1 |
684 |
jeremybenn |
/* Loop Vectorization
|
2 |
|
|
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Dorit Naishlos <dorit@il.ibm.com> and
|
5 |
|
|
Ira Rosen <irar@il.ibm.com>
|
6 |
|
|
|
7 |
|
|
This file is part of GCC.
|
8 |
|
|
|
9 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
10 |
|
|
the terms of the GNU General Public License as published by the Free
|
11 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
12 |
|
|
version.
|
13 |
|
|
|
14 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
15 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
16 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
17 |
|
|
for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with GCC; see the file COPYING3. If not see
|
21 |
|
|
<http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
#include "config.h"
|
24 |
|
|
#include "system.h"
|
25 |
|
|
#include "coretypes.h"
|
26 |
|
|
#include "tm.h"
|
27 |
|
|
#include "ggc.h"
|
28 |
|
|
#include "tree.h"
|
29 |
|
|
#include "basic-block.h"
|
30 |
|
|
#include "tree-pretty-print.h"
|
31 |
|
|
#include "gimple-pretty-print.h"
|
32 |
|
|
#include "tree-flow.h"
|
33 |
|
|
#include "tree-dump.h"
|
34 |
|
|
#include "cfgloop.h"
|
35 |
|
|
#include "cfglayout.h"
|
36 |
|
|
#include "expr.h"
|
37 |
|
|
#include "recog.h"
|
38 |
|
|
#include "optabs.h"
|
39 |
|
|
#include "params.h"
|
40 |
|
|
#include "diagnostic-core.h"
|
41 |
|
|
#include "tree-chrec.h"
|
42 |
|
|
#include "tree-scalar-evolution.h"
|
43 |
|
|
#include "tree-vectorizer.h"
|
44 |
|
|
#include "target.h"
|
45 |
|
|
|
46 |
|
|
/* Loop Vectorization Pass.
|
47 |
|
|
|
48 |
|
|
This pass tries to vectorize loops.
|
49 |
|
|
|
50 |
|
|
For example, the vectorizer transforms the following simple loop:
|
51 |
|
|
|
52 |
|
|
short a[N]; short b[N]; short c[N]; int i;
|
53 |
|
|
|
54 |
|
|
for (i=0; i<N; i++){
|
55 |
|
|
a[i] = b[i] + c[i];
|
56 |
|
|
}
|
57 |
|
|
|
58 |
|
|
as if it was manually vectorized by rewriting the source code into:
|
59 |
|
|
|
60 |
|
|
typedef int __attribute__((mode(V8HI))) v8hi;
|
61 |
|
|
short a[N]; short b[N]; short c[N]; int i;
|
62 |
|
|
v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
|
63 |
|
|
v8hi va, vb, vc;
|
64 |
|
|
|
65 |
|
|
for (i=0; i<N/8; i++){
|
66 |
|
|
vb = pb[i];
|
67 |
|
|
vc = pc[i];
|
68 |
|
|
va = vb + vc;
|
69 |
|
|
pa[i] = va;
|
70 |
|
|
}
|
71 |
|
|
|
72 |
|
|
The main entry to this pass is vectorize_loops(), in which
|
73 |
|
|
the vectorizer applies a set of analyses on a given set of loops,
|
74 |
|
|
followed by the actual vectorization transformation for the loops that
|
75 |
|
|
had successfully passed the analysis phase.
|
76 |
|
|
Throughout this pass we make a distinction between two types of
|
77 |
|
|
data: scalars (which are represented by SSA_NAMES), and memory references
|
78 |
|
|
("data-refs"). These two types of data require different handling both
|
79 |
|
|
during analysis and transformation. The types of data-refs that the
|
80 |
|
|
vectorizer currently supports are ARRAY_REFS which base is an array DECL
|
81 |
|
|
(not a pointer), and INDIRECT_REFS through pointers; both array and pointer
|
82 |
|
|
accesses are required to have a simple (consecutive) access pattern.
|
83 |
|
|
|
84 |
|
|
Analysis phase:
|
85 |
|
|
===============
|
86 |
|
|
The driver for the analysis phase is vect_analyze_loop().
|
87 |
|
|
It applies a set of analyses, some of which rely on the scalar evolution
|
88 |
|
|
analyzer (scev) developed by Sebastian Pop.
|
89 |
|
|
|
90 |
|
|
During the analysis phase the vectorizer records some information
|
91 |
|
|
per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
|
92 |
|
|
loop, as well as general information about the loop as a whole, which is
|
93 |
|
|
recorded in a "loop_vec_info" struct attached to each loop.
|
94 |
|
|
|
95 |
|
|
Transformation phase:
|
96 |
|
|
=====================
|
97 |
|
|
The loop transformation phase scans all the stmts in the loop, and
|
98 |
|
|
creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
|
99 |
|
|
the loop that needs to be vectorized. It inserts the vector code sequence
|
100 |
|
|
just before the scalar stmt S, and records a pointer to the vector code
|
101 |
|
|
in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
|
102 |
|
|
attached to S). This pointer will be used for the vectorization of following
|
103 |
|
|
stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
|
104 |
|
|
otherwise, we rely on dead code elimination for removing it.
|
105 |
|
|
|
106 |
|
|
For example, say stmt S1 was vectorized into stmt VS1:
|
107 |
|
|
|
108 |
|
|
VS1: vb = px[i];
|
109 |
|
|
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
|
110 |
|
|
S2: a = b;
|
111 |
|
|
|
112 |
|
|
To vectorize stmt S2, the vectorizer first finds the stmt that defines
|
113 |
|
|
the operand 'b' (S1), and gets the relevant vector def 'vb' from the
|
114 |
|
|
vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
|
115 |
|
|
resulting sequence would be:
|
116 |
|
|
|
117 |
|
|
VS1: vb = px[i];
|
118 |
|
|
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
|
119 |
|
|
VS2: va = vb;
|
120 |
|
|
S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
|
121 |
|
|
|
122 |
|
|
Operands that are not SSA_NAMEs, are data-refs that appear in
|
123 |
|
|
load/store operations (like 'x[i]' in S1), and are handled differently.
|
124 |
|
|
|
125 |
|
|
Target modeling:
|
126 |
|
|
=================
|
127 |
|
|
Currently the only target specific information that is used is the
|
128 |
|
|
size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
|
129 |
|
|
Targets that can support different sizes of vectors, for now will need
|
130 |
|
|
to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
|
131 |
|
|
flexibility will be added in the future.
|
132 |
|
|
|
133 |
|
|
Since we only vectorize operations which vector form can be
|
134 |
|
|
expressed using existing tree codes, to verify that an operation is
|
135 |
|
|
supported, the vectorizer checks the relevant optab at the relevant
|
136 |
|
|
machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
|
137 |
|
|
the value found is CODE_FOR_nothing, then there's no target support, and
|
138 |
|
|
we can't vectorize the stmt.
|
139 |
|
|
|
140 |
|
|
For additional information on this project see:
|
141 |
|
|
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
|
142 |
|
|
*/
|
143 |
|
|
|
144 |
|
|
/* Function vect_determine_vectorization_factor
|
145 |
|
|
|
146 |
|
|
Determine the vectorization factor (VF). VF is the number of data elements
|
147 |
|
|
that are operated upon in parallel in a single iteration of the vectorized
|
148 |
|
|
loop. For example, when vectorizing a loop that operates on 4byte elements,
|
149 |
|
|
on a target with vector size (VS) 16byte, the VF is set to 4, since 4
|
150 |
|
|
elements can fit in a single vector register.
|
151 |
|
|
|
152 |
|
|
We currently support vectorization of loops in which all types operated upon
|
153 |
|
|
are of the same size. Therefore this function currently sets VF according to
|
154 |
|
|
the size of the types operated upon, and fails if there are multiple sizes
|
155 |
|
|
in the loop.
|
156 |
|
|
|
157 |
|
|
VF is also the factor by which the loop iterations are strip-mined, e.g.:
|
158 |
|
|
original loop:
|
159 |
|
|
for (i=0; i<N; i++){
|
160 |
|
|
a[i] = b[i] + c[i];
|
161 |
|
|
}
|
162 |
|
|
|
163 |
|
|
vectorized loop:
|
164 |
|
|
for (i=0; i<N; i+=VF){
|
165 |
|
|
a[i:VF] = b[i:VF] + c[i:VF];
|
166 |
|
|
}
|
167 |
|
|
*/
|
168 |
|
|
|
169 |
|
|
static bool
|
170 |
|
|
vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
|
171 |
|
|
{
|
172 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
173 |
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
174 |
|
|
int nbbs = loop->num_nodes;
|
175 |
|
|
gimple_stmt_iterator si;
|
176 |
|
|
unsigned int vectorization_factor = 0;
|
177 |
|
|
tree scalar_type;
|
178 |
|
|
gimple phi;
|
179 |
|
|
tree vectype;
|
180 |
|
|
unsigned int nunits;
|
181 |
|
|
stmt_vec_info stmt_info;
|
182 |
|
|
int i;
|
183 |
|
|
HOST_WIDE_INT dummy;
|
184 |
|
|
gimple stmt, pattern_stmt = NULL;
|
185 |
|
|
gimple_seq pattern_def_seq = NULL;
|
186 |
|
|
gimple_stmt_iterator pattern_def_si = gsi_start (NULL);
|
187 |
|
|
bool analyze_pattern_stmt = false;
|
188 |
|
|
|
189 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
190 |
|
|
fprintf (vect_dump, "=== vect_determine_vectorization_factor ===");
|
191 |
|
|
|
192 |
|
|
for (i = 0; i < nbbs; i++)
|
193 |
|
|
{
|
194 |
|
|
basic_block bb = bbs[i];
|
195 |
|
|
|
196 |
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
197 |
|
|
{
|
198 |
|
|
phi = gsi_stmt (si);
|
199 |
|
|
stmt_info = vinfo_for_stmt (phi);
|
200 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
201 |
|
|
{
|
202 |
|
|
fprintf (vect_dump, "==> examining phi: ");
|
203 |
|
|
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
|
204 |
|
|
}
|
205 |
|
|
|
206 |
|
|
gcc_assert (stmt_info);
|
207 |
|
|
|
208 |
|
|
if (STMT_VINFO_RELEVANT_P (stmt_info))
|
209 |
|
|
{
|
210 |
|
|
gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
|
211 |
|
|
scalar_type = TREE_TYPE (PHI_RESULT (phi));
|
212 |
|
|
|
213 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
214 |
|
|
{
|
215 |
|
|
fprintf (vect_dump, "get vectype for scalar type: ");
|
216 |
|
|
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
|
217 |
|
|
}
|
218 |
|
|
|
219 |
|
|
vectype = get_vectype_for_scalar_type (scalar_type);
|
220 |
|
|
if (!vectype)
|
221 |
|
|
{
|
222 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
223 |
|
|
{
|
224 |
|
|
fprintf (vect_dump,
|
225 |
|
|
"not vectorized: unsupported data-type ");
|
226 |
|
|
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
|
227 |
|
|
}
|
228 |
|
|
return false;
|
229 |
|
|
}
|
230 |
|
|
STMT_VINFO_VECTYPE (stmt_info) = vectype;
|
231 |
|
|
|
232 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
233 |
|
|
{
|
234 |
|
|
fprintf (vect_dump, "vectype: ");
|
235 |
|
|
print_generic_expr (vect_dump, vectype, TDF_SLIM);
|
236 |
|
|
}
|
237 |
|
|
|
238 |
|
|
nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
239 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
240 |
|
|
fprintf (vect_dump, "nunits = %d", nunits);
|
241 |
|
|
|
242 |
|
|
if (!vectorization_factor
|
243 |
|
|
|| (nunits > vectorization_factor))
|
244 |
|
|
vectorization_factor = nunits;
|
245 |
|
|
}
|
246 |
|
|
}
|
247 |
|
|
|
248 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si) || analyze_pattern_stmt;)
|
249 |
|
|
{
|
250 |
|
|
tree vf_vectype;
|
251 |
|
|
|
252 |
|
|
if (analyze_pattern_stmt)
|
253 |
|
|
stmt = pattern_stmt;
|
254 |
|
|
else
|
255 |
|
|
stmt = gsi_stmt (si);
|
256 |
|
|
|
257 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
258 |
|
|
|
259 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
260 |
|
|
{
|
261 |
|
|
fprintf (vect_dump, "==> examining statement: ");
|
262 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
263 |
|
|
}
|
264 |
|
|
|
265 |
|
|
gcc_assert (stmt_info);
|
266 |
|
|
|
267 |
|
|
/* Skip stmts which do not need to be vectorized. */
|
268 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info)
|
269 |
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
270 |
|
|
{
|
271 |
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info)
|
272 |
|
|
&& (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
|
273 |
|
|
&& (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
|
274 |
|
|
|| STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
|
275 |
|
|
{
|
276 |
|
|
stmt = pattern_stmt;
|
277 |
|
|
stmt_info = vinfo_for_stmt (pattern_stmt);
|
278 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
279 |
|
|
{
|
280 |
|
|
fprintf (vect_dump, "==> examining pattern statement: ");
|
281 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
282 |
|
|
}
|
283 |
|
|
}
|
284 |
|
|
else
|
285 |
|
|
{
|
286 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
287 |
|
|
fprintf (vect_dump, "skip.");
|
288 |
|
|
gsi_next (&si);
|
289 |
|
|
continue;
|
290 |
|
|
}
|
291 |
|
|
}
|
292 |
|
|
else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
|
293 |
|
|
&& (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
|
294 |
|
|
&& (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
|
295 |
|
|
|| STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
|
296 |
|
|
analyze_pattern_stmt = true;
|
297 |
|
|
|
298 |
|
|
/* If a pattern statement has def stmts, analyze them too. */
|
299 |
|
|
if (is_pattern_stmt_p (stmt_info))
|
300 |
|
|
{
|
301 |
|
|
if (pattern_def_seq == NULL)
|
302 |
|
|
{
|
303 |
|
|
pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
|
304 |
|
|
pattern_def_si = gsi_start (pattern_def_seq);
|
305 |
|
|
}
|
306 |
|
|
else if (!gsi_end_p (pattern_def_si))
|
307 |
|
|
gsi_next (&pattern_def_si);
|
308 |
|
|
if (pattern_def_seq != NULL)
|
309 |
|
|
{
|
310 |
|
|
gimple pattern_def_stmt = NULL;
|
311 |
|
|
stmt_vec_info pattern_def_stmt_info = NULL;
|
312 |
|
|
|
313 |
|
|
while (!gsi_end_p (pattern_def_si))
|
314 |
|
|
{
|
315 |
|
|
pattern_def_stmt = gsi_stmt (pattern_def_si);
|
316 |
|
|
pattern_def_stmt_info
|
317 |
|
|
= vinfo_for_stmt (pattern_def_stmt);
|
318 |
|
|
if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
|
319 |
|
|
|| STMT_VINFO_LIVE_P (pattern_def_stmt_info))
|
320 |
|
|
break;
|
321 |
|
|
gsi_next (&pattern_def_si);
|
322 |
|
|
}
|
323 |
|
|
|
324 |
|
|
if (!gsi_end_p (pattern_def_si))
|
325 |
|
|
{
|
326 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
327 |
|
|
{
|
328 |
|
|
fprintf (vect_dump,
|
329 |
|
|
"==> examining pattern def stmt: ");
|
330 |
|
|
print_gimple_stmt (vect_dump, pattern_def_stmt, 0,
|
331 |
|
|
TDF_SLIM);
|
332 |
|
|
}
|
333 |
|
|
|
334 |
|
|
stmt = pattern_def_stmt;
|
335 |
|
|
stmt_info = pattern_def_stmt_info;
|
336 |
|
|
}
|
337 |
|
|
else
|
338 |
|
|
{
|
339 |
|
|
pattern_def_si = gsi_start (NULL);
|
340 |
|
|
analyze_pattern_stmt = false;
|
341 |
|
|
}
|
342 |
|
|
}
|
343 |
|
|
else
|
344 |
|
|
analyze_pattern_stmt = false;
|
345 |
|
|
}
|
346 |
|
|
|
347 |
|
|
if (gimple_get_lhs (stmt) == NULL_TREE)
|
348 |
|
|
{
|
349 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
350 |
|
|
{
|
351 |
|
|
fprintf (vect_dump, "not vectorized: irregular stmt.");
|
352 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
353 |
|
|
}
|
354 |
|
|
return false;
|
355 |
|
|
}
|
356 |
|
|
|
357 |
|
|
if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
|
358 |
|
|
{
|
359 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
360 |
|
|
{
|
361 |
|
|
fprintf (vect_dump, "not vectorized: vector stmt in loop:");
|
362 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
363 |
|
|
}
|
364 |
|
|
return false;
|
365 |
|
|
}
|
366 |
|
|
|
367 |
|
|
if (STMT_VINFO_VECTYPE (stmt_info))
|
368 |
|
|
{
|
369 |
|
|
/* The only case when a vectype had been already set is for stmts
|
370 |
|
|
that contain a dataref, or for "pattern-stmts" (stmts
|
371 |
|
|
generated by the vectorizer to represent/replace a certain
|
372 |
|
|
idiom). */
|
373 |
|
|
gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
|
374 |
|
|
|| is_pattern_stmt_p (stmt_info)
|
375 |
|
|
|| !gsi_end_p (pattern_def_si));
|
376 |
|
|
vectype = STMT_VINFO_VECTYPE (stmt_info);
|
377 |
|
|
}
|
378 |
|
|
else
|
379 |
|
|
{
|
380 |
|
|
gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
|
381 |
|
|
scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
|
382 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
383 |
|
|
{
|
384 |
|
|
fprintf (vect_dump, "get vectype for scalar type: ");
|
385 |
|
|
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
|
386 |
|
|
}
|
387 |
|
|
vectype = get_vectype_for_scalar_type (scalar_type);
|
388 |
|
|
if (!vectype)
|
389 |
|
|
{
|
390 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
391 |
|
|
{
|
392 |
|
|
fprintf (vect_dump,
|
393 |
|
|
"not vectorized: unsupported data-type ");
|
394 |
|
|
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
|
395 |
|
|
}
|
396 |
|
|
return false;
|
397 |
|
|
}
|
398 |
|
|
|
399 |
|
|
STMT_VINFO_VECTYPE (stmt_info) = vectype;
|
400 |
|
|
}
|
401 |
|
|
|
402 |
|
|
/* The vectorization factor is according to the smallest
|
403 |
|
|
scalar type (or the largest vector size, but we only
|
404 |
|
|
support one vector size per loop). */
|
405 |
|
|
scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
|
406 |
|
|
&dummy);
|
407 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
408 |
|
|
{
|
409 |
|
|
fprintf (vect_dump, "get vectype for scalar type: ");
|
410 |
|
|
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
|
411 |
|
|
}
|
412 |
|
|
vf_vectype = get_vectype_for_scalar_type (scalar_type);
|
413 |
|
|
if (!vf_vectype)
|
414 |
|
|
{
|
415 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
416 |
|
|
{
|
417 |
|
|
fprintf (vect_dump,
|
418 |
|
|
"not vectorized: unsupported data-type ");
|
419 |
|
|
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
|
420 |
|
|
}
|
421 |
|
|
return false;
|
422 |
|
|
}
|
423 |
|
|
|
424 |
|
|
if ((GET_MODE_SIZE (TYPE_MODE (vectype))
|
425 |
|
|
!= GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
|
426 |
|
|
{
|
427 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
428 |
|
|
{
|
429 |
|
|
fprintf (vect_dump,
|
430 |
|
|
"not vectorized: different sized vector "
|
431 |
|
|
"types in statement, ");
|
432 |
|
|
print_generic_expr (vect_dump, vectype, TDF_SLIM);
|
433 |
|
|
fprintf (vect_dump, " and ");
|
434 |
|
|
print_generic_expr (vect_dump, vf_vectype, TDF_SLIM);
|
435 |
|
|
}
|
436 |
|
|
return false;
|
437 |
|
|
}
|
438 |
|
|
|
439 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
440 |
|
|
{
|
441 |
|
|
fprintf (vect_dump, "vectype: ");
|
442 |
|
|
print_generic_expr (vect_dump, vf_vectype, TDF_SLIM);
|
443 |
|
|
}
|
444 |
|
|
|
445 |
|
|
nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
|
446 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
447 |
|
|
fprintf (vect_dump, "nunits = %d", nunits);
|
448 |
|
|
|
449 |
|
|
if (!vectorization_factor
|
450 |
|
|
|| (nunits > vectorization_factor))
|
451 |
|
|
vectorization_factor = nunits;
|
452 |
|
|
|
453 |
|
|
if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
|
454 |
|
|
{
|
455 |
|
|
pattern_def_seq = NULL;
|
456 |
|
|
gsi_next (&si);
|
457 |
|
|
}
|
458 |
|
|
}
|
459 |
|
|
}
|
460 |
|
|
|
461 |
|
|
/* TODO: Analyze cost. Decide if worth while to vectorize. */
|
462 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
463 |
|
|
fprintf (vect_dump, "vectorization factor = %d", vectorization_factor);
|
464 |
|
|
if (vectorization_factor <= 1)
|
465 |
|
|
{
|
466 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
467 |
|
|
fprintf (vect_dump, "not vectorized: unsupported data-type");
|
468 |
|
|
return false;
|
469 |
|
|
}
|
470 |
|
|
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
|
471 |
|
|
|
472 |
|
|
return true;
|
473 |
|
|
}
|
474 |
|
|
|
475 |
|
|
|
476 |
|
|
/* Function vect_is_simple_iv_evolution.
|
477 |
|
|
|
478 |
|
|
FORNOW: A simple evolution of an induction variables in the loop is
|
479 |
|
|
considered a polynomial evolution with constant step. */
|
480 |
|
|
|
481 |
|
|
static bool
|
482 |
|
|
vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
|
483 |
|
|
tree * step)
|
484 |
|
|
{
|
485 |
|
|
tree init_expr;
|
486 |
|
|
tree step_expr;
|
487 |
|
|
tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
|
488 |
|
|
|
489 |
|
|
/* When there is no evolution in this loop, the evolution function
|
490 |
|
|
is not "simple". */
|
491 |
|
|
if (evolution_part == NULL_TREE)
|
492 |
|
|
return false;
|
493 |
|
|
|
494 |
|
|
/* When the evolution is a polynomial of degree >= 2
|
495 |
|
|
the evolution function is not "simple". */
|
496 |
|
|
if (tree_is_chrec (evolution_part))
|
497 |
|
|
return false;
|
498 |
|
|
|
499 |
|
|
step_expr = evolution_part;
|
500 |
|
|
init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
|
501 |
|
|
|
502 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
503 |
|
|
{
|
504 |
|
|
fprintf (vect_dump, "step: ");
|
505 |
|
|
print_generic_expr (vect_dump, step_expr, TDF_SLIM);
|
506 |
|
|
fprintf (vect_dump, ", init: ");
|
507 |
|
|
print_generic_expr (vect_dump, init_expr, TDF_SLIM);
|
508 |
|
|
}
|
509 |
|
|
|
510 |
|
|
*init = init_expr;
|
511 |
|
|
*step = step_expr;
|
512 |
|
|
|
513 |
|
|
if (TREE_CODE (step_expr) != INTEGER_CST)
|
514 |
|
|
{
|
515 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
516 |
|
|
fprintf (vect_dump, "step unknown.");
|
517 |
|
|
return false;
|
518 |
|
|
}
|
519 |
|
|
|
520 |
|
|
return true;
|
521 |
|
|
}
|
522 |
|
|
|
523 |
|
|
/* Function vect_analyze_scalar_cycles_1.
|
524 |
|
|
|
525 |
|
|
Examine the cross iteration def-use cycles of scalar variables
|
526 |
|
|
in LOOP. LOOP_VINFO represents the loop that is now being
|
527 |
|
|
considered for vectorization (can be LOOP, or an outer-loop
|
528 |
|
|
enclosing LOOP). */
|
529 |
|
|
|
530 |
|
|
static void
|
531 |
|
|
vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
|
532 |
|
|
{
|
533 |
|
|
basic_block bb = loop->header;
|
534 |
|
|
tree dumy;
|
535 |
|
|
VEC(gimple,heap) *worklist = VEC_alloc (gimple, heap, 64);
|
536 |
|
|
gimple_stmt_iterator gsi;
|
537 |
|
|
bool double_reduc;
|
538 |
|
|
|
539 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
540 |
|
|
fprintf (vect_dump, "=== vect_analyze_scalar_cycles ===");
|
541 |
|
|
|
542 |
|
|
/* First - identify all inductions. Reduction detection assumes that all the
|
543 |
|
|
inductions have been identified, therefore, this order must not be
|
544 |
|
|
changed. */
|
545 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
546 |
|
|
{
|
547 |
|
|
gimple phi = gsi_stmt (gsi);
|
548 |
|
|
tree access_fn = NULL;
|
549 |
|
|
tree def = PHI_RESULT (phi);
|
550 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
|
551 |
|
|
|
552 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
553 |
|
|
{
|
554 |
|
|
fprintf (vect_dump, "Analyze phi: ");
|
555 |
|
|
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
|
556 |
|
|
}
|
557 |
|
|
|
558 |
|
|
/* Skip virtual phi's. The data dependences that are associated with
|
559 |
|
|
virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
|
560 |
|
|
if (!is_gimple_reg (SSA_NAME_VAR (def)))
|
561 |
|
|
continue;
|
562 |
|
|
|
563 |
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
|
564 |
|
|
|
565 |
|
|
/* Analyze the evolution function. */
|
566 |
|
|
access_fn = analyze_scalar_evolution (loop, def);
|
567 |
|
|
if (access_fn)
|
568 |
|
|
STRIP_NOPS (access_fn);
|
569 |
|
|
if (access_fn && vect_print_dump_info (REPORT_DETAILS))
|
570 |
|
|
{
|
571 |
|
|
fprintf (vect_dump, "Access function of PHI: ");
|
572 |
|
|
print_generic_expr (vect_dump, access_fn, TDF_SLIM);
|
573 |
|
|
}
|
574 |
|
|
|
575 |
|
|
if (!access_fn
|
576 |
|
|
|| !vect_is_simple_iv_evolution (loop->num, access_fn, &dumy, &dumy))
|
577 |
|
|
{
|
578 |
|
|
VEC_safe_push (gimple, heap, worklist, phi);
|
579 |
|
|
continue;
|
580 |
|
|
}
|
581 |
|
|
|
582 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
583 |
|
|
fprintf (vect_dump, "Detected induction.");
|
584 |
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
|
585 |
|
|
}
|
586 |
|
|
|
587 |
|
|
|
588 |
|
|
/* Second - identify all reductions and nested cycles. */
|
589 |
|
|
while (VEC_length (gimple, worklist) > 0)
|
590 |
|
|
{
|
591 |
|
|
gimple phi = VEC_pop (gimple, worklist);
|
592 |
|
|
tree def = PHI_RESULT (phi);
|
593 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
|
594 |
|
|
gimple reduc_stmt;
|
595 |
|
|
bool nested_cycle;
|
596 |
|
|
|
597 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
598 |
|
|
{
|
599 |
|
|
fprintf (vect_dump, "Analyze phi: ");
|
600 |
|
|
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
|
601 |
|
|
}
|
602 |
|
|
|
603 |
|
|
gcc_assert (is_gimple_reg (SSA_NAME_VAR (def)));
|
604 |
|
|
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
|
605 |
|
|
|
606 |
|
|
nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
|
607 |
|
|
reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
|
608 |
|
|
&double_reduc);
|
609 |
|
|
if (reduc_stmt)
|
610 |
|
|
{
|
611 |
|
|
if (double_reduc)
|
612 |
|
|
{
|
613 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
614 |
|
|
fprintf (vect_dump, "Detected double reduction.");
|
615 |
|
|
|
616 |
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
|
617 |
|
|
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
|
618 |
|
|
vect_double_reduction_def;
|
619 |
|
|
}
|
620 |
|
|
else
|
621 |
|
|
{
|
622 |
|
|
if (nested_cycle)
|
623 |
|
|
{
|
624 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
625 |
|
|
fprintf (vect_dump, "Detected vectorizable nested cycle.");
|
626 |
|
|
|
627 |
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
|
628 |
|
|
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
|
629 |
|
|
vect_nested_cycle;
|
630 |
|
|
}
|
631 |
|
|
else
|
632 |
|
|
{
|
633 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
634 |
|
|
fprintf (vect_dump, "Detected reduction.");
|
635 |
|
|
|
636 |
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
|
637 |
|
|
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
|
638 |
|
|
vect_reduction_def;
|
639 |
|
|
/* Store the reduction cycles for possible vectorization in
|
640 |
|
|
loop-aware SLP. */
|
641 |
|
|
VEC_safe_push (gimple, heap,
|
642 |
|
|
LOOP_VINFO_REDUCTIONS (loop_vinfo),
|
643 |
|
|
reduc_stmt);
|
644 |
|
|
}
|
645 |
|
|
}
|
646 |
|
|
}
|
647 |
|
|
else
|
648 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
649 |
|
|
fprintf (vect_dump, "Unknown def-use cycle pattern.");
|
650 |
|
|
}
|
651 |
|
|
|
652 |
|
|
VEC_free (gimple, heap, worklist);
|
653 |
|
|
}
|
654 |
|
|
|
655 |
|
|
|
656 |
|
|
/* Function vect_analyze_scalar_cycles.
|
657 |
|
|
|
658 |
|
|
Examine the cross iteration def-use cycles of scalar variables, by
|
659 |
|
|
analyzing the loop-header PHIs of scalar variables. Classify each
|
660 |
|
|
cycle as one of the following: invariant, induction, reduction, unknown.
|
661 |
|
|
We do that for the loop represented by LOOP_VINFO, and also to its
|
662 |
|
|
inner-loop, if exists.
|
663 |
|
|
Examples for scalar cycles:
|
664 |
|
|
|
665 |
|
|
Example1: reduction:
|
666 |
|
|
|
667 |
|
|
loop1:
|
668 |
|
|
for (i=0; i<N; i++)
|
669 |
|
|
sum += a[i];
|
670 |
|
|
|
671 |
|
|
Example2: induction:
|
672 |
|
|
|
673 |
|
|
loop2:
|
674 |
|
|
for (i=0; i<N; i++)
|
675 |
|
|
a[i] = i; */
|
676 |
|
|
|
677 |
|
|
static void
|
678 |
|
|
vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
|
679 |
|
|
{
|
680 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
681 |
|
|
|
682 |
|
|
vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
|
683 |
|
|
|
684 |
|
|
/* When vectorizing an outer-loop, the inner-loop is executed sequentially.
|
685 |
|
|
Reductions in such inner-loop therefore have different properties than
|
686 |
|
|
the reductions in the nest that gets vectorized:
|
687 |
|
|
1. When vectorized, they are executed in the same order as in the original
|
688 |
|
|
scalar loop, so we can't change the order of computation when
|
689 |
|
|
vectorizing them.
|
690 |
|
|
2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
|
691 |
|
|
current checks are too strict. */
|
692 |
|
|
|
693 |
|
|
if (loop->inner)
|
694 |
|
|
vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
|
695 |
|
|
}
|
696 |
|
|
|
697 |
|
|
/* Function vect_get_loop_niters.
|
698 |
|
|
|
699 |
|
|
Determine how many iterations the loop is executed.
|
700 |
|
|
If an expression that represents the number of iterations
|
701 |
|
|
can be constructed, place it in NUMBER_OF_ITERATIONS.
|
702 |
|
|
Return the loop exit condition. */
|
703 |
|
|
|
704 |
|
|
static gimple
|
705 |
|
|
vect_get_loop_niters (struct loop *loop, tree *number_of_iterations)
|
706 |
|
|
{
|
707 |
|
|
tree niters;
|
708 |
|
|
|
709 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
710 |
|
|
fprintf (vect_dump, "=== get_loop_niters ===");
|
711 |
|
|
|
712 |
|
|
niters = number_of_exit_cond_executions (loop);
|
713 |
|
|
|
714 |
|
|
if (niters != NULL_TREE
|
715 |
|
|
&& niters != chrec_dont_know)
|
716 |
|
|
{
|
717 |
|
|
*number_of_iterations = niters;
|
718 |
|
|
|
719 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
720 |
|
|
{
|
721 |
|
|
fprintf (vect_dump, "==> get_loop_niters:" );
|
722 |
|
|
print_generic_expr (vect_dump, *number_of_iterations, TDF_SLIM);
|
723 |
|
|
}
|
724 |
|
|
}
|
725 |
|
|
|
726 |
|
|
return get_loop_exit_condition (loop);
|
727 |
|
|
}
|
728 |
|
|
|
729 |
|
|
|
730 |
|
|
/* Function bb_in_loop_p
|
731 |
|
|
|
732 |
|
|
Used as predicate for dfs order traversal of the loop bbs. */
|
733 |
|
|
|
734 |
|
|
static bool
|
735 |
|
|
bb_in_loop_p (const_basic_block bb, const void *data)
|
736 |
|
|
{
|
737 |
|
|
const struct loop *const loop = (const struct loop *)data;
|
738 |
|
|
if (flow_bb_inside_loop_p (loop, bb))
|
739 |
|
|
return true;
|
740 |
|
|
return false;
|
741 |
|
|
}
|
742 |
|
|
|
743 |
|
|
|
744 |
|
|
/* Function new_loop_vec_info.
|
745 |
|
|
|
746 |
|
|
Create and initialize a new loop_vec_info struct for LOOP, as well as
|
747 |
|
|
stmt_vec_info structs for all the stmts in LOOP. */
|
748 |
|
|
|
749 |
|
|
static loop_vec_info
|
750 |
|
|
new_loop_vec_info (struct loop *loop)
|
751 |
|
|
{
|
752 |
|
|
loop_vec_info res;
|
753 |
|
|
basic_block *bbs;
|
754 |
|
|
gimple_stmt_iterator si;
|
755 |
|
|
unsigned int i, nbbs;
|
756 |
|
|
|
757 |
|
|
res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
|
758 |
|
|
LOOP_VINFO_LOOP (res) = loop;
|
759 |
|
|
|
760 |
|
|
bbs = get_loop_body (loop);
|
761 |
|
|
|
762 |
|
|
/* Create/Update stmt_info for all stmts in the loop. */
|
763 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
764 |
|
|
{
|
765 |
|
|
basic_block bb = bbs[i];
|
766 |
|
|
|
767 |
|
|
/* BBs in a nested inner-loop will have been already processed (because
|
768 |
|
|
we will have called vect_analyze_loop_form for any nested inner-loop).
|
769 |
|
|
Therefore, for stmts in an inner-loop we just want to update the
|
770 |
|
|
STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
|
771 |
|
|
loop_info of the outer-loop we are currently considering to vectorize
|
772 |
|
|
(instead of the loop_info of the inner-loop).
|
773 |
|
|
For stmts in other BBs we need to create a stmt_info from scratch. */
|
774 |
|
|
if (bb->loop_father != loop)
|
775 |
|
|
{
|
776 |
|
|
/* Inner-loop bb. */
|
777 |
|
|
gcc_assert (loop->inner && bb->loop_father == loop->inner);
|
778 |
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
779 |
|
|
{
|
780 |
|
|
gimple phi = gsi_stmt (si);
|
781 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (phi);
|
782 |
|
|
loop_vec_info inner_loop_vinfo =
|
783 |
|
|
STMT_VINFO_LOOP_VINFO (stmt_info);
|
784 |
|
|
gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
|
785 |
|
|
STMT_VINFO_LOOP_VINFO (stmt_info) = res;
|
786 |
|
|
}
|
787 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
788 |
|
|
{
|
789 |
|
|
gimple stmt = gsi_stmt (si);
|
790 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
791 |
|
|
loop_vec_info inner_loop_vinfo =
|
792 |
|
|
STMT_VINFO_LOOP_VINFO (stmt_info);
|
793 |
|
|
gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
|
794 |
|
|
STMT_VINFO_LOOP_VINFO (stmt_info) = res;
|
795 |
|
|
}
|
796 |
|
|
}
|
797 |
|
|
else
|
798 |
|
|
{
|
799 |
|
|
/* bb in current nest. */
|
800 |
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
801 |
|
|
{
|
802 |
|
|
gimple phi = gsi_stmt (si);
|
803 |
|
|
gimple_set_uid (phi, 0);
|
804 |
|
|
set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res, NULL));
|
805 |
|
|
}
|
806 |
|
|
|
807 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
808 |
|
|
{
|
809 |
|
|
gimple stmt = gsi_stmt (si);
|
810 |
|
|
gimple_set_uid (stmt, 0);
|
811 |
|
|
set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res, NULL));
|
812 |
|
|
}
|
813 |
|
|
}
|
814 |
|
|
}
|
815 |
|
|
|
816 |
|
|
/* CHECKME: We want to visit all BBs before their successors (except for
|
817 |
|
|
latch blocks, for which this assertion wouldn't hold). In the simple
|
818 |
|
|
case of the loop forms we allow, a dfs order of the BBs would the same
|
819 |
|
|
as reversed postorder traversal, so we are safe. */
|
820 |
|
|
|
821 |
|
|
free (bbs);
|
822 |
|
|
bbs = XCNEWVEC (basic_block, loop->num_nodes);
|
823 |
|
|
nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
|
824 |
|
|
bbs, loop->num_nodes, loop);
|
825 |
|
|
gcc_assert (nbbs == loop->num_nodes);
|
826 |
|
|
|
827 |
|
|
LOOP_VINFO_BBS (res) = bbs;
|
828 |
|
|
LOOP_VINFO_NITERS (res) = NULL;
|
829 |
|
|
LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
|
830 |
|
|
LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
|
831 |
|
|
LOOP_VINFO_VECTORIZABLE_P (res) = 0;
|
832 |
|
|
LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
|
833 |
|
|
LOOP_VINFO_VECT_FACTOR (res) = 0;
|
834 |
|
|
LOOP_VINFO_LOOP_NEST (res) = VEC_alloc (loop_p, heap, 3);
|
835 |
|
|
LOOP_VINFO_DATAREFS (res) = VEC_alloc (data_reference_p, heap, 10);
|
836 |
|
|
LOOP_VINFO_DDRS (res) = VEC_alloc (ddr_p, heap, 10 * 10);
|
837 |
|
|
LOOP_VINFO_UNALIGNED_DR (res) = NULL;
|
838 |
|
|
LOOP_VINFO_MAY_MISALIGN_STMTS (res) =
|
839 |
|
|
VEC_alloc (gimple, heap,
|
840 |
|
|
PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
|
841 |
|
|
LOOP_VINFO_MAY_ALIAS_DDRS (res) =
|
842 |
|
|
VEC_alloc (ddr_p, heap,
|
843 |
|
|
PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
|
844 |
|
|
LOOP_VINFO_STRIDED_STORES (res) = VEC_alloc (gimple, heap, 10);
|
845 |
|
|
LOOP_VINFO_REDUCTIONS (res) = VEC_alloc (gimple, heap, 10);
|
846 |
|
|
LOOP_VINFO_REDUCTION_CHAINS (res) = VEC_alloc (gimple, heap, 10);
|
847 |
|
|
LOOP_VINFO_SLP_INSTANCES (res) = VEC_alloc (slp_instance, heap, 10);
|
848 |
|
|
LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
|
849 |
|
|
LOOP_VINFO_PEELING_HTAB (res) = NULL;
|
850 |
|
|
LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
|
851 |
|
|
|
852 |
|
|
return res;
|
853 |
|
|
}
|
854 |
|
|
|
855 |
|
|
|
856 |
|
|
/* Function destroy_loop_vec_info.
|
857 |
|
|
|
858 |
|
|
Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
|
859 |
|
|
stmts in the loop. */
|
860 |
|
|
|
861 |
|
|
void
|
862 |
|
|
destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
|
863 |
|
|
{
|
864 |
|
|
struct loop *loop;
|
865 |
|
|
basic_block *bbs;
|
866 |
|
|
int nbbs;
|
867 |
|
|
gimple_stmt_iterator si;
|
868 |
|
|
int j;
|
869 |
|
|
VEC (slp_instance, heap) *slp_instances;
|
870 |
|
|
slp_instance instance;
|
871 |
|
|
|
872 |
|
|
if (!loop_vinfo)
|
873 |
|
|
return;
|
874 |
|
|
|
875 |
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
876 |
|
|
|
877 |
|
|
bbs = LOOP_VINFO_BBS (loop_vinfo);
|
878 |
|
|
nbbs = loop->num_nodes;
|
879 |
|
|
|
880 |
|
|
if (!clean_stmts)
|
881 |
|
|
{
|
882 |
|
|
free (LOOP_VINFO_BBS (loop_vinfo));
|
883 |
|
|
free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
|
884 |
|
|
free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
|
885 |
|
|
VEC_free (loop_p, heap, LOOP_VINFO_LOOP_NEST (loop_vinfo));
|
886 |
|
|
VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
|
887 |
|
|
VEC_free (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
|
888 |
|
|
|
889 |
|
|
free (loop_vinfo);
|
890 |
|
|
loop->aux = NULL;
|
891 |
|
|
return;
|
892 |
|
|
}
|
893 |
|
|
|
894 |
|
|
for (j = 0; j < nbbs; j++)
|
895 |
|
|
{
|
896 |
|
|
basic_block bb = bbs[j];
|
897 |
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
898 |
|
|
free_stmt_vec_info (gsi_stmt (si));
|
899 |
|
|
|
900 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); )
|
901 |
|
|
{
|
902 |
|
|
gimple stmt = gsi_stmt (si);
|
903 |
|
|
/* Free stmt_vec_info. */
|
904 |
|
|
free_stmt_vec_info (stmt);
|
905 |
|
|
gsi_next (&si);
|
906 |
|
|
}
|
907 |
|
|
}
|
908 |
|
|
|
909 |
|
|
free (LOOP_VINFO_BBS (loop_vinfo));
|
910 |
|
|
free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
|
911 |
|
|
free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
|
912 |
|
|
VEC_free (loop_p, heap, LOOP_VINFO_LOOP_NEST (loop_vinfo));
|
913 |
|
|
VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
|
914 |
|
|
VEC_free (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
|
915 |
|
|
slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
|
916 |
|
|
FOR_EACH_VEC_ELT (slp_instance, slp_instances, j, instance)
|
917 |
|
|
vect_free_slp_instance (instance);
|
918 |
|
|
|
919 |
|
|
VEC_free (slp_instance, heap, LOOP_VINFO_SLP_INSTANCES (loop_vinfo));
|
920 |
|
|
VEC_free (gimple, heap, LOOP_VINFO_STRIDED_STORES (loop_vinfo));
|
921 |
|
|
VEC_free (gimple, heap, LOOP_VINFO_REDUCTIONS (loop_vinfo));
|
922 |
|
|
VEC_free (gimple, heap, LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo));
|
923 |
|
|
|
924 |
|
|
if (LOOP_VINFO_PEELING_HTAB (loop_vinfo))
|
925 |
|
|
htab_delete (LOOP_VINFO_PEELING_HTAB (loop_vinfo));
|
926 |
|
|
|
927 |
|
|
free (loop_vinfo);
|
928 |
|
|
loop->aux = NULL;
|
929 |
|
|
}
|
930 |
|
|
|
931 |
|
|
|
932 |
|
|
/* Function vect_analyze_loop_1.
|
933 |
|
|
|
934 |
|
|
Apply a set of analyses on LOOP, and create a loop_vec_info struct
|
935 |
|
|
for it. The different analyses will record information in the
|
936 |
|
|
loop_vec_info struct. This is a subset of the analyses applied in
|
937 |
|
|
vect_analyze_loop, to be applied on an inner-loop nested in the loop
|
938 |
|
|
that is now considered for (outer-loop) vectorization. */
|
939 |
|
|
|
940 |
|
|
static loop_vec_info
|
941 |
|
|
vect_analyze_loop_1 (struct loop *loop)
|
942 |
|
|
{
|
943 |
|
|
loop_vec_info loop_vinfo;
|
944 |
|
|
|
945 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
946 |
|
|
fprintf (vect_dump, "===== analyze_loop_nest_1 =====");
|
947 |
|
|
|
948 |
|
|
/* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
|
949 |
|
|
|
950 |
|
|
loop_vinfo = vect_analyze_loop_form (loop);
|
951 |
|
|
if (!loop_vinfo)
|
952 |
|
|
{
|
953 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
954 |
|
|
fprintf (vect_dump, "bad inner-loop form.");
|
955 |
|
|
return NULL;
|
956 |
|
|
}
|
957 |
|
|
|
958 |
|
|
return loop_vinfo;
|
959 |
|
|
}
|
960 |
|
|
|
961 |
|
|
|
962 |
|
|
/* Function vect_analyze_loop_form.
|
963 |
|
|
|
964 |
|
|
Verify that certain CFG restrictions hold, including:
|
965 |
|
|
- the loop has a pre-header
|
966 |
|
|
- the loop has a single entry and exit
|
967 |
|
|
- the loop exit condition is simple enough, and the number of iterations
|
968 |
|
|
can be analyzed (a countable loop). */
|
969 |
|
|
|
970 |
|
|
loop_vec_info
|
971 |
|
|
vect_analyze_loop_form (struct loop *loop)
|
972 |
|
|
{
|
973 |
|
|
loop_vec_info loop_vinfo;
|
974 |
|
|
gimple loop_cond;
|
975 |
|
|
tree number_of_iterations = NULL;
|
976 |
|
|
loop_vec_info inner_loop_vinfo = NULL;
|
977 |
|
|
|
978 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
979 |
|
|
fprintf (vect_dump, "=== vect_analyze_loop_form ===");
|
980 |
|
|
|
981 |
|
|
/* Different restrictions apply when we are considering an inner-most loop,
|
982 |
|
|
vs. an outer (nested) loop.
|
983 |
|
|
(FORNOW. May want to relax some of these restrictions in the future). */
|
984 |
|
|
|
985 |
|
|
if (!loop->inner)
|
986 |
|
|
{
|
987 |
|
|
/* Inner-most loop. We currently require that the number of BBs is
|
988 |
|
|
exactly 2 (the header and latch). Vectorizable inner-most loops
|
989 |
|
|
look like this:
|
990 |
|
|
|
991 |
|
|
(pre-header)
|
992 |
|
|
|
|
993 |
|
|
header <--------+
|
994 |
|
|
| | |
|
995 |
|
|
| +--> latch --+
|
996 |
|
|
|
|
997 |
|
|
(exit-bb) */
|
998 |
|
|
|
999 |
|
|
if (loop->num_nodes != 2)
|
1000 |
|
|
{
|
1001 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
1002 |
|
|
fprintf (vect_dump, "not vectorized: control flow in loop.");
|
1003 |
|
|
return NULL;
|
1004 |
|
|
}
|
1005 |
|
|
|
1006 |
|
|
if (empty_block_p (loop->header))
|
1007 |
|
|
{
|
1008 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
1009 |
|
|
fprintf (vect_dump, "not vectorized: empty loop.");
|
1010 |
|
|
return NULL;
|
1011 |
|
|
}
|
1012 |
|
|
}
|
1013 |
|
|
else
|
1014 |
|
|
{
|
1015 |
|
|
struct loop *innerloop = loop->inner;
|
1016 |
|
|
edge entryedge;
|
1017 |
|
|
|
1018 |
|
|
/* Nested loop. We currently require that the loop is doubly-nested,
|
1019 |
|
|
contains a single inner loop, and the number of BBs is exactly 5.
|
1020 |
|
|
Vectorizable outer-loops look like this:
|
1021 |
|
|
|
1022 |
|
|
(pre-header)
|
1023 |
|
|
|
|
1024 |
|
|
header <---+
|
1025 |
|
|
| |
|
1026 |
|
|
inner-loop |
|
1027 |
|
|
| |
|
1028 |
|
|
tail ------+
|
1029 |
|
|
|
|
1030 |
|
|
(exit-bb)
|
1031 |
|
|
|
1032 |
|
|
The inner-loop has the properties expected of inner-most loops
|
1033 |
|
|
as described above. */
|
1034 |
|
|
|
1035 |
|
|
if ((loop->inner)->inner || (loop->inner)->next)
|
1036 |
|
|
{
|
1037 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
1038 |
|
|
fprintf (vect_dump, "not vectorized: multiple nested loops.");
|
1039 |
|
|
return NULL;
|
1040 |
|
|
}
|
1041 |
|
|
|
1042 |
|
|
/* Analyze the inner-loop. */
|
1043 |
|
|
inner_loop_vinfo = vect_analyze_loop_1 (loop->inner);
|
1044 |
|
|
if (!inner_loop_vinfo)
|
1045 |
|
|
{
|
1046 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
1047 |
|
|
fprintf (vect_dump, "not vectorized: Bad inner loop.");
|
1048 |
|
|
return NULL;
|
1049 |
|
|
}
|
1050 |
|
|
|
1051 |
|
|
if (!expr_invariant_in_loop_p (loop,
|
1052 |
|
|
LOOP_VINFO_NITERS (inner_loop_vinfo)))
|
1053 |
|
|
{
|
1054 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
1055 |
|
|
fprintf (vect_dump,
|
1056 |
|
|
"not vectorized: inner-loop count not invariant.");
|
1057 |
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
1058 |
|
|
return NULL;
|
1059 |
|
|
}
|
1060 |
|
|
|
1061 |
|
|
if (loop->num_nodes != 5)
|
1062 |
|
|
{
|
1063 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
1064 |
|
|
fprintf (vect_dump, "not vectorized: control flow in loop.");
|
1065 |
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
1066 |
|
|
return NULL;
|
1067 |
|
|
}
|
1068 |
|
|
|
1069 |
|
|
gcc_assert (EDGE_COUNT (innerloop->header->preds) == 2);
|
1070 |
|
|
entryedge = EDGE_PRED (innerloop->header, 0);
|
1071 |
|
|
if (EDGE_PRED (innerloop->header, 0)->src == innerloop->latch)
|
1072 |
|
|
entryedge = EDGE_PRED (innerloop->header, 1);
|
1073 |
|
|
|
1074 |
|
|
if (entryedge->src != loop->header
|
1075 |
|
|
|| !single_exit (innerloop)
|
1076 |
|
|
|| single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
|
1077 |
|
|
{
|
1078 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
1079 |
|
|
fprintf (vect_dump, "not vectorized: unsupported outerloop form.");
|
1080 |
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
1081 |
|
|
return NULL;
|
1082 |
|
|
}
|
1083 |
|
|
|
1084 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1085 |
|
|
fprintf (vect_dump, "Considering outer-loop vectorization.");
|
1086 |
|
|
}
|
1087 |
|
|
|
1088 |
|
|
if (!single_exit (loop)
|
1089 |
|
|
|| EDGE_COUNT (loop->header->preds) != 2)
|
1090 |
|
|
{
|
1091 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
1092 |
|
|
{
|
1093 |
|
|
if (!single_exit (loop))
|
1094 |
|
|
fprintf (vect_dump, "not vectorized: multiple exits.");
|
1095 |
|
|
else if (EDGE_COUNT (loop->header->preds) != 2)
|
1096 |
|
|
fprintf (vect_dump, "not vectorized: too many incoming edges.");
|
1097 |
|
|
}
|
1098 |
|
|
if (inner_loop_vinfo)
|
1099 |
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
1100 |
|
|
return NULL;
|
1101 |
|
|
}
|
1102 |
|
|
|
1103 |
|
|
/* We assume that the loop exit condition is at the end of the loop. i.e,
|
1104 |
|
|
that the loop is represented as a do-while (with a proper if-guard
|
1105 |
|
|
before the loop if needed), where the loop header contains all the
|
1106 |
|
|
executable statements, and the latch is empty. */
|
1107 |
|
|
if (!empty_block_p (loop->latch)
|
1108 |
|
|
|| !gimple_seq_empty_p (phi_nodes (loop->latch)))
|
1109 |
|
|
{
|
1110 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
1111 |
|
|
fprintf (vect_dump, "not vectorized: unexpected loop form.");
|
1112 |
|
|
if (inner_loop_vinfo)
|
1113 |
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
1114 |
|
|
return NULL;
|
1115 |
|
|
}
|
1116 |
|
|
|
1117 |
|
|
/* Make sure there exists a single-predecessor exit bb: */
|
1118 |
|
|
if (!single_pred_p (single_exit (loop)->dest))
|
1119 |
|
|
{
|
1120 |
|
|
edge e = single_exit (loop);
|
1121 |
|
|
if (!(e->flags & EDGE_ABNORMAL))
|
1122 |
|
|
{
|
1123 |
|
|
split_loop_exit_edge (e);
|
1124 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1125 |
|
|
fprintf (vect_dump, "split exit edge.");
|
1126 |
|
|
}
|
1127 |
|
|
else
|
1128 |
|
|
{
|
1129 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
1130 |
|
|
fprintf (vect_dump, "not vectorized: abnormal loop exit edge.");
|
1131 |
|
|
if (inner_loop_vinfo)
|
1132 |
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
1133 |
|
|
return NULL;
|
1134 |
|
|
}
|
1135 |
|
|
}
|
1136 |
|
|
|
1137 |
|
|
loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
|
1138 |
|
|
if (!loop_cond)
|
1139 |
|
|
{
|
1140 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
1141 |
|
|
fprintf (vect_dump, "not vectorized: complicated exit condition.");
|
1142 |
|
|
if (inner_loop_vinfo)
|
1143 |
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
1144 |
|
|
return NULL;
|
1145 |
|
|
}
|
1146 |
|
|
|
1147 |
|
|
if (!number_of_iterations)
|
1148 |
|
|
{
|
1149 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
1150 |
|
|
fprintf (vect_dump,
|
1151 |
|
|
"not vectorized: number of iterations cannot be computed.");
|
1152 |
|
|
if (inner_loop_vinfo)
|
1153 |
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
1154 |
|
|
return NULL;
|
1155 |
|
|
}
|
1156 |
|
|
|
1157 |
|
|
if (chrec_contains_undetermined (number_of_iterations))
|
1158 |
|
|
{
|
1159 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
1160 |
|
|
fprintf (vect_dump, "Infinite number of iterations.");
|
1161 |
|
|
if (inner_loop_vinfo)
|
1162 |
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
1163 |
|
|
return NULL;
|
1164 |
|
|
}
|
1165 |
|
|
|
1166 |
|
|
if (!NITERS_KNOWN_P (number_of_iterations))
|
1167 |
|
|
{
|
1168 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1169 |
|
|
{
|
1170 |
|
|
fprintf (vect_dump, "Symbolic number of iterations is ");
|
1171 |
|
|
print_generic_expr (vect_dump, number_of_iterations, TDF_DETAILS);
|
1172 |
|
|
}
|
1173 |
|
|
}
|
1174 |
|
|
else if (TREE_INT_CST_LOW (number_of_iterations) == 0)
|
1175 |
|
|
{
|
1176 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
1177 |
|
|
fprintf (vect_dump, "not vectorized: number of iterations = 0.");
|
1178 |
|
|
if (inner_loop_vinfo)
|
1179 |
|
|
destroy_loop_vec_info (inner_loop_vinfo, false);
|
1180 |
|
|
return NULL;
|
1181 |
|
|
}
|
1182 |
|
|
|
1183 |
|
|
loop_vinfo = new_loop_vec_info (loop);
|
1184 |
|
|
LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
|
1185 |
|
|
LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
|
1186 |
|
|
|
1187 |
|
|
STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
|
1188 |
|
|
|
1189 |
|
|
/* CHECKME: May want to keep it around it in the future. */
|
1190 |
|
|
if (inner_loop_vinfo)
|
1191 |
|
|
destroy_loop_vec_info (inner_loop_vinfo, false);
|
1192 |
|
|
|
1193 |
|
|
gcc_assert (!loop->aux);
|
1194 |
|
|
loop->aux = loop_vinfo;
|
1195 |
|
|
return loop_vinfo;
|
1196 |
|
|
}
|
1197 |
|
|
|
1198 |
|
|
|
1199 |
|
|
/* Get cost by calling cost target builtin. */
|
1200 |
|
|
|
1201 |
|
|
static inline int
|
1202 |
|
|
vect_get_cost (enum vect_cost_for_stmt type_of_cost)
|
1203 |
|
|
{
|
1204 |
|
|
tree dummy_type = NULL;
|
1205 |
|
|
int dummy = 0;
|
1206 |
|
|
|
1207 |
|
|
return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
|
1208 |
|
|
dummy_type, dummy);
|
1209 |
|
|
}
|
1210 |
|
|
|
1211 |
|
|
|
1212 |
|
|
/* Function vect_analyze_loop_operations.
|
1213 |
|
|
|
1214 |
|
|
Scan the loop stmts and make sure they are all vectorizable. */
|
1215 |
|
|
|
1216 |
|
|
static bool
|
1217 |
|
|
vect_analyze_loop_operations (loop_vec_info loop_vinfo, bool slp)
|
1218 |
|
|
{
|
1219 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
1220 |
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
1221 |
|
|
int nbbs = loop->num_nodes;
|
1222 |
|
|
gimple_stmt_iterator si;
|
1223 |
|
|
unsigned int vectorization_factor = 0;
|
1224 |
|
|
int i;
|
1225 |
|
|
gimple phi;
|
1226 |
|
|
stmt_vec_info stmt_info;
|
1227 |
|
|
bool need_to_vectorize = false;
|
1228 |
|
|
int min_profitable_iters;
|
1229 |
|
|
int min_scalar_loop_bound;
|
1230 |
|
|
unsigned int th;
|
1231 |
|
|
bool only_slp_in_loop = true, ok;
|
1232 |
|
|
|
1233 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1234 |
|
|
fprintf (vect_dump, "=== vect_analyze_loop_operations ===");
|
1235 |
|
|
|
1236 |
|
|
gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
|
1237 |
|
|
vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
1238 |
|
|
if (slp)
|
1239 |
|
|
{
|
1240 |
|
|
/* If all the stmts in the loop can be SLPed, we perform only SLP, and
|
1241 |
|
|
vectorization factor of the loop is the unrolling factor required by
|
1242 |
|
|
the SLP instances. If that unrolling factor is 1, we say, that we
|
1243 |
|
|
perform pure SLP on loop - cross iteration parallelism is not
|
1244 |
|
|
exploited. */
|
1245 |
|
|
for (i = 0; i < nbbs; i++)
|
1246 |
|
|
{
|
1247 |
|
|
basic_block bb = bbs[i];
|
1248 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
1249 |
|
|
{
|
1250 |
|
|
gimple stmt = gsi_stmt (si);
|
1251 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
1252 |
|
|
gcc_assert (stmt_info);
|
1253 |
|
|
if ((STMT_VINFO_RELEVANT_P (stmt_info)
|
1254 |
|
|
|| VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
|
1255 |
|
|
&& !PURE_SLP_STMT (stmt_info))
|
1256 |
|
|
/* STMT needs both SLP and loop-based vectorization. */
|
1257 |
|
|
only_slp_in_loop = false;
|
1258 |
|
|
}
|
1259 |
|
|
}
|
1260 |
|
|
|
1261 |
|
|
if (only_slp_in_loop)
|
1262 |
|
|
vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
|
1263 |
|
|
else
|
1264 |
|
|
vectorization_factor = least_common_multiple (vectorization_factor,
|
1265 |
|
|
LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
|
1266 |
|
|
|
1267 |
|
|
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
|
1268 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1269 |
|
|
fprintf (vect_dump, "Updating vectorization factor to %d ",
|
1270 |
|
|
vectorization_factor);
|
1271 |
|
|
}
|
1272 |
|
|
|
1273 |
|
|
for (i = 0; i < nbbs; i++)
|
1274 |
|
|
{
|
1275 |
|
|
basic_block bb = bbs[i];
|
1276 |
|
|
|
1277 |
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
1278 |
|
|
{
|
1279 |
|
|
phi = gsi_stmt (si);
|
1280 |
|
|
ok = true;
|
1281 |
|
|
|
1282 |
|
|
stmt_info = vinfo_for_stmt (phi);
|
1283 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1284 |
|
|
{
|
1285 |
|
|
fprintf (vect_dump, "examining phi: ");
|
1286 |
|
|
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
|
1287 |
|
|
}
|
1288 |
|
|
|
1289 |
|
|
/* Inner-loop loop-closed exit phi in outer-loop vectorization
|
1290 |
|
|
(i.e., a phi in the tail of the outer-loop). */
|
1291 |
|
|
if (! is_loop_header_bb_p (bb))
|
1292 |
|
|
{
|
1293 |
|
|
/* FORNOW: we currently don't support the case that these phis
|
1294 |
|
|
are not used in the outerloop (unless it is double reduction,
|
1295 |
|
|
i.e., this phi is vect_reduction_def), cause this case
|
1296 |
|
|
requires to actually do something here. */
|
1297 |
|
|
if ((!STMT_VINFO_RELEVANT_P (stmt_info)
|
1298 |
|
|
|| STMT_VINFO_LIVE_P (stmt_info))
|
1299 |
|
|
&& STMT_VINFO_DEF_TYPE (stmt_info)
|
1300 |
|
|
!= vect_double_reduction_def)
|
1301 |
|
|
{
|
1302 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1303 |
|
|
fprintf (vect_dump,
|
1304 |
|
|
"Unsupported loop-closed phi in outer-loop.");
|
1305 |
|
|
return false;
|
1306 |
|
|
}
|
1307 |
|
|
|
1308 |
|
|
/* If PHI is used in the outer loop, we check that its operand
|
1309 |
|
|
is defined in the inner loop. */
|
1310 |
|
|
if (STMT_VINFO_RELEVANT_P (stmt_info))
|
1311 |
|
|
{
|
1312 |
|
|
tree phi_op;
|
1313 |
|
|
gimple op_def_stmt;
|
1314 |
|
|
|
1315 |
|
|
if (gimple_phi_num_args (phi) != 1)
|
1316 |
|
|
return false;
|
1317 |
|
|
|
1318 |
|
|
phi_op = PHI_ARG_DEF (phi, 0);
|
1319 |
|
|
if (TREE_CODE (phi_op) != SSA_NAME)
|
1320 |
|
|
return false;
|
1321 |
|
|
|
1322 |
|
|
op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
|
1323 |
|
|
if (!op_def_stmt || !vinfo_for_stmt (op_def_stmt))
|
1324 |
|
|
return false;
|
1325 |
|
|
|
1326 |
|
|
if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
|
1327 |
|
|
!= vect_used_in_outer
|
1328 |
|
|
&& STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
|
1329 |
|
|
!= vect_used_in_outer_by_reduction)
|
1330 |
|
|
return false;
|
1331 |
|
|
}
|
1332 |
|
|
|
1333 |
|
|
continue;
|
1334 |
|
|
}
|
1335 |
|
|
|
1336 |
|
|
gcc_assert (stmt_info);
|
1337 |
|
|
|
1338 |
|
|
if (STMT_VINFO_LIVE_P (stmt_info))
|
1339 |
|
|
{
|
1340 |
|
|
/* FORNOW: not yet supported. */
|
1341 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
1342 |
|
|
fprintf (vect_dump, "not vectorized: value used after loop.");
|
1343 |
|
|
return false;
|
1344 |
|
|
}
|
1345 |
|
|
|
1346 |
|
|
if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
|
1347 |
|
|
&& STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
|
1348 |
|
|
{
|
1349 |
|
|
/* A scalar-dependence cycle that we don't support. */
|
1350 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
1351 |
|
|
fprintf (vect_dump, "not vectorized: scalar dependence cycle.");
|
1352 |
|
|
return false;
|
1353 |
|
|
}
|
1354 |
|
|
|
1355 |
|
|
if (STMT_VINFO_RELEVANT_P (stmt_info))
|
1356 |
|
|
{
|
1357 |
|
|
need_to_vectorize = true;
|
1358 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
|
1359 |
|
|
ok = vectorizable_induction (phi, NULL, NULL);
|
1360 |
|
|
}
|
1361 |
|
|
|
1362 |
|
|
if (!ok)
|
1363 |
|
|
{
|
1364 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
1365 |
|
|
{
|
1366 |
|
|
fprintf (vect_dump,
|
1367 |
|
|
"not vectorized: relevant phi not supported: ");
|
1368 |
|
|
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
|
1369 |
|
|
}
|
1370 |
|
|
return false;
|
1371 |
|
|
}
|
1372 |
|
|
}
|
1373 |
|
|
|
1374 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
1375 |
|
|
{
|
1376 |
|
|
gimple stmt = gsi_stmt (si);
|
1377 |
|
|
if (!vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
|
1378 |
|
|
return false;
|
1379 |
|
|
}
|
1380 |
|
|
} /* bbs */
|
1381 |
|
|
|
1382 |
|
|
/* All operations in the loop are either irrelevant (deal with loop
|
1383 |
|
|
control, or dead), or only used outside the loop and can be moved
|
1384 |
|
|
out of the loop (e.g. invariants, inductions). The loop can be
|
1385 |
|
|
optimized away by scalar optimizations. We're better off not
|
1386 |
|
|
touching this loop. */
|
1387 |
|
|
if (!need_to_vectorize)
|
1388 |
|
|
{
|
1389 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1390 |
|
|
fprintf (vect_dump,
|
1391 |
|
|
"All the computation can be taken out of the loop.");
|
1392 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
1393 |
|
|
fprintf (vect_dump,
|
1394 |
|
|
"not vectorized: redundant loop. no profit to vectorize.");
|
1395 |
|
|
return false;
|
1396 |
|
|
}
|
1397 |
|
|
|
1398 |
|
|
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
1399 |
|
|
&& vect_print_dump_info (REPORT_DETAILS))
|
1400 |
|
|
fprintf (vect_dump,
|
1401 |
|
|
"vectorization_factor = %d, niters = " HOST_WIDE_INT_PRINT_DEC,
|
1402 |
|
|
vectorization_factor, LOOP_VINFO_INT_NITERS (loop_vinfo));
|
1403 |
|
|
|
1404 |
|
|
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
1405 |
|
|
&& (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
|
1406 |
|
|
{
|
1407 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
1408 |
|
|
fprintf (vect_dump, "not vectorized: iteration count too small.");
|
1409 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1410 |
|
|
fprintf (vect_dump,"not vectorized: iteration count smaller than "
|
1411 |
|
|
"vectorization factor.");
|
1412 |
|
|
return false;
|
1413 |
|
|
}
|
1414 |
|
|
|
1415 |
|
|
/* Analyze cost. Decide if worth while to vectorize. */
|
1416 |
|
|
|
1417 |
|
|
/* Once VF is set, SLP costs should be updated since the number of created
|
1418 |
|
|
vector stmts depends on VF. */
|
1419 |
|
|
vect_update_slp_costs_according_to_vf (loop_vinfo);
|
1420 |
|
|
|
1421 |
|
|
min_profitable_iters = vect_estimate_min_profitable_iters (loop_vinfo);
|
1422 |
|
|
LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo) = min_profitable_iters;
|
1423 |
|
|
|
1424 |
|
|
if (min_profitable_iters < 0)
|
1425 |
|
|
{
|
1426 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
1427 |
|
|
fprintf (vect_dump, "not vectorized: vectorization not profitable.");
|
1428 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1429 |
|
|
fprintf (vect_dump, "not vectorized: vector version will never be "
|
1430 |
|
|
"profitable.");
|
1431 |
|
|
return false;
|
1432 |
|
|
}
|
1433 |
|
|
|
1434 |
|
|
min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
|
1435 |
|
|
* vectorization_factor) - 1);
|
1436 |
|
|
|
1437 |
|
|
/* Use the cost model only if it is more conservative than user specified
|
1438 |
|
|
threshold. */
|
1439 |
|
|
|
1440 |
|
|
th = (unsigned) min_scalar_loop_bound;
|
1441 |
|
|
if (min_profitable_iters
|
1442 |
|
|
&& (!min_scalar_loop_bound
|
1443 |
|
|
|| min_profitable_iters > min_scalar_loop_bound))
|
1444 |
|
|
th = (unsigned) min_profitable_iters;
|
1445 |
|
|
|
1446 |
|
|
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
1447 |
|
|
&& LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
|
1448 |
|
|
{
|
1449 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
1450 |
|
|
fprintf (vect_dump, "not vectorized: vectorization not "
|
1451 |
|
|
"profitable.");
|
1452 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1453 |
|
|
fprintf (vect_dump, "not vectorized: iteration count smaller than "
|
1454 |
|
|
"user specified loop bound parameter or minimum "
|
1455 |
|
|
"profitable iterations (whichever is more conservative).");
|
1456 |
|
|
return false;
|
1457 |
|
|
}
|
1458 |
|
|
|
1459 |
|
|
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
1460 |
|
|
|| LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0
|
1461 |
|
|
|| LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
|
1462 |
|
|
{
|
1463 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1464 |
|
|
fprintf (vect_dump, "epilog loop required.");
|
1465 |
|
|
if (!vect_can_advance_ivs_p (loop_vinfo))
|
1466 |
|
|
{
|
1467 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
1468 |
|
|
fprintf (vect_dump,
|
1469 |
|
|
"not vectorized: can't create epilog loop 1.");
|
1470 |
|
|
return false;
|
1471 |
|
|
}
|
1472 |
|
|
if (!slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
|
1473 |
|
|
{
|
1474 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
1475 |
|
|
fprintf (vect_dump,
|
1476 |
|
|
"not vectorized: can't create epilog loop 2.");
|
1477 |
|
|
return false;
|
1478 |
|
|
}
|
1479 |
|
|
}
|
1480 |
|
|
|
1481 |
|
|
return true;
|
1482 |
|
|
}
|
1483 |
|
|
|
1484 |
|
|
|
1485 |
|
|
/* Function vect_analyze_loop_2.
|
1486 |
|
|
|
1487 |
|
|
Apply a set of analyses on LOOP, and create a loop_vec_info struct
|
1488 |
|
|
for it. The different analyses will record information in the
|
1489 |
|
|
loop_vec_info struct. */
|
1490 |
|
|
static bool
|
1491 |
|
|
vect_analyze_loop_2 (loop_vec_info loop_vinfo)
|
1492 |
|
|
{
|
1493 |
|
|
bool ok, slp = false;
|
1494 |
|
|
int max_vf = MAX_VECTORIZATION_FACTOR;
|
1495 |
|
|
int min_vf = 2;
|
1496 |
|
|
|
1497 |
|
|
/* Find all data references in the loop (which correspond to vdefs/vuses)
|
1498 |
|
|
and analyze their evolution in the loop. Also adjust the minimal
|
1499 |
|
|
vectorization factor according to the loads and stores.
|
1500 |
|
|
|
1501 |
|
|
FORNOW: Handle only simple, array references, which
|
1502 |
|
|
alignment can be forced, and aligned pointer-references. */
|
1503 |
|
|
|
1504 |
|
|
ok = vect_analyze_data_refs (loop_vinfo, NULL, &min_vf);
|
1505 |
|
|
if (!ok)
|
1506 |
|
|
{
|
1507 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1508 |
|
|
fprintf (vect_dump, "bad data references.");
|
1509 |
|
|
return false;
|
1510 |
|
|
}
|
1511 |
|
|
|
1512 |
|
|
/* Classify all cross-iteration scalar data-flow cycles.
|
1513 |
|
|
Cross-iteration cycles caused by virtual phis are analyzed separately. */
|
1514 |
|
|
|
1515 |
|
|
vect_analyze_scalar_cycles (loop_vinfo);
|
1516 |
|
|
|
1517 |
|
|
vect_pattern_recog (loop_vinfo);
|
1518 |
|
|
|
1519 |
|
|
/* Data-flow analysis to detect stmts that do not need to be vectorized. */
|
1520 |
|
|
|
1521 |
|
|
ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
|
1522 |
|
|
if (!ok)
|
1523 |
|
|
{
|
1524 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1525 |
|
|
fprintf (vect_dump, "unexpected pattern.");
|
1526 |
|
|
return false;
|
1527 |
|
|
}
|
1528 |
|
|
|
1529 |
|
|
/* Analyze data dependences between the data-refs in the loop
|
1530 |
|
|
and adjust the maximum vectorization factor according to
|
1531 |
|
|
the dependences.
|
1532 |
|
|
FORNOW: fail at the first data dependence that we encounter. */
|
1533 |
|
|
|
1534 |
|
|
ok = vect_analyze_data_ref_dependences (loop_vinfo, NULL, &max_vf);
|
1535 |
|
|
if (!ok
|
1536 |
|
|
|| max_vf < min_vf)
|
1537 |
|
|
{
|
1538 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1539 |
|
|
fprintf (vect_dump, "bad data dependence.");
|
1540 |
|
|
return false;
|
1541 |
|
|
}
|
1542 |
|
|
|
1543 |
|
|
ok = vect_determine_vectorization_factor (loop_vinfo);
|
1544 |
|
|
if (!ok)
|
1545 |
|
|
{
|
1546 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1547 |
|
|
fprintf (vect_dump, "can't determine vectorization factor.");
|
1548 |
|
|
return false;
|
1549 |
|
|
}
|
1550 |
|
|
if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
|
1551 |
|
|
{
|
1552 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1553 |
|
|
fprintf (vect_dump, "bad data dependence.");
|
1554 |
|
|
return false;
|
1555 |
|
|
}
|
1556 |
|
|
|
1557 |
|
|
/* Analyze the alignment of the data-refs in the loop.
|
1558 |
|
|
Fail if a data reference is found that cannot be vectorized. */
|
1559 |
|
|
|
1560 |
|
|
ok = vect_analyze_data_refs_alignment (loop_vinfo, NULL);
|
1561 |
|
|
if (!ok)
|
1562 |
|
|
{
|
1563 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1564 |
|
|
fprintf (vect_dump, "bad data alignment.");
|
1565 |
|
|
return false;
|
1566 |
|
|
}
|
1567 |
|
|
|
1568 |
|
|
/* Analyze the access patterns of the data-refs in the loop (consecutive,
|
1569 |
|
|
complex, etc.). FORNOW: Only handle consecutive access pattern. */
|
1570 |
|
|
|
1571 |
|
|
ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
|
1572 |
|
|
if (!ok)
|
1573 |
|
|
{
|
1574 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1575 |
|
|
fprintf (vect_dump, "bad data access.");
|
1576 |
|
|
return false;
|
1577 |
|
|
}
|
1578 |
|
|
|
1579 |
|
|
/* Prune the list of ddrs to be tested at run-time by versioning for alias.
|
1580 |
|
|
It is important to call pruning after vect_analyze_data_ref_accesses,
|
1581 |
|
|
since we use grouping information gathered by interleaving analysis. */
|
1582 |
|
|
ok = vect_prune_runtime_alias_test_list (loop_vinfo);
|
1583 |
|
|
if (!ok)
|
1584 |
|
|
{
|
1585 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1586 |
|
|
fprintf (vect_dump, "too long list of versioning for alias "
|
1587 |
|
|
"run-time tests.");
|
1588 |
|
|
return false;
|
1589 |
|
|
}
|
1590 |
|
|
|
1591 |
|
|
/* This pass will decide on using loop versioning and/or loop peeling in
|
1592 |
|
|
order to enhance the alignment of data references in the loop. */
|
1593 |
|
|
|
1594 |
|
|
ok = vect_enhance_data_refs_alignment (loop_vinfo);
|
1595 |
|
|
if (!ok)
|
1596 |
|
|
{
|
1597 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1598 |
|
|
fprintf (vect_dump, "bad data alignment.");
|
1599 |
|
|
return false;
|
1600 |
|
|
}
|
1601 |
|
|
|
1602 |
|
|
/* Check the SLP opportunities in the loop, analyze and build SLP trees. */
|
1603 |
|
|
ok = vect_analyze_slp (loop_vinfo, NULL);
|
1604 |
|
|
if (ok)
|
1605 |
|
|
{
|
1606 |
|
|
/* Decide which possible SLP instances to SLP. */
|
1607 |
|
|
slp = vect_make_slp_decision (loop_vinfo);
|
1608 |
|
|
|
1609 |
|
|
/* Find stmts that need to be both vectorized and SLPed. */
|
1610 |
|
|
vect_detect_hybrid_slp (loop_vinfo);
|
1611 |
|
|
}
|
1612 |
|
|
else
|
1613 |
|
|
return false;
|
1614 |
|
|
|
1615 |
|
|
/* Scan all the operations in the loop and make sure they are
|
1616 |
|
|
vectorizable. */
|
1617 |
|
|
|
1618 |
|
|
ok = vect_analyze_loop_operations (loop_vinfo, slp);
|
1619 |
|
|
if (!ok)
|
1620 |
|
|
{
|
1621 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1622 |
|
|
fprintf (vect_dump, "bad operation or unsupported loop bound.");
|
1623 |
|
|
return false;
|
1624 |
|
|
}
|
1625 |
|
|
|
1626 |
|
|
return true;
|
1627 |
|
|
}
|
1628 |
|
|
|
1629 |
|
|
/* Function vect_analyze_loop.
|
1630 |
|
|
|
1631 |
|
|
Apply a set of analyses on LOOP, and create a loop_vec_info struct
|
1632 |
|
|
for it. The different analyses will record information in the
|
1633 |
|
|
loop_vec_info struct. */
|
1634 |
|
|
loop_vec_info
|
1635 |
|
|
vect_analyze_loop (struct loop *loop)
|
1636 |
|
|
{
|
1637 |
|
|
loop_vec_info loop_vinfo;
|
1638 |
|
|
unsigned int vector_sizes;
|
1639 |
|
|
|
1640 |
|
|
/* Autodetect first vector size we try. */
|
1641 |
|
|
current_vector_size = 0;
|
1642 |
|
|
vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
|
1643 |
|
|
|
1644 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1645 |
|
|
fprintf (vect_dump, "===== analyze_loop_nest =====");
|
1646 |
|
|
|
1647 |
|
|
if (loop_outer (loop)
|
1648 |
|
|
&& loop_vec_info_for_loop (loop_outer (loop))
|
1649 |
|
|
&& LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
|
1650 |
|
|
{
|
1651 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1652 |
|
|
fprintf (vect_dump, "outer-loop already vectorized.");
|
1653 |
|
|
return NULL;
|
1654 |
|
|
}
|
1655 |
|
|
|
1656 |
|
|
while (1)
|
1657 |
|
|
{
|
1658 |
|
|
/* Check the CFG characteristics of the loop (nesting, entry/exit). */
|
1659 |
|
|
loop_vinfo = vect_analyze_loop_form (loop);
|
1660 |
|
|
if (!loop_vinfo)
|
1661 |
|
|
{
|
1662 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1663 |
|
|
fprintf (vect_dump, "bad loop form.");
|
1664 |
|
|
return NULL;
|
1665 |
|
|
}
|
1666 |
|
|
|
1667 |
|
|
if (vect_analyze_loop_2 (loop_vinfo))
|
1668 |
|
|
{
|
1669 |
|
|
LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
|
1670 |
|
|
|
1671 |
|
|
return loop_vinfo;
|
1672 |
|
|
}
|
1673 |
|
|
|
1674 |
|
|
destroy_loop_vec_info (loop_vinfo, true);
|
1675 |
|
|
|
1676 |
|
|
vector_sizes &= ~current_vector_size;
|
1677 |
|
|
if (vector_sizes == 0
|
1678 |
|
|
|| current_vector_size == 0)
|
1679 |
|
|
return NULL;
|
1680 |
|
|
|
1681 |
|
|
/* Try the next biggest vector size. */
|
1682 |
|
|
current_vector_size = 1 << floor_log2 (vector_sizes);
|
1683 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1684 |
|
|
fprintf (vect_dump, "***** Re-trying analysis with "
|
1685 |
|
|
"vector size %d\n", current_vector_size);
|
1686 |
|
|
}
|
1687 |
|
|
}
|
1688 |
|
|
|
1689 |
|
|
|
1690 |
|
|
/* Function reduction_code_for_scalar_code
|
1691 |
|
|
|
1692 |
|
|
Input:
|
1693 |
|
|
CODE - tree_code of a reduction operations.
|
1694 |
|
|
|
1695 |
|
|
Output:
|
1696 |
|
|
REDUC_CODE - the corresponding tree-code to be used to reduce the
|
1697 |
|
|
vector of partial results into a single scalar result (which
|
1698 |
|
|
will also reside in a vector) or ERROR_MARK if the operation is
|
1699 |
|
|
a supported reduction operation, but does not have such tree-code.
|
1700 |
|
|
|
1701 |
|
|
Return FALSE if CODE currently cannot be vectorized as reduction. */
|
1702 |
|
|
|
1703 |
|
|
static bool
|
1704 |
|
|
reduction_code_for_scalar_code (enum tree_code code,
|
1705 |
|
|
enum tree_code *reduc_code)
|
1706 |
|
|
{
|
1707 |
|
|
switch (code)
|
1708 |
|
|
{
|
1709 |
|
|
case MAX_EXPR:
|
1710 |
|
|
*reduc_code = REDUC_MAX_EXPR;
|
1711 |
|
|
return true;
|
1712 |
|
|
|
1713 |
|
|
case MIN_EXPR:
|
1714 |
|
|
*reduc_code = REDUC_MIN_EXPR;
|
1715 |
|
|
return true;
|
1716 |
|
|
|
1717 |
|
|
case PLUS_EXPR:
|
1718 |
|
|
*reduc_code = REDUC_PLUS_EXPR;
|
1719 |
|
|
return true;
|
1720 |
|
|
|
1721 |
|
|
case MULT_EXPR:
|
1722 |
|
|
case MINUS_EXPR:
|
1723 |
|
|
case BIT_IOR_EXPR:
|
1724 |
|
|
case BIT_XOR_EXPR:
|
1725 |
|
|
case BIT_AND_EXPR:
|
1726 |
|
|
*reduc_code = ERROR_MARK;
|
1727 |
|
|
return true;
|
1728 |
|
|
|
1729 |
|
|
default:
|
1730 |
|
|
return false;
|
1731 |
|
|
}
|
1732 |
|
|
}
|
1733 |
|
|
|
1734 |
|
|
|
1735 |
|
|
/* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
|
1736 |
|
|
STMT is printed with a message MSG. */
|
1737 |
|
|
|
1738 |
|
|
static void
|
1739 |
|
|
report_vect_op (gimple stmt, const char *msg)
|
1740 |
|
|
{
|
1741 |
|
|
fprintf (vect_dump, "%s", msg);
|
1742 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
1743 |
|
|
}
|
1744 |
|
|
|
1745 |
|
|
|
1746 |
|
|
/* Detect SLP reduction of the form:
|
1747 |
|
|
|
1748 |
|
|
#a1 = phi <a5, a0>
|
1749 |
|
|
a2 = operation (a1)
|
1750 |
|
|
a3 = operation (a2)
|
1751 |
|
|
a4 = operation (a3)
|
1752 |
|
|
a5 = operation (a4)
|
1753 |
|
|
|
1754 |
|
|
#a = phi <a5>
|
1755 |
|
|
|
1756 |
|
|
PHI is the reduction phi node (#a1 = phi <a5, a0> above)
|
1757 |
|
|
FIRST_STMT is the first reduction stmt in the chain
|
1758 |
|
|
(a2 = operation (a1)).
|
1759 |
|
|
|
1760 |
|
|
Return TRUE if a reduction chain was detected. */
|
1761 |
|
|
|
1762 |
|
|
static bool
|
1763 |
|
|
vect_is_slp_reduction (loop_vec_info loop_info, gimple phi, gimple first_stmt)
|
1764 |
|
|
{
|
1765 |
|
|
struct loop *loop = (gimple_bb (phi))->loop_father;
|
1766 |
|
|
struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
|
1767 |
|
|
enum tree_code code;
|
1768 |
|
|
gimple current_stmt = NULL, loop_use_stmt = NULL, first, next_stmt;
|
1769 |
|
|
stmt_vec_info use_stmt_info, current_stmt_info;
|
1770 |
|
|
tree lhs;
|
1771 |
|
|
imm_use_iterator imm_iter;
|
1772 |
|
|
use_operand_p use_p;
|
1773 |
|
|
int nloop_uses, size = 0, n_out_of_loop_uses;
|
1774 |
|
|
bool found = false;
|
1775 |
|
|
|
1776 |
|
|
if (loop != vect_loop)
|
1777 |
|
|
return false;
|
1778 |
|
|
|
1779 |
|
|
lhs = PHI_RESULT (phi);
|
1780 |
|
|
code = gimple_assign_rhs_code (first_stmt);
|
1781 |
|
|
while (1)
|
1782 |
|
|
{
|
1783 |
|
|
nloop_uses = 0;
|
1784 |
|
|
n_out_of_loop_uses = 0;
|
1785 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
|
1786 |
|
|
{
|
1787 |
|
|
gimple use_stmt = USE_STMT (use_p);
|
1788 |
|
|
if (is_gimple_debug (use_stmt))
|
1789 |
|
|
continue;
|
1790 |
|
|
|
1791 |
|
|
use_stmt = USE_STMT (use_p);
|
1792 |
|
|
|
1793 |
|
|
/* Check if we got back to the reduction phi. */
|
1794 |
|
|
if (use_stmt == phi)
|
1795 |
|
|
{
|
1796 |
|
|
loop_use_stmt = use_stmt;
|
1797 |
|
|
found = true;
|
1798 |
|
|
break;
|
1799 |
|
|
}
|
1800 |
|
|
|
1801 |
|
|
if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
|
1802 |
|
|
{
|
1803 |
|
|
if (vinfo_for_stmt (use_stmt)
|
1804 |
|
|
&& !STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
|
1805 |
|
|
{
|
1806 |
|
|
loop_use_stmt = use_stmt;
|
1807 |
|
|
nloop_uses++;
|
1808 |
|
|
}
|
1809 |
|
|
}
|
1810 |
|
|
else
|
1811 |
|
|
n_out_of_loop_uses++;
|
1812 |
|
|
|
1813 |
|
|
/* There are can be either a single use in the loop or two uses in
|
1814 |
|
|
phi nodes. */
|
1815 |
|
|
if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
|
1816 |
|
|
return false;
|
1817 |
|
|
}
|
1818 |
|
|
|
1819 |
|
|
if (found)
|
1820 |
|
|
break;
|
1821 |
|
|
|
1822 |
|
|
/* We reached a statement with no loop uses. */
|
1823 |
|
|
if (nloop_uses == 0)
|
1824 |
|
|
return false;
|
1825 |
|
|
|
1826 |
|
|
/* This is a loop exit phi, and we haven't reached the reduction phi. */
|
1827 |
|
|
if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
|
1828 |
|
|
return false;
|
1829 |
|
|
|
1830 |
|
|
if (!is_gimple_assign (loop_use_stmt)
|
1831 |
|
|
|| code != gimple_assign_rhs_code (loop_use_stmt)
|
1832 |
|
|
|| !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
|
1833 |
|
|
return false;
|
1834 |
|
|
|
1835 |
|
|
/* Insert USE_STMT into reduction chain. */
|
1836 |
|
|
use_stmt_info = vinfo_for_stmt (loop_use_stmt);
|
1837 |
|
|
if (current_stmt)
|
1838 |
|
|
{
|
1839 |
|
|
current_stmt_info = vinfo_for_stmt (current_stmt);
|
1840 |
|
|
GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
|
1841 |
|
|
GROUP_FIRST_ELEMENT (use_stmt_info)
|
1842 |
|
|
= GROUP_FIRST_ELEMENT (current_stmt_info);
|
1843 |
|
|
}
|
1844 |
|
|
else
|
1845 |
|
|
GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
|
1846 |
|
|
|
1847 |
|
|
lhs = gimple_assign_lhs (loop_use_stmt);
|
1848 |
|
|
current_stmt = loop_use_stmt;
|
1849 |
|
|
size++;
|
1850 |
|
|
}
|
1851 |
|
|
|
1852 |
|
|
if (!found || loop_use_stmt != phi || size < 2)
|
1853 |
|
|
return false;
|
1854 |
|
|
|
1855 |
|
|
/* Swap the operands, if needed, to make the reduction operand be the second
|
1856 |
|
|
operand. */
|
1857 |
|
|
lhs = PHI_RESULT (phi);
|
1858 |
|
|
next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
|
1859 |
|
|
while (next_stmt)
|
1860 |
|
|
{
|
1861 |
|
|
if (gimple_assign_rhs2 (next_stmt) == lhs)
|
1862 |
|
|
{
|
1863 |
|
|
tree op = gimple_assign_rhs1 (next_stmt);
|
1864 |
|
|
gimple def_stmt = NULL;
|
1865 |
|
|
|
1866 |
|
|
if (TREE_CODE (op) == SSA_NAME)
|
1867 |
|
|
def_stmt = SSA_NAME_DEF_STMT (op);
|
1868 |
|
|
|
1869 |
|
|
/* Check that the other def is either defined in the loop
|
1870 |
|
|
("vect_internal_def"), or it's an induction (defined by a
|
1871 |
|
|
loop-header phi-node). */
|
1872 |
|
|
if (def_stmt
|
1873 |
|
|
&& gimple_bb (def_stmt)
|
1874 |
|
|
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
|
1875 |
|
|
&& (is_gimple_assign (def_stmt)
|
1876 |
|
|
|| is_gimple_call (def_stmt)
|
1877 |
|
|
|| STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
|
1878 |
|
|
== vect_induction_def
|
1879 |
|
|
|| (gimple_code (def_stmt) == GIMPLE_PHI
|
1880 |
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
|
1881 |
|
|
== vect_internal_def
|
1882 |
|
|
&& !is_loop_header_bb_p (gimple_bb (def_stmt)))))
|
1883 |
|
|
{
|
1884 |
|
|
lhs = gimple_assign_lhs (next_stmt);
|
1885 |
|
|
next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
|
1886 |
|
|
continue;
|
1887 |
|
|
}
|
1888 |
|
|
|
1889 |
|
|
return false;
|
1890 |
|
|
}
|
1891 |
|
|
else
|
1892 |
|
|
{
|
1893 |
|
|
tree op = gimple_assign_rhs2 (next_stmt);
|
1894 |
|
|
gimple def_stmt = NULL;
|
1895 |
|
|
|
1896 |
|
|
if (TREE_CODE (op) == SSA_NAME)
|
1897 |
|
|
def_stmt = SSA_NAME_DEF_STMT (op);
|
1898 |
|
|
|
1899 |
|
|
/* Check that the other def is either defined in the loop
|
1900 |
|
|
("vect_internal_def"), or it's an induction (defined by a
|
1901 |
|
|
loop-header phi-node). */
|
1902 |
|
|
if (def_stmt
|
1903 |
|
|
&& gimple_bb (def_stmt)
|
1904 |
|
|
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
|
1905 |
|
|
&& (is_gimple_assign (def_stmt)
|
1906 |
|
|
|| is_gimple_call (def_stmt)
|
1907 |
|
|
|| STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
|
1908 |
|
|
== vect_induction_def
|
1909 |
|
|
|| (gimple_code (def_stmt) == GIMPLE_PHI
|
1910 |
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
|
1911 |
|
|
== vect_internal_def
|
1912 |
|
|
&& !is_loop_header_bb_p (gimple_bb (def_stmt)))))
|
1913 |
|
|
{
|
1914 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
1915 |
|
|
{
|
1916 |
|
|
fprintf (vect_dump, "swapping oprnds: ");
|
1917 |
|
|
print_gimple_stmt (vect_dump, next_stmt, 0, TDF_SLIM);
|
1918 |
|
|
}
|
1919 |
|
|
|
1920 |
|
|
swap_tree_operands (next_stmt,
|
1921 |
|
|
gimple_assign_rhs1_ptr (next_stmt),
|
1922 |
|
|
gimple_assign_rhs2_ptr (next_stmt));
|
1923 |
|
|
mark_symbols_for_renaming (next_stmt);
|
1924 |
|
|
}
|
1925 |
|
|
else
|
1926 |
|
|
return false;
|
1927 |
|
|
}
|
1928 |
|
|
|
1929 |
|
|
lhs = gimple_assign_lhs (next_stmt);
|
1930 |
|
|
next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
|
1931 |
|
|
}
|
1932 |
|
|
|
1933 |
|
|
/* Save the chain for further analysis in SLP detection. */
|
1934 |
|
|
first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
|
1935 |
|
|
VEC_safe_push (gimple, heap, LOOP_VINFO_REDUCTION_CHAINS (loop_info), first);
|
1936 |
|
|
GROUP_SIZE (vinfo_for_stmt (first)) = size;
|
1937 |
|
|
|
1938 |
|
|
return true;
|
1939 |
|
|
}
|
1940 |
|
|
|
1941 |
|
|
|
1942 |
|
|
/* Function vect_is_simple_reduction_1
|
1943 |
|
|
|
1944 |
|
|
(1) Detect a cross-iteration def-use cycle that represents a simple
|
1945 |
|
|
reduction computation. We look for the following pattern:
|
1946 |
|
|
|
1947 |
|
|
loop_header:
|
1948 |
|
|
a1 = phi < a0, a2 >
|
1949 |
|
|
a3 = ...
|
1950 |
|
|
a2 = operation (a3, a1)
|
1951 |
|
|
|
1952 |
|
|
such that:
|
1953 |
|
|
1. operation is commutative and associative and it is safe to
|
1954 |
|
|
change the order of the computation (if CHECK_REDUCTION is true)
|
1955 |
|
|
2. no uses for a2 in the loop (a2 is used out of the loop)
|
1956 |
|
|
3. no uses of a1 in the loop besides the reduction operation
|
1957 |
|
|
4. no uses of a1 outside the loop.
|
1958 |
|
|
|
1959 |
|
|
Conditions 1,4 are tested here.
|
1960 |
|
|
Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
|
1961 |
|
|
|
1962 |
|
|
(2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
|
1963 |
|
|
nested cycles, if CHECK_REDUCTION is false.
|
1964 |
|
|
|
1965 |
|
|
(3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
|
1966 |
|
|
reductions:
|
1967 |
|
|
|
1968 |
|
|
a1 = phi < a0, a2 >
|
1969 |
|
|
inner loop (def of a3)
|
1970 |
|
|
a2 = phi < a3 >
|
1971 |
|
|
|
1972 |
|
|
If MODIFY is true it tries also to rework the code in-place to enable
|
1973 |
|
|
detection of more reduction patterns. For the time being we rewrite
|
1974 |
|
|
"res -= RHS" into "rhs += -RHS" when it seems worthwhile.
|
1975 |
|
|
*/
|
1976 |
|
|
|
1977 |
|
|
static gimple
|
1978 |
|
|
vect_is_simple_reduction_1 (loop_vec_info loop_info, gimple phi,
|
1979 |
|
|
bool check_reduction, bool *double_reduc,
|
1980 |
|
|
bool modify)
|
1981 |
|
|
{
|
1982 |
|
|
struct loop *loop = (gimple_bb (phi))->loop_father;
|
1983 |
|
|
struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
|
1984 |
|
|
edge latch_e = loop_latch_edge (loop);
|
1985 |
|
|
tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
|
1986 |
|
|
gimple def_stmt, def1 = NULL, def2 = NULL;
|
1987 |
|
|
enum tree_code orig_code, code;
|
1988 |
|
|
tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
|
1989 |
|
|
tree type;
|
1990 |
|
|
int nloop_uses;
|
1991 |
|
|
tree name;
|
1992 |
|
|
imm_use_iterator imm_iter;
|
1993 |
|
|
use_operand_p use_p;
|
1994 |
|
|
bool phi_def;
|
1995 |
|
|
|
1996 |
|
|
*double_reduc = false;
|
1997 |
|
|
|
1998 |
|
|
/* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
|
1999 |
|
|
otherwise, we assume outer loop vectorization. */
|
2000 |
|
|
gcc_assert ((check_reduction && loop == vect_loop)
|
2001 |
|
|
|| (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
|
2002 |
|
|
|
2003 |
|
|
name = PHI_RESULT (phi);
|
2004 |
|
|
nloop_uses = 0;
|
2005 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
|
2006 |
|
|
{
|
2007 |
|
|
gimple use_stmt = USE_STMT (use_p);
|
2008 |
|
|
if (is_gimple_debug (use_stmt))
|
2009 |
|
|
continue;
|
2010 |
|
|
|
2011 |
|
|
if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
|
2012 |
|
|
{
|
2013 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2014 |
|
|
fprintf (vect_dump, "intermediate value used outside loop.");
|
2015 |
|
|
|
2016 |
|
|
return NULL;
|
2017 |
|
|
}
|
2018 |
|
|
|
2019 |
|
|
if (vinfo_for_stmt (use_stmt)
|
2020 |
|
|
&& !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
|
2021 |
|
|
nloop_uses++;
|
2022 |
|
|
if (nloop_uses > 1)
|
2023 |
|
|
{
|
2024 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2025 |
|
|
fprintf (vect_dump, "reduction used in loop.");
|
2026 |
|
|
return NULL;
|
2027 |
|
|
}
|
2028 |
|
|
}
|
2029 |
|
|
|
2030 |
|
|
if (TREE_CODE (loop_arg) != SSA_NAME)
|
2031 |
|
|
{
|
2032 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2033 |
|
|
{
|
2034 |
|
|
fprintf (vect_dump, "reduction: not ssa_name: ");
|
2035 |
|
|
print_generic_expr (vect_dump, loop_arg, TDF_SLIM);
|
2036 |
|
|
}
|
2037 |
|
|
return NULL;
|
2038 |
|
|
}
|
2039 |
|
|
|
2040 |
|
|
def_stmt = SSA_NAME_DEF_STMT (loop_arg);
|
2041 |
|
|
if (!def_stmt)
|
2042 |
|
|
{
|
2043 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2044 |
|
|
fprintf (vect_dump, "reduction: no def_stmt.");
|
2045 |
|
|
return NULL;
|
2046 |
|
|
}
|
2047 |
|
|
|
2048 |
|
|
if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
|
2049 |
|
|
{
|
2050 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2051 |
|
|
print_gimple_stmt (vect_dump, def_stmt, 0, TDF_SLIM);
|
2052 |
|
|
return NULL;
|
2053 |
|
|
}
|
2054 |
|
|
|
2055 |
|
|
if (is_gimple_assign (def_stmt))
|
2056 |
|
|
{
|
2057 |
|
|
name = gimple_assign_lhs (def_stmt);
|
2058 |
|
|
phi_def = false;
|
2059 |
|
|
}
|
2060 |
|
|
else
|
2061 |
|
|
{
|
2062 |
|
|
name = PHI_RESULT (def_stmt);
|
2063 |
|
|
phi_def = true;
|
2064 |
|
|
}
|
2065 |
|
|
|
2066 |
|
|
nloop_uses = 0;
|
2067 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
|
2068 |
|
|
{
|
2069 |
|
|
gimple use_stmt = USE_STMT (use_p);
|
2070 |
|
|
if (is_gimple_debug (use_stmt))
|
2071 |
|
|
continue;
|
2072 |
|
|
if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
|
2073 |
|
|
&& vinfo_for_stmt (use_stmt)
|
2074 |
|
|
&& !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
|
2075 |
|
|
nloop_uses++;
|
2076 |
|
|
if (nloop_uses > 1)
|
2077 |
|
|
{
|
2078 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2079 |
|
|
fprintf (vect_dump, "reduction used in loop.");
|
2080 |
|
|
return NULL;
|
2081 |
|
|
}
|
2082 |
|
|
}
|
2083 |
|
|
|
2084 |
|
|
/* If DEF_STMT is a phi node itself, we expect it to have a single argument
|
2085 |
|
|
defined in the inner loop. */
|
2086 |
|
|
if (phi_def)
|
2087 |
|
|
{
|
2088 |
|
|
op1 = PHI_ARG_DEF (def_stmt, 0);
|
2089 |
|
|
|
2090 |
|
|
if (gimple_phi_num_args (def_stmt) != 1
|
2091 |
|
|
|| TREE_CODE (op1) != SSA_NAME)
|
2092 |
|
|
{
|
2093 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2094 |
|
|
fprintf (vect_dump, "unsupported phi node definition.");
|
2095 |
|
|
|
2096 |
|
|
return NULL;
|
2097 |
|
|
}
|
2098 |
|
|
|
2099 |
|
|
def1 = SSA_NAME_DEF_STMT (op1);
|
2100 |
|
|
if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
|
2101 |
|
|
&& loop->inner
|
2102 |
|
|
&& flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
|
2103 |
|
|
&& is_gimple_assign (def1))
|
2104 |
|
|
{
|
2105 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2106 |
|
|
report_vect_op (def_stmt, "detected double reduction: ");
|
2107 |
|
|
|
2108 |
|
|
*double_reduc = true;
|
2109 |
|
|
return def_stmt;
|
2110 |
|
|
}
|
2111 |
|
|
|
2112 |
|
|
return NULL;
|
2113 |
|
|
}
|
2114 |
|
|
|
2115 |
|
|
code = orig_code = gimple_assign_rhs_code (def_stmt);
|
2116 |
|
|
|
2117 |
|
|
/* We can handle "res -= x[i]", which is non-associative by
|
2118 |
|
|
simply rewriting this into "res += -x[i]". Avoid changing
|
2119 |
|
|
gimple instruction for the first simple tests and only do this
|
2120 |
|
|
if we're allowed to change code at all. */
|
2121 |
|
|
if (code == MINUS_EXPR
|
2122 |
|
|
&& modify
|
2123 |
|
|
&& (op1 = gimple_assign_rhs1 (def_stmt))
|
2124 |
|
|
&& TREE_CODE (op1) == SSA_NAME
|
2125 |
|
|
&& SSA_NAME_DEF_STMT (op1) == phi)
|
2126 |
|
|
code = PLUS_EXPR;
|
2127 |
|
|
|
2128 |
|
|
if (check_reduction
|
2129 |
|
|
&& (!commutative_tree_code (code) || !associative_tree_code (code)))
|
2130 |
|
|
{
|
2131 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2132 |
|
|
report_vect_op (def_stmt, "reduction: not commutative/associative: ");
|
2133 |
|
|
return NULL;
|
2134 |
|
|
}
|
2135 |
|
|
|
2136 |
|
|
if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
|
2137 |
|
|
{
|
2138 |
|
|
if (code != COND_EXPR)
|
2139 |
|
|
{
|
2140 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2141 |
|
|
report_vect_op (def_stmt, "reduction: not binary operation: ");
|
2142 |
|
|
|
2143 |
|
|
return NULL;
|
2144 |
|
|
}
|
2145 |
|
|
|
2146 |
|
|
op3 = gimple_assign_rhs1 (def_stmt);
|
2147 |
|
|
if (COMPARISON_CLASS_P (op3))
|
2148 |
|
|
{
|
2149 |
|
|
op4 = TREE_OPERAND (op3, 1);
|
2150 |
|
|
op3 = TREE_OPERAND (op3, 0);
|
2151 |
|
|
}
|
2152 |
|
|
|
2153 |
|
|
op1 = gimple_assign_rhs2 (def_stmt);
|
2154 |
|
|
op2 = gimple_assign_rhs3 (def_stmt);
|
2155 |
|
|
|
2156 |
|
|
if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
|
2157 |
|
|
{
|
2158 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2159 |
|
|
report_vect_op (def_stmt, "reduction: uses not ssa_names: ");
|
2160 |
|
|
|
2161 |
|
|
return NULL;
|
2162 |
|
|
}
|
2163 |
|
|
}
|
2164 |
|
|
else
|
2165 |
|
|
{
|
2166 |
|
|
op1 = gimple_assign_rhs1 (def_stmt);
|
2167 |
|
|
op2 = gimple_assign_rhs2 (def_stmt);
|
2168 |
|
|
|
2169 |
|
|
if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
|
2170 |
|
|
{
|
2171 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2172 |
|
|
report_vect_op (def_stmt, "reduction: uses not ssa_names: ");
|
2173 |
|
|
|
2174 |
|
|
return NULL;
|
2175 |
|
|
}
|
2176 |
|
|
}
|
2177 |
|
|
|
2178 |
|
|
type = TREE_TYPE (gimple_assign_lhs (def_stmt));
|
2179 |
|
|
if ((TREE_CODE (op1) == SSA_NAME
|
2180 |
|
|
&& !types_compatible_p (type,TREE_TYPE (op1)))
|
2181 |
|
|
|| (TREE_CODE (op2) == SSA_NAME
|
2182 |
|
|
&& !types_compatible_p (type, TREE_TYPE (op2)))
|
2183 |
|
|
|| (op3 && TREE_CODE (op3) == SSA_NAME
|
2184 |
|
|
&& !types_compatible_p (type, TREE_TYPE (op3)))
|
2185 |
|
|
|| (op4 && TREE_CODE (op4) == SSA_NAME
|
2186 |
|
|
&& !types_compatible_p (type, TREE_TYPE (op4))))
|
2187 |
|
|
{
|
2188 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2189 |
|
|
{
|
2190 |
|
|
fprintf (vect_dump, "reduction: multiple types: operation type: ");
|
2191 |
|
|
print_generic_expr (vect_dump, type, TDF_SLIM);
|
2192 |
|
|
fprintf (vect_dump, ", operands types: ");
|
2193 |
|
|
print_generic_expr (vect_dump, TREE_TYPE (op1), TDF_SLIM);
|
2194 |
|
|
fprintf (vect_dump, ",");
|
2195 |
|
|
print_generic_expr (vect_dump, TREE_TYPE (op2), TDF_SLIM);
|
2196 |
|
|
if (op3)
|
2197 |
|
|
{
|
2198 |
|
|
fprintf (vect_dump, ",");
|
2199 |
|
|
print_generic_expr (vect_dump, TREE_TYPE (op3), TDF_SLIM);
|
2200 |
|
|
}
|
2201 |
|
|
|
2202 |
|
|
if (op4)
|
2203 |
|
|
{
|
2204 |
|
|
fprintf (vect_dump, ",");
|
2205 |
|
|
print_generic_expr (vect_dump, TREE_TYPE (op4), TDF_SLIM);
|
2206 |
|
|
}
|
2207 |
|
|
}
|
2208 |
|
|
|
2209 |
|
|
return NULL;
|
2210 |
|
|
}
|
2211 |
|
|
|
2212 |
|
|
/* Check that it's ok to change the order of the computation.
|
2213 |
|
|
Generally, when vectorizing a reduction we change the order of the
|
2214 |
|
|
computation. This may change the behavior of the program in some
|
2215 |
|
|
cases, so we need to check that this is ok. One exception is when
|
2216 |
|
|
vectorizing an outer-loop: the inner-loop is executed sequentially,
|
2217 |
|
|
and therefore vectorizing reductions in the inner-loop during
|
2218 |
|
|
outer-loop vectorization is safe. */
|
2219 |
|
|
|
2220 |
|
|
/* CHECKME: check for !flag_finite_math_only too? */
|
2221 |
|
|
if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
|
2222 |
|
|
&& check_reduction)
|
2223 |
|
|
{
|
2224 |
|
|
/* Changing the order of operations changes the semantics. */
|
2225 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2226 |
|
|
report_vect_op (def_stmt, "reduction: unsafe fp math optimization: ");
|
2227 |
|
|
return NULL;
|
2228 |
|
|
}
|
2229 |
|
|
else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
|
2230 |
|
|
&& check_reduction)
|
2231 |
|
|
{
|
2232 |
|
|
/* Changing the order of operations changes the semantics. */
|
2233 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2234 |
|
|
report_vect_op (def_stmt, "reduction: unsafe int math optimization: ");
|
2235 |
|
|
return NULL;
|
2236 |
|
|
}
|
2237 |
|
|
else if (SAT_FIXED_POINT_TYPE_P (type) && check_reduction)
|
2238 |
|
|
{
|
2239 |
|
|
/* Changing the order of operations changes the semantics. */
|
2240 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2241 |
|
|
report_vect_op (def_stmt,
|
2242 |
|
|
"reduction: unsafe fixed-point math optimization: ");
|
2243 |
|
|
return NULL;
|
2244 |
|
|
}
|
2245 |
|
|
|
2246 |
|
|
/* If we detected "res -= x[i]" earlier, rewrite it into
|
2247 |
|
|
"res += -x[i]" now. If this turns out to be useless reassoc
|
2248 |
|
|
will clean it up again. */
|
2249 |
|
|
if (orig_code == MINUS_EXPR)
|
2250 |
|
|
{
|
2251 |
|
|
tree rhs = gimple_assign_rhs2 (def_stmt);
|
2252 |
|
|
tree negrhs = make_ssa_name (SSA_NAME_VAR (rhs), NULL);
|
2253 |
|
|
gimple negate_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, negrhs,
|
2254 |
|
|
rhs, NULL);
|
2255 |
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
|
2256 |
|
|
set_vinfo_for_stmt (negate_stmt, new_stmt_vec_info (negate_stmt,
|
2257 |
|
|
loop_info, NULL));
|
2258 |
|
|
gsi_insert_before (&gsi, negate_stmt, GSI_NEW_STMT);
|
2259 |
|
|
gimple_assign_set_rhs2 (def_stmt, negrhs);
|
2260 |
|
|
gimple_assign_set_rhs_code (def_stmt, PLUS_EXPR);
|
2261 |
|
|
update_stmt (def_stmt);
|
2262 |
|
|
}
|
2263 |
|
|
|
2264 |
|
|
/* Reduction is safe. We're dealing with one of the following:
|
2265 |
|
|
1) integer arithmetic and no trapv
|
2266 |
|
|
2) floating point arithmetic, and special flags permit this optimization
|
2267 |
|
|
3) nested cycle (i.e., outer loop vectorization). */
|
2268 |
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
2269 |
|
|
def1 = SSA_NAME_DEF_STMT (op1);
|
2270 |
|
|
|
2271 |
|
|
if (TREE_CODE (op2) == SSA_NAME)
|
2272 |
|
|
def2 = SSA_NAME_DEF_STMT (op2);
|
2273 |
|
|
|
2274 |
|
|
if (code != COND_EXPR
|
2275 |
|
|
&& ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
|
2276 |
|
|
{
|
2277 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2278 |
|
|
report_vect_op (def_stmt, "reduction: no defs for operands: ");
|
2279 |
|
|
return NULL;
|
2280 |
|
|
}
|
2281 |
|
|
|
2282 |
|
|
/* Check that one def is the reduction def, defined by PHI,
|
2283 |
|
|
the other def is either defined in the loop ("vect_internal_def"),
|
2284 |
|
|
or it's an induction (defined by a loop-header phi-node). */
|
2285 |
|
|
|
2286 |
|
|
if (def2 && def2 == phi
|
2287 |
|
|
&& (code == COND_EXPR
|
2288 |
|
|
|| !def1 || gimple_nop_p (def1)
|
2289 |
|
|
|| (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
|
2290 |
|
|
&& (is_gimple_assign (def1)
|
2291 |
|
|
|| is_gimple_call (def1)
|
2292 |
|
|
|| STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
|
2293 |
|
|
== vect_induction_def
|
2294 |
|
|
|| (gimple_code (def1) == GIMPLE_PHI
|
2295 |
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
|
2296 |
|
|
== vect_internal_def
|
2297 |
|
|
&& !is_loop_header_bb_p (gimple_bb (def1)))))))
|
2298 |
|
|
{
|
2299 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2300 |
|
|
report_vect_op (def_stmt, "detected reduction: ");
|
2301 |
|
|
return def_stmt;
|
2302 |
|
|
}
|
2303 |
|
|
|
2304 |
|
|
if (def1 && def1 == phi
|
2305 |
|
|
&& (code == COND_EXPR
|
2306 |
|
|
|| !def2 || gimple_nop_p (def2)
|
2307 |
|
|
|| (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
|
2308 |
|
|
&& (is_gimple_assign (def2)
|
2309 |
|
|
|| is_gimple_call (def2)
|
2310 |
|
|
|| STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
|
2311 |
|
|
== vect_induction_def
|
2312 |
|
|
|| (gimple_code (def2) == GIMPLE_PHI
|
2313 |
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
|
2314 |
|
|
== vect_internal_def
|
2315 |
|
|
&& !is_loop_header_bb_p (gimple_bb (def2)))))))
|
2316 |
|
|
{
|
2317 |
|
|
if (check_reduction)
|
2318 |
|
|
{
|
2319 |
|
|
/* Swap operands (just for simplicity - so that the rest of the code
|
2320 |
|
|
can assume that the reduction variable is always the last (second)
|
2321 |
|
|
argument). */
|
2322 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2323 |
|
|
report_vect_op (def_stmt,
|
2324 |
|
|
"detected reduction: need to swap operands: ");
|
2325 |
|
|
|
2326 |
|
|
swap_tree_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
|
2327 |
|
|
gimple_assign_rhs2_ptr (def_stmt));
|
2328 |
|
|
}
|
2329 |
|
|
else
|
2330 |
|
|
{
|
2331 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2332 |
|
|
report_vect_op (def_stmt, "detected reduction: ");
|
2333 |
|
|
}
|
2334 |
|
|
|
2335 |
|
|
return def_stmt;
|
2336 |
|
|
}
|
2337 |
|
|
|
2338 |
|
|
/* Try to find SLP reduction chain. */
|
2339 |
|
|
if (check_reduction && vect_is_slp_reduction (loop_info, phi, def_stmt))
|
2340 |
|
|
{
|
2341 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2342 |
|
|
report_vect_op (def_stmt, "reduction: detected reduction chain: ");
|
2343 |
|
|
|
2344 |
|
|
return def_stmt;
|
2345 |
|
|
}
|
2346 |
|
|
|
2347 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
2348 |
|
|
report_vect_op (def_stmt, "reduction: unknown pattern: ");
|
2349 |
|
|
|
2350 |
|
|
return NULL;
|
2351 |
|
|
}
|
2352 |
|
|
|
2353 |
|
|
/* Wrapper around vect_is_simple_reduction_1, that won't modify code
|
2354 |
|
|
in-place. Arguments as there. */
|
2355 |
|
|
|
2356 |
|
|
static gimple
|
2357 |
|
|
vect_is_simple_reduction (loop_vec_info loop_info, gimple phi,
|
2358 |
|
|
bool check_reduction, bool *double_reduc)
|
2359 |
|
|
{
|
2360 |
|
|
return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
|
2361 |
|
|
double_reduc, false);
|
2362 |
|
|
}
|
2363 |
|
|
|
2364 |
|
|
/* Wrapper around vect_is_simple_reduction_1, which will modify code
|
2365 |
|
|
in-place if it enables detection of more reductions. Arguments
|
2366 |
|
|
as there. */
|
2367 |
|
|
|
2368 |
|
|
gimple
|
2369 |
|
|
vect_force_simple_reduction (loop_vec_info loop_info, gimple phi,
|
2370 |
|
|
bool check_reduction, bool *double_reduc)
|
2371 |
|
|
{
|
2372 |
|
|
return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
|
2373 |
|
|
double_reduc, true);
|
2374 |
|
|
}
|
2375 |
|
|
|
2376 |
|
|
/* Calculate the cost of one scalar iteration of the loop. */
|
2377 |
|
|
int
|
2378 |
|
|
vect_get_single_scalar_iteraion_cost (loop_vec_info loop_vinfo)
|
2379 |
|
|
{
|
2380 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
2381 |
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
2382 |
|
|
int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
|
2383 |
|
|
int innerloop_iters, i, stmt_cost;
|
2384 |
|
|
|
2385 |
|
|
/* Count statements in scalar loop. Using this as scalar cost for a single
|
2386 |
|
|
iteration for now.
|
2387 |
|
|
|
2388 |
|
|
TODO: Add outer loop support.
|
2389 |
|
|
|
2390 |
|
|
TODO: Consider assigning different costs to different scalar
|
2391 |
|
|
statements. */
|
2392 |
|
|
|
2393 |
|
|
/* FORNOW. */
|
2394 |
|
|
innerloop_iters = 1;
|
2395 |
|
|
if (loop->inner)
|
2396 |
|
|
innerloop_iters = 50; /* FIXME */
|
2397 |
|
|
|
2398 |
|
|
for (i = 0; i < nbbs; i++)
|
2399 |
|
|
{
|
2400 |
|
|
gimple_stmt_iterator si;
|
2401 |
|
|
basic_block bb = bbs[i];
|
2402 |
|
|
|
2403 |
|
|
if (bb->loop_father == loop->inner)
|
2404 |
|
|
factor = innerloop_iters;
|
2405 |
|
|
else
|
2406 |
|
|
factor = 1;
|
2407 |
|
|
|
2408 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
2409 |
|
|
{
|
2410 |
|
|
gimple stmt = gsi_stmt (si);
|
2411 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
2412 |
|
|
|
2413 |
|
|
if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
|
2414 |
|
|
continue;
|
2415 |
|
|
|
2416 |
|
|
/* Skip stmts that are not vectorized inside the loop. */
|
2417 |
|
|
if (stmt_info
|
2418 |
|
|
&& !STMT_VINFO_RELEVANT_P (stmt_info)
|
2419 |
|
|
&& (!STMT_VINFO_LIVE_P (stmt_info)
|
2420 |
|
|
|| !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
|
2421 |
|
|
&& !STMT_VINFO_IN_PATTERN_P (stmt_info))
|
2422 |
|
|
continue;
|
2423 |
|
|
|
2424 |
|
|
if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)))
|
2425 |
|
|
{
|
2426 |
|
|
if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
|
2427 |
|
|
stmt_cost = vect_get_cost (scalar_load);
|
2428 |
|
|
else
|
2429 |
|
|
stmt_cost = vect_get_cost (scalar_store);
|
2430 |
|
|
}
|
2431 |
|
|
else
|
2432 |
|
|
stmt_cost = vect_get_cost (scalar_stmt);
|
2433 |
|
|
|
2434 |
|
|
scalar_single_iter_cost += stmt_cost * factor;
|
2435 |
|
|
}
|
2436 |
|
|
}
|
2437 |
|
|
return scalar_single_iter_cost;
|
2438 |
|
|
}
|
2439 |
|
|
|
2440 |
|
|
/* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
|
2441 |
|
|
int
|
2442 |
|
|
vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
|
2443 |
|
|
int *peel_iters_epilogue,
|
2444 |
|
|
int scalar_single_iter_cost)
|
2445 |
|
|
{
|
2446 |
|
|
int peel_guard_costs = 0;
|
2447 |
|
|
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
2448 |
|
|
|
2449 |
|
|
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
|
2450 |
|
|
{
|
2451 |
|
|
*peel_iters_epilogue = vf/2;
|
2452 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
2453 |
|
|
fprintf (vect_dump, "cost model: "
|
2454 |
|
|
"epilogue peel iters set to vf/2 because "
|
2455 |
|
|
"loop iterations are unknown .");
|
2456 |
|
|
|
2457 |
|
|
/* If peeled iterations are known but number of scalar loop
|
2458 |
|
|
iterations are unknown, count a taken branch per peeled loop. */
|
2459 |
|
|
peel_guard_costs = 2 * vect_get_cost (cond_branch_taken);
|
2460 |
|
|
}
|
2461 |
|
|
else
|
2462 |
|
|
{
|
2463 |
|
|
int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
|
2464 |
|
|
peel_iters_prologue = niters < peel_iters_prologue ?
|
2465 |
|
|
niters : peel_iters_prologue;
|
2466 |
|
|
*peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
|
2467 |
|
|
/* If we need to peel for gaps, but no peeling is required, we have to
|
2468 |
|
|
peel VF iterations. */
|
2469 |
|
|
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
|
2470 |
|
|
*peel_iters_epilogue = vf;
|
2471 |
|
|
}
|
2472 |
|
|
|
2473 |
|
|
return (peel_iters_prologue * scalar_single_iter_cost)
|
2474 |
|
|
+ (*peel_iters_epilogue * scalar_single_iter_cost)
|
2475 |
|
|
+ peel_guard_costs;
|
2476 |
|
|
}
|
2477 |
|
|
|
2478 |
|
|
/* Function vect_estimate_min_profitable_iters
|
2479 |
|
|
|
2480 |
|
|
Return the number of iterations required for the vector version of the
|
2481 |
|
|
loop to be profitable relative to the cost of the scalar version of the
|
2482 |
|
|
loop.
|
2483 |
|
|
|
2484 |
|
|
TODO: Take profile info into account before making vectorization
|
2485 |
|
|
decisions, if available. */
|
2486 |
|
|
|
2487 |
|
|
int
|
2488 |
|
|
vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo)
|
2489 |
|
|
{
|
2490 |
|
|
int i;
|
2491 |
|
|
int min_profitable_iters;
|
2492 |
|
|
int peel_iters_prologue;
|
2493 |
|
|
int peel_iters_epilogue;
|
2494 |
|
|
int vec_inside_cost = 0;
|
2495 |
|
|
int vec_outside_cost = 0;
|
2496 |
|
|
int scalar_single_iter_cost = 0;
|
2497 |
|
|
int scalar_outside_cost = 0;
|
2498 |
|
|
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
2499 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
2500 |
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
2501 |
|
|
int nbbs = loop->num_nodes;
|
2502 |
|
|
int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
|
2503 |
|
|
int peel_guard_costs = 0;
|
2504 |
|
|
int innerloop_iters = 0, factor;
|
2505 |
|
|
VEC (slp_instance, heap) *slp_instances;
|
2506 |
|
|
slp_instance instance;
|
2507 |
|
|
|
2508 |
|
|
/* Cost model disabled. */
|
2509 |
|
|
if (!flag_vect_cost_model)
|
2510 |
|
|
{
|
2511 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
2512 |
|
|
fprintf (vect_dump, "cost model disabled.");
|
2513 |
|
|
return 0;
|
2514 |
|
|
}
|
2515 |
|
|
|
2516 |
|
|
/* Requires loop versioning tests to handle misalignment. */
|
2517 |
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
|
2518 |
|
|
{
|
2519 |
|
|
/* FIXME: Make cost depend on complexity of individual check. */
|
2520 |
|
|
vec_outside_cost +=
|
2521 |
|
|
VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
|
2522 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
2523 |
|
|
fprintf (vect_dump, "cost model: Adding cost of checks for loop "
|
2524 |
|
|
"versioning to treat misalignment.\n");
|
2525 |
|
|
}
|
2526 |
|
|
|
2527 |
|
|
/* Requires loop versioning with alias checks. */
|
2528 |
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
|
2529 |
|
|
{
|
2530 |
|
|
/* FIXME: Make cost depend on complexity of individual check. */
|
2531 |
|
|
vec_outside_cost +=
|
2532 |
|
|
VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
|
2533 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
2534 |
|
|
fprintf (vect_dump, "cost model: Adding cost of checks for loop "
|
2535 |
|
|
"versioning aliasing.\n");
|
2536 |
|
|
}
|
2537 |
|
|
|
2538 |
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
|
2539 |
|
|
|| LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
|
2540 |
|
|
vec_outside_cost += vect_get_cost (cond_branch_taken);
|
2541 |
|
|
|
2542 |
|
|
/* Count statements in scalar loop. Using this as scalar cost for a single
|
2543 |
|
|
iteration for now.
|
2544 |
|
|
|
2545 |
|
|
TODO: Add outer loop support.
|
2546 |
|
|
|
2547 |
|
|
TODO: Consider assigning different costs to different scalar
|
2548 |
|
|
statements. */
|
2549 |
|
|
|
2550 |
|
|
/* FORNOW. */
|
2551 |
|
|
if (loop->inner)
|
2552 |
|
|
innerloop_iters = 50; /* FIXME */
|
2553 |
|
|
|
2554 |
|
|
for (i = 0; i < nbbs; i++)
|
2555 |
|
|
{
|
2556 |
|
|
gimple_stmt_iterator si;
|
2557 |
|
|
basic_block bb = bbs[i];
|
2558 |
|
|
|
2559 |
|
|
if (bb->loop_father == loop->inner)
|
2560 |
|
|
factor = innerloop_iters;
|
2561 |
|
|
else
|
2562 |
|
|
factor = 1;
|
2563 |
|
|
|
2564 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
2565 |
|
|
{
|
2566 |
|
|
gimple stmt = gsi_stmt (si);
|
2567 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
2568 |
|
|
|
2569 |
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info))
|
2570 |
|
|
{
|
2571 |
|
|
stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
2572 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
2573 |
|
|
}
|
2574 |
|
|
|
2575 |
|
|
/* Skip stmts that are not vectorized inside the loop. */
|
2576 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info)
|
2577 |
|
|
&& (!STMT_VINFO_LIVE_P (stmt_info)
|
2578 |
|
|
|| !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info))))
|
2579 |
|
|
continue;
|
2580 |
|
|
|
2581 |
|
|
vec_inside_cost += STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info) * factor;
|
2582 |
|
|
/* FIXME: for stmts in the inner-loop in outer-loop vectorization,
|
2583 |
|
|
some of the "outside" costs are generated inside the outer-loop. */
|
2584 |
|
|
vec_outside_cost += STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info);
|
2585 |
|
|
if (is_pattern_stmt_p (stmt_info)
|
2586 |
|
|
&& STMT_VINFO_PATTERN_DEF_SEQ (stmt_info))
|
2587 |
|
|
{
|
2588 |
|
|
gimple_stmt_iterator gsi;
|
2589 |
|
|
|
2590 |
|
|
for (gsi = gsi_start (STMT_VINFO_PATTERN_DEF_SEQ (stmt_info));
|
2591 |
|
|
!gsi_end_p (gsi); gsi_next (&gsi))
|
2592 |
|
|
{
|
2593 |
|
|
gimple pattern_def_stmt = gsi_stmt (gsi);
|
2594 |
|
|
stmt_vec_info pattern_def_stmt_info
|
2595 |
|
|
= vinfo_for_stmt (pattern_def_stmt);
|
2596 |
|
|
if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
|
2597 |
|
|
|| STMT_VINFO_LIVE_P (pattern_def_stmt_info))
|
2598 |
|
|
{
|
2599 |
|
|
vec_inside_cost
|
2600 |
|
|
+= STMT_VINFO_INSIDE_OF_LOOP_COST
|
2601 |
|
|
(pattern_def_stmt_info) * factor;
|
2602 |
|
|
vec_outside_cost
|
2603 |
|
|
+= STMT_VINFO_OUTSIDE_OF_LOOP_COST
|
2604 |
|
|
(pattern_def_stmt_info);
|
2605 |
|
|
}
|
2606 |
|
|
}
|
2607 |
|
|
}
|
2608 |
|
|
}
|
2609 |
|
|
}
|
2610 |
|
|
|
2611 |
|
|
scalar_single_iter_cost = vect_get_single_scalar_iteraion_cost (loop_vinfo);
|
2612 |
|
|
|
2613 |
|
|
/* Add additional cost for the peeled instructions in prologue and epilogue
|
2614 |
|
|
loop.
|
2615 |
|
|
|
2616 |
|
|
FORNOW: If we don't know the value of peel_iters for prologue or epilogue
|
2617 |
|
|
at compile-time - we assume it's vf/2 (the worst would be vf-1).
|
2618 |
|
|
|
2619 |
|
|
TODO: Build an expression that represents peel_iters for prologue and
|
2620 |
|
|
epilogue to be used in a run-time test. */
|
2621 |
|
|
|
2622 |
|
|
if (npeel < 0)
|
2623 |
|
|
{
|
2624 |
|
|
peel_iters_prologue = vf/2;
|
2625 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
2626 |
|
|
fprintf (vect_dump, "cost model: "
|
2627 |
|
|
"prologue peel iters set to vf/2.");
|
2628 |
|
|
|
2629 |
|
|
/* If peeling for alignment is unknown, loop bound of main loop becomes
|
2630 |
|
|
unknown. */
|
2631 |
|
|
peel_iters_epilogue = vf/2;
|
2632 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
2633 |
|
|
fprintf (vect_dump, "cost model: "
|
2634 |
|
|
"epilogue peel iters set to vf/2 because "
|
2635 |
|
|
"peeling for alignment is unknown .");
|
2636 |
|
|
|
2637 |
|
|
/* If peeled iterations are unknown, count a taken branch and a not taken
|
2638 |
|
|
branch per peeled loop. Even if scalar loop iterations are known,
|
2639 |
|
|
vector iterations are not known since peeled prologue iterations are
|
2640 |
|
|
not known. Hence guards remain the same. */
|
2641 |
|
|
peel_guard_costs += 2 * (vect_get_cost (cond_branch_taken)
|
2642 |
|
|
+ vect_get_cost (cond_branch_not_taken));
|
2643 |
|
|
vec_outside_cost += (peel_iters_prologue * scalar_single_iter_cost)
|
2644 |
|
|
+ (peel_iters_epilogue * scalar_single_iter_cost)
|
2645 |
|
|
+ peel_guard_costs;
|
2646 |
|
|
}
|
2647 |
|
|
else
|
2648 |
|
|
{
|
2649 |
|
|
peel_iters_prologue = npeel;
|
2650 |
|
|
vec_outside_cost += vect_get_known_peeling_cost (loop_vinfo,
|
2651 |
|
|
peel_iters_prologue, &peel_iters_epilogue,
|
2652 |
|
|
scalar_single_iter_cost);
|
2653 |
|
|
}
|
2654 |
|
|
|
2655 |
|
|
/* FORNOW: The scalar outside cost is incremented in one of the
|
2656 |
|
|
following ways:
|
2657 |
|
|
|
2658 |
|
|
1. The vectorizer checks for alignment and aliasing and generates
|
2659 |
|
|
a condition that allows dynamic vectorization. A cost model
|
2660 |
|
|
check is ANDED with the versioning condition. Hence scalar code
|
2661 |
|
|
path now has the added cost of the versioning check.
|
2662 |
|
|
|
2663 |
|
|
if (cost > th & versioning_check)
|
2664 |
|
|
jmp to vector code
|
2665 |
|
|
|
2666 |
|
|
Hence run-time scalar is incremented by not-taken branch cost.
|
2667 |
|
|
|
2668 |
|
|
2. The vectorizer then checks if a prologue is required. If the
|
2669 |
|
|
cost model check was not done before during versioning, it has to
|
2670 |
|
|
be done before the prologue check.
|
2671 |
|
|
|
2672 |
|
|
if (cost <= th)
|
2673 |
|
|
prologue = scalar_iters
|
2674 |
|
|
if (prologue == 0)
|
2675 |
|
|
jmp to vector code
|
2676 |
|
|
else
|
2677 |
|
|
execute prologue
|
2678 |
|
|
if (prologue == num_iters)
|
2679 |
|
|
go to exit
|
2680 |
|
|
|
2681 |
|
|
Hence the run-time scalar cost is incremented by a taken branch,
|
2682 |
|
|
plus a not-taken branch, plus a taken branch cost.
|
2683 |
|
|
|
2684 |
|
|
3. The vectorizer then checks if an epilogue is required. If the
|
2685 |
|
|
cost model check was not done before during prologue check, it
|
2686 |
|
|
has to be done with the epilogue check.
|
2687 |
|
|
|
2688 |
|
|
if (prologue == 0)
|
2689 |
|
|
jmp to vector code
|
2690 |
|
|
else
|
2691 |
|
|
execute prologue
|
2692 |
|
|
if (prologue == num_iters)
|
2693 |
|
|
go to exit
|
2694 |
|
|
vector code:
|
2695 |
|
|
if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
|
2696 |
|
|
jmp to epilogue
|
2697 |
|
|
|
2698 |
|
|
Hence the run-time scalar cost should be incremented by 2 taken
|
2699 |
|
|
branches.
|
2700 |
|
|
|
2701 |
|
|
TODO: The back end may reorder the BBS's differently and reverse
|
2702 |
|
|
conditions/branch directions. Change the estimates below to
|
2703 |
|
|
something more reasonable. */
|
2704 |
|
|
|
2705 |
|
|
/* If the number of iterations is known and we do not do versioning, we can
|
2706 |
|
|
decide whether to vectorize at compile time. Hence the scalar version
|
2707 |
|
|
do not carry cost model guard costs. */
|
2708 |
|
|
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
2709 |
|
|
|| LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
|
2710 |
|
|
|| LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
|
2711 |
|
|
{
|
2712 |
|
|
/* Cost model check occurs at versioning. */
|
2713 |
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
|
2714 |
|
|
|| LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
|
2715 |
|
|
scalar_outside_cost += vect_get_cost (cond_branch_not_taken);
|
2716 |
|
|
else
|
2717 |
|
|
{
|
2718 |
|
|
/* Cost model check occurs at prologue generation. */
|
2719 |
|
|
if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
|
2720 |
|
|
scalar_outside_cost += 2 * vect_get_cost (cond_branch_taken)
|
2721 |
|
|
+ vect_get_cost (cond_branch_not_taken);
|
2722 |
|
|
/* Cost model check occurs at epilogue generation. */
|
2723 |
|
|
else
|
2724 |
|
|
scalar_outside_cost += 2 * vect_get_cost (cond_branch_taken);
|
2725 |
|
|
}
|
2726 |
|
|
}
|
2727 |
|
|
|
2728 |
|
|
/* Add SLP costs. */
|
2729 |
|
|
slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
|
2730 |
|
|
FOR_EACH_VEC_ELT (slp_instance, slp_instances, i, instance)
|
2731 |
|
|
{
|
2732 |
|
|
vec_outside_cost += SLP_INSTANCE_OUTSIDE_OF_LOOP_COST (instance);
|
2733 |
|
|
vec_inside_cost += SLP_INSTANCE_INSIDE_OF_LOOP_COST (instance);
|
2734 |
|
|
}
|
2735 |
|
|
|
2736 |
|
|
/* Calculate number of iterations required to make the vector version
|
2737 |
|
|
profitable, relative to the loop bodies only. The following condition
|
2738 |
|
|
must hold true:
|
2739 |
|
|
SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
|
2740 |
|
|
where
|
2741 |
|
|
SIC = scalar iteration cost, VIC = vector iteration cost,
|
2742 |
|
|
VOC = vector outside cost, VF = vectorization factor,
|
2743 |
|
|
PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
|
2744 |
|
|
SOC = scalar outside cost for run time cost model check. */
|
2745 |
|
|
|
2746 |
|
|
if ((scalar_single_iter_cost * vf) > vec_inside_cost)
|
2747 |
|
|
{
|
2748 |
|
|
if (vec_outside_cost <= 0)
|
2749 |
|
|
min_profitable_iters = 1;
|
2750 |
|
|
else
|
2751 |
|
|
{
|
2752 |
|
|
min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
|
2753 |
|
|
- vec_inside_cost * peel_iters_prologue
|
2754 |
|
|
- vec_inside_cost * peel_iters_epilogue)
|
2755 |
|
|
/ ((scalar_single_iter_cost * vf)
|
2756 |
|
|
- vec_inside_cost);
|
2757 |
|
|
|
2758 |
|
|
if ((scalar_single_iter_cost * vf * min_profitable_iters)
|
2759 |
|
|
<= ((vec_inside_cost * min_profitable_iters)
|
2760 |
|
|
+ ((vec_outside_cost - scalar_outside_cost) * vf)))
|
2761 |
|
|
min_profitable_iters++;
|
2762 |
|
|
}
|
2763 |
|
|
}
|
2764 |
|
|
/* vector version will never be profitable. */
|
2765 |
|
|
else
|
2766 |
|
|
{
|
2767 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
2768 |
|
|
fprintf (vect_dump, "cost model: the vector iteration cost = %d "
|
2769 |
|
|
"divided by the scalar iteration cost = %d "
|
2770 |
|
|
"is greater or equal to the vectorization factor = %d.",
|
2771 |
|
|
vec_inside_cost, scalar_single_iter_cost, vf);
|
2772 |
|
|
return -1;
|
2773 |
|
|
}
|
2774 |
|
|
|
2775 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
2776 |
|
|
{
|
2777 |
|
|
fprintf (vect_dump, "Cost model analysis: \n");
|
2778 |
|
|
fprintf (vect_dump, " Vector inside of loop cost: %d\n",
|
2779 |
|
|
vec_inside_cost);
|
2780 |
|
|
fprintf (vect_dump, " Vector outside of loop cost: %d\n",
|
2781 |
|
|
vec_outside_cost);
|
2782 |
|
|
fprintf (vect_dump, " Scalar iteration cost: %d\n",
|
2783 |
|
|
scalar_single_iter_cost);
|
2784 |
|
|
fprintf (vect_dump, " Scalar outside cost: %d\n", scalar_outside_cost);
|
2785 |
|
|
fprintf (vect_dump, " prologue iterations: %d\n",
|
2786 |
|
|
peel_iters_prologue);
|
2787 |
|
|
fprintf (vect_dump, " epilogue iterations: %d\n",
|
2788 |
|
|
peel_iters_epilogue);
|
2789 |
|
|
fprintf (vect_dump, " Calculated minimum iters for profitability: %d\n",
|
2790 |
|
|
min_profitable_iters);
|
2791 |
|
|
}
|
2792 |
|
|
|
2793 |
|
|
min_profitable_iters =
|
2794 |
|
|
min_profitable_iters < vf ? vf : min_profitable_iters;
|
2795 |
|
|
|
2796 |
|
|
/* Because the condition we create is:
|
2797 |
|
|
if (niters <= min_profitable_iters)
|
2798 |
|
|
then skip the vectorized loop. */
|
2799 |
|
|
min_profitable_iters--;
|
2800 |
|
|
|
2801 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
2802 |
|
|
fprintf (vect_dump, " Profitability threshold = %d\n",
|
2803 |
|
|
min_profitable_iters);
|
2804 |
|
|
|
2805 |
|
|
return min_profitable_iters;
|
2806 |
|
|
}
|
2807 |
|
|
|
2808 |
|
|
|
2809 |
|
|
/* TODO: Close dependency between vect_model_*_cost and vectorizable_*
|
2810 |
|
|
functions. Design better to avoid maintenance issues. */
|
2811 |
|
|
|
2812 |
|
|
/* Function vect_model_reduction_cost.
|
2813 |
|
|
|
2814 |
|
|
Models cost for a reduction operation, including the vector ops
|
2815 |
|
|
generated within the strip-mine loop, the initial definition before
|
2816 |
|
|
the loop, and the epilogue code that must be generated. */
|
2817 |
|
|
|
2818 |
|
|
static bool
|
2819 |
|
|
vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
|
2820 |
|
|
int ncopies)
|
2821 |
|
|
{
|
2822 |
|
|
int outer_cost = 0;
|
2823 |
|
|
enum tree_code code;
|
2824 |
|
|
optab optab;
|
2825 |
|
|
tree vectype;
|
2826 |
|
|
gimple stmt, orig_stmt;
|
2827 |
|
|
tree reduction_op;
|
2828 |
|
|
enum machine_mode mode;
|
2829 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
2830 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
2831 |
|
|
|
2832 |
|
|
|
2833 |
|
|
/* Cost of reduction op inside loop. */
|
2834 |
|
|
STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info)
|
2835 |
|
|
+= ncopies * vect_get_cost (vector_stmt);
|
2836 |
|
|
|
2837 |
|
|
stmt = STMT_VINFO_STMT (stmt_info);
|
2838 |
|
|
|
2839 |
|
|
switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
|
2840 |
|
|
{
|
2841 |
|
|
case GIMPLE_SINGLE_RHS:
|
2842 |
|
|
gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
|
2843 |
|
|
reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
|
2844 |
|
|
break;
|
2845 |
|
|
case GIMPLE_UNARY_RHS:
|
2846 |
|
|
reduction_op = gimple_assign_rhs1 (stmt);
|
2847 |
|
|
break;
|
2848 |
|
|
case GIMPLE_BINARY_RHS:
|
2849 |
|
|
reduction_op = gimple_assign_rhs2 (stmt);
|
2850 |
|
|
break;
|
2851 |
|
|
case GIMPLE_TERNARY_RHS:
|
2852 |
|
|
reduction_op = gimple_assign_rhs3 (stmt);
|
2853 |
|
|
break;
|
2854 |
|
|
default:
|
2855 |
|
|
gcc_unreachable ();
|
2856 |
|
|
}
|
2857 |
|
|
|
2858 |
|
|
vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
|
2859 |
|
|
if (!vectype)
|
2860 |
|
|
{
|
2861 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
2862 |
|
|
{
|
2863 |
|
|
fprintf (vect_dump, "unsupported data-type ");
|
2864 |
|
|
print_generic_expr (vect_dump, TREE_TYPE (reduction_op), TDF_SLIM);
|
2865 |
|
|
}
|
2866 |
|
|
return false;
|
2867 |
|
|
}
|
2868 |
|
|
|
2869 |
|
|
mode = TYPE_MODE (vectype);
|
2870 |
|
|
orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
2871 |
|
|
|
2872 |
|
|
if (!orig_stmt)
|
2873 |
|
|
orig_stmt = STMT_VINFO_STMT (stmt_info);
|
2874 |
|
|
|
2875 |
|
|
code = gimple_assign_rhs_code (orig_stmt);
|
2876 |
|
|
|
2877 |
|
|
/* Add in cost for initial definition. */
|
2878 |
|
|
outer_cost += vect_get_cost (scalar_to_vec);
|
2879 |
|
|
|
2880 |
|
|
/* Determine cost of epilogue code.
|
2881 |
|
|
|
2882 |
|
|
We have a reduction operator that will reduce the vector in one statement.
|
2883 |
|
|
Also requires scalar extract. */
|
2884 |
|
|
|
2885 |
|
|
if (!nested_in_vect_loop_p (loop, orig_stmt))
|
2886 |
|
|
{
|
2887 |
|
|
if (reduc_code != ERROR_MARK)
|
2888 |
|
|
outer_cost += vect_get_cost (vector_stmt)
|
2889 |
|
|
+ vect_get_cost (vec_to_scalar);
|
2890 |
|
|
else
|
2891 |
|
|
{
|
2892 |
|
|
int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
|
2893 |
|
|
tree bitsize =
|
2894 |
|
|
TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
|
2895 |
|
|
int element_bitsize = tree_low_cst (bitsize, 1);
|
2896 |
|
|
int nelements = vec_size_in_bits / element_bitsize;
|
2897 |
|
|
|
2898 |
|
|
optab = optab_for_tree_code (code, vectype, optab_default);
|
2899 |
|
|
|
2900 |
|
|
/* We have a whole vector shift available. */
|
2901 |
|
|
if (VECTOR_MODE_P (mode)
|
2902 |
|
|
&& optab_handler (optab, mode) != CODE_FOR_nothing
|
2903 |
|
|
&& optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
|
2904 |
|
|
/* Final reduction via vector shifts and the reduction operator. Also
|
2905 |
|
|
requires scalar extract. */
|
2906 |
|
|
outer_cost += ((exact_log2(nelements) * 2)
|
2907 |
|
|
* vect_get_cost (vector_stmt)
|
2908 |
|
|
+ vect_get_cost (vec_to_scalar));
|
2909 |
|
|
else
|
2910 |
|
|
/* Use extracts and reduction op for final reduction. For N elements,
|
2911 |
|
|
we have N extracts and N-1 reduction ops. */
|
2912 |
|
|
outer_cost += ((nelements + nelements - 1)
|
2913 |
|
|
* vect_get_cost (vector_stmt));
|
2914 |
|
|
}
|
2915 |
|
|
}
|
2916 |
|
|
|
2917 |
|
|
STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info) = outer_cost;
|
2918 |
|
|
|
2919 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
2920 |
|
|
fprintf (vect_dump, "vect_model_reduction_cost: inside_cost = %d, "
|
2921 |
|
|
"outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
|
2922 |
|
|
STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
|
2923 |
|
|
|
2924 |
|
|
return true;
|
2925 |
|
|
}
|
2926 |
|
|
|
2927 |
|
|
|
2928 |
|
|
/* Function vect_model_induction_cost.
|
2929 |
|
|
|
2930 |
|
|
Models cost for induction operations. */
|
2931 |
|
|
|
2932 |
|
|
static void
|
2933 |
|
|
vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
|
2934 |
|
|
{
|
2935 |
|
|
/* loop cost for vec_loop. */
|
2936 |
|
|
STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info)
|
2937 |
|
|
= ncopies * vect_get_cost (vector_stmt);
|
2938 |
|
|
/* prologue cost for vec_init and vec_step. */
|
2939 |
|
|
STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info)
|
2940 |
|
|
= 2 * vect_get_cost (scalar_to_vec);
|
2941 |
|
|
|
2942 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
2943 |
|
|
fprintf (vect_dump, "vect_model_induction_cost: inside_cost = %d, "
|
2944 |
|
|
"outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
|
2945 |
|
|
STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
|
2946 |
|
|
}
|
2947 |
|
|
|
2948 |
|
|
|
2949 |
|
|
/* Function get_initial_def_for_induction
|
2950 |
|
|
|
2951 |
|
|
Input:
|
2952 |
|
|
STMT - a stmt that performs an induction operation in the loop.
|
2953 |
|
|
IV_PHI - the initial value of the induction variable
|
2954 |
|
|
|
2955 |
|
|
Output:
|
2956 |
|
|
Return a vector variable, initialized with the first VF values of
|
2957 |
|
|
the induction variable. E.g., for an iv with IV_PHI='X' and
|
2958 |
|
|
evolution S, for a vector of 4 units, we want to return:
|
2959 |
|
|
[X, X + S, X + 2*S, X + 3*S]. */
|
2960 |
|
|
|
2961 |
|
|
static tree
|
2962 |
|
|
get_initial_def_for_induction (gimple iv_phi)
|
2963 |
|
|
{
|
2964 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
|
2965 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
2966 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
2967 |
|
|
tree scalar_type;
|
2968 |
|
|
tree vectype;
|
2969 |
|
|
int nunits;
|
2970 |
|
|
edge pe = loop_preheader_edge (loop);
|
2971 |
|
|
struct loop *iv_loop;
|
2972 |
|
|
basic_block new_bb;
|
2973 |
|
|
tree vec, vec_init, vec_step, t;
|
2974 |
|
|
tree access_fn;
|
2975 |
|
|
tree new_var;
|
2976 |
|
|
tree new_name;
|
2977 |
|
|
gimple init_stmt, induction_phi, new_stmt;
|
2978 |
|
|
tree induc_def, vec_def, vec_dest;
|
2979 |
|
|
tree init_expr, step_expr;
|
2980 |
|
|
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
2981 |
|
|
int i;
|
2982 |
|
|
bool ok;
|
2983 |
|
|
int ncopies;
|
2984 |
|
|
tree expr;
|
2985 |
|
|
stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
|
2986 |
|
|
bool nested_in_vect_loop = false;
|
2987 |
|
|
gimple_seq stmts = NULL;
|
2988 |
|
|
imm_use_iterator imm_iter;
|
2989 |
|
|
use_operand_p use_p;
|
2990 |
|
|
gimple exit_phi;
|
2991 |
|
|
edge latch_e;
|
2992 |
|
|
tree loop_arg;
|
2993 |
|
|
gimple_stmt_iterator si;
|
2994 |
|
|
basic_block bb = gimple_bb (iv_phi);
|
2995 |
|
|
tree stepvectype;
|
2996 |
|
|
tree resvectype;
|
2997 |
|
|
|
2998 |
|
|
/* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
|
2999 |
|
|
if (nested_in_vect_loop_p (loop, iv_phi))
|
3000 |
|
|
{
|
3001 |
|
|
nested_in_vect_loop = true;
|
3002 |
|
|
iv_loop = loop->inner;
|
3003 |
|
|
}
|
3004 |
|
|
else
|
3005 |
|
|
iv_loop = loop;
|
3006 |
|
|
gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
|
3007 |
|
|
|
3008 |
|
|
latch_e = loop_latch_edge (iv_loop);
|
3009 |
|
|
loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
|
3010 |
|
|
|
3011 |
|
|
access_fn = analyze_scalar_evolution (iv_loop, PHI_RESULT (iv_phi));
|
3012 |
|
|
gcc_assert (access_fn);
|
3013 |
|
|
STRIP_NOPS (access_fn);
|
3014 |
|
|
ok = vect_is_simple_iv_evolution (iv_loop->num, access_fn,
|
3015 |
|
|
&init_expr, &step_expr);
|
3016 |
|
|
gcc_assert (ok);
|
3017 |
|
|
pe = loop_preheader_edge (iv_loop);
|
3018 |
|
|
|
3019 |
|
|
scalar_type = TREE_TYPE (init_expr);
|
3020 |
|
|
vectype = get_vectype_for_scalar_type (scalar_type);
|
3021 |
|
|
resvectype = get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi)));
|
3022 |
|
|
gcc_assert (vectype);
|
3023 |
|
|
nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
3024 |
|
|
ncopies = vf / nunits;
|
3025 |
|
|
|
3026 |
|
|
gcc_assert (phi_info);
|
3027 |
|
|
gcc_assert (ncopies >= 1);
|
3028 |
|
|
|
3029 |
|
|
/* Find the first insertion point in the BB. */
|
3030 |
|
|
si = gsi_after_labels (bb);
|
3031 |
|
|
|
3032 |
|
|
/* Create the vector that holds the initial_value of the induction. */
|
3033 |
|
|
if (nested_in_vect_loop)
|
3034 |
|
|
{
|
3035 |
|
|
/* iv_loop is nested in the loop to be vectorized. init_expr had already
|
3036 |
|
|
been created during vectorization of previous stmts. We obtain it
|
3037 |
|
|
from the STMT_VINFO_VEC_STMT of the defining stmt. */
|
3038 |
|
|
tree iv_def = PHI_ARG_DEF_FROM_EDGE (iv_phi,
|
3039 |
|
|
loop_preheader_edge (iv_loop));
|
3040 |
|
|
vec_init = vect_get_vec_def_for_operand (iv_def, iv_phi, NULL);
|
3041 |
|
|
}
|
3042 |
|
|
else
|
3043 |
|
|
{
|
3044 |
|
|
/* iv_loop is the loop to be vectorized. Create:
|
3045 |
|
|
vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
|
3046 |
|
|
new_var = vect_get_new_vect_var (scalar_type, vect_scalar_var, "var_");
|
3047 |
|
|
add_referenced_var (new_var);
|
3048 |
|
|
|
3049 |
|
|
new_name = force_gimple_operand (init_expr, &stmts, false, new_var);
|
3050 |
|
|
if (stmts)
|
3051 |
|
|
{
|
3052 |
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
|
3053 |
|
|
gcc_assert (!new_bb);
|
3054 |
|
|
}
|
3055 |
|
|
|
3056 |
|
|
t = NULL_TREE;
|
3057 |
|
|
t = tree_cons (NULL_TREE, new_name, t);
|
3058 |
|
|
for (i = 1; i < nunits; i++)
|
3059 |
|
|
{
|
3060 |
|
|
/* Create: new_name_i = new_name + step_expr */
|
3061 |
|
|
enum tree_code code = POINTER_TYPE_P (scalar_type)
|
3062 |
|
|
? POINTER_PLUS_EXPR : PLUS_EXPR;
|
3063 |
|
|
init_stmt = gimple_build_assign_with_ops (code, new_var,
|
3064 |
|
|
new_name, step_expr);
|
3065 |
|
|
new_name = make_ssa_name (new_var, init_stmt);
|
3066 |
|
|
gimple_assign_set_lhs (init_stmt, new_name);
|
3067 |
|
|
|
3068 |
|
|
new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
|
3069 |
|
|
gcc_assert (!new_bb);
|
3070 |
|
|
|
3071 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
3072 |
|
|
{
|
3073 |
|
|
fprintf (vect_dump, "created new init_stmt: ");
|
3074 |
|
|
print_gimple_stmt (vect_dump, init_stmt, 0, TDF_SLIM);
|
3075 |
|
|
}
|
3076 |
|
|
t = tree_cons (NULL_TREE, new_name, t);
|
3077 |
|
|
}
|
3078 |
|
|
/* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
|
3079 |
|
|
vec = build_constructor_from_list (vectype, nreverse (t));
|
3080 |
|
|
vec_init = vect_init_vector (iv_phi, vec, vectype, NULL);
|
3081 |
|
|
}
|
3082 |
|
|
|
3083 |
|
|
|
3084 |
|
|
/* Create the vector that holds the step of the induction. */
|
3085 |
|
|
if (nested_in_vect_loop)
|
3086 |
|
|
/* iv_loop is nested in the loop to be vectorized. Generate:
|
3087 |
|
|
vec_step = [S, S, S, S] */
|
3088 |
|
|
new_name = step_expr;
|
3089 |
|
|
else
|
3090 |
|
|
{
|
3091 |
|
|
/* iv_loop is the loop to be vectorized. Generate:
|
3092 |
|
|
vec_step = [VF*S, VF*S, VF*S, VF*S] */
|
3093 |
|
|
expr = build_int_cst (TREE_TYPE (step_expr), vf);
|
3094 |
|
|
new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
|
3095 |
|
|
expr, step_expr);
|
3096 |
|
|
}
|
3097 |
|
|
|
3098 |
|
|
t = unshare_expr (new_name);
|
3099 |
|
|
gcc_assert (CONSTANT_CLASS_P (new_name));
|
3100 |
|
|
stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
|
3101 |
|
|
gcc_assert (stepvectype);
|
3102 |
|
|
vec = build_vector_from_val (stepvectype, t);
|
3103 |
|
|
vec_step = vect_init_vector (iv_phi, vec, stepvectype, NULL);
|
3104 |
|
|
|
3105 |
|
|
|
3106 |
|
|
/* Create the following def-use cycle:
|
3107 |
|
|
loop prolog:
|
3108 |
|
|
vec_init = ...
|
3109 |
|
|
vec_step = ...
|
3110 |
|
|
loop:
|
3111 |
|
|
vec_iv = PHI <vec_init, vec_loop>
|
3112 |
|
|
...
|
3113 |
|
|
STMT
|
3114 |
|
|
...
|
3115 |
|
|
vec_loop = vec_iv + vec_step; */
|
3116 |
|
|
|
3117 |
|
|
/* Create the induction-phi that defines the induction-operand. */
|
3118 |
|
|
vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
|
3119 |
|
|
add_referenced_var (vec_dest);
|
3120 |
|
|
induction_phi = create_phi_node (vec_dest, iv_loop->header);
|
3121 |
|
|
set_vinfo_for_stmt (induction_phi,
|
3122 |
|
|
new_stmt_vec_info (induction_phi, loop_vinfo, NULL));
|
3123 |
|
|
induc_def = PHI_RESULT (induction_phi);
|
3124 |
|
|
|
3125 |
|
|
/* Create the iv update inside the loop */
|
3126 |
|
|
new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
|
3127 |
|
|
induc_def, vec_step);
|
3128 |
|
|
vec_def = make_ssa_name (vec_dest, new_stmt);
|
3129 |
|
|
gimple_assign_set_lhs (new_stmt, vec_def);
|
3130 |
|
|
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
|
3131 |
|
|
set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo,
|
3132 |
|
|
NULL));
|
3133 |
|
|
|
3134 |
|
|
/* Set the arguments of the phi node: */
|
3135 |
|
|
add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
|
3136 |
|
|
add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
|
3137 |
|
|
UNKNOWN_LOCATION);
|
3138 |
|
|
|
3139 |
|
|
|
3140 |
|
|
/* In case that vectorization factor (VF) is bigger than the number
|
3141 |
|
|
of elements that we can fit in a vectype (nunits), we have to generate
|
3142 |
|
|
more than one vector stmt - i.e - we need to "unroll" the
|
3143 |
|
|
vector stmt by a factor VF/nunits. For more details see documentation
|
3144 |
|
|
in vectorizable_operation. */
|
3145 |
|
|
|
3146 |
|
|
if (ncopies > 1)
|
3147 |
|
|
{
|
3148 |
|
|
stmt_vec_info prev_stmt_vinfo;
|
3149 |
|
|
/* FORNOW. This restriction should be relaxed. */
|
3150 |
|
|
gcc_assert (!nested_in_vect_loop);
|
3151 |
|
|
|
3152 |
|
|
/* Create the vector that holds the step of the induction. */
|
3153 |
|
|
expr = build_int_cst (TREE_TYPE (step_expr), nunits);
|
3154 |
|
|
new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
|
3155 |
|
|
expr, step_expr);
|
3156 |
|
|
t = unshare_expr (new_name);
|
3157 |
|
|
gcc_assert (CONSTANT_CLASS_P (new_name));
|
3158 |
|
|
vec = build_vector_from_val (stepvectype, t);
|
3159 |
|
|
vec_step = vect_init_vector (iv_phi, vec, stepvectype, NULL);
|
3160 |
|
|
|
3161 |
|
|
vec_def = induc_def;
|
3162 |
|
|
prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
|
3163 |
|
|
for (i = 1; i < ncopies; i++)
|
3164 |
|
|
{
|
3165 |
|
|
/* vec_i = vec_prev + vec_step */
|
3166 |
|
|
new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
|
3167 |
|
|
vec_def, vec_step);
|
3168 |
|
|
vec_def = make_ssa_name (vec_dest, new_stmt);
|
3169 |
|
|
gimple_assign_set_lhs (new_stmt, vec_def);
|
3170 |
|
|
|
3171 |
|
|
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
|
3172 |
|
|
if (!useless_type_conversion_p (resvectype, vectype))
|
3173 |
|
|
{
|
3174 |
|
|
new_stmt = gimple_build_assign_with_ops
|
3175 |
|
|
(VIEW_CONVERT_EXPR,
|
3176 |
|
|
vect_get_new_vect_var (resvectype, vect_simple_var,
|
3177 |
|
|
"vec_iv_"),
|
3178 |
|
|
build1 (VIEW_CONVERT_EXPR, resvectype,
|
3179 |
|
|
gimple_assign_lhs (new_stmt)), NULL_TREE);
|
3180 |
|
|
gimple_assign_set_lhs (new_stmt,
|
3181 |
|
|
make_ssa_name
|
3182 |
|
|
(gimple_assign_lhs (new_stmt), new_stmt));
|
3183 |
|
|
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
|
3184 |
|
|
}
|
3185 |
|
|
set_vinfo_for_stmt (new_stmt,
|
3186 |
|
|
new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
|
3187 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
|
3188 |
|
|
prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
|
3189 |
|
|
}
|
3190 |
|
|
}
|
3191 |
|
|
|
3192 |
|
|
if (nested_in_vect_loop)
|
3193 |
|
|
{
|
3194 |
|
|
/* Find the loop-closed exit-phi of the induction, and record
|
3195 |
|
|
the final vector of induction results: */
|
3196 |
|
|
exit_phi = NULL;
|
3197 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
|
3198 |
|
|
{
|
3199 |
|
|
if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (USE_STMT (use_p))))
|
3200 |
|
|
{
|
3201 |
|
|
exit_phi = USE_STMT (use_p);
|
3202 |
|
|
break;
|
3203 |
|
|
}
|
3204 |
|
|
}
|
3205 |
|
|
if (exit_phi)
|
3206 |
|
|
{
|
3207 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
|
3208 |
|
|
/* FORNOW. Currently not supporting the case that an inner-loop induction
|
3209 |
|
|
is not used in the outer-loop (i.e. only outside the outer-loop). */
|
3210 |
|
|
gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
|
3211 |
|
|
&& !STMT_VINFO_LIVE_P (stmt_vinfo));
|
3212 |
|
|
|
3213 |
|
|
STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
|
3214 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
3215 |
|
|
{
|
3216 |
|
|
fprintf (vect_dump, "vector of inductions after inner-loop:");
|
3217 |
|
|
print_gimple_stmt (vect_dump, new_stmt, 0, TDF_SLIM);
|
3218 |
|
|
}
|
3219 |
|
|
}
|
3220 |
|
|
}
|
3221 |
|
|
|
3222 |
|
|
|
3223 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
3224 |
|
|
{
|
3225 |
|
|
fprintf (vect_dump, "transform induction: created def-use cycle: ");
|
3226 |
|
|
print_gimple_stmt (vect_dump, induction_phi, 0, TDF_SLIM);
|
3227 |
|
|
fprintf (vect_dump, "\n");
|
3228 |
|
|
print_gimple_stmt (vect_dump, SSA_NAME_DEF_STMT (vec_def), 0, TDF_SLIM);
|
3229 |
|
|
}
|
3230 |
|
|
|
3231 |
|
|
STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
|
3232 |
|
|
if (!useless_type_conversion_p (resvectype, vectype))
|
3233 |
|
|
{
|
3234 |
|
|
new_stmt = gimple_build_assign_with_ops
|
3235 |
|
|
(VIEW_CONVERT_EXPR,
|
3236 |
|
|
vect_get_new_vect_var (resvectype, vect_simple_var, "vec_iv_"),
|
3237 |
|
|
build1 (VIEW_CONVERT_EXPR, resvectype, induc_def), NULL_TREE);
|
3238 |
|
|
induc_def = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
|
3239 |
|
|
gimple_assign_set_lhs (new_stmt, induc_def);
|
3240 |
|
|
si = gsi_start_bb (bb);
|
3241 |
|
|
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
|
3242 |
|
|
set_vinfo_for_stmt (new_stmt,
|
3243 |
|
|
new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
|
3244 |
|
|
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_stmt))
|
3245 |
|
|
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (induction_phi));
|
3246 |
|
|
}
|
3247 |
|
|
|
3248 |
|
|
return induc_def;
|
3249 |
|
|
}
|
3250 |
|
|
|
3251 |
|
|
|
3252 |
|
|
/* Function get_initial_def_for_reduction
|
3253 |
|
|
|
3254 |
|
|
Input:
|
3255 |
|
|
STMT - a stmt that performs a reduction operation in the loop.
|
3256 |
|
|
INIT_VAL - the initial value of the reduction variable
|
3257 |
|
|
|
3258 |
|
|
Output:
|
3259 |
|
|
ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
|
3260 |
|
|
of the reduction (used for adjusting the epilog - see below).
|
3261 |
|
|
Return a vector variable, initialized according to the operation that STMT
|
3262 |
|
|
performs. This vector will be used as the initial value of the
|
3263 |
|
|
vector of partial results.
|
3264 |
|
|
|
3265 |
|
|
Option1 (adjust in epilog): Initialize the vector as follows:
|
3266 |
|
|
add/bit or/xor: [0,0,...,0,0]
|
3267 |
|
|
mult/bit and: [1,1,...,1,1]
|
3268 |
|
|
min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
|
3269 |
|
|
and when necessary (e.g. add/mult case) let the caller know
|
3270 |
|
|
that it needs to adjust the result by init_val.
|
3271 |
|
|
|
3272 |
|
|
Option2: Initialize the vector as follows:
|
3273 |
|
|
add/bit or/xor: [init_val,0,0,...,0]
|
3274 |
|
|
mult/bit and: [init_val,1,1,...,1]
|
3275 |
|
|
min/max/cond_expr: [init_val,init_val,...,init_val]
|
3276 |
|
|
and no adjustments are needed.
|
3277 |
|
|
|
3278 |
|
|
For example, for the following code:
|
3279 |
|
|
|
3280 |
|
|
s = init_val;
|
3281 |
|
|
for (i=0;i<n;i++)
|
3282 |
|
|
s = s + a[i];
|
3283 |
|
|
|
3284 |
|
|
STMT is 's = s + a[i]', and the reduction variable is 's'.
|
3285 |
|
|
For a vector of 4 units, we want to return either [0,0,0,init_val],
|
3286 |
|
|
or [0,0,0,0] and let the caller know that it needs to adjust
|
3287 |
|
|
the result at the end by 'init_val'.
|
3288 |
|
|
|
3289 |
|
|
FORNOW, we are using the 'adjust in epilog' scheme, because this way the
|
3290 |
|
|
initialization vector is simpler (same element in all entries), if
|
3291 |
|
|
ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
|
3292 |
|
|
|
3293 |
|
|
A cost model should help decide between these two schemes. */
|
3294 |
|
|
|
3295 |
|
|
tree
|
3296 |
|
|
get_initial_def_for_reduction (gimple stmt, tree init_val,
|
3297 |
|
|
tree *adjustment_def)
|
3298 |
|
|
{
|
3299 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
|
3300 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
3301 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
3302 |
|
|
tree scalar_type = TREE_TYPE (init_val);
|
3303 |
|
|
tree vectype = get_vectype_for_scalar_type (scalar_type);
|
3304 |
|
|
int nunits;
|
3305 |
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
3306 |
|
|
tree def_for_init;
|
3307 |
|
|
tree init_def;
|
3308 |
|
|
tree t = NULL_TREE;
|
3309 |
|
|
int i;
|
3310 |
|
|
bool nested_in_vect_loop = false;
|
3311 |
|
|
tree init_value;
|
3312 |
|
|
REAL_VALUE_TYPE real_init_val = dconst0;
|
3313 |
|
|
int int_init_val = 0;
|
3314 |
|
|
gimple def_stmt = NULL;
|
3315 |
|
|
|
3316 |
|
|
gcc_assert (vectype);
|
3317 |
|
|
nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
3318 |
|
|
|
3319 |
|
|
gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
|
3320 |
|
|
|| SCALAR_FLOAT_TYPE_P (scalar_type));
|
3321 |
|
|
|
3322 |
|
|
if (nested_in_vect_loop_p (loop, stmt))
|
3323 |
|
|
nested_in_vect_loop = true;
|
3324 |
|
|
else
|
3325 |
|
|
gcc_assert (loop == (gimple_bb (stmt))->loop_father);
|
3326 |
|
|
|
3327 |
|
|
/* In case of double reduction we only create a vector variable to be put
|
3328 |
|
|
in the reduction phi node. The actual statement creation is done in
|
3329 |
|
|
vect_create_epilog_for_reduction. */
|
3330 |
|
|
if (adjustment_def && nested_in_vect_loop
|
3331 |
|
|
&& TREE_CODE (init_val) == SSA_NAME
|
3332 |
|
|
&& (def_stmt = SSA_NAME_DEF_STMT (init_val))
|
3333 |
|
|
&& gimple_code (def_stmt) == GIMPLE_PHI
|
3334 |
|
|
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
|
3335 |
|
|
&& vinfo_for_stmt (def_stmt)
|
3336 |
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
|
3337 |
|
|
== vect_double_reduction_def)
|
3338 |
|
|
{
|
3339 |
|
|
*adjustment_def = NULL;
|
3340 |
|
|
return vect_create_destination_var (init_val, vectype);
|
3341 |
|
|
}
|
3342 |
|
|
|
3343 |
|
|
if (TREE_CONSTANT (init_val))
|
3344 |
|
|
{
|
3345 |
|
|
if (SCALAR_FLOAT_TYPE_P (scalar_type))
|
3346 |
|
|
init_value = build_real (scalar_type, TREE_REAL_CST (init_val));
|
3347 |
|
|
else
|
3348 |
|
|
init_value = build_int_cst (scalar_type, TREE_INT_CST_LOW (init_val));
|
3349 |
|
|
}
|
3350 |
|
|
else
|
3351 |
|
|
init_value = init_val;
|
3352 |
|
|
|
3353 |
|
|
switch (code)
|
3354 |
|
|
{
|
3355 |
|
|
case WIDEN_SUM_EXPR:
|
3356 |
|
|
case DOT_PROD_EXPR:
|
3357 |
|
|
case PLUS_EXPR:
|
3358 |
|
|
case MINUS_EXPR:
|
3359 |
|
|
case BIT_IOR_EXPR:
|
3360 |
|
|
case BIT_XOR_EXPR:
|
3361 |
|
|
case MULT_EXPR:
|
3362 |
|
|
case BIT_AND_EXPR:
|
3363 |
|
|
/* ADJUSMENT_DEF is NULL when called from
|
3364 |
|
|
vect_create_epilog_for_reduction to vectorize double reduction. */
|
3365 |
|
|
if (adjustment_def)
|
3366 |
|
|
{
|
3367 |
|
|
if (nested_in_vect_loop)
|
3368 |
|
|
*adjustment_def = vect_get_vec_def_for_operand (init_val, stmt,
|
3369 |
|
|
NULL);
|
3370 |
|
|
else
|
3371 |
|
|
*adjustment_def = init_val;
|
3372 |
|
|
}
|
3373 |
|
|
|
3374 |
|
|
if (code == MULT_EXPR)
|
3375 |
|
|
{
|
3376 |
|
|
real_init_val = dconst1;
|
3377 |
|
|
int_init_val = 1;
|
3378 |
|
|
}
|
3379 |
|
|
|
3380 |
|
|
if (code == BIT_AND_EXPR)
|
3381 |
|
|
int_init_val = -1;
|
3382 |
|
|
|
3383 |
|
|
if (SCALAR_FLOAT_TYPE_P (scalar_type))
|
3384 |
|
|
def_for_init = build_real (scalar_type, real_init_val);
|
3385 |
|
|
else
|
3386 |
|
|
def_for_init = build_int_cst (scalar_type, int_init_val);
|
3387 |
|
|
|
3388 |
|
|
/* Create a vector of '0' or '1' except the first element. */
|
3389 |
|
|
for (i = nunits - 2; i >= 0; --i)
|
3390 |
|
|
t = tree_cons (NULL_TREE, def_for_init, t);
|
3391 |
|
|
|
3392 |
|
|
/* Option1: the first element is '0' or '1' as well. */
|
3393 |
|
|
if (adjustment_def)
|
3394 |
|
|
{
|
3395 |
|
|
t = tree_cons (NULL_TREE, def_for_init, t);
|
3396 |
|
|
init_def = build_vector (vectype, t);
|
3397 |
|
|
break;
|
3398 |
|
|
}
|
3399 |
|
|
|
3400 |
|
|
/* Option2: the first element is INIT_VAL. */
|
3401 |
|
|
t = tree_cons (NULL_TREE, init_value, t);
|
3402 |
|
|
if (TREE_CONSTANT (init_val))
|
3403 |
|
|
init_def = build_vector (vectype, t);
|
3404 |
|
|
else
|
3405 |
|
|
init_def = build_constructor_from_list (vectype, t);
|
3406 |
|
|
|
3407 |
|
|
break;
|
3408 |
|
|
|
3409 |
|
|
case MIN_EXPR:
|
3410 |
|
|
case MAX_EXPR:
|
3411 |
|
|
case COND_EXPR:
|
3412 |
|
|
if (adjustment_def)
|
3413 |
|
|
{
|
3414 |
|
|
*adjustment_def = NULL_TREE;
|
3415 |
|
|
init_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
|
3416 |
|
|
break;
|
3417 |
|
|
}
|
3418 |
|
|
|
3419 |
|
|
init_def = build_vector_from_val (vectype, init_value);
|
3420 |
|
|
break;
|
3421 |
|
|
|
3422 |
|
|
default:
|
3423 |
|
|
gcc_unreachable ();
|
3424 |
|
|
}
|
3425 |
|
|
|
3426 |
|
|
return init_def;
|
3427 |
|
|
}
|
3428 |
|
|
|
3429 |
|
|
|
3430 |
|
|
/* Function vect_create_epilog_for_reduction
|
3431 |
|
|
|
3432 |
|
|
Create code at the loop-epilog to finalize the result of a reduction
|
3433 |
|
|
computation.
|
3434 |
|
|
|
3435 |
|
|
VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
|
3436 |
|
|
reduction statements.
|
3437 |
|
|
STMT is the scalar reduction stmt that is being vectorized.
|
3438 |
|
|
NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
|
3439 |
|
|
number of elements that we can fit in a vectype (nunits). In this case
|
3440 |
|
|
we have to generate more than one vector stmt - i.e - we need to "unroll"
|
3441 |
|
|
the vector stmt by a factor VF/nunits. For more details see documentation
|
3442 |
|
|
in vectorizable_operation.
|
3443 |
|
|
REDUC_CODE is the tree-code for the epilog reduction.
|
3444 |
|
|
REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
|
3445 |
|
|
computation.
|
3446 |
|
|
REDUC_INDEX is the index of the operand in the right hand side of the
|
3447 |
|
|
statement that is defined by REDUCTION_PHI.
|
3448 |
|
|
DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
|
3449 |
|
|
SLP_NODE is an SLP node containing a group of reduction statements. The
|
3450 |
|
|
first one in this group is STMT.
|
3451 |
|
|
|
3452 |
|
|
This function:
|
3453 |
|
|
1. Creates the reduction def-use cycles: sets the arguments for
|
3454 |
|
|
REDUCTION_PHIS:
|
3455 |
|
|
The loop-entry argument is the vectorized initial-value of the reduction.
|
3456 |
|
|
The loop-latch argument is taken from VECT_DEFS - the vector of partial
|
3457 |
|
|
sums.
|
3458 |
|
|
2. "Reduces" each vector of partial results VECT_DEFS into a single result,
|
3459 |
|
|
by applying the operation specified by REDUC_CODE if available, or by
|
3460 |
|
|
other means (whole-vector shifts or a scalar loop).
|
3461 |
|
|
The function also creates a new phi node at the loop exit to preserve
|
3462 |
|
|
loop-closed form, as illustrated below.
|
3463 |
|
|
|
3464 |
|
|
The flow at the entry to this function:
|
3465 |
|
|
|
3466 |
|
|
loop:
|
3467 |
|
|
vec_def = phi <null, null> # REDUCTION_PHI
|
3468 |
|
|
VECT_DEF = vector_stmt # vectorized form of STMT
|
3469 |
|
|
s_loop = scalar_stmt # (scalar) STMT
|
3470 |
|
|
loop_exit:
|
3471 |
|
|
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
|
3472 |
|
|
use <s_out0>
|
3473 |
|
|
use <s_out0>
|
3474 |
|
|
|
3475 |
|
|
The above is transformed by this function into:
|
3476 |
|
|
|
3477 |
|
|
loop:
|
3478 |
|
|
vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
|
3479 |
|
|
VECT_DEF = vector_stmt # vectorized form of STMT
|
3480 |
|
|
s_loop = scalar_stmt # (scalar) STMT
|
3481 |
|
|
loop_exit:
|
3482 |
|
|
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
|
3483 |
|
|
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
|
3484 |
|
|
v_out2 = reduce <v_out1>
|
3485 |
|
|
s_out3 = extract_field <v_out2, 0>
|
3486 |
|
|
s_out4 = adjust_result <s_out3>
|
3487 |
|
|
use <s_out4>
|
3488 |
|
|
use <s_out4>
|
3489 |
|
|
*/
|
3490 |
|
|
|
3491 |
|
|
static void
|
3492 |
|
|
vect_create_epilog_for_reduction (VEC (tree, heap) *vect_defs, gimple stmt,
|
3493 |
|
|
int ncopies, enum tree_code reduc_code,
|
3494 |
|
|
VEC (gimple, heap) *reduction_phis,
|
3495 |
|
|
int reduc_index, bool double_reduc,
|
3496 |
|
|
slp_tree slp_node)
|
3497 |
|
|
{
|
3498 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
3499 |
|
|
stmt_vec_info prev_phi_info;
|
3500 |
|
|
tree vectype;
|
3501 |
|
|
enum machine_mode mode;
|
3502 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
3503 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
|
3504 |
|
|
basic_block exit_bb;
|
3505 |
|
|
tree scalar_dest;
|
3506 |
|
|
tree scalar_type;
|
3507 |
|
|
gimple new_phi = NULL, phi;
|
3508 |
|
|
gimple_stmt_iterator exit_gsi;
|
3509 |
|
|
tree vec_dest;
|
3510 |
|
|
tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
|
3511 |
|
|
gimple epilog_stmt = NULL;
|
3512 |
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
3513 |
|
|
gimple exit_phi;
|
3514 |
|
|
tree bitsize, bitpos;
|
3515 |
|
|
tree adjustment_def = NULL;
|
3516 |
|
|
tree vec_initial_def = NULL;
|
3517 |
|
|
tree reduction_op, expr, def;
|
3518 |
|
|
tree orig_name, scalar_result;
|
3519 |
|
|
imm_use_iterator imm_iter, phi_imm_iter;
|
3520 |
|
|
use_operand_p use_p, phi_use_p;
|
3521 |
|
|
bool extract_scalar_result = false;
|
3522 |
|
|
gimple use_stmt, orig_stmt, reduction_phi = NULL;
|
3523 |
|
|
bool nested_in_vect_loop = false;
|
3524 |
|
|
VEC (gimple, heap) *new_phis = NULL;
|
3525 |
|
|
VEC (gimple, heap) *inner_phis = NULL;
|
3526 |
|
|
enum vect_def_type dt = vect_unknown_def_type;
|
3527 |
|
|
int j, i;
|
3528 |
|
|
VEC (tree, heap) *scalar_results = NULL;
|
3529 |
|
|
unsigned int group_size = 1, k, ratio;
|
3530 |
|
|
VEC (tree, heap) *vec_initial_defs = NULL;
|
3531 |
|
|
VEC (gimple, heap) *phis;
|
3532 |
|
|
bool slp_reduc = false;
|
3533 |
|
|
tree new_phi_result;
|
3534 |
|
|
gimple inner_phi = NULL;
|
3535 |
|
|
|
3536 |
|
|
if (slp_node)
|
3537 |
|
|
group_size = VEC_length (gimple, SLP_TREE_SCALAR_STMTS (slp_node));
|
3538 |
|
|
|
3539 |
|
|
if (nested_in_vect_loop_p (loop, stmt))
|
3540 |
|
|
{
|
3541 |
|
|
outer_loop = loop;
|
3542 |
|
|
loop = loop->inner;
|
3543 |
|
|
nested_in_vect_loop = true;
|
3544 |
|
|
gcc_assert (!slp_node);
|
3545 |
|
|
}
|
3546 |
|
|
|
3547 |
|
|
switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
|
3548 |
|
|
{
|
3549 |
|
|
case GIMPLE_SINGLE_RHS:
|
3550 |
|
|
gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
|
3551 |
|
|
== ternary_op);
|
3552 |
|
|
reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
|
3553 |
|
|
break;
|
3554 |
|
|
case GIMPLE_UNARY_RHS:
|
3555 |
|
|
reduction_op = gimple_assign_rhs1 (stmt);
|
3556 |
|
|
break;
|
3557 |
|
|
case GIMPLE_BINARY_RHS:
|
3558 |
|
|
reduction_op = reduc_index ?
|
3559 |
|
|
gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt);
|
3560 |
|
|
break;
|
3561 |
|
|
case GIMPLE_TERNARY_RHS:
|
3562 |
|
|
reduction_op = gimple_op (stmt, reduc_index + 1);
|
3563 |
|
|
break;
|
3564 |
|
|
default:
|
3565 |
|
|
gcc_unreachable ();
|
3566 |
|
|
}
|
3567 |
|
|
|
3568 |
|
|
vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
|
3569 |
|
|
gcc_assert (vectype);
|
3570 |
|
|
mode = TYPE_MODE (vectype);
|
3571 |
|
|
|
3572 |
|
|
/* 1. Create the reduction def-use cycle:
|
3573 |
|
|
Set the arguments of REDUCTION_PHIS, i.e., transform
|
3574 |
|
|
|
3575 |
|
|
loop:
|
3576 |
|
|
vec_def = phi <null, null> # REDUCTION_PHI
|
3577 |
|
|
VECT_DEF = vector_stmt # vectorized form of STMT
|
3578 |
|
|
...
|
3579 |
|
|
|
3580 |
|
|
into:
|
3581 |
|
|
|
3582 |
|
|
loop:
|
3583 |
|
|
vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
|
3584 |
|
|
VECT_DEF = vector_stmt # vectorized form of STMT
|
3585 |
|
|
...
|
3586 |
|
|
|
3587 |
|
|
(in case of SLP, do it for all the phis). */
|
3588 |
|
|
|
3589 |
|
|
/* Get the loop-entry arguments. */
|
3590 |
|
|
if (slp_node)
|
3591 |
|
|
vect_get_vec_defs (reduction_op, NULL_TREE, stmt, &vec_initial_defs,
|
3592 |
|
|
NULL, slp_node, reduc_index);
|
3593 |
|
|
else
|
3594 |
|
|
{
|
3595 |
|
|
vec_initial_defs = VEC_alloc (tree, heap, 1);
|
3596 |
|
|
/* For the case of reduction, vect_get_vec_def_for_operand returns
|
3597 |
|
|
the scalar def before the loop, that defines the initial value
|
3598 |
|
|
of the reduction variable. */
|
3599 |
|
|
vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
|
3600 |
|
|
&adjustment_def);
|
3601 |
|
|
VEC_quick_push (tree, vec_initial_defs, vec_initial_def);
|
3602 |
|
|
}
|
3603 |
|
|
|
3604 |
|
|
/* Set phi nodes arguments. */
|
3605 |
|
|
FOR_EACH_VEC_ELT (gimple, reduction_phis, i, phi)
|
3606 |
|
|
{
|
3607 |
|
|
tree vec_init_def = VEC_index (tree, vec_initial_defs, i);
|
3608 |
|
|
tree def = VEC_index (tree, vect_defs, i);
|
3609 |
|
|
for (j = 0; j < ncopies; j++)
|
3610 |
|
|
{
|
3611 |
|
|
/* Set the loop-entry arg of the reduction-phi. */
|
3612 |
|
|
add_phi_arg (phi, vec_init_def, loop_preheader_edge (loop),
|
3613 |
|
|
UNKNOWN_LOCATION);
|
3614 |
|
|
|
3615 |
|
|
/* Set the loop-latch arg for the reduction-phi. */
|
3616 |
|
|
if (j > 0)
|
3617 |
|
|
def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
|
3618 |
|
|
|
3619 |
|
|
add_phi_arg (phi, def, loop_latch_edge (loop), UNKNOWN_LOCATION);
|
3620 |
|
|
|
3621 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
3622 |
|
|
{
|
3623 |
|
|
fprintf (vect_dump, "transform reduction: created def-use"
|
3624 |
|
|
" cycle: ");
|
3625 |
|
|
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
|
3626 |
|
|
fprintf (vect_dump, "\n");
|
3627 |
|
|
print_gimple_stmt (vect_dump, SSA_NAME_DEF_STMT (def), 0,
|
3628 |
|
|
TDF_SLIM);
|
3629 |
|
|
}
|
3630 |
|
|
|
3631 |
|
|
phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
|
3632 |
|
|
}
|
3633 |
|
|
}
|
3634 |
|
|
|
3635 |
|
|
VEC_free (tree, heap, vec_initial_defs);
|
3636 |
|
|
|
3637 |
|
|
/* 2. Create epilog code.
|
3638 |
|
|
The reduction epilog code operates across the elements of the vector
|
3639 |
|
|
of partial results computed by the vectorized loop.
|
3640 |
|
|
The reduction epilog code consists of:
|
3641 |
|
|
|
3642 |
|
|
step 1: compute the scalar result in a vector (v_out2)
|
3643 |
|
|
step 2: extract the scalar result (s_out3) from the vector (v_out2)
|
3644 |
|
|
step 3: adjust the scalar result (s_out3) if needed.
|
3645 |
|
|
|
3646 |
|
|
Step 1 can be accomplished using one the following three schemes:
|
3647 |
|
|
(scheme 1) using reduc_code, if available.
|
3648 |
|
|
(scheme 2) using whole-vector shifts, if available.
|
3649 |
|
|
(scheme 3) using a scalar loop. In this case steps 1+2 above are
|
3650 |
|
|
combined.
|
3651 |
|
|
|
3652 |
|
|
The overall epilog code looks like this:
|
3653 |
|
|
|
3654 |
|
|
s_out0 = phi <s_loop> # original EXIT_PHI
|
3655 |
|
|
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
|
3656 |
|
|
v_out2 = reduce <v_out1> # step 1
|
3657 |
|
|
s_out3 = extract_field <v_out2, 0> # step 2
|
3658 |
|
|
s_out4 = adjust_result <s_out3> # step 3
|
3659 |
|
|
|
3660 |
|
|
(step 3 is optional, and steps 1 and 2 may be combined).
|
3661 |
|
|
Lastly, the uses of s_out0 are replaced by s_out4. */
|
3662 |
|
|
|
3663 |
|
|
|
3664 |
|
|
/* 2.1 Create new loop-exit-phis to preserve loop-closed form:
|
3665 |
|
|
v_out1 = phi <VECT_DEF>
|
3666 |
|
|
Store them in NEW_PHIS. */
|
3667 |
|
|
|
3668 |
|
|
exit_bb = single_exit (loop)->dest;
|
3669 |
|
|
prev_phi_info = NULL;
|
3670 |
|
|
new_phis = VEC_alloc (gimple, heap, VEC_length (tree, vect_defs));
|
3671 |
|
|
FOR_EACH_VEC_ELT (tree, vect_defs, i, def)
|
3672 |
|
|
{
|
3673 |
|
|
for (j = 0; j < ncopies; j++)
|
3674 |
|
|
{
|
3675 |
|
|
phi = create_phi_node (SSA_NAME_VAR (def), exit_bb);
|
3676 |
|
|
set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo, NULL));
|
3677 |
|
|
if (j == 0)
|
3678 |
|
|
VEC_quick_push (gimple, new_phis, phi);
|
3679 |
|
|
else
|
3680 |
|
|
{
|
3681 |
|
|
def = vect_get_vec_def_for_stmt_copy (dt, def);
|
3682 |
|
|
STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
|
3683 |
|
|
}
|
3684 |
|
|
|
3685 |
|
|
SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
|
3686 |
|
|
prev_phi_info = vinfo_for_stmt (phi);
|
3687 |
|
|
}
|
3688 |
|
|
}
|
3689 |
|
|
|
3690 |
|
|
/* The epilogue is created for the outer-loop, i.e., for the loop being
|
3691 |
|
|
vectorized. Create exit phis for the outer loop. */
|
3692 |
|
|
if (double_reduc)
|
3693 |
|
|
{
|
3694 |
|
|
loop = outer_loop;
|
3695 |
|
|
exit_bb = single_exit (loop)->dest;
|
3696 |
|
|
inner_phis = VEC_alloc (gimple, heap, VEC_length (tree, vect_defs));
|
3697 |
|
|
FOR_EACH_VEC_ELT (gimple, new_phis, i, phi)
|
3698 |
|
|
{
|
3699 |
|
|
gimple outer_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (phi)),
|
3700 |
|
|
exit_bb);
|
3701 |
|
|
SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
|
3702 |
|
|
PHI_RESULT (phi));
|
3703 |
|
|
set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
|
3704 |
|
|
loop_vinfo, NULL));
|
3705 |
|
|
VEC_quick_push (gimple, inner_phis, phi);
|
3706 |
|
|
VEC_replace (gimple, new_phis, i, outer_phi);
|
3707 |
|
|
prev_phi_info = vinfo_for_stmt (outer_phi);
|
3708 |
|
|
while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
|
3709 |
|
|
{
|
3710 |
|
|
phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
|
3711 |
|
|
outer_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (phi)),
|
3712 |
|
|
exit_bb);
|
3713 |
|
|
SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
|
3714 |
|
|
PHI_RESULT (phi));
|
3715 |
|
|
set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
|
3716 |
|
|
loop_vinfo, NULL));
|
3717 |
|
|
STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
|
3718 |
|
|
prev_phi_info = vinfo_for_stmt (outer_phi);
|
3719 |
|
|
}
|
3720 |
|
|
}
|
3721 |
|
|
}
|
3722 |
|
|
|
3723 |
|
|
exit_gsi = gsi_after_labels (exit_bb);
|
3724 |
|
|
|
3725 |
|
|
/* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
|
3726 |
|
|
(i.e. when reduc_code is not available) and in the final adjustment
|
3727 |
|
|
code (if needed). Also get the original scalar reduction variable as
|
3728 |
|
|
defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
|
3729 |
|
|
represents a reduction pattern), the tree-code and scalar-def are
|
3730 |
|
|
taken from the original stmt that the pattern-stmt (STMT) replaces.
|
3731 |
|
|
Otherwise (it is a regular reduction) - the tree-code and scalar-def
|
3732 |
|
|
are taken from STMT. */
|
3733 |
|
|
|
3734 |
|
|
orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
3735 |
|
|
if (!orig_stmt)
|
3736 |
|
|
{
|
3737 |
|
|
/* Regular reduction */
|
3738 |
|
|
orig_stmt = stmt;
|
3739 |
|
|
}
|
3740 |
|
|
else
|
3741 |
|
|
{
|
3742 |
|
|
/* Reduction pattern */
|
3743 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
|
3744 |
|
|
gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
|
3745 |
|
|
gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
|
3746 |
|
|
}
|
3747 |
|
|
|
3748 |
|
|
code = gimple_assign_rhs_code (orig_stmt);
|
3749 |
|
|
/* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
|
3750 |
|
|
partial results are added and not subtracted. */
|
3751 |
|
|
if (code == MINUS_EXPR)
|
3752 |
|
|
code = PLUS_EXPR;
|
3753 |
|
|
|
3754 |
|
|
scalar_dest = gimple_assign_lhs (orig_stmt);
|
3755 |
|
|
scalar_type = TREE_TYPE (scalar_dest);
|
3756 |
|
|
scalar_results = VEC_alloc (tree, heap, group_size);
|
3757 |
|
|
new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
|
3758 |
|
|
bitsize = TYPE_SIZE (scalar_type);
|
3759 |
|
|
|
3760 |
|
|
/* In case this is a reduction in an inner-loop while vectorizing an outer
|
3761 |
|
|
loop - we don't need to extract a single scalar result at the end of the
|
3762 |
|
|
inner-loop (unless it is double reduction, i.e., the use of reduction is
|
3763 |
|
|
outside the outer-loop). The final vector of partial results will be used
|
3764 |
|
|
in the vectorized outer-loop, or reduced to a scalar result at the end of
|
3765 |
|
|
the outer-loop. */
|
3766 |
|
|
if (nested_in_vect_loop && !double_reduc)
|
3767 |
|
|
goto vect_finalize_reduction;
|
3768 |
|
|
|
3769 |
|
|
/* SLP reduction without reduction chain, e.g.,
|
3770 |
|
|
# a1 = phi <a2, a0>
|
3771 |
|
|
# b1 = phi <b2, b0>
|
3772 |
|
|
a2 = operation (a1)
|
3773 |
|
|
b2 = operation (b1) */
|
3774 |
|
|
slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
|
3775 |
|
|
|
3776 |
|
|
/* In case of reduction chain, e.g.,
|
3777 |
|
|
# a1 = phi <a3, a0>
|
3778 |
|
|
a2 = operation (a1)
|
3779 |
|
|
a3 = operation (a2),
|
3780 |
|
|
|
3781 |
|
|
we may end up with more than one vector result. Here we reduce them to
|
3782 |
|
|
one vector. */
|
3783 |
|
|
if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
|
3784 |
|
|
{
|
3785 |
|
|
tree first_vect = PHI_RESULT (VEC_index (gimple, new_phis, 0));
|
3786 |
|
|
tree tmp;
|
3787 |
|
|
gimple new_vec_stmt = NULL;
|
3788 |
|
|
|
3789 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
3790 |
|
|
for (k = 1; k < VEC_length (gimple, new_phis); k++)
|
3791 |
|
|
{
|
3792 |
|
|
gimple next_phi = VEC_index (gimple, new_phis, k);
|
3793 |
|
|
tree second_vect = PHI_RESULT (next_phi);
|
3794 |
|
|
|
3795 |
|
|
tmp = build2 (code, vectype, first_vect, second_vect);
|
3796 |
|
|
new_vec_stmt = gimple_build_assign (vec_dest, tmp);
|
3797 |
|
|
first_vect = make_ssa_name (vec_dest, new_vec_stmt);
|
3798 |
|
|
gimple_assign_set_lhs (new_vec_stmt, first_vect);
|
3799 |
|
|
gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
|
3800 |
|
|
}
|
3801 |
|
|
|
3802 |
|
|
new_phi_result = first_vect;
|
3803 |
|
|
if (new_vec_stmt)
|
3804 |
|
|
{
|
3805 |
|
|
VEC_truncate (gimple, new_phis, 0);
|
3806 |
|
|
VEC_safe_push (gimple, heap, new_phis, new_vec_stmt);
|
3807 |
|
|
}
|
3808 |
|
|
}
|
3809 |
|
|
else
|
3810 |
|
|
new_phi_result = PHI_RESULT (VEC_index (gimple, new_phis, 0));
|
3811 |
|
|
|
3812 |
|
|
/* 2.3 Create the reduction code, using one of the three schemes described
|
3813 |
|
|
above. In SLP we simply need to extract all the elements from the
|
3814 |
|
|
vector (without reducing them), so we use scalar shifts. */
|
3815 |
|
|
if (reduc_code != ERROR_MARK && !slp_reduc)
|
3816 |
|
|
{
|
3817 |
|
|
tree tmp;
|
3818 |
|
|
|
3819 |
|
|
/*** Case 1: Create:
|
3820 |
|
|
v_out2 = reduc_expr <v_out1> */
|
3821 |
|
|
|
3822 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
3823 |
|
|
fprintf (vect_dump, "Reduce using direct vector reduction.");
|
3824 |
|
|
|
3825 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
3826 |
|
|
tmp = build1 (reduc_code, vectype, new_phi_result);
|
3827 |
|
|
epilog_stmt = gimple_build_assign (vec_dest, tmp);
|
3828 |
|
|
new_temp = make_ssa_name (vec_dest, epilog_stmt);
|
3829 |
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
3830 |
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
3831 |
|
|
|
3832 |
|
|
extract_scalar_result = true;
|
3833 |
|
|
}
|
3834 |
|
|
else
|
3835 |
|
|
{
|
3836 |
|
|
enum tree_code shift_code = ERROR_MARK;
|
3837 |
|
|
bool have_whole_vector_shift = true;
|
3838 |
|
|
int bit_offset;
|
3839 |
|
|
int element_bitsize = tree_low_cst (bitsize, 1);
|
3840 |
|
|
int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
|
3841 |
|
|
tree vec_temp;
|
3842 |
|
|
|
3843 |
|
|
if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
|
3844 |
|
|
shift_code = VEC_RSHIFT_EXPR;
|
3845 |
|
|
else
|
3846 |
|
|
have_whole_vector_shift = false;
|
3847 |
|
|
|
3848 |
|
|
/* Regardless of whether we have a whole vector shift, if we're
|
3849 |
|
|
emulating the operation via tree-vect-generic, we don't want
|
3850 |
|
|
to use it. Only the first round of the reduction is likely
|
3851 |
|
|
to still be profitable via emulation. */
|
3852 |
|
|
/* ??? It might be better to emit a reduction tree code here, so that
|
3853 |
|
|
tree-vect-generic can expand the first round via bit tricks. */
|
3854 |
|
|
if (!VECTOR_MODE_P (mode))
|
3855 |
|
|
have_whole_vector_shift = false;
|
3856 |
|
|
else
|
3857 |
|
|
{
|
3858 |
|
|
optab optab = optab_for_tree_code (code, vectype, optab_default);
|
3859 |
|
|
if (optab_handler (optab, mode) == CODE_FOR_nothing)
|
3860 |
|
|
have_whole_vector_shift = false;
|
3861 |
|
|
}
|
3862 |
|
|
|
3863 |
|
|
if (have_whole_vector_shift && !slp_reduc)
|
3864 |
|
|
{
|
3865 |
|
|
/*** Case 2: Create:
|
3866 |
|
|
for (offset = VS/2; offset >= element_size; offset/=2)
|
3867 |
|
|
{
|
3868 |
|
|
Create: va' = vec_shift <va, offset>
|
3869 |
|
|
Create: va = vop <va, va'>
|
3870 |
|
|
} */
|
3871 |
|
|
|
3872 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
3873 |
|
|
fprintf (vect_dump, "Reduce using vector shifts");
|
3874 |
|
|
|
3875 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
3876 |
|
|
new_temp = new_phi_result;
|
3877 |
|
|
for (bit_offset = vec_size_in_bits/2;
|
3878 |
|
|
bit_offset >= element_bitsize;
|
3879 |
|
|
bit_offset /= 2)
|
3880 |
|
|
{
|
3881 |
|
|
tree bitpos = size_int (bit_offset);
|
3882 |
|
|
|
3883 |
|
|
epilog_stmt = gimple_build_assign_with_ops (shift_code,
|
3884 |
|
|
vec_dest, new_temp, bitpos);
|
3885 |
|
|
new_name = make_ssa_name (vec_dest, epilog_stmt);
|
3886 |
|
|
gimple_assign_set_lhs (epilog_stmt, new_name);
|
3887 |
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
3888 |
|
|
|
3889 |
|
|
epilog_stmt = gimple_build_assign_with_ops (code, vec_dest,
|
3890 |
|
|
new_name, new_temp);
|
3891 |
|
|
new_temp = make_ssa_name (vec_dest, epilog_stmt);
|
3892 |
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
3893 |
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
3894 |
|
|
}
|
3895 |
|
|
|
3896 |
|
|
extract_scalar_result = true;
|
3897 |
|
|
}
|
3898 |
|
|
else
|
3899 |
|
|
{
|
3900 |
|
|
tree rhs;
|
3901 |
|
|
|
3902 |
|
|
/*** Case 3: Create:
|
3903 |
|
|
s = extract_field <v_out2, 0>
|
3904 |
|
|
for (offset = element_size;
|
3905 |
|
|
offset < vector_size;
|
3906 |
|
|
offset += element_size;)
|
3907 |
|
|
{
|
3908 |
|
|
Create: s' = extract_field <v_out2, offset>
|
3909 |
|
|
Create: s = op <s, s'> // For non SLP cases
|
3910 |
|
|
} */
|
3911 |
|
|
|
3912 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
3913 |
|
|
fprintf (vect_dump, "Reduce using scalar code. ");
|
3914 |
|
|
|
3915 |
|
|
vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
|
3916 |
|
|
FOR_EACH_VEC_ELT (gimple, new_phis, i, new_phi)
|
3917 |
|
|
{
|
3918 |
|
|
if (gimple_code (new_phi) == GIMPLE_PHI)
|
3919 |
|
|
vec_temp = PHI_RESULT (new_phi);
|
3920 |
|
|
else
|
3921 |
|
|
vec_temp = gimple_assign_lhs (new_phi);
|
3922 |
|
|
rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
|
3923 |
|
|
bitsize_zero_node);
|
3924 |
|
|
epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
|
3925 |
|
|
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
|
3926 |
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
3927 |
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
3928 |
|
|
|
3929 |
|
|
/* In SLP we don't need to apply reduction operation, so we just
|
3930 |
|
|
collect s' values in SCALAR_RESULTS. */
|
3931 |
|
|
if (slp_reduc)
|
3932 |
|
|
VEC_safe_push (tree, heap, scalar_results, new_temp);
|
3933 |
|
|
|
3934 |
|
|
for (bit_offset = element_bitsize;
|
3935 |
|
|
bit_offset < vec_size_in_bits;
|
3936 |
|
|
bit_offset += element_bitsize)
|
3937 |
|
|
{
|
3938 |
|
|
tree bitpos = bitsize_int (bit_offset);
|
3939 |
|
|
tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
|
3940 |
|
|
bitsize, bitpos);
|
3941 |
|
|
|
3942 |
|
|
epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
|
3943 |
|
|
new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
|
3944 |
|
|
gimple_assign_set_lhs (epilog_stmt, new_name);
|
3945 |
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
3946 |
|
|
|
3947 |
|
|
if (slp_reduc)
|
3948 |
|
|
{
|
3949 |
|
|
/* In SLP we don't need to apply reduction operation, so
|
3950 |
|
|
we just collect s' values in SCALAR_RESULTS. */
|
3951 |
|
|
new_temp = new_name;
|
3952 |
|
|
VEC_safe_push (tree, heap, scalar_results, new_name);
|
3953 |
|
|
}
|
3954 |
|
|
else
|
3955 |
|
|
{
|
3956 |
|
|
epilog_stmt = gimple_build_assign_with_ops (code,
|
3957 |
|
|
new_scalar_dest, new_name, new_temp);
|
3958 |
|
|
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
|
3959 |
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
3960 |
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
3961 |
|
|
}
|
3962 |
|
|
}
|
3963 |
|
|
}
|
3964 |
|
|
|
3965 |
|
|
/* The only case where we need to reduce scalar results in SLP, is
|
3966 |
|
|
unrolling. If the size of SCALAR_RESULTS is greater than
|
3967 |
|
|
GROUP_SIZE, we reduce them combining elements modulo
|
3968 |
|
|
GROUP_SIZE. */
|
3969 |
|
|
if (slp_reduc)
|
3970 |
|
|
{
|
3971 |
|
|
tree res, first_res, new_res;
|
3972 |
|
|
gimple new_stmt;
|
3973 |
|
|
|
3974 |
|
|
/* Reduce multiple scalar results in case of SLP unrolling. */
|
3975 |
|
|
for (j = group_size; VEC_iterate (tree, scalar_results, j, res);
|
3976 |
|
|
j++)
|
3977 |
|
|
{
|
3978 |
|
|
first_res = VEC_index (tree, scalar_results, j % group_size);
|
3979 |
|
|
new_stmt = gimple_build_assign_with_ops (code,
|
3980 |
|
|
new_scalar_dest, first_res, res);
|
3981 |
|
|
new_res = make_ssa_name (new_scalar_dest, new_stmt);
|
3982 |
|
|
gimple_assign_set_lhs (new_stmt, new_res);
|
3983 |
|
|
gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
|
3984 |
|
|
VEC_replace (tree, scalar_results, j % group_size, new_res);
|
3985 |
|
|
}
|
3986 |
|
|
}
|
3987 |
|
|
else
|
3988 |
|
|
/* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
|
3989 |
|
|
VEC_safe_push (tree, heap, scalar_results, new_temp);
|
3990 |
|
|
|
3991 |
|
|
extract_scalar_result = false;
|
3992 |
|
|
}
|
3993 |
|
|
}
|
3994 |
|
|
|
3995 |
|
|
/* 2.4 Extract the final scalar result. Create:
|
3996 |
|
|
s_out3 = extract_field <v_out2, bitpos> */
|
3997 |
|
|
|
3998 |
|
|
if (extract_scalar_result)
|
3999 |
|
|
{
|
4000 |
|
|
tree rhs;
|
4001 |
|
|
|
4002 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4003 |
|
|
fprintf (vect_dump, "extract scalar result");
|
4004 |
|
|
|
4005 |
|
|
if (BYTES_BIG_ENDIAN)
|
4006 |
|
|
bitpos = size_binop (MULT_EXPR,
|
4007 |
|
|
bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
|
4008 |
|
|
TYPE_SIZE (scalar_type));
|
4009 |
|
|
else
|
4010 |
|
|
bitpos = bitsize_zero_node;
|
4011 |
|
|
|
4012 |
|
|
rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
|
4013 |
|
|
epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
|
4014 |
|
|
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
|
4015 |
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
4016 |
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
4017 |
|
|
VEC_safe_push (tree, heap, scalar_results, new_temp);
|
4018 |
|
|
}
|
4019 |
|
|
|
4020 |
|
|
vect_finalize_reduction:
|
4021 |
|
|
|
4022 |
|
|
if (double_reduc)
|
4023 |
|
|
loop = loop->inner;
|
4024 |
|
|
|
4025 |
|
|
/* 2.5 Adjust the final result by the initial value of the reduction
|
4026 |
|
|
variable. (When such adjustment is not needed, then
|
4027 |
|
|
'adjustment_def' is zero). For example, if code is PLUS we create:
|
4028 |
|
|
new_temp = loop_exit_def + adjustment_def */
|
4029 |
|
|
|
4030 |
|
|
if (adjustment_def)
|
4031 |
|
|
{
|
4032 |
|
|
gcc_assert (!slp_reduc);
|
4033 |
|
|
if (nested_in_vect_loop)
|
4034 |
|
|
{
|
4035 |
|
|
new_phi = VEC_index (gimple, new_phis, 0);
|
4036 |
|
|
gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
|
4037 |
|
|
expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
|
4038 |
|
|
new_dest = vect_create_destination_var (scalar_dest, vectype);
|
4039 |
|
|
}
|
4040 |
|
|
else
|
4041 |
|
|
{
|
4042 |
|
|
new_temp = VEC_index (tree, scalar_results, 0);
|
4043 |
|
|
gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
|
4044 |
|
|
expr = build2 (code, scalar_type, new_temp, adjustment_def);
|
4045 |
|
|
new_dest = vect_create_destination_var (scalar_dest, scalar_type);
|
4046 |
|
|
}
|
4047 |
|
|
|
4048 |
|
|
epilog_stmt = gimple_build_assign (new_dest, expr);
|
4049 |
|
|
new_temp = make_ssa_name (new_dest, epilog_stmt);
|
4050 |
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
4051 |
|
|
SSA_NAME_DEF_STMT (new_temp) = epilog_stmt;
|
4052 |
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
4053 |
|
|
if (nested_in_vect_loop)
|
4054 |
|
|
{
|
4055 |
|
|
set_vinfo_for_stmt (epilog_stmt,
|
4056 |
|
|
new_stmt_vec_info (epilog_stmt, loop_vinfo,
|
4057 |
|
|
NULL));
|
4058 |
|
|
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
|
4059 |
|
|
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
|
4060 |
|
|
|
4061 |
|
|
if (!double_reduc)
|
4062 |
|
|
VEC_quick_push (tree, scalar_results, new_temp);
|
4063 |
|
|
else
|
4064 |
|
|
VEC_replace (tree, scalar_results, 0, new_temp);
|
4065 |
|
|
}
|
4066 |
|
|
else
|
4067 |
|
|
VEC_replace (tree, scalar_results, 0, new_temp);
|
4068 |
|
|
|
4069 |
|
|
VEC_replace (gimple, new_phis, 0, epilog_stmt);
|
4070 |
|
|
}
|
4071 |
|
|
|
4072 |
|
|
/* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
|
4073 |
|
|
phis with new adjusted scalar results, i.e., replace use <s_out0>
|
4074 |
|
|
with use <s_out4>.
|
4075 |
|
|
|
4076 |
|
|
Transform:
|
4077 |
|
|
loop_exit:
|
4078 |
|
|
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
|
4079 |
|
|
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
|
4080 |
|
|
v_out2 = reduce <v_out1>
|
4081 |
|
|
s_out3 = extract_field <v_out2, 0>
|
4082 |
|
|
s_out4 = adjust_result <s_out3>
|
4083 |
|
|
use <s_out0>
|
4084 |
|
|
use <s_out0>
|
4085 |
|
|
|
4086 |
|
|
into:
|
4087 |
|
|
|
4088 |
|
|
loop_exit:
|
4089 |
|
|
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
|
4090 |
|
|
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
|
4091 |
|
|
v_out2 = reduce <v_out1>
|
4092 |
|
|
s_out3 = extract_field <v_out2, 0>
|
4093 |
|
|
s_out4 = adjust_result <s_out3>
|
4094 |
|
|
use <s_out4>
|
4095 |
|
|
use <s_out4> */
|
4096 |
|
|
|
4097 |
|
|
|
4098 |
|
|
/* In SLP reduction chain we reduce vector results into one vector if
|
4099 |
|
|
necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
|
4100 |
|
|
the last stmt in the reduction chain, since we are looking for the loop
|
4101 |
|
|
exit phi node. */
|
4102 |
|
|
if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
|
4103 |
|
|
{
|
4104 |
|
|
scalar_dest = gimple_assign_lhs (VEC_index (gimple,
|
4105 |
|
|
SLP_TREE_SCALAR_STMTS (slp_node),
|
4106 |
|
|
group_size - 1));
|
4107 |
|
|
group_size = 1;
|
4108 |
|
|
}
|
4109 |
|
|
|
4110 |
|
|
/* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
|
4111 |
|
|
case that GROUP_SIZE is greater than vectorization factor). Therefore, we
|
4112 |
|
|
need to match SCALAR_RESULTS with corresponding statements. The first
|
4113 |
|
|
(GROUP_SIZE / number of new vector stmts) scalar results correspond to
|
4114 |
|
|
the first vector stmt, etc.
|
4115 |
|
|
(RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
|
4116 |
|
|
if (group_size > VEC_length (gimple, new_phis))
|
4117 |
|
|
{
|
4118 |
|
|
ratio = group_size / VEC_length (gimple, new_phis);
|
4119 |
|
|
gcc_assert (!(group_size % VEC_length (gimple, new_phis)));
|
4120 |
|
|
}
|
4121 |
|
|
else
|
4122 |
|
|
ratio = 1;
|
4123 |
|
|
|
4124 |
|
|
for (k = 0; k < group_size; k++)
|
4125 |
|
|
{
|
4126 |
|
|
if (k % ratio == 0)
|
4127 |
|
|
{
|
4128 |
|
|
epilog_stmt = VEC_index (gimple, new_phis, k / ratio);
|
4129 |
|
|
reduction_phi = VEC_index (gimple, reduction_phis, k / ratio);
|
4130 |
|
|
if (double_reduc)
|
4131 |
|
|
inner_phi = VEC_index (gimple, inner_phis, k / ratio);
|
4132 |
|
|
}
|
4133 |
|
|
|
4134 |
|
|
if (slp_reduc)
|
4135 |
|
|
{
|
4136 |
|
|
gimple current_stmt = VEC_index (gimple,
|
4137 |
|
|
SLP_TREE_SCALAR_STMTS (slp_node), k);
|
4138 |
|
|
|
4139 |
|
|
orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
|
4140 |
|
|
/* SLP statements can't participate in patterns. */
|
4141 |
|
|
gcc_assert (!orig_stmt);
|
4142 |
|
|
scalar_dest = gimple_assign_lhs (current_stmt);
|
4143 |
|
|
}
|
4144 |
|
|
|
4145 |
|
|
phis = VEC_alloc (gimple, heap, 3);
|
4146 |
|
|
/* Find the loop-closed-use at the loop exit of the original scalar
|
4147 |
|
|
result. (The reduction result is expected to have two immediate uses -
|
4148 |
|
|
one at the latch block, and one at the loop exit). */
|
4149 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
|
4150 |
|
|
if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
|
4151 |
|
|
VEC_safe_push (gimple, heap, phis, USE_STMT (use_p));
|
4152 |
|
|
|
4153 |
|
|
/* We expect to have found an exit_phi because of loop-closed-ssa
|
4154 |
|
|
form. */
|
4155 |
|
|
gcc_assert (!VEC_empty (gimple, phis));
|
4156 |
|
|
|
4157 |
|
|
FOR_EACH_VEC_ELT (gimple, phis, i, exit_phi)
|
4158 |
|
|
{
|
4159 |
|
|
if (outer_loop)
|
4160 |
|
|
{
|
4161 |
|
|
stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
|
4162 |
|
|
gimple vect_phi;
|
4163 |
|
|
|
4164 |
|
|
/* FORNOW. Currently not supporting the case that an inner-loop
|
4165 |
|
|
reduction is not used in the outer-loop (but only outside the
|
4166 |
|
|
outer-loop), unless it is double reduction. */
|
4167 |
|
|
gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
|
4168 |
|
|
&& !STMT_VINFO_LIVE_P (exit_phi_vinfo))
|
4169 |
|
|
|| double_reduc);
|
4170 |
|
|
|
4171 |
|
|
STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
|
4172 |
|
|
if (!double_reduc
|
4173 |
|
|
|| STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
|
4174 |
|
|
!= vect_double_reduction_def)
|
4175 |
|
|
continue;
|
4176 |
|
|
|
4177 |
|
|
/* Handle double reduction:
|
4178 |
|
|
|
4179 |
|
|
stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
|
4180 |
|
|
stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
|
4181 |
|
|
stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
|
4182 |
|
|
stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
|
4183 |
|
|
|
4184 |
|
|
At that point the regular reduction (stmt2 and stmt3) is
|
4185 |
|
|
already vectorized, as well as the exit phi node, stmt4.
|
4186 |
|
|
Here we vectorize the phi node of double reduction, stmt1, and
|
4187 |
|
|
update all relevant statements. */
|
4188 |
|
|
|
4189 |
|
|
/* Go through all the uses of s2 to find double reduction phi
|
4190 |
|
|
node, i.e., stmt1 above. */
|
4191 |
|
|
orig_name = PHI_RESULT (exit_phi);
|
4192 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
|
4193 |
|
|
{
|
4194 |
|
|
stmt_vec_info use_stmt_vinfo = vinfo_for_stmt (use_stmt);
|
4195 |
|
|
stmt_vec_info new_phi_vinfo;
|
4196 |
|
|
tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
|
4197 |
|
|
basic_block bb = gimple_bb (use_stmt);
|
4198 |
|
|
gimple use;
|
4199 |
|
|
|
4200 |
|
|
/* Check that USE_STMT is really double reduction phi
|
4201 |
|
|
node. */
|
4202 |
|
|
if (gimple_code (use_stmt) != GIMPLE_PHI
|
4203 |
|
|
|| gimple_phi_num_args (use_stmt) != 2
|
4204 |
|
|
|| !use_stmt_vinfo
|
4205 |
|
|
|| STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
|
4206 |
|
|
!= vect_double_reduction_def
|
4207 |
|
|
|| bb->loop_father != outer_loop)
|
4208 |
|
|
continue;
|
4209 |
|
|
|
4210 |
|
|
/* Create vector phi node for double reduction:
|
4211 |
|
|
vs1 = phi <vs0, vs2>
|
4212 |
|
|
vs1 was created previously in this function by a call to
|
4213 |
|
|
vect_get_vec_def_for_operand and is stored in
|
4214 |
|
|
vec_initial_def;
|
4215 |
|
|
vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
|
4216 |
|
|
vs0 is created here. */
|
4217 |
|
|
|
4218 |
|
|
/* Create vector phi node. */
|
4219 |
|
|
vect_phi = create_phi_node (vec_initial_def, bb);
|
4220 |
|
|
new_phi_vinfo = new_stmt_vec_info (vect_phi,
|
4221 |
|
|
loop_vec_info_for_loop (outer_loop), NULL);
|
4222 |
|
|
set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
|
4223 |
|
|
|
4224 |
|
|
/* Create vs0 - initial def of the double reduction phi. */
|
4225 |
|
|
preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
|
4226 |
|
|
loop_preheader_edge (outer_loop));
|
4227 |
|
|
init_def = get_initial_def_for_reduction (stmt,
|
4228 |
|
|
preheader_arg, NULL);
|
4229 |
|
|
vect_phi_init = vect_init_vector (use_stmt, init_def,
|
4230 |
|
|
vectype, NULL);
|
4231 |
|
|
|
4232 |
|
|
/* Update phi node arguments with vs0 and vs2. */
|
4233 |
|
|
add_phi_arg (vect_phi, vect_phi_init,
|
4234 |
|
|
loop_preheader_edge (outer_loop),
|
4235 |
|
|
UNKNOWN_LOCATION);
|
4236 |
|
|
add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
|
4237 |
|
|
loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
|
4238 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4239 |
|
|
{
|
4240 |
|
|
fprintf (vect_dump, "created double reduction phi "
|
4241 |
|
|
"node: ");
|
4242 |
|
|
print_gimple_stmt (vect_dump, vect_phi, 0, TDF_SLIM);
|
4243 |
|
|
}
|
4244 |
|
|
|
4245 |
|
|
vect_phi_res = PHI_RESULT (vect_phi);
|
4246 |
|
|
|
4247 |
|
|
/* Replace the use, i.e., set the correct vs1 in the regular
|
4248 |
|
|
reduction phi node. FORNOW, NCOPIES is always 1, so the
|
4249 |
|
|
loop is redundant. */
|
4250 |
|
|
use = reduction_phi;
|
4251 |
|
|
for (j = 0; j < ncopies; j++)
|
4252 |
|
|
{
|
4253 |
|
|
edge pr_edge = loop_preheader_edge (loop);
|
4254 |
|
|
SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
|
4255 |
|
|
use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
|
4256 |
|
|
}
|
4257 |
|
|
}
|
4258 |
|
|
}
|
4259 |
|
|
}
|
4260 |
|
|
|
4261 |
|
|
VEC_free (gimple, heap, phis);
|
4262 |
|
|
if (nested_in_vect_loop)
|
4263 |
|
|
{
|
4264 |
|
|
if (double_reduc)
|
4265 |
|
|
loop = outer_loop;
|
4266 |
|
|
else
|
4267 |
|
|
continue;
|
4268 |
|
|
}
|
4269 |
|
|
|
4270 |
|
|
phis = VEC_alloc (gimple, heap, 3);
|
4271 |
|
|
/* Find the loop-closed-use at the loop exit of the original scalar
|
4272 |
|
|
result. (The reduction result is expected to have two immediate uses,
|
4273 |
|
|
one at the latch block, and one at the loop exit). For double
|
4274 |
|
|
reductions we are looking for exit phis of the outer loop. */
|
4275 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
|
4276 |
|
|
{
|
4277 |
|
|
if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
|
4278 |
|
|
VEC_safe_push (gimple, heap, phis, USE_STMT (use_p));
|
4279 |
|
|
else
|
4280 |
|
|
{
|
4281 |
|
|
if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
|
4282 |
|
|
{
|
4283 |
|
|
tree phi_res = PHI_RESULT (USE_STMT (use_p));
|
4284 |
|
|
|
4285 |
|
|
FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
|
4286 |
|
|
{
|
4287 |
|
|
if (!flow_bb_inside_loop_p (loop,
|
4288 |
|
|
gimple_bb (USE_STMT (phi_use_p))))
|
4289 |
|
|
VEC_safe_push (gimple, heap, phis,
|
4290 |
|
|
USE_STMT (phi_use_p));
|
4291 |
|
|
}
|
4292 |
|
|
}
|
4293 |
|
|
}
|
4294 |
|
|
}
|
4295 |
|
|
|
4296 |
|
|
FOR_EACH_VEC_ELT (gimple, phis, i, exit_phi)
|
4297 |
|
|
{
|
4298 |
|
|
/* Replace the uses: */
|
4299 |
|
|
orig_name = PHI_RESULT (exit_phi);
|
4300 |
|
|
scalar_result = VEC_index (tree, scalar_results, k);
|
4301 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
|
4302 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
|
4303 |
|
|
SET_USE (use_p, scalar_result);
|
4304 |
|
|
}
|
4305 |
|
|
|
4306 |
|
|
VEC_free (gimple, heap, phis);
|
4307 |
|
|
}
|
4308 |
|
|
|
4309 |
|
|
VEC_free (tree, heap, scalar_results);
|
4310 |
|
|
VEC_free (gimple, heap, new_phis);
|
4311 |
|
|
}
|
4312 |
|
|
|
4313 |
|
|
|
4314 |
|
|
/* Function vectorizable_reduction.
|
4315 |
|
|
|
4316 |
|
|
Check if STMT performs a reduction operation that can be vectorized.
|
4317 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
4318 |
|
|
stmt to replace it, put it in VEC_STMT, and insert it at GSI.
|
4319 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise.
|
4320 |
|
|
|
4321 |
|
|
This function also handles reduction idioms (patterns) that have been
|
4322 |
|
|
recognized in advance during vect_pattern_recog. In this case, STMT may be
|
4323 |
|
|
of this form:
|
4324 |
|
|
X = pattern_expr (arg0, arg1, ..., X)
|
4325 |
|
|
and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
|
4326 |
|
|
sequence that had been detected and replaced by the pattern-stmt (STMT).
|
4327 |
|
|
|
4328 |
|
|
In some cases of reduction patterns, the type of the reduction variable X is
|
4329 |
|
|
different than the type of the other arguments of STMT.
|
4330 |
|
|
In such cases, the vectype that is used when transforming STMT into a vector
|
4331 |
|
|
stmt is different than the vectype that is used to determine the
|
4332 |
|
|
vectorization factor, because it consists of a different number of elements
|
4333 |
|
|
than the actual number of elements that are being operated upon in parallel.
|
4334 |
|
|
|
4335 |
|
|
For example, consider an accumulation of shorts into an int accumulator.
|
4336 |
|
|
On some targets it's possible to vectorize this pattern operating on 8
|
4337 |
|
|
shorts at a time (hence, the vectype for purposes of determining the
|
4338 |
|
|
vectorization factor should be V8HI); on the other hand, the vectype that
|
4339 |
|
|
is used to create the vector form is actually V4SI (the type of the result).
|
4340 |
|
|
|
4341 |
|
|
Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
|
4342 |
|
|
indicates what is the actual level of parallelism (V8HI in the example), so
|
4343 |
|
|
that the right vectorization factor would be derived. This vectype
|
4344 |
|
|
corresponds to the type of arguments to the reduction stmt, and should *NOT*
|
4345 |
|
|
be used to create the vectorized stmt. The right vectype for the vectorized
|
4346 |
|
|
stmt is obtained from the type of the result X:
|
4347 |
|
|
get_vectype_for_scalar_type (TREE_TYPE (X))
|
4348 |
|
|
|
4349 |
|
|
This means that, contrary to "regular" reductions (or "regular" stmts in
|
4350 |
|
|
general), the following equation:
|
4351 |
|
|
STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
|
4352 |
|
|
does *NOT* necessarily hold for reduction patterns. */
|
4353 |
|
|
|
4354 |
|
|
bool
|
4355 |
|
|
vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
|
4356 |
|
|
gimple *vec_stmt, slp_tree slp_node)
|
4357 |
|
|
{
|
4358 |
|
|
tree vec_dest;
|
4359 |
|
|
tree scalar_dest;
|
4360 |
|
|
tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
|
4361 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
4362 |
|
|
tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
|
4363 |
|
|
tree vectype_in = NULL_TREE;
|
4364 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
4365 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
4366 |
|
|
enum tree_code code, orig_code, epilog_reduc_code;
|
4367 |
|
|
enum machine_mode vec_mode;
|
4368 |
|
|
int op_type;
|
4369 |
|
|
optab optab, reduc_optab;
|
4370 |
|
|
tree new_temp = NULL_TREE;
|
4371 |
|
|
tree def;
|
4372 |
|
|
gimple def_stmt;
|
4373 |
|
|
enum vect_def_type dt;
|
4374 |
|
|
gimple new_phi = NULL;
|
4375 |
|
|
tree scalar_type;
|
4376 |
|
|
bool is_simple_use;
|
4377 |
|
|
gimple orig_stmt;
|
4378 |
|
|
stmt_vec_info orig_stmt_info;
|
4379 |
|
|
tree expr = NULL_TREE;
|
4380 |
|
|
int i;
|
4381 |
|
|
int ncopies;
|
4382 |
|
|
int epilog_copies;
|
4383 |
|
|
stmt_vec_info prev_stmt_info, prev_phi_info;
|
4384 |
|
|
bool single_defuse_cycle = false;
|
4385 |
|
|
tree reduc_def = NULL_TREE;
|
4386 |
|
|
gimple new_stmt = NULL;
|
4387 |
|
|
int j;
|
4388 |
|
|
tree ops[3];
|
4389 |
|
|
bool nested_cycle = false, found_nested_cycle_def = false;
|
4390 |
|
|
gimple reduc_def_stmt = NULL;
|
4391 |
|
|
/* The default is that the reduction variable is the last in statement. */
|
4392 |
|
|
int reduc_index = 2;
|
4393 |
|
|
bool double_reduc = false, dummy;
|
4394 |
|
|
basic_block def_bb;
|
4395 |
|
|
struct loop * def_stmt_loop, *outer_loop = NULL;
|
4396 |
|
|
tree def_arg;
|
4397 |
|
|
gimple def_arg_stmt;
|
4398 |
|
|
VEC (tree, heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL, *vect_defs = NULL;
|
4399 |
|
|
VEC (gimple, heap) *phis = NULL;
|
4400 |
|
|
int vec_num;
|
4401 |
|
|
tree def0, def1, tem, op0, op1 = NULL_TREE;
|
4402 |
|
|
|
4403 |
|
|
/* In case of reduction chain we switch to the first stmt in the chain, but
|
4404 |
|
|
we don't update STMT_INFO, since only the last stmt is marked as reduction
|
4405 |
|
|
and has reduction properties. */
|
4406 |
|
|
if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
|
4407 |
|
|
stmt = GROUP_FIRST_ELEMENT (stmt_info);
|
4408 |
|
|
|
4409 |
|
|
if (nested_in_vect_loop_p (loop, stmt))
|
4410 |
|
|
{
|
4411 |
|
|
outer_loop = loop;
|
4412 |
|
|
loop = loop->inner;
|
4413 |
|
|
nested_cycle = true;
|
4414 |
|
|
}
|
4415 |
|
|
|
4416 |
|
|
/* 1. Is vectorizable reduction? */
|
4417 |
|
|
/* Not supportable if the reduction variable is used in the loop, unless
|
4418 |
|
|
it's a reduction chain. */
|
4419 |
|
|
if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
|
4420 |
|
|
&& !GROUP_FIRST_ELEMENT (stmt_info))
|
4421 |
|
|
return false;
|
4422 |
|
|
|
4423 |
|
|
/* Reductions that are not used even in an enclosing outer-loop,
|
4424 |
|
|
are expected to be "live" (used out of the loop). */
|
4425 |
|
|
if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
|
4426 |
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
4427 |
|
|
return false;
|
4428 |
|
|
|
4429 |
|
|
/* Make sure it was already recognized as a reduction computation. */
|
4430 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
|
4431 |
|
|
&& STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
|
4432 |
|
|
return false;
|
4433 |
|
|
|
4434 |
|
|
/* 2. Has this been recognized as a reduction pattern?
|
4435 |
|
|
|
4436 |
|
|
Check if STMT represents a pattern that has been recognized
|
4437 |
|
|
in earlier analysis stages. For stmts that represent a pattern,
|
4438 |
|
|
the STMT_VINFO_RELATED_STMT field records the last stmt in
|
4439 |
|
|
the original sequence that constitutes the pattern. */
|
4440 |
|
|
|
4441 |
|
|
orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
4442 |
|
|
if (orig_stmt)
|
4443 |
|
|
{
|
4444 |
|
|
orig_stmt_info = vinfo_for_stmt (orig_stmt);
|
4445 |
|
|
gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info) == stmt);
|
4446 |
|
|
gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
|
4447 |
|
|
gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
|
4448 |
|
|
}
|
4449 |
|
|
|
4450 |
|
|
/* 3. Check the operands of the operation. The first operands are defined
|
4451 |
|
|
inside the loop body. The last operand is the reduction variable,
|
4452 |
|
|
which is defined by the loop-header-phi. */
|
4453 |
|
|
|
4454 |
|
|
gcc_assert (is_gimple_assign (stmt));
|
4455 |
|
|
|
4456 |
|
|
/* Flatten RHS. */
|
4457 |
|
|
switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
|
4458 |
|
|
{
|
4459 |
|
|
case GIMPLE_SINGLE_RHS:
|
4460 |
|
|
op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
|
4461 |
|
|
if (op_type == ternary_op)
|
4462 |
|
|
{
|
4463 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
4464 |
|
|
ops[0] = TREE_OPERAND (rhs, 0);
|
4465 |
|
|
ops[1] = TREE_OPERAND (rhs, 1);
|
4466 |
|
|
ops[2] = TREE_OPERAND (rhs, 2);
|
4467 |
|
|
code = TREE_CODE (rhs);
|
4468 |
|
|
}
|
4469 |
|
|
else
|
4470 |
|
|
return false;
|
4471 |
|
|
break;
|
4472 |
|
|
|
4473 |
|
|
case GIMPLE_BINARY_RHS:
|
4474 |
|
|
code = gimple_assign_rhs_code (stmt);
|
4475 |
|
|
op_type = TREE_CODE_LENGTH (code);
|
4476 |
|
|
gcc_assert (op_type == binary_op);
|
4477 |
|
|
ops[0] = gimple_assign_rhs1 (stmt);
|
4478 |
|
|
ops[1] = gimple_assign_rhs2 (stmt);
|
4479 |
|
|
break;
|
4480 |
|
|
|
4481 |
|
|
case GIMPLE_TERNARY_RHS:
|
4482 |
|
|
code = gimple_assign_rhs_code (stmt);
|
4483 |
|
|
op_type = TREE_CODE_LENGTH (code);
|
4484 |
|
|
gcc_assert (op_type == ternary_op);
|
4485 |
|
|
ops[0] = gimple_assign_rhs1 (stmt);
|
4486 |
|
|
ops[1] = gimple_assign_rhs2 (stmt);
|
4487 |
|
|
ops[2] = gimple_assign_rhs3 (stmt);
|
4488 |
|
|
break;
|
4489 |
|
|
|
4490 |
|
|
case GIMPLE_UNARY_RHS:
|
4491 |
|
|
return false;
|
4492 |
|
|
|
4493 |
|
|
default:
|
4494 |
|
|
gcc_unreachable ();
|
4495 |
|
|
}
|
4496 |
|
|
|
4497 |
|
|
if (code == COND_EXPR && slp_node)
|
4498 |
|
|
return false;
|
4499 |
|
|
|
4500 |
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
4501 |
|
|
scalar_type = TREE_TYPE (scalar_dest);
|
4502 |
|
|
if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
|
4503 |
|
|
&& !SCALAR_FLOAT_TYPE_P (scalar_type))
|
4504 |
|
|
return false;
|
4505 |
|
|
|
4506 |
|
|
/* Do not try to vectorize bit-precision reductions. */
|
4507 |
|
|
if ((TYPE_PRECISION (scalar_type)
|
4508 |
|
|
!= GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
|
4509 |
|
|
return false;
|
4510 |
|
|
|
4511 |
|
|
/* All uses but the last are expected to be defined in the loop.
|
4512 |
|
|
The last use is the reduction variable. In case of nested cycle this
|
4513 |
|
|
assumption is not true: we use reduc_index to record the index of the
|
4514 |
|
|
reduction variable. */
|
4515 |
|
|
for (i = 0; i < op_type-1; i++)
|
4516 |
|
|
{
|
4517 |
|
|
/* The condition of COND_EXPR is checked in vectorizable_condition(). */
|
4518 |
|
|
if (i == 0 && code == COND_EXPR)
|
4519 |
|
|
continue;
|
4520 |
|
|
|
4521 |
|
|
is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
|
4522 |
|
|
&def_stmt, &def, &dt, &tem);
|
4523 |
|
|
if (!vectype_in)
|
4524 |
|
|
vectype_in = tem;
|
4525 |
|
|
gcc_assert (is_simple_use);
|
4526 |
|
|
|
4527 |
|
|
if (dt != vect_internal_def
|
4528 |
|
|
&& dt != vect_external_def
|
4529 |
|
|
&& dt != vect_constant_def
|
4530 |
|
|
&& dt != vect_induction_def
|
4531 |
|
|
&& !(dt == vect_nested_cycle && nested_cycle))
|
4532 |
|
|
return false;
|
4533 |
|
|
|
4534 |
|
|
if (dt == vect_nested_cycle)
|
4535 |
|
|
{
|
4536 |
|
|
found_nested_cycle_def = true;
|
4537 |
|
|
reduc_def_stmt = def_stmt;
|
4538 |
|
|
reduc_index = i;
|
4539 |
|
|
}
|
4540 |
|
|
}
|
4541 |
|
|
|
4542 |
|
|
is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
|
4543 |
|
|
&def_stmt, &def, &dt, &tem);
|
4544 |
|
|
if (!vectype_in)
|
4545 |
|
|
vectype_in = tem;
|
4546 |
|
|
gcc_assert (is_simple_use);
|
4547 |
|
|
gcc_assert (dt == vect_reduction_def
|
4548 |
|
|
|| dt == vect_nested_cycle
|
4549 |
|
|
|| ((dt == vect_internal_def || dt == vect_external_def
|
4550 |
|
|
|| dt == vect_constant_def || dt == vect_induction_def)
|
4551 |
|
|
&& nested_cycle && found_nested_cycle_def));
|
4552 |
|
|
if (!found_nested_cycle_def)
|
4553 |
|
|
reduc_def_stmt = def_stmt;
|
4554 |
|
|
|
4555 |
|
|
gcc_assert (gimple_code (reduc_def_stmt) == GIMPLE_PHI);
|
4556 |
|
|
if (orig_stmt)
|
4557 |
|
|
gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo,
|
4558 |
|
|
reduc_def_stmt,
|
4559 |
|
|
!nested_cycle,
|
4560 |
|
|
&dummy));
|
4561 |
|
|
else
|
4562 |
|
|
{
|
4563 |
|
|
gimple tmp = vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
|
4564 |
|
|
!nested_cycle, &dummy);
|
4565 |
|
|
/* We changed STMT to be the first stmt in reduction chain, hence we
|
4566 |
|
|
check that in this case the first element in the chain is STMT. */
|
4567 |
|
|
gcc_assert (stmt == tmp
|
4568 |
|
|
|| GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
|
4569 |
|
|
}
|
4570 |
|
|
|
4571 |
|
|
if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
|
4572 |
|
|
return false;
|
4573 |
|
|
|
4574 |
|
|
if (slp_node || PURE_SLP_STMT (stmt_info))
|
4575 |
|
|
ncopies = 1;
|
4576 |
|
|
else
|
4577 |
|
|
ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
|
4578 |
|
|
/ TYPE_VECTOR_SUBPARTS (vectype_in));
|
4579 |
|
|
|
4580 |
|
|
gcc_assert (ncopies >= 1);
|
4581 |
|
|
|
4582 |
|
|
vec_mode = TYPE_MODE (vectype_in);
|
4583 |
|
|
|
4584 |
|
|
if (code == COND_EXPR)
|
4585 |
|
|
{
|
4586 |
|
|
if (!vectorizable_condition (stmt, gsi, NULL, ops[reduc_index], 0, NULL))
|
4587 |
|
|
{
|
4588 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4589 |
|
|
fprintf (vect_dump, "unsupported condition in reduction");
|
4590 |
|
|
|
4591 |
|
|
return false;
|
4592 |
|
|
}
|
4593 |
|
|
}
|
4594 |
|
|
else
|
4595 |
|
|
{
|
4596 |
|
|
/* 4. Supportable by target? */
|
4597 |
|
|
|
4598 |
|
|
/* 4.1. check support for the operation in the loop */
|
4599 |
|
|
optab = optab_for_tree_code (code, vectype_in, optab_default);
|
4600 |
|
|
if (!optab)
|
4601 |
|
|
{
|
4602 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4603 |
|
|
fprintf (vect_dump, "no optab.");
|
4604 |
|
|
|
4605 |
|
|
return false;
|
4606 |
|
|
}
|
4607 |
|
|
|
4608 |
|
|
if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
|
4609 |
|
|
{
|
4610 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4611 |
|
|
fprintf (vect_dump, "op not supported by target.");
|
4612 |
|
|
|
4613 |
|
|
if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
|
4614 |
|
|
|| LOOP_VINFO_VECT_FACTOR (loop_vinfo)
|
4615 |
|
|
< vect_min_worthwhile_factor (code))
|
4616 |
|
|
return false;
|
4617 |
|
|
|
4618 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4619 |
|
|
fprintf (vect_dump, "proceeding using word mode.");
|
4620 |
|
|
}
|
4621 |
|
|
|
4622 |
|
|
/* Worthwhile without SIMD support? */
|
4623 |
|
|
if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
|
4624 |
|
|
&& LOOP_VINFO_VECT_FACTOR (loop_vinfo)
|
4625 |
|
|
< vect_min_worthwhile_factor (code))
|
4626 |
|
|
{
|
4627 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4628 |
|
|
fprintf (vect_dump, "not worthwhile without SIMD support.");
|
4629 |
|
|
|
4630 |
|
|
return false;
|
4631 |
|
|
}
|
4632 |
|
|
}
|
4633 |
|
|
|
4634 |
|
|
/* 4.2. Check support for the epilog operation.
|
4635 |
|
|
|
4636 |
|
|
If STMT represents a reduction pattern, then the type of the
|
4637 |
|
|
reduction variable may be different than the type of the rest
|
4638 |
|
|
of the arguments. For example, consider the case of accumulation
|
4639 |
|
|
of shorts into an int accumulator; The original code:
|
4640 |
|
|
S1: int_a = (int) short_a;
|
4641 |
|
|
orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
|
4642 |
|
|
|
4643 |
|
|
was replaced with:
|
4644 |
|
|
STMT: int_acc = widen_sum <short_a, int_acc>
|
4645 |
|
|
|
4646 |
|
|
This means that:
|
4647 |
|
|
1. The tree-code that is used to create the vector operation in the
|
4648 |
|
|
epilog code (that reduces the partial results) is not the
|
4649 |
|
|
tree-code of STMT, but is rather the tree-code of the original
|
4650 |
|
|
stmt from the pattern that STMT is replacing. I.e, in the example
|
4651 |
|
|
above we want to use 'widen_sum' in the loop, but 'plus' in the
|
4652 |
|
|
epilog.
|
4653 |
|
|
2. The type (mode) we use to check available target support
|
4654 |
|
|
for the vector operation to be created in the *epilog*, is
|
4655 |
|
|
determined by the type of the reduction variable (in the example
|
4656 |
|
|
above we'd check this: optab_handler (plus_optab, vect_int_mode])).
|
4657 |
|
|
However the type (mode) we use to check available target support
|
4658 |
|
|
for the vector operation to be created *inside the loop*, is
|
4659 |
|
|
determined by the type of the other arguments to STMT (in the
|
4660 |
|
|
example we'd check this: optab_handler (widen_sum_optab,
|
4661 |
|
|
vect_short_mode)).
|
4662 |
|
|
|
4663 |
|
|
This is contrary to "regular" reductions, in which the types of all
|
4664 |
|
|
the arguments are the same as the type of the reduction variable.
|
4665 |
|
|
For "regular" reductions we can therefore use the same vector type
|
4666 |
|
|
(and also the same tree-code) when generating the epilog code and
|
4667 |
|
|
when generating the code inside the loop. */
|
4668 |
|
|
|
4669 |
|
|
if (orig_stmt)
|
4670 |
|
|
{
|
4671 |
|
|
/* This is a reduction pattern: get the vectype from the type of the
|
4672 |
|
|
reduction variable, and get the tree-code from orig_stmt. */
|
4673 |
|
|
orig_code = gimple_assign_rhs_code (orig_stmt);
|
4674 |
|
|
gcc_assert (vectype_out);
|
4675 |
|
|
vec_mode = TYPE_MODE (vectype_out);
|
4676 |
|
|
}
|
4677 |
|
|
else
|
4678 |
|
|
{
|
4679 |
|
|
/* Regular reduction: use the same vectype and tree-code as used for
|
4680 |
|
|
the vector code inside the loop can be used for the epilog code. */
|
4681 |
|
|
orig_code = code;
|
4682 |
|
|
}
|
4683 |
|
|
|
4684 |
|
|
if (nested_cycle)
|
4685 |
|
|
{
|
4686 |
|
|
def_bb = gimple_bb (reduc_def_stmt);
|
4687 |
|
|
def_stmt_loop = def_bb->loop_father;
|
4688 |
|
|
def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
|
4689 |
|
|
loop_preheader_edge (def_stmt_loop));
|
4690 |
|
|
if (TREE_CODE (def_arg) == SSA_NAME
|
4691 |
|
|
&& (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
|
4692 |
|
|
&& gimple_code (def_arg_stmt) == GIMPLE_PHI
|
4693 |
|
|
&& flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
|
4694 |
|
|
&& vinfo_for_stmt (def_arg_stmt)
|
4695 |
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
|
4696 |
|
|
== vect_double_reduction_def)
|
4697 |
|
|
double_reduc = true;
|
4698 |
|
|
}
|
4699 |
|
|
|
4700 |
|
|
epilog_reduc_code = ERROR_MARK;
|
4701 |
|
|
if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
|
4702 |
|
|
{
|
4703 |
|
|
reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
|
4704 |
|
|
optab_default);
|
4705 |
|
|
if (!reduc_optab)
|
4706 |
|
|
{
|
4707 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4708 |
|
|
fprintf (vect_dump, "no optab for reduction.");
|
4709 |
|
|
|
4710 |
|
|
epilog_reduc_code = ERROR_MARK;
|
4711 |
|
|
}
|
4712 |
|
|
|
4713 |
|
|
if (reduc_optab
|
4714 |
|
|
&& optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
|
4715 |
|
|
{
|
4716 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4717 |
|
|
fprintf (vect_dump, "reduc op not supported by target.");
|
4718 |
|
|
|
4719 |
|
|
epilog_reduc_code = ERROR_MARK;
|
4720 |
|
|
}
|
4721 |
|
|
}
|
4722 |
|
|
else
|
4723 |
|
|
{
|
4724 |
|
|
if (!nested_cycle || double_reduc)
|
4725 |
|
|
{
|
4726 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4727 |
|
|
fprintf (vect_dump, "no reduc code for scalar code.");
|
4728 |
|
|
|
4729 |
|
|
return false;
|
4730 |
|
|
}
|
4731 |
|
|
}
|
4732 |
|
|
|
4733 |
|
|
if (double_reduc && ncopies > 1)
|
4734 |
|
|
{
|
4735 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4736 |
|
|
fprintf (vect_dump, "multiple types in double reduction");
|
4737 |
|
|
|
4738 |
|
|
return false;
|
4739 |
|
|
}
|
4740 |
|
|
|
4741 |
|
|
/* In case of widenning multiplication by a constant, we update the type
|
4742 |
|
|
of the constant to be the type of the other operand. We check that the
|
4743 |
|
|
constant fits the type in the pattern recognition pass. */
|
4744 |
|
|
if (code == DOT_PROD_EXPR
|
4745 |
|
|
&& !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
|
4746 |
|
|
{
|
4747 |
|
|
if (TREE_CODE (ops[0]) == INTEGER_CST)
|
4748 |
|
|
ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
|
4749 |
|
|
else if (TREE_CODE (ops[1]) == INTEGER_CST)
|
4750 |
|
|
ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
|
4751 |
|
|
else
|
4752 |
|
|
{
|
4753 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4754 |
|
|
fprintf (vect_dump, "invalid types in dot-prod");
|
4755 |
|
|
|
4756 |
|
|
return false;
|
4757 |
|
|
}
|
4758 |
|
|
}
|
4759 |
|
|
|
4760 |
|
|
if (!vec_stmt) /* transformation not required. */
|
4761 |
|
|
{
|
4762 |
|
|
if (!vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies))
|
4763 |
|
|
return false;
|
4764 |
|
|
STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
|
4765 |
|
|
return true;
|
4766 |
|
|
}
|
4767 |
|
|
|
4768 |
|
|
/** Transform. **/
|
4769 |
|
|
|
4770 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
4771 |
|
|
fprintf (vect_dump, "transform reduction.");
|
4772 |
|
|
|
4773 |
|
|
/* FORNOW: Multiple types are not supported for condition. */
|
4774 |
|
|
if (code == COND_EXPR)
|
4775 |
|
|
gcc_assert (ncopies == 1);
|
4776 |
|
|
|
4777 |
|
|
/* Create the destination vector */
|
4778 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
|
4779 |
|
|
|
4780 |
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
4781 |
|
|
of elements that we can fit in a vectype (nunits), we have to generate
|
4782 |
|
|
more than one vector stmt - i.e - we need to "unroll" the
|
4783 |
|
|
vector stmt by a factor VF/nunits. For more details see documentation
|
4784 |
|
|
in vectorizable_operation. */
|
4785 |
|
|
|
4786 |
|
|
/* If the reduction is used in an outer loop we need to generate
|
4787 |
|
|
VF intermediate results, like so (e.g. for ncopies=2):
|
4788 |
|
|
r0 = phi (init, r0)
|
4789 |
|
|
r1 = phi (init, r1)
|
4790 |
|
|
r0 = x0 + r0;
|
4791 |
|
|
r1 = x1 + r1;
|
4792 |
|
|
(i.e. we generate VF results in 2 registers).
|
4793 |
|
|
In this case we have a separate def-use cycle for each copy, and therefore
|
4794 |
|
|
for each copy we get the vector def for the reduction variable from the
|
4795 |
|
|
respective phi node created for this copy.
|
4796 |
|
|
|
4797 |
|
|
Otherwise (the reduction is unused in the loop nest), we can combine
|
4798 |
|
|
together intermediate results, like so (e.g. for ncopies=2):
|
4799 |
|
|
r = phi (init, r)
|
4800 |
|
|
r = x0 + r;
|
4801 |
|
|
r = x1 + r;
|
4802 |
|
|
(i.e. we generate VF/2 results in a single register).
|
4803 |
|
|
In this case for each copy we get the vector def for the reduction variable
|
4804 |
|
|
from the vectorized reduction operation generated in the previous iteration.
|
4805 |
|
|
*/
|
4806 |
|
|
|
4807 |
|
|
if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
|
4808 |
|
|
{
|
4809 |
|
|
single_defuse_cycle = true;
|
4810 |
|
|
epilog_copies = 1;
|
4811 |
|
|
}
|
4812 |
|
|
else
|
4813 |
|
|
epilog_copies = ncopies;
|
4814 |
|
|
|
4815 |
|
|
prev_stmt_info = NULL;
|
4816 |
|
|
prev_phi_info = NULL;
|
4817 |
|
|
if (slp_node)
|
4818 |
|
|
{
|
4819 |
|
|
vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
|
4820 |
|
|
gcc_assert (TYPE_VECTOR_SUBPARTS (vectype_out)
|
4821 |
|
|
== TYPE_VECTOR_SUBPARTS (vectype_in));
|
4822 |
|
|
}
|
4823 |
|
|
else
|
4824 |
|
|
{
|
4825 |
|
|
vec_num = 1;
|
4826 |
|
|
vec_oprnds0 = VEC_alloc (tree, heap, 1);
|
4827 |
|
|
if (op_type == ternary_op)
|
4828 |
|
|
vec_oprnds1 = VEC_alloc (tree, heap, 1);
|
4829 |
|
|
}
|
4830 |
|
|
|
4831 |
|
|
phis = VEC_alloc (gimple, heap, vec_num);
|
4832 |
|
|
vect_defs = VEC_alloc (tree, heap, vec_num);
|
4833 |
|
|
if (!slp_node)
|
4834 |
|
|
VEC_quick_push (tree, vect_defs, NULL_TREE);
|
4835 |
|
|
|
4836 |
|
|
for (j = 0; j < ncopies; j++)
|
4837 |
|
|
{
|
4838 |
|
|
if (j == 0 || !single_defuse_cycle)
|
4839 |
|
|
{
|
4840 |
|
|
for (i = 0; i < vec_num; i++)
|
4841 |
|
|
{
|
4842 |
|
|
/* Create the reduction-phi that defines the reduction
|
4843 |
|
|
operand. */
|
4844 |
|
|
new_phi = create_phi_node (vec_dest, loop->header);
|
4845 |
|
|
set_vinfo_for_stmt (new_phi,
|
4846 |
|
|
new_stmt_vec_info (new_phi, loop_vinfo,
|
4847 |
|
|
NULL));
|
4848 |
|
|
if (j == 0 || slp_node)
|
4849 |
|
|
VEC_quick_push (gimple, phis, new_phi);
|
4850 |
|
|
}
|
4851 |
|
|
}
|
4852 |
|
|
|
4853 |
|
|
if (code == COND_EXPR)
|
4854 |
|
|
{
|
4855 |
|
|
gcc_assert (!slp_node);
|
4856 |
|
|
vectorizable_condition (stmt, gsi, vec_stmt,
|
4857 |
|
|
PHI_RESULT (VEC_index (gimple, phis, 0)),
|
4858 |
|
|
reduc_index, NULL);
|
4859 |
|
|
/* Multiple types are not supported for condition. */
|
4860 |
|
|
break;
|
4861 |
|
|
}
|
4862 |
|
|
|
4863 |
|
|
/* Handle uses. */
|
4864 |
|
|
if (j == 0)
|
4865 |
|
|
{
|
4866 |
|
|
op0 = ops[!reduc_index];
|
4867 |
|
|
if (op_type == ternary_op)
|
4868 |
|
|
{
|
4869 |
|
|
if (reduc_index == 0)
|
4870 |
|
|
op1 = ops[2];
|
4871 |
|
|
else
|
4872 |
|
|
op1 = ops[1];
|
4873 |
|
|
}
|
4874 |
|
|
|
4875 |
|
|
if (slp_node)
|
4876 |
|
|
vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
|
4877 |
|
|
slp_node, -1);
|
4878 |
|
|
else
|
4879 |
|
|
{
|
4880 |
|
|
loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
|
4881 |
|
|
stmt, NULL);
|
4882 |
|
|
VEC_quick_push (tree, vec_oprnds0, loop_vec_def0);
|
4883 |
|
|
if (op_type == ternary_op)
|
4884 |
|
|
{
|
4885 |
|
|
loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt,
|
4886 |
|
|
NULL);
|
4887 |
|
|
VEC_quick_push (tree, vec_oprnds1, loop_vec_def1);
|
4888 |
|
|
}
|
4889 |
|
|
}
|
4890 |
|
|
}
|
4891 |
|
|
else
|
4892 |
|
|
{
|
4893 |
|
|
if (!slp_node)
|
4894 |
|
|
{
|
4895 |
|
|
enum vect_def_type dt;
|
4896 |
|
|
gimple dummy_stmt;
|
4897 |
|
|
tree dummy;
|
4898 |
|
|
|
4899 |
|
|
vect_is_simple_use (ops[!reduc_index], stmt, loop_vinfo, NULL,
|
4900 |
|
|
&dummy_stmt, &dummy, &dt);
|
4901 |
|
|
loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt,
|
4902 |
|
|
loop_vec_def0);
|
4903 |
|
|
VEC_replace (tree, vec_oprnds0, 0, loop_vec_def0);
|
4904 |
|
|
if (op_type == ternary_op)
|
4905 |
|
|
{
|
4906 |
|
|
vect_is_simple_use (op1, stmt, loop_vinfo, NULL, &dummy_stmt,
|
4907 |
|
|
&dummy, &dt);
|
4908 |
|
|
loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
|
4909 |
|
|
loop_vec_def1);
|
4910 |
|
|
VEC_replace (tree, vec_oprnds1, 0, loop_vec_def1);
|
4911 |
|
|
}
|
4912 |
|
|
}
|
4913 |
|
|
|
4914 |
|
|
if (single_defuse_cycle)
|
4915 |
|
|
reduc_def = gimple_assign_lhs (new_stmt);
|
4916 |
|
|
|
4917 |
|
|
STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
|
4918 |
|
|
}
|
4919 |
|
|
|
4920 |
|
|
FOR_EACH_VEC_ELT (tree, vec_oprnds0, i, def0)
|
4921 |
|
|
{
|
4922 |
|
|
if (slp_node)
|
4923 |
|
|
reduc_def = PHI_RESULT (VEC_index (gimple, phis, i));
|
4924 |
|
|
else
|
4925 |
|
|
{
|
4926 |
|
|
if (!single_defuse_cycle || j == 0)
|
4927 |
|
|
reduc_def = PHI_RESULT (new_phi);
|
4928 |
|
|
}
|
4929 |
|
|
|
4930 |
|
|
def1 = ((op_type == ternary_op)
|
4931 |
|
|
? VEC_index (tree, vec_oprnds1, i) : NULL);
|
4932 |
|
|
if (op_type == binary_op)
|
4933 |
|
|
{
|
4934 |
|
|
if (reduc_index == 0)
|
4935 |
|
|
expr = build2 (code, vectype_out, reduc_def, def0);
|
4936 |
|
|
else
|
4937 |
|
|
expr = build2 (code, vectype_out, def0, reduc_def);
|
4938 |
|
|
}
|
4939 |
|
|
else
|
4940 |
|
|
{
|
4941 |
|
|
if (reduc_index == 0)
|
4942 |
|
|
expr = build3 (code, vectype_out, reduc_def, def0, def1);
|
4943 |
|
|
else
|
4944 |
|
|
{
|
4945 |
|
|
if (reduc_index == 1)
|
4946 |
|
|
expr = build3 (code, vectype_out, def0, reduc_def, def1);
|
4947 |
|
|
else
|
4948 |
|
|
expr = build3 (code, vectype_out, def0, def1, reduc_def);
|
4949 |
|
|
}
|
4950 |
|
|
}
|
4951 |
|
|
|
4952 |
|
|
new_stmt = gimple_build_assign (vec_dest, expr);
|
4953 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
4954 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
4955 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
4956 |
|
|
|
4957 |
|
|
if (slp_node)
|
4958 |
|
|
{
|
4959 |
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
|
4960 |
|
|
VEC_quick_push (tree, vect_defs, new_temp);
|
4961 |
|
|
}
|
4962 |
|
|
else
|
4963 |
|
|
VEC_replace (tree, vect_defs, 0, new_temp);
|
4964 |
|
|
}
|
4965 |
|
|
|
4966 |
|
|
if (slp_node)
|
4967 |
|
|
continue;
|
4968 |
|
|
|
4969 |
|
|
if (j == 0)
|
4970 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
4971 |
|
|
else
|
4972 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
4973 |
|
|
|
4974 |
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
4975 |
|
|
prev_phi_info = vinfo_for_stmt (new_phi);
|
4976 |
|
|
}
|
4977 |
|
|
|
4978 |
|
|
/* Finalize the reduction-phi (set its arguments) and create the
|
4979 |
|
|
epilog reduction code. */
|
4980 |
|
|
if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
|
4981 |
|
|
{
|
4982 |
|
|
new_temp = gimple_assign_lhs (*vec_stmt);
|
4983 |
|
|
VEC_replace (tree, vect_defs, 0, new_temp);
|
4984 |
|
|
}
|
4985 |
|
|
|
4986 |
|
|
vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
|
4987 |
|
|
epilog_reduc_code, phis, reduc_index,
|
4988 |
|
|
double_reduc, slp_node);
|
4989 |
|
|
|
4990 |
|
|
VEC_free (gimple, heap, phis);
|
4991 |
|
|
VEC_free (tree, heap, vec_oprnds0);
|
4992 |
|
|
if (vec_oprnds1)
|
4993 |
|
|
VEC_free (tree, heap, vec_oprnds1);
|
4994 |
|
|
|
4995 |
|
|
return true;
|
4996 |
|
|
}
|
4997 |
|
|
|
4998 |
|
|
/* Function vect_min_worthwhile_factor.
|
4999 |
|
|
|
5000 |
|
|
For a loop where we could vectorize the operation indicated by CODE,
|
5001 |
|
|
return the minimum vectorization factor that makes it worthwhile
|
5002 |
|
|
to use generic vectors. */
|
5003 |
|
|
int
|
5004 |
|
|
vect_min_worthwhile_factor (enum tree_code code)
|
5005 |
|
|
{
|
5006 |
|
|
switch (code)
|
5007 |
|
|
{
|
5008 |
|
|
case PLUS_EXPR:
|
5009 |
|
|
case MINUS_EXPR:
|
5010 |
|
|
case NEGATE_EXPR:
|
5011 |
|
|
return 4;
|
5012 |
|
|
|
5013 |
|
|
case BIT_AND_EXPR:
|
5014 |
|
|
case BIT_IOR_EXPR:
|
5015 |
|
|
case BIT_XOR_EXPR:
|
5016 |
|
|
case BIT_NOT_EXPR:
|
5017 |
|
|
return 2;
|
5018 |
|
|
|
5019 |
|
|
default:
|
5020 |
|
|
return INT_MAX;
|
5021 |
|
|
}
|
5022 |
|
|
}
|
5023 |
|
|
|
5024 |
|
|
|
5025 |
|
|
/* Function vectorizable_induction
|
5026 |
|
|
|
5027 |
|
|
Check if PHI performs an induction computation that can be vectorized.
|
5028 |
|
|
If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
|
5029 |
|
|
phi to replace it, put it in VEC_STMT, and add it to the same basic block.
|
5030 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
5031 |
|
|
|
5032 |
|
|
bool
|
5033 |
|
|
vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
|
5034 |
|
|
gimple *vec_stmt)
|
5035 |
|
|
{
|
5036 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (phi);
|
5037 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
5038 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
5039 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
5040 |
|
|
int nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
5041 |
|
|
int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
|
5042 |
|
|
tree vec_def;
|
5043 |
|
|
|
5044 |
|
|
gcc_assert (ncopies >= 1);
|
5045 |
|
|
/* FORNOW. This restriction should be relaxed. */
|
5046 |
|
|
if (nested_in_vect_loop_p (loop, phi) && ncopies > 1)
|
5047 |
|
|
{
|
5048 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
5049 |
|
|
fprintf (vect_dump, "multiple types in nested loop.");
|
5050 |
|
|
return false;
|
5051 |
|
|
}
|
5052 |
|
|
|
5053 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info))
|
5054 |
|
|
return false;
|
5055 |
|
|
|
5056 |
|
|
/* FORNOW: SLP not supported. */
|
5057 |
|
|
if (STMT_SLP_TYPE (stmt_info))
|
5058 |
|
|
return false;
|
5059 |
|
|
|
5060 |
|
|
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
|
5061 |
|
|
|
5062 |
|
|
if (gimple_code (phi) != GIMPLE_PHI)
|
5063 |
|
|
return false;
|
5064 |
|
|
|
5065 |
|
|
if (!vec_stmt) /* transformation not required. */
|
5066 |
|
|
{
|
5067 |
|
|
STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
|
5068 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
5069 |
|
|
fprintf (vect_dump, "=== vectorizable_induction ===");
|
5070 |
|
|
vect_model_induction_cost (stmt_info, ncopies);
|
5071 |
|
|
return true;
|
5072 |
|
|
}
|
5073 |
|
|
|
5074 |
|
|
/** Transform. **/
|
5075 |
|
|
|
5076 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
5077 |
|
|
fprintf (vect_dump, "transform induction phi.");
|
5078 |
|
|
|
5079 |
|
|
vec_def = get_initial_def_for_induction (phi);
|
5080 |
|
|
*vec_stmt = SSA_NAME_DEF_STMT (vec_def);
|
5081 |
|
|
return true;
|
5082 |
|
|
}
|
5083 |
|
|
|
5084 |
|
|
/* Function vectorizable_live_operation.
|
5085 |
|
|
|
5086 |
|
|
STMT computes a value that is used outside the loop. Check if
|
5087 |
|
|
it can be supported. */
|
5088 |
|
|
|
5089 |
|
|
bool
|
5090 |
|
|
vectorizable_live_operation (gimple stmt,
|
5091 |
|
|
gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
|
5092 |
|
|
gimple *vec_stmt ATTRIBUTE_UNUSED)
|
5093 |
|
|
{
|
5094 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
5095 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
5096 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
5097 |
|
|
int i;
|
5098 |
|
|
int op_type;
|
5099 |
|
|
tree op;
|
5100 |
|
|
tree def;
|
5101 |
|
|
gimple def_stmt;
|
5102 |
|
|
enum vect_def_type dt;
|
5103 |
|
|
enum tree_code code;
|
5104 |
|
|
enum gimple_rhs_class rhs_class;
|
5105 |
|
|
|
5106 |
|
|
gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
|
5107 |
|
|
|
5108 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
|
5109 |
|
|
return false;
|
5110 |
|
|
|
5111 |
|
|
if (!is_gimple_assign (stmt))
|
5112 |
|
|
return false;
|
5113 |
|
|
|
5114 |
|
|
if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
|
5115 |
|
|
return false;
|
5116 |
|
|
|
5117 |
|
|
/* FORNOW. CHECKME. */
|
5118 |
|
|
if (nested_in_vect_loop_p (loop, stmt))
|
5119 |
|
|
return false;
|
5120 |
|
|
|
5121 |
|
|
code = gimple_assign_rhs_code (stmt);
|
5122 |
|
|
op_type = TREE_CODE_LENGTH (code);
|
5123 |
|
|
rhs_class = get_gimple_rhs_class (code);
|
5124 |
|
|
gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
|
5125 |
|
|
gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
|
5126 |
|
|
|
5127 |
|
|
/* FORNOW: support only if all uses are invariant. This means
|
5128 |
|
|
that the scalar operations can remain in place, unvectorized.
|
5129 |
|
|
The original last scalar value that they compute will be used. */
|
5130 |
|
|
|
5131 |
|
|
for (i = 0; i < op_type; i++)
|
5132 |
|
|
{
|
5133 |
|
|
if (rhs_class == GIMPLE_SINGLE_RHS)
|
5134 |
|
|
op = TREE_OPERAND (gimple_op (stmt, 1), i);
|
5135 |
|
|
else
|
5136 |
|
|
op = gimple_op (stmt, i + 1);
|
5137 |
|
|
if (op
|
5138 |
|
|
&& !vect_is_simple_use (op, stmt, loop_vinfo, NULL, &def_stmt, &def,
|
5139 |
|
|
&dt))
|
5140 |
|
|
{
|
5141 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
5142 |
|
|
fprintf (vect_dump, "use not simple.");
|
5143 |
|
|
return false;
|
5144 |
|
|
}
|
5145 |
|
|
|
5146 |
|
|
if (dt != vect_external_def && dt != vect_constant_def)
|
5147 |
|
|
return false;
|
5148 |
|
|
}
|
5149 |
|
|
|
5150 |
|
|
/* No transformation is required for the cases we currently support. */
|
5151 |
|
|
return true;
|
5152 |
|
|
}
|
5153 |
|
|
|
5154 |
|
|
/* Kill any debug uses outside LOOP of SSA names defined in STMT. */
|
5155 |
|
|
|
5156 |
|
|
static void
|
5157 |
|
|
vect_loop_kill_debug_uses (struct loop *loop, gimple stmt)
|
5158 |
|
|
{
|
5159 |
|
|
ssa_op_iter op_iter;
|
5160 |
|
|
imm_use_iterator imm_iter;
|
5161 |
|
|
def_operand_p def_p;
|
5162 |
|
|
gimple ustmt;
|
5163 |
|
|
|
5164 |
|
|
FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
|
5165 |
|
|
{
|
5166 |
|
|
FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
|
5167 |
|
|
{
|
5168 |
|
|
basic_block bb;
|
5169 |
|
|
|
5170 |
|
|
if (!is_gimple_debug (ustmt))
|
5171 |
|
|
continue;
|
5172 |
|
|
|
5173 |
|
|
bb = gimple_bb (ustmt);
|
5174 |
|
|
|
5175 |
|
|
if (!flow_bb_inside_loop_p (loop, bb))
|
5176 |
|
|
{
|
5177 |
|
|
if (gimple_debug_bind_p (ustmt))
|
5178 |
|
|
{
|
5179 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
5180 |
|
|
fprintf (vect_dump, "killing debug use");
|
5181 |
|
|
|
5182 |
|
|
gimple_debug_bind_reset_value (ustmt);
|
5183 |
|
|
update_stmt (ustmt);
|
5184 |
|
|
}
|
5185 |
|
|
else
|
5186 |
|
|
gcc_unreachable ();
|
5187 |
|
|
}
|
5188 |
|
|
}
|
5189 |
|
|
}
|
5190 |
|
|
}
|
5191 |
|
|
|
5192 |
|
|
/* Function vect_transform_loop.
|
5193 |
|
|
|
5194 |
|
|
The analysis phase has determined that the loop is vectorizable.
|
5195 |
|
|
Vectorize the loop - created vectorized stmts to replace the scalar
|
5196 |
|
|
stmts in the loop, and update the loop exit condition. */
|
5197 |
|
|
|
5198 |
|
|
void
|
5199 |
|
|
vect_transform_loop (loop_vec_info loop_vinfo)
|
5200 |
|
|
{
|
5201 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
5202 |
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
5203 |
|
|
int nbbs = loop->num_nodes;
|
5204 |
|
|
gimple_stmt_iterator si;
|
5205 |
|
|
int i;
|
5206 |
|
|
tree ratio = NULL;
|
5207 |
|
|
int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
5208 |
|
|
bool strided_store;
|
5209 |
|
|
bool slp_scheduled = false;
|
5210 |
|
|
unsigned int nunits;
|
5211 |
|
|
tree cond_expr = NULL_TREE;
|
5212 |
|
|
gimple_seq cond_expr_stmt_list = NULL;
|
5213 |
|
|
bool do_peeling_for_loop_bound;
|
5214 |
|
|
gimple stmt, pattern_stmt;
|
5215 |
|
|
gimple_seq pattern_def_seq = NULL;
|
5216 |
|
|
gimple_stmt_iterator pattern_def_si = gsi_start (NULL);
|
5217 |
|
|
bool transform_pattern_stmt = false;
|
5218 |
|
|
|
5219 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
5220 |
|
|
fprintf (vect_dump, "=== vec_transform_loop ===");
|
5221 |
|
|
|
5222 |
|
|
/* Peel the loop if there are data refs with unknown alignment.
|
5223 |
|
|
Only one data ref with unknown store is allowed. */
|
5224 |
|
|
|
5225 |
|
|
if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
|
5226 |
|
|
vect_do_peeling_for_alignment (loop_vinfo);
|
5227 |
|
|
|
5228 |
|
|
do_peeling_for_loop_bound
|
5229 |
|
|
= (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
5230 |
|
|
|| (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
5231 |
|
|
&& LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0)
|
5232 |
|
|
|| LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo));
|
5233 |
|
|
|
5234 |
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
|
5235 |
|
|
|| LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
|
5236 |
|
|
vect_loop_versioning (loop_vinfo,
|
5237 |
|
|
!do_peeling_for_loop_bound,
|
5238 |
|
|
&cond_expr, &cond_expr_stmt_list);
|
5239 |
|
|
|
5240 |
|
|
/* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
|
5241 |
|
|
compile time constant), or it is a constant that doesn't divide by the
|
5242 |
|
|
vectorization factor, then an epilog loop needs to be created.
|
5243 |
|
|
We therefore duplicate the loop: the original loop will be vectorized,
|
5244 |
|
|
and will compute the first (n/VF) iterations. The second copy of the loop
|
5245 |
|
|
will remain scalar and will compute the remaining (n%VF) iterations.
|
5246 |
|
|
(VF is the vectorization factor). */
|
5247 |
|
|
|
5248 |
|
|
if (do_peeling_for_loop_bound)
|
5249 |
|
|
vect_do_peeling_for_loop_bound (loop_vinfo, &ratio,
|
5250 |
|
|
cond_expr, cond_expr_stmt_list);
|
5251 |
|
|
else
|
5252 |
|
|
ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
|
5253 |
|
|
LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
|
5254 |
|
|
|
5255 |
|
|
/* 1) Make sure the loop header has exactly two entries
|
5256 |
|
|
2) Make sure we have a preheader basic block. */
|
5257 |
|
|
|
5258 |
|
|
gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
|
5259 |
|
|
|
5260 |
|
|
split_edge (loop_preheader_edge (loop));
|
5261 |
|
|
|
5262 |
|
|
/* FORNOW: the vectorizer supports only loops which body consist
|
5263 |
|
|
of one basic block (header + empty latch). When the vectorizer will
|
5264 |
|
|
support more involved loop forms, the order by which the BBs are
|
5265 |
|
|
traversed need to be reconsidered. */
|
5266 |
|
|
|
5267 |
|
|
for (i = 0; i < nbbs; i++)
|
5268 |
|
|
{
|
5269 |
|
|
basic_block bb = bbs[i];
|
5270 |
|
|
stmt_vec_info stmt_info;
|
5271 |
|
|
gimple phi;
|
5272 |
|
|
|
5273 |
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
5274 |
|
|
{
|
5275 |
|
|
phi = gsi_stmt (si);
|
5276 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
5277 |
|
|
{
|
5278 |
|
|
fprintf (vect_dump, "------>vectorizing phi: ");
|
5279 |
|
|
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
|
5280 |
|
|
}
|
5281 |
|
|
stmt_info = vinfo_for_stmt (phi);
|
5282 |
|
|
if (!stmt_info)
|
5283 |
|
|
continue;
|
5284 |
|
|
|
5285 |
|
|
if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
|
5286 |
|
|
vect_loop_kill_debug_uses (loop, phi);
|
5287 |
|
|
|
5288 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info)
|
5289 |
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
5290 |
|
|
continue;
|
5291 |
|
|
|
5292 |
|
|
if ((TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
|
5293 |
|
|
!= (unsigned HOST_WIDE_INT) vectorization_factor)
|
5294 |
|
|
&& vect_print_dump_info (REPORT_DETAILS))
|
5295 |
|
|
fprintf (vect_dump, "multiple-types.");
|
5296 |
|
|
|
5297 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
|
5298 |
|
|
{
|
5299 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
5300 |
|
|
fprintf (vect_dump, "transform phi.");
|
5301 |
|
|
vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
|
5302 |
|
|
}
|
5303 |
|
|
}
|
5304 |
|
|
|
5305 |
|
|
pattern_stmt = NULL;
|
5306 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si) || transform_pattern_stmt;)
|
5307 |
|
|
{
|
5308 |
|
|
bool is_store;
|
5309 |
|
|
|
5310 |
|
|
if (transform_pattern_stmt)
|
5311 |
|
|
stmt = pattern_stmt;
|
5312 |
|
|
else
|
5313 |
|
|
stmt = gsi_stmt (si);
|
5314 |
|
|
|
5315 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
5316 |
|
|
{
|
5317 |
|
|
fprintf (vect_dump, "------>vectorizing statement: ");
|
5318 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
5319 |
|
|
}
|
5320 |
|
|
|
5321 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
5322 |
|
|
|
5323 |
|
|
/* vector stmts created in the outer-loop during vectorization of
|
5324 |
|
|
stmts in an inner-loop may not have a stmt_info, and do not
|
5325 |
|
|
need to be vectorized. */
|
5326 |
|
|
if (!stmt_info)
|
5327 |
|
|
{
|
5328 |
|
|
gsi_next (&si);
|
5329 |
|
|
continue;
|
5330 |
|
|
}
|
5331 |
|
|
|
5332 |
|
|
if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
|
5333 |
|
|
vect_loop_kill_debug_uses (loop, stmt);
|
5334 |
|
|
|
5335 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info)
|
5336 |
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
5337 |
|
|
{
|
5338 |
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info)
|
5339 |
|
|
&& (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
|
5340 |
|
|
&& (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
|
5341 |
|
|
|| STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
|
5342 |
|
|
{
|
5343 |
|
|
stmt = pattern_stmt;
|
5344 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
5345 |
|
|
}
|
5346 |
|
|
else
|
5347 |
|
|
{
|
5348 |
|
|
gsi_next (&si);
|
5349 |
|
|
continue;
|
5350 |
|
|
}
|
5351 |
|
|
}
|
5352 |
|
|
else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
|
5353 |
|
|
&& (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
|
5354 |
|
|
&& (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
|
5355 |
|
|
|| STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
|
5356 |
|
|
transform_pattern_stmt = true;
|
5357 |
|
|
|
5358 |
|
|
/* If pattern statement has def stmts, vectorize them too. */
|
5359 |
|
|
if (is_pattern_stmt_p (stmt_info))
|
5360 |
|
|
{
|
5361 |
|
|
if (pattern_def_seq == NULL)
|
5362 |
|
|
{
|
5363 |
|
|
pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
|
5364 |
|
|
pattern_def_si = gsi_start (pattern_def_seq);
|
5365 |
|
|
}
|
5366 |
|
|
else if (!gsi_end_p (pattern_def_si))
|
5367 |
|
|
gsi_next (&pattern_def_si);
|
5368 |
|
|
if (pattern_def_seq != NULL)
|
5369 |
|
|
{
|
5370 |
|
|
gimple pattern_def_stmt = NULL;
|
5371 |
|
|
stmt_vec_info pattern_def_stmt_info = NULL;
|
5372 |
|
|
|
5373 |
|
|
while (!gsi_end_p (pattern_def_si))
|
5374 |
|
|
{
|
5375 |
|
|
pattern_def_stmt = gsi_stmt (pattern_def_si);
|
5376 |
|
|
pattern_def_stmt_info
|
5377 |
|
|
= vinfo_for_stmt (pattern_def_stmt);
|
5378 |
|
|
if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
|
5379 |
|
|
|| STMT_VINFO_LIVE_P (pattern_def_stmt_info))
|
5380 |
|
|
break;
|
5381 |
|
|
gsi_next (&pattern_def_si);
|
5382 |
|
|
}
|
5383 |
|
|
|
5384 |
|
|
if (!gsi_end_p (pattern_def_si))
|
5385 |
|
|
{
|
5386 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
5387 |
|
|
{
|
5388 |
|
|
fprintf (vect_dump, "==> vectorizing pattern def"
|
5389 |
|
|
" stmt: ");
|
5390 |
|
|
print_gimple_stmt (vect_dump, pattern_def_stmt, 0,
|
5391 |
|
|
TDF_SLIM);
|
5392 |
|
|
}
|
5393 |
|
|
|
5394 |
|
|
stmt = pattern_def_stmt;
|
5395 |
|
|
stmt_info = pattern_def_stmt_info;
|
5396 |
|
|
}
|
5397 |
|
|
else
|
5398 |
|
|
{
|
5399 |
|
|
pattern_def_si = gsi_start (NULL);
|
5400 |
|
|
transform_pattern_stmt = false;
|
5401 |
|
|
}
|
5402 |
|
|
}
|
5403 |
|
|
else
|
5404 |
|
|
transform_pattern_stmt = false;
|
5405 |
|
|
}
|
5406 |
|
|
|
5407 |
|
|
gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
|
5408 |
|
|
nunits = (unsigned int) TYPE_VECTOR_SUBPARTS (
|
5409 |
|
|
STMT_VINFO_VECTYPE (stmt_info));
|
5410 |
|
|
if (!STMT_SLP_TYPE (stmt_info)
|
5411 |
|
|
&& nunits != (unsigned int) vectorization_factor
|
5412 |
|
|
&& vect_print_dump_info (REPORT_DETAILS))
|
5413 |
|
|
/* For SLP VF is set according to unrolling factor, and not to
|
5414 |
|
|
vector size, hence for SLP this print is not valid. */
|
5415 |
|
|
fprintf (vect_dump, "multiple-types.");
|
5416 |
|
|
|
5417 |
|
|
/* SLP. Schedule all the SLP instances when the first SLP stmt is
|
5418 |
|
|
reached. */
|
5419 |
|
|
if (STMT_SLP_TYPE (stmt_info))
|
5420 |
|
|
{
|
5421 |
|
|
if (!slp_scheduled)
|
5422 |
|
|
{
|
5423 |
|
|
slp_scheduled = true;
|
5424 |
|
|
|
5425 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
5426 |
|
|
fprintf (vect_dump, "=== scheduling SLP instances ===");
|
5427 |
|
|
|
5428 |
|
|
vect_schedule_slp (loop_vinfo, NULL);
|
5429 |
|
|
}
|
5430 |
|
|
|
5431 |
|
|
/* Hybrid SLP stmts must be vectorized in addition to SLP. */
|
5432 |
|
|
if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
|
5433 |
|
|
{
|
5434 |
|
|
if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
|
5435 |
|
|
{
|
5436 |
|
|
pattern_def_seq = NULL;
|
5437 |
|
|
gsi_next (&si);
|
5438 |
|
|
}
|
5439 |
|
|
continue;
|
5440 |
|
|
}
|
5441 |
|
|
}
|
5442 |
|
|
|
5443 |
|
|
/* -------- vectorize statement ------------ */
|
5444 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
5445 |
|
|
fprintf (vect_dump, "transform statement.");
|
5446 |
|
|
|
5447 |
|
|
strided_store = false;
|
5448 |
|
|
is_store = vect_transform_stmt (stmt, &si, &strided_store, NULL, NULL);
|
5449 |
|
|
if (is_store)
|
5450 |
|
|
{
|
5451 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
|
5452 |
|
|
{
|
5453 |
|
|
/* Interleaving. If IS_STORE is TRUE, the vectorization of the
|
5454 |
|
|
interleaving chain was completed - free all the stores in
|
5455 |
|
|
the chain. */
|
5456 |
|
|
gsi_next (&si);
|
5457 |
|
|
vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
|
5458 |
|
|
continue;
|
5459 |
|
|
}
|
5460 |
|
|
else
|
5461 |
|
|
{
|
5462 |
|
|
/* Free the attached stmt_vec_info and remove the stmt. */
|
5463 |
|
|
free_stmt_vec_info (gsi_stmt (si));
|
5464 |
|
|
gsi_remove (&si, true);
|
5465 |
|
|
continue;
|
5466 |
|
|
}
|
5467 |
|
|
}
|
5468 |
|
|
|
5469 |
|
|
if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
|
5470 |
|
|
{
|
5471 |
|
|
pattern_def_seq = NULL;
|
5472 |
|
|
gsi_next (&si);
|
5473 |
|
|
}
|
5474 |
|
|
} /* stmts in BB */
|
5475 |
|
|
} /* BBs in loop */
|
5476 |
|
|
|
5477 |
|
|
slpeel_make_loop_iterate_ntimes (loop, ratio);
|
5478 |
|
|
|
5479 |
|
|
/* The memory tags and pointers in vectorized statements need to
|
5480 |
|
|
have their SSA forms updated. FIXME, why can't this be delayed
|
5481 |
|
|
until all the loops have been transformed? */
|
5482 |
|
|
update_ssa (TODO_update_ssa);
|
5483 |
|
|
|
5484 |
|
|
if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
|
5485 |
|
|
fprintf (vect_dump, "LOOP VECTORIZED.");
|
5486 |
|
|
if (loop->inner && vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
|
5487 |
|
|
fprintf (vect_dump, "OUTER LOOP VECTORIZED.");
|
5488 |
|
|
}
|