| 1 |
684 |
jeremybenn |
/* Data References Analysis and Manipulation Utilities for Vectorization.
|
| 2 |
|
|
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
Contributed by Dorit Naishlos <dorit@il.ibm.com>
|
| 5 |
|
|
and Ira Rosen <irar@il.ibm.com>
|
| 6 |
|
|
|
| 7 |
|
|
This file is part of GCC.
|
| 8 |
|
|
|
| 9 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 10 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 11 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 12 |
|
|
version.
|
| 13 |
|
|
|
| 14 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 15 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 16 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 17 |
|
|
for more details.
|
| 18 |
|
|
|
| 19 |
|
|
You should have received a copy of the GNU General Public License
|
| 20 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 21 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 22 |
|
|
|
| 23 |
|
|
#include "config.h"
|
| 24 |
|
|
#include "system.h"
|
| 25 |
|
|
#include "coretypes.h"
|
| 26 |
|
|
#include "tm.h"
|
| 27 |
|
|
#include "ggc.h"
|
| 28 |
|
|
#include "tree.h"
|
| 29 |
|
|
#include "tm_p.h"
|
| 30 |
|
|
#include "target.h"
|
| 31 |
|
|
#include "basic-block.h"
|
| 32 |
|
|
#include "tree-pretty-print.h"
|
| 33 |
|
|
#include "gimple-pretty-print.h"
|
| 34 |
|
|
#include "tree-flow.h"
|
| 35 |
|
|
#include "tree-dump.h"
|
| 36 |
|
|
#include "cfgloop.h"
|
| 37 |
|
|
#include "tree-chrec.h"
|
| 38 |
|
|
#include "tree-scalar-evolution.h"
|
| 39 |
|
|
#include "tree-vectorizer.h"
|
| 40 |
|
|
#include "diagnostic-core.h"
|
| 41 |
|
|
|
| 42 |
|
|
/* Need to include rtl.h, expr.h, etc. for optabs. */
|
| 43 |
|
|
#include "expr.h"
|
| 44 |
|
|
#include "optabs.h"
|
| 45 |
|
|
|
| 46 |
|
|
/* Return true if load- or store-lanes optab OPTAB is implemented for
|
| 47 |
|
|
COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */
|
| 48 |
|
|
|
| 49 |
|
|
static bool
|
| 50 |
|
|
vect_lanes_optab_supported_p (const char *name, convert_optab optab,
|
| 51 |
|
|
tree vectype, unsigned HOST_WIDE_INT count)
|
| 52 |
|
|
{
|
| 53 |
|
|
enum machine_mode mode, array_mode;
|
| 54 |
|
|
bool limit_p;
|
| 55 |
|
|
|
| 56 |
|
|
mode = TYPE_MODE (vectype);
|
| 57 |
|
|
limit_p = !targetm.array_mode_supported_p (mode, count);
|
| 58 |
|
|
array_mode = mode_for_size (count * GET_MODE_BITSIZE (mode),
|
| 59 |
|
|
MODE_INT, limit_p);
|
| 60 |
|
|
|
| 61 |
|
|
if (array_mode == BLKmode)
|
| 62 |
|
|
{
|
| 63 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 64 |
|
|
fprintf (vect_dump, "no array mode for %s[" HOST_WIDE_INT_PRINT_DEC "]",
|
| 65 |
|
|
GET_MODE_NAME (mode), count);
|
| 66 |
|
|
return false;
|
| 67 |
|
|
}
|
| 68 |
|
|
|
| 69 |
|
|
if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing)
|
| 70 |
|
|
{
|
| 71 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 72 |
|
|
fprintf (vect_dump, "cannot use %s<%s><%s>",
|
| 73 |
|
|
name, GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
|
| 74 |
|
|
return false;
|
| 75 |
|
|
}
|
| 76 |
|
|
|
| 77 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 78 |
|
|
fprintf (vect_dump, "can use %s<%s><%s>",
|
| 79 |
|
|
name, GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
|
| 80 |
|
|
|
| 81 |
|
|
return true;
|
| 82 |
|
|
}
|
| 83 |
|
|
|
| 84 |
|
|
|
| 85 |
|
|
/* Return the smallest scalar part of STMT.
|
| 86 |
|
|
This is used to determine the vectype of the stmt. We generally set the
|
| 87 |
|
|
vectype according to the type of the result (lhs). For stmts whose
|
| 88 |
|
|
result-type is different than the type of the arguments (e.g., demotion,
|
| 89 |
|
|
promotion), vectype will be reset appropriately (later). Note that we have
|
| 90 |
|
|
to visit the smallest datatype in this function, because that determines the
|
| 91 |
|
|
VF. If the smallest datatype in the loop is present only as the rhs of a
|
| 92 |
|
|
promotion operation - we'd miss it.
|
| 93 |
|
|
Such a case, where a variable of this datatype does not appear in the lhs
|
| 94 |
|
|
anywhere in the loop, can only occur if it's an invariant: e.g.:
|
| 95 |
|
|
'int_x = (int) short_inv', which we'd expect to have been optimized away by
|
| 96 |
|
|
invariant motion. However, we cannot rely on invariant motion to always
|
| 97 |
|
|
take invariants out of the loop, and so in the case of promotion we also
|
| 98 |
|
|
have to check the rhs.
|
| 99 |
|
|
LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
|
| 100 |
|
|
types. */
|
| 101 |
|
|
|
| 102 |
|
|
tree
|
| 103 |
|
|
vect_get_smallest_scalar_type (gimple stmt, HOST_WIDE_INT *lhs_size_unit,
|
| 104 |
|
|
HOST_WIDE_INT *rhs_size_unit)
|
| 105 |
|
|
{
|
| 106 |
|
|
tree scalar_type = gimple_expr_type (stmt);
|
| 107 |
|
|
HOST_WIDE_INT lhs, rhs;
|
| 108 |
|
|
|
| 109 |
|
|
lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
|
| 110 |
|
|
|
| 111 |
|
|
if (is_gimple_assign (stmt)
|
| 112 |
|
|
&& (gimple_assign_cast_p (stmt)
|
| 113 |
|
|
|| gimple_assign_rhs_code (stmt) == WIDEN_MULT_EXPR
|
| 114 |
|
|
|| gimple_assign_rhs_code (stmt) == FLOAT_EXPR))
|
| 115 |
|
|
{
|
| 116 |
|
|
tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
|
| 117 |
|
|
|
| 118 |
|
|
rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
|
| 119 |
|
|
if (rhs < lhs)
|
| 120 |
|
|
scalar_type = rhs_type;
|
| 121 |
|
|
}
|
| 122 |
|
|
|
| 123 |
|
|
*lhs_size_unit = lhs;
|
| 124 |
|
|
*rhs_size_unit = rhs;
|
| 125 |
|
|
return scalar_type;
|
| 126 |
|
|
}
|
| 127 |
|
|
|
| 128 |
|
|
|
| 129 |
|
|
/* Find the place of the data-ref in STMT in the interleaving chain that starts
|
| 130 |
|
|
from FIRST_STMT. Return -1 if the data-ref is not a part of the chain. */
|
| 131 |
|
|
|
| 132 |
|
|
int
|
| 133 |
|
|
vect_get_place_in_interleaving_chain (gimple stmt, gimple first_stmt)
|
| 134 |
|
|
{
|
| 135 |
|
|
gimple next_stmt = first_stmt;
|
| 136 |
|
|
int result = 0;
|
| 137 |
|
|
|
| 138 |
|
|
if (first_stmt != GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
|
| 139 |
|
|
return -1;
|
| 140 |
|
|
|
| 141 |
|
|
while (next_stmt && next_stmt != stmt)
|
| 142 |
|
|
{
|
| 143 |
|
|
result++;
|
| 144 |
|
|
next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
|
| 145 |
|
|
}
|
| 146 |
|
|
|
| 147 |
|
|
if (next_stmt)
|
| 148 |
|
|
return result;
|
| 149 |
|
|
else
|
| 150 |
|
|
return -1;
|
| 151 |
|
|
}
|
| 152 |
|
|
|
| 153 |
|
|
|
| 154 |
|
|
/* Function vect_insert_into_interleaving_chain.
|
| 155 |
|
|
|
| 156 |
|
|
Insert DRA into the interleaving chain of DRB according to DRA's INIT. */
|
| 157 |
|
|
|
| 158 |
|
|
static void
|
| 159 |
|
|
vect_insert_into_interleaving_chain (struct data_reference *dra,
|
| 160 |
|
|
struct data_reference *drb)
|
| 161 |
|
|
{
|
| 162 |
|
|
gimple prev, next;
|
| 163 |
|
|
tree next_init;
|
| 164 |
|
|
stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
|
| 165 |
|
|
stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
|
| 166 |
|
|
|
| 167 |
|
|
prev = GROUP_FIRST_ELEMENT (stmtinfo_b);
|
| 168 |
|
|
next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev));
|
| 169 |
|
|
while (next)
|
| 170 |
|
|
{
|
| 171 |
|
|
next_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
|
| 172 |
|
|
if (tree_int_cst_compare (next_init, DR_INIT (dra)) > 0)
|
| 173 |
|
|
{
|
| 174 |
|
|
/* Insert here. */
|
| 175 |
|
|
GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev)) = DR_STMT (dra);
|
| 176 |
|
|
GROUP_NEXT_ELEMENT (stmtinfo_a) = next;
|
| 177 |
|
|
return;
|
| 178 |
|
|
}
|
| 179 |
|
|
prev = next;
|
| 180 |
|
|
next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev));
|
| 181 |
|
|
}
|
| 182 |
|
|
|
| 183 |
|
|
/* We got to the end of the list. Insert here. */
|
| 184 |
|
|
GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev)) = DR_STMT (dra);
|
| 185 |
|
|
GROUP_NEXT_ELEMENT (stmtinfo_a) = NULL;
|
| 186 |
|
|
}
|
| 187 |
|
|
|
| 188 |
|
|
|
| 189 |
|
|
/* Function vect_update_interleaving_chain.
|
| 190 |
|
|
|
| 191 |
|
|
For two data-refs DRA and DRB that are a part of a chain interleaved data
|
| 192 |
|
|
accesses, update the interleaving chain. DRB's INIT is smaller than DRA's.
|
| 193 |
|
|
|
| 194 |
|
|
There are four possible cases:
|
| 195 |
|
|
1. New stmts - both DRA and DRB are not a part of any chain:
|
| 196 |
|
|
FIRST_DR = DRB
|
| 197 |
|
|
NEXT_DR (DRB) = DRA
|
| 198 |
|
|
2. DRB is a part of a chain and DRA is not:
|
| 199 |
|
|
no need to update FIRST_DR
|
| 200 |
|
|
no need to insert DRB
|
| 201 |
|
|
insert DRA according to init
|
| 202 |
|
|
3. DRA is a part of a chain and DRB is not:
|
| 203 |
|
|
if (init of FIRST_DR > init of DRB)
|
| 204 |
|
|
FIRST_DR = DRB
|
| 205 |
|
|
NEXT(FIRST_DR) = previous FIRST_DR
|
| 206 |
|
|
else
|
| 207 |
|
|
insert DRB according to its init
|
| 208 |
|
|
4. both DRA and DRB are in some interleaving chains:
|
| 209 |
|
|
choose the chain with the smallest init of FIRST_DR
|
| 210 |
|
|
insert the nodes of the second chain into the first one. */
|
| 211 |
|
|
|
| 212 |
|
|
static void
|
| 213 |
|
|
vect_update_interleaving_chain (struct data_reference *drb,
|
| 214 |
|
|
struct data_reference *dra)
|
| 215 |
|
|
{
|
| 216 |
|
|
stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
|
| 217 |
|
|
stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
|
| 218 |
|
|
tree next_init, init_dra_chain, init_drb_chain;
|
| 219 |
|
|
gimple first_a, first_b;
|
| 220 |
|
|
tree node_init;
|
| 221 |
|
|
gimple node, prev, next, first_stmt;
|
| 222 |
|
|
|
| 223 |
|
|
/* 1. New stmts - both DRA and DRB are not a part of any chain. */
|
| 224 |
|
|
if (!GROUP_FIRST_ELEMENT (stmtinfo_a) && !GROUP_FIRST_ELEMENT (stmtinfo_b))
|
| 225 |
|
|
{
|
| 226 |
|
|
GROUP_FIRST_ELEMENT (stmtinfo_a) = DR_STMT (drb);
|
| 227 |
|
|
GROUP_FIRST_ELEMENT (stmtinfo_b) = DR_STMT (drb);
|
| 228 |
|
|
GROUP_NEXT_ELEMENT (stmtinfo_b) = DR_STMT (dra);
|
| 229 |
|
|
return;
|
| 230 |
|
|
}
|
| 231 |
|
|
|
| 232 |
|
|
/* 2. DRB is a part of a chain and DRA is not. */
|
| 233 |
|
|
if (!GROUP_FIRST_ELEMENT (stmtinfo_a) && GROUP_FIRST_ELEMENT (stmtinfo_b))
|
| 234 |
|
|
{
|
| 235 |
|
|
GROUP_FIRST_ELEMENT (stmtinfo_a) = GROUP_FIRST_ELEMENT (stmtinfo_b);
|
| 236 |
|
|
/* Insert DRA into the chain of DRB. */
|
| 237 |
|
|
vect_insert_into_interleaving_chain (dra, drb);
|
| 238 |
|
|
return;
|
| 239 |
|
|
}
|
| 240 |
|
|
|
| 241 |
|
|
/* 3. DRA is a part of a chain and DRB is not. */
|
| 242 |
|
|
if (GROUP_FIRST_ELEMENT (stmtinfo_a) && !GROUP_FIRST_ELEMENT (stmtinfo_b))
|
| 243 |
|
|
{
|
| 244 |
|
|
gimple old_first_stmt = GROUP_FIRST_ELEMENT (stmtinfo_a);
|
| 245 |
|
|
tree init_old = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (
|
| 246 |
|
|
old_first_stmt)));
|
| 247 |
|
|
gimple tmp;
|
| 248 |
|
|
|
| 249 |
|
|
if (tree_int_cst_compare (init_old, DR_INIT (drb)) > 0)
|
| 250 |
|
|
{
|
| 251 |
|
|
/* DRB's init is smaller than the init of the stmt previously marked
|
| 252 |
|
|
as the first stmt of the interleaving chain of DRA. Therefore, we
|
| 253 |
|
|
update FIRST_STMT and put DRB in the head of the list. */
|
| 254 |
|
|
GROUP_FIRST_ELEMENT (stmtinfo_b) = DR_STMT (drb);
|
| 255 |
|
|
GROUP_NEXT_ELEMENT (stmtinfo_b) = old_first_stmt;
|
| 256 |
|
|
|
| 257 |
|
|
/* Update all the stmts in the list to point to the new FIRST_STMT. */
|
| 258 |
|
|
tmp = old_first_stmt;
|
| 259 |
|
|
while (tmp)
|
| 260 |
|
|
{
|
| 261 |
|
|
GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) = DR_STMT (drb);
|
| 262 |
|
|
tmp = GROUP_NEXT_ELEMENT (vinfo_for_stmt (tmp));
|
| 263 |
|
|
}
|
| 264 |
|
|
}
|
| 265 |
|
|
else
|
| 266 |
|
|
{
|
| 267 |
|
|
/* Insert DRB in the list of DRA. */
|
| 268 |
|
|
vect_insert_into_interleaving_chain (drb, dra);
|
| 269 |
|
|
GROUP_FIRST_ELEMENT (stmtinfo_b) = GROUP_FIRST_ELEMENT (stmtinfo_a);
|
| 270 |
|
|
}
|
| 271 |
|
|
return;
|
| 272 |
|
|
}
|
| 273 |
|
|
|
| 274 |
|
|
/* 4. both DRA and DRB are in some interleaving chains. */
|
| 275 |
|
|
first_a = GROUP_FIRST_ELEMENT (stmtinfo_a);
|
| 276 |
|
|
first_b = GROUP_FIRST_ELEMENT (stmtinfo_b);
|
| 277 |
|
|
if (first_a == first_b)
|
| 278 |
|
|
return;
|
| 279 |
|
|
init_dra_chain = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (first_a)));
|
| 280 |
|
|
init_drb_chain = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (first_b)));
|
| 281 |
|
|
|
| 282 |
|
|
if (tree_int_cst_compare (init_dra_chain, init_drb_chain) > 0)
|
| 283 |
|
|
{
|
| 284 |
|
|
/* Insert the nodes of DRA chain into the DRB chain.
|
| 285 |
|
|
After inserting a node, continue from this node of the DRB chain (don't
|
| 286 |
|
|
start from the beginning. */
|
| 287 |
|
|
node = GROUP_FIRST_ELEMENT (stmtinfo_a);
|
| 288 |
|
|
prev = GROUP_FIRST_ELEMENT (stmtinfo_b);
|
| 289 |
|
|
first_stmt = first_b;
|
| 290 |
|
|
}
|
| 291 |
|
|
else
|
| 292 |
|
|
{
|
| 293 |
|
|
/* Insert the nodes of DRB chain into the DRA chain.
|
| 294 |
|
|
After inserting a node, continue from this node of the DRA chain (don't
|
| 295 |
|
|
start from the beginning. */
|
| 296 |
|
|
node = GROUP_FIRST_ELEMENT (stmtinfo_b);
|
| 297 |
|
|
prev = GROUP_FIRST_ELEMENT (stmtinfo_a);
|
| 298 |
|
|
first_stmt = first_a;
|
| 299 |
|
|
}
|
| 300 |
|
|
|
| 301 |
|
|
while (node)
|
| 302 |
|
|
{
|
| 303 |
|
|
node_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (node)));
|
| 304 |
|
|
next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev));
|
| 305 |
|
|
while (next)
|
| 306 |
|
|
{
|
| 307 |
|
|
next_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
|
| 308 |
|
|
if (tree_int_cst_compare (next_init, node_init) > 0)
|
| 309 |
|
|
{
|
| 310 |
|
|
/* Insert here. */
|
| 311 |
|
|
GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev)) = node;
|
| 312 |
|
|
GROUP_NEXT_ELEMENT (vinfo_for_stmt (node)) = next;
|
| 313 |
|
|
prev = node;
|
| 314 |
|
|
break;
|
| 315 |
|
|
}
|
| 316 |
|
|
prev = next;
|
| 317 |
|
|
next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev));
|
| 318 |
|
|
}
|
| 319 |
|
|
if (!next)
|
| 320 |
|
|
{
|
| 321 |
|
|
/* We got to the end of the list. Insert here. */
|
| 322 |
|
|
GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev)) = node;
|
| 323 |
|
|
GROUP_NEXT_ELEMENT (vinfo_for_stmt (node)) = NULL;
|
| 324 |
|
|
prev = node;
|
| 325 |
|
|
}
|
| 326 |
|
|
GROUP_FIRST_ELEMENT (vinfo_for_stmt (node)) = first_stmt;
|
| 327 |
|
|
node = GROUP_NEXT_ELEMENT (vinfo_for_stmt (node));
|
| 328 |
|
|
}
|
| 329 |
|
|
}
|
| 330 |
|
|
|
| 331 |
|
|
/* Check dependence between DRA and DRB for basic block vectorization.
|
| 332 |
|
|
If the accesses share same bases and offsets, we can compare their initial
|
| 333 |
|
|
constant offsets to decide whether they differ or not. In case of a read-
|
| 334 |
|
|
write dependence we check that the load is before the store to ensure that
|
| 335 |
|
|
vectorization will not change the order of the accesses. */
|
| 336 |
|
|
|
| 337 |
|
|
static bool
|
| 338 |
|
|
vect_drs_dependent_in_basic_block (struct data_reference *dra,
|
| 339 |
|
|
struct data_reference *drb)
|
| 340 |
|
|
{
|
| 341 |
|
|
HOST_WIDE_INT type_size_a, type_size_b, init_a, init_b;
|
| 342 |
|
|
gimple earlier_stmt;
|
| 343 |
|
|
|
| 344 |
|
|
/* We only call this function for pairs of loads and stores, but we verify
|
| 345 |
|
|
it here. */
|
| 346 |
|
|
if (DR_IS_READ (dra) == DR_IS_READ (drb))
|
| 347 |
|
|
{
|
| 348 |
|
|
if (DR_IS_READ (dra))
|
| 349 |
|
|
return false;
|
| 350 |
|
|
else
|
| 351 |
|
|
return true;
|
| 352 |
|
|
}
|
| 353 |
|
|
|
| 354 |
|
|
/* Check that the data-refs have same bases and offsets. If not, we can't
|
| 355 |
|
|
determine if they are dependent. */
|
| 356 |
|
|
if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0)
|
| 357 |
|
|
|| !dr_equal_offsets_p (dra, drb))
|
| 358 |
|
|
return true;
|
| 359 |
|
|
|
| 360 |
|
|
/* Check the types. */
|
| 361 |
|
|
type_size_a = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))));
|
| 362 |
|
|
type_size_b = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
|
| 363 |
|
|
|
| 364 |
|
|
if (type_size_a != type_size_b
|
| 365 |
|
|
|| !types_compatible_p (TREE_TYPE (DR_REF (dra)),
|
| 366 |
|
|
TREE_TYPE (DR_REF (drb))))
|
| 367 |
|
|
return true;
|
| 368 |
|
|
|
| 369 |
|
|
init_a = TREE_INT_CST_LOW (DR_INIT (dra));
|
| 370 |
|
|
init_b = TREE_INT_CST_LOW (DR_INIT (drb));
|
| 371 |
|
|
|
| 372 |
|
|
/* Two different locations - no dependence. */
|
| 373 |
|
|
if (init_a != init_b)
|
| 374 |
|
|
return false;
|
| 375 |
|
|
|
| 376 |
|
|
/* We have a read-write dependence. Check that the load is before the store.
|
| 377 |
|
|
When we vectorize basic blocks, vector load can be only before
|
| 378 |
|
|
corresponding scalar load, and vector store can be only after its
|
| 379 |
|
|
corresponding scalar store. So the order of the acceses is preserved in
|
| 380 |
|
|
case the load is before the store. */
|
| 381 |
|
|
earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
|
| 382 |
|
|
if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
|
| 383 |
|
|
return false;
|
| 384 |
|
|
|
| 385 |
|
|
return true;
|
| 386 |
|
|
}
|
| 387 |
|
|
|
| 388 |
|
|
|
| 389 |
|
|
/* Function vect_check_interleaving.
|
| 390 |
|
|
|
| 391 |
|
|
Check if DRA and DRB are a part of interleaving. In case they are, insert
|
| 392 |
|
|
DRA and DRB in an interleaving chain. */
|
| 393 |
|
|
|
| 394 |
|
|
static bool
|
| 395 |
|
|
vect_check_interleaving (struct data_reference *dra,
|
| 396 |
|
|
struct data_reference *drb)
|
| 397 |
|
|
{
|
| 398 |
|
|
HOST_WIDE_INT type_size_a, type_size_b, diff_mod_size, step, init_a, init_b;
|
| 399 |
|
|
|
| 400 |
|
|
/* Check that the data-refs have same first location (except init) and they
|
| 401 |
|
|
are both either store or load (not load and store). */
|
| 402 |
|
|
if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0)
|
| 403 |
|
|
|| !dr_equal_offsets_p (dra, drb)
|
| 404 |
|
|
|| !tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb))
|
| 405 |
|
|
|| DR_IS_READ (dra) != DR_IS_READ (drb))
|
| 406 |
|
|
return false;
|
| 407 |
|
|
|
| 408 |
|
|
/* Check:
|
| 409 |
|
|
1. data-refs are of the same type
|
| 410 |
|
|
2. their steps are equal
|
| 411 |
|
|
3. the step (if greater than zero) is greater than the difference between
|
| 412 |
|
|
data-refs' inits. */
|
| 413 |
|
|
type_size_a = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))));
|
| 414 |
|
|
type_size_b = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
|
| 415 |
|
|
|
| 416 |
|
|
if (type_size_a != type_size_b
|
| 417 |
|
|
|| tree_int_cst_compare (DR_STEP (dra), DR_STEP (drb))
|
| 418 |
|
|
|| !types_compatible_p (TREE_TYPE (DR_REF (dra)),
|
| 419 |
|
|
TREE_TYPE (DR_REF (drb))))
|
| 420 |
|
|
return false;
|
| 421 |
|
|
|
| 422 |
|
|
init_a = TREE_INT_CST_LOW (DR_INIT (dra));
|
| 423 |
|
|
init_b = TREE_INT_CST_LOW (DR_INIT (drb));
|
| 424 |
|
|
step = TREE_INT_CST_LOW (DR_STEP (dra));
|
| 425 |
|
|
|
| 426 |
|
|
if (init_a > init_b)
|
| 427 |
|
|
{
|
| 428 |
|
|
/* If init_a == init_b + the size of the type * k, we have an interleaving,
|
| 429 |
|
|
and DRB is accessed before DRA. */
|
| 430 |
|
|
diff_mod_size = (init_a - init_b) % type_size_a;
|
| 431 |
|
|
|
| 432 |
|
|
if (step && (init_a - init_b) > step)
|
| 433 |
|
|
return false;
|
| 434 |
|
|
|
| 435 |
|
|
if (diff_mod_size == 0)
|
| 436 |
|
|
{
|
| 437 |
|
|
vect_update_interleaving_chain (drb, dra);
|
| 438 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
| 439 |
|
|
{
|
| 440 |
|
|
fprintf (vect_dump, "Detected interleaving ");
|
| 441 |
|
|
print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
|
| 442 |
|
|
fprintf (vect_dump, " and ");
|
| 443 |
|
|
print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
|
| 444 |
|
|
}
|
| 445 |
|
|
return true;
|
| 446 |
|
|
}
|
| 447 |
|
|
}
|
| 448 |
|
|
else
|
| 449 |
|
|
{
|
| 450 |
|
|
/* If init_b == init_a + the size of the type * k, we have an
|
| 451 |
|
|
interleaving, and DRA is accessed before DRB. */
|
| 452 |
|
|
diff_mod_size = (init_b - init_a) % type_size_a;
|
| 453 |
|
|
|
| 454 |
|
|
if (step && (init_b - init_a) > step)
|
| 455 |
|
|
return false;
|
| 456 |
|
|
|
| 457 |
|
|
if (diff_mod_size == 0)
|
| 458 |
|
|
{
|
| 459 |
|
|
vect_update_interleaving_chain (dra, drb);
|
| 460 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
| 461 |
|
|
{
|
| 462 |
|
|
fprintf (vect_dump, "Detected interleaving ");
|
| 463 |
|
|
print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
|
| 464 |
|
|
fprintf (vect_dump, " and ");
|
| 465 |
|
|
print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
|
| 466 |
|
|
}
|
| 467 |
|
|
return true;
|
| 468 |
|
|
}
|
| 469 |
|
|
}
|
| 470 |
|
|
|
| 471 |
|
|
return false;
|
| 472 |
|
|
}
|
| 473 |
|
|
|
| 474 |
|
|
/* Check if data references pointed by DR_I and DR_J are same or
|
| 475 |
|
|
belong to same interleaving group. Return FALSE if drs are
|
| 476 |
|
|
different, otherwise return TRUE. */
|
| 477 |
|
|
|
| 478 |
|
|
static bool
|
| 479 |
|
|
vect_same_range_drs (data_reference_p dr_i, data_reference_p dr_j)
|
| 480 |
|
|
{
|
| 481 |
|
|
gimple stmt_i = DR_STMT (dr_i);
|
| 482 |
|
|
gimple stmt_j = DR_STMT (dr_j);
|
| 483 |
|
|
|
| 484 |
|
|
if (operand_equal_p (DR_REF (dr_i), DR_REF (dr_j), 0)
|
| 485 |
|
|
|| (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_i))
|
| 486 |
|
|
&& GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_j))
|
| 487 |
|
|
&& (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_i))
|
| 488 |
|
|
== GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_j)))))
|
| 489 |
|
|
return true;
|
| 490 |
|
|
else
|
| 491 |
|
|
return false;
|
| 492 |
|
|
}
|
| 493 |
|
|
|
| 494 |
|
|
/* If address ranges represented by DDR_I and DDR_J are equal,
|
| 495 |
|
|
return TRUE, otherwise return FALSE. */
|
| 496 |
|
|
|
| 497 |
|
|
static bool
|
| 498 |
|
|
vect_vfa_range_equal (ddr_p ddr_i, ddr_p ddr_j)
|
| 499 |
|
|
{
|
| 500 |
|
|
if ((vect_same_range_drs (DDR_A (ddr_i), DDR_A (ddr_j))
|
| 501 |
|
|
&& vect_same_range_drs (DDR_B (ddr_i), DDR_B (ddr_j)))
|
| 502 |
|
|
|| (vect_same_range_drs (DDR_A (ddr_i), DDR_B (ddr_j))
|
| 503 |
|
|
&& vect_same_range_drs (DDR_B (ddr_i), DDR_A (ddr_j))))
|
| 504 |
|
|
return true;
|
| 505 |
|
|
else
|
| 506 |
|
|
return false;
|
| 507 |
|
|
}
|
| 508 |
|
|
|
| 509 |
|
|
/* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
|
| 510 |
|
|
tested at run-time. Return TRUE if DDR was successfully inserted.
|
| 511 |
|
|
Return false if versioning is not supported. */
|
| 512 |
|
|
|
| 513 |
|
|
static bool
|
| 514 |
|
|
vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
|
| 515 |
|
|
{
|
| 516 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 517 |
|
|
|
| 518 |
|
|
if ((unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS) == 0)
|
| 519 |
|
|
return false;
|
| 520 |
|
|
|
| 521 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
| 522 |
|
|
{
|
| 523 |
|
|
fprintf (vect_dump, "mark for run-time aliasing test between ");
|
| 524 |
|
|
print_generic_expr (vect_dump, DR_REF (DDR_A (ddr)), TDF_SLIM);
|
| 525 |
|
|
fprintf (vect_dump, " and ");
|
| 526 |
|
|
print_generic_expr (vect_dump, DR_REF (DDR_B (ddr)), TDF_SLIM);
|
| 527 |
|
|
}
|
| 528 |
|
|
|
| 529 |
|
|
if (optimize_loop_nest_for_size_p (loop))
|
| 530 |
|
|
{
|
| 531 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
| 532 |
|
|
fprintf (vect_dump, "versioning not supported when optimizing for size.");
|
| 533 |
|
|
return false;
|
| 534 |
|
|
}
|
| 535 |
|
|
|
| 536 |
|
|
/* FORNOW: We don't support versioning with outer-loop vectorization. */
|
| 537 |
|
|
if (loop->inner)
|
| 538 |
|
|
{
|
| 539 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
| 540 |
|
|
fprintf (vect_dump, "versioning not yet supported for outer-loops.");
|
| 541 |
|
|
return false;
|
| 542 |
|
|
}
|
| 543 |
|
|
|
| 544 |
|
|
VEC_safe_push (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo), ddr);
|
| 545 |
|
|
return true;
|
| 546 |
|
|
}
|
| 547 |
|
|
|
| 548 |
|
|
|
| 549 |
|
|
/* Function vect_analyze_data_ref_dependence.
|
| 550 |
|
|
|
| 551 |
|
|
Return TRUE if there (might) exist a dependence between a memory-reference
|
| 552 |
|
|
DRA and a memory-reference DRB. When versioning for alias may check a
|
| 553 |
|
|
dependence at run-time, return FALSE. Adjust *MAX_VF according to
|
| 554 |
|
|
the data dependence. */
|
| 555 |
|
|
|
| 556 |
|
|
static bool
|
| 557 |
|
|
vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
|
| 558 |
|
|
loop_vec_info loop_vinfo, int *max_vf)
|
| 559 |
|
|
{
|
| 560 |
|
|
unsigned int i;
|
| 561 |
|
|
struct loop *loop = NULL;
|
| 562 |
|
|
struct data_reference *dra = DDR_A (ddr);
|
| 563 |
|
|
struct data_reference *drb = DDR_B (ddr);
|
| 564 |
|
|
stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
|
| 565 |
|
|
stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
|
| 566 |
|
|
lambda_vector dist_v;
|
| 567 |
|
|
unsigned int loop_depth;
|
| 568 |
|
|
|
| 569 |
|
|
/* Don't bother to analyze statements marked as unvectorizable. */
|
| 570 |
|
|
if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
|
| 571 |
|
|
|| !STMT_VINFO_VECTORIZABLE (stmtinfo_b))
|
| 572 |
|
|
return false;
|
| 573 |
|
|
|
| 574 |
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
|
| 575 |
|
|
{
|
| 576 |
|
|
/* Independent data accesses. */
|
| 577 |
|
|
vect_check_interleaving (dra, drb);
|
| 578 |
|
|
return false;
|
| 579 |
|
|
}
|
| 580 |
|
|
|
| 581 |
|
|
if (loop_vinfo)
|
| 582 |
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 583 |
|
|
|
| 584 |
|
|
if ((DR_IS_READ (dra) && DR_IS_READ (drb) && loop_vinfo) || dra == drb)
|
| 585 |
|
|
return false;
|
| 586 |
|
|
|
| 587 |
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
|
| 588 |
|
|
{
|
| 589 |
|
|
gimple earlier_stmt;
|
| 590 |
|
|
|
| 591 |
|
|
if (loop_vinfo)
|
| 592 |
|
|
{
|
| 593 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
| 594 |
|
|
{
|
| 595 |
|
|
fprintf (vect_dump, "versioning for alias required: "
|
| 596 |
|
|
"can't determine dependence between ");
|
| 597 |
|
|
print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
|
| 598 |
|
|
fprintf (vect_dump, " and ");
|
| 599 |
|
|
print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
|
| 600 |
|
|
}
|
| 601 |
|
|
|
| 602 |
|
|
/* Add to list of ddrs that need to be tested at run-time. */
|
| 603 |
|
|
return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
|
| 604 |
|
|
}
|
| 605 |
|
|
|
| 606 |
|
|
/* When vectorizing a basic block unknown depnedence can still mean
|
| 607 |
|
|
strided access. */
|
| 608 |
|
|
if (vect_check_interleaving (dra, drb))
|
| 609 |
|
|
return false;
|
| 610 |
|
|
|
| 611 |
|
|
/* Read-read is OK (we need this check here, after checking for
|
| 612 |
|
|
interleaving). */
|
| 613 |
|
|
if (DR_IS_READ (dra) && DR_IS_READ (drb))
|
| 614 |
|
|
return false;
|
| 615 |
|
|
|
| 616 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
| 617 |
|
|
{
|
| 618 |
|
|
fprintf (vect_dump, "can't determine dependence between ");
|
| 619 |
|
|
print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
|
| 620 |
|
|
fprintf (vect_dump, " and ");
|
| 621 |
|
|
print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
|
| 622 |
|
|
}
|
| 623 |
|
|
|
| 624 |
|
|
/* We do not vectorize basic blocks with write-write dependencies. */
|
| 625 |
|
|
if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))
|
| 626 |
|
|
return true;
|
| 627 |
|
|
|
| 628 |
|
|
/* Check that it's not a load-after-store dependence. */
|
| 629 |
|
|
earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
|
| 630 |
|
|
if (DR_IS_WRITE (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
|
| 631 |
|
|
return true;
|
| 632 |
|
|
|
| 633 |
|
|
return false;
|
| 634 |
|
|
}
|
| 635 |
|
|
|
| 636 |
|
|
/* Versioning for alias is not yet supported for basic block SLP, and
|
| 637 |
|
|
dependence distance is unapplicable, hence, in case of known data
|
| 638 |
|
|
dependence, basic block vectorization is impossible for now. */
|
| 639 |
|
|
if (!loop_vinfo)
|
| 640 |
|
|
{
|
| 641 |
|
|
if (dra != drb && vect_check_interleaving (dra, drb))
|
| 642 |
|
|
return false;
|
| 643 |
|
|
|
| 644 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
| 645 |
|
|
{
|
| 646 |
|
|
fprintf (vect_dump, "determined dependence between ");
|
| 647 |
|
|
print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
|
| 648 |
|
|
fprintf (vect_dump, " and ");
|
| 649 |
|
|
print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
|
| 650 |
|
|
}
|
| 651 |
|
|
|
| 652 |
|
|
/* Do not vectorize basic blcoks with write-write dependences. */
|
| 653 |
|
|
if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))
|
| 654 |
|
|
return true;
|
| 655 |
|
|
|
| 656 |
|
|
/* Check if this dependence is allowed in basic block vectorization. */
|
| 657 |
|
|
return vect_drs_dependent_in_basic_block (dra, drb);
|
| 658 |
|
|
}
|
| 659 |
|
|
|
| 660 |
|
|
/* Loop-based vectorization and known data dependence. */
|
| 661 |
|
|
if (DDR_NUM_DIST_VECTS (ddr) == 0)
|
| 662 |
|
|
{
|
| 663 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
| 664 |
|
|
{
|
| 665 |
|
|
fprintf (vect_dump, "versioning for alias required: bad dist vector for ");
|
| 666 |
|
|
print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
|
| 667 |
|
|
fprintf (vect_dump, " and ");
|
| 668 |
|
|
print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
|
| 669 |
|
|
}
|
| 670 |
|
|
/* Add to list of ddrs that need to be tested at run-time. */
|
| 671 |
|
|
return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
|
| 672 |
|
|
}
|
| 673 |
|
|
|
| 674 |
|
|
loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
|
| 675 |
|
|
FOR_EACH_VEC_ELT (lambda_vector, DDR_DIST_VECTS (ddr), i, dist_v)
|
| 676 |
|
|
{
|
| 677 |
|
|
int dist = dist_v[loop_depth];
|
| 678 |
|
|
|
| 679 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
| 680 |
|
|
fprintf (vect_dump, "dependence distance = %d.", dist);
|
| 681 |
|
|
|
| 682 |
|
|
if (dist == 0)
|
| 683 |
|
|
{
|
| 684 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
| 685 |
|
|
{
|
| 686 |
|
|
fprintf (vect_dump, "dependence distance == 0 between ");
|
| 687 |
|
|
print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
|
| 688 |
|
|
fprintf (vect_dump, " and ");
|
| 689 |
|
|
print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
|
| 690 |
|
|
}
|
| 691 |
|
|
|
| 692 |
|
|
/* For interleaving, mark that there is a read-write dependency if
|
| 693 |
|
|
necessary. We check before that one of the data-refs is store. */
|
| 694 |
|
|
if (DR_IS_READ (dra))
|
| 695 |
|
|
GROUP_READ_WRITE_DEPENDENCE (stmtinfo_a) = true;
|
| 696 |
|
|
else
|
| 697 |
|
|
{
|
| 698 |
|
|
if (DR_IS_READ (drb))
|
| 699 |
|
|
GROUP_READ_WRITE_DEPENDENCE (stmtinfo_b) = true;
|
| 700 |
|
|
}
|
| 701 |
|
|
|
| 702 |
|
|
continue;
|
| 703 |
|
|
}
|
| 704 |
|
|
|
| 705 |
|
|
if (dist > 0 && DDR_REVERSED_P (ddr))
|
| 706 |
|
|
{
|
| 707 |
|
|
/* If DDR_REVERSED_P the order of the data-refs in DDR was
|
| 708 |
|
|
reversed (to make distance vector positive), and the actual
|
| 709 |
|
|
distance is negative. */
|
| 710 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
| 711 |
|
|
fprintf (vect_dump, "dependence distance negative.");
|
| 712 |
|
|
continue;
|
| 713 |
|
|
}
|
| 714 |
|
|
|
| 715 |
|
|
if (abs (dist) >= 2
|
| 716 |
|
|
&& abs (dist) < *max_vf)
|
| 717 |
|
|
{
|
| 718 |
|
|
/* The dependence distance requires reduction of the maximal
|
| 719 |
|
|
vectorization factor. */
|
| 720 |
|
|
*max_vf = abs (dist);
|
| 721 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
| 722 |
|
|
fprintf (vect_dump, "adjusting maximal vectorization factor to %i",
|
| 723 |
|
|
*max_vf);
|
| 724 |
|
|
}
|
| 725 |
|
|
|
| 726 |
|
|
if (abs (dist) >= *max_vf)
|
| 727 |
|
|
{
|
| 728 |
|
|
/* Dependence distance does not create dependence, as far as
|
| 729 |
|
|
vectorization is concerned, in this case. */
|
| 730 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
| 731 |
|
|
fprintf (vect_dump, "dependence distance >= VF.");
|
| 732 |
|
|
continue;
|
| 733 |
|
|
}
|
| 734 |
|
|
|
| 735 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 736 |
|
|
{
|
| 737 |
|
|
fprintf (vect_dump, "not vectorized, possible dependence "
|
| 738 |
|
|
"between data-refs ");
|
| 739 |
|
|
print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
|
| 740 |
|
|
fprintf (vect_dump, " and ");
|
| 741 |
|
|
print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
|
| 742 |
|
|
}
|
| 743 |
|
|
|
| 744 |
|
|
return true;
|
| 745 |
|
|
}
|
| 746 |
|
|
|
| 747 |
|
|
return false;
|
| 748 |
|
|
}
|
| 749 |
|
|
|
| 750 |
|
|
/* Function vect_analyze_data_ref_dependences.
|
| 751 |
|
|
|
| 752 |
|
|
Examine all the data references in the loop, and make sure there do not
|
| 753 |
|
|
exist any data dependences between them. Set *MAX_VF according to
|
| 754 |
|
|
the maximum vectorization factor the data dependences allow. */
|
| 755 |
|
|
|
| 756 |
|
|
bool
|
| 757 |
|
|
vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo,
|
| 758 |
|
|
bb_vec_info bb_vinfo, int *max_vf)
|
| 759 |
|
|
{
|
| 760 |
|
|
unsigned int i;
|
| 761 |
|
|
VEC (ddr_p, heap) *ddrs = NULL;
|
| 762 |
|
|
struct data_dependence_relation *ddr;
|
| 763 |
|
|
|
| 764 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 765 |
|
|
fprintf (vect_dump, "=== vect_analyze_dependences ===");
|
| 766 |
|
|
|
| 767 |
|
|
if (loop_vinfo)
|
| 768 |
|
|
ddrs = LOOP_VINFO_DDRS (loop_vinfo);
|
| 769 |
|
|
else
|
| 770 |
|
|
ddrs = BB_VINFO_DDRS (bb_vinfo);
|
| 771 |
|
|
|
| 772 |
|
|
FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr)
|
| 773 |
|
|
if (vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf))
|
| 774 |
|
|
return false;
|
| 775 |
|
|
|
| 776 |
|
|
return true;
|
| 777 |
|
|
}
|
| 778 |
|
|
|
| 779 |
|
|
|
| 780 |
|
|
/* Function vect_compute_data_ref_alignment
|
| 781 |
|
|
|
| 782 |
|
|
Compute the misalignment of the data reference DR.
|
| 783 |
|
|
|
| 784 |
|
|
Output:
|
| 785 |
|
|
1. If during the misalignment computation it is found that the data reference
|
| 786 |
|
|
cannot be vectorized then false is returned.
|
| 787 |
|
|
2. DR_MISALIGNMENT (DR) is defined.
|
| 788 |
|
|
|
| 789 |
|
|
FOR NOW: No analysis is actually performed. Misalignment is calculated
|
| 790 |
|
|
only for trivial cases. TODO. */
|
| 791 |
|
|
|
| 792 |
|
|
static bool
|
| 793 |
|
|
vect_compute_data_ref_alignment (struct data_reference *dr)
|
| 794 |
|
|
{
|
| 795 |
|
|
gimple stmt = DR_STMT (dr);
|
| 796 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 797 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 798 |
|
|
struct loop *loop = NULL;
|
| 799 |
|
|
tree ref = DR_REF (dr);
|
| 800 |
|
|
tree vectype;
|
| 801 |
|
|
tree base, base_addr;
|
| 802 |
|
|
bool base_aligned;
|
| 803 |
|
|
tree misalign;
|
| 804 |
|
|
tree aligned_to, alignment;
|
| 805 |
|
|
|
| 806 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 807 |
|
|
fprintf (vect_dump, "vect_compute_data_ref_alignment:");
|
| 808 |
|
|
|
| 809 |
|
|
if (loop_vinfo)
|
| 810 |
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 811 |
|
|
|
| 812 |
|
|
/* Initialize misalignment to unknown. */
|
| 813 |
|
|
SET_DR_MISALIGNMENT (dr, -1);
|
| 814 |
|
|
|
| 815 |
|
|
misalign = DR_INIT (dr);
|
| 816 |
|
|
aligned_to = DR_ALIGNED_TO (dr);
|
| 817 |
|
|
base_addr = DR_BASE_ADDRESS (dr);
|
| 818 |
|
|
vectype = STMT_VINFO_VECTYPE (stmt_info);
|
| 819 |
|
|
|
| 820 |
|
|
/* In case the dataref is in an inner-loop of the loop that is being
|
| 821 |
|
|
vectorized (LOOP), we use the base and misalignment information
|
| 822 |
|
|
relative to the outer-loop (LOOP). This is ok only if the misalignment
|
| 823 |
|
|
stays the same throughout the execution of the inner-loop, which is why
|
| 824 |
|
|
we have to check that the stride of the dataref in the inner-loop evenly
|
| 825 |
|
|
divides by the vector size. */
|
| 826 |
|
|
if (loop && nested_in_vect_loop_p (loop, stmt))
|
| 827 |
|
|
{
|
| 828 |
|
|
tree step = DR_STEP (dr);
|
| 829 |
|
|
HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
|
| 830 |
|
|
|
| 831 |
|
|
if (dr_step % GET_MODE_SIZE (TYPE_MODE (vectype)) == 0)
|
| 832 |
|
|
{
|
| 833 |
|
|
if (vect_print_dump_info (REPORT_ALIGNMENT))
|
| 834 |
|
|
fprintf (vect_dump, "inner step divides the vector-size.");
|
| 835 |
|
|
misalign = STMT_VINFO_DR_INIT (stmt_info);
|
| 836 |
|
|
aligned_to = STMT_VINFO_DR_ALIGNED_TO (stmt_info);
|
| 837 |
|
|
base_addr = STMT_VINFO_DR_BASE_ADDRESS (stmt_info);
|
| 838 |
|
|
}
|
| 839 |
|
|
else
|
| 840 |
|
|
{
|
| 841 |
|
|
if (vect_print_dump_info (REPORT_ALIGNMENT))
|
| 842 |
|
|
fprintf (vect_dump, "inner step doesn't divide the vector-size.");
|
| 843 |
|
|
misalign = NULL_TREE;
|
| 844 |
|
|
}
|
| 845 |
|
|
}
|
| 846 |
|
|
|
| 847 |
|
|
base = build_fold_indirect_ref (base_addr);
|
| 848 |
|
|
alignment = ssize_int (TYPE_ALIGN (vectype)/BITS_PER_UNIT);
|
| 849 |
|
|
|
| 850 |
|
|
if ((aligned_to && tree_int_cst_compare (aligned_to, alignment) < 0)
|
| 851 |
|
|
|| !misalign)
|
| 852 |
|
|
{
|
| 853 |
|
|
if (vect_print_dump_info (REPORT_ALIGNMENT))
|
| 854 |
|
|
{
|
| 855 |
|
|
fprintf (vect_dump, "Unknown alignment for access: ");
|
| 856 |
|
|
print_generic_expr (vect_dump, base, TDF_SLIM);
|
| 857 |
|
|
}
|
| 858 |
|
|
return true;
|
| 859 |
|
|
}
|
| 860 |
|
|
|
| 861 |
|
|
if ((DECL_P (base)
|
| 862 |
|
|
&& tree_int_cst_compare (ssize_int (DECL_ALIGN_UNIT (base)),
|
| 863 |
|
|
alignment) >= 0)
|
| 864 |
|
|
|| (TREE_CODE (base_addr) == SSA_NAME
|
| 865 |
|
|
&& tree_int_cst_compare (ssize_int (TYPE_ALIGN_UNIT (TREE_TYPE (
|
| 866 |
|
|
TREE_TYPE (base_addr)))),
|
| 867 |
|
|
alignment) >= 0)
|
| 868 |
|
|
|| (get_pointer_alignment (base_addr) >= TYPE_ALIGN (vectype)))
|
| 869 |
|
|
base_aligned = true;
|
| 870 |
|
|
else
|
| 871 |
|
|
base_aligned = false;
|
| 872 |
|
|
|
| 873 |
|
|
if (!base_aligned)
|
| 874 |
|
|
{
|
| 875 |
|
|
/* Do not change the alignment of global variables if
|
| 876 |
|
|
flag_section_anchors is enabled. */
|
| 877 |
|
|
if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype))
|
| 878 |
|
|
|| (TREE_STATIC (base) && flag_section_anchors))
|
| 879 |
|
|
{
|
| 880 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 881 |
|
|
{
|
| 882 |
|
|
fprintf (vect_dump, "can't force alignment of ref: ");
|
| 883 |
|
|
print_generic_expr (vect_dump, ref, TDF_SLIM);
|
| 884 |
|
|
}
|
| 885 |
|
|
return true;
|
| 886 |
|
|
}
|
| 887 |
|
|
|
| 888 |
|
|
/* Force the alignment of the decl.
|
| 889 |
|
|
NOTE: This is the only change to the code we make during
|
| 890 |
|
|
the analysis phase, before deciding to vectorize the loop. */
|
| 891 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 892 |
|
|
{
|
| 893 |
|
|
fprintf (vect_dump, "force alignment of ");
|
| 894 |
|
|
print_generic_expr (vect_dump, ref, TDF_SLIM);
|
| 895 |
|
|
}
|
| 896 |
|
|
|
| 897 |
|
|
DECL_ALIGN (base) = TYPE_ALIGN (vectype);
|
| 898 |
|
|
DECL_USER_ALIGN (base) = 1;
|
| 899 |
|
|
}
|
| 900 |
|
|
|
| 901 |
|
|
/* At this point we assume that the base is aligned. */
|
| 902 |
|
|
gcc_assert (base_aligned
|
| 903 |
|
|
|| (TREE_CODE (base) == VAR_DECL
|
| 904 |
|
|
&& DECL_ALIGN (base) >= TYPE_ALIGN (vectype)));
|
| 905 |
|
|
|
| 906 |
|
|
/* If this is a backward running DR then first access in the larger
|
| 907 |
|
|
vectype actually is N-1 elements before the address in the DR.
|
| 908 |
|
|
Adjust misalign accordingly. */
|
| 909 |
|
|
if (tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0)
|
| 910 |
|
|
{
|
| 911 |
|
|
tree offset = ssize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
|
| 912 |
|
|
/* DR_STEP(dr) is the same as -TYPE_SIZE of the scalar type,
|
| 913 |
|
|
otherwise we wouldn't be here. */
|
| 914 |
|
|
offset = fold_build2 (MULT_EXPR, ssizetype, offset, DR_STEP (dr));
|
| 915 |
|
|
/* PLUS because DR_STEP was negative. */
|
| 916 |
|
|
misalign = size_binop (PLUS_EXPR, misalign, offset);
|
| 917 |
|
|
}
|
| 918 |
|
|
|
| 919 |
|
|
/* Modulo alignment. */
|
| 920 |
|
|
misalign = size_binop (FLOOR_MOD_EXPR, misalign, alignment);
|
| 921 |
|
|
|
| 922 |
|
|
if (!host_integerp (misalign, 1))
|
| 923 |
|
|
{
|
| 924 |
|
|
/* Negative or overflowed misalignment value. */
|
| 925 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 926 |
|
|
fprintf (vect_dump, "unexpected misalign value");
|
| 927 |
|
|
return false;
|
| 928 |
|
|
}
|
| 929 |
|
|
|
| 930 |
|
|
SET_DR_MISALIGNMENT (dr, TREE_INT_CST_LOW (misalign));
|
| 931 |
|
|
|
| 932 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 933 |
|
|
{
|
| 934 |
|
|
fprintf (vect_dump, "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr));
|
| 935 |
|
|
print_generic_expr (vect_dump, ref, TDF_SLIM);
|
| 936 |
|
|
}
|
| 937 |
|
|
|
| 938 |
|
|
return true;
|
| 939 |
|
|
}
|
| 940 |
|
|
|
| 941 |
|
|
|
| 942 |
|
|
/* Function vect_compute_data_refs_alignment
|
| 943 |
|
|
|
| 944 |
|
|
Compute the misalignment of data references in the loop.
|
| 945 |
|
|
Return FALSE if a data reference is found that cannot be vectorized. */
|
| 946 |
|
|
|
| 947 |
|
|
static bool
|
| 948 |
|
|
vect_compute_data_refs_alignment (loop_vec_info loop_vinfo,
|
| 949 |
|
|
bb_vec_info bb_vinfo)
|
| 950 |
|
|
{
|
| 951 |
|
|
VEC (data_reference_p, heap) *datarefs;
|
| 952 |
|
|
struct data_reference *dr;
|
| 953 |
|
|
unsigned int i;
|
| 954 |
|
|
|
| 955 |
|
|
if (loop_vinfo)
|
| 956 |
|
|
datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
|
| 957 |
|
|
else
|
| 958 |
|
|
datarefs = BB_VINFO_DATAREFS (bb_vinfo);
|
| 959 |
|
|
|
| 960 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
|
| 961 |
|
|
if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
|
| 962 |
|
|
&& !vect_compute_data_ref_alignment (dr))
|
| 963 |
|
|
{
|
| 964 |
|
|
if (bb_vinfo)
|
| 965 |
|
|
{
|
| 966 |
|
|
/* Mark unsupported statement as unvectorizable. */
|
| 967 |
|
|
STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
|
| 968 |
|
|
continue;
|
| 969 |
|
|
}
|
| 970 |
|
|
else
|
| 971 |
|
|
return false;
|
| 972 |
|
|
}
|
| 973 |
|
|
|
| 974 |
|
|
return true;
|
| 975 |
|
|
}
|
| 976 |
|
|
|
| 977 |
|
|
|
| 978 |
|
|
/* Function vect_update_misalignment_for_peel
|
| 979 |
|
|
|
| 980 |
|
|
DR - the data reference whose misalignment is to be adjusted.
|
| 981 |
|
|
DR_PEEL - the data reference whose misalignment is being made
|
| 982 |
|
|
zero in the vector loop by the peel.
|
| 983 |
|
|
NPEEL - the number of iterations in the peel loop if the misalignment
|
| 984 |
|
|
of DR_PEEL is known at compile time. */
|
| 985 |
|
|
|
| 986 |
|
|
static void
|
| 987 |
|
|
vect_update_misalignment_for_peel (struct data_reference *dr,
|
| 988 |
|
|
struct data_reference *dr_peel, int npeel)
|
| 989 |
|
|
{
|
| 990 |
|
|
unsigned int i;
|
| 991 |
|
|
VEC(dr_p,heap) *same_align_drs;
|
| 992 |
|
|
struct data_reference *current_dr;
|
| 993 |
|
|
int dr_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
|
| 994 |
|
|
int dr_peel_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr_peel))));
|
| 995 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
|
| 996 |
|
|
stmt_vec_info peel_stmt_info = vinfo_for_stmt (DR_STMT (dr_peel));
|
| 997 |
|
|
|
| 998 |
|
|
/* For interleaved data accesses the step in the loop must be multiplied by
|
| 999 |
|
|
the size of the interleaving group. */
|
| 1000 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
|
| 1001 |
|
|
dr_size *= GROUP_SIZE (vinfo_for_stmt (GROUP_FIRST_ELEMENT (stmt_info)));
|
| 1002 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (peel_stmt_info))
|
| 1003 |
|
|
dr_peel_size *= GROUP_SIZE (peel_stmt_info);
|
| 1004 |
|
|
|
| 1005 |
|
|
/* It can be assumed that the data refs with the same alignment as dr_peel
|
| 1006 |
|
|
are aligned in the vector loop. */
|
| 1007 |
|
|
same_align_drs
|
| 1008 |
|
|
= STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel)));
|
| 1009 |
|
|
FOR_EACH_VEC_ELT (dr_p, same_align_drs, i, current_dr)
|
| 1010 |
|
|
{
|
| 1011 |
|
|
if (current_dr != dr)
|
| 1012 |
|
|
continue;
|
| 1013 |
|
|
gcc_assert (DR_MISALIGNMENT (dr) / dr_size ==
|
| 1014 |
|
|
DR_MISALIGNMENT (dr_peel) / dr_peel_size);
|
| 1015 |
|
|
SET_DR_MISALIGNMENT (dr, 0);
|
| 1016 |
|
|
return;
|
| 1017 |
|
|
}
|
| 1018 |
|
|
|
| 1019 |
|
|
if (known_alignment_for_access_p (dr)
|
| 1020 |
|
|
&& known_alignment_for_access_p (dr_peel))
|
| 1021 |
|
|
{
|
| 1022 |
|
|
bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
|
| 1023 |
|
|
int misal = DR_MISALIGNMENT (dr);
|
| 1024 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
| 1025 |
|
|
misal += negative ? -npeel * dr_size : npeel * dr_size;
|
| 1026 |
|
|
misal &= GET_MODE_SIZE (TYPE_MODE (vectype)) - 1;
|
| 1027 |
|
|
SET_DR_MISALIGNMENT (dr, misal);
|
| 1028 |
|
|
return;
|
| 1029 |
|
|
}
|
| 1030 |
|
|
|
| 1031 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1032 |
|
|
fprintf (vect_dump, "Setting misalignment to -1.");
|
| 1033 |
|
|
SET_DR_MISALIGNMENT (dr, -1);
|
| 1034 |
|
|
}
|
| 1035 |
|
|
|
| 1036 |
|
|
|
| 1037 |
|
|
/* Function vect_verify_datarefs_alignment
|
| 1038 |
|
|
|
| 1039 |
|
|
Return TRUE if all data references in the loop can be
|
| 1040 |
|
|
handled with respect to alignment. */
|
| 1041 |
|
|
|
| 1042 |
|
|
bool
|
| 1043 |
|
|
vect_verify_datarefs_alignment (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
|
| 1044 |
|
|
{
|
| 1045 |
|
|
VEC (data_reference_p, heap) *datarefs;
|
| 1046 |
|
|
struct data_reference *dr;
|
| 1047 |
|
|
enum dr_alignment_support supportable_dr_alignment;
|
| 1048 |
|
|
unsigned int i;
|
| 1049 |
|
|
|
| 1050 |
|
|
if (loop_vinfo)
|
| 1051 |
|
|
datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
|
| 1052 |
|
|
else
|
| 1053 |
|
|
datarefs = BB_VINFO_DATAREFS (bb_vinfo);
|
| 1054 |
|
|
|
| 1055 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
|
| 1056 |
|
|
{
|
| 1057 |
|
|
gimple stmt = DR_STMT (dr);
|
| 1058 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 1059 |
|
|
|
| 1060 |
|
|
/* For interleaving, only the alignment of the first access matters.
|
| 1061 |
|
|
Skip statements marked as not vectorizable. */
|
| 1062 |
|
|
if ((STMT_VINFO_STRIDED_ACCESS (stmt_info)
|
| 1063 |
|
|
&& GROUP_FIRST_ELEMENT (stmt_info) != stmt)
|
| 1064 |
|
|
|| !STMT_VINFO_VECTORIZABLE (stmt_info))
|
| 1065 |
|
|
continue;
|
| 1066 |
|
|
|
| 1067 |
|
|
supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
|
| 1068 |
|
|
if (!supportable_dr_alignment)
|
| 1069 |
|
|
{
|
| 1070 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 1071 |
|
|
{
|
| 1072 |
|
|
if (DR_IS_READ (dr))
|
| 1073 |
|
|
fprintf (vect_dump,
|
| 1074 |
|
|
"not vectorized: unsupported unaligned load.");
|
| 1075 |
|
|
else
|
| 1076 |
|
|
fprintf (vect_dump,
|
| 1077 |
|
|
"not vectorized: unsupported unaligned store.");
|
| 1078 |
|
|
|
| 1079 |
|
|
print_generic_expr (vect_dump, DR_REF (dr), TDF_SLIM);
|
| 1080 |
|
|
}
|
| 1081 |
|
|
return false;
|
| 1082 |
|
|
}
|
| 1083 |
|
|
if (supportable_dr_alignment != dr_aligned
|
| 1084 |
|
|
&& vect_print_dump_info (REPORT_ALIGNMENT))
|
| 1085 |
|
|
fprintf (vect_dump, "Vectorizing an unaligned access.");
|
| 1086 |
|
|
}
|
| 1087 |
|
|
return true;
|
| 1088 |
|
|
}
|
| 1089 |
|
|
|
| 1090 |
|
|
|
| 1091 |
|
|
/* Function vector_alignment_reachable_p
|
| 1092 |
|
|
|
| 1093 |
|
|
Return true if vector alignment for DR is reachable by peeling
|
| 1094 |
|
|
a few loop iterations. Return false otherwise. */
|
| 1095 |
|
|
|
| 1096 |
|
|
static bool
|
| 1097 |
|
|
vector_alignment_reachable_p (struct data_reference *dr)
|
| 1098 |
|
|
{
|
| 1099 |
|
|
gimple stmt = DR_STMT (dr);
|
| 1100 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 1101 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
| 1102 |
|
|
|
| 1103 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
|
| 1104 |
|
|
{
|
| 1105 |
|
|
/* For interleaved access we peel only if number of iterations in
|
| 1106 |
|
|
the prolog loop ({VF - misalignment}), is a multiple of the
|
| 1107 |
|
|
number of the interleaved accesses. */
|
| 1108 |
|
|
int elem_size, mis_in_elements;
|
| 1109 |
|
|
int nelements = TYPE_VECTOR_SUBPARTS (vectype);
|
| 1110 |
|
|
|
| 1111 |
|
|
/* FORNOW: handle only known alignment. */
|
| 1112 |
|
|
if (!known_alignment_for_access_p (dr))
|
| 1113 |
|
|
return false;
|
| 1114 |
|
|
|
| 1115 |
|
|
elem_size = GET_MODE_SIZE (TYPE_MODE (vectype)) / nelements;
|
| 1116 |
|
|
mis_in_elements = DR_MISALIGNMENT (dr) / elem_size;
|
| 1117 |
|
|
|
| 1118 |
|
|
if ((nelements - mis_in_elements) % GROUP_SIZE (stmt_info))
|
| 1119 |
|
|
return false;
|
| 1120 |
|
|
}
|
| 1121 |
|
|
|
| 1122 |
|
|
/* If misalignment is known at the compile time then allow peeling
|
| 1123 |
|
|
only if natural alignment is reachable through peeling. */
|
| 1124 |
|
|
if (known_alignment_for_access_p (dr) && !aligned_access_p (dr))
|
| 1125 |
|
|
{
|
| 1126 |
|
|
HOST_WIDE_INT elmsize =
|
| 1127 |
|
|
int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
|
| 1128 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1129 |
|
|
{
|
| 1130 |
|
|
fprintf (vect_dump, "data size =" HOST_WIDE_INT_PRINT_DEC, elmsize);
|
| 1131 |
|
|
fprintf (vect_dump, ". misalignment = %d. ", DR_MISALIGNMENT (dr));
|
| 1132 |
|
|
}
|
| 1133 |
|
|
if (DR_MISALIGNMENT (dr) % elmsize)
|
| 1134 |
|
|
{
|
| 1135 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1136 |
|
|
fprintf (vect_dump, "data size does not divide the misalignment.\n");
|
| 1137 |
|
|
return false;
|
| 1138 |
|
|
}
|
| 1139 |
|
|
}
|
| 1140 |
|
|
|
| 1141 |
|
|
if (!known_alignment_for_access_p (dr))
|
| 1142 |
|
|
{
|
| 1143 |
|
|
tree type = (TREE_TYPE (DR_REF (dr)));
|
| 1144 |
|
|
tree ba = DR_BASE_OBJECT (dr);
|
| 1145 |
|
|
bool is_packed = false;
|
| 1146 |
|
|
|
| 1147 |
|
|
if (ba)
|
| 1148 |
|
|
is_packed = contains_packed_reference (ba);
|
| 1149 |
|
|
|
| 1150 |
|
|
if (compare_tree_int (TYPE_SIZE (type), TYPE_ALIGN (type)) > 0)
|
| 1151 |
|
|
is_packed = true;
|
| 1152 |
|
|
|
| 1153 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1154 |
|
|
fprintf (vect_dump, "Unknown misalignment, is_packed = %d",is_packed);
|
| 1155 |
|
|
if (targetm.vectorize.vector_alignment_reachable (type, is_packed))
|
| 1156 |
|
|
return true;
|
| 1157 |
|
|
else
|
| 1158 |
|
|
return false;
|
| 1159 |
|
|
}
|
| 1160 |
|
|
|
| 1161 |
|
|
return true;
|
| 1162 |
|
|
}
|
| 1163 |
|
|
|
| 1164 |
|
|
|
| 1165 |
|
|
/* Calculate the cost of the memory access represented by DR. */
|
| 1166 |
|
|
|
| 1167 |
|
|
static void
|
| 1168 |
|
|
vect_get_data_access_cost (struct data_reference *dr,
|
| 1169 |
|
|
unsigned int *inside_cost,
|
| 1170 |
|
|
unsigned int *outside_cost)
|
| 1171 |
|
|
{
|
| 1172 |
|
|
gimple stmt = DR_STMT (dr);
|
| 1173 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 1174 |
|
|
int nunits = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
|
| 1175 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 1176 |
|
|
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
| 1177 |
|
|
int ncopies = vf / nunits;
|
| 1178 |
|
|
bool supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
|
| 1179 |
|
|
|
| 1180 |
|
|
if (!supportable_dr_alignment)
|
| 1181 |
|
|
*inside_cost = VECT_MAX_COST;
|
| 1182 |
|
|
else
|
| 1183 |
|
|
{
|
| 1184 |
|
|
if (DR_IS_READ (dr))
|
| 1185 |
|
|
vect_get_load_cost (dr, ncopies, true, inside_cost, outside_cost);
|
| 1186 |
|
|
else
|
| 1187 |
|
|
vect_get_store_cost (dr, ncopies, inside_cost);
|
| 1188 |
|
|
}
|
| 1189 |
|
|
|
| 1190 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 1191 |
|
|
fprintf (vect_dump, "vect_get_data_access_cost: inside_cost = %d, "
|
| 1192 |
|
|
"outside_cost = %d.", *inside_cost, *outside_cost);
|
| 1193 |
|
|
}
|
| 1194 |
|
|
|
| 1195 |
|
|
|
| 1196 |
|
|
static hashval_t
|
| 1197 |
|
|
vect_peeling_hash (const void *elem)
|
| 1198 |
|
|
{
|
| 1199 |
|
|
const struct _vect_peel_info *peel_info;
|
| 1200 |
|
|
|
| 1201 |
|
|
peel_info = (const struct _vect_peel_info *) elem;
|
| 1202 |
|
|
return (hashval_t) peel_info->npeel;
|
| 1203 |
|
|
}
|
| 1204 |
|
|
|
| 1205 |
|
|
|
| 1206 |
|
|
static int
|
| 1207 |
|
|
vect_peeling_hash_eq (const void *elem1, const void *elem2)
|
| 1208 |
|
|
{
|
| 1209 |
|
|
const struct _vect_peel_info *a, *b;
|
| 1210 |
|
|
|
| 1211 |
|
|
a = (const struct _vect_peel_info *) elem1;
|
| 1212 |
|
|
b = (const struct _vect_peel_info *) elem2;
|
| 1213 |
|
|
return (a->npeel == b->npeel);
|
| 1214 |
|
|
}
|
| 1215 |
|
|
|
| 1216 |
|
|
|
| 1217 |
|
|
/* Insert DR into peeling hash table with NPEEL as key. */
|
| 1218 |
|
|
|
| 1219 |
|
|
static void
|
| 1220 |
|
|
vect_peeling_hash_insert (loop_vec_info loop_vinfo, struct data_reference *dr,
|
| 1221 |
|
|
int npeel)
|
| 1222 |
|
|
{
|
| 1223 |
|
|
struct _vect_peel_info elem, *slot;
|
| 1224 |
|
|
void **new_slot;
|
| 1225 |
|
|
bool supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
|
| 1226 |
|
|
|
| 1227 |
|
|
elem.npeel = npeel;
|
| 1228 |
|
|
slot = (vect_peel_info) htab_find (LOOP_VINFO_PEELING_HTAB (loop_vinfo),
|
| 1229 |
|
|
&elem);
|
| 1230 |
|
|
if (slot)
|
| 1231 |
|
|
slot->count++;
|
| 1232 |
|
|
else
|
| 1233 |
|
|
{
|
| 1234 |
|
|
slot = XNEW (struct _vect_peel_info);
|
| 1235 |
|
|
slot->npeel = npeel;
|
| 1236 |
|
|
slot->dr = dr;
|
| 1237 |
|
|
slot->count = 1;
|
| 1238 |
|
|
new_slot = htab_find_slot (LOOP_VINFO_PEELING_HTAB (loop_vinfo), slot,
|
| 1239 |
|
|
INSERT);
|
| 1240 |
|
|
*new_slot = slot;
|
| 1241 |
|
|
}
|
| 1242 |
|
|
|
| 1243 |
|
|
if (!supportable_dr_alignment && !flag_vect_cost_model)
|
| 1244 |
|
|
slot->count += VECT_MAX_COST;
|
| 1245 |
|
|
}
|
| 1246 |
|
|
|
| 1247 |
|
|
|
| 1248 |
|
|
/* Traverse peeling hash table to find peeling option that aligns maximum
|
| 1249 |
|
|
number of data accesses. */
|
| 1250 |
|
|
|
| 1251 |
|
|
static int
|
| 1252 |
|
|
vect_peeling_hash_get_most_frequent (void **slot, void *data)
|
| 1253 |
|
|
{
|
| 1254 |
|
|
vect_peel_info elem = (vect_peel_info) *slot;
|
| 1255 |
|
|
vect_peel_extended_info max = (vect_peel_extended_info) data;
|
| 1256 |
|
|
|
| 1257 |
|
|
if (elem->count > max->peel_info.count
|
| 1258 |
|
|
|| (elem->count == max->peel_info.count
|
| 1259 |
|
|
&& max->peel_info.npeel > elem->npeel))
|
| 1260 |
|
|
{
|
| 1261 |
|
|
max->peel_info.npeel = elem->npeel;
|
| 1262 |
|
|
max->peel_info.count = elem->count;
|
| 1263 |
|
|
max->peel_info.dr = elem->dr;
|
| 1264 |
|
|
}
|
| 1265 |
|
|
|
| 1266 |
|
|
return 1;
|
| 1267 |
|
|
}
|
| 1268 |
|
|
|
| 1269 |
|
|
|
| 1270 |
|
|
/* Traverse peeling hash table and calculate cost for each peeling option.
|
| 1271 |
|
|
Find the one with the lowest cost. */
|
| 1272 |
|
|
|
| 1273 |
|
|
static int
|
| 1274 |
|
|
vect_peeling_hash_get_lowest_cost (void **slot, void *data)
|
| 1275 |
|
|
{
|
| 1276 |
|
|
vect_peel_info elem = (vect_peel_info) *slot;
|
| 1277 |
|
|
vect_peel_extended_info min = (vect_peel_extended_info) data;
|
| 1278 |
|
|
int save_misalignment, dummy;
|
| 1279 |
|
|
unsigned int inside_cost = 0, outside_cost = 0, i;
|
| 1280 |
|
|
gimple stmt = DR_STMT (elem->dr);
|
| 1281 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 1282 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 1283 |
|
|
VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
|
| 1284 |
|
|
struct data_reference *dr;
|
| 1285 |
|
|
|
| 1286 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
|
| 1287 |
|
|
{
|
| 1288 |
|
|
stmt = DR_STMT (dr);
|
| 1289 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
| 1290 |
|
|
/* For interleaving, only the alignment of the first access
|
| 1291 |
|
|
matters. */
|
| 1292 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info)
|
| 1293 |
|
|
&& GROUP_FIRST_ELEMENT (stmt_info) != stmt)
|
| 1294 |
|
|
continue;
|
| 1295 |
|
|
|
| 1296 |
|
|
save_misalignment = DR_MISALIGNMENT (dr);
|
| 1297 |
|
|
vect_update_misalignment_for_peel (dr, elem->dr, elem->npeel);
|
| 1298 |
|
|
vect_get_data_access_cost (dr, &inside_cost, &outside_cost);
|
| 1299 |
|
|
SET_DR_MISALIGNMENT (dr, save_misalignment);
|
| 1300 |
|
|
}
|
| 1301 |
|
|
|
| 1302 |
|
|
outside_cost += vect_get_known_peeling_cost (loop_vinfo, elem->npeel, &dummy,
|
| 1303 |
|
|
vect_get_single_scalar_iteraion_cost (loop_vinfo));
|
| 1304 |
|
|
|
| 1305 |
|
|
if (inside_cost < min->inside_cost
|
| 1306 |
|
|
|| (inside_cost == min->inside_cost && outside_cost < min->outside_cost))
|
| 1307 |
|
|
{
|
| 1308 |
|
|
min->inside_cost = inside_cost;
|
| 1309 |
|
|
min->outside_cost = outside_cost;
|
| 1310 |
|
|
min->peel_info.dr = elem->dr;
|
| 1311 |
|
|
min->peel_info.npeel = elem->npeel;
|
| 1312 |
|
|
}
|
| 1313 |
|
|
|
| 1314 |
|
|
return 1;
|
| 1315 |
|
|
}
|
| 1316 |
|
|
|
| 1317 |
|
|
|
| 1318 |
|
|
/* Choose best peeling option by traversing peeling hash table and either
|
| 1319 |
|
|
choosing an option with the lowest cost (if cost model is enabled) or the
|
| 1320 |
|
|
option that aligns as many accesses as possible. */
|
| 1321 |
|
|
|
| 1322 |
|
|
static struct data_reference *
|
| 1323 |
|
|
vect_peeling_hash_choose_best_peeling (loop_vec_info loop_vinfo,
|
| 1324 |
|
|
unsigned int *npeel)
|
| 1325 |
|
|
{
|
| 1326 |
|
|
struct _vect_peel_extended_info res;
|
| 1327 |
|
|
|
| 1328 |
|
|
res.peel_info.dr = NULL;
|
| 1329 |
|
|
|
| 1330 |
|
|
if (flag_vect_cost_model)
|
| 1331 |
|
|
{
|
| 1332 |
|
|
res.inside_cost = INT_MAX;
|
| 1333 |
|
|
res.outside_cost = INT_MAX;
|
| 1334 |
|
|
htab_traverse (LOOP_VINFO_PEELING_HTAB (loop_vinfo),
|
| 1335 |
|
|
vect_peeling_hash_get_lowest_cost, &res);
|
| 1336 |
|
|
}
|
| 1337 |
|
|
else
|
| 1338 |
|
|
{
|
| 1339 |
|
|
res.peel_info.count = 0;
|
| 1340 |
|
|
htab_traverse (LOOP_VINFO_PEELING_HTAB (loop_vinfo),
|
| 1341 |
|
|
vect_peeling_hash_get_most_frequent, &res);
|
| 1342 |
|
|
}
|
| 1343 |
|
|
|
| 1344 |
|
|
*npeel = res.peel_info.npeel;
|
| 1345 |
|
|
return res.peel_info.dr;
|
| 1346 |
|
|
}
|
| 1347 |
|
|
|
| 1348 |
|
|
|
| 1349 |
|
|
/* Function vect_enhance_data_refs_alignment
|
| 1350 |
|
|
|
| 1351 |
|
|
This pass will use loop versioning and loop peeling in order to enhance
|
| 1352 |
|
|
the alignment of data references in the loop.
|
| 1353 |
|
|
|
| 1354 |
|
|
FOR NOW: we assume that whatever versioning/peeling takes place, only the
|
| 1355 |
|
|
original loop is to be vectorized. Any other loops that are created by
|
| 1356 |
|
|
the transformations performed in this pass - are not supposed to be
|
| 1357 |
|
|
vectorized. This restriction will be relaxed.
|
| 1358 |
|
|
|
| 1359 |
|
|
This pass will require a cost model to guide it whether to apply peeling
|
| 1360 |
|
|
or versioning or a combination of the two. For example, the scheme that
|
| 1361 |
|
|
intel uses when given a loop with several memory accesses, is as follows:
|
| 1362 |
|
|
choose one memory access ('p') which alignment you want to force by doing
|
| 1363 |
|
|
peeling. Then, either (1) generate a loop in which 'p' is aligned and all
|
| 1364 |
|
|
other accesses are not necessarily aligned, or (2) use loop versioning to
|
| 1365 |
|
|
generate one loop in which all accesses are aligned, and another loop in
|
| 1366 |
|
|
which only 'p' is necessarily aligned.
|
| 1367 |
|
|
|
| 1368 |
|
|
("Automatic Intra-Register Vectorization for the Intel Architecture",
|
| 1369 |
|
|
Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
|
| 1370 |
|
|
Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
|
| 1371 |
|
|
|
| 1372 |
|
|
Devising a cost model is the most critical aspect of this work. It will
|
| 1373 |
|
|
guide us on which access to peel for, whether to use loop versioning, how
|
| 1374 |
|
|
many versions to create, etc. The cost model will probably consist of
|
| 1375 |
|
|
generic considerations as well as target specific considerations (on
|
| 1376 |
|
|
powerpc for example, misaligned stores are more painful than misaligned
|
| 1377 |
|
|
loads).
|
| 1378 |
|
|
|
| 1379 |
|
|
Here are the general steps involved in alignment enhancements:
|
| 1380 |
|
|
|
| 1381 |
|
|
-- original loop, before alignment analysis:
|
| 1382 |
|
|
for (i=0; i<N; i++){
|
| 1383 |
|
|
x = q[i]; # DR_MISALIGNMENT(q) = unknown
|
| 1384 |
|
|
p[i] = y; # DR_MISALIGNMENT(p) = unknown
|
| 1385 |
|
|
}
|
| 1386 |
|
|
|
| 1387 |
|
|
-- After vect_compute_data_refs_alignment:
|
| 1388 |
|
|
for (i=0; i<N; i++){
|
| 1389 |
|
|
x = q[i]; # DR_MISALIGNMENT(q) = 3
|
| 1390 |
|
|
p[i] = y; # DR_MISALIGNMENT(p) = unknown
|
| 1391 |
|
|
}
|
| 1392 |
|
|
|
| 1393 |
|
|
-- Possibility 1: we do loop versioning:
|
| 1394 |
|
|
if (p is aligned) {
|
| 1395 |
|
|
for (i=0; i<N; i++){ # loop 1A
|
| 1396 |
|
|
x = q[i]; # DR_MISALIGNMENT(q) = 3
|
| 1397 |
|
|
p[i] = y; # DR_MISALIGNMENT(p) = 0
|
| 1398 |
|
|
}
|
| 1399 |
|
|
}
|
| 1400 |
|
|
else {
|
| 1401 |
|
|
for (i=0; i<N; i++){ # loop 1B
|
| 1402 |
|
|
x = q[i]; # DR_MISALIGNMENT(q) = 3
|
| 1403 |
|
|
p[i] = y; # DR_MISALIGNMENT(p) = unaligned
|
| 1404 |
|
|
}
|
| 1405 |
|
|
}
|
| 1406 |
|
|
|
| 1407 |
|
|
-- Possibility 2: we do loop peeling:
|
| 1408 |
|
|
for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
|
| 1409 |
|
|
x = q[i];
|
| 1410 |
|
|
p[i] = y;
|
| 1411 |
|
|
}
|
| 1412 |
|
|
for (i = 3; i < N; i++){ # loop 2A
|
| 1413 |
|
|
x = q[i]; # DR_MISALIGNMENT(q) = 0
|
| 1414 |
|
|
p[i] = y; # DR_MISALIGNMENT(p) = unknown
|
| 1415 |
|
|
}
|
| 1416 |
|
|
|
| 1417 |
|
|
-- Possibility 3: combination of loop peeling and versioning:
|
| 1418 |
|
|
for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
|
| 1419 |
|
|
x = q[i];
|
| 1420 |
|
|
p[i] = y;
|
| 1421 |
|
|
}
|
| 1422 |
|
|
if (p is aligned) {
|
| 1423 |
|
|
for (i = 3; i<N; i++){ # loop 3A
|
| 1424 |
|
|
x = q[i]; # DR_MISALIGNMENT(q) = 0
|
| 1425 |
|
|
p[i] = y; # DR_MISALIGNMENT(p) = 0
|
| 1426 |
|
|
}
|
| 1427 |
|
|
}
|
| 1428 |
|
|
else {
|
| 1429 |
|
|
for (i = 3; i<N; i++){ # loop 3B
|
| 1430 |
|
|
x = q[i]; # DR_MISALIGNMENT(q) = 0
|
| 1431 |
|
|
p[i] = y; # DR_MISALIGNMENT(p) = unaligned
|
| 1432 |
|
|
}
|
| 1433 |
|
|
}
|
| 1434 |
|
|
|
| 1435 |
|
|
These loops are later passed to loop_transform to be vectorized. The
|
| 1436 |
|
|
vectorizer will use the alignment information to guide the transformation
|
| 1437 |
|
|
(whether to generate regular loads/stores, or with special handling for
|
| 1438 |
|
|
misalignment). */
|
| 1439 |
|
|
|
| 1440 |
|
|
bool
|
| 1441 |
|
|
vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
|
| 1442 |
|
|
{
|
| 1443 |
|
|
VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
|
| 1444 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 1445 |
|
|
enum dr_alignment_support supportable_dr_alignment;
|
| 1446 |
|
|
struct data_reference *dr0 = NULL, *first_store = NULL;
|
| 1447 |
|
|
struct data_reference *dr;
|
| 1448 |
|
|
unsigned int i, j;
|
| 1449 |
|
|
bool do_peeling = false;
|
| 1450 |
|
|
bool do_versioning = false;
|
| 1451 |
|
|
bool stat;
|
| 1452 |
|
|
gimple stmt;
|
| 1453 |
|
|
stmt_vec_info stmt_info;
|
| 1454 |
|
|
int vect_versioning_for_alias_required;
|
| 1455 |
|
|
unsigned int npeel = 0;
|
| 1456 |
|
|
bool all_misalignments_unknown = true;
|
| 1457 |
|
|
unsigned int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
| 1458 |
|
|
unsigned possible_npeel_number = 1;
|
| 1459 |
|
|
tree vectype;
|
| 1460 |
|
|
unsigned int nelements, mis, same_align_drs_max = 0;
|
| 1461 |
|
|
|
| 1462 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1463 |
|
|
fprintf (vect_dump, "=== vect_enhance_data_refs_alignment ===");
|
| 1464 |
|
|
|
| 1465 |
|
|
/* While cost model enhancements are expected in the future, the high level
|
| 1466 |
|
|
view of the code at this time is as follows:
|
| 1467 |
|
|
|
| 1468 |
|
|
A) If there is a misaligned access then see if peeling to align
|
| 1469 |
|
|
this access can make all data references satisfy
|
| 1470 |
|
|
vect_supportable_dr_alignment. If so, update data structures
|
| 1471 |
|
|
as needed and return true.
|
| 1472 |
|
|
|
| 1473 |
|
|
B) If peeling wasn't possible and there is a data reference with an
|
| 1474 |
|
|
unknown misalignment that does not satisfy vect_supportable_dr_alignment
|
| 1475 |
|
|
then see if loop versioning checks can be used to make all data
|
| 1476 |
|
|
references satisfy vect_supportable_dr_alignment. If so, update
|
| 1477 |
|
|
data structures as needed and return true.
|
| 1478 |
|
|
|
| 1479 |
|
|
C) If neither peeling nor versioning were successful then return false if
|
| 1480 |
|
|
any data reference does not satisfy vect_supportable_dr_alignment.
|
| 1481 |
|
|
|
| 1482 |
|
|
D) Return true (all data references satisfy vect_supportable_dr_alignment).
|
| 1483 |
|
|
|
| 1484 |
|
|
Note, Possibility 3 above (which is peeling and versioning together) is not
|
| 1485 |
|
|
being done at this time. */
|
| 1486 |
|
|
|
| 1487 |
|
|
/* (1) Peeling to force alignment. */
|
| 1488 |
|
|
|
| 1489 |
|
|
/* (1.1) Decide whether to perform peeling, and how many iterations to peel:
|
| 1490 |
|
|
Considerations:
|
| 1491 |
|
|
+ How many accesses will become aligned due to the peeling
|
| 1492 |
|
|
- How many accesses will become unaligned due to the peeling,
|
| 1493 |
|
|
and the cost of misaligned accesses.
|
| 1494 |
|
|
- The cost of peeling (the extra runtime checks, the increase
|
| 1495 |
|
|
in code size). */
|
| 1496 |
|
|
|
| 1497 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
|
| 1498 |
|
|
{
|
| 1499 |
|
|
stmt = DR_STMT (dr);
|
| 1500 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
| 1501 |
|
|
|
| 1502 |
|
|
if (!STMT_VINFO_RELEVANT (stmt_info))
|
| 1503 |
|
|
continue;
|
| 1504 |
|
|
|
| 1505 |
|
|
/* For interleaving, only the alignment of the first access
|
| 1506 |
|
|
matters. */
|
| 1507 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info)
|
| 1508 |
|
|
&& GROUP_FIRST_ELEMENT (stmt_info) != stmt)
|
| 1509 |
|
|
continue;
|
| 1510 |
|
|
|
| 1511 |
|
|
/* For invariant accesses there is nothing to enhance. */
|
| 1512 |
|
|
if (integer_zerop (DR_STEP (dr)))
|
| 1513 |
|
|
continue;
|
| 1514 |
|
|
|
| 1515 |
|
|
supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
|
| 1516 |
|
|
do_peeling = vector_alignment_reachable_p (dr);
|
| 1517 |
|
|
if (do_peeling)
|
| 1518 |
|
|
{
|
| 1519 |
|
|
if (known_alignment_for_access_p (dr))
|
| 1520 |
|
|
{
|
| 1521 |
|
|
unsigned int npeel_tmp;
|
| 1522 |
|
|
bool negative = tree_int_cst_compare (DR_STEP (dr),
|
| 1523 |
|
|
size_zero_node) < 0;
|
| 1524 |
|
|
|
| 1525 |
|
|
/* Save info about DR in the hash table. */
|
| 1526 |
|
|
if (!LOOP_VINFO_PEELING_HTAB (loop_vinfo))
|
| 1527 |
|
|
LOOP_VINFO_PEELING_HTAB (loop_vinfo) =
|
| 1528 |
|
|
htab_create (1, vect_peeling_hash,
|
| 1529 |
|
|
vect_peeling_hash_eq, free);
|
| 1530 |
|
|
|
| 1531 |
|
|
vectype = STMT_VINFO_VECTYPE (stmt_info);
|
| 1532 |
|
|
nelements = TYPE_VECTOR_SUBPARTS (vectype);
|
| 1533 |
|
|
mis = DR_MISALIGNMENT (dr) / GET_MODE_SIZE (TYPE_MODE (
|
| 1534 |
|
|
TREE_TYPE (DR_REF (dr))));
|
| 1535 |
|
|
npeel_tmp = (negative
|
| 1536 |
|
|
? (mis - nelements) : (nelements - mis))
|
| 1537 |
|
|
& (nelements - 1);
|
| 1538 |
|
|
|
| 1539 |
|
|
/* For multiple types, it is possible that the bigger type access
|
| 1540 |
|
|
will have more than one peeling option. E.g., a loop with two
|
| 1541 |
|
|
types: one of size (vector size / 4), and the other one of
|
| 1542 |
|
|
size (vector size / 8). Vectorization factor will 8. If both
|
| 1543 |
|
|
access are misaligned by 3, the first one needs one scalar
|
| 1544 |
|
|
iteration to be aligned, and the second one needs 5. But the
|
| 1545 |
|
|
the first one will be aligned also by peeling 5 scalar
|
| 1546 |
|
|
iterations, and in that case both accesses will be aligned.
|
| 1547 |
|
|
Hence, except for the immediate peeling amount, we also want
|
| 1548 |
|
|
to try to add full vector size, while we don't exceed
|
| 1549 |
|
|
vectorization factor.
|
| 1550 |
|
|
We do this automtically for cost model, since we calculate cost
|
| 1551 |
|
|
for every peeling option. */
|
| 1552 |
|
|
if (!flag_vect_cost_model)
|
| 1553 |
|
|
possible_npeel_number = vf /nelements;
|
| 1554 |
|
|
|
| 1555 |
|
|
/* Handle the aligned case. We may decide to align some other
|
| 1556 |
|
|
access, making DR unaligned. */
|
| 1557 |
|
|
if (DR_MISALIGNMENT (dr) == 0)
|
| 1558 |
|
|
{
|
| 1559 |
|
|
npeel_tmp = 0;
|
| 1560 |
|
|
if (!flag_vect_cost_model)
|
| 1561 |
|
|
possible_npeel_number++;
|
| 1562 |
|
|
}
|
| 1563 |
|
|
|
| 1564 |
|
|
for (j = 0; j < possible_npeel_number; j++)
|
| 1565 |
|
|
{
|
| 1566 |
|
|
gcc_assert (npeel_tmp <= vf);
|
| 1567 |
|
|
vect_peeling_hash_insert (loop_vinfo, dr, npeel_tmp);
|
| 1568 |
|
|
npeel_tmp += nelements;
|
| 1569 |
|
|
}
|
| 1570 |
|
|
|
| 1571 |
|
|
all_misalignments_unknown = false;
|
| 1572 |
|
|
/* Data-ref that was chosen for the case that all the
|
| 1573 |
|
|
misalignments are unknown is not relevant anymore, since we
|
| 1574 |
|
|
have a data-ref with known alignment. */
|
| 1575 |
|
|
dr0 = NULL;
|
| 1576 |
|
|
}
|
| 1577 |
|
|
else
|
| 1578 |
|
|
{
|
| 1579 |
|
|
/* If we don't know all the misalignment values, we prefer
|
| 1580 |
|
|
peeling for data-ref that has maximum number of data-refs
|
| 1581 |
|
|
with the same alignment, unless the target prefers to align
|
| 1582 |
|
|
stores over load. */
|
| 1583 |
|
|
if (all_misalignments_unknown)
|
| 1584 |
|
|
{
|
| 1585 |
|
|
if (same_align_drs_max < VEC_length (dr_p,
|
| 1586 |
|
|
STMT_VINFO_SAME_ALIGN_REFS (stmt_info))
|
| 1587 |
|
|
|| !dr0)
|
| 1588 |
|
|
{
|
| 1589 |
|
|
same_align_drs_max = VEC_length (dr_p,
|
| 1590 |
|
|
STMT_VINFO_SAME_ALIGN_REFS (stmt_info));
|
| 1591 |
|
|
dr0 = dr;
|
| 1592 |
|
|
}
|
| 1593 |
|
|
|
| 1594 |
|
|
if (!first_store && DR_IS_WRITE (dr))
|
| 1595 |
|
|
first_store = dr;
|
| 1596 |
|
|
}
|
| 1597 |
|
|
|
| 1598 |
|
|
/* If there are both known and unknown misaligned accesses in the
|
| 1599 |
|
|
loop, we choose peeling amount according to the known
|
| 1600 |
|
|
accesses. */
|
| 1601 |
|
|
|
| 1602 |
|
|
|
| 1603 |
|
|
if (!supportable_dr_alignment)
|
| 1604 |
|
|
{
|
| 1605 |
|
|
dr0 = dr;
|
| 1606 |
|
|
if (!first_store && DR_IS_WRITE (dr))
|
| 1607 |
|
|
first_store = dr;
|
| 1608 |
|
|
}
|
| 1609 |
|
|
}
|
| 1610 |
|
|
}
|
| 1611 |
|
|
else
|
| 1612 |
|
|
{
|
| 1613 |
|
|
if (!aligned_access_p (dr))
|
| 1614 |
|
|
{
|
| 1615 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1616 |
|
|
fprintf (vect_dump, "vector alignment may not be reachable");
|
| 1617 |
|
|
|
| 1618 |
|
|
break;
|
| 1619 |
|
|
}
|
| 1620 |
|
|
}
|
| 1621 |
|
|
}
|
| 1622 |
|
|
|
| 1623 |
|
|
vect_versioning_for_alias_required
|
| 1624 |
|
|
= LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
|
| 1625 |
|
|
|
| 1626 |
|
|
/* Temporarily, if versioning for alias is required, we disable peeling
|
| 1627 |
|
|
until we support peeling and versioning. Often peeling for alignment
|
| 1628 |
|
|
will require peeling for loop-bound, which in turn requires that we
|
| 1629 |
|
|
know how to adjust the loop ivs after the loop. */
|
| 1630 |
|
|
if (vect_versioning_for_alias_required
|
| 1631 |
|
|
|| !vect_can_advance_ivs_p (loop_vinfo)
|
| 1632 |
|
|
|| !slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
|
| 1633 |
|
|
do_peeling = false;
|
| 1634 |
|
|
|
| 1635 |
|
|
if (do_peeling && all_misalignments_unknown
|
| 1636 |
|
|
&& vect_supportable_dr_alignment (dr0, false))
|
| 1637 |
|
|
{
|
| 1638 |
|
|
|
| 1639 |
|
|
/* Check if the target requires to prefer stores over loads, i.e., if
|
| 1640 |
|
|
misaligned stores are more expensive than misaligned loads (taking
|
| 1641 |
|
|
drs with same alignment into account). */
|
| 1642 |
|
|
if (first_store && DR_IS_READ (dr0))
|
| 1643 |
|
|
{
|
| 1644 |
|
|
unsigned int load_inside_cost = 0, load_outside_cost = 0;
|
| 1645 |
|
|
unsigned int store_inside_cost = 0, store_outside_cost = 0;
|
| 1646 |
|
|
unsigned int load_inside_penalty = 0, load_outside_penalty = 0;
|
| 1647 |
|
|
unsigned int store_inside_penalty = 0, store_outside_penalty = 0;
|
| 1648 |
|
|
|
| 1649 |
|
|
vect_get_data_access_cost (dr0, &load_inside_cost,
|
| 1650 |
|
|
&load_outside_cost);
|
| 1651 |
|
|
vect_get_data_access_cost (first_store, &store_inside_cost,
|
| 1652 |
|
|
&store_outside_cost);
|
| 1653 |
|
|
|
| 1654 |
|
|
/* Calculate the penalty for leaving FIRST_STORE unaligned (by
|
| 1655 |
|
|
aligning the load DR0). */
|
| 1656 |
|
|
load_inside_penalty = store_inside_cost;
|
| 1657 |
|
|
load_outside_penalty = store_outside_cost;
|
| 1658 |
|
|
for (i = 0; VEC_iterate (dr_p, STMT_VINFO_SAME_ALIGN_REFS
|
| 1659 |
|
|
(vinfo_for_stmt (DR_STMT (first_store))),
|
| 1660 |
|
|
i, dr);
|
| 1661 |
|
|
i++)
|
| 1662 |
|
|
if (DR_IS_READ (dr))
|
| 1663 |
|
|
{
|
| 1664 |
|
|
load_inside_penalty += load_inside_cost;
|
| 1665 |
|
|
load_outside_penalty += load_outside_cost;
|
| 1666 |
|
|
}
|
| 1667 |
|
|
else
|
| 1668 |
|
|
{
|
| 1669 |
|
|
load_inside_penalty += store_inside_cost;
|
| 1670 |
|
|
load_outside_penalty += store_outside_cost;
|
| 1671 |
|
|
}
|
| 1672 |
|
|
|
| 1673 |
|
|
/* Calculate the penalty for leaving DR0 unaligned (by
|
| 1674 |
|
|
aligning the FIRST_STORE). */
|
| 1675 |
|
|
store_inside_penalty = load_inside_cost;
|
| 1676 |
|
|
store_outside_penalty = load_outside_cost;
|
| 1677 |
|
|
for (i = 0; VEC_iterate (dr_p, STMT_VINFO_SAME_ALIGN_REFS
|
| 1678 |
|
|
(vinfo_for_stmt (DR_STMT (dr0))),
|
| 1679 |
|
|
i, dr);
|
| 1680 |
|
|
i++)
|
| 1681 |
|
|
if (DR_IS_READ (dr))
|
| 1682 |
|
|
{
|
| 1683 |
|
|
store_inside_penalty += load_inside_cost;
|
| 1684 |
|
|
store_outside_penalty += load_outside_cost;
|
| 1685 |
|
|
}
|
| 1686 |
|
|
else
|
| 1687 |
|
|
{
|
| 1688 |
|
|
store_inside_penalty += store_inside_cost;
|
| 1689 |
|
|
store_outside_penalty += store_outside_cost;
|
| 1690 |
|
|
}
|
| 1691 |
|
|
|
| 1692 |
|
|
if (load_inside_penalty > store_inside_penalty
|
| 1693 |
|
|
|| (load_inside_penalty == store_inside_penalty
|
| 1694 |
|
|
&& load_outside_penalty > store_outside_penalty))
|
| 1695 |
|
|
dr0 = first_store;
|
| 1696 |
|
|
}
|
| 1697 |
|
|
|
| 1698 |
|
|
/* In case there are only loads with different unknown misalignments, use
|
| 1699 |
|
|
peeling only if it may help to align other accesses in the loop. */
|
| 1700 |
|
|
if (!first_store && !VEC_length (dr_p, STMT_VINFO_SAME_ALIGN_REFS
|
| 1701 |
|
|
(vinfo_for_stmt (DR_STMT (dr0))))
|
| 1702 |
|
|
&& vect_supportable_dr_alignment (dr0, false)
|
| 1703 |
|
|
!= dr_unaligned_supported)
|
| 1704 |
|
|
do_peeling = false;
|
| 1705 |
|
|
}
|
| 1706 |
|
|
|
| 1707 |
|
|
if (do_peeling && !dr0)
|
| 1708 |
|
|
{
|
| 1709 |
|
|
/* Peeling is possible, but there is no data access that is not supported
|
| 1710 |
|
|
unless aligned. So we try to choose the best possible peeling. */
|
| 1711 |
|
|
|
| 1712 |
|
|
/* We should get here only if there are drs with known misalignment. */
|
| 1713 |
|
|
gcc_assert (!all_misalignments_unknown);
|
| 1714 |
|
|
|
| 1715 |
|
|
/* Choose the best peeling from the hash table. */
|
| 1716 |
|
|
dr0 = vect_peeling_hash_choose_best_peeling (loop_vinfo, &npeel);
|
| 1717 |
|
|
if (!dr0 || !npeel)
|
| 1718 |
|
|
do_peeling = false;
|
| 1719 |
|
|
}
|
| 1720 |
|
|
|
| 1721 |
|
|
if (do_peeling)
|
| 1722 |
|
|
{
|
| 1723 |
|
|
stmt = DR_STMT (dr0);
|
| 1724 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
| 1725 |
|
|
vectype = STMT_VINFO_VECTYPE (stmt_info);
|
| 1726 |
|
|
nelements = TYPE_VECTOR_SUBPARTS (vectype);
|
| 1727 |
|
|
|
| 1728 |
|
|
if (known_alignment_for_access_p (dr0))
|
| 1729 |
|
|
{
|
| 1730 |
|
|
bool negative = tree_int_cst_compare (DR_STEP (dr0),
|
| 1731 |
|
|
size_zero_node) < 0;
|
| 1732 |
|
|
if (!npeel)
|
| 1733 |
|
|
{
|
| 1734 |
|
|
/* Since it's known at compile time, compute the number of
|
| 1735 |
|
|
iterations in the peeled loop (the peeling factor) for use in
|
| 1736 |
|
|
updating DR_MISALIGNMENT values. The peeling factor is the
|
| 1737 |
|
|
vectorization factor minus the misalignment as an element
|
| 1738 |
|
|
count. */
|
| 1739 |
|
|
mis = DR_MISALIGNMENT (dr0);
|
| 1740 |
|
|
mis /= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr0))));
|
| 1741 |
|
|
npeel = ((negative ? mis - nelements : nelements - mis)
|
| 1742 |
|
|
& (nelements - 1));
|
| 1743 |
|
|
}
|
| 1744 |
|
|
|
| 1745 |
|
|
/* For interleaved data access every iteration accesses all the
|
| 1746 |
|
|
members of the group, therefore we divide the number of iterations
|
| 1747 |
|
|
by the group size. */
|
| 1748 |
|
|
stmt_info = vinfo_for_stmt (DR_STMT (dr0));
|
| 1749 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
|
| 1750 |
|
|
npeel /= GROUP_SIZE (stmt_info);
|
| 1751 |
|
|
|
| 1752 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1753 |
|
|
fprintf (vect_dump, "Try peeling by %d", npeel);
|
| 1754 |
|
|
}
|
| 1755 |
|
|
|
| 1756 |
|
|
/* Ensure that all data refs can be vectorized after the peel. */
|
| 1757 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
|
| 1758 |
|
|
{
|
| 1759 |
|
|
int save_misalignment;
|
| 1760 |
|
|
|
| 1761 |
|
|
if (dr == dr0)
|
| 1762 |
|
|
continue;
|
| 1763 |
|
|
|
| 1764 |
|
|
stmt = DR_STMT (dr);
|
| 1765 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
| 1766 |
|
|
/* For interleaving, only the alignment of the first access
|
| 1767 |
|
|
matters. */
|
| 1768 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info)
|
| 1769 |
|
|
&& GROUP_FIRST_ELEMENT (stmt_info) != stmt)
|
| 1770 |
|
|
continue;
|
| 1771 |
|
|
|
| 1772 |
|
|
save_misalignment = DR_MISALIGNMENT (dr);
|
| 1773 |
|
|
vect_update_misalignment_for_peel (dr, dr0, npeel);
|
| 1774 |
|
|
supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
|
| 1775 |
|
|
SET_DR_MISALIGNMENT (dr, save_misalignment);
|
| 1776 |
|
|
|
| 1777 |
|
|
if (!supportable_dr_alignment)
|
| 1778 |
|
|
{
|
| 1779 |
|
|
do_peeling = false;
|
| 1780 |
|
|
break;
|
| 1781 |
|
|
}
|
| 1782 |
|
|
}
|
| 1783 |
|
|
|
| 1784 |
|
|
if (do_peeling && known_alignment_for_access_p (dr0) && npeel == 0)
|
| 1785 |
|
|
{
|
| 1786 |
|
|
stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
|
| 1787 |
|
|
if (!stat)
|
| 1788 |
|
|
do_peeling = false;
|
| 1789 |
|
|
else
|
| 1790 |
|
|
return stat;
|
| 1791 |
|
|
}
|
| 1792 |
|
|
|
| 1793 |
|
|
if (do_peeling)
|
| 1794 |
|
|
{
|
| 1795 |
|
|
/* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
|
| 1796 |
|
|
If the misalignment of DR_i is identical to that of dr0 then set
|
| 1797 |
|
|
DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
|
| 1798 |
|
|
dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
|
| 1799 |
|
|
by the peeling factor times the element size of DR_i (MOD the
|
| 1800 |
|
|
vectorization factor times the size). Otherwise, the
|
| 1801 |
|
|
misalignment of DR_i must be set to unknown. */
|
| 1802 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
|
| 1803 |
|
|
if (dr != dr0)
|
| 1804 |
|
|
vect_update_misalignment_for_peel (dr, dr0, npeel);
|
| 1805 |
|
|
|
| 1806 |
|
|
LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
|
| 1807 |
|
|
if (npeel)
|
| 1808 |
|
|
LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel;
|
| 1809 |
|
|
else
|
| 1810 |
|
|
LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) = DR_MISALIGNMENT (dr0);
|
| 1811 |
|
|
SET_DR_MISALIGNMENT (dr0, 0);
|
| 1812 |
|
|
if (vect_print_dump_info (REPORT_ALIGNMENT))
|
| 1813 |
|
|
fprintf (vect_dump, "Alignment of access forced using peeling.");
|
| 1814 |
|
|
|
| 1815 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1816 |
|
|
fprintf (vect_dump, "Peeling for alignment will be applied.");
|
| 1817 |
|
|
|
| 1818 |
|
|
stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
|
| 1819 |
|
|
gcc_assert (stat);
|
| 1820 |
|
|
return stat;
|
| 1821 |
|
|
}
|
| 1822 |
|
|
}
|
| 1823 |
|
|
|
| 1824 |
|
|
|
| 1825 |
|
|
/* (2) Versioning to force alignment. */
|
| 1826 |
|
|
|
| 1827 |
|
|
/* Try versioning if:
|
| 1828 |
|
|
1) flag_tree_vect_loop_version is TRUE
|
| 1829 |
|
|
2) optimize loop for speed
|
| 1830 |
|
|
3) there is at least one unsupported misaligned data ref with an unknown
|
| 1831 |
|
|
misalignment, and
|
| 1832 |
|
|
4) all misaligned data refs with a known misalignment are supported, and
|
| 1833 |
|
|
5) the number of runtime alignment checks is within reason. */
|
| 1834 |
|
|
|
| 1835 |
|
|
do_versioning =
|
| 1836 |
|
|
flag_tree_vect_loop_version
|
| 1837 |
|
|
&& optimize_loop_nest_for_speed_p (loop)
|
| 1838 |
|
|
&& (!loop->inner); /* FORNOW */
|
| 1839 |
|
|
|
| 1840 |
|
|
if (do_versioning)
|
| 1841 |
|
|
{
|
| 1842 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
|
| 1843 |
|
|
{
|
| 1844 |
|
|
stmt = DR_STMT (dr);
|
| 1845 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
| 1846 |
|
|
|
| 1847 |
|
|
/* For interleaving, only the alignment of the first access
|
| 1848 |
|
|
matters. */
|
| 1849 |
|
|
if (aligned_access_p (dr)
|
| 1850 |
|
|
|| (STMT_VINFO_STRIDED_ACCESS (stmt_info)
|
| 1851 |
|
|
&& GROUP_FIRST_ELEMENT (stmt_info) != stmt))
|
| 1852 |
|
|
continue;
|
| 1853 |
|
|
|
| 1854 |
|
|
supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
|
| 1855 |
|
|
|
| 1856 |
|
|
if (!supportable_dr_alignment)
|
| 1857 |
|
|
{
|
| 1858 |
|
|
gimple stmt;
|
| 1859 |
|
|
int mask;
|
| 1860 |
|
|
tree vectype;
|
| 1861 |
|
|
|
| 1862 |
|
|
if (known_alignment_for_access_p (dr)
|
| 1863 |
|
|
|| VEC_length (gimple,
|
| 1864 |
|
|
LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo))
|
| 1865 |
|
|
>= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS))
|
| 1866 |
|
|
{
|
| 1867 |
|
|
do_versioning = false;
|
| 1868 |
|
|
break;
|
| 1869 |
|
|
}
|
| 1870 |
|
|
|
| 1871 |
|
|
stmt = DR_STMT (dr);
|
| 1872 |
|
|
vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
|
| 1873 |
|
|
gcc_assert (vectype);
|
| 1874 |
|
|
|
| 1875 |
|
|
/* The rightmost bits of an aligned address must be zeros.
|
| 1876 |
|
|
Construct the mask needed for this test. For example,
|
| 1877 |
|
|
GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
|
| 1878 |
|
|
mask must be 15 = 0xf. */
|
| 1879 |
|
|
mask = GET_MODE_SIZE (TYPE_MODE (vectype)) - 1;
|
| 1880 |
|
|
|
| 1881 |
|
|
/* FORNOW: use the same mask to test all potentially unaligned
|
| 1882 |
|
|
references in the loop. The vectorizer currently supports
|
| 1883 |
|
|
a single vector size, see the reference to
|
| 1884 |
|
|
GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
|
| 1885 |
|
|
vectorization factor is computed. */
|
| 1886 |
|
|
gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo)
|
| 1887 |
|
|
|| LOOP_VINFO_PTR_MASK (loop_vinfo) == mask);
|
| 1888 |
|
|
LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
|
| 1889 |
|
|
VEC_safe_push (gimple, heap,
|
| 1890 |
|
|
LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo),
|
| 1891 |
|
|
DR_STMT (dr));
|
| 1892 |
|
|
}
|
| 1893 |
|
|
}
|
| 1894 |
|
|
|
| 1895 |
|
|
/* Versioning requires at least one misaligned data reference. */
|
| 1896 |
|
|
if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
|
| 1897 |
|
|
do_versioning = false;
|
| 1898 |
|
|
else if (!do_versioning)
|
| 1899 |
|
|
VEC_truncate (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo), 0);
|
| 1900 |
|
|
}
|
| 1901 |
|
|
|
| 1902 |
|
|
if (do_versioning)
|
| 1903 |
|
|
{
|
| 1904 |
|
|
VEC(gimple,heap) *may_misalign_stmts
|
| 1905 |
|
|
= LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
|
| 1906 |
|
|
gimple stmt;
|
| 1907 |
|
|
|
| 1908 |
|
|
/* It can now be assumed that the data references in the statements
|
| 1909 |
|
|
in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
|
| 1910 |
|
|
of the loop being vectorized. */
|
| 1911 |
|
|
FOR_EACH_VEC_ELT (gimple, may_misalign_stmts, i, stmt)
|
| 1912 |
|
|
{
|
| 1913 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 1914 |
|
|
dr = STMT_VINFO_DATA_REF (stmt_info);
|
| 1915 |
|
|
SET_DR_MISALIGNMENT (dr, 0);
|
| 1916 |
|
|
if (vect_print_dump_info (REPORT_ALIGNMENT))
|
| 1917 |
|
|
fprintf (vect_dump, "Alignment of access forced using versioning.");
|
| 1918 |
|
|
}
|
| 1919 |
|
|
|
| 1920 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1921 |
|
|
fprintf (vect_dump, "Versioning for alignment will be applied.");
|
| 1922 |
|
|
|
| 1923 |
|
|
/* Peeling and versioning can't be done together at this time. */
|
| 1924 |
|
|
gcc_assert (! (do_peeling && do_versioning));
|
| 1925 |
|
|
|
| 1926 |
|
|
stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
|
| 1927 |
|
|
gcc_assert (stat);
|
| 1928 |
|
|
return stat;
|
| 1929 |
|
|
}
|
| 1930 |
|
|
|
| 1931 |
|
|
/* This point is reached if neither peeling nor versioning is being done. */
|
| 1932 |
|
|
gcc_assert (! (do_peeling || do_versioning));
|
| 1933 |
|
|
|
| 1934 |
|
|
stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
|
| 1935 |
|
|
return stat;
|
| 1936 |
|
|
}
|
| 1937 |
|
|
|
| 1938 |
|
|
|
| 1939 |
|
|
/* Function vect_find_same_alignment_drs.
|
| 1940 |
|
|
|
| 1941 |
|
|
Update group and alignment relations according to the chosen
|
| 1942 |
|
|
vectorization factor. */
|
| 1943 |
|
|
|
| 1944 |
|
|
static void
|
| 1945 |
|
|
vect_find_same_alignment_drs (struct data_dependence_relation *ddr,
|
| 1946 |
|
|
loop_vec_info loop_vinfo)
|
| 1947 |
|
|
{
|
| 1948 |
|
|
unsigned int i;
|
| 1949 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 1950 |
|
|
int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
| 1951 |
|
|
struct data_reference *dra = DDR_A (ddr);
|
| 1952 |
|
|
struct data_reference *drb = DDR_B (ddr);
|
| 1953 |
|
|
stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
|
| 1954 |
|
|
stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
|
| 1955 |
|
|
int dra_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dra))));
|
| 1956 |
|
|
int drb_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (drb))));
|
| 1957 |
|
|
lambda_vector dist_v;
|
| 1958 |
|
|
unsigned int loop_depth;
|
| 1959 |
|
|
|
| 1960 |
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
|
| 1961 |
|
|
return;
|
| 1962 |
|
|
|
| 1963 |
|
|
if (dra == drb)
|
| 1964 |
|
|
return;
|
| 1965 |
|
|
|
| 1966 |
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
|
| 1967 |
|
|
return;
|
| 1968 |
|
|
|
| 1969 |
|
|
/* Loop-based vectorization and known data dependence. */
|
| 1970 |
|
|
if (DDR_NUM_DIST_VECTS (ddr) == 0)
|
| 1971 |
|
|
return;
|
| 1972 |
|
|
|
| 1973 |
|
|
/* Data-dependence analysis reports a distance vector of zero
|
| 1974 |
|
|
for data-references that overlap only in the first iteration
|
| 1975 |
|
|
but have different sign step (see PR45764).
|
| 1976 |
|
|
So as a sanity check require equal DR_STEP. */
|
| 1977 |
|
|
if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
|
| 1978 |
|
|
return;
|
| 1979 |
|
|
|
| 1980 |
|
|
loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
|
| 1981 |
|
|
FOR_EACH_VEC_ELT (lambda_vector, DDR_DIST_VECTS (ddr), i, dist_v)
|
| 1982 |
|
|
{
|
| 1983 |
|
|
int dist = dist_v[loop_depth];
|
| 1984 |
|
|
|
| 1985 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
| 1986 |
|
|
fprintf (vect_dump, "dependence distance = %d.", dist);
|
| 1987 |
|
|
|
| 1988 |
|
|
/* Same loop iteration. */
|
| 1989 |
|
|
if (dist == 0
|
| 1990 |
|
|
|| (dist % vectorization_factor == 0 && dra_size == drb_size))
|
| 1991 |
|
|
{
|
| 1992 |
|
|
/* Two references with distance zero have the same alignment. */
|
| 1993 |
|
|
VEC_safe_push (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a), drb);
|
| 1994 |
|
|
VEC_safe_push (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b), dra);
|
| 1995 |
|
|
if (vect_print_dump_info (REPORT_ALIGNMENT))
|
| 1996 |
|
|
fprintf (vect_dump, "accesses have the same alignment.");
|
| 1997 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
| 1998 |
|
|
{
|
| 1999 |
|
|
fprintf (vect_dump, "dependence distance modulo vf == 0 between ");
|
| 2000 |
|
|
print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
|
| 2001 |
|
|
fprintf (vect_dump, " and ");
|
| 2002 |
|
|
print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
|
| 2003 |
|
|
}
|
| 2004 |
|
|
}
|
| 2005 |
|
|
}
|
| 2006 |
|
|
}
|
| 2007 |
|
|
|
| 2008 |
|
|
|
| 2009 |
|
|
/* Function vect_analyze_data_refs_alignment
|
| 2010 |
|
|
|
| 2011 |
|
|
Analyze the alignment of the data-references in the loop.
|
| 2012 |
|
|
Return FALSE if a data reference is found that cannot be vectorized. */
|
| 2013 |
|
|
|
| 2014 |
|
|
bool
|
| 2015 |
|
|
vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo,
|
| 2016 |
|
|
bb_vec_info bb_vinfo)
|
| 2017 |
|
|
{
|
| 2018 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2019 |
|
|
fprintf (vect_dump, "=== vect_analyze_data_refs_alignment ===");
|
| 2020 |
|
|
|
| 2021 |
|
|
/* Mark groups of data references with same alignment using
|
| 2022 |
|
|
data dependence information. */
|
| 2023 |
|
|
if (loop_vinfo)
|
| 2024 |
|
|
{
|
| 2025 |
|
|
VEC (ddr_p, heap) *ddrs = LOOP_VINFO_DDRS (loop_vinfo);
|
| 2026 |
|
|
struct data_dependence_relation *ddr;
|
| 2027 |
|
|
unsigned int i;
|
| 2028 |
|
|
|
| 2029 |
|
|
FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr)
|
| 2030 |
|
|
vect_find_same_alignment_drs (ddr, loop_vinfo);
|
| 2031 |
|
|
}
|
| 2032 |
|
|
|
| 2033 |
|
|
if (!vect_compute_data_refs_alignment (loop_vinfo, bb_vinfo))
|
| 2034 |
|
|
{
|
| 2035 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 2036 |
|
|
fprintf (vect_dump,
|
| 2037 |
|
|
"not vectorized: can't calculate alignment for data ref.");
|
| 2038 |
|
|
return false;
|
| 2039 |
|
|
}
|
| 2040 |
|
|
|
| 2041 |
|
|
return true;
|
| 2042 |
|
|
}
|
| 2043 |
|
|
|
| 2044 |
|
|
|
| 2045 |
|
|
/* Analyze groups of strided accesses: check that DR belongs to a group of
|
| 2046 |
|
|
strided accesses of legal size, step, etc. Detect gaps, single element
|
| 2047 |
|
|
interleaving, and other special cases. Set strided access info.
|
| 2048 |
|
|
Collect groups of strided stores for further use in SLP analysis. */
|
| 2049 |
|
|
|
| 2050 |
|
|
static bool
|
| 2051 |
|
|
vect_analyze_group_access (struct data_reference *dr)
|
| 2052 |
|
|
{
|
| 2053 |
|
|
tree step = DR_STEP (dr);
|
| 2054 |
|
|
tree scalar_type = TREE_TYPE (DR_REF (dr));
|
| 2055 |
|
|
HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
|
| 2056 |
|
|
gimple stmt = DR_STMT (dr);
|
| 2057 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 2058 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 2059 |
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
| 2060 |
|
|
HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
|
| 2061 |
|
|
HOST_WIDE_INT stride, last_accessed_element = 1;
|
| 2062 |
|
|
bool slp_impossible = false;
|
| 2063 |
|
|
struct loop *loop = NULL;
|
| 2064 |
|
|
|
| 2065 |
|
|
if (loop_vinfo)
|
| 2066 |
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 2067 |
|
|
|
| 2068 |
|
|
/* For interleaving, STRIDE is STEP counted in elements, i.e., the size of the
|
| 2069 |
|
|
interleaving group (including gaps). */
|
| 2070 |
|
|
stride = dr_step / type_size;
|
| 2071 |
|
|
|
| 2072 |
|
|
/* Not consecutive access is possible only if it is a part of interleaving. */
|
| 2073 |
|
|
if (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
|
| 2074 |
|
|
{
|
| 2075 |
|
|
/* Check if it this DR is a part of interleaving, and is a single
|
| 2076 |
|
|
element of the group that is accessed in the loop. */
|
| 2077 |
|
|
|
| 2078 |
|
|
/* Gaps are supported only for loads. STEP must be a multiple of the type
|
| 2079 |
|
|
size. The size of the group must be a power of 2. */
|
| 2080 |
|
|
if (DR_IS_READ (dr)
|
| 2081 |
|
|
&& (dr_step % type_size) == 0
|
| 2082 |
|
|
&& stride > 0
|
| 2083 |
|
|
&& exact_log2 (stride) != -1)
|
| 2084 |
|
|
{
|
| 2085 |
|
|
GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = stmt;
|
| 2086 |
|
|
GROUP_SIZE (vinfo_for_stmt (stmt)) = stride;
|
| 2087 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
| 2088 |
|
|
{
|
| 2089 |
|
|
fprintf (vect_dump, "Detected single element interleaving ");
|
| 2090 |
|
|
print_generic_expr (vect_dump, DR_REF (dr), TDF_SLIM);
|
| 2091 |
|
|
fprintf (vect_dump, " step ");
|
| 2092 |
|
|
print_generic_expr (vect_dump, step, TDF_SLIM);
|
| 2093 |
|
|
}
|
| 2094 |
|
|
|
| 2095 |
|
|
if (loop_vinfo)
|
| 2096 |
|
|
{
|
| 2097 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2098 |
|
|
fprintf (vect_dump, "Data access with gaps requires scalar "
|
| 2099 |
|
|
"epilogue loop");
|
| 2100 |
|
|
if (loop->inner)
|
| 2101 |
|
|
{
|
| 2102 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2103 |
|
|
fprintf (vect_dump, "Peeling for outer loop is not"
|
| 2104 |
|
|
" supported");
|
| 2105 |
|
|
return false;
|
| 2106 |
|
|
}
|
| 2107 |
|
|
|
| 2108 |
|
|
LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
|
| 2109 |
|
|
}
|
| 2110 |
|
|
|
| 2111 |
|
|
return true;
|
| 2112 |
|
|
}
|
| 2113 |
|
|
|
| 2114 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2115 |
|
|
{
|
| 2116 |
|
|
fprintf (vect_dump, "not consecutive access ");
|
| 2117 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
| 2118 |
|
|
}
|
| 2119 |
|
|
|
| 2120 |
|
|
if (bb_vinfo)
|
| 2121 |
|
|
{
|
| 2122 |
|
|
/* Mark the statement as unvectorizable. */
|
| 2123 |
|
|
STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
|
| 2124 |
|
|
return true;
|
| 2125 |
|
|
}
|
| 2126 |
|
|
|
| 2127 |
|
|
return false;
|
| 2128 |
|
|
}
|
| 2129 |
|
|
|
| 2130 |
|
|
if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) == stmt)
|
| 2131 |
|
|
{
|
| 2132 |
|
|
/* First stmt in the interleaving chain. Check the chain. */
|
| 2133 |
|
|
gimple next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
|
| 2134 |
|
|
struct data_reference *data_ref = dr;
|
| 2135 |
|
|
unsigned int count = 1;
|
| 2136 |
|
|
tree next_step;
|
| 2137 |
|
|
tree prev_init = DR_INIT (data_ref);
|
| 2138 |
|
|
gimple prev = stmt;
|
| 2139 |
|
|
HOST_WIDE_INT diff, count_in_bytes, gaps = 0;
|
| 2140 |
|
|
|
| 2141 |
|
|
while (next)
|
| 2142 |
|
|
{
|
| 2143 |
|
|
/* Skip same data-refs. In case that two or more stmts share
|
| 2144 |
|
|
data-ref (supported only for loads), we vectorize only the first
|
| 2145 |
|
|
stmt, and the rest get their vectorized loads from the first
|
| 2146 |
|
|
one. */
|
| 2147 |
|
|
if (!tree_int_cst_compare (DR_INIT (data_ref),
|
| 2148 |
|
|
DR_INIT (STMT_VINFO_DATA_REF (
|
| 2149 |
|
|
vinfo_for_stmt (next)))))
|
| 2150 |
|
|
{
|
| 2151 |
|
|
if (DR_IS_WRITE (data_ref))
|
| 2152 |
|
|
{
|
| 2153 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2154 |
|
|
fprintf (vect_dump, "Two store stmts share the same dr.");
|
| 2155 |
|
|
return false;
|
| 2156 |
|
|
}
|
| 2157 |
|
|
|
| 2158 |
|
|
/* Check that there is no load-store dependencies for this loads
|
| 2159 |
|
|
to prevent a case of load-store-load to the same location. */
|
| 2160 |
|
|
if (GROUP_READ_WRITE_DEPENDENCE (vinfo_for_stmt (next))
|
| 2161 |
|
|
|| GROUP_READ_WRITE_DEPENDENCE (vinfo_for_stmt (prev)))
|
| 2162 |
|
|
{
|
| 2163 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2164 |
|
|
fprintf (vect_dump,
|
| 2165 |
|
|
"READ_WRITE dependence in interleaving.");
|
| 2166 |
|
|
return false;
|
| 2167 |
|
|
}
|
| 2168 |
|
|
|
| 2169 |
|
|
/* For load use the same data-ref load. */
|
| 2170 |
|
|
GROUP_SAME_DR_STMT (vinfo_for_stmt (next)) = prev;
|
| 2171 |
|
|
|
| 2172 |
|
|
prev = next;
|
| 2173 |
|
|
next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
|
| 2174 |
|
|
continue;
|
| 2175 |
|
|
}
|
| 2176 |
|
|
|
| 2177 |
|
|
prev = next;
|
| 2178 |
|
|
|
| 2179 |
|
|
/* Check that all the accesses have the same STEP. */
|
| 2180 |
|
|
next_step = DR_STEP (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
|
| 2181 |
|
|
if (tree_int_cst_compare (step, next_step))
|
| 2182 |
|
|
{
|
| 2183 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2184 |
|
|
fprintf (vect_dump, "not consecutive access in interleaving");
|
| 2185 |
|
|
return false;
|
| 2186 |
|
|
}
|
| 2187 |
|
|
|
| 2188 |
|
|
data_ref = STMT_VINFO_DATA_REF (vinfo_for_stmt (next));
|
| 2189 |
|
|
/* Check that the distance between two accesses is equal to the type
|
| 2190 |
|
|
size. Otherwise, we have gaps. */
|
| 2191 |
|
|
diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
|
| 2192 |
|
|
- TREE_INT_CST_LOW (prev_init)) / type_size;
|
| 2193 |
|
|
if (diff != 1)
|
| 2194 |
|
|
{
|
| 2195 |
|
|
/* FORNOW: SLP of accesses with gaps is not supported. */
|
| 2196 |
|
|
slp_impossible = true;
|
| 2197 |
|
|
if (DR_IS_WRITE (data_ref))
|
| 2198 |
|
|
{
|
| 2199 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2200 |
|
|
fprintf (vect_dump, "interleaved store with gaps");
|
| 2201 |
|
|
return false;
|
| 2202 |
|
|
}
|
| 2203 |
|
|
|
| 2204 |
|
|
gaps += diff - 1;
|
| 2205 |
|
|
}
|
| 2206 |
|
|
|
| 2207 |
|
|
last_accessed_element += diff;
|
| 2208 |
|
|
|
| 2209 |
|
|
/* Store the gap from the previous member of the group. If there is no
|
| 2210 |
|
|
gap in the access, GROUP_GAP is always 1. */
|
| 2211 |
|
|
GROUP_GAP (vinfo_for_stmt (next)) = diff;
|
| 2212 |
|
|
|
| 2213 |
|
|
prev_init = DR_INIT (data_ref);
|
| 2214 |
|
|
next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
|
| 2215 |
|
|
/* Count the number of data-refs in the chain. */
|
| 2216 |
|
|
count++;
|
| 2217 |
|
|
}
|
| 2218 |
|
|
|
| 2219 |
|
|
/* COUNT is the number of accesses found, we multiply it by the size of
|
| 2220 |
|
|
the type to get COUNT_IN_BYTES. */
|
| 2221 |
|
|
count_in_bytes = type_size * count;
|
| 2222 |
|
|
|
| 2223 |
|
|
/* Check that the size of the interleaving (including gaps) is not
|
| 2224 |
|
|
greater than STEP. */
|
| 2225 |
|
|
if (dr_step && dr_step < count_in_bytes + gaps * type_size)
|
| 2226 |
|
|
{
|
| 2227 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2228 |
|
|
{
|
| 2229 |
|
|
fprintf (vect_dump, "interleaving size is greater than step for ");
|
| 2230 |
|
|
print_generic_expr (vect_dump, DR_REF (dr), TDF_SLIM);
|
| 2231 |
|
|
}
|
| 2232 |
|
|
return false;
|
| 2233 |
|
|
}
|
| 2234 |
|
|
|
| 2235 |
|
|
/* Check that the size of the interleaving is equal to STEP for stores,
|
| 2236 |
|
|
i.e., that there are no gaps. */
|
| 2237 |
|
|
if (dr_step && dr_step != count_in_bytes)
|
| 2238 |
|
|
{
|
| 2239 |
|
|
if (DR_IS_READ (dr))
|
| 2240 |
|
|
{
|
| 2241 |
|
|
slp_impossible = true;
|
| 2242 |
|
|
/* There is a gap after the last load in the group. This gap is a
|
| 2243 |
|
|
difference between the stride and the number of elements. When
|
| 2244 |
|
|
there is no gap, this difference should be 0. */
|
| 2245 |
|
|
GROUP_GAP (vinfo_for_stmt (stmt)) = stride - count;
|
| 2246 |
|
|
}
|
| 2247 |
|
|
else
|
| 2248 |
|
|
{
|
| 2249 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2250 |
|
|
fprintf (vect_dump, "interleaved store with gaps");
|
| 2251 |
|
|
return false;
|
| 2252 |
|
|
}
|
| 2253 |
|
|
}
|
| 2254 |
|
|
|
| 2255 |
|
|
/* Check that STEP is a multiple of type size. */
|
| 2256 |
|
|
if (dr_step && (dr_step % type_size) != 0)
|
| 2257 |
|
|
{
|
| 2258 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2259 |
|
|
{
|
| 2260 |
|
|
fprintf (vect_dump, "step is not a multiple of type size: step ");
|
| 2261 |
|
|
print_generic_expr (vect_dump, step, TDF_SLIM);
|
| 2262 |
|
|
fprintf (vect_dump, " size ");
|
| 2263 |
|
|
print_generic_expr (vect_dump, TYPE_SIZE_UNIT (scalar_type),
|
| 2264 |
|
|
TDF_SLIM);
|
| 2265 |
|
|
}
|
| 2266 |
|
|
return false;
|
| 2267 |
|
|
}
|
| 2268 |
|
|
|
| 2269 |
|
|
if (stride == 0)
|
| 2270 |
|
|
stride = count;
|
| 2271 |
|
|
|
| 2272 |
|
|
GROUP_SIZE (vinfo_for_stmt (stmt)) = stride;
|
| 2273 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2274 |
|
|
fprintf (vect_dump, "Detected interleaving of size %d", (int)stride);
|
| 2275 |
|
|
|
| 2276 |
|
|
/* SLP: create an SLP data structure for every interleaving group of
|
| 2277 |
|
|
stores for further analysis in vect_analyse_slp. */
|
| 2278 |
|
|
if (DR_IS_WRITE (dr) && !slp_impossible)
|
| 2279 |
|
|
{
|
| 2280 |
|
|
if (loop_vinfo)
|
| 2281 |
|
|
VEC_safe_push (gimple, heap, LOOP_VINFO_STRIDED_STORES (loop_vinfo),
|
| 2282 |
|
|
stmt);
|
| 2283 |
|
|
if (bb_vinfo)
|
| 2284 |
|
|
VEC_safe_push (gimple, heap, BB_VINFO_STRIDED_STORES (bb_vinfo),
|
| 2285 |
|
|
stmt);
|
| 2286 |
|
|
}
|
| 2287 |
|
|
|
| 2288 |
|
|
/* There is a gap in the end of the group. */
|
| 2289 |
|
|
if (stride - last_accessed_element > 0 && loop_vinfo)
|
| 2290 |
|
|
{
|
| 2291 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2292 |
|
|
fprintf (vect_dump, "Data access with gaps requires scalar "
|
| 2293 |
|
|
"epilogue loop");
|
| 2294 |
|
|
if (loop->inner)
|
| 2295 |
|
|
{
|
| 2296 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2297 |
|
|
fprintf (vect_dump, "Peeling for outer loop is not supported");
|
| 2298 |
|
|
return false;
|
| 2299 |
|
|
}
|
| 2300 |
|
|
|
| 2301 |
|
|
LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
|
| 2302 |
|
|
}
|
| 2303 |
|
|
}
|
| 2304 |
|
|
|
| 2305 |
|
|
return true;
|
| 2306 |
|
|
}
|
| 2307 |
|
|
|
| 2308 |
|
|
|
| 2309 |
|
|
/* Analyze the access pattern of the data-reference DR.
|
| 2310 |
|
|
In case of non-consecutive accesses call vect_analyze_group_access() to
|
| 2311 |
|
|
analyze groups of strided accesses. */
|
| 2312 |
|
|
|
| 2313 |
|
|
static bool
|
| 2314 |
|
|
vect_analyze_data_ref_access (struct data_reference *dr)
|
| 2315 |
|
|
{
|
| 2316 |
|
|
tree step = DR_STEP (dr);
|
| 2317 |
|
|
tree scalar_type = TREE_TYPE (DR_REF (dr));
|
| 2318 |
|
|
gimple stmt = DR_STMT (dr);
|
| 2319 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 2320 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 2321 |
|
|
struct loop *loop = NULL;
|
| 2322 |
|
|
HOST_WIDE_INT dr_step;
|
| 2323 |
|
|
|
| 2324 |
|
|
if (loop_vinfo)
|
| 2325 |
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 2326 |
|
|
|
| 2327 |
|
|
if (loop_vinfo && !step)
|
| 2328 |
|
|
{
|
| 2329 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2330 |
|
|
fprintf (vect_dump, "bad data-ref access in loop");
|
| 2331 |
|
|
return false;
|
| 2332 |
|
|
}
|
| 2333 |
|
|
|
| 2334 |
|
|
/* Allow invariant loads in loops. */
|
| 2335 |
|
|
dr_step = TREE_INT_CST_LOW (step);
|
| 2336 |
|
|
if (loop_vinfo && dr_step == 0)
|
| 2337 |
|
|
{
|
| 2338 |
|
|
GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
|
| 2339 |
|
|
return DR_IS_READ (dr);
|
| 2340 |
|
|
}
|
| 2341 |
|
|
|
| 2342 |
|
|
if (loop && nested_in_vect_loop_p (loop, stmt))
|
| 2343 |
|
|
{
|
| 2344 |
|
|
/* Interleaved accesses are not yet supported within outer-loop
|
| 2345 |
|
|
vectorization for references in the inner-loop. */
|
| 2346 |
|
|
GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
|
| 2347 |
|
|
|
| 2348 |
|
|
/* For the rest of the analysis we use the outer-loop step. */
|
| 2349 |
|
|
step = STMT_VINFO_DR_STEP (stmt_info);
|
| 2350 |
|
|
dr_step = TREE_INT_CST_LOW (step);
|
| 2351 |
|
|
|
| 2352 |
|
|
if (dr_step == 0)
|
| 2353 |
|
|
{
|
| 2354 |
|
|
if (vect_print_dump_info (REPORT_ALIGNMENT))
|
| 2355 |
|
|
fprintf (vect_dump, "zero step in outer loop.");
|
| 2356 |
|
|
if (DR_IS_READ (dr))
|
| 2357 |
|
|
return true;
|
| 2358 |
|
|
else
|
| 2359 |
|
|
return false;
|
| 2360 |
|
|
}
|
| 2361 |
|
|
}
|
| 2362 |
|
|
|
| 2363 |
|
|
/* Consecutive? */
|
| 2364 |
|
|
if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type))
|
| 2365 |
|
|
|| (dr_step < 0
|
| 2366 |
|
|
&& !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step)))
|
| 2367 |
|
|
{
|
| 2368 |
|
|
/* Mark that it is not interleaving. */
|
| 2369 |
|
|
GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
|
| 2370 |
|
|
return true;
|
| 2371 |
|
|
}
|
| 2372 |
|
|
|
| 2373 |
|
|
if (loop && nested_in_vect_loop_p (loop, stmt))
|
| 2374 |
|
|
{
|
| 2375 |
|
|
if (vect_print_dump_info (REPORT_ALIGNMENT))
|
| 2376 |
|
|
fprintf (vect_dump, "strided access in outer loop.");
|
| 2377 |
|
|
return false;
|
| 2378 |
|
|
}
|
| 2379 |
|
|
|
| 2380 |
|
|
/* Not consecutive access - check if it's a part of interleaving group. */
|
| 2381 |
|
|
return vect_analyze_group_access (dr);
|
| 2382 |
|
|
}
|
| 2383 |
|
|
|
| 2384 |
|
|
|
| 2385 |
|
|
/* Function vect_analyze_data_ref_accesses.
|
| 2386 |
|
|
|
| 2387 |
|
|
Analyze the access pattern of all the data references in the loop.
|
| 2388 |
|
|
|
| 2389 |
|
|
FORNOW: the only access pattern that is considered vectorizable is a
|
| 2390 |
|
|
simple step 1 (consecutive) access.
|
| 2391 |
|
|
|
| 2392 |
|
|
FORNOW: handle only arrays and pointer accesses. */
|
| 2393 |
|
|
|
| 2394 |
|
|
bool
|
| 2395 |
|
|
vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
|
| 2396 |
|
|
{
|
| 2397 |
|
|
unsigned int i;
|
| 2398 |
|
|
VEC (data_reference_p, heap) *datarefs;
|
| 2399 |
|
|
struct data_reference *dr;
|
| 2400 |
|
|
|
| 2401 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2402 |
|
|
fprintf (vect_dump, "=== vect_analyze_data_ref_accesses ===");
|
| 2403 |
|
|
|
| 2404 |
|
|
if (loop_vinfo)
|
| 2405 |
|
|
datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
|
| 2406 |
|
|
else
|
| 2407 |
|
|
datarefs = BB_VINFO_DATAREFS (bb_vinfo);
|
| 2408 |
|
|
|
| 2409 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
|
| 2410 |
|
|
if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
|
| 2411 |
|
|
&& !vect_analyze_data_ref_access (dr))
|
| 2412 |
|
|
{
|
| 2413 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 2414 |
|
|
fprintf (vect_dump, "not vectorized: complicated access pattern.");
|
| 2415 |
|
|
|
| 2416 |
|
|
if (bb_vinfo)
|
| 2417 |
|
|
{
|
| 2418 |
|
|
/* Mark the statement as not vectorizable. */
|
| 2419 |
|
|
STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
|
| 2420 |
|
|
continue;
|
| 2421 |
|
|
}
|
| 2422 |
|
|
else
|
| 2423 |
|
|
return false;
|
| 2424 |
|
|
}
|
| 2425 |
|
|
|
| 2426 |
|
|
return true;
|
| 2427 |
|
|
}
|
| 2428 |
|
|
|
| 2429 |
|
|
/* Function vect_prune_runtime_alias_test_list.
|
| 2430 |
|
|
|
| 2431 |
|
|
Prune a list of ddrs to be tested at run-time by versioning for alias.
|
| 2432 |
|
|
Return FALSE if resulting list of ddrs is longer then allowed by
|
| 2433 |
|
|
PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
|
| 2434 |
|
|
|
| 2435 |
|
|
bool
|
| 2436 |
|
|
vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
|
| 2437 |
|
|
{
|
| 2438 |
|
|
VEC (ddr_p, heap) * ddrs =
|
| 2439 |
|
|
LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
|
| 2440 |
|
|
unsigned i, j;
|
| 2441 |
|
|
|
| 2442 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2443 |
|
|
fprintf (vect_dump, "=== vect_prune_runtime_alias_test_list ===");
|
| 2444 |
|
|
|
| 2445 |
|
|
for (i = 0; i < VEC_length (ddr_p, ddrs); )
|
| 2446 |
|
|
{
|
| 2447 |
|
|
bool found;
|
| 2448 |
|
|
ddr_p ddr_i;
|
| 2449 |
|
|
|
| 2450 |
|
|
ddr_i = VEC_index (ddr_p, ddrs, i);
|
| 2451 |
|
|
found = false;
|
| 2452 |
|
|
|
| 2453 |
|
|
for (j = 0; j < i; j++)
|
| 2454 |
|
|
{
|
| 2455 |
|
|
ddr_p ddr_j = VEC_index (ddr_p, ddrs, j);
|
| 2456 |
|
|
|
| 2457 |
|
|
if (vect_vfa_range_equal (ddr_i, ddr_j))
|
| 2458 |
|
|
{
|
| 2459 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
| 2460 |
|
|
{
|
| 2461 |
|
|
fprintf (vect_dump, "found equal ranges ");
|
| 2462 |
|
|
print_generic_expr (vect_dump, DR_REF (DDR_A (ddr_i)), TDF_SLIM);
|
| 2463 |
|
|
fprintf (vect_dump, ", ");
|
| 2464 |
|
|
print_generic_expr (vect_dump, DR_REF (DDR_B (ddr_i)), TDF_SLIM);
|
| 2465 |
|
|
fprintf (vect_dump, " and ");
|
| 2466 |
|
|
print_generic_expr (vect_dump, DR_REF (DDR_A (ddr_j)), TDF_SLIM);
|
| 2467 |
|
|
fprintf (vect_dump, ", ");
|
| 2468 |
|
|
print_generic_expr (vect_dump, DR_REF (DDR_B (ddr_j)), TDF_SLIM);
|
| 2469 |
|
|
}
|
| 2470 |
|
|
found = true;
|
| 2471 |
|
|
break;
|
| 2472 |
|
|
}
|
| 2473 |
|
|
}
|
| 2474 |
|
|
|
| 2475 |
|
|
if (found)
|
| 2476 |
|
|
{
|
| 2477 |
|
|
VEC_ordered_remove (ddr_p, ddrs, i);
|
| 2478 |
|
|
continue;
|
| 2479 |
|
|
}
|
| 2480 |
|
|
i++;
|
| 2481 |
|
|
}
|
| 2482 |
|
|
|
| 2483 |
|
|
if (VEC_length (ddr_p, ddrs) >
|
| 2484 |
|
|
(unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS))
|
| 2485 |
|
|
{
|
| 2486 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
| 2487 |
|
|
{
|
| 2488 |
|
|
fprintf (vect_dump,
|
| 2489 |
|
|
"disable versioning for alias - max number of generated "
|
| 2490 |
|
|
"checks exceeded.");
|
| 2491 |
|
|
}
|
| 2492 |
|
|
|
| 2493 |
|
|
VEC_truncate (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo), 0);
|
| 2494 |
|
|
|
| 2495 |
|
|
return false;
|
| 2496 |
|
|
}
|
| 2497 |
|
|
|
| 2498 |
|
|
return true;
|
| 2499 |
|
|
}
|
| 2500 |
|
|
|
| 2501 |
|
|
/* Check whether a non-affine read in stmt is suitable for gather load
|
| 2502 |
|
|
and if so, return a builtin decl for that operation. */
|
| 2503 |
|
|
|
| 2504 |
|
|
tree
|
| 2505 |
|
|
vect_check_gather (gimple stmt, loop_vec_info loop_vinfo, tree *basep,
|
| 2506 |
|
|
tree *offp, int *scalep)
|
| 2507 |
|
|
{
|
| 2508 |
|
|
HOST_WIDE_INT scale = 1, pbitpos, pbitsize;
|
| 2509 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 2510 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 2511 |
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
|
| 2512 |
|
|
tree offtype = NULL_TREE;
|
| 2513 |
|
|
tree decl, base, off;
|
| 2514 |
|
|
enum machine_mode pmode;
|
| 2515 |
|
|
int punsignedp, pvolatilep;
|
| 2516 |
|
|
|
| 2517 |
|
|
/* The gather builtins need address of the form
|
| 2518 |
|
|
loop_invariant + vector * {1, 2, 4, 8}
|
| 2519 |
|
|
or
|
| 2520 |
|
|
loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }.
|
| 2521 |
|
|
Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture
|
| 2522 |
|
|
of loop invariants/SSA_NAMEs defined in the loop, with casts,
|
| 2523 |
|
|
multiplications and additions in it. To get a vector, we need
|
| 2524 |
|
|
a single SSA_NAME that will be defined in the loop and will
|
| 2525 |
|
|
contain everything that is not loop invariant and that can be
|
| 2526 |
|
|
vectorized. The following code attempts to find such a preexistng
|
| 2527 |
|
|
SSA_NAME OFF and put the loop invariants into a tree BASE
|
| 2528 |
|
|
that can be gimplified before the loop. */
|
| 2529 |
|
|
base = get_inner_reference (DR_REF (dr), &pbitsize, &pbitpos, &off,
|
| 2530 |
|
|
&pmode, &punsignedp, &pvolatilep, false);
|
| 2531 |
|
|
gcc_assert (base != NULL_TREE && (pbitpos % BITS_PER_UNIT) == 0);
|
| 2532 |
|
|
|
| 2533 |
|
|
if (TREE_CODE (base) == MEM_REF)
|
| 2534 |
|
|
{
|
| 2535 |
|
|
if (!integer_zerop (TREE_OPERAND (base, 1)))
|
| 2536 |
|
|
{
|
| 2537 |
|
|
if (off == NULL_TREE)
|
| 2538 |
|
|
{
|
| 2539 |
|
|
double_int moff = mem_ref_offset (base);
|
| 2540 |
|
|
off = double_int_to_tree (sizetype, moff);
|
| 2541 |
|
|
}
|
| 2542 |
|
|
else
|
| 2543 |
|
|
off = size_binop (PLUS_EXPR, off,
|
| 2544 |
|
|
fold_convert (sizetype, TREE_OPERAND (base, 1)));
|
| 2545 |
|
|
}
|
| 2546 |
|
|
base = TREE_OPERAND (base, 0);
|
| 2547 |
|
|
}
|
| 2548 |
|
|
else
|
| 2549 |
|
|
base = build_fold_addr_expr (base);
|
| 2550 |
|
|
|
| 2551 |
|
|
if (off == NULL_TREE)
|
| 2552 |
|
|
off = size_zero_node;
|
| 2553 |
|
|
|
| 2554 |
|
|
/* If base is not loop invariant, either off is 0, then we start with just
|
| 2555 |
|
|
the constant offset in the loop invariant BASE and continue with base
|
| 2556 |
|
|
as OFF, otherwise give up.
|
| 2557 |
|
|
We could handle that case by gimplifying the addition of base + off
|
| 2558 |
|
|
into some SSA_NAME and use that as off, but for now punt. */
|
| 2559 |
|
|
if (!expr_invariant_in_loop_p (loop, base))
|
| 2560 |
|
|
{
|
| 2561 |
|
|
if (!integer_zerop (off))
|
| 2562 |
|
|
return NULL_TREE;
|
| 2563 |
|
|
off = base;
|
| 2564 |
|
|
base = size_int (pbitpos / BITS_PER_UNIT);
|
| 2565 |
|
|
}
|
| 2566 |
|
|
/* Otherwise put base + constant offset into the loop invariant BASE
|
| 2567 |
|
|
and continue with OFF. */
|
| 2568 |
|
|
else
|
| 2569 |
|
|
{
|
| 2570 |
|
|
base = fold_convert (sizetype, base);
|
| 2571 |
|
|
base = size_binop (PLUS_EXPR, base, size_int (pbitpos / BITS_PER_UNIT));
|
| 2572 |
|
|
}
|
| 2573 |
|
|
|
| 2574 |
|
|
/* OFF at this point may be either a SSA_NAME or some tree expression
|
| 2575 |
|
|
from get_inner_reference. Try to peel off loop invariants from it
|
| 2576 |
|
|
into BASE as long as possible. */
|
| 2577 |
|
|
STRIP_NOPS (off);
|
| 2578 |
|
|
while (offtype == NULL_TREE)
|
| 2579 |
|
|
{
|
| 2580 |
|
|
enum tree_code code;
|
| 2581 |
|
|
tree op0, op1, add = NULL_TREE;
|
| 2582 |
|
|
|
| 2583 |
|
|
if (TREE_CODE (off) == SSA_NAME)
|
| 2584 |
|
|
{
|
| 2585 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (off);
|
| 2586 |
|
|
|
| 2587 |
|
|
if (expr_invariant_in_loop_p (loop, off))
|
| 2588 |
|
|
return NULL_TREE;
|
| 2589 |
|
|
|
| 2590 |
|
|
if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
|
| 2591 |
|
|
break;
|
| 2592 |
|
|
|
| 2593 |
|
|
op0 = gimple_assign_rhs1 (def_stmt);
|
| 2594 |
|
|
code = gimple_assign_rhs_code (def_stmt);
|
| 2595 |
|
|
op1 = gimple_assign_rhs2 (def_stmt);
|
| 2596 |
|
|
}
|
| 2597 |
|
|
else
|
| 2598 |
|
|
{
|
| 2599 |
|
|
if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS)
|
| 2600 |
|
|
return NULL_TREE;
|
| 2601 |
|
|
code = TREE_CODE (off);
|
| 2602 |
|
|
extract_ops_from_tree (off, &code, &op0, &op1);
|
| 2603 |
|
|
}
|
| 2604 |
|
|
switch (code)
|
| 2605 |
|
|
{
|
| 2606 |
|
|
case POINTER_PLUS_EXPR:
|
| 2607 |
|
|
case PLUS_EXPR:
|
| 2608 |
|
|
if (expr_invariant_in_loop_p (loop, op0))
|
| 2609 |
|
|
{
|
| 2610 |
|
|
add = op0;
|
| 2611 |
|
|
off = op1;
|
| 2612 |
|
|
do_add:
|
| 2613 |
|
|
add = fold_convert (sizetype, add);
|
| 2614 |
|
|
if (scale != 1)
|
| 2615 |
|
|
add = size_binop (MULT_EXPR, add, size_int (scale));
|
| 2616 |
|
|
base = size_binop (PLUS_EXPR, base, add);
|
| 2617 |
|
|
continue;
|
| 2618 |
|
|
}
|
| 2619 |
|
|
if (expr_invariant_in_loop_p (loop, op1))
|
| 2620 |
|
|
{
|
| 2621 |
|
|
add = op1;
|
| 2622 |
|
|
off = op0;
|
| 2623 |
|
|
goto do_add;
|
| 2624 |
|
|
}
|
| 2625 |
|
|
break;
|
| 2626 |
|
|
case MINUS_EXPR:
|
| 2627 |
|
|
if (expr_invariant_in_loop_p (loop, op1))
|
| 2628 |
|
|
{
|
| 2629 |
|
|
add = fold_convert (sizetype, op1);
|
| 2630 |
|
|
add = size_binop (MINUS_EXPR, size_zero_node, add);
|
| 2631 |
|
|
off = op0;
|
| 2632 |
|
|
goto do_add;
|
| 2633 |
|
|
}
|
| 2634 |
|
|
break;
|
| 2635 |
|
|
case MULT_EXPR:
|
| 2636 |
|
|
if (scale == 1 && host_integerp (op1, 0))
|
| 2637 |
|
|
{
|
| 2638 |
|
|
scale = tree_low_cst (op1, 0);
|
| 2639 |
|
|
off = op0;
|
| 2640 |
|
|
continue;
|
| 2641 |
|
|
}
|
| 2642 |
|
|
break;
|
| 2643 |
|
|
case SSA_NAME:
|
| 2644 |
|
|
off = op0;
|
| 2645 |
|
|
continue;
|
| 2646 |
|
|
CASE_CONVERT:
|
| 2647 |
|
|
if (!POINTER_TYPE_P (TREE_TYPE (op0))
|
| 2648 |
|
|
&& !INTEGRAL_TYPE_P (TREE_TYPE (op0)))
|
| 2649 |
|
|
break;
|
| 2650 |
|
|
if (TYPE_PRECISION (TREE_TYPE (op0))
|
| 2651 |
|
|
== TYPE_PRECISION (TREE_TYPE (off)))
|
| 2652 |
|
|
{
|
| 2653 |
|
|
off = op0;
|
| 2654 |
|
|
continue;
|
| 2655 |
|
|
}
|
| 2656 |
|
|
if (TYPE_PRECISION (TREE_TYPE (op0))
|
| 2657 |
|
|
< TYPE_PRECISION (TREE_TYPE (off)))
|
| 2658 |
|
|
{
|
| 2659 |
|
|
off = op0;
|
| 2660 |
|
|
offtype = TREE_TYPE (off);
|
| 2661 |
|
|
STRIP_NOPS (off);
|
| 2662 |
|
|
continue;
|
| 2663 |
|
|
}
|
| 2664 |
|
|
break;
|
| 2665 |
|
|
default:
|
| 2666 |
|
|
break;
|
| 2667 |
|
|
}
|
| 2668 |
|
|
break;
|
| 2669 |
|
|
}
|
| 2670 |
|
|
|
| 2671 |
|
|
/* If at the end OFF still isn't a SSA_NAME or isn't
|
| 2672 |
|
|
defined in the loop, punt. */
|
| 2673 |
|
|
if (TREE_CODE (off) != SSA_NAME
|
| 2674 |
|
|
|| expr_invariant_in_loop_p (loop, off))
|
| 2675 |
|
|
return NULL_TREE;
|
| 2676 |
|
|
|
| 2677 |
|
|
if (offtype == NULL_TREE)
|
| 2678 |
|
|
offtype = TREE_TYPE (off);
|
| 2679 |
|
|
|
| 2680 |
|
|
decl = targetm.vectorize.builtin_gather (STMT_VINFO_VECTYPE (stmt_info),
|
| 2681 |
|
|
offtype, scale);
|
| 2682 |
|
|
if (decl == NULL_TREE)
|
| 2683 |
|
|
return NULL_TREE;
|
| 2684 |
|
|
|
| 2685 |
|
|
if (basep)
|
| 2686 |
|
|
*basep = base;
|
| 2687 |
|
|
if (offp)
|
| 2688 |
|
|
*offp = off;
|
| 2689 |
|
|
if (scalep)
|
| 2690 |
|
|
*scalep = scale;
|
| 2691 |
|
|
return decl;
|
| 2692 |
|
|
}
|
| 2693 |
|
|
|
| 2694 |
|
|
|
| 2695 |
|
|
/* Function vect_analyze_data_refs.
|
| 2696 |
|
|
|
| 2697 |
|
|
Find all the data references in the loop or basic block.
|
| 2698 |
|
|
|
| 2699 |
|
|
The general structure of the analysis of data refs in the vectorizer is as
|
| 2700 |
|
|
follows:
|
| 2701 |
|
|
1- vect_analyze_data_refs(loop/bb): call
|
| 2702 |
|
|
compute_data_dependences_for_loop/bb to find and analyze all data-refs
|
| 2703 |
|
|
in the loop/bb and their dependences.
|
| 2704 |
|
|
2- vect_analyze_dependences(): apply dependence testing using ddrs.
|
| 2705 |
|
|
3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
|
| 2706 |
|
|
4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
|
| 2707 |
|
|
|
| 2708 |
|
|
*/
|
| 2709 |
|
|
|
| 2710 |
|
|
bool
|
| 2711 |
|
|
vect_analyze_data_refs (loop_vec_info loop_vinfo,
|
| 2712 |
|
|
bb_vec_info bb_vinfo,
|
| 2713 |
|
|
int *min_vf)
|
| 2714 |
|
|
{
|
| 2715 |
|
|
struct loop *loop = NULL;
|
| 2716 |
|
|
basic_block bb = NULL;
|
| 2717 |
|
|
unsigned int i;
|
| 2718 |
|
|
VEC (data_reference_p, heap) *datarefs;
|
| 2719 |
|
|
struct data_reference *dr;
|
| 2720 |
|
|
tree scalar_type;
|
| 2721 |
|
|
bool res, stop_bb_analysis = false;
|
| 2722 |
|
|
|
| 2723 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2724 |
|
|
fprintf (vect_dump, "=== vect_analyze_data_refs ===\n");
|
| 2725 |
|
|
|
| 2726 |
|
|
if (loop_vinfo)
|
| 2727 |
|
|
{
|
| 2728 |
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 2729 |
|
|
res = compute_data_dependences_for_loop
|
| 2730 |
|
|
(loop, true,
|
| 2731 |
|
|
&LOOP_VINFO_LOOP_NEST (loop_vinfo),
|
| 2732 |
|
|
&LOOP_VINFO_DATAREFS (loop_vinfo),
|
| 2733 |
|
|
&LOOP_VINFO_DDRS (loop_vinfo));
|
| 2734 |
|
|
|
| 2735 |
|
|
if (!res)
|
| 2736 |
|
|
{
|
| 2737 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 2738 |
|
|
fprintf (vect_dump, "not vectorized: loop contains function calls"
|
| 2739 |
|
|
" or data references that cannot be analyzed");
|
| 2740 |
|
|
return false;
|
| 2741 |
|
|
}
|
| 2742 |
|
|
|
| 2743 |
|
|
datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
|
| 2744 |
|
|
}
|
| 2745 |
|
|
else
|
| 2746 |
|
|
{
|
| 2747 |
|
|
bb = BB_VINFO_BB (bb_vinfo);
|
| 2748 |
|
|
res = compute_data_dependences_for_bb (bb, true,
|
| 2749 |
|
|
&BB_VINFO_DATAREFS (bb_vinfo),
|
| 2750 |
|
|
&BB_VINFO_DDRS (bb_vinfo));
|
| 2751 |
|
|
if (!res)
|
| 2752 |
|
|
{
|
| 2753 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 2754 |
|
|
fprintf (vect_dump, "not vectorized: basic block contains function"
|
| 2755 |
|
|
" calls or data references that cannot be analyzed");
|
| 2756 |
|
|
return false;
|
| 2757 |
|
|
}
|
| 2758 |
|
|
|
| 2759 |
|
|
datarefs = BB_VINFO_DATAREFS (bb_vinfo);
|
| 2760 |
|
|
}
|
| 2761 |
|
|
|
| 2762 |
|
|
/* Go through the data-refs, check that the analysis succeeded. Update
|
| 2763 |
|
|
pointer from stmt_vec_info struct to DR and vectype. */
|
| 2764 |
|
|
|
| 2765 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
|
| 2766 |
|
|
{
|
| 2767 |
|
|
gimple stmt;
|
| 2768 |
|
|
stmt_vec_info stmt_info;
|
| 2769 |
|
|
tree base, offset, init;
|
| 2770 |
|
|
bool gather = false;
|
| 2771 |
|
|
int vf;
|
| 2772 |
|
|
|
| 2773 |
|
|
if (!dr || !DR_REF (dr))
|
| 2774 |
|
|
{
|
| 2775 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 2776 |
|
|
fprintf (vect_dump, "not vectorized: unhandled data-ref ");
|
| 2777 |
|
|
|
| 2778 |
|
|
return false;
|
| 2779 |
|
|
}
|
| 2780 |
|
|
|
| 2781 |
|
|
stmt = DR_STMT (dr);
|
| 2782 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
| 2783 |
|
|
|
| 2784 |
|
|
if (stop_bb_analysis)
|
| 2785 |
|
|
{
|
| 2786 |
|
|
STMT_VINFO_VECTORIZABLE (stmt_info) = false;
|
| 2787 |
|
|
continue;
|
| 2788 |
|
|
}
|
| 2789 |
|
|
|
| 2790 |
|
|
/* Check that analysis of the data-ref succeeded. */
|
| 2791 |
|
|
if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
|
| 2792 |
|
|
|| !DR_STEP (dr))
|
| 2793 |
|
|
{
|
| 2794 |
|
|
/* If target supports vector gather loads, see if they can't
|
| 2795 |
|
|
be used. */
|
| 2796 |
|
|
if (loop_vinfo
|
| 2797 |
|
|
&& DR_IS_READ (dr)
|
| 2798 |
|
|
&& !TREE_THIS_VOLATILE (DR_REF (dr))
|
| 2799 |
|
|
&& targetm.vectorize.builtin_gather != NULL
|
| 2800 |
|
|
&& !nested_in_vect_loop_p (loop, stmt))
|
| 2801 |
|
|
{
|
| 2802 |
|
|
struct data_reference *newdr
|
| 2803 |
|
|
= create_data_ref (NULL, loop_containing_stmt (stmt),
|
| 2804 |
|
|
DR_REF (dr), stmt, true);
|
| 2805 |
|
|
gcc_assert (newdr != NULL && DR_REF (newdr));
|
| 2806 |
|
|
if (DR_BASE_ADDRESS (newdr)
|
| 2807 |
|
|
&& DR_OFFSET (newdr)
|
| 2808 |
|
|
&& DR_INIT (newdr)
|
| 2809 |
|
|
&& DR_STEP (newdr)
|
| 2810 |
|
|
&& integer_zerop (DR_STEP (newdr)))
|
| 2811 |
|
|
{
|
| 2812 |
|
|
dr = newdr;
|
| 2813 |
|
|
gather = true;
|
| 2814 |
|
|
}
|
| 2815 |
|
|
else
|
| 2816 |
|
|
free_data_ref (newdr);
|
| 2817 |
|
|
}
|
| 2818 |
|
|
|
| 2819 |
|
|
if (!gather)
|
| 2820 |
|
|
{
|
| 2821 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 2822 |
|
|
{
|
| 2823 |
|
|
fprintf (vect_dump, "not vectorized: data ref analysis "
|
| 2824 |
|
|
"failed ");
|
| 2825 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
| 2826 |
|
|
}
|
| 2827 |
|
|
|
| 2828 |
|
|
if (bb_vinfo)
|
| 2829 |
|
|
{
|
| 2830 |
|
|
STMT_VINFO_VECTORIZABLE (stmt_info) = false;
|
| 2831 |
|
|
stop_bb_analysis = true;
|
| 2832 |
|
|
continue;
|
| 2833 |
|
|
}
|
| 2834 |
|
|
|
| 2835 |
|
|
return false;
|
| 2836 |
|
|
}
|
| 2837 |
|
|
}
|
| 2838 |
|
|
|
| 2839 |
|
|
if (TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
|
| 2840 |
|
|
{
|
| 2841 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 2842 |
|
|
fprintf (vect_dump, "not vectorized: base addr of dr is a "
|
| 2843 |
|
|
"constant");
|
| 2844 |
|
|
|
| 2845 |
|
|
if (bb_vinfo)
|
| 2846 |
|
|
{
|
| 2847 |
|
|
STMT_VINFO_VECTORIZABLE (stmt_info) = false;
|
| 2848 |
|
|
stop_bb_analysis = true;
|
| 2849 |
|
|
continue;
|
| 2850 |
|
|
}
|
| 2851 |
|
|
|
| 2852 |
|
|
if (gather)
|
| 2853 |
|
|
free_data_ref (dr);
|
| 2854 |
|
|
return false;
|
| 2855 |
|
|
}
|
| 2856 |
|
|
|
| 2857 |
|
|
if (TREE_THIS_VOLATILE (DR_REF (dr)))
|
| 2858 |
|
|
{
|
| 2859 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 2860 |
|
|
{
|
| 2861 |
|
|
fprintf (vect_dump, "not vectorized: volatile type ");
|
| 2862 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
| 2863 |
|
|
}
|
| 2864 |
|
|
|
| 2865 |
|
|
if (bb_vinfo)
|
| 2866 |
|
|
{
|
| 2867 |
|
|
STMT_VINFO_VECTORIZABLE (stmt_info) = false;
|
| 2868 |
|
|
stop_bb_analysis = true;
|
| 2869 |
|
|
continue;
|
| 2870 |
|
|
}
|
| 2871 |
|
|
|
| 2872 |
|
|
return false;
|
| 2873 |
|
|
}
|
| 2874 |
|
|
|
| 2875 |
|
|
base = unshare_expr (DR_BASE_ADDRESS (dr));
|
| 2876 |
|
|
offset = unshare_expr (DR_OFFSET (dr));
|
| 2877 |
|
|
init = unshare_expr (DR_INIT (dr));
|
| 2878 |
|
|
|
| 2879 |
|
|
if (stmt_can_throw_internal (stmt))
|
| 2880 |
|
|
{
|
| 2881 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 2882 |
|
|
{
|
| 2883 |
|
|
fprintf (vect_dump, "not vectorized: statement can throw an "
|
| 2884 |
|
|
"exception ");
|
| 2885 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
| 2886 |
|
|
}
|
| 2887 |
|
|
|
| 2888 |
|
|
if (bb_vinfo)
|
| 2889 |
|
|
{
|
| 2890 |
|
|
STMT_VINFO_VECTORIZABLE (stmt_info) = false;
|
| 2891 |
|
|
stop_bb_analysis = true;
|
| 2892 |
|
|
continue;
|
| 2893 |
|
|
}
|
| 2894 |
|
|
|
| 2895 |
|
|
if (gather)
|
| 2896 |
|
|
free_data_ref (dr);
|
| 2897 |
|
|
return false;
|
| 2898 |
|
|
}
|
| 2899 |
|
|
|
| 2900 |
|
|
if (is_gimple_call (stmt))
|
| 2901 |
|
|
{
|
| 2902 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 2903 |
|
|
{
|
| 2904 |
|
|
fprintf (vect_dump, "not vectorized: dr in a call ");
|
| 2905 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
| 2906 |
|
|
}
|
| 2907 |
|
|
|
| 2908 |
|
|
if (bb_vinfo)
|
| 2909 |
|
|
{
|
| 2910 |
|
|
STMT_VINFO_VECTORIZABLE (stmt_info) = false;
|
| 2911 |
|
|
stop_bb_analysis = true;
|
| 2912 |
|
|
continue;
|
| 2913 |
|
|
}
|
| 2914 |
|
|
|
| 2915 |
|
|
if (gather)
|
| 2916 |
|
|
free_data_ref (dr);
|
| 2917 |
|
|
return false;
|
| 2918 |
|
|
}
|
| 2919 |
|
|
|
| 2920 |
|
|
/* Update DR field in stmt_vec_info struct. */
|
| 2921 |
|
|
|
| 2922 |
|
|
/* If the dataref is in an inner-loop of the loop that is considered for
|
| 2923 |
|
|
for vectorization, we also want to analyze the access relative to
|
| 2924 |
|
|
the outer-loop (DR contains information only relative to the
|
| 2925 |
|
|
inner-most enclosing loop). We do that by building a reference to the
|
| 2926 |
|
|
first location accessed by the inner-loop, and analyze it relative to
|
| 2927 |
|
|
the outer-loop. */
|
| 2928 |
|
|
if (loop && nested_in_vect_loop_p (loop, stmt))
|
| 2929 |
|
|
{
|
| 2930 |
|
|
tree outer_step, outer_base, outer_init;
|
| 2931 |
|
|
HOST_WIDE_INT pbitsize, pbitpos;
|
| 2932 |
|
|
tree poffset;
|
| 2933 |
|
|
enum machine_mode pmode;
|
| 2934 |
|
|
int punsignedp, pvolatilep;
|
| 2935 |
|
|
affine_iv base_iv, offset_iv;
|
| 2936 |
|
|
tree dinit;
|
| 2937 |
|
|
|
| 2938 |
|
|
/* Build a reference to the first location accessed by the
|
| 2939 |
|
|
inner-loop: *(BASE+INIT). (The first location is actually
|
| 2940 |
|
|
BASE+INIT+OFFSET, but we add OFFSET separately later). */
|
| 2941 |
|
|
tree inner_base = build_fold_indirect_ref
|
| 2942 |
|
|
(fold_build_pointer_plus (base, init));
|
| 2943 |
|
|
|
| 2944 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2945 |
|
|
{
|
| 2946 |
|
|
fprintf (vect_dump, "analyze in outer-loop: ");
|
| 2947 |
|
|
print_generic_expr (vect_dump, inner_base, TDF_SLIM);
|
| 2948 |
|
|
}
|
| 2949 |
|
|
|
| 2950 |
|
|
outer_base = get_inner_reference (inner_base, &pbitsize, &pbitpos,
|
| 2951 |
|
|
&poffset, &pmode, &punsignedp, &pvolatilep, false);
|
| 2952 |
|
|
gcc_assert (outer_base != NULL_TREE);
|
| 2953 |
|
|
|
| 2954 |
|
|
if (pbitpos % BITS_PER_UNIT != 0)
|
| 2955 |
|
|
{
|
| 2956 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2957 |
|
|
fprintf (vect_dump, "failed: bit offset alignment.\n");
|
| 2958 |
|
|
return false;
|
| 2959 |
|
|
}
|
| 2960 |
|
|
|
| 2961 |
|
|
outer_base = build_fold_addr_expr (outer_base);
|
| 2962 |
|
|
if (!simple_iv (loop, loop_containing_stmt (stmt), outer_base,
|
| 2963 |
|
|
&base_iv, false))
|
| 2964 |
|
|
{
|
| 2965 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2966 |
|
|
fprintf (vect_dump, "failed: evolution of base is not affine.\n");
|
| 2967 |
|
|
return false;
|
| 2968 |
|
|
}
|
| 2969 |
|
|
|
| 2970 |
|
|
if (offset)
|
| 2971 |
|
|
{
|
| 2972 |
|
|
if (poffset)
|
| 2973 |
|
|
poffset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset,
|
| 2974 |
|
|
poffset);
|
| 2975 |
|
|
else
|
| 2976 |
|
|
poffset = offset;
|
| 2977 |
|
|
}
|
| 2978 |
|
|
|
| 2979 |
|
|
if (!poffset)
|
| 2980 |
|
|
{
|
| 2981 |
|
|
offset_iv.base = ssize_int (0);
|
| 2982 |
|
|
offset_iv.step = ssize_int (0);
|
| 2983 |
|
|
}
|
| 2984 |
|
|
else if (!simple_iv (loop, loop_containing_stmt (stmt), poffset,
|
| 2985 |
|
|
&offset_iv, false))
|
| 2986 |
|
|
{
|
| 2987 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2988 |
|
|
fprintf (vect_dump, "evolution of offset is not affine.\n");
|
| 2989 |
|
|
return false;
|
| 2990 |
|
|
}
|
| 2991 |
|
|
|
| 2992 |
|
|
outer_init = ssize_int (pbitpos / BITS_PER_UNIT);
|
| 2993 |
|
|
split_constant_offset (base_iv.base, &base_iv.base, &dinit);
|
| 2994 |
|
|
outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
|
| 2995 |
|
|
split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
|
| 2996 |
|
|
outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
|
| 2997 |
|
|
|
| 2998 |
|
|
outer_step = size_binop (PLUS_EXPR,
|
| 2999 |
|
|
fold_convert (ssizetype, base_iv.step),
|
| 3000 |
|
|
fold_convert (ssizetype, offset_iv.step));
|
| 3001 |
|
|
|
| 3002 |
|
|
STMT_VINFO_DR_STEP (stmt_info) = outer_step;
|
| 3003 |
|
|
/* FIXME: Use canonicalize_base_object_address (base_iv.base); */
|
| 3004 |
|
|
STMT_VINFO_DR_BASE_ADDRESS (stmt_info) = base_iv.base;
|
| 3005 |
|
|
STMT_VINFO_DR_INIT (stmt_info) = outer_init;
|
| 3006 |
|
|
STMT_VINFO_DR_OFFSET (stmt_info) =
|
| 3007 |
|
|
fold_convert (ssizetype, offset_iv.base);
|
| 3008 |
|
|
STMT_VINFO_DR_ALIGNED_TO (stmt_info) =
|
| 3009 |
|
|
size_int (highest_pow2_factor (offset_iv.base));
|
| 3010 |
|
|
|
| 3011 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3012 |
|
|
{
|
| 3013 |
|
|
fprintf (vect_dump, "\touter base_address: ");
|
| 3014 |
|
|
print_generic_expr (vect_dump, STMT_VINFO_DR_BASE_ADDRESS (stmt_info), TDF_SLIM);
|
| 3015 |
|
|
fprintf (vect_dump, "\n\touter offset from base address: ");
|
| 3016 |
|
|
print_generic_expr (vect_dump, STMT_VINFO_DR_OFFSET (stmt_info), TDF_SLIM);
|
| 3017 |
|
|
fprintf (vect_dump, "\n\touter constant offset from base address: ");
|
| 3018 |
|
|
print_generic_expr (vect_dump, STMT_VINFO_DR_INIT (stmt_info), TDF_SLIM);
|
| 3019 |
|
|
fprintf (vect_dump, "\n\touter step: ");
|
| 3020 |
|
|
print_generic_expr (vect_dump, STMT_VINFO_DR_STEP (stmt_info), TDF_SLIM);
|
| 3021 |
|
|
fprintf (vect_dump, "\n\touter aligned to: ");
|
| 3022 |
|
|
print_generic_expr (vect_dump, STMT_VINFO_DR_ALIGNED_TO (stmt_info), TDF_SLIM);
|
| 3023 |
|
|
}
|
| 3024 |
|
|
}
|
| 3025 |
|
|
|
| 3026 |
|
|
if (STMT_VINFO_DATA_REF (stmt_info))
|
| 3027 |
|
|
{
|
| 3028 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 3029 |
|
|
{
|
| 3030 |
|
|
fprintf (vect_dump,
|
| 3031 |
|
|
"not vectorized: more than one data ref in stmt: ");
|
| 3032 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
| 3033 |
|
|
}
|
| 3034 |
|
|
|
| 3035 |
|
|
if (bb_vinfo)
|
| 3036 |
|
|
{
|
| 3037 |
|
|
STMT_VINFO_VECTORIZABLE (stmt_info) = false;
|
| 3038 |
|
|
stop_bb_analysis = true;
|
| 3039 |
|
|
continue;
|
| 3040 |
|
|
}
|
| 3041 |
|
|
|
| 3042 |
|
|
if (gather)
|
| 3043 |
|
|
free_data_ref (dr);
|
| 3044 |
|
|
return false;
|
| 3045 |
|
|
}
|
| 3046 |
|
|
|
| 3047 |
|
|
STMT_VINFO_DATA_REF (stmt_info) = dr;
|
| 3048 |
|
|
|
| 3049 |
|
|
/* Set vectype for STMT. */
|
| 3050 |
|
|
scalar_type = TREE_TYPE (DR_REF (dr));
|
| 3051 |
|
|
STMT_VINFO_VECTYPE (stmt_info) =
|
| 3052 |
|
|
get_vectype_for_scalar_type (scalar_type);
|
| 3053 |
|
|
if (!STMT_VINFO_VECTYPE (stmt_info))
|
| 3054 |
|
|
{
|
| 3055 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 3056 |
|
|
{
|
| 3057 |
|
|
fprintf (vect_dump,
|
| 3058 |
|
|
"not vectorized: no vectype for stmt: ");
|
| 3059 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
| 3060 |
|
|
fprintf (vect_dump, " scalar_type: ");
|
| 3061 |
|
|
print_generic_expr (vect_dump, scalar_type, TDF_DETAILS);
|
| 3062 |
|
|
}
|
| 3063 |
|
|
|
| 3064 |
|
|
if (bb_vinfo)
|
| 3065 |
|
|
{
|
| 3066 |
|
|
/* Mark the statement as not vectorizable. */
|
| 3067 |
|
|
STMT_VINFO_VECTORIZABLE (stmt_info) = false;
|
| 3068 |
|
|
stop_bb_analysis = true;
|
| 3069 |
|
|
continue;
|
| 3070 |
|
|
}
|
| 3071 |
|
|
|
| 3072 |
|
|
if (gather)
|
| 3073 |
|
|
{
|
| 3074 |
|
|
STMT_VINFO_DATA_REF (stmt_info) = NULL;
|
| 3075 |
|
|
free_data_ref (dr);
|
| 3076 |
|
|
}
|
| 3077 |
|
|
return false;
|
| 3078 |
|
|
}
|
| 3079 |
|
|
|
| 3080 |
|
|
/* Adjust the minimal vectorization factor according to the
|
| 3081 |
|
|
vector type. */
|
| 3082 |
|
|
vf = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
|
| 3083 |
|
|
if (vf > *min_vf)
|
| 3084 |
|
|
*min_vf = vf;
|
| 3085 |
|
|
|
| 3086 |
|
|
if (gather)
|
| 3087 |
|
|
{
|
| 3088 |
|
|
unsigned int j, k, n;
|
| 3089 |
|
|
struct data_reference *olddr
|
| 3090 |
|
|
= VEC_index (data_reference_p, datarefs, i);
|
| 3091 |
|
|
VEC (ddr_p, heap) *ddrs = LOOP_VINFO_DDRS (loop_vinfo);
|
| 3092 |
|
|
struct data_dependence_relation *ddr, *newddr;
|
| 3093 |
|
|
bool bad = false;
|
| 3094 |
|
|
tree off;
|
| 3095 |
|
|
VEC (loop_p, heap) *nest = LOOP_VINFO_LOOP_NEST (loop_vinfo);
|
| 3096 |
|
|
|
| 3097 |
|
|
if (!vect_check_gather (stmt, loop_vinfo, NULL, &off, NULL)
|
| 3098 |
|
|
|| get_vectype_for_scalar_type (TREE_TYPE (off)) == NULL_TREE)
|
| 3099 |
|
|
{
|
| 3100 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 3101 |
|
|
{
|
| 3102 |
|
|
fprintf (vect_dump,
|
| 3103 |
|
|
"not vectorized: not suitable for gather ");
|
| 3104 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
| 3105 |
|
|
}
|
| 3106 |
|
|
return false;
|
| 3107 |
|
|
}
|
| 3108 |
|
|
|
| 3109 |
|
|
n = VEC_length (data_reference_p, datarefs) - 1;
|
| 3110 |
|
|
for (j = 0, k = i - 1; j < i; j++)
|
| 3111 |
|
|
{
|
| 3112 |
|
|
ddr = VEC_index (ddr_p, ddrs, k);
|
| 3113 |
|
|
gcc_assert (DDR_B (ddr) == olddr);
|
| 3114 |
|
|
newddr = initialize_data_dependence_relation (DDR_A (ddr), dr,
|
| 3115 |
|
|
nest);
|
| 3116 |
|
|
VEC_replace (ddr_p, ddrs, k, newddr);
|
| 3117 |
|
|
free_dependence_relation (ddr);
|
| 3118 |
|
|
if (!bad
|
| 3119 |
|
|
&& DR_IS_WRITE (DDR_A (newddr))
|
| 3120 |
|
|
&& DDR_ARE_DEPENDENT (newddr) != chrec_known)
|
| 3121 |
|
|
bad = true;
|
| 3122 |
|
|
k += --n;
|
| 3123 |
|
|
}
|
| 3124 |
|
|
|
| 3125 |
|
|
k++;
|
| 3126 |
|
|
n = k + VEC_length (data_reference_p, datarefs) - i - 1;
|
| 3127 |
|
|
for (; k < n; k++)
|
| 3128 |
|
|
{
|
| 3129 |
|
|
ddr = VEC_index (ddr_p, ddrs, k);
|
| 3130 |
|
|
gcc_assert (DDR_A (ddr) == olddr);
|
| 3131 |
|
|
newddr = initialize_data_dependence_relation (dr, DDR_B (ddr),
|
| 3132 |
|
|
nest);
|
| 3133 |
|
|
VEC_replace (ddr_p, ddrs, k, newddr);
|
| 3134 |
|
|
free_dependence_relation (ddr);
|
| 3135 |
|
|
if (!bad
|
| 3136 |
|
|
&& DR_IS_WRITE (DDR_B (newddr))
|
| 3137 |
|
|
&& DDR_ARE_DEPENDENT (newddr) != chrec_known)
|
| 3138 |
|
|
bad = true;
|
| 3139 |
|
|
}
|
| 3140 |
|
|
|
| 3141 |
|
|
k = VEC_length (ddr_p, ddrs)
|
| 3142 |
|
|
- VEC_length (data_reference_p, datarefs) + i;
|
| 3143 |
|
|
ddr = VEC_index (ddr_p, ddrs, k);
|
| 3144 |
|
|
gcc_assert (DDR_A (ddr) == olddr && DDR_B (ddr) == olddr);
|
| 3145 |
|
|
newddr = initialize_data_dependence_relation (dr, dr, nest);
|
| 3146 |
|
|
VEC_replace (ddr_p, ddrs, k, newddr);
|
| 3147 |
|
|
free_dependence_relation (ddr);
|
| 3148 |
|
|
VEC_replace (data_reference_p, datarefs, i, dr);
|
| 3149 |
|
|
|
| 3150 |
|
|
if (bad)
|
| 3151 |
|
|
{
|
| 3152 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 3153 |
|
|
{
|
| 3154 |
|
|
fprintf (vect_dump,
|
| 3155 |
|
|
"not vectorized: data dependence conflict"
|
| 3156 |
|
|
" prevents gather");
|
| 3157 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
| 3158 |
|
|
}
|
| 3159 |
|
|
return false;
|
| 3160 |
|
|
}
|
| 3161 |
|
|
|
| 3162 |
|
|
STMT_VINFO_GATHER_P (stmt_info) = true;
|
| 3163 |
|
|
}
|
| 3164 |
|
|
}
|
| 3165 |
|
|
|
| 3166 |
|
|
return true;
|
| 3167 |
|
|
}
|
| 3168 |
|
|
|
| 3169 |
|
|
|
| 3170 |
|
|
/* Function vect_get_new_vect_var.
|
| 3171 |
|
|
|
| 3172 |
|
|
Returns a name for a new variable. The current naming scheme appends the
|
| 3173 |
|
|
prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
|
| 3174 |
|
|
the name of vectorizer generated variables, and appends that to NAME if
|
| 3175 |
|
|
provided. */
|
| 3176 |
|
|
|
| 3177 |
|
|
tree
|
| 3178 |
|
|
vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
|
| 3179 |
|
|
{
|
| 3180 |
|
|
const char *prefix;
|
| 3181 |
|
|
tree new_vect_var;
|
| 3182 |
|
|
|
| 3183 |
|
|
switch (var_kind)
|
| 3184 |
|
|
{
|
| 3185 |
|
|
case vect_simple_var:
|
| 3186 |
|
|
prefix = "vect_";
|
| 3187 |
|
|
break;
|
| 3188 |
|
|
case vect_scalar_var:
|
| 3189 |
|
|
prefix = "stmp_";
|
| 3190 |
|
|
break;
|
| 3191 |
|
|
case vect_pointer_var:
|
| 3192 |
|
|
prefix = "vect_p";
|
| 3193 |
|
|
break;
|
| 3194 |
|
|
default:
|
| 3195 |
|
|
gcc_unreachable ();
|
| 3196 |
|
|
}
|
| 3197 |
|
|
|
| 3198 |
|
|
if (name)
|
| 3199 |
|
|
{
|
| 3200 |
|
|
char* tmp = concat (prefix, name, NULL);
|
| 3201 |
|
|
new_vect_var = create_tmp_var (type, tmp);
|
| 3202 |
|
|
free (tmp);
|
| 3203 |
|
|
}
|
| 3204 |
|
|
else
|
| 3205 |
|
|
new_vect_var = create_tmp_var (type, prefix);
|
| 3206 |
|
|
|
| 3207 |
|
|
/* Mark vector typed variable as a gimple register variable. */
|
| 3208 |
|
|
if (TREE_CODE (type) == VECTOR_TYPE)
|
| 3209 |
|
|
DECL_GIMPLE_REG_P (new_vect_var) = true;
|
| 3210 |
|
|
|
| 3211 |
|
|
return new_vect_var;
|
| 3212 |
|
|
}
|
| 3213 |
|
|
|
| 3214 |
|
|
|
| 3215 |
|
|
/* Function vect_create_addr_base_for_vector_ref.
|
| 3216 |
|
|
|
| 3217 |
|
|
Create an expression that computes the address of the first memory location
|
| 3218 |
|
|
that will be accessed for a data reference.
|
| 3219 |
|
|
|
| 3220 |
|
|
Input:
|
| 3221 |
|
|
STMT: The statement containing the data reference.
|
| 3222 |
|
|
NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
|
| 3223 |
|
|
OFFSET: Optional. If supplied, it is be added to the initial address.
|
| 3224 |
|
|
LOOP: Specify relative to which loop-nest should the address be computed.
|
| 3225 |
|
|
For example, when the dataref is in an inner-loop nested in an
|
| 3226 |
|
|
outer-loop that is now being vectorized, LOOP can be either the
|
| 3227 |
|
|
outer-loop, or the inner-loop. The first memory location accessed
|
| 3228 |
|
|
by the following dataref ('in' points to short):
|
| 3229 |
|
|
|
| 3230 |
|
|
for (i=0; i<N; i++)
|
| 3231 |
|
|
for (j=0; j<M; j++)
|
| 3232 |
|
|
s += in[i+j]
|
| 3233 |
|
|
|
| 3234 |
|
|
is as follows:
|
| 3235 |
|
|
if LOOP=i_loop: &in (relative to i_loop)
|
| 3236 |
|
|
if LOOP=j_loop: &in+i*2B (relative to j_loop)
|
| 3237 |
|
|
|
| 3238 |
|
|
Output:
|
| 3239 |
|
|
1. Return an SSA_NAME whose value is the address of the memory location of
|
| 3240 |
|
|
the first vector of the data reference.
|
| 3241 |
|
|
2. If new_stmt_list is not NULL_TREE after return then the caller must insert
|
| 3242 |
|
|
these statement(s) which define the returned SSA_NAME.
|
| 3243 |
|
|
|
| 3244 |
|
|
FORNOW: We are only handling array accesses with step 1. */
|
| 3245 |
|
|
|
| 3246 |
|
|
tree
|
| 3247 |
|
|
vect_create_addr_base_for_vector_ref (gimple stmt,
|
| 3248 |
|
|
gimple_seq *new_stmt_list,
|
| 3249 |
|
|
tree offset,
|
| 3250 |
|
|
struct loop *loop)
|
| 3251 |
|
|
{
|
| 3252 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 3253 |
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
|
| 3254 |
|
|
tree data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
|
| 3255 |
|
|
tree base_name;
|
| 3256 |
|
|
tree data_ref_base_var;
|
| 3257 |
|
|
tree vec_stmt;
|
| 3258 |
|
|
tree addr_base, addr_expr;
|
| 3259 |
|
|
tree dest;
|
| 3260 |
|
|
gimple_seq seq = NULL;
|
| 3261 |
|
|
tree base_offset = unshare_expr (DR_OFFSET (dr));
|
| 3262 |
|
|
tree init = unshare_expr (DR_INIT (dr));
|
| 3263 |
|
|
tree vect_ptr_type;
|
| 3264 |
|
|
tree step = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
|
| 3265 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 3266 |
|
|
tree base;
|
| 3267 |
|
|
|
| 3268 |
|
|
if (loop_vinfo && loop && loop != (gimple_bb (stmt))->loop_father)
|
| 3269 |
|
|
{
|
| 3270 |
|
|
struct loop *outer_loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 3271 |
|
|
|
| 3272 |
|
|
gcc_assert (nested_in_vect_loop_p (outer_loop, stmt));
|
| 3273 |
|
|
|
| 3274 |
|
|
data_ref_base = unshare_expr (STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
|
| 3275 |
|
|
base_offset = unshare_expr (STMT_VINFO_DR_OFFSET (stmt_info));
|
| 3276 |
|
|
init = unshare_expr (STMT_VINFO_DR_INIT (stmt_info));
|
| 3277 |
|
|
}
|
| 3278 |
|
|
|
| 3279 |
|
|
if (loop_vinfo)
|
| 3280 |
|
|
base_name = build_fold_indirect_ref (data_ref_base);
|
| 3281 |
|
|
else
|
| 3282 |
|
|
{
|
| 3283 |
|
|
base_offset = ssize_int (0);
|
| 3284 |
|
|
init = ssize_int (0);
|
| 3285 |
|
|
base_name = build_fold_indirect_ref (unshare_expr (DR_REF (dr)));
|
| 3286 |
|
|
}
|
| 3287 |
|
|
|
| 3288 |
|
|
data_ref_base_var = create_tmp_var (TREE_TYPE (data_ref_base), "batmp");
|
| 3289 |
|
|
add_referenced_var (data_ref_base_var);
|
| 3290 |
|
|
data_ref_base = force_gimple_operand (data_ref_base, &seq, true,
|
| 3291 |
|
|
data_ref_base_var);
|
| 3292 |
|
|
gimple_seq_add_seq (new_stmt_list, seq);
|
| 3293 |
|
|
|
| 3294 |
|
|
/* Create base_offset */
|
| 3295 |
|
|
base_offset = size_binop (PLUS_EXPR,
|
| 3296 |
|
|
fold_convert (sizetype, base_offset),
|
| 3297 |
|
|
fold_convert (sizetype, init));
|
| 3298 |
|
|
dest = create_tmp_var (sizetype, "base_off");
|
| 3299 |
|
|
add_referenced_var (dest);
|
| 3300 |
|
|
base_offset = force_gimple_operand (base_offset, &seq, true, dest);
|
| 3301 |
|
|
gimple_seq_add_seq (new_stmt_list, seq);
|
| 3302 |
|
|
|
| 3303 |
|
|
if (offset)
|
| 3304 |
|
|
{
|
| 3305 |
|
|
tree tmp = create_tmp_var (sizetype, "offset");
|
| 3306 |
|
|
|
| 3307 |
|
|
add_referenced_var (tmp);
|
| 3308 |
|
|
offset = fold_build2 (MULT_EXPR, sizetype,
|
| 3309 |
|
|
fold_convert (sizetype, offset), step);
|
| 3310 |
|
|
base_offset = fold_build2 (PLUS_EXPR, sizetype,
|
| 3311 |
|
|
base_offset, offset);
|
| 3312 |
|
|
base_offset = force_gimple_operand (base_offset, &seq, false, tmp);
|
| 3313 |
|
|
gimple_seq_add_seq (new_stmt_list, seq);
|
| 3314 |
|
|
}
|
| 3315 |
|
|
|
| 3316 |
|
|
/* base + base_offset */
|
| 3317 |
|
|
if (loop_vinfo)
|
| 3318 |
|
|
addr_base = fold_build_pointer_plus (data_ref_base, base_offset);
|
| 3319 |
|
|
else
|
| 3320 |
|
|
{
|
| 3321 |
|
|
addr_base = build1 (ADDR_EXPR,
|
| 3322 |
|
|
build_pointer_type (TREE_TYPE (DR_REF (dr))),
|
| 3323 |
|
|
unshare_expr (DR_REF (dr)));
|
| 3324 |
|
|
}
|
| 3325 |
|
|
|
| 3326 |
|
|
vect_ptr_type = build_pointer_type (STMT_VINFO_VECTYPE (stmt_info));
|
| 3327 |
|
|
base = get_base_address (DR_REF (dr));
|
| 3328 |
|
|
if (base
|
| 3329 |
|
|
&& TREE_CODE (base) == MEM_REF)
|
| 3330 |
|
|
vect_ptr_type
|
| 3331 |
|
|
= build_qualified_type (vect_ptr_type,
|
| 3332 |
|
|
TYPE_QUALS (TREE_TYPE (TREE_OPERAND (base, 0))));
|
| 3333 |
|
|
|
| 3334 |
|
|
vec_stmt = fold_convert (vect_ptr_type, addr_base);
|
| 3335 |
|
|
addr_expr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
|
| 3336 |
|
|
get_name (base_name));
|
| 3337 |
|
|
add_referenced_var (addr_expr);
|
| 3338 |
|
|
vec_stmt = force_gimple_operand (vec_stmt, &seq, false, addr_expr);
|
| 3339 |
|
|
gimple_seq_add_seq (new_stmt_list, seq);
|
| 3340 |
|
|
|
| 3341 |
|
|
if (DR_PTR_INFO (dr)
|
| 3342 |
|
|
&& TREE_CODE (vec_stmt) == SSA_NAME)
|
| 3343 |
|
|
{
|
| 3344 |
|
|
duplicate_ssa_name_ptr_info (vec_stmt, DR_PTR_INFO (dr));
|
| 3345 |
|
|
if (offset)
|
| 3346 |
|
|
{
|
| 3347 |
|
|
SSA_NAME_PTR_INFO (vec_stmt)->align = 1;
|
| 3348 |
|
|
SSA_NAME_PTR_INFO (vec_stmt)->misalign = 0;
|
| 3349 |
|
|
}
|
| 3350 |
|
|
}
|
| 3351 |
|
|
|
| 3352 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3353 |
|
|
{
|
| 3354 |
|
|
fprintf (vect_dump, "created ");
|
| 3355 |
|
|
print_generic_expr (vect_dump, vec_stmt, TDF_SLIM);
|
| 3356 |
|
|
}
|
| 3357 |
|
|
|
| 3358 |
|
|
return vec_stmt;
|
| 3359 |
|
|
}
|
| 3360 |
|
|
|
| 3361 |
|
|
|
| 3362 |
|
|
/* Function vect_create_data_ref_ptr.
|
| 3363 |
|
|
|
| 3364 |
|
|
Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first
|
| 3365 |
|
|
location accessed in the loop by STMT, along with the def-use update
|
| 3366 |
|
|
chain to appropriately advance the pointer through the loop iterations.
|
| 3367 |
|
|
Also set aliasing information for the pointer. This pointer is used by
|
| 3368 |
|
|
the callers to this function to create a memory reference expression for
|
| 3369 |
|
|
vector load/store access.
|
| 3370 |
|
|
|
| 3371 |
|
|
Input:
|
| 3372 |
|
|
1. STMT: a stmt that references memory. Expected to be of the form
|
| 3373 |
|
|
GIMPLE_ASSIGN <name, data-ref> or
|
| 3374 |
|
|
GIMPLE_ASSIGN <data-ref, name>.
|
| 3375 |
|
|
2. AGGR_TYPE: the type of the reference, which should be either a vector
|
| 3376 |
|
|
or an array.
|
| 3377 |
|
|
3. AT_LOOP: the loop where the vector memref is to be created.
|
| 3378 |
|
|
4. OFFSET (optional): an offset to be added to the initial address accessed
|
| 3379 |
|
|
by the data-ref in STMT.
|
| 3380 |
|
|
5. BSI: location where the new stmts are to be placed if there is no loop
|
| 3381 |
|
|
6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain
|
| 3382 |
|
|
pointing to the initial address.
|
| 3383 |
|
|
|
| 3384 |
|
|
Output:
|
| 3385 |
|
|
1. Declare a new ptr to vector_type, and have it point to the base of the
|
| 3386 |
|
|
data reference (initial addressed accessed by the data reference).
|
| 3387 |
|
|
For example, for vector of type V8HI, the following code is generated:
|
| 3388 |
|
|
|
| 3389 |
|
|
v8hi *ap;
|
| 3390 |
|
|
ap = (v8hi *)initial_address;
|
| 3391 |
|
|
|
| 3392 |
|
|
if OFFSET is not supplied:
|
| 3393 |
|
|
initial_address = &a[init];
|
| 3394 |
|
|
if OFFSET is supplied:
|
| 3395 |
|
|
initial_address = &a[init + OFFSET];
|
| 3396 |
|
|
|
| 3397 |
|
|
Return the initial_address in INITIAL_ADDRESS.
|
| 3398 |
|
|
|
| 3399 |
|
|
2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
|
| 3400 |
|
|
update the pointer in each iteration of the loop.
|
| 3401 |
|
|
|
| 3402 |
|
|
Return the increment stmt that updates the pointer in PTR_INCR.
|
| 3403 |
|
|
|
| 3404 |
|
|
3. Set INV_P to true if the access pattern of the data reference in the
|
| 3405 |
|
|
vectorized loop is invariant. Set it to false otherwise.
|
| 3406 |
|
|
|
| 3407 |
|
|
4. Return the pointer. */
|
| 3408 |
|
|
|
| 3409 |
|
|
tree
|
| 3410 |
|
|
vect_create_data_ref_ptr (gimple stmt, tree aggr_type, struct loop *at_loop,
|
| 3411 |
|
|
tree offset, tree *initial_address,
|
| 3412 |
|
|
gimple_stmt_iterator *gsi, gimple *ptr_incr,
|
| 3413 |
|
|
bool only_init, bool *inv_p)
|
| 3414 |
|
|
{
|
| 3415 |
|
|
tree base_name;
|
| 3416 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 3417 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 3418 |
|
|
struct loop *loop = NULL;
|
| 3419 |
|
|
bool nested_in_vect_loop = false;
|
| 3420 |
|
|
struct loop *containing_loop = NULL;
|
| 3421 |
|
|
tree aggr_ptr_type;
|
| 3422 |
|
|
tree aggr_ptr;
|
| 3423 |
|
|
tree new_temp;
|
| 3424 |
|
|
gimple vec_stmt;
|
| 3425 |
|
|
gimple_seq new_stmt_list = NULL;
|
| 3426 |
|
|
edge pe = NULL;
|
| 3427 |
|
|
basic_block new_bb;
|
| 3428 |
|
|
tree aggr_ptr_init;
|
| 3429 |
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
|
| 3430 |
|
|
tree aptr;
|
| 3431 |
|
|
gimple_stmt_iterator incr_gsi;
|
| 3432 |
|
|
bool insert_after;
|
| 3433 |
|
|
bool negative;
|
| 3434 |
|
|
tree indx_before_incr, indx_after_incr;
|
| 3435 |
|
|
gimple incr;
|
| 3436 |
|
|
tree step;
|
| 3437 |
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
| 3438 |
|
|
tree base;
|
| 3439 |
|
|
|
| 3440 |
|
|
gcc_assert (TREE_CODE (aggr_type) == ARRAY_TYPE
|
| 3441 |
|
|
|| TREE_CODE (aggr_type) == VECTOR_TYPE);
|
| 3442 |
|
|
|
| 3443 |
|
|
if (loop_vinfo)
|
| 3444 |
|
|
{
|
| 3445 |
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 3446 |
|
|
nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
|
| 3447 |
|
|
containing_loop = (gimple_bb (stmt))->loop_father;
|
| 3448 |
|
|
pe = loop_preheader_edge (loop);
|
| 3449 |
|
|
}
|
| 3450 |
|
|
else
|
| 3451 |
|
|
{
|
| 3452 |
|
|
gcc_assert (bb_vinfo);
|
| 3453 |
|
|
only_init = true;
|
| 3454 |
|
|
*ptr_incr = NULL;
|
| 3455 |
|
|
}
|
| 3456 |
|
|
|
| 3457 |
|
|
/* Check the step (evolution) of the load in LOOP, and record
|
| 3458 |
|
|
whether it's invariant. */
|
| 3459 |
|
|
if (nested_in_vect_loop)
|
| 3460 |
|
|
step = STMT_VINFO_DR_STEP (stmt_info);
|
| 3461 |
|
|
else
|
| 3462 |
|
|
step = DR_STEP (STMT_VINFO_DATA_REF (stmt_info));
|
| 3463 |
|
|
|
| 3464 |
|
|
if (tree_int_cst_compare (step, size_zero_node) == 0)
|
| 3465 |
|
|
*inv_p = true;
|
| 3466 |
|
|
else
|
| 3467 |
|
|
*inv_p = false;
|
| 3468 |
|
|
negative = tree_int_cst_compare (step, size_zero_node) < 0;
|
| 3469 |
|
|
|
| 3470 |
|
|
/* Create an expression for the first address accessed by this load
|
| 3471 |
|
|
in LOOP. */
|
| 3472 |
|
|
base_name = build_fold_indirect_ref (unshare_expr (DR_BASE_ADDRESS (dr)));
|
| 3473 |
|
|
|
| 3474 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3475 |
|
|
{
|
| 3476 |
|
|
tree data_ref_base = base_name;
|
| 3477 |
|
|
fprintf (vect_dump, "create %s-pointer variable to type: ",
|
| 3478 |
|
|
tree_code_name[(int) TREE_CODE (aggr_type)]);
|
| 3479 |
|
|
print_generic_expr (vect_dump, aggr_type, TDF_SLIM);
|
| 3480 |
|
|
if (TREE_CODE (data_ref_base) == VAR_DECL
|
| 3481 |
|
|
|| TREE_CODE (data_ref_base) == ARRAY_REF)
|
| 3482 |
|
|
fprintf (vect_dump, " vectorizing an array ref: ");
|
| 3483 |
|
|
else if (TREE_CODE (data_ref_base) == COMPONENT_REF)
|
| 3484 |
|
|
fprintf (vect_dump, " vectorizing a record based array ref: ");
|
| 3485 |
|
|
else if (TREE_CODE (data_ref_base) == SSA_NAME)
|
| 3486 |
|
|
fprintf (vect_dump, " vectorizing a pointer ref: ");
|
| 3487 |
|
|
print_generic_expr (vect_dump, base_name, TDF_SLIM);
|
| 3488 |
|
|
}
|
| 3489 |
|
|
|
| 3490 |
|
|
/* (1) Create the new aggregate-pointer variable. */
|
| 3491 |
|
|
aggr_ptr_type = build_pointer_type (aggr_type);
|
| 3492 |
|
|
base = get_base_address (DR_REF (dr));
|
| 3493 |
|
|
if (base
|
| 3494 |
|
|
&& TREE_CODE (base) == MEM_REF)
|
| 3495 |
|
|
aggr_ptr_type
|
| 3496 |
|
|
= build_qualified_type (aggr_ptr_type,
|
| 3497 |
|
|
TYPE_QUALS (TREE_TYPE (TREE_OPERAND (base, 0))));
|
| 3498 |
|
|
aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var,
|
| 3499 |
|
|
get_name (base_name));
|
| 3500 |
|
|
|
| 3501 |
|
|
/* Vector and array types inherit the alias set of their component
|
| 3502 |
|
|
type by default so we need to use a ref-all pointer if the data
|
| 3503 |
|
|
reference does not conflict with the created aggregated data
|
| 3504 |
|
|
reference because it is not addressable. */
|
| 3505 |
|
|
if (!alias_sets_conflict_p (get_deref_alias_set (aggr_ptr),
|
| 3506 |
|
|
get_alias_set (DR_REF (dr))))
|
| 3507 |
|
|
{
|
| 3508 |
|
|
aggr_ptr_type
|
| 3509 |
|
|
= build_pointer_type_for_mode (aggr_type,
|
| 3510 |
|
|
TYPE_MODE (aggr_ptr_type), true);
|
| 3511 |
|
|
aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var,
|
| 3512 |
|
|
get_name (base_name));
|
| 3513 |
|
|
}
|
| 3514 |
|
|
|
| 3515 |
|
|
/* Likewise for any of the data references in the stmt group. */
|
| 3516 |
|
|
else if (STMT_VINFO_GROUP_SIZE (stmt_info) > 1)
|
| 3517 |
|
|
{
|
| 3518 |
|
|
gimple orig_stmt = STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_info);
|
| 3519 |
|
|
do
|
| 3520 |
|
|
{
|
| 3521 |
|
|
tree lhs = gimple_assign_lhs (orig_stmt);
|
| 3522 |
|
|
if (!alias_sets_conflict_p (get_deref_alias_set (aggr_ptr),
|
| 3523 |
|
|
get_alias_set (lhs)))
|
| 3524 |
|
|
{
|
| 3525 |
|
|
aggr_ptr_type
|
| 3526 |
|
|
= build_pointer_type_for_mode (aggr_type,
|
| 3527 |
|
|
TYPE_MODE (aggr_ptr_type), true);
|
| 3528 |
|
|
aggr_ptr
|
| 3529 |
|
|
= vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var,
|
| 3530 |
|
|
get_name (base_name));
|
| 3531 |
|
|
break;
|
| 3532 |
|
|
}
|
| 3533 |
|
|
|
| 3534 |
|
|
orig_stmt = STMT_VINFO_GROUP_NEXT_ELEMENT (vinfo_for_stmt (orig_stmt));
|
| 3535 |
|
|
}
|
| 3536 |
|
|
while (orig_stmt);
|
| 3537 |
|
|
}
|
| 3538 |
|
|
|
| 3539 |
|
|
add_referenced_var (aggr_ptr);
|
| 3540 |
|
|
|
| 3541 |
|
|
/* Note: If the dataref is in an inner-loop nested in LOOP, and we are
|
| 3542 |
|
|
vectorizing LOOP (i.e., outer-loop vectorization), we need to create two
|
| 3543 |
|
|
def-use update cycles for the pointer: one relative to the outer-loop
|
| 3544 |
|
|
(LOOP), which is what steps (3) and (4) below do. The other is relative
|
| 3545 |
|
|
to the inner-loop (which is the inner-most loop containing the dataref),
|
| 3546 |
|
|
and this is done be step (5) below.
|
| 3547 |
|
|
|
| 3548 |
|
|
When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
|
| 3549 |
|
|
inner-most loop, and so steps (3),(4) work the same, and step (5) is
|
| 3550 |
|
|
redundant. Steps (3),(4) create the following:
|
| 3551 |
|
|
|
| 3552 |
|
|
vp0 = &base_addr;
|
| 3553 |
|
|
LOOP: vp1 = phi(vp0,vp2)
|
| 3554 |
|
|
...
|
| 3555 |
|
|
...
|
| 3556 |
|
|
vp2 = vp1 + step
|
| 3557 |
|
|
goto LOOP
|
| 3558 |
|
|
|
| 3559 |
|
|
If there is an inner-loop nested in loop, then step (5) will also be
|
| 3560 |
|
|
applied, and an additional update in the inner-loop will be created:
|
| 3561 |
|
|
|
| 3562 |
|
|
vp0 = &base_addr;
|
| 3563 |
|
|
LOOP: vp1 = phi(vp0,vp2)
|
| 3564 |
|
|
...
|
| 3565 |
|
|
inner: vp3 = phi(vp1,vp4)
|
| 3566 |
|
|
vp4 = vp3 + inner_step
|
| 3567 |
|
|
if () goto inner
|
| 3568 |
|
|
...
|
| 3569 |
|
|
vp2 = vp1 + step
|
| 3570 |
|
|
if () goto LOOP */
|
| 3571 |
|
|
|
| 3572 |
|
|
/* (2) Calculate the initial address of the aggregate-pointer, and set
|
| 3573 |
|
|
the aggregate-pointer to point to it before the loop. */
|
| 3574 |
|
|
|
| 3575 |
|
|
/* Create: (&(base[init_val+offset]) in the loop preheader. */
|
| 3576 |
|
|
|
| 3577 |
|
|
new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
|
| 3578 |
|
|
offset, loop);
|
| 3579 |
|
|
if (new_stmt_list)
|
| 3580 |
|
|
{
|
| 3581 |
|
|
if (pe)
|
| 3582 |
|
|
{
|
| 3583 |
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
|
| 3584 |
|
|
gcc_assert (!new_bb);
|
| 3585 |
|
|
}
|
| 3586 |
|
|
else
|
| 3587 |
|
|
gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT);
|
| 3588 |
|
|
}
|
| 3589 |
|
|
|
| 3590 |
|
|
*initial_address = new_temp;
|
| 3591 |
|
|
|
| 3592 |
|
|
/* Create: p = (aggr_type *) initial_base */
|
| 3593 |
|
|
if (TREE_CODE (new_temp) != SSA_NAME
|
| 3594 |
|
|
|| !useless_type_conversion_p (aggr_ptr_type, TREE_TYPE (new_temp)))
|
| 3595 |
|
|
{
|
| 3596 |
|
|
vec_stmt = gimple_build_assign (aggr_ptr,
|
| 3597 |
|
|
fold_convert (aggr_ptr_type, new_temp));
|
| 3598 |
|
|
aggr_ptr_init = make_ssa_name (aggr_ptr, vec_stmt);
|
| 3599 |
|
|
/* Copy the points-to information if it exists. */
|
| 3600 |
|
|
if (DR_PTR_INFO (dr))
|
| 3601 |
|
|
duplicate_ssa_name_ptr_info (aggr_ptr_init, DR_PTR_INFO (dr));
|
| 3602 |
|
|
gimple_assign_set_lhs (vec_stmt, aggr_ptr_init);
|
| 3603 |
|
|
if (pe)
|
| 3604 |
|
|
{
|
| 3605 |
|
|
new_bb = gsi_insert_on_edge_immediate (pe, vec_stmt);
|
| 3606 |
|
|
gcc_assert (!new_bb);
|
| 3607 |
|
|
}
|
| 3608 |
|
|
else
|
| 3609 |
|
|
gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
|
| 3610 |
|
|
}
|
| 3611 |
|
|
else
|
| 3612 |
|
|
aggr_ptr_init = new_temp;
|
| 3613 |
|
|
|
| 3614 |
|
|
/* (3) Handle the updating of the aggregate-pointer inside the loop.
|
| 3615 |
|
|
This is needed when ONLY_INIT is false, and also when AT_LOOP is the
|
| 3616 |
|
|
inner-loop nested in LOOP (during outer-loop vectorization). */
|
| 3617 |
|
|
|
| 3618 |
|
|
/* No update in loop is required. */
|
| 3619 |
|
|
if (only_init && (!loop_vinfo || at_loop == loop))
|
| 3620 |
|
|
aptr = aggr_ptr_init;
|
| 3621 |
|
|
else
|
| 3622 |
|
|
{
|
| 3623 |
|
|
/* The step of the aggregate pointer is the type size. */
|
| 3624 |
|
|
tree step = TYPE_SIZE_UNIT (aggr_type);
|
| 3625 |
|
|
/* One exception to the above is when the scalar step of the load in
|
| 3626 |
|
|
LOOP is zero. In this case the step here is also zero. */
|
| 3627 |
|
|
if (*inv_p)
|
| 3628 |
|
|
step = size_zero_node;
|
| 3629 |
|
|
else if (negative)
|
| 3630 |
|
|
step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
|
| 3631 |
|
|
|
| 3632 |
|
|
standard_iv_increment_position (loop, &incr_gsi, &insert_after);
|
| 3633 |
|
|
|
| 3634 |
|
|
create_iv (aggr_ptr_init,
|
| 3635 |
|
|
fold_convert (aggr_ptr_type, step),
|
| 3636 |
|
|
aggr_ptr, loop, &incr_gsi, insert_after,
|
| 3637 |
|
|
&indx_before_incr, &indx_after_incr);
|
| 3638 |
|
|
incr = gsi_stmt (incr_gsi);
|
| 3639 |
|
|
set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
|
| 3640 |
|
|
|
| 3641 |
|
|
/* Copy the points-to information if it exists. */
|
| 3642 |
|
|
if (DR_PTR_INFO (dr))
|
| 3643 |
|
|
{
|
| 3644 |
|
|
duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
|
| 3645 |
|
|
duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
|
| 3646 |
|
|
}
|
| 3647 |
|
|
if (ptr_incr)
|
| 3648 |
|
|
*ptr_incr = incr;
|
| 3649 |
|
|
|
| 3650 |
|
|
aptr = indx_before_incr;
|
| 3651 |
|
|
}
|
| 3652 |
|
|
|
| 3653 |
|
|
if (!nested_in_vect_loop || only_init)
|
| 3654 |
|
|
return aptr;
|
| 3655 |
|
|
|
| 3656 |
|
|
|
| 3657 |
|
|
/* (4) Handle the updating of the aggregate-pointer inside the inner-loop
|
| 3658 |
|
|
nested in LOOP, if exists. */
|
| 3659 |
|
|
|
| 3660 |
|
|
gcc_assert (nested_in_vect_loop);
|
| 3661 |
|
|
if (!only_init)
|
| 3662 |
|
|
{
|
| 3663 |
|
|
standard_iv_increment_position (containing_loop, &incr_gsi,
|
| 3664 |
|
|
&insert_after);
|
| 3665 |
|
|
create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr,
|
| 3666 |
|
|
containing_loop, &incr_gsi, insert_after, &indx_before_incr,
|
| 3667 |
|
|
&indx_after_incr);
|
| 3668 |
|
|
incr = gsi_stmt (incr_gsi);
|
| 3669 |
|
|
set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
|
| 3670 |
|
|
|
| 3671 |
|
|
/* Copy the points-to information if it exists. */
|
| 3672 |
|
|
if (DR_PTR_INFO (dr))
|
| 3673 |
|
|
{
|
| 3674 |
|
|
duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
|
| 3675 |
|
|
duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
|
| 3676 |
|
|
}
|
| 3677 |
|
|
if (ptr_incr)
|
| 3678 |
|
|
*ptr_incr = incr;
|
| 3679 |
|
|
|
| 3680 |
|
|
return indx_before_incr;
|
| 3681 |
|
|
}
|
| 3682 |
|
|
else
|
| 3683 |
|
|
gcc_unreachable ();
|
| 3684 |
|
|
}
|
| 3685 |
|
|
|
| 3686 |
|
|
|
| 3687 |
|
|
/* Function bump_vector_ptr
|
| 3688 |
|
|
|
| 3689 |
|
|
Increment a pointer (to a vector type) by vector-size. If requested,
|
| 3690 |
|
|
i.e. if PTR-INCR is given, then also connect the new increment stmt
|
| 3691 |
|
|
to the existing def-use update-chain of the pointer, by modifying
|
| 3692 |
|
|
the PTR_INCR as illustrated below:
|
| 3693 |
|
|
|
| 3694 |
|
|
The pointer def-use update-chain before this function:
|
| 3695 |
|
|
DATAREF_PTR = phi (p_0, p_2)
|
| 3696 |
|
|
....
|
| 3697 |
|
|
PTR_INCR: p_2 = DATAREF_PTR + step
|
| 3698 |
|
|
|
| 3699 |
|
|
The pointer def-use update-chain after this function:
|
| 3700 |
|
|
DATAREF_PTR = phi (p_0, p_2)
|
| 3701 |
|
|
....
|
| 3702 |
|
|
NEW_DATAREF_PTR = DATAREF_PTR + BUMP
|
| 3703 |
|
|
....
|
| 3704 |
|
|
PTR_INCR: p_2 = NEW_DATAREF_PTR + step
|
| 3705 |
|
|
|
| 3706 |
|
|
Input:
|
| 3707 |
|
|
DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
|
| 3708 |
|
|
in the loop.
|
| 3709 |
|
|
PTR_INCR - optional. The stmt that updates the pointer in each iteration of
|
| 3710 |
|
|
the loop. The increment amount across iterations is expected
|
| 3711 |
|
|
to be vector_size.
|
| 3712 |
|
|
BSI - location where the new update stmt is to be placed.
|
| 3713 |
|
|
STMT - the original scalar memory-access stmt that is being vectorized.
|
| 3714 |
|
|
BUMP - optional. The offset by which to bump the pointer. If not given,
|
| 3715 |
|
|
the offset is assumed to be vector_size.
|
| 3716 |
|
|
|
| 3717 |
|
|
Output: Return NEW_DATAREF_PTR as illustrated above.
|
| 3718 |
|
|
|
| 3719 |
|
|
*/
|
| 3720 |
|
|
|
| 3721 |
|
|
tree
|
| 3722 |
|
|
bump_vector_ptr (tree dataref_ptr, gimple ptr_incr, gimple_stmt_iterator *gsi,
|
| 3723 |
|
|
gimple stmt, tree bump)
|
| 3724 |
|
|
{
|
| 3725 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 3726 |
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
|
| 3727 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
| 3728 |
|
|
tree ptr_var = SSA_NAME_VAR (dataref_ptr);
|
| 3729 |
|
|
tree update = TYPE_SIZE_UNIT (vectype);
|
| 3730 |
|
|
gimple incr_stmt;
|
| 3731 |
|
|
ssa_op_iter iter;
|
| 3732 |
|
|
use_operand_p use_p;
|
| 3733 |
|
|
tree new_dataref_ptr;
|
| 3734 |
|
|
|
| 3735 |
|
|
if (bump)
|
| 3736 |
|
|
update = bump;
|
| 3737 |
|
|
|
| 3738 |
|
|
incr_stmt = gimple_build_assign_with_ops (POINTER_PLUS_EXPR, ptr_var,
|
| 3739 |
|
|
dataref_ptr, update);
|
| 3740 |
|
|
new_dataref_ptr = make_ssa_name (ptr_var, incr_stmt);
|
| 3741 |
|
|
gimple_assign_set_lhs (incr_stmt, new_dataref_ptr);
|
| 3742 |
|
|
vect_finish_stmt_generation (stmt, incr_stmt, gsi);
|
| 3743 |
|
|
|
| 3744 |
|
|
/* Copy the points-to information if it exists. */
|
| 3745 |
|
|
if (DR_PTR_INFO (dr))
|
| 3746 |
|
|
{
|
| 3747 |
|
|
duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
|
| 3748 |
|
|
SSA_NAME_PTR_INFO (new_dataref_ptr)->align = 1;
|
| 3749 |
|
|
SSA_NAME_PTR_INFO (new_dataref_ptr)->misalign = 0;
|
| 3750 |
|
|
}
|
| 3751 |
|
|
|
| 3752 |
|
|
if (!ptr_incr)
|
| 3753 |
|
|
return new_dataref_ptr;
|
| 3754 |
|
|
|
| 3755 |
|
|
/* Update the vector-pointer's cross-iteration increment. */
|
| 3756 |
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
|
| 3757 |
|
|
{
|
| 3758 |
|
|
tree use = USE_FROM_PTR (use_p);
|
| 3759 |
|
|
|
| 3760 |
|
|
if (use == dataref_ptr)
|
| 3761 |
|
|
SET_USE (use_p, new_dataref_ptr);
|
| 3762 |
|
|
else
|
| 3763 |
|
|
gcc_assert (tree_int_cst_compare (use, update) == 0);
|
| 3764 |
|
|
}
|
| 3765 |
|
|
|
| 3766 |
|
|
return new_dataref_ptr;
|
| 3767 |
|
|
}
|
| 3768 |
|
|
|
| 3769 |
|
|
|
| 3770 |
|
|
/* Function vect_create_destination_var.
|
| 3771 |
|
|
|
| 3772 |
|
|
Create a new temporary of type VECTYPE. */
|
| 3773 |
|
|
|
| 3774 |
|
|
tree
|
| 3775 |
|
|
vect_create_destination_var (tree scalar_dest, tree vectype)
|
| 3776 |
|
|
{
|
| 3777 |
|
|
tree vec_dest;
|
| 3778 |
|
|
const char *new_name;
|
| 3779 |
|
|
tree type;
|
| 3780 |
|
|
enum vect_var_kind kind;
|
| 3781 |
|
|
|
| 3782 |
|
|
kind = vectype ? vect_simple_var : vect_scalar_var;
|
| 3783 |
|
|
type = vectype ? vectype : TREE_TYPE (scalar_dest);
|
| 3784 |
|
|
|
| 3785 |
|
|
gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
|
| 3786 |
|
|
|
| 3787 |
|
|
new_name = get_name (scalar_dest);
|
| 3788 |
|
|
if (!new_name)
|
| 3789 |
|
|
new_name = "var_";
|
| 3790 |
|
|
vec_dest = vect_get_new_vect_var (type, kind, new_name);
|
| 3791 |
|
|
add_referenced_var (vec_dest);
|
| 3792 |
|
|
|
| 3793 |
|
|
return vec_dest;
|
| 3794 |
|
|
}
|
| 3795 |
|
|
|
| 3796 |
|
|
/* Function vect_strided_store_supported.
|
| 3797 |
|
|
|
| 3798 |
|
|
Returns TRUE if interleave high and interleave low permutations
|
| 3799 |
|
|
are supported, and FALSE otherwise. */
|
| 3800 |
|
|
|
| 3801 |
|
|
bool
|
| 3802 |
|
|
vect_strided_store_supported (tree vectype, unsigned HOST_WIDE_INT count)
|
| 3803 |
|
|
{
|
| 3804 |
|
|
enum machine_mode mode = TYPE_MODE (vectype);
|
| 3805 |
|
|
|
| 3806 |
|
|
/* vect_permute_store_chain requires the group size to be a power of two. */
|
| 3807 |
|
|
if (exact_log2 (count) == -1)
|
| 3808 |
|
|
{
|
| 3809 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3810 |
|
|
fprintf (vect_dump, "the size of the group of strided accesses"
|
| 3811 |
|
|
" is not a power of 2");
|
| 3812 |
|
|
return false;
|
| 3813 |
|
|
}
|
| 3814 |
|
|
|
| 3815 |
|
|
/* Check that the permutation is supported. */
|
| 3816 |
|
|
if (VECTOR_MODE_P (mode))
|
| 3817 |
|
|
{
|
| 3818 |
|
|
unsigned int i, nelt = GET_MODE_NUNITS (mode);
|
| 3819 |
|
|
unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
|
| 3820 |
|
|
for (i = 0; i < nelt / 2; i++)
|
| 3821 |
|
|
{
|
| 3822 |
|
|
sel[i * 2] = i;
|
| 3823 |
|
|
sel[i * 2 + 1] = i + nelt;
|
| 3824 |
|
|
}
|
| 3825 |
|
|
if (can_vec_perm_p (mode, false, sel))
|
| 3826 |
|
|
{
|
| 3827 |
|
|
for (i = 0; i < nelt; i++)
|
| 3828 |
|
|
sel[i] += nelt / 2;
|
| 3829 |
|
|
if (can_vec_perm_p (mode, false, sel))
|
| 3830 |
|
|
return true;
|
| 3831 |
|
|
}
|
| 3832 |
|
|
}
|
| 3833 |
|
|
|
| 3834 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3835 |
|
|
fprintf (vect_dump, "interleave op not supported by target.");
|
| 3836 |
|
|
return false;
|
| 3837 |
|
|
}
|
| 3838 |
|
|
|
| 3839 |
|
|
|
| 3840 |
|
|
/* Return TRUE if vec_store_lanes is available for COUNT vectors of
|
| 3841 |
|
|
type VECTYPE. */
|
| 3842 |
|
|
|
| 3843 |
|
|
bool
|
| 3844 |
|
|
vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
|
| 3845 |
|
|
{
|
| 3846 |
|
|
return vect_lanes_optab_supported_p ("vec_store_lanes",
|
| 3847 |
|
|
vec_store_lanes_optab,
|
| 3848 |
|
|
vectype, count);
|
| 3849 |
|
|
}
|
| 3850 |
|
|
|
| 3851 |
|
|
|
| 3852 |
|
|
/* Function vect_permute_store_chain.
|
| 3853 |
|
|
|
| 3854 |
|
|
Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
|
| 3855 |
|
|
a power of 2, generate interleave_high/low stmts to reorder the data
|
| 3856 |
|
|
correctly for the stores. Return the final references for stores in
|
| 3857 |
|
|
RESULT_CHAIN.
|
| 3858 |
|
|
|
| 3859 |
|
|
E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
|
| 3860 |
|
|
The input is 4 vectors each containing 8 elements. We assign a number to
|
| 3861 |
|
|
each element, the input sequence is:
|
| 3862 |
|
|
|
| 3863 |
|
|
1st vec: 0 1 2 3 4 5 6 7
|
| 3864 |
|
|
2nd vec: 8 9 10 11 12 13 14 15
|
| 3865 |
|
|
3rd vec: 16 17 18 19 20 21 22 23
|
| 3866 |
|
|
4th vec: 24 25 26 27 28 29 30 31
|
| 3867 |
|
|
|
| 3868 |
|
|
The output sequence should be:
|
| 3869 |
|
|
|
| 3870 |
|
|
1st vec: 0 8 16 24 1 9 17 25
|
| 3871 |
|
|
2nd vec: 2 10 18 26 3 11 19 27
|
| 3872 |
|
|
3rd vec: 4 12 20 28 5 13 21 30
|
| 3873 |
|
|
4th vec: 6 14 22 30 7 15 23 31
|
| 3874 |
|
|
|
| 3875 |
|
|
i.e., we interleave the contents of the four vectors in their order.
|
| 3876 |
|
|
|
| 3877 |
|
|
We use interleave_high/low instructions to create such output. The input of
|
| 3878 |
|
|
each interleave_high/low operation is two vectors:
|
| 3879 |
|
|
1st vec 2nd vec
|
| 3880 |
|
|
|
| 3881 |
|
|
the even elements of the result vector are obtained left-to-right from the
|
| 3882 |
|
|
high/low elements of the first vector. The odd elements of the result are
|
| 3883 |
|
|
obtained left-to-right from the high/low elements of the second vector.
|
| 3884 |
|
|
The output of interleave_high will be: 0 4 1 5
|
| 3885 |
|
|
and of interleave_low: 2 6 3 7
|
| 3886 |
|
|
|
| 3887 |
|
|
|
| 3888 |
|
|
The permutation is done in log LENGTH stages. In each stage interleave_high
|
| 3889 |
|
|
and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
|
| 3890 |
|
|
where the first argument is taken from the first half of DR_CHAIN and the
|
| 3891 |
|
|
second argument from it's second half.
|
| 3892 |
|
|
In our example,
|
| 3893 |
|
|
|
| 3894 |
|
|
I1: interleave_high (1st vec, 3rd vec)
|
| 3895 |
|
|
I2: interleave_low (1st vec, 3rd vec)
|
| 3896 |
|
|
I3: interleave_high (2nd vec, 4th vec)
|
| 3897 |
|
|
I4: interleave_low (2nd vec, 4th vec)
|
| 3898 |
|
|
|
| 3899 |
|
|
The output for the first stage is:
|
| 3900 |
|
|
|
| 3901 |
|
|
I1: 0 16 1 17 2 18 3 19
|
| 3902 |
|
|
I2: 4 20 5 21 6 22 7 23
|
| 3903 |
|
|
I3: 8 24 9 25 10 26 11 27
|
| 3904 |
|
|
I4: 12 28 13 29 14 30 15 31
|
| 3905 |
|
|
|
| 3906 |
|
|
The output of the second stage, i.e. the final result is:
|
| 3907 |
|
|
|
| 3908 |
|
|
I1: 0 8 16 24 1 9 17 25
|
| 3909 |
|
|
I2: 2 10 18 26 3 11 19 27
|
| 3910 |
|
|
I3: 4 12 20 28 5 13 21 30
|
| 3911 |
|
|
I4: 6 14 22 30 7 15 23 31. */
|
| 3912 |
|
|
|
| 3913 |
|
|
void
|
| 3914 |
|
|
vect_permute_store_chain (VEC(tree,heap) *dr_chain,
|
| 3915 |
|
|
unsigned int length,
|
| 3916 |
|
|
gimple stmt,
|
| 3917 |
|
|
gimple_stmt_iterator *gsi,
|
| 3918 |
|
|
VEC(tree,heap) **result_chain)
|
| 3919 |
|
|
{
|
| 3920 |
|
|
tree perm_dest, vect1, vect2, high, low;
|
| 3921 |
|
|
gimple perm_stmt;
|
| 3922 |
|
|
tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
|
| 3923 |
|
|
tree perm_mask_low, perm_mask_high;
|
| 3924 |
|
|
unsigned int i, n;
|
| 3925 |
|
|
unsigned int j, nelt = TYPE_VECTOR_SUBPARTS (vectype);
|
| 3926 |
|
|
unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
|
| 3927 |
|
|
|
| 3928 |
|
|
*result_chain = VEC_copy (tree, heap, dr_chain);
|
| 3929 |
|
|
|
| 3930 |
|
|
for (i = 0, n = nelt / 2; i < n; i++)
|
| 3931 |
|
|
{
|
| 3932 |
|
|
sel[i * 2] = i;
|
| 3933 |
|
|
sel[i * 2 + 1] = i + nelt;
|
| 3934 |
|
|
}
|
| 3935 |
|
|
perm_mask_high = vect_gen_perm_mask (vectype, sel);
|
| 3936 |
|
|
gcc_assert (perm_mask_high != NULL);
|
| 3937 |
|
|
|
| 3938 |
|
|
for (i = 0; i < nelt; i++)
|
| 3939 |
|
|
sel[i] += nelt / 2;
|
| 3940 |
|
|
perm_mask_low = vect_gen_perm_mask (vectype, sel);
|
| 3941 |
|
|
gcc_assert (perm_mask_low != NULL);
|
| 3942 |
|
|
|
| 3943 |
|
|
for (i = 0, n = exact_log2 (length); i < n; i++)
|
| 3944 |
|
|
{
|
| 3945 |
|
|
for (j = 0; j < length/2; j++)
|
| 3946 |
|
|
{
|
| 3947 |
|
|
vect1 = VEC_index (tree, dr_chain, j);
|
| 3948 |
|
|
vect2 = VEC_index (tree, dr_chain, j+length/2);
|
| 3949 |
|
|
|
| 3950 |
|
|
/* Create interleaving stmt:
|
| 3951 |
|
|
high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1, ...}> */
|
| 3952 |
|
|
perm_dest = create_tmp_var (vectype, "vect_inter_high");
|
| 3953 |
|
|
DECL_GIMPLE_REG_P (perm_dest) = 1;
|
| 3954 |
|
|
add_referenced_var (perm_dest);
|
| 3955 |
|
|
high = make_ssa_name (perm_dest, NULL);
|
| 3956 |
|
|
perm_stmt
|
| 3957 |
|
|
= gimple_build_assign_with_ops3 (VEC_PERM_EXPR, high,
|
| 3958 |
|
|
vect1, vect2, perm_mask_high);
|
| 3959 |
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
| 3960 |
|
|
VEC_replace (tree, *result_chain, 2*j, high);
|
| 3961 |
|
|
|
| 3962 |
|
|
/* Create interleaving stmt:
|
| 3963 |
|
|
low = VEC_PERM_EXPR <vect1, vect2, {nelt/2, nelt*3/2, nelt/2+1,
|
| 3964 |
|
|
nelt*3/2+1, ...}> */
|
| 3965 |
|
|
perm_dest = create_tmp_var (vectype, "vect_inter_low");
|
| 3966 |
|
|
DECL_GIMPLE_REG_P (perm_dest) = 1;
|
| 3967 |
|
|
add_referenced_var (perm_dest);
|
| 3968 |
|
|
low = make_ssa_name (perm_dest, NULL);
|
| 3969 |
|
|
perm_stmt
|
| 3970 |
|
|
= gimple_build_assign_with_ops3 (VEC_PERM_EXPR, low,
|
| 3971 |
|
|
vect1, vect2, perm_mask_low);
|
| 3972 |
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
| 3973 |
|
|
VEC_replace (tree, *result_chain, 2*j+1, low);
|
| 3974 |
|
|
}
|
| 3975 |
|
|
dr_chain = VEC_copy (tree, heap, *result_chain);
|
| 3976 |
|
|
}
|
| 3977 |
|
|
}
|
| 3978 |
|
|
|
| 3979 |
|
|
/* Function vect_setup_realignment
|
| 3980 |
|
|
|
| 3981 |
|
|
This function is called when vectorizing an unaligned load using
|
| 3982 |
|
|
the dr_explicit_realign[_optimized] scheme.
|
| 3983 |
|
|
This function generates the following code at the loop prolog:
|
| 3984 |
|
|
|
| 3985 |
|
|
p = initial_addr;
|
| 3986 |
|
|
x msq_init = *(floor(p)); # prolog load
|
| 3987 |
|
|
realignment_token = call target_builtin;
|
| 3988 |
|
|
loop:
|
| 3989 |
|
|
x msq = phi (msq_init, ---)
|
| 3990 |
|
|
|
| 3991 |
|
|
The stmts marked with x are generated only for the case of
|
| 3992 |
|
|
dr_explicit_realign_optimized.
|
| 3993 |
|
|
|
| 3994 |
|
|
The code above sets up a new (vector) pointer, pointing to the first
|
| 3995 |
|
|
location accessed by STMT, and a "floor-aligned" load using that pointer.
|
| 3996 |
|
|
It also generates code to compute the "realignment-token" (if the relevant
|
| 3997 |
|
|
target hook was defined), and creates a phi-node at the loop-header bb
|
| 3998 |
|
|
whose arguments are the result of the prolog-load (created by this
|
| 3999 |
|
|
function) and the result of a load that takes place in the loop (to be
|
| 4000 |
|
|
created by the caller to this function).
|
| 4001 |
|
|
|
| 4002 |
|
|
For the case of dr_explicit_realign_optimized:
|
| 4003 |
|
|
The caller to this function uses the phi-result (msq) to create the
|
| 4004 |
|
|
realignment code inside the loop, and sets up the missing phi argument,
|
| 4005 |
|
|
as follows:
|
| 4006 |
|
|
loop:
|
| 4007 |
|
|
msq = phi (msq_init, lsq)
|
| 4008 |
|
|
lsq = *(floor(p')); # load in loop
|
| 4009 |
|
|
result = realign_load (msq, lsq, realignment_token);
|
| 4010 |
|
|
|
| 4011 |
|
|
For the case of dr_explicit_realign:
|
| 4012 |
|
|
loop:
|
| 4013 |
|
|
msq = *(floor(p)); # load in loop
|
| 4014 |
|
|
p' = p + (VS-1);
|
| 4015 |
|
|
lsq = *(floor(p')); # load in loop
|
| 4016 |
|
|
result = realign_load (msq, lsq, realignment_token);
|
| 4017 |
|
|
|
| 4018 |
|
|
Input:
|
| 4019 |
|
|
STMT - (scalar) load stmt to be vectorized. This load accesses
|
| 4020 |
|
|
a memory location that may be unaligned.
|
| 4021 |
|
|
BSI - place where new code is to be inserted.
|
| 4022 |
|
|
ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
|
| 4023 |
|
|
is used.
|
| 4024 |
|
|
|
| 4025 |
|
|
Output:
|
| 4026 |
|
|
REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
|
| 4027 |
|
|
target hook, if defined.
|
| 4028 |
|
|
Return value - the result of the loop-header phi node. */
|
| 4029 |
|
|
|
| 4030 |
|
|
tree
|
| 4031 |
|
|
vect_setup_realignment (gimple stmt, gimple_stmt_iterator *gsi,
|
| 4032 |
|
|
tree *realignment_token,
|
| 4033 |
|
|
enum dr_alignment_support alignment_support_scheme,
|
| 4034 |
|
|
tree init_addr,
|
| 4035 |
|
|
struct loop **at_loop)
|
| 4036 |
|
|
{
|
| 4037 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 4038 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
| 4039 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 4040 |
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
|
| 4041 |
|
|
struct loop *loop = NULL;
|
| 4042 |
|
|
edge pe = NULL;
|
| 4043 |
|
|
tree scalar_dest = gimple_assign_lhs (stmt);
|
| 4044 |
|
|
tree vec_dest;
|
| 4045 |
|
|
gimple inc;
|
| 4046 |
|
|
tree ptr;
|
| 4047 |
|
|
tree data_ref;
|
| 4048 |
|
|
gimple new_stmt;
|
| 4049 |
|
|
basic_block new_bb;
|
| 4050 |
|
|
tree msq_init = NULL_TREE;
|
| 4051 |
|
|
tree new_temp;
|
| 4052 |
|
|
gimple phi_stmt;
|
| 4053 |
|
|
tree msq = NULL_TREE;
|
| 4054 |
|
|
gimple_seq stmts = NULL;
|
| 4055 |
|
|
bool inv_p;
|
| 4056 |
|
|
bool compute_in_loop = false;
|
| 4057 |
|
|
bool nested_in_vect_loop = false;
|
| 4058 |
|
|
struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
|
| 4059 |
|
|
struct loop *loop_for_initial_load = NULL;
|
| 4060 |
|
|
|
| 4061 |
|
|
if (loop_vinfo)
|
| 4062 |
|
|
{
|
| 4063 |
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 4064 |
|
|
nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
|
| 4065 |
|
|
}
|
| 4066 |
|
|
|
| 4067 |
|
|
gcc_assert (alignment_support_scheme == dr_explicit_realign
|
| 4068 |
|
|
|| alignment_support_scheme == dr_explicit_realign_optimized);
|
| 4069 |
|
|
|
| 4070 |
|
|
/* We need to generate three things:
|
| 4071 |
|
|
1. the misalignment computation
|
| 4072 |
|
|
2. the extra vector load (for the optimized realignment scheme).
|
| 4073 |
|
|
3. the phi node for the two vectors from which the realignment is
|
| 4074 |
|
|
done (for the optimized realignment scheme). */
|
| 4075 |
|
|
|
| 4076 |
|
|
/* 1. Determine where to generate the misalignment computation.
|
| 4077 |
|
|
|
| 4078 |
|
|
If INIT_ADDR is NULL_TREE, this indicates that the misalignment
|
| 4079 |
|
|
calculation will be generated by this function, outside the loop (in the
|
| 4080 |
|
|
preheader). Otherwise, INIT_ADDR had already been computed for us by the
|
| 4081 |
|
|
caller, inside the loop.
|
| 4082 |
|
|
|
| 4083 |
|
|
Background: If the misalignment remains fixed throughout the iterations of
|
| 4084 |
|
|
the loop, then both realignment schemes are applicable, and also the
|
| 4085 |
|
|
misalignment computation can be done outside LOOP. This is because we are
|
| 4086 |
|
|
vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
|
| 4087 |
|
|
are a multiple of VS (the Vector Size), and therefore the misalignment in
|
| 4088 |
|
|
different vectorized LOOP iterations is always the same.
|
| 4089 |
|
|
The problem arises only if the memory access is in an inner-loop nested
|
| 4090 |
|
|
inside LOOP, which is now being vectorized using outer-loop vectorization.
|
| 4091 |
|
|
This is the only case when the misalignment of the memory access may not
|
| 4092 |
|
|
remain fixed throughout the iterations of the inner-loop (as explained in
|
| 4093 |
|
|
detail in vect_supportable_dr_alignment). In this case, not only is the
|
| 4094 |
|
|
optimized realignment scheme not applicable, but also the misalignment
|
| 4095 |
|
|
computation (and generation of the realignment token that is passed to
|
| 4096 |
|
|
REALIGN_LOAD) have to be done inside the loop.
|
| 4097 |
|
|
|
| 4098 |
|
|
In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
|
| 4099 |
|
|
or not, which in turn determines if the misalignment is computed inside
|
| 4100 |
|
|
the inner-loop, or outside LOOP. */
|
| 4101 |
|
|
|
| 4102 |
|
|
if (init_addr != NULL_TREE || !loop_vinfo)
|
| 4103 |
|
|
{
|
| 4104 |
|
|
compute_in_loop = true;
|
| 4105 |
|
|
gcc_assert (alignment_support_scheme == dr_explicit_realign);
|
| 4106 |
|
|
}
|
| 4107 |
|
|
|
| 4108 |
|
|
|
| 4109 |
|
|
/* 2. Determine where to generate the extra vector load.
|
| 4110 |
|
|
|
| 4111 |
|
|
For the optimized realignment scheme, instead of generating two vector
|
| 4112 |
|
|
loads in each iteration, we generate a single extra vector load in the
|
| 4113 |
|
|
preheader of the loop, and in each iteration reuse the result of the
|
| 4114 |
|
|
vector load from the previous iteration. In case the memory access is in
|
| 4115 |
|
|
an inner-loop nested inside LOOP, which is now being vectorized using
|
| 4116 |
|
|
outer-loop vectorization, we need to determine whether this initial vector
|
| 4117 |
|
|
load should be generated at the preheader of the inner-loop, or can be
|
| 4118 |
|
|
generated at the preheader of LOOP. If the memory access has no evolution
|
| 4119 |
|
|
in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
|
| 4120 |
|
|
to be generated inside LOOP (in the preheader of the inner-loop). */
|
| 4121 |
|
|
|
| 4122 |
|
|
if (nested_in_vect_loop)
|
| 4123 |
|
|
{
|
| 4124 |
|
|
tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
|
| 4125 |
|
|
bool invariant_in_outerloop =
|
| 4126 |
|
|
(tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
|
| 4127 |
|
|
loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
|
| 4128 |
|
|
}
|
| 4129 |
|
|
else
|
| 4130 |
|
|
loop_for_initial_load = loop;
|
| 4131 |
|
|
if (at_loop)
|
| 4132 |
|
|
*at_loop = loop_for_initial_load;
|
| 4133 |
|
|
|
| 4134 |
|
|
if (loop_for_initial_load)
|
| 4135 |
|
|
pe = loop_preheader_edge (loop_for_initial_load);
|
| 4136 |
|
|
|
| 4137 |
|
|
/* 3. For the case of the optimized realignment, create the first vector
|
| 4138 |
|
|
load at the loop preheader. */
|
| 4139 |
|
|
|
| 4140 |
|
|
if (alignment_support_scheme == dr_explicit_realign_optimized)
|
| 4141 |
|
|
{
|
| 4142 |
|
|
/* Create msq_init = *(floor(p1)) in the loop preheader */
|
| 4143 |
|
|
|
| 4144 |
|
|
gcc_assert (!compute_in_loop);
|
| 4145 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
| 4146 |
|
|
ptr = vect_create_data_ref_ptr (stmt, vectype, loop_for_initial_load,
|
| 4147 |
|
|
NULL_TREE, &init_addr, NULL, &inc,
|
| 4148 |
|
|
true, &inv_p);
|
| 4149 |
|
|
new_stmt = gimple_build_assign_with_ops
|
| 4150 |
|
|
(BIT_AND_EXPR, NULL_TREE, ptr,
|
| 4151 |
|
|
build_int_cst (TREE_TYPE (ptr),
|
| 4152 |
|
|
-(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
|
| 4153 |
|
|
new_temp = make_ssa_name (SSA_NAME_VAR (ptr), new_stmt);
|
| 4154 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
| 4155 |
|
|
new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
|
| 4156 |
|
|
gcc_assert (!new_bb);
|
| 4157 |
|
|
data_ref
|
| 4158 |
|
|
= build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp,
|
| 4159 |
|
|
build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0));
|
| 4160 |
|
|
new_stmt = gimple_build_assign (vec_dest, data_ref);
|
| 4161 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
| 4162 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
| 4163 |
|
|
mark_symbols_for_renaming (new_stmt);
|
| 4164 |
|
|
if (pe)
|
| 4165 |
|
|
{
|
| 4166 |
|
|
new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
|
| 4167 |
|
|
gcc_assert (!new_bb);
|
| 4168 |
|
|
}
|
| 4169 |
|
|
else
|
| 4170 |
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
| 4171 |
|
|
|
| 4172 |
|
|
msq_init = gimple_assign_lhs (new_stmt);
|
| 4173 |
|
|
}
|
| 4174 |
|
|
|
| 4175 |
|
|
/* 4. Create realignment token using a target builtin, if available.
|
| 4176 |
|
|
It is done either inside the containing loop, or before LOOP (as
|
| 4177 |
|
|
determined above). */
|
| 4178 |
|
|
|
| 4179 |
|
|
if (targetm.vectorize.builtin_mask_for_load)
|
| 4180 |
|
|
{
|
| 4181 |
|
|
tree builtin_decl;
|
| 4182 |
|
|
|
| 4183 |
|
|
/* Compute INIT_ADDR - the initial addressed accessed by this memref. */
|
| 4184 |
|
|
if (!init_addr)
|
| 4185 |
|
|
{
|
| 4186 |
|
|
/* Generate the INIT_ADDR computation outside LOOP. */
|
| 4187 |
|
|
init_addr = vect_create_addr_base_for_vector_ref (stmt, &stmts,
|
| 4188 |
|
|
NULL_TREE, loop);
|
| 4189 |
|
|
if (loop)
|
| 4190 |
|
|
{
|
| 4191 |
|
|
pe = loop_preheader_edge (loop);
|
| 4192 |
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
|
| 4193 |
|
|
gcc_assert (!new_bb);
|
| 4194 |
|
|
}
|
| 4195 |
|
|
else
|
| 4196 |
|
|
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
| 4197 |
|
|
}
|
| 4198 |
|
|
|
| 4199 |
|
|
builtin_decl = targetm.vectorize.builtin_mask_for_load ();
|
| 4200 |
|
|
new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
|
| 4201 |
|
|
vec_dest =
|
| 4202 |
|
|
vect_create_destination_var (scalar_dest,
|
| 4203 |
|
|
gimple_call_return_type (new_stmt));
|
| 4204 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
| 4205 |
|
|
gimple_call_set_lhs (new_stmt, new_temp);
|
| 4206 |
|
|
|
| 4207 |
|
|
if (compute_in_loop)
|
| 4208 |
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
| 4209 |
|
|
else
|
| 4210 |
|
|
{
|
| 4211 |
|
|
/* Generate the misalignment computation outside LOOP. */
|
| 4212 |
|
|
pe = loop_preheader_edge (loop);
|
| 4213 |
|
|
new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
|
| 4214 |
|
|
gcc_assert (!new_bb);
|
| 4215 |
|
|
}
|
| 4216 |
|
|
|
| 4217 |
|
|
*realignment_token = gimple_call_lhs (new_stmt);
|
| 4218 |
|
|
|
| 4219 |
|
|
/* The result of the CALL_EXPR to this builtin is determined from
|
| 4220 |
|
|
the value of the parameter and no global variables are touched
|
| 4221 |
|
|
which makes the builtin a "const" function. Requiring the
|
| 4222 |
|
|
builtin to have the "const" attribute makes it unnecessary
|
| 4223 |
|
|
to call mark_call_clobbered. */
|
| 4224 |
|
|
gcc_assert (TREE_READONLY (builtin_decl));
|
| 4225 |
|
|
}
|
| 4226 |
|
|
|
| 4227 |
|
|
if (alignment_support_scheme == dr_explicit_realign)
|
| 4228 |
|
|
return msq;
|
| 4229 |
|
|
|
| 4230 |
|
|
gcc_assert (!compute_in_loop);
|
| 4231 |
|
|
gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
|
| 4232 |
|
|
|
| 4233 |
|
|
|
| 4234 |
|
|
/* 5. Create msq = phi <msq_init, lsq> in loop */
|
| 4235 |
|
|
|
| 4236 |
|
|
pe = loop_preheader_edge (containing_loop);
|
| 4237 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
| 4238 |
|
|
msq = make_ssa_name (vec_dest, NULL);
|
| 4239 |
|
|
phi_stmt = create_phi_node (msq, containing_loop->header);
|
| 4240 |
|
|
SSA_NAME_DEF_STMT (msq) = phi_stmt;
|
| 4241 |
|
|
add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
|
| 4242 |
|
|
|
| 4243 |
|
|
return msq;
|
| 4244 |
|
|
}
|
| 4245 |
|
|
|
| 4246 |
|
|
|
| 4247 |
|
|
/* Function vect_strided_load_supported.
|
| 4248 |
|
|
|
| 4249 |
|
|
Returns TRUE if even and odd permutations are supported,
|
| 4250 |
|
|
and FALSE otherwise. */
|
| 4251 |
|
|
|
| 4252 |
|
|
bool
|
| 4253 |
|
|
vect_strided_load_supported (tree vectype, unsigned HOST_WIDE_INT count)
|
| 4254 |
|
|
{
|
| 4255 |
|
|
enum machine_mode mode = TYPE_MODE (vectype);
|
| 4256 |
|
|
|
| 4257 |
|
|
/* vect_permute_load_chain requires the group size to be a power of two. */
|
| 4258 |
|
|
if (exact_log2 (count) == -1)
|
| 4259 |
|
|
{
|
| 4260 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 4261 |
|
|
fprintf (vect_dump, "the size of the group of strided accesses"
|
| 4262 |
|
|
" is not a power of 2");
|
| 4263 |
|
|
return false;
|
| 4264 |
|
|
}
|
| 4265 |
|
|
|
| 4266 |
|
|
/* Check that the permutation is supported. */
|
| 4267 |
|
|
if (VECTOR_MODE_P (mode))
|
| 4268 |
|
|
{
|
| 4269 |
|
|
unsigned int i, nelt = GET_MODE_NUNITS (mode);
|
| 4270 |
|
|
unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
|
| 4271 |
|
|
|
| 4272 |
|
|
for (i = 0; i < nelt; i++)
|
| 4273 |
|
|
sel[i] = i * 2;
|
| 4274 |
|
|
if (can_vec_perm_p (mode, false, sel))
|
| 4275 |
|
|
{
|
| 4276 |
|
|
for (i = 0; i < nelt; i++)
|
| 4277 |
|
|
sel[i] = i * 2 + 1;
|
| 4278 |
|
|
if (can_vec_perm_p (mode, false, sel))
|
| 4279 |
|
|
return true;
|
| 4280 |
|
|
}
|
| 4281 |
|
|
}
|
| 4282 |
|
|
|
| 4283 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 4284 |
|
|
fprintf (vect_dump, "extract even/odd not supported by target");
|
| 4285 |
|
|
return false;
|
| 4286 |
|
|
}
|
| 4287 |
|
|
|
| 4288 |
|
|
/* Return TRUE if vec_load_lanes is available for COUNT vectors of
|
| 4289 |
|
|
type VECTYPE. */
|
| 4290 |
|
|
|
| 4291 |
|
|
bool
|
| 4292 |
|
|
vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
|
| 4293 |
|
|
{
|
| 4294 |
|
|
return vect_lanes_optab_supported_p ("vec_load_lanes",
|
| 4295 |
|
|
vec_load_lanes_optab,
|
| 4296 |
|
|
vectype, count);
|
| 4297 |
|
|
}
|
| 4298 |
|
|
|
| 4299 |
|
|
/* Function vect_permute_load_chain.
|
| 4300 |
|
|
|
| 4301 |
|
|
Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
|
| 4302 |
|
|
a power of 2, generate extract_even/odd stmts to reorder the input data
|
| 4303 |
|
|
correctly. Return the final references for loads in RESULT_CHAIN.
|
| 4304 |
|
|
|
| 4305 |
|
|
E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
|
| 4306 |
|
|
The input is 4 vectors each containing 8 elements. We assign a number to each
|
| 4307 |
|
|
element, the input sequence is:
|
| 4308 |
|
|
|
| 4309 |
|
|
1st vec: 0 1 2 3 4 5 6 7
|
| 4310 |
|
|
2nd vec: 8 9 10 11 12 13 14 15
|
| 4311 |
|
|
3rd vec: 16 17 18 19 20 21 22 23
|
| 4312 |
|
|
4th vec: 24 25 26 27 28 29 30 31
|
| 4313 |
|
|
|
| 4314 |
|
|
The output sequence should be:
|
| 4315 |
|
|
|
| 4316 |
|
|
1st vec: 0 4 8 12 16 20 24 28
|
| 4317 |
|
|
2nd vec: 1 5 9 13 17 21 25 29
|
| 4318 |
|
|
3rd vec: 2 6 10 14 18 22 26 30
|
| 4319 |
|
|
4th vec: 3 7 11 15 19 23 27 31
|
| 4320 |
|
|
|
| 4321 |
|
|
i.e., the first output vector should contain the first elements of each
|
| 4322 |
|
|
interleaving group, etc.
|
| 4323 |
|
|
|
| 4324 |
|
|
We use extract_even/odd instructions to create such output. The input of
|
| 4325 |
|
|
each extract_even/odd operation is two vectors
|
| 4326 |
|
|
1st vec 2nd vec
|
| 4327 |
|
|
|
| 4328 |
|
|
|
| 4329 |
|
|
and the output is the vector of extracted even/odd elements. The output of
|
| 4330 |
|
|
extract_even will be: 0 2 4 6
|
| 4331 |
|
|
and of extract_odd: 1 3 5 7
|
| 4332 |
|
|
|
| 4333 |
|
|
|
| 4334 |
|
|
The permutation is done in log LENGTH stages. In each stage extract_even
|
| 4335 |
|
|
and extract_odd stmts are created for each pair of vectors in DR_CHAIN in
|
| 4336 |
|
|
their order. In our example,
|
| 4337 |
|
|
|
| 4338 |
|
|
E1: extract_even (1st vec, 2nd vec)
|
| 4339 |
|
|
E2: extract_odd (1st vec, 2nd vec)
|
| 4340 |
|
|
E3: extract_even (3rd vec, 4th vec)
|
| 4341 |
|
|
E4: extract_odd (3rd vec, 4th vec)
|
| 4342 |
|
|
|
| 4343 |
|
|
The output for the first stage will be:
|
| 4344 |
|
|
|
| 4345 |
|
|
E1: 0 2 4 6 8 10 12 14
|
| 4346 |
|
|
E2: 1 3 5 7 9 11 13 15
|
| 4347 |
|
|
E3: 16 18 20 22 24 26 28 30
|
| 4348 |
|
|
E4: 17 19 21 23 25 27 29 31
|
| 4349 |
|
|
|
| 4350 |
|
|
In order to proceed and create the correct sequence for the next stage (or
|
| 4351 |
|
|
for the correct output, if the second stage is the last one, as in our
|
| 4352 |
|
|
example), we first put the output of extract_even operation and then the
|
| 4353 |
|
|
output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
|
| 4354 |
|
|
The input for the second stage is:
|
| 4355 |
|
|
|
| 4356 |
|
|
1st vec (E1): 0 2 4 6 8 10 12 14
|
| 4357 |
|
|
2nd vec (E3): 16 18 20 22 24 26 28 30
|
| 4358 |
|
|
3rd vec (E2): 1 3 5 7 9 11 13 15
|
| 4359 |
|
|
4th vec (E4): 17 19 21 23 25 27 29 31
|
| 4360 |
|
|
|
| 4361 |
|
|
The output of the second stage:
|
| 4362 |
|
|
|
| 4363 |
|
|
E1: 0 4 8 12 16 20 24 28
|
| 4364 |
|
|
E2: 2 6 10 14 18 22 26 30
|
| 4365 |
|
|
E3: 1 5 9 13 17 21 25 29
|
| 4366 |
|
|
E4: 3 7 11 15 19 23 27 31
|
| 4367 |
|
|
|
| 4368 |
|
|
And RESULT_CHAIN after reordering:
|
| 4369 |
|
|
|
| 4370 |
|
|
1st vec (E1): 0 4 8 12 16 20 24 28
|
| 4371 |
|
|
2nd vec (E3): 1 5 9 13 17 21 25 29
|
| 4372 |
|
|
3rd vec (E2): 2 6 10 14 18 22 26 30
|
| 4373 |
|
|
4th vec (E4): 3 7 11 15 19 23 27 31. */
|
| 4374 |
|
|
|
| 4375 |
|
|
static void
|
| 4376 |
|
|
vect_permute_load_chain (VEC(tree,heap) *dr_chain,
|
| 4377 |
|
|
unsigned int length,
|
| 4378 |
|
|
gimple stmt,
|
| 4379 |
|
|
gimple_stmt_iterator *gsi,
|
| 4380 |
|
|
VEC(tree,heap) **result_chain)
|
| 4381 |
|
|
{
|
| 4382 |
|
|
tree perm_dest, data_ref, first_vect, second_vect;
|
| 4383 |
|
|
tree perm_mask_even, perm_mask_odd;
|
| 4384 |
|
|
gimple perm_stmt;
|
| 4385 |
|
|
tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
|
| 4386 |
|
|
unsigned int i, j, log_length = exact_log2 (length);
|
| 4387 |
|
|
unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
|
| 4388 |
|
|
unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
|
| 4389 |
|
|
|
| 4390 |
|
|
*result_chain = VEC_copy (tree, heap, dr_chain);
|
| 4391 |
|
|
|
| 4392 |
|
|
for (i = 0; i < nelt; ++i)
|
| 4393 |
|
|
sel[i] = i * 2;
|
| 4394 |
|
|
perm_mask_even = vect_gen_perm_mask (vectype, sel);
|
| 4395 |
|
|
gcc_assert (perm_mask_even != NULL);
|
| 4396 |
|
|
|
| 4397 |
|
|
for (i = 0; i < nelt; ++i)
|
| 4398 |
|
|
sel[i] = i * 2 + 1;
|
| 4399 |
|
|
perm_mask_odd = vect_gen_perm_mask (vectype, sel);
|
| 4400 |
|
|
gcc_assert (perm_mask_odd != NULL);
|
| 4401 |
|
|
|
| 4402 |
|
|
for (i = 0; i < log_length; i++)
|
| 4403 |
|
|
{
|
| 4404 |
|
|
for (j = 0; j < length; j += 2)
|
| 4405 |
|
|
{
|
| 4406 |
|
|
first_vect = VEC_index (tree, dr_chain, j);
|
| 4407 |
|
|
second_vect = VEC_index (tree, dr_chain, j+1);
|
| 4408 |
|
|
|
| 4409 |
|
|
/* data_ref = permute_even (first_data_ref, second_data_ref); */
|
| 4410 |
|
|
perm_dest = create_tmp_var (vectype, "vect_perm_even");
|
| 4411 |
|
|
DECL_GIMPLE_REG_P (perm_dest) = 1;
|
| 4412 |
|
|
add_referenced_var (perm_dest);
|
| 4413 |
|
|
|
| 4414 |
|
|
perm_stmt = gimple_build_assign_with_ops3 (VEC_PERM_EXPR, perm_dest,
|
| 4415 |
|
|
first_vect, second_vect,
|
| 4416 |
|
|
perm_mask_even);
|
| 4417 |
|
|
|
| 4418 |
|
|
data_ref = make_ssa_name (perm_dest, perm_stmt);
|
| 4419 |
|
|
gimple_assign_set_lhs (perm_stmt, data_ref);
|
| 4420 |
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
| 4421 |
|
|
mark_symbols_for_renaming (perm_stmt);
|
| 4422 |
|
|
|
| 4423 |
|
|
VEC_replace (tree, *result_chain, j/2, data_ref);
|
| 4424 |
|
|
|
| 4425 |
|
|
/* data_ref = permute_odd (first_data_ref, second_data_ref); */
|
| 4426 |
|
|
perm_dest = create_tmp_var (vectype, "vect_perm_odd");
|
| 4427 |
|
|
DECL_GIMPLE_REG_P (perm_dest) = 1;
|
| 4428 |
|
|
add_referenced_var (perm_dest);
|
| 4429 |
|
|
|
| 4430 |
|
|
perm_stmt = gimple_build_assign_with_ops3 (VEC_PERM_EXPR, perm_dest,
|
| 4431 |
|
|
first_vect, second_vect,
|
| 4432 |
|
|
perm_mask_odd);
|
| 4433 |
|
|
|
| 4434 |
|
|
data_ref = make_ssa_name (perm_dest, perm_stmt);
|
| 4435 |
|
|
gimple_assign_set_lhs (perm_stmt, data_ref);
|
| 4436 |
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
| 4437 |
|
|
mark_symbols_for_renaming (perm_stmt);
|
| 4438 |
|
|
|
| 4439 |
|
|
VEC_replace (tree, *result_chain, j/2+length/2, data_ref);
|
| 4440 |
|
|
}
|
| 4441 |
|
|
dr_chain = VEC_copy (tree, heap, *result_chain);
|
| 4442 |
|
|
}
|
| 4443 |
|
|
}
|
| 4444 |
|
|
|
| 4445 |
|
|
|
| 4446 |
|
|
/* Function vect_transform_strided_load.
|
| 4447 |
|
|
|
| 4448 |
|
|
Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
|
| 4449 |
|
|
to perform their permutation and ascribe the result vectorized statements to
|
| 4450 |
|
|
the scalar statements.
|
| 4451 |
|
|
*/
|
| 4452 |
|
|
|
| 4453 |
|
|
void
|
| 4454 |
|
|
vect_transform_strided_load (gimple stmt, VEC(tree,heap) *dr_chain, int size,
|
| 4455 |
|
|
gimple_stmt_iterator *gsi)
|
| 4456 |
|
|
{
|
| 4457 |
|
|
VEC(tree,heap) *result_chain = NULL;
|
| 4458 |
|
|
|
| 4459 |
|
|
/* DR_CHAIN contains input data-refs that are a part of the interleaving.
|
| 4460 |
|
|
RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
|
| 4461 |
|
|
vectors, that are ready for vector computation. */
|
| 4462 |
|
|
result_chain = VEC_alloc (tree, heap, size);
|
| 4463 |
|
|
vect_permute_load_chain (dr_chain, size, stmt, gsi, &result_chain);
|
| 4464 |
|
|
vect_record_strided_load_vectors (stmt, result_chain);
|
| 4465 |
|
|
VEC_free (tree, heap, result_chain);
|
| 4466 |
|
|
}
|
| 4467 |
|
|
|
| 4468 |
|
|
/* RESULT_CHAIN contains the output of a group of strided loads that were
|
| 4469 |
|
|
generated as part of the vectorization of STMT. Assign the statement
|
| 4470 |
|
|
for each vector to the associated scalar statement. */
|
| 4471 |
|
|
|
| 4472 |
|
|
void
|
| 4473 |
|
|
vect_record_strided_load_vectors (gimple stmt, VEC(tree,heap) *result_chain)
|
| 4474 |
|
|
{
|
| 4475 |
|
|
gimple first_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt));
|
| 4476 |
|
|
gimple next_stmt, new_stmt;
|
| 4477 |
|
|
unsigned int i, gap_count;
|
| 4478 |
|
|
tree tmp_data_ref;
|
| 4479 |
|
|
|
| 4480 |
|
|
/* Put a permuted data-ref in the VECTORIZED_STMT field.
|
| 4481 |
|
|
Since we scan the chain starting from it's first node, their order
|
| 4482 |
|
|
corresponds the order of data-refs in RESULT_CHAIN. */
|
| 4483 |
|
|
next_stmt = first_stmt;
|
| 4484 |
|
|
gap_count = 1;
|
| 4485 |
|
|
FOR_EACH_VEC_ELT (tree, result_chain, i, tmp_data_ref)
|
| 4486 |
|
|
{
|
| 4487 |
|
|
if (!next_stmt)
|
| 4488 |
|
|
break;
|
| 4489 |
|
|
|
| 4490 |
|
|
/* Skip the gaps. Loads created for the gaps will be removed by dead
|
| 4491 |
|
|
code elimination pass later. No need to check for the first stmt in
|
| 4492 |
|
|
the group, since it always exists.
|
| 4493 |
|
|
GROUP_GAP is the number of steps in elements from the previous
|
| 4494 |
|
|
access (if there is no gap GROUP_GAP is 1). We skip loads that
|
| 4495 |
|
|
correspond to the gaps. */
|
| 4496 |
|
|
if (next_stmt != first_stmt
|
| 4497 |
|
|
&& gap_count < GROUP_GAP (vinfo_for_stmt (next_stmt)))
|
| 4498 |
|
|
{
|
| 4499 |
|
|
gap_count++;
|
| 4500 |
|
|
continue;
|
| 4501 |
|
|
}
|
| 4502 |
|
|
|
| 4503 |
|
|
while (next_stmt)
|
| 4504 |
|
|
{
|
| 4505 |
|
|
new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
|
| 4506 |
|
|
/* We assume that if VEC_STMT is not NULL, this is a case of multiple
|
| 4507 |
|
|
copies, and we put the new vector statement in the first available
|
| 4508 |
|
|
RELATED_STMT. */
|
| 4509 |
|
|
if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)))
|
| 4510 |
|
|
STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)) = new_stmt;
|
| 4511 |
|
|
else
|
| 4512 |
|
|
{
|
| 4513 |
|
|
if (!GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
|
| 4514 |
|
|
{
|
| 4515 |
|
|
gimple prev_stmt =
|
| 4516 |
|
|
STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt));
|
| 4517 |
|
|
gimple rel_stmt =
|
| 4518 |
|
|
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt));
|
| 4519 |
|
|
while (rel_stmt)
|
| 4520 |
|
|
{
|
| 4521 |
|
|
prev_stmt = rel_stmt;
|
| 4522 |
|
|
rel_stmt =
|
| 4523 |
|
|
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt));
|
| 4524 |
|
|
}
|
| 4525 |
|
|
|
| 4526 |
|
|
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)) =
|
| 4527 |
|
|
new_stmt;
|
| 4528 |
|
|
}
|
| 4529 |
|
|
}
|
| 4530 |
|
|
|
| 4531 |
|
|
next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
|
| 4532 |
|
|
gap_count = 1;
|
| 4533 |
|
|
/* If NEXT_STMT accesses the same DR as the previous statement,
|
| 4534 |
|
|
put the same TMP_DATA_REF as its vectorized statement; otherwise
|
| 4535 |
|
|
get the next data-ref from RESULT_CHAIN. */
|
| 4536 |
|
|
if (!next_stmt || !GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
|
| 4537 |
|
|
break;
|
| 4538 |
|
|
}
|
| 4539 |
|
|
}
|
| 4540 |
|
|
}
|
| 4541 |
|
|
|
| 4542 |
|
|
/* Function vect_force_dr_alignment_p.
|
| 4543 |
|
|
|
| 4544 |
|
|
Returns whether the alignment of a DECL can be forced to be aligned
|
| 4545 |
|
|
on ALIGNMENT bit boundary. */
|
| 4546 |
|
|
|
| 4547 |
|
|
bool
|
| 4548 |
|
|
vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
|
| 4549 |
|
|
{
|
| 4550 |
|
|
if (TREE_CODE (decl) != VAR_DECL)
|
| 4551 |
|
|
return false;
|
| 4552 |
|
|
|
| 4553 |
|
|
if (DECL_EXTERNAL (decl))
|
| 4554 |
|
|
return false;
|
| 4555 |
|
|
|
| 4556 |
|
|
if (TREE_ASM_WRITTEN (decl))
|
| 4557 |
|
|
return false;
|
| 4558 |
|
|
|
| 4559 |
|
|
if (TREE_STATIC (decl))
|
| 4560 |
|
|
return (alignment <= MAX_OFILE_ALIGNMENT);
|
| 4561 |
|
|
else
|
| 4562 |
|
|
return (alignment <= MAX_STACK_ALIGNMENT);
|
| 4563 |
|
|
}
|
| 4564 |
|
|
|
| 4565 |
|
|
|
| 4566 |
|
|
/* Return whether the data reference DR is supported with respect to its
|
| 4567 |
|
|
alignment.
|
| 4568 |
|
|
If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even
|
| 4569 |
|
|
it is aligned, i.e., check if it is possible to vectorize it with different
|
| 4570 |
|
|
alignment. */
|
| 4571 |
|
|
|
| 4572 |
|
|
enum dr_alignment_support
|
| 4573 |
|
|
vect_supportable_dr_alignment (struct data_reference *dr,
|
| 4574 |
|
|
bool check_aligned_accesses)
|
| 4575 |
|
|
{
|
| 4576 |
|
|
gimple stmt = DR_STMT (dr);
|
| 4577 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 4578 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
| 4579 |
|
|
enum machine_mode mode = TYPE_MODE (vectype);
|
| 4580 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 4581 |
|
|
struct loop *vect_loop = NULL;
|
| 4582 |
|
|
bool nested_in_vect_loop = false;
|
| 4583 |
|
|
|
| 4584 |
|
|
if (aligned_access_p (dr) && !check_aligned_accesses)
|
| 4585 |
|
|
return dr_aligned;
|
| 4586 |
|
|
|
| 4587 |
|
|
if (loop_vinfo)
|
| 4588 |
|
|
{
|
| 4589 |
|
|
vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 4590 |
|
|
nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
|
| 4591 |
|
|
}
|
| 4592 |
|
|
|
| 4593 |
|
|
/* Possibly unaligned access. */
|
| 4594 |
|
|
|
| 4595 |
|
|
/* We can choose between using the implicit realignment scheme (generating
|
| 4596 |
|
|
a misaligned_move stmt) and the explicit realignment scheme (generating
|
| 4597 |
|
|
aligned loads with a REALIGN_LOAD). There are two variants to the
|
| 4598 |
|
|
explicit realignment scheme: optimized, and unoptimized.
|
| 4599 |
|
|
We can optimize the realignment only if the step between consecutive
|
| 4600 |
|
|
vector loads is equal to the vector size. Since the vector memory
|
| 4601 |
|
|
accesses advance in steps of VS (Vector Size) in the vectorized loop, it
|
| 4602 |
|
|
is guaranteed that the misalignment amount remains the same throughout the
|
| 4603 |
|
|
execution of the vectorized loop. Therefore, we can create the
|
| 4604 |
|
|
"realignment token" (the permutation mask that is passed to REALIGN_LOAD)
|
| 4605 |
|
|
at the loop preheader.
|
| 4606 |
|
|
|
| 4607 |
|
|
However, in the case of outer-loop vectorization, when vectorizing a
|
| 4608 |
|
|
memory access in the inner-loop nested within the LOOP that is now being
|
| 4609 |
|
|
vectorized, while it is guaranteed that the misalignment of the
|
| 4610 |
|
|
vectorized memory access will remain the same in different outer-loop
|
| 4611 |
|
|
iterations, it is *not* guaranteed that is will remain the same throughout
|
| 4612 |
|
|
the execution of the inner-loop. This is because the inner-loop advances
|
| 4613 |
|
|
with the original scalar step (and not in steps of VS). If the inner-loop
|
| 4614 |
|
|
step happens to be a multiple of VS, then the misalignment remains fixed
|
| 4615 |
|
|
and we can use the optimized realignment scheme. For example:
|
| 4616 |
|
|
|
| 4617 |
|
|
for (i=0; i<N; i++)
|
| 4618 |
|
|
for (j=0; j<M; j++)
|
| 4619 |
|
|
s += a[i+j];
|
| 4620 |
|
|
|
| 4621 |
|
|
When vectorizing the i-loop in the above example, the step between
|
| 4622 |
|
|
consecutive vector loads is 1, and so the misalignment does not remain
|
| 4623 |
|
|
fixed across the execution of the inner-loop, and the realignment cannot
|
| 4624 |
|
|
be optimized (as illustrated in the following pseudo vectorized loop):
|
| 4625 |
|
|
|
| 4626 |
|
|
for (i=0; i<N; i+=4)
|
| 4627 |
|
|
for (j=0; j<M; j++){
|
| 4628 |
|
|
vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
|
| 4629 |
|
|
// when j is {0,1,2,3,4,5,6,7,...} respectively.
|
| 4630 |
|
|
// (assuming that we start from an aligned address).
|
| 4631 |
|
|
}
|
| 4632 |
|
|
|
| 4633 |
|
|
We therefore have to use the unoptimized realignment scheme:
|
| 4634 |
|
|
|
| 4635 |
|
|
for (i=0; i<N; i+=4)
|
| 4636 |
|
|
for (j=k; j<M; j+=4)
|
| 4637 |
|
|
vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
|
| 4638 |
|
|
// that the misalignment of the initial address is
|
| 4639 |
|
|
// 0).
|
| 4640 |
|
|
|
| 4641 |
|
|
The loop can then be vectorized as follows:
|
| 4642 |
|
|
|
| 4643 |
|
|
for (k=0; k<4; k++){
|
| 4644 |
|
|
rt = get_realignment_token (&vp[k]);
|
| 4645 |
|
|
for (i=0; i<N; i+=4){
|
| 4646 |
|
|
v1 = vp[i+k];
|
| 4647 |
|
|
for (j=k; j<M; j+=4){
|
| 4648 |
|
|
v2 = vp[i+j+VS-1];
|
| 4649 |
|
|
va = REALIGN_LOAD <v1,v2,rt>;
|
| 4650 |
|
|
vs += va;
|
| 4651 |
|
|
v1 = v2;
|
| 4652 |
|
|
}
|
| 4653 |
|
|
}
|
| 4654 |
|
|
} */
|
| 4655 |
|
|
|
| 4656 |
|
|
if (DR_IS_READ (dr))
|
| 4657 |
|
|
{
|
| 4658 |
|
|
bool is_packed = false;
|
| 4659 |
|
|
tree type = (TREE_TYPE (DR_REF (dr)));
|
| 4660 |
|
|
|
| 4661 |
|
|
if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing
|
| 4662 |
|
|
&& (!targetm.vectorize.builtin_mask_for_load
|
| 4663 |
|
|
|| targetm.vectorize.builtin_mask_for_load ()))
|
| 4664 |
|
|
{
|
| 4665 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
| 4666 |
|
|
if ((nested_in_vect_loop
|
| 4667 |
|
|
&& (TREE_INT_CST_LOW (DR_STEP (dr))
|
| 4668 |
|
|
!= GET_MODE_SIZE (TYPE_MODE (vectype))))
|
| 4669 |
|
|
|| !loop_vinfo)
|
| 4670 |
|
|
return dr_explicit_realign;
|
| 4671 |
|
|
else
|
| 4672 |
|
|
return dr_explicit_realign_optimized;
|
| 4673 |
|
|
}
|
| 4674 |
|
|
if (!known_alignment_for_access_p (dr))
|
| 4675 |
|
|
{
|
| 4676 |
|
|
tree ba = DR_BASE_OBJECT (dr);
|
| 4677 |
|
|
|
| 4678 |
|
|
if (ba)
|
| 4679 |
|
|
is_packed = contains_packed_reference (ba);
|
| 4680 |
|
|
}
|
| 4681 |
|
|
|
| 4682 |
|
|
if (targetm.vectorize.
|
| 4683 |
|
|
support_vector_misalignment (mode, type,
|
| 4684 |
|
|
DR_MISALIGNMENT (dr), is_packed))
|
| 4685 |
|
|
/* Can't software pipeline the loads, but can at least do them. */
|
| 4686 |
|
|
return dr_unaligned_supported;
|
| 4687 |
|
|
}
|
| 4688 |
|
|
else
|
| 4689 |
|
|
{
|
| 4690 |
|
|
bool is_packed = false;
|
| 4691 |
|
|
tree type = (TREE_TYPE (DR_REF (dr)));
|
| 4692 |
|
|
|
| 4693 |
|
|
if (!known_alignment_for_access_p (dr))
|
| 4694 |
|
|
{
|
| 4695 |
|
|
tree ba = DR_BASE_OBJECT (dr);
|
| 4696 |
|
|
|
| 4697 |
|
|
if (ba)
|
| 4698 |
|
|
is_packed = contains_packed_reference (ba);
|
| 4699 |
|
|
}
|
| 4700 |
|
|
|
| 4701 |
|
|
if (targetm.vectorize.
|
| 4702 |
|
|
support_vector_misalignment (mode, type,
|
| 4703 |
|
|
DR_MISALIGNMENT (dr), is_packed))
|
| 4704 |
|
|
return dr_unaligned_supported;
|
| 4705 |
|
|
}
|
| 4706 |
|
|
|
| 4707 |
|
|
/* Unsupported. */
|
| 4708 |
|
|
return dr_unaligned_unsupported;
|
| 4709 |
|
|
}
|