1 |
684 |
jeremybenn |
/* Lower vector operations to scalar operations.
|
2 |
|
|
Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
8 |
|
|
under the terms of the GNU General Public License as published by the
|
9 |
|
|
Free Software Foundation; either version 3, or (at your option) any
|
10 |
|
|
later version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
13 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
15 |
|
|
for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "config.h"
|
22 |
|
|
#include "system.h"
|
23 |
|
|
#include "coretypes.h"
|
24 |
|
|
#include "tree.h"
|
25 |
|
|
#include "tm.h"
|
26 |
|
|
#include "langhooks.h"
|
27 |
|
|
#include "tree-flow.h"
|
28 |
|
|
#include "gimple.h"
|
29 |
|
|
#include "tree-iterator.h"
|
30 |
|
|
#include "tree-pass.h"
|
31 |
|
|
#include "flags.h"
|
32 |
|
|
#include "ggc.h"
|
33 |
|
|
#include "diagnostic.h"
|
34 |
|
|
|
35 |
|
|
/* Need to include rtl.h, expr.h, etc. for optabs. */
|
36 |
|
|
#include "expr.h"
|
37 |
|
|
#include "optabs.h"
|
38 |
|
|
|
39 |
|
|
|
40 |
|
|
static void expand_vector_operations_1 (gimple_stmt_iterator *);
|
41 |
|
|
|
42 |
|
|
|
43 |
|
|
/* Build a constant of type TYPE, made of VALUE's bits replicated
|
44 |
|
|
every TYPE_SIZE (INNER_TYPE) bits to fit TYPE's precision. */
|
45 |
|
|
static tree
|
46 |
|
|
build_replicated_const (tree type, tree inner_type, HOST_WIDE_INT value)
|
47 |
|
|
{
|
48 |
|
|
int width = tree_low_cst (TYPE_SIZE (inner_type), 1);
|
49 |
|
|
int n = HOST_BITS_PER_WIDE_INT / width;
|
50 |
|
|
unsigned HOST_WIDE_INT low, high, mask;
|
51 |
|
|
tree ret;
|
52 |
|
|
|
53 |
|
|
gcc_assert (n);
|
54 |
|
|
|
55 |
|
|
if (width == HOST_BITS_PER_WIDE_INT)
|
56 |
|
|
low = value;
|
57 |
|
|
else
|
58 |
|
|
{
|
59 |
|
|
mask = ((HOST_WIDE_INT)1 << width) - 1;
|
60 |
|
|
low = (unsigned HOST_WIDE_INT) ~0 / mask * (value & mask);
|
61 |
|
|
}
|
62 |
|
|
|
63 |
|
|
if (TYPE_PRECISION (type) < HOST_BITS_PER_WIDE_INT)
|
64 |
|
|
low &= ((HOST_WIDE_INT)1 << TYPE_PRECISION (type)) - 1, high = 0;
|
65 |
|
|
else if (TYPE_PRECISION (type) == HOST_BITS_PER_WIDE_INT)
|
66 |
|
|
high = 0;
|
67 |
|
|
else if (TYPE_PRECISION (type) == 2 * HOST_BITS_PER_WIDE_INT)
|
68 |
|
|
high = low;
|
69 |
|
|
else
|
70 |
|
|
gcc_unreachable ();
|
71 |
|
|
|
72 |
|
|
ret = build_int_cst_wide (type, low, high);
|
73 |
|
|
return ret;
|
74 |
|
|
}
|
75 |
|
|
|
76 |
|
|
static GTY(()) tree vector_inner_type;
|
77 |
|
|
static GTY(()) tree vector_last_type;
|
78 |
|
|
static GTY(()) int vector_last_nunits;
|
79 |
|
|
|
80 |
|
|
/* Return a suitable vector types made of SUBPARTS units each of mode
|
81 |
|
|
"word_mode" (the global variable). */
|
82 |
|
|
static tree
|
83 |
|
|
build_word_mode_vector_type (int nunits)
|
84 |
|
|
{
|
85 |
|
|
if (!vector_inner_type)
|
86 |
|
|
vector_inner_type = lang_hooks.types.type_for_mode (word_mode, 1);
|
87 |
|
|
else if (vector_last_nunits == nunits)
|
88 |
|
|
{
|
89 |
|
|
gcc_assert (TREE_CODE (vector_last_type) == VECTOR_TYPE);
|
90 |
|
|
return vector_last_type;
|
91 |
|
|
}
|
92 |
|
|
|
93 |
|
|
/* We build a new type, but we canonicalize it nevertheless,
|
94 |
|
|
because it still saves some memory. */
|
95 |
|
|
vector_last_nunits = nunits;
|
96 |
|
|
vector_last_type = type_hash_canon (nunits,
|
97 |
|
|
build_vector_type (vector_inner_type,
|
98 |
|
|
nunits));
|
99 |
|
|
return vector_last_type;
|
100 |
|
|
}
|
101 |
|
|
|
102 |
|
|
typedef tree (*elem_op_func) (gimple_stmt_iterator *,
|
103 |
|
|
tree, tree, tree, tree, tree, enum tree_code);
|
104 |
|
|
|
105 |
|
|
static inline tree
|
106 |
|
|
tree_vec_extract (gimple_stmt_iterator *gsi, tree type,
|
107 |
|
|
tree t, tree bitsize, tree bitpos)
|
108 |
|
|
{
|
109 |
|
|
if (bitpos)
|
110 |
|
|
return gimplify_build3 (gsi, BIT_FIELD_REF, type, t, bitsize, bitpos);
|
111 |
|
|
else
|
112 |
|
|
return gimplify_build1 (gsi, VIEW_CONVERT_EXPR, type, t);
|
113 |
|
|
}
|
114 |
|
|
|
115 |
|
|
static tree
|
116 |
|
|
do_unop (gimple_stmt_iterator *gsi, tree inner_type, tree a,
|
117 |
|
|
tree b ATTRIBUTE_UNUSED, tree bitpos, tree bitsize,
|
118 |
|
|
enum tree_code code)
|
119 |
|
|
{
|
120 |
|
|
a = tree_vec_extract (gsi, inner_type, a, bitsize, bitpos);
|
121 |
|
|
return gimplify_build1 (gsi, code, inner_type, a);
|
122 |
|
|
}
|
123 |
|
|
|
124 |
|
|
static tree
|
125 |
|
|
do_binop (gimple_stmt_iterator *gsi, tree inner_type, tree a, tree b,
|
126 |
|
|
tree bitpos, tree bitsize, enum tree_code code)
|
127 |
|
|
{
|
128 |
|
|
if (TREE_CODE (TREE_TYPE (a)) == VECTOR_TYPE)
|
129 |
|
|
a = tree_vec_extract (gsi, inner_type, a, bitsize, bitpos);
|
130 |
|
|
if (TREE_CODE (TREE_TYPE (b)) == VECTOR_TYPE)
|
131 |
|
|
b = tree_vec_extract (gsi, inner_type, b, bitsize, bitpos);
|
132 |
|
|
return gimplify_build2 (gsi, code, inner_type, a, b);
|
133 |
|
|
}
|
134 |
|
|
|
135 |
|
|
/* Construct expression (A[BITPOS] code B[BITPOS]) ? -1 : 0
|
136 |
|
|
|
137 |
|
|
INNER_TYPE is the type of A and B elements
|
138 |
|
|
|
139 |
|
|
returned expression is of signed integer type with the
|
140 |
|
|
size equal to the size of INNER_TYPE. */
|
141 |
|
|
static tree
|
142 |
|
|
do_compare (gimple_stmt_iterator *gsi, tree inner_type, tree a, tree b,
|
143 |
|
|
tree bitpos, tree bitsize, enum tree_code code)
|
144 |
|
|
{
|
145 |
|
|
tree comp_type;
|
146 |
|
|
|
147 |
|
|
a = tree_vec_extract (gsi, inner_type, a, bitsize, bitpos);
|
148 |
|
|
b = tree_vec_extract (gsi, inner_type, b, bitsize, bitpos);
|
149 |
|
|
|
150 |
|
|
comp_type = build_nonstandard_integer_type
|
151 |
|
|
(GET_MODE_BITSIZE (TYPE_MODE (inner_type)), 0);
|
152 |
|
|
|
153 |
|
|
return gimplify_build3 (gsi, COND_EXPR, comp_type,
|
154 |
|
|
fold_build2 (code, boolean_type_node, a, b),
|
155 |
|
|
build_int_cst (comp_type, -1),
|
156 |
|
|
build_int_cst (comp_type, 0));
|
157 |
|
|
}
|
158 |
|
|
|
159 |
|
|
/* Expand vector addition to scalars. This does bit twiddling
|
160 |
|
|
in order to increase parallelism:
|
161 |
|
|
|
162 |
|
|
a + b = (((int) a & 0x7f7f7f7f) + ((int) b & 0x7f7f7f7f)) ^
|
163 |
|
|
(a ^ b) & 0x80808080
|
164 |
|
|
|
165 |
|
|
a - b = (((int) a | 0x80808080) - ((int) b & 0x7f7f7f7f)) ^
|
166 |
|
|
(a ^ ~b) & 0x80808080
|
167 |
|
|
|
168 |
|
|
-b = (0x80808080 - ((int) b & 0x7f7f7f7f)) ^ (~b & 0x80808080)
|
169 |
|
|
|
170 |
|
|
This optimization should be done only if 4 vector items or more
|
171 |
|
|
fit into a word. */
|
172 |
|
|
static tree
|
173 |
|
|
do_plus_minus (gimple_stmt_iterator *gsi, tree word_type, tree a, tree b,
|
174 |
|
|
tree bitpos ATTRIBUTE_UNUSED, tree bitsize ATTRIBUTE_UNUSED,
|
175 |
|
|
enum tree_code code)
|
176 |
|
|
{
|
177 |
|
|
tree inner_type = TREE_TYPE (TREE_TYPE (a));
|
178 |
|
|
unsigned HOST_WIDE_INT max;
|
179 |
|
|
tree low_bits, high_bits, a_low, b_low, result_low, signs;
|
180 |
|
|
|
181 |
|
|
max = GET_MODE_MASK (TYPE_MODE (inner_type));
|
182 |
|
|
low_bits = build_replicated_const (word_type, inner_type, max >> 1);
|
183 |
|
|
high_bits = build_replicated_const (word_type, inner_type, max & ~(max >> 1));
|
184 |
|
|
|
185 |
|
|
a = tree_vec_extract (gsi, word_type, a, bitsize, bitpos);
|
186 |
|
|
b = tree_vec_extract (gsi, word_type, b, bitsize, bitpos);
|
187 |
|
|
|
188 |
|
|
signs = gimplify_build2 (gsi, BIT_XOR_EXPR, word_type, a, b);
|
189 |
|
|
b_low = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, b, low_bits);
|
190 |
|
|
if (code == PLUS_EXPR)
|
191 |
|
|
a_low = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, a, low_bits);
|
192 |
|
|
else
|
193 |
|
|
{
|
194 |
|
|
a_low = gimplify_build2 (gsi, BIT_IOR_EXPR, word_type, a, high_bits);
|
195 |
|
|
signs = gimplify_build1 (gsi, BIT_NOT_EXPR, word_type, signs);
|
196 |
|
|
}
|
197 |
|
|
|
198 |
|
|
signs = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, signs, high_bits);
|
199 |
|
|
result_low = gimplify_build2 (gsi, code, word_type, a_low, b_low);
|
200 |
|
|
return gimplify_build2 (gsi, BIT_XOR_EXPR, word_type, result_low, signs);
|
201 |
|
|
}
|
202 |
|
|
|
203 |
|
|
static tree
|
204 |
|
|
do_negate (gimple_stmt_iterator *gsi, tree word_type, tree b,
|
205 |
|
|
tree unused ATTRIBUTE_UNUSED, tree bitpos ATTRIBUTE_UNUSED,
|
206 |
|
|
tree bitsize ATTRIBUTE_UNUSED,
|
207 |
|
|
enum tree_code code ATTRIBUTE_UNUSED)
|
208 |
|
|
{
|
209 |
|
|
tree inner_type = TREE_TYPE (TREE_TYPE (b));
|
210 |
|
|
HOST_WIDE_INT max;
|
211 |
|
|
tree low_bits, high_bits, b_low, result_low, signs;
|
212 |
|
|
|
213 |
|
|
max = GET_MODE_MASK (TYPE_MODE (inner_type));
|
214 |
|
|
low_bits = build_replicated_const (word_type, inner_type, max >> 1);
|
215 |
|
|
high_bits = build_replicated_const (word_type, inner_type, max & ~(max >> 1));
|
216 |
|
|
|
217 |
|
|
b = tree_vec_extract (gsi, word_type, b, bitsize, bitpos);
|
218 |
|
|
|
219 |
|
|
b_low = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, b, low_bits);
|
220 |
|
|
signs = gimplify_build1 (gsi, BIT_NOT_EXPR, word_type, b);
|
221 |
|
|
signs = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, signs, high_bits);
|
222 |
|
|
result_low = gimplify_build2 (gsi, MINUS_EXPR, word_type, high_bits, b_low);
|
223 |
|
|
return gimplify_build2 (gsi, BIT_XOR_EXPR, word_type, result_low, signs);
|
224 |
|
|
}
|
225 |
|
|
|
226 |
|
|
/* Expand a vector operation to scalars, by using many operations
|
227 |
|
|
whose type is the vector type's inner type. */
|
228 |
|
|
static tree
|
229 |
|
|
expand_vector_piecewise (gimple_stmt_iterator *gsi, elem_op_func f,
|
230 |
|
|
tree type, tree inner_type,
|
231 |
|
|
tree a, tree b, enum tree_code code)
|
232 |
|
|
{
|
233 |
|
|
VEC(constructor_elt,gc) *v;
|
234 |
|
|
tree part_width = TYPE_SIZE (inner_type);
|
235 |
|
|
tree index = bitsize_int (0);
|
236 |
|
|
int nunits = TYPE_VECTOR_SUBPARTS (type);
|
237 |
|
|
int delta = tree_low_cst (part_width, 1)
|
238 |
|
|
/ tree_low_cst (TYPE_SIZE (TREE_TYPE (type)), 1);
|
239 |
|
|
int i;
|
240 |
|
|
location_t loc = gimple_location (gsi_stmt (*gsi));
|
241 |
|
|
|
242 |
|
|
if (types_compatible_p (gimple_expr_type (gsi_stmt (*gsi)), type))
|
243 |
|
|
warning_at (loc, OPT_Wvector_operation_performance,
|
244 |
|
|
"vector operation will be expanded piecewise");
|
245 |
|
|
else
|
246 |
|
|
warning_at (loc, OPT_Wvector_operation_performance,
|
247 |
|
|
"vector operation will be expanded in parallel");
|
248 |
|
|
|
249 |
|
|
v = VEC_alloc(constructor_elt, gc, (nunits + delta - 1) / delta);
|
250 |
|
|
for (i = 0; i < nunits;
|
251 |
|
|
i += delta, index = int_const_binop (PLUS_EXPR, index, part_width))
|
252 |
|
|
{
|
253 |
|
|
tree result = f (gsi, inner_type, a, b, index, part_width, code);
|
254 |
|
|
constructor_elt *ce = VEC_quick_push (constructor_elt, v, NULL);
|
255 |
|
|
ce->index = NULL_TREE;
|
256 |
|
|
ce->value = result;
|
257 |
|
|
}
|
258 |
|
|
|
259 |
|
|
return build_constructor (type, v);
|
260 |
|
|
}
|
261 |
|
|
|
262 |
|
|
/* Expand a vector operation to scalars with the freedom to use
|
263 |
|
|
a scalar integer type, or to use a different size for the items
|
264 |
|
|
in the vector type. */
|
265 |
|
|
static tree
|
266 |
|
|
expand_vector_parallel (gimple_stmt_iterator *gsi, elem_op_func f, tree type,
|
267 |
|
|
tree a, tree b,
|
268 |
|
|
enum tree_code code)
|
269 |
|
|
{
|
270 |
|
|
tree result, compute_type;
|
271 |
|
|
enum machine_mode mode;
|
272 |
|
|
int n_words = tree_low_cst (TYPE_SIZE_UNIT (type), 1) / UNITS_PER_WORD;
|
273 |
|
|
location_t loc = gimple_location (gsi_stmt (*gsi));
|
274 |
|
|
|
275 |
|
|
/* We have three strategies. If the type is already correct, just do
|
276 |
|
|
the operation an element at a time. Else, if the vector is wider than
|
277 |
|
|
one word, do it a word at a time; finally, if the vector is smaller
|
278 |
|
|
than one word, do it as a scalar. */
|
279 |
|
|
if (TYPE_MODE (TREE_TYPE (type)) == word_mode)
|
280 |
|
|
return expand_vector_piecewise (gsi, f,
|
281 |
|
|
type, TREE_TYPE (type),
|
282 |
|
|
a, b, code);
|
283 |
|
|
else if (n_words > 1)
|
284 |
|
|
{
|
285 |
|
|
tree word_type = build_word_mode_vector_type (n_words);
|
286 |
|
|
result = expand_vector_piecewise (gsi, f,
|
287 |
|
|
word_type, TREE_TYPE (word_type),
|
288 |
|
|
a, b, code);
|
289 |
|
|
result = force_gimple_operand_gsi (gsi, result, true, NULL, true,
|
290 |
|
|
GSI_SAME_STMT);
|
291 |
|
|
}
|
292 |
|
|
else
|
293 |
|
|
{
|
294 |
|
|
/* Use a single scalar operation with a mode no wider than word_mode. */
|
295 |
|
|
mode = mode_for_size (tree_low_cst (TYPE_SIZE (type), 1), MODE_INT, 0);
|
296 |
|
|
compute_type = lang_hooks.types.type_for_mode (mode, 1);
|
297 |
|
|
result = f (gsi, compute_type, a, b, NULL_TREE, NULL_TREE, code);
|
298 |
|
|
warning_at (loc, OPT_Wvector_operation_performance,
|
299 |
|
|
"vector operation will be expanded with a "
|
300 |
|
|
"single scalar operation");
|
301 |
|
|
}
|
302 |
|
|
|
303 |
|
|
return result;
|
304 |
|
|
}
|
305 |
|
|
|
306 |
|
|
/* Expand a vector operation to scalars; for integer types we can use
|
307 |
|
|
special bit twiddling tricks to do the sums a word at a time, using
|
308 |
|
|
function F_PARALLEL instead of F. These tricks are done only if
|
309 |
|
|
they can process at least four items, that is, only if the vector
|
310 |
|
|
holds at least four items and if a word can hold four items. */
|
311 |
|
|
static tree
|
312 |
|
|
expand_vector_addition (gimple_stmt_iterator *gsi,
|
313 |
|
|
elem_op_func f, elem_op_func f_parallel,
|
314 |
|
|
tree type, tree a, tree b, enum tree_code code)
|
315 |
|
|
{
|
316 |
|
|
int parts_per_word = UNITS_PER_WORD
|
317 |
|
|
/ tree_low_cst (TYPE_SIZE_UNIT (TREE_TYPE (type)), 1);
|
318 |
|
|
|
319 |
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (type))
|
320 |
|
|
&& parts_per_word >= 4
|
321 |
|
|
&& TYPE_VECTOR_SUBPARTS (type) >= 4)
|
322 |
|
|
return expand_vector_parallel (gsi, f_parallel,
|
323 |
|
|
type, a, b, code);
|
324 |
|
|
else
|
325 |
|
|
return expand_vector_piecewise (gsi, f,
|
326 |
|
|
type, TREE_TYPE (type),
|
327 |
|
|
a, b, code);
|
328 |
|
|
}
|
329 |
|
|
|
330 |
|
|
/* Check if vector VEC consists of all the equal elements and
|
331 |
|
|
that the number of elements corresponds to the type of VEC.
|
332 |
|
|
The function returns first element of the vector
|
333 |
|
|
or NULL_TREE if the vector is not uniform. */
|
334 |
|
|
static tree
|
335 |
|
|
uniform_vector_p (tree vec)
|
336 |
|
|
{
|
337 |
|
|
tree first, t, els;
|
338 |
|
|
unsigned i;
|
339 |
|
|
|
340 |
|
|
if (vec == NULL_TREE)
|
341 |
|
|
return NULL_TREE;
|
342 |
|
|
|
343 |
|
|
if (TREE_CODE (vec) == VECTOR_CST)
|
344 |
|
|
{
|
345 |
|
|
els = TREE_VECTOR_CST_ELTS (vec);
|
346 |
|
|
first = TREE_VALUE (els);
|
347 |
|
|
els = TREE_CHAIN (els);
|
348 |
|
|
|
349 |
|
|
for (t = els; t; t = TREE_CHAIN (t))
|
350 |
|
|
if (!operand_equal_p (first, TREE_VALUE (t), 0))
|
351 |
|
|
return NULL_TREE;
|
352 |
|
|
|
353 |
|
|
return first;
|
354 |
|
|
}
|
355 |
|
|
|
356 |
|
|
else if (TREE_CODE (vec) == CONSTRUCTOR)
|
357 |
|
|
{
|
358 |
|
|
first = error_mark_node;
|
359 |
|
|
|
360 |
|
|
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
|
361 |
|
|
{
|
362 |
|
|
if (i == 0)
|
363 |
|
|
{
|
364 |
|
|
first = t;
|
365 |
|
|
continue;
|
366 |
|
|
}
|
367 |
|
|
if (!operand_equal_p (first, t, 0))
|
368 |
|
|
return NULL_TREE;
|
369 |
|
|
}
|
370 |
|
|
if (i != TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)))
|
371 |
|
|
return NULL_TREE;
|
372 |
|
|
|
373 |
|
|
return first;
|
374 |
|
|
}
|
375 |
|
|
|
376 |
|
|
return NULL_TREE;
|
377 |
|
|
}
|
378 |
|
|
|
379 |
|
|
/* Try to expand vector comparison expression OP0 CODE OP1 by
|
380 |
|
|
querying optab if the following expression:
|
381 |
|
|
VEC_COND_EXPR< OP0 CODE OP1, {-1,...}, {0,...}>
|
382 |
|
|
can be expanded. */
|
383 |
|
|
static tree
|
384 |
|
|
expand_vector_comparison (gimple_stmt_iterator *gsi, tree type, tree op0,
|
385 |
|
|
tree op1, enum tree_code code)
|
386 |
|
|
{
|
387 |
|
|
tree t;
|
388 |
|
|
if (! expand_vec_cond_expr_p (type, TREE_TYPE (op0)))
|
389 |
|
|
t = expand_vector_piecewise (gsi, do_compare, type,
|
390 |
|
|
TREE_TYPE (TREE_TYPE (op0)), op0, op1, code);
|
391 |
|
|
else
|
392 |
|
|
t = NULL_TREE;
|
393 |
|
|
|
394 |
|
|
return t;
|
395 |
|
|
}
|
396 |
|
|
|
397 |
|
|
static tree
|
398 |
|
|
expand_vector_operation (gimple_stmt_iterator *gsi, tree type, tree compute_type,
|
399 |
|
|
gimple assign, enum tree_code code)
|
400 |
|
|
{
|
401 |
|
|
enum machine_mode compute_mode = TYPE_MODE (compute_type);
|
402 |
|
|
|
403 |
|
|
/* If the compute mode is not a vector mode (hence we are not decomposing
|
404 |
|
|
a BLKmode vector to smaller, hardware-supported vectors), we may want
|
405 |
|
|
to expand the operations in parallel. */
|
406 |
|
|
if (GET_MODE_CLASS (compute_mode) != MODE_VECTOR_INT
|
407 |
|
|
&& GET_MODE_CLASS (compute_mode) != MODE_VECTOR_FLOAT
|
408 |
|
|
&& GET_MODE_CLASS (compute_mode) != MODE_VECTOR_FRACT
|
409 |
|
|
&& GET_MODE_CLASS (compute_mode) != MODE_VECTOR_UFRACT
|
410 |
|
|
&& GET_MODE_CLASS (compute_mode) != MODE_VECTOR_ACCUM
|
411 |
|
|
&& GET_MODE_CLASS (compute_mode) != MODE_VECTOR_UACCUM)
|
412 |
|
|
switch (code)
|
413 |
|
|
{
|
414 |
|
|
case PLUS_EXPR:
|
415 |
|
|
case MINUS_EXPR:
|
416 |
|
|
if (!TYPE_OVERFLOW_TRAPS (type))
|
417 |
|
|
return expand_vector_addition (gsi, do_binop, do_plus_minus, type,
|
418 |
|
|
gimple_assign_rhs1 (assign),
|
419 |
|
|
gimple_assign_rhs2 (assign), code);
|
420 |
|
|
break;
|
421 |
|
|
|
422 |
|
|
case NEGATE_EXPR:
|
423 |
|
|
if (!TYPE_OVERFLOW_TRAPS (type))
|
424 |
|
|
return expand_vector_addition (gsi, do_unop, do_negate, type,
|
425 |
|
|
gimple_assign_rhs1 (assign),
|
426 |
|
|
NULL_TREE, code);
|
427 |
|
|
break;
|
428 |
|
|
|
429 |
|
|
case BIT_AND_EXPR:
|
430 |
|
|
case BIT_IOR_EXPR:
|
431 |
|
|
case BIT_XOR_EXPR:
|
432 |
|
|
return expand_vector_parallel (gsi, do_binop, type,
|
433 |
|
|
gimple_assign_rhs1 (assign),
|
434 |
|
|
gimple_assign_rhs2 (assign), code);
|
435 |
|
|
|
436 |
|
|
case BIT_NOT_EXPR:
|
437 |
|
|
return expand_vector_parallel (gsi, do_unop, type,
|
438 |
|
|
gimple_assign_rhs1 (assign),
|
439 |
|
|
NULL_TREE, code);
|
440 |
|
|
case EQ_EXPR:
|
441 |
|
|
case NE_EXPR:
|
442 |
|
|
case GT_EXPR:
|
443 |
|
|
case LT_EXPR:
|
444 |
|
|
case GE_EXPR:
|
445 |
|
|
case LE_EXPR:
|
446 |
|
|
case UNEQ_EXPR:
|
447 |
|
|
case UNGT_EXPR:
|
448 |
|
|
case UNLT_EXPR:
|
449 |
|
|
case UNGE_EXPR:
|
450 |
|
|
case UNLE_EXPR:
|
451 |
|
|
case LTGT_EXPR:
|
452 |
|
|
case ORDERED_EXPR:
|
453 |
|
|
case UNORDERED_EXPR:
|
454 |
|
|
{
|
455 |
|
|
tree rhs1 = gimple_assign_rhs1 (assign);
|
456 |
|
|
tree rhs2 = gimple_assign_rhs2 (assign);
|
457 |
|
|
|
458 |
|
|
return expand_vector_comparison (gsi, type, rhs1, rhs2, code);
|
459 |
|
|
}
|
460 |
|
|
default:
|
461 |
|
|
break;
|
462 |
|
|
}
|
463 |
|
|
|
464 |
|
|
if (TREE_CODE_CLASS (code) == tcc_unary)
|
465 |
|
|
return expand_vector_piecewise (gsi, do_unop, type, compute_type,
|
466 |
|
|
gimple_assign_rhs1 (assign),
|
467 |
|
|
NULL_TREE, code);
|
468 |
|
|
else
|
469 |
|
|
return expand_vector_piecewise (gsi, do_binop, type, compute_type,
|
470 |
|
|
gimple_assign_rhs1 (assign),
|
471 |
|
|
gimple_assign_rhs2 (assign), code);
|
472 |
|
|
}
|
473 |
|
|
|
474 |
|
|
/* Return a type for the widest vector mode whose components are of mode
|
475 |
|
|
INNER_MODE, or NULL_TREE if none is found.
|
476 |
|
|
SATP is true for saturating fixed-point types. */
|
477 |
|
|
|
478 |
|
|
static tree
|
479 |
|
|
type_for_widest_vector_mode (enum machine_mode inner_mode, optab op, int satp)
|
480 |
|
|
{
|
481 |
|
|
enum machine_mode best_mode = VOIDmode, mode;
|
482 |
|
|
int best_nunits = 0;
|
483 |
|
|
|
484 |
|
|
if (SCALAR_FLOAT_MODE_P (inner_mode))
|
485 |
|
|
mode = MIN_MODE_VECTOR_FLOAT;
|
486 |
|
|
else if (SCALAR_FRACT_MODE_P (inner_mode))
|
487 |
|
|
mode = MIN_MODE_VECTOR_FRACT;
|
488 |
|
|
else if (SCALAR_UFRACT_MODE_P (inner_mode))
|
489 |
|
|
mode = MIN_MODE_VECTOR_UFRACT;
|
490 |
|
|
else if (SCALAR_ACCUM_MODE_P (inner_mode))
|
491 |
|
|
mode = MIN_MODE_VECTOR_ACCUM;
|
492 |
|
|
else if (SCALAR_UACCUM_MODE_P (inner_mode))
|
493 |
|
|
mode = MIN_MODE_VECTOR_UACCUM;
|
494 |
|
|
else
|
495 |
|
|
mode = MIN_MODE_VECTOR_INT;
|
496 |
|
|
|
497 |
|
|
for (; mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode))
|
498 |
|
|
if (GET_MODE_INNER (mode) == inner_mode
|
499 |
|
|
&& GET_MODE_NUNITS (mode) > best_nunits
|
500 |
|
|
&& optab_handler (op, mode) != CODE_FOR_nothing)
|
501 |
|
|
best_mode = mode, best_nunits = GET_MODE_NUNITS (mode);
|
502 |
|
|
|
503 |
|
|
if (best_mode == VOIDmode)
|
504 |
|
|
return NULL_TREE;
|
505 |
|
|
else
|
506 |
|
|
{
|
507 |
|
|
/* For fixed-point modes, we need to pass satp as the 2nd parameter. */
|
508 |
|
|
if (ALL_FIXED_POINT_MODE_P (best_mode))
|
509 |
|
|
return lang_hooks.types.type_for_mode (best_mode, satp);
|
510 |
|
|
|
511 |
|
|
return lang_hooks.types.type_for_mode (best_mode, 1);
|
512 |
|
|
}
|
513 |
|
|
}
|
514 |
|
|
|
515 |
|
|
|
516 |
|
|
/* Build a reference to the element of the vector VECT. Function
|
517 |
|
|
returns either the element itself, either BIT_FIELD_REF, or an
|
518 |
|
|
ARRAY_REF expression.
|
519 |
|
|
|
520 |
|
|
GSI is requred to insert temporary variables while building a
|
521 |
|
|
refernece to the element of the vector VECT.
|
522 |
|
|
|
523 |
|
|
PTMPVEC is a pointer to the temporary variable for caching
|
524 |
|
|
purposes. In case when PTMPVEC is NULL new temporary variable
|
525 |
|
|
will be created. */
|
526 |
|
|
static tree
|
527 |
|
|
vector_element (gimple_stmt_iterator *gsi, tree vect, tree idx, tree *ptmpvec)
|
528 |
|
|
{
|
529 |
|
|
tree vect_type, vect_elt_type;
|
530 |
|
|
gimple asgn;
|
531 |
|
|
tree tmpvec;
|
532 |
|
|
tree arraytype;
|
533 |
|
|
bool need_asgn = true;
|
534 |
|
|
unsigned int elements;
|
535 |
|
|
|
536 |
|
|
vect_type = TREE_TYPE (vect);
|
537 |
|
|
vect_elt_type = TREE_TYPE (vect_type);
|
538 |
|
|
elements = TYPE_VECTOR_SUBPARTS (vect_type);
|
539 |
|
|
|
540 |
|
|
if (TREE_CODE (idx) == INTEGER_CST)
|
541 |
|
|
{
|
542 |
|
|
unsigned HOST_WIDE_INT index;
|
543 |
|
|
|
544 |
|
|
/* Given that we're about to compute a binary modulus,
|
545 |
|
|
we don't care about the high bits of the value. */
|
546 |
|
|
index = TREE_INT_CST_LOW (idx);
|
547 |
|
|
if (!host_integerp (idx, 1) || index >= elements)
|
548 |
|
|
{
|
549 |
|
|
index &= elements - 1;
|
550 |
|
|
idx = build_int_cst (TREE_TYPE (idx), index);
|
551 |
|
|
}
|
552 |
|
|
|
553 |
|
|
/* When lowering a vector statement sequence do some easy
|
554 |
|
|
simplification by looking through intermediate vector results. */
|
555 |
|
|
if (TREE_CODE (vect) == SSA_NAME)
|
556 |
|
|
{
|
557 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (vect);
|
558 |
|
|
if (is_gimple_assign (def_stmt)
|
559 |
|
|
&& (gimple_assign_rhs_code (def_stmt) == VECTOR_CST
|
560 |
|
|
|| gimple_assign_rhs_code (def_stmt) == CONSTRUCTOR))
|
561 |
|
|
vect = gimple_assign_rhs1 (def_stmt);
|
562 |
|
|
}
|
563 |
|
|
|
564 |
|
|
if (TREE_CODE (vect) == VECTOR_CST)
|
565 |
|
|
{
|
566 |
|
|
unsigned i;
|
567 |
|
|
tree vals = TREE_VECTOR_CST_ELTS (vect);
|
568 |
|
|
for (i = 0; vals; vals = TREE_CHAIN (vals), ++i)
|
569 |
|
|
if (i == index)
|
570 |
|
|
return TREE_VALUE (vals);
|
571 |
|
|
return build_zero_cst (vect_elt_type);
|
572 |
|
|
}
|
573 |
|
|
else if (TREE_CODE (vect) == CONSTRUCTOR)
|
574 |
|
|
{
|
575 |
|
|
unsigned i;
|
576 |
|
|
tree elt_i, elt_v;
|
577 |
|
|
|
578 |
|
|
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (vect), i, elt_i, elt_v)
|
579 |
|
|
if (operand_equal_p (elt_i, idx, 0))
|
580 |
|
|
return elt_v;
|
581 |
|
|
return build_zero_cst (vect_elt_type);
|
582 |
|
|
}
|
583 |
|
|
else
|
584 |
|
|
{
|
585 |
|
|
tree size = TYPE_SIZE (vect_elt_type);
|
586 |
|
|
tree pos = fold_build2 (MULT_EXPR, TREE_TYPE (idx), idx, size);
|
587 |
|
|
return fold_build3 (BIT_FIELD_REF, vect_elt_type, vect, size, pos);
|
588 |
|
|
}
|
589 |
|
|
}
|
590 |
|
|
|
591 |
|
|
if (!ptmpvec)
|
592 |
|
|
tmpvec = create_tmp_var (vect_type, "vectmp");
|
593 |
|
|
else if (!*ptmpvec)
|
594 |
|
|
tmpvec = *ptmpvec = create_tmp_var (vect_type, "vectmp");
|
595 |
|
|
else
|
596 |
|
|
{
|
597 |
|
|
tmpvec = *ptmpvec;
|
598 |
|
|
need_asgn = false;
|
599 |
|
|
}
|
600 |
|
|
|
601 |
|
|
if (need_asgn)
|
602 |
|
|
{
|
603 |
|
|
TREE_ADDRESSABLE (tmpvec) = 1;
|
604 |
|
|
asgn = gimple_build_assign (tmpvec, vect);
|
605 |
|
|
gsi_insert_before (gsi, asgn, GSI_SAME_STMT);
|
606 |
|
|
}
|
607 |
|
|
|
608 |
|
|
arraytype = build_array_type_nelts (vect_elt_type, elements);
|
609 |
|
|
return build4 (ARRAY_REF, vect_elt_type,
|
610 |
|
|
build1 (VIEW_CONVERT_EXPR, arraytype, tmpvec),
|
611 |
|
|
idx, NULL_TREE, NULL_TREE);
|
612 |
|
|
}
|
613 |
|
|
|
614 |
|
|
/* Check if VEC_PERM_EXPR within the given setting is supported
|
615 |
|
|
by hardware, or lower it piecewise.
|
616 |
|
|
|
617 |
|
|
When VEC_PERM_EXPR has the same first and second operands:
|
618 |
|
|
VEC_PERM_EXPR <v0, v0, mask> the lowered version would be
|
619 |
|
|
{v0[mask[0]], v0[mask[1]], ...}
|
620 |
|
|
MASK and V0 must have the same number of elements.
|
621 |
|
|
|
622 |
|
|
Otherwise VEC_PERM_EXPR <v0, v1, mask> is lowered to
|
623 |
|
|
{mask[0] < len(v0) ? v0[mask[0]] : v1[mask[0]], ...}
|
624 |
|
|
V0 and V1 must have the same type. MASK, V0, V1 must have the
|
625 |
|
|
same number of arguments. */
|
626 |
|
|
|
627 |
|
|
static void
|
628 |
|
|
lower_vec_perm (gimple_stmt_iterator *gsi)
|
629 |
|
|
{
|
630 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
631 |
|
|
tree mask = gimple_assign_rhs3 (stmt);
|
632 |
|
|
tree vec0 = gimple_assign_rhs1 (stmt);
|
633 |
|
|
tree vec1 = gimple_assign_rhs2 (stmt);
|
634 |
|
|
tree vect_type = TREE_TYPE (vec0);
|
635 |
|
|
tree mask_type = TREE_TYPE (mask);
|
636 |
|
|
tree vect_elt_type = TREE_TYPE (vect_type);
|
637 |
|
|
tree mask_elt_type = TREE_TYPE (mask_type);
|
638 |
|
|
unsigned int elements = TYPE_VECTOR_SUBPARTS (vect_type);
|
639 |
|
|
VEC(constructor_elt,gc) *v;
|
640 |
|
|
tree constr, t, si, i_val;
|
641 |
|
|
tree vec0tmp = NULL_TREE, vec1tmp = NULL_TREE, masktmp = NULL_TREE;
|
642 |
|
|
bool two_operand_p = !operand_equal_p (vec0, vec1, 0);
|
643 |
|
|
location_t loc = gimple_location (gsi_stmt (*gsi));
|
644 |
|
|
unsigned i;
|
645 |
|
|
|
646 |
|
|
if (TREE_CODE (mask) == VECTOR_CST)
|
647 |
|
|
{
|
648 |
|
|
unsigned char *sel_int = XALLOCAVEC (unsigned char, elements);
|
649 |
|
|
tree vals = TREE_VECTOR_CST_ELTS (mask);
|
650 |
|
|
|
651 |
|
|
for (i = 0; i < elements; ++i, vals = TREE_CHAIN (vals))
|
652 |
|
|
sel_int[i] = TREE_INT_CST_LOW (TREE_VALUE (vals)) & (2 * elements - 1);
|
653 |
|
|
|
654 |
|
|
if (can_vec_perm_p (TYPE_MODE (vect_type), false, sel_int))
|
655 |
|
|
return;
|
656 |
|
|
}
|
657 |
|
|
else if (can_vec_perm_p (TYPE_MODE (vect_type), true, NULL))
|
658 |
|
|
return;
|
659 |
|
|
|
660 |
|
|
warning_at (loc, OPT_Wvector_operation_performance,
|
661 |
|
|
"vector shuffling operation will be expanded piecewise");
|
662 |
|
|
|
663 |
|
|
v = VEC_alloc (constructor_elt, gc, elements);
|
664 |
|
|
for (i = 0; i < elements; i++)
|
665 |
|
|
{
|
666 |
|
|
si = size_int (i);
|
667 |
|
|
i_val = vector_element (gsi, mask, si, &masktmp);
|
668 |
|
|
|
669 |
|
|
if (TREE_CODE (i_val) == INTEGER_CST)
|
670 |
|
|
{
|
671 |
|
|
unsigned HOST_WIDE_INT index;
|
672 |
|
|
|
673 |
|
|
index = TREE_INT_CST_LOW (i_val);
|
674 |
|
|
if (!host_integerp (i_val, 1) || index >= elements)
|
675 |
|
|
i_val = build_int_cst (mask_elt_type, index & (elements - 1));
|
676 |
|
|
|
677 |
|
|
if (two_operand_p && (index & elements) != 0)
|
678 |
|
|
t = vector_element (gsi, vec1, i_val, &vec1tmp);
|
679 |
|
|
else
|
680 |
|
|
t = vector_element (gsi, vec0, i_val, &vec0tmp);
|
681 |
|
|
|
682 |
|
|
t = force_gimple_operand_gsi (gsi, t, true, NULL_TREE,
|
683 |
|
|
true, GSI_SAME_STMT);
|
684 |
|
|
}
|
685 |
|
|
else
|
686 |
|
|
{
|
687 |
|
|
tree cond = NULL_TREE, v0_val;
|
688 |
|
|
|
689 |
|
|
if (two_operand_p)
|
690 |
|
|
{
|
691 |
|
|
cond = fold_build2 (BIT_AND_EXPR, mask_elt_type, i_val,
|
692 |
|
|
build_int_cst (mask_elt_type, elements));
|
693 |
|
|
cond = force_gimple_operand_gsi (gsi, cond, true, NULL_TREE,
|
694 |
|
|
true, GSI_SAME_STMT);
|
695 |
|
|
}
|
696 |
|
|
|
697 |
|
|
i_val = fold_build2 (BIT_AND_EXPR, mask_elt_type, i_val,
|
698 |
|
|
build_int_cst (mask_elt_type, elements - 1));
|
699 |
|
|
i_val = force_gimple_operand_gsi (gsi, i_val, true, NULL_TREE,
|
700 |
|
|
true, GSI_SAME_STMT);
|
701 |
|
|
|
702 |
|
|
v0_val = vector_element (gsi, vec0, i_val, &vec0tmp);
|
703 |
|
|
v0_val = force_gimple_operand_gsi (gsi, v0_val, true, NULL_TREE,
|
704 |
|
|
true, GSI_SAME_STMT);
|
705 |
|
|
|
706 |
|
|
if (two_operand_p)
|
707 |
|
|
{
|
708 |
|
|
tree v1_val;
|
709 |
|
|
|
710 |
|
|
v1_val = vector_element (gsi, vec1, i_val, &vec1tmp);
|
711 |
|
|
v1_val = force_gimple_operand_gsi (gsi, v1_val, true, NULL_TREE,
|
712 |
|
|
true, GSI_SAME_STMT);
|
713 |
|
|
|
714 |
|
|
cond = fold_build2 (EQ_EXPR, boolean_type_node,
|
715 |
|
|
cond, build_zero_cst (mask_elt_type));
|
716 |
|
|
cond = fold_build3 (COND_EXPR, vect_elt_type,
|
717 |
|
|
cond, v0_val, v1_val);
|
718 |
|
|
t = force_gimple_operand_gsi (gsi, cond, true, NULL_TREE,
|
719 |
|
|
true, GSI_SAME_STMT);
|
720 |
|
|
}
|
721 |
|
|
else
|
722 |
|
|
t = v0_val;
|
723 |
|
|
}
|
724 |
|
|
|
725 |
|
|
CONSTRUCTOR_APPEND_ELT (v, si, t);
|
726 |
|
|
}
|
727 |
|
|
|
728 |
|
|
constr = build_constructor (vect_type, v);
|
729 |
|
|
gimple_assign_set_rhs_from_tree (gsi, constr);
|
730 |
|
|
update_stmt (gsi_stmt (*gsi));
|
731 |
|
|
}
|
732 |
|
|
|
733 |
|
|
/* Process one statement. If we identify a vector operation, expand it. */
|
734 |
|
|
|
735 |
|
|
static void
|
736 |
|
|
expand_vector_operations_1 (gimple_stmt_iterator *gsi)
|
737 |
|
|
{
|
738 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
739 |
|
|
tree lhs, rhs1, rhs2 = NULL, type, compute_type;
|
740 |
|
|
enum tree_code code;
|
741 |
|
|
enum machine_mode compute_mode;
|
742 |
|
|
optab op = NULL;
|
743 |
|
|
enum gimple_rhs_class rhs_class;
|
744 |
|
|
tree new_rhs;
|
745 |
|
|
|
746 |
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
747 |
|
|
return;
|
748 |
|
|
|
749 |
|
|
code = gimple_assign_rhs_code (stmt);
|
750 |
|
|
rhs_class = get_gimple_rhs_class (code);
|
751 |
|
|
lhs = gimple_assign_lhs (stmt);
|
752 |
|
|
|
753 |
|
|
if (code == VEC_PERM_EXPR)
|
754 |
|
|
{
|
755 |
|
|
lower_vec_perm (gsi);
|
756 |
|
|
return;
|
757 |
|
|
}
|
758 |
|
|
|
759 |
|
|
if (rhs_class != GIMPLE_UNARY_RHS && rhs_class != GIMPLE_BINARY_RHS)
|
760 |
|
|
return;
|
761 |
|
|
|
762 |
|
|
rhs1 = gimple_assign_rhs1 (stmt);
|
763 |
|
|
type = gimple_expr_type (stmt);
|
764 |
|
|
if (rhs_class == GIMPLE_BINARY_RHS)
|
765 |
|
|
rhs2 = gimple_assign_rhs2 (stmt);
|
766 |
|
|
|
767 |
|
|
if (TREE_CODE (type) != VECTOR_TYPE)
|
768 |
|
|
return;
|
769 |
|
|
|
770 |
|
|
if (code == NOP_EXPR
|
771 |
|
|
|| code == FLOAT_EXPR
|
772 |
|
|
|| code == FIX_TRUNC_EXPR
|
773 |
|
|
|| code == VIEW_CONVERT_EXPR)
|
774 |
|
|
return;
|
775 |
|
|
|
776 |
|
|
gcc_assert (code != CONVERT_EXPR);
|
777 |
|
|
|
778 |
|
|
/* The signedness is determined from input argument. */
|
779 |
|
|
if (code == VEC_UNPACK_FLOAT_HI_EXPR
|
780 |
|
|
|| code == VEC_UNPACK_FLOAT_LO_EXPR)
|
781 |
|
|
type = TREE_TYPE (rhs1);
|
782 |
|
|
|
783 |
|
|
/* Choose between vector shift/rotate by vector and vector shift/rotate by
|
784 |
|
|
scalar */
|
785 |
|
|
if (code == LSHIFT_EXPR
|
786 |
|
|
|| code == RSHIFT_EXPR
|
787 |
|
|
|| code == LROTATE_EXPR
|
788 |
|
|
|| code == RROTATE_EXPR)
|
789 |
|
|
{
|
790 |
|
|
optab opv;
|
791 |
|
|
|
792 |
|
|
/* Check whether we have vector <op> {x,x,x,x} where x
|
793 |
|
|
could be a scalar variable or a constant. Transform
|
794 |
|
|
vector <op> {x,x,x,x} ==> vector <op> scalar. */
|
795 |
|
|
if (VECTOR_INTEGER_TYPE_P (TREE_TYPE (rhs2)))
|
796 |
|
|
{
|
797 |
|
|
tree first;
|
798 |
|
|
gimple def_stmt;
|
799 |
|
|
|
800 |
|
|
if ((TREE_CODE (rhs2) == VECTOR_CST
|
801 |
|
|
&& (first = uniform_vector_p (rhs2)) != NULL_TREE)
|
802 |
|
|
|| (TREE_CODE (rhs2) == SSA_NAME
|
803 |
|
|
&& (def_stmt = SSA_NAME_DEF_STMT (rhs2))
|
804 |
|
|
&& gimple_assign_single_p (def_stmt)
|
805 |
|
|
&& (first = uniform_vector_p
|
806 |
|
|
(gimple_assign_rhs1 (def_stmt))) != NULL_TREE))
|
807 |
|
|
{
|
808 |
|
|
gimple_assign_set_rhs2 (stmt, first);
|
809 |
|
|
update_stmt (stmt);
|
810 |
|
|
rhs2 = first;
|
811 |
|
|
}
|
812 |
|
|
}
|
813 |
|
|
|
814 |
|
|
opv = optab_for_tree_code (code, type, optab_vector);
|
815 |
|
|
if (VECTOR_INTEGER_TYPE_P (TREE_TYPE (rhs2)))
|
816 |
|
|
op = opv;
|
817 |
|
|
else
|
818 |
|
|
{
|
819 |
|
|
op = optab_for_tree_code (code, type, optab_scalar);
|
820 |
|
|
|
821 |
|
|
/* The rtl expander will expand vector/scalar as vector/vector
|
822 |
|
|
if necessary. Don't bother converting the stmt here. */
|
823 |
|
|
if (optab_handler (op, TYPE_MODE (type)) == CODE_FOR_nothing
|
824 |
|
|
&& optab_handler (opv, TYPE_MODE (type)) != CODE_FOR_nothing)
|
825 |
|
|
return;
|
826 |
|
|
}
|
827 |
|
|
}
|
828 |
|
|
else
|
829 |
|
|
op = optab_for_tree_code (code, type, optab_default);
|
830 |
|
|
|
831 |
|
|
/* For widening/narrowing vector operations, the relevant type is of the
|
832 |
|
|
arguments, not the widened result. VEC_UNPACK_FLOAT_*_EXPR is
|
833 |
|
|
calculated in the same way above. */
|
834 |
|
|
if (code == WIDEN_SUM_EXPR
|
835 |
|
|
|| code == VEC_WIDEN_MULT_HI_EXPR
|
836 |
|
|
|| code == VEC_WIDEN_MULT_LO_EXPR
|
837 |
|
|
|| code == VEC_UNPACK_HI_EXPR
|
838 |
|
|
|| code == VEC_UNPACK_LO_EXPR
|
839 |
|
|
|| code == VEC_PACK_TRUNC_EXPR
|
840 |
|
|
|| code == VEC_PACK_SAT_EXPR
|
841 |
|
|
|| code == VEC_PACK_FIX_TRUNC_EXPR
|
842 |
|
|
|| code == VEC_WIDEN_LSHIFT_HI_EXPR
|
843 |
|
|
|| code == VEC_WIDEN_LSHIFT_LO_EXPR)
|
844 |
|
|
type = TREE_TYPE (rhs1);
|
845 |
|
|
|
846 |
|
|
/* Optabs will try converting a negation into a subtraction, so
|
847 |
|
|
look for it as well. TODO: negation of floating-point vectors
|
848 |
|
|
might be turned into an exclusive OR toggling the sign bit. */
|
849 |
|
|
if (op == NULL
|
850 |
|
|
&& code == NEGATE_EXPR
|
851 |
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (type)))
|
852 |
|
|
op = optab_for_tree_code (MINUS_EXPR, type, optab_default);
|
853 |
|
|
|
854 |
|
|
/* For very wide vectors, try using a smaller vector mode. */
|
855 |
|
|
compute_type = type;
|
856 |
|
|
if (!VECTOR_MODE_P (TYPE_MODE (type)) && op)
|
857 |
|
|
{
|
858 |
|
|
tree vector_compute_type
|
859 |
|
|
= type_for_widest_vector_mode (TYPE_MODE (TREE_TYPE (type)), op,
|
860 |
|
|
TYPE_SATURATING (TREE_TYPE (type)));
|
861 |
|
|
if (vector_compute_type != NULL_TREE
|
862 |
|
|
&& (TYPE_VECTOR_SUBPARTS (vector_compute_type)
|
863 |
|
|
< TYPE_VECTOR_SUBPARTS (compute_type))
|
864 |
|
|
&& (optab_handler (op, TYPE_MODE (vector_compute_type))
|
865 |
|
|
!= CODE_FOR_nothing))
|
866 |
|
|
compute_type = vector_compute_type;
|
867 |
|
|
}
|
868 |
|
|
|
869 |
|
|
/* If we are breaking a BLKmode vector into smaller pieces,
|
870 |
|
|
type_for_widest_vector_mode has already looked into the optab,
|
871 |
|
|
so skip these checks. */
|
872 |
|
|
if (compute_type == type)
|
873 |
|
|
{
|
874 |
|
|
compute_mode = TYPE_MODE (compute_type);
|
875 |
|
|
if (VECTOR_MODE_P (compute_mode)
|
876 |
|
|
&& op != NULL
|
877 |
|
|
&& optab_handler (op, compute_mode) != CODE_FOR_nothing)
|
878 |
|
|
return;
|
879 |
|
|
else
|
880 |
|
|
/* There is no operation in hardware, so fall back to scalars. */
|
881 |
|
|
compute_type = TREE_TYPE (type);
|
882 |
|
|
}
|
883 |
|
|
|
884 |
|
|
gcc_assert (code != VEC_LSHIFT_EXPR && code != VEC_RSHIFT_EXPR);
|
885 |
|
|
new_rhs = expand_vector_operation (gsi, type, compute_type, stmt, code);
|
886 |
|
|
|
887 |
|
|
/* Leave expression untouched for later expansion. */
|
888 |
|
|
if (new_rhs == NULL_TREE)
|
889 |
|
|
return;
|
890 |
|
|
|
891 |
|
|
if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (new_rhs)))
|
892 |
|
|
new_rhs = gimplify_build1 (gsi, VIEW_CONVERT_EXPR, TREE_TYPE (lhs),
|
893 |
|
|
new_rhs);
|
894 |
|
|
|
895 |
|
|
/* NOTE: We should avoid using gimple_assign_set_rhs_from_tree. One
|
896 |
|
|
way to do it is change expand_vector_operation and its callees to
|
897 |
|
|
return a tree_code, RHS1 and RHS2 instead of a tree. */
|
898 |
|
|
gimple_assign_set_rhs_from_tree (gsi, new_rhs);
|
899 |
|
|
update_stmt (gsi_stmt (*gsi));
|
900 |
|
|
}
|
901 |
|
|
|
902 |
|
|
/* Use this to lower vector operations introduced by the vectorizer,
|
903 |
|
|
if it may need the bit-twiddling tricks implemented in this file. */
|
904 |
|
|
|
905 |
|
|
static bool
|
906 |
|
|
gate_expand_vector_operations_ssa (void)
|
907 |
|
|
{
|
908 |
|
|
return optimize == 0;
|
909 |
|
|
}
|
910 |
|
|
|
911 |
|
|
static unsigned int
|
912 |
|
|
expand_vector_operations (void)
|
913 |
|
|
{
|
914 |
|
|
gimple_stmt_iterator gsi;
|
915 |
|
|
basic_block bb;
|
916 |
|
|
bool cfg_changed = false;
|
917 |
|
|
|
918 |
|
|
FOR_EACH_BB (bb)
|
919 |
|
|
{
|
920 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
921 |
|
|
{
|
922 |
|
|
expand_vector_operations_1 (&gsi);
|
923 |
|
|
/* ??? If we do not cleanup EH then we will ICE in
|
924 |
|
|
verification. But in reality we have created wrong-code
|
925 |
|
|
as we did not properly transition EH info and edges to
|
926 |
|
|
the piecewise computations. */
|
927 |
|
|
if (maybe_clean_eh_stmt (gsi_stmt (gsi))
|
928 |
|
|
&& gimple_purge_dead_eh_edges (bb))
|
929 |
|
|
cfg_changed = true;
|
930 |
|
|
}
|
931 |
|
|
}
|
932 |
|
|
|
933 |
|
|
return cfg_changed ? TODO_cleanup_cfg : 0;
|
934 |
|
|
}
|
935 |
|
|
|
936 |
|
|
struct gimple_opt_pass pass_lower_vector =
|
937 |
|
|
{
|
938 |
|
|
{
|
939 |
|
|
GIMPLE_PASS,
|
940 |
|
|
"veclower", /* name */
|
941 |
|
|
gate_expand_vector_operations_ssa, /* gate */
|
942 |
|
|
expand_vector_operations, /* execute */
|
943 |
|
|
NULL, /* sub */
|
944 |
|
|
NULL, /* next */
|
945 |
|
|
0, /* static_pass_number */
|
946 |
|
|
TV_NONE, /* tv_id */
|
947 |
|
|
PROP_cfg, /* properties_required */
|
948 |
|
|
0, /* properties_provided */
|
949 |
|
|
0, /* properties_destroyed */
|
950 |
|
|
0, /* todo_flags_start */
|
951 |
|
|
TODO_update_ssa /* todo_flags_finish */
|
952 |
|
|
| TODO_verify_ssa
|
953 |
|
|
| TODO_verify_stmts | TODO_verify_flow
|
954 |
|
|
| TODO_cleanup_cfg
|
955 |
|
|
}
|
956 |
|
|
};
|
957 |
|
|
|
958 |
|
|
struct gimple_opt_pass pass_lower_vector_ssa =
|
959 |
|
|
{
|
960 |
|
|
{
|
961 |
|
|
GIMPLE_PASS,
|
962 |
|
|
"veclower2", /* name */
|
963 |
|
|
0, /* gate */
|
964 |
|
|
expand_vector_operations, /* execute */
|
965 |
|
|
NULL, /* sub */
|
966 |
|
|
NULL, /* next */
|
967 |
|
|
0, /* static_pass_number */
|
968 |
|
|
TV_NONE, /* tv_id */
|
969 |
|
|
PROP_cfg, /* properties_required */
|
970 |
|
|
0, /* properties_provided */
|
971 |
|
|
0, /* properties_destroyed */
|
972 |
|
|
0, /* todo_flags_start */
|
973 |
|
|
TODO_update_ssa /* todo_flags_finish */
|
974 |
|
|
| TODO_verify_ssa
|
975 |
|
|
| TODO_verify_stmts | TODO_verify_flow
|
976 |
|
|
| TODO_cleanup_cfg
|
977 |
|
|
}
|
978 |
|
|
};
|
979 |
|
|
|
980 |
|
|
#include "gt-tree-vect-generic.h"
|