| 1 |
684 |
jeremybenn |
/* Vectorizer Specific Loop Manipulations
|
| 2 |
|
|
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2012
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
Contributed by Dorit Naishlos <dorit@il.ibm.com>
|
| 5 |
|
|
and Ira Rosen <irar@il.ibm.com>
|
| 6 |
|
|
|
| 7 |
|
|
This file is part of GCC.
|
| 8 |
|
|
|
| 9 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 10 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 11 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 12 |
|
|
version.
|
| 13 |
|
|
|
| 14 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 15 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 16 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 17 |
|
|
for more details.
|
| 18 |
|
|
|
| 19 |
|
|
You should have received a copy of the GNU General Public License
|
| 20 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 21 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 22 |
|
|
|
| 23 |
|
|
#include "config.h"
|
| 24 |
|
|
#include "system.h"
|
| 25 |
|
|
#include "coretypes.h"
|
| 26 |
|
|
#include "tm.h"
|
| 27 |
|
|
#include "ggc.h"
|
| 28 |
|
|
#include "tree.h"
|
| 29 |
|
|
#include "basic-block.h"
|
| 30 |
|
|
#include "tree-pretty-print.h"
|
| 31 |
|
|
#include "gimple-pretty-print.h"
|
| 32 |
|
|
#include "tree-flow.h"
|
| 33 |
|
|
#include "tree-dump.h"
|
| 34 |
|
|
#include "cfgloop.h"
|
| 35 |
|
|
#include "cfglayout.h"
|
| 36 |
|
|
#include "diagnostic-core.h"
|
| 37 |
|
|
#include "tree-scalar-evolution.h"
|
| 38 |
|
|
#include "tree-vectorizer.h"
|
| 39 |
|
|
#include "langhooks.h"
|
| 40 |
|
|
|
| 41 |
|
|
/*************************************************************************
|
| 42 |
|
|
Simple Loop Peeling Utilities
|
| 43 |
|
|
|
| 44 |
|
|
Utilities to support loop peeling for vectorization purposes.
|
| 45 |
|
|
*************************************************************************/
|
| 46 |
|
|
|
| 47 |
|
|
|
| 48 |
|
|
/* Renames the use *OP_P. */
|
| 49 |
|
|
|
| 50 |
|
|
static void
|
| 51 |
|
|
rename_use_op (use_operand_p op_p)
|
| 52 |
|
|
{
|
| 53 |
|
|
tree new_name;
|
| 54 |
|
|
|
| 55 |
|
|
if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
|
| 56 |
|
|
return;
|
| 57 |
|
|
|
| 58 |
|
|
new_name = get_current_def (USE_FROM_PTR (op_p));
|
| 59 |
|
|
|
| 60 |
|
|
/* Something defined outside of the loop. */
|
| 61 |
|
|
if (!new_name)
|
| 62 |
|
|
return;
|
| 63 |
|
|
|
| 64 |
|
|
/* An ordinary ssa name defined in the loop. */
|
| 65 |
|
|
|
| 66 |
|
|
SET_USE (op_p, new_name);
|
| 67 |
|
|
}
|
| 68 |
|
|
|
| 69 |
|
|
|
| 70 |
|
|
/* Renames the variables in basic block BB. */
|
| 71 |
|
|
|
| 72 |
|
|
void
|
| 73 |
|
|
rename_variables_in_bb (basic_block bb)
|
| 74 |
|
|
{
|
| 75 |
|
|
gimple_stmt_iterator gsi;
|
| 76 |
|
|
gimple stmt;
|
| 77 |
|
|
use_operand_p use_p;
|
| 78 |
|
|
ssa_op_iter iter;
|
| 79 |
|
|
edge e;
|
| 80 |
|
|
edge_iterator ei;
|
| 81 |
|
|
struct loop *loop = bb->loop_father;
|
| 82 |
|
|
|
| 83 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 84 |
|
|
{
|
| 85 |
|
|
stmt = gsi_stmt (gsi);
|
| 86 |
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
|
| 87 |
|
|
rename_use_op (use_p);
|
| 88 |
|
|
}
|
| 89 |
|
|
|
| 90 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 91 |
|
|
{
|
| 92 |
|
|
if (!flow_bb_inside_loop_p (loop, e->dest))
|
| 93 |
|
|
continue;
|
| 94 |
|
|
for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 95 |
|
|
rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi), e));
|
| 96 |
|
|
}
|
| 97 |
|
|
}
|
| 98 |
|
|
|
| 99 |
|
|
|
| 100 |
|
|
/* Renames variables in new generated LOOP. */
|
| 101 |
|
|
|
| 102 |
|
|
void
|
| 103 |
|
|
rename_variables_in_loop (struct loop *loop)
|
| 104 |
|
|
{
|
| 105 |
|
|
unsigned i;
|
| 106 |
|
|
basic_block *bbs;
|
| 107 |
|
|
|
| 108 |
|
|
bbs = get_loop_body (loop);
|
| 109 |
|
|
|
| 110 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
| 111 |
|
|
rename_variables_in_bb (bbs[i]);
|
| 112 |
|
|
|
| 113 |
|
|
free (bbs);
|
| 114 |
|
|
}
|
| 115 |
|
|
|
| 116 |
|
|
typedef struct
|
| 117 |
|
|
{
|
| 118 |
|
|
tree from, to;
|
| 119 |
|
|
basic_block bb;
|
| 120 |
|
|
} adjust_info;
|
| 121 |
|
|
|
| 122 |
|
|
DEF_VEC_O(adjust_info);
|
| 123 |
|
|
DEF_VEC_ALLOC_O_STACK(adjust_info);
|
| 124 |
|
|
#define VEC_adjust_info_stack_alloc(alloc) VEC_stack_alloc (adjust_info, alloc)
|
| 125 |
|
|
|
| 126 |
|
|
/* A stack of values to be adjusted in debug stmts. We have to
|
| 127 |
|
|
process them LIFO, so that the closest substitution applies. If we
|
| 128 |
|
|
processed them FIFO, without the stack, we might substitute uses
|
| 129 |
|
|
with a PHI DEF that would soon become non-dominant, and when we got
|
| 130 |
|
|
to the suitable one, it wouldn't have anything to substitute any
|
| 131 |
|
|
more. */
|
| 132 |
|
|
static VEC(adjust_info, stack) *adjust_vec;
|
| 133 |
|
|
|
| 134 |
|
|
/* Adjust any debug stmts that referenced AI->from values to use the
|
| 135 |
|
|
loop-closed AI->to, if the references are dominated by AI->bb and
|
| 136 |
|
|
not by the definition of AI->from. */
|
| 137 |
|
|
|
| 138 |
|
|
static void
|
| 139 |
|
|
adjust_debug_stmts_now (adjust_info *ai)
|
| 140 |
|
|
{
|
| 141 |
|
|
basic_block bbphi = ai->bb;
|
| 142 |
|
|
tree orig_def = ai->from;
|
| 143 |
|
|
tree new_def = ai->to;
|
| 144 |
|
|
imm_use_iterator imm_iter;
|
| 145 |
|
|
gimple stmt;
|
| 146 |
|
|
basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
|
| 147 |
|
|
|
| 148 |
|
|
gcc_assert (dom_info_available_p (CDI_DOMINATORS));
|
| 149 |
|
|
|
| 150 |
|
|
/* Adjust any debug stmts that held onto non-loop-closed
|
| 151 |
|
|
references. */
|
| 152 |
|
|
FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
|
| 153 |
|
|
{
|
| 154 |
|
|
use_operand_p use_p;
|
| 155 |
|
|
basic_block bbuse;
|
| 156 |
|
|
|
| 157 |
|
|
if (!is_gimple_debug (stmt))
|
| 158 |
|
|
continue;
|
| 159 |
|
|
|
| 160 |
|
|
gcc_assert (gimple_debug_bind_p (stmt));
|
| 161 |
|
|
|
| 162 |
|
|
bbuse = gimple_bb (stmt);
|
| 163 |
|
|
|
| 164 |
|
|
if ((bbuse == bbphi
|
| 165 |
|
|
|| dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
|
| 166 |
|
|
&& !(bbuse == bbdef
|
| 167 |
|
|
|| dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
|
| 168 |
|
|
{
|
| 169 |
|
|
if (new_def)
|
| 170 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
|
| 171 |
|
|
SET_USE (use_p, new_def);
|
| 172 |
|
|
else
|
| 173 |
|
|
{
|
| 174 |
|
|
gimple_debug_bind_reset_value (stmt);
|
| 175 |
|
|
update_stmt (stmt);
|
| 176 |
|
|
}
|
| 177 |
|
|
}
|
| 178 |
|
|
}
|
| 179 |
|
|
}
|
| 180 |
|
|
|
| 181 |
|
|
/* Adjust debug stmts as scheduled before. */
|
| 182 |
|
|
|
| 183 |
|
|
static void
|
| 184 |
|
|
adjust_vec_debug_stmts (void)
|
| 185 |
|
|
{
|
| 186 |
|
|
if (!MAY_HAVE_DEBUG_STMTS)
|
| 187 |
|
|
return;
|
| 188 |
|
|
|
| 189 |
|
|
gcc_assert (adjust_vec);
|
| 190 |
|
|
|
| 191 |
|
|
while (!VEC_empty (adjust_info, adjust_vec))
|
| 192 |
|
|
{
|
| 193 |
|
|
adjust_debug_stmts_now (VEC_last (adjust_info, adjust_vec));
|
| 194 |
|
|
VEC_pop (adjust_info, adjust_vec);
|
| 195 |
|
|
}
|
| 196 |
|
|
|
| 197 |
|
|
VEC_free (adjust_info, stack, adjust_vec);
|
| 198 |
|
|
}
|
| 199 |
|
|
|
| 200 |
|
|
/* Adjust any debug stmts that referenced FROM values to use the
|
| 201 |
|
|
loop-closed TO, if the references are dominated by BB and not by
|
| 202 |
|
|
the definition of FROM. If adjust_vec is non-NULL, adjustments
|
| 203 |
|
|
will be postponed until adjust_vec_debug_stmts is called. */
|
| 204 |
|
|
|
| 205 |
|
|
static void
|
| 206 |
|
|
adjust_debug_stmts (tree from, tree to, basic_block bb)
|
| 207 |
|
|
{
|
| 208 |
|
|
adjust_info ai;
|
| 209 |
|
|
|
| 210 |
|
|
if (MAY_HAVE_DEBUG_STMTS && TREE_CODE (from) == SSA_NAME
|
| 211 |
|
|
&& SSA_NAME_VAR (from) != gimple_vop (cfun))
|
| 212 |
|
|
{
|
| 213 |
|
|
ai.from = from;
|
| 214 |
|
|
ai.to = to;
|
| 215 |
|
|
ai.bb = bb;
|
| 216 |
|
|
|
| 217 |
|
|
if (adjust_vec)
|
| 218 |
|
|
VEC_safe_push (adjust_info, stack, adjust_vec, &ai);
|
| 219 |
|
|
else
|
| 220 |
|
|
adjust_debug_stmts_now (&ai);
|
| 221 |
|
|
}
|
| 222 |
|
|
}
|
| 223 |
|
|
|
| 224 |
|
|
/* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
|
| 225 |
|
|
to adjust any debug stmts that referenced the old phi arg,
|
| 226 |
|
|
presumably non-loop-closed references left over from other
|
| 227 |
|
|
transformations. */
|
| 228 |
|
|
|
| 229 |
|
|
static void
|
| 230 |
|
|
adjust_phi_and_debug_stmts (gimple update_phi, edge e, tree new_def)
|
| 231 |
|
|
{
|
| 232 |
|
|
tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
|
| 233 |
|
|
|
| 234 |
|
|
SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
|
| 235 |
|
|
|
| 236 |
|
|
if (MAY_HAVE_DEBUG_STMTS)
|
| 237 |
|
|
adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
|
| 238 |
|
|
gimple_bb (update_phi));
|
| 239 |
|
|
}
|
| 240 |
|
|
|
| 241 |
|
|
|
| 242 |
|
|
/* Update the PHI nodes of NEW_LOOP.
|
| 243 |
|
|
|
| 244 |
|
|
NEW_LOOP is a duplicate of ORIG_LOOP.
|
| 245 |
|
|
AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
|
| 246 |
|
|
AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
|
| 247 |
|
|
executes before it. */
|
| 248 |
|
|
|
| 249 |
|
|
static void
|
| 250 |
|
|
slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
|
| 251 |
|
|
struct loop *new_loop, bool after)
|
| 252 |
|
|
{
|
| 253 |
|
|
tree new_ssa_name;
|
| 254 |
|
|
gimple phi_new, phi_orig;
|
| 255 |
|
|
tree def;
|
| 256 |
|
|
edge orig_loop_latch = loop_latch_edge (orig_loop);
|
| 257 |
|
|
edge orig_entry_e = loop_preheader_edge (orig_loop);
|
| 258 |
|
|
edge new_loop_exit_e = single_exit (new_loop);
|
| 259 |
|
|
edge new_loop_entry_e = loop_preheader_edge (new_loop);
|
| 260 |
|
|
edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
|
| 261 |
|
|
gimple_stmt_iterator gsi_new, gsi_orig;
|
| 262 |
|
|
|
| 263 |
|
|
/*
|
| 264 |
|
|
step 1. For each loop-header-phi:
|
| 265 |
|
|
Add the first phi argument for the phi in NEW_LOOP
|
| 266 |
|
|
(the one associated with the entry of NEW_LOOP)
|
| 267 |
|
|
|
| 268 |
|
|
step 2. For each loop-header-phi:
|
| 269 |
|
|
Add the second phi argument for the phi in NEW_LOOP
|
| 270 |
|
|
(the one associated with the latch of NEW_LOOP)
|
| 271 |
|
|
|
| 272 |
|
|
step 3. Update the phis in the successor block of NEW_LOOP.
|
| 273 |
|
|
|
| 274 |
|
|
case 1: NEW_LOOP was placed before ORIG_LOOP:
|
| 275 |
|
|
The successor block of NEW_LOOP is the header of ORIG_LOOP.
|
| 276 |
|
|
Updating the phis in the successor block can therefore be done
|
| 277 |
|
|
along with the scanning of the loop header phis, because the
|
| 278 |
|
|
header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
|
| 279 |
|
|
phi nodes, organized in the same order.
|
| 280 |
|
|
|
| 281 |
|
|
case 2: NEW_LOOP was placed after ORIG_LOOP:
|
| 282 |
|
|
The successor block of NEW_LOOP is the original exit block of
|
| 283 |
|
|
ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
|
| 284 |
|
|
We postpone updating these phis to a later stage (when
|
| 285 |
|
|
loop guards are added).
|
| 286 |
|
|
*/
|
| 287 |
|
|
|
| 288 |
|
|
|
| 289 |
|
|
/* Scan the phis in the headers of the old and new loops
|
| 290 |
|
|
(they are organized in exactly the same order). */
|
| 291 |
|
|
|
| 292 |
|
|
for (gsi_new = gsi_start_phis (new_loop->header),
|
| 293 |
|
|
gsi_orig = gsi_start_phis (orig_loop->header);
|
| 294 |
|
|
!gsi_end_p (gsi_new) && !gsi_end_p (gsi_orig);
|
| 295 |
|
|
gsi_next (&gsi_new), gsi_next (&gsi_orig))
|
| 296 |
|
|
{
|
| 297 |
|
|
source_location locus;
|
| 298 |
|
|
phi_new = gsi_stmt (gsi_new);
|
| 299 |
|
|
phi_orig = gsi_stmt (gsi_orig);
|
| 300 |
|
|
|
| 301 |
|
|
/* step 1. */
|
| 302 |
|
|
def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
|
| 303 |
|
|
locus = gimple_phi_arg_location_from_edge (phi_orig, entry_arg_e);
|
| 304 |
|
|
add_phi_arg (phi_new, def, new_loop_entry_e, locus);
|
| 305 |
|
|
|
| 306 |
|
|
/* step 2. */
|
| 307 |
|
|
def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
|
| 308 |
|
|
locus = gimple_phi_arg_location_from_edge (phi_orig, orig_loop_latch);
|
| 309 |
|
|
if (TREE_CODE (def) != SSA_NAME)
|
| 310 |
|
|
continue;
|
| 311 |
|
|
|
| 312 |
|
|
new_ssa_name = get_current_def (def);
|
| 313 |
|
|
if (!new_ssa_name)
|
| 314 |
|
|
{
|
| 315 |
|
|
/* This only happens if there are no definitions
|
| 316 |
|
|
inside the loop. use the phi_result in this case. */
|
| 317 |
|
|
new_ssa_name = PHI_RESULT (phi_new);
|
| 318 |
|
|
}
|
| 319 |
|
|
|
| 320 |
|
|
/* An ordinary ssa name defined in the loop. */
|
| 321 |
|
|
add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop), locus);
|
| 322 |
|
|
|
| 323 |
|
|
/* Drop any debug references outside the loop, if they would
|
| 324 |
|
|
become ill-formed SSA. */
|
| 325 |
|
|
adjust_debug_stmts (def, NULL, single_exit (orig_loop)->dest);
|
| 326 |
|
|
|
| 327 |
|
|
/* step 3 (case 1). */
|
| 328 |
|
|
if (!after)
|
| 329 |
|
|
{
|
| 330 |
|
|
gcc_assert (new_loop_exit_e == orig_entry_e);
|
| 331 |
|
|
adjust_phi_and_debug_stmts (phi_orig, new_loop_exit_e, new_ssa_name);
|
| 332 |
|
|
}
|
| 333 |
|
|
}
|
| 334 |
|
|
}
|
| 335 |
|
|
|
| 336 |
|
|
|
| 337 |
|
|
/* Update PHI nodes for a guard of the LOOP.
|
| 338 |
|
|
|
| 339 |
|
|
Input:
|
| 340 |
|
|
- LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
|
| 341 |
|
|
controls whether LOOP is to be executed. GUARD_EDGE is the edge that
|
| 342 |
|
|
originates from the guard-bb, skips LOOP and reaches the (unique) exit
|
| 343 |
|
|
bb of LOOP. This loop-exit-bb is an empty bb with one successor.
|
| 344 |
|
|
We denote this bb NEW_MERGE_BB because before the guard code was added
|
| 345 |
|
|
it had a single predecessor (the LOOP header), and now it became a merge
|
| 346 |
|
|
point of two paths - the path that ends with the LOOP exit-edge, and
|
| 347 |
|
|
the path that ends with GUARD_EDGE.
|
| 348 |
|
|
- NEW_EXIT_BB: New basic block that is added by this function between LOOP
|
| 349 |
|
|
and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
|
| 350 |
|
|
|
| 351 |
|
|
===> The CFG before the guard-code was added:
|
| 352 |
|
|
LOOP_header_bb:
|
| 353 |
|
|
loop_body
|
| 354 |
|
|
if (exit_loop) goto update_bb
|
| 355 |
|
|
else goto LOOP_header_bb
|
| 356 |
|
|
update_bb:
|
| 357 |
|
|
|
| 358 |
|
|
==> The CFG after the guard-code was added:
|
| 359 |
|
|
guard_bb:
|
| 360 |
|
|
if (LOOP_guard_condition) goto new_merge_bb
|
| 361 |
|
|
else goto LOOP_header_bb
|
| 362 |
|
|
LOOP_header_bb:
|
| 363 |
|
|
loop_body
|
| 364 |
|
|
if (exit_loop_condition) goto new_merge_bb
|
| 365 |
|
|
else goto LOOP_header_bb
|
| 366 |
|
|
new_merge_bb:
|
| 367 |
|
|
goto update_bb
|
| 368 |
|
|
update_bb:
|
| 369 |
|
|
|
| 370 |
|
|
==> The CFG after this function:
|
| 371 |
|
|
guard_bb:
|
| 372 |
|
|
if (LOOP_guard_condition) goto new_merge_bb
|
| 373 |
|
|
else goto LOOP_header_bb
|
| 374 |
|
|
LOOP_header_bb:
|
| 375 |
|
|
loop_body
|
| 376 |
|
|
if (exit_loop_condition) goto new_exit_bb
|
| 377 |
|
|
else goto LOOP_header_bb
|
| 378 |
|
|
new_exit_bb:
|
| 379 |
|
|
new_merge_bb:
|
| 380 |
|
|
goto update_bb
|
| 381 |
|
|
update_bb:
|
| 382 |
|
|
|
| 383 |
|
|
This function:
|
| 384 |
|
|
1. creates and updates the relevant phi nodes to account for the new
|
| 385 |
|
|
incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
|
| 386 |
|
|
1.1. Create phi nodes at NEW_MERGE_BB.
|
| 387 |
|
|
1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
|
| 388 |
|
|
UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
|
| 389 |
|
|
2. preserves loop-closed-ssa-form by creating the required phi nodes
|
| 390 |
|
|
at the exit of LOOP (i.e, in NEW_EXIT_BB).
|
| 391 |
|
|
|
| 392 |
|
|
There are two flavors to this function:
|
| 393 |
|
|
|
| 394 |
|
|
slpeel_update_phi_nodes_for_guard1:
|
| 395 |
|
|
Here the guard controls whether we enter or skip LOOP, where LOOP is a
|
| 396 |
|
|
prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
|
| 397 |
|
|
for variables that have phis in the loop header.
|
| 398 |
|
|
|
| 399 |
|
|
slpeel_update_phi_nodes_for_guard2:
|
| 400 |
|
|
Here the guard controls whether we enter or skip LOOP, where LOOP is an
|
| 401 |
|
|
epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
|
| 402 |
|
|
for variables that have phis in the loop exit.
|
| 403 |
|
|
|
| 404 |
|
|
I.E., the overall structure is:
|
| 405 |
|
|
|
| 406 |
|
|
loop1_preheader_bb:
|
| 407 |
|
|
guard1 (goto loop1/merge1_bb)
|
| 408 |
|
|
loop1
|
| 409 |
|
|
loop1_exit_bb:
|
| 410 |
|
|
guard2 (goto merge1_bb/merge2_bb)
|
| 411 |
|
|
merge1_bb
|
| 412 |
|
|
loop2
|
| 413 |
|
|
loop2_exit_bb
|
| 414 |
|
|
merge2_bb
|
| 415 |
|
|
next_bb
|
| 416 |
|
|
|
| 417 |
|
|
slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
|
| 418 |
|
|
loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
|
| 419 |
|
|
that have phis in loop1->header).
|
| 420 |
|
|
|
| 421 |
|
|
slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
|
| 422 |
|
|
loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
|
| 423 |
|
|
that have phis in next_bb). It also adds some of these phis to
|
| 424 |
|
|
loop1_exit_bb.
|
| 425 |
|
|
|
| 426 |
|
|
slpeel_update_phi_nodes_for_guard1 is always called before
|
| 427 |
|
|
slpeel_update_phi_nodes_for_guard2. They are both needed in order
|
| 428 |
|
|
to create correct data-flow and loop-closed-ssa-form.
|
| 429 |
|
|
|
| 430 |
|
|
Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
|
| 431 |
|
|
that change between iterations of a loop (and therefore have a phi-node
|
| 432 |
|
|
at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
|
| 433 |
|
|
phis for variables that are used out of the loop (and therefore have
|
| 434 |
|
|
loop-closed exit phis). Some variables may be both updated between
|
| 435 |
|
|
iterations and used after the loop. This is why in loop1_exit_bb we
|
| 436 |
|
|
may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
|
| 437 |
|
|
and exit phis (created by slpeel_update_phi_nodes_for_guard2).
|
| 438 |
|
|
|
| 439 |
|
|
- IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
|
| 440 |
|
|
an original loop. i.e., we have:
|
| 441 |
|
|
|
| 442 |
|
|
orig_loop
|
| 443 |
|
|
guard_bb (goto LOOP/new_merge)
|
| 444 |
|
|
new_loop <-- LOOP
|
| 445 |
|
|
new_exit
|
| 446 |
|
|
new_merge
|
| 447 |
|
|
next_bb
|
| 448 |
|
|
|
| 449 |
|
|
If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
|
| 450 |
|
|
have:
|
| 451 |
|
|
|
| 452 |
|
|
new_loop
|
| 453 |
|
|
guard_bb (goto LOOP/new_merge)
|
| 454 |
|
|
orig_loop <-- LOOP
|
| 455 |
|
|
new_exit
|
| 456 |
|
|
new_merge
|
| 457 |
|
|
next_bb
|
| 458 |
|
|
|
| 459 |
|
|
The SSA names defined in the original loop have a current
|
| 460 |
|
|
reaching definition that that records the corresponding new
|
| 461 |
|
|
ssa-name used in the new duplicated loop copy.
|
| 462 |
|
|
*/
|
| 463 |
|
|
|
| 464 |
|
|
/* Function slpeel_update_phi_nodes_for_guard1
|
| 465 |
|
|
|
| 466 |
|
|
Input:
|
| 467 |
|
|
- GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
|
| 468 |
|
|
- DEFS - a bitmap of ssa names to mark new names for which we recorded
|
| 469 |
|
|
information.
|
| 470 |
|
|
|
| 471 |
|
|
In the context of the overall structure, we have:
|
| 472 |
|
|
|
| 473 |
|
|
loop1_preheader_bb:
|
| 474 |
|
|
guard1 (goto loop1/merge1_bb)
|
| 475 |
|
|
LOOP-> loop1
|
| 476 |
|
|
loop1_exit_bb:
|
| 477 |
|
|
guard2 (goto merge1_bb/merge2_bb)
|
| 478 |
|
|
merge1_bb
|
| 479 |
|
|
loop2
|
| 480 |
|
|
loop2_exit_bb
|
| 481 |
|
|
merge2_bb
|
| 482 |
|
|
next_bb
|
| 483 |
|
|
|
| 484 |
|
|
For each name updated between loop iterations (i.e - for each name that has
|
| 485 |
|
|
an entry (loop-header) phi in LOOP) we create a new phi in:
|
| 486 |
|
|
1. merge1_bb (to account for the edge from guard1)
|
| 487 |
|
|
2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
|
| 488 |
|
|
*/
|
| 489 |
|
|
|
| 490 |
|
|
static void
|
| 491 |
|
|
slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
|
| 492 |
|
|
bool is_new_loop, basic_block *new_exit_bb,
|
| 493 |
|
|
bitmap *defs)
|
| 494 |
|
|
{
|
| 495 |
|
|
gimple orig_phi, new_phi;
|
| 496 |
|
|
gimple update_phi, update_phi2;
|
| 497 |
|
|
tree guard_arg, loop_arg;
|
| 498 |
|
|
basic_block new_merge_bb = guard_edge->dest;
|
| 499 |
|
|
edge e = EDGE_SUCC (new_merge_bb, 0);
|
| 500 |
|
|
basic_block update_bb = e->dest;
|
| 501 |
|
|
basic_block orig_bb = loop->header;
|
| 502 |
|
|
edge new_exit_e;
|
| 503 |
|
|
tree current_new_name;
|
| 504 |
|
|
gimple_stmt_iterator gsi_orig, gsi_update;
|
| 505 |
|
|
|
| 506 |
|
|
/* Create new bb between loop and new_merge_bb. */
|
| 507 |
|
|
*new_exit_bb = split_edge (single_exit (loop));
|
| 508 |
|
|
|
| 509 |
|
|
new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
|
| 510 |
|
|
|
| 511 |
|
|
for (gsi_orig = gsi_start_phis (orig_bb),
|
| 512 |
|
|
gsi_update = gsi_start_phis (update_bb);
|
| 513 |
|
|
!gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
|
| 514 |
|
|
gsi_next (&gsi_orig), gsi_next (&gsi_update))
|
| 515 |
|
|
{
|
| 516 |
|
|
source_location loop_locus, guard_locus;
|
| 517 |
|
|
orig_phi = gsi_stmt (gsi_orig);
|
| 518 |
|
|
update_phi = gsi_stmt (gsi_update);
|
| 519 |
|
|
|
| 520 |
|
|
/** 1. Handle new-merge-point phis **/
|
| 521 |
|
|
|
| 522 |
|
|
/* 1.1. Generate new phi node in NEW_MERGE_BB: */
|
| 523 |
|
|
new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
|
| 524 |
|
|
new_merge_bb);
|
| 525 |
|
|
|
| 526 |
|
|
/* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
|
| 527 |
|
|
of LOOP. Set the two phi args in NEW_PHI for these edges: */
|
| 528 |
|
|
loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
|
| 529 |
|
|
loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
|
| 530 |
|
|
EDGE_SUCC (loop->latch,
|
| 531 |
|
|
0));
|
| 532 |
|
|
guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
|
| 533 |
|
|
guard_locus
|
| 534 |
|
|
= gimple_phi_arg_location_from_edge (orig_phi,
|
| 535 |
|
|
loop_preheader_edge (loop));
|
| 536 |
|
|
|
| 537 |
|
|
add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
|
| 538 |
|
|
add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
|
| 539 |
|
|
|
| 540 |
|
|
/* 1.3. Update phi in successor block. */
|
| 541 |
|
|
gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
|
| 542 |
|
|
|| PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
|
| 543 |
|
|
adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
|
| 544 |
|
|
update_phi2 = new_phi;
|
| 545 |
|
|
|
| 546 |
|
|
|
| 547 |
|
|
/** 2. Handle loop-closed-ssa-form phis **/
|
| 548 |
|
|
|
| 549 |
|
|
if (!is_gimple_reg (PHI_RESULT (orig_phi)))
|
| 550 |
|
|
continue;
|
| 551 |
|
|
|
| 552 |
|
|
/* 2.1. Generate new phi node in NEW_EXIT_BB: */
|
| 553 |
|
|
new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
|
| 554 |
|
|
*new_exit_bb);
|
| 555 |
|
|
|
| 556 |
|
|
/* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
|
| 557 |
|
|
add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
|
| 558 |
|
|
|
| 559 |
|
|
/* 2.3. Update phi in successor of NEW_EXIT_BB: */
|
| 560 |
|
|
gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
|
| 561 |
|
|
adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
|
| 562 |
|
|
PHI_RESULT (new_phi));
|
| 563 |
|
|
|
| 564 |
|
|
/* 2.4. Record the newly created name with set_current_def.
|
| 565 |
|
|
We want to find a name such that
|
| 566 |
|
|
name = get_current_def (orig_loop_name)
|
| 567 |
|
|
and to set its current definition as follows:
|
| 568 |
|
|
set_current_def (name, new_phi_name)
|
| 569 |
|
|
|
| 570 |
|
|
If LOOP is a new loop then loop_arg is already the name we're
|
| 571 |
|
|
looking for. If LOOP is the original loop, then loop_arg is
|
| 572 |
|
|
the orig_loop_name and the relevant name is recorded in its
|
| 573 |
|
|
current reaching definition. */
|
| 574 |
|
|
if (is_new_loop)
|
| 575 |
|
|
current_new_name = loop_arg;
|
| 576 |
|
|
else
|
| 577 |
|
|
{
|
| 578 |
|
|
current_new_name = get_current_def (loop_arg);
|
| 579 |
|
|
/* current_def is not available only if the variable does not
|
| 580 |
|
|
change inside the loop, in which case we also don't care
|
| 581 |
|
|
about recording a current_def for it because we won't be
|
| 582 |
|
|
trying to create loop-exit-phis for it. */
|
| 583 |
|
|
if (!current_new_name)
|
| 584 |
|
|
continue;
|
| 585 |
|
|
}
|
| 586 |
|
|
gcc_assert (get_current_def (current_new_name) == NULL_TREE);
|
| 587 |
|
|
|
| 588 |
|
|
set_current_def (current_new_name, PHI_RESULT (new_phi));
|
| 589 |
|
|
bitmap_set_bit (*defs, SSA_NAME_VERSION (current_new_name));
|
| 590 |
|
|
}
|
| 591 |
|
|
}
|
| 592 |
|
|
|
| 593 |
|
|
|
| 594 |
|
|
/* Function slpeel_update_phi_nodes_for_guard2
|
| 595 |
|
|
|
| 596 |
|
|
Input:
|
| 597 |
|
|
- GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
|
| 598 |
|
|
|
| 599 |
|
|
In the context of the overall structure, we have:
|
| 600 |
|
|
|
| 601 |
|
|
loop1_preheader_bb:
|
| 602 |
|
|
guard1 (goto loop1/merge1_bb)
|
| 603 |
|
|
loop1
|
| 604 |
|
|
loop1_exit_bb:
|
| 605 |
|
|
guard2 (goto merge1_bb/merge2_bb)
|
| 606 |
|
|
merge1_bb
|
| 607 |
|
|
LOOP-> loop2
|
| 608 |
|
|
loop2_exit_bb
|
| 609 |
|
|
merge2_bb
|
| 610 |
|
|
next_bb
|
| 611 |
|
|
|
| 612 |
|
|
For each name used out side the loop (i.e - for each name that has an exit
|
| 613 |
|
|
phi in next_bb) we create a new phi in:
|
| 614 |
|
|
1. merge2_bb (to account for the edge from guard_bb)
|
| 615 |
|
|
2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
|
| 616 |
|
|
3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
|
| 617 |
|
|
if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
|
| 618 |
|
|
*/
|
| 619 |
|
|
|
| 620 |
|
|
static void
|
| 621 |
|
|
slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
|
| 622 |
|
|
bool is_new_loop, basic_block *new_exit_bb)
|
| 623 |
|
|
{
|
| 624 |
|
|
gimple orig_phi, new_phi;
|
| 625 |
|
|
gimple update_phi, update_phi2;
|
| 626 |
|
|
tree guard_arg, loop_arg;
|
| 627 |
|
|
basic_block new_merge_bb = guard_edge->dest;
|
| 628 |
|
|
edge e = EDGE_SUCC (new_merge_bb, 0);
|
| 629 |
|
|
basic_block update_bb = e->dest;
|
| 630 |
|
|
edge new_exit_e;
|
| 631 |
|
|
tree orig_def, orig_def_new_name;
|
| 632 |
|
|
tree new_name, new_name2;
|
| 633 |
|
|
tree arg;
|
| 634 |
|
|
gimple_stmt_iterator gsi;
|
| 635 |
|
|
|
| 636 |
|
|
/* Create new bb between loop and new_merge_bb. */
|
| 637 |
|
|
*new_exit_bb = split_edge (single_exit (loop));
|
| 638 |
|
|
|
| 639 |
|
|
new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
|
| 640 |
|
|
|
| 641 |
|
|
for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 642 |
|
|
{
|
| 643 |
|
|
update_phi = gsi_stmt (gsi);
|
| 644 |
|
|
orig_phi = update_phi;
|
| 645 |
|
|
orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
|
| 646 |
|
|
/* This loop-closed-phi actually doesn't represent a use
|
| 647 |
|
|
out of the loop - the phi arg is a constant. */
|
| 648 |
|
|
if (TREE_CODE (orig_def) != SSA_NAME)
|
| 649 |
|
|
continue;
|
| 650 |
|
|
orig_def_new_name = get_current_def (orig_def);
|
| 651 |
|
|
arg = NULL_TREE;
|
| 652 |
|
|
|
| 653 |
|
|
/** 1. Handle new-merge-point phis **/
|
| 654 |
|
|
|
| 655 |
|
|
/* 1.1. Generate new phi node in NEW_MERGE_BB: */
|
| 656 |
|
|
new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
|
| 657 |
|
|
new_merge_bb);
|
| 658 |
|
|
|
| 659 |
|
|
/* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
|
| 660 |
|
|
of LOOP. Set the two PHI args in NEW_PHI for these edges: */
|
| 661 |
|
|
new_name = orig_def;
|
| 662 |
|
|
new_name2 = NULL_TREE;
|
| 663 |
|
|
if (orig_def_new_name)
|
| 664 |
|
|
{
|
| 665 |
|
|
new_name = orig_def_new_name;
|
| 666 |
|
|
/* Some variables have both loop-entry-phis and loop-exit-phis.
|
| 667 |
|
|
Such variables were given yet newer names by phis placed in
|
| 668 |
|
|
guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
|
| 669 |
|
|
new_name2 = get_current_def (get_current_def (orig_name)). */
|
| 670 |
|
|
new_name2 = get_current_def (new_name);
|
| 671 |
|
|
}
|
| 672 |
|
|
|
| 673 |
|
|
if (is_new_loop)
|
| 674 |
|
|
{
|
| 675 |
|
|
guard_arg = orig_def;
|
| 676 |
|
|
loop_arg = new_name;
|
| 677 |
|
|
}
|
| 678 |
|
|
else
|
| 679 |
|
|
{
|
| 680 |
|
|
guard_arg = new_name;
|
| 681 |
|
|
loop_arg = orig_def;
|
| 682 |
|
|
}
|
| 683 |
|
|
if (new_name2)
|
| 684 |
|
|
guard_arg = new_name2;
|
| 685 |
|
|
|
| 686 |
|
|
add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
|
| 687 |
|
|
add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
|
| 688 |
|
|
|
| 689 |
|
|
/* 1.3. Update phi in successor block. */
|
| 690 |
|
|
gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
|
| 691 |
|
|
adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
|
| 692 |
|
|
update_phi2 = new_phi;
|
| 693 |
|
|
|
| 694 |
|
|
|
| 695 |
|
|
/** 2. Handle loop-closed-ssa-form phis **/
|
| 696 |
|
|
|
| 697 |
|
|
/* 2.1. Generate new phi node in NEW_EXIT_BB: */
|
| 698 |
|
|
new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
|
| 699 |
|
|
*new_exit_bb);
|
| 700 |
|
|
|
| 701 |
|
|
/* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
|
| 702 |
|
|
add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
|
| 703 |
|
|
|
| 704 |
|
|
/* 2.3. Update phi in successor of NEW_EXIT_BB: */
|
| 705 |
|
|
gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
|
| 706 |
|
|
adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
|
| 707 |
|
|
PHI_RESULT (new_phi));
|
| 708 |
|
|
|
| 709 |
|
|
|
| 710 |
|
|
/** 3. Handle loop-closed-ssa-form phis for first loop **/
|
| 711 |
|
|
|
| 712 |
|
|
/* 3.1. Find the relevant names that need an exit-phi in
|
| 713 |
|
|
GUARD_BB, i.e. names for which
|
| 714 |
|
|
slpeel_update_phi_nodes_for_guard1 had not already created a
|
| 715 |
|
|
phi node. This is the case for names that are used outside
|
| 716 |
|
|
the loop (and therefore need an exit phi) but are not updated
|
| 717 |
|
|
across loop iterations (and therefore don't have a
|
| 718 |
|
|
loop-header-phi).
|
| 719 |
|
|
|
| 720 |
|
|
slpeel_update_phi_nodes_for_guard1 is responsible for
|
| 721 |
|
|
creating loop-exit phis in GUARD_BB for names that have a
|
| 722 |
|
|
loop-header-phi. When such a phi is created we also record
|
| 723 |
|
|
the new name in its current definition. If this new name
|
| 724 |
|
|
exists, then guard_arg was set to this new name (see 1.2
|
| 725 |
|
|
above). Therefore, if guard_arg is not this new name, this
|
| 726 |
|
|
is an indication that an exit-phi in GUARD_BB was not yet
|
| 727 |
|
|
created, so we take care of it here. */
|
| 728 |
|
|
if (guard_arg == new_name2)
|
| 729 |
|
|
continue;
|
| 730 |
|
|
arg = guard_arg;
|
| 731 |
|
|
|
| 732 |
|
|
/* 3.2. Generate new phi node in GUARD_BB: */
|
| 733 |
|
|
new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
|
| 734 |
|
|
guard_edge->src);
|
| 735 |
|
|
|
| 736 |
|
|
/* 3.3. GUARD_BB has one incoming edge: */
|
| 737 |
|
|
gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
|
| 738 |
|
|
add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
|
| 739 |
|
|
UNKNOWN_LOCATION);
|
| 740 |
|
|
|
| 741 |
|
|
/* 3.4. Update phi in successor of GUARD_BB: */
|
| 742 |
|
|
gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
|
| 743 |
|
|
== guard_arg);
|
| 744 |
|
|
adjust_phi_and_debug_stmts (update_phi2, guard_edge,
|
| 745 |
|
|
PHI_RESULT (new_phi));
|
| 746 |
|
|
}
|
| 747 |
|
|
}
|
| 748 |
|
|
|
| 749 |
|
|
|
| 750 |
|
|
/* Make the LOOP iterate NITERS times. This is done by adding a new IV
|
| 751 |
|
|
that starts at zero, increases by one and its limit is NITERS.
|
| 752 |
|
|
|
| 753 |
|
|
Assumption: the exit-condition of LOOP is the last stmt in the loop. */
|
| 754 |
|
|
|
| 755 |
|
|
void
|
| 756 |
|
|
slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
|
| 757 |
|
|
{
|
| 758 |
|
|
tree indx_before_incr, indx_after_incr;
|
| 759 |
|
|
gimple cond_stmt;
|
| 760 |
|
|
gimple orig_cond;
|
| 761 |
|
|
edge exit_edge = single_exit (loop);
|
| 762 |
|
|
gimple_stmt_iterator loop_cond_gsi;
|
| 763 |
|
|
gimple_stmt_iterator incr_gsi;
|
| 764 |
|
|
bool insert_after;
|
| 765 |
|
|
tree init = build_int_cst (TREE_TYPE (niters), 0);
|
| 766 |
|
|
tree step = build_int_cst (TREE_TYPE (niters), 1);
|
| 767 |
|
|
LOC loop_loc;
|
| 768 |
|
|
enum tree_code code;
|
| 769 |
|
|
|
| 770 |
|
|
orig_cond = get_loop_exit_condition (loop);
|
| 771 |
|
|
gcc_assert (orig_cond);
|
| 772 |
|
|
loop_cond_gsi = gsi_for_stmt (orig_cond);
|
| 773 |
|
|
|
| 774 |
|
|
standard_iv_increment_position (loop, &incr_gsi, &insert_after);
|
| 775 |
|
|
create_iv (init, step, NULL_TREE, loop,
|
| 776 |
|
|
&incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
|
| 777 |
|
|
|
| 778 |
|
|
indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
|
| 779 |
|
|
true, NULL_TREE, true,
|
| 780 |
|
|
GSI_SAME_STMT);
|
| 781 |
|
|
niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
|
| 782 |
|
|
true, GSI_SAME_STMT);
|
| 783 |
|
|
|
| 784 |
|
|
code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
|
| 785 |
|
|
cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
|
| 786 |
|
|
NULL_TREE);
|
| 787 |
|
|
|
| 788 |
|
|
gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
|
| 789 |
|
|
|
| 790 |
|
|
/* Remove old loop exit test: */
|
| 791 |
|
|
gsi_remove (&loop_cond_gsi, true);
|
| 792 |
|
|
|
| 793 |
|
|
loop_loc = find_loop_location (loop);
|
| 794 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 795 |
|
|
{
|
| 796 |
|
|
if (loop_loc != UNKNOWN_LOC)
|
| 797 |
|
|
fprintf (dump_file, "\nloop at %s:%d: ",
|
| 798 |
|
|
LOC_FILE (loop_loc), LOC_LINE (loop_loc));
|
| 799 |
|
|
print_gimple_stmt (dump_file, cond_stmt, 0, TDF_SLIM);
|
| 800 |
|
|
}
|
| 801 |
|
|
|
| 802 |
|
|
loop->nb_iterations = niters;
|
| 803 |
|
|
}
|
| 804 |
|
|
|
| 805 |
|
|
|
| 806 |
|
|
/* Given LOOP this function generates a new copy of it and puts it
|
| 807 |
|
|
on E which is either the entry or exit of LOOP. */
|
| 808 |
|
|
|
| 809 |
|
|
struct loop *
|
| 810 |
|
|
slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, edge e)
|
| 811 |
|
|
{
|
| 812 |
|
|
struct loop *new_loop;
|
| 813 |
|
|
basic_block *new_bbs, *bbs;
|
| 814 |
|
|
bool at_exit;
|
| 815 |
|
|
bool was_imm_dom;
|
| 816 |
|
|
basic_block exit_dest;
|
| 817 |
|
|
gimple phi;
|
| 818 |
|
|
tree phi_arg;
|
| 819 |
|
|
edge exit, new_exit;
|
| 820 |
|
|
gimple_stmt_iterator gsi;
|
| 821 |
|
|
|
| 822 |
|
|
at_exit = (e == single_exit (loop));
|
| 823 |
|
|
if (!at_exit && e != loop_preheader_edge (loop))
|
| 824 |
|
|
return NULL;
|
| 825 |
|
|
|
| 826 |
|
|
bbs = get_loop_body (loop);
|
| 827 |
|
|
|
| 828 |
|
|
/* Check whether duplication is possible. */
|
| 829 |
|
|
if (!can_copy_bbs_p (bbs, loop->num_nodes))
|
| 830 |
|
|
{
|
| 831 |
|
|
free (bbs);
|
| 832 |
|
|
return NULL;
|
| 833 |
|
|
}
|
| 834 |
|
|
|
| 835 |
|
|
/* Generate new loop structure. */
|
| 836 |
|
|
new_loop = duplicate_loop (loop, loop_outer (loop));
|
| 837 |
|
|
if (!new_loop)
|
| 838 |
|
|
{
|
| 839 |
|
|
free (bbs);
|
| 840 |
|
|
return NULL;
|
| 841 |
|
|
}
|
| 842 |
|
|
|
| 843 |
|
|
exit_dest = single_exit (loop)->dest;
|
| 844 |
|
|
was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
|
| 845 |
|
|
exit_dest) == loop->header ?
|
| 846 |
|
|
true : false);
|
| 847 |
|
|
|
| 848 |
|
|
new_bbs = XNEWVEC (basic_block, loop->num_nodes);
|
| 849 |
|
|
|
| 850 |
|
|
exit = single_exit (loop);
|
| 851 |
|
|
copy_bbs (bbs, loop->num_nodes, new_bbs,
|
| 852 |
|
|
&exit, 1, &new_exit, NULL,
|
| 853 |
|
|
e->src);
|
| 854 |
|
|
|
| 855 |
|
|
/* Duplicating phi args at exit bbs as coming
|
| 856 |
|
|
also from exit of duplicated loop. */
|
| 857 |
|
|
for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 858 |
|
|
{
|
| 859 |
|
|
phi = gsi_stmt (gsi);
|
| 860 |
|
|
phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop));
|
| 861 |
|
|
if (phi_arg)
|
| 862 |
|
|
{
|
| 863 |
|
|
edge new_loop_exit_edge;
|
| 864 |
|
|
source_location locus;
|
| 865 |
|
|
|
| 866 |
|
|
locus = gimple_phi_arg_location_from_edge (phi, single_exit (loop));
|
| 867 |
|
|
if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
|
| 868 |
|
|
new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
|
| 869 |
|
|
else
|
| 870 |
|
|
new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
|
| 871 |
|
|
|
| 872 |
|
|
add_phi_arg (phi, phi_arg, new_loop_exit_edge, locus);
|
| 873 |
|
|
}
|
| 874 |
|
|
}
|
| 875 |
|
|
|
| 876 |
|
|
if (at_exit) /* Add the loop copy at exit. */
|
| 877 |
|
|
{
|
| 878 |
|
|
redirect_edge_and_branch_force (e, new_loop->header);
|
| 879 |
|
|
PENDING_STMT (e) = NULL;
|
| 880 |
|
|
set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
|
| 881 |
|
|
if (was_imm_dom)
|
| 882 |
|
|
set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
|
| 883 |
|
|
}
|
| 884 |
|
|
else /* Add the copy at entry. */
|
| 885 |
|
|
{
|
| 886 |
|
|
edge new_exit_e;
|
| 887 |
|
|
edge entry_e = loop_preheader_edge (loop);
|
| 888 |
|
|
basic_block preheader = entry_e->src;
|
| 889 |
|
|
|
| 890 |
|
|
if (!flow_bb_inside_loop_p (new_loop,
|
| 891 |
|
|
EDGE_SUCC (new_loop->header, 0)->dest))
|
| 892 |
|
|
new_exit_e = EDGE_SUCC (new_loop->header, 0);
|
| 893 |
|
|
else
|
| 894 |
|
|
new_exit_e = EDGE_SUCC (new_loop->header, 1);
|
| 895 |
|
|
|
| 896 |
|
|
redirect_edge_and_branch_force (new_exit_e, loop->header);
|
| 897 |
|
|
PENDING_STMT (new_exit_e) = NULL;
|
| 898 |
|
|
set_immediate_dominator (CDI_DOMINATORS, loop->header,
|
| 899 |
|
|
new_exit_e->src);
|
| 900 |
|
|
|
| 901 |
|
|
/* We have to add phi args to the loop->header here as coming
|
| 902 |
|
|
from new_exit_e edge. */
|
| 903 |
|
|
for (gsi = gsi_start_phis (loop->header);
|
| 904 |
|
|
!gsi_end_p (gsi);
|
| 905 |
|
|
gsi_next (&gsi))
|
| 906 |
|
|
{
|
| 907 |
|
|
phi = gsi_stmt (gsi);
|
| 908 |
|
|
phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
|
| 909 |
|
|
if (phi_arg)
|
| 910 |
|
|
add_phi_arg (phi, phi_arg, new_exit_e,
|
| 911 |
|
|
gimple_phi_arg_location_from_edge (phi, entry_e));
|
| 912 |
|
|
}
|
| 913 |
|
|
|
| 914 |
|
|
redirect_edge_and_branch_force (entry_e, new_loop->header);
|
| 915 |
|
|
PENDING_STMT (entry_e) = NULL;
|
| 916 |
|
|
set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
|
| 917 |
|
|
}
|
| 918 |
|
|
|
| 919 |
|
|
free (new_bbs);
|
| 920 |
|
|
free (bbs);
|
| 921 |
|
|
|
| 922 |
|
|
return new_loop;
|
| 923 |
|
|
}
|
| 924 |
|
|
|
| 925 |
|
|
|
| 926 |
|
|
/* Given the condition statement COND, put it as the last statement
|
| 927 |
|
|
of GUARD_BB; EXIT_BB is the basic block to skip the loop;
|
| 928 |
|
|
Assumes that this is the single exit of the guarded loop.
|
| 929 |
|
|
Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
|
| 930 |
|
|
|
| 931 |
|
|
static edge
|
| 932 |
|
|
slpeel_add_loop_guard (basic_block guard_bb, tree cond,
|
| 933 |
|
|
gimple_seq cond_expr_stmt_list,
|
| 934 |
|
|
basic_block exit_bb, basic_block dom_bb)
|
| 935 |
|
|
{
|
| 936 |
|
|
gimple_stmt_iterator gsi;
|
| 937 |
|
|
edge new_e, enter_e;
|
| 938 |
|
|
gimple cond_stmt;
|
| 939 |
|
|
gimple_seq gimplify_stmt_list = NULL;
|
| 940 |
|
|
|
| 941 |
|
|
enter_e = EDGE_SUCC (guard_bb, 0);
|
| 942 |
|
|
enter_e->flags &= ~EDGE_FALLTHRU;
|
| 943 |
|
|
enter_e->flags |= EDGE_FALSE_VALUE;
|
| 944 |
|
|
gsi = gsi_last_bb (guard_bb);
|
| 945 |
|
|
|
| 946 |
|
|
cond = force_gimple_operand (cond, &gimplify_stmt_list, true, NULL_TREE);
|
| 947 |
|
|
if (gimplify_stmt_list)
|
| 948 |
|
|
gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
|
| 949 |
|
|
cond_stmt = gimple_build_cond (NE_EXPR,
|
| 950 |
|
|
cond, build_int_cst (TREE_TYPE (cond), 0),
|
| 951 |
|
|
NULL_TREE, NULL_TREE);
|
| 952 |
|
|
if (cond_expr_stmt_list)
|
| 953 |
|
|
gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
|
| 954 |
|
|
|
| 955 |
|
|
gsi = gsi_last_bb (guard_bb);
|
| 956 |
|
|
gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
|
| 957 |
|
|
|
| 958 |
|
|
/* Add new edge to connect guard block to the merge/loop-exit block. */
|
| 959 |
|
|
new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
|
| 960 |
|
|
set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
|
| 961 |
|
|
return new_e;
|
| 962 |
|
|
}
|
| 963 |
|
|
|
| 964 |
|
|
|
| 965 |
|
|
/* This function verifies that the following restrictions apply to LOOP:
|
| 966 |
|
|
(1) it is innermost
|
| 967 |
|
|
(2) it consists of exactly 2 basic blocks - header, and an empty latch.
|
| 968 |
|
|
(3) it is single entry, single exit
|
| 969 |
|
|
(4) its exit condition is the last stmt in the header
|
| 970 |
|
|
(5) E is the entry/exit edge of LOOP.
|
| 971 |
|
|
*/
|
| 972 |
|
|
|
| 973 |
|
|
bool
|
| 974 |
|
|
slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
|
| 975 |
|
|
{
|
| 976 |
|
|
edge exit_e = single_exit (loop);
|
| 977 |
|
|
edge entry_e = loop_preheader_edge (loop);
|
| 978 |
|
|
gimple orig_cond = get_loop_exit_condition (loop);
|
| 979 |
|
|
gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
|
| 980 |
|
|
|
| 981 |
|
|
if (need_ssa_update_p (cfun))
|
| 982 |
|
|
return false;
|
| 983 |
|
|
|
| 984 |
|
|
if (loop->inner
|
| 985 |
|
|
/* All loops have an outer scope; the only case loop->outer is NULL is for
|
| 986 |
|
|
the function itself. */
|
| 987 |
|
|
|| !loop_outer (loop)
|
| 988 |
|
|
|| loop->num_nodes != 2
|
| 989 |
|
|
|| !empty_block_p (loop->latch)
|
| 990 |
|
|
|| !single_exit (loop)
|
| 991 |
|
|
/* Verify that new loop exit condition can be trivially modified. */
|
| 992 |
|
|
|| (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
|
| 993 |
|
|
|| (e != exit_e && e != entry_e))
|
| 994 |
|
|
return false;
|
| 995 |
|
|
|
| 996 |
|
|
return true;
|
| 997 |
|
|
}
|
| 998 |
|
|
|
| 999 |
|
|
#ifdef ENABLE_CHECKING
|
| 1000 |
|
|
static void
|
| 1001 |
|
|
slpeel_verify_cfg_after_peeling (struct loop *first_loop,
|
| 1002 |
|
|
struct loop *second_loop)
|
| 1003 |
|
|
{
|
| 1004 |
|
|
basic_block loop1_exit_bb = single_exit (first_loop)->dest;
|
| 1005 |
|
|
basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
|
| 1006 |
|
|
basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
|
| 1007 |
|
|
|
| 1008 |
|
|
/* A guard that controls whether the second_loop is to be executed or skipped
|
| 1009 |
|
|
is placed in first_loop->exit. first_loop->exit therefore has two
|
| 1010 |
|
|
successors - one is the preheader of second_loop, and the other is a bb
|
| 1011 |
|
|
after second_loop.
|
| 1012 |
|
|
*/
|
| 1013 |
|
|
gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
|
| 1014 |
|
|
|
| 1015 |
|
|
/* 1. Verify that one of the successors of first_loop->exit is the preheader
|
| 1016 |
|
|
of second_loop. */
|
| 1017 |
|
|
|
| 1018 |
|
|
/* The preheader of new_loop is expected to have two predecessors:
|
| 1019 |
|
|
first_loop->exit and the block that precedes first_loop. */
|
| 1020 |
|
|
|
| 1021 |
|
|
gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
|
| 1022 |
|
|
&& ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
|
| 1023 |
|
|
&& EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
|
| 1024 |
|
|
|| (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
|
| 1025 |
|
|
&& EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
|
| 1026 |
|
|
|
| 1027 |
|
|
/* Verify that the other successor of first_loop->exit is after the
|
| 1028 |
|
|
second_loop. */
|
| 1029 |
|
|
/* TODO */
|
| 1030 |
|
|
}
|
| 1031 |
|
|
#endif
|
| 1032 |
|
|
|
| 1033 |
|
|
/* If the run time cost model check determines that vectorization is
|
| 1034 |
|
|
not profitable and hence scalar loop should be generated then set
|
| 1035 |
|
|
FIRST_NITERS to prologue peeled iterations. This will allow all the
|
| 1036 |
|
|
iterations to be executed in the prologue peeled scalar loop. */
|
| 1037 |
|
|
|
| 1038 |
|
|
static void
|
| 1039 |
|
|
set_prologue_iterations (basic_block bb_before_first_loop,
|
| 1040 |
|
|
tree *first_niters,
|
| 1041 |
|
|
struct loop *loop,
|
| 1042 |
|
|
unsigned int th)
|
| 1043 |
|
|
{
|
| 1044 |
|
|
edge e;
|
| 1045 |
|
|
basic_block cond_bb, then_bb;
|
| 1046 |
|
|
tree var, prologue_after_cost_adjust_name;
|
| 1047 |
|
|
gimple_stmt_iterator gsi;
|
| 1048 |
|
|
gimple newphi;
|
| 1049 |
|
|
edge e_true, e_false, e_fallthru;
|
| 1050 |
|
|
gimple cond_stmt;
|
| 1051 |
|
|
gimple_seq gimplify_stmt_list = NULL, stmts = NULL;
|
| 1052 |
|
|
tree cost_pre_condition = NULL_TREE;
|
| 1053 |
|
|
tree scalar_loop_iters =
|
| 1054 |
|
|
unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
|
| 1055 |
|
|
|
| 1056 |
|
|
e = single_pred_edge (bb_before_first_loop);
|
| 1057 |
|
|
cond_bb = split_edge(e);
|
| 1058 |
|
|
|
| 1059 |
|
|
e = single_pred_edge (bb_before_first_loop);
|
| 1060 |
|
|
then_bb = split_edge(e);
|
| 1061 |
|
|
set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
|
| 1062 |
|
|
|
| 1063 |
|
|
e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
|
| 1064 |
|
|
EDGE_FALSE_VALUE);
|
| 1065 |
|
|
set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
|
| 1066 |
|
|
|
| 1067 |
|
|
e_true = EDGE_PRED (then_bb, 0);
|
| 1068 |
|
|
e_true->flags &= ~EDGE_FALLTHRU;
|
| 1069 |
|
|
e_true->flags |= EDGE_TRUE_VALUE;
|
| 1070 |
|
|
|
| 1071 |
|
|
e_fallthru = EDGE_SUCC (then_bb, 0);
|
| 1072 |
|
|
|
| 1073 |
|
|
cost_pre_condition =
|
| 1074 |
|
|
fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
|
| 1075 |
|
|
build_int_cst (TREE_TYPE (scalar_loop_iters), th));
|
| 1076 |
|
|
cost_pre_condition =
|
| 1077 |
|
|
force_gimple_operand (cost_pre_condition, &gimplify_stmt_list,
|
| 1078 |
|
|
true, NULL_TREE);
|
| 1079 |
|
|
cond_stmt = gimple_build_cond (NE_EXPR, cost_pre_condition,
|
| 1080 |
|
|
build_int_cst (TREE_TYPE (cost_pre_condition),
|
| 1081 |
|
|
0), NULL_TREE, NULL_TREE);
|
| 1082 |
|
|
|
| 1083 |
|
|
gsi = gsi_last_bb (cond_bb);
|
| 1084 |
|
|
if (gimplify_stmt_list)
|
| 1085 |
|
|
gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
|
| 1086 |
|
|
|
| 1087 |
|
|
gsi = gsi_last_bb (cond_bb);
|
| 1088 |
|
|
gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
|
| 1089 |
|
|
|
| 1090 |
|
|
var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
|
| 1091 |
|
|
"prologue_after_cost_adjust");
|
| 1092 |
|
|
add_referenced_var (var);
|
| 1093 |
|
|
prologue_after_cost_adjust_name =
|
| 1094 |
|
|
force_gimple_operand (scalar_loop_iters, &stmts, false, var);
|
| 1095 |
|
|
|
| 1096 |
|
|
gsi = gsi_last_bb (then_bb);
|
| 1097 |
|
|
if (stmts)
|
| 1098 |
|
|
gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
|
| 1099 |
|
|
|
| 1100 |
|
|
newphi = create_phi_node (var, bb_before_first_loop);
|
| 1101 |
|
|
add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
|
| 1102 |
|
|
UNKNOWN_LOCATION);
|
| 1103 |
|
|
add_phi_arg (newphi, *first_niters, e_false, UNKNOWN_LOCATION);
|
| 1104 |
|
|
|
| 1105 |
|
|
*first_niters = PHI_RESULT (newphi);
|
| 1106 |
|
|
}
|
| 1107 |
|
|
|
| 1108 |
|
|
/* Function slpeel_tree_peel_loop_to_edge.
|
| 1109 |
|
|
|
| 1110 |
|
|
Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
|
| 1111 |
|
|
that is placed on the entry (exit) edge E of LOOP. After this transformation
|
| 1112 |
|
|
we have two loops one after the other - first-loop iterates FIRST_NITERS
|
| 1113 |
|
|
times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
|
| 1114 |
|
|
If the cost model indicates that it is profitable to emit a scalar
|
| 1115 |
|
|
loop instead of the vector one, then the prolog (epilog) loop will iterate
|
| 1116 |
|
|
for the entire unchanged scalar iterations of the loop.
|
| 1117 |
|
|
|
| 1118 |
|
|
Input:
|
| 1119 |
|
|
- LOOP: the loop to be peeled.
|
| 1120 |
|
|
- E: the exit or entry edge of LOOP.
|
| 1121 |
|
|
If it is the entry edge, we peel the first iterations of LOOP. In this
|
| 1122 |
|
|
case first-loop is LOOP, and second-loop is the newly created loop.
|
| 1123 |
|
|
If it is the exit edge, we peel the last iterations of LOOP. In this
|
| 1124 |
|
|
case, first-loop is the newly created loop, and second-loop is LOOP.
|
| 1125 |
|
|
- NITERS: the number of iterations that LOOP iterates.
|
| 1126 |
|
|
- FIRST_NITERS: the number of iterations that the first-loop should iterate.
|
| 1127 |
|
|
- UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
|
| 1128 |
|
|
for updating the loop bound of the first-loop to FIRST_NITERS. If it
|
| 1129 |
|
|
is false, the caller of this function may want to take care of this
|
| 1130 |
|
|
(this can be useful if we don't want new stmts added to first-loop).
|
| 1131 |
|
|
- TH: cost model profitability threshold of iterations for vectorization.
|
| 1132 |
|
|
- CHECK_PROFITABILITY: specify whether cost model check has not occurred
|
| 1133 |
|
|
during versioning and hence needs to occur during
|
| 1134 |
|
|
prologue generation or whether cost model check
|
| 1135 |
|
|
has not occurred during prologue generation and hence
|
| 1136 |
|
|
needs to occur during epilogue generation.
|
| 1137 |
|
|
|
| 1138 |
|
|
|
| 1139 |
|
|
Output:
|
| 1140 |
|
|
The function returns a pointer to the new loop-copy, or NULL if it failed
|
| 1141 |
|
|
to perform the transformation.
|
| 1142 |
|
|
|
| 1143 |
|
|
The function generates two if-then-else guards: one before the first loop,
|
| 1144 |
|
|
and the other before the second loop:
|
| 1145 |
|
|
The first guard is:
|
| 1146 |
|
|
if (FIRST_NITERS == 0) then skip the first loop,
|
| 1147 |
|
|
and go directly to the second loop.
|
| 1148 |
|
|
The second guard is:
|
| 1149 |
|
|
if (FIRST_NITERS == NITERS) then skip the second loop.
|
| 1150 |
|
|
|
| 1151 |
|
|
If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
|
| 1152 |
|
|
then the generated condition is combined with COND_EXPR and the
|
| 1153 |
|
|
statements in COND_EXPR_STMT_LIST are emitted together with it.
|
| 1154 |
|
|
|
| 1155 |
|
|
FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
|
| 1156 |
|
|
FORNOW the resulting code will not be in loop-closed-ssa form.
|
| 1157 |
|
|
*/
|
| 1158 |
|
|
|
| 1159 |
|
|
static struct loop*
|
| 1160 |
|
|
slpeel_tree_peel_loop_to_edge (struct loop *loop,
|
| 1161 |
|
|
edge e, tree *first_niters,
|
| 1162 |
|
|
tree niters, bool update_first_loop_count,
|
| 1163 |
|
|
unsigned int th, bool check_profitability,
|
| 1164 |
|
|
tree cond_expr, gimple_seq cond_expr_stmt_list)
|
| 1165 |
|
|
{
|
| 1166 |
|
|
struct loop *new_loop = NULL, *first_loop, *second_loop;
|
| 1167 |
|
|
edge skip_e;
|
| 1168 |
|
|
tree pre_condition = NULL_TREE;
|
| 1169 |
|
|
bitmap definitions;
|
| 1170 |
|
|
basic_block bb_before_second_loop, bb_after_second_loop;
|
| 1171 |
|
|
basic_block bb_before_first_loop;
|
| 1172 |
|
|
basic_block bb_between_loops;
|
| 1173 |
|
|
basic_block new_exit_bb;
|
| 1174 |
|
|
gimple_stmt_iterator gsi;
|
| 1175 |
|
|
edge exit_e = single_exit (loop);
|
| 1176 |
|
|
LOC loop_loc;
|
| 1177 |
|
|
tree cost_pre_condition = NULL_TREE;
|
| 1178 |
|
|
|
| 1179 |
|
|
if (!slpeel_can_duplicate_loop_p (loop, e))
|
| 1180 |
|
|
return NULL;
|
| 1181 |
|
|
|
| 1182 |
|
|
/* We have to initialize cfg_hooks. Then, when calling
|
| 1183 |
|
|
cfg_hooks->split_edge, the function tree_split_edge
|
| 1184 |
|
|
is actually called and, when calling cfg_hooks->duplicate_block,
|
| 1185 |
|
|
the function tree_duplicate_bb is called. */
|
| 1186 |
|
|
gimple_register_cfg_hooks ();
|
| 1187 |
|
|
|
| 1188 |
|
|
/* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
|
| 1189 |
|
|
in the exit bb and rename all the uses after the loop. This simplifies
|
| 1190 |
|
|
the *guard[12] routines, which assume loop closed SSA form for all PHIs
|
| 1191 |
|
|
(but normally loop closed SSA form doesn't require virtual PHIs to be
|
| 1192 |
|
|
in the same form). Doing this early simplifies the checking what
|
| 1193 |
|
|
uses should be renamed. */
|
| 1194 |
|
|
for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 1195 |
|
|
if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
|
| 1196 |
|
|
{
|
| 1197 |
|
|
gimple phi = gsi_stmt (gsi);
|
| 1198 |
|
|
for (gsi = gsi_start_phis (exit_e->dest);
|
| 1199 |
|
|
!gsi_end_p (gsi); gsi_next (&gsi))
|
| 1200 |
|
|
if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
|
| 1201 |
|
|
break;
|
| 1202 |
|
|
if (gsi_end_p (gsi))
|
| 1203 |
|
|
{
|
| 1204 |
|
|
gimple new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (phi)),
|
| 1205 |
|
|
exit_e->dest);
|
| 1206 |
|
|
tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
|
| 1207 |
|
|
imm_use_iterator imm_iter;
|
| 1208 |
|
|
gimple stmt;
|
| 1209 |
|
|
tree new_vop = make_ssa_name (SSA_NAME_VAR (PHI_RESULT (phi)),
|
| 1210 |
|
|
new_phi);
|
| 1211 |
|
|
use_operand_p use_p;
|
| 1212 |
|
|
|
| 1213 |
|
|
add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
|
| 1214 |
|
|
gimple_phi_set_result (new_phi, new_vop);
|
| 1215 |
|
|
FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
|
| 1216 |
|
|
if (stmt != new_phi && gimple_bb (stmt) != loop->header)
|
| 1217 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
|
| 1218 |
|
|
SET_USE (use_p, new_vop);
|
| 1219 |
|
|
}
|
| 1220 |
|
|
break;
|
| 1221 |
|
|
}
|
| 1222 |
|
|
|
| 1223 |
|
|
/* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
|
| 1224 |
|
|
Resulting CFG would be:
|
| 1225 |
|
|
|
| 1226 |
|
|
first_loop:
|
| 1227 |
|
|
do {
|
| 1228 |
|
|
} while ...
|
| 1229 |
|
|
|
| 1230 |
|
|
second_loop:
|
| 1231 |
|
|
do {
|
| 1232 |
|
|
} while ...
|
| 1233 |
|
|
|
| 1234 |
|
|
orig_exit_bb:
|
| 1235 |
|
|
*/
|
| 1236 |
|
|
|
| 1237 |
|
|
if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e)))
|
| 1238 |
|
|
{
|
| 1239 |
|
|
loop_loc = find_loop_location (loop);
|
| 1240 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1241 |
|
|
{
|
| 1242 |
|
|
if (loop_loc != UNKNOWN_LOC)
|
| 1243 |
|
|
fprintf (dump_file, "\n%s:%d: note: ",
|
| 1244 |
|
|
LOC_FILE (loop_loc), LOC_LINE (loop_loc));
|
| 1245 |
|
|
fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n");
|
| 1246 |
|
|
}
|
| 1247 |
|
|
return NULL;
|
| 1248 |
|
|
}
|
| 1249 |
|
|
|
| 1250 |
|
|
if (MAY_HAVE_DEBUG_STMTS)
|
| 1251 |
|
|
{
|
| 1252 |
|
|
gcc_assert (!adjust_vec);
|
| 1253 |
|
|
adjust_vec = VEC_alloc (adjust_info, stack, 32);
|
| 1254 |
|
|
}
|
| 1255 |
|
|
|
| 1256 |
|
|
if (e == exit_e)
|
| 1257 |
|
|
{
|
| 1258 |
|
|
/* NEW_LOOP was placed after LOOP. */
|
| 1259 |
|
|
first_loop = loop;
|
| 1260 |
|
|
second_loop = new_loop;
|
| 1261 |
|
|
}
|
| 1262 |
|
|
else
|
| 1263 |
|
|
{
|
| 1264 |
|
|
/* NEW_LOOP was placed before LOOP. */
|
| 1265 |
|
|
first_loop = new_loop;
|
| 1266 |
|
|
second_loop = loop;
|
| 1267 |
|
|
}
|
| 1268 |
|
|
|
| 1269 |
|
|
definitions = ssa_names_to_replace ();
|
| 1270 |
|
|
slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
|
| 1271 |
|
|
rename_variables_in_loop (new_loop);
|
| 1272 |
|
|
|
| 1273 |
|
|
|
| 1274 |
|
|
/* 2. Add the guard code in one of the following ways:
|
| 1275 |
|
|
|
| 1276 |
|
|
2.a Add the guard that controls whether the first loop is executed.
|
| 1277 |
|
|
This occurs when this function is invoked for prologue or epilogue
|
| 1278 |
|
|
generation and when the cost model check can be done at compile time.
|
| 1279 |
|
|
|
| 1280 |
|
|
Resulting CFG would be:
|
| 1281 |
|
|
|
| 1282 |
|
|
bb_before_first_loop:
|
| 1283 |
|
|
if (FIRST_NITERS == 0) GOTO bb_before_second_loop
|
| 1284 |
|
|
GOTO first-loop
|
| 1285 |
|
|
|
| 1286 |
|
|
first_loop:
|
| 1287 |
|
|
do {
|
| 1288 |
|
|
} while ...
|
| 1289 |
|
|
|
| 1290 |
|
|
bb_before_second_loop:
|
| 1291 |
|
|
|
| 1292 |
|
|
second_loop:
|
| 1293 |
|
|
do {
|
| 1294 |
|
|
} while ...
|
| 1295 |
|
|
|
| 1296 |
|
|
orig_exit_bb:
|
| 1297 |
|
|
|
| 1298 |
|
|
2.b Add the cost model check that allows the prologue
|
| 1299 |
|
|
to iterate for the entire unchanged scalar
|
| 1300 |
|
|
iterations of the loop in the event that the cost
|
| 1301 |
|
|
model indicates that the scalar loop is more
|
| 1302 |
|
|
profitable than the vector one. This occurs when
|
| 1303 |
|
|
this function is invoked for prologue generation
|
| 1304 |
|
|
and the cost model check needs to be done at run
|
| 1305 |
|
|
time.
|
| 1306 |
|
|
|
| 1307 |
|
|
Resulting CFG after prologue peeling would be:
|
| 1308 |
|
|
|
| 1309 |
|
|
if (scalar_loop_iterations <= th)
|
| 1310 |
|
|
FIRST_NITERS = scalar_loop_iterations
|
| 1311 |
|
|
|
| 1312 |
|
|
bb_before_first_loop:
|
| 1313 |
|
|
if (FIRST_NITERS == 0) GOTO bb_before_second_loop
|
| 1314 |
|
|
GOTO first-loop
|
| 1315 |
|
|
|
| 1316 |
|
|
first_loop:
|
| 1317 |
|
|
do {
|
| 1318 |
|
|
} while ...
|
| 1319 |
|
|
|
| 1320 |
|
|
bb_before_second_loop:
|
| 1321 |
|
|
|
| 1322 |
|
|
second_loop:
|
| 1323 |
|
|
do {
|
| 1324 |
|
|
} while ...
|
| 1325 |
|
|
|
| 1326 |
|
|
orig_exit_bb:
|
| 1327 |
|
|
|
| 1328 |
|
|
2.c Add the cost model check that allows the epilogue
|
| 1329 |
|
|
to iterate for the entire unchanged scalar
|
| 1330 |
|
|
iterations of the loop in the event that the cost
|
| 1331 |
|
|
model indicates that the scalar loop is more
|
| 1332 |
|
|
profitable than the vector one. This occurs when
|
| 1333 |
|
|
this function is invoked for epilogue generation
|
| 1334 |
|
|
and the cost model check needs to be done at run
|
| 1335 |
|
|
time. This check is combined with any pre-existing
|
| 1336 |
|
|
check in COND_EXPR to avoid versioning.
|
| 1337 |
|
|
|
| 1338 |
|
|
Resulting CFG after prologue peeling would be:
|
| 1339 |
|
|
|
| 1340 |
|
|
bb_before_first_loop:
|
| 1341 |
|
|
if ((scalar_loop_iterations <= th)
|
| 1342 |
|
|
||
|
| 1343 |
|
|
FIRST_NITERS == 0) GOTO bb_before_second_loop
|
| 1344 |
|
|
GOTO first-loop
|
| 1345 |
|
|
|
| 1346 |
|
|
first_loop:
|
| 1347 |
|
|
do {
|
| 1348 |
|
|
} while ...
|
| 1349 |
|
|
|
| 1350 |
|
|
bb_before_second_loop:
|
| 1351 |
|
|
|
| 1352 |
|
|
second_loop:
|
| 1353 |
|
|
do {
|
| 1354 |
|
|
} while ...
|
| 1355 |
|
|
|
| 1356 |
|
|
orig_exit_bb:
|
| 1357 |
|
|
*/
|
| 1358 |
|
|
|
| 1359 |
|
|
bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
|
| 1360 |
|
|
bb_before_second_loop = split_edge (single_exit (first_loop));
|
| 1361 |
|
|
|
| 1362 |
|
|
/* Epilogue peeling. */
|
| 1363 |
|
|
if (!update_first_loop_count)
|
| 1364 |
|
|
{
|
| 1365 |
|
|
pre_condition =
|
| 1366 |
|
|
fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
|
| 1367 |
|
|
build_int_cst (TREE_TYPE (*first_niters), 0));
|
| 1368 |
|
|
if (check_profitability)
|
| 1369 |
|
|
{
|
| 1370 |
|
|
tree scalar_loop_iters
|
| 1371 |
|
|
= unshare_expr (LOOP_VINFO_NITERS_UNCHANGED
|
| 1372 |
|
|
(loop_vec_info_for_loop (loop)));
|
| 1373 |
|
|
cost_pre_condition =
|
| 1374 |
|
|
fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
|
| 1375 |
|
|
build_int_cst (TREE_TYPE (scalar_loop_iters), th));
|
| 1376 |
|
|
|
| 1377 |
|
|
pre_condition = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
|
| 1378 |
|
|
cost_pre_condition, pre_condition);
|
| 1379 |
|
|
}
|
| 1380 |
|
|
if (cond_expr)
|
| 1381 |
|
|
{
|
| 1382 |
|
|
pre_condition =
|
| 1383 |
|
|
fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
|
| 1384 |
|
|
pre_condition,
|
| 1385 |
|
|
fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
|
| 1386 |
|
|
cond_expr));
|
| 1387 |
|
|
}
|
| 1388 |
|
|
}
|
| 1389 |
|
|
|
| 1390 |
|
|
/* Prologue peeling. */
|
| 1391 |
|
|
else
|
| 1392 |
|
|
{
|
| 1393 |
|
|
if (check_profitability)
|
| 1394 |
|
|
set_prologue_iterations (bb_before_first_loop, first_niters,
|
| 1395 |
|
|
loop, th);
|
| 1396 |
|
|
|
| 1397 |
|
|
pre_condition =
|
| 1398 |
|
|
fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
|
| 1399 |
|
|
build_int_cst (TREE_TYPE (*first_niters), 0));
|
| 1400 |
|
|
}
|
| 1401 |
|
|
|
| 1402 |
|
|
skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
|
| 1403 |
|
|
cond_expr_stmt_list,
|
| 1404 |
|
|
bb_before_second_loop, bb_before_first_loop);
|
| 1405 |
|
|
slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
|
| 1406 |
|
|
first_loop == new_loop,
|
| 1407 |
|
|
&new_exit_bb, &definitions);
|
| 1408 |
|
|
|
| 1409 |
|
|
|
| 1410 |
|
|
/* 3. Add the guard that controls whether the second loop is executed.
|
| 1411 |
|
|
Resulting CFG would be:
|
| 1412 |
|
|
|
| 1413 |
|
|
bb_before_first_loop:
|
| 1414 |
|
|
if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
|
| 1415 |
|
|
GOTO first-loop
|
| 1416 |
|
|
|
| 1417 |
|
|
first_loop:
|
| 1418 |
|
|
do {
|
| 1419 |
|
|
} while ...
|
| 1420 |
|
|
|
| 1421 |
|
|
bb_between_loops:
|
| 1422 |
|
|
if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
|
| 1423 |
|
|
GOTO bb_before_second_loop
|
| 1424 |
|
|
|
| 1425 |
|
|
bb_before_second_loop:
|
| 1426 |
|
|
|
| 1427 |
|
|
second_loop:
|
| 1428 |
|
|
do {
|
| 1429 |
|
|
} while ...
|
| 1430 |
|
|
|
| 1431 |
|
|
bb_after_second_loop:
|
| 1432 |
|
|
|
| 1433 |
|
|
orig_exit_bb:
|
| 1434 |
|
|
*/
|
| 1435 |
|
|
|
| 1436 |
|
|
bb_between_loops = new_exit_bb;
|
| 1437 |
|
|
bb_after_second_loop = split_edge (single_exit (second_loop));
|
| 1438 |
|
|
|
| 1439 |
|
|
pre_condition =
|
| 1440 |
|
|
fold_build2 (EQ_EXPR, boolean_type_node, *first_niters, niters);
|
| 1441 |
|
|
skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
|
| 1442 |
|
|
bb_after_second_loop, bb_before_first_loop);
|
| 1443 |
|
|
slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
|
| 1444 |
|
|
second_loop == new_loop, &new_exit_bb);
|
| 1445 |
|
|
|
| 1446 |
|
|
/* 4. Make first-loop iterate FIRST_NITERS times, if requested.
|
| 1447 |
|
|
*/
|
| 1448 |
|
|
if (update_first_loop_count)
|
| 1449 |
|
|
slpeel_make_loop_iterate_ntimes (first_loop, *first_niters);
|
| 1450 |
|
|
|
| 1451 |
|
|
BITMAP_FREE (definitions);
|
| 1452 |
|
|
delete_update_ssa ();
|
| 1453 |
|
|
|
| 1454 |
|
|
adjust_vec_debug_stmts ();
|
| 1455 |
|
|
|
| 1456 |
|
|
return new_loop;
|
| 1457 |
|
|
}
|
| 1458 |
|
|
|
| 1459 |
|
|
/* Function vect_get_loop_location.
|
| 1460 |
|
|
|
| 1461 |
|
|
Extract the location of the loop in the source code.
|
| 1462 |
|
|
If the loop is not well formed for vectorization, an estimated
|
| 1463 |
|
|
location is calculated.
|
| 1464 |
|
|
Return the loop location if succeed and NULL if not. */
|
| 1465 |
|
|
|
| 1466 |
|
|
LOC
|
| 1467 |
|
|
find_loop_location (struct loop *loop)
|
| 1468 |
|
|
{
|
| 1469 |
|
|
gimple stmt = NULL;
|
| 1470 |
|
|
basic_block bb;
|
| 1471 |
|
|
gimple_stmt_iterator si;
|
| 1472 |
|
|
|
| 1473 |
|
|
if (!loop)
|
| 1474 |
|
|
return UNKNOWN_LOC;
|
| 1475 |
|
|
|
| 1476 |
|
|
stmt = get_loop_exit_condition (loop);
|
| 1477 |
|
|
|
| 1478 |
|
|
if (stmt && gimple_location (stmt) != UNKNOWN_LOC)
|
| 1479 |
|
|
return gimple_location (stmt);
|
| 1480 |
|
|
|
| 1481 |
|
|
/* If we got here the loop is probably not "well formed",
|
| 1482 |
|
|
try to estimate the loop location */
|
| 1483 |
|
|
|
| 1484 |
|
|
if (!loop->header)
|
| 1485 |
|
|
return UNKNOWN_LOC;
|
| 1486 |
|
|
|
| 1487 |
|
|
bb = loop->header;
|
| 1488 |
|
|
|
| 1489 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
| 1490 |
|
|
{
|
| 1491 |
|
|
stmt = gsi_stmt (si);
|
| 1492 |
|
|
if (gimple_location (stmt) != UNKNOWN_LOC)
|
| 1493 |
|
|
return gimple_location (stmt);
|
| 1494 |
|
|
}
|
| 1495 |
|
|
|
| 1496 |
|
|
return UNKNOWN_LOC;
|
| 1497 |
|
|
}
|
| 1498 |
|
|
|
| 1499 |
|
|
|
| 1500 |
|
|
/* This function builds ni_name = number of iterations loop executes
|
| 1501 |
|
|
on the loop preheader. If SEQ is given the stmt is instead emitted
|
| 1502 |
|
|
there. */
|
| 1503 |
|
|
|
| 1504 |
|
|
static tree
|
| 1505 |
|
|
vect_build_loop_niters (loop_vec_info loop_vinfo, gimple_seq seq)
|
| 1506 |
|
|
{
|
| 1507 |
|
|
tree ni_name, var;
|
| 1508 |
|
|
gimple_seq stmts = NULL;
|
| 1509 |
|
|
edge pe;
|
| 1510 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 1511 |
|
|
tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
|
| 1512 |
|
|
|
| 1513 |
|
|
var = create_tmp_var (TREE_TYPE (ni), "niters");
|
| 1514 |
|
|
add_referenced_var (var);
|
| 1515 |
|
|
ni_name = force_gimple_operand (ni, &stmts, false, var);
|
| 1516 |
|
|
|
| 1517 |
|
|
pe = loop_preheader_edge (loop);
|
| 1518 |
|
|
if (stmts)
|
| 1519 |
|
|
{
|
| 1520 |
|
|
if (seq)
|
| 1521 |
|
|
gimple_seq_add_seq (&seq, stmts);
|
| 1522 |
|
|
else
|
| 1523 |
|
|
{
|
| 1524 |
|
|
basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
|
| 1525 |
|
|
gcc_assert (!new_bb);
|
| 1526 |
|
|
}
|
| 1527 |
|
|
}
|
| 1528 |
|
|
|
| 1529 |
|
|
return ni_name;
|
| 1530 |
|
|
}
|
| 1531 |
|
|
|
| 1532 |
|
|
|
| 1533 |
|
|
/* This function generates the following statements:
|
| 1534 |
|
|
|
| 1535 |
|
|
ni_name = number of iterations loop executes
|
| 1536 |
|
|
ratio = ni_name / vf
|
| 1537 |
|
|
ratio_mult_vf_name = ratio * vf
|
| 1538 |
|
|
|
| 1539 |
|
|
and places them at the loop preheader edge or in COND_EXPR_STMT_LIST
|
| 1540 |
|
|
if that is non-NULL. */
|
| 1541 |
|
|
|
| 1542 |
|
|
static void
|
| 1543 |
|
|
vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
|
| 1544 |
|
|
tree *ni_name_ptr,
|
| 1545 |
|
|
tree *ratio_mult_vf_name_ptr,
|
| 1546 |
|
|
tree *ratio_name_ptr,
|
| 1547 |
|
|
gimple_seq cond_expr_stmt_list)
|
| 1548 |
|
|
{
|
| 1549 |
|
|
|
| 1550 |
|
|
edge pe;
|
| 1551 |
|
|
basic_block new_bb;
|
| 1552 |
|
|
gimple_seq stmts;
|
| 1553 |
|
|
tree ni_name, ni_minus_gap_name;
|
| 1554 |
|
|
tree var;
|
| 1555 |
|
|
tree ratio_name;
|
| 1556 |
|
|
tree ratio_mult_vf_name;
|
| 1557 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 1558 |
|
|
tree ni = LOOP_VINFO_NITERS (loop_vinfo);
|
| 1559 |
|
|
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
| 1560 |
|
|
tree log_vf;
|
| 1561 |
|
|
|
| 1562 |
|
|
pe = loop_preheader_edge (loop);
|
| 1563 |
|
|
|
| 1564 |
|
|
/* Generate temporary variable that contains
|
| 1565 |
|
|
number of iterations loop executes. */
|
| 1566 |
|
|
|
| 1567 |
|
|
ni_name = vect_build_loop_niters (loop_vinfo, cond_expr_stmt_list);
|
| 1568 |
|
|
log_vf = build_int_cst (TREE_TYPE (ni), exact_log2 (vf));
|
| 1569 |
|
|
|
| 1570 |
|
|
/* If epilogue loop is required because of data accesses with gaps, we
|
| 1571 |
|
|
subtract one iteration from the total number of iterations here for
|
| 1572 |
|
|
correct calculation of RATIO. */
|
| 1573 |
|
|
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
|
| 1574 |
|
|
{
|
| 1575 |
|
|
ni_minus_gap_name = fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
|
| 1576 |
|
|
ni_name,
|
| 1577 |
|
|
build_one_cst (TREE_TYPE (ni_name)));
|
| 1578 |
|
|
if (!is_gimple_val (ni_minus_gap_name))
|
| 1579 |
|
|
{
|
| 1580 |
|
|
var = create_tmp_var (TREE_TYPE (ni), "ni_gap");
|
| 1581 |
|
|
add_referenced_var (var);
|
| 1582 |
|
|
|
| 1583 |
|
|
stmts = NULL;
|
| 1584 |
|
|
ni_minus_gap_name = force_gimple_operand (ni_minus_gap_name, &stmts,
|
| 1585 |
|
|
true, var);
|
| 1586 |
|
|
if (cond_expr_stmt_list)
|
| 1587 |
|
|
gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
|
| 1588 |
|
|
else
|
| 1589 |
|
|
{
|
| 1590 |
|
|
pe = loop_preheader_edge (loop);
|
| 1591 |
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
|
| 1592 |
|
|
gcc_assert (!new_bb);
|
| 1593 |
|
|
}
|
| 1594 |
|
|
}
|
| 1595 |
|
|
}
|
| 1596 |
|
|
else
|
| 1597 |
|
|
ni_minus_gap_name = ni_name;
|
| 1598 |
|
|
|
| 1599 |
|
|
/* Create: ratio = ni >> log2(vf) */
|
| 1600 |
|
|
|
| 1601 |
|
|
ratio_name = fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_minus_gap_name),
|
| 1602 |
|
|
ni_minus_gap_name, log_vf);
|
| 1603 |
|
|
if (!is_gimple_val (ratio_name))
|
| 1604 |
|
|
{
|
| 1605 |
|
|
var = create_tmp_var (TREE_TYPE (ni), "bnd");
|
| 1606 |
|
|
add_referenced_var (var);
|
| 1607 |
|
|
|
| 1608 |
|
|
stmts = NULL;
|
| 1609 |
|
|
ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
|
| 1610 |
|
|
if (cond_expr_stmt_list)
|
| 1611 |
|
|
gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
|
| 1612 |
|
|
else
|
| 1613 |
|
|
{
|
| 1614 |
|
|
pe = loop_preheader_edge (loop);
|
| 1615 |
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
|
| 1616 |
|
|
gcc_assert (!new_bb);
|
| 1617 |
|
|
}
|
| 1618 |
|
|
}
|
| 1619 |
|
|
|
| 1620 |
|
|
/* Create: ratio_mult_vf = ratio << log2 (vf). */
|
| 1621 |
|
|
|
| 1622 |
|
|
ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
|
| 1623 |
|
|
ratio_name, log_vf);
|
| 1624 |
|
|
if (!is_gimple_val (ratio_mult_vf_name))
|
| 1625 |
|
|
{
|
| 1626 |
|
|
var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
|
| 1627 |
|
|
add_referenced_var (var);
|
| 1628 |
|
|
|
| 1629 |
|
|
stmts = NULL;
|
| 1630 |
|
|
ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
|
| 1631 |
|
|
true, var);
|
| 1632 |
|
|
if (cond_expr_stmt_list)
|
| 1633 |
|
|
gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
|
| 1634 |
|
|
else
|
| 1635 |
|
|
{
|
| 1636 |
|
|
pe = loop_preheader_edge (loop);
|
| 1637 |
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
|
| 1638 |
|
|
gcc_assert (!new_bb);
|
| 1639 |
|
|
}
|
| 1640 |
|
|
}
|
| 1641 |
|
|
|
| 1642 |
|
|
*ni_name_ptr = ni_name;
|
| 1643 |
|
|
*ratio_mult_vf_name_ptr = ratio_mult_vf_name;
|
| 1644 |
|
|
*ratio_name_ptr = ratio_name;
|
| 1645 |
|
|
|
| 1646 |
|
|
return;
|
| 1647 |
|
|
}
|
| 1648 |
|
|
|
| 1649 |
|
|
/* Function vect_can_advance_ivs_p
|
| 1650 |
|
|
|
| 1651 |
|
|
In case the number of iterations that LOOP iterates is unknown at compile
|
| 1652 |
|
|
time, an epilog loop will be generated, and the loop induction variables
|
| 1653 |
|
|
(IVs) will be "advanced" to the value they are supposed to take just before
|
| 1654 |
|
|
the epilog loop. Here we check that the access function of the loop IVs
|
| 1655 |
|
|
and the expression that represents the loop bound are simple enough.
|
| 1656 |
|
|
These restrictions will be relaxed in the future. */
|
| 1657 |
|
|
|
| 1658 |
|
|
bool
|
| 1659 |
|
|
vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
|
| 1660 |
|
|
{
|
| 1661 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 1662 |
|
|
basic_block bb = loop->header;
|
| 1663 |
|
|
gimple phi;
|
| 1664 |
|
|
gimple_stmt_iterator gsi;
|
| 1665 |
|
|
|
| 1666 |
|
|
/* Analyze phi functions of the loop header. */
|
| 1667 |
|
|
|
| 1668 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1669 |
|
|
fprintf (vect_dump, "vect_can_advance_ivs_p:");
|
| 1670 |
|
|
|
| 1671 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 1672 |
|
|
{
|
| 1673 |
|
|
tree access_fn = NULL;
|
| 1674 |
|
|
tree evolution_part;
|
| 1675 |
|
|
|
| 1676 |
|
|
phi = gsi_stmt (gsi);
|
| 1677 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1678 |
|
|
{
|
| 1679 |
|
|
fprintf (vect_dump, "Analyze phi: ");
|
| 1680 |
|
|
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
|
| 1681 |
|
|
}
|
| 1682 |
|
|
|
| 1683 |
|
|
/* Skip virtual phi's. The data dependences that are associated with
|
| 1684 |
|
|
virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
|
| 1685 |
|
|
|
| 1686 |
|
|
if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
|
| 1687 |
|
|
{
|
| 1688 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1689 |
|
|
fprintf (vect_dump, "virtual phi. skip.");
|
| 1690 |
|
|
continue;
|
| 1691 |
|
|
}
|
| 1692 |
|
|
|
| 1693 |
|
|
/* Skip reduction phis. */
|
| 1694 |
|
|
|
| 1695 |
|
|
if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
|
| 1696 |
|
|
{
|
| 1697 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1698 |
|
|
fprintf (vect_dump, "reduc phi. skip.");
|
| 1699 |
|
|
continue;
|
| 1700 |
|
|
}
|
| 1701 |
|
|
|
| 1702 |
|
|
/* Analyze the evolution function. */
|
| 1703 |
|
|
|
| 1704 |
|
|
access_fn = instantiate_parameters
|
| 1705 |
|
|
(loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
|
| 1706 |
|
|
|
| 1707 |
|
|
if (!access_fn)
|
| 1708 |
|
|
{
|
| 1709 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1710 |
|
|
fprintf (vect_dump, "No Access function.");
|
| 1711 |
|
|
return false;
|
| 1712 |
|
|
}
|
| 1713 |
|
|
|
| 1714 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1715 |
|
|
{
|
| 1716 |
|
|
fprintf (vect_dump, "Access function of PHI: ");
|
| 1717 |
|
|
print_generic_expr (vect_dump, access_fn, TDF_SLIM);
|
| 1718 |
|
|
}
|
| 1719 |
|
|
|
| 1720 |
|
|
evolution_part = evolution_part_in_loop_num (access_fn, loop->num);
|
| 1721 |
|
|
|
| 1722 |
|
|
if (evolution_part == NULL_TREE)
|
| 1723 |
|
|
{
|
| 1724 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1725 |
|
|
fprintf (vect_dump, "No evolution.");
|
| 1726 |
|
|
return false;
|
| 1727 |
|
|
}
|
| 1728 |
|
|
|
| 1729 |
|
|
/* FORNOW: We do not transform initial conditions of IVs
|
| 1730 |
|
|
which evolution functions are a polynomial of degree >= 2. */
|
| 1731 |
|
|
|
| 1732 |
|
|
if (tree_is_chrec (evolution_part))
|
| 1733 |
|
|
return false;
|
| 1734 |
|
|
}
|
| 1735 |
|
|
|
| 1736 |
|
|
return true;
|
| 1737 |
|
|
}
|
| 1738 |
|
|
|
| 1739 |
|
|
|
| 1740 |
|
|
/* Function vect_update_ivs_after_vectorizer.
|
| 1741 |
|
|
|
| 1742 |
|
|
"Advance" the induction variables of LOOP to the value they should take
|
| 1743 |
|
|
after the execution of LOOP. This is currently necessary because the
|
| 1744 |
|
|
vectorizer does not handle induction variables that are used after the
|
| 1745 |
|
|
loop. Such a situation occurs when the last iterations of LOOP are
|
| 1746 |
|
|
peeled, because:
|
| 1747 |
|
|
1. We introduced new uses after LOOP for IVs that were not originally used
|
| 1748 |
|
|
after LOOP: the IVs of LOOP are now used by an epilog loop.
|
| 1749 |
|
|
2. LOOP is going to be vectorized; this means that it will iterate N/VF
|
| 1750 |
|
|
times, whereas the loop IVs should be bumped N times.
|
| 1751 |
|
|
|
| 1752 |
|
|
Input:
|
| 1753 |
|
|
- LOOP - a loop that is going to be vectorized. The last few iterations
|
| 1754 |
|
|
of LOOP were peeled.
|
| 1755 |
|
|
- NITERS - the number of iterations that LOOP executes (before it is
|
| 1756 |
|
|
vectorized). i.e, the number of times the ivs should be bumped.
|
| 1757 |
|
|
- UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
|
| 1758 |
|
|
coming out from LOOP on which there are uses of the LOOP ivs
|
| 1759 |
|
|
(this is the path from LOOP->exit to epilog_loop->preheader).
|
| 1760 |
|
|
|
| 1761 |
|
|
The new definitions of the ivs are placed in LOOP->exit.
|
| 1762 |
|
|
The phi args associated with the edge UPDATE_E in the bb
|
| 1763 |
|
|
UPDATE_E->dest are updated accordingly.
|
| 1764 |
|
|
|
| 1765 |
|
|
Assumption 1: Like the rest of the vectorizer, this function assumes
|
| 1766 |
|
|
a single loop exit that has a single predecessor.
|
| 1767 |
|
|
|
| 1768 |
|
|
Assumption 2: The phi nodes in the LOOP header and in update_bb are
|
| 1769 |
|
|
organized in the same order.
|
| 1770 |
|
|
|
| 1771 |
|
|
Assumption 3: The access function of the ivs is simple enough (see
|
| 1772 |
|
|
vect_can_advance_ivs_p). This assumption will be relaxed in the future.
|
| 1773 |
|
|
|
| 1774 |
|
|
Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
|
| 1775 |
|
|
coming out of LOOP on which the ivs of LOOP are used (this is the path
|
| 1776 |
|
|
that leads to the epilog loop; other paths skip the epilog loop). This
|
| 1777 |
|
|
path starts with the edge UPDATE_E, and its destination (denoted update_bb)
|
| 1778 |
|
|
needs to have its phis updated.
|
| 1779 |
|
|
*/
|
| 1780 |
|
|
|
| 1781 |
|
|
static void
|
| 1782 |
|
|
vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
|
| 1783 |
|
|
edge update_e)
|
| 1784 |
|
|
{
|
| 1785 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 1786 |
|
|
basic_block exit_bb = single_exit (loop)->dest;
|
| 1787 |
|
|
gimple phi, phi1;
|
| 1788 |
|
|
gimple_stmt_iterator gsi, gsi1;
|
| 1789 |
|
|
basic_block update_bb = update_e->dest;
|
| 1790 |
|
|
|
| 1791 |
|
|
/* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
|
| 1792 |
|
|
|
| 1793 |
|
|
/* Make sure there exists a single-predecessor exit bb: */
|
| 1794 |
|
|
gcc_assert (single_pred_p (exit_bb));
|
| 1795 |
|
|
|
| 1796 |
|
|
for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
|
| 1797 |
|
|
!gsi_end_p (gsi) && !gsi_end_p (gsi1);
|
| 1798 |
|
|
gsi_next (&gsi), gsi_next (&gsi1))
|
| 1799 |
|
|
{
|
| 1800 |
|
|
tree access_fn = NULL;
|
| 1801 |
|
|
tree evolution_part;
|
| 1802 |
|
|
tree init_expr;
|
| 1803 |
|
|
tree step_expr, off;
|
| 1804 |
|
|
tree type;
|
| 1805 |
|
|
tree var, ni, ni_name;
|
| 1806 |
|
|
gimple_stmt_iterator last_gsi;
|
| 1807 |
|
|
|
| 1808 |
|
|
phi = gsi_stmt (gsi);
|
| 1809 |
|
|
phi1 = gsi_stmt (gsi1);
|
| 1810 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1811 |
|
|
{
|
| 1812 |
|
|
fprintf (vect_dump, "vect_update_ivs_after_vectorizer: phi: ");
|
| 1813 |
|
|
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
|
| 1814 |
|
|
}
|
| 1815 |
|
|
|
| 1816 |
|
|
/* Skip virtual phi's. */
|
| 1817 |
|
|
if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
|
| 1818 |
|
|
{
|
| 1819 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1820 |
|
|
fprintf (vect_dump, "virtual phi. skip.");
|
| 1821 |
|
|
continue;
|
| 1822 |
|
|
}
|
| 1823 |
|
|
|
| 1824 |
|
|
/* Skip reduction phis. */
|
| 1825 |
|
|
if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
|
| 1826 |
|
|
{
|
| 1827 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1828 |
|
|
fprintf (vect_dump, "reduc phi. skip.");
|
| 1829 |
|
|
continue;
|
| 1830 |
|
|
}
|
| 1831 |
|
|
|
| 1832 |
|
|
access_fn = analyze_scalar_evolution (loop, PHI_RESULT (phi));
|
| 1833 |
|
|
gcc_assert (access_fn);
|
| 1834 |
|
|
/* We can end up with an access_fn like
|
| 1835 |
|
|
(short int) {(short unsigned int) i_49, +, 1}_1
|
| 1836 |
|
|
for further analysis we need to strip the outer cast but we
|
| 1837 |
|
|
need to preserve the original type. */
|
| 1838 |
|
|
type = TREE_TYPE (access_fn);
|
| 1839 |
|
|
STRIP_NOPS (access_fn);
|
| 1840 |
|
|
evolution_part =
|
| 1841 |
|
|
unshare_expr (evolution_part_in_loop_num (access_fn, loop->num));
|
| 1842 |
|
|
gcc_assert (evolution_part != NULL_TREE);
|
| 1843 |
|
|
|
| 1844 |
|
|
/* FORNOW: We do not support IVs whose evolution function is a polynomial
|
| 1845 |
|
|
of degree >= 2 or exponential. */
|
| 1846 |
|
|
gcc_assert (!tree_is_chrec (evolution_part));
|
| 1847 |
|
|
|
| 1848 |
|
|
step_expr = evolution_part;
|
| 1849 |
|
|
init_expr = unshare_expr (initial_condition_in_loop_num (access_fn,
|
| 1850 |
|
|
loop->num));
|
| 1851 |
|
|
init_expr = fold_convert (type, init_expr);
|
| 1852 |
|
|
|
| 1853 |
|
|
off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
|
| 1854 |
|
|
fold_convert (TREE_TYPE (step_expr), niters),
|
| 1855 |
|
|
step_expr);
|
| 1856 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (init_expr)))
|
| 1857 |
|
|
ni = fold_build_pointer_plus (init_expr, off);
|
| 1858 |
|
|
else
|
| 1859 |
|
|
ni = fold_build2 (PLUS_EXPR, TREE_TYPE (init_expr),
|
| 1860 |
|
|
init_expr,
|
| 1861 |
|
|
fold_convert (TREE_TYPE (init_expr), off));
|
| 1862 |
|
|
|
| 1863 |
|
|
var = create_tmp_var (TREE_TYPE (init_expr), "tmp");
|
| 1864 |
|
|
add_referenced_var (var);
|
| 1865 |
|
|
|
| 1866 |
|
|
last_gsi = gsi_last_bb (exit_bb);
|
| 1867 |
|
|
ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
|
| 1868 |
|
|
true, GSI_SAME_STMT);
|
| 1869 |
|
|
|
| 1870 |
|
|
/* Fix phi expressions in the successor bb. */
|
| 1871 |
|
|
adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
|
| 1872 |
|
|
}
|
| 1873 |
|
|
}
|
| 1874 |
|
|
|
| 1875 |
|
|
/* Return the more conservative threshold between the
|
| 1876 |
|
|
min_profitable_iters returned by the cost model and the user
|
| 1877 |
|
|
specified threshold, if provided. */
|
| 1878 |
|
|
|
| 1879 |
|
|
static unsigned int
|
| 1880 |
|
|
conservative_cost_threshold (loop_vec_info loop_vinfo,
|
| 1881 |
|
|
int min_profitable_iters)
|
| 1882 |
|
|
{
|
| 1883 |
|
|
unsigned int th;
|
| 1884 |
|
|
int min_scalar_loop_bound;
|
| 1885 |
|
|
|
| 1886 |
|
|
min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
|
| 1887 |
|
|
* LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 1);
|
| 1888 |
|
|
|
| 1889 |
|
|
/* Use the cost model only if it is more conservative than user specified
|
| 1890 |
|
|
threshold. */
|
| 1891 |
|
|
th = (unsigned) min_scalar_loop_bound;
|
| 1892 |
|
|
if (min_profitable_iters
|
| 1893 |
|
|
&& (!min_scalar_loop_bound
|
| 1894 |
|
|
|| min_profitable_iters > min_scalar_loop_bound))
|
| 1895 |
|
|
th = (unsigned) min_profitable_iters;
|
| 1896 |
|
|
|
| 1897 |
|
|
if (th && vect_print_dump_info (REPORT_COST))
|
| 1898 |
|
|
fprintf (vect_dump, "Profitability threshold is %u loop iterations.", th);
|
| 1899 |
|
|
|
| 1900 |
|
|
return th;
|
| 1901 |
|
|
}
|
| 1902 |
|
|
|
| 1903 |
|
|
/* Function vect_do_peeling_for_loop_bound
|
| 1904 |
|
|
|
| 1905 |
|
|
Peel the last iterations of the loop represented by LOOP_VINFO.
|
| 1906 |
|
|
The peeled iterations form a new epilog loop. Given that the loop now
|
| 1907 |
|
|
iterates NITERS times, the new epilog loop iterates
|
| 1908 |
|
|
NITERS % VECTORIZATION_FACTOR times.
|
| 1909 |
|
|
|
| 1910 |
|
|
The original loop will later be made to iterate
|
| 1911 |
|
|
NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
|
| 1912 |
|
|
|
| 1913 |
|
|
COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
|
| 1914 |
|
|
test. */
|
| 1915 |
|
|
|
| 1916 |
|
|
void
|
| 1917 |
|
|
vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
|
| 1918 |
|
|
tree cond_expr, gimple_seq cond_expr_stmt_list)
|
| 1919 |
|
|
{
|
| 1920 |
|
|
tree ni_name, ratio_mult_vf_name;
|
| 1921 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 1922 |
|
|
struct loop *new_loop;
|
| 1923 |
|
|
edge update_e;
|
| 1924 |
|
|
basic_block preheader;
|
| 1925 |
|
|
int loop_num;
|
| 1926 |
|
|
bool check_profitability = false;
|
| 1927 |
|
|
unsigned int th = 0;
|
| 1928 |
|
|
int min_profitable_iters;
|
| 1929 |
|
|
|
| 1930 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1931 |
|
|
fprintf (vect_dump, "=== vect_do_peeling_for_loop_bound ===");
|
| 1932 |
|
|
|
| 1933 |
|
|
initialize_original_copy_tables ();
|
| 1934 |
|
|
|
| 1935 |
|
|
/* Generate the following variables on the preheader of original loop:
|
| 1936 |
|
|
|
| 1937 |
|
|
ni_name = number of iteration the original loop executes
|
| 1938 |
|
|
ratio = ni_name / vf
|
| 1939 |
|
|
ratio_mult_vf_name = ratio * vf */
|
| 1940 |
|
|
vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
|
| 1941 |
|
|
&ratio_mult_vf_name, ratio,
|
| 1942 |
|
|
cond_expr_stmt_list);
|
| 1943 |
|
|
|
| 1944 |
|
|
loop_num = loop->num;
|
| 1945 |
|
|
|
| 1946 |
|
|
/* If cost model check not done during versioning and
|
| 1947 |
|
|
peeling for alignment. */
|
| 1948 |
|
|
if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
|
| 1949 |
|
|
&& !LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo)
|
| 1950 |
|
|
&& !LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo)
|
| 1951 |
|
|
&& !cond_expr)
|
| 1952 |
|
|
{
|
| 1953 |
|
|
check_profitability = true;
|
| 1954 |
|
|
|
| 1955 |
|
|
/* Get profitability threshold for vectorized loop. */
|
| 1956 |
|
|
min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
|
| 1957 |
|
|
|
| 1958 |
|
|
th = conservative_cost_threshold (loop_vinfo,
|
| 1959 |
|
|
min_profitable_iters);
|
| 1960 |
|
|
}
|
| 1961 |
|
|
|
| 1962 |
|
|
new_loop = slpeel_tree_peel_loop_to_edge (loop, single_exit (loop),
|
| 1963 |
|
|
&ratio_mult_vf_name, ni_name, false,
|
| 1964 |
|
|
th, check_profitability,
|
| 1965 |
|
|
cond_expr, cond_expr_stmt_list);
|
| 1966 |
|
|
gcc_assert (new_loop);
|
| 1967 |
|
|
gcc_assert (loop_num == loop->num);
|
| 1968 |
|
|
#ifdef ENABLE_CHECKING
|
| 1969 |
|
|
slpeel_verify_cfg_after_peeling (loop, new_loop);
|
| 1970 |
|
|
#endif
|
| 1971 |
|
|
|
| 1972 |
|
|
/* A guard that controls whether the new_loop is to be executed or skipped
|
| 1973 |
|
|
is placed in LOOP->exit. LOOP->exit therefore has two successors - one
|
| 1974 |
|
|
is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
|
| 1975 |
|
|
is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
|
| 1976 |
|
|
is on the path where the LOOP IVs are used and need to be updated. */
|
| 1977 |
|
|
|
| 1978 |
|
|
preheader = loop_preheader_edge (new_loop)->src;
|
| 1979 |
|
|
if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
|
| 1980 |
|
|
update_e = EDGE_PRED (preheader, 0);
|
| 1981 |
|
|
else
|
| 1982 |
|
|
update_e = EDGE_PRED (preheader, 1);
|
| 1983 |
|
|
|
| 1984 |
|
|
/* Update IVs of original loop as if they were advanced
|
| 1985 |
|
|
by ratio_mult_vf_name steps. */
|
| 1986 |
|
|
vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
|
| 1987 |
|
|
|
| 1988 |
|
|
/* After peeling we have to reset scalar evolution analyzer. */
|
| 1989 |
|
|
scev_reset ();
|
| 1990 |
|
|
|
| 1991 |
|
|
free_original_copy_tables ();
|
| 1992 |
|
|
}
|
| 1993 |
|
|
|
| 1994 |
|
|
|
| 1995 |
|
|
/* Function vect_gen_niters_for_prolog_loop
|
| 1996 |
|
|
|
| 1997 |
|
|
Set the number of iterations for the loop represented by LOOP_VINFO
|
| 1998 |
|
|
to the minimum between LOOP_NITERS (the original iteration count of the loop)
|
| 1999 |
|
|
and the misalignment of DR - the data reference recorded in
|
| 2000 |
|
|
LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
|
| 2001 |
|
|
this loop, the data reference DR will refer to an aligned location.
|
| 2002 |
|
|
|
| 2003 |
|
|
The following computation is generated:
|
| 2004 |
|
|
|
| 2005 |
|
|
If the misalignment of DR is known at compile time:
|
| 2006 |
|
|
addr_mis = int mis = DR_MISALIGNMENT (dr);
|
| 2007 |
|
|
Else, compute address misalignment in bytes:
|
| 2008 |
|
|
addr_mis = addr & (vectype_size - 1)
|
| 2009 |
|
|
|
| 2010 |
|
|
prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
|
| 2011 |
|
|
|
| 2012 |
|
|
(elem_size = element type size; an element is the scalar element whose type
|
| 2013 |
|
|
is the inner type of the vectype)
|
| 2014 |
|
|
|
| 2015 |
|
|
When the step of the data-ref in the loop is not 1 (as in interleaved data
|
| 2016 |
|
|
and SLP), the number of iterations of the prolog must be divided by the step
|
| 2017 |
|
|
(which is equal to the size of interleaved group).
|
| 2018 |
|
|
|
| 2019 |
|
|
The above formulas assume that VF == number of elements in the vector. This
|
| 2020 |
|
|
may not hold when there are multiple-types in the loop.
|
| 2021 |
|
|
In this case, for some data-references in the loop the VF does not represent
|
| 2022 |
|
|
the number of elements that fit in the vector. Therefore, instead of VF we
|
| 2023 |
|
|
use TYPE_VECTOR_SUBPARTS. */
|
| 2024 |
|
|
|
| 2025 |
|
|
static tree
|
| 2026 |
|
|
vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters)
|
| 2027 |
|
|
{
|
| 2028 |
|
|
struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
|
| 2029 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 2030 |
|
|
tree var;
|
| 2031 |
|
|
gimple_seq stmts;
|
| 2032 |
|
|
tree iters, iters_name;
|
| 2033 |
|
|
edge pe;
|
| 2034 |
|
|
basic_block new_bb;
|
| 2035 |
|
|
gimple dr_stmt = DR_STMT (dr);
|
| 2036 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
|
| 2037 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
| 2038 |
|
|
int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
|
| 2039 |
|
|
tree niters_type = TREE_TYPE (loop_niters);
|
| 2040 |
|
|
int nelements = TYPE_VECTOR_SUBPARTS (vectype);
|
| 2041 |
|
|
|
| 2042 |
|
|
pe = loop_preheader_edge (loop);
|
| 2043 |
|
|
|
| 2044 |
|
|
if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
|
| 2045 |
|
|
{
|
| 2046 |
|
|
int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
|
| 2047 |
|
|
|
| 2048 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2049 |
|
|
fprintf (vect_dump, "known peeling = %d.", npeel);
|
| 2050 |
|
|
|
| 2051 |
|
|
iters = build_int_cst (niters_type, npeel);
|
| 2052 |
|
|
}
|
| 2053 |
|
|
else
|
| 2054 |
|
|
{
|
| 2055 |
|
|
gimple_seq new_stmts = NULL;
|
| 2056 |
|
|
bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
|
| 2057 |
|
|
tree offset = negative
|
| 2058 |
|
|
? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
|
| 2059 |
|
|
tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
|
| 2060 |
|
|
&new_stmts, offset, loop);
|
| 2061 |
|
|
tree ptr_type = TREE_TYPE (start_addr);
|
| 2062 |
|
|
tree size = TYPE_SIZE (ptr_type);
|
| 2063 |
|
|
tree type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
|
| 2064 |
|
|
tree vectype_size_minus_1 = build_int_cst (type, vectype_align - 1);
|
| 2065 |
|
|
tree elem_size_log =
|
| 2066 |
|
|
build_int_cst (type, exact_log2 (vectype_align/nelements));
|
| 2067 |
|
|
tree nelements_minus_1 = build_int_cst (type, nelements - 1);
|
| 2068 |
|
|
tree nelements_tree = build_int_cst (type, nelements);
|
| 2069 |
|
|
tree byte_misalign;
|
| 2070 |
|
|
tree elem_misalign;
|
| 2071 |
|
|
|
| 2072 |
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
|
| 2073 |
|
|
gcc_assert (!new_bb);
|
| 2074 |
|
|
|
| 2075 |
|
|
/* Create: byte_misalign = addr & (vectype_size - 1) */
|
| 2076 |
|
|
byte_misalign =
|
| 2077 |
|
|
fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
|
| 2078 |
|
|
vectype_size_minus_1);
|
| 2079 |
|
|
|
| 2080 |
|
|
/* Create: elem_misalign = byte_misalign / element_size */
|
| 2081 |
|
|
elem_misalign =
|
| 2082 |
|
|
fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
|
| 2083 |
|
|
|
| 2084 |
|
|
/* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
|
| 2085 |
|
|
if (negative)
|
| 2086 |
|
|
iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
|
| 2087 |
|
|
else
|
| 2088 |
|
|
iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
|
| 2089 |
|
|
iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
|
| 2090 |
|
|
iters = fold_convert (niters_type, iters);
|
| 2091 |
|
|
}
|
| 2092 |
|
|
|
| 2093 |
|
|
/* Create: prolog_loop_niters = min (iters, loop_niters) */
|
| 2094 |
|
|
/* If the loop bound is known at compile time we already verified that it is
|
| 2095 |
|
|
greater than vf; since the misalignment ('iters') is at most vf, there's
|
| 2096 |
|
|
no need to generate the MIN_EXPR in this case. */
|
| 2097 |
|
|
if (TREE_CODE (loop_niters) != INTEGER_CST)
|
| 2098 |
|
|
iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
|
| 2099 |
|
|
|
| 2100 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2101 |
|
|
{
|
| 2102 |
|
|
fprintf (vect_dump, "niters for prolog loop: ");
|
| 2103 |
|
|
print_generic_expr (vect_dump, iters, TDF_SLIM);
|
| 2104 |
|
|
}
|
| 2105 |
|
|
|
| 2106 |
|
|
var = create_tmp_var (niters_type, "prolog_loop_niters");
|
| 2107 |
|
|
add_referenced_var (var);
|
| 2108 |
|
|
stmts = NULL;
|
| 2109 |
|
|
iters_name = force_gimple_operand (iters, &stmts, false, var);
|
| 2110 |
|
|
|
| 2111 |
|
|
/* Insert stmt on loop preheader edge. */
|
| 2112 |
|
|
if (stmts)
|
| 2113 |
|
|
{
|
| 2114 |
|
|
basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
|
| 2115 |
|
|
gcc_assert (!new_bb);
|
| 2116 |
|
|
}
|
| 2117 |
|
|
|
| 2118 |
|
|
return iters_name;
|
| 2119 |
|
|
}
|
| 2120 |
|
|
|
| 2121 |
|
|
|
| 2122 |
|
|
/* Function vect_update_init_of_dr
|
| 2123 |
|
|
|
| 2124 |
|
|
NITERS iterations were peeled from LOOP. DR represents a data reference
|
| 2125 |
|
|
in LOOP. This function updates the information recorded in DR to
|
| 2126 |
|
|
account for the fact that the first NITERS iterations had already been
|
| 2127 |
|
|
executed. Specifically, it updates the OFFSET field of DR. */
|
| 2128 |
|
|
|
| 2129 |
|
|
static void
|
| 2130 |
|
|
vect_update_init_of_dr (struct data_reference *dr, tree niters)
|
| 2131 |
|
|
{
|
| 2132 |
|
|
tree offset = DR_OFFSET (dr);
|
| 2133 |
|
|
|
| 2134 |
|
|
niters = fold_build2 (MULT_EXPR, sizetype,
|
| 2135 |
|
|
fold_convert (sizetype, niters),
|
| 2136 |
|
|
fold_convert (sizetype, DR_STEP (dr)));
|
| 2137 |
|
|
offset = fold_build2 (PLUS_EXPR, sizetype,
|
| 2138 |
|
|
fold_convert (sizetype, offset), niters);
|
| 2139 |
|
|
DR_OFFSET (dr) = offset;
|
| 2140 |
|
|
}
|
| 2141 |
|
|
|
| 2142 |
|
|
|
| 2143 |
|
|
/* Function vect_update_inits_of_drs
|
| 2144 |
|
|
|
| 2145 |
|
|
NITERS iterations were peeled from the loop represented by LOOP_VINFO.
|
| 2146 |
|
|
This function updates the information recorded for the data references in
|
| 2147 |
|
|
the loop to account for the fact that the first NITERS iterations had
|
| 2148 |
|
|
already been executed. Specifically, it updates the initial_condition of
|
| 2149 |
|
|
the access_function of all the data_references in the loop. */
|
| 2150 |
|
|
|
| 2151 |
|
|
static void
|
| 2152 |
|
|
vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
|
| 2153 |
|
|
{
|
| 2154 |
|
|
unsigned int i;
|
| 2155 |
|
|
VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
|
| 2156 |
|
|
struct data_reference *dr;
|
| 2157 |
|
|
|
| 2158 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2159 |
|
|
fprintf (vect_dump, "=== vect_update_inits_of_dr ===");
|
| 2160 |
|
|
|
| 2161 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
|
| 2162 |
|
|
vect_update_init_of_dr (dr, niters);
|
| 2163 |
|
|
}
|
| 2164 |
|
|
|
| 2165 |
|
|
|
| 2166 |
|
|
/* Function vect_do_peeling_for_alignment
|
| 2167 |
|
|
|
| 2168 |
|
|
Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
|
| 2169 |
|
|
'niters' is set to the misalignment of one of the data references in the
|
| 2170 |
|
|
loop, thereby forcing it to refer to an aligned location at the beginning
|
| 2171 |
|
|
of the execution of this loop. The data reference for which we are
|
| 2172 |
|
|
peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
|
| 2173 |
|
|
|
| 2174 |
|
|
void
|
| 2175 |
|
|
vect_do_peeling_for_alignment (loop_vec_info loop_vinfo)
|
| 2176 |
|
|
{
|
| 2177 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 2178 |
|
|
tree niters_of_prolog_loop, ni_name;
|
| 2179 |
|
|
tree n_iters;
|
| 2180 |
|
|
tree wide_prolog_niters;
|
| 2181 |
|
|
struct loop *new_loop;
|
| 2182 |
|
|
unsigned int th = 0;
|
| 2183 |
|
|
int min_profitable_iters;
|
| 2184 |
|
|
|
| 2185 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2186 |
|
|
fprintf (vect_dump, "=== vect_do_peeling_for_alignment ===");
|
| 2187 |
|
|
|
| 2188 |
|
|
initialize_original_copy_tables ();
|
| 2189 |
|
|
|
| 2190 |
|
|
ni_name = vect_build_loop_niters (loop_vinfo, NULL);
|
| 2191 |
|
|
niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo,
|
| 2192 |
|
|
ni_name);
|
| 2193 |
|
|
|
| 2194 |
|
|
/* Get profitability threshold for vectorized loop. */
|
| 2195 |
|
|
min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
|
| 2196 |
|
|
th = conservative_cost_threshold (loop_vinfo,
|
| 2197 |
|
|
min_profitable_iters);
|
| 2198 |
|
|
|
| 2199 |
|
|
/* Peel the prolog loop and iterate it niters_of_prolog_loop. */
|
| 2200 |
|
|
new_loop =
|
| 2201 |
|
|
slpeel_tree_peel_loop_to_edge (loop, loop_preheader_edge (loop),
|
| 2202 |
|
|
&niters_of_prolog_loop, ni_name, true,
|
| 2203 |
|
|
th, true, NULL_TREE, NULL);
|
| 2204 |
|
|
|
| 2205 |
|
|
gcc_assert (new_loop);
|
| 2206 |
|
|
#ifdef ENABLE_CHECKING
|
| 2207 |
|
|
slpeel_verify_cfg_after_peeling (new_loop, loop);
|
| 2208 |
|
|
#endif
|
| 2209 |
|
|
|
| 2210 |
|
|
/* Update number of times loop executes. */
|
| 2211 |
|
|
n_iters = LOOP_VINFO_NITERS (loop_vinfo);
|
| 2212 |
|
|
LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
|
| 2213 |
|
|
TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);
|
| 2214 |
|
|
|
| 2215 |
|
|
if (types_compatible_p (sizetype, TREE_TYPE (niters_of_prolog_loop)))
|
| 2216 |
|
|
wide_prolog_niters = niters_of_prolog_loop;
|
| 2217 |
|
|
else
|
| 2218 |
|
|
{
|
| 2219 |
|
|
gimple_seq seq = NULL;
|
| 2220 |
|
|
edge pe = loop_preheader_edge (loop);
|
| 2221 |
|
|
tree wide_iters = fold_convert (sizetype, niters_of_prolog_loop);
|
| 2222 |
|
|
tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
|
| 2223 |
|
|
add_referenced_var (var);
|
| 2224 |
|
|
wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
|
| 2225 |
|
|
var);
|
| 2226 |
|
|
if (seq)
|
| 2227 |
|
|
{
|
| 2228 |
|
|
/* Insert stmt on loop preheader edge. */
|
| 2229 |
|
|
basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
|
| 2230 |
|
|
gcc_assert (!new_bb);
|
| 2231 |
|
|
}
|
| 2232 |
|
|
}
|
| 2233 |
|
|
|
| 2234 |
|
|
/* Update the init conditions of the access functions of all data refs. */
|
| 2235 |
|
|
vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);
|
| 2236 |
|
|
|
| 2237 |
|
|
/* After peeling we have to reset scalar evolution analyzer. */
|
| 2238 |
|
|
scev_reset ();
|
| 2239 |
|
|
|
| 2240 |
|
|
free_original_copy_tables ();
|
| 2241 |
|
|
}
|
| 2242 |
|
|
|
| 2243 |
|
|
|
| 2244 |
|
|
/* Function vect_create_cond_for_align_checks.
|
| 2245 |
|
|
|
| 2246 |
|
|
Create a conditional expression that represents the alignment checks for
|
| 2247 |
|
|
all of data references (array element references) whose alignment must be
|
| 2248 |
|
|
checked at runtime.
|
| 2249 |
|
|
|
| 2250 |
|
|
Input:
|
| 2251 |
|
|
COND_EXPR - input conditional expression. New conditions will be chained
|
| 2252 |
|
|
with logical AND operation.
|
| 2253 |
|
|
LOOP_VINFO - two fields of the loop information are used.
|
| 2254 |
|
|
LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
|
| 2255 |
|
|
LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
|
| 2256 |
|
|
|
| 2257 |
|
|
Output:
|
| 2258 |
|
|
COND_EXPR_STMT_LIST - statements needed to construct the conditional
|
| 2259 |
|
|
expression.
|
| 2260 |
|
|
The returned value is the conditional expression to be used in the if
|
| 2261 |
|
|
statement that controls which version of the loop gets executed at runtime.
|
| 2262 |
|
|
|
| 2263 |
|
|
The algorithm makes two assumptions:
|
| 2264 |
|
|
1) The number of bytes "n" in a vector is a power of 2.
|
| 2265 |
|
|
2) An address "a" is aligned if a%n is zero and that this
|
| 2266 |
|
|
test can be done as a&(n-1) == 0. For example, for 16
|
| 2267 |
|
|
byte vectors the test is a&0xf == 0. */
|
| 2268 |
|
|
|
| 2269 |
|
|
static void
|
| 2270 |
|
|
vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
|
| 2271 |
|
|
tree *cond_expr,
|
| 2272 |
|
|
gimple_seq *cond_expr_stmt_list)
|
| 2273 |
|
|
{
|
| 2274 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 2275 |
|
|
VEC(gimple,heap) *may_misalign_stmts
|
| 2276 |
|
|
= LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
|
| 2277 |
|
|
gimple ref_stmt;
|
| 2278 |
|
|
int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
|
| 2279 |
|
|
tree mask_cst;
|
| 2280 |
|
|
unsigned int i;
|
| 2281 |
|
|
tree psize;
|
| 2282 |
|
|
tree int_ptrsize_type;
|
| 2283 |
|
|
char tmp_name[20];
|
| 2284 |
|
|
tree or_tmp_name = NULL_TREE;
|
| 2285 |
|
|
tree and_tmp, and_tmp_name;
|
| 2286 |
|
|
gimple and_stmt;
|
| 2287 |
|
|
tree ptrsize_zero;
|
| 2288 |
|
|
tree part_cond_expr;
|
| 2289 |
|
|
|
| 2290 |
|
|
/* Check that mask is one less than a power of 2, i.e., mask is
|
| 2291 |
|
|
all zeros followed by all ones. */
|
| 2292 |
|
|
gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
|
| 2293 |
|
|
|
| 2294 |
|
|
/* CHECKME: what is the best integer or unsigned type to use to hold a
|
| 2295 |
|
|
cast from a pointer value? */
|
| 2296 |
|
|
psize = TYPE_SIZE (ptr_type_node);
|
| 2297 |
|
|
int_ptrsize_type
|
| 2298 |
|
|
= lang_hooks.types.type_for_size (tree_low_cst (psize, 1), 0);
|
| 2299 |
|
|
|
| 2300 |
|
|
/* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
|
| 2301 |
|
|
of the first vector of the i'th data reference. */
|
| 2302 |
|
|
|
| 2303 |
|
|
FOR_EACH_VEC_ELT (gimple, may_misalign_stmts, i, ref_stmt)
|
| 2304 |
|
|
{
|
| 2305 |
|
|
gimple_seq new_stmt_list = NULL;
|
| 2306 |
|
|
tree addr_base;
|
| 2307 |
|
|
tree addr_tmp, addr_tmp_name;
|
| 2308 |
|
|
tree or_tmp, new_or_tmp_name;
|
| 2309 |
|
|
gimple addr_stmt, or_stmt;
|
| 2310 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
|
| 2311 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
|
| 2312 |
|
|
bool negative = tree_int_cst_compare
|
| 2313 |
|
|
(DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
|
| 2314 |
|
|
tree offset = negative
|
| 2315 |
|
|
? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
|
| 2316 |
|
|
|
| 2317 |
|
|
/* create: addr_tmp = (int)(address_of_first_vector) */
|
| 2318 |
|
|
addr_base =
|
| 2319 |
|
|
vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
|
| 2320 |
|
|
offset, loop);
|
| 2321 |
|
|
if (new_stmt_list != NULL)
|
| 2322 |
|
|
gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
|
| 2323 |
|
|
|
| 2324 |
|
|
sprintf (tmp_name, "%s%d", "addr2int", i);
|
| 2325 |
|
|
addr_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
|
| 2326 |
|
|
add_referenced_var (addr_tmp);
|
| 2327 |
|
|
addr_tmp_name = make_ssa_name (addr_tmp, NULL);
|
| 2328 |
|
|
addr_stmt = gimple_build_assign_with_ops (NOP_EXPR, addr_tmp_name,
|
| 2329 |
|
|
addr_base, NULL_TREE);
|
| 2330 |
|
|
SSA_NAME_DEF_STMT (addr_tmp_name) = addr_stmt;
|
| 2331 |
|
|
gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
|
| 2332 |
|
|
|
| 2333 |
|
|
/* The addresses are OR together. */
|
| 2334 |
|
|
|
| 2335 |
|
|
if (or_tmp_name != NULL_TREE)
|
| 2336 |
|
|
{
|
| 2337 |
|
|
/* create: or_tmp = or_tmp | addr_tmp */
|
| 2338 |
|
|
sprintf (tmp_name, "%s%d", "orptrs", i);
|
| 2339 |
|
|
or_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
|
| 2340 |
|
|
add_referenced_var (or_tmp);
|
| 2341 |
|
|
new_or_tmp_name = make_ssa_name (or_tmp, NULL);
|
| 2342 |
|
|
or_stmt = gimple_build_assign_with_ops (BIT_IOR_EXPR,
|
| 2343 |
|
|
new_or_tmp_name,
|
| 2344 |
|
|
or_tmp_name, addr_tmp_name);
|
| 2345 |
|
|
SSA_NAME_DEF_STMT (new_or_tmp_name) = or_stmt;
|
| 2346 |
|
|
gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
|
| 2347 |
|
|
or_tmp_name = new_or_tmp_name;
|
| 2348 |
|
|
}
|
| 2349 |
|
|
else
|
| 2350 |
|
|
or_tmp_name = addr_tmp_name;
|
| 2351 |
|
|
|
| 2352 |
|
|
} /* end for i */
|
| 2353 |
|
|
|
| 2354 |
|
|
mask_cst = build_int_cst (int_ptrsize_type, mask);
|
| 2355 |
|
|
|
| 2356 |
|
|
/* create: and_tmp = or_tmp & mask */
|
| 2357 |
|
|
and_tmp = create_tmp_var (int_ptrsize_type, "andmask" );
|
| 2358 |
|
|
add_referenced_var (and_tmp);
|
| 2359 |
|
|
and_tmp_name = make_ssa_name (and_tmp, NULL);
|
| 2360 |
|
|
|
| 2361 |
|
|
and_stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, and_tmp_name,
|
| 2362 |
|
|
or_tmp_name, mask_cst);
|
| 2363 |
|
|
SSA_NAME_DEF_STMT (and_tmp_name) = and_stmt;
|
| 2364 |
|
|
gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
|
| 2365 |
|
|
|
| 2366 |
|
|
/* Make and_tmp the left operand of the conditional test against zero.
|
| 2367 |
|
|
if and_tmp has a nonzero bit then some address is unaligned. */
|
| 2368 |
|
|
ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
|
| 2369 |
|
|
part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
|
| 2370 |
|
|
and_tmp_name, ptrsize_zero);
|
| 2371 |
|
|
if (*cond_expr)
|
| 2372 |
|
|
*cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
| 2373 |
|
|
*cond_expr, part_cond_expr);
|
| 2374 |
|
|
else
|
| 2375 |
|
|
*cond_expr = part_cond_expr;
|
| 2376 |
|
|
}
|
| 2377 |
|
|
|
| 2378 |
|
|
|
| 2379 |
|
|
/* Function vect_vfa_segment_size.
|
| 2380 |
|
|
|
| 2381 |
|
|
Create an expression that computes the size of segment
|
| 2382 |
|
|
that will be accessed for a data reference. The functions takes into
|
| 2383 |
|
|
account that realignment loads may access one more vector.
|
| 2384 |
|
|
|
| 2385 |
|
|
Input:
|
| 2386 |
|
|
DR: The data reference.
|
| 2387 |
|
|
LENGTH_FACTOR: segment length to consider.
|
| 2388 |
|
|
|
| 2389 |
|
|
Return an expression whose value is the size of segment which will be
|
| 2390 |
|
|
accessed by DR. */
|
| 2391 |
|
|
|
| 2392 |
|
|
static tree
|
| 2393 |
|
|
vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
|
| 2394 |
|
|
{
|
| 2395 |
|
|
tree segment_length;
|
| 2396 |
|
|
|
| 2397 |
|
|
if (!compare_tree_int (DR_STEP (dr), 0))
|
| 2398 |
|
|
segment_length = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
|
| 2399 |
|
|
else
|
| 2400 |
|
|
segment_length = size_binop (MULT_EXPR,
|
| 2401 |
|
|
fold_convert (sizetype, DR_STEP (dr)),
|
| 2402 |
|
|
fold_convert (sizetype, length_factor));
|
| 2403 |
|
|
|
| 2404 |
|
|
if (vect_supportable_dr_alignment (dr, false)
|
| 2405 |
|
|
== dr_explicit_realign_optimized)
|
| 2406 |
|
|
{
|
| 2407 |
|
|
tree vector_size = TYPE_SIZE_UNIT
|
| 2408 |
|
|
(STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
|
| 2409 |
|
|
|
| 2410 |
|
|
segment_length = size_binop (PLUS_EXPR, segment_length, vector_size);
|
| 2411 |
|
|
}
|
| 2412 |
|
|
return segment_length;
|
| 2413 |
|
|
}
|
| 2414 |
|
|
|
| 2415 |
|
|
|
| 2416 |
|
|
/* Function vect_create_cond_for_alias_checks.
|
| 2417 |
|
|
|
| 2418 |
|
|
Create a conditional expression that represents the run-time checks for
|
| 2419 |
|
|
overlapping of address ranges represented by a list of data references
|
| 2420 |
|
|
relations passed as input.
|
| 2421 |
|
|
|
| 2422 |
|
|
Input:
|
| 2423 |
|
|
COND_EXPR - input conditional expression. New conditions will be chained
|
| 2424 |
|
|
with logical AND operation.
|
| 2425 |
|
|
LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
|
| 2426 |
|
|
to be checked.
|
| 2427 |
|
|
|
| 2428 |
|
|
Output:
|
| 2429 |
|
|
COND_EXPR - conditional expression.
|
| 2430 |
|
|
COND_EXPR_STMT_LIST - statements needed to construct the conditional
|
| 2431 |
|
|
expression.
|
| 2432 |
|
|
|
| 2433 |
|
|
|
| 2434 |
|
|
The returned value is the conditional expression to be used in the if
|
| 2435 |
|
|
statement that controls which version of the loop gets executed at runtime.
|
| 2436 |
|
|
*/
|
| 2437 |
|
|
|
| 2438 |
|
|
static void
|
| 2439 |
|
|
vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo,
|
| 2440 |
|
|
tree * cond_expr,
|
| 2441 |
|
|
gimple_seq * cond_expr_stmt_list)
|
| 2442 |
|
|
{
|
| 2443 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 2444 |
|
|
VEC (ddr_p, heap) * may_alias_ddrs =
|
| 2445 |
|
|
LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
|
| 2446 |
|
|
int vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
| 2447 |
|
|
tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
|
| 2448 |
|
|
|
| 2449 |
|
|
ddr_p ddr;
|
| 2450 |
|
|
unsigned int i;
|
| 2451 |
|
|
tree part_cond_expr, length_factor;
|
| 2452 |
|
|
|
| 2453 |
|
|
/* Create expression
|
| 2454 |
|
|
((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
|
| 2455 |
|
|
|| (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
|
| 2456 |
|
|
&&
|
| 2457 |
|
|
...
|
| 2458 |
|
|
&&
|
| 2459 |
|
|
((store_ptr_n + store_segment_length_n) <= load_ptr_n)
|
| 2460 |
|
|
|| (load_ptr_n + load_segment_length_n) <= store_ptr_n)) */
|
| 2461 |
|
|
|
| 2462 |
|
|
if (VEC_empty (ddr_p, may_alias_ddrs))
|
| 2463 |
|
|
return;
|
| 2464 |
|
|
|
| 2465 |
|
|
FOR_EACH_VEC_ELT (ddr_p, may_alias_ddrs, i, ddr)
|
| 2466 |
|
|
{
|
| 2467 |
|
|
struct data_reference *dr_a, *dr_b;
|
| 2468 |
|
|
gimple dr_group_first_a, dr_group_first_b;
|
| 2469 |
|
|
tree addr_base_a, addr_base_b;
|
| 2470 |
|
|
tree segment_length_a, segment_length_b;
|
| 2471 |
|
|
gimple stmt_a, stmt_b;
|
| 2472 |
|
|
tree seg_a_min, seg_a_max, seg_b_min, seg_b_max;
|
| 2473 |
|
|
|
| 2474 |
|
|
dr_a = DDR_A (ddr);
|
| 2475 |
|
|
stmt_a = DR_STMT (DDR_A (ddr));
|
| 2476 |
|
|
dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
|
| 2477 |
|
|
if (dr_group_first_a)
|
| 2478 |
|
|
{
|
| 2479 |
|
|
stmt_a = dr_group_first_a;
|
| 2480 |
|
|
dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
|
| 2481 |
|
|
}
|
| 2482 |
|
|
|
| 2483 |
|
|
dr_b = DDR_B (ddr);
|
| 2484 |
|
|
stmt_b = DR_STMT (DDR_B (ddr));
|
| 2485 |
|
|
dr_group_first_b = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
|
| 2486 |
|
|
if (dr_group_first_b)
|
| 2487 |
|
|
{
|
| 2488 |
|
|
stmt_b = dr_group_first_b;
|
| 2489 |
|
|
dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
|
| 2490 |
|
|
}
|
| 2491 |
|
|
|
| 2492 |
|
|
addr_base_a =
|
| 2493 |
|
|
vect_create_addr_base_for_vector_ref (stmt_a, cond_expr_stmt_list,
|
| 2494 |
|
|
NULL_TREE, loop);
|
| 2495 |
|
|
addr_base_b =
|
| 2496 |
|
|
vect_create_addr_base_for_vector_ref (stmt_b, cond_expr_stmt_list,
|
| 2497 |
|
|
NULL_TREE, loop);
|
| 2498 |
|
|
|
| 2499 |
|
|
if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
|
| 2500 |
|
|
length_factor = scalar_loop_iters;
|
| 2501 |
|
|
else
|
| 2502 |
|
|
length_factor = size_int (vect_factor);
|
| 2503 |
|
|
segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
|
| 2504 |
|
|
segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
|
| 2505 |
|
|
|
| 2506 |
|
|
if (vect_print_dump_info (REPORT_DR_DETAILS))
|
| 2507 |
|
|
{
|
| 2508 |
|
|
fprintf (vect_dump,
|
| 2509 |
|
|
"create runtime check for data references ");
|
| 2510 |
|
|
print_generic_expr (vect_dump, DR_REF (dr_a), TDF_SLIM);
|
| 2511 |
|
|
fprintf (vect_dump, " and ");
|
| 2512 |
|
|
print_generic_expr (vect_dump, DR_REF (dr_b), TDF_SLIM);
|
| 2513 |
|
|
}
|
| 2514 |
|
|
|
| 2515 |
|
|
seg_a_min = addr_base_a;
|
| 2516 |
|
|
seg_a_max = fold_build_pointer_plus (addr_base_a, segment_length_a);
|
| 2517 |
|
|
if (tree_int_cst_compare (DR_STEP (dr_a), size_zero_node) < 0)
|
| 2518 |
|
|
seg_a_min = seg_a_max, seg_a_max = addr_base_a;
|
| 2519 |
|
|
|
| 2520 |
|
|
seg_b_min = addr_base_b;
|
| 2521 |
|
|
seg_b_max = fold_build_pointer_plus (addr_base_b, segment_length_b);
|
| 2522 |
|
|
if (tree_int_cst_compare (DR_STEP (dr_b), size_zero_node) < 0)
|
| 2523 |
|
|
seg_b_min = seg_b_max, seg_b_max = addr_base_b;
|
| 2524 |
|
|
|
| 2525 |
|
|
part_cond_expr =
|
| 2526 |
|
|
fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
|
| 2527 |
|
|
fold_build2 (LE_EXPR, boolean_type_node, seg_a_max, seg_b_min),
|
| 2528 |
|
|
fold_build2 (LE_EXPR, boolean_type_node, seg_b_max, seg_a_min));
|
| 2529 |
|
|
|
| 2530 |
|
|
if (*cond_expr)
|
| 2531 |
|
|
*cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
| 2532 |
|
|
*cond_expr, part_cond_expr);
|
| 2533 |
|
|
else
|
| 2534 |
|
|
*cond_expr = part_cond_expr;
|
| 2535 |
|
|
}
|
| 2536 |
|
|
|
| 2537 |
|
|
if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
|
| 2538 |
|
|
fprintf (vect_dump, "created %u versioning for alias checks.\n",
|
| 2539 |
|
|
VEC_length (ddr_p, may_alias_ddrs));
|
| 2540 |
|
|
}
|
| 2541 |
|
|
|
| 2542 |
|
|
|
| 2543 |
|
|
/* Function vect_loop_versioning.
|
| 2544 |
|
|
|
| 2545 |
|
|
If the loop has data references that may or may not be aligned or/and
|
| 2546 |
|
|
has data reference relations whose independence was not proven then
|
| 2547 |
|
|
two versions of the loop need to be generated, one which is vectorized
|
| 2548 |
|
|
and one which isn't. A test is then generated to control which of the
|
| 2549 |
|
|
loops is executed. The test checks for the alignment of all of the
|
| 2550 |
|
|
data references that may or may not be aligned. An additional
|
| 2551 |
|
|
sequence of runtime tests is generated for each pairs of DDRs whose
|
| 2552 |
|
|
independence was not proven. The vectorized version of loop is
|
| 2553 |
|
|
executed only if both alias and alignment tests are passed.
|
| 2554 |
|
|
|
| 2555 |
|
|
The test generated to check which version of loop is executed
|
| 2556 |
|
|
is modified to also check for profitability as indicated by the
|
| 2557 |
|
|
cost model initially.
|
| 2558 |
|
|
|
| 2559 |
|
|
The versioning precondition(s) are placed in *COND_EXPR and
|
| 2560 |
|
|
*COND_EXPR_STMT_LIST. If DO_VERSIONING is true versioning is
|
| 2561 |
|
|
also performed, otherwise only the conditions are generated. */
|
| 2562 |
|
|
|
| 2563 |
|
|
void
|
| 2564 |
|
|
vect_loop_versioning (loop_vec_info loop_vinfo, bool do_versioning,
|
| 2565 |
|
|
tree *cond_expr, gimple_seq *cond_expr_stmt_list)
|
| 2566 |
|
|
{
|
| 2567 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 2568 |
|
|
basic_block condition_bb;
|
| 2569 |
|
|
gimple_stmt_iterator gsi, cond_exp_gsi;
|
| 2570 |
|
|
basic_block merge_bb;
|
| 2571 |
|
|
basic_block new_exit_bb;
|
| 2572 |
|
|
edge new_exit_e, e;
|
| 2573 |
|
|
gimple orig_phi, new_phi;
|
| 2574 |
|
|
tree arg;
|
| 2575 |
|
|
unsigned prob = 4 * REG_BR_PROB_BASE / 5;
|
| 2576 |
|
|
gimple_seq gimplify_stmt_list = NULL;
|
| 2577 |
|
|
tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
|
| 2578 |
|
|
int min_profitable_iters = 0;
|
| 2579 |
|
|
unsigned int th;
|
| 2580 |
|
|
|
| 2581 |
|
|
/* Get profitability threshold for vectorized loop. */
|
| 2582 |
|
|
min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
|
| 2583 |
|
|
|
| 2584 |
|
|
th = conservative_cost_threshold (loop_vinfo,
|
| 2585 |
|
|
min_profitable_iters);
|
| 2586 |
|
|
|
| 2587 |
|
|
*cond_expr =
|
| 2588 |
|
|
fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
|
| 2589 |
|
|
build_int_cst (TREE_TYPE (scalar_loop_iters), th));
|
| 2590 |
|
|
|
| 2591 |
|
|
*cond_expr = force_gimple_operand (*cond_expr, cond_expr_stmt_list,
|
| 2592 |
|
|
false, NULL_TREE);
|
| 2593 |
|
|
|
| 2594 |
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
|
| 2595 |
|
|
vect_create_cond_for_align_checks (loop_vinfo, cond_expr,
|
| 2596 |
|
|
cond_expr_stmt_list);
|
| 2597 |
|
|
|
| 2598 |
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
|
| 2599 |
|
|
vect_create_cond_for_alias_checks (loop_vinfo, cond_expr,
|
| 2600 |
|
|
cond_expr_stmt_list);
|
| 2601 |
|
|
|
| 2602 |
|
|
*cond_expr =
|
| 2603 |
|
|
fold_build2 (NE_EXPR, boolean_type_node, *cond_expr, integer_zero_node);
|
| 2604 |
|
|
*cond_expr =
|
| 2605 |
|
|
force_gimple_operand (*cond_expr, &gimplify_stmt_list, true, NULL_TREE);
|
| 2606 |
|
|
gimple_seq_add_seq (cond_expr_stmt_list, gimplify_stmt_list);
|
| 2607 |
|
|
|
| 2608 |
|
|
/* If we only needed the extra conditions and a new loop copy
|
| 2609 |
|
|
bail out here. */
|
| 2610 |
|
|
if (!do_versioning)
|
| 2611 |
|
|
return;
|
| 2612 |
|
|
|
| 2613 |
|
|
initialize_original_copy_tables ();
|
| 2614 |
|
|
loop_version (loop, *cond_expr, &condition_bb,
|
| 2615 |
|
|
prob, prob, REG_BR_PROB_BASE - prob, true);
|
| 2616 |
|
|
free_original_copy_tables();
|
| 2617 |
|
|
|
| 2618 |
|
|
/* Loop versioning violates an assumption we try to maintain during
|
| 2619 |
|
|
vectorization - that the loop exit block has a single predecessor.
|
| 2620 |
|
|
After versioning, the exit block of both loop versions is the same
|
| 2621 |
|
|
basic block (i.e. it has two predecessors). Just in order to simplify
|
| 2622 |
|
|
following transformations in the vectorizer, we fix this situation
|
| 2623 |
|
|
here by adding a new (empty) block on the exit-edge of the loop,
|
| 2624 |
|
|
with the proper loop-exit phis to maintain loop-closed-form. */
|
| 2625 |
|
|
|
| 2626 |
|
|
merge_bb = single_exit (loop)->dest;
|
| 2627 |
|
|
gcc_assert (EDGE_COUNT (merge_bb->preds) == 2);
|
| 2628 |
|
|
new_exit_bb = split_edge (single_exit (loop));
|
| 2629 |
|
|
new_exit_e = single_exit (loop);
|
| 2630 |
|
|
e = EDGE_SUCC (new_exit_bb, 0);
|
| 2631 |
|
|
|
| 2632 |
|
|
for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 2633 |
|
|
{
|
| 2634 |
|
|
orig_phi = gsi_stmt (gsi);
|
| 2635 |
|
|
new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
|
| 2636 |
|
|
new_exit_bb);
|
| 2637 |
|
|
arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
|
| 2638 |
|
|
add_phi_arg (new_phi, arg, new_exit_e,
|
| 2639 |
|
|
gimple_phi_arg_location_from_edge (orig_phi, e));
|
| 2640 |
|
|
adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
|
| 2641 |
|
|
}
|
| 2642 |
|
|
|
| 2643 |
|
|
/* End loop-exit-fixes after versioning. */
|
| 2644 |
|
|
|
| 2645 |
|
|
update_ssa (TODO_update_ssa);
|
| 2646 |
|
|
if (*cond_expr_stmt_list)
|
| 2647 |
|
|
{
|
| 2648 |
|
|
cond_exp_gsi = gsi_last_bb (condition_bb);
|
| 2649 |
|
|
gsi_insert_seq_before (&cond_exp_gsi, *cond_expr_stmt_list,
|
| 2650 |
|
|
GSI_SAME_STMT);
|
| 2651 |
|
|
*cond_expr_stmt_list = NULL;
|
| 2652 |
|
|
}
|
| 2653 |
|
|
*cond_expr = NULL_TREE;
|
| 2654 |
|
|
}
|
| 2655 |
|
|
|