1 |
684 |
jeremybenn |
/* Data References Analysis and Manipulation Utilities for Vectorization.
|
2 |
|
|
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Dorit Naishlos <dorit@il.ibm.com>
|
5 |
|
|
and Ira Rosen <irar@il.ibm.com>
|
6 |
|
|
|
7 |
|
|
This file is part of GCC.
|
8 |
|
|
|
9 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
10 |
|
|
the terms of the GNU General Public License as published by the Free
|
11 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
12 |
|
|
version.
|
13 |
|
|
|
14 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
15 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
16 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
17 |
|
|
for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with GCC; see the file COPYING3. If not see
|
21 |
|
|
<http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
#include "config.h"
|
24 |
|
|
#include "system.h"
|
25 |
|
|
#include "coretypes.h"
|
26 |
|
|
#include "tm.h"
|
27 |
|
|
#include "ggc.h"
|
28 |
|
|
#include "tree.h"
|
29 |
|
|
#include "tm_p.h"
|
30 |
|
|
#include "target.h"
|
31 |
|
|
#include "basic-block.h"
|
32 |
|
|
#include "tree-pretty-print.h"
|
33 |
|
|
#include "gimple-pretty-print.h"
|
34 |
|
|
#include "tree-flow.h"
|
35 |
|
|
#include "tree-dump.h"
|
36 |
|
|
#include "cfgloop.h"
|
37 |
|
|
#include "tree-chrec.h"
|
38 |
|
|
#include "tree-scalar-evolution.h"
|
39 |
|
|
#include "tree-vectorizer.h"
|
40 |
|
|
#include "diagnostic-core.h"
|
41 |
|
|
|
42 |
|
|
/* Need to include rtl.h, expr.h, etc. for optabs. */
|
43 |
|
|
#include "expr.h"
|
44 |
|
|
#include "optabs.h"
|
45 |
|
|
|
46 |
|
|
/* Return true if load- or store-lanes optab OPTAB is implemented for
|
47 |
|
|
COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */
|
48 |
|
|
|
49 |
|
|
static bool
|
50 |
|
|
vect_lanes_optab_supported_p (const char *name, convert_optab optab,
|
51 |
|
|
tree vectype, unsigned HOST_WIDE_INT count)
|
52 |
|
|
{
|
53 |
|
|
enum machine_mode mode, array_mode;
|
54 |
|
|
bool limit_p;
|
55 |
|
|
|
56 |
|
|
mode = TYPE_MODE (vectype);
|
57 |
|
|
limit_p = !targetm.array_mode_supported_p (mode, count);
|
58 |
|
|
array_mode = mode_for_size (count * GET_MODE_BITSIZE (mode),
|
59 |
|
|
MODE_INT, limit_p);
|
60 |
|
|
|
61 |
|
|
if (array_mode == BLKmode)
|
62 |
|
|
{
|
63 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
64 |
|
|
fprintf (vect_dump, "no array mode for %s[" HOST_WIDE_INT_PRINT_DEC "]",
|
65 |
|
|
GET_MODE_NAME (mode), count);
|
66 |
|
|
return false;
|
67 |
|
|
}
|
68 |
|
|
|
69 |
|
|
if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing)
|
70 |
|
|
{
|
71 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
72 |
|
|
fprintf (vect_dump, "cannot use %s<%s><%s>",
|
73 |
|
|
name, GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
|
74 |
|
|
return false;
|
75 |
|
|
}
|
76 |
|
|
|
77 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
78 |
|
|
fprintf (vect_dump, "can use %s<%s><%s>",
|
79 |
|
|
name, GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
|
80 |
|
|
|
81 |
|
|
return true;
|
82 |
|
|
}
|
83 |
|
|
|
84 |
|
|
|
85 |
|
|
/* Return the smallest scalar part of STMT.
|
86 |
|
|
This is used to determine the vectype of the stmt. We generally set the
|
87 |
|
|
vectype according to the type of the result (lhs). For stmts whose
|
88 |
|
|
result-type is different than the type of the arguments (e.g., demotion,
|
89 |
|
|
promotion), vectype will be reset appropriately (later). Note that we have
|
90 |
|
|
to visit the smallest datatype in this function, because that determines the
|
91 |
|
|
VF. If the smallest datatype in the loop is present only as the rhs of a
|
92 |
|
|
promotion operation - we'd miss it.
|
93 |
|
|
Such a case, where a variable of this datatype does not appear in the lhs
|
94 |
|
|
anywhere in the loop, can only occur if it's an invariant: e.g.:
|
95 |
|
|
'int_x = (int) short_inv', which we'd expect to have been optimized away by
|
96 |
|
|
invariant motion. However, we cannot rely on invariant motion to always
|
97 |
|
|
take invariants out of the loop, and so in the case of promotion we also
|
98 |
|
|
have to check the rhs.
|
99 |
|
|
LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
|
100 |
|
|
types. */
|
101 |
|
|
|
102 |
|
|
tree
|
103 |
|
|
vect_get_smallest_scalar_type (gimple stmt, HOST_WIDE_INT *lhs_size_unit,
|
104 |
|
|
HOST_WIDE_INT *rhs_size_unit)
|
105 |
|
|
{
|
106 |
|
|
tree scalar_type = gimple_expr_type (stmt);
|
107 |
|
|
HOST_WIDE_INT lhs, rhs;
|
108 |
|
|
|
109 |
|
|
lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
|
110 |
|
|
|
111 |
|
|
if (is_gimple_assign (stmt)
|
112 |
|
|
&& (gimple_assign_cast_p (stmt)
|
113 |
|
|
|| gimple_assign_rhs_code (stmt) == WIDEN_MULT_EXPR
|
114 |
|
|
|| gimple_assign_rhs_code (stmt) == FLOAT_EXPR))
|
115 |
|
|
{
|
116 |
|
|
tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
|
117 |
|
|
|
118 |
|
|
rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
|
119 |
|
|
if (rhs < lhs)
|
120 |
|
|
scalar_type = rhs_type;
|
121 |
|
|
}
|
122 |
|
|
|
123 |
|
|
*lhs_size_unit = lhs;
|
124 |
|
|
*rhs_size_unit = rhs;
|
125 |
|
|
return scalar_type;
|
126 |
|
|
}
|
127 |
|
|
|
128 |
|
|
|
129 |
|
|
/* Find the place of the data-ref in STMT in the interleaving chain that starts
|
130 |
|
|
from FIRST_STMT. Return -1 if the data-ref is not a part of the chain. */
|
131 |
|
|
|
132 |
|
|
int
|
133 |
|
|
vect_get_place_in_interleaving_chain (gimple stmt, gimple first_stmt)
|
134 |
|
|
{
|
135 |
|
|
gimple next_stmt = first_stmt;
|
136 |
|
|
int result = 0;
|
137 |
|
|
|
138 |
|
|
if (first_stmt != GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
|
139 |
|
|
return -1;
|
140 |
|
|
|
141 |
|
|
while (next_stmt && next_stmt != stmt)
|
142 |
|
|
{
|
143 |
|
|
result++;
|
144 |
|
|
next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
|
145 |
|
|
}
|
146 |
|
|
|
147 |
|
|
if (next_stmt)
|
148 |
|
|
return result;
|
149 |
|
|
else
|
150 |
|
|
return -1;
|
151 |
|
|
}
|
152 |
|
|
|
153 |
|
|
|
154 |
|
|
/* Function vect_insert_into_interleaving_chain.
|
155 |
|
|
|
156 |
|
|
Insert DRA into the interleaving chain of DRB according to DRA's INIT. */
|
157 |
|
|
|
158 |
|
|
static void
|
159 |
|
|
vect_insert_into_interleaving_chain (struct data_reference *dra,
|
160 |
|
|
struct data_reference *drb)
|
161 |
|
|
{
|
162 |
|
|
gimple prev, next;
|
163 |
|
|
tree next_init;
|
164 |
|
|
stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
|
165 |
|
|
stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
|
166 |
|
|
|
167 |
|
|
prev = GROUP_FIRST_ELEMENT (stmtinfo_b);
|
168 |
|
|
next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev));
|
169 |
|
|
while (next)
|
170 |
|
|
{
|
171 |
|
|
next_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
|
172 |
|
|
if (tree_int_cst_compare (next_init, DR_INIT (dra)) > 0)
|
173 |
|
|
{
|
174 |
|
|
/* Insert here. */
|
175 |
|
|
GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev)) = DR_STMT (dra);
|
176 |
|
|
GROUP_NEXT_ELEMENT (stmtinfo_a) = next;
|
177 |
|
|
return;
|
178 |
|
|
}
|
179 |
|
|
prev = next;
|
180 |
|
|
next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev));
|
181 |
|
|
}
|
182 |
|
|
|
183 |
|
|
/* We got to the end of the list. Insert here. */
|
184 |
|
|
GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev)) = DR_STMT (dra);
|
185 |
|
|
GROUP_NEXT_ELEMENT (stmtinfo_a) = NULL;
|
186 |
|
|
}
|
187 |
|
|
|
188 |
|
|
|
189 |
|
|
/* Function vect_update_interleaving_chain.
|
190 |
|
|
|
191 |
|
|
For two data-refs DRA and DRB that are a part of a chain interleaved data
|
192 |
|
|
accesses, update the interleaving chain. DRB's INIT is smaller than DRA's.
|
193 |
|
|
|
194 |
|
|
There are four possible cases:
|
195 |
|
|
1. New stmts - both DRA and DRB are not a part of any chain:
|
196 |
|
|
FIRST_DR = DRB
|
197 |
|
|
NEXT_DR (DRB) = DRA
|
198 |
|
|
2. DRB is a part of a chain and DRA is not:
|
199 |
|
|
no need to update FIRST_DR
|
200 |
|
|
no need to insert DRB
|
201 |
|
|
insert DRA according to init
|
202 |
|
|
3. DRA is a part of a chain and DRB is not:
|
203 |
|
|
if (init of FIRST_DR > init of DRB)
|
204 |
|
|
FIRST_DR = DRB
|
205 |
|
|
NEXT(FIRST_DR) = previous FIRST_DR
|
206 |
|
|
else
|
207 |
|
|
insert DRB according to its init
|
208 |
|
|
4. both DRA and DRB are in some interleaving chains:
|
209 |
|
|
choose the chain with the smallest init of FIRST_DR
|
210 |
|
|
insert the nodes of the second chain into the first one. */
|
211 |
|
|
|
212 |
|
|
static void
|
213 |
|
|
vect_update_interleaving_chain (struct data_reference *drb,
|
214 |
|
|
struct data_reference *dra)
|
215 |
|
|
{
|
216 |
|
|
stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
|
217 |
|
|
stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
|
218 |
|
|
tree next_init, init_dra_chain, init_drb_chain;
|
219 |
|
|
gimple first_a, first_b;
|
220 |
|
|
tree node_init;
|
221 |
|
|
gimple node, prev, next, first_stmt;
|
222 |
|
|
|
223 |
|
|
/* 1. New stmts - both DRA and DRB are not a part of any chain. */
|
224 |
|
|
if (!GROUP_FIRST_ELEMENT (stmtinfo_a) && !GROUP_FIRST_ELEMENT (stmtinfo_b))
|
225 |
|
|
{
|
226 |
|
|
GROUP_FIRST_ELEMENT (stmtinfo_a) = DR_STMT (drb);
|
227 |
|
|
GROUP_FIRST_ELEMENT (stmtinfo_b) = DR_STMT (drb);
|
228 |
|
|
GROUP_NEXT_ELEMENT (stmtinfo_b) = DR_STMT (dra);
|
229 |
|
|
return;
|
230 |
|
|
}
|
231 |
|
|
|
232 |
|
|
/* 2. DRB is a part of a chain and DRA is not. */
|
233 |
|
|
if (!GROUP_FIRST_ELEMENT (stmtinfo_a) && GROUP_FIRST_ELEMENT (stmtinfo_b))
|
234 |
|
|
{
|
235 |
|
|
GROUP_FIRST_ELEMENT (stmtinfo_a) = GROUP_FIRST_ELEMENT (stmtinfo_b);
|
236 |
|
|
/* Insert DRA into the chain of DRB. */
|
237 |
|
|
vect_insert_into_interleaving_chain (dra, drb);
|
238 |
|
|
return;
|
239 |
|
|
}
|
240 |
|
|
|
241 |
|
|
/* 3. DRA is a part of a chain and DRB is not. */
|
242 |
|
|
if (GROUP_FIRST_ELEMENT (stmtinfo_a) && !GROUP_FIRST_ELEMENT (stmtinfo_b))
|
243 |
|
|
{
|
244 |
|
|
gimple old_first_stmt = GROUP_FIRST_ELEMENT (stmtinfo_a);
|
245 |
|
|
tree init_old = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (
|
246 |
|
|
old_first_stmt)));
|
247 |
|
|
gimple tmp;
|
248 |
|
|
|
249 |
|
|
if (tree_int_cst_compare (init_old, DR_INIT (drb)) > 0)
|
250 |
|
|
{
|
251 |
|
|
/* DRB's init is smaller than the init of the stmt previously marked
|
252 |
|
|
as the first stmt of the interleaving chain of DRA. Therefore, we
|
253 |
|
|
update FIRST_STMT and put DRB in the head of the list. */
|
254 |
|
|
GROUP_FIRST_ELEMENT (stmtinfo_b) = DR_STMT (drb);
|
255 |
|
|
GROUP_NEXT_ELEMENT (stmtinfo_b) = old_first_stmt;
|
256 |
|
|
|
257 |
|
|
/* Update all the stmts in the list to point to the new FIRST_STMT. */
|
258 |
|
|
tmp = old_first_stmt;
|
259 |
|
|
while (tmp)
|
260 |
|
|
{
|
261 |
|
|
GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) = DR_STMT (drb);
|
262 |
|
|
tmp = GROUP_NEXT_ELEMENT (vinfo_for_stmt (tmp));
|
263 |
|
|
}
|
264 |
|
|
}
|
265 |
|
|
else
|
266 |
|
|
{
|
267 |
|
|
/* Insert DRB in the list of DRA. */
|
268 |
|
|
vect_insert_into_interleaving_chain (drb, dra);
|
269 |
|
|
GROUP_FIRST_ELEMENT (stmtinfo_b) = GROUP_FIRST_ELEMENT (stmtinfo_a);
|
270 |
|
|
}
|
271 |
|
|
return;
|
272 |
|
|
}
|
273 |
|
|
|
274 |
|
|
/* 4. both DRA and DRB are in some interleaving chains. */
|
275 |
|
|
first_a = GROUP_FIRST_ELEMENT (stmtinfo_a);
|
276 |
|
|
first_b = GROUP_FIRST_ELEMENT (stmtinfo_b);
|
277 |
|
|
if (first_a == first_b)
|
278 |
|
|
return;
|
279 |
|
|
init_dra_chain = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (first_a)));
|
280 |
|
|
init_drb_chain = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (first_b)));
|
281 |
|
|
|
282 |
|
|
if (tree_int_cst_compare (init_dra_chain, init_drb_chain) > 0)
|
283 |
|
|
{
|
284 |
|
|
/* Insert the nodes of DRA chain into the DRB chain.
|
285 |
|
|
After inserting a node, continue from this node of the DRB chain (don't
|
286 |
|
|
start from the beginning. */
|
287 |
|
|
node = GROUP_FIRST_ELEMENT (stmtinfo_a);
|
288 |
|
|
prev = GROUP_FIRST_ELEMENT (stmtinfo_b);
|
289 |
|
|
first_stmt = first_b;
|
290 |
|
|
}
|
291 |
|
|
else
|
292 |
|
|
{
|
293 |
|
|
/* Insert the nodes of DRB chain into the DRA chain.
|
294 |
|
|
After inserting a node, continue from this node of the DRA chain (don't
|
295 |
|
|
start from the beginning. */
|
296 |
|
|
node = GROUP_FIRST_ELEMENT (stmtinfo_b);
|
297 |
|
|
prev = GROUP_FIRST_ELEMENT (stmtinfo_a);
|
298 |
|
|
first_stmt = first_a;
|
299 |
|
|
}
|
300 |
|
|
|
301 |
|
|
while (node)
|
302 |
|
|
{
|
303 |
|
|
node_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (node)));
|
304 |
|
|
next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev));
|
305 |
|
|
while (next)
|
306 |
|
|
{
|
307 |
|
|
next_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
|
308 |
|
|
if (tree_int_cst_compare (next_init, node_init) > 0)
|
309 |
|
|
{
|
310 |
|
|
/* Insert here. */
|
311 |
|
|
GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev)) = node;
|
312 |
|
|
GROUP_NEXT_ELEMENT (vinfo_for_stmt (node)) = next;
|
313 |
|
|
prev = node;
|
314 |
|
|
break;
|
315 |
|
|
}
|
316 |
|
|
prev = next;
|
317 |
|
|
next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev));
|
318 |
|
|
}
|
319 |
|
|
if (!next)
|
320 |
|
|
{
|
321 |
|
|
/* We got to the end of the list. Insert here. */
|
322 |
|
|
GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev)) = node;
|
323 |
|
|
GROUP_NEXT_ELEMENT (vinfo_for_stmt (node)) = NULL;
|
324 |
|
|
prev = node;
|
325 |
|
|
}
|
326 |
|
|
GROUP_FIRST_ELEMENT (vinfo_for_stmt (node)) = first_stmt;
|
327 |
|
|
node = GROUP_NEXT_ELEMENT (vinfo_for_stmt (node));
|
328 |
|
|
}
|
329 |
|
|
}
|
330 |
|
|
|
331 |
|
|
/* Check dependence between DRA and DRB for basic block vectorization.
|
332 |
|
|
If the accesses share same bases and offsets, we can compare their initial
|
333 |
|
|
constant offsets to decide whether they differ or not. In case of a read-
|
334 |
|
|
write dependence we check that the load is before the store to ensure that
|
335 |
|
|
vectorization will not change the order of the accesses. */
|
336 |
|
|
|
337 |
|
|
static bool
|
338 |
|
|
vect_drs_dependent_in_basic_block (struct data_reference *dra,
|
339 |
|
|
struct data_reference *drb)
|
340 |
|
|
{
|
341 |
|
|
HOST_WIDE_INT type_size_a, type_size_b, init_a, init_b;
|
342 |
|
|
gimple earlier_stmt;
|
343 |
|
|
|
344 |
|
|
/* We only call this function for pairs of loads and stores, but we verify
|
345 |
|
|
it here. */
|
346 |
|
|
if (DR_IS_READ (dra) == DR_IS_READ (drb))
|
347 |
|
|
{
|
348 |
|
|
if (DR_IS_READ (dra))
|
349 |
|
|
return false;
|
350 |
|
|
else
|
351 |
|
|
return true;
|
352 |
|
|
}
|
353 |
|
|
|
354 |
|
|
/* Check that the data-refs have same bases and offsets. If not, we can't
|
355 |
|
|
determine if they are dependent. */
|
356 |
|
|
if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0)
|
357 |
|
|
|| !dr_equal_offsets_p (dra, drb))
|
358 |
|
|
return true;
|
359 |
|
|
|
360 |
|
|
/* Check the types. */
|
361 |
|
|
type_size_a = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))));
|
362 |
|
|
type_size_b = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
|
363 |
|
|
|
364 |
|
|
if (type_size_a != type_size_b
|
365 |
|
|
|| !types_compatible_p (TREE_TYPE (DR_REF (dra)),
|
366 |
|
|
TREE_TYPE (DR_REF (drb))))
|
367 |
|
|
return true;
|
368 |
|
|
|
369 |
|
|
init_a = TREE_INT_CST_LOW (DR_INIT (dra));
|
370 |
|
|
init_b = TREE_INT_CST_LOW (DR_INIT (drb));
|
371 |
|
|
|
372 |
|
|
/* Two different locations - no dependence. */
|
373 |
|
|
if (init_a != init_b)
|
374 |
|
|
return false;
|
375 |
|
|
|
376 |
|
|
/* We have a read-write dependence. Check that the load is before the store.
|
377 |
|
|
When we vectorize basic blocks, vector load can be only before
|
378 |
|
|
corresponding scalar load, and vector store can be only after its
|
379 |
|
|
corresponding scalar store. So the order of the acceses is preserved in
|
380 |
|
|
case the load is before the store. */
|
381 |
|
|
earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
|
382 |
|
|
if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
|
383 |
|
|
return false;
|
384 |
|
|
|
385 |
|
|
return true;
|
386 |
|
|
}
|
387 |
|
|
|
388 |
|
|
|
389 |
|
|
/* Function vect_check_interleaving.
|
390 |
|
|
|
391 |
|
|
Check if DRA and DRB are a part of interleaving. In case they are, insert
|
392 |
|
|
DRA and DRB in an interleaving chain. */
|
393 |
|
|
|
394 |
|
|
static bool
|
395 |
|
|
vect_check_interleaving (struct data_reference *dra,
|
396 |
|
|
struct data_reference *drb)
|
397 |
|
|
{
|
398 |
|
|
HOST_WIDE_INT type_size_a, type_size_b, diff_mod_size, step, init_a, init_b;
|
399 |
|
|
|
400 |
|
|
/* Check that the data-refs have same first location (except init) and they
|
401 |
|
|
are both either store or load (not load and store). */
|
402 |
|
|
if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0)
|
403 |
|
|
|| !dr_equal_offsets_p (dra, drb)
|
404 |
|
|
|| !tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb))
|
405 |
|
|
|| DR_IS_READ (dra) != DR_IS_READ (drb))
|
406 |
|
|
return false;
|
407 |
|
|
|
408 |
|
|
/* Check:
|
409 |
|
|
1. data-refs are of the same type
|
410 |
|
|
2. their steps are equal
|
411 |
|
|
3. the step (if greater than zero) is greater than the difference between
|
412 |
|
|
data-refs' inits. */
|
413 |
|
|
type_size_a = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))));
|
414 |
|
|
type_size_b = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
|
415 |
|
|
|
416 |
|
|
if (type_size_a != type_size_b
|
417 |
|
|
|| tree_int_cst_compare (DR_STEP (dra), DR_STEP (drb))
|
418 |
|
|
|| !types_compatible_p (TREE_TYPE (DR_REF (dra)),
|
419 |
|
|
TREE_TYPE (DR_REF (drb))))
|
420 |
|
|
return false;
|
421 |
|
|
|
422 |
|
|
init_a = TREE_INT_CST_LOW (DR_INIT (dra));
|
423 |
|
|
init_b = TREE_INT_CST_LOW (DR_INIT (drb));
|
424 |
|
|
step = TREE_INT_CST_LOW (DR_STEP (dra));
|
425 |
|
|
|
426 |
|
|
if (init_a > init_b)
|
427 |
|
|
{
|
428 |
|
|
/* If init_a == init_b + the size of the type * k, we have an interleaving,
|
429 |
|
|
and DRB is accessed before DRA. */
|
430 |
|
|
diff_mod_size = (init_a - init_b) % type_size_a;
|
431 |
|
|
|
432 |
|
|
if (step && (init_a - init_b) > step)
|
433 |
|
|
return false;
|
434 |
|
|
|
435 |
|
|
if (diff_mod_size == 0)
|
436 |
|
|
{
|
437 |
|
|
vect_update_interleaving_chain (drb, dra);
|
438 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
439 |
|
|
{
|
440 |
|
|
fprintf (vect_dump, "Detected interleaving ");
|
441 |
|
|
print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
|
442 |
|
|
fprintf (vect_dump, " and ");
|
443 |
|
|
print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
|
444 |
|
|
}
|
445 |
|
|
return true;
|
446 |
|
|
}
|
447 |
|
|
}
|
448 |
|
|
else
|
449 |
|
|
{
|
450 |
|
|
/* If init_b == init_a + the size of the type * k, we have an
|
451 |
|
|
interleaving, and DRA is accessed before DRB. */
|
452 |
|
|
diff_mod_size = (init_b - init_a) % type_size_a;
|
453 |
|
|
|
454 |
|
|
if (step && (init_b - init_a) > step)
|
455 |
|
|
return false;
|
456 |
|
|
|
457 |
|
|
if (diff_mod_size == 0)
|
458 |
|
|
{
|
459 |
|
|
vect_update_interleaving_chain (dra, drb);
|
460 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
461 |
|
|
{
|
462 |
|
|
fprintf (vect_dump, "Detected interleaving ");
|
463 |
|
|
print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
|
464 |
|
|
fprintf (vect_dump, " and ");
|
465 |
|
|
print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
|
466 |
|
|
}
|
467 |
|
|
return true;
|
468 |
|
|
}
|
469 |
|
|
}
|
470 |
|
|
|
471 |
|
|
return false;
|
472 |
|
|
}
|
473 |
|
|
|
474 |
|
|
/* Check if data references pointed by DR_I and DR_J are same or
|
475 |
|
|
belong to same interleaving group. Return FALSE if drs are
|
476 |
|
|
different, otherwise return TRUE. */
|
477 |
|
|
|
478 |
|
|
static bool
|
479 |
|
|
vect_same_range_drs (data_reference_p dr_i, data_reference_p dr_j)
|
480 |
|
|
{
|
481 |
|
|
gimple stmt_i = DR_STMT (dr_i);
|
482 |
|
|
gimple stmt_j = DR_STMT (dr_j);
|
483 |
|
|
|
484 |
|
|
if (operand_equal_p (DR_REF (dr_i), DR_REF (dr_j), 0)
|
485 |
|
|
|| (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_i))
|
486 |
|
|
&& GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_j))
|
487 |
|
|
&& (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_i))
|
488 |
|
|
== GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_j)))))
|
489 |
|
|
return true;
|
490 |
|
|
else
|
491 |
|
|
return false;
|
492 |
|
|
}
|
493 |
|
|
|
494 |
|
|
/* If address ranges represented by DDR_I and DDR_J are equal,
|
495 |
|
|
return TRUE, otherwise return FALSE. */
|
496 |
|
|
|
497 |
|
|
static bool
|
498 |
|
|
vect_vfa_range_equal (ddr_p ddr_i, ddr_p ddr_j)
|
499 |
|
|
{
|
500 |
|
|
if ((vect_same_range_drs (DDR_A (ddr_i), DDR_A (ddr_j))
|
501 |
|
|
&& vect_same_range_drs (DDR_B (ddr_i), DDR_B (ddr_j)))
|
502 |
|
|
|| (vect_same_range_drs (DDR_A (ddr_i), DDR_B (ddr_j))
|
503 |
|
|
&& vect_same_range_drs (DDR_B (ddr_i), DDR_A (ddr_j))))
|
504 |
|
|
return true;
|
505 |
|
|
else
|
506 |
|
|
return false;
|
507 |
|
|
}
|
508 |
|
|
|
509 |
|
|
/* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
|
510 |
|
|
tested at run-time. Return TRUE if DDR was successfully inserted.
|
511 |
|
|
Return false if versioning is not supported. */
|
512 |
|
|
|
513 |
|
|
static bool
|
514 |
|
|
vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
|
515 |
|
|
{
|
516 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
517 |
|
|
|
518 |
|
|
if ((unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS) == 0)
|
519 |
|
|
return false;
|
520 |
|
|
|
521 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
522 |
|
|
{
|
523 |
|
|
fprintf (vect_dump, "mark for run-time aliasing test between ");
|
524 |
|
|
print_generic_expr (vect_dump, DR_REF (DDR_A (ddr)), TDF_SLIM);
|
525 |
|
|
fprintf (vect_dump, " and ");
|
526 |
|
|
print_generic_expr (vect_dump, DR_REF (DDR_B (ddr)), TDF_SLIM);
|
527 |
|
|
}
|
528 |
|
|
|
529 |
|
|
if (optimize_loop_nest_for_size_p (loop))
|
530 |
|
|
{
|
531 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
532 |
|
|
fprintf (vect_dump, "versioning not supported when optimizing for size.");
|
533 |
|
|
return false;
|
534 |
|
|
}
|
535 |
|
|
|
536 |
|
|
/* FORNOW: We don't support versioning with outer-loop vectorization. */
|
537 |
|
|
if (loop->inner)
|
538 |
|
|
{
|
539 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
540 |
|
|
fprintf (vect_dump, "versioning not yet supported for outer-loops.");
|
541 |
|
|
return false;
|
542 |
|
|
}
|
543 |
|
|
|
544 |
|
|
VEC_safe_push (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo), ddr);
|
545 |
|
|
return true;
|
546 |
|
|
}
|
547 |
|
|
|
548 |
|
|
|
549 |
|
|
/* Function vect_analyze_data_ref_dependence.
|
550 |
|
|
|
551 |
|
|
Return TRUE if there (might) exist a dependence between a memory-reference
|
552 |
|
|
DRA and a memory-reference DRB. When versioning for alias may check a
|
553 |
|
|
dependence at run-time, return FALSE. Adjust *MAX_VF according to
|
554 |
|
|
the data dependence. */
|
555 |
|
|
|
556 |
|
|
static bool
|
557 |
|
|
vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
|
558 |
|
|
loop_vec_info loop_vinfo, int *max_vf)
|
559 |
|
|
{
|
560 |
|
|
unsigned int i;
|
561 |
|
|
struct loop *loop = NULL;
|
562 |
|
|
struct data_reference *dra = DDR_A (ddr);
|
563 |
|
|
struct data_reference *drb = DDR_B (ddr);
|
564 |
|
|
stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
|
565 |
|
|
stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
|
566 |
|
|
lambda_vector dist_v;
|
567 |
|
|
unsigned int loop_depth;
|
568 |
|
|
|
569 |
|
|
/* Don't bother to analyze statements marked as unvectorizable. */
|
570 |
|
|
if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
|
571 |
|
|
|| !STMT_VINFO_VECTORIZABLE (stmtinfo_b))
|
572 |
|
|
return false;
|
573 |
|
|
|
574 |
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
|
575 |
|
|
{
|
576 |
|
|
/* Independent data accesses. */
|
577 |
|
|
vect_check_interleaving (dra, drb);
|
578 |
|
|
return false;
|
579 |
|
|
}
|
580 |
|
|
|
581 |
|
|
if (loop_vinfo)
|
582 |
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
583 |
|
|
|
584 |
|
|
if ((DR_IS_READ (dra) && DR_IS_READ (drb) && loop_vinfo) || dra == drb)
|
585 |
|
|
return false;
|
586 |
|
|
|
587 |
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
|
588 |
|
|
{
|
589 |
|
|
gimple earlier_stmt;
|
590 |
|
|
|
591 |
|
|
if (loop_vinfo)
|
592 |
|
|
{
|
593 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
594 |
|
|
{
|
595 |
|
|
fprintf (vect_dump, "versioning for alias required: "
|
596 |
|
|
"can't determine dependence between ");
|
597 |
|
|
print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
|
598 |
|
|
fprintf (vect_dump, " and ");
|
599 |
|
|
print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
|
600 |
|
|
}
|
601 |
|
|
|
602 |
|
|
/* Add to list of ddrs that need to be tested at run-time. */
|
603 |
|
|
return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
|
604 |
|
|
}
|
605 |
|
|
|
606 |
|
|
/* When vectorizing a basic block unknown depnedence can still mean
|
607 |
|
|
strided access. */
|
608 |
|
|
if (vect_check_interleaving (dra, drb))
|
609 |
|
|
return false;
|
610 |
|
|
|
611 |
|
|
/* Read-read is OK (we need this check here, after checking for
|
612 |
|
|
interleaving). */
|
613 |
|
|
if (DR_IS_READ (dra) && DR_IS_READ (drb))
|
614 |
|
|
return false;
|
615 |
|
|
|
616 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
617 |
|
|
{
|
618 |
|
|
fprintf (vect_dump, "can't determine dependence between ");
|
619 |
|
|
print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
|
620 |
|
|
fprintf (vect_dump, " and ");
|
621 |
|
|
print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
|
622 |
|
|
}
|
623 |
|
|
|
624 |
|
|
/* We do not vectorize basic blocks with write-write dependencies. */
|
625 |
|
|
if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))
|
626 |
|
|
return true;
|
627 |
|
|
|
628 |
|
|
/* Check that it's not a load-after-store dependence. */
|
629 |
|
|
earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
|
630 |
|
|
if (DR_IS_WRITE (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
|
631 |
|
|
return true;
|
632 |
|
|
|
633 |
|
|
return false;
|
634 |
|
|
}
|
635 |
|
|
|
636 |
|
|
/* Versioning for alias is not yet supported for basic block SLP, and
|
637 |
|
|
dependence distance is unapplicable, hence, in case of known data
|
638 |
|
|
dependence, basic block vectorization is impossible for now. */
|
639 |
|
|
if (!loop_vinfo)
|
640 |
|
|
{
|
641 |
|
|
if (dra != drb && vect_check_interleaving (dra, drb))
|
642 |
|
|
return false;
|
643 |
|
|
|
644 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
645 |
|
|
{
|
646 |
|
|
fprintf (vect_dump, "determined dependence between ");
|
647 |
|
|
print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
|
648 |
|
|
fprintf (vect_dump, " and ");
|
649 |
|
|
print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
|
650 |
|
|
}
|
651 |
|
|
|
652 |
|
|
/* Do not vectorize basic blcoks with write-write dependences. */
|
653 |
|
|
if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))
|
654 |
|
|
return true;
|
655 |
|
|
|
656 |
|
|
/* Check if this dependence is allowed in basic block vectorization. */
|
657 |
|
|
return vect_drs_dependent_in_basic_block (dra, drb);
|
658 |
|
|
}
|
659 |
|
|
|
660 |
|
|
/* Loop-based vectorization and known data dependence. */
|
661 |
|
|
if (DDR_NUM_DIST_VECTS (ddr) == 0)
|
662 |
|
|
{
|
663 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
664 |
|
|
{
|
665 |
|
|
fprintf (vect_dump, "versioning for alias required: bad dist vector for ");
|
666 |
|
|
print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
|
667 |
|
|
fprintf (vect_dump, " and ");
|
668 |
|
|
print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
|
669 |
|
|
}
|
670 |
|
|
/* Add to list of ddrs that need to be tested at run-time. */
|
671 |
|
|
return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
|
672 |
|
|
}
|
673 |
|
|
|
674 |
|
|
loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
|
675 |
|
|
FOR_EACH_VEC_ELT (lambda_vector, DDR_DIST_VECTS (ddr), i, dist_v)
|
676 |
|
|
{
|
677 |
|
|
int dist = dist_v[loop_depth];
|
678 |
|
|
|
679 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
680 |
|
|
fprintf (vect_dump, "dependence distance = %d.", dist);
|
681 |
|
|
|
682 |
|
|
if (dist == 0)
|
683 |
|
|
{
|
684 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
685 |
|
|
{
|
686 |
|
|
fprintf (vect_dump, "dependence distance == 0 between ");
|
687 |
|
|
print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
|
688 |
|
|
fprintf (vect_dump, " and ");
|
689 |
|
|
print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
|
690 |
|
|
}
|
691 |
|
|
|
692 |
|
|
/* For interleaving, mark that there is a read-write dependency if
|
693 |
|
|
necessary. We check before that one of the data-refs is store. */
|
694 |
|
|
if (DR_IS_READ (dra))
|
695 |
|
|
GROUP_READ_WRITE_DEPENDENCE (stmtinfo_a) = true;
|
696 |
|
|
else
|
697 |
|
|
{
|
698 |
|
|
if (DR_IS_READ (drb))
|
699 |
|
|
GROUP_READ_WRITE_DEPENDENCE (stmtinfo_b) = true;
|
700 |
|
|
}
|
701 |
|
|
|
702 |
|
|
continue;
|
703 |
|
|
}
|
704 |
|
|
|
705 |
|
|
if (dist > 0 && DDR_REVERSED_P (ddr))
|
706 |
|
|
{
|
707 |
|
|
/* If DDR_REVERSED_P the order of the data-refs in DDR was
|
708 |
|
|
reversed (to make distance vector positive), and the actual
|
709 |
|
|
distance is negative. */
|
710 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
711 |
|
|
fprintf (vect_dump, "dependence distance negative.");
|
712 |
|
|
continue;
|
713 |
|
|
}
|
714 |
|
|
|
715 |
|
|
if (abs (dist) >= 2
|
716 |
|
|
&& abs (dist) < *max_vf)
|
717 |
|
|
{
|
718 |
|
|
/* The dependence distance requires reduction of the maximal
|
719 |
|
|
vectorization factor. */
|
720 |
|
|
*max_vf = abs (dist);
|
721 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
722 |
|
|
fprintf (vect_dump, "adjusting maximal vectorization factor to %i",
|
723 |
|
|
*max_vf);
|
724 |
|
|
}
|
725 |
|
|
|
726 |
|
|
if (abs (dist) >= *max_vf)
|
727 |
|
|
{
|
728 |
|
|
/* Dependence distance does not create dependence, as far as
|
729 |
|
|
vectorization is concerned, in this case. */
|
730 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
731 |
|
|
fprintf (vect_dump, "dependence distance >= VF.");
|
732 |
|
|
continue;
|
733 |
|
|
}
|
734 |
|
|
|
735 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
736 |
|
|
{
|
737 |
|
|
fprintf (vect_dump, "not vectorized, possible dependence "
|
738 |
|
|
"between data-refs ");
|
739 |
|
|
print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
|
740 |
|
|
fprintf (vect_dump, " and ");
|
741 |
|
|
print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
|
742 |
|
|
}
|
743 |
|
|
|
744 |
|
|
return true;
|
745 |
|
|
}
|
746 |
|
|
|
747 |
|
|
return false;
|
748 |
|
|
}
|
749 |
|
|
|
750 |
|
|
/* Function vect_analyze_data_ref_dependences.
|
751 |
|
|
|
752 |
|
|
Examine all the data references in the loop, and make sure there do not
|
753 |
|
|
exist any data dependences between them. Set *MAX_VF according to
|
754 |
|
|
the maximum vectorization factor the data dependences allow. */
|
755 |
|
|
|
756 |
|
|
bool
|
757 |
|
|
vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo,
|
758 |
|
|
bb_vec_info bb_vinfo, int *max_vf)
|
759 |
|
|
{
|
760 |
|
|
unsigned int i;
|
761 |
|
|
VEC (ddr_p, heap) *ddrs = NULL;
|
762 |
|
|
struct data_dependence_relation *ddr;
|
763 |
|
|
|
764 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
765 |
|
|
fprintf (vect_dump, "=== vect_analyze_dependences ===");
|
766 |
|
|
|
767 |
|
|
if (loop_vinfo)
|
768 |
|
|
ddrs = LOOP_VINFO_DDRS (loop_vinfo);
|
769 |
|
|
else
|
770 |
|
|
ddrs = BB_VINFO_DDRS (bb_vinfo);
|
771 |
|
|
|
772 |
|
|
FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr)
|
773 |
|
|
if (vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf))
|
774 |
|
|
return false;
|
775 |
|
|
|
776 |
|
|
return true;
|
777 |
|
|
}
|
778 |
|
|
|
779 |
|
|
|
780 |
|
|
/* Function vect_compute_data_ref_alignment
|
781 |
|
|
|
782 |
|
|
Compute the misalignment of the data reference DR.
|
783 |
|
|
|
784 |
|
|
Output:
|
785 |
|
|
1. If during the misalignment computation it is found that the data reference
|
786 |
|
|
cannot be vectorized then false is returned.
|
787 |
|
|
2. DR_MISALIGNMENT (DR) is defined.
|
788 |
|
|
|
789 |
|
|
FOR NOW: No analysis is actually performed. Misalignment is calculated
|
790 |
|
|
only for trivial cases. TODO. */
|
791 |
|
|
|
792 |
|
|
static bool
|
793 |
|
|
vect_compute_data_ref_alignment (struct data_reference *dr)
|
794 |
|
|
{
|
795 |
|
|
gimple stmt = DR_STMT (dr);
|
796 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
797 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
798 |
|
|
struct loop *loop = NULL;
|
799 |
|
|
tree ref = DR_REF (dr);
|
800 |
|
|
tree vectype;
|
801 |
|
|
tree base, base_addr;
|
802 |
|
|
bool base_aligned;
|
803 |
|
|
tree misalign;
|
804 |
|
|
tree aligned_to, alignment;
|
805 |
|
|
|
806 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
807 |
|
|
fprintf (vect_dump, "vect_compute_data_ref_alignment:");
|
808 |
|
|
|
809 |
|
|
if (loop_vinfo)
|
810 |
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
811 |
|
|
|
812 |
|
|
/* Initialize misalignment to unknown. */
|
813 |
|
|
SET_DR_MISALIGNMENT (dr, -1);
|
814 |
|
|
|
815 |
|
|
misalign = DR_INIT (dr);
|
816 |
|
|
aligned_to = DR_ALIGNED_TO (dr);
|
817 |
|
|
base_addr = DR_BASE_ADDRESS (dr);
|
818 |
|
|
vectype = STMT_VINFO_VECTYPE (stmt_info);
|
819 |
|
|
|
820 |
|
|
/* In case the dataref is in an inner-loop of the loop that is being
|
821 |
|
|
vectorized (LOOP), we use the base and misalignment information
|
822 |
|
|
relative to the outer-loop (LOOP). This is ok only if the misalignment
|
823 |
|
|
stays the same throughout the execution of the inner-loop, which is why
|
824 |
|
|
we have to check that the stride of the dataref in the inner-loop evenly
|
825 |
|
|
divides by the vector size. */
|
826 |
|
|
if (loop && nested_in_vect_loop_p (loop, stmt))
|
827 |
|
|
{
|
828 |
|
|
tree step = DR_STEP (dr);
|
829 |
|
|
HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
|
830 |
|
|
|
831 |
|
|
if (dr_step % GET_MODE_SIZE (TYPE_MODE (vectype)) == 0)
|
832 |
|
|
{
|
833 |
|
|
if (vect_print_dump_info (REPORT_ALIGNMENT))
|
834 |
|
|
fprintf (vect_dump, "inner step divides the vector-size.");
|
835 |
|
|
misalign = STMT_VINFO_DR_INIT (stmt_info);
|
836 |
|
|
aligned_to = STMT_VINFO_DR_ALIGNED_TO (stmt_info);
|
837 |
|
|
base_addr = STMT_VINFO_DR_BASE_ADDRESS (stmt_info);
|
838 |
|
|
}
|
839 |
|
|
else
|
840 |
|
|
{
|
841 |
|
|
if (vect_print_dump_info (REPORT_ALIGNMENT))
|
842 |
|
|
fprintf (vect_dump, "inner step doesn't divide the vector-size.");
|
843 |
|
|
misalign = NULL_TREE;
|
844 |
|
|
}
|
845 |
|
|
}
|
846 |
|
|
|
847 |
|
|
base = build_fold_indirect_ref (base_addr);
|
848 |
|
|
alignment = ssize_int (TYPE_ALIGN (vectype)/BITS_PER_UNIT);
|
849 |
|
|
|
850 |
|
|
if ((aligned_to && tree_int_cst_compare (aligned_to, alignment) < 0)
|
851 |
|
|
|| !misalign)
|
852 |
|
|
{
|
853 |
|
|
if (vect_print_dump_info (REPORT_ALIGNMENT))
|
854 |
|
|
{
|
855 |
|
|
fprintf (vect_dump, "Unknown alignment for access: ");
|
856 |
|
|
print_generic_expr (vect_dump, base, TDF_SLIM);
|
857 |
|
|
}
|
858 |
|
|
return true;
|
859 |
|
|
}
|
860 |
|
|
|
861 |
|
|
if ((DECL_P (base)
|
862 |
|
|
&& tree_int_cst_compare (ssize_int (DECL_ALIGN_UNIT (base)),
|
863 |
|
|
alignment) >= 0)
|
864 |
|
|
|| (TREE_CODE (base_addr) == SSA_NAME
|
865 |
|
|
&& tree_int_cst_compare (ssize_int (TYPE_ALIGN_UNIT (TREE_TYPE (
|
866 |
|
|
TREE_TYPE (base_addr)))),
|
867 |
|
|
alignment) >= 0)
|
868 |
|
|
|| (get_pointer_alignment (base_addr) >= TYPE_ALIGN (vectype)))
|
869 |
|
|
base_aligned = true;
|
870 |
|
|
else
|
871 |
|
|
base_aligned = false;
|
872 |
|
|
|
873 |
|
|
if (!base_aligned)
|
874 |
|
|
{
|
875 |
|
|
/* Do not change the alignment of global variables if
|
876 |
|
|
flag_section_anchors is enabled. */
|
877 |
|
|
if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype))
|
878 |
|
|
|| (TREE_STATIC (base) && flag_section_anchors))
|
879 |
|
|
{
|
880 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
881 |
|
|
{
|
882 |
|
|
fprintf (vect_dump, "can't force alignment of ref: ");
|
883 |
|
|
print_generic_expr (vect_dump, ref, TDF_SLIM);
|
884 |
|
|
}
|
885 |
|
|
return true;
|
886 |
|
|
}
|
887 |
|
|
|
888 |
|
|
/* Force the alignment of the decl.
|
889 |
|
|
NOTE: This is the only change to the code we make during
|
890 |
|
|
the analysis phase, before deciding to vectorize the loop. */
|
891 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
892 |
|
|
{
|
893 |
|
|
fprintf (vect_dump, "force alignment of ");
|
894 |
|
|
print_generic_expr (vect_dump, ref, TDF_SLIM);
|
895 |
|
|
}
|
896 |
|
|
|
897 |
|
|
DECL_ALIGN (base) = TYPE_ALIGN (vectype);
|
898 |
|
|
DECL_USER_ALIGN (base) = 1;
|
899 |
|
|
}
|
900 |
|
|
|
901 |
|
|
/* At this point we assume that the base is aligned. */
|
902 |
|
|
gcc_assert (base_aligned
|
903 |
|
|
|| (TREE_CODE (base) == VAR_DECL
|
904 |
|
|
&& DECL_ALIGN (base) >= TYPE_ALIGN (vectype)));
|
905 |
|
|
|
906 |
|
|
/* If this is a backward running DR then first access in the larger
|
907 |
|
|
vectype actually is N-1 elements before the address in the DR.
|
908 |
|
|
Adjust misalign accordingly. */
|
909 |
|
|
if (tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0)
|
910 |
|
|
{
|
911 |
|
|
tree offset = ssize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
|
912 |
|
|
/* DR_STEP(dr) is the same as -TYPE_SIZE of the scalar type,
|
913 |
|
|
otherwise we wouldn't be here. */
|
914 |
|
|
offset = fold_build2 (MULT_EXPR, ssizetype, offset, DR_STEP (dr));
|
915 |
|
|
/* PLUS because DR_STEP was negative. */
|
916 |
|
|
misalign = size_binop (PLUS_EXPR, misalign, offset);
|
917 |
|
|
}
|
918 |
|
|
|
919 |
|
|
/* Modulo alignment. */
|
920 |
|
|
misalign = size_binop (FLOOR_MOD_EXPR, misalign, alignment);
|
921 |
|
|
|
922 |
|
|
if (!host_integerp (misalign, 1))
|
923 |
|
|
{
|
924 |
|
|
/* Negative or overflowed misalignment value. */
|
925 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
926 |
|
|
fprintf (vect_dump, "unexpected misalign value");
|
927 |
|
|
return false;
|
928 |
|
|
}
|
929 |
|
|
|
930 |
|
|
SET_DR_MISALIGNMENT (dr, TREE_INT_CST_LOW (misalign));
|
931 |
|
|
|
932 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
933 |
|
|
{
|
934 |
|
|
fprintf (vect_dump, "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr));
|
935 |
|
|
print_generic_expr (vect_dump, ref, TDF_SLIM);
|
936 |
|
|
}
|
937 |
|
|
|
938 |
|
|
return true;
|
939 |
|
|
}
|
940 |
|
|
|
941 |
|
|
|
942 |
|
|
/* Function vect_compute_data_refs_alignment
|
943 |
|
|
|
944 |
|
|
Compute the misalignment of data references in the loop.
|
945 |
|
|
Return FALSE if a data reference is found that cannot be vectorized. */
|
946 |
|
|
|
947 |
|
|
static bool
|
948 |
|
|
vect_compute_data_refs_alignment (loop_vec_info loop_vinfo,
|
949 |
|
|
bb_vec_info bb_vinfo)
|
950 |
|
|
{
|
951 |
|
|
VEC (data_reference_p, heap) *datarefs;
|
952 |
|
|
struct data_reference *dr;
|
953 |
|
|
unsigned int i;
|
954 |
|
|
|
955 |
|
|
if (loop_vinfo)
|
956 |
|
|
datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
|
957 |
|
|
else
|
958 |
|
|
datarefs = BB_VINFO_DATAREFS (bb_vinfo);
|
959 |
|
|
|
960 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
|
961 |
|
|
if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
|
962 |
|
|
&& !vect_compute_data_ref_alignment (dr))
|
963 |
|
|
{
|
964 |
|
|
if (bb_vinfo)
|
965 |
|
|
{
|
966 |
|
|
/* Mark unsupported statement as unvectorizable. */
|
967 |
|
|
STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
|
968 |
|
|
continue;
|
969 |
|
|
}
|
970 |
|
|
else
|
971 |
|
|
return false;
|
972 |
|
|
}
|
973 |
|
|
|
974 |
|
|
return true;
|
975 |
|
|
}
|
976 |
|
|
|
977 |
|
|
|
978 |
|
|
/* Function vect_update_misalignment_for_peel
|
979 |
|
|
|
980 |
|
|
DR - the data reference whose misalignment is to be adjusted.
|
981 |
|
|
DR_PEEL - the data reference whose misalignment is being made
|
982 |
|
|
zero in the vector loop by the peel.
|
983 |
|
|
NPEEL - the number of iterations in the peel loop if the misalignment
|
984 |
|
|
of DR_PEEL is known at compile time. */
|
985 |
|
|
|
986 |
|
|
static void
|
987 |
|
|
vect_update_misalignment_for_peel (struct data_reference *dr,
|
988 |
|
|
struct data_reference *dr_peel, int npeel)
|
989 |
|
|
{
|
990 |
|
|
unsigned int i;
|
991 |
|
|
VEC(dr_p,heap) *same_align_drs;
|
992 |
|
|
struct data_reference *current_dr;
|
993 |
|
|
int dr_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
|
994 |
|
|
int dr_peel_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr_peel))));
|
995 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
|
996 |
|
|
stmt_vec_info peel_stmt_info = vinfo_for_stmt (DR_STMT (dr_peel));
|
997 |
|
|
|
998 |
|
|
/* For interleaved data accesses the step in the loop must be multiplied by
|
999 |
|
|
the size of the interleaving group. */
|
1000 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
|
1001 |
|
|
dr_size *= GROUP_SIZE (vinfo_for_stmt (GROUP_FIRST_ELEMENT (stmt_info)));
|
1002 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (peel_stmt_info))
|
1003 |
|
|
dr_peel_size *= GROUP_SIZE (peel_stmt_info);
|
1004 |
|
|
|
1005 |
|
|
/* It can be assumed that the data refs with the same alignment as dr_peel
|
1006 |
|
|
are aligned in the vector loop. */
|
1007 |
|
|
same_align_drs
|
1008 |
|
|
= STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel)));
|
1009 |
|
|
FOR_EACH_VEC_ELT (dr_p, same_align_drs, i, current_dr)
|
1010 |
|
|
{
|
1011 |
|
|
if (current_dr != dr)
|
1012 |
|
|
continue;
|
1013 |
|
|
gcc_assert (DR_MISALIGNMENT (dr) / dr_size ==
|
1014 |
|
|
DR_MISALIGNMENT (dr_peel) / dr_peel_size);
|
1015 |
|
|
SET_DR_MISALIGNMENT (dr, 0);
|
1016 |
|
|
return;
|
1017 |
|
|
}
|
1018 |
|
|
|
1019 |
|
|
if (known_alignment_for_access_p (dr)
|
1020 |
|
|
&& known_alignment_for_access_p (dr_peel))
|
1021 |
|
|
{
|
1022 |
|
|
bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
|
1023 |
|
|
int misal = DR_MISALIGNMENT (dr);
|
1024 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
1025 |
|
|
misal += negative ? -npeel * dr_size : npeel * dr_size;
|
1026 |
|
|
misal &= GET_MODE_SIZE (TYPE_MODE (vectype)) - 1;
|
1027 |
|
|
SET_DR_MISALIGNMENT (dr, misal);
|
1028 |
|
|
return;
|
1029 |
|
|
}
|
1030 |
|
|
|
1031 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1032 |
|
|
fprintf (vect_dump, "Setting misalignment to -1.");
|
1033 |
|
|
SET_DR_MISALIGNMENT (dr, -1);
|
1034 |
|
|
}
|
1035 |
|
|
|
1036 |
|
|
|
1037 |
|
|
/* Function vect_verify_datarefs_alignment
|
1038 |
|
|
|
1039 |
|
|
Return TRUE if all data references in the loop can be
|
1040 |
|
|
handled with respect to alignment. */
|
1041 |
|
|
|
1042 |
|
|
bool
|
1043 |
|
|
vect_verify_datarefs_alignment (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
|
1044 |
|
|
{
|
1045 |
|
|
VEC (data_reference_p, heap) *datarefs;
|
1046 |
|
|
struct data_reference *dr;
|
1047 |
|
|
enum dr_alignment_support supportable_dr_alignment;
|
1048 |
|
|
unsigned int i;
|
1049 |
|
|
|
1050 |
|
|
if (loop_vinfo)
|
1051 |
|
|
datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
|
1052 |
|
|
else
|
1053 |
|
|
datarefs = BB_VINFO_DATAREFS (bb_vinfo);
|
1054 |
|
|
|
1055 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
|
1056 |
|
|
{
|
1057 |
|
|
gimple stmt = DR_STMT (dr);
|
1058 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
1059 |
|
|
|
1060 |
|
|
/* For interleaving, only the alignment of the first access matters.
|
1061 |
|
|
Skip statements marked as not vectorizable. */
|
1062 |
|
|
if ((STMT_VINFO_STRIDED_ACCESS (stmt_info)
|
1063 |
|
|
&& GROUP_FIRST_ELEMENT (stmt_info) != stmt)
|
1064 |
|
|
|| !STMT_VINFO_VECTORIZABLE (stmt_info))
|
1065 |
|
|
continue;
|
1066 |
|
|
|
1067 |
|
|
supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
|
1068 |
|
|
if (!supportable_dr_alignment)
|
1069 |
|
|
{
|
1070 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
1071 |
|
|
{
|
1072 |
|
|
if (DR_IS_READ (dr))
|
1073 |
|
|
fprintf (vect_dump,
|
1074 |
|
|
"not vectorized: unsupported unaligned load.");
|
1075 |
|
|
else
|
1076 |
|
|
fprintf (vect_dump,
|
1077 |
|
|
"not vectorized: unsupported unaligned store.");
|
1078 |
|
|
|
1079 |
|
|
print_generic_expr (vect_dump, DR_REF (dr), TDF_SLIM);
|
1080 |
|
|
}
|
1081 |
|
|
return false;
|
1082 |
|
|
}
|
1083 |
|
|
if (supportable_dr_alignment != dr_aligned
|
1084 |
|
|
&& vect_print_dump_info (REPORT_ALIGNMENT))
|
1085 |
|
|
fprintf (vect_dump, "Vectorizing an unaligned access.");
|
1086 |
|
|
}
|
1087 |
|
|
return true;
|
1088 |
|
|
}
|
1089 |
|
|
|
1090 |
|
|
|
1091 |
|
|
/* Function vector_alignment_reachable_p
|
1092 |
|
|
|
1093 |
|
|
Return true if vector alignment for DR is reachable by peeling
|
1094 |
|
|
a few loop iterations. Return false otherwise. */
|
1095 |
|
|
|
1096 |
|
|
static bool
|
1097 |
|
|
vector_alignment_reachable_p (struct data_reference *dr)
|
1098 |
|
|
{
|
1099 |
|
|
gimple stmt = DR_STMT (dr);
|
1100 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
1101 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
1102 |
|
|
|
1103 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
|
1104 |
|
|
{
|
1105 |
|
|
/* For interleaved access we peel only if number of iterations in
|
1106 |
|
|
the prolog loop ({VF - misalignment}), is a multiple of the
|
1107 |
|
|
number of the interleaved accesses. */
|
1108 |
|
|
int elem_size, mis_in_elements;
|
1109 |
|
|
int nelements = TYPE_VECTOR_SUBPARTS (vectype);
|
1110 |
|
|
|
1111 |
|
|
/* FORNOW: handle only known alignment. */
|
1112 |
|
|
if (!known_alignment_for_access_p (dr))
|
1113 |
|
|
return false;
|
1114 |
|
|
|
1115 |
|
|
elem_size = GET_MODE_SIZE (TYPE_MODE (vectype)) / nelements;
|
1116 |
|
|
mis_in_elements = DR_MISALIGNMENT (dr) / elem_size;
|
1117 |
|
|
|
1118 |
|
|
if ((nelements - mis_in_elements) % GROUP_SIZE (stmt_info))
|
1119 |
|
|
return false;
|
1120 |
|
|
}
|
1121 |
|
|
|
1122 |
|
|
/* If misalignment is known at the compile time then allow peeling
|
1123 |
|
|
only if natural alignment is reachable through peeling. */
|
1124 |
|
|
if (known_alignment_for_access_p (dr) && !aligned_access_p (dr))
|
1125 |
|
|
{
|
1126 |
|
|
HOST_WIDE_INT elmsize =
|
1127 |
|
|
int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
|
1128 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1129 |
|
|
{
|
1130 |
|
|
fprintf (vect_dump, "data size =" HOST_WIDE_INT_PRINT_DEC, elmsize);
|
1131 |
|
|
fprintf (vect_dump, ". misalignment = %d. ", DR_MISALIGNMENT (dr));
|
1132 |
|
|
}
|
1133 |
|
|
if (DR_MISALIGNMENT (dr) % elmsize)
|
1134 |
|
|
{
|
1135 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1136 |
|
|
fprintf (vect_dump, "data size does not divide the misalignment.\n");
|
1137 |
|
|
return false;
|
1138 |
|
|
}
|
1139 |
|
|
}
|
1140 |
|
|
|
1141 |
|
|
if (!known_alignment_for_access_p (dr))
|
1142 |
|
|
{
|
1143 |
|
|
tree type = (TREE_TYPE (DR_REF (dr)));
|
1144 |
|
|
tree ba = DR_BASE_OBJECT (dr);
|
1145 |
|
|
bool is_packed = false;
|
1146 |
|
|
|
1147 |
|
|
if (ba)
|
1148 |
|
|
is_packed = contains_packed_reference (ba);
|
1149 |
|
|
|
1150 |
|
|
if (compare_tree_int (TYPE_SIZE (type), TYPE_ALIGN (type)) > 0)
|
1151 |
|
|
is_packed = true;
|
1152 |
|
|
|
1153 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1154 |
|
|
fprintf (vect_dump, "Unknown misalignment, is_packed = %d",is_packed);
|
1155 |
|
|
if (targetm.vectorize.vector_alignment_reachable (type, is_packed))
|
1156 |
|
|
return true;
|
1157 |
|
|
else
|
1158 |
|
|
return false;
|
1159 |
|
|
}
|
1160 |
|
|
|
1161 |
|
|
return true;
|
1162 |
|
|
}
|
1163 |
|
|
|
1164 |
|
|
|
1165 |
|
|
/* Calculate the cost of the memory access represented by DR. */
|
1166 |
|
|
|
1167 |
|
|
static void
|
1168 |
|
|
vect_get_data_access_cost (struct data_reference *dr,
|
1169 |
|
|
unsigned int *inside_cost,
|
1170 |
|
|
unsigned int *outside_cost)
|
1171 |
|
|
{
|
1172 |
|
|
gimple stmt = DR_STMT (dr);
|
1173 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
1174 |
|
|
int nunits = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
|
1175 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
1176 |
|
|
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
1177 |
|
|
int ncopies = vf / nunits;
|
1178 |
|
|
bool supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
|
1179 |
|
|
|
1180 |
|
|
if (!supportable_dr_alignment)
|
1181 |
|
|
*inside_cost = VECT_MAX_COST;
|
1182 |
|
|
else
|
1183 |
|
|
{
|
1184 |
|
|
if (DR_IS_READ (dr))
|
1185 |
|
|
vect_get_load_cost (dr, ncopies, true, inside_cost, outside_cost);
|
1186 |
|
|
else
|
1187 |
|
|
vect_get_store_cost (dr, ncopies, inside_cost);
|
1188 |
|
|
}
|
1189 |
|
|
|
1190 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
1191 |
|
|
fprintf (vect_dump, "vect_get_data_access_cost: inside_cost = %d, "
|
1192 |
|
|
"outside_cost = %d.", *inside_cost, *outside_cost);
|
1193 |
|
|
}
|
1194 |
|
|
|
1195 |
|
|
|
1196 |
|
|
static hashval_t
|
1197 |
|
|
vect_peeling_hash (const void *elem)
|
1198 |
|
|
{
|
1199 |
|
|
const struct _vect_peel_info *peel_info;
|
1200 |
|
|
|
1201 |
|
|
peel_info = (const struct _vect_peel_info *) elem;
|
1202 |
|
|
return (hashval_t) peel_info->npeel;
|
1203 |
|
|
}
|
1204 |
|
|
|
1205 |
|
|
|
1206 |
|
|
static int
|
1207 |
|
|
vect_peeling_hash_eq (const void *elem1, const void *elem2)
|
1208 |
|
|
{
|
1209 |
|
|
const struct _vect_peel_info *a, *b;
|
1210 |
|
|
|
1211 |
|
|
a = (const struct _vect_peel_info *) elem1;
|
1212 |
|
|
b = (const struct _vect_peel_info *) elem2;
|
1213 |
|
|
return (a->npeel == b->npeel);
|
1214 |
|
|
}
|
1215 |
|
|
|
1216 |
|
|
|
1217 |
|
|
/* Insert DR into peeling hash table with NPEEL as key. */
|
1218 |
|
|
|
1219 |
|
|
static void
|
1220 |
|
|
vect_peeling_hash_insert (loop_vec_info loop_vinfo, struct data_reference *dr,
|
1221 |
|
|
int npeel)
|
1222 |
|
|
{
|
1223 |
|
|
struct _vect_peel_info elem, *slot;
|
1224 |
|
|
void **new_slot;
|
1225 |
|
|
bool supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
|
1226 |
|
|
|
1227 |
|
|
elem.npeel = npeel;
|
1228 |
|
|
slot = (vect_peel_info) htab_find (LOOP_VINFO_PEELING_HTAB (loop_vinfo),
|
1229 |
|
|
&elem);
|
1230 |
|
|
if (slot)
|
1231 |
|
|
slot->count++;
|
1232 |
|
|
else
|
1233 |
|
|
{
|
1234 |
|
|
slot = XNEW (struct _vect_peel_info);
|
1235 |
|
|
slot->npeel = npeel;
|
1236 |
|
|
slot->dr = dr;
|
1237 |
|
|
slot->count = 1;
|
1238 |
|
|
new_slot = htab_find_slot (LOOP_VINFO_PEELING_HTAB (loop_vinfo), slot,
|
1239 |
|
|
INSERT);
|
1240 |
|
|
*new_slot = slot;
|
1241 |
|
|
}
|
1242 |
|
|
|
1243 |
|
|
if (!supportable_dr_alignment && !flag_vect_cost_model)
|
1244 |
|
|
slot->count += VECT_MAX_COST;
|
1245 |
|
|
}
|
1246 |
|
|
|
1247 |
|
|
|
1248 |
|
|
/* Traverse peeling hash table to find peeling option that aligns maximum
|
1249 |
|
|
number of data accesses. */
|
1250 |
|
|
|
1251 |
|
|
static int
|
1252 |
|
|
vect_peeling_hash_get_most_frequent (void **slot, void *data)
|
1253 |
|
|
{
|
1254 |
|
|
vect_peel_info elem = (vect_peel_info) *slot;
|
1255 |
|
|
vect_peel_extended_info max = (vect_peel_extended_info) data;
|
1256 |
|
|
|
1257 |
|
|
if (elem->count > max->peel_info.count
|
1258 |
|
|
|| (elem->count == max->peel_info.count
|
1259 |
|
|
&& max->peel_info.npeel > elem->npeel))
|
1260 |
|
|
{
|
1261 |
|
|
max->peel_info.npeel = elem->npeel;
|
1262 |
|
|
max->peel_info.count = elem->count;
|
1263 |
|
|
max->peel_info.dr = elem->dr;
|
1264 |
|
|
}
|
1265 |
|
|
|
1266 |
|
|
return 1;
|
1267 |
|
|
}
|
1268 |
|
|
|
1269 |
|
|
|
1270 |
|
|
/* Traverse peeling hash table and calculate cost for each peeling option.
|
1271 |
|
|
Find the one with the lowest cost. */
|
1272 |
|
|
|
1273 |
|
|
static int
|
1274 |
|
|
vect_peeling_hash_get_lowest_cost (void **slot, void *data)
|
1275 |
|
|
{
|
1276 |
|
|
vect_peel_info elem = (vect_peel_info) *slot;
|
1277 |
|
|
vect_peel_extended_info min = (vect_peel_extended_info) data;
|
1278 |
|
|
int save_misalignment, dummy;
|
1279 |
|
|
unsigned int inside_cost = 0, outside_cost = 0, i;
|
1280 |
|
|
gimple stmt = DR_STMT (elem->dr);
|
1281 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
1282 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
1283 |
|
|
VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
|
1284 |
|
|
struct data_reference *dr;
|
1285 |
|
|
|
1286 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
|
1287 |
|
|
{
|
1288 |
|
|
stmt = DR_STMT (dr);
|
1289 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
1290 |
|
|
/* For interleaving, only the alignment of the first access
|
1291 |
|
|
matters. */
|
1292 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info)
|
1293 |
|
|
&& GROUP_FIRST_ELEMENT (stmt_info) != stmt)
|
1294 |
|
|
continue;
|
1295 |
|
|
|
1296 |
|
|
save_misalignment = DR_MISALIGNMENT (dr);
|
1297 |
|
|
vect_update_misalignment_for_peel (dr, elem->dr, elem->npeel);
|
1298 |
|
|
vect_get_data_access_cost (dr, &inside_cost, &outside_cost);
|
1299 |
|
|
SET_DR_MISALIGNMENT (dr, save_misalignment);
|
1300 |
|
|
}
|
1301 |
|
|
|
1302 |
|
|
outside_cost += vect_get_known_peeling_cost (loop_vinfo, elem->npeel, &dummy,
|
1303 |
|
|
vect_get_single_scalar_iteraion_cost (loop_vinfo));
|
1304 |
|
|
|
1305 |
|
|
if (inside_cost < min->inside_cost
|
1306 |
|
|
|| (inside_cost == min->inside_cost && outside_cost < min->outside_cost))
|
1307 |
|
|
{
|
1308 |
|
|
min->inside_cost = inside_cost;
|
1309 |
|
|
min->outside_cost = outside_cost;
|
1310 |
|
|
min->peel_info.dr = elem->dr;
|
1311 |
|
|
min->peel_info.npeel = elem->npeel;
|
1312 |
|
|
}
|
1313 |
|
|
|
1314 |
|
|
return 1;
|
1315 |
|
|
}
|
1316 |
|
|
|
1317 |
|
|
|
1318 |
|
|
/* Choose best peeling option by traversing peeling hash table and either
|
1319 |
|
|
choosing an option with the lowest cost (if cost model is enabled) or the
|
1320 |
|
|
option that aligns as many accesses as possible. */
|
1321 |
|
|
|
1322 |
|
|
static struct data_reference *
|
1323 |
|
|
vect_peeling_hash_choose_best_peeling (loop_vec_info loop_vinfo,
|
1324 |
|
|
unsigned int *npeel)
|
1325 |
|
|
{
|
1326 |
|
|
struct _vect_peel_extended_info res;
|
1327 |
|
|
|
1328 |
|
|
res.peel_info.dr = NULL;
|
1329 |
|
|
|
1330 |
|
|
if (flag_vect_cost_model)
|
1331 |
|
|
{
|
1332 |
|
|
res.inside_cost = INT_MAX;
|
1333 |
|
|
res.outside_cost = INT_MAX;
|
1334 |
|
|
htab_traverse (LOOP_VINFO_PEELING_HTAB (loop_vinfo),
|
1335 |
|
|
vect_peeling_hash_get_lowest_cost, &res);
|
1336 |
|
|
}
|
1337 |
|
|
else
|
1338 |
|
|
{
|
1339 |
|
|
res.peel_info.count = 0;
|
1340 |
|
|
htab_traverse (LOOP_VINFO_PEELING_HTAB (loop_vinfo),
|
1341 |
|
|
vect_peeling_hash_get_most_frequent, &res);
|
1342 |
|
|
}
|
1343 |
|
|
|
1344 |
|
|
*npeel = res.peel_info.npeel;
|
1345 |
|
|
return res.peel_info.dr;
|
1346 |
|
|
}
|
1347 |
|
|
|
1348 |
|
|
|
1349 |
|
|
/* Function vect_enhance_data_refs_alignment
|
1350 |
|
|
|
1351 |
|
|
This pass will use loop versioning and loop peeling in order to enhance
|
1352 |
|
|
the alignment of data references in the loop.
|
1353 |
|
|
|
1354 |
|
|
FOR NOW: we assume that whatever versioning/peeling takes place, only the
|
1355 |
|
|
original loop is to be vectorized. Any other loops that are created by
|
1356 |
|
|
the transformations performed in this pass - are not supposed to be
|
1357 |
|
|
vectorized. This restriction will be relaxed.
|
1358 |
|
|
|
1359 |
|
|
This pass will require a cost model to guide it whether to apply peeling
|
1360 |
|
|
or versioning or a combination of the two. For example, the scheme that
|
1361 |
|
|
intel uses when given a loop with several memory accesses, is as follows:
|
1362 |
|
|
choose one memory access ('p') which alignment you want to force by doing
|
1363 |
|
|
peeling. Then, either (1) generate a loop in which 'p' is aligned and all
|
1364 |
|
|
other accesses are not necessarily aligned, or (2) use loop versioning to
|
1365 |
|
|
generate one loop in which all accesses are aligned, and another loop in
|
1366 |
|
|
which only 'p' is necessarily aligned.
|
1367 |
|
|
|
1368 |
|
|
("Automatic Intra-Register Vectorization for the Intel Architecture",
|
1369 |
|
|
Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
|
1370 |
|
|
Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
|
1371 |
|
|
|
1372 |
|
|
Devising a cost model is the most critical aspect of this work. It will
|
1373 |
|
|
guide us on which access to peel for, whether to use loop versioning, how
|
1374 |
|
|
many versions to create, etc. The cost model will probably consist of
|
1375 |
|
|
generic considerations as well as target specific considerations (on
|
1376 |
|
|
powerpc for example, misaligned stores are more painful than misaligned
|
1377 |
|
|
loads).
|
1378 |
|
|
|
1379 |
|
|
Here are the general steps involved in alignment enhancements:
|
1380 |
|
|
|
1381 |
|
|
-- original loop, before alignment analysis:
|
1382 |
|
|
for (i=0; i<N; i++){
|
1383 |
|
|
x = q[i]; # DR_MISALIGNMENT(q) = unknown
|
1384 |
|
|
p[i] = y; # DR_MISALIGNMENT(p) = unknown
|
1385 |
|
|
}
|
1386 |
|
|
|
1387 |
|
|
-- After vect_compute_data_refs_alignment:
|
1388 |
|
|
for (i=0; i<N; i++){
|
1389 |
|
|
x = q[i]; # DR_MISALIGNMENT(q) = 3
|
1390 |
|
|
p[i] = y; # DR_MISALIGNMENT(p) = unknown
|
1391 |
|
|
}
|
1392 |
|
|
|
1393 |
|
|
-- Possibility 1: we do loop versioning:
|
1394 |
|
|
if (p is aligned) {
|
1395 |
|
|
for (i=0; i<N; i++){ # loop 1A
|
1396 |
|
|
x = q[i]; # DR_MISALIGNMENT(q) = 3
|
1397 |
|
|
p[i] = y; # DR_MISALIGNMENT(p) = 0
|
1398 |
|
|
}
|
1399 |
|
|
}
|
1400 |
|
|
else {
|
1401 |
|
|
for (i=0; i<N; i++){ # loop 1B
|
1402 |
|
|
x = q[i]; # DR_MISALIGNMENT(q) = 3
|
1403 |
|
|
p[i] = y; # DR_MISALIGNMENT(p) = unaligned
|
1404 |
|
|
}
|
1405 |
|
|
}
|
1406 |
|
|
|
1407 |
|
|
-- Possibility 2: we do loop peeling:
|
1408 |
|
|
for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
|
1409 |
|
|
x = q[i];
|
1410 |
|
|
p[i] = y;
|
1411 |
|
|
}
|
1412 |
|
|
for (i = 3; i < N; i++){ # loop 2A
|
1413 |
|
|
x = q[i]; # DR_MISALIGNMENT(q) = 0
|
1414 |
|
|
p[i] = y; # DR_MISALIGNMENT(p) = unknown
|
1415 |
|
|
}
|
1416 |
|
|
|
1417 |
|
|
-- Possibility 3: combination of loop peeling and versioning:
|
1418 |
|
|
for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
|
1419 |
|
|
x = q[i];
|
1420 |
|
|
p[i] = y;
|
1421 |
|
|
}
|
1422 |
|
|
if (p is aligned) {
|
1423 |
|
|
for (i = 3; i<N; i++){ # loop 3A
|
1424 |
|
|
x = q[i]; # DR_MISALIGNMENT(q) = 0
|
1425 |
|
|
p[i] = y; # DR_MISALIGNMENT(p) = 0
|
1426 |
|
|
}
|
1427 |
|
|
}
|
1428 |
|
|
else {
|
1429 |
|
|
for (i = 3; i<N; i++){ # loop 3B
|
1430 |
|
|
x = q[i]; # DR_MISALIGNMENT(q) = 0
|
1431 |
|
|
p[i] = y; # DR_MISALIGNMENT(p) = unaligned
|
1432 |
|
|
}
|
1433 |
|
|
}
|
1434 |
|
|
|
1435 |
|
|
These loops are later passed to loop_transform to be vectorized. The
|
1436 |
|
|
vectorizer will use the alignment information to guide the transformation
|
1437 |
|
|
(whether to generate regular loads/stores, or with special handling for
|
1438 |
|
|
misalignment). */
|
1439 |
|
|
|
1440 |
|
|
bool
|
1441 |
|
|
vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
|
1442 |
|
|
{
|
1443 |
|
|
VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
|
1444 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
1445 |
|
|
enum dr_alignment_support supportable_dr_alignment;
|
1446 |
|
|
struct data_reference *dr0 = NULL, *first_store = NULL;
|
1447 |
|
|
struct data_reference *dr;
|
1448 |
|
|
unsigned int i, j;
|
1449 |
|
|
bool do_peeling = false;
|
1450 |
|
|
bool do_versioning = false;
|
1451 |
|
|
bool stat;
|
1452 |
|
|
gimple stmt;
|
1453 |
|
|
stmt_vec_info stmt_info;
|
1454 |
|
|
int vect_versioning_for_alias_required;
|
1455 |
|
|
unsigned int npeel = 0;
|
1456 |
|
|
bool all_misalignments_unknown = true;
|
1457 |
|
|
unsigned int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
1458 |
|
|
unsigned possible_npeel_number = 1;
|
1459 |
|
|
tree vectype;
|
1460 |
|
|
unsigned int nelements, mis, same_align_drs_max = 0;
|
1461 |
|
|
|
1462 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1463 |
|
|
fprintf (vect_dump, "=== vect_enhance_data_refs_alignment ===");
|
1464 |
|
|
|
1465 |
|
|
/* While cost model enhancements are expected in the future, the high level
|
1466 |
|
|
view of the code at this time is as follows:
|
1467 |
|
|
|
1468 |
|
|
A) If there is a misaligned access then see if peeling to align
|
1469 |
|
|
this access can make all data references satisfy
|
1470 |
|
|
vect_supportable_dr_alignment. If so, update data structures
|
1471 |
|
|
as needed and return true.
|
1472 |
|
|
|
1473 |
|
|
B) If peeling wasn't possible and there is a data reference with an
|
1474 |
|
|
unknown misalignment that does not satisfy vect_supportable_dr_alignment
|
1475 |
|
|
then see if loop versioning checks can be used to make all data
|
1476 |
|
|
references satisfy vect_supportable_dr_alignment. If so, update
|
1477 |
|
|
data structures as needed and return true.
|
1478 |
|
|
|
1479 |
|
|
C) If neither peeling nor versioning were successful then return false if
|
1480 |
|
|
any data reference does not satisfy vect_supportable_dr_alignment.
|
1481 |
|
|
|
1482 |
|
|
D) Return true (all data references satisfy vect_supportable_dr_alignment).
|
1483 |
|
|
|
1484 |
|
|
Note, Possibility 3 above (which is peeling and versioning together) is not
|
1485 |
|
|
being done at this time. */
|
1486 |
|
|
|
1487 |
|
|
/* (1) Peeling to force alignment. */
|
1488 |
|
|
|
1489 |
|
|
/* (1.1) Decide whether to perform peeling, and how many iterations to peel:
|
1490 |
|
|
Considerations:
|
1491 |
|
|
+ How many accesses will become aligned due to the peeling
|
1492 |
|
|
- How many accesses will become unaligned due to the peeling,
|
1493 |
|
|
and the cost of misaligned accesses.
|
1494 |
|
|
- The cost of peeling (the extra runtime checks, the increase
|
1495 |
|
|
in code size). */
|
1496 |
|
|
|
1497 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
|
1498 |
|
|
{
|
1499 |
|
|
stmt = DR_STMT (dr);
|
1500 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
1501 |
|
|
|
1502 |
|
|
if (!STMT_VINFO_RELEVANT (stmt_info))
|
1503 |
|
|
continue;
|
1504 |
|
|
|
1505 |
|
|
/* For interleaving, only the alignment of the first access
|
1506 |
|
|
matters. */
|
1507 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info)
|
1508 |
|
|
&& GROUP_FIRST_ELEMENT (stmt_info) != stmt)
|
1509 |
|
|
continue;
|
1510 |
|
|
|
1511 |
|
|
/* For invariant accesses there is nothing to enhance. */
|
1512 |
|
|
if (integer_zerop (DR_STEP (dr)))
|
1513 |
|
|
continue;
|
1514 |
|
|
|
1515 |
|
|
supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
|
1516 |
|
|
do_peeling = vector_alignment_reachable_p (dr);
|
1517 |
|
|
if (do_peeling)
|
1518 |
|
|
{
|
1519 |
|
|
if (known_alignment_for_access_p (dr))
|
1520 |
|
|
{
|
1521 |
|
|
unsigned int npeel_tmp;
|
1522 |
|
|
bool negative = tree_int_cst_compare (DR_STEP (dr),
|
1523 |
|
|
size_zero_node) < 0;
|
1524 |
|
|
|
1525 |
|
|
/* Save info about DR in the hash table. */
|
1526 |
|
|
if (!LOOP_VINFO_PEELING_HTAB (loop_vinfo))
|
1527 |
|
|
LOOP_VINFO_PEELING_HTAB (loop_vinfo) =
|
1528 |
|
|
htab_create (1, vect_peeling_hash,
|
1529 |
|
|
vect_peeling_hash_eq, free);
|
1530 |
|
|
|
1531 |
|
|
vectype = STMT_VINFO_VECTYPE (stmt_info);
|
1532 |
|
|
nelements = TYPE_VECTOR_SUBPARTS (vectype);
|
1533 |
|
|
mis = DR_MISALIGNMENT (dr) / GET_MODE_SIZE (TYPE_MODE (
|
1534 |
|
|
TREE_TYPE (DR_REF (dr))));
|
1535 |
|
|
npeel_tmp = (negative
|
1536 |
|
|
? (mis - nelements) : (nelements - mis))
|
1537 |
|
|
& (nelements - 1);
|
1538 |
|
|
|
1539 |
|
|
/* For multiple types, it is possible that the bigger type access
|
1540 |
|
|
will have more than one peeling option. E.g., a loop with two
|
1541 |
|
|
types: one of size (vector size / 4), and the other one of
|
1542 |
|
|
size (vector size / 8). Vectorization factor will 8. If both
|
1543 |
|
|
access are misaligned by 3, the first one needs one scalar
|
1544 |
|
|
iteration to be aligned, and the second one needs 5. But the
|
1545 |
|
|
the first one will be aligned also by peeling 5 scalar
|
1546 |
|
|
iterations, and in that case both accesses will be aligned.
|
1547 |
|
|
Hence, except for the immediate peeling amount, we also want
|
1548 |
|
|
to try to add full vector size, while we don't exceed
|
1549 |
|
|
vectorization factor.
|
1550 |
|
|
We do this automtically for cost model, since we calculate cost
|
1551 |
|
|
for every peeling option. */
|
1552 |
|
|
if (!flag_vect_cost_model)
|
1553 |
|
|
possible_npeel_number = vf /nelements;
|
1554 |
|
|
|
1555 |
|
|
/* Handle the aligned case. We may decide to align some other
|
1556 |
|
|
access, making DR unaligned. */
|
1557 |
|
|
if (DR_MISALIGNMENT (dr) == 0)
|
1558 |
|
|
{
|
1559 |
|
|
npeel_tmp = 0;
|
1560 |
|
|
if (!flag_vect_cost_model)
|
1561 |
|
|
possible_npeel_number++;
|
1562 |
|
|
}
|
1563 |
|
|
|
1564 |
|
|
for (j = 0; j < possible_npeel_number; j++)
|
1565 |
|
|
{
|
1566 |
|
|
gcc_assert (npeel_tmp <= vf);
|
1567 |
|
|
vect_peeling_hash_insert (loop_vinfo, dr, npeel_tmp);
|
1568 |
|
|
npeel_tmp += nelements;
|
1569 |
|
|
}
|
1570 |
|
|
|
1571 |
|
|
all_misalignments_unknown = false;
|
1572 |
|
|
/* Data-ref that was chosen for the case that all the
|
1573 |
|
|
misalignments are unknown is not relevant anymore, since we
|
1574 |
|
|
have a data-ref with known alignment. */
|
1575 |
|
|
dr0 = NULL;
|
1576 |
|
|
}
|
1577 |
|
|
else
|
1578 |
|
|
{
|
1579 |
|
|
/* If we don't know all the misalignment values, we prefer
|
1580 |
|
|
peeling for data-ref that has maximum number of data-refs
|
1581 |
|
|
with the same alignment, unless the target prefers to align
|
1582 |
|
|
stores over load. */
|
1583 |
|
|
if (all_misalignments_unknown)
|
1584 |
|
|
{
|
1585 |
|
|
if (same_align_drs_max < VEC_length (dr_p,
|
1586 |
|
|
STMT_VINFO_SAME_ALIGN_REFS (stmt_info))
|
1587 |
|
|
|| !dr0)
|
1588 |
|
|
{
|
1589 |
|
|
same_align_drs_max = VEC_length (dr_p,
|
1590 |
|
|
STMT_VINFO_SAME_ALIGN_REFS (stmt_info));
|
1591 |
|
|
dr0 = dr;
|
1592 |
|
|
}
|
1593 |
|
|
|
1594 |
|
|
if (!first_store && DR_IS_WRITE (dr))
|
1595 |
|
|
first_store = dr;
|
1596 |
|
|
}
|
1597 |
|
|
|
1598 |
|
|
/* If there are both known and unknown misaligned accesses in the
|
1599 |
|
|
loop, we choose peeling amount according to the known
|
1600 |
|
|
accesses. */
|
1601 |
|
|
|
1602 |
|
|
|
1603 |
|
|
if (!supportable_dr_alignment)
|
1604 |
|
|
{
|
1605 |
|
|
dr0 = dr;
|
1606 |
|
|
if (!first_store && DR_IS_WRITE (dr))
|
1607 |
|
|
first_store = dr;
|
1608 |
|
|
}
|
1609 |
|
|
}
|
1610 |
|
|
}
|
1611 |
|
|
else
|
1612 |
|
|
{
|
1613 |
|
|
if (!aligned_access_p (dr))
|
1614 |
|
|
{
|
1615 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1616 |
|
|
fprintf (vect_dump, "vector alignment may not be reachable");
|
1617 |
|
|
|
1618 |
|
|
break;
|
1619 |
|
|
}
|
1620 |
|
|
}
|
1621 |
|
|
}
|
1622 |
|
|
|
1623 |
|
|
vect_versioning_for_alias_required
|
1624 |
|
|
= LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
|
1625 |
|
|
|
1626 |
|
|
/* Temporarily, if versioning for alias is required, we disable peeling
|
1627 |
|
|
until we support peeling and versioning. Often peeling for alignment
|
1628 |
|
|
will require peeling for loop-bound, which in turn requires that we
|
1629 |
|
|
know how to adjust the loop ivs after the loop. */
|
1630 |
|
|
if (vect_versioning_for_alias_required
|
1631 |
|
|
|| !vect_can_advance_ivs_p (loop_vinfo)
|
1632 |
|
|
|| !slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
|
1633 |
|
|
do_peeling = false;
|
1634 |
|
|
|
1635 |
|
|
if (do_peeling && all_misalignments_unknown
|
1636 |
|
|
&& vect_supportable_dr_alignment (dr0, false))
|
1637 |
|
|
{
|
1638 |
|
|
|
1639 |
|
|
/* Check if the target requires to prefer stores over loads, i.e., if
|
1640 |
|
|
misaligned stores are more expensive than misaligned loads (taking
|
1641 |
|
|
drs with same alignment into account). */
|
1642 |
|
|
if (first_store && DR_IS_READ (dr0))
|
1643 |
|
|
{
|
1644 |
|
|
unsigned int load_inside_cost = 0, load_outside_cost = 0;
|
1645 |
|
|
unsigned int store_inside_cost = 0, store_outside_cost = 0;
|
1646 |
|
|
unsigned int load_inside_penalty = 0, load_outside_penalty = 0;
|
1647 |
|
|
unsigned int store_inside_penalty = 0, store_outside_penalty = 0;
|
1648 |
|
|
|
1649 |
|
|
vect_get_data_access_cost (dr0, &load_inside_cost,
|
1650 |
|
|
&load_outside_cost);
|
1651 |
|
|
vect_get_data_access_cost (first_store, &store_inside_cost,
|
1652 |
|
|
&store_outside_cost);
|
1653 |
|
|
|
1654 |
|
|
/* Calculate the penalty for leaving FIRST_STORE unaligned (by
|
1655 |
|
|
aligning the load DR0). */
|
1656 |
|
|
load_inside_penalty = store_inside_cost;
|
1657 |
|
|
load_outside_penalty = store_outside_cost;
|
1658 |
|
|
for (i = 0; VEC_iterate (dr_p, STMT_VINFO_SAME_ALIGN_REFS
|
1659 |
|
|
(vinfo_for_stmt (DR_STMT (first_store))),
|
1660 |
|
|
i, dr);
|
1661 |
|
|
i++)
|
1662 |
|
|
if (DR_IS_READ (dr))
|
1663 |
|
|
{
|
1664 |
|
|
load_inside_penalty += load_inside_cost;
|
1665 |
|
|
load_outside_penalty += load_outside_cost;
|
1666 |
|
|
}
|
1667 |
|
|
else
|
1668 |
|
|
{
|
1669 |
|
|
load_inside_penalty += store_inside_cost;
|
1670 |
|
|
load_outside_penalty += store_outside_cost;
|
1671 |
|
|
}
|
1672 |
|
|
|
1673 |
|
|
/* Calculate the penalty for leaving DR0 unaligned (by
|
1674 |
|
|
aligning the FIRST_STORE). */
|
1675 |
|
|
store_inside_penalty = load_inside_cost;
|
1676 |
|
|
store_outside_penalty = load_outside_cost;
|
1677 |
|
|
for (i = 0; VEC_iterate (dr_p, STMT_VINFO_SAME_ALIGN_REFS
|
1678 |
|
|
(vinfo_for_stmt (DR_STMT (dr0))),
|
1679 |
|
|
i, dr);
|
1680 |
|
|
i++)
|
1681 |
|
|
if (DR_IS_READ (dr))
|
1682 |
|
|
{
|
1683 |
|
|
store_inside_penalty += load_inside_cost;
|
1684 |
|
|
store_outside_penalty += load_outside_cost;
|
1685 |
|
|
}
|
1686 |
|
|
else
|
1687 |
|
|
{
|
1688 |
|
|
store_inside_penalty += store_inside_cost;
|
1689 |
|
|
store_outside_penalty += store_outside_cost;
|
1690 |
|
|
}
|
1691 |
|
|
|
1692 |
|
|
if (load_inside_penalty > store_inside_penalty
|
1693 |
|
|
|| (load_inside_penalty == store_inside_penalty
|
1694 |
|
|
&& load_outside_penalty > store_outside_penalty))
|
1695 |
|
|
dr0 = first_store;
|
1696 |
|
|
}
|
1697 |
|
|
|
1698 |
|
|
/* In case there are only loads with different unknown misalignments, use
|
1699 |
|
|
peeling only if it may help to align other accesses in the loop. */
|
1700 |
|
|
if (!first_store && !VEC_length (dr_p, STMT_VINFO_SAME_ALIGN_REFS
|
1701 |
|
|
(vinfo_for_stmt (DR_STMT (dr0))))
|
1702 |
|
|
&& vect_supportable_dr_alignment (dr0, false)
|
1703 |
|
|
!= dr_unaligned_supported)
|
1704 |
|
|
do_peeling = false;
|
1705 |
|
|
}
|
1706 |
|
|
|
1707 |
|
|
if (do_peeling && !dr0)
|
1708 |
|
|
{
|
1709 |
|
|
/* Peeling is possible, but there is no data access that is not supported
|
1710 |
|
|
unless aligned. So we try to choose the best possible peeling. */
|
1711 |
|
|
|
1712 |
|
|
/* We should get here only if there are drs with known misalignment. */
|
1713 |
|
|
gcc_assert (!all_misalignments_unknown);
|
1714 |
|
|
|
1715 |
|
|
/* Choose the best peeling from the hash table. */
|
1716 |
|
|
dr0 = vect_peeling_hash_choose_best_peeling (loop_vinfo, &npeel);
|
1717 |
|
|
if (!dr0 || !npeel)
|
1718 |
|
|
do_peeling = false;
|
1719 |
|
|
}
|
1720 |
|
|
|
1721 |
|
|
if (do_peeling)
|
1722 |
|
|
{
|
1723 |
|
|
stmt = DR_STMT (dr0);
|
1724 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
1725 |
|
|
vectype = STMT_VINFO_VECTYPE (stmt_info);
|
1726 |
|
|
nelements = TYPE_VECTOR_SUBPARTS (vectype);
|
1727 |
|
|
|
1728 |
|
|
if (known_alignment_for_access_p (dr0))
|
1729 |
|
|
{
|
1730 |
|
|
bool negative = tree_int_cst_compare (DR_STEP (dr0),
|
1731 |
|
|
size_zero_node) < 0;
|
1732 |
|
|
if (!npeel)
|
1733 |
|
|
{
|
1734 |
|
|
/* Since it's known at compile time, compute the number of
|
1735 |
|
|
iterations in the peeled loop (the peeling factor) for use in
|
1736 |
|
|
updating DR_MISALIGNMENT values. The peeling factor is the
|
1737 |
|
|
vectorization factor minus the misalignment as an element
|
1738 |
|
|
count. */
|
1739 |
|
|
mis = DR_MISALIGNMENT (dr0);
|
1740 |
|
|
mis /= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr0))));
|
1741 |
|
|
npeel = ((negative ? mis - nelements : nelements - mis)
|
1742 |
|
|
& (nelements - 1));
|
1743 |
|
|
}
|
1744 |
|
|
|
1745 |
|
|
/* For interleaved data access every iteration accesses all the
|
1746 |
|
|
members of the group, therefore we divide the number of iterations
|
1747 |
|
|
by the group size. */
|
1748 |
|
|
stmt_info = vinfo_for_stmt (DR_STMT (dr0));
|
1749 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
|
1750 |
|
|
npeel /= GROUP_SIZE (stmt_info);
|
1751 |
|
|
|
1752 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1753 |
|
|
fprintf (vect_dump, "Try peeling by %d", npeel);
|
1754 |
|
|
}
|
1755 |
|
|
|
1756 |
|
|
/* Ensure that all data refs can be vectorized after the peel. */
|
1757 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
|
1758 |
|
|
{
|
1759 |
|
|
int save_misalignment;
|
1760 |
|
|
|
1761 |
|
|
if (dr == dr0)
|
1762 |
|
|
continue;
|
1763 |
|
|
|
1764 |
|
|
stmt = DR_STMT (dr);
|
1765 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
1766 |
|
|
/* For interleaving, only the alignment of the first access
|
1767 |
|
|
matters. */
|
1768 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info)
|
1769 |
|
|
&& GROUP_FIRST_ELEMENT (stmt_info) != stmt)
|
1770 |
|
|
continue;
|
1771 |
|
|
|
1772 |
|
|
save_misalignment = DR_MISALIGNMENT (dr);
|
1773 |
|
|
vect_update_misalignment_for_peel (dr, dr0, npeel);
|
1774 |
|
|
supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
|
1775 |
|
|
SET_DR_MISALIGNMENT (dr, save_misalignment);
|
1776 |
|
|
|
1777 |
|
|
if (!supportable_dr_alignment)
|
1778 |
|
|
{
|
1779 |
|
|
do_peeling = false;
|
1780 |
|
|
break;
|
1781 |
|
|
}
|
1782 |
|
|
}
|
1783 |
|
|
|
1784 |
|
|
if (do_peeling && known_alignment_for_access_p (dr0) && npeel == 0)
|
1785 |
|
|
{
|
1786 |
|
|
stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
|
1787 |
|
|
if (!stat)
|
1788 |
|
|
do_peeling = false;
|
1789 |
|
|
else
|
1790 |
|
|
return stat;
|
1791 |
|
|
}
|
1792 |
|
|
|
1793 |
|
|
if (do_peeling)
|
1794 |
|
|
{
|
1795 |
|
|
/* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
|
1796 |
|
|
If the misalignment of DR_i is identical to that of dr0 then set
|
1797 |
|
|
DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
|
1798 |
|
|
dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
|
1799 |
|
|
by the peeling factor times the element size of DR_i (MOD the
|
1800 |
|
|
vectorization factor times the size). Otherwise, the
|
1801 |
|
|
misalignment of DR_i must be set to unknown. */
|
1802 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
|
1803 |
|
|
if (dr != dr0)
|
1804 |
|
|
vect_update_misalignment_for_peel (dr, dr0, npeel);
|
1805 |
|
|
|
1806 |
|
|
LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
|
1807 |
|
|
if (npeel)
|
1808 |
|
|
LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel;
|
1809 |
|
|
else
|
1810 |
|
|
LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) = DR_MISALIGNMENT (dr0);
|
1811 |
|
|
SET_DR_MISALIGNMENT (dr0, 0);
|
1812 |
|
|
if (vect_print_dump_info (REPORT_ALIGNMENT))
|
1813 |
|
|
fprintf (vect_dump, "Alignment of access forced using peeling.");
|
1814 |
|
|
|
1815 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1816 |
|
|
fprintf (vect_dump, "Peeling for alignment will be applied.");
|
1817 |
|
|
|
1818 |
|
|
stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
|
1819 |
|
|
gcc_assert (stat);
|
1820 |
|
|
return stat;
|
1821 |
|
|
}
|
1822 |
|
|
}
|
1823 |
|
|
|
1824 |
|
|
|
1825 |
|
|
/* (2) Versioning to force alignment. */
|
1826 |
|
|
|
1827 |
|
|
/* Try versioning if:
|
1828 |
|
|
1) flag_tree_vect_loop_version is TRUE
|
1829 |
|
|
2) optimize loop for speed
|
1830 |
|
|
3) there is at least one unsupported misaligned data ref with an unknown
|
1831 |
|
|
misalignment, and
|
1832 |
|
|
4) all misaligned data refs with a known misalignment are supported, and
|
1833 |
|
|
5) the number of runtime alignment checks is within reason. */
|
1834 |
|
|
|
1835 |
|
|
do_versioning =
|
1836 |
|
|
flag_tree_vect_loop_version
|
1837 |
|
|
&& optimize_loop_nest_for_speed_p (loop)
|
1838 |
|
|
&& (!loop->inner); /* FORNOW */
|
1839 |
|
|
|
1840 |
|
|
if (do_versioning)
|
1841 |
|
|
{
|
1842 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
|
1843 |
|
|
{
|
1844 |
|
|
stmt = DR_STMT (dr);
|
1845 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
1846 |
|
|
|
1847 |
|
|
/* For interleaving, only the alignment of the first access
|
1848 |
|
|
matters. */
|
1849 |
|
|
if (aligned_access_p (dr)
|
1850 |
|
|
|| (STMT_VINFO_STRIDED_ACCESS (stmt_info)
|
1851 |
|
|
&& GROUP_FIRST_ELEMENT (stmt_info) != stmt))
|
1852 |
|
|
continue;
|
1853 |
|
|
|
1854 |
|
|
supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
|
1855 |
|
|
|
1856 |
|
|
if (!supportable_dr_alignment)
|
1857 |
|
|
{
|
1858 |
|
|
gimple stmt;
|
1859 |
|
|
int mask;
|
1860 |
|
|
tree vectype;
|
1861 |
|
|
|
1862 |
|
|
if (known_alignment_for_access_p (dr)
|
1863 |
|
|
|| VEC_length (gimple,
|
1864 |
|
|
LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo))
|
1865 |
|
|
>= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS))
|
1866 |
|
|
{
|
1867 |
|
|
do_versioning = false;
|
1868 |
|
|
break;
|
1869 |
|
|
}
|
1870 |
|
|
|
1871 |
|
|
stmt = DR_STMT (dr);
|
1872 |
|
|
vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
|
1873 |
|
|
gcc_assert (vectype);
|
1874 |
|
|
|
1875 |
|
|
/* The rightmost bits of an aligned address must be zeros.
|
1876 |
|
|
Construct the mask needed for this test. For example,
|
1877 |
|
|
GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
|
1878 |
|
|
mask must be 15 = 0xf. */
|
1879 |
|
|
mask = GET_MODE_SIZE (TYPE_MODE (vectype)) - 1;
|
1880 |
|
|
|
1881 |
|
|
/* FORNOW: use the same mask to test all potentially unaligned
|
1882 |
|
|
references in the loop. The vectorizer currently supports
|
1883 |
|
|
a single vector size, see the reference to
|
1884 |
|
|
GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
|
1885 |
|
|
vectorization factor is computed. */
|
1886 |
|
|
gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo)
|
1887 |
|
|
|| LOOP_VINFO_PTR_MASK (loop_vinfo) == mask);
|
1888 |
|
|
LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
|
1889 |
|
|
VEC_safe_push (gimple, heap,
|
1890 |
|
|
LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo),
|
1891 |
|
|
DR_STMT (dr));
|
1892 |
|
|
}
|
1893 |
|
|
}
|
1894 |
|
|
|
1895 |
|
|
/* Versioning requires at least one misaligned data reference. */
|
1896 |
|
|
if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
|
1897 |
|
|
do_versioning = false;
|
1898 |
|
|
else if (!do_versioning)
|
1899 |
|
|
VEC_truncate (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo), 0);
|
1900 |
|
|
}
|
1901 |
|
|
|
1902 |
|
|
if (do_versioning)
|
1903 |
|
|
{
|
1904 |
|
|
VEC(gimple,heap) *may_misalign_stmts
|
1905 |
|
|
= LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
|
1906 |
|
|
gimple stmt;
|
1907 |
|
|
|
1908 |
|
|
/* It can now be assumed that the data references in the statements
|
1909 |
|
|
in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
|
1910 |
|
|
of the loop being vectorized. */
|
1911 |
|
|
FOR_EACH_VEC_ELT (gimple, may_misalign_stmts, i, stmt)
|
1912 |
|
|
{
|
1913 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
1914 |
|
|
dr = STMT_VINFO_DATA_REF (stmt_info);
|
1915 |
|
|
SET_DR_MISALIGNMENT (dr, 0);
|
1916 |
|
|
if (vect_print_dump_info (REPORT_ALIGNMENT))
|
1917 |
|
|
fprintf (vect_dump, "Alignment of access forced using versioning.");
|
1918 |
|
|
}
|
1919 |
|
|
|
1920 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1921 |
|
|
fprintf (vect_dump, "Versioning for alignment will be applied.");
|
1922 |
|
|
|
1923 |
|
|
/* Peeling and versioning can't be done together at this time. */
|
1924 |
|
|
gcc_assert (! (do_peeling && do_versioning));
|
1925 |
|
|
|
1926 |
|
|
stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
|
1927 |
|
|
gcc_assert (stat);
|
1928 |
|
|
return stat;
|
1929 |
|
|
}
|
1930 |
|
|
|
1931 |
|
|
/* This point is reached if neither peeling nor versioning is being done. */
|
1932 |
|
|
gcc_assert (! (do_peeling || do_versioning));
|
1933 |
|
|
|
1934 |
|
|
stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
|
1935 |
|
|
return stat;
|
1936 |
|
|
}
|
1937 |
|
|
|
1938 |
|
|
|
1939 |
|
|
/* Function vect_find_same_alignment_drs.
|
1940 |
|
|
|
1941 |
|
|
Update group and alignment relations according to the chosen
|
1942 |
|
|
vectorization factor. */
|
1943 |
|
|
|
1944 |
|
|
static void
|
1945 |
|
|
vect_find_same_alignment_drs (struct data_dependence_relation *ddr,
|
1946 |
|
|
loop_vec_info loop_vinfo)
|
1947 |
|
|
{
|
1948 |
|
|
unsigned int i;
|
1949 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
1950 |
|
|
int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
1951 |
|
|
struct data_reference *dra = DDR_A (ddr);
|
1952 |
|
|
struct data_reference *drb = DDR_B (ddr);
|
1953 |
|
|
stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
|
1954 |
|
|
stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
|
1955 |
|
|
int dra_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dra))));
|
1956 |
|
|
int drb_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (drb))));
|
1957 |
|
|
lambda_vector dist_v;
|
1958 |
|
|
unsigned int loop_depth;
|
1959 |
|
|
|
1960 |
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
|
1961 |
|
|
return;
|
1962 |
|
|
|
1963 |
|
|
if (dra == drb)
|
1964 |
|
|
return;
|
1965 |
|
|
|
1966 |
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
|
1967 |
|
|
return;
|
1968 |
|
|
|
1969 |
|
|
/* Loop-based vectorization and known data dependence. */
|
1970 |
|
|
if (DDR_NUM_DIST_VECTS (ddr) == 0)
|
1971 |
|
|
return;
|
1972 |
|
|
|
1973 |
|
|
/* Data-dependence analysis reports a distance vector of zero
|
1974 |
|
|
for data-references that overlap only in the first iteration
|
1975 |
|
|
but have different sign step (see PR45764).
|
1976 |
|
|
So as a sanity check require equal DR_STEP. */
|
1977 |
|
|
if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
|
1978 |
|
|
return;
|
1979 |
|
|
|
1980 |
|
|
loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
|
1981 |
|
|
FOR_EACH_VEC_ELT (lambda_vector, DDR_DIST_VECTS (ddr), i, dist_v)
|
1982 |
|
|
{
|
1983 |
|
|
int dist = dist_v[loop_depth];
|
1984 |
|
|
|
1985 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
1986 |
|
|
fprintf (vect_dump, "dependence distance = %d.", dist);
|
1987 |
|
|
|
1988 |
|
|
/* Same loop iteration. */
|
1989 |
|
|
if (dist == 0
|
1990 |
|
|
|| (dist % vectorization_factor == 0 && dra_size == drb_size))
|
1991 |
|
|
{
|
1992 |
|
|
/* Two references with distance zero have the same alignment. */
|
1993 |
|
|
VEC_safe_push (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a), drb);
|
1994 |
|
|
VEC_safe_push (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b), dra);
|
1995 |
|
|
if (vect_print_dump_info (REPORT_ALIGNMENT))
|
1996 |
|
|
fprintf (vect_dump, "accesses have the same alignment.");
|
1997 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
1998 |
|
|
{
|
1999 |
|
|
fprintf (vect_dump, "dependence distance modulo vf == 0 between ");
|
2000 |
|
|
print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
|
2001 |
|
|
fprintf (vect_dump, " and ");
|
2002 |
|
|
print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
|
2003 |
|
|
}
|
2004 |
|
|
}
|
2005 |
|
|
}
|
2006 |
|
|
}
|
2007 |
|
|
|
2008 |
|
|
|
2009 |
|
|
/* Function vect_analyze_data_refs_alignment
|
2010 |
|
|
|
2011 |
|
|
Analyze the alignment of the data-references in the loop.
|
2012 |
|
|
Return FALSE if a data reference is found that cannot be vectorized. */
|
2013 |
|
|
|
2014 |
|
|
bool
|
2015 |
|
|
vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo,
|
2016 |
|
|
bb_vec_info bb_vinfo)
|
2017 |
|
|
{
|
2018 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2019 |
|
|
fprintf (vect_dump, "=== vect_analyze_data_refs_alignment ===");
|
2020 |
|
|
|
2021 |
|
|
/* Mark groups of data references with same alignment using
|
2022 |
|
|
data dependence information. */
|
2023 |
|
|
if (loop_vinfo)
|
2024 |
|
|
{
|
2025 |
|
|
VEC (ddr_p, heap) *ddrs = LOOP_VINFO_DDRS (loop_vinfo);
|
2026 |
|
|
struct data_dependence_relation *ddr;
|
2027 |
|
|
unsigned int i;
|
2028 |
|
|
|
2029 |
|
|
FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr)
|
2030 |
|
|
vect_find_same_alignment_drs (ddr, loop_vinfo);
|
2031 |
|
|
}
|
2032 |
|
|
|
2033 |
|
|
if (!vect_compute_data_refs_alignment (loop_vinfo, bb_vinfo))
|
2034 |
|
|
{
|
2035 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
2036 |
|
|
fprintf (vect_dump,
|
2037 |
|
|
"not vectorized: can't calculate alignment for data ref.");
|
2038 |
|
|
return false;
|
2039 |
|
|
}
|
2040 |
|
|
|
2041 |
|
|
return true;
|
2042 |
|
|
}
|
2043 |
|
|
|
2044 |
|
|
|
2045 |
|
|
/* Analyze groups of strided accesses: check that DR belongs to a group of
|
2046 |
|
|
strided accesses of legal size, step, etc. Detect gaps, single element
|
2047 |
|
|
interleaving, and other special cases. Set strided access info.
|
2048 |
|
|
Collect groups of strided stores for further use in SLP analysis. */
|
2049 |
|
|
|
2050 |
|
|
static bool
|
2051 |
|
|
vect_analyze_group_access (struct data_reference *dr)
|
2052 |
|
|
{
|
2053 |
|
|
tree step = DR_STEP (dr);
|
2054 |
|
|
tree scalar_type = TREE_TYPE (DR_REF (dr));
|
2055 |
|
|
HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
|
2056 |
|
|
gimple stmt = DR_STMT (dr);
|
2057 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
2058 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
2059 |
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
2060 |
|
|
HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
|
2061 |
|
|
HOST_WIDE_INT stride, last_accessed_element = 1;
|
2062 |
|
|
bool slp_impossible = false;
|
2063 |
|
|
struct loop *loop = NULL;
|
2064 |
|
|
|
2065 |
|
|
if (loop_vinfo)
|
2066 |
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
2067 |
|
|
|
2068 |
|
|
/* For interleaving, STRIDE is STEP counted in elements, i.e., the size of the
|
2069 |
|
|
interleaving group (including gaps). */
|
2070 |
|
|
stride = dr_step / type_size;
|
2071 |
|
|
|
2072 |
|
|
/* Not consecutive access is possible only if it is a part of interleaving. */
|
2073 |
|
|
if (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
|
2074 |
|
|
{
|
2075 |
|
|
/* Check if it this DR is a part of interleaving, and is a single
|
2076 |
|
|
element of the group that is accessed in the loop. */
|
2077 |
|
|
|
2078 |
|
|
/* Gaps are supported only for loads. STEP must be a multiple of the type
|
2079 |
|
|
size. The size of the group must be a power of 2. */
|
2080 |
|
|
if (DR_IS_READ (dr)
|
2081 |
|
|
&& (dr_step % type_size) == 0
|
2082 |
|
|
&& stride > 0
|
2083 |
|
|
&& exact_log2 (stride) != -1)
|
2084 |
|
|
{
|
2085 |
|
|
GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = stmt;
|
2086 |
|
|
GROUP_SIZE (vinfo_for_stmt (stmt)) = stride;
|
2087 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
2088 |
|
|
{
|
2089 |
|
|
fprintf (vect_dump, "Detected single element interleaving ");
|
2090 |
|
|
print_generic_expr (vect_dump, DR_REF (dr), TDF_SLIM);
|
2091 |
|
|
fprintf (vect_dump, " step ");
|
2092 |
|
|
print_generic_expr (vect_dump, step, TDF_SLIM);
|
2093 |
|
|
}
|
2094 |
|
|
|
2095 |
|
|
if (loop_vinfo)
|
2096 |
|
|
{
|
2097 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2098 |
|
|
fprintf (vect_dump, "Data access with gaps requires scalar "
|
2099 |
|
|
"epilogue loop");
|
2100 |
|
|
if (loop->inner)
|
2101 |
|
|
{
|
2102 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2103 |
|
|
fprintf (vect_dump, "Peeling for outer loop is not"
|
2104 |
|
|
" supported");
|
2105 |
|
|
return false;
|
2106 |
|
|
}
|
2107 |
|
|
|
2108 |
|
|
LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
|
2109 |
|
|
}
|
2110 |
|
|
|
2111 |
|
|
return true;
|
2112 |
|
|
}
|
2113 |
|
|
|
2114 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2115 |
|
|
{
|
2116 |
|
|
fprintf (vect_dump, "not consecutive access ");
|
2117 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
2118 |
|
|
}
|
2119 |
|
|
|
2120 |
|
|
if (bb_vinfo)
|
2121 |
|
|
{
|
2122 |
|
|
/* Mark the statement as unvectorizable. */
|
2123 |
|
|
STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
|
2124 |
|
|
return true;
|
2125 |
|
|
}
|
2126 |
|
|
|
2127 |
|
|
return false;
|
2128 |
|
|
}
|
2129 |
|
|
|
2130 |
|
|
if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) == stmt)
|
2131 |
|
|
{
|
2132 |
|
|
/* First stmt in the interleaving chain. Check the chain. */
|
2133 |
|
|
gimple next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
|
2134 |
|
|
struct data_reference *data_ref = dr;
|
2135 |
|
|
unsigned int count = 1;
|
2136 |
|
|
tree next_step;
|
2137 |
|
|
tree prev_init = DR_INIT (data_ref);
|
2138 |
|
|
gimple prev = stmt;
|
2139 |
|
|
HOST_WIDE_INT diff, count_in_bytes, gaps = 0;
|
2140 |
|
|
|
2141 |
|
|
while (next)
|
2142 |
|
|
{
|
2143 |
|
|
/* Skip same data-refs. In case that two or more stmts share
|
2144 |
|
|
data-ref (supported only for loads), we vectorize only the first
|
2145 |
|
|
stmt, and the rest get their vectorized loads from the first
|
2146 |
|
|
one. */
|
2147 |
|
|
if (!tree_int_cst_compare (DR_INIT (data_ref),
|
2148 |
|
|
DR_INIT (STMT_VINFO_DATA_REF (
|
2149 |
|
|
vinfo_for_stmt (next)))))
|
2150 |
|
|
{
|
2151 |
|
|
if (DR_IS_WRITE (data_ref))
|
2152 |
|
|
{
|
2153 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2154 |
|
|
fprintf (vect_dump, "Two store stmts share the same dr.");
|
2155 |
|
|
return false;
|
2156 |
|
|
}
|
2157 |
|
|
|
2158 |
|
|
/* Check that there is no load-store dependencies for this loads
|
2159 |
|
|
to prevent a case of load-store-load to the same location. */
|
2160 |
|
|
if (GROUP_READ_WRITE_DEPENDENCE (vinfo_for_stmt (next))
|
2161 |
|
|
|| GROUP_READ_WRITE_DEPENDENCE (vinfo_for_stmt (prev)))
|
2162 |
|
|
{
|
2163 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2164 |
|
|
fprintf (vect_dump,
|
2165 |
|
|
"READ_WRITE dependence in interleaving.");
|
2166 |
|
|
return false;
|
2167 |
|
|
}
|
2168 |
|
|
|
2169 |
|
|
/* For load use the same data-ref load. */
|
2170 |
|
|
GROUP_SAME_DR_STMT (vinfo_for_stmt (next)) = prev;
|
2171 |
|
|
|
2172 |
|
|
prev = next;
|
2173 |
|
|
next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
|
2174 |
|
|
continue;
|
2175 |
|
|
}
|
2176 |
|
|
|
2177 |
|
|
prev = next;
|
2178 |
|
|
|
2179 |
|
|
/* Check that all the accesses have the same STEP. */
|
2180 |
|
|
next_step = DR_STEP (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
|
2181 |
|
|
if (tree_int_cst_compare (step, next_step))
|
2182 |
|
|
{
|
2183 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2184 |
|
|
fprintf (vect_dump, "not consecutive access in interleaving");
|
2185 |
|
|
return false;
|
2186 |
|
|
}
|
2187 |
|
|
|
2188 |
|
|
data_ref = STMT_VINFO_DATA_REF (vinfo_for_stmt (next));
|
2189 |
|
|
/* Check that the distance between two accesses is equal to the type
|
2190 |
|
|
size. Otherwise, we have gaps. */
|
2191 |
|
|
diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
|
2192 |
|
|
- TREE_INT_CST_LOW (prev_init)) / type_size;
|
2193 |
|
|
if (diff != 1)
|
2194 |
|
|
{
|
2195 |
|
|
/* FORNOW: SLP of accesses with gaps is not supported. */
|
2196 |
|
|
slp_impossible = true;
|
2197 |
|
|
if (DR_IS_WRITE (data_ref))
|
2198 |
|
|
{
|
2199 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2200 |
|
|
fprintf (vect_dump, "interleaved store with gaps");
|
2201 |
|
|
return false;
|
2202 |
|
|
}
|
2203 |
|
|
|
2204 |
|
|
gaps += diff - 1;
|
2205 |
|
|
}
|
2206 |
|
|
|
2207 |
|
|
last_accessed_element += diff;
|
2208 |
|
|
|
2209 |
|
|
/* Store the gap from the previous member of the group. If there is no
|
2210 |
|
|
gap in the access, GROUP_GAP is always 1. */
|
2211 |
|
|
GROUP_GAP (vinfo_for_stmt (next)) = diff;
|
2212 |
|
|
|
2213 |
|
|
prev_init = DR_INIT (data_ref);
|
2214 |
|
|
next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
|
2215 |
|
|
/* Count the number of data-refs in the chain. */
|
2216 |
|
|
count++;
|
2217 |
|
|
}
|
2218 |
|
|
|
2219 |
|
|
/* COUNT is the number of accesses found, we multiply it by the size of
|
2220 |
|
|
the type to get COUNT_IN_BYTES. */
|
2221 |
|
|
count_in_bytes = type_size * count;
|
2222 |
|
|
|
2223 |
|
|
/* Check that the size of the interleaving (including gaps) is not
|
2224 |
|
|
greater than STEP. */
|
2225 |
|
|
if (dr_step && dr_step < count_in_bytes + gaps * type_size)
|
2226 |
|
|
{
|
2227 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2228 |
|
|
{
|
2229 |
|
|
fprintf (vect_dump, "interleaving size is greater than step for ");
|
2230 |
|
|
print_generic_expr (vect_dump, DR_REF (dr), TDF_SLIM);
|
2231 |
|
|
}
|
2232 |
|
|
return false;
|
2233 |
|
|
}
|
2234 |
|
|
|
2235 |
|
|
/* Check that the size of the interleaving is equal to STEP for stores,
|
2236 |
|
|
i.e., that there are no gaps. */
|
2237 |
|
|
if (dr_step && dr_step != count_in_bytes)
|
2238 |
|
|
{
|
2239 |
|
|
if (DR_IS_READ (dr))
|
2240 |
|
|
{
|
2241 |
|
|
slp_impossible = true;
|
2242 |
|
|
/* There is a gap after the last load in the group. This gap is a
|
2243 |
|
|
difference between the stride and the number of elements. When
|
2244 |
|
|
there is no gap, this difference should be 0. */
|
2245 |
|
|
GROUP_GAP (vinfo_for_stmt (stmt)) = stride - count;
|
2246 |
|
|
}
|
2247 |
|
|
else
|
2248 |
|
|
{
|
2249 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2250 |
|
|
fprintf (vect_dump, "interleaved store with gaps");
|
2251 |
|
|
return false;
|
2252 |
|
|
}
|
2253 |
|
|
}
|
2254 |
|
|
|
2255 |
|
|
/* Check that STEP is a multiple of type size. */
|
2256 |
|
|
if (dr_step && (dr_step % type_size) != 0)
|
2257 |
|
|
{
|
2258 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2259 |
|
|
{
|
2260 |
|
|
fprintf (vect_dump, "step is not a multiple of type size: step ");
|
2261 |
|
|
print_generic_expr (vect_dump, step, TDF_SLIM);
|
2262 |
|
|
fprintf (vect_dump, " size ");
|
2263 |
|
|
print_generic_expr (vect_dump, TYPE_SIZE_UNIT (scalar_type),
|
2264 |
|
|
TDF_SLIM);
|
2265 |
|
|
}
|
2266 |
|
|
return false;
|
2267 |
|
|
}
|
2268 |
|
|
|
2269 |
|
|
if (stride == 0)
|
2270 |
|
|
stride = count;
|
2271 |
|
|
|
2272 |
|
|
GROUP_SIZE (vinfo_for_stmt (stmt)) = stride;
|
2273 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2274 |
|
|
fprintf (vect_dump, "Detected interleaving of size %d", (int)stride);
|
2275 |
|
|
|
2276 |
|
|
/* SLP: create an SLP data structure for every interleaving group of
|
2277 |
|
|
stores for further analysis in vect_analyse_slp. */
|
2278 |
|
|
if (DR_IS_WRITE (dr) && !slp_impossible)
|
2279 |
|
|
{
|
2280 |
|
|
if (loop_vinfo)
|
2281 |
|
|
VEC_safe_push (gimple, heap, LOOP_VINFO_STRIDED_STORES (loop_vinfo),
|
2282 |
|
|
stmt);
|
2283 |
|
|
if (bb_vinfo)
|
2284 |
|
|
VEC_safe_push (gimple, heap, BB_VINFO_STRIDED_STORES (bb_vinfo),
|
2285 |
|
|
stmt);
|
2286 |
|
|
}
|
2287 |
|
|
|
2288 |
|
|
/* There is a gap in the end of the group. */
|
2289 |
|
|
if (stride - last_accessed_element > 0 && loop_vinfo)
|
2290 |
|
|
{
|
2291 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2292 |
|
|
fprintf (vect_dump, "Data access with gaps requires scalar "
|
2293 |
|
|
"epilogue loop");
|
2294 |
|
|
if (loop->inner)
|
2295 |
|
|
{
|
2296 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2297 |
|
|
fprintf (vect_dump, "Peeling for outer loop is not supported");
|
2298 |
|
|
return false;
|
2299 |
|
|
}
|
2300 |
|
|
|
2301 |
|
|
LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
|
2302 |
|
|
}
|
2303 |
|
|
}
|
2304 |
|
|
|
2305 |
|
|
return true;
|
2306 |
|
|
}
|
2307 |
|
|
|
2308 |
|
|
|
2309 |
|
|
/* Analyze the access pattern of the data-reference DR.
|
2310 |
|
|
In case of non-consecutive accesses call vect_analyze_group_access() to
|
2311 |
|
|
analyze groups of strided accesses. */
|
2312 |
|
|
|
2313 |
|
|
static bool
|
2314 |
|
|
vect_analyze_data_ref_access (struct data_reference *dr)
|
2315 |
|
|
{
|
2316 |
|
|
tree step = DR_STEP (dr);
|
2317 |
|
|
tree scalar_type = TREE_TYPE (DR_REF (dr));
|
2318 |
|
|
gimple stmt = DR_STMT (dr);
|
2319 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
2320 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
2321 |
|
|
struct loop *loop = NULL;
|
2322 |
|
|
HOST_WIDE_INT dr_step;
|
2323 |
|
|
|
2324 |
|
|
if (loop_vinfo)
|
2325 |
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
2326 |
|
|
|
2327 |
|
|
if (loop_vinfo && !step)
|
2328 |
|
|
{
|
2329 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2330 |
|
|
fprintf (vect_dump, "bad data-ref access in loop");
|
2331 |
|
|
return false;
|
2332 |
|
|
}
|
2333 |
|
|
|
2334 |
|
|
/* Allow invariant loads in loops. */
|
2335 |
|
|
dr_step = TREE_INT_CST_LOW (step);
|
2336 |
|
|
if (loop_vinfo && dr_step == 0)
|
2337 |
|
|
{
|
2338 |
|
|
GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
|
2339 |
|
|
return DR_IS_READ (dr);
|
2340 |
|
|
}
|
2341 |
|
|
|
2342 |
|
|
if (loop && nested_in_vect_loop_p (loop, stmt))
|
2343 |
|
|
{
|
2344 |
|
|
/* Interleaved accesses are not yet supported within outer-loop
|
2345 |
|
|
vectorization for references in the inner-loop. */
|
2346 |
|
|
GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
|
2347 |
|
|
|
2348 |
|
|
/* For the rest of the analysis we use the outer-loop step. */
|
2349 |
|
|
step = STMT_VINFO_DR_STEP (stmt_info);
|
2350 |
|
|
dr_step = TREE_INT_CST_LOW (step);
|
2351 |
|
|
|
2352 |
|
|
if (dr_step == 0)
|
2353 |
|
|
{
|
2354 |
|
|
if (vect_print_dump_info (REPORT_ALIGNMENT))
|
2355 |
|
|
fprintf (vect_dump, "zero step in outer loop.");
|
2356 |
|
|
if (DR_IS_READ (dr))
|
2357 |
|
|
return true;
|
2358 |
|
|
else
|
2359 |
|
|
return false;
|
2360 |
|
|
}
|
2361 |
|
|
}
|
2362 |
|
|
|
2363 |
|
|
/* Consecutive? */
|
2364 |
|
|
if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type))
|
2365 |
|
|
|| (dr_step < 0
|
2366 |
|
|
&& !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step)))
|
2367 |
|
|
{
|
2368 |
|
|
/* Mark that it is not interleaving. */
|
2369 |
|
|
GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
|
2370 |
|
|
return true;
|
2371 |
|
|
}
|
2372 |
|
|
|
2373 |
|
|
if (loop && nested_in_vect_loop_p (loop, stmt))
|
2374 |
|
|
{
|
2375 |
|
|
if (vect_print_dump_info (REPORT_ALIGNMENT))
|
2376 |
|
|
fprintf (vect_dump, "strided access in outer loop.");
|
2377 |
|
|
return false;
|
2378 |
|
|
}
|
2379 |
|
|
|
2380 |
|
|
/* Not consecutive access - check if it's a part of interleaving group. */
|
2381 |
|
|
return vect_analyze_group_access (dr);
|
2382 |
|
|
}
|
2383 |
|
|
|
2384 |
|
|
|
2385 |
|
|
/* Function vect_analyze_data_ref_accesses.
|
2386 |
|
|
|
2387 |
|
|
Analyze the access pattern of all the data references in the loop.
|
2388 |
|
|
|
2389 |
|
|
FORNOW: the only access pattern that is considered vectorizable is a
|
2390 |
|
|
simple step 1 (consecutive) access.
|
2391 |
|
|
|
2392 |
|
|
FORNOW: handle only arrays and pointer accesses. */
|
2393 |
|
|
|
2394 |
|
|
bool
|
2395 |
|
|
vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
|
2396 |
|
|
{
|
2397 |
|
|
unsigned int i;
|
2398 |
|
|
VEC (data_reference_p, heap) *datarefs;
|
2399 |
|
|
struct data_reference *dr;
|
2400 |
|
|
|
2401 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2402 |
|
|
fprintf (vect_dump, "=== vect_analyze_data_ref_accesses ===");
|
2403 |
|
|
|
2404 |
|
|
if (loop_vinfo)
|
2405 |
|
|
datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
|
2406 |
|
|
else
|
2407 |
|
|
datarefs = BB_VINFO_DATAREFS (bb_vinfo);
|
2408 |
|
|
|
2409 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
|
2410 |
|
|
if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
|
2411 |
|
|
&& !vect_analyze_data_ref_access (dr))
|
2412 |
|
|
{
|
2413 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
2414 |
|
|
fprintf (vect_dump, "not vectorized: complicated access pattern.");
|
2415 |
|
|
|
2416 |
|
|
if (bb_vinfo)
|
2417 |
|
|
{
|
2418 |
|
|
/* Mark the statement as not vectorizable. */
|
2419 |
|
|
STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
|
2420 |
|
|
continue;
|
2421 |
|
|
}
|
2422 |
|
|
else
|
2423 |
|
|
return false;
|
2424 |
|
|
}
|
2425 |
|
|
|
2426 |
|
|
return true;
|
2427 |
|
|
}
|
2428 |
|
|
|
2429 |
|
|
/* Function vect_prune_runtime_alias_test_list.
|
2430 |
|
|
|
2431 |
|
|
Prune a list of ddrs to be tested at run-time by versioning for alias.
|
2432 |
|
|
Return FALSE if resulting list of ddrs is longer then allowed by
|
2433 |
|
|
PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
|
2434 |
|
|
|
2435 |
|
|
bool
|
2436 |
|
|
vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
|
2437 |
|
|
{
|
2438 |
|
|
VEC (ddr_p, heap) * ddrs =
|
2439 |
|
|
LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
|
2440 |
|
|
unsigned i, j;
|
2441 |
|
|
|
2442 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2443 |
|
|
fprintf (vect_dump, "=== vect_prune_runtime_alias_test_list ===");
|
2444 |
|
|
|
2445 |
|
|
for (i = 0; i < VEC_length (ddr_p, ddrs); )
|
2446 |
|
|
{
|
2447 |
|
|
bool found;
|
2448 |
|
|
ddr_p ddr_i;
|
2449 |
|
|
|
2450 |
|
|
ddr_i = VEC_index (ddr_p, ddrs, i);
|
2451 |
|
|
found = false;
|
2452 |
|
|
|
2453 |
|
|
for (j = 0; j < i; j++)
|
2454 |
|
|
{
|
2455 |
|
|
ddr_p ddr_j = VEC_index (ddr_p, ddrs, j);
|
2456 |
|
|
|
2457 |
|
|
if (vect_vfa_range_equal (ddr_i, ddr_j))
|
2458 |
|
|
{
|
2459 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
2460 |
|
|
{
|
2461 |
|
|
fprintf (vect_dump, "found equal ranges ");
|
2462 |
|
|
print_generic_expr (vect_dump, DR_REF (DDR_A (ddr_i)), TDF_SLIM);
|
2463 |
|
|
fprintf (vect_dump, ", ");
|
2464 |
|
|
print_generic_expr (vect_dump, DR_REF (DDR_B (ddr_i)), TDF_SLIM);
|
2465 |
|
|
fprintf (vect_dump, " and ");
|
2466 |
|
|
print_generic_expr (vect_dump, DR_REF (DDR_A (ddr_j)), TDF_SLIM);
|
2467 |
|
|
fprintf (vect_dump, ", ");
|
2468 |
|
|
print_generic_expr (vect_dump, DR_REF (DDR_B (ddr_j)), TDF_SLIM);
|
2469 |
|
|
}
|
2470 |
|
|
found = true;
|
2471 |
|
|
break;
|
2472 |
|
|
}
|
2473 |
|
|
}
|
2474 |
|
|
|
2475 |
|
|
if (found)
|
2476 |
|
|
{
|
2477 |
|
|
VEC_ordered_remove (ddr_p, ddrs, i);
|
2478 |
|
|
continue;
|
2479 |
|
|
}
|
2480 |
|
|
i++;
|
2481 |
|
|
}
|
2482 |
|
|
|
2483 |
|
|
if (VEC_length (ddr_p, ddrs) >
|
2484 |
|
|
(unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS))
|
2485 |
|
|
{
|
2486 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
2487 |
|
|
{
|
2488 |
|
|
fprintf (vect_dump,
|
2489 |
|
|
"disable versioning for alias - max number of generated "
|
2490 |
|
|
"checks exceeded.");
|
2491 |
|
|
}
|
2492 |
|
|
|
2493 |
|
|
VEC_truncate (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo), 0);
|
2494 |
|
|
|
2495 |
|
|
return false;
|
2496 |
|
|
}
|
2497 |
|
|
|
2498 |
|
|
return true;
|
2499 |
|
|
}
|
2500 |
|
|
|
2501 |
|
|
/* Check whether a non-affine read in stmt is suitable for gather load
|
2502 |
|
|
and if so, return a builtin decl for that operation. */
|
2503 |
|
|
|
2504 |
|
|
tree
|
2505 |
|
|
vect_check_gather (gimple stmt, loop_vec_info loop_vinfo, tree *basep,
|
2506 |
|
|
tree *offp, int *scalep)
|
2507 |
|
|
{
|
2508 |
|
|
HOST_WIDE_INT scale = 1, pbitpos, pbitsize;
|
2509 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
2510 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
2511 |
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
|
2512 |
|
|
tree offtype = NULL_TREE;
|
2513 |
|
|
tree decl, base, off;
|
2514 |
|
|
enum machine_mode pmode;
|
2515 |
|
|
int punsignedp, pvolatilep;
|
2516 |
|
|
|
2517 |
|
|
/* The gather builtins need address of the form
|
2518 |
|
|
loop_invariant + vector * {1, 2, 4, 8}
|
2519 |
|
|
or
|
2520 |
|
|
loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }.
|
2521 |
|
|
Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture
|
2522 |
|
|
of loop invariants/SSA_NAMEs defined in the loop, with casts,
|
2523 |
|
|
multiplications and additions in it. To get a vector, we need
|
2524 |
|
|
a single SSA_NAME that will be defined in the loop and will
|
2525 |
|
|
contain everything that is not loop invariant and that can be
|
2526 |
|
|
vectorized. The following code attempts to find such a preexistng
|
2527 |
|
|
SSA_NAME OFF and put the loop invariants into a tree BASE
|
2528 |
|
|
that can be gimplified before the loop. */
|
2529 |
|
|
base = get_inner_reference (DR_REF (dr), &pbitsize, &pbitpos, &off,
|
2530 |
|
|
&pmode, &punsignedp, &pvolatilep, false);
|
2531 |
|
|
gcc_assert (base != NULL_TREE && (pbitpos % BITS_PER_UNIT) == 0);
|
2532 |
|
|
|
2533 |
|
|
if (TREE_CODE (base) == MEM_REF)
|
2534 |
|
|
{
|
2535 |
|
|
if (!integer_zerop (TREE_OPERAND (base, 1)))
|
2536 |
|
|
{
|
2537 |
|
|
if (off == NULL_TREE)
|
2538 |
|
|
{
|
2539 |
|
|
double_int moff = mem_ref_offset (base);
|
2540 |
|
|
off = double_int_to_tree (sizetype, moff);
|
2541 |
|
|
}
|
2542 |
|
|
else
|
2543 |
|
|
off = size_binop (PLUS_EXPR, off,
|
2544 |
|
|
fold_convert (sizetype, TREE_OPERAND (base, 1)));
|
2545 |
|
|
}
|
2546 |
|
|
base = TREE_OPERAND (base, 0);
|
2547 |
|
|
}
|
2548 |
|
|
else
|
2549 |
|
|
base = build_fold_addr_expr (base);
|
2550 |
|
|
|
2551 |
|
|
if (off == NULL_TREE)
|
2552 |
|
|
off = size_zero_node;
|
2553 |
|
|
|
2554 |
|
|
/* If base is not loop invariant, either off is 0, then we start with just
|
2555 |
|
|
the constant offset in the loop invariant BASE and continue with base
|
2556 |
|
|
as OFF, otherwise give up.
|
2557 |
|
|
We could handle that case by gimplifying the addition of base + off
|
2558 |
|
|
into some SSA_NAME and use that as off, but for now punt. */
|
2559 |
|
|
if (!expr_invariant_in_loop_p (loop, base))
|
2560 |
|
|
{
|
2561 |
|
|
if (!integer_zerop (off))
|
2562 |
|
|
return NULL_TREE;
|
2563 |
|
|
off = base;
|
2564 |
|
|
base = size_int (pbitpos / BITS_PER_UNIT);
|
2565 |
|
|
}
|
2566 |
|
|
/* Otherwise put base + constant offset into the loop invariant BASE
|
2567 |
|
|
and continue with OFF. */
|
2568 |
|
|
else
|
2569 |
|
|
{
|
2570 |
|
|
base = fold_convert (sizetype, base);
|
2571 |
|
|
base = size_binop (PLUS_EXPR, base, size_int (pbitpos / BITS_PER_UNIT));
|
2572 |
|
|
}
|
2573 |
|
|
|
2574 |
|
|
/* OFF at this point may be either a SSA_NAME or some tree expression
|
2575 |
|
|
from get_inner_reference. Try to peel off loop invariants from it
|
2576 |
|
|
into BASE as long as possible. */
|
2577 |
|
|
STRIP_NOPS (off);
|
2578 |
|
|
while (offtype == NULL_TREE)
|
2579 |
|
|
{
|
2580 |
|
|
enum tree_code code;
|
2581 |
|
|
tree op0, op1, add = NULL_TREE;
|
2582 |
|
|
|
2583 |
|
|
if (TREE_CODE (off) == SSA_NAME)
|
2584 |
|
|
{
|
2585 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (off);
|
2586 |
|
|
|
2587 |
|
|
if (expr_invariant_in_loop_p (loop, off))
|
2588 |
|
|
return NULL_TREE;
|
2589 |
|
|
|
2590 |
|
|
if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
|
2591 |
|
|
break;
|
2592 |
|
|
|
2593 |
|
|
op0 = gimple_assign_rhs1 (def_stmt);
|
2594 |
|
|
code = gimple_assign_rhs_code (def_stmt);
|
2595 |
|
|
op1 = gimple_assign_rhs2 (def_stmt);
|
2596 |
|
|
}
|
2597 |
|
|
else
|
2598 |
|
|
{
|
2599 |
|
|
if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS)
|
2600 |
|
|
return NULL_TREE;
|
2601 |
|
|
code = TREE_CODE (off);
|
2602 |
|
|
extract_ops_from_tree (off, &code, &op0, &op1);
|
2603 |
|
|
}
|
2604 |
|
|
switch (code)
|
2605 |
|
|
{
|
2606 |
|
|
case POINTER_PLUS_EXPR:
|
2607 |
|
|
case PLUS_EXPR:
|
2608 |
|
|
if (expr_invariant_in_loop_p (loop, op0))
|
2609 |
|
|
{
|
2610 |
|
|
add = op0;
|
2611 |
|
|
off = op1;
|
2612 |
|
|
do_add:
|
2613 |
|
|
add = fold_convert (sizetype, add);
|
2614 |
|
|
if (scale != 1)
|
2615 |
|
|
add = size_binop (MULT_EXPR, add, size_int (scale));
|
2616 |
|
|
base = size_binop (PLUS_EXPR, base, add);
|
2617 |
|
|
continue;
|
2618 |
|
|
}
|
2619 |
|
|
if (expr_invariant_in_loop_p (loop, op1))
|
2620 |
|
|
{
|
2621 |
|
|
add = op1;
|
2622 |
|
|
off = op0;
|
2623 |
|
|
goto do_add;
|
2624 |
|
|
}
|
2625 |
|
|
break;
|
2626 |
|
|
case MINUS_EXPR:
|
2627 |
|
|
if (expr_invariant_in_loop_p (loop, op1))
|
2628 |
|
|
{
|
2629 |
|
|
add = fold_convert (sizetype, op1);
|
2630 |
|
|
add = size_binop (MINUS_EXPR, size_zero_node, add);
|
2631 |
|
|
off = op0;
|
2632 |
|
|
goto do_add;
|
2633 |
|
|
}
|
2634 |
|
|
break;
|
2635 |
|
|
case MULT_EXPR:
|
2636 |
|
|
if (scale == 1 && host_integerp (op1, 0))
|
2637 |
|
|
{
|
2638 |
|
|
scale = tree_low_cst (op1, 0);
|
2639 |
|
|
off = op0;
|
2640 |
|
|
continue;
|
2641 |
|
|
}
|
2642 |
|
|
break;
|
2643 |
|
|
case SSA_NAME:
|
2644 |
|
|
off = op0;
|
2645 |
|
|
continue;
|
2646 |
|
|
CASE_CONVERT:
|
2647 |
|
|
if (!POINTER_TYPE_P (TREE_TYPE (op0))
|
2648 |
|
|
&& !INTEGRAL_TYPE_P (TREE_TYPE (op0)))
|
2649 |
|
|
break;
|
2650 |
|
|
if (TYPE_PRECISION (TREE_TYPE (op0))
|
2651 |
|
|
== TYPE_PRECISION (TREE_TYPE (off)))
|
2652 |
|
|
{
|
2653 |
|
|
off = op0;
|
2654 |
|
|
continue;
|
2655 |
|
|
}
|
2656 |
|
|
if (TYPE_PRECISION (TREE_TYPE (op0))
|
2657 |
|
|
< TYPE_PRECISION (TREE_TYPE (off)))
|
2658 |
|
|
{
|
2659 |
|
|
off = op0;
|
2660 |
|
|
offtype = TREE_TYPE (off);
|
2661 |
|
|
STRIP_NOPS (off);
|
2662 |
|
|
continue;
|
2663 |
|
|
}
|
2664 |
|
|
break;
|
2665 |
|
|
default:
|
2666 |
|
|
break;
|
2667 |
|
|
}
|
2668 |
|
|
break;
|
2669 |
|
|
}
|
2670 |
|
|
|
2671 |
|
|
/* If at the end OFF still isn't a SSA_NAME or isn't
|
2672 |
|
|
defined in the loop, punt. */
|
2673 |
|
|
if (TREE_CODE (off) != SSA_NAME
|
2674 |
|
|
|| expr_invariant_in_loop_p (loop, off))
|
2675 |
|
|
return NULL_TREE;
|
2676 |
|
|
|
2677 |
|
|
if (offtype == NULL_TREE)
|
2678 |
|
|
offtype = TREE_TYPE (off);
|
2679 |
|
|
|
2680 |
|
|
decl = targetm.vectorize.builtin_gather (STMT_VINFO_VECTYPE (stmt_info),
|
2681 |
|
|
offtype, scale);
|
2682 |
|
|
if (decl == NULL_TREE)
|
2683 |
|
|
return NULL_TREE;
|
2684 |
|
|
|
2685 |
|
|
if (basep)
|
2686 |
|
|
*basep = base;
|
2687 |
|
|
if (offp)
|
2688 |
|
|
*offp = off;
|
2689 |
|
|
if (scalep)
|
2690 |
|
|
*scalep = scale;
|
2691 |
|
|
return decl;
|
2692 |
|
|
}
|
2693 |
|
|
|
2694 |
|
|
|
2695 |
|
|
/* Function vect_analyze_data_refs.
|
2696 |
|
|
|
2697 |
|
|
Find all the data references in the loop or basic block.
|
2698 |
|
|
|
2699 |
|
|
The general structure of the analysis of data refs in the vectorizer is as
|
2700 |
|
|
follows:
|
2701 |
|
|
1- vect_analyze_data_refs(loop/bb): call
|
2702 |
|
|
compute_data_dependences_for_loop/bb to find and analyze all data-refs
|
2703 |
|
|
in the loop/bb and their dependences.
|
2704 |
|
|
2- vect_analyze_dependences(): apply dependence testing using ddrs.
|
2705 |
|
|
3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
|
2706 |
|
|
4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
|
2707 |
|
|
|
2708 |
|
|
*/
|
2709 |
|
|
|
2710 |
|
|
bool
|
2711 |
|
|
vect_analyze_data_refs (loop_vec_info loop_vinfo,
|
2712 |
|
|
bb_vec_info bb_vinfo,
|
2713 |
|
|
int *min_vf)
|
2714 |
|
|
{
|
2715 |
|
|
struct loop *loop = NULL;
|
2716 |
|
|
basic_block bb = NULL;
|
2717 |
|
|
unsigned int i;
|
2718 |
|
|
VEC (data_reference_p, heap) *datarefs;
|
2719 |
|
|
struct data_reference *dr;
|
2720 |
|
|
tree scalar_type;
|
2721 |
|
|
bool res, stop_bb_analysis = false;
|
2722 |
|
|
|
2723 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2724 |
|
|
fprintf (vect_dump, "=== vect_analyze_data_refs ===\n");
|
2725 |
|
|
|
2726 |
|
|
if (loop_vinfo)
|
2727 |
|
|
{
|
2728 |
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
2729 |
|
|
res = compute_data_dependences_for_loop
|
2730 |
|
|
(loop, true,
|
2731 |
|
|
&LOOP_VINFO_LOOP_NEST (loop_vinfo),
|
2732 |
|
|
&LOOP_VINFO_DATAREFS (loop_vinfo),
|
2733 |
|
|
&LOOP_VINFO_DDRS (loop_vinfo));
|
2734 |
|
|
|
2735 |
|
|
if (!res)
|
2736 |
|
|
{
|
2737 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
2738 |
|
|
fprintf (vect_dump, "not vectorized: loop contains function calls"
|
2739 |
|
|
" or data references that cannot be analyzed");
|
2740 |
|
|
return false;
|
2741 |
|
|
}
|
2742 |
|
|
|
2743 |
|
|
datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
|
2744 |
|
|
}
|
2745 |
|
|
else
|
2746 |
|
|
{
|
2747 |
|
|
bb = BB_VINFO_BB (bb_vinfo);
|
2748 |
|
|
res = compute_data_dependences_for_bb (bb, true,
|
2749 |
|
|
&BB_VINFO_DATAREFS (bb_vinfo),
|
2750 |
|
|
&BB_VINFO_DDRS (bb_vinfo));
|
2751 |
|
|
if (!res)
|
2752 |
|
|
{
|
2753 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
2754 |
|
|
fprintf (vect_dump, "not vectorized: basic block contains function"
|
2755 |
|
|
" calls or data references that cannot be analyzed");
|
2756 |
|
|
return false;
|
2757 |
|
|
}
|
2758 |
|
|
|
2759 |
|
|
datarefs = BB_VINFO_DATAREFS (bb_vinfo);
|
2760 |
|
|
}
|
2761 |
|
|
|
2762 |
|
|
/* Go through the data-refs, check that the analysis succeeded. Update
|
2763 |
|
|
pointer from stmt_vec_info struct to DR and vectype. */
|
2764 |
|
|
|
2765 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
|
2766 |
|
|
{
|
2767 |
|
|
gimple stmt;
|
2768 |
|
|
stmt_vec_info stmt_info;
|
2769 |
|
|
tree base, offset, init;
|
2770 |
|
|
bool gather = false;
|
2771 |
|
|
int vf;
|
2772 |
|
|
|
2773 |
|
|
if (!dr || !DR_REF (dr))
|
2774 |
|
|
{
|
2775 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
2776 |
|
|
fprintf (vect_dump, "not vectorized: unhandled data-ref ");
|
2777 |
|
|
|
2778 |
|
|
return false;
|
2779 |
|
|
}
|
2780 |
|
|
|
2781 |
|
|
stmt = DR_STMT (dr);
|
2782 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
2783 |
|
|
|
2784 |
|
|
if (stop_bb_analysis)
|
2785 |
|
|
{
|
2786 |
|
|
STMT_VINFO_VECTORIZABLE (stmt_info) = false;
|
2787 |
|
|
continue;
|
2788 |
|
|
}
|
2789 |
|
|
|
2790 |
|
|
/* Check that analysis of the data-ref succeeded. */
|
2791 |
|
|
if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
|
2792 |
|
|
|| !DR_STEP (dr))
|
2793 |
|
|
{
|
2794 |
|
|
/* If target supports vector gather loads, see if they can't
|
2795 |
|
|
be used. */
|
2796 |
|
|
if (loop_vinfo
|
2797 |
|
|
&& DR_IS_READ (dr)
|
2798 |
|
|
&& !TREE_THIS_VOLATILE (DR_REF (dr))
|
2799 |
|
|
&& targetm.vectorize.builtin_gather != NULL
|
2800 |
|
|
&& !nested_in_vect_loop_p (loop, stmt))
|
2801 |
|
|
{
|
2802 |
|
|
struct data_reference *newdr
|
2803 |
|
|
= create_data_ref (NULL, loop_containing_stmt (stmt),
|
2804 |
|
|
DR_REF (dr), stmt, true);
|
2805 |
|
|
gcc_assert (newdr != NULL && DR_REF (newdr));
|
2806 |
|
|
if (DR_BASE_ADDRESS (newdr)
|
2807 |
|
|
&& DR_OFFSET (newdr)
|
2808 |
|
|
&& DR_INIT (newdr)
|
2809 |
|
|
&& DR_STEP (newdr)
|
2810 |
|
|
&& integer_zerop (DR_STEP (newdr)))
|
2811 |
|
|
{
|
2812 |
|
|
dr = newdr;
|
2813 |
|
|
gather = true;
|
2814 |
|
|
}
|
2815 |
|
|
else
|
2816 |
|
|
free_data_ref (newdr);
|
2817 |
|
|
}
|
2818 |
|
|
|
2819 |
|
|
if (!gather)
|
2820 |
|
|
{
|
2821 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
2822 |
|
|
{
|
2823 |
|
|
fprintf (vect_dump, "not vectorized: data ref analysis "
|
2824 |
|
|
"failed ");
|
2825 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
2826 |
|
|
}
|
2827 |
|
|
|
2828 |
|
|
if (bb_vinfo)
|
2829 |
|
|
{
|
2830 |
|
|
STMT_VINFO_VECTORIZABLE (stmt_info) = false;
|
2831 |
|
|
stop_bb_analysis = true;
|
2832 |
|
|
continue;
|
2833 |
|
|
}
|
2834 |
|
|
|
2835 |
|
|
return false;
|
2836 |
|
|
}
|
2837 |
|
|
}
|
2838 |
|
|
|
2839 |
|
|
if (TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
|
2840 |
|
|
{
|
2841 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
2842 |
|
|
fprintf (vect_dump, "not vectorized: base addr of dr is a "
|
2843 |
|
|
"constant");
|
2844 |
|
|
|
2845 |
|
|
if (bb_vinfo)
|
2846 |
|
|
{
|
2847 |
|
|
STMT_VINFO_VECTORIZABLE (stmt_info) = false;
|
2848 |
|
|
stop_bb_analysis = true;
|
2849 |
|
|
continue;
|
2850 |
|
|
}
|
2851 |
|
|
|
2852 |
|
|
if (gather)
|
2853 |
|
|
free_data_ref (dr);
|
2854 |
|
|
return false;
|
2855 |
|
|
}
|
2856 |
|
|
|
2857 |
|
|
if (TREE_THIS_VOLATILE (DR_REF (dr)))
|
2858 |
|
|
{
|
2859 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
2860 |
|
|
{
|
2861 |
|
|
fprintf (vect_dump, "not vectorized: volatile type ");
|
2862 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
2863 |
|
|
}
|
2864 |
|
|
|
2865 |
|
|
if (bb_vinfo)
|
2866 |
|
|
{
|
2867 |
|
|
STMT_VINFO_VECTORIZABLE (stmt_info) = false;
|
2868 |
|
|
stop_bb_analysis = true;
|
2869 |
|
|
continue;
|
2870 |
|
|
}
|
2871 |
|
|
|
2872 |
|
|
return false;
|
2873 |
|
|
}
|
2874 |
|
|
|
2875 |
|
|
base = unshare_expr (DR_BASE_ADDRESS (dr));
|
2876 |
|
|
offset = unshare_expr (DR_OFFSET (dr));
|
2877 |
|
|
init = unshare_expr (DR_INIT (dr));
|
2878 |
|
|
|
2879 |
|
|
if (stmt_can_throw_internal (stmt))
|
2880 |
|
|
{
|
2881 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
2882 |
|
|
{
|
2883 |
|
|
fprintf (vect_dump, "not vectorized: statement can throw an "
|
2884 |
|
|
"exception ");
|
2885 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
2886 |
|
|
}
|
2887 |
|
|
|
2888 |
|
|
if (bb_vinfo)
|
2889 |
|
|
{
|
2890 |
|
|
STMT_VINFO_VECTORIZABLE (stmt_info) = false;
|
2891 |
|
|
stop_bb_analysis = true;
|
2892 |
|
|
continue;
|
2893 |
|
|
}
|
2894 |
|
|
|
2895 |
|
|
if (gather)
|
2896 |
|
|
free_data_ref (dr);
|
2897 |
|
|
return false;
|
2898 |
|
|
}
|
2899 |
|
|
|
2900 |
|
|
if (is_gimple_call (stmt))
|
2901 |
|
|
{
|
2902 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
2903 |
|
|
{
|
2904 |
|
|
fprintf (vect_dump, "not vectorized: dr in a call ");
|
2905 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
2906 |
|
|
}
|
2907 |
|
|
|
2908 |
|
|
if (bb_vinfo)
|
2909 |
|
|
{
|
2910 |
|
|
STMT_VINFO_VECTORIZABLE (stmt_info) = false;
|
2911 |
|
|
stop_bb_analysis = true;
|
2912 |
|
|
continue;
|
2913 |
|
|
}
|
2914 |
|
|
|
2915 |
|
|
if (gather)
|
2916 |
|
|
free_data_ref (dr);
|
2917 |
|
|
return false;
|
2918 |
|
|
}
|
2919 |
|
|
|
2920 |
|
|
/* Update DR field in stmt_vec_info struct. */
|
2921 |
|
|
|
2922 |
|
|
/* If the dataref is in an inner-loop of the loop that is considered for
|
2923 |
|
|
for vectorization, we also want to analyze the access relative to
|
2924 |
|
|
the outer-loop (DR contains information only relative to the
|
2925 |
|
|
inner-most enclosing loop). We do that by building a reference to the
|
2926 |
|
|
first location accessed by the inner-loop, and analyze it relative to
|
2927 |
|
|
the outer-loop. */
|
2928 |
|
|
if (loop && nested_in_vect_loop_p (loop, stmt))
|
2929 |
|
|
{
|
2930 |
|
|
tree outer_step, outer_base, outer_init;
|
2931 |
|
|
HOST_WIDE_INT pbitsize, pbitpos;
|
2932 |
|
|
tree poffset;
|
2933 |
|
|
enum machine_mode pmode;
|
2934 |
|
|
int punsignedp, pvolatilep;
|
2935 |
|
|
affine_iv base_iv, offset_iv;
|
2936 |
|
|
tree dinit;
|
2937 |
|
|
|
2938 |
|
|
/* Build a reference to the first location accessed by the
|
2939 |
|
|
inner-loop: *(BASE+INIT). (The first location is actually
|
2940 |
|
|
BASE+INIT+OFFSET, but we add OFFSET separately later). */
|
2941 |
|
|
tree inner_base = build_fold_indirect_ref
|
2942 |
|
|
(fold_build_pointer_plus (base, init));
|
2943 |
|
|
|
2944 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2945 |
|
|
{
|
2946 |
|
|
fprintf (vect_dump, "analyze in outer-loop: ");
|
2947 |
|
|
print_generic_expr (vect_dump, inner_base, TDF_SLIM);
|
2948 |
|
|
}
|
2949 |
|
|
|
2950 |
|
|
outer_base = get_inner_reference (inner_base, &pbitsize, &pbitpos,
|
2951 |
|
|
&poffset, &pmode, &punsignedp, &pvolatilep, false);
|
2952 |
|
|
gcc_assert (outer_base != NULL_TREE);
|
2953 |
|
|
|
2954 |
|
|
if (pbitpos % BITS_PER_UNIT != 0)
|
2955 |
|
|
{
|
2956 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2957 |
|
|
fprintf (vect_dump, "failed: bit offset alignment.\n");
|
2958 |
|
|
return false;
|
2959 |
|
|
}
|
2960 |
|
|
|
2961 |
|
|
outer_base = build_fold_addr_expr (outer_base);
|
2962 |
|
|
if (!simple_iv (loop, loop_containing_stmt (stmt), outer_base,
|
2963 |
|
|
&base_iv, false))
|
2964 |
|
|
{
|
2965 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2966 |
|
|
fprintf (vect_dump, "failed: evolution of base is not affine.\n");
|
2967 |
|
|
return false;
|
2968 |
|
|
}
|
2969 |
|
|
|
2970 |
|
|
if (offset)
|
2971 |
|
|
{
|
2972 |
|
|
if (poffset)
|
2973 |
|
|
poffset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset,
|
2974 |
|
|
poffset);
|
2975 |
|
|
else
|
2976 |
|
|
poffset = offset;
|
2977 |
|
|
}
|
2978 |
|
|
|
2979 |
|
|
if (!poffset)
|
2980 |
|
|
{
|
2981 |
|
|
offset_iv.base = ssize_int (0);
|
2982 |
|
|
offset_iv.step = ssize_int (0);
|
2983 |
|
|
}
|
2984 |
|
|
else if (!simple_iv (loop, loop_containing_stmt (stmt), poffset,
|
2985 |
|
|
&offset_iv, false))
|
2986 |
|
|
{
|
2987 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2988 |
|
|
fprintf (vect_dump, "evolution of offset is not affine.\n");
|
2989 |
|
|
return false;
|
2990 |
|
|
}
|
2991 |
|
|
|
2992 |
|
|
outer_init = ssize_int (pbitpos / BITS_PER_UNIT);
|
2993 |
|
|
split_constant_offset (base_iv.base, &base_iv.base, &dinit);
|
2994 |
|
|
outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
|
2995 |
|
|
split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
|
2996 |
|
|
outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
|
2997 |
|
|
|
2998 |
|
|
outer_step = size_binop (PLUS_EXPR,
|
2999 |
|
|
fold_convert (ssizetype, base_iv.step),
|
3000 |
|
|
fold_convert (ssizetype, offset_iv.step));
|
3001 |
|
|
|
3002 |
|
|
STMT_VINFO_DR_STEP (stmt_info) = outer_step;
|
3003 |
|
|
/* FIXME: Use canonicalize_base_object_address (base_iv.base); */
|
3004 |
|
|
STMT_VINFO_DR_BASE_ADDRESS (stmt_info) = base_iv.base;
|
3005 |
|
|
STMT_VINFO_DR_INIT (stmt_info) = outer_init;
|
3006 |
|
|
STMT_VINFO_DR_OFFSET (stmt_info) =
|
3007 |
|
|
fold_convert (ssizetype, offset_iv.base);
|
3008 |
|
|
STMT_VINFO_DR_ALIGNED_TO (stmt_info) =
|
3009 |
|
|
size_int (highest_pow2_factor (offset_iv.base));
|
3010 |
|
|
|
3011 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
3012 |
|
|
{
|
3013 |
|
|
fprintf (vect_dump, "\touter base_address: ");
|
3014 |
|
|
print_generic_expr (vect_dump, STMT_VINFO_DR_BASE_ADDRESS (stmt_info), TDF_SLIM);
|
3015 |
|
|
fprintf (vect_dump, "\n\touter offset from base address: ");
|
3016 |
|
|
print_generic_expr (vect_dump, STMT_VINFO_DR_OFFSET (stmt_info), TDF_SLIM);
|
3017 |
|
|
fprintf (vect_dump, "\n\touter constant offset from base address: ");
|
3018 |
|
|
print_generic_expr (vect_dump, STMT_VINFO_DR_INIT (stmt_info), TDF_SLIM);
|
3019 |
|
|
fprintf (vect_dump, "\n\touter step: ");
|
3020 |
|
|
print_generic_expr (vect_dump, STMT_VINFO_DR_STEP (stmt_info), TDF_SLIM);
|
3021 |
|
|
fprintf (vect_dump, "\n\touter aligned to: ");
|
3022 |
|
|
print_generic_expr (vect_dump, STMT_VINFO_DR_ALIGNED_TO (stmt_info), TDF_SLIM);
|
3023 |
|
|
}
|
3024 |
|
|
}
|
3025 |
|
|
|
3026 |
|
|
if (STMT_VINFO_DATA_REF (stmt_info))
|
3027 |
|
|
{
|
3028 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
3029 |
|
|
{
|
3030 |
|
|
fprintf (vect_dump,
|
3031 |
|
|
"not vectorized: more than one data ref in stmt: ");
|
3032 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
3033 |
|
|
}
|
3034 |
|
|
|
3035 |
|
|
if (bb_vinfo)
|
3036 |
|
|
{
|
3037 |
|
|
STMT_VINFO_VECTORIZABLE (stmt_info) = false;
|
3038 |
|
|
stop_bb_analysis = true;
|
3039 |
|
|
continue;
|
3040 |
|
|
}
|
3041 |
|
|
|
3042 |
|
|
if (gather)
|
3043 |
|
|
free_data_ref (dr);
|
3044 |
|
|
return false;
|
3045 |
|
|
}
|
3046 |
|
|
|
3047 |
|
|
STMT_VINFO_DATA_REF (stmt_info) = dr;
|
3048 |
|
|
|
3049 |
|
|
/* Set vectype for STMT. */
|
3050 |
|
|
scalar_type = TREE_TYPE (DR_REF (dr));
|
3051 |
|
|
STMT_VINFO_VECTYPE (stmt_info) =
|
3052 |
|
|
get_vectype_for_scalar_type (scalar_type);
|
3053 |
|
|
if (!STMT_VINFO_VECTYPE (stmt_info))
|
3054 |
|
|
{
|
3055 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
3056 |
|
|
{
|
3057 |
|
|
fprintf (vect_dump,
|
3058 |
|
|
"not vectorized: no vectype for stmt: ");
|
3059 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
3060 |
|
|
fprintf (vect_dump, " scalar_type: ");
|
3061 |
|
|
print_generic_expr (vect_dump, scalar_type, TDF_DETAILS);
|
3062 |
|
|
}
|
3063 |
|
|
|
3064 |
|
|
if (bb_vinfo)
|
3065 |
|
|
{
|
3066 |
|
|
/* Mark the statement as not vectorizable. */
|
3067 |
|
|
STMT_VINFO_VECTORIZABLE (stmt_info) = false;
|
3068 |
|
|
stop_bb_analysis = true;
|
3069 |
|
|
continue;
|
3070 |
|
|
}
|
3071 |
|
|
|
3072 |
|
|
if (gather)
|
3073 |
|
|
{
|
3074 |
|
|
STMT_VINFO_DATA_REF (stmt_info) = NULL;
|
3075 |
|
|
free_data_ref (dr);
|
3076 |
|
|
}
|
3077 |
|
|
return false;
|
3078 |
|
|
}
|
3079 |
|
|
|
3080 |
|
|
/* Adjust the minimal vectorization factor according to the
|
3081 |
|
|
vector type. */
|
3082 |
|
|
vf = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
|
3083 |
|
|
if (vf > *min_vf)
|
3084 |
|
|
*min_vf = vf;
|
3085 |
|
|
|
3086 |
|
|
if (gather)
|
3087 |
|
|
{
|
3088 |
|
|
unsigned int j, k, n;
|
3089 |
|
|
struct data_reference *olddr
|
3090 |
|
|
= VEC_index (data_reference_p, datarefs, i);
|
3091 |
|
|
VEC (ddr_p, heap) *ddrs = LOOP_VINFO_DDRS (loop_vinfo);
|
3092 |
|
|
struct data_dependence_relation *ddr, *newddr;
|
3093 |
|
|
bool bad = false;
|
3094 |
|
|
tree off;
|
3095 |
|
|
VEC (loop_p, heap) *nest = LOOP_VINFO_LOOP_NEST (loop_vinfo);
|
3096 |
|
|
|
3097 |
|
|
if (!vect_check_gather (stmt, loop_vinfo, NULL, &off, NULL)
|
3098 |
|
|
|| get_vectype_for_scalar_type (TREE_TYPE (off)) == NULL_TREE)
|
3099 |
|
|
{
|
3100 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
3101 |
|
|
{
|
3102 |
|
|
fprintf (vect_dump,
|
3103 |
|
|
"not vectorized: not suitable for gather ");
|
3104 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
3105 |
|
|
}
|
3106 |
|
|
return false;
|
3107 |
|
|
}
|
3108 |
|
|
|
3109 |
|
|
n = VEC_length (data_reference_p, datarefs) - 1;
|
3110 |
|
|
for (j = 0, k = i - 1; j < i; j++)
|
3111 |
|
|
{
|
3112 |
|
|
ddr = VEC_index (ddr_p, ddrs, k);
|
3113 |
|
|
gcc_assert (DDR_B (ddr) == olddr);
|
3114 |
|
|
newddr = initialize_data_dependence_relation (DDR_A (ddr), dr,
|
3115 |
|
|
nest);
|
3116 |
|
|
VEC_replace (ddr_p, ddrs, k, newddr);
|
3117 |
|
|
free_dependence_relation (ddr);
|
3118 |
|
|
if (!bad
|
3119 |
|
|
&& DR_IS_WRITE (DDR_A (newddr))
|
3120 |
|
|
&& DDR_ARE_DEPENDENT (newddr) != chrec_known)
|
3121 |
|
|
bad = true;
|
3122 |
|
|
k += --n;
|
3123 |
|
|
}
|
3124 |
|
|
|
3125 |
|
|
k++;
|
3126 |
|
|
n = k + VEC_length (data_reference_p, datarefs) - i - 1;
|
3127 |
|
|
for (; k < n; k++)
|
3128 |
|
|
{
|
3129 |
|
|
ddr = VEC_index (ddr_p, ddrs, k);
|
3130 |
|
|
gcc_assert (DDR_A (ddr) == olddr);
|
3131 |
|
|
newddr = initialize_data_dependence_relation (dr, DDR_B (ddr),
|
3132 |
|
|
nest);
|
3133 |
|
|
VEC_replace (ddr_p, ddrs, k, newddr);
|
3134 |
|
|
free_dependence_relation (ddr);
|
3135 |
|
|
if (!bad
|
3136 |
|
|
&& DR_IS_WRITE (DDR_B (newddr))
|
3137 |
|
|
&& DDR_ARE_DEPENDENT (newddr) != chrec_known)
|
3138 |
|
|
bad = true;
|
3139 |
|
|
}
|
3140 |
|
|
|
3141 |
|
|
k = VEC_length (ddr_p, ddrs)
|
3142 |
|
|
- VEC_length (data_reference_p, datarefs) + i;
|
3143 |
|
|
ddr = VEC_index (ddr_p, ddrs, k);
|
3144 |
|
|
gcc_assert (DDR_A (ddr) == olddr && DDR_B (ddr) == olddr);
|
3145 |
|
|
newddr = initialize_data_dependence_relation (dr, dr, nest);
|
3146 |
|
|
VEC_replace (ddr_p, ddrs, k, newddr);
|
3147 |
|
|
free_dependence_relation (ddr);
|
3148 |
|
|
VEC_replace (data_reference_p, datarefs, i, dr);
|
3149 |
|
|
|
3150 |
|
|
if (bad)
|
3151 |
|
|
{
|
3152 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
3153 |
|
|
{
|
3154 |
|
|
fprintf (vect_dump,
|
3155 |
|
|
"not vectorized: data dependence conflict"
|
3156 |
|
|
" prevents gather");
|
3157 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
3158 |
|
|
}
|
3159 |
|
|
return false;
|
3160 |
|
|
}
|
3161 |
|
|
|
3162 |
|
|
STMT_VINFO_GATHER_P (stmt_info) = true;
|
3163 |
|
|
}
|
3164 |
|
|
}
|
3165 |
|
|
|
3166 |
|
|
return true;
|
3167 |
|
|
}
|
3168 |
|
|
|
3169 |
|
|
|
3170 |
|
|
/* Function vect_get_new_vect_var.
|
3171 |
|
|
|
3172 |
|
|
Returns a name for a new variable. The current naming scheme appends the
|
3173 |
|
|
prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
|
3174 |
|
|
the name of vectorizer generated variables, and appends that to NAME if
|
3175 |
|
|
provided. */
|
3176 |
|
|
|
3177 |
|
|
tree
|
3178 |
|
|
vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
|
3179 |
|
|
{
|
3180 |
|
|
const char *prefix;
|
3181 |
|
|
tree new_vect_var;
|
3182 |
|
|
|
3183 |
|
|
switch (var_kind)
|
3184 |
|
|
{
|
3185 |
|
|
case vect_simple_var:
|
3186 |
|
|
prefix = "vect_";
|
3187 |
|
|
break;
|
3188 |
|
|
case vect_scalar_var:
|
3189 |
|
|
prefix = "stmp_";
|
3190 |
|
|
break;
|
3191 |
|
|
case vect_pointer_var:
|
3192 |
|
|
prefix = "vect_p";
|
3193 |
|
|
break;
|
3194 |
|
|
default:
|
3195 |
|
|
gcc_unreachable ();
|
3196 |
|
|
}
|
3197 |
|
|
|
3198 |
|
|
if (name)
|
3199 |
|
|
{
|
3200 |
|
|
char* tmp = concat (prefix, name, NULL);
|
3201 |
|
|
new_vect_var = create_tmp_var (type, tmp);
|
3202 |
|
|
free (tmp);
|
3203 |
|
|
}
|
3204 |
|
|
else
|
3205 |
|
|
new_vect_var = create_tmp_var (type, prefix);
|
3206 |
|
|
|
3207 |
|
|
/* Mark vector typed variable as a gimple register variable. */
|
3208 |
|
|
if (TREE_CODE (type) == VECTOR_TYPE)
|
3209 |
|
|
DECL_GIMPLE_REG_P (new_vect_var) = true;
|
3210 |
|
|
|
3211 |
|
|
return new_vect_var;
|
3212 |
|
|
}
|
3213 |
|
|
|
3214 |
|
|
|
3215 |
|
|
/* Function vect_create_addr_base_for_vector_ref.
|
3216 |
|
|
|
3217 |
|
|
Create an expression that computes the address of the first memory location
|
3218 |
|
|
that will be accessed for a data reference.
|
3219 |
|
|
|
3220 |
|
|
Input:
|
3221 |
|
|
STMT: The statement containing the data reference.
|
3222 |
|
|
NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
|
3223 |
|
|
OFFSET: Optional. If supplied, it is be added to the initial address.
|
3224 |
|
|
LOOP: Specify relative to which loop-nest should the address be computed.
|
3225 |
|
|
For example, when the dataref is in an inner-loop nested in an
|
3226 |
|
|
outer-loop that is now being vectorized, LOOP can be either the
|
3227 |
|
|
outer-loop, or the inner-loop. The first memory location accessed
|
3228 |
|
|
by the following dataref ('in' points to short):
|
3229 |
|
|
|
3230 |
|
|
for (i=0; i<N; i++)
|
3231 |
|
|
for (j=0; j<M; j++)
|
3232 |
|
|
s += in[i+j]
|
3233 |
|
|
|
3234 |
|
|
is as follows:
|
3235 |
|
|
if LOOP=i_loop: &in (relative to i_loop)
|
3236 |
|
|
if LOOP=j_loop: &in+i*2B (relative to j_loop)
|
3237 |
|
|
|
3238 |
|
|
Output:
|
3239 |
|
|
1. Return an SSA_NAME whose value is the address of the memory location of
|
3240 |
|
|
the first vector of the data reference.
|
3241 |
|
|
2. If new_stmt_list is not NULL_TREE after return then the caller must insert
|
3242 |
|
|
these statement(s) which define the returned SSA_NAME.
|
3243 |
|
|
|
3244 |
|
|
FORNOW: We are only handling array accesses with step 1. */
|
3245 |
|
|
|
3246 |
|
|
tree
|
3247 |
|
|
vect_create_addr_base_for_vector_ref (gimple stmt,
|
3248 |
|
|
gimple_seq *new_stmt_list,
|
3249 |
|
|
tree offset,
|
3250 |
|
|
struct loop *loop)
|
3251 |
|
|
{
|
3252 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
3253 |
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
|
3254 |
|
|
tree data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
|
3255 |
|
|
tree base_name;
|
3256 |
|
|
tree data_ref_base_var;
|
3257 |
|
|
tree vec_stmt;
|
3258 |
|
|
tree addr_base, addr_expr;
|
3259 |
|
|
tree dest;
|
3260 |
|
|
gimple_seq seq = NULL;
|
3261 |
|
|
tree base_offset = unshare_expr (DR_OFFSET (dr));
|
3262 |
|
|
tree init = unshare_expr (DR_INIT (dr));
|
3263 |
|
|
tree vect_ptr_type;
|
3264 |
|
|
tree step = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
|
3265 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
3266 |
|
|
tree base;
|
3267 |
|
|
|
3268 |
|
|
if (loop_vinfo && loop && loop != (gimple_bb (stmt))->loop_father)
|
3269 |
|
|
{
|
3270 |
|
|
struct loop *outer_loop = LOOP_VINFO_LOOP (loop_vinfo);
|
3271 |
|
|
|
3272 |
|
|
gcc_assert (nested_in_vect_loop_p (outer_loop, stmt));
|
3273 |
|
|
|
3274 |
|
|
data_ref_base = unshare_expr (STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
|
3275 |
|
|
base_offset = unshare_expr (STMT_VINFO_DR_OFFSET (stmt_info));
|
3276 |
|
|
init = unshare_expr (STMT_VINFO_DR_INIT (stmt_info));
|
3277 |
|
|
}
|
3278 |
|
|
|
3279 |
|
|
if (loop_vinfo)
|
3280 |
|
|
base_name = build_fold_indirect_ref (data_ref_base);
|
3281 |
|
|
else
|
3282 |
|
|
{
|
3283 |
|
|
base_offset = ssize_int (0);
|
3284 |
|
|
init = ssize_int (0);
|
3285 |
|
|
base_name = build_fold_indirect_ref (unshare_expr (DR_REF (dr)));
|
3286 |
|
|
}
|
3287 |
|
|
|
3288 |
|
|
data_ref_base_var = create_tmp_var (TREE_TYPE (data_ref_base), "batmp");
|
3289 |
|
|
add_referenced_var (data_ref_base_var);
|
3290 |
|
|
data_ref_base = force_gimple_operand (data_ref_base, &seq, true,
|
3291 |
|
|
data_ref_base_var);
|
3292 |
|
|
gimple_seq_add_seq (new_stmt_list, seq);
|
3293 |
|
|
|
3294 |
|
|
/* Create base_offset */
|
3295 |
|
|
base_offset = size_binop (PLUS_EXPR,
|
3296 |
|
|
fold_convert (sizetype, base_offset),
|
3297 |
|
|
fold_convert (sizetype, init));
|
3298 |
|
|
dest = create_tmp_var (sizetype, "base_off");
|
3299 |
|
|
add_referenced_var (dest);
|
3300 |
|
|
base_offset = force_gimple_operand (base_offset, &seq, true, dest);
|
3301 |
|
|
gimple_seq_add_seq (new_stmt_list, seq);
|
3302 |
|
|
|
3303 |
|
|
if (offset)
|
3304 |
|
|
{
|
3305 |
|
|
tree tmp = create_tmp_var (sizetype, "offset");
|
3306 |
|
|
|
3307 |
|
|
add_referenced_var (tmp);
|
3308 |
|
|
offset = fold_build2 (MULT_EXPR, sizetype,
|
3309 |
|
|
fold_convert (sizetype, offset), step);
|
3310 |
|
|
base_offset = fold_build2 (PLUS_EXPR, sizetype,
|
3311 |
|
|
base_offset, offset);
|
3312 |
|
|
base_offset = force_gimple_operand (base_offset, &seq, false, tmp);
|
3313 |
|
|
gimple_seq_add_seq (new_stmt_list, seq);
|
3314 |
|
|
}
|
3315 |
|
|
|
3316 |
|
|
/* base + base_offset */
|
3317 |
|
|
if (loop_vinfo)
|
3318 |
|
|
addr_base = fold_build_pointer_plus (data_ref_base, base_offset);
|
3319 |
|
|
else
|
3320 |
|
|
{
|
3321 |
|
|
addr_base = build1 (ADDR_EXPR,
|
3322 |
|
|
build_pointer_type (TREE_TYPE (DR_REF (dr))),
|
3323 |
|
|
unshare_expr (DR_REF (dr)));
|
3324 |
|
|
}
|
3325 |
|
|
|
3326 |
|
|
vect_ptr_type = build_pointer_type (STMT_VINFO_VECTYPE (stmt_info));
|
3327 |
|
|
base = get_base_address (DR_REF (dr));
|
3328 |
|
|
if (base
|
3329 |
|
|
&& TREE_CODE (base) == MEM_REF)
|
3330 |
|
|
vect_ptr_type
|
3331 |
|
|
= build_qualified_type (vect_ptr_type,
|
3332 |
|
|
TYPE_QUALS (TREE_TYPE (TREE_OPERAND (base, 0))));
|
3333 |
|
|
|
3334 |
|
|
vec_stmt = fold_convert (vect_ptr_type, addr_base);
|
3335 |
|
|
addr_expr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
|
3336 |
|
|
get_name (base_name));
|
3337 |
|
|
add_referenced_var (addr_expr);
|
3338 |
|
|
vec_stmt = force_gimple_operand (vec_stmt, &seq, false, addr_expr);
|
3339 |
|
|
gimple_seq_add_seq (new_stmt_list, seq);
|
3340 |
|
|
|
3341 |
|
|
if (DR_PTR_INFO (dr)
|
3342 |
|
|
&& TREE_CODE (vec_stmt) == SSA_NAME)
|
3343 |
|
|
{
|
3344 |
|
|
duplicate_ssa_name_ptr_info (vec_stmt, DR_PTR_INFO (dr));
|
3345 |
|
|
if (offset)
|
3346 |
|
|
{
|
3347 |
|
|
SSA_NAME_PTR_INFO (vec_stmt)->align = 1;
|
3348 |
|
|
SSA_NAME_PTR_INFO (vec_stmt)->misalign = 0;
|
3349 |
|
|
}
|
3350 |
|
|
}
|
3351 |
|
|
|
3352 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
3353 |
|
|
{
|
3354 |
|
|
fprintf (vect_dump, "created ");
|
3355 |
|
|
print_generic_expr (vect_dump, vec_stmt, TDF_SLIM);
|
3356 |
|
|
}
|
3357 |
|
|
|
3358 |
|
|
return vec_stmt;
|
3359 |
|
|
}
|
3360 |
|
|
|
3361 |
|
|
|
3362 |
|
|
/* Function vect_create_data_ref_ptr.
|
3363 |
|
|
|
3364 |
|
|
Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first
|
3365 |
|
|
location accessed in the loop by STMT, along with the def-use update
|
3366 |
|
|
chain to appropriately advance the pointer through the loop iterations.
|
3367 |
|
|
Also set aliasing information for the pointer. This pointer is used by
|
3368 |
|
|
the callers to this function to create a memory reference expression for
|
3369 |
|
|
vector load/store access.
|
3370 |
|
|
|
3371 |
|
|
Input:
|
3372 |
|
|
1. STMT: a stmt that references memory. Expected to be of the form
|
3373 |
|
|
GIMPLE_ASSIGN <name, data-ref> or
|
3374 |
|
|
GIMPLE_ASSIGN <data-ref, name>.
|
3375 |
|
|
2. AGGR_TYPE: the type of the reference, which should be either a vector
|
3376 |
|
|
or an array.
|
3377 |
|
|
3. AT_LOOP: the loop where the vector memref is to be created.
|
3378 |
|
|
4. OFFSET (optional): an offset to be added to the initial address accessed
|
3379 |
|
|
by the data-ref in STMT.
|
3380 |
|
|
5. BSI: location where the new stmts are to be placed if there is no loop
|
3381 |
|
|
6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain
|
3382 |
|
|
pointing to the initial address.
|
3383 |
|
|
|
3384 |
|
|
Output:
|
3385 |
|
|
1. Declare a new ptr to vector_type, and have it point to the base of the
|
3386 |
|
|
data reference (initial addressed accessed by the data reference).
|
3387 |
|
|
For example, for vector of type V8HI, the following code is generated:
|
3388 |
|
|
|
3389 |
|
|
v8hi *ap;
|
3390 |
|
|
ap = (v8hi *)initial_address;
|
3391 |
|
|
|
3392 |
|
|
if OFFSET is not supplied:
|
3393 |
|
|
initial_address = &a[init];
|
3394 |
|
|
if OFFSET is supplied:
|
3395 |
|
|
initial_address = &a[init + OFFSET];
|
3396 |
|
|
|
3397 |
|
|
Return the initial_address in INITIAL_ADDRESS.
|
3398 |
|
|
|
3399 |
|
|
2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
|
3400 |
|
|
update the pointer in each iteration of the loop.
|
3401 |
|
|
|
3402 |
|
|
Return the increment stmt that updates the pointer in PTR_INCR.
|
3403 |
|
|
|
3404 |
|
|
3. Set INV_P to true if the access pattern of the data reference in the
|
3405 |
|
|
vectorized loop is invariant. Set it to false otherwise.
|
3406 |
|
|
|
3407 |
|
|
4. Return the pointer. */
|
3408 |
|
|
|
3409 |
|
|
tree
|
3410 |
|
|
vect_create_data_ref_ptr (gimple stmt, tree aggr_type, struct loop *at_loop,
|
3411 |
|
|
tree offset, tree *initial_address,
|
3412 |
|
|
gimple_stmt_iterator *gsi, gimple *ptr_incr,
|
3413 |
|
|
bool only_init, bool *inv_p)
|
3414 |
|
|
{
|
3415 |
|
|
tree base_name;
|
3416 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
3417 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
3418 |
|
|
struct loop *loop = NULL;
|
3419 |
|
|
bool nested_in_vect_loop = false;
|
3420 |
|
|
struct loop *containing_loop = NULL;
|
3421 |
|
|
tree aggr_ptr_type;
|
3422 |
|
|
tree aggr_ptr;
|
3423 |
|
|
tree new_temp;
|
3424 |
|
|
gimple vec_stmt;
|
3425 |
|
|
gimple_seq new_stmt_list = NULL;
|
3426 |
|
|
edge pe = NULL;
|
3427 |
|
|
basic_block new_bb;
|
3428 |
|
|
tree aggr_ptr_init;
|
3429 |
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
|
3430 |
|
|
tree aptr;
|
3431 |
|
|
gimple_stmt_iterator incr_gsi;
|
3432 |
|
|
bool insert_after;
|
3433 |
|
|
bool negative;
|
3434 |
|
|
tree indx_before_incr, indx_after_incr;
|
3435 |
|
|
gimple incr;
|
3436 |
|
|
tree step;
|
3437 |
|
|
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
|
3438 |
|
|
tree base;
|
3439 |
|
|
|
3440 |
|
|
gcc_assert (TREE_CODE (aggr_type) == ARRAY_TYPE
|
3441 |
|
|
|| TREE_CODE (aggr_type) == VECTOR_TYPE);
|
3442 |
|
|
|
3443 |
|
|
if (loop_vinfo)
|
3444 |
|
|
{
|
3445 |
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
3446 |
|
|
nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
|
3447 |
|
|
containing_loop = (gimple_bb (stmt))->loop_father;
|
3448 |
|
|
pe = loop_preheader_edge (loop);
|
3449 |
|
|
}
|
3450 |
|
|
else
|
3451 |
|
|
{
|
3452 |
|
|
gcc_assert (bb_vinfo);
|
3453 |
|
|
only_init = true;
|
3454 |
|
|
*ptr_incr = NULL;
|
3455 |
|
|
}
|
3456 |
|
|
|
3457 |
|
|
/* Check the step (evolution) of the load in LOOP, and record
|
3458 |
|
|
whether it's invariant. */
|
3459 |
|
|
if (nested_in_vect_loop)
|
3460 |
|
|
step = STMT_VINFO_DR_STEP (stmt_info);
|
3461 |
|
|
else
|
3462 |
|
|
step = DR_STEP (STMT_VINFO_DATA_REF (stmt_info));
|
3463 |
|
|
|
3464 |
|
|
if (tree_int_cst_compare (step, size_zero_node) == 0)
|
3465 |
|
|
*inv_p = true;
|
3466 |
|
|
else
|
3467 |
|
|
*inv_p = false;
|
3468 |
|
|
negative = tree_int_cst_compare (step, size_zero_node) < 0;
|
3469 |
|
|
|
3470 |
|
|
/* Create an expression for the first address accessed by this load
|
3471 |
|
|
in LOOP. */
|
3472 |
|
|
base_name = build_fold_indirect_ref (unshare_expr (DR_BASE_ADDRESS (dr)));
|
3473 |
|
|
|
3474 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
3475 |
|
|
{
|
3476 |
|
|
tree data_ref_base = base_name;
|
3477 |
|
|
fprintf (vect_dump, "create %s-pointer variable to type: ",
|
3478 |
|
|
tree_code_name[(int) TREE_CODE (aggr_type)]);
|
3479 |
|
|
print_generic_expr (vect_dump, aggr_type, TDF_SLIM);
|
3480 |
|
|
if (TREE_CODE (data_ref_base) == VAR_DECL
|
3481 |
|
|
|| TREE_CODE (data_ref_base) == ARRAY_REF)
|
3482 |
|
|
fprintf (vect_dump, " vectorizing an array ref: ");
|
3483 |
|
|
else if (TREE_CODE (data_ref_base) == COMPONENT_REF)
|
3484 |
|
|
fprintf (vect_dump, " vectorizing a record based array ref: ");
|
3485 |
|
|
else if (TREE_CODE (data_ref_base) == SSA_NAME)
|
3486 |
|
|
fprintf (vect_dump, " vectorizing a pointer ref: ");
|
3487 |
|
|
print_generic_expr (vect_dump, base_name, TDF_SLIM);
|
3488 |
|
|
}
|
3489 |
|
|
|
3490 |
|
|
/* (1) Create the new aggregate-pointer variable. */
|
3491 |
|
|
aggr_ptr_type = build_pointer_type (aggr_type);
|
3492 |
|
|
base = get_base_address (DR_REF (dr));
|
3493 |
|
|
if (base
|
3494 |
|
|
&& TREE_CODE (base) == MEM_REF)
|
3495 |
|
|
aggr_ptr_type
|
3496 |
|
|
= build_qualified_type (aggr_ptr_type,
|
3497 |
|
|
TYPE_QUALS (TREE_TYPE (TREE_OPERAND (base, 0))));
|
3498 |
|
|
aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var,
|
3499 |
|
|
get_name (base_name));
|
3500 |
|
|
|
3501 |
|
|
/* Vector and array types inherit the alias set of their component
|
3502 |
|
|
type by default so we need to use a ref-all pointer if the data
|
3503 |
|
|
reference does not conflict with the created aggregated data
|
3504 |
|
|
reference because it is not addressable. */
|
3505 |
|
|
if (!alias_sets_conflict_p (get_deref_alias_set (aggr_ptr),
|
3506 |
|
|
get_alias_set (DR_REF (dr))))
|
3507 |
|
|
{
|
3508 |
|
|
aggr_ptr_type
|
3509 |
|
|
= build_pointer_type_for_mode (aggr_type,
|
3510 |
|
|
TYPE_MODE (aggr_ptr_type), true);
|
3511 |
|
|
aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var,
|
3512 |
|
|
get_name (base_name));
|
3513 |
|
|
}
|
3514 |
|
|
|
3515 |
|
|
/* Likewise for any of the data references in the stmt group. */
|
3516 |
|
|
else if (STMT_VINFO_GROUP_SIZE (stmt_info) > 1)
|
3517 |
|
|
{
|
3518 |
|
|
gimple orig_stmt = STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_info);
|
3519 |
|
|
do
|
3520 |
|
|
{
|
3521 |
|
|
tree lhs = gimple_assign_lhs (orig_stmt);
|
3522 |
|
|
if (!alias_sets_conflict_p (get_deref_alias_set (aggr_ptr),
|
3523 |
|
|
get_alias_set (lhs)))
|
3524 |
|
|
{
|
3525 |
|
|
aggr_ptr_type
|
3526 |
|
|
= build_pointer_type_for_mode (aggr_type,
|
3527 |
|
|
TYPE_MODE (aggr_ptr_type), true);
|
3528 |
|
|
aggr_ptr
|
3529 |
|
|
= vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var,
|
3530 |
|
|
get_name (base_name));
|
3531 |
|
|
break;
|
3532 |
|
|
}
|
3533 |
|
|
|
3534 |
|
|
orig_stmt = STMT_VINFO_GROUP_NEXT_ELEMENT (vinfo_for_stmt (orig_stmt));
|
3535 |
|
|
}
|
3536 |
|
|
while (orig_stmt);
|
3537 |
|
|
}
|
3538 |
|
|
|
3539 |
|
|
add_referenced_var (aggr_ptr);
|
3540 |
|
|
|
3541 |
|
|
/* Note: If the dataref is in an inner-loop nested in LOOP, and we are
|
3542 |
|
|
vectorizing LOOP (i.e., outer-loop vectorization), we need to create two
|
3543 |
|
|
def-use update cycles for the pointer: one relative to the outer-loop
|
3544 |
|
|
(LOOP), which is what steps (3) and (4) below do. The other is relative
|
3545 |
|
|
to the inner-loop (which is the inner-most loop containing the dataref),
|
3546 |
|
|
and this is done be step (5) below.
|
3547 |
|
|
|
3548 |
|
|
When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
|
3549 |
|
|
inner-most loop, and so steps (3),(4) work the same, and step (5) is
|
3550 |
|
|
redundant. Steps (3),(4) create the following:
|
3551 |
|
|
|
3552 |
|
|
vp0 = &base_addr;
|
3553 |
|
|
LOOP: vp1 = phi(vp0,vp2)
|
3554 |
|
|
...
|
3555 |
|
|
...
|
3556 |
|
|
vp2 = vp1 + step
|
3557 |
|
|
goto LOOP
|
3558 |
|
|
|
3559 |
|
|
If there is an inner-loop nested in loop, then step (5) will also be
|
3560 |
|
|
applied, and an additional update in the inner-loop will be created:
|
3561 |
|
|
|
3562 |
|
|
vp0 = &base_addr;
|
3563 |
|
|
LOOP: vp1 = phi(vp0,vp2)
|
3564 |
|
|
...
|
3565 |
|
|
inner: vp3 = phi(vp1,vp4)
|
3566 |
|
|
vp4 = vp3 + inner_step
|
3567 |
|
|
if () goto inner
|
3568 |
|
|
...
|
3569 |
|
|
vp2 = vp1 + step
|
3570 |
|
|
if () goto LOOP */
|
3571 |
|
|
|
3572 |
|
|
/* (2) Calculate the initial address of the aggregate-pointer, and set
|
3573 |
|
|
the aggregate-pointer to point to it before the loop. */
|
3574 |
|
|
|
3575 |
|
|
/* Create: (&(base[init_val+offset]) in the loop preheader. */
|
3576 |
|
|
|
3577 |
|
|
new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
|
3578 |
|
|
offset, loop);
|
3579 |
|
|
if (new_stmt_list)
|
3580 |
|
|
{
|
3581 |
|
|
if (pe)
|
3582 |
|
|
{
|
3583 |
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
|
3584 |
|
|
gcc_assert (!new_bb);
|
3585 |
|
|
}
|
3586 |
|
|
else
|
3587 |
|
|
gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT);
|
3588 |
|
|
}
|
3589 |
|
|
|
3590 |
|
|
*initial_address = new_temp;
|
3591 |
|
|
|
3592 |
|
|
/* Create: p = (aggr_type *) initial_base */
|
3593 |
|
|
if (TREE_CODE (new_temp) != SSA_NAME
|
3594 |
|
|
|| !useless_type_conversion_p (aggr_ptr_type, TREE_TYPE (new_temp)))
|
3595 |
|
|
{
|
3596 |
|
|
vec_stmt = gimple_build_assign (aggr_ptr,
|
3597 |
|
|
fold_convert (aggr_ptr_type, new_temp));
|
3598 |
|
|
aggr_ptr_init = make_ssa_name (aggr_ptr, vec_stmt);
|
3599 |
|
|
/* Copy the points-to information if it exists. */
|
3600 |
|
|
if (DR_PTR_INFO (dr))
|
3601 |
|
|
duplicate_ssa_name_ptr_info (aggr_ptr_init, DR_PTR_INFO (dr));
|
3602 |
|
|
gimple_assign_set_lhs (vec_stmt, aggr_ptr_init);
|
3603 |
|
|
if (pe)
|
3604 |
|
|
{
|
3605 |
|
|
new_bb = gsi_insert_on_edge_immediate (pe, vec_stmt);
|
3606 |
|
|
gcc_assert (!new_bb);
|
3607 |
|
|
}
|
3608 |
|
|
else
|
3609 |
|
|
gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
|
3610 |
|
|
}
|
3611 |
|
|
else
|
3612 |
|
|
aggr_ptr_init = new_temp;
|
3613 |
|
|
|
3614 |
|
|
/* (3) Handle the updating of the aggregate-pointer inside the loop.
|
3615 |
|
|
This is needed when ONLY_INIT is false, and also when AT_LOOP is the
|
3616 |
|
|
inner-loop nested in LOOP (during outer-loop vectorization). */
|
3617 |
|
|
|
3618 |
|
|
/* No update in loop is required. */
|
3619 |
|
|
if (only_init && (!loop_vinfo || at_loop == loop))
|
3620 |
|
|
aptr = aggr_ptr_init;
|
3621 |
|
|
else
|
3622 |
|
|
{
|
3623 |
|
|
/* The step of the aggregate pointer is the type size. */
|
3624 |
|
|
tree step = TYPE_SIZE_UNIT (aggr_type);
|
3625 |
|
|
/* One exception to the above is when the scalar step of the load in
|
3626 |
|
|
LOOP is zero. In this case the step here is also zero. */
|
3627 |
|
|
if (*inv_p)
|
3628 |
|
|
step = size_zero_node;
|
3629 |
|
|
else if (negative)
|
3630 |
|
|
step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
|
3631 |
|
|
|
3632 |
|
|
standard_iv_increment_position (loop, &incr_gsi, &insert_after);
|
3633 |
|
|
|
3634 |
|
|
create_iv (aggr_ptr_init,
|
3635 |
|
|
fold_convert (aggr_ptr_type, step),
|
3636 |
|
|
aggr_ptr, loop, &incr_gsi, insert_after,
|
3637 |
|
|
&indx_before_incr, &indx_after_incr);
|
3638 |
|
|
incr = gsi_stmt (incr_gsi);
|
3639 |
|
|
set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
|
3640 |
|
|
|
3641 |
|
|
/* Copy the points-to information if it exists. */
|
3642 |
|
|
if (DR_PTR_INFO (dr))
|
3643 |
|
|
{
|
3644 |
|
|
duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
|
3645 |
|
|
duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
|
3646 |
|
|
}
|
3647 |
|
|
if (ptr_incr)
|
3648 |
|
|
*ptr_incr = incr;
|
3649 |
|
|
|
3650 |
|
|
aptr = indx_before_incr;
|
3651 |
|
|
}
|
3652 |
|
|
|
3653 |
|
|
if (!nested_in_vect_loop || only_init)
|
3654 |
|
|
return aptr;
|
3655 |
|
|
|
3656 |
|
|
|
3657 |
|
|
/* (4) Handle the updating of the aggregate-pointer inside the inner-loop
|
3658 |
|
|
nested in LOOP, if exists. */
|
3659 |
|
|
|
3660 |
|
|
gcc_assert (nested_in_vect_loop);
|
3661 |
|
|
if (!only_init)
|
3662 |
|
|
{
|
3663 |
|
|
standard_iv_increment_position (containing_loop, &incr_gsi,
|
3664 |
|
|
&insert_after);
|
3665 |
|
|
create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr,
|
3666 |
|
|
containing_loop, &incr_gsi, insert_after, &indx_before_incr,
|
3667 |
|
|
&indx_after_incr);
|
3668 |
|
|
incr = gsi_stmt (incr_gsi);
|
3669 |
|
|
set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
|
3670 |
|
|
|
3671 |
|
|
/* Copy the points-to information if it exists. */
|
3672 |
|
|
if (DR_PTR_INFO (dr))
|
3673 |
|
|
{
|
3674 |
|
|
duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
|
3675 |
|
|
duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
|
3676 |
|
|
}
|
3677 |
|
|
if (ptr_incr)
|
3678 |
|
|
*ptr_incr = incr;
|
3679 |
|
|
|
3680 |
|
|
return indx_before_incr;
|
3681 |
|
|
}
|
3682 |
|
|
else
|
3683 |
|
|
gcc_unreachable ();
|
3684 |
|
|
}
|
3685 |
|
|
|
3686 |
|
|
|
3687 |
|
|
/* Function bump_vector_ptr
|
3688 |
|
|
|
3689 |
|
|
Increment a pointer (to a vector type) by vector-size. If requested,
|
3690 |
|
|
i.e. if PTR-INCR is given, then also connect the new increment stmt
|
3691 |
|
|
to the existing def-use update-chain of the pointer, by modifying
|
3692 |
|
|
the PTR_INCR as illustrated below:
|
3693 |
|
|
|
3694 |
|
|
The pointer def-use update-chain before this function:
|
3695 |
|
|
DATAREF_PTR = phi (p_0, p_2)
|
3696 |
|
|
....
|
3697 |
|
|
PTR_INCR: p_2 = DATAREF_PTR + step
|
3698 |
|
|
|
3699 |
|
|
The pointer def-use update-chain after this function:
|
3700 |
|
|
DATAREF_PTR = phi (p_0, p_2)
|
3701 |
|
|
....
|
3702 |
|
|
NEW_DATAREF_PTR = DATAREF_PTR + BUMP
|
3703 |
|
|
....
|
3704 |
|
|
PTR_INCR: p_2 = NEW_DATAREF_PTR + step
|
3705 |
|
|
|
3706 |
|
|
Input:
|
3707 |
|
|
DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
|
3708 |
|
|
in the loop.
|
3709 |
|
|
PTR_INCR - optional. The stmt that updates the pointer in each iteration of
|
3710 |
|
|
the loop. The increment amount across iterations is expected
|
3711 |
|
|
to be vector_size.
|
3712 |
|
|
BSI - location where the new update stmt is to be placed.
|
3713 |
|
|
STMT - the original scalar memory-access stmt that is being vectorized.
|
3714 |
|
|
BUMP - optional. The offset by which to bump the pointer. If not given,
|
3715 |
|
|
the offset is assumed to be vector_size.
|
3716 |
|
|
|
3717 |
|
|
Output: Return NEW_DATAREF_PTR as illustrated above.
|
3718 |
|
|
|
3719 |
|
|
*/
|
3720 |
|
|
|
3721 |
|
|
tree
|
3722 |
|
|
bump_vector_ptr (tree dataref_ptr, gimple ptr_incr, gimple_stmt_iterator *gsi,
|
3723 |
|
|
gimple stmt, tree bump)
|
3724 |
|
|
{
|
3725 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
3726 |
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
|
3727 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
3728 |
|
|
tree ptr_var = SSA_NAME_VAR (dataref_ptr);
|
3729 |
|
|
tree update = TYPE_SIZE_UNIT (vectype);
|
3730 |
|
|
gimple incr_stmt;
|
3731 |
|
|
ssa_op_iter iter;
|
3732 |
|
|
use_operand_p use_p;
|
3733 |
|
|
tree new_dataref_ptr;
|
3734 |
|
|
|
3735 |
|
|
if (bump)
|
3736 |
|
|
update = bump;
|
3737 |
|
|
|
3738 |
|
|
incr_stmt = gimple_build_assign_with_ops (POINTER_PLUS_EXPR, ptr_var,
|
3739 |
|
|
dataref_ptr, update);
|
3740 |
|
|
new_dataref_ptr = make_ssa_name (ptr_var, incr_stmt);
|
3741 |
|
|
gimple_assign_set_lhs (incr_stmt, new_dataref_ptr);
|
3742 |
|
|
vect_finish_stmt_generation (stmt, incr_stmt, gsi);
|
3743 |
|
|
|
3744 |
|
|
/* Copy the points-to information if it exists. */
|
3745 |
|
|
if (DR_PTR_INFO (dr))
|
3746 |
|
|
{
|
3747 |
|
|
duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
|
3748 |
|
|
SSA_NAME_PTR_INFO (new_dataref_ptr)->align = 1;
|
3749 |
|
|
SSA_NAME_PTR_INFO (new_dataref_ptr)->misalign = 0;
|
3750 |
|
|
}
|
3751 |
|
|
|
3752 |
|
|
if (!ptr_incr)
|
3753 |
|
|
return new_dataref_ptr;
|
3754 |
|
|
|
3755 |
|
|
/* Update the vector-pointer's cross-iteration increment. */
|
3756 |
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
|
3757 |
|
|
{
|
3758 |
|
|
tree use = USE_FROM_PTR (use_p);
|
3759 |
|
|
|
3760 |
|
|
if (use == dataref_ptr)
|
3761 |
|
|
SET_USE (use_p, new_dataref_ptr);
|
3762 |
|
|
else
|
3763 |
|
|
gcc_assert (tree_int_cst_compare (use, update) == 0);
|
3764 |
|
|
}
|
3765 |
|
|
|
3766 |
|
|
return new_dataref_ptr;
|
3767 |
|
|
}
|
3768 |
|
|
|
3769 |
|
|
|
3770 |
|
|
/* Function vect_create_destination_var.
|
3771 |
|
|
|
3772 |
|
|
Create a new temporary of type VECTYPE. */
|
3773 |
|
|
|
3774 |
|
|
tree
|
3775 |
|
|
vect_create_destination_var (tree scalar_dest, tree vectype)
|
3776 |
|
|
{
|
3777 |
|
|
tree vec_dest;
|
3778 |
|
|
const char *new_name;
|
3779 |
|
|
tree type;
|
3780 |
|
|
enum vect_var_kind kind;
|
3781 |
|
|
|
3782 |
|
|
kind = vectype ? vect_simple_var : vect_scalar_var;
|
3783 |
|
|
type = vectype ? vectype : TREE_TYPE (scalar_dest);
|
3784 |
|
|
|
3785 |
|
|
gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
|
3786 |
|
|
|
3787 |
|
|
new_name = get_name (scalar_dest);
|
3788 |
|
|
if (!new_name)
|
3789 |
|
|
new_name = "var_";
|
3790 |
|
|
vec_dest = vect_get_new_vect_var (type, kind, new_name);
|
3791 |
|
|
add_referenced_var (vec_dest);
|
3792 |
|
|
|
3793 |
|
|
return vec_dest;
|
3794 |
|
|
}
|
3795 |
|
|
|
3796 |
|
|
/* Function vect_strided_store_supported.
|
3797 |
|
|
|
3798 |
|
|
Returns TRUE if interleave high and interleave low permutations
|
3799 |
|
|
are supported, and FALSE otherwise. */
|
3800 |
|
|
|
3801 |
|
|
bool
|
3802 |
|
|
vect_strided_store_supported (tree vectype, unsigned HOST_WIDE_INT count)
|
3803 |
|
|
{
|
3804 |
|
|
enum machine_mode mode = TYPE_MODE (vectype);
|
3805 |
|
|
|
3806 |
|
|
/* vect_permute_store_chain requires the group size to be a power of two. */
|
3807 |
|
|
if (exact_log2 (count) == -1)
|
3808 |
|
|
{
|
3809 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
3810 |
|
|
fprintf (vect_dump, "the size of the group of strided accesses"
|
3811 |
|
|
" is not a power of 2");
|
3812 |
|
|
return false;
|
3813 |
|
|
}
|
3814 |
|
|
|
3815 |
|
|
/* Check that the permutation is supported. */
|
3816 |
|
|
if (VECTOR_MODE_P (mode))
|
3817 |
|
|
{
|
3818 |
|
|
unsigned int i, nelt = GET_MODE_NUNITS (mode);
|
3819 |
|
|
unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
|
3820 |
|
|
for (i = 0; i < nelt / 2; i++)
|
3821 |
|
|
{
|
3822 |
|
|
sel[i * 2] = i;
|
3823 |
|
|
sel[i * 2 + 1] = i + nelt;
|
3824 |
|
|
}
|
3825 |
|
|
if (can_vec_perm_p (mode, false, sel))
|
3826 |
|
|
{
|
3827 |
|
|
for (i = 0; i < nelt; i++)
|
3828 |
|
|
sel[i] += nelt / 2;
|
3829 |
|
|
if (can_vec_perm_p (mode, false, sel))
|
3830 |
|
|
return true;
|
3831 |
|
|
}
|
3832 |
|
|
}
|
3833 |
|
|
|
3834 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
3835 |
|
|
fprintf (vect_dump, "interleave op not supported by target.");
|
3836 |
|
|
return false;
|
3837 |
|
|
}
|
3838 |
|
|
|
3839 |
|
|
|
3840 |
|
|
/* Return TRUE if vec_store_lanes is available for COUNT vectors of
|
3841 |
|
|
type VECTYPE. */
|
3842 |
|
|
|
3843 |
|
|
bool
|
3844 |
|
|
vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
|
3845 |
|
|
{
|
3846 |
|
|
return vect_lanes_optab_supported_p ("vec_store_lanes",
|
3847 |
|
|
vec_store_lanes_optab,
|
3848 |
|
|
vectype, count);
|
3849 |
|
|
}
|
3850 |
|
|
|
3851 |
|
|
|
3852 |
|
|
/* Function vect_permute_store_chain.
|
3853 |
|
|
|
3854 |
|
|
Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
|
3855 |
|
|
a power of 2, generate interleave_high/low stmts to reorder the data
|
3856 |
|
|
correctly for the stores. Return the final references for stores in
|
3857 |
|
|
RESULT_CHAIN.
|
3858 |
|
|
|
3859 |
|
|
E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
|
3860 |
|
|
The input is 4 vectors each containing 8 elements. We assign a number to
|
3861 |
|
|
each element, the input sequence is:
|
3862 |
|
|
|
3863 |
|
|
1st vec: 0 1 2 3 4 5 6 7
|
3864 |
|
|
2nd vec: 8 9 10 11 12 13 14 15
|
3865 |
|
|
3rd vec: 16 17 18 19 20 21 22 23
|
3866 |
|
|
4th vec: 24 25 26 27 28 29 30 31
|
3867 |
|
|
|
3868 |
|
|
The output sequence should be:
|
3869 |
|
|
|
3870 |
|
|
1st vec: 0 8 16 24 1 9 17 25
|
3871 |
|
|
2nd vec: 2 10 18 26 3 11 19 27
|
3872 |
|
|
3rd vec: 4 12 20 28 5 13 21 30
|
3873 |
|
|
4th vec: 6 14 22 30 7 15 23 31
|
3874 |
|
|
|
3875 |
|
|
i.e., we interleave the contents of the four vectors in their order.
|
3876 |
|
|
|
3877 |
|
|
We use interleave_high/low instructions to create such output. The input of
|
3878 |
|
|
each interleave_high/low operation is two vectors:
|
3879 |
|
|
1st vec 2nd vec
|
3880 |
|
|
|
3881 |
|
|
the even elements of the result vector are obtained left-to-right from the
|
3882 |
|
|
high/low elements of the first vector. The odd elements of the result are
|
3883 |
|
|
obtained left-to-right from the high/low elements of the second vector.
|
3884 |
|
|
The output of interleave_high will be: 0 4 1 5
|
3885 |
|
|
and of interleave_low: 2 6 3 7
|
3886 |
|
|
|
3887 |
|
|
|
3888 |
|
|
The permutation is done in log LENGTH stages. In each stage interleave_high
|
3889 |
|
|
and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
|
3890 |
|
|
where the first argument is taken from the first half of DR_CHAIN and the
|
3891 |
|
|
second argument from it's second half.
|
3892 |
|
|
In our example,
|
3893 |
|
|
|
3894 |
|
|
I1: interleave_high (1st vec, 3rd vec)
|
3895 |
|
|
I2: interleave_low (1st vec, 3rd vec)
|
3896 |
|
|
I3: interleave_high (2nd vec, 4th vec)
|
3897 |
|
|
I4: interleave_low (2nd vec, 4th vec)
|
3898 |
|
|
|
3899 |
|
|
The output for the first stage is:
|
3900 |
|
|
|
3901 |
|
|
I1: 0 16 1 17 2 18 3 19
|
3902 |
|
|
I2: 4 20 5 21 6 22 7 23
|
3903 |
|
|
I3: 8 24 9 25 10 26 11 27
|
3904 |
|
|
I4: 12 28 13 29 14 30 15 31
|
3905 |
|
|
|
3906 |
|
|
The output of the second stage, i.e. the final result is:
|
3907 |
|
|
|
3908 |
|
|
I1: 0 8 16 24 1 9 17 25
|
3909 |
|
|
I2: 2 10 18 26 3 11 19 27
|
3910 |
|
|
I3: 4 12 20 28 5 13 21 30
|
3911 |
|
|
I4: 6 14 22 30 7 15 23 31. */
|
3912 |
|
|
|
3913 |
|
|
void
|
3914 |
|
|
vect_permute_store_chain (VEC(tree,heap) *dr_chain,
|
3915 |
|
|
unsigned int length,
|
3916 |
|
|
gimple stmt,
|
3917 |
|
|
gimple_stmt_iterator *gsi,
|
3918 |
|
|
VEC(tree,heap) **result_chain)
|
3919 |
|
|
{
|
3920 |
|
|
tree perm_dest, vect1, vect2, high, low;
|
3921 |
|
|
gimple perm_stmt;
|
3922 |
|
|
tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
|
3923 |
|
|
tree perm_mask_low, perm_mask_high;
|
3924 |
|
|
unsigned int i, n;
|
3925 |
|
|
unsigned int j, nelt = TYPE_VECTOR_SUBPARTS (vectype);
|
3926 |
|
|
unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
|
3927 |
|
|
|
3928 |
|
|
*result_chain = VEC_copy (tree, heap, dr_chain);
|
3929 |
|
|
|
3930 |
|
|
for (i = 0, n = nelt / 2; i < n; i++)
|
3931 |
|
|
{
|
3932 |
|
|
sel[i * 2] = i;
|
3933 |
|
|
sel[i * 2 + 1] = i + nelt;
|
3934 |
|
|
}
|
3935 |
|
|
perm_mask_high = vect_gen_perm_mask (vectype, sel);
|
3936 |
|
|
gcc_assert (perm_mask_high != NULL);
|
3937 |
|
|
|
3938 |
|
|
for (i = 0; i < nelt; i++)
|
3939 |
|
|
sel[i] += nelt / 2;
|
3940 |
|
|
perm_mask_low = vect_gen_perm_mask (vectype, sel);
|
3941 |
|
|
gcc_assert (perm_mask_low != NULL);
|
3942 |
|
|
|
3943 |
|
|
for (i = 0, n = exact_log2 (length); i < n; i++)
|
3944 |
|
|
{
|
3945 |
|
|
for (j = 0; j < length/2; j++)
|
3946 |
|
|
{
|
3947 |
|
|
vect1 = VEC_index (tree, dr_chain, j);
|
3948 |
|
|
vect2 = VEC_index (tree, dr_chain, j+length/2);
|
3949 |
|
|
|
3950 |
|
|
/* Create interleaving stmt:
|
3951 |
|
|
high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1, ...}> */
|
3952 |
|
|
perm_dest = create_tmp_var (vectype, "vect_inter_high");
|
3953 |
|
|
DECL_GIMPLE_REG_P (perm_dest) = 1;
|
3954 |
|
|
add_referenced_var (perm_dest);
|
3955 |
|
|
high = make_ssa_name (perm_dest, NULL);
|
3956 |
|
|
perm_stmt
|
3957 |
|
|
= gimple_build_assign_with_ops3 (VEC_PERM_EXPR, high,
|
3958 |
|
|
vect1, vect2, perm_mask_high);
|
3959 |
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
3960 |
|
|
VEC_replace (tree, *result_chain, 2*j, high);
|
3961 |
|
|
|
3962 |
|
|
/* Create interleaving stmt:
|
3963 |
|
|
low = VEC_PERM_EXPR <vect1, vect2, {nelt/2, nelt*3/2, nelt/2+1,
|
3964 |
|
|
nelt*3/2+1, ...}> */
|
3965 |
|
|
perm_dest = create_tmp_var (vectype, "vect_inter_low");
|
3966 |
|
|
DECL_GIMPLE_REG_P (perm_dest) = 1;
|
3967 |
|
|
add_referenced_var (perm_dest);
|
3968 |
|
|
low = make_ssa_name (perm_dest, NULL);
|
3969 |
|
|
perm_stmt
|
3970 |
|
|
= gimple_build_assign_with_ops3 (VEC_PERM_EXPR, low,
|
3971 |
|
|
vect1, vect2, perm_mask_low);
|
3972 |
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
3973 |
|
|
VEC_replace (tree, *result_chain, 2*j+1, low);
|
3974 |
|
|
}
|
3975 |
|
|
dr_chain = VEC_copy (tree, heap, *result_chain);
|
3976 |
|
|
}
|
3977 |
|
|
}
|
3978 |
|
|
|
3979 |
|
|
/* Function vect_setup_realignment
|
3980 |
|
|
|
3981 |
|
|
This function is called when vectorizing an unaligned load using
|
3982 |
|
|
the dr_explicit_realign[_optimized] scheme.
|
3983 |
|
|
This function generates the following code at the loop prolog:
|
3984 |
|
|
|
3985 |
|
|
p = initial_addr;
|
3986 |
|
|
x msq_init = *(floor(p)); # prolog load
|
3987 |
|
|
realignment_token = call target_builtin;
|
3988 |
|
|
loop:
|
3989 |
|
|
x msq = phi (msq_init, ---)
|
3990 |
|
|
|
3991 |
|
|
The stmts marked with x are generated only for the case of
|
3992 |
|
|
dr_explicit_realign_optimized.
|
3993 |
|
|
|
3994 |
|
|
The code above sets up a new (vector) pointer, pointing to the first
|
3995 |
|
|
location accessed by STMT, and a "floor-aligned" load using that pointer.
|
3996 |
|
|
It also generates code to compute the "realignment-token" (if the relevant
|
3997 |
|
|
target hook was defined), and creates a phi-node at the loop-header bb
|
3998 |
|
|
whose arguments are the result of the prolog-load (created by this
|
3999 |
|
|
function) and the result of a load that takes place in the loop (to be
|
4000 |
|
|
created by the caller to this function).
|
4001 |
|
|
|
4002 |
|
|
For the case of dr_explicit_realign_optimized:
|
4003 |
|
|
The caller to this function uses the phi-result (msq) to create the
|
4004 |
|
|
realignment code inside the loop, and sets up the missing phi argument,
|
4005 |
|
|
as follows:
|
4006 |
|
|
loop:
|
4007 |
|
|
msq = phi (msq_init, lsq)
|
4008 |
|
|
lsq = *(floor(p')); # load in loop
|
4009 |
|
|
result = realign_load (msq, lsq, realignment_token);
|
4010 |
|
|
|
4011 |
|
|
For the case of dr_explicit_realign:
|
4012 |
|
|
loop:
|
4013 |
|
|
msq = *(floor(p)); # load in loop
|
4014 |
|
|
p' = p + (VS-1);
|
4015 |
|
|
lsq = *(floor(p')); # load in loop
|
4016 |
|
|
result = realign_load (msq, lsq, realignment_token);
|
4017 |
|
|
|
4018 |
|
|
Input:
|
4019 |
|
|
STMT - (scalar) load stmt to be vectorized. This load accesses
|
4020 |
|
|
a memory location that may be unaligned.
|
4021 |
|
|
BSI - place where new code is to be inserted.
|
4022 |
|
|
ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
|
4023 |
|
|
is used.
|
4024 |
|
|
|
4025 |
|
|
Output:
|
4026 |
|
|
REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
|
4027 |
|
|
target hook, if defined.
|
4028 |
|
|
Return value - the result of the loop-header phi node. */
|
4029 |
|
|
|
4030 |
|
|
tree
|
4031 |
|
|
vect_setup_realignment (gimple stmt, gimple_stmt_iterator *gsi,
|
4032 |
|
|
tree *realignment_token,
|
4033 |
|
|
enum dr_alignment_support alignment_support_scheme,
|
4034 |
|
|
tree init_addr,
|
4035 |
|
|
struct loop **at_loop)
|
4036 |
|
|
{
|
4037 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
4038 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
4039 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
4040 |
|
|
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
|
4041 |
|
|
struct loop *loop = NULL;
|
4042 |
|
|
edge pe = NULL;
|
4043 |
|
|
tree scalar_dest = gimple_assign_lhs (stmt);
|
4044 |
|
|
tree vec_dest;
|
4045 |
|
|
gimple inc;
|
4046 |
|
|
tree ptr;
|
4047 |
|
|
tree data_ref;
|
4048 |
|
|
gimple new_stmt;
|
4049 |
|
|
basic_block new_bb;
|
4050 |
|
|
tree msq_init = NULL_TREE;
|
4051 |
|
|
tree new_temp;
|
4052 |
|
|
gimple phi_stmt;
|
4053 |
|
|
tree msq = NULL_TREE;
|
4054 |
|
|
gimple_seq stmts = NULL;
|
4055 |
|
|
bool inv_p;
|
4056 |
|
|
bool compute_in_loop = false;
|
4057 |
|
|
bool nested_in_vect_loop = false;
|
4058 |
|
|
struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
|
4059 |
|
|
struct loop *loop_for_initial_load = NULL;
|
4060 |
|
|
|
4061 |
|
|
if (loop_vinfo)
|
4062 |
|
|
{
|
4063 |
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
4064 |
|
|
nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
|
4065 |
|
|
}
|
4066 |
|
|
|
4067 |
|
|
gcc_assert (alignment_support_scheme == dr_explicit_realign
|
4068 |
|
|
|| alignment_support_scheme == dr_explicit_realign_optimized);
|
4069 |
|
|
|
4070 |
|
|
/* We need to generate three things:
|
4071 |
|
|
1. the misalignment computation
|
4072 |
|
|
2. the extra vector load (for the optimized realignment scheme).
|
4073 |
|
|
3. the phi node for the two vectors from which the realignment is
|
4074 |
|
|
done (for the optimized realignment scheme). */
|
4075 |
|
|
|
4076 |
|
|
/* 1. Determine where to generate the misalignment computation.
|
4077 |
|
|
|
4078 |
|
|
If INIT_ADDR is NULL_TREE, this indicates that the misalignment
|
4079 |
|
|
calculation will be generated by this function, outside the loop (in the
|
4080 |
|
|
preheader). Otherwise, INIT_ADDR had already been computed for us by the
|
4081 |
|
|
caller, inside the loop.
|
4082 |
|
|
|
4083 |
|
|
Background: If the misalignment remains fixed throughout the iterations of
|
4084 |
|
|
the loop, then both realignment schemes are applicable, and also the
|
4085 |
|
|
misalignment computation can be done outside LOOP. This is because we are
|
4086 |
|
|
vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
|
4087 |
|
|
are a multiple of VS (the Vector Size), and therefore the misalignment in
|
4088 |
|
|
different vectorized LOOP iterations is always the same.
|
4089 |
|
|
The problem arises only if the memory access is in an inner-loop nested
|
4090 |
|
|
inside LOOP, which is now being vectorized using outer-loop vectorization.
|
4091 |
|
|
This is the only case when the misalignment of the memory access may not
|
4092 |
|
|
remain fixed throughout the iterations of the inner-loop (as explained in
|
4093 |
|
|
detail in vect_supportable_dr_alignment). In this case, not only is the
|
4094 |
|
|
optimized realignment scheme not applicable, but also the misalignment
|
4095 |
|
|
computation (and generation of the realignment token that is passed to
|
4096 |
|
|
REALIGN_LOAD) have to be done inside the loop.
|
4097 |
|
|
|
4098 |
|
|
In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
|
4099 |
|
|
or not, which in turn determines if the misalignment is computed inside
|
4100 |
|
|
the inner-loop, or outside LOOP. */
|
4101 |
|
|
|
4102 |
|
|
if (init_addr != NULL_TREE || !loop_vinfo)
|
4103 |
|
|
{
|
4104 |
|
|
compute_in_loop = true;
|
4105 |
|
|
gcc_assert (alignment_support_scheme == dr_explicit_realign);
|
4106 |
|
|
}
|
4107 |
|
|
|
4108 |
|
|
|
4109 |
|
|
/* 2. Determine where to generate the extra vector load.
|
4110 |
|
|
|
4111 |
|
|
For the optimized realignment scheme, instead of generating two vector
|
4112 |
|
|
loads in each iteration, we generate a single extra vector load in the
|
4113 |
|
|
preheader of the loop, and in each iteration reuse the result of the
|
4114 |
|
|
vector load from the previous iteration. In case the memory access is in
|
4115 |
|
|
an inner-loop nested inside LOOP, which is now being vectorized using
|
4116 |
|
|
outer-loop vectorization, we need to determine whether this initial vector
|
4117 |
|
|
load should be generated at the preheader of the inner-loop, or can be
|
4118 |
|
|
generated at the preheader of LOOP. If the memory access has no evolution
|
4119 |
|
|
in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
|
4120 |
|
|
to be generated inside LOOP (in the preheader of the inner-loop). */
|
4121 |
|
|
|
4122 |
|
|
if (nested_in_vect_loop)
|
4123 |
|
|
{
|
4124 |
|
|
tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
|
4125 |
|
|
bool invariant_in_outerloop =
|
4126 |
|
|
(tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
|
4127 |
|
|
loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
|
4128 |
|
|
}
|
4129 |
|
|
else
|
4130 |
|
|
loop_for_initial_load = loop;
|
4131 |
|
|
if (at_loop)
|
4132 |
|
|
*at_loop = loop_for_initial_load;
|
4133 |
|
|
|
4134 |
|
|
if (loop_for_initial_load)
|
4135 |
|
|
pe = loop_preheader_edge (loop_for_initial_load);
|
4136 |
|
|
|
4137 |
|
|
/* 3. For the case of the optimized realignment, create the first vector
|
4138 |
|
|
load at the loop preheader. */
|
4139 |
|
|
|
4140 |
|
|
if (alignment_support_scheme == dr_explicit_realign_optimized)
|
4141 |
|
|
{
|
4142 |
|
|
/* Create msq_init = *(floor(p1)) in the loop preheader */
|
4143 |
|
|
|
4144 |
|
|
gcc_assert (!compute_in_loop);
|
4145 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
4146 |
|
|
ptr = vect_create_data_ref_ptr (stmt, vectype, loop_for_initial_load,
|
4147 |
|
|
NULL_TREE, &init_addr, NULL, &inc,
|
4148 |
|
|
true, &inv_p);
|
4149 |
|
|
new_stmt = gimple_build_assign_with_ops
|
4150 |
|
|
(BIT_AND_EXPR, NULL_TREE, ptr,
|
4151 |
|
|
build_int_cst (TREE_TYPE (ptr),
|
4152 |
|
|
-(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
|
4153 |
|
|
new_temp = make_ssa_name (SSA_NAME_VAR (ptr), new_stmt);
|
4154 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
4155 |
|
|
new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
|
4156 |
|
|
gcc_assert (!new_bb);
|
4157 |
|
|
data_ref
|
4158 |
|
|
= build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp,
|
4159 |
|
|
build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0));
|
4160 |
|
|
new_stmt = gimple_build_assign (vec_dest, data_ref);
|
4161 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
4162 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
4163 |
|
|
mark_symbols_for_renaming (new_stmt);
|
4164 |
|
|
if (pe)
|
4165 |
|
|
{
|
4166 |
|
|
new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
|
4167 |
|
|
gcc_assert (!new_bb);
|
4168 |
|
|
}
|
4169 |
|
|
else
|
4170 |
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
4171 |
|
|
|
4172 |
|
|
msq_init = gimple_assign_lhs (new_stmt);
|
4173 |
|
|
}
|
4174 |
|
|
|
4175 |
|
|
/* 4. Create realignment token using a target builtin, if available.
|
4176 |
|
|
It is done either inside the containing loop, or before LOOP (as
|
4177 |
|
|
determined above). */
|
4178 |
|
|
|
4179 |
|
|
if (targetm.vectorize.builtin_mask_for_load)
|
4180 |
|
|
{
|
4181 |
|
|
tree builtin_decl;
|
4182 |
|
|
|
4183 |
|
|
/* Compute INIT_ADDR - the initial addressed accessed by this memref. */
|
4184 |
|
|
if (!init_addr)
|
4185 |
|
|
{
|
4186 |
|
|
/* Generate the INIT_ADDR computation outside LOOP. */
|
4187 |
|
|
init_addr = vect_create_addr_base_for_vector_ref (stmt, &stmts,
|
4188 |
|
|
NULL_TREE, loop);
|
4189 |
|
|
if (loop)
|
4190 |
|
|
{
|
4191 |
|
|
pe = loop_preheader_edge (loop);
|
4192 |
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
|
4193 |
|
|
gcc_assert (!new_bb);
|
4194 |
|
|
}
|
4195 |
|
|
else
|
4196 |
|
|
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
|
4197 |
|
|
}
|
4198 |
|
|
|
4199 |
|
|
builtin_decl = targetm.vectorize.builtin_mask_for_load ();
|
4200 |
|
|
new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
|
4201 |
|
|
vec_dest =
|
4202 |
|
|
vect_create_destination_var (scalar_dest,
|
4203 |
|
|
gimple_call_return_type (new_stmt));
|
4204 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
4205 |
|
|
gimple_call_set_lhs (new_stmt, new_temp);
|
4206 |
|
|
|
4207 |
|
|
if (compute_in_loop)
|
4208 |
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
4209 |
|
|
else
|
4210 |
|
|
{
|
4211 |
|
|
/* Generate the misalignment computation outside LOOP. */
|
4212 |
|
|
pe = loop_preheader_edge (loop);
|
4213 |
|
|
new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
|
4214 |
|
|
gcc_assert (!new_bb);
|
4215 |
|
|
}
|
4216 |
|
|
|
4217 |
|
|
*realignment_token = gimple_call_lhs (new_stmt);
|
4218 |
|
|
|
4219 |
|
|
/* The result of the CALL_EXPR to this builtin is determined from
|
4220 |
|
|
the value of the parameter and no global variables are touched
|
4221 |
|
|
which makes the builtin a "const" function. Requiring the
|
4222 |
|
|
builtin to have the "const" attribute makes it unnecessary
|
4223 |
|
|
to call mark_call_clobbered. */
|
4224 |
|
|
gcc_assert (TREE_READONLY (builtin_decl));
|
4225 |
|
|
}
|
4226 |
|
|
|
4227 |
|
|
if (alignment_support_scheme == dr_explicit_realign)
|
4228 |
|
|
return msq;
|
4229 |
|
|
|
4230 |
|
|
gcc_assert (!compute_in_loop);
|
4231 |
|
|
gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
|
4232 |
|
|
|
4233 |
|
|
|
4234 |
|
|
/* 5. Create msq = phi <msq_init, lsq> in loop */
|
4235 |
|
|
|
4236 |
|
|
pe = loop_preheader_edge (containing_loop);
|
4237 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
4238 |
|
|
msq = make_ssa_name (vec_dest, NULL);
|
4239 |
|
|
phi_stmt = create_phi_node (msq, containing_loop->header);
|
4240 |
|
|
SSA_NAME_DEF_STMT (msq) = phi_stmt;
|
4241 |
|
|
add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
|
4242 |
|
|
|
4243 |
|
|
return msq;
|
4244 |
|
|
}
|
4245 |
|
|
|
4246 |
|
|
|
4247 |
|
|
/* Function vect_strided_load_supported.
|
4248 |
|
|
|
4249 |
|
|
Returns TRUE if even and odd permutations are supported,
|
4250 |
|
|
and FALSE otherwise. */
|
4251 |
|
|
|
4252 |
|
|
bool
|
4253 |
|
|
vect_strided_load_supported (tree vectype, unsigned HOST_WIDE_INT count)
|
4254 |
|
|
{
|
4255 |
|
|
enum machine_mode mode = TYPE_MODE (vectype);
|
4256 |
|
|
|
4257 |
|
|
/* vect_permute_load_chain requires the group size to be a power of two. */
|
4258 |
|
|
if (exact_log2 (count) == -1)
|
4259 |
|
|
{
|
4260 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4261 |
|
|
fprintf (vect_dump, "the size of the group of strided accesses"
|
4262 |
|
|
" is not a power of 2");
|
4263 |
|
|
return false;
|
4264 |
|
|
}
|
4265 |
|
|
|
4266 |
|
|
/* Check that the permutation is supported. */
|
4267 |
|
|
if (VECTOR_MODE_P (mode))
|
4268 |
|
|
{
|
4269 |
|
|
unsigned int i, nelt = GET_MODE_NUNITS (mode);
|
4270 |
|
|
unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
|
4271 |
|
|
|
4272 |
|
|
for (i = 0; i < nelt; i++)
|
4273 |
|
|
sel[i] = i * 2;
|
4274 |
|
|
if (can_vec_perm_p (mode, false, sel))
|
4275 |
|
|
{
|
4276 |
|
|
for (i = 0; i < nelt; i++)
|
4277 |
|
|
sel[i] = i * 2 + 1;
|
4278 |
|
|
if (can_vec_perm_p (mode, false, sel))
|
4279 |
|
|
return true;
|
4280 |
|
|
}
|
4281 |
|
|
}
|
4282 |
|
|
|
4283 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4284 |
|
|
fprintf (vect_dump, "extract even/odd not supported by target");
|
4285 |
|
|
return false;
|
4286 |
|
|
}
|
4287 |
|
|
|
4288 |
|
|
/* Return TRUE if vec_load_lanes is available for COUNT vectors of
|
4289 |
|
|
type VECTYPE. */
|
4290 |
|
|
|
4291 |
|
|
bool
|
4292 |
|
|
vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
|
4293 |
|
|
{
|
4294 |
|
|
return vect_lanes_optab_supported_p ("vec_load_lanes",
|
4295 |
|
|
vec_load_lanes_optab,
|
4296 |
|
|
vectype, count);
|
4297 |
|
|
}
|
4298 |
|
|
|
4299 |
|
|
/* Function vect_permute_load_chain.
|
4300 |
|
|
|
4301 |
|
|
Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
|
4302 |
|
|
a power of 2, generate extract_even/odd stmts to reorder the input data
|
4303 |
|
|
correctly. Return the final references for loads in RESULT_CHAIN.
|
4304 |
|
|
|
4305 |
|
|
E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
|
4306 |
|
|
The input is 4 vectors each containing 8 elements. We assign a number to each
|
4307 |
|
|
element, the input sequence is:
|
4308 |
|
|
|
4309 |
|
|
1st vec: 0 1 2 3 4 5 6 7
|
4310 |
|
|
2nd vec: 8 9 10 11 12 13 14 15
|
4311 |
|
|
3rd vec: 16 17 18 19 20 21 22 23
|
4312 |
|
|
4th vec: 24 25 26 27 28 29 30 31
|
4313 |
|
|
|
4314 |
|
|
The output sequence should be:
|
4315 |
|
|
|
4316 |
|
|
1st vec: 0 4 8 12 16 20 24 28
|
4317 |
|
|
2nd vec: 1 5 9 13 17 21 25 29
|
4318 |
|
|
3rd vec: 2 6 10 14 18 22 26 30
|
4319 |
|
|
4th vec: 3 7 11 15 19 23 27 31
|
4320 |
|
|
|
4321 |
|
|
i.e., the first output vector should contain the first elements of each
|
4322 |
|
|
interleaving group, etc.
|
4323 |
|
|
|
4324 |
|
|
We use extract_even/odd instructions to create such output. The input of
|
4325 |
|
|
each extract_even/odd operation is two vectors
|
4326 |
|
|
1st vec 2nd vec
|
4327 |
|
|
|
4328 |
|
|
|
4329 |
|
|
and the output is the vector of extracted even/odd elements. The output of
|
4330 |
|
|
extract_even will be: 0 2 4 6
|
4331 |
|
|
and of extract_odd: 1 3 5 7
|
4332 |
|
|
|
4333 |
|
|
|
4334 |
|
|
The permutation is done in log LENGTH stages. In each stage extract_even
|
4335 |
|
|
and extract_odd stmts are created for each pair of vectors in DR_CHAIN in
|
4336 |
|
|
their order. In our example,
|
4337 |
|
|
|
4338 |
|
|
E1: extract_even (1st vec, 2nd vec)
|
4339 |
|
|
E2: extract_odd (1st vec, 2nd vec)
|
4340 |
|
|
E3: extract_even (3rd vec, 4th vec)
|
4341 |
|
|
E4: extract_odd (3rd vec, 4th vec)
|
4342 |
|
|
|
4343 |
|
|
The output for the first stage will be:
|
4344 |
|
|
|
4345 |
|
|
E1: 0 2 4 6 8 10 12 14
|
4346 |
|
|
E2: 1 3 5 7 9 11 13 15
|
4347 |
|
|
E3: 16 18 20 22 24 26 28 30
|
4348 |
|
|
E4: 17 19 21 23 25 27 29 31
|
4349 |
|
|
|
4350 |
|
|
In order to proceed and create the correct sequence for the next stage (or
|
4351 |
|
|
for the correct output, if the second stage is the last one, as in our
|
4352 |
|
|
example), we first put the output of extract_even operation and then the
|
4353 |
|
|
output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
|
4354 |
|
|
The input for the second stage is:
|
4355 |
|
|
|
4356 |
|
|
1st vec (E1): 0 2 4 6 8 10 12 14
|
4357 |
|
|
2nd vec (E3): 16 18 20 22 24 26 28 30
|
4358 |
|
|
3rd vec (E2): 1 3 5 7 9 11 13 15
|
4359 |
|
|
4th vec (E4): 17 19 21 23 25 27 29 31
|
4360 |
|
|
|
4361 |
|
|
The output of the second stage:
|
4362 |
|
|
|
4363 |
|
|
E1: 0 4 8 12 16 20 24 28
|
4364 |
|
|
E2: 2 6 10 14 18 22 26 30
|
4365 |
|
|
E3: 1 5 9 13 17 21 25 29
|
4366 |
|
|
E4: 3 7 11 15 19 23 27 31
|
4367 |
|
|
|
4368 |
|
|
And RESULT_CHAIN after reordering:
|
4369 |
|
|
|
4370 |
|
|
1st vec (E1): 0 4 8 12 16 20 24 28
|
4371 |
|
|
2nd vec (E3): 1 5 9 13 17 21 25 29
|
4372 |
|
|
3rd vec (E2): 2 6 10 14 18 22 26 30
|
4373 |
|
|
4th vec (E4): 3 7 11 15 19 23 27 31. */
|
4374 |
|
|
|
4375 |
|
|
static void
|
4376 |
|
|
vect_permute_load_chain (VEC(tree,heap) *dr_chain,
|
4377 |
|
|
unsigned int length,
|
4378 |
|
|
gimple stmt,
|
4379 |
|
|
gimple_stmt_iterator *gsi,
|
4380 |
|
|
VEC(tree,heap) **result_chain)
|
4381 |
|
|
{
|
4382 |
|
|
tree perm_dest, data_ref, first_vect, second_vect;
|
4383 |
|
|
tree perm_mask_even, perm_mask_odd;
|
4384 |
|
|
gimple perm_stmt;
|
4385 |
|
|
tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
|
4386 |
|
|
unsigned int i, j, log_length = exact_log2 (length);
|
4387 |
|
|
unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
|
4388 |
|
|
unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
|
4389 |
|
|
|
4390 |
|
|
*result_chain = VEC_copy (tree, heap, dr_chain);
|
4391 |
|
|
|
4392 |
|
|
for (i = 0; i < nelt; ++i)
|
4393 |
|
|
sel[i] = i * 2;
|
4394 |
|
|
perm_mask_even = vect_gen_perm_mask (vectype, sel);
|
4395 |
|
|
gcc_assert (perm_mask_even != NULL);
|
4396 |
|
|
|
4397 |
|
|
for (i = 0; i < nelt; ++i)
|
4398 |
|
|
sel[i] = i * 2 + 1;
|
4399 |
|
|
perm_mask_odd = vect_gen_perm_mask (vectype, sel);
|
4400 |
|
|
gcc_assert (perm_mask_odd != NULL);
|
4401 |
|
|
|
4402 |
|
|
for (i = 0; i < log_length; i++)
|
4403 |
|
|
{
|
4404 |
|
|
for (j = 0; j < length; j += 2)
|
4405 |
|
|
{
|
4406 |
|
|
first_vect = VEC_index (tree, dr_chain, j);
|
4407 |
|
|
second_vect = VEC_index (tree, dr_chain, j+1);
|
4408 |
|
|
|
4409 |
|
|
/* data_ref = permute_even (first_data_ref, second_data_ref); */
|
4410 |
|
|
perm_dest = create_tmp_var (vectype, "vect_perm_even");
|
4411 |
|
|
DECL_GIMPLE_REG_P (perm_dest) = 1;
|
4412 |
|
|
add_referenced_var (perm_dest);
|
4413 |
|
|
|
4414 |
|
|
perm_stmt = gimple_build_assign_with_ops3 (VEC_PERM_EXPR, perm_dest,
|
4415 |
|
|
first_vect, second_vect,
|
4416 |
|
|
perm_mask_even);
|
4417 |
|
|
|
4418 |
|
|
data_ref = make_ssa_name (perm_dest, perm_stmt);
|
4419 |
|
|
gimple_assign_set_lhs (perm_stmt, data_ref);
|
4420 |
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
4421 |
|
|
mark_symbols_for_renaming (perm_stmt);
|
4422 |
|
|
|
4423 |
|
|
VEC_replace (tree, *result_chain, j/2, data_ref);
|
4424 |
|
|
|
4425 |
|
|
/* data_ref = permute_odd (first_data_ref, second_data_ref); */
|
4426 |
|
|
perm_dest = create_tmp_var (vectype, "vect_perm_odd");
|
4427 |
|
|
DECL_GIMPLE_REG_P (perm_dest) = 1;
|
4428 |
|
|
add_referenced_var (perm_dest);
|
4429 |
|
|
|
4430 |
|
|
perm_stmt = gimple_build_assign_with_ops3 (VEC_PERM_EXPR, perm_dest,
|
4431 |
|
|
first_vect, second_vect,
|
4432 |
|
|
perm_mask_odd);
|
4433 |
|
|
|
4434 |
|
|
data_ref = make_ssa_name (perm_dest, perm_stmt);
|
4435 |
|
|
gimple_assign_set_lhs (perm_stmt, data_ref);
|
4436 |
|
|
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
|
4437 |
|
|
mark_symbols_for_renaming (perm_stmt);
|
4438 |
|
|
|
4439 |
|
|
VEC_replace (tree, *result_chain, j/2+length/2, data_ref);
|
4440 |
|
|
}
|
4441 |
|
|
dr_chain = VEC_copy (tree, heap, *result_chain);
|
4442 |
|
|
}
|
4443 |
|
|
}
|
4444 |
|
|
|
4445 |
|
|
|
4446 |
|
|
/* Function vect_transform_strided_load.
|
4447 |
|
|
|
4448 |
|
|
Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
|
4449 |
|
|
to perform their permutation and ascribe the result vectorized statements to
|
4450 |
|
|
the scalar statements.
|
4451 |
|
|
*/
|
4452 |
|
|
|
4453 |
|
|
void
|
4454 |
|
|
vect_transform_strided_load (gimple stmt, VEC(tree,heap) *dr_chain, int size,
|
4455 |
|
|
gimple_stmt_iterator *gsi)
|
4456 |
|
|
{
|
4457 |
|
|
VEC(tree,heap) *result_chain = NULL;
|
4458 |
|
|
|
4459 |
|
|
/* DR_CHAIN contains input data-refs that are a part of the interleaving.
|
4460 |
|
|
RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
|
4461 |
|
|
vectors, that are ready for vector computation. */
|
4462 |
|
|
result_chain = VEC_alloc (tree, heap, size);
|
4463 |
|
|
vect_permute_load_chain (dr_chain, size, stmt, gsi, &result_chain);
|
4464 |
|
|
vect_record_strided_load_vectors (stmt, result_chain);
|
4465 |
|
|
VEC_free (tree, heap, result_chain);
|
4466 |
|
|
}
|
4467 |
|
|
|
4468 |
|
|
/* RESULT_CHAIN contains the output of a group of strided loads that were
|
4469 |
|
|
generated as part of the vectorization of STMT. Assign the statement
|
4470 |
|
|
for each vector to the associated scalar statement. */
|
4471 |
|
|
|
4472 |
|
|
void
|
4473 |
|
|
vect_record_strided_load_vectors (gimple stmt, VEC(tree,heap) *result_chain)
|
4474 |
|
|
{
|
4475 |
|
|
gimple first_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt));
|
4476 |
|
|
gimple next_stmt, new_stmt;
|
4477 |
|
|
unsigned int i, gap_count;
|
4478 |
|
|
tree tmp_data_ref;
|
4479 |
|
|
|
4480 |
|
|
/* Put a permuted data-ref in the VECTORIZED_STMT field.
|
4481 |
|
|
Since we scan the chain starting from it's first node, their order
|
4482 |
|
|
corresponds the order of data-refs in RESULT_CHAIN. */
|
4483 |
|
|
next_stmt = first_stmt;
|
4484 |
|
|
gap_count = 1;
|
4485 |
|
|
FOR_EACH_VEC_ELT (tree, result_chain, i, tmp_data_ref)
|
4486 |
|
|
{
|
4487 |
|
|
if (!next_stmt)
|
4488 |
|
|
break;
|
4489 |
|
|
|
4490 |
|
|
/* Skip the gaps. Loads created for the gaps will be removed by dead
|
4491 |
|
|
code elimination pass later. No need to check for the first stmt in
|
4492 |
|
|
the group, since it always exists.
|
4493 |
|
|
GROUP_GAP is the number of steps in elements from the previous
|
4494 |
|
|
access (if there is no gap GROUP_GAP is 1). We skip loads that
|
4495 |
|
|
correspond to the gaps. */
|
4496 |
|
|
if (next_stmt != first_stmt
|
4497 |
|
|
&& gap_count < GROUP_GAP (vinfo_for_stmt (next_stmt)))
|
4498 |
|
|
{
|
4499 |
|
|
gap_count++;
|
4500 |
|
|
continue;
|
4501 |
|
|
}
|
4502 |
|
|
|
4503 |
|
|
while (next_stmt)
|
4504 |
|
|
{
|
4505 |
|
|
new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
|
4506 |
|
|
/* We assume that if VEC_STMT is not NULL, this is a case of multiple
|
4507 |
|
|
copies, and we put the new vector statement in the first available
|
4508 |
|
|
RELATED_STMT. */
|
4509 |
|
|
if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)))
|
4510 |
|
|
STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)) = new_stmt;
|
4511 |
|
|
else
|
4512 |
|
|
{
|
4513 |
|
|
if (!GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
|
4514 |
|
|
{
|
4515 |
|
|
gimple prev_stmt =
|
4516 |
|
|
STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt));
|
4517 |
|
|
gimple rel_stmt =
|
4518 |
|
|
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt));
|
4519 |
|
|
while (rel_stmt)
|
4520 |
|
|
{
|
4521 |
|
|
prev_stmt = rel_stmt;
|
4522 |
|
|
rel_stmt =
|
4523 |
|
|
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt));
|
4524 |
|
|
}
|
4525 |
|
|
|
4526 |
|
|
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)) =
|
4527 |
|
|
new_stmt;
|
4528 |
|
|
}
|
4529 |
|
|
}
|
4530 |
|
|
|
4531 |
|
|
next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
|
4532 |
|
|
gap_count = 1;
|
4533 |
|
|
/* If NEXT_STMT accesses the same DR as the previous statement,
|
4534 |
|
|
put the same TMP_DATA_REF as its vectorized statement; otherwise
|
4535 |
|
|
get the next data-ref from RESULT_CHAIN. */
|
4536 |
|
|
if (!next_stmt || !GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
|
4537 |
|
|
break;
|
4538 |
|
|
}
|
4539 |
|
|
}
|
4540 |
|
|
}
|
4541 |
|
|
|
4542 |
|
|
/* Function vect_force_dr_alignment_p.
|
4543 |
|
|
|
4544 |
|
|
Returns whether the alignment of a DECL can be forced to be aligned
|
4545 |
|
|
on ALIGNMENT bit boundary. */
|
4546 |
|
|
|
4547 |
|
|
bool
|
4548 |
|
|
vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
|
4549 |
|
|
{
|
4550 |
|
|
if (TREE_CODE (decl) != VAR_DECL)
|
4551 |
|
|
return false;
|
4552 |
|
|
|
4553 |
|
|
if (DECL_EXTERNAL (decl))
|
4554 |
|
|
return false;
|
4555 |
|
|
|
4556 |
|
|
if (TREE_ASM_WRITTEN (decl))
|
4557 |
|
|
return false;
|
4558 |
|
|
|
4559 |
|
|
if (TREE_STATIC (decl))
|
4560 |
|
|
return (alignment <= MAX_OFILE_ALIGNMENT);
|
4561 |
|
|
else
|
4562 |
|
|
return (alignment <= MAX_STACK_ALIGNMENT);
|
4563 |
|
|
}
|
4564 |
|
|
|
4565 |
|
|
|
4566 |
|
|
/* Return whether the data reference DR is supported with respect to its
|
4567 |
|
|
alignment.
|
4568 |
|
|
If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even
|
4569 |
|
|
it is aligned, i.e., check if it is possible to vectorize it with different
|
4570 |
|
|
alignment. */
|
4571 |
|
|
|
4572 |
|
|
enum dr_alignment_support
|
4573 |
|
|
vect_supportable_dr_alignment (struct data_reference *dr,
|
4574 |
|
|
bool check_aligned_accesses)
|
4575 |
|
|
{
|
4576 |
|
|
gimple stmt = DR_STMT (dr);
|
4577 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
4578 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
4579 |
|
|
enum machine_mode mode = TYPE_MODE (vectype);
|
4580 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
4581 |
|
|
struct loop *vect_loop = NULL;
|
4582 |
|
|
bool nested_in_vect_loop = false;
|
4583 |
|
|
|
4584 |
|
|
if (aligned_access_p (dr) && !check_aligned_accesses)
|
4585 |
|
|
return dr_aligned;
|
4586 |
|
|
|
4587 |
|
|
if (loop_vinfo)
|
4588 |
|
|
{
|
4589 |
|
|
vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
|
4590 |
|
|
nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
|
4591 |
|
|
}
|
4592 |
|
|
|
4593 |
|
|
/* Possibly unaligned access. */
|
4594 |
|
|
|
4595 |
|
|
/* We can choose between using the implicit realignment scheme (generating
|
4596 |
|
|
a misaligned_move stmt) and the explicit realignment scheme (generating
|
4597 |
|
|
aligned loads with a REALIGN_LOAD). There are two variants to the
|
4598 |
|
|
explicit realignment scheme: optimized, and unoptimized.
|
4599 |
|
|
We can optimize the realignment only if the step between consecutive
|
4600 |
|
|
vector loads is equal to the vector size. Since the vector memory
|
4601 |
|
|
accesses advance in steps of VS (Vector Size) in the vectorized loop, it
|
4602 |
|
|
is guaranteed that the misalignment amount remains the same throughout the
|
4603 |
|
|
execution of the vectorized loop. Therefore, we can create the
|
4604 |
|
|
"realignment token" (the permutation mask that is passed to REALIGN_LOAD)
|
4605 |
|
|
at the loop preheader.
|
4606 |
|
|
|
4607 |
|
|
However, in the case of outer-loop vectorization, when vectorizing a
|
4608 |
|
|
memory access in the inner-loop nested within the LOOP that is now being
|
4609 |
|
|
vectorized, while it is guaranteed that the misalignment of the
|
4610 |
|
|
vectorized memory access will remain the same in different outer-loop
|
4611 |
|
|
iterations, it is *not* guaranteed that is will remain the same throughout
|
4612 |
|
|
the execution of the inner-loop. This is because the inner-loop advances
|
4613 |
|
|
with the original scalar step (and not in steps of VS). If the inner-loop
|
4614 |
|
|
step happens to be a multiple of VS, then the misalignment remains fixed
|
4615 |
|
|
and we can use the optimized realignment scheme. For example:
|
4616 |
|
|
|
4617 |
|
|
for (i=0; i<N; i++)
|
4618 |
|
|
for (j=0; j<M; j++)
|
4619 |
|
|
s += a[i+j];
|
4620 |
|
|
|
4621 |
|
|
When vectorizing the i-loop in the above example, the step between
|
4622 |
|
|
consecutive vector loads is 1, and so the misalignment does not remain
|
4623 |
|
|
fixed across the execution of the inner-loop, and the realignment cannot
|
4624 |
|
|
be optimized (as illustrated in the following pseudo vectorized loop):
|
4625 |
|
|
|
4626 |
|
|
for (i=0; i<N; i+=4)
|
4627 |
|
|
for (j=0; j<M; j++){
|
4628 |
|
|
vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
|
4629 |
|
|
// when j is {0,1,2,3,4,5,6,7,...} respectively.
|
4630 |
|
|
// (assuming that we start from an aligned address).
|
4631 |
|
|
}
|
4632 |
|
|
|
4633 |
|
|
We therefore have to use the unoptimized realignment scheme:
|
4634 |
|
|
|
4635 |
|
|
for (i=0; i<N; i+=4)
|
4636 |
|
|
for (j=k; j<M; j+=4)
|
4637 |
|
|
vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
|
4638 |
|
|
// that the misalignment of the initial address is
|
4639 |
|
|
// 0).
|
4640 |
|
|
|
4641 |
|
|
The loop can then be vectorized as follows:
|
4642 |
|
|
|
4643 |
|
|
for (k=0; k<4; k++){
|
4644 |
|
|
rt = get_realignment_token (&vp[k]);
|
4645 |
|
|
for (i=0; i<N; i+=4){
|
4646 |
|
|
v1 = vp[i+k];
|
4647 |
|
|
for (j=k; j<M; j+=4){
|
4648 |
|
|
v2 = vp[i+j+VS-1];
|
4649 |
|
|
va = REALIGN_LOAD <v1,v2,rt>;
|
4650 |
|
|
vs += va;
|
4651 |
|
|
v1 = v2;
|
4652 |
|
|
}
|
4653 |
|
|
}
|
4654 |
|
|
} */
|
4655 |
|
|
|
4656 |
|
|
if (DR_IS_READ (dr))
|
4657 |
|
|
{
|
4658 |
|
|
bool is_packed = false;
|
4659 |
|
|
tree type = (TREE_TYPE (DR_REF (dr)));
|
4660 |
|
|
|
4661 |
|
|
if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing
|
4662 |
|
|
&& (!targetm.vectorize.builtin_mask_for_load
|
4663 |
|
|
|| targetm.vectorize.builtin_mask_for_load ()))
|
4664 |
|
|
{
|
4665 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
4666 |
|
|
if ((nested_in_vect_loop
|
4667 |
|
|
&& (TREE_INT_CST_LOW (DR_STEP (dr))
|
4668 |
|
|
!= GET_MODE_SIZE (TYPE_MODE (vectype))))
|
4669 |
|
|
|| !loop_vinfo)
|
4670 |
|
|
return dr_explicit_realign;
|
4671 |
|
|
else
|
4672 |
|
|
return dr_explicit_realign_optimized;
|
4673 |
|
|
}
|
4674 |
|
|
if (!known_alignment_for_access_p (dr))
|
4675 |
|
|
{
|
4676 |
|
|
tree ba = DR_BASE_OBJECT (dr);
|
4677 |
|
|
|
4678 |
|
|
if (ba)
|
4679 |
|
|
is_packed = contains_packed_reference (ba);
|
4680 |
|
|
}
|
4681 |
|
|
|
4682 |
|
|
if (targetm.vectorize.
|
4683 |
|
|
support_vector_misalignment (mode, type,
|
4684 |
|
|
DR_MISALIGNMENT (dr), is_packed))
|
4685 |
|
|
/* Can't software pipeline the loads, but can at least do them. */
|
4686 |
|
|
return dr_unaligned_supported;
|
4687 |
|
|
}
|
4688 |
|
|
else
|
4689 |
|
|
{
|
4690 |
|
|
bool is_packed = false;
|
4691 |
|
|
tree type = (TREE_TYPE (DR_REF (dr)));
|
4692 |
|
|
|
4693 |
|
|
if (!known_alignment_for_access_p (dr))
|
4694 |
|
|
{
|
4695 |
|
|
tree ba = DR_BASE_OBJECT (dr);
|
4696 |
|
|
|
4697 |
|
|
if (ba)
|
4698 |
|
|
is_packed = contains_packed_reference (ba);
|
4699 |
|
|
}
|
4700 |
|
|
|
4701 |
|
|
if (targetm.vectorize.
|
4702 |
|
|
support_vector_misalignment (mode, type,
|
4703 |
|
|
DR_MISALIGNMENT (dr), is_packed))
|
4704 |
|
|
return dr_unaligned_supported;
|
4705 |
|
|
}
|
4706 |
|
|
|
4707 |
|
|
/* Unsupported. */
|
4708 |
|
|
return dr_unaligned_unsupported;
|
4709 |
|
|
}
|