24 |
|
|
#include "coretypes.h"
|
25 |
|
|
#include "tm.h"
|
26 |
|
|
#include "tree.h"
|
27 |
|
|
#include "flags.h"
|
28 |
|
|
#include "tm_p.h"
|
29 |
|
|
#include "langhooks.h"
|
30 |
|
|
#include "basic-block.h"
|
31 |
|
|
#include "output.h"
|
32 |
|
|
#include "function.h"
|
33 |
|
|
#include "gimple-pretty-print.h"
|
34 |
|
|
#include "bitmap.h"
|
35 |
|
|
#include "pointer-set.h"
|
36 |
|
|
#include "tree-flow.h"
|
37 |
|
|
#include "gimple.h"
|
38 |
|
|
#include "tree-inline.h"
|
39 |
|
|
#include "timevar.h"
|
40 |
|
|
#include "hashtab.h"
|
41 |
|
|
#include "tree-dump.h"
|
42 |
|
|
#include "tree-pass.h"
|
43 |
|
|
#include "diagnostic-core.h"
|
44 |
|
|
#include "timevar.h"
|
45 |
|
|
|
46 |
|
|
/* This implements the pass that does predicate aware warning on uses of
|
47 |
|
|
possibly uninitialized variables. The pass first collects the set of
|
48 |
|
|
possibly uninitialized SSA names. For each such name, it walks through
|
49 |
|
|
all its immediate uses. For each immediate use, it rebuilds the condition
|
50 |
|
|
expression (the predicate) that guards the use. The predicate is then
|
51 |
|
|
examined to see if the variable is always defined under that same condition.
|
52 |
|
|
This is done either by pruning the unrealizable paths that lead to the
|
53 |
|
|
default definitions or by checking if the predicate set that guards the
|
54 |
|
|
defining paths is a superset of the use predicate. */
|
55 |
|
|
|
56 |
|
|
|
57 |
|
|
/* Pointer set of potentially undefined ssa names, i.e.,
|
58 |
|
|
ssa names that are defined by phi with operands that
|
59 |
|
|
are not defined or potentially undefined. */
|
60 |
|
|
static struct pointer_set_t *possibly_undefined_names = 0;
|
61 |
|
|
|
62 |
|
|
/* Bit mask handling macros. */
|
63 |
|
|
#define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
|
64 |
|
|
#define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
|
65 |
|
|
#define MASK_EMPTY(mask) (mask == 0)
|
66 |
|
|
|
67 |
|
|
/* Returns the first bit position (starting from LSB)
|
68 |
|
|
in mask that is non zero. Returns -1 if the mask is empty. */
|
69 |
|
|
static int
|
70 |
|
|
get_mask_first_set_bit (unsigned mask)
|
71 |
|
|
{
|
72 |
|
|
int pos = 0;
|
73 |
|
|
if (mask == 0)
|
74 |
|
|
return -1;
|
75 |
|
|
|
76 |
|
|
while ((mask & (1 << pos)) == 0)
|
77 |
|
|
pos++;
|
78 |
|
|
|
79 |
|
|
return pos;
|
80 |
|
|
}
|
81 |
|
|
#define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
|
82 |
|
|
|
83 |
|
|
|
84 |
|
|
/* Return true if T, an SSA_NAME, has an undefined value. */
|
85 |
|
|
|
86 |
|
|
bool
|
87 |
|
|
ssa_undefined_value_p (tree t)
|
88 |
|
|
{
|
89 |
|
|
tree var = SSA_NAME_VAR (t);
|
90 |
|
|
|
91 |
|
|
/* Parameters get their initial value from the function entry. */
|
92 |
|
|
if (TREE_CODE (var) == PARM_DECL)
|
93 |
|
|
return false;
|
94 |
|
|
|
95 |
|
|
/* When returning by reference the return address is actually a hidden
|
96 |
|
|
parameter. */
|
97 |
|
|
if (TREE_CODE (SSA_NAME_VAR (t)) == RESULT_DECL
|
98 |
|
|
&& DECL_BY_REFERENCE (SSA_NAME_VAR (t)))
|
99 |
|
|
return false;
|
100 |
|
|
|
101 |
|
|
/* Hard register variables get their initial value from the ether. */
|
102 |
|
|
if (TREE_CODE (var) == VAR_DECL && DECL_HARD_REGISTER (var))
|
103 |
|
|
return false;
|
104 |
|
|
|
105 |
|
|
/* The value is undefined iff its definition statement is empty. */
|
106 |
|
|
return (gimple_nop_p (SSA_NAME_DEF_STMT (t))
|
107 |
|
|
|| (possibly_undefined_names
|
108 |
|
|
&& pointer_set_contains (possibly_undefined_names, t)));
|
109 |
|
|
}
|
110 |
|
|
|
111 |
|
|
/* Checks if the operand OPND of PHI is defined by
|
112 |
|
|
another phi with one operand defined by this PHI,
|
113 |
|
|
but the rest operands are all defined. If yes,
|
114 |
|
|
returns true to skip this this operand as being
|
115 |
|
|
redundant. Can be enhanced to be more general. */
|
116 |
|
|
|
117 |
|
|
static bool
|
118 |
|
|
can_skip_redundant_opnd (tree opnd, gimple phi)
|
119 |
|
|
{
|
120 |
|
|
gimple op_def;
|
121 |
|
|
tree phi_def;
|
122 |
|
|
int i, n;
|
123 |
|
|
|
124 |
|
|
phi_def = gimple_phi_result (phi);
|
125 |
|
|
op_def = SSA_NAME_DEF_STMT (opnd);
|
126 |
|
|
if (gimple_code (op_def) != GIMPLE_PHI)
|
127 |
|
|
return false;
|
128 |
|
|
n = gimple_phi_num_args (op_def);
|
129 |
|
|
for (i = 0; i < n; ++i)
|
130 |
|
|
{
|
131 |
|
|
tree op = gimple_phi_arg_def (op_def, i);
|
132 |
|
|
if (TREE_CODE (op) != SSA_NAME)
|
133 |
|
|
continue;
|
134 |
|
|
if (op != phi_def && ssa_undefined_value_p (op))
|
135 |
|
|
return false;
|
136 |
|
|
}
|
137 |
|
|
|
138 |
|
|
return true;
|
139 |
|
|
}
|
140 |
|
|
|
141 |
|
|
/* Returns a bit mask holding the positions of arguments in PHI
|
142 |
|
|
that have empty (or possibly empty) definitions. */
|
143 |
|
|
|
144 |
|
|
static unsigned
|
145 |
|
|
compute_uninit_opnds_pos (gimple phi)
|
146 |
|
|
{
|
147 |
|
|
size_t i, n;
|
148 |
|
|
unsigned uninit_opnds = 0;
|
149 |
|
|
|
150 |
|
|
n = gimple_phi_num_args (phi);
|
151 |
|
|
/* Bail out for phi with too many args. */
|
152 |
|
|
if (n > 32)
|
153 |
|
|
return 0;
|
154 |
|
|
|
155 |
|
|
for (i = 0; i < n; ++i)
|
156 |
|
|
{
|
157 |
|
|
tree op = gimple_phi_arg_def (phi, i);
|
158 |
|
|
if (TREE_CODE (op) == SSA_NAME
|
159 |
|
|
&& ssa_undefined_value_p (op)
|
160 |
|
|
&& !can_skip_redundant_opnd (op, phi))
|
161 |
|
|
MASK_SET_BIT (uninit_opnds, i);
|
162 |
|
|
}
|
163 |
|
|
return uninit_opnds;
|
164 |
|
|
}
|
165 |
|
|
|
166 |
|
|
/* Find the immediate postdominator PDOM of the specified
|
167 |
|
|
basic block BLOCK. */
|
168 |
|
|
|
169 |
|
|
static inline basic_block
|
170 |
|
|
find_pdom (basic_block block)
|
171 |
|
|
{
|
172 |
|
|
if (block == EXIT_BLOCK_PTR)
|
173 |
|
|
return EXIT_BLOCK_PTR;
|
174 |
|
|
else
|
175 |
|
|
{
|
176 |
|
|
basic_block bb
|
177 |
|
|
= get_immediate_dominator (CDI_POST_DOMINATORS, block);
|
178 |
|
|
if (! bb)
|
179 |
|
|
return EXIT_BLOCK_PTR;
|
180 |
|
|
return bb;
|
181 |
|
|
}
|
182 |
|
|
}
|
183 |
|
|
|
184 |
|
|
/* Find the immediate DOM of the specified
|
185 |
|
|
basic block BLOCK. */
|
186 |
|
|
|
187 |
|
|
static inline basic_block
|
188 |
|
|
find_dom (basic_block block)
|
189 |
|
|
{
|
190 |
|
|
if (block == ENTRY_BLOCK_PTR)
|
191 |
|
|
return ENTRY_BLOCK_PTR;
|
192 |
|
|
else
|
193 |
|
|
{
|
194 |
|
|
basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block);
|
195 |
|
|
if (! bb)
|
196 |
|
|
return ENTRY_BLOCK_PTR;
|
197 |
|
|
return bb;
|
198 |
|
|
}
|
199 |
|
|
}
|
200 |
|
|
|
201 |
|
|
/* Returns true if BB1 is postdominating BB2 and BB1 is
|
202 |
|
|
not a loop exit bb. The loop exit bb check is simple and does
|
203 |
|
|
not cover all cases. */
|
204 |
|
|
|
205 |
|
|
static bool
|
206 |
|
|
is_non_loop_exit_postdominating (basic_block bb1, basic_block bb2)
|
207 |
|
|
{
|
208 |
|
|
if (!dominated_by_p (CDI_POST_DOMINATORS, bb2, bb1))
|
209 |
|
|
return false;
|
210 |
|
|
|
211 |
|
|
if (single_pred_p (bb1) && !single_succ_p (bb2))
|
212 |
|
|
return false;
|
213 |
|
|
|
214 |
|
|
return true;
|
215 |
|
|
}
|
216 |
|
|
|
217 |
|
|
/* Find the closest postdominator of a specified BB, which is control
|
218 |
|
|
equivalent to BB. */
|
219 |
|
|
|
220 |
|
|
static inline basic_block
|
221 |
|
|
find_control_equiv_block (basic_block bb)
|
222 |
|
|
{
|
223 |
|
|
basic_block pdom;
|
224 |
|
|
|
225 |
|
|
pdom = find_pdom (bb);
|
226 |
|
|
|
227 |
|
|
/* Skip the postdominating bb that is also loop exit. */
|
228 |
|
|
if (!is_non_loop_exit_postdominating (pdom, bb))
|
229 |
|
|
return NULL;
|
230 |
|
|
|
231 |
|
|
if (dominated_by_p (CDI_DOMINATORS, pdom, bb))
|
232 |
|
|
return pdom;
|
233 |
|
|
|
234 |
|
|
return NULL;
|
235 |
|
|
}
|
236 |
|
|
|
237 |
|
|
#define MAX_NUM_CHAINS 8
|
238 |
|
|
#define MAX_CHAIN_LEN 5
|
239 |
|
|
|
240 |
|
|
/* Computes the control dependence chains (paths of edges)
|
241 |
|
|
for DEP_BB up to the dominating basic block BB (the head node of a
|
242 |
|
|
chain should be dominated by it). CD_CHAINS is pointer to a
|
243 |
|
|
dynamic array holding the result chains. CUR_CD_CHAIN is the current
|
244 |
|
|
chain being computed. *NUM_CHAINS is total number of chains. The
|
245 |
|
|
function returns true if the information is successfully computed,
|
246 |
|
|
return false if there is no control dependence or not computed. */
|
247 |
|
|
|
248 |
|
|
static bool
|
249 |
|
|
compute_control_dep_chain (basic_block bb, basic_block dep_bb,
|
250 |
|
|
VEC(edge, heap) **cd_chains,
|
251 |
|
|
size_t *num_chains,
|
252 |
|
|
VEC(edge, heap) **cur_cd_chain)
|
253 |
|
|
{
|
254 |
|
|
edge_iterator ei;
|
255 |
|
|
edge e;
|
256 |
|
|
size_t i;
|
257 |
|
|
bool found_cd_chain = false;
|
258 |
|
|
size_t cur_chain_len = 0;
|
259 |
|
|
|
260 |
|
|
if (EDGE_COUNT (bb->succs) < 2)
|
261 |
|
|
return false;
|
262 |
|
|
|
263 |
|
|
/* Could use a set instead. */
|
264 |
|
|
cur_chain_len = VEC_length (edge, *cur_cd_chain);
|
265 |
|
|
if (cur_chain_len > MAX_CHAIN_LEN)
|
266 |
|
|
return false;
|
267 |
|
|
|
268 |
|
|
for (i = 0; i < cur_chain_len; i++)
|
269 |
|
|
{
|
270 |
|
|
edge e = VEC_index (edge, *cur_cd_chain, i);
|
271 |
|
|
/* cycle detected. */
|
272 |
|
|
if (e->src == bb)
|
273 |
|
|
return false;
|
274 |
|
|
}
|
275 |
|
|
|
276 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
277 |
|
|
{
|
278 |
|
|
basic_block cd_bb;
|
279 |
|
|
if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL))
|
280 |
|
|
continue;
|
281 |
|
|
|
282 |
|
|
cd_bb = e->dest;
|
283 |
|
|
VEC_safe_push (edge, heap, *cur_cd_chain, e);
|
284 |
|
|
while (!is_non_loop_exit_postdominating (cd_bb, bb))
|
285 |
|
|
{
|
286 |
|
|
if (cd_bb == dep_bb)
|
287 |
|
|
{
|
288 |
|
|
/* Found a direct control dependence. */
|
289 |
|
|
if (*num_chains < MAX_NUM_CHAINS)
|
290 |
|
|
{
|
291 |
|
|
cd_chains[*num_chains]
|
292 |
|
|
= VEC_copy (edge, heap, *cur_cd_chain);
|
293 |
|
|
(*num_chains)++;
|
294 |
|
|
}
|
295 |
|
|
found_cd_chain = true;
|
296 |
|
|
/* check path from next edge. */
|
297 |
|
|
break;
|
298 |
|
|
}
|
299 |
|
|
|
300 |
|
|
/* Now check if DEP_BB is indirectly control dependent on BB. */
|
301 |
|
|
if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains,
|
302 |
|
|
num_chains, cur_cd_chain))
|
303 |
|
|
{
|
304 |
|
|
found_cd_chain = true;
|
305 |
|
|
break;
|
306 |
|
|
}
|
307 |
|
|
|
308 |
|
|
cd_bb = find_pdom (cd_bb);
|
309 |
|
|
if (cd_bb == EXIT_BLOCK_PTR)
|
310 |
|
|
break;
|
311 |
|
|
}
|
312 |
|
|
VEC_pop (edge, *cur_cd_chain);
|
313 |
|
|
gcc_assert (VEC_length (edge, *cur_cd_chain) == cur_chain_len);
|
314 |
|
|
}
|
315 |
|
|
gcc_assert (VEC_length (edge, *cur_cd_chain) == cur_chain_len);
|
316 |
|
|
|
317 |
|
|
return found_cd_chain;
|
318 |
|
|
}
|
319 |
|
|
|
320 |
|
|
typedef struct use_pred_info
|
321 |
|
|
{
|
322 |
|
|
gimple cond;
|
323 |
|
|
bool invert;
|
324 |
|
|
} *use_pred_info_t;
|
325 |
|
|
|
326 |
|
|
DEF_VEC_P(use_pred_info_t);
|
327 |
|
|
DEF_VEC_ALLOC_P(use_pred_info_t, heap);
|
328 |
|
|
|
329 |
|
|
|
330 |
|
|
/* Converts the chains of control dependence edges into a set of
|
331 |
|
|
predicates. A control dependence chain is represented by a vector
|
332 |
|
|
edges. DEP_CHAINS points to an array of dependence chains.
|
333 |
|
|
NUM_CHAINS is the size of the chain array. One edge in a dependence
|
334 |
|
|
chain is mapped to predicate expression represented by use_pred_info_t
|
335 |
|
|
type. One dependence chain is converted to a composite predicate that
|
336 |
|
|
is the result of AND operation of use_pred_info_t mapped to each edge.
|
337 |
|
|
A composite predicate is presented by a vector of use_pred_info_t. On
|
338 |
|
|
return, *PREDS points to the resulting array of composite predicates.
|
339 |
|
|
*NUM_PREDS is the number of composite predictes. */
|
340 |
|
|
|
341 |
|
|
static bool
|
342 |
|
|
convert_control_dep_chain_into_preds (VEC(edge, heap) **dep_chains,
|
343 |
|
|
size_t num_chains,
|
344 |
|
|
VEC(use_pred_info_t, heap) ***preds,
|
345 |
|
|
size_t *num_preds)
|
346 |
|
|
{
|
347 |
|
|
bool has_valid_pred = false;
|
348 |
|
|
size_t i, j;
|
349 |
|
|
if (num_chains == 0 || num_chains >= MAX_NUM_CHAINS)
|
350 |
|
|
return false;
|
351 |
|
|
|
352 |
|
|
/* Now convert the control dep chain into a set
|
353 |
|
|
of predicates. */
|
354 |
|
|
*preds = XCNEWVEC (VEC(use_pred_info_t, heap) *,
|
355 |
|
|
num_chains);
|
356 |
|
|
*num_preds = num_chains;
|
357 |
|
|
|
358 |
|
|
for (i = 0; i < num_chains; i++)
|
359 |
|
|
{
|
360 |
|
|
VEC(edge, heap) *one_cd_chain = dep_chains[i];
|
361 |
|
|
|
362 |
|
|
has_valid_pred = false;
|
363 |
|
|
for (j = 0; j < VEC_length (edge, one_cd_chain); j++)
|
364 |
|
|
{
|
365 |
|
|
gimple cond_stmt;
|
366 |
|
|
gimple_stmt_iterator gsi;
|
367 |
|
|
basic_block guard_bb;
|
368 |
|
|
use_pred_info_t one_pred;
|
369 |
|
|
edge e;
|
370 |
|
|
|
371 |
|
|
e = VEC_index (edge, one_cd_chain, j);
|
372 |
|
|
guard_bb = e->src;
|
373 |
|
|
gsi = gsi_last_bb (guard_bb);
|
374 |
|
|
if (gsi_end_p (gsi))
|
375 |
|
|
{
|
376 |
|
|
has_valid_pred = false;
|
377 |
|
|
break;
|
378 |
|
|
}
|
379 |
|
|
cond_stmt = gsi_stmt (gsi);
|
380 |
|
|
if (gimple_code (cond_stmt) == GIMPLE_CALL
|
381 |
|
|
&& EDGE_COUNT (e->src->succs) >= 2)
|
382 |
|
|
{
|
383 |
|
|
/* Ignore EH edge. Can add assertion
|
384 |
|
|
on the other edge's flag. */
|
385 |
|
|
continue;
|
386 |
|
|
}
|
387 |
|
|
/* Skip if there is essentially one succesor. */
|
388 |
|
|
if (EDGE_COUNT (e->src->succs) == 2)
|
389 |
|
|
{
|
390 |
|
|
edge e1;
|
391 |
|
|
edge_iterator ei1;
|
392 |
|
|
bool skip = false;
|
393 |
|
|
|
394 |
|
|
FOR_EACH_EDGE (e1, ei1, e->src->succs)
|
395 |
|
|
{
|
396 |
|
|
if (EDGE_COUNT (e1->dest->succs) == 0)
|
397 |
|
|
{
|
398 |
|
|
skip = true;
|
399 |
|
|
break;
|
400 |
|
|
}
|
401 |
|
|
}
|
402 |
|
|
if (skip)
|
403 |
|
|
continue;
|
404 |
|
|
}
|
405 |
|
|
if (gimple_code (cond_stmt) != GIMPLE_COND)
|
406 |
|
|
{
|
407 |
|
|
has_valid_pred = false;
|
408 |
|
|
break;
|
409 |
|
|
}
|
410 |
|
|
one_pred = XNEW (struct use_pred_info);
|
411 |
|
|
one_pred->cond = cond_stmt;
|
412 |
|
|
one_pred->invert = !!(e->flags & EDGE_FALSE_VALUE);
|
413 |
|
|
VEC_safe_push (use_pred_info_t, heap, (*preds)[i], one_pred);
|
414 |
|
|
has_valid_pred = true;
|
415 |
|
|
}
|
416 |
|
|
|
417 |
|
|
if (!has_valid_pred)
|
418 |
|
|
break;
|
419 |
|
|
}
|
420 |
|
|
return has_valid_pred;
|
421 |
|
|
}
|
422 |
|
|
|
423 |
|
|
/* Computes all control dependence chains for USE_BB. The control
|
424 |
|
|
dependence chains are then converted to an array of composite
|
425 |
|
|
predicates pointed to by PREDS. PHI_BB is the basic block of
|
426 |
|
|
the phi whose result is used in USE_BB. */
|
427 |
|
|
|
428 |
|
|
static bool
|
429 |
|
|
find_predicates (VEC(use_pred_info_t, heap) ***preds,
|
430 |
|
|
size_t *num_preds,
|
431 |
|
|
basic_block phi_bb,
|
432 |
|
|
basic_block use_bb)
|
433 |
|
|
{
|
434 |
|
|
size_t num_chains = 0, i;
|
435 |
|
|
VEC(edge, heap) **dep_chains = 0;
|
436 |
|
|
VEC(edge, heap) *cur_chain = 0;
|
437 |
|
|
bool has_valid_pred = false;
|
438 |
|
|
basic_block cd_root = 0;
|
439 |
|
|
|
440 |
|
|
dep_chains = XCNEWVEC (VEC(edge, heap) *, MAX_NUM_CHAINS);
|
441 |
|
|
|
442 |
|
|
/* First find the closest bb that is control equivalent to PHI_BB
|
443 |
|
|
that also dominates USE_BB. */
|
444 |
|
|
cd_root = phi_bb;
|
445 |
|
|
while (dominated_by_p (CDI_DOMINATORS, use_bb, cd_root))
|
446 |
|
|
{
|
447 |
|
|
basic_block ctrl_eq_bb = find_control_equiv_block (cd_root);
|
448 |
|
|
if (ctrl_eq_bb && dominated_by_p (CDI_DOMINATORS, use_bb, ctrl_eq_bb))
|
449 |
|
|
cd_root = ctrl_eq_bb;
|
450 |
|
|
else
|
451 |
|
|
break;
|
452 |
|
|
}
|
453 |
|
|
|
454 |
|
|
compute_control_dep_chain (cd_root, use_bb,
|
455 |
|
|
dep_chains, &num_chains,
|
456 |
|
|
&cur_chain);
|
457 |
|
|
|
458 |
|
|
has_valid_pred
|
459 |
|
|
= convert_control_dep_chain_into_preds (dep_chains,
|
460 |
|
|
num_chains,
|
461 |
|
|
preds,
|
462 |
|
|
num_preds);
|
463 |
|
|
/* Free individual chain */
|
464 |
|
|
VEC_free (edge, heap, cur_chain);
|
465 |
|
|
for (i = 0; i < num_chains; i++)
|
466 |
|
|
VEC_free (edge, heap, dep_chains[i]);
|
467 |
|
|
free (dep_chains);
|
468 |
|
|
return has_valid_pred;
|
469 |
|
|
}
|
470 |
|
|
|
471 |
|
|
/* Computes the set of incoming edges of PHI that have non empty
|
472 |
|
|
definitions of a phi chain. The collection will be done
|
473 |
|
|
recursively on operands that are defined by phis. CD_ROOT
|
474 |
|
|
is the control dependence root. *EDGES holds the result, and
|
475 |
|
|
VISITED_PHIS is a pointer set for detecting cycles. */
|
476 |
|
|
|
477 |
|
|
static void
|
478 |
|
|
collect_phi_def_edges (gimple phi, basic_block cd_root,
|
479 |
|
|
VEC(edge, heap) **edges,
|
480 |
|
|
struct pointer_set_t *visited_phis)
|
481 |
|
|
{
|
482 |
|
|
size_t i, n;
|
483 |
|
|
edge opnd_edge;
|
484 |
|
|
tree opnd;
|
485 |
|
|
|
486 |
|
|
if (pointer_set_insert (visited_phis, phi))
|
487 |
|
|
return;
|
488 |
|
|
|
489 |
|
|
n = gimple_phi_num_args (phi);
|
490 |
|
|
for (i = 0; i < n; i++)
|
491 |
|
|
{
|
492 |
|
|
opnd_edge = gimple_phi_arg_edge (phi, i);
|
493 |
|
|
opnd = gimple_phi_arg_def (phi, i);
|
494 |
|
|
|
495 |
|
|
if (TREE_CODE (opnd) != SSA_NAME)
|
496 |
|
|
{
|
497 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
498 |
|
|
{
|
499 |
|
|
fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
|
500 |
|
|
print_gimple_stmt (dump_file, phi, 0, 0);
|
501 |
|
|
}
|
502 |
|
|
VEC_safe_push (edge, heap, *edges, opnd_edge);
|
503 |
|
|
}
|
504 |
|
|
else
|
505 |
|
|
{
|
506 |
|
|
gimple def = SSA_NAME_DEF_STMT (opnd);
|
507 |
|
|
|
508 |
|
|
if (gimple_code (def) == GIMPLE_PHI
|
509 |
|
|
&& dominated_by_p (CDI_DOMINATORS,
|
510 |
|
|
gimple_bb (def), cd_root))
|
511 |
|
|
collect_phi_def_edges (def, cd_root, edges,
|
512 |
|
|
visited_phis);
|
513 |
|
|
else if (!ssa_undefined_value_p (opnd))
|
514 |
|
|
{
|
515 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
516 |
|
|
{
|
517 |
|
|
fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
|
518 |
|
|
print_gimple_stmt (dump_file, phi, 0, 0);
|
519 |
|
|
}
|
520 |
|
|
VEC_safe_push (edge, heap, *edges, opnd_edge);
|
521 |
|
|
}
|
522 |
|
|
}
|
523 |
|
|
}
|
524 |
|
|
}
|
525 |
|
|
|
526 |
|
|
/* For each use edge of PHI, computes all control dependence chains.
|
527 |
|
|
The control dependence chains are then converted to an array of
|
528 |
|
|
composite predicates pointed to by PREDS. */
|
529 |
|
|
|
530 |
|
|
static bool
|
531 |
|
|
find_def_preds (VEC(use_pred_info_t, heap) ***preds,
|
532 |
|
|
size_t *num_preds, gimple phi)
|
533 |
|
|
{
|
534 |
|
|
size_t num_chains = 0, i, n;
|
535 |
|
|
VEC(edge, heap) **dep_chains = 0;
|
536 |
|
|
VEC(edge, heap) *cur_chain = 0;
|
537 |
|
|
VEC(edge, heap) *def_edges = 0;
|
538 |
|
|
bool has_valid_pred = false;
|
539 |
|
|
basic_block phi_bb, cd_root = 0;
|
540 |
|
|
struct pointer_set_t *visited_phis;
|
541 |
|
|
|
542 |
|
|
dep_chains = XCNEWVEC (VEC(edge, heap) *, MAX_NUM_CHAINS);
|
543 |
|
|
|
544 |
|
|
phi_bb = gimple_bb (phi);
|
545 |
|
|
/* First find the closest dominating bb to be
|
546 |
|
|
the control dependence root */
|
547 |
|
|
cd_root = find_dom (phi_bb);
|
548 |
|
|
if (!cd_root)
|
549 |
|
|
return false;
|
550 |
|
|
|
551 |
|
|
visited_phis = pointer_set_create ();
|
552 |
|
|
collect_phi_def_edges (phi, cd_root, &def_edges, visited_phis);
|
553 |
|
|
pointer_set_destroy (visited_phis);
|
554 |
|
|
|
555 |
|
|
n = VEC_length (edge, def_edges);
|
556 |
|
|
if (n == 0)
|
557 |
|
|
return false;
|
558 |
|
|
|
559 |
|
|
for (i = 0; i < n; i++)
|
560 |
|
|
{
|
561 |
|
|
size_t prev_nc, j;
|
562 |
|
|
edge opnd_edge;
|
563 |
|
|
|
564 |
|
|
opnd_edge = VEC_index (edge, def_edges, i);
|
565 |
|
|
prev_nc = num_chains;
|
566 |
|
|
compute_control_dep_chain (cd_root, opnd_edge->src,
|
567 |
|
|
dep_chains, &num_chains,
|
568 |
|
|
&cur_chain);
|
569 |
|
|
/* Free individual chain */
|
570 |
|
|
VEC_free (edge, heap, cur_chain);
|
571 |
|
|
cur_chain = 0;
|
572 |
|
|
|
573 |
|
|
/* Now update the newly added chains with
|
574 |
|
|
the phi operand edge: */
|
575 |
|
|
if (EDGE_COUNT (opnd_edge->src->succs) > 1)
|
576 |
|
|
{
|
577 |
|
|
if (prev_nc == num_chains
|
578 |
|
|
&& num_chains < MAX_NUM_CHAINS)
|
579 |
|
|
num_chains++;
|
580 |
|
|
for (j = prev_nc; j < num_chains; j++)
|
581 |
|
|
{
|
582 |
|
|
VEC_safe_push (edge, heap, dep_chains[j], opnd_edge);
|
583 |
|
|
}
|
584 |
|
|
}
|
585 |
|
|
}
|
586 |
|
|
|
587 |
|
|
has_valid_pred
|
588 |
|
|
= convert_control_dep_chain_into_preds (dep_chains,
|
589 |
|
|
num_chains,
|
590 |
|
|
preds,
|
591 |
|
|
num_preds);
|
592 |
|
|
for (i = 0; i < num_chains; i++)
|
593 |
|
|
VEC_free (edge, heap, dep_chains[i]);
|
594 |
|
|
free (dep_chains);
|
595 |
|
|
return has_valid_pred;
|
596 |
|
|
}
|
597 |
|
|
|
598 |
|
|
/* Dumps the predicates (PREDS) for USESTMT. */
|
599 |
|
|
|
600 |
|
|
static void
|
601 |
|
|
dump_predicates (gimple usestmt, size_t num_preds,
|
602 |
|
|
VEC(use_pred_info_t, heap) **preds,
|
603 |
|
|
const char* msg)
|
604 |
|
|
{
|
605 |
|
|
size_t i, j;
|
606 |
|
|
VEC(use_pred_info_t, heap) *one_pred_chain;
|
607 |
|
|
fprintf (dump_file, msg);
|
608 |
|
|
print_gimple_stmt (dump_file, usestmt, 0, 0);
|
609 |
|
|
fprintf (dump_file, "is guarded by :\n");
|
610 |
|
|
/* do some dumping here: */
|
611 |
|
|
for (i = 0; i < num_preds; i++)
|
612 |
|
|
{
|
613 |
|
|
size_t np;
|
614 |
|
|
|
615 |
|
|
one_pred_chain = preds[i];
|
616 |
|
|
np = VEC_length (use_pred_info_t, one_pred_chain);
|
617 |
|
|
|
618 |
|
|
for (j = 0; j < np; j++)
|
619 |
|
|
{
|
620 |
|
|
use_pred_info_t one_pred
|
621 |
|
|
= VEC_index (use_pred_info_t, one_pred_chain, j);
|
622 |
|
|
if (one_pred->invert)
|
623 |
|
|
fprintf (dump_file, " (.NOT.) ");
|
624 |
|
|
print_gimple_stmt (dump_file, one_pred->cond, 0, 0);
|
625 |
|
|
if (j < np - 1)
|
626 |
|
|
fprintf (dump_file, "(.AND.)\n");
|
627 |
|
|
}
|
628 |
|
|
if (i < num_preds - 1)
|
629 |
|
|
fprintf (dump_file, "(.OR.)\n");
|
630 |
|
|
}
|
631 |
|
|
}
|
632 |
|
|
|
633 |
|
|
/* Destroys the predicate set *PREDS. */
|
634 |
|
|
|
635 |
|
|
static void
|
636 |
|
|
destroy_predicate_vecs (size_t n,
|
637 |
|
|
VEC(use_pred_info_t, heap) ** preds)
|
638 |
|
|
{
|
639 |
|
|
size_t i, j;
|
640 |
|
|
for (i = 0; i < n; i++)
|
641 |
|
|
{
|
642 |
|
|
for (j = 0; j < VEC_length (use_pred_info_t, preds[i]); j++)
|
643 |
|
|
free (VEC_index (use_pred_info_t, preds[i], j));
|
644 |
|
|
VEC_free (use_pred_info_t, heap, preds[i]);
|
645 |
|
|
}
|
646 |
|
|
free (preds);
|
647 |
|
|
}
|
648 |
|
|
|
649 |
|
|
|
650 |
|
|
/* Computes the 'normalized' conditional code with operand
|
651 |
|
|
swapping and condition inversion. */
|
652 |
|
|
|
653 |
|
|
static enum tree_code
|
654 |
|
|
get_cmp_code (enum tree_code orig_cmp_code,
|
655 |
|
|
bool swap_cond, bool invert)
|
656 |
|
|
{
|
657 |
|
|
enum tree_code tc = orig_cmp_code;
|
658 |
|
|
|
659 |
|
|
if (swap_cond)
|
660 |
|
|
tc = swap_tree_comparison (orig_cmp_code);
|
661 |
|
|
if (invert)
|
662 |
|
|
tc = invert_tree_comparison (tc, false);
|
663 |
|
|
|
664 |
|
|
switch (tc)
|
665 |
|
|
{
|
666 |
|
|
case LT_EXPR:
|
667 |
|
|
case LE_EXPR:
|
668 |
|
|
case GT_EXPR:
|
669 |
|
|
case GE_EXPR:
|
670 |
|
|
case EQ_EXPR:
|
671 |
|
|
case NE_EXPR:
|
672 |
|
|
break;
|
673 |
|
|
default:
|
674 |
|
|
return ERROR_MARK;
|
675 |
|
|
}
|
676 |
|
|
return tc;
|
677 |
|
|
}
|
678 |
|
|
|
679 |
|
|
/* Returns true if VAL falls in the range defined by BOUNDARY and CMPC, i.e.
|
680 |
|
|
all values in the range satisfies (x CMPC BOUNDARY) == true. */
|
681 |
|
|
|
682 |
|
|
static bool
|
683 |
|
|
is_value_included_in (tree val, tree boundary, enum tree_code cmpc)
|
684 |
|
|
{
|
685 |
|
|
bool inverted = false;
|
686 |
|
|
bool is_unsigned;
|
687 |
|
|
bool result;
|
688 |
|
|
|
689 |
|
|
/* Only handle integer constant here. */
|
690 |
|
|
if (TREE_CODE (val) != INTEGER_CST
|
691 |
|
|
|| TREE_CODE (boundary) != INTEGER_CST)
|
692 |
|
|
return true;
|
693 |
|
|
|
694 |
|
|
is_unsigned = TYPE_UNSIGNED (TREE_TYPE (val));
|
695 |
|
|
|
696 |
|
|
if (cmpc == GE_EXPR || cmpc == GT_EXPR
|
697 |
|
|
|| cmpc == NE_EXPR)
|
698 |
|
|
{
|
699 |
|
|
cmpc = invert_tree_comparison (cmpc, false);
|
700 |
|
|
inverted = true;
|
701 |
|
|
}
|
702 |
|
|
|
703 |
|
|
if (is_unsigned)
|
704 |
|
|
{
|
705 |
|
|
if (cmpc == EQ_EXPR)
|
706 |
|
|
result = tree_int_cst_equal (val, boundary);
|
707 |
|
|
else if (cmpc == LT_EXPR)
|
708 |
|
|
result = INT_CST_LT_UNSIGNED (val, boundary);
|
709 |
|
|
else
|
710 |
|
|
{
|
711 |
|
|
gcc_assert (cmpc == LE_EXPR);
|
712 |
|
|
result = (tree_int_cst_equal (val, boundary)
|
713 |
|
|
|| INT_CST_LT_UNSIGNED (val, boundary));
|
714 |
|
|
}
|
715 |
|
|
}
|
716 |
|
|
else
|
717 |
|
|
{
|
718 |
|
|
if (cmpc == EQ_EXPR)
|
719 |
|
|
result = tree_int_cst_equal (val, boundary);
|
720 |
|
|
else if (cmpc == LT_EXPR)
|
721 |
|
|
result = INT_CST_LT (val, boundary);
|
722 |
|
|
else
|
723 |
|
|
{
|
724 |
|
|
gcc_assert (cmpc == LE_EXPR);
|
725 |
|
|
result = (tree_int_cst_equal (val, boundary)
|
726 |
|
|
|| INT_CST_LT (val, boundary));
|
727 |
|
|
}
|
728 |
|
|
}
|
729 |
|
|
|
730 |
|
|
if (inverted)
|
731 |
|
|
result ^= 1;
|
732 |
|
|
|
733 |
|
|
return result;
|
734 |
|
|
}
|
735 |
|
|
|
736 |
|
|
/* Returns true if PRED is common among all the predicate
|
737 |
|
|
chains (PREDS) (and therefore can be factored out).
|
738 |
|
|
NUM_PRED_CHAIN is the size of array PREDS. */
|
739 |
|
|
|
740 |
|
|
static bool
|
741 |
|
|
find_matching_predicate_in_rest_chains (use_pred_info_t pred,
|
742 |
|
|
VEC(use_pred_info_t, heap) **preds,
|
743 |
|
|
size_t num_pred_chains)
|
744 |
|
|
{
|
745 |
|
|
size_t i, j, n;
|
746 |
|
|
|
747 |
|
|
/* trival case */
|
748 |
|
|
if (num_pred_chains == 1)
|
749 |
|
|
return true;
|
750 |
|
|
|
751 |
|
|
for (i = 1; i < num_pred_chains; i++)
|
752 |
|
|
{
|
753 |
|
|
bool found = false;
|
754 |
|
|
VEC(use_pred_info_t, heap) *one_chain = preds[i];
|
755 |
|
|
n = VEC_length (use_pred_info_t, one_chain);
|
756 |
|
|
for (j = 0; j < n; j++)
|
757 |
|
|
{
|
758 |
|
|
use_pred_info_t pred2
|
759 |
|
|
= VEC_index (use_pred_info_t, one_chain, j);
|
760 |
|
|
/* can relax the condition comparison to not
|
761 |
|
|
use address comparison. However, the most common
|
762 |
|
|
case is that multiple control dependent paths share
|
763 |
|
|
a common path prefix, so address comparison should
|
764 |
|
|
be ok. */
|
765 |
|
|
|
766 |
|
|
if (pred2->cond == pred->cond
|
767 |
|
|
&& pred2->invert == pred->invert)
|
768 |
|
|
{
|
769 |
|
|
found = true;
|
770 |
|
|
break;
|
771 |
|
|
}
|
772 |
|
|
}
|
773 |
|
|
if (!found)
|
774 |
|
|
return false;
|
775 |
|
|
}
|
776 |
|
|
return true;
|
777 |
|
|
}
|
778 |
|
|
|
779 |
|
|
/* Forward declaration. */
|
780 |
|
|
static bool
|
781 |
|
|
is_use_properly_guarded (gimple use_stmt,
|
782 |
|
|
basic_block use_bb,
|
783 |
|
|
gimple phi,
|
784 |
|
|
unsigned uninit_opnds,
|
785 |
|
|
struct pointer_set_t *visited_phis);
|
786 |
|
|
|
787 |
|
|
/* Returns true if all uninitialized opnds are pruned. Returns false
|
788 |
|
|
otherwise. PHI is the phi node with uninitialized operands,
|
789 |
|
|
UNINIT_OPNDS is the bitmap of the uninitialize operand positions,
|
790 |
|
|
FLAG_DEF is the statement defining the flag guarding the use of the
|
791 |
|
|
PHI output, BOUNDARY_CST is the const value used in the predicate
|
792 |
|
|
associated with the flag, CMP_CODE is the comparison code used in
|
793 |
|
|
the predicate, VISITED_PHIS is the pointer set of phis visited, and
|
794 |
|
|
VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions
|
795 |
|
|
that are also phis.
|
796 |
|
|
|
797 |
|
|
Example scenario:
|
798 |
|
|
|
799 |
|
|
BB1:
|
800 |
|
|
flag_1 = phi <0, 1> // (1)
|
801 |
|
|
var_1 = phi <undef, some_val>
|
802 |
|
|
|
803 |
|
|
|
804 |
|
|
BB2:
|
805 |
|
|
flag_2 = phi <0, flag_1, flag_1> // (2)
|
806 |
|
|
var_2 = phi <undef, var_1, var_1>
|
807 |
|
|
if (flag_2 == 1)
|
808 |
|
|
goto BB3;
|
809 |
|
|
|
810 |
|
|
BB3:
|
811 |
|
|
use of var_2 // (3)
|
812 |
|
|
|
813 |
|
|
Because some flag arg in (1) is not constant, if we do not look into the
|
814 |
|
|
flag phis recursively, it is conservatively treated as unknown and var_1
|
815 |
|
|
is thought to be flowed into use at (3). Since var_1 is potentially uninitialized
|
816 |
|
|
a false warning will be emitted. Checking recursively into (1), the compiler can
|
817 |
|
|
find out that only some_val (which is defined) can flow into (3) which is OK.
|
818 |
|
|
|
819 |
|
|
*/
|
820 |
|
|
|
821 |
|
|
static bool
|
822 |
|
|
prune_uninit_phi_opnds_in_unrealizable_paths (
|
823 |
|
|
gimple phi, unsigned uninit_opnds,
|
824 |
|
|
gimple flag_def, tree boundary_cst,
|
825 |
|
|
enum tree_code cmp_code,
|
826 |
|
|
struct pointer_set_t *visited_phis,
|
827 |
|
|
bitmap *visited_flag_phis)
|
828 |
|
|
{
|
829 |
|
|
unsigned i;
|
830 |
|
|
|
831 |
|
|
for (i = 0; i < MIN (32, gimple_phi_num_args (flag_def)); i++)
|
832 |
|
|
{
|
833 |
|
|
tree flag_arg;
|
834 |
|
|
|
835 |
|
|
if (!MASK_TEST_BIT (uninit_opnds, i))
|
836 |
|
|
continue;
|
837 |
|
|
|
838 |
|
|
flag_arg = gimple_phi_arg_def (flag_def, i);
|
839 |
|
|
if (!is_gimple_constant (flag_arg))
|
840 |
|
|
{
|
841 |
|
|
gimple flag_arg_def, phi_arg_def;
|
842 |
|
|
tree phi_arg;
|
843 |
|
|
unsigned uninit_opnds_arg_phi;
|
844 |
|
|
|
845 |
|
|
if (TREE_CODE (flag_arg) != SSA_NAME)
|
846 |
|
|
return false;
|
847 |
|
|
flag_arg_def = SSA_NAME_DEF_STMT (flag_arg);
|
848 |
|
|
if (gimple_code (flag_arg_def) != GIMPLE_PHI)
|
849 |
|
|
return false;
|
850 |
|
|
|
851 |
|
|
phi_arg = gimple_phi_arg_def (phi, i);
|
852 |
|
|
if (TREE_CODE (phi_arg) != SSA_NAME)
|
853 |
|
|
return false;
|
854 |
|
|
|
855 |
|
|
phi_arg_def = SSA_NAME_DEF_STMT (phi_arg);
|
856 |
|
|
if (gimple_code (phi_arg_def) != GIMPLE_PHI)
|
857 |
|
|
return false;
|
858 |
|
|
|
859 |
|
|
if (gimple_bb (phi_arg_def) != gimple_bb (flag_arg_def))
|
860 |
|
|
return false;
|
861 |
|
|
|
862 |
|
|
if (!*visited_flag_phis)
|
863 |
|
|
*visited_flag_phis = BITMAP_ALLOC (NULL);
|
864 |
|
|
|
865 |
|
|
if (bitmap_bit_p (*visited_flag_phis,
|
866 |
|
|
SSA_NAME_VERSION (gimple_phi_result (flag_arg_def))))
|
867 |
|
|
return false;
|
868 |
|
|
|
869 |
|
|
bitmap_set_bit (*visited_flag_phis,
|
870 |
|
|
SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
|
871 |
|
|
|
872 |
|
|
/* Now recursively prune the uninitialized phi args. */
|
873 |
|
|
uninit_opnds_arg_phi = compute_uninit_opnds_pos (phi_arg_def);
|
874 |
|
|
if (!prune_uninit_phi_opnds_in_unrealizable_paths (
|
875 |
|
|
phi_arg_def, uninit_opnds_arg_phi,
|
876 |
|
|
flag_arg_def, boundary_cst, cmp_code,
|
877 |
|
|
visited_phis, visited_flag_phis))
|
878 |
|
|
return false;
|
879 |
|
|
|
880 |
|
|
bitmap_clear_bit (*visited_flag_phis,
|
881 |
|
|
SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
|
882 |
|
|
continue;
|
883 |
|
|
}
|
884 |
|
|
|
885 |
|
|
/* Now check if the constant is in the guarded range. */
|
886 |
|
|
if (is_value_included_in (flag_arg, boundary_cst, cmp_code))
|
887 |
|
|
{
|
888 |
|
|
tree opnd;
|
889 |
|
|
gimple opnd_def;
|
890 |
|
|
|
891 |
|
|
/* Now that we know that this undefined edge is not
|
892 |
|
|
pruned. If the operand is defined by another phi,
|
893 |
|
|
we can further prune the incoming edges of that
|
894 |
|
|
phi by checking the predicates of this operands. */
|
895 |
|
|
|
896 |
|
|
opnd = gimple_phi_arg_def (phi, i);
|
897 |
|
|
opnd_def = SSA_NAME_DEF_STMT (opnd);
|
898 |
|
|
if (gimple_code (opnd_def) == GIMPLE_PHI)
|
899 |
|
|
{
|
900 |
|
|
edge opnd_edge;
|
901 |
|
|
unsigned uninit_opnds2
|
902 |
|
|
= compute_uninit_opnds_pos (opnd_def);
|
903 |
|
|
gcc_assert (!MASK_EMPTY (uninit_opnds2));
|
904 |
|
|
opnd_edge = gimple_phi_arg_edge (phi, i);
|
905 |
|
|
if (!is_use_properly_guarded (phi,
|
906 |
|
|
opnd_edge->src,
|
907 |
|
|
opnd_def,
|
908 |
|
|
uninit_opnds2,
|
909 |
|
|
visited_phis))
|
910 |
|
|
return false;
|
911 |
|
|
}
|
912 |
|
|
else
|
913 |
|
|
return false;
|
914 |
|
|
}
|
915 |
|
|
}
|
916 |
|
|
|
917 |
|
|
return true;
|
918 |
|
|
}
|
919 |
|
|
|
920 |
|
|
/* A helper function that determines if the predicate set
|
921 |
|
|
of the use is not overlapping with that of the uninit paths.
|
922 |
|
|
The most common senario of guarded use is in Example 1:
|
923 |
|
|
Example 1:
|
924 |
|
|
if (some_cond)
|
925 |
|
|
{
|
926 |
|
|
x = ...;
|
927 |
|
|
flag = true;
|
928 |
|
|
}
|
929 |
|
|
|
930 |
|
|
... some code ...
|
931 |
|
|
|
932 |
|
|
if (flag)
|
933 |
|
|
use (x);
|
934 |
|
|
|
935 |
|
|
The real world examples are usually more complicated, but similar
|
936 |
|
|
and usually result from inlining:
|
937 |
|
|
|
938 |
|
|
bool init_func (int * x)
|
939 |
|
|
{
|
940 |
|
|
if (some_cond)
|
941 |
|
|
return false;
|
942 |
|
|
*x = ..
|
943 |
|
|
return true;
|
944 |
|
|
}
|
945 |
|
|
|
946 |
|
|
void foo(..)
|
947 |
|
|
{
|
948 |
|
|
int x;
|
949 |
|
|
|
950 |
|
|
if (!init_func(&x))
|
951 |
|
|
return;
|
952 |
|
|
|
953 |
|
|
.. some_code ...
|
954 |
|
|
use (x);
|
955 |
|
|
}
|
956 |
|
|
|
957 |
|
|
Another possible use scenario is in the following trivial example:
|
958 |
|
|
|
959 |
|
|
Example 2:
|
960 |
|
|
if (n > 0)
|
961 |
|
|
x = 1;
|
962 |
|
|
...
|
963 |
|
|
if (n > 0)
|
964 |
|
|
{
|
965 |
|
|
if (m < 2)
|
966 |
|
|
.. = x;
|
967 |
|
|
}
|
968 |
|
|
|
969 |
|
|
Predicate analysis needs to compute the composite predicate:
|
970 |
|
|
|
971 |
|
|
1) 'x' use predicate: (n > 0) .AND. (m < 2)
|
972 |
|
|
2) 'x' default value (non-def) predicate: .NOT. (n > 0)
|
973 |
|
|
(the predicate chain for phi operand defs can be computed
|
974 |
|
|
starting from a bb that is control equivalent to the phi's
|
975 |
|
|
bb and is dominating the operand def.)
|
976 |
|
|
|
977 |
|
|
and check overlapping:
|
978 |
|
|
(n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
|
979 |
|
|
<==> false
|
980 |
|
|
|
981 |
|
|
This implementation provides framework that can handle
|
982 |
|
|
scenarios. (Note that many simple cases are handled properly
|
983 |
|
|
without the predicate analysis -- this is due to jump threading
|
984 |
|
|
transformation which eliminates the merge point thus makes
|
985 |
|
|
path sensitive analysis unnecessary.)
|
986 |
|
|
|
987 |
|
|
NUM_PREDS is the number is the number predicate chains, PREDS is
|
988 |
|
|
the array of chains, PHI is the phi node whose incoming (undefined)
|
989 |
|
|
paths need to be pruned, and UNINIT_OPNDS is the bitmap holding
|
990 |
|
|
uninit operand positions. VISITED_PHIS is the pointer set of phi
|
991 |
|
|
stmts being checked. */
|
992 |
|
|
|
993 |
|
|
|
994 |
|
|
static bool
|
995 |
|
|
use_pred_not_overlap_with_undef_path_pred (
|
996 |
|
|
size_t num_preds,
|
997 |
|
|
VEC(use_pred_info_t, heap) **preds,
|
998 |
|
|
gimple phi, unsigned uninit_opnds,
|
999 |
|
|
struct pointer_set_t *visited_phis)
|
1000 |
|
|
{
|
1001 |
|
|
unsigned int i, n;
|
1002 |
|
|
gimple flag_def = 0;
|
1003 |
|
|
tree boundary_cst = 0;
|
1004 |
|
|
enum tree_code cmp_code;
|
1005 |
|
|
bool swap_cond = false;
|
1006 |
|
|
bool invert = false;
|
1007 |
|
|
VEC(use_pred_info_t, heap) *the_pred_chain;
|
1008 |
|
|
bitmap visited_flag_phis = NULL;
|
1009 |
|
|
bool all_pruned = false;
|
1010 |
|
|
|
1011 |
|
|
gcc_assert (num_preds > 0);
|
1012 |
|
|
/* Find within the common prefix of multiple predicate chains
|
1013 |
|
|
a predicate that is a comparison of a flag variable against
|
1014 |
|
|
a constant. */
|
1015 |
|
|
the_pred_chain = preds[0];
|
1016 |
|
|
n = VEC_length (use_pred_info_t, the_pred_chain);
|
1017 |
|
|
for (i = 0; i < n; i++)
|
1018 |
|
|
{
|
1019 |
|
|
gimple cond;
|
1020 |
|
|
tree cond_lhs, cond_rhs, flag = 0;
|
1021 |
|
|
|
1022 |
|
|
use_pred_info_t the_pred
|
1023 |
|
|
= VEC_index (use_pred_info_t, the_pred_chain, i);
|
1024 |
|
|
|
1025 |
|
|
cond = the_pred->cond;
|
1026 |
|
|
invert = the_pred->invert;
|
1027 |
|
|
cond_lhs = gimple_cond_lhs (cond);
|
1028 |
|
|
cond_rhs = gimple_cond_rhs (cond);
|
1029 |
|
|
cmp_code = gimple_cond_code (cond);
|
1030 |
|
|
|
1031 |
|
|
if (cond_lhs != NULL_TREE && TREE_CODE (cond_lhs) == SSA_NAME
|
1032 |
|
|
&& cond_rhs != NULL_TREE && is_gimple_constant (cond_rhs))
|
1033 |
|
|
{
|
1034 |
|
|
boundary_cst = cond_rhs;
|
1035 |
|
|
flag = cond_lhs;
|
1036 |
|
|
}
|
1037 |
|
|
else if (cond_rhs != NULL_TREE && TREE_CODE (cond_rhs) == SSA_NAME
|
1038 |
|
|
&& cond_lhs != NULL_TREE && is_gimple_constant (cond_lhs))
|
1039 |
|
|
{
|
1040 |
|
|
boundary_cst = cond_lhs;
|
1041 |
|
|
flag = cond_rhs;
|
1042 |
|
|
swap_cond = true;
|
1043 |
|
|
}
|
1044 |
|
|
|
1045 |
|
|
if (!flag)
|
1046 |
|
|
continue;
|
1047 |
|
|
|
1048 |
|
|
flag_def = SSA_NAME_DEF_STMT (flag);
|
1049 |
|
|
|
1050 |
|
|
if (!flag_def)
|
1051 |
|
|
continue;
|
1052 |
|
|
|
1053 |
|
|
if ((gimple_code (flag_def) == GIMPLE_PHI)
|
1054 |
|
|
&& (gimple_bb (flag_def) == gimple_bb (phi))
|
1055 |
|
|
&& find_matching_predicate_in_rest_chains (
|
1056 |
|
|
the_pred, preds, num_preds))
|
1057 |
|
|
break;
|
1058 |
|
|
|
1059 |
|
|
flag_def = 0;
|
1060 |
|
|
}
|
1061 |
|
|
|
1062 |
|
|
if (!flag_def)
|
1063 |
|
|
return false;
|
1064 |
|
|
|
1065 |
|
|
/* Now check all the uninit incoming edge has a constant flag value
|
1066 |
|
|
that is in conflict with the use guard/predicate. */
|
1067 |
|
|
cmp_code = get_cmp_code (cmp_code, swap_cond, invert);
|
1068 |
|
|
|
1069 |
|
|
if (cmp_code == ERROR_MARK)
|
1070 |
|
|
return false;
|
1071 |
|
|
|
1072 |
|
|
all_pruned = prune_uninit_phi_opnds_in_unrealizable_paths (phi,
|
1073 |
|
|
uninit_opnds,
|
1074 |
|
|
flag_def,
|
1075 |
|
|
boundary_cst,
|
1076 |
|
|
cmp_code,
|
1077 |
|
|
visited_phis,
|
1078 |
|
|
&visited_flag_phis);
|
1079 |
|
|
|
1080 |
|
|
if (visited_flag_phis)
|
1081 |
|
|
BITMAP_FREE (visited_flag_phis);
|
1082 |
|
|
|
1083 |
|
|
return all_pruned;
|
1084 |
|
|
}
|
1085 |
|
|
|
1086 |
|
|
/* Returns true if TC is AND or OR */
|
1087 |
|
|
|
1088 |
|
|
static inline bool
|
1089 |
|
|
is_and_or_or (enum tree_code tc, tree typ)
|
1090 |
|
|
{
|
1091 |
|
|
return (tc == BIT_IOR_EXPR
|
1092 |
|
|
|| (tc == BIT_AND_EXPR
|
1093 |
|
|
&& (typ == 0 || TREE_CODE (typ) == BOOLEAN_TYPE)));
|
1094 |
|
|
}
|
1095 |
|
|
|
1096 |
|
|
typedef struct norm_cond
|
1097 |
|
|
{
|
1098 |
|
|
VEC(gimple, heap) *conds;
|
1099 |
|
|
enum tree_code cond_code;
|
1100 |
|
|
bool invert;
|
1101 |
|
|
} *norm_cond_t;
|
1102 |
|
|
|
1103 |
|
|
|
1104 |
|
|
/* Normalizes gimple condition COND. The normalization follows
|
1105 |
|
|
UD chains to form larger condition expression trees. NORM_COND
|
1106 |
|
|
holds the normalized result. COND_CODE is the logical opcode
|
1107 |
|
|
(AND or OR) of the normalized tree. */
|
1108 |
|
|
|
1109 |
|
|
static void
|
1110 |
|
|
normalize_cond_1 (gimple cond,
|
1111 |
|
|
norm_cond_t norm_cond,
|
1112 |
|
|
enum tree_code cond_code)
|
1113 |
|
|
{
|
1114 |
|
|
enum gimple_code gc;
|
1115 |
|
|
enum tree_code cur_cond_code;
|
1116 |
|
|
tree rhs1, rhs2;
|
1117 |
|
|
|
1118 |
|
|
gc = gimple_code (cond);
|
1119 |
|
|
if (gc != GIMPLE_ASSIGN)
|
1120 |
|
|
{
|
1121 |
|
|
VEC_safe_push (gimple, heap, norm_cond->conds, cond);
|
1122 |
|
|
return;
|
1123 |
|
|
}
|
1124 |
|
|
|
1125 |
|
|
cur_cond_code = gimple_assign_rhs_code (cond);
|
1126 |
|
|
rhs1 = gimple_assign_rhs1 (cond);
|
1127 |
|
|
rhs2 = gimple_assign_rhs2 (cond);
|
1128 |
|
|
if (cur_cond_code == NE_EXPR)
|
1129 |
|
|
{
|
1130 |
|
|
if (integer_zerop (rhs2)
|
1131 |
|
|
&& (TREE_CODE (rhs1) == SSA_NAME))
|
1132 |
|
|
normalize_cond_1 (
|
1133 |
|
|
SSA_NAME_DEF_STMT (rhs1),
|
1134 |
|
|
norm_cond, cond_code);
|
1135 |
|
|
else if (integer_zerop (rhs1)
|
1136 |
|
|
&& (TREE_CODE (rhs2) == SSA_NAME))
|
1137 |
|
|
normalize_cond_1 (
|
1138 |
|
|
SSA_NAME_DEF_STMT (rhs2),
|
1139 |
|
|
norm_cond, cond_code);
|
1140 |
|
|
else
|
1141 |
|
|
VEC_safe_push (gimple, heap, norm_cond->conds, cond);
|
1142 |
|
|
|
1143 |
|
|
return;
|
1144 |
|
|
}
|
1145 |
|
|
|
1146 |
|
|
if (is_and_or_or (cur_cond_code, TREE_TYPE (rhs1))
|
1147 |
|
|
&& (cond_code == cur_cond_code || cond_code == ERROR_MARK)
|
1148 |
|
|
&& (TREE_CODE (rhs1) == SSA_NAME && TREE_CODE (rhs2) == SSA_NAME))
|
1149 |
|
|
{
|
1150 |
|
|
normalize_cond_1 (SSA_NAME_DEF_STMT (rhs1),
|
1151 |
|
|
norm_cond, cur_cond_code);
|
1152 |
|
|
normalize_cond_1 (SSA_NAME_DEF_STMT (rhs2),
|
1153 |
|
|
norm_cond, cur_cond_code);
|
1154 |
|
|
norm_cond->cond_code = cur_cond_code;
|
1155 |
|
|
}
|
1156 |
|
|
else
|
1157 |
|
|
VEC_safe_push (gimple, heap, norm_cond->conds, cond);
|
1158 |
|
|
}
|
1159 |
|
|
|
1160 |
|
|
/* See normalize_cond_1 for details. INVERT is a flag to indicate
|
1161 |
|
|
if COND needs to be inverted or not. */
|
1162 |
|
|
|
1163 |
|
|
static void
|
1164 |
|
|
normalize_cond (gimple cond, norm_cond_t norm_cond, bool invert)
|
1165 |
|
|
{
|
1166 |
|
|
enum tree_code cond_code;
|
1167 |
|
|
|
1168 |
|
|
norm_cond->cond_code = ERROR_MARK;
|
1169 |
|
|
norm_cond->invert = false;
|
1170 |
|
|
norm_cond->conds = NULL;
|
1171 |
|
|
gcc_assert (gimple_code (cond) == GIMPLE_COND);
|
1172 |
|
|
cond_code = gimple_cond_code (cond);
|
1173 |
|
|
if (invert)
|
1174 |
|
|
cond_code = invert_tree_comparison (cond_code, false);
|
1175 |
|
|
|
1176 |
|
|
if (cond_code == NE_EXPR)
|
1177 |
|
|
{
|
1178 |
|
|
if (integer_zerop (gimple_cond_rhs (cond))
|
1179 |
|
|
&& (TREE_CODE (gimple_cond_lhs (cond)) == SSA_NAME))
|
1180 |
|
|
normalize_cond_1 (
|
1181 |
|
|
SSA_NAME_DEF_STMT (gimple_cond_lhs (cond)),
|
1182 |
|
|
norm_cond, ERROR_MARK);
|
1183 |
|
|
else if (integer_zerop (gimple_cond_lhs (cond))
|
1184 |
|
|
&& (TREE_CODE (gimple_cond_rhs (cond)) == SSA_NAME))
|
1185 |
|
|
normalize_cond_1 (
|
1186 |
|
|
SSA_NAME_DEF_STMT (gimple_cond_rhs (cond)),
|
1187 |
|
|
norm_cond, ERROR_MARK);
|
1188 |
|
|
else
|
1189 |
|
|
{
|
1190 |
|
|
VEC_safe_push (gimple, heap, norm_cond->conds, cond);
|
1191 |
|
|
norm_cond->invert = invert;
|
1192 |
|
|
}
|
1193 |
|
|
}
|
1194 |
|
|
else
|
1195 |
|
|
{
|
1196 |
|
|
VEC_safe_push (gimple, heap, norm_cond->conds, cond);
|
1197 |
|
|
norm_cond->invert = invert;
|
1198 |
|
|
}
|
1199 |
|
|
|
1200 |
|
|
gcc_assert (VEC_length (gimple, norm_cond->conds) == 1
|
1201 |
|
|
|| is_and_or_or (norm_cond->cond_code, NULL));
|
1202 |
|
|
}
|
1203 |
|
|
|
1204 |
|
|
/* Returns true if the domain for condition COND1 is a subset of
|
1205 |
|
|
COND2. REVERSE is a flag. when it is true the function checks
|
1206 |
|
|
if COND1 is a superset of COND2. INVERT1 and INVERT2 are flags
|
1207 |
|
|
to indicate if COND1 and COND2 need to be inverted or not. */
|
1208 |
|
|
|
1209 |
|
|
static bool
|
1210 |
|
|
is_gcond_subset_of (gimple cond1, bool invert1,
|
1211 |
|
|
gimple cond2, bool invert2,
|
1212 |
|
|
bool reverse)
|
1213 |
|
|
{
|
1214 |
|
|
enum gimple_code gc1, gc2;
|
1215 |
|
|
enum tree_code cond1_code, cond2_code;
|
1216 |
|
|
gimple tmp;
|
1217 |
|
|
tree cond1_lhs, cond1_rhs, cond2_lhs, cond2_rhs;
|
1218 |
|
|
|
1219 |
|
|
/* Take the short cut. */
|
1220 |
|
|
if (cond1 == cond2)
|
1221 |
|
|
return true;
|
1222 |
|
|
|
1223 |
|
|
if (reverse)
|
1224 |
|
|
{
|
1225 |
|
|
tmp = cond1;
|
1226 |
|
|
cond1 = cond2;
|
1227 |
|
|
cond2 = tmp;
|
1228 |
|
|
}
|
1229 |
|
|
|
1230 |
|
|
gc1 = gimple_code (cond1);
|
1231 |
|
|
gc2 = gimple_code (cond2);
|
1232 |
|
|
|
1233 |
|
|
if ((gc1 != GIMPLE_ASSIGN && gc1 != GIMPLE_COND)
|
1234 |
|
|
|| (gc2 != GIMPLE_ASSIGN && gc2 != GIMPLE_COND))
|
1235 |
|
|
return cond1 == cond2;
|
1236 |
|
|
|
1237 |
|
|
cond1_code = ((gc1 == GIMPLE_ASSIGN)
|
1238 |
|
|
? gimple_assign_rhs_code (cond1)
|
1239 |
|
|
: gimple_cond_code (cond1));
|
1240 |
|
|
|
1241 |
|
|
cond2_code = ((gc2 == GIMPLE_ASSIGN)
|
1242 |
|
|
? gimple_assign_rhs_code (cond2)
|
1243 |
|
|
: gimple_cond_code (cond2));
|
1244 |
|
|
|
1245 |
|
|
if (TREE_CODE_CLASS (cond1_code) != tcc_comparison
|
1246 |
|
|
|| TREE_CODE_CLASS (cond2_code) != tcc_comparison)
|
1247 |
|
|
return false;
|
1248 |
|
|
|
1249 |
|
|
if (invert1)
|
1250 |
|
|
cond1_code = invert_tree_comparison (cond1_code, false);
|
1251 |
|
|
if (invert2)
|
1252 |
|
|
cond2_code = invert_tree_comparison (cond2_code, false);
|
1253 |
|
|
|
1254 |
|
|
cond1_lhs = ((gc1 == GIMPLE_ASSIGN)
|
1255 |
|
|
? gimple_assign_rhs1 (cond1)
|
1256 |
|
|
: gimple_cond_lhs (cond1));
|
1257 |
|
|
cond1_rhs = ((gc1 == GIMPLE_ASSIGN)
|
1258 |
|
|
? gimple_assign_rhs2 (cond1)
|
1259 |
|
|
: gimple_cond_rhs (cond1));
|
1260 |
|
|
cond2_lhs = ((gc2 == GIMPLE_ASSIGN)
|
1261 |
|
|
? gimple_assign_rhs1 (cond2)
|
1262 |
|
|
: gimple_cond_lhs (cond2));
|
1263 |
|
|
cond2_rhs = ((gc2 == GIMPLE_ASSIGN)
|
1264 |
|
|
? gimple_assign_rhs2 (cond2)
|
1265 |
|
|
: gimple_cond_rhs (cond2));
|
1266 |
|
|
|
1267 |
|
|
/* Assuming const operands have been swapped to the
|
1268 |
|
|
rhs at this point of the analysis. */
|
1269 |
|
|
|
1270 |
|
|
if (cond1_lhs != cond2_lhs)
|
1271 |
|
|
return false;
|
1272 |
|
|
|
1273 |
|
|
if (!is_gimple_constant (cond1_rhs)
|
1274 |
|
|
|| TREE_CODE (cond1_rhs) != INTEGER_CST)
|
1275 |
|
|
return (cond1_rhs == cond2_rhs);
|
1276 |
|
|
|
1277 |
|
|
if (!is_gimple_constant (cond2_rhs)
|
1278 |
|
|
|| TREE_CODE (cond2_rhs) != INTEGER_CST)
|
1279 |
|
|
return (cond1_rhs == cond2_rhs);
|
1280 |
|
|
|
1281 |
|
|
if (cond1_code == EQ_EXPR)
|
1282 |
|
|
return is_value_included_in (cond1_rhs,
|
1283 |
|
|
cond2_rhs, cond2_code);
|
1284 |
|
|
if (cond1_code == NE_EXPR || cond2_code == EQ_EXPR)
|
1285 |
|
|
return ((cond2_code == cond1_code)
|
1286 |
|
|
&& tree_int_cst_equal (cond1_rhs, cond2_rhs));
|
1287 |
|
|
|
1288 |
|
|
if (((cond1_code == GE_EXPR || cond1_code == GT_EXPR)
|
1289 |
|
|
&& (cond2_code == LE_EXPR || cond2_code == LT_EXPR))
|
1290 |
|
|
|| ((cond1_code == LE_EXPR || cond1_code == LT_EXPR)
|
1291 |
|
|
&& (cond2_code == GE_EXPR || cond2_code == GT_EXPR)))
|
1292 |
|
|
return false;
|
1293 |
|
|
|
1294 |
|
|
if (cond1_code != GE_EXPR && cond1_code != GT_EXPR
|
1295 |
|
|
&& cond1_code != LE_EXPR && cond1_code != LT_EXPR)
|
1296 |
|
|
return false;
|
1297 |
|
|
|
1298 |
|
|
if (cond1_code == GT_EXPR)
|
1299 |
|
|
{
|
1300 |
|
|
cond1_code = GE_EXPR;
|
1301 |
|
|
cond1_rhs = fold_binary (PLUS_EXPR, TREE_TYPE (cond1_rhs),
|
1302 |
|
|
cond1_rhs,
|
1303 |
|
|
fold_convert (TREE_TYPE (cond1_rhs),
|
1304 |
|
|
integer_one_node));
|
1305 |
|
|
}
|
1306 |
|
|
else if (cond1_code == LT_EXPR)
|
1307 |
|
|
{
|
1308 |
|
|
cond1_code = LE_EXPR;
|
1309 |
|
|
cond1_rhs = fold_binary (MINUS_EXPR, TREE_TYPE (cond1_rhs),
|
1310 |
|
|
cond1_rhs,
|
1311 |
|
|
fold_convert (TREE_TYPE (cond1_rhs),
|
1312 |
|
|
integer_one_node));
|
1313 |
|
|
}
|
1314 |
|
|
|
1315 |
|
|
if (!cond1_rhs)
|
1316 |
|
|
return false;
|
1317 |
|
|
|
1318 |
|
|
gcc_assert (cond1_code == GE_EXPR || cond1_code == LE_EXPR);
|
1319 |
|
|
|
1320 |
|
|
if (cond2_code == GE_EXPR || cond2_code == GT_EXPR ||
|
1321 |
|
|
cond2_code == LE_EXPR || cond2_code == LT_EXPR)
|
1322 |
|
|
return is_value_included_in (cond1_rhs,
|
1323 |
|
|
cond2_rhs, cond2_code);
|
1324 |
|
|
else if (cond2_code == NE_EXPR)
|
1325 |
|
|
return
|
1326 |
|
|
(is_value_included_in (cond1_rhs,
|
1327 |
|
|
cond2_rhs, cond2_code)
|
1328 |
|
|
&& !is_value_included_in (cond2_rhs,
|
1329 |
|
|
cond1_rhs, cond1_code));
|
1330 |
|
|
return false;
|
1331 |
|
|
}
|
1332 |
|
|
|
1333 |
|
|
/* Returns true if the domain of the condition expression
|
1334 |
|
|
in COND is a subset of any of the sub-conditions
|
1335 |
|
|
of the normalized condtion NORM_COND. INVERT is a flag
|
1336 |
|
|
to indicate of the COND needs to be inverted.
|
1337 |
|
|
REVERSE is a flag. When it is true, the check is reversed --
|
1338 |
|
|
it returns true if COND is a superset of any of the subconditions
|
1339 |
|
|
of NORM_COND. */
|
1340 |
|
|
|
1341 |
|
|
static bool
|
1342 |
|
|
is_subset_of_any (gimple cond, bool invert,
|
1343 |
|
|
norm_cond_t norm_cond, bool reverse)
|
1344 |
|
|
{
|
1345 |
|
|
size_t i;
|
1346 |
|
|
size_t len = VEC_length (gimple, norm_cond->conds);
|
1347 |
|
|
|
1348 |
|
|
for (i = 0; i < len; i++)
|
1349 |
|
|
{
|
1350 |
|
|
if (is_gcond_subset_of (cond, invert,
|
1351 |
|
|
VEC_index (gimple, norm_cond->conds, i),
|
1352 |
|
|
false, reverse))
|
1353 |
|
|
return true;
|
1354 |
|
|
}
|
1355 |
|
|
return false;
|
1356 |
|
|
}
|
1357 |
|
|
|
1358 |
|
|
/* NORM_COND1 and NORM_COND2 are normalized logical/BIT OR
|
1359 |
|
|
expressions (formed by following UD chains not control
|
1360 |
|
|
dependence chains). The function returns true of domain
|
1361 |
|
|
of and expression NORM_COND1 is a subset of NORM_COND2's.
|
1362 |
|
|
The implementation is conservative, and it returns false if
|
1363 |
|
|
it the inclusion relationship may not hold. */
|
1364 |
|
|
|
1365 |
|
|
static bool
|
1366 |
|
|
is_or_set_subset_of (norm_cond_t norm_cond1,
|
1367 |
|
|
norm_cond_t norm_cond2)
|
1368 |
|
|
{
|
1369 |
|
|
size_t i;
|
1370 |
|
|
size_t len = VEC_length (gimple, norm_cond1->conds);
|
1371 |
|
|
|
1372 |
|
|
for (i = 0; i < len; i++)
|
1373 |
|
|
{
|
1374 |
|
|
if (!is_subset_of_any (VEC_index (gimple, norm_cond1->conds, i),
|
1375 |
|
|
false, norm_cond2, false))
|
1376 |
|
|
return false;
|
1377 |
|
|
}
|
1378 |
|
|
return true;
|
1379 |
|
|
}
|
1380 |
|
|
|
1381 |
|
|
/* NORM_COND1 and NORM_COND2 are normalized logical AND
|
1382 |
|
|
expressions (formed by following UD chains not control
|
1383 |
|
|
dependence chains). The function returns true of domain
|
1384 |
|
|
of and expression NORM_COND1 is a subset of NORM_COND2's. */
|
1385 |
|
|
|
1386 |
|
|
static bool
|
1387 |
|
|
is_and_set_subset_of (norm_cond_t norm_cond1,
|
1388 |
|
|
norm_cond_t norm_cond2)
|
1389 |
|
|
{
|
1390 |
|
|
size_t i;
|
1391 |
|
|
size_t len = VEC_length (gimple, norm_cond2->conds);
|
1392 |
|
|
|
1393 |
|
|
for (i = 0; i < len; i++)
|
1394 |
|
|
{
|
1395 |
|
|
if (!is_subset_of_any (VEC_index (gimple, norm_cond2->conds, i),
|
1396 |
|
|
false, norm_cond1, true))
|
1397 |
|
|
return false;
|
1398 |
|
|
}
|
1399 |
|
|
return true;
|
1400 |
|
|
}
|
1401 |
|
|
|
1402 |
|
|
/* Returns true of the domain if NORM_COND1 is a subset
|
1403 |
|
|
of that of NORM_COND2. Returns false if it can not be
|
1404 |
|
|
proved to be so. */
|
1405 |
|
|
|
1406 |
|
|
static bool
|
1407 |
|
|
is_norm_cond_subset_of (norm_cond_t norm_cond1,
|
1408 |
|
|
norm_cond_t norm_cond2)
|
1409 |
|
|
{
|
1410 |
|
|
size_t i;
|
1411 |
|
|
enum tree_code code1, code2;
|
1412 |
|
|
|
1413 |
|
|
code1 = norm_cond1->cond_code;
|
1414 |
|
|
code2 = norm_cond2->cond_code;
|
1415 |
|
|
|
1416 |
|
|
if (code1 == BIT_AND_EXPR)
|
1417 |
|
|
{
|
1418 |
|
|
/* Both conditions are AND expressions. */
|
1419 |
|
|
if (code2 == BIT_AND_EXPR)
|
1420 |
|
|
return is_and_set_subset_of (norm_cond1, norm_cond2);
|
1421 |
|
|
/* NORM_COND1 is an AND expression, and NORM_COND2 is an OR
|
1422 |
|
|
expression. In this case, returns true if any subexpression
|
1423 |
|
|
of NORM_COND1 is a subset of any subexpression of NORM_COND2. */
|
1424 |
|
|
else if (code2 == BIT_IOR_EXPR)
|
1425 |
|
|
{
|
1426 |
|
|
size_t len1;
|
1427 |
|
|
len1 = VEC_length (gimple, norm_cond1->conds);
|
1428 |
|
|
for (i = 0; i < len1; i++)
|
1429 |
|
|
{
|
1430 |
|
|
gimple cond1 = VEC_index (gimple, norm_cond1->conds, i);
|
1431 |
|
|
if (is_subset_of_any (cond1, false, norm_cond2, false))
|
1432 |
|
|
return true;
|
1433 |
|
|
}
|
1434 |
|
|
return false;
|
1435 |
|
|
}
|
1436 |
|
|
else
|
1437 |
|
|
{
|
1438 |
|
|
gcc_assert (code2 == ERROR_MARK);
|
1439 |
|
|
gcc_assert (VEC_length (gimple, norm_cond2->conds) == 1);
|
1440 |
|
|
return is_subset_of_any (VEC_index (gimple, norm_cond2->conds, 0),
|
1441 |
|
|
norm_cond2->invert, norm_cond1, true);
|
1442 |
|
|
}
|
1443 |
|
|
}
|
1444 |
|
|
/* NORM_COND1 is an OR expression */
|
1445 |
|
|
else if (code1 == BIT_IOR_EXPR)
|
1446 |
|
|
{
|
1447 |
|
|
if (code2 != code1)
|
1448 |
|
|
return false;
|
1449 |
|
|
|
1450 |
|
|
return is_or_set_subset_of (norm_cond1, norm_cond2);
|
1451 |
|
|
}
|
1452 |
|
|
else
|
1453 |
|
|
{
|
1454 |
|
|
gcc_assert (code1 == ERROR_MARK);
|
1455 |
|
|
gcc_assert (VEC_length (gimple, norm_cond1->conds) == 1);
|
1456 |
|
|
/* Conservatively returns false if NORM_COND1 is non-decomposible
|
1457 |
|
|
and NORM_COND2 is an AND expression. */
|
1458 |
|
|
if (code2 == BIT_AND_EXPR)
|
1459 |
|
|
return false;
|
1460 |
|
|
|
1461 |
|
|
if (code2 == BIT_IOR_EXPR)
|
1462 |
|
|
return is_subset_of_any (VEC_index (gimple, norm_cond1->conds, 0),
|
1463 |
|
|
norm_cond1->invert, norm_cond2, false);
|
1464 |
|
|
|
1465 |
|
|
gcc_assert (code2 == ERROR_MARK);
|
1466 |
|
|
gcc_assert (VEC_length (gimple, norm_cond2->conds) == 1);
|
1467 |
|
|
return is_gcond_subset_of (VEC_index (gimple, norm_cond1->conds, 0),
|
1468 |
|
|
norm_cond1->invert,
|
1469 |
|
|
VEC_index (gimple, norm_cond2->conds, 0),
|
1470 |
|
|
norm_cond2->invert, false);
|
1471 |
|
|
}
|
1472 |
|
|
}
|
1473 |
|
|
|
1474 |
|
|
/* Returns true of the domain of single predicate expression
|
1475 |
|
|
EXPR1 is a subset of that of EXPR2. Returns false if it
|
1476 |
|
|
can not be proved. */
|
1477 |
|
|
|
1478 |
|
|
static bool
|
1479 |
|
|
is_pred_expr_subset_of (use_pred_info_t expr1,
|
1480 |
|
|
use_pred_info_t expr2)
|
1481 |
|
|
{
|
1482 |
|
|
gimple cond1, cond2;
|
1483 |
|
|
enum tree_code code1, code2;
|
1484 |
|
|
struct norm_cond norm_cond1, norm_cond2;
|
1485 |
|
|
bool is_subset = false;
|
1486 |
|
|
|
1487 |
|
|
cond1 = expr1->cond;
|
1488 |
|
|
cond2 = expr2->cond;
|
1489 |
|
|
code1 = gimple_cond_code (cond1);
|
1490 |
|
|
code2 = gimple_cond_code (cond2);
|
1491 |
|
|
|
1492 |
|
|
if (expr1->invert)
|
1493 |
|
|
code1 = invert_tree_comparison (code1, false);
|
1494 |
|
|
if (expr2->invert)
|
1495 |
|
|
code2 = invert_tree_comparison (code2, false);
|
1496 |
|
|
|
1497 |
|
|
/* Fast path -- match exactly */
|
1498 |
|
|
if ((gimple_cond_lhs (cond1) == gimple_cond_lhs (cond2))
|
1499 |
|
|
&& (gimple_cond_rhs (cond1) == gimple_cond_rhs (cond2))
|
1500 |
|
|
&& (code1 == code2))
|
1501 |
|
|
return true;
|
1502 |
|
|
|
1503 |
|
|
/* Normalize conditions. To keep NE_EXPR, do not invert
|
1504 |
|
|
with both need inversion. */
|
1505 |
|
|
normalize_cond (cond1, &norm_cond1, (expr1->invert));
|
1506 |
|
|
normalize_cond (cond2, &norm_cond2, (expr2->invert));
|
1507 |
|
|
|
1508 |
|
|
is_subset = is_norm_cond_subset_of (&norm_cond1, &norm_cond2);
|
1509 |
|
|
|
1510 |
|
|
/* Free memory */
|
1511 |
|
|
VEC_free (gimple, heap, norm_cond1.conds);
|
1512 |
|
|
VEC_free (gimple, heap, norm_cond2.conds);
|
1513 |
|
|
return is_subset ;
|
1514 |
|
|
}
|
1515 |
|
|
|
1516 |
|
|
/* Returns true if the domain of PRED1 is a subset
|
1517 |
|
|
of that of PRED2. Returns false if it can not be proved so. */
|
1518 |
|
|
|
1519 |
|
|
static bool
|
1520 |
|
|
is_pred_chain_subset_of (VEC(use_pred_info_t, heap) *pred1,
|
1521 |
|
|
VEC(use_pred_info_t, heap) *pred2)
|
1522 |
|
|
{
|
1523 |
|
|
size_t np1, np2, i1, i2;
|
1524 |
|
|
|
1525 |
|
|
np1 = VEC_length (use_pred_info_t, pred1);
|
1526 |
|
|
np2 = VEC_length (use_pred_info_t, pred2);
|
1527 |
|
|
|
1528 |
|
|
for (i2 = 0; i2 < np2; i2++)
|
1529 |
|
|
{
|
1530 |
|
|
bool found = false;
|
1531 |
|
|
use_pred_info_t info2
|
1532 |
|
|
= VEC_index (use_pred_info_t, pred2, i2);
|
1533 |
|
|
for (i1 = 0; i1 < np1; i1++)
|
1534 |
|
|
{
|
1535 |
|
|
use_pred_info_t info1
|
1536 |
|
|
= VEC_index (use_pred_info_t, pred1, i1);
|
1537 |
|
|
if (is_pred_expr_subset_of (info1, info2))
|
1538 |
|
|
{
|
1539 |
|
|
found = true;
|
1540 |
|
|
break;
|
1541 |
|
|
}
|
1542 |
|
|
}
|
1543 |
|
|
if (!found)
|
1544 |
|
|
return false;
|
1545 |
|
|
}
|
1546 |
|
|
return true;
|
1547 |
|
|
}
|
1548 |
|
|
|
1549 |
|
|
/* Returns true if the domain defined by
|
1550 |
|
|
one pred chain ONE_PRED is a subset of the domain
|
1551 |
|
|
of *PREDS. It returns false if ONE_PRED's domain is
|
1552 |
|
|
not a subset of any of the sub-domains of PREDS (
|
1553 |
|
|
corresponding to each individual chains in it), even
|
1554 |
|
|
though it may be still be a subset of whole domain
|
1555 |
|
|
of PREDS which is the union (ORed) of all its subdomains.
|
1556 |
|
|
In other words, the result is conservative. */
|
1557 |
|
|
|
1558 |
|
|
static bool
|
1559 |
|
|
is_included_in (VEC(use_pred_info_t, heap) *one_pred,
|
1560 |
|
|
VEC(use_pred_info_t, heap) **preds,
|
1561 |
|
|
size_t n)
|
1562 |
|
|
{
|
1563 |
|
|
size_t i;
|
1564 |
|
|
|
1565 |
|
|
for (i = 0; i < n; i++)
|
1566 |
|
|
{
|
1567 |
|
|
if (is_pred_chain_subset_of (one_pred, preds[i]))
|
1568 |
|
|
return true;
|
1569 |
|
|
}
|
1570 |
|
|
|
1571 |
|
|
return false;
|
1572 |
|
|
}
|
1573 |
|
|
|
1574 |
|
|
/* compares two predicate sets PREDS1 and PREDS2 and returns
|
1575 |
|
|
true if the domain defined by PREDS1 is a superset
|
1576 |
|
|
of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
|
1577 |
|
|
PREDS2 respectively. The implementation chooses not to build
|
1578 |
|
|
generic trees (and relying on the folding capability of the
|
1579 |
|
|
compiler), but instead performs brute force comparison of
|
1580 |
|
|
individual predicate chains (won't be a compile time problem
|
1581 |
|
|
as the chains are pretty short). When the function returns
|
1582 |
|
|
false, it does not necessarily mean *PREDS1 is not a superset
|
1583 |
|
|
of *PREDS2, but mean it may not be so since the analysis can
|
1584 |
|
|
not prove it. In such cases, false warnings may still be
|
1585 |
|
|
emitted. */
|
1586 |
|
|
|
1587 |
|
|
static bool
|
1588 |
|
|
is_superset_of (VEC(use_pred_info_t, heap) **preds1,
|
1589 |
|
|
size_t n1,
|
1590 |
|
|
VEC(use_pred_info_t, heap) **preds2,
|
1591 |
|
|
size_t n2)
|
1592 |
|
|
{
|
1593 |
|
|
size_t i;
|
1594 |
|
|
VEC(use_pred_info_t, heap) *one_pred_chain;
|
1595 |
|
|
|
1596 |
|
|
for (i = 0; i < n2; i++)
|
1597 |
|
|
{
|
1598 |
|
|
one_pred_chain = preds2[i];
|
1599 |
|
|
if (!is_included_in (one_pred_chain, preds1, n1))
|
1600 |
|
|
return false;
|
1601 |
|
|
}
|
1602 |
|
|
|
1603 |
|
|
return true;
|
1604 |
|
|
}
|
1605 |
|
|
|
1606 |
|
|
/* Comparison function used by qsort. It is used to
|
1607 |
|
|
sort predicate chains to allow predicate
|
1608 |
|
|
simplification. */
|
1609 |
|
|
|
1610 |
|
|
static int
|
1611 |
|
|
pred_chain_length_cmp (const void *p1, const void *p2)
|
1612 |
|
|
{
|
1613 |
|
|
use_pred_info_t i1, i2;
|
1614 |
|
|
VEC(use_pred_info_t, heap) * const *chain1
|
1615 |
|
|
= (VEC(use_pred_info_t, heap) * const *)p1;
|
1616 |
|
|
VEC(use_pred_info_t, heap) * const *chain2
|
1617 |
|
|
= (VEC(use_pred_info_t, heap) * const *)p2;
|
1618 |
|
|
|
1619 |
|
|
if (VEC_length (use_pred_info_t, *chain1)
|
1620 |
|
|
!= VEC_length (use_pred_info_t, *chain2))
|
1621 |
|
|
return (VEC_length (use_pred_info_t, *chain1)
|
1622 |
|
|
- VEC_length (use_pred_info_t, *chain2));
|
1623 |
|
|
|
1624 |
|
|
i1 = VEC_index (use_pred_info_t, *chain1, 0);
|
1625 |
|
|
i2 = VEC_index (use_pred_info_t, *chain2, 0);
|
1626 |
|
|
|
1627 |
|
|
/* Allow predicates with similar prefix come together. */
|
1628 |
|
|
if (!i1->invert && i2->invert)
|
1629 |
|
|
return -1;
|
1630 |
|
|
else if (i1->invert && !i2->invert)
|
1631 |
|
|
return 1;
|
1632 |
|
|
|
1633 |
|
|
return gimple_uid (i1->cond) - gimple_uid (i2->cond);
|
1634 |
|
|
}
|
1635 |
|
|
|
1636 |
|
|
/* x OR (!x AND y) is equivalent to x OR y.
|
1637 |
|
|
This function normalizes x1 OR (!x1 AND x2) OR (!x1 AND !x2 AND x3)
|
1638 |
|
|
into x1 OR x2 OR x3. PREDS is the predicate chains, and N is
|
1639 |
|
|
the number of chains. Returns true if normalization happens. */
|
1640 |
|
|
|
1641 |
|
|
static bool
|
1642 |
|
|
normalize_preds (VEC(use_pred_info_t, heap) **preds, size_t *n)
|
1643 |
|
|
{
|
1644 |
|
|
size_t i, j, ll;
|
1645 |
|
|
VEC(use_pred_info_t, heap) *pred_chain;
|
1646 |
|
|
VEC(use_pred_info_t, heap) *x = 0;
|
1647 |
|
|
use_pred_info_t xj = 0, nxj = 0;
|
1648 |
|
|
|
1649 |
|
|
if (*n < 2)
|
1650 |
|
|
return false;
|
1651 |
|
|
|
1652 |
|
|
/* First sort the chains in ascending order of lengths. */
|
1653 |
|
|
qsort (preds, *n, sizeof (void *), pred_chain_length_cmp);
|
1654 |
|
|
pred_chain = preds[0];
|
1655 |
|
|
ll = VEC_length (use_pred_info_t, pred_chain);
|
1656 |
|
|
if (ll != 1)
|
1657 |
|
|
{
|
1658 |
|
|
if (ll == 2)
|
1659 |
|
|
{
|
1660 |
|
|
use_pred_info_t xx, yy, xx2, nyy;
|
1661 |
|
|
VEC(use_pred_info_t, heap) *pred_chain2 = preds[1];
|
1662 |
|
|
if (VEC_length (use_pred_info_t, pred_chain2) != 2)
|
1663 |
|
|
return false;
|
1664 |
|
|
|
1665 |
|
|
/* See if simplification x AND y OR x AND !y is possible. */
|
1666 |
|
|
xx = VEC_index (use_pred_info_t, pred_chain, 0);
|
1667 |
|
|
yy = VEC_index (use_pred_info_t, pred_chain, 1);
|
1668 |
|
|
xx2 = VEC_index (use_pred_info_t, pred_chain2, 0);
|
1669 |
|
|
nyy = VEC_index (use_pred_info_t, pred_chain2, 1);
|
1670 |
|
|
if (gimple_cond_lhs (xx->cond) != gimple_cond_lhs (xx2->cond)
|
1671 |
|
|
|| gimple_cond_rhs (xx->cond) != gimple_cond_rhs (xx2->cond)
|
1672 |
|
|
|| gimple_cond_code (xx->cond) != gimple_cond_code (xx2->cond)
|
1673 |
|
|
|| (xx->invert != xx2->invert))
|
1674 |
|
|
return false;
|
1675 |
|
|
if (gimple_cond_lhs (yy->cond) != gimple_cond_lhs (nyy->cond)
|
1676 |
|
|
|| gimple_cond_rhs (yy->cond) != gimple_cond_rhs (nyy->cond)
|
1677 |
|
|
|| gimple_cond_code (yy->cond) != gimple_cond_code (nyy->cond)
|
1678 |
|
|
|| (yy->invert == nyy->invert))
|
1679 |
|
|
return false;
|
1680 |
|
|
|
1681 |
|
|
/* Now merge the first two chains. */
|
1682 |
|
|
free (yy);
|
1683 |
|
|
free (nyy);
|
1684 |
|
|
free (xx2);
|
1685 |
|
|
VEC_free (use_pred_info_t, heap, pred_chain);
|
1686 |
|
|
VEC_free (use_pred_info_t, heap, pred_chain2);
|
1687 |
|
|
pred_chain = 0;
|
1688 |
|
|
VEC_safe_push (use_pred_info_t, heap, pred_chain, xx);
|
1689 |
|
|
preds[0] = pred_chain;
|
1690 |
|
|
for (i = 1; i < *n - 1; i++)
|
1691 |
|
|
preds[i] = preds[i + 1];
|
1692 |
|
|
|
1693 |
|
|
preds[*n - 1] = 0;
|
1694 |
|
|
*n = *n - 1;
|
1695 |
|
|
}
|
1696 |
|
|
else
|
1697 |
|
|
return false;
|
1698 |
|
|
}
|
1699 |
|
|
|
1700 |
|
|
VEC_safe_push (use_pred_info_t, heap, x,
|
1701 |
|
|
VEC_index (use_pred_info_t, pred_chain, 0));
|
1702 |
|
|
|
1703 |
|
|
/* The loop extracts x1, x2, x3, etc from chains
|
1704 |
|
|
x1 OR (!x1 AND x2) OR (!x1 AND !x2 AND x3) OR ... */
|
1705 |
|
|
for (i = 1; i < *n; i++)
|
1706 |
|
|
{
|
1707 |
|
|
pred_chain = preds[i];
|
1708 |
|
|
if (VEC_length (use_pred_info_t, pred_chain) != i + 1)
|
1709 |
|
|
return false;
|
1710 |
|
|
|
1711 |
|
|
for (j = 0; j < i; j++)
|
1712 |
|
|
{
|
1713 |
|
|
xj = VEC_index (use_pred_info_t, x, j);
|
1714 |
|
|
nxj = VEC_index (use_pred_info_t, pred_chain, j);
|
1715 |
|
|
|
1716 |
|
|
/* Check if nxj is !xj */
|
1717 |
|
|
if (gimple_cond_lhs (xj->cond) != gimple_cond_lhs (nxj->cond)
|
1718 |
|
|
|| gimple_cond_rhs (xj->cond) != gimple_cond_rhs (nxj->cond)
|
1719 |
|
|
|| gimple_cond_code (xj->cond) != gimple_cond_code (nxj->cond)
|
1720 |
|
|
|| (xj->invert == nxj->invert))
|
1721 |
|
|
return false;
|
1722 |
|
|
}
|
1723 |
|
|
|
1724 |
|
|
VEC_safe_push (use_pred_info_t, heap, x,
|
1725 |
|
|
VEC_index (use_pred_info_t, pred_chain, i));
|
1726 |
|
|
}
|
1727 |
|
|
|
1728 |
|
|
/* Now normalize the pred chains using the extraced x1, x2, x3 etc. */
|
1729 |
|
|
for (j = 0; j < *n; j++)
|
1730 |
|
|
{
|
1731 |
|
|
use_pred_info_t t;
|
1732 |
|
|
xj = VEC_index (use_pred_info_t, x, j);
|
1733 |
|
|
|
1734 |
|
|
t = XNEW (struct use_pred_info);
|
1735 |
|
|
*t = *xj;
|
1736 |
|
|
|
1737 |
|
|
VEC_replace (use_pred_info_t, x, j, t);
|
1738 |
|
|
}
|
1739 |
|
|
|
1740 |
|
|
for (i = 0; i < *n; i++)
|
1741 |
|
|
{
|
1742 |
|
|
pred_chain = preds[i];
|
1743 |
|
|
for (j = 0; j < VEC_length (use_pred_info_t, pred_chain); j++)
|
1744 |
|
|
free (VEC_index (use_pred_info_t, pred_chain, j));
|
1745 |
|
|
VEC_free (use_pred_info_t, heap, pred_chain);
|
1746 |
|
|
pred_chain = 0;
|
1747 |
|
|
/* A new chain. */
|
1748 |
|
|
VEC_safe_push (use_pred_info_t, heap, pred_chain,
|
1749 |
|
|
VEC_index (use_pred_info_t, x, i));
|
1750 |
|
|
preds[i] = pred_chain;
|
1751 |
|
|
}
|
1752 |
|
|
return true;
|
1753 |
|
|
}
|
1754 |
|
|
|
1755 |
|
|
|
1756 |
|
|
|
1757 |
|
|
/* Computes the predicates that guard the use and checks
|
1758 |
|
|
if the incoming paths that have empty (or possibly
|
1759 |
|
|
empty) defintion can be pruned/filtered. The function returns
|
1760 |
|
|
true if it can be determined that the use of PHI's def in
|
1761 |
|
|
USE_STMT is guarded with a predicate set not overlapping with
|
1762 |
|
|
predicate sets of all runtime paths that do not have a definition.
|
1763 |
|
|
Returns false if it is not or it can not be determined. USE_BB is
|
1764 |
|
|
the bb of the use (for phi operand use, the bb is not the bb of
|
1765 |
|
|
the phi stmt, but the src bb of the operand edge). UNINIT_OPNDS
|
1766 |
|
|
is a bit vector. If an operand of PHI is uninitialized, the
|
1767 |
|
|
correponding bit in the vector is 1. VISIED_PHIS is a pointer
|
1768 |
|
|
set of phis being visted. */
|
1769 |
|
|
|
1770 |
|
|
static bool
|
1771 |
|
|
is_use_properly_guarded (gimple use_stmt,
|
1772 |
|
|
basic_block use_bb,
|
1773 |
|
|
gimple phi,
|
1774 |
|
|
unsigned uninit_opnds,
|
1775 |
|
|
struct pointer_set_t *visited_phis)
|
1776 |
|
|
{
|
1777 |
|
|
basic_block phi_bb;
|
1778 |
|
|
VEC(use_pred_info_t, heap) **preds = 0;
|
1779 |
|
|
VEC(use_pred_info_t, heap) **def_preds = 0;
|
1780 |
|
|
size_t num_preds = 0, num_def_preds = 0;
|
1781 |
|
|
bool has_valid_preds = false;
|
1782 |
|
|
bool is_properly_guarded = false;
|
1783 |
|
|
|
1784 |
|
|
if (pointer_set_insert (visited_phis, phi))
|
1785 |
|
|
return false;
|
1786 |
|
|
|
1787 |
|
|
phi_bb = gimple_bb (phi);
|
1788 |
|
|
|
1789 |
|
|
if (is_non_loop_exit_postdominating (use_bb, phi_bb))
|
1790 |
|
|
return false;
|
1791 |
|
|
|
1792 |
|
|
has_valid_preds = find_predicates (&preds, &num_preds,
|
1793 |
|
|
phi_bb, use_bb);
|
1794 |
|
|
|
1795 |
|
|
if (!has_valid_preds)
|
1796 |
|
|
{
|
1797 |
|
|
destroy_predicate_vecs (num_preds, preds);
|
1798 |
|
|
return false;
|
1799 |
|
|
}
|
1800 |
|
|
|
1801 |
|
|
if (dump_file)
|
1802 |
|
|
dump_predicates (use_stmt, num_preds, preds,
|
1803 |
|
|
"\nUse in stmt ");
|
1804 |
|
|
|
1805 |
|
|
has_valid_preds = find_def_preds (&def_preds,
|
1806 |
|
|
&num_def_preds, phi);
|
1807 |
|
|
|
1808 |
|
|
if (has_valid_preds)
|
1809 |
|
|
{
|
1810 |
|
|
bool normed;
|
1811 |
|
|
if (dump_file)
|
1812 |
|
|
dump_predicates (phi, num_def_preds, def_preds,
|
1813 |
|
|
"Operand defs of phi ");
|
1814 |
|
|
|
1815 |
|
|
normed = normalize_preds (def_preds, &num_def_preds);
|
1816 |
|
|
if (normed && dump_file)
|
1817 |
|
|
{
|
1818 |
|
|
fprintf (dump_file, "\nNormalized to\n");
|
1819 |
|
|
dump_predicates (phi, num_def_preds, def_preds,
|
1820 |
|
|
"Operand defs of phi ");
|
1821 |
|
|
}
|
1822 |
|
|
is_properly_guarded =
|
1823 |
|
|
is_superset_of (def_preds, num_def_preds,
|
1824 |
|
|
preds, num_preds);
|
1825 |
|
|
}
|
1826 |
|
|
|
1827 |
|
|
/* further prune the dead incoming phi edges. */
|
1828 |
|
|
if (!is_properly_guarded)
|
1829 |
|
|
is_properly_guarded
|
1830 |
|
|
= use_pred_not_overlap_with_undef_path_pred (
|
1831 |
|
|
num_preds, preds, phi, uninit_opnds, visited_phis);
|
1832 |
|
|
|
1833 |
|
|
destroy_predicate_vecs (num_preds, preds);
|
1834 |
|
|
destroy_predicate_vecs (num_def_preds, def_preds);
|
1835 |
|
|
return is_properly_guarded;
|
1836 |
|
|
}
|
1837 |
|
|
|
1838 |
|
|
/* Searches through all uses of a potentially
|
1839 |
|
|
uninitialized variable defined by PHI and returns a use
|
1840 |
|
|
statement if the use is not properly guarded. It returns
|
1841 |
|
|
NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
|
1842 |
|
|
holding the position(s) of uninit PHI operands. WORKLIST
|
1843 |
|
|
is the vector of candidate phis that may be updated by this
|
1844 |
|
|
function. ADDED_TO_WORKLIST is the pointer set tracking
|
1845 |
|
|
if the new phi is already in the worklist. */
|
1846 |
|
|
|
1847 |
|
|
static gimple
|
1848 |
|
|
find_uninit_use (gimple phi, unsigned uninit_opnds,
|
1849 |
|
|
VEC(gimple, heap) **worklist,
|
1850 |
|
|
struct pointer_set_t *added_to_worklist)
|
1851 |
|
|
{
|
1852 |
|
|
tree phi_result;
|
1853 |
|
|
use_operand_p use_p;
|
1854 |
|
|
gimple use_stmt;
|
1855 |
|
|
imm_use_iterator iter;
|
1856 |
|
|
|
1857 |
|
|
phi_result = gimple_phi_result (phi);
|
1858 |
|
|
|
1859 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, iter, phi_result)
|
1860 |
|
|
{
|
1861 |
|
|
struct pointer_set_t *visited_phis;
|
1862 |
|
|
basic_block use_bb;
|
1863 |
|
|
|
1864 |
|
|
use_stmt = USE_STMT (use_p);
|
1865 |
|
|
if (is_gimple_debug (use_stmt))
|
1866 |
|
|
continue;
|
1867 |
|
|
|
1868 |
|
|
visited_phis = pointer_set_create ();
|
1869 |
|
|
|
1870 |
|
|
if (gimple_code (use_stmt) == GIMPLE_PHI)
|
1871 |
|
|
use_bb = gimple_phi_arg_edge (use_stmt,
|
1872 |
|
|
PHI_ARG_INDEX_FROM_USE (use_p))->src;
|
1873 |
|
|
else
|
1874 |
|
|
use_bb = gimple_bb (use_stmt);
|
1875 |
|
|
|
1876 |
|
|
if (is_use_properly_guarded (use_stmt,
|
1877 |
|
|
use_bb,
|
1878 |
|
|
phi,
|
1879 |
|
|
uninit_opnds,
|
1880 |
|
|
visited_phis))
|
1881 |
|
|
{
|
1882 |
|
|
pointer_set_destroy (visited_phis);
|
1883 |
|
|
continue;
|
1884 |
|
|
}
|
1885 |
|
|
pointer_set_destroy (visited_phis);
|
1886 |
|
|
|
1887 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1888 |
|
|
{
|
1889 |
|
|
fprintf (dump_file, "[CHECK]: Found unguarded use: ");
|
1890 |
|
|
print_gimple_stmt (dump_file, use_stmt, 0, 0);
|
1891 |
|
|
}
|
1892 |
|
|
/* Found one real use, return. */
|
1893 |
|
|
if (gimple_code (use_stmt) != GIMPLE_PHI)
|
1894 |
|
|
return use_stmt;
|
1895 |
|
|
|
1896 |
|
|
/* Found a phi use that is not guarded,
|
1897 |
|
|
add the phi to the worklist. */
|
1898 |
|
|
if (!pointer_set_insert (added_to_worklist,
|
1899 |
|
|
use_stmt))
|
1900 |
|
|
{
|
1901 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1902 |
|
|
{
|
1903 |
|
|
fprintf (dump_file, "[WORKLIST]: Update worklist with phi: ");
|
1904 |
|
|
print_gimple_stmt (dump_file, use_stmt, 0, 0);
|
1905 |
|
|
}
|
1906 |
|
|
|
1907 |
|
|
VEC_safe_push (gimple, heap, *worklist, use_stmt);
|
1908 |
|
|
pointer_set_insert (possibly_undefined_names,
|
1909 |
|
|
phi_result);
|
1910 |
|
|
}
|
1911 |
|
|
}
|
1912 |
|
|
|
1913 |
|
|
return NULL;
|
1914 |
|
|
}
|
1915 |
|
|
|
1916 |
|
|
/* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
|
1917 |
|
|
and gives warning if there exists a runtime path from the entry to a
|
1918 |
|
|
use of the PHI def that does not contain a definition. In other words,
|
1919 |
|
|
the warning is on the real use. The more dead paths that can be pruned
|
1920 |
|
|
by the compiler, the fewer false positives the warning is. WORKLIST
|
1921 |
|
|
is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
|
1922 |
|
|
a pointer set tracking if the new phi is added to the worklist or not. */
|
1923 |
|
|
|
1924 |
|
|
static void
|
1925 |
|
|
warn_uninitialized_phi (gimple phi, VEC(gimple, heap) **worklist,
|
1926 |
|
|
struct pointer_set_t *added_to_worklist)
|
1927 |
|
|
{
|
1928 |
|
|
unsigned uninit_opnds;
|
1929 |
|
|
gimple uninit_use_stmt = 0;
|
1930 |
|
|
tree uninit_op;
|
1931 |
|
|
|
1932 |
|
|
/* Don't look at memory tags. */
|
1933 |
|
|
if (!is_gimple_reg (gimple_phi_result (phi)))
|
1934 |
|
|
return;
|
1935 |
|
|
|
1936 |
|
|
uninit_opnds = compute_uninit_opnds_pos (phi);
|
1937 |
|
|
|
1938 |
|
|
if (MASK_EMPTY (uninit_opnds))
|
1939 |
|
|
return;
|
1940 |
|
|
|
1941 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1942 |
|
|
{
|
1943 |
|
|
fprintf (dump_file, "[CHECK]: examining phi: ");
|
1944 |
|
|
print_gimple_stmt (dump_file, phi, 0, 0);
|
1945 |
|
|
}
|
1946 |
|
|
|
1947 |
|
|
/* Now check if we have any use of the value without proper guard. */
|
1948 |
|
|
uninit_use_stmt = find_uninit_use (phi, uninit_opnds,
|
1949 |
|
|
worklist, added_to_worklist);
|
1950 |
|
|
|
1951 |
|
|
/* All uses are properly guarded. */
|
1952 |
|
|
if (!uninit_use_stmt)
|
1953 |
|
|
return;
|
1954 |
|
|
|
1955 |
|
|
uninit_op = gimple_phi_arg_def (phi, MASK_FIRST_SET_BIT (uninit_opnds));
|
1956 |
|
|
warn_uninit (OPT_Wmaybe_uninitialized, uninit_op, SSA_NAME_VAR (uninit_op),
|
1957 |
|
|
SSA_NAME_VAR (uninit_op),
|
1958 |
|
|
"%qD may be used uninitialized in this function",
|
1959 |
|
|
uninit_use_stmt);
|
1960 |
|
|
|
1961 |
|
|
}
|
1962 |
|
|
|
1963 |
|
|
|
1964 |
|
|
/* Entry point to the late uninitialized warning pass. */
|
1965 |
|
|
|
1966 |
|
|
static unsigned int
|
1967 |
|
|
execute_late_warn_uninitialized (void)
|
1968 |
|
|
{
|
1969 |
|
|
basic_block bb;
|
1970 |
|
|
gimple_stmt_iterator gsi;
|
1971 |
|
|
VEC(gimple, heap) *worklist = 0;
|
1972 |
|
|
struct pointer_set_t *added_to_worklist;
|
1973 |
|
|
|
1974 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
1975 |
|
|
calculate_dominance_info (CDI_POST_DOMINATORS);
|
1976 |
|
|
/* Re-do the plain uninitialized variable check, as optimization may have
|
1977 |
|
|
straightened control flow. Do this first so that we don't accidentally
|
1978 |
|
|
get a "may be" warning when we'd have seen an "is" warning later. */
|
1979 |
|
|
warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
|
1980 |
|
|
|
1981 |
|
|
timevar_push (TV_TREE_UNINIT);
|
1982 |
|
|
|
1983 |
|
|
possibly_undefined_names = pointer_set_create ();
|
1984 |
|
|
added_to_worklist = pointer_set_create ();
|
1985 |
|
|
|
1986 |
|
|
/* Initialize worklist */
|
1987 |
|
|
FOR_EACH_BB (bb)
|
1988 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
1989 |
|
|
{
|
1990 |
|
|
gimple phi = gsi_stmt (gsi);
|
1991 |
|
|
size_t n, i;
|
1992 |
|
|
|
1993 |
|
|
n = gimple_phi_num_args (phi);
|
1994 |
|
|
|
1995 |
|
|
/* Don't look at memory tags. */
|
1996 |
|
|
if (!is_gimple_reg (gimple_phi_result (phi)))
|
1997 |
|
|
continue;
|
1998 |
|
|
|
1999 |
|
|
for (i = 0; i < n; ++i)
|
2000 |
|
|
{
|
2001 |
|
|
tree op = gimple_phi_arg_def (phi, i);
|
2002 |
|
|
if (TREE_CODE (op) == SSA_NAME
|
2003 |
|
|
&& ssa_undefined_value_p (op))
|
2004 |
|
|
{
|
2005 |
|
|
VEC_safe_push (gimple, heap, worklist, phi);
|
2006 |
|
|
pointer_set_insert (added_to_worklist, phi);
|
2007 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2008 |
|
|
{
|
2009 |
|
|
fprintf (dump_file, "[WORKLIST]: add to initial list: ");
|
2010 |
|
|
print_gimple_stmt (dump_file, phi, 0, 0);
|
2011 |
|
|
}
|
2012 |
|
|
break;
|
2013 |
|
|
}
|
2014 |
|
|
}
|
2015 |
|
|
}
|
2016 |
|
|
|
2017 |
|
|
while (VEC_length (gimple, worklist) != 0)
|
2018 |
|
|
{
|
2019 |
|
|
gimple cur_phi = 0;
|
2020 |
|
|
cur_phi = VEC_pop (gimple, worklist);
|
2021 |
|
|
warn_uninitialized_phi (cur_phi, &worklist, added_to_worklist);
|
2022 |
|
|
}
|
2023 |
|
|
|
2024 |
|
|
VEC_free (gimple, heap, worklist);
|
2025 |
|
|
pointer_set_destroy (added_to_worklist);
|
2026 |
|
|
pointer_set_destroy (possibly_undefined_names);
|
2027 |
|
|
possibly_undefined_names = NULL;
|
2028 |
|
|
free_dominance_info (CDI_POST_DOMINATORS);
|
2029 |
|
|
timevar_pop (TV_TREE_UNINIT);
|
2030 |
|
|
return 0;
|
2031 |
|
|
}
|
2032 |
|
|
|
2033 |
|
|
static bool
|
2034 |
|
|
gate_warn_uninitialized (void)
|
2035 |
|
|
{
|
2036 |
|
|
return warn_uninitialized != 0;
|
2037 |
|
|
}
|
2038 |
|
|
|
2039 |
|
|
struct gimple_opt_pass pass_late_warn_uninitialized =
|
2040 |
|
|
{
|
2041 |
|
|
{
|
2042 |
|
|
GIMPLE_PASS,
|
2043 |
|
|
"uninit", /* name */
|
2044 |
|
|
gate_warn_uninitialized, /* gate */
|
2045 |
|
|
execute_late_warn_uninitialized, /* execute */
|
2046 |
|
|
NULL, /* sub */
|
2047 |
|
|
NULL, /* next */
|
2048 |
|
|
0, /* static_pass_number */
|
2049 |
|
|
TV_NONE, /* tv_id */
|
2050 |
|
|
PROP_ssa, /* properties_required */
|
2051 |
|
|
0, /* properties_provided */
|
2052 |
|
|
0, /* properties_destroyed */
|
2053 |
|
|
0, /* todo_flags_start */
|
2054 |
|
|
|
2055 |
|
|
}
|
2056 |
|
|
};
|